Sample records for freshwater sediment downstream

  1. Toxicity assessment of sediments collected upstream and downstream from the White Dam in Clarke County, Georgia

    USGS Publications Warehouse

    Lasier, Peter J.

    2018-06-06

    The White Dam in Clarke County, Georgia, has been proposed for breaching. Efforts to determine potential risks to downstream biota included assessments of sediment collected in the vicinity of the dam. Sediments collected from sites upstream and downstream from the dam were evaluated for toxicity in 42-day exposures using the freshwater amphipod Hyalella azteca. Endpoints of the study were survival, growth, and reproduction of H. azteca. Results indicated no significant differences between the collected sediments and the water-only treatment used for comparison of the test endpoints. Therefore, based on the laboratory experiments in this study, sediment migration downstream from a breach of the Dam may not pose a toxicity risk to downstream biota.

  2. Influence of sediment storage on downstream delivery of contaminated sediment

    USGS Publications Warehouse

    Malmon, Daniel V.; Reneau, Steven L.; Dunne, Thomas; Katzman, Danny; Drakos, Paul G.

    2005-01-01

    Sediment storage in alluvial valleys can strongly modulate the downstream migration of sediment and associated contaminants through landscapes. Traditional methods for routing contaminated sediment through valleys focus on in‐channel sediment transport but ignore the influence of sediment exchanges with temporary sediment storage reservoirs outside the channel, such as floodplains. In theory, probabilistic analysis of particle trajectories through valleys offers a useful strategy for quantifying the influence of sediment storage on the downstream movement of contaminated sediment. This paper describes a field application and test of this theory, using 137Cs as a sediment tracer over 45 years (1952–1997), downstream of a historical effluent outfall at the Los Alamos National Laboratory (LANL), New Mexico. The theory is parameterized using a sediment budget based on field data and an estimate of the 137Cs release history at the upstream boundary. The uncalibrated model reasonably replicates the approximate magnitude and spatial distribution of channel‐ and floodplain‐stored 137Cs measured in an independent field study. Model runs quantify the role of sediment storage in the long‐term migration of a pulse of contaminated sediment, quantify the downstream impact of upstream mitigation, and mathematically decompose the future 137Cs flux near the LANL property boundary to evaluate the relative contributions of various upstream contaminant sources. The fate of many sediment‐bound contaminants is determined by the relative timescales of contaminant degradation and particle residence time in different types of sedimentary environments. The theory provides a viable approach for quantifying the long‐term movement of contaminated sediment through valleys.

  3. Cable Bacteria in Freshwater Sediments

    PubMed Central

    Kristiansen, Michael; Frederiksen, Rasmus B.; Dittmer, Anders Lindequist; Bjerg, Jesper Tataru; Trojan, Daniela; Schreiber, Lars; Damgaard, Lars Riis; Schramm, Andreas; Nielsen, Lars Peter

    2015-01-01

    In marine sediments cathodic oxygen reduction at the sediment surface can be coupled to anodic sulfide oxidation in deeper anoxic layers through electrical currents mediated by filamentous, multicellular bacteria of the Desulfobulbaceae family, the so-called cable bacteria. Until now, cable bacteria have only been reported from marine environments. In this study, we demonstrate that cable bacteria also occur in freshwater sediments. In a first step, homogenized sediment collected from the freshwater stream Giber Å, Denmark, was incubated in the laboratory. After 2 weeks, pH signatures and electric fields indicated electron transfer between vertically separated anodic and cathodic half-reactions. Fluorescence in situ hybridization revealed the presence of Desulfobulbaceae filaments. In addition, in situ measurements of oxygen, pH, and electric potential distributions in the waterlogged banks of Giber Å demonstrated the presence of distant electric redox coupling in naturally occurring freshwater sediment. At the same site, filamentous Desulfobulbaceae with cable bacterium morphology were found to be present. Their 16S rRNA gene sequence placed them as a distinct sister group to the known marine cable bacteria, with the genus Desulfobulbus as the closest cultured lineage. The results of the present study indicate that electric currents mediated by cable bacteria could be important for the biogeochemistry in many more environments than anticipated thus far and suggest a common evolutionary origin of the cable phenotype within Desulfobulbaceae with subsequent diversification into a freshwater and a marine lineage. PMID:26116678

  4. Sediment accretion in tidal freshwater forests and oligohaline marshes of the Waccamaw and Savannah Rivers, USA

    USGS Publications Warehouse

    Ensign, Scott H.; Hupp, Cliff R.; Noe, Gregory B.; Krauss, Ken W.; Stagg, Camille L.

    2014-01-01

    Sediment accretion was measured at four sites in varying stages of forest-to-marsh succession along a fresh-to-oligohaline gradient on the Waccamaw River and its tributary Turkey Creek (Coastal Plain watersheds, South Carolina) and the Savannah River (Piedmont watershed, South Carolina and Georgia). Sites included tidal freshwater forests, moderately salt-impacted forests at the freshwater–oligohaline transition, highly salt-impacted forests, and oligohaline marshes. Sediment accretion was measured by use of feldspar marker pads for 2.5 year; accessory information on wetland inundation, canopy litterfall, herbaceous production, and soil characteristics were also collected. Sediment accretion ranged from 4.5 mm year−1 at moderately salt-impacted forest on the Savannah River to 19.1 mm year−1 at its relict, highly salt-impacted forest downstream. Oligohaline marsh sediment accretion was 1.5–2.5 times greater than in tidal freshwater forests. Overall, there was no significant difference in accretion rate between rivers with contrasting sediment loads. Accretion was significantly higher in hollows than on hummocks in tidal freshwater forests. Organic sediment accretion was similar to autochthonous litter production at all sites, but inorganic sediment constituted the majority of accretion at both marshes and the Savannah River highly salt-impacted forest. A strong correlation between inorganic sediment accumulation and autochthonous litter production indicated a positive feedback between herbaceous plant production and allochthonous sediment deposition. The similarity in rates of sediment accretion and sea level rise in tidal freshwater forests indicates that these habitats may become permanently inundated if the rate of sea level rise increases.

  5. Occurrence of triclosan, triclocarban, and its lesser chlorinated congeners in Minnesota freshwater sediments collected near wastewater treatment plants

    USGS Publications Warehouse

    Venkatesan, Arjun K.; Pycke, Benny F.G.; Barber, Larry B.; Lee, Kathy E.; Halden, Rolf U.

    2012-01-01

    The antimicrobial agents triclosan (TCS), triclocarban (TCC) and their associated transformation products are of increasing concern as environmental pollutants due to their potential adverse effects on humans and wildlife, including bioaccumulation and endocrine-disrupting activity. Analysis by tandem mass spectrometry of 24 paired freshwater bed sediment samples (top 10 cm) collected by the U.S. Geological Survey near 12 wastewater treatment plants (WWTPs) in Minnesota revealed TCS and TCC concentrations of up to 85 and 822 ng/g dry weight (dw), respectively. Concentrations of TCS and TCC in bed sediments collected downstream of WWTPs were significantly greater than upstream concentrations in 58% and 42% of the sites, respectively. Dichloro- and non-chlorinated carbanilides (DCC and NCC) were detected in sediments collected at all sites at concentrations of up to 160 and 1.1 ng/g dw, respectively. Overall, antimicrobial concentrations were significantly higher in lakes than in rivers and creeks, with relative abundances decreasing from TCC > TCS > DCC > NCC. This is the first statewide report on the occurrence of TCS, TCC and TCC transformation products in freshwater sediments. Moreover, the results suggest biological or chemical TCC dechlorination products to be ubiquitous in freshwater environments of Minnesota, but whether this transformation occurs in the WWTP or bed sediment remains to be determined.

  6. Tributyltin-resistant bacteria from estuarine and freshwater sediments.

    PubMed Central

    Wuertz, S; Miller, C E; Pfister, R M; Cooney, J J

    1991-01-01

    Resistance to tributyltin (TBT) was examined in populations from TBT-polluted sediments and nonpolluted sediments from an estuary and from fresh water as well as in pure cultures isolated from those sediments. The 50% effective concentrations (EC50s) for populations were higher at a TBT-polluted freshwater site than at a site without TBT, suggesting that TBT selected for a TBT-resistant population. In contrast, EC50s were significantly lower for populations from a TBT-contaminated estuarine site than for those from a site without TBT, suggesting that other factors in addition to TBT determine whether populations become resistant. EC50s for populations from TBT-contaminated freshwater sediments were nearly 30 times higher than those for populations from TBT-contaminated estuarine sediments. We defined a TBT-resistant bacterium as one which grows on trypticase soy agar containing 8.4 microM TBT, a concentration which prevented the growth of 90% of the culturable bacteria from these sediments. The toxicity of TBT in laboratory media was influenced markedly by the composition of the medium and whether it was liquid or solid. Ten TBT-resistant isolates from estuarine sediments and 19 from freshwater sediments were identified to the genus level. Two isolates, each a Bacillus sp., may be the first gram-positive bacteria isolated from fresh water in the presence of a high concentration of TBT. There was a high incidence of resistance to heavy metals: metal resistance indices were 0.76 for estuarine isolates and 0.68 for freshwater isolates.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1746939

  7. Control of Delta Avulsion by Downstream Sediment Sinks

    NASA Astrophysics Data System (ADS)

    Salter, Gerard; Paola, Chris; Voller, Vaughan R.

    2018-01-01

    Understanding how fluxes are partitioned at delta bifurcations is critical for predicting patterns of land loss and gain in deltas worldwide. Although the dynamics of river deltas are influenced from both upstream and downstream, previous studies of bifurcations have focused on upstream controls. Using a quasi-1-D bifurcation model, we show that flow switching in bifurcations is strongly influenced by downstream sediment sinks. We find that coupling between upstream and downstream feedbacks can lead to oscillations in water and sediment flux partitioning. The frequency and initial rate of growth/decay of the oscillations depend on both upstream and downstream conditions, with dimensionless bifurcate length and bypass fraction emerging as key downstream parameters. With a strong offshore sink, causing bypass in the bifurcate branches, we find that bifurcation dynamics become "frozen"; that is, the bifurcation settles on a permanent discharge ratio. In contrast, under depositional conditions, we identify three dynamical regimes: symmetric; soft avulsion, where both branches remain open but the dominant branch switches; and full avulsion. Finally, we show that differential subsidence alters these regimes, with the difference in average sediment supply to each branch exactly compensating for the difference in accommodation generation. Additionally, the model predicts that bifurcations with shorter branches are less asymmetric than bifurcations with longer branches, all else equal, providing a possible explanation for the difference between backwater length distributaries, which tend to be avulsive, and relatively stable mouth-bar-scale networks. We conclude that bifurcations are sensitive both quantitatively and qualitatively to downstream sinks.

  8. Persistence and Degradation Pathways of Tributyltin in Freshwater and Estuarine Sediments

    NASA Astrophysics Data System (ADS)

    Dowson, P. H.; Bubb, J. M.; Lester, J. N.

    1996-05-01

    The degradation of tributyltin (TBT) in contaminated freshwater and estuarine sediments was investigated for a 330-day period under controlled laboratory conditions. Rates of TBT degradation at different depths within various sediments were established, where possible, using regression modelling, and revealed TBT half-lives ranging from 360 to 775 days in surficial sediments. There appeared to be very little difference between degradation rates in freshwater and estuarine sediments, although a notable increase in TBT half-life was evident in spiked sediments containing elevated TBT concen-trations. Degradation trends suggest that TBT either debutylates to dibutyltin (DBT) and monobutyltin (MBT) in aerobic sediments or degrades to DBT which subsequently desorbs to the overlying water column. In anaerobic sediment, the half-life of TBT was not discernible and appears to be in the order of tens of years. Biotic processes were the most important mechanisms for the decomposition of TBT in freshwater and estuarine sediments. The results are reviewed in the context of concentrations of TBT determined in marina and boatyard sediments in U.K. east coast estuaries.

  9. Downstream mixing of sediment and tracers in agricultural catchments: Evidence of changing sediment sources and fluvial processes?

    NASA Astrophysics Data System (ADS)

    Ralph, Timothy; Wethered, Adam; Smith, Hugh; Heijnis, Henk

    2014-05-01

    Land clearance, soil tillage and grazing in agricultural catchments have liberated sediment and altered hydrological connectivity between hillslopes and channels, leading to increased sediment availability, mobilisation and delivery to rivers. The type and amount of sediment supplied to rivers is critical for fluvial geomorphology and aquatic ecosystem health. Contemporary sediment dynamics are routinely investigated using environmental radionuclides such as caesium-137 (Cs-137) and excess lead-210 (Pb-210ex), which can provide information regarding sediment source types and fluvial processes if sediment sources can be distinguished from one another and mixing models applied to representative samples. However, downstream transport, mixing and dilution of radionuclide-labelled sediment (especially from sources with low initial concentrations) can obliterate the tracer signal; sometimes before anything of geomorphological importance happens in the catchment. Can these findings be used as evidence of sediment source variations and fluvial processes when the limits of detection (of Cs-137 in particular) are being exceeded so rapidly downstream? Sediment sources and downstream sediment dynamics were investigated in Coolbaggie Creek, a major supplier of sediment to the Macquarie River in an agricultural catchment with temperate to semi-arid climate in Australia. Radionuclides were used to discriminate between the <63 micron fraction of sediment sources including forested topsoils (Cs-137 11.28 +/- 0.75 Bq/kg; Pb-210ex 181.87 +/- 20.00 Bq/kg), agricultural topsoils (Cs-137 3.21 +/- 0.26 Bq/kg; Pb-210ex 29.59 +/- 10.94 Bq/kg) and sub-soils from channel banks and gullies (Cs-137 1.45 +/- 0.47 Bq/kg; Pb-210ex 4.67 +/- 1.93 Bq/kg). Within the trunk stream, suspended sediment, organic matter and Cs-137 and Pb-210ex concentrations declined downstream. Results from a mixing model suggest that agricultural topsoils account for 95% of fine sediment entering the channel in the

  10. A bioaccumulation bioassay for freshwater sediments

    USGS Publications Warehouse

    Mac, Michael J.; Noguchi, George E.; Hesselberg, Robert J.; Edsall, Carol C.; Shoesmith, John A.; Bowker, James D.

    1990-01-01

    A laboratory bioassay is described for determining the bioavailability of contaminants from freshwater sediments. The bioassay consists of 10-d exposures to whole sediments under flow-through conditions. After testing five species, the fathead minnow (Pimephales promelas) and the earthworm (Lubricus terrestris) were recommended for use in the test. When the availability of polychlorinated biphenyls (PCBs), Hg and Zn from Great Lakes sediments was examined in laboratory exposures, only the PCBs were accumulated. A field validation study demonstrated that the magnitude of accumulation in laboratory exposures was similar to that in organisms caged in the field. A protocol is recommended for using the test as a standardized bioaccumulation bioassay.

  11. Measurement of oxytetracycline and emamectin benzoate in freshwater sediments downstream of land based aquaculture facilities in the Atlantic Region of Canada.

    PubMed

    Lalonde, Benoit A; Ernst, William; Greenwood, Lyndsay

    2012-09-01

    This study investigated the occurrence of oxytetracycline (OTC) and emamectin benzoate (EB) in sediments located near the effluent outfall from four freshwater aquaculture facilities in Atlantic Canada. While two facilities had no detectable concentrations of EB or OTC, two facilities had detectable concentrations of one or both of these chemicals. Concentrations ranged from <0.05-18 mg/kg to <0.01-2.5 mg/kg for OTC and EB respectively. Although these values could not be compared with freshwater toxicant values, some of the concentrations of EB and OTC detected were higher than LC(50) values calculated for marine invertebrates. OTC concentrations measured in this study are also of a magnitude which has been known to produce resistant bacteria.

  12. Freshwater Sediment Characterization Factors of Copper Oxide Nanoparticles

    NASA Astrophysics Data System (ADS)

    Pu, Yubing; Laratte, Bertrand; Ionescu, Rodica Elena

    2017-01-01

    Wide use of engineered nanoparticles (ENPs) is likely to result in the eventually accumulation of ENPs in sediment. The benthic organisms living in sediments may suffer relatively high toxic effects of ENPs. This study has selected copper oxide nanoparticles (nano-CuO) as a research object. To consider the impacts of spatial heterogeneity on ENPs toxicity, the characterization factor (CF) derived from life cycle assessment (LCA) methodology is used as an indicator in this study. A nano-specific fate model has been used to calculate the freshwater sediment fate factor (FF) of nano-CuO. A literature survey of the nano-CuO toxicology values has been performed to calculate the effect factor (EF). Seventeen freshwater sediment CFs of nano-CuO are proposed as recommended values for subcontinental regions. The region most likely to be affected by nano-CuO is northern Australia (CF of 21.01·103 CTUe, comparative toxic units) and the least likely is northern Europe and northern Canada (CF of 8.55·103 CTUe). These sediment CFs for nano-CuO could be used in the future when evaluating the ecosystem impacts of products containing nano-CuO by LCA method.

  13. Biotransformation of tributyltin to tin in freshwater river-bed sediments contaminated by an organotin release

    USGS Publications Warehouse

    Landmeyer, J.E.; Tanner, T.L.; Watt, B.E.

    2004-01-01

    The largest documented release of organotin compounds to a freshwater river system in the United States occurred in early 2000 in central South Carolina. The release consisted of an unknown volume of various organotin compounds such tetrabutyltin (TTBT), tributyltin (TBT), tetraoctyltin (TTOT), and trioctyl tin (TOT) and resulted in a massive fish kill and the permanent closures of a municipal wastewater treatment plant and a local city's only drinking-water intake. Initial sampling events in 2000 and 2001 indicated that concentrations of the ecologically toxic TTBT and TBT were each greater than 10 000 ??g/kg in surface-water bed sediments in depositional areas, such as lakes and beaver ponds downstream of the release. Bed-sediment samples collected between 2001 and 2003, however, revealed a substantial decrease in bed-sediment organotin concentrations and an increase in concentrations of degradation intermediate compounds. For example, in bed sediments of a representative beaver pond located about 1.6 km downstream of the release, total organotin concentrations [the sum of TTBT, TBT, and the TBT degradation intermediates dibutyltin (DBT) and monobutyltin (MBT)] decreased from 38 670 to 298 ??g/kg. In Crystal Lake, a large lake about 0.4 km downstream from the beaver pond, total organotin concentrations decreased from 28 300 to less than 5 ??g/kg during the same time period. Moreover, bed-sediment inorganic tin concentrations increased from pre-release levels of less than 800 to 32 700 ??g/kg during this time. These field data suggest that the released organotin compounds, such as TBT, are being transformed into inorganic tin by bed-sediment microbial processes. Microcosms were created in the laboratory that contained bed sediment from the two sites and were amended with tributyltin (as tributyltin chloride) under an ambient air headspace and sacrificially analyzed periodically for TBT, the biodegradation intermediates DBT and MBT, and tin. TBT concentrations

  14. Comparisons of Sediment Test Volumes for Freshwater Solid Phase Sediment Toxicity Tests

    EPA Science Inventory

    Laboratory tests with benthic macroinvertebrates are commonly used to assess the potential toxicity of contaminated sediments, and detailed standard test procedures have been developed for various species. For freshwater, two benthic organisms, Hyalella azteca and Chironomus dil...

  15. Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems

    USGS Publications Warehouse

    MacDonald, D.D.; Ingersoll, C.G.; Berger, T.A.

    2000-01-01

    Numerical sediment quality guidelines (SQGs) for freshwater ecosystems have previously been developed using a variety of approaches. Each approach has certain advantages and limitations which influence their application in the sediment quality assessment process. In an effort to focus on the agreement among these various published SQGs, consensus-based SQGs were developed for 28 chemicals of concern in freshwater sediments (i.e., metals, polycyclic aromatic hydrocarbons, polychlorinated biphenyls, and pesticides). For each contaminant of concern, two SQGs were developed from the published SQGs, including a threshold effect concentration (TEC) and a probable effect concentration (PEC). The resultant SQGs for each chemical were evaluated for reliability using matching sediment chemistry and toxicity data from field studies conducted throughout the United States. The results of this evaluation indicated that most of the TECs (i.e., 21 of 28) provide an accurate basis for predicting the absence of sediment toxicity. Similarly, most of the PECs (i.e., 16 of 28) provide an accurate basis for predicting sediment toxicity. Mean PEC quotients were calculated to evaluate the combined effects of multiple contaminants in sediment. Results of the evaluation indicate that the incidence of toxicity is highly correlated to the mean PEC quotient (R2= 0.98 for 347 samples). It was concluded that the consensus-based SQGs provide a reliable basis for assessing sediment quality conditions in freshwater ecosystems.

  16. Contemporary deposition and long-term accumulation of sediment and nutrients by tidal freshwater forested wetlands impacted by sea level rise

    USGS Publications Warehouse

    Noe, Gregory; Hupp, Cliff R.; Bernhardt, Christopher E.; Krauss, Ken W.

    2016-01-01

    Contemporary deposition (artificial marker horizon, 3.5 years) and long-term accumulation rates (210Pb profiles, ~150 years) of sediment and associated carbon (C), nitrogen (N), and phosphorus (P) were measured in wetlands along the tidal Savannah and Waccamaw rivers in the southeastern USA. Four sites along each river spanned an upstream-to-downstream salinification gradient, from upriver tidal freshwater forested wetland (TFFW), through moderately and highly salt-impacted forested wetlands, to oligohaline marsh downriver. Contemporary deposition rates (sediment, C, N, and P) were greatest in oligohaline marsh and lowest in TFFW along both rivers. Greater rates of deposition in oligohaline and salt-stressed forested wetlands were associated with a shift to greater clay and metal content that is likely associated with a change from low availability of watershed-derived sediment to TFFW and to greater availability of a coastal sediment source to oligohaline wetlands. Long-term accumulation rates along the Waccamaw River had the opposite spatial pattern compared to contemporary deposition, with greater rates in TFFW that declined to oligohaline marsh. Long-term sediment and elemental mass accumulation rates also were 3–9× lower than contemporary deposition rates. In comparison to other studies, sediment and associated nutrient accumulation in TFFW are lower than downriver/estuarine freshwater, oligohaline, and salt marshes, suggesting a reduced capacity for surface sedimentation (short-term) as well as shallow soil processes (long-term sedimentation) to offset sea level rise in TFFW. Nonetheless, their potentially large spatial extent suggests that TFFW have a large impact on the transport and fate of sediment and nutrients in tidal rivers and estuaries.

  17. Sediment, land use, and freshwater mussels: Prospects and problems

    USGS Publications Warehouse

    Brim-Box, J.; Mossa, J.

    1999-01-01

    The decline in freshwater mussel populations in many river basins throughout North America has been attributed, in part, to land-use modifications that cause changes in sediment regimes. However, the specific associations that mussels have with stream sediments are poorly understood, making it difficult to assess the impacts of changes in sedimentation rates on unionid mussels. Both bed and suspended materials, and concomitant changes in channel form associated with changes in sediment supply, may affect mussels in numerous ways at various stages in their life cycle. Considerable debate and uncertainty remains regarding the strength of associations between sediments and mussels, including whether increased sedimentation is a cause of recent mussel declines. It is important to be aware of appropriate procedures for sampling and analyzing fluvial sediments, and the nature of sediment sources, to adequately assess relationships between unionid mussels and fluvial sediments.

  18. Coarse and fine sediment transportation patterns and causes downstream of the Three Gorges Dam

    NASA Astrophysics Data System (ADS)

    Li, Songzhe; Yang, Yunping; Zhang, Mingjin; Sun, Zhaohua; Zhu, Lingling; You, Xingying; Li, Kanyu

    2017-11-01

    Reservoir construction within a basin affects the process of water and sediment transport downstream of the dam. The Three Gorges Reservoir (TGR) affects the sediment transport downstream of the dam. The impoundment of the TGR reduced total downstream sediment. The sediment group d≤0.125 mm (fine particle) increased along the path, but the average was still below what existed before the reservoir impoundment. The sediments group d>0.125 mm (coarse particle) was recharged in the Yichang to Jianli reach, but showed a deposition trend downstream of Jianli. The coarse sediment in the Yichang to Jianli section in 2003 to 2007 was above the value before the TGR impoundment. However, the increase of both coarse and fine sediments in 2008 to 2014 was less than that in 2003 to 2007. The sediment retained in the dam is the major reason for the sediment reduction downstream. However, the retention in different river reaches is affected by riverbed coarsening, discharge, flow process, and conditions of lake functioning and recharging from the tributaries. The main conclusions derived from our study are as follows: 1) The riverbed in the Yichang to Shashi section was relatively coarse, thereby limiting the supply of fine and coarse sediments. The fine sediment supply was mainly controlled by TGR discharge, whereas the coarse sediment supply was controlled by the duration of high flow and its magnitude. 2) The supply of both coarse and fine sediments in the Shashi to Jianli section was controlled by the amount of total discharge. The sediment supply from the riverbed was higher in flood years than that in the dry years. The coarse sediment tended to deposit, and the deposition in the dry years was larger than that in the flood years. 3) The feeding of the fine sediment in the Luoshan to Hankou section was mainly from the riverbed. The supply in 2008 to 2014 was more than that in 2003 to 2007. Around 2010, the coarse sediments transited from depositing to scouring that was

  19. Toxicity of nickel-spiked freshwater sediments to benthic invertebrates-Spiking methodology, species sensitivity, and nickel bioavailability

    USGS Publications Warehouse

    Besser, John M.; Brumbaugh, William G.; Kemble, Nile E.; Ivey, Chris D.; Kunz, James L.; Ingersoll, Christopher G.; Rudel, David

    2011-01-01

    This report summarizes data from studies of the toxicity and bioavailability of nickel in nickel-spiked freshwater sediments. The goal of these studies was to generate toxicity and chemistry data to support development of broadly applicable sediment quality guidelines for nickel. The studies were conducted as three tasks, which are presented here as three chapters: Task 1, Development of methods for preparation and toxicity testing of nickel-spiked freshwater sediments; Task 2, Sensitivity of benthic invertebrates to toxicity of nickel-spiked freshwater sediments; and Task 3, Effect of sediment characteristics on nickel bioavailability. Appendices with additional methodological details and raw chemistry and toxicity data for the three tasks are available online at http://pubs.usgs.gov/sir/2011/5225/downloads/.

  20. Effect of zeolite on toxicity of ammonia in freshwater sediments: Implications for toxicity identification evaluation procedures

    USGS Publications Warehouse

    Besser, J.M.; Ingersoll, C.G.; Leonard, E.N.; Mount, D.R.

    1998-01-01

    Techniques for reducing ammonia toxicity in freshwater sediments were investigated as part of a project to develop toxicity identification and evaluation (TIE) procedures for whole sediments. Although ammonia is a natural constituent of freshwater sediments, pollution can lead to ammonia concentrations that are toxic to benthic invertebrates, and ammonia can also contribute to the toxicity of sediments that contain more persistent contaminants. We investigated the use of amendments of a natural zeolite mineral, clinoptilolite, to reduce concentrations of ammonia in sediment pore water. Zeolites have been widely used for removal of ammonia in water treatment and in aqueous TIE procedures. The addition of granulated zeolite to ammonia-spiked sediments reduced pore-water ammonia concentrations and reduced ammonia toxicity to invertebrates. Amendments of 20% zeolite (v/v) reduced ammonia concentrations in pore water by ???70% in spiked sediments with ammonia concentrations typical of contaminated freshwater sediments. Zeolite amendments reduced toxicity of ammonia-spiked sediments to three taxa of benthic invertebrates (Hyalella azteca, Lumbriculus variegatus, and Chironomus tentans), despite their widely differing sensitivity to ammonia toxicity. In contrast, zeolite amendments did not reduce acute toxicity of sediments containing high concentrations of cadmium or copper or reduce concentrations of these metals in pore waters. These studies suggest that zeolite amendments, used in conjunction with toxicity tests with sensitive taxa such as H. azteca, may be an effective technique for selective reduction of ammonia toxicity in freshwater sediments.

  1. Controlled sediment flushing at the Cancano Reservoir (Italian Alps): Management of the operation and downstream environmental impact.

    PubMed

    Espa, Paolo; Brignoli, Maria Laura; Crosa, Giuseppe; Gentili, Gaetano; Quadroni, Silvia

    2016-11-01

    Sediment flushing may be effective to preserve reservoir storage, but concerns arise about sustainability for downstream freshwater ecosystems. We report on the controlled flushing of approximately 110,000 tons of silt from a 120 Mm(3) reservoir on the Adda River, the main tributary of Lake Como, Italy. Technical constraints prevented flushing during high flows, and the operation had to be spread out over three consecutive years (2010-2012) and, for each year, over a rather long time span (40-50 days). To mitigate the downstream impact, the suspended sediment concentration (SSC) of the evacuated water was controlled by regulating the dislodging works inside the reservoir, increasing the streamflow in the regulated tributaries, and operating an instream settling basin. SSC and water flow as well as benthic macroinvertebrates and trout were monitored as far as 28 km below the reservoir. At the most upstream gauging station, SSC peaked up to 100 g/l and ranged from 3.5 to 8 g/l on average per each operation. Stream quality metrics based on macroinvertebrate data evidenced the impairment due to flushing; however, the benthic community showed high resilience, recovering to pre-flushing conditions in 6-9 months. Trout data were biased by stocking and sport fishing and were more difficult to be interpreted. The trout population wouldn't seem remarkably altered, even if a non-negligible impact could be deduced through pre/post-event sample comparison. Copyright © 2016. Published by Elsevier Ltd.

  2. Effects of turbidity, sediment, and polyacrylamide on native freshwater mussels

    USGS Publications Warehouse

    Buczek, Sean B.; Cope, W. Gregory; McLaughlin, Richard A.; Kwak, Thomas J.

    2018-01-01

    Turbidity is a ubiquitous pollutant adversely affecting water quality and aquatic life in waterways globally. Anionic polyacrylamide (PAM) is widely used as an effective chemical flocculent to reduce suspended sediment (SS) and turbidity. However, no information exists on the toxicity of PAM‐flocculated sediments to imperiled, but ecologically important, freshwater mussels (Unionidae). Thus, we conducted acute (96 h) and chronic (24 day) laboratory tests with juvenile fatmucket (Lampsilis siliquoidea) and three exposure conditions (nonflocculated settled sediment, SS, and PAM‐flocculated settled sediment) over a range of turbidity levels (50, 250, 1,250, and 3,500 nephelometric turbidity units). Survival and sublethal endpoints of protein oxidation, adenosine triphosphate (ATP) production, and protein concentration were used as measures of toxicity. We found no effect of turbidity levels or exposure condition on mussel survival in acute or chronic tests. However, we found significant reductions in protein concentration, ATP production, and oxidized proteins in mussels acutely exposed to the SS condition, which required water movement to maintain sediment in suspension, indicating responses that are symptoms of physiological stress. Our results suggest anionic PAM applied to reduce SS may minimize adverse effects of short‐term turbidity exposure on juvenile freshwater mussels without eliciting additional lethal or sublethal toxicity.

  3. Sorption kinetics of TNT and RDX in anaerobic freshwater and marine sediments: Batch studies.

    PubMed

    Ariyarathna, Thivanka; Vlahos, Penny; Tobias, Craig; Smith, Richard

    2016-01-01

    Examination of the partitioning of explosives onto sediment in marine environments is critical to predict the toxicological impacts of worldwide explosive-contaminated sites adjacent to estuaries, wetlands, and the coastal ocean. Marine sediments have been identified as sites of enhanced munitions removal, yet most studies addressing these interactions focus on soils and freshwater sediments. The present study measured the kinetics of 2,4,6-trinitrotoluene (TNT) and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) sorption onto 2 marine sediments of varying grain sizes (silt vs sand) and organic carbon (OC) content. Abiotic sediment sorption tests were performed at 23 °C, 15 °C, and 4 °C by spiking TNT and RDX solutions directly into anaerobic sediment slurries. Marine sediments showed significantly higher compound uptake rates (0.30-0.80 h(-1) ) than freshwater silt (0.0046-0.0065 h(-1) ) for both compounds, probably because of lower compound solubilities and a higher pH in marine systems. Equilibrium partition constants are on the same order of magnitude for marine silt (1.1-2.0 L kg(-1) sediment) and freshwater silt (1.4-3.1 L kg(-1) sediment) but lower for marine sand (0.72-0.92 L kg(-1) sediment). Total organic carbon content in marine sediments varied linearly with equilibrium partition constants for TNT and was moderately linear for RDX. Uptake rates and equilibrium constants of explosives are inversely correlated to temperature regardless of sediment type because of kinetic barriers associated with low temperatures. © 2015 SETAC.

  4. Chronic toxicity of nickel-spiked freshwater sediments: variation in toxicity among eight invertebrate taxa and eight sediments

    USGS Publications Warehouse

    Besser, John M.; Brumbaugh, William G.; Ingersoll, Christopher G.; Ivey, Chris D.; Kunz, James L.; Kemble, Nile E.; Schlekat, Christian E.; Garman, Emily R.

    2013-01-01

    This study evaluated the chronic toxicity of Ni-spiked freshwater sediments to benthic invertebrates. A 2-step spiking procedure (spiking and sediment dilution) and a 2-stage equilibration period (10 wk anaerobic and 1 wk aerobic) were used to spike 8 freshwater sediments with wide ranges of acid-volatile sulfide (AVS; 0.94–38 µmol/g) and total organic carbon (TOC; 0.42–10%). Chronic sediment toxicity tests were conducted with 8 invertebrates (Hyalella azteca, Gammarus pseudolimnaeus, Chironomus riparius, Chironomus dilutus, Hexagenia sp., Lumbriculus variegatus, Tubifex tubifex, and Lampsilis siliquoidea) in 2 spiked sediments. Nickel toxicity thresholds estimated from species-sensitivity distributions were 97 µg/g and 752 µg/g (total recoverable Ni; dry wt basis) for sediments with low and high concentrations of AVS and TOC, respectively. Sensitive species were tested with 6 additional sediments. The 20% effect concentrations (EC20s) for Hyalella and Gammarus, but not Hexagenia, were consistent with US Environmental Protection Agency benchmarks based on Ni in porewater and in simultaneously extracted metals (SEM) normalized to AVS and TOC. For Hexagenia, sediment EC20s increased at less than an equimolar basis with increased AVS, and toxicity occurred in several sediments with Ni concentrations in SEM less than AVS. The authors hypothesize that circulation of oxygenated water by Hexagenia led to oxidation of AVS in burrows, creating microenvironments with high Ni exposure. Despite these unexpected results, a strong relationship between Hexagenia EC20s and AVS could provide a basis for conservative site-specific sediment quality guidelines for Ni.

  5. Chronic toxicity of nickel-spiked freshwater sediments: variation in toxicity among eight invertebrate taxa and eight sediments.

    PubMed

    Besser, John M; Brumbaugh, William G; Ingersoll, Christopher G; Ivey, Chris D; Kunz, James L; Kemble, Nile E; Schlekat, Christian E; Garman, Emily Rogevich

    2013-11-01

    This study evaluated the chronic toxicity of Ni-spiked freshwater sediments to benthic invertebrates. A 2-step spiking procedure (spiking and sediment dilution) and a 2-stage equilibration period (10 wk anaerobic and 1 wk aerobic) were used to spike 8 freshwater sediments with wide ranges of acid-volatile sulfide (AVS; 0.94-38 µmol/g) and total organic carbon (TOC; 0.42-10%). Chronic sediment toxicity tests were conducted with 8 invertebrates (Hyalella azteca, Gammarus pseudolimnaeus, Chironomus riparius, Chironomus dilutus, Hexagenia sp., Lumbriculus variegatus, Tubifex tubifex, and Lampsilis siliquoidea) in 2 spiked sediments. Nickel toxicity thresholds estimated from species-sensitivity distributions were 97 µg/g and 752 µg/g (total recoverable Ni; dry wt basis) for sediments with low and high concentrations of AVS and TOC, respectively. Sensitive species were tested with 6 additional sediments. The 20% effect concentrations (EC20s) for Hyalella and Gammarus, but not Hexagenia, were consistent with US Environmental Protection Agency benchmarks based on Ni in porewater and in simultaneously extracted metals (SEM) normalized to AVS and TOC. For Hexagenia, sediment EC20s increased at less than an equimolar basis with increased AVS, and toxicity occurred in several sediments with Ni concentrations in SEM less than AVS. The authors hypothesize that circulation of oxygenated water by Hexagenia led to oxidation of AVS in burrows, creating microenvironments with high Ni exposure. Despite these unexpected results, a strong relationship between Hexagenia EC20s and AVS could provide a basis for conservative site-specific sediment quality guidelines for Ni. © 2013 SETAC.

  6. HEAVY METAL ACCUMULATION IN SEDIMENT AND FRESHWATER FISH IN U.S. ARCTIC LAKES

    EPA Science Inventory

    Metal concentrations in sediment and two species of freshwater fish (lake trout [Salvelinus namaycush], and grayling [Thymallus arcticus]} were examined in four Arctic lakes in Alaska. Concentrations of several metals were naturally high in the sediment relative to uncontaminated...

  7. Suspended sediment transport in the freshwater reach of the Hudson river estuary in eastern New York

    USGS Publications Warehouse

    Wall, G.R.; Nystrom, E.A.; Litten, S.

    2008-01-01

    Deposition of Hudson River sediment into New York Harbor interferes with navigation lanes and requires continuous dredging. Sediment dynamics at the Hudson estuary turbidity maximum (ETM) have received considerable study, but delivery of sediment to the ETM through the freshwater reach of the estuary has received relatively little attention and few direct measurements. An acoustic Doppler current profiler was positioned at the approximate limit of continuous freshwater to develop a 4-year time series of water velocity, discharge, suspended sediment concentration, and suspended sediment discharge. This data set was compared with suspended sediment discharge data collected during the same period at two sites just above the Hudson head-of-tide (the Federal Dam at Troy) that together represent the single largest source of sediment entering the estuary. The mean annual suspended sediment-discharge from the freshwater reach of the estuary was 737,000 metric tons. Unexpectedly, the total suspended sediment discharge at the study site in November and December slightly exceeded that observed during March and April, the months during which rain and snowmelt typically result in the largest sediment discharge to the estuary. Suspended sediment discharge at the study site exceeded that from the Federal Dam, even though the intervening reach appears to store significant amounts of sediment, suggesting that 30-40% of sediment discharge observed at the study site is derived from tributaries to the estuary between the Federal Dam and study site. A simple model of sediment entering and passing through the freshwater reach on a timescale of weeks appears reasonable during normal hydrologic conditions in adjoining watersheds; however, this simple model may dramatically overestimate sediment delivery during extreme tributary high flows, especially those at the end of, or after, the "flushing season" (October through April). Previous estimates of annual or seasonal sediment delivery

  8. Butyltin sorption onto freshwater sediments: from batch experiments to the field values

    NASA Astrophysics Data System (ADS)

    Bancon-Montingy, C.; Aubert, G.; Chahinian, N.; Meyer, J.; Brunel, V.; Tournoud, M. G.

    2009-04-01

    Butyltins, and most particularly TBT were widely used by the industry in the 1970s and 1980s, namely as anti-fouling paints on ships. Although banned since 2003 in Europe, surveys still point out the presence of these compounds both in coastal and terrestrial environments. The resilience of organotin (OT) compounds can be explained by their high adsorption capacity. OTs can bond easily to particulate matter and "migrate" from the water column unto the sediments where their half-life can extend to a few decades. Consequently sediments can become important organotin stores and release OT compounds during dredging operations, storms, tides or floods. Studies on OT behavior in freshwater environments, mainly sediments, are scarce in the literature compared with marine sediments. However, it is known that sorption behaviour of organotin compounds on sediments is governed by the constituents of sediments, and the composition of interstitial water in the sediments and overlying water, i.e. grain size distribution, clay minerals, organic matter, iron, aluminium (hydr)oxides and carbonate in the sediments; salinity, ionic composition, and pH of interstitial water in the sediments and overlying water. The main objective of this work is to assess butyltin adsorption into the sediments of an intermittent river located in southern France: The Vène. Sediments were collected during high and low flow conditions and batch experiments were set up using "natural" and "crushed" sediments to assess the adsorption kinetics. Classical batch experiments and GC-ICP-MS analysis were carried out to measure the distribution coefficient (Kd). The influence of organic substances on sorption processes for organotin species was studied and the role of grain size distribution assessed by comparing natural and crushed sediments. The results indicated that organotin compounds are sorbed easily and quickly on freshwater sediments. The adsorption isotherm for butyltins follows the Freundlich equation

  9. ANAEROBIC BIODEGRADATION OF 2,4-DICHLOROPHENOL IN FRESHWATER LAKE SEDIMENTS AT DIFFERENT TEMPERATURES

    EPA Science Inventory

    Anaerobic degradation of 2,4-dichlorophenol (2,4-DCP) between 5 and 72C was investigated. naerobic sediment slurries prepared from local freshwater sediments were partitioned into anaerobic tubes or serum vials, which then were incubated separately at the various temperatures. ed...

  10. Impact of electron acceptor availability on the anaerobic oxidation of methane in coastal freshwater and brackish wetland sediments

    NASA Astrophysics Data System (ADS)

    Segarra, Katherine E. A.; Comerford, Christopher; Slaughter, Julia; Joye, Samantha B.

    2013-08-01

    Methane, a powerful greenhouse gas, is both produced and consumed in anoxic coastal sediments via microbial processes. Although the anaerobic oxidation of methane (AOM) is almost certainly an important process in coastal freshwater and salt marsh sediments, the factors that control the rates and pathways of AOM in these habitats are poorly understood. Here, we present the first direct measurements of AOM activity in freshwater (0 PSU) and brackish (25 PSU) wetland sediments. Despite disparate sulfate concentrations, both environments supported substantial rates of AOM. Higher sulfate reduction (SR) rates were measured in the freshwater site and SR at both sites was of sufficient magnitude to support the observed AOM activity. Laboratory incubations of freshwater and brackish tidal, wetland sediments amended with either nothing [control], sulfate, nitrate, manganese oxide (birnessite) or iron oxide (ferrihydrite) and supplied with a methane headspace were used to evaluate the impact(s) of electron acceptor availability on potential AOM rates. Maximum AOM rates in brackish slurries occurred in the sulfate amendments. In contrast, addition of sulfate and several possible electron acceptors to the freshwater slurries decreased AOM rates relative to the control. High ratios of AOM activity relative to SR activity in the nitrate, birnessite, and ferrihydrite treatments of both the brackish and freshwater slurries provided evidence of AOM decoupled from SR. This study demonstrates that both freshwater and brackish coastal wetland sediments support considerable rates of anaerobic methanotrophy and provides evidence for sulfate-independent AOM that may be coupled to nitrate, iron, or manganese reduction in both environments.

  11. Freshwater wetland sediments support substantial rates of anaerobic oxidation of methane (AOM)

    NASA Astrophysics Data System (ADS)

    Segarra, K. E.; Samarkin, V.; Schubotz, F.; Yoshinaga, M. Y.; Hinrichs, K.; Joye, S. B.

    2012-12-01

    Freshwater wetlands are characterized by high rates of methanogenesis and are the single largest source of atmospheric methane. Anaerobic oxidation of methane (AOM), a previously underappreciated process in these systems, may be an important component in freshwater methane budgets. Here we report some of the first direct measurements of AOM in wetland sediments. We examined seasonal methane cycling within three freshwater wetlands (two peat wetlands and one tidal, freshwater creekbank) along the eastern coast of the US. Rates of AOM were high (up to 286 nmol per cubic cm per day) and varied on a seasonal basis. Despite low sulfate concentrations, rates of sulfate reduction were sufficient to support all the observed AOM activity, though rates of these two processes were not correlated. This study highlights the importance of AOM in freshwater sediments, where this process, in conjunction with sulfate reduction, may control emissions of methane to the atmosphere through competitive interactions with methanogens and the consumption of large fractions of the methane produced from acetate and hydrogen. The zone of maximum AOM activity was marked by enriched stable carbon isotopic signatures (δ13C) of methane and depleted signatures of DIC. However, the δ13C of archaeal and bacterial lipids were not indicative of methanotrophy. Studies that evaluate the role of AOM in wetlands using lipid and isotope-based approaches may therefore underestimate its importance.

  12. Modeling of sediment transport in a saltwater lake with supplemental sandy freshwater.

    PubMed

    Liang, Li; Deng, Yun; Li, Ran; Li, Jia

    2018-06-22

    Considering the highly complex flow structure of saltwater lakes during freshwater supplementation, a three-dimensional numerical model was developed to simulate suspended sediment transport in saltwater lakes. The model was validated using measurements of the salinity and sediment concentration during a pumping test at Yamdrok Lake. The simulation results were in quantitative agreement with the measured data. The observed and simulated results also indicated that the wind stress and vertical salinity gradient have a significant influence on salinity and sediment transport in a saltwater lake. The validated model was then used to predict and analyze the contributions of wind, the supplement flow rate and salinity stratification to the sediment transport process in Yamdrok Lake during continuous river water supplementation. The simulation results showed that after the sandy river water was continuously discharged into the saltwater lake, the lateral diffusion trends of the sediment exhibited three stages: linear growth in the inflow direction, logarithmic growth in the wind direction, and stabilization. Furthermore, wind was the dominant factor in driving the lake flow pattern and sediment transport. Specifically, wind can effectively reduce the area of the sediment diffusion zone by increasing the lateral sediment carrying and dilution capacities. The effect of inflow on the lake current is negligible, but the extent of the sediment turbidity zone mainly depends on the inflow. Reducing the inflow discharge can decrease the area of the sediment turbidity zone to proportions that far exceed the proportions of inflow discharge reductions. In addition, the high-salinity lake water can support the supplemented freshwater via buoyancy forces, which weaken vertical mixing and sediment settlement and increase lake currents and sediment diffusion near the surface.

  13. Temporal and Spatial Dynamics of Sediment Anaerobic Ammonium Oxidation (Anammox) Bacteria in Freshwater Lakes.

    PubMed

    Yang, Yuyin; Dai, Yu; Li, Ningning; Li, Bingxin; Xie, Shuguang; Liu, Yong

    2017-02-01

    Anaerobic ammonium-oxidizing (anammox) process can play an important role in freshwater nitrogen cycle. However, the distribution of anammox bacteria in freshwater lake and the associated environmental factors remain essentially unclear. The present study investigated the temporal and spatial dynamics of sediment anammox bacterial populations in eutrotrophic Dianchi Lake and mesotrophic Erhai Lake on the Yunnan Plateau (southwestern China). The remarkable spatial change of anammox bacterial abundance was found in Dianchi Lake, while the relatively slight spatial shift occurred in Erhai Lake. Dianchi Lake had greater anammox bacterial abundance than Erhai Lake. In both Dianchi Lake and Erhai Lake, anammox bacteria were much more abundant in summer than in spring. Anammox bacterial community richness, diversity, and structure in these two freshwater lakes were subjected to temporal and spatial variations. Sediment anammox bacterial communities in Dianchi Lake and Erhai Lake were dominated by Candidatus Brocadia and a novel phylotype followed by Candidatus Kuenenia; however, these two lakes had distinct anammox bacterial community structure. In addition, trophic status determined sediment anammox bacterial community structure.

  14. Preliminary Experimental Results on the Technique of Artificial River Replenishment to Mitigate Sediment Loss Downstream Dams

    NASA Astrophysics Data System (ADS)

    Franca, M. J.; Battisacco, E.; Schleiss, A. J.

    2014-12-01

    The transport of sediments by water throughout the river basins, from the steep slopes of the upstream regions to the sea level, is recognizable important to keep the natural conditions of rivers with a role on their ecology processes. Over the last decades, a reduction on the supply of sand and gravel has been observed downstream dams existing in several alpine rivers. Many studies highlight that the presence of a dam strongly modifies the river behavior in the downstream reach, in terms of morphology and hydrodynamics, with consequences on local ecology. Sediment deficit, bed armoring, river incision and bank instability are the main effects which affect negatively the aquatic habitats and the water quality. One of the proposed techniques to solve the problem of sediment deficit downstream dams, already adopted in few Japanese and German rivers although on an unsatisfactory fashion, is the artificial replenishment of these. Generally, it was verified that the erosion of the replenishments was not satisfactory and the transport rate was not enough to move the sediments to sufficient downstream distances. In order to improve and to provide an engineering answer to make this technique more applicable, a series of laboratory tests are ran as preparatory study to understand the hydrodynamics of the river flow when the replenishment technique is applied. Erodible volumes, with different lengths and submergence conditions, reproducing sediment replenishments volumes, are positioned along a channel bank. Different geometrical combinations of erodible sediment volumes are tested as well on the experimental flume. The first results of the experimental research, concerning erosion time evolution, the influence of discharge and the distance travelled by the eroded sediments, will be presented and discussed.

  15. Evaluating physical and biological influences on sedimentation in a tidal freshwater marsh with 7Be

    NASA Astrophysics Data System (ADS)

    Palinkas, Cindy M.; Engelhardt, Katharina A. M.; Cadol, Dan

    2013-09-01

    Key differences exist between tidal fresh- and saltwater marshes, such as the relative importance of mineral versus organic sedimentation and plant species diversity, that likely result in different drivers of sedimentation. In tidal freshwater marshes, we hypothesize that vegetation composition, along with physical marsh features (i.e., elevation and tidal channels), play a critical role in sedimentation. This hypothesis is evaluated in Dyke Marsh Preserve (Potomac River, VA, USA) by examining sediment character (grain size, organic content) and deposition rates across the marsh in spring and summer 2010 and 2011. 7Be is especially well suited to capture seasonal sedimentation patterns owing to its short half-life (53.3 d) and ability to assess both sediment deposition and erosion. However, its use in marshes can be challenging, especially due the presence of vegetation. In this study, 7Be-derived sedimentation rates are compared with sediment deposition observed on ceramic tiles to assess its utility in tidal freshwater marshes, and biophysical influences on sediment deposition are examined through statistical models. 7Be- and tile-derived sedimentation rates show similar spatial and temporal patterns, with highest rates occurring at sites closer to tidal channels, highlighting the importance of sediment availability. In addition, complex feedbacks between sedimentation and the plant community are discussed.

  16. A preliminary evaluation of sediment quality assessment values for freshwater ecosystems

    USGS Publications Warehouse

    Smith, Sherri L.; MacDonald, Donald D.; Keenleyside, Karen A.; Ingersoll, Christopher G.; Field, L. Jay

    1996-01-01

    Sediment quality assessment values were developed using a weight of evidence approach in which matching biological and chemical data from numerous modelling, laboratory, and field studies performed on freshwater sediments were compiled and analyzed. Two assessment values (a threshold effect level (TEL) and a probable effect level(PEL)) were derived for 23 substances, including eight trace metals, six individual polycyclic aromatic hydrocarbons (PAHs), total polychlorinated biphenyls (PCBs), and eight pesticides. The two values defined three ranges of chemical concentrations; those that were (1) rarely, (2) occasionally, and (3) frequently associated with adverse biological effects. An evaluation of the percent incidence of adverse biological effects within the three concentration ranges indicated that the reliability of the TELs (i.e., the degree to which the TELs represent concentrations within the data set below which adverse effects rarely occur) was consistently good. However, this preliminary evaluation indicated that most of the PELs were less reliable (i.e., they did not adequately represent concentrations within the data set above which adverse effects frequently occur). Nonetheless, these values were often comparable to other biological effects-based assessment values (which were themselves reliable), which increased the level of confidence that could be placed in our values. This method is being used as a basis for developing national sediment quality guidelines for freshwater systems in Canada and sediment effect concentrations as part of the Assessment and Remediation of Contaminated Sediments (ARCS) program in the Great Lakes.

  17. COSOLVENT EFFECTS ON PHENANTHRENE SORPTION-DESORPTION ON A FRESH-WATER SEDIMENT

    EPA Science Inventory

    This study evaluated the effects of the water-miscible cosolvent methanol on the sorption-desorption of phenanthrene by the natural organic matter (NOM) of a fresh-water sediment. A biphasic pattern was observed in the relationship between the log of the carbon-normalized sorpti...

  18. Environmental DNA metabarcoding reveals primary chemical contaminants in freshwater sediments from different land-use types.

    PubMed

    Xie, Yuwei; Wang, Jizhong; Yang, Jianghua; Giesy, John P; Yu, Hongxia; Zhang, Xiaowei

    2017-04-01

    Land-use intensification threatens freshwater biodiversity. Freshwater eukaryotic communities are affected by multiple chemical contaminants with a land-use specific manner. However, biodiversities of eukaryotes and their associations with multiple chemical contaminants are largely unknown. This study characterized in situ eukaryotic communities in sediments exposed to mixtures of chemical contaminants and assessed relationships between various environmental variables and eukaryotic communities in sediments from the Nanfei River. Eukaryotic communities in the sediment samples were dominated by Annelida, Arthropoda, Rotifera, Ochrophyta, Chlorophyta and Ciliophora. Alpha-diversities (Shannon entropy) and structures of eukaryotic communities were significantly different between land-use types. According to the results of multiple statistical tests (PCoA, distLM, Mantel and network analysis), dissimilarity of eukaryotic community structures revealed the key effects of pyrethroid insecticides, manganese, zinc, lead, chromium and polycyclic aromatic hydrocarbons (PAHs) on eukaryotic communities in the sediment samples from the Nanfei River. Furthermore, taxa associated with land-use types were identified and several sensitive eukaryotic taxa to some of the primary contaminants were identified as potential indicators to monitor effects of the primary chemical contaminants. Overall, environmental DNA metabarcoding on in situ eukaryotic communities provided a powerful tool for biomonitoring and identifying primary contaminants and their complex effects on benthic eukaryotic communities in freshwater sediments. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Effect of freshwater sediment characteristics on the persistence of fecal indicator bacteria and genetic markers within a Southern California Watershed.

    EPA Science Inventory

    In this study, the relative aging of FIB and genetic markers for Enterococcus spp. (ENT1A), general Bacteroides (GenBac3), and human-associated Bacteroides (HF183) in varying freshwater sediments was evaluated. Freshwater sediment was collected from four different sites within th...

  20. Anaerobic Redox Cycling of Iron by Freshwater Sediment Microorganisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weber, Karrie A.; Urrutia, Matilde M.; Churchill, Perry F.

    2006-01-01

    The potential for microbially-mediated anaerobic redox cycling of iron (Fe) was examined in a first-generation enrichment culture of freshwater wetland sediment microorganisms. MPN enumerations revealed the presence of significant populations of Fe(III)-reducing (ca. 108 cells mL-1) and Fe(II)-oxidizing, nitrate-reducing organisms (ca. 105 cells mL-1) in the sediment used to inoculate the enrichment cultures. Nitrate reduction commenced immediately following inoculation of acetate-containing (ca. 1 mM) medium with a small quantity (1% vol/vol) of wetland sediment, and resulted in the transient accumulation of NO2- and production of a mixture of end-products including NH4+. Fe(III) oxide (high surface area goethite) reduction took placemore » - after NO3- was depleted and continued until all the acetate was utilized. Addition of NO3 after Fe(III) reduction ceased resulted in the immediate oxidation of Fe(II) coupled to reduction of + NO3-to NH4 . No significant NO2- accumulation was observed during nitrate-dependent Fe(II) oxidation. No Fe(II) oxidation occurred in pasteurized controls. Microbial community structure in the enrichment was monitored by DGGE analysis of PCR amplified 16s rDNA and RT-PCR amplified 16S rRNA, as well as by construction of 16S rDNA clone libraries for four different time points during the experiment. Strong similarities in dominant members of the microbial community were observed in the Fe(III) reduction and nitrate-dependent Fe(II) oxidation phases of the experiment, specifically the common presence of organisms closely related (= 95% sequence similarity) to the genera Geobacter and Dechloromonas. These results indicate that the wetland sediments contained organisms such as Geobacter sp. which are capable of both + dissimilatory Fe(III) reduction and oxidation of Fe(II) with reduction of NO3-reduction to NH4 . Our findings suggest that microbially-catalyzed nitrate-dependent Fe(II) oxidation has the potential to contribute to a dynamic

  1. An investigation into the effects of silver nanoparticles on natural microbial communities in two freshwater sediments.

    PubMed

    Bao, Shaopan; Wang, Han; Zhang, Weicheng; Xie, Zhicai; Fang, Tao

    2016-12-01

    The expanding production and usage of commercial silver nanoparticles (AgNPs) will inevitably increase their environmental release, with sediments as a substantial sink. However, little knowledge is available about the potential impacts of AgNPs on freshwater sediment microbial communities, as well as the interactions between microbial communities and biogeochemical factors in AgNPs polluted sediment. To address these issues, two different sediments: a eutrophic freshwater sediment and an oligotrophic freshwater sediment, were exposed to 1 mg/g of either AgNO 3 , uncoated AgNPs (35-nm and 75-nm), or polyvinylpyrrolidone coated AgNPs (PVP-AgNPs) (30-50 nm) for 45 days. High-throughput sequencing of 16S ribosomal ribonucleic acid (16S rRNA) genes using the Illumina MiSeq platform was conducted to evaluate the effects of Ag addition on bacterial community composition. Moreover, sediment microbial biomass and activity were assessed by counting cultivable bacterial number and determining enzyme activities. During the 45-day exposure, compared with no amendment control, some treatments had resulted in significant changes and alterations of sediment biomass or bacterial enzyme activities shortly. While the microbial components at phylum level were rarely affected by AgNPs addition, and as confirmed by the statistical analysis with two-factor analysis of similarities (ANOSIM), there were no significant differences on bacterial community structure across the amended treatments. Redundancy analysis further demonstrated that chemical parameters acid-volatile sulfide (AVS) and simultaneously extracted silver (SE-Ag) in sediment significantly structured the overall bacterial community in sediments spiked with various silver species. In summary, these findings suggested that the ecotoxicity of AgNPs may be attenuated by the transformation under complex environmental conditions and the self-adaption of sediment microbial communities. Copyright © 2016 Elsevier Ltd. All rights

  2. Sediment-phosphorus dynamics can shift aquatic ecology and cause downstream legacy effects after wildfire in large river systems.

    PubMed

    Emelko, Monica B; Stone, Micheal; Silins, Uldis; Allin, Don; Collins, Adrian L; Williams, Chris H S; Martens, Amanda M; Bladon, Kevin D

    2016-03-01

    Global increases in the occurrence of large, severe wildfires in forested watersheds threaten drinking water supplies and aquatic ecology. Wildfire effects on water quality, particularly nutrient levels and forms, can be significant. The longevity and downstream propagation of these effects as well as the geochemical mechanisms regulating them remain largely undocumented at larger river basin scales. Here, phosphorus (P) speciation and sorption behavior of suspended sediment were examined in two river basins impacted by a severe wildfire in southern Alberta, Canada. Fine-grained suspended sediments (<125 μm) were sampled continuously during ice-free conditions over a two-year period (2009-2010), 6 and 7 years after the wildfire. Suspended sediment samples were collected from upstream reference (unburned) river reaches, multiple tributaries within the burned areas, and from reaches downstream of the burned areas, in the Crowsnest and Castle River basins. Total particulate phosphorus (TPP) and particulate phosphorus forms (nonapatite inorganic P, apatite P, organic P), and the equilibrium phosphorus concentration (EPC0 ) of suspended sediment were assessed. Concentrations of TPP and the EPC0 were significantly higher downstream of wildfire-impacted areas compared to reference (unburned) upstream river reaches. Sediments from the burned tributary inputs contained higher levels of bioavailable particulate P (NAIP) - these effects were also observed downstream at larger river basin scales. The release of bioavailable P from postfire, P-enriched fine sediment is a key mechanism causing these effects in gravel-bed rivers at larger basin scales. Wildfire-associated increases in NAIP and the EPC0 persisted 6 and 7 years after wildfire. Accordingly, this work demonstrated that fine sediment in gravel-bed rivers is a significant, long-term source of in-stream bioavailable P that contributes to a legacy of wildfire impacts on downstream water quality, aquatic ecology, and

  3. Geomorphic analysis of the river response to sedimentation downstream of Mount Rainier, Washington

    USGS Publications Warehouse

    Czuba, Jonathan A.; Magirl, Christopher S.; Czuba, Christiana R.; Curran, Christopher A.; Johnson, Kenneth H.; Olsen, Theresa D.; Kimball, Halley K.; Gish, Casey C.

    2012-01-01

    A study of the geomorphology of rivers draining Mount Rainier, Washington, was completed to identify sources of sediment to the river network; to identify important processes in the sediment delivery system; to assess current sediment loads in rivers draining Mount Rainier; to evaluate if there were trends in streamflow or sediment load since the early 20th century; and to assess how rates of sedimentation might continue into the future using published climate-change scenarios. Rivers draining Mount Rainier carry heavy sediment loads sourced primarily from the volcano that cause acute aggradation in deposition reaches as far away as the Puget Lowland. Calculated yields ranged from 2,000 tonnes per square kilometer per year [(tonnes/km2)/yr] on the upper Nisqually River to 350 (tonnes/km2)/yr on the lower Puyallup River, notably larger than sediment yields of 50–200 (tonnes/km2)/yr typical for other Cascade Range rivers. These rivers can be assumed to be in a general state of sediment surplus. As a result, future aggradation rates will be largely influenced by the underlying hydrology carrying sediment downstream. The active-channel width of rivers directly draining Mount Rainier in 2009, used as a proxy for sediment released from Mount Rainier, changed little between 1965 and 1994 reflecting a climatic period that was relatively quiet hydrogeomorphically. From 1994 to 2009, a marked increase in geomorphic disturbance caused the active channels in many river reaches to widen. Comparing active-channel widths of glacier-draining rivers in 2009 to the distance of glacier retreat between 1913 and 1994 showed no correlation, suggesting that geomorphic disturbance in river reaches directly downstream of glaciers is not strongly governed by the degree of glacial retreat. In contrast, there was a correlation between active-channel width and the percentage of superglacier debris mantling the glacier, as measured in 1971. A conceptual model of sediment delivery processes

  4. AN ASSESSMENT OF PHTHALATE ESTER TOXICITY TO FRESHWATER BENTHOS: 2. SEDIMENT EXPOSURES

    EPA Science Inventory

    Seven phthalate esters were evaluated for their stability and 10-d acute toxicity to the freshwater invertebrates Hyalella azteca and Chironomus tentans following incorporation into sediment. The chemicals were diethyl (DEP), di-n-butyl (DBP), di-n-hyxyl (DHP), di-[2-ethylhexyl] ...

  5. Sedimentological downstream effects of dam failure and the role of sediment connectivity: a case study from the Bohemian Massif, Austria

    NASA Astrophysics Data System (ADS)

    Wurster, Maria-Theresia; Weigelhofer, Gabriele; Pichler-Scheder, Christian; Hein, Thomas; Pöppl, Ronald

    2017-04-01

    Sediment connectivity describes the potential for sediment transport through catchment systems, further defining locality and characteristics of sedimentation in river channels. Dams generally decrease sediment connectivity and act as temporary sediment sinks. When dams are removed these sediments are being reworked and released downstream. During dam restoration works along a small-sized stream in the Bohemian Massif of Austria in December 2015 a dam failure occurred which led to the entrainment of several tons of fine-grained reservoir sediments further entering and depositing in the downstream channel reaches, located in the Thayatal National Park. Aiming to remove these fine sediment deposits the National Park Authority decided to initiate a flushing event in April 2016. The main aim of the present study was to investigate the effects of dam failure-induced fine sediment release and reservoir flushing on downstream bed sediment characteristics by applying geomorphological mapping (incl. volumetric surveys) and sedimentological analyses (freeze-core sampling and granulometry), further discussing the role of in-channel sediment connectivity. The obtained results have shown that immediately after the dam failure event a total of ca. 18 m3 of fine-grained sediments have accumulated as in-channel sediment bars which were primarily formed in zones of low longitudinal connectivity (e.g. in the backwater areas of woody debris jams, or at slip-off bank locations). The flushing event has been shown to have caused remobilization and downstream translocation of these deposits, further reducing their total volume by approx. 60%. The results of the granulometric analyses of the freeze-core samples have revealed fine sediment accumulation and storage in the upper parts of the channel bed, having further increased after the flushing event. Additionally, effects on chemical conditions and invertebrate community have been observed. These observations clearly indicate a

  6. Sediment conditions in the San Antonio River Basin downstream from San Antonio, Texas, 2000-13

    USGS Publications Warehouse

    Ockerman, Darwin J.; Banta, J. Ryan; Crow, Cassi L.; Opsahl, Stephen P.

    2015-01-01

    Sediment plays an important role in the ecological health of rivers and estuaries and consequently is an important issue for water-resource managers. To better understand sediment characteristics in the San Antonio River Basin, the U.S. Geological Survey, in cooperation with the San Antonio River Authority, completed a two-part study in the San Antonio River Basin downstream from San Antonio, Texas, to (1) collect and analyze sediment data to characterize sediment conditions and (2) develop and calibrate a watershed model to simulate hydrologic conditions and suspended-sediment loads during 2000–12.

  7. A vacuum-operated pore-water extractor for estuarine and freshwater sediments

    USGS Publications Warehouse

    Winger, Parley V.; Lasier, Peter J.

    1991-01-01

    A vacuum-operated pore-water extractor for estuarine and freshwater sediments was developed and constructed from a fused-glass air stone attached with aquarium airline tubing to a 30 or 60 cc polypropylene syringe. Pore water is extracted by inserting the air stone into the sediment and creating a vacuum by retracting and bracing the syringe plunger. A hand-operated vacuum pump attached to a filtration flask was also evaluated as an alternative vacuum source. The volume and time to extract pore water varies with the number of devices and the sediment particle size. Extraction time is longer for fine sediments than for sandy sediments. Four liters of sediment generally yield between 500 and 1,500 mL of pore water. The sediment that surrounds and accumulates on the air stone acts as a filter, and, except for the first few milliliters, the collected pore water is clear. Because there is no exposure to air or avenue for escape, volatile compounds andin situ characteristics are retained in the extracted pore water.

  8. Biotransformation of tetrabromobisphenol A (TBBPA) in anaerobic digester sludge, soils, and freshwater sediments.

    PubMed

    McAvoy, Drew C; Pittinger, Charles A; Willis, Alison M

    2016-09-01

    The biotransformation of tetrabromobisphenol A (TBBPA) was evaluated in anaerobic digester sludge, soils, and freshwater sediments. In anaerobic digester sludge, TBBPA biotransformed rapidly with a 50% disappearance time (DT50) of 19 days, though little mineralization (1.1%) was observed. In aerobic soils, mineralization of TBBPA ranged from 17.5% to 21.6% with 55.3-83.6% of the TBBPA incorporated into the soils as a non-extractable bound residue. The DT50 for TBBPA in aerobic soils ranged from 5.3 to 7.7 days. In anaerobic soils, 48.3-100% of the TBBPA was incorporated into the soils as non-extractable bound residue with <4% mineralized. The soil fate studies demonstrated extensive incorporation of TBBPA into the solid matrix and this association was related to the amount of organic carbon in the soils (i.e., greater association of TBBPA with soil at higher organic carbon content). In anaerobic sediments the DT50 for TBBPA ranged from 28 to 42 days, whereas in aerobic sediments the DT50 for TBBPA ranged from 48 to 84 days and depended on the initial dose concentration. Most of the TBBPA in the sediment studies was incorporated as a non-extractable bound residue with little mineralization observed. Sediment extracts revealed three unknown biotransformation products and bisphenol A (BPA). These results were consistent with previously published studies where TBBPA biotransformed in anaerobic environments (digester sludge and sediments) by debromination and slowly mineralized in the test environments (anaerobic digester sludge, soils, and freshwater sediments). Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  9. A coupled modelling effort to study the fate of contaminated sediments downstream of the Coles Hill deposit, Virginia, USA

    NASA Astrophysics Data System (ADS)

    Castro-Bolinaga, C. F.; Zavaleta, E. R.; Diplas, P.

    2015-03-01

    This paper presents the preliminary results of a coupled modelling effort to study the fate of tailings (radioactive waste-by product) downstream of the Coles Hill uranium deposit located in Virginia, USA. The implementation of the overall modelling process includes a one-dimensional hydraulic model to qualitatively characterize the sediment transport process under severe flooding conditions downstream of the potential mining site, a two-dimensional ANSYS Fluent model to simulate the release of tailings from a containment cell located partially above the local ground surface into the nearby streams, and a one-dimensional finite-volume sediment transport model to examine the propagation of a tailings sediment pulse in the river network located downstream. The findings of this investigation aim to assist in estimating the potential impacts that tailings would have if they were transported into rivers and reservoirs located downstream of the Coles Hill deposit that serve as municipal drinking water supplies.

  10. Suspended-sediment loads, reservoir sediment trap efficiency, and upstream and downstream channel stability for Kanopolis and Tuttle Creek Lakes, Kansas, 2008-10

    USGS Publications Warehouse

    Juracek, Kyle E.

    2011-01-01

    Continuous streamflow and turbidity data collected from October 1, 2008, to September 30, 2010, at streamgage sites upstream and downstream from Kanopolis and Tuttle Creek Lakes, Kansas, were used to compute the total suspended-sediment load delivered to and released from each reservoir as well as the sediment trap efficiency for each reservoir. Ongoing sedimentation is decreasing the ability of the reservoirs to serve several purposes including flood control, water supply, and recreation. River channel stability upstream and downstream from the reservoirs was assessed using historical streamgage information. For Kanopolis Lake, the total 2-year inflow suspended-sediment load was computed to be 600 million pounds. Most of the suspended-sediment load was delivered during short-term, high-discharge periods. The total 2-year outflow suspended-sediment load was computed to be 31 million pounds. Sediment trap efficiency for the reservoir was estimated to be 95 percent. The mean annual suspended-sediment yield from the upstream basin was estimated to be 129,000 pounds per square mile per year. No pronounced changes in channel width were evident at five streamgage sites located upstream from the reservoir. At the Ellsworth streamgage site, located upstream from the reservoir, long-term channel-bed aggradation was followed by a period of stability. Current (2010) conditions at five streamgages located upstream from the reservoir were typified by channel-bed stability. At the Langley streamgage site, located immediately downstream from the reservoir, the channel bed degraded 6.15 feet from 1948 to 2010. For Tuttle Creek Lake, the total 2-year inflow suspended-sediment load was computed to be 13.3 billion pounds. Most of the suspended-sediment load was delivered during short-term, high-discharge periods. The total 2-year outflow suspended-sediment load was computed to be 327 million pounds. Sediment trap efficiency for the reservoir was estimated to be 98 percent. The mean

  11. The palaeoecologic and biostratigraphic evaluation of Middle Miocene freshwater sediments and microfossils near Denkendorf (Bavaria)

    NASA Astrophysics Data System (ADS)

    Pirkenseer, C.; Reichenbacher, B.

    2009-04-01

    Isolated freshwater sediments that partially cover the Jurassic limestones of the Swabian and Franconian Alb represent the northernmost expansion of the Molasse sediments. These sediments represent the analogue to the Brackish Molasse and part of the Upper Freshwater Molasse (Ottnangian to Badenian). Samples of six drillcores from the vicinity of Denkendorf (Franconian Alb, Bavaria) yielded ostracods of the superfamily Cypridoidea, frequent oogonia of charophytes, otoliths of the family Gobiidae, teeth of several taxa of micromammals as well as abundant material of amphibians, reptiles and gastropods. The sediments show a general trend from basal, more clastic influenced deposits to uniformly developed marly sediments with freshwater carbonate intercalations. The acme of microfossil occurrences is associated with the latter section. The palaeoecologic analysis characterises the environment as structured littoral zone (e.g. Pseudocandona steinheimensis, Gyraulus sp., Planorbarius sp., Rana ridibunda, Triturus sp.) of a larger oligo- to mesotrophic (Chara spp., Nitellopsis spp.) low-energy freshwater system under a warm subtropical to tropical climate (Diplocynodon cf. D. styriacus, Channa sp.). The cooccurrence of suboxia- and oligotrophy-tolerant species like Palaeocarassius sp. and Channa sp. may indicate short intervals of regional depletion of oxygene and raise of nutrient content. Mediocypris candonaeformis and Gobius latiformis represent relict species of the preceding Brackwassermolasse. Terrestrial elements include Proboscidea (phalanx), Cervidae (astragalus), land turtles (Testudo sp.) and gastropods (Clausiliidae, Pupillidae, Cepaea sp.). The occurrence of Jurassic xenoclasts and bean iron ore indicate the presence of a tributary system. The faunal and floral assemblages show close affinities to other localities of the Molasse Basin (e.g., Sandelzhausen). In accordance with the depositional history this indicates a palaeogeographic connection with the

  12. To improve the performance of sediment microbial fuel cell through amending colloidal iron oxyhydroxide into freshwater sediments.

    PubMed

    Zhou, Yan-Li; Yang, Ying; Chen, Mo; Zhao, Zhi-Wei; Jiang, He-Long

    2014-05-01

    Effects of iron oxide amendment into freshwater sediments on performance of sediment microbial fuel cell (SMFC) were investigated. It was found that amending amorphous bulk ferric oxyhydroxide, and crystalline goethite and magnetite did not affect SMFC operation. However, amendment of the mixed solution including soluble ferric citrate and colloidal iron oxyhydroxide, stably improved SMFC performance with voltage outputs up to threefolds higher than those without amendment. The enhanced voltage production corresponded to lower anode potential, but was not related to organic matter removal in sediments. Further experiments demonstrated that colloidal iron oxyhydroxide instead of soluble ferric iron played an important role in voltage production through maintaining high-concentration ferrous iron in pore water of sediments as electron shuttle and for chemical oxidation on the anode. Thus, colloidal iron oxyhydroxide amendment was a promising strategy to improve power production from SMFC employed in sediments especially with low content of organic matters. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. IMPACTS OF IRON, NUTRIENTS, AND MINERAL FINES ON ANAEROBIC BIODEGRADATION OF CANOLA OIL IN FRESHWATER SEDIMENTS

    EPA Science Inventory

    Factors affecting anaerobic biodegradation kinetics of canola oil in freshwater sediments were investigated. An optimum dose of ferric hydroxide (10.5 g Fe(III)·kg-1 sediment) was found to stimulate anaerobic biodegradation of canola oil (18.6 g oil kg-1). ...

  14. Sediment transport patterns and climate change: the downstream Tuul River case study, Northern Mongolia.

    NASA Astrophysics Data System (ADS)

    Pietroń, Jan; Jarsjö, Jerker

    2014-05-01

    Ongoing changes in the Central Asian climate including increasing temperatures can influence the hydrological regimes of rivers and the waterborne transport of sediments. Changes in the latter, especially in combination with adverse human activities, may severely impact water quality and aquatic ecosystems. However, waterborne transport of sediments is a result of complex processes and varies considerably between, and even within, river systems. There is therefore a need to increase our general knowledge about sediment transport under changing climate conditions. The Tuul River, the case site of this study, is located in the upper part of the basin of the Selenga River that is the main tributary to Lake Baikal, a UNESCO World Heritage Site. Like many other rivers located in the steppes of Northern Mongolia, the Tuul River is characterized by a hydrological regime that is not disturbed by engineered structures such as reservoirs and dams. However, the water quality of the downstream Tuul River is increasingly affected by adverse human activities - including placer gold mining. The largest contribution to the annual river discharge occurs during the relatively warm period in May to August. Typically, there are numerous rainfall events during this period that cause considerable river flow peaks. Parallel work has furthermore shown that due to climate change, the daily variability of discharge and numbers of peak flow events in the Tuul River Basin has increased during the past 60 years. This trend is expected to continue. We here aim at increasing our understanding of future sediment transport patterns in the Tuul River, specifically considering the scenario that peak flow events may become more frequent due to climate change. We use a one-dimensional sediment transport model of the downstream reach of the river to simulate natural patterns of sediment transport for a recent hydrological year. In general, the results show that sediment transport varies considerably

  15. Looking at biological community level to improve ecotoxicological assessment of freshwater sediments: report on a first French-Swiss workshop.

    PubMed

    Pesce, Stéphane; Perceval, Olivier; Bonnineau, Chloé; Casado-Martinez, Carmen; Dabrin, Aymeric; Lyautey, Emilie; Naffrechoux, Emmanuel; Ferrari, Benoit J D

    2018-01-01

    The first French-Swiss workshop on ecotoxicology of freshwater sediment communities was co-organized by the French Research Institute of Science and Technology for Environment and Agriculture (Irstea) and the Swiss Centre for Applied Ecotoxicology (Ecotox Centre EAWAG-EPFL) in Villié-Morgon (Beaujolais Region, France) on April 27-28, 2017. The workshop brought together scientists working in different fields of expertise (ecotoxicologists, ecologists, environmental chemists…), environmental stakeholder groups and managers, as well as economic players (start-ups and consultancies) to better connect research needs of potential end-users with research outputs. The objectives of this workshop were (i) to establish the state of the art of research in the characterization of sediment contamination and in the evaluation of the effects on sediment-associated biological communities and ecosystem functioning and (ii) to give an overview of the French and Swiss regulations dealing with the assessment of contaminated sediments in freshwater ecosystems. The ultimate goal was to collectively identify research needs and knowledge gaps, as well as to highlight ways to improve the ecotoxicological assessment of sediments in freshwater environments by further considering the structure and functions of associated microbial and invertebrate communities.

  16. Microbiological reduction of Sb(V) in anoxic freshwater sediments

    USGS Publications Warehouse

    Oremland, Ronald S.; Kulp, Thomas R.; Miller, Laurence G.; Braiotta, Franco; Webb, Samuel M.; Kocar, Benjamin D; Blum, Jodi S.

    2014-01-01

    Microbiological reduction of millimolar concentrations of Sb(V) to Sb(III) was observed in anoxic sediments from two freshwater settings: (1) a Sb- and As-contaminated mine site (Stibnite Mine) in central Idaho and 2) an uncontaminated suburban lake (Searsville Lake) in the San Francisco Bay Area. Rates of Sb(V) reduction in anoxic sediment microcosms and enrichment cultures were enhanced by amendment with lactate or acetate as electron donors but not by H2, and no reduction occurred in sterilized controls. Addition of 2-14C-acetate to Stibnite Mine microcosms resulted in the production of 14CO2 coupled to Sb(V) reduction, suggesting that this process proceeds by a dissimilatory respiratory pathway in those sediments. Antimony(V) reduction in Searsville Lake sediments was not coupled to acetate mineralization and may be associated with Sb-resistance. The microcosms and enrichment cultures also reduced sulfate, and the precipitation of insoluble Sb(III)-sulfide complexes was a major sink for reduced Sb. The reduction of Sb(V) by Stibnite Mine sediments was inhibited by As(V), suggesting that As(V) is a preferred electron acceptor for the indigenous community. These findings indicate a novel pathway for anaerobic microbiological respiration and suggest that communities capable of reducing high concentrations of Sb(V) commonly occur naturally in the environment.

  17. Changes of freshwater-lens thickness in basaltic island aquifers overlain by thick coastal sediments

    USGS Publications Warehouse

    Rotzoll, Kolja; Oki, Delwyn S.; El-Kadi, Aly I.

    2010-01-01

    Freshwater-lens thickness and long-term changes in freshwater volume in coastal aquifers are commonly assessed through repeated measurement of salinity profiles from monitor wells that penetrate into underlying salt water. In Hawaii, the thickest measured freshwater lens is currently 262 m in dike-free, volcanic-rock aquifers that are overlain by thick coastal sediments. The midpoint depth (depth where salinity is 50% salt water) between freshwater and salt water can serve as an indicator for freshwater thickness. Most measured midpoints have risen over the past 40 years, indicating a shrinking lens. The mean rate of rise of the midpoint from 1999–2009 varied locally, with faster rates in highly developed areas (1.0 m/year) and slower rates in less developed areas (0.5 m/year). The thinning of the freshwater lenses is the result of long-term groundwater withdrawal and reduced recharge. Freshwater/salt-water interface locations predicted from measured water levels and the Ghyben-Herzberg principle may be deeper than measured midpoints during some periods and shallower during other periods, although depths may differ up to 100 m in some cases. Moreover, changes in the midpoint are slower than changes in water level. Thus, water levels may not be a reliable indicator of the amount of freshwater in a coastal aquifer.

  18. Impact of a large tropical reservoir on riverine transport of sediment, carbon, and nutrients to downstream wetlands

    NASA Astrophysics Data System (ADS)

    Kunz, Manuel J.; Wüest, Alfred; Wehrli, Bernhard; Landert, Jan; Senn, David B.

    2011-12-01

    Large dams can have major ecological and biogeochemical impacts on downstream ecosystems such as wetlands and riparian habitats. We examined sediment removal and carbon (C), nitrogen (N), and phosphorus (P) cycling in Itezhi-Tezhi Reservoir (ITT; area = 364 km2, hydraulic residence time = 0.7 yr), which is located directly upstream of a high ecological value floodplain ecosystem (Kafue Flats) in the Zambezi River Basin. Field investigations (sediment cores, sediment traps, water column samples), mass balance estimates, and a numerical biogeochemical reservoir model were combined to estimate N, P, C, and sediment removal, organic C mineralization, primary production, and N fixation. Since dam completion in 1978, 330 × 103 tons (t) of sediment and 16 × 103, 1.5 × 103, 200 t of C, N, and P, respectively, have accumulated annually in ITT sediments. Approximately 50% of N inputs and 60% of P inputs are removed by the reservoir, illustrating its potential in decreasing nutrients to the downstream Kafue Flats floodplain. The biogeochemical model predicted substantial primary production in ITT (˜280 g C m-2 yr-1), and significant N-fixation (˜30% for the total primary production) was required to support primary production due to marginal inputs of inorganic N. Model simulations indicate that future hydropower development in the reservoir, involving the installation of turbines driven by hypolimnetic water, will likely result in the delivery of low-oxygen waters to downstream ecosystems and increased outputs of dissolved inorganic N and P by a factor of ˜4 and ˜2 compared to current dam management, respectively.

  19. Eruption-related lahars and sedimentation response downstream of Mount Hood: Field guide to volcaniclastic deposits along the Sandy River, Oregon

    USGS Publications Warehouse

    Pierson, Tom C.; Scott, William E.; Vallance, James W.; Pringle, Patrick T.; O'Connor, Jim; Dorsey, Rebecca; Madin, Ian

    2009-01-01

    Late Holocene dome-building eruptions at Mount Hood during the Timberline and Old Maid eruptive periods resulted in numerous dome-collapse pyroclastic flows and lahars that moved large volumes of volcaniclastic sediment into temporary storage in headwater canyons of the Sandy River. During each eruptive period, accelerated sediment loading to the river through erosion and remobilization of volcanic fragmental debris resulted in very high sediment-transport rates in the Sandy River during rain- and snowmelt-induced floods. Large sediment loads in excess of the river's transport capacity led to channel aggradation, channel widening, and change to a braided channel form in the lowermost reach of the river, between 61 and 87 km downstream from the volcano. The post-eruption sediment load moved as a broad bed-material wave, which in the case of the Old Maid eruption took ~2 decades to crest 83 km downstream. Maximum post-eruption aggradation levels of at least 28 and 23 m were achieved in response to Timberline and Old Maid eruptions. In each case, downstream aggradation cycles were initiated by lahars, but the bulk of the aggradation was achieved by fluvial sediment transport and deposition. When the high rates of sediment supply began to diminish, the river degraded, incising the channel fills and forming progressively lower sets of degradational terraces. A variety of debris-flow, hyperconcentrated-flow, and fluvial (upper and lower flow regime) deposits record the downstream passage of the sediment waves that were initiated by these eruptions. The deposits also presage a hazard that may be faced by communities along the Sandy River when volcanic activity at Mount Hood resumes.

  20. Characterization of sediment transport upstream and downstream from Lake Emory on the Little Tennessee River near Franklin, North Carolina, 2014–15

    USGS Publications Warehouse

    Huffman, Brad A.; Hazell, William F.; Oblinger, Carolyn J.

    2017-09-06

    Federal, State, and local agencies and organizations have expressed concerns regarding the detrimental effects of excessive sediment transport on aquatic resources and endangered species populations in the upper Little Tennessee River and some of its tributaries. In addition, the storage volume of Lake Emory, which is necessary for flood control and power generation, has been depleted by sediment deposition. To help address these concerns, a 2-year study was conducted in the upper Little Tennessee River Basin to characterize the ambient suspended-sediment concentrations and suspended-sediment loads upstream and downstream from Lake Emory in Franklin, North Carolina. The study was conducted by the U.S. Geological Survey in cooperation with Duke Energy. Suspended-sediment samples were collected periodically, and time series of stage and turbidity data were measured from December 2013 to January 2016 upstream and downstream from Lake Emory. The stage data were used to compute time-series streamflow. Suspended-sediment samples, along with time-series streamflow and turbidity data, were used to develop regression models that were used to estimate time-series suspended-sediment concentrations for the 2014 and 2015 calendar years. These concentrations, along with streamflow data, were used to compute suspended-sediment loads. Selected suspended-sediment samples were collected for analysis of particle-size distribution, with emphasis on high-flow events. Bed-load samples were also collected upstream from Lake Emory.The estimated annual suspended-sediment loads (yields) for the upstream site for the 2014 and 2015 calendar years were 27,000 short tons (92 short tons per square mile) and 63,300 short tons (215 short tons per square mile), respectively. The annual suspended-sediment loads (yields) for the downstream site for 2014 and 2015 were 24,200 short tons (75 short tons per square mile) and 94,300 short tons (292 short tons per square mile), respectively. Overall, the

  1. Influence of sediment presence on freshwater mussel thermal tolerance

    USGS Publications Warehouse

    Archambault, Jennifer M.; Cope, W. Gregory; Kwak, Thomas J.

    2014-01-01

    Median lethal temperature (LT50) data from water-only exposures with the early life stages of freshwater mussels suggest that some species may be living near their upper thermal tolerances. However, evaluation of thermal sensitivity has never been conducted in sediment. Mussels live most of their lives burrowed in sediment, so understanding the effect of sediment on thermal sensitivity is a necessary step in evaluating the effectiveness of the water-only standard method, on which the regulatory framework for potential thermal criteria currently is based, as a test of thermal sensitivity. We developed a method for testing thermal sensitivity of juvenile mussels in sediment and used the method to assess thermal tolerance of 4 species across a range of temperatures common during summer. Stream beds may provide a thermal refuge in the wild, but we hypothesized that the presence of sediment alone does not alter thermal sensitivity. We also evaluated the effects of 2 temperature acclimation levels (22 and 27°C) and 2 water levels (watered and dewatered treatments). We then compared results from the sediment tests to those conducted using the water-only standard methods. We also conducted water-only LT tests with mussel larvae (glochidia) for comparison with the juvenile life stage. We found few consistent differences in thermal tolerance between sediment and water-only treatments, between acclimation temperatures, between waterlevel treatments, among species, or between juvenile and glochidial life stages (LT50 range = 33.3-37.2°C; mean = 35.6°C), supporting our hypothesis that the presence of sediment alone does not alter thermal sensitivity. The method we developed has potential for evaluating the role of other stressors (e.g., contaminants) in a more natural and complex environment.

  2. Experimental tsunami deposits: Linking hydrodynamics to sediment entrainment, advection lengths and downstream fining

    NASA Astrophysics Data System (ADS)

    Johnson, Joel P. L.; Delbecq, Katie; Kim, Wonsuck; Mohrig, David

    2016-01-01

    A goal of paleotsunami research is to quantitatively reconstruct wave hydraulics from sediment deposits in order to better understand coastal hazards. Simple models have been proposed to predict wave heights and velocities, based largely on deposit grain size distributions (GSDs). Although seemingly consistent with some recent tsunamis, little independent data exist to test these equations. We conducted laboratory experiments to evaluate inversion assumptions and uncertainties. A computer-controlled lift gate instantaneously released 6.5 m3 of water into a 32 m flume with shallow ponded water, creating a hydraulic bore that transported sand from an upstream source dune. Differences in initial GSDs and ponded water depths influenced entrainment, transport, and deposition. While the source dune sand was fully suspendable based on size alone, experimental tsunamis produced deposits dominated by bed load sand transport in the upstream 1/3 of the flume and suspension-dominated transport downstream. The suspension deposits exhibited downstream fining and thinning. At 95% confidence, a published advection-settling model predicts time-averaged flow depths to approximately a factor of two, and time-averaged downstream flow velocities to within a factor of 1.5. Finally, reasonable scaling is found between flume and field cases by comparing flow depths, inundation distances, Froude numbers, Rouse numbers and grain size trends in suspension-dominated tsunami deposits, justifying laboratory study of sediment transport and deposition by tsunamis.

  3. Evaluating the provenance of fine sediment in degraded Freshwater Pearl Mussel habitats.

    NASA Astrophysics Data System (ADS)

    Blake, Will; Haley, Steve; Goddard, Rupert; Stone, Peter; Broadhead, Kat

    2015-04-01

    Freshwater Pearl Mussels (FWPM), Margaritifera margaritifera, are among the most critically threatened freshwater bivalves worldwide. In addition to their important roles in particle processing, nutrient release, and sediment mixing, they also serve as an ideal target species for evaluation of aquatic ecosystem functioning especially in the context of their symbiotic relationship with Atlantic salmon Salmo salar and brown or sea trout Salmo trutta. Poor water quality, particularly eutrophication, and siltation are considered major contributory factors in the decline of the species hence management of diffuse water pollution from agriculture (DWPA) is a key priority in catchments that host FWPM habitats. Against this background, this study adopted a combined monitoring, surveying and sediment fingerprinting approach to determine the principal sources of fine sediment impacting FWPM habitats in the River Clun, a Special area of Conservation (SAC) for FWPMs in central western UK. Potential sediment production hotspot areas in the ca 200 km2 catchment area upstream of FWPM habitats were initially evaluated using the SCIMAP risk mapping tool. Suspended sediment monitoring was undertaken on the main stem channel where FWPM habitats are located and wet weather catchment walkover surveys undertaken along the upstream river and stream network. Within this monitoring framework, sediment fingerprinting was undertaken at two levels. The first level aimed to link primary catchment sources (cultivated and uncultivated soil, channel bank erosion, and material transported via roads and tracks) to suspended sediment output from each main tributary upstream of the FWPM beds. The second level linked silt in the FWMP beds to the main tributaries, as integrated source end-members, with the inclusion of main channel bank erosion, a notable feature of walkover surveys as an additional source. Geochemical fingerprints, determined by XRF spectroscopy, were dominated by conservative mineral

  4. ANAEROBIC BIODEGRADATION OF VEGETABLE OIL AND ITS METABOLIC INTERMEDIATES IN OIL-ENRICHED FRESHWATER SEDIMENTS

    EPA Science Inventory

    Anaerobic biodegradation of vegetable oil in freshwater sediments is strongly inhibited by high concentrations of oil, but the presence of ferric hydroxide relieves the inhibition. The effect of ferric hydroxide is not due to physical or chemical interactions with long-chain fatt...

  5. Suspended sediments from upstream tributaries as the source of downstream river sites

    NASA Astrophysics Data System (ADS)

    Haddadchi, Arman; Olley, Jon

    2014-05-01

    Understanding the efficiency with which sediment eroded from different sources is transported to the catchment outlet is a key knowledge gap that is critical to our ability to accurately target and prioritise management actions to reduce sediment delivery. Sediment fingerprinting has proven to be an efficient approach to determine the sources of sediment. This study examines the suspended sediment sources from Emu Creek catchment, south eastern Queensland, Australia. In addition to collect suspended sediments from different sites of the streams after the confluence of tributaries and outlet of the catchment, time integrated suspended samples from upper tributaries were used as the source of sediment, instead of using hillslope and channel bank samples. Totally, 35 time-integrated samplers were used to compute the contribution of suspended sediments from different upstream waterways to the downstream sediment sites. Three size fractions of materials including fine sand (63-210 μm), silt (10-63 μm) and fine silt and clay (<10 μm) were used to find the effect of particle size on the contribution of upper sediments as the sources of sediment after river confluences. And then samples were analysed by ICP-MS and -OES to find 41 sediment fingerprints. According to the results of Student's T-distribution mixing model, small creeks in the middle and lower part of the catchment were major source in different size fractions, especially in silt (10-63 μm) samples. Gowrie Creek as covers southern-upstream part of the catchment was a major contributor at the outlet of the catchment in finest size fraction (<10 μm) Large differences between the contributions of suspended sediments from upper tributaries in different size fractions necessitate the selection of appropriate size fraction on sediment tracing in the catchment and also major effect of particle size on the movement and deposition of sediments.

  6. Vertical Segregation and Phylogenetic Characterization of Ammonia-Oxidizing Bacteria and Archaea in the Sediment of a Freshwater Aquaculture Pond

    PubMed Central

    Lu, Shimin; Liu, Xingguo; Ma, Zhuojun; Liu, Qigen; Wu, Zongfan; Zeng, Xianlei; Shi, Xu; Gu, Zhaojun

    2016-01-01

    Pond aquaculture is the major freshwater aquaculture method in China. Ammonia-oxidizing communities inhabiting pond sediments play an important role in controlling culture water quality. However, the distribution and activities of ammonia-oxidizing microbial communities along sediment profiles are poorly understood in this specific environment. Vertical variations in the abundance, transcription, potential ammonia oxidizing rate, and community composition of ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) in sediment samples (0–50 cm depth) collected from a freshwater aquaculture pond were investigated. The concentrations of the AOA amoA gene were higher than those of the AOB by an order of magnitude, which suggested that AOA, as opposed to AOB, were the numerically predominant ammonia-oxidizing organisms in the surface sediment. This could be attributed to the fact that AOA are more resistant to low levels of dissolved oxygen. However, the concentrations of the AOB amoA mRNA were higher than those of the AOA by 2.5- to 39.9-fold in surface sediments (0–10 cm depth), which suggests that the oxidation of ammonia was mainly performed by AOB in the surface sediments, and by AOA in the deeper sediments, where only AOA could be detected. Clone libraries of AOA and AOB amoA sequences indicated that the diversity of AOA and AOB decreased with increasing depth. The AOB community consisted of two groups: the Nitrosospira and Nitrosomonas clusters, and Nitrosomonas were predominant in the freshwater pond sediment. All AOA amoA gene sequences in the 0–2 cm deep sediment were grouped into the Nitrososphaera cluster, while other AOA sequences in deeper sediments (10–15 and 20–25 cm depths) were grouped into the Nitrosopumilus cluster. PMID:26834709

  7. Seed dormancy and persistent sediment seed banks of ephemeral freshwater rock pools in the Australian monsoon tropics

    PubMed Central

    Cross, Adam T.; Turner, Shane R.; Renton, Michael; Baskin, Jerry M.; Dixon, Kingsley W.; Merritt, David J.

    2015-01-01

    Background and Aims Rock pools are small, geologically stable freshwater ecosystems that are both hydrologically and biologically isolated. They harbour high levels of plant endemism and experience environmental unpredictability driven by the presence of water over variable temporal scales. This study examined the hypothesis that the sediment seed bank in monsoon tropical freshwater rock pools would persist through one or more periods of desiccation, with seed dormancy regulating germination timing in response to rock pool inundation and drying events. Methods Seeds were collected from seven dominant rock pool species, and germination biology and seed dormancy were assessed under laboratory conditions in response to light, temperature and germination stimulators (gibberellic acid, karrikinolide and ethylene). Field surveys of seedling emergence from freshwater rock pools in the Kimberley region of Western Australia were undertaken, and sediment samples were collected from 41 vegetated rock pools. Seedling emergence and seed bank persistence in response to multiple wetting and drying cycles were determined. Key Results The sediment seed bank of individual rock pools was large (13 824 ± 307 to 218 320 ± 42 412 seeds m−2 for the five species investigated) and spatially variable. Seedling density for these same species in the field ranged from 13 696 to 87 232 seedlings m−2. Seeds of rock pool taxa were physiologically dormant, with germination promoted by after-ripening and exposure to ethylene or karrikinolide. Patterns of seedling emergence varied between species and were finely tuned to seasonal temperature and moisture conditions, with the proportions of emergent seedlings differing between species through multiple inundation events. A viable seed bank persisted after ten consecutive laboratory inundation events, and seeds retained viability in dry sediments for at least 3 years. Conclusions The persistent seed bank in freshwater rock pools is likely to

  8. Molecular diversity and tools for deciphering the methanogen community structure and diversity in freshwater sediments.

    PubMed

    Chaudhary, Prem Prashant; Brablcová, Lenka; Buriánková, Iva; Rulík, Martin

    2013-09-01

    Methanogenic archaeal communities existing in freshwater sediments are responsible for approximately 50 % of the total global emission of methane. This process contributes significantly to global warming and, hence, necessitates interventional control measures to limit its emission. Unfortunately, the diversity and functional interactions of methanogenic populations occurring in these habitats are yet to be fully characterized. Considering several disadvantages of conventional culture-based methodologies, in recent years, impetus is given to molecular biology approaches to determine the community structure of freshwater sedimentary methanogenic archaea. 16S rRNA and methyl coenzyme M reductase (mcrA) gene-based cloning techniques are the first choice for this purpose. In addition, electrophoresis-based (denaturing gradient gel electrophoresis, temperature gradient gel electrophoresis, and terminal restriction fragment length polymorphism) and quantitative real-time polymerase chain reaction techniques have also found extensive applications. These techniques are highly sensitive, rapid, and reliable as compared to traditional culture-dependent approaches. Molecular diversity studies revealed the dominance of the orders Methanomicrobiales and Methanosarcinales of methanogens in freshwater sediments. The present review discusses in detail the status of the diversity of methanogens and the molecular approaches applied in this area of research.

  9. Distribution and bioaccumulation of endocrine disrupting chemicals in water, sediment and fishes in a shallow Chinese freshwater lake: Implications for ecological and human health risks.

    PubMed

    Dan Liu; Wu, Shengmin; Xu, Huaizhou; Zhang, Qin; Zhang, Shenghu; Shi, Lili; Yao, Cheng; Liu, Yanhua; Cheng, Jie

    2017-06-01

    The occurrence, distribution and bioaccumulation of six endocrine disrupting compounds (EDCs) were investigated in water, sediment and biota samples from Luoma Lake, a shallow Chinese freshwater lake. Total concentrations of ∑phenolic EDCs were much higher than ∑estrogens EDCs in both waters and sediments. There were not obvious differences on the concentrations of target compounds [except nonylphenol (NP)] in upstream, lake and downstream locations, these may be suggested that they were mainly affected by non-point discharges in this area. However, the high concentration of NP in water may be associated with the discharge of rural domestic wastewater without thorough treatment. Furthermore, concentrations of NP were about 2-3 order magnitude higher than those of OP in both water and sediment compartments. Relatively higher bioaccumulation factors (BAF) were obtained for DES and EE2. Ecological risk assessment revealed greater risk of NP in surface water, which may pose a serious threat to aquatic ecosystems. The estrogen equivalent concentration (EEQ) of male were higher than those in female, and occurred in the order of city >rural-urban>countryside. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Bioprospection of actinobacteria derived from freshwater sediments for their potential to produce antimicrobial compounds.

    PubMed

    Zothanpuia; Passari, Ajit Kumar; Leo, Vincent Vineeth; Chandra, Preeti; Kumar, Brijesh; Nayak, Chandra; Hashem, Abeer; Abd Allah, Elsayed Fathi; Alqarawi, Abdulaziz A; Singh, Bhim Pratap

    2018-05-05

    Actinobacteria from freshwater habitats have been explored less than from other habitats in the search for compounds of pharmaceutical value. This study highlighted the abundance of actinobacteria from freshwater sediments of two rivers and one lake, and the isolates were studied for their ability to produce antimicrobial bioactive compounds. 16S rRNA gene sequencing led to the identification of 84 actinobacterial isolates separated into a common genus (Streptomyces) and eight rare genera (Nocardiopsis, Saccharopolyspora, Rhodococcus, Prauserella, Amycolatopsis, Promicromonospora, Kocuria and Micrococcus). All strains that showed significant inhibition potentials were found against Gram-positive, Gram-negative and yeast pathogens. Further, three biosynthetic genes, polyketide synthases type II (PKS II), nonribosomal peptide synthetases (NRPS) and aminodeoxyisochorismate synthase (phzE), were detected in 38, 71 and 29% of the strains, respectively. Six isolates based on their antimicrobial potentials were selected for the detection and quantification of standard antibiotics using ultra performance liquid chromatography (UPLC-ESI-MS/MS) and volatile organic compounds (VOCs) using gas chromatography mass spectrometry (GC/MS). Four antibiotics (fluconazole, trimethoprim, ketoconazole and rifampicin) and 35 VOCs were quantified and determined from the methanolic crude extract of six selected Streptomyces strains. Infectious diseases still remain one of the leading causes of death globally and bacterial infections caused millions of deaths annually. Culturable actinobacteria associated with freshwater lake and river sediments has the prospects for the production of bioactive secondary metabolites.

  11. Sediment flux measurements at the oceanic boundary of a large estuary

    NASA Astrophysics Data System (ADS)

    Downing-Kunz, M.; Work, P. A.; Schoellhamer, D. H.

    2016-12-01

    Sediment is an important resource for San Francisco Bay (SFB), in the context of wetland restoration projects, dredging operations, ecosystem health, and contaminant transport and fate. One way to help manage sediment (and sediment-associated contaminants) in SFB is by developing a quantitative sediment budget to account for sources, sinks, and storage of sediment. Previously developed sediment budgets have shown that sediment exchange at the oceanic boundary of SFB (Golden Gate) is the most poorly understood element of the SFB sediment budget, owing to logistical challenges that inhibit routine field observations. In this study, field observations of suspended-sediment flux at the Golden Gate were conducted on ebb and flood tides during two distinct periods of the 2016 hydrograph: peak (4,000 m3/s) and low (200 m3/s) rates of freshwater inflow to SFB. Suspended-sediment flux was estimated from a boat-mounted acoustic Doppler current profiler that provided measurements of discharge and acoustic backscatter (ABS) at a cross-section near the oceanic boundary. Discrete water samples were analyzed for suspended-sediment concentration (SSC) and related to ABS. During the period of peak freshwater inflow, maximum discharge observed at Golden Gate reached 130,000 m3/s during ebb tide; observed SSC (20-40 mg/L) were lower than expected compared to upstream conditions. A network of five SSC monitoring stations extending 5-80 km upstream demonstrated a watershed-sourced sediment pulse (SSC reaching 200 mg/L) moved downstream to within 20 km of the oceanic boundary, an observation corroborated by concurrent satellite imagery. This finding, combined with lower SSC near the Golden Gate, suggests the sediment pulse was trapped within SFB, indicating a freshwater inflow threshold exceeding 4,000 m3/s for sediment export at the oceanic boundary. Such trapping could provide additional sediment to benefit wetland restoration efforts.

  12. Characterization of the efficiency of sedimentation basins downstream of harvested peat bogs

    NASA Astrophysics Data System (ADS)

    Samson-Do, Myriam; St-Hilaire, André

    2015-04-01

    Peat harvesting is a very lucrative industry in the provinces of Quebec and New-Brunswick (Canada). Peat enters in many potting mix used for horticulture. However, harvesting this resource has some impacts on the environment. First, industries need to drain the peat bog to dry the superficial layer. Then, it is harvested with industrial vacuums and the underlying layer is allowed to dry. The drained water is laden with suspended sediments (mostly organic peat fibers) that may affect biota of the stream where it is discharged. To counter the problem, this water does not go directly on the stream but first flows through a sedimentation basin, built to reduce suspended sediment loads. This work focuses on characterizing and eventually modeling the efficiency of those sedimentation basins. Seven basins were studied in Rivière-du-Loup, St-Valère and Escoumins (Quebec, Canada). They each have a different ratio basin area/drained area (4.7 10-4 to 20.3 10-4). To continuously monitor the sediment loads (calculated from sediment concentrations and discharge) entering and leaving basins, a nephelometer and a level logger were installed in the water column upstream and downstream of sedimentation basins. Their trapping efficiency was measured during the ice-free period (May to October) and for each significant rain event, since it is known that the rain and subsequent runoff induce most of the peat transport in and out of the basin. Results show that the event efficiency decreases as the basin is filled up with trapped sediments. For one basin, the efficiency was 85August. Trapping efficiency can be used as a tool to estimate basin dimensions. This has been done for municipal sedimentation ponds that trap minerals and will be adapted to the current context, where the dominant sediment is organic.

  13. Seed dormancy and persistent sediment seed banks of ephemeral freshwater rock pools in the Australian monsoon tropics.

    PubMed

    Cross, Adam T; Turner, Shane R; Renton, Michael; Baskin, Jerry M; Dixon, Kingsley W; Merritt, David J

    2015-04-01

    Rock pools are small, geologically stable freshwater ecosystems that are both hydrologically and biologically isolated. They harbour high levels of plant endemism and experience environmental unpredictability driven by the presence of water over variable temporal scales. This study examined the hypothesis that the sediment seed bank in monsoon tropical freshwater rock pools would persist through one or more periods of desiccation, with seed dormancy regulating germination timing in response to rock pool inundation and drying events. Seeds were collected from seven dominant rock pool species, and germination biology and seed dormancy were assessed under laboratory conditions in response to light, temperature and germination stimulators (gibberellic acid, karrikinolide and ethylene). Field surveys of seedling emergence from freshwater rock pools in the Kimberley region of Western Australia were undertaken, and sediment samples were collected from 41 vegetated rock pools. Seedling emergence and seed bank persistence in response to multiple wetting and drying cycles were determined. The sediment seed bank of individual rock pools was large (13 824 ± 307 to 218 320 ± 42 412 seeds m(-2) for the five species investigated) and spatially variable. Seedling density for these same species in the field ranged from 13 696 to 87 232 seedlings m(-2). Seeds of rock pool taxa were physiologically dormant, with germination promoted by after-ripening and exposure to ethylene or karrikinolide. Patterns of seedling emergence varied between species and were finely tuned to seasonal temperature and moisture conditions, with the proportions of emergent seedlings differing between species through multiple inundation events. A viable seed bank persisted after ten consecutive laboratory inundation events, and seeds retained viability in dry sediments for at least 3 years. The persistent seed bank in freshwater rock pools is likely to provide resilience to plant

  14. Dissolved oxygen saturation controls PAH biodegradation in freshwater estuary sediments.

    PubMed

    Boyd, T J; Montgomery, M T; Steele, J K; Pohlman, J W; Reatherford, S R; Spargo, B J; Smith, D C

    2005-02-01

    Polycyclic aromatic hydrocarbons (PAHs) are common contaminants in terrestrial and aquatic environments and can represent a significant constituent of the carbon pool in coastal sediments. We report here the results of an 18-month seasonal study of PAH biodegradation and heterotrophic bacterial production and their controlling biogeochemical factors from 186 sediment samples taken in a tidally influenced freshwater estuary. For each sampling event, measurements were averaged from 25-45 stations covering approximately 250 km(2). There was a clear relationship between bacterial production and ambient temperature, but none between production and bottom water dissolved oxygen (DO) % saturation or PAH concentrations. In contrast with other studies, we found no effect of temperature on the biodegradation of naphthalene, phenanthrene, or fluoranthene. PAH mineralization correlated with bottom water DO saturation above 70% (r(2) > 0.99). These results suggest that the proportional utilization of PAH carbon to natural organic carbon is as much as three orders of magnitude higher during cooler months, when water temperatures are lower and DO % saturation is higher. Infusion of cooler, well-oxygenated water to the water column overlying contaminated sediments during the summer months may stimulate PAH metabolism preferentially over non-PAH organic matter.

  15. The effect of activated carbon on partitioning, desorption, and biouptake of native polychlorinated biphenyls in four freshwater sediments.

    PubMed

    Sun, Xueli; Ghosh, Upal

    2008-11-01

    The present study evaluated the effect of activated carbon amendment in four freshwater sediments from the Great Lakes (North America) areas of concern with a wide range of sediment geochemical characteristics (0.83-5.1% total organic carbon) and polychlorinated biphenyl (PCB) concentrations (0.33-84.7 microg/g). The work focused on understanding the impact of activated carbon amendment on PCB aqueous partitioning, PCB desorption characteristics, and PCB biouptake in a freshwater oligochaete (Lumbriculus variegatus). The results showed that PCB aqueous equilibrium concentrations, rapid desorption fractions, and biouptake by the oligochaete were reduced after activated carbon amendment. Addition of activated carbon at a dose of 0.5-fold native organic carbon reduced PCB bioaccumulation by 42% for Niagara River sediment, 85% for Grasse River sediment, 74% for Milwaukee River sediment 1, and 70% for Milwaukee River sediment 2. A linear relationship was observed between log biota-sediment accumulation factor and the first 6-h desorption fractions for each PCB homologue for treated and untreated sediments. Water-lipid bioconcentration factors for PCB congeners were largely conserved after amendment with activated carbon. Our present results suggest that at steady state, changes in the aqueous PCB concentrations can be used to predict changes in PCB bioaccumulation in deposit-feeding organisms. Thus, use of advanced pore-water measurement techniques, such as solid-phase extraction passive samplers, may be suitable for long-term monitoring of treatment performance.

  16. Determination of premining geochemical background and delineation of extent of sediment contamination in Blue Creek downstream from Midnite Mine, Stevens County, Washington

    USGS Publications Warehouse

    Church, Stan E.; Kirschner, Frederick E.; Choate, LaDonna M.; Lamothe, Paul J.; Budahn, James R.; Brown, Zoe Ann

    2008-01-01

    Geochemical and radionuclide studies of sediment recovered from eight core sites in the Blue Creek flood plain and Blue Creek delta downstream in Lake Roosevelt provided a stratigraphic geochemical record of the contamination from uranium mining at the Midnite Mine. Sediment recovered from cores in a wetland immediately downstream from the mine site as well as from sediment catchments in Blue Creek and from cores in the delta in Blue Creek cove provided sufficient data to determine the premining geochemical background for the Midnite Mine tributary drainage. These data provide a geochemical background that includes material eroded from the Midnite Mine site prior to mine development. Premining geochemical background for the Blue Creek basin has also been determined using stream-sediment samples from parts of the Blue Creek, Oyachen Creek, and Sand Creek drainage basins not immediately impacted by mining. Sediment geochemistry showed that premining uranium concentrations in the Midnite Mine tributary immediately downstream of the mine site were strongly elevated relative to the crustal abundance of uranium (2.3 ppm). Cesium-137 (137Cs) data and public records of production at the Midnite Mine site provided age control to document timelines in the sediment from the core immediately downstream from the mine site. Mining at the Midnite Mine site on the Spokane Indian Reservation between 1956 and 1981 resulted in production of more than 10 million pounds of U3O8. Contamination of the sediment by uranium during the mining period is documented from the Midnite Mine along a small tributary to the confluence of Blue Creek, in Blue Creek, and into the Blue Creek delta. During the period of active mining (1956?1981), enrichment of base metals in the sediment of Blue Creek delta was elevated by as much as 4 times the concentration of those same metals prior to mining. Cadmium concentrations were elevated by a factor of 10 and uranium by factors of 16 to 55 times premining

  17. Anaerobic dechlorination of 2,4-dichlorophenol in freshwater sediments in the presence of sulfate.

    PubMed Central

    Kohring, G W; Zhang, X M; Wiegel, J

    1989-01-01

    In the presence of added sulfate, 2,4-dichlorophenol and 4-chlorophenol were transformed stoichiometrically to 4-chlorophenol and phenol, respectively, in anaerobic freshwater lake sediments between 18 and 40 degrees C. The concomitantly occurring sulfate reduction reduced the initial sulfate concentration from 25 mM to about 6 to 8 mM and depressed methane formation. PMID:2604410

  18. Downstream cumulative effects of land use on freshwater communities

    NASA Astrophysics Data System (ADS)

    Kuglerová, L.; Kielstra, B. W.; Moore, D.; Richardson, J. S.

    2015-12-01

    Many streams and rivers are subject to disturbance from intense land use such as urbanization and agriculture, and this is especially obvious for small headwaters. Streams are spatially organized into networks where headwaters represent the tributaries and provide water, nutrients, and organic material to the main stems. Therefore perturbations within the headwaters might be cumulatively carried on downstream. Although we know that the disturbance of headwaters in urban and agricultural landscapes poses threats to downstream river reaches, the magnitude and severity of these changes for ecological communities is less known. We studied stream networks along a gradient of disturbance connected to land use intensity, from urbanized watersheds to watersheds placed in agricultural settings in the Greater Toronto Area. Further, we compared the patterns and processes found in the modified watershed to a control watershed, situated in a forested, less impacted landscape. Preliminary results suggest that hydrological modifications (flash floods), habitat loss (drainage and sewer systems), and water quality issues of small streams in urbanized and agricultural watersheds represent major disturbances and threats for aquatic and riparian biota on local as well as larger spatial scales. For example, communities of riparian plants are dominated by species typical of the land use on adjacent uplands as well as the dominant land use on the upstream contributing area, instead of riparian obligates commonly found in forested watersheds. Further, riparian communities in disturbed environments are dominated by invasive species. The changes in riparian communities are vital for various functions of riparian vegetation. Bank erosion control is suppressed, leading to severe channel transformations and sediment loadings in urbanized watersheds. Food sources for instream biota and thermal regimes are also changed, which further triggers alterations of in-stream biological communities

  19. Determination of adsorption and desorption of DNA molecules on freshwater and marine sediments.

    PubMed

    Xue, J; Feng, Y

    2018-06-01

    Free DNA and its adsorption by sediment in the aquatic environment lead to ambiguity in the identification of recent faecal pollution sources. The goal of this study was to understand the mechanisms of DNA adsorption and desorption on aquatic sediment under various conditions using quantitative polymerase chain reaction (qPCR). Both raw sewage (RS) DNA and purified PCR product (PPP) were used in adsorption and desorption experiments; autoclaved freshwater and marine sediments served as sorbents. Thirty-six hours were needed for adsorption to reach equilibrium. More DNA was adsorbed on both sediments in stream water than in 5 mmol l -1 NaCl and DNA adsorption increased in the presence of Ca 2+ and Mg 2+ . Successive desorption experiments showed that between 5% and 22% of adsorbed DNA was desorbed. Organic matter and clay played a significant role in determining the DNA adsorption capacity on sediment. The data suggest the presence of multilayer adsorption. DNA molecules on sediments were mostly adsorbed through ligand binding rather than electrostatic binding. Quantitative polymerase chain reaction assays provide a better way to investigate the DNA adsorption and desorption mechanisms by sediment. DNA desorption can potentially complicate the outcomes of microbial source tracking studies. © 2018 The Society for Applied Microbiology.

  20. Tolerance of freshwater test organisms to formulated sediments for use as control materials in whole-sediment toxicity tests

    USGS Publications Warehouse

    Kemble, N.E.; Dwyer, F.J.; Ingersoll, C.G.; Dawson, T.D.; Norberg-King, T. J.

    1999-01-01

    A method is described for preparing formulated sediments for use intoxicity testing. Ingredients used to prepare formulated sediments included commercially available silt, clay, sand, humic acid, dolomite, and α-cellulose (as a source of organic carbon). α-Cellulose was selected as the source of organic carbon because it is commercially available, consistent from batch to batch, and low in contaminant concentrations. The tolerance of freshwater test organisms to formulated sediments for use as control materials in whole-sediment toxicity testing was evaluated. Sediment exposures were conducted for 10 d with the amphipod Hyalella azteca, the midges Chironomus riparius and C. tentans, and the oligochaete Lumbriculus variegatus and for 28 d with H. azteca. Responses of organisms in formulated sediments was compared with a field-collected control sediment that has routinely been used to determine test acceptability. Tolerance of organisms to formulated sediments was evaluated by determining responses to varying levels of α-cellulose, to varying levels of grain size, to evaluation of different food types, or to evaluation of different sources of overlying water. In the 10-d exposures, survival of organisms exposed to the formulated sediments routinely met or exceeded the responses of test organisms exposed to the control sediment and routinely met test acceptability criteria required in standard methods. Growth of amphipods and oligochaetes in 10-d exposures with formulated sediment was often less than growth of organisms in the field-collected control sediment. Additional research is needed, using the method employed to prepare formulated sediment, to determine if conditioning formulated sediments before starting 10-d tests would improve the growth of amphipods. In the 28-d exposures, survival of H. azteca was low when reconstituted water was used as the source of overlying water. However, when well water was used as the source of overlying water in 28-d exposures

  1. EFFECTS OF FERRIC HYDROXIDE ON THE ANAEROBIC BIODEGRADATION KINETICS AND TOXICITY OF VEGETABLE OIL IN FRESHWATER SEDIMENTS

    EPA Science Inventory

    Biodegradation of vegetable oil in freshwater sediments exhibits self-inhibitory characteristics when it occurs under methanogenic conditions but not under iron-reducing conditions. The basis of the protective effect of iron was investigated by comparing its effects on oil biodeg...

  2. Reactive transport modeling of nitrogen in Seine River sediments

    NASA Astrophysics Data System (ADS)

    Akbarzadeh, Z.; Laverman, A.; Raimonet, M.; Rezanezhad, F.; Van Cappellen, P.

    2016-02-01

    Biogeochemical processes in sediments have a major impact on the fate and transport of nitrogen (N) in river systems. Organic matter decomposition in bottom sediments releases inorganic N species back to the stream water, while denitrification, anammox and burial of organic matter remove bioavailable N from the aquatic environment. To simulate N cycling in river sediments, a multi-component reactive transport model has been developed in MATLAB®. The model includes 3 pools of particulate organic N, plus pore water nitrate, nitrite, nitrous oxide and ammonium. Special attention is given to the production and consumption of nitrite, a N species often neglected in early diagenetic models. Although nitrite is usually considered to be short-lived, elevated nitrite concentrations have been observed in freshwater streams, raising concerns about possible toxic effects. We applied the model to sediment data sets collected at two locations in the Seine River, one upstream, the other downstream, of the largest wastewater treatment plant (WWTP) of the Paris conurbation. The model is able to reproduce the key features of the observed pore water depth profiles of the different nitrogen species. The modeling results show that the presence of oxygen in the overlying water plays a major role in controlling the exchanges of nitrite between the sediments and the stream water. In August 2012, sediments upstream of the WWTP switch from being a sink to a source of nitrite as the overlying water becomes anoxic. Downstream sediments remain a nitrite sink in oxic and anoxic conditions. Anoxic bottom waters at the upstream location promote denitrification, which produces nitrite, while at the downstream site, anammox and DNRA are important removal processes of nitrite.

  3. Freshwater sediments and sludges: two important terrestrial sinks for emissions from damaged NPPs

    NASA Astrophysics Data System (ADS)

    Fischer, Helmut W.; Evangelia Souti, Maria; Ulbrich, Susanne; Hormann, Volker

    2013-04-01

    Surface deposition of radionuclides released from the damaged Fukushima NPPs is well documented and emissions to the Pacific Ocean and their distribution with time and space are also subject to monitoring and research. In both cases, solid matter (soil and sea sediment, respectively) acts as a sink for radioisotopes after their transport through air and water. The possible hazards from direct irradiation of workers and public and from entry of radionuclides into food chains are well recognized. Apart from direct deposition onto soil, plants, building roofs etc., aerosols and contaminated rainwater will reach surface waters, leading to long-term deposition in freshwater sediments (and possibly to interim contamination of drinking water). In populated and industrial areas, drained rainwater will enter the wastewater collection and treatment chain if a combined rain and wastewater sewer is used. Depending on the processes in the wastewater treatment plant and chemical element and speciation, the isotopes will either concentrate in treatment sludge or be released with the effluent to rivers and lakes and their sediments. The mentioned media may act as long-term storage for radioisotopes when disposed of properly, but can also contribute to direct irradiation of workers or public, lead to continuous releases to the environment and possibly enter the food chain in the same way as soil and sea sediments. It appears therefore essential to monitor these environmental compartments as well. However, very few data on Fukushima-related radioisotope concentration in sludges and freshwater sediments have been published to date. We will therefore compare data for regional surface deposition and related concentrations in surface water, river sediments and sewage sludge obtained in Europe during 1986 to published data from Japan in 2011 for the most important common short-lived (I-131, half-life = 8.02 d) and long-lived (Cs-137, half-life = 30.17 yr) isotopes. As in central Europe

  4. Sediment characteristics in the San Antonio River Basin downstream from San Antonio, Texas, and at a site on the Guadalupe River downstream from the San Antonio River Basin, 1966-2013

    USGS Publications Warehouse

    Crow, Cassi L.; Banta, J. Ryan; Opsahl, Stephen P.

    2014-01-01

    San Antonio and surrounding municipalities in Bexar County, Texas, are in a rapidly urbanizing region in the San Antonio River Basin. The U.S. Geological Survey, in cooperation with the San Antonio River Authority and the Texas Water Development Board, compiled historical sediment data collected between 1996 and 2004 and collected suspended-sediment and bedload samples over a range of hydrologic conditions in the San Antonio River Basin downstream from San Antonio, Tex., and at a site on the Guadalupe River downstream from the San Antonio River Basin during 2011–13. In the suspended-sediment samples collected during 2011–13, an average of about 94 percent of the particles was less than 0.0625 millimeter (silt and clay sized particles); the 50 samples for which a complete sediment-size analysis was performed indicated that an average of about 69 percent of the particles was less than 0.002 millimeter. In the bedload samples collected during 2011–13, an average of 51 percent of sediment particles was sand-sized particles in the 0.25–0.5 millimeter-size range. In general, the loads calculated from the samples indicated that bedload typically composed less than 1 percent of the total sediment load. A least-squares log-linear regression was developed between suspended-sediment concentration and instantaneous streamflow and was used to estimate daily mean suspended-sediment loads based on daily mean streamflow. The daily mean suspended-sediment loads computed for each of the sites indicated that during 2011–12, the majority of the suspended-sediment loads originated upstream from the streamflow-gaging station on the San Antonio River near Elmendorf, Tex. A linear regression relation was developed between turbidity and suspended-sediment concentration data collected at the San Antonio River near Elmendorf site because the high-resolution data can facilitate understanding of the complex suspended-sediment dynamics over time and throughout the river basin.

  5. Distribution of brominated flame retardants and dechloranes between sediments and benthic fish--A comparison of a freshwater and marine habitat.

    PubMed

    Sühring, Roxana; Busch, Friederike; Fricke, Nicolai; Kötke, Danijela; Wolschke, Hendrik; Ebinghaus, Ralf

    2016-01-15

    A total of 53 halogenated flame retardants (HFRs) were analysed in sediments, European eels and dabs from both freshwater and marine sampling stations in the German Bight and the river Elbe. Classic HFRs, such as polybrominated diphenylethers (PBDEs), were the highest concentrated HFRs in eels as well as in most dabs (apart from 1,2,5,6-tetrabromocyclooctane (TBCO)). In sediments, on the other hand, alternate BFRs and especially dechloranes dominated the contamination pattern. Dabs were still found to be statistically representative for the contamination patterns and relative magnitude in sediments from their respective habitats. Contamination patterns in eels seemed to be more driven by the contamination situation in the food chain or historical contamination of their habitat. Unsuspectedly the alternate flame retardant TBCO was found in comparably high concentrations (up to 12 ng g(-1) ww) in dabs from two sampling stations as well as in sediments from these stations (up to 1.2 ng g(-1) dw). It could not be detected in any other analysed fish or sediment samples, indicating a localised contamination source in the area. This study provides information on HFR contamination patterns and behaviour in both marine and freshwater sediments and their potential role as contamination source for benthic fish. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Use of ecocores in estimating the biodegradation potential of 4-nonylphenol in freshwater sediments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dawson, T.D.; Liber, K.

    1995-12-31

    Ecocores, a type of sediment microcosm used to estimate biodegradation rates in sediments, were used in conjunction with a full-scale mesocosm study to help determine the possible mechanism of degradation of 4-nonylphenol in freshwater sediments. Ecocore and mesocosm sediments displayed very similar nonylphenol concentrations over the duration of the 8-week experiment; neither revealed any signs of nonylphenol degradation. Average nonylphenol concentrations at the beginning of the experiment were not significantly different from concentrations measured at the end of the experiment for both field (9.2 vs. 10.2 {micro}g/g) and ecocore (3.2 vs. 6.4 {micro}g/g) sediments. Mean nonylphenol concentrations remained relatively constantmore » over the duration of the 55-d incubation period in both viable (6.4 {+-} 3.9 {micro}g/g) and sterilized (8.0 {+-} 7.7 {micro}g/g) ecocore sediments. The observation of stable bacterial densities in this study is consistent with the lack of biodegradation of nonylphenol in the sediments of the test system. Ecocores worked well in conjunction with a mesocosm experiment where contaminant loads to the sediment were defined and to some extent controlled. This study indicated that sediment associated 4-nonylphenol is very resistant to microbial degradation within the experimental conditions and 8-week time frame used here.« less

  7. How have the river discharges and sediment loads changed in the Changjiang River basin downstream of the Three Gorges Dam?

    NASA Astrophysics Data System (ADS)

    Guo, Leicheng; Su, Ni; Zhu, Chunyan; He, Qing

    2018-05-01

    Streamflow and sediment loads undergo remarkable changes in worldwide rivers in response to climatic changes and human interferences. Understanding their variability and the causes is of vital importance regarding river management. With respect to the Changjiang River (CJR), one of the largest river systems on earth, we provide a comprehensive overview of its hydrological regime changes by analyzing long time series of river discharges and sediment loads data at multiple gauge stations in the basin downstream of Three Gorges Dam (TGD). We find profound river discharge reduction during flood peaks and in the wet-to-dry transition period, and slightly increased discharges in the dry season. Sediment loads have reduced progressively since 1980s owing to sediment yield reduction and dams in the upper basin, with notably accelerated reduction since the start of TGD operation in 2003. Channel degradation occurs in downstream river, leading to considerable river stage drop. Lowered river stages have caused a 'draining effect' on lakes by fostering lake outflows following TGD impoundments. The altered river-lake interplay hastens low water occurrence inside the lakes which can worsen the drought given shrinking lake sizes in long-term. Moreover, lake sedimentation has decreased since 2002 with less sediment trapped in and more sediment flushed out of the lakes. These hydrological changes have broad impacts on river flood and drought occurrences, water security, fluvial ecosystem, and delta safety.

  8. Dechlorination of pentachlorophenol, 2,4-dichlorophenoxyacetic acid and 2,4,5-trichlorophenoxyacetic acid in anaerobic freshwater sediments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bryant, F.O.; Rogers, J.E.

    1990-02-01

    Pentachlorophenol, 2,4-dichlorophenoxyacetic acid and 2,4,5-trichlorophenoxyacetic acid were transformed by microbial reductive dechlorination in freshwater, anaerobic sediments from such diverse locations as Georgia, Florida, New York and the Soviet Union. The reductive dechlorination process involves removal of a chlorine and replacement with a hydrogen. Sediments previously adapted to dechlorinate dichlorophenols were found to mediate dechlorination at much faster rates than unadapted sediments. Pentachlorophenol dechlorination in dichlorophenol-adapted sediments generated tetra-, tri-, di-, and monochlorophenol and phenol. Concentrations of pentachlorophenol, 2,4-dichlorophenoxyacetic acid and 2,4,5-trichlorophenoxyacetic acid up to 100 ppm were dechlorinated by adapted sediments. Reductive dechlorination of PCP, 2,4-D, and 2,4,5-T was regionmore » specific for chlorine removal as determined by the dichlorophenol isomer used to adapt the sediment. Sediment adapted to 2,4-dichlorophenol preferentially removed chlorines from the ortho position; whereas sediment adapted to 3,4-dichlorophenol preferentially removed chlorines from the para position.« less

  9. Development and application of freshwater sediment-toxicity benchmarks for currently used pesticides

    USGS Publications Warehouse

    Nowell, Lisa H.; Norman, Julia E.; Ingersoll, Christopher G.; Moran, Patrick W.

    2016-01-01

    Sediment-toxicity benchmarks are needed to interpret the biological significance of currently used pesticides detected in whole sediments. Two types of freshwater sediment benchmarks for pesticides were developed using spiked-sediment bioassay (SSB) data from the literature. These benchmarks can be used to interpret sediment-toxicity data or to assess the potential toxicity of pesticides in whole sediment. The Likely Effect Benchmark (LEB) defines a pesticide concentration in whole sediment above which there is a high probability of adverse effects on benthic invertebrates, and the Threshold Effect Benchmark (TEB) defines a concentration below which adverse effects are unlikely. For compounds without available SSBs, benchmarks were estimated using equilibrium partitioning (EqP). When a sediment sample contains a pesticide mixture, benchmark quotients can be summed for all detected pesticides to produce an indicator of potential toxicity for that mixture. Benchmarks were developed for 48 pesticide compounds using SSB data and 81 compounds using the EqP approach. In an example application, data for pesticides measured in sediment from 197 streams across the United States were evaluated using these benchmarks, and compared to measured toxicity from whole-sediment toxicity tests conducted with the amphipod Hyalella azteca (28-d exposures) and the midge Chironomus dilutus (10-d exposures). Amphipod survival, weight, and biomass were significantly and inversely related to summed benchmark quotients, whereas midge survival, weight, and biomass showed no relationship to benchmarks. Samples with LEB exceedances were rare (n = 3), but all were toxic to amphipods (i.e., significantly different from control). Significant toxicity to amphipods was observed for 72% of samples exceeding one or more TEBs, compared to 18% of samples below all TEBs. Factors affecting toxicity below TEBs may include the presence of contaminants other than pesticides, physical

  10. VARIATIONS IN THE SPECTRAL PROPERTIES OF FRESHWATER AND ESTUARINE CDOM CAUSED BY PARTITIONING ONTO RIVER AND ESTUARINE SEDIMENTS

    EPA Science Inventory

    The optical properties and geochemical cycling of chromophoric dissolved organic matter (CDOM) are altered by its sorption to freshwater and estuarine sediments. Measured partition coefficients (Kp) of Satilla River (Georgia) and Cape Fear River estuary (North Carolina) CDOM ran...

  11. Toxicological effects of short-term resuspension of metal-contaminated freshwater and marine sediments.

    PubMed

    Fetters, Kyle J; Costello, David M; Hammerschmidt, Chad R; Burton, G Allen

    2016-03-01

    Sediments in navigation-dominated waterways frequently are contaminated with a variety of particle-associated pollutants and are subject to frequent short-term resuspension events. There is little information documenting whether resuspension of metal-contaminated sediments has adverse ecological effects on resident aquatic organisms. Using a novel laboratory approach, the authors examined the mobilization of Zn, Cu, Cd, Pb, Ni, and Cr during resuspension of 1 freshwater and 2 coastal marine sediments and whether resuspension and redeposition resulted in toxicity to model organisms. Sediment flux exposure chambers were used to resuspend metal-contaminated sediments from 1 site in Lake DePue, Illinois (USA), and 2 sites in Portsmouth Naval Shipyard, Maine (USA). Short-term (4-h) resuspension of sediment at environmentally relevant suspended particulate matter concentrations (<1 g/L) resulted in metal mobilization to water that was sediment and metal specific. Overall, the net release of metals from suspended particles was limited, likely because of scavenging by organic matter and Fe oxides that formed during sediment interaction with oxic water. Minimal toxicity to organisms (survival of Hyalella azteca and Daphnia magna; survival, growth, and tissue metal concentration of Neanthes arenaceodentata; bioluminescence of Pyrocystis lunula) was observed during 4-h exposure to resuspended sediments and during 4-d to 10-d post-exposure recovery periods in uncontaminated water. Redeposited suspended particles exhibited increased metal bioavailability and toxicity to H. azteca, highlighting the potential for adverse ecological impacts because of changes in metal speciation. It is important to consider interactions between organisms' life histories and sediment disturbance regimes when assessing risks to ecosystems. © 2015 SETAC.

  12. Sediment Budgeting in Dam-Affected Rivers: Assessing the Influence of Damming, Tributaries, and Alluvial Valley Sediment Storage on Sediment Regimes

    NASA Astrophysics Data System (ADS)

    Wilcox, A. C.; Dekker, F. J.; Riebe, C. S.

    2014-12-01

    Although sediment supply is recognized as a fundamental driver of fluvial processes, measuring how dams affect sediment regimes and incorporating such knowledge into management strategies remains challenging. To determine the influences of damming, tributary supply, and valley morphology and sediment storage on downstream sediment supply in a dryland river, the Bill Williams River (BWR) in western Arizona, we measured basin erosion rates using cosmogenic nuclide analysis of beryllium-10 (10Be) at sites upstream and downstream of a dam along the BWR, as well as from tributaries downstream of the dam. Riverbed sediment mixing calculations were used to test if the dam, which blocks sediment supply from the upper 85% of the basin's drainage area, increases the proportion of tributary sediment to residual upstream sediment in mainstem samples downstream of the dam. Erosion rates in the BWR watershed are more than twice as large in the upper catchment (136 t km-2 yr-1) than in tributaries downstream of Alamo Dam (61 t km-2 yr-1). Tributaries downstream of the dam have little influence on mainstem sediment dynamics. The effect of the dam on reducing sediment supply is limited, however, because of the presence of large alluvial valleys along the mainstem BWR downstream of the dam that store substantial sediment and mitigate supply reductions from the upper watershed. These inferences, from our 10Be derived erosion rates and mixing calculations, are consistent with field observations of downstream changes in bed material size, which suggest that sediment-deficit conditions are restricted to a 10 km reach downstream of the dam, and limited reservoir bathymetry data. Many studies have suggested that tributary sediment inputs downstream of dams play a key role in mitigating dam-induced sediment deficits, but here we show that in a dryland river with ephemeral tributaries, sediment stored in alluvial valleys can also play a key role and in some cases trumps the role of

  13. Effect of sulfate and nitrate on acetate conversion by anaerobic microorganisms in a freshwater sediment.

    PubMed

    Scholten, Johannes C M; Bodegom, Peter M; Vogelaar, Jaap; Ittersum, Alexander; Hordijk, Kees; Roelofsen, Wim; Stams, Alfons J M

    2002-12-01

    Acetate is quantitatively the most important substrate for methane production in a freshwater sediment in The Netherlands. In the presence of alternative electron acceptors the conversion of acetate by methanogens was strongly inhibited. By modelling the results, obtained in experiments with and without (13)C-labelled acetate, we could show that the competition for acetate between methanogens and sulfate reducers is the main cause of inhibition of methanogenesis in the sediment. Although nitrate led to a complete inhibition of methanogenesis, acetate-utilising nitrate-reducing bacteria hardly competed with methanogens for the available acetate in the presence of nitrate. Most-probable-number enumerations showed that methanogens (2x10(8) cells cm(-3) sediment) and sulfate reducers (2x10(8) cells cm(-3) sediment) were the dominant acetate-utilising organisms in the sediment, while numbers of acetate-utilising nitrate reducers were very low (5x10(5) cells cm(-3) sediment). However, high numbers of sulfide-oxidising nitrate reducers were detected. Denitrification might result in the formation of toxic products. We speculate that the accumulation of low concentrations of NO (<0.2 mM) may result in an inhibition of methanogenesis.

  14. Abundance and Co-Distribution of Widespread Marine Archaeal Lineages in Surface Sediments of Freshwater Water Bodies across the Iberian Peninsula.

    PubMed

    Compte-Port, Sergi; Subirats, Jèssica; Fillol, Mireia; Sànchez-Melsió, Alexandre; Marcé, Rafael; Rivas-Ruiz, Pedro; Rosell-Melé, Antoni; Borrego, Carles M

    2017-11-01

    Archaea inhabiting marine and freshwater sediments have a relevant role in organic carbon mineralization, affecting carbon fluxes at a global scale. Despite current evidences suggesting that freshwater sediments largely contribute to this process, few large-scale surveys have been addressed to uncover archaeal diversity and abundance in freshwater sedimentary habitats. In this work, we quantified and high-throughput sequenced the archaeal 16S rRNA gene from surficial sediments collected in 21 inland waterbodies across the Iberian Peninsula differing in typology and trophic status. Whereas methanogenic groups were dominant in most of the studied systems, especially in organic-rich sediments, archaea affiliated to widespread marine lineages (the Bathyarchaeota and the Thermoplasmata) were also ubiquitous and particularly abundant in euxinic sediments. In these systems, Bathyarchaeota communities were dominated by subgroups Bathyarchaeota-6 (87.95 ± 12.71%) and Bathyarchaeota-15 (8.17 ± 9.2%) whereas communities of Thermoplasmata were mainly composed of members of the order Thermoplasmatales. Our results also indicate that Archaea accounted for a minor fraction of sedimentary prokaryotes despite remarkable exceptions in reservoirs and some stratified lakes. Copy numbers of archaeal and bathyarchaeotal 16S rRNA genes were significantly different when compared according to system type (i.e., lakes, ponds, and reservoirs), but no differences were obtained when compared according to their trophic status (from oligotrophy to eutrophy). Interestingly, we obtained significant correlations between the abundance of reads (Spearman r = 0.5, p = 0.021) and OTU richness (Spearman r = 0.677, p < 0.001) of Bathyarchaeota and Thermoplasmata across systems, reinforcing the hypothesis of a potential syntrophic interaction between members of both lineages.

  15. Dominance of sulfur-fueled iron oxide reduction in low-sulfate freshwater sediments.

    PubMed

    Hansel, Colleen M; Lentini, Chris J; Tang, Yuanzhi; Johnston, David T; Wankel, Scott D; Jardine, Philip M

    2015-11-01

    A central tenant in microbial biogeochemistry is that microbial metabolisms follow a predictable sequence of terminal electron acceptors based on the energetic yield for the reaction. It is thereby oftentimes assumed that microbial respiration of ferric iron outcompetes sulfate in all but high-sulfate systems, and thus sulfide has little influence on freshwater or terrestrial iron cycling. Observations of sulfate reduction in low-sulfate environments have been attributed to the presumed presence of highly crystalline iron oxides allowing sulfate reduction to be more energetically favored. Here we identified the iron-reducing processes under low-sulfate conditions within columns containing freshwater sediments amended with structurally diverse iron oxides and fermentation products that fuel anaerobic respiration. We show that despite low sulfate concentrations and regardless of iron oxide substrate (ferrihydrite, Al-ferrihydrite, goethite, hematite), sulfidization was a dominant pathway in iron reduction. This process was mediated by (re)cycling of sulfur upon reaction of sulfide and iron oxides to support continued sulfur-based respiration--a cryptic sulfur cycle involving generation and consumption of sulfur intermediates. Although canonical iron respiration was not observed in the sediments amended with the more crystalline iron oxides, iron respiration did become dominant in the presence of ferrihydrite once sulfate was consumed. Thus, despite more favorable energetics, ferrihydrite reduction did not precede sulfate reduction and instead an inverse redox zonation was observed. These findings indicate that sulfur (re)cycling is a dominant force in iron cycling even in low-sulfate systems and in a manner difficult to predict using the classical thermodynamic ladder.

  16. Dominance of sulfur-fueled iron oxide reduction in low-sulfate freshwater sediments

    PubMed Central

    Hansel, Colleen M; Lentini, Chris J; Tang, Yuanzhi; Johnston, David T; Wankel, Scott D; Jardine, Philip M

    2015-01-01

    A central tenant in microbial biogeochemistry is that microbial metabolisms follow a predictable sequence of terminal electron acceptors based on the energetic yield for the reaction. It is thereby oftentimes assumed that microbial respiration of ferric iron outcompetes sulfate in all but high-sulfate systems, and thus sulfide has little influence on freshwater or terrestrial iron cycling. Observations of sulfate reduction in low-sulfate environments have been attributed to the presumed presence of highly crystalline iron oxides allowing sulfate reduction to be more energetically favored. Here we identified the iron-reducing processes under low-sulfate conditions within columns containing freshwater sediments amended with structurally diverse iron oxides and fermentation products that fuel anaerobic respiration. We show that despite low sulfate concentrations and regardless of iron oxide substrate (ferrihydrite, Al-ferrihydrite, goethite, hematite), sulfidization was a dominant pathway in iron reduction. This process was mediated by (re)cycling of sulfur upon reaction of sulfide and iron oxides to support continued sulfur-based respiration—a cryptic sulfur cycle involving generation and consumption of sulfur intermediates. Although canonical iron respiration was not observed in the sediments amended with the more crystalline iron oxides, iron respiration did become dominant in the presence of ferrihydrite once sulfate was consumed. Thus, despite more favorable energetics, ferrihydrite reduction did not precede sulfate reduction and instead an inverse redox zonation was observed. These findings indicate that sulfur (re)cycling is a dominant force in iron cycling even in low-sulfate systems and in a manner difficult to predict using the classical thermodynamic ladder. PMID:25871933

  17. Freshwater Suspended Sediments and Sewage Are Reservoirs for Enterotoxin-Positive Clostridium perfringens▿

    PubMed Central

    Mueller-Spitz, Sabrina R.; Stewart, Lisa B.; Klump, J. Val; McLellan, Sandra L.

    2010-01-01

    The release of fecal pollution into surface waters may create environmental reservoirs of feces-derived microorganisms, including pathogens. Clostridium perfringens is a commonly used fecal indicator that represents a human pathogen. The pathogenicity of this bacterium is associated with its expression of multiple toxins; however, the prevalence of C. perfringens with various toxin genes in aquatic environments is not well characterized. In this study, C. perfringens spores were used to measure the distribution of fecal pollution associated with suspended sediments in the nearshore waters of Lake Michigan. Particle-associated C. perfringens levels were greatest adjacent to the Milwaukee harbor and diminished in the nearshore waters. Species-specific PCR and toxin gene profiles identified 174 isolates collected from the suspended sediments, surface water, and sewage influent as C. perfringens type A. Regardless of the isolation source, the beta2 and enterotoxin genes were common among isolates. The suspended sediments yielded the highest frequency of cpe-carrying C. perfringens (61%) compared to sewage (38%). Gene arrangement of enterotoxin was investigated using PCR to target known insertion sequences associated with this gene. Amplification products were detected in only 9 of 90 strains, which suggests there is greater variability in cpe gene arrangement than previously described. This work presents evidence that freshwater suspended sediments and sewage influent are reservoirs for potentially pathogenic cpe-carrying C. perfringens spores. PMID:20581181

  18. Use of multispectral satellite remote sensing to assess mixing of suspended sediment downstream of large river confluences

    NASA Astrophysics Data System (ADS)

    Umar, M.; Rhoads, Bruce L.; Greenberg, Jonathan A.

    2018-01-01

    Although past work has noted that contrasts in turbidity often are detectable on remotely sensed images of rivers downstream from confluences, no systematic methodology has been developed for assessing mixing over distance of confluent flows with differing surficial suspended sediment concentrations (SSSC). In contrast to field measurements of mixing below confluences, satellite remote-sensing can provide detailed information on spatial distributions of SSSC over long distances. This paper presents a methodology that uses remote-sensing data to estimate spatial patterns of SSSC downstream of confluences along large rivers and to determine changes in the amount of mixing over distance from confluences. The method develops a calibrated Random Forest (RF) model by relating training SSSC data from river gaging stations to derived spectral indices for the pixels corresponding to gaging-station locations. The calibrated model is then used to predict SSSC values for every river pixel in a remotely sensed image, which provides the basis for mapping of spatial variability in SSSCs along the river. The pixel data are used to estimate average surficial values of SSSC at cross sections spaced uniformly along the river. Based on the cross-section data, a mixing metric is computed for each cross section. The spatial pattern of change in this metric over distance can be used to define rates and length scales of surficial mixing of suspended sediment downstream of a confluence. This type of information is useful for exploring the potential influence of various controlling factors on mixing downstream of confluences, for evaluating how mixing in a river system varies over time and space, and for determining how these variations influence water quality and ecological conditions along the river.

  19. Predictions of sediment toxicity using consensus-based freshwater sediment quality guidelines

    USGS Publications Warehouse

    Ingersoll, C.G.; MacDonald, D.D.; Wang, N.; Crane, J.L.; Field, L.J.; Haverland, P.S.; Kemble, N.E.; Lindskoog, R.A.; Severn, C.; Smorong, D.E.

    2001-01-01

    The objectives of this study were to compare approaches for evaluating the combined effects of chemical mixtures on the toxicity in field-collected sediments and to evaluate the ability of consensus-based probable effect concentrations (PECs) to predict toxicity in a freshwater database on both a national and regional geographic basis. A database was developed from 92 published reports, which included a total of 1,657 samples with high-quality matching sediment toxicity and chemistry data from across North America. The database was comprised primarily of 10- to 14-day or 28- to 42-day toxicity tests with the amphipod Hyalella azteca (designated as the HA10 or HA28 tests) and 10- to 14-day toxicity tests with the midges Chironomus tentans or C. riparius (designated as the CS10 test). Mean PEC quotients were calculated to provide an overall measure of chemical contamination and to support an evaluation of the combined effects of multiple contaminants in sediments. There was an overall increase in the incidence of toxicity with an increase in the mean quotients in all three tests. A consistent increase in the toxicity in all three tests occurred at a mean quotient > 0.5, however, the overall incidence of toxicity was greater in the HA28 test compared to the short-term tests. The longer-term tests, in which survival and growth are measured, tend to be more sensitive than the shorter-term tests, with acute to chronic ratios on the order of six indicated for H. azteca. Different patterns were observed among the various procedures used to calculate mean quotients. For example, in the HA28 test, a relatively abrupt increase in toxicity was associated with elevated polychlorinated biphenyls (PCBs) alone or with elevated polycyclic aromatic hydrocarbons (PAHs) alone, compared to the pattern of a gradual increase in toxicity observed with quotients calculated using a combination of metals, PAHs, and PCBs. These analyses indicate that the different patterns in toxicity may be

  20. Bioavailability and toxicity of metals from a contaminated sediment by acid mine drainage: linking exposure-response relationships of the freshwater bivalve Corbicula fluminea to contaminated sediment.

    PubMed

    Sarmiento, Aguasanta M; Bonnail, Estefanía; Nieto, José Miguel; DelValls, Ángel

    2016-11-01

    Streams and rivers strongly affected by acid mine drainage (AMD) have legal vacuum in terms of assessing the water toxicity, since the use of conventional environmental quality biomarkers is not possible due to the absence of macroinvertebrate organisms. The Asian clam Corbicula fluminea has been widely used as a biomonitor of metal contamination by AMD in freshwater systems. However, these clams are considered an invasive species in Spain and the transplantation in the field study is not allowed by the Environmental Protection Agency. To evaluate the use of the freshwater bivalve C. fluminea as a potential biomonitor for sediments contaminated by AMD, the metal bioavailability and toxicity were investigated in laboratory by exposure of clams to polluted sediments for 14 days. The studied sediments were classified as slightly contaminated with As, Cr, and Ni; moderately contaminated with Co; considerably contaminated with Pb; and heavily contaminated with Cd, Zn, and specially Cu, being reported as very toxic to Microtox. On the fourth day of the exposure, the clams exhibited an increase in concentration of Ga, Ba, Sb, and Bi (more than 100 %), followed by Co, Ni, and Pb (more than 60 %). After the fourth day, a decrease in concentration was observed for almost all metals studied except Ni. An allometric function was used to determine the relationship between the increases in metal concentration in soft tissue and the increasing bioavailable metal concentrations in sediments.

  1. Diversity of methanogenic archaea in freshwater sediments of lacustrine ecosystems.

    PubMed

    Laskar, Folguni; Das Purkayastha, Sumi; Sen, Aniruddha; Bhattacharya, Mrinal K; Misra, Biswapriya B

    2018-02-01

    About half of the global methane (CH 4 ) emission is contributed by the methanogenic archaeal communities leading to a significant increase in global warming. This unprecedented situation has increased the ever growing necessity of evaluating the control measures for limiting CH 4 emission to the atmosphere. Unfortunately, research endeavors on the diversity and functional interactions of methanogens are not extensive till date. We anticipate that the study of the diversity of methanogenic community is paramount for understanding the metabolic processes in freshwater lake ecosystems. Although there are several disadvantages of conventional culture-based methods for determining the diversity of methanogenic archaeal communities, in order to understand their ecological roles in natural environments it is required to culture the microbes. Recently different molecular techniques have been developed for determining the structure of methanogenic archaeal communities thriving in freshwater lake ecosystem. The two gene based cloning techniques required for this purpose are 16S rRNA and methyl coenzyme M reductase (mcrA) in addition to the recently developed metagenomics approaches and high throughput next generation sequencing efforts. This review discusses the various methods of culture-dependent and -independent measures of determining the diversity of methanogen communities in lake sediments in lieu of the different molecular approaches and inter-relationships of diversity of methanogenic archaea. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Influence of porewater sulfide on methylmercury production and partitioning in sulfate-impacted lake sediments.

    PubMed

    Bailey, Logan T; Mitchell, Carl P J; Engstrom, Daniel R; Berndt, Michael E; Coleman Wasik, Jill K; Johnson, Nathan W

    2017-02-15

    In low-sulfate and sulfate-limited freshwater sediments, sulfate loading increases the production of methylmercury (MeHg), a potent and bioaccumulative neurotoxin. Sulfate loading to anoxic sediments leads to sulfide production that can inhibit mercury methylation, but this has not been commonly observed in freshwater lakes and wetlands. In this study, sediments were collected from sulfate-impacted, neutral pH, surface water bodies located downstream from ongoing and historic mining activities to examine how chronic sulfate loading produces porewater sulfide, and influences MeHg production and transport. Sediments were collected over two years, during several seasons from lakes with a wide range of overlying water sulfate concentration. Samples were characterized for in-situ solid phase and porewater MeHg, Hg methylation potentials via incubations with enriched stable Hg isotopes, and sulfur, carbon, and iron content and speciation. Porewater sulfide reflected historic sulfur loading and was strongly related to the extractable iron content of sediment. Overall, methylation potentials were consistent with the accumulation of MeHg on the solid phase, but both methylation potentials and MeHg were significantly lower at chronically sulfate-impacted sites with a low solid-phase Fe:S ratio. At these heavily sulfate-impacted sites that also contained elevated porewater sulfide, both MeHg production and partitioning are influenced: Hg methylation potentials and sediment MeHg concentrations are lower, but occasionally porewater MeHg concentrations in sediment are elevated, particularly in the spring. The dual role of sulfide as a ligand for inorganic mercury (decreasing bioavailability) and methylmercury (increasing partitioning into porewater) means that elucidating the role of iron and sulfur loads as they define porewater sulfide is key to understanding sulfate's influence on MeHg production and partitioning in sulfate-impacted freshwater sediment. Copyright © 2016

  3. Nontarget analysis of polar contaminants in freshwater sediments influenced by pharmaceutical industry using ultra-high-pressure liquid chromatography-quadrupole time-of-flight mass spectrometry.

    PubMed

    Terzic, Senka; Ahel, Marijan

    2011-02-01

    A comprehensive analytical procedure for a reliable identification of nontarget polar contaminants in aquatic sediments was developed, based on the application of ultra-high-pressure liquid chromatography (UHPLC) coupled to hybrid quadrupole time-of-flight mass spectrometry (QTOFMS). The procedure was applied for the analysis of freshwater sediment that was highly impacted by wastewater discharges from the pharmaceutical industry. A number of different contaminants were successfully identified owing to the high mass accuracy of the QTOFMS system, used in combination with high chromatographic resolution of UHPLC. The major compounds, identified in investigated sediment, included a series of polypropylene glycols (n=3-16), alkylbenzene sulfonate and benzalkonium surfactants as well as a number of various pharmaceuticals (chlorthalidone, warfarin, terbinafine, torsemide, zolpidem and macrolide antibiotics). The particular advantage of the applied technique is its capability to detect less known pharmaceutical intermediates and/or transformation products, which have not been previously reported in freshwater sediments. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. Biota connect aquatic habitats throughout freshwater ecosystem mosaics

    USGS Publications Warehouse

    Schofield, Kate A.; Alexander, Laurie C.; Ridley, Caroline E.; Vanderhoof, Melanie; Fritz, Ken M.; Autrey, Bradley; DeMeester, Julie; Kepner, William G.; Lane, Charles R.; Leibowitz, Scott; Pollard, Amina I.

    2018-01-01

    Freshwater ecosystems are linked at various spatial and temporal scales by movements of biota adapted to life in water. We review the literature on movements of aquatic organisms that connect different types of freshwater habitats, focusing on linkages from streams and wetlands to downstream waters. Here, streams, wetlands, rivers, lakes, ponds, and other freshwater habitats are viewed as dynamic freshwater ecosystem mosaics (FEMs) that collectively provide the resources needed to sustain aquatic life. Based on existing evidence, it is clear that biotic linkages throughout FEMs have important consequences for biological integrity and biodiversity. All aquatic organisms move within and among FEM components, but differ in the mode, frequency, distance, and timing of their movements. These movements allow biota to recolonize habitats, avoid inbreeding, escape stressors, locate mates, and acquire resources. Cumulatively, these individual movements connect populations within and among FEMs and contribute to local and regional diversity, resilience to disturbance, and persistence of aquatic species in the face of environmental change. Thus, the biological connections established by movement of biota among streams, wetlands, and downstream waters are critical to the ecological integrity of these systems. Future research will help advance our understanding of the movements that link FEMs and their cumulative effects on downstream waters.

  5. Use of Sediment Budgets for Watershed Erosion Control Planning: A Case Study From Northern California

    NASA Astrophysics Data System (ADS)

    O'Connor, M.; McDavitt, W.

    2002-05-01

    Erosion, sedimentation and peak flow increases caused by forest management for commercial timber production may negatively affect aquatic habitat of endangered anadromous fish such as coho salmon ({\\ it O. kisutch}). This paper summarizes a portion of a Watershed Analysis study performed for Pacific Lumber Company, Scotia, CA, focusing on erosion and sedimentation processes and rates and downstream sediment routing and water quality in the Freshwater Creek watershed in northwest California. Hillslope, road and bank erosion, channel sedimentation and sediment rates were quantified using field surveys, aerial photo interpretation, and empirical modeling approaches for different elements of the study. Sediment transport rates for bedload were modeled, and sediment transport rates for suspended sediment were estimated based on size distribution of sediment inputs in relation to sizes transported in suspension. The resulting sediment budget was validated through comparison using recent short-term, high-quality estimates of suspended sediment yield collected by a community watershed group at a downstream monitoring site with technical assistance from the US Forest Service. Another check on the sediment budget was provided by bedload yield data from an adjacent watershed, Jacoby Creek. The sediment budget techniques and bedload routing models used for this study provide sediment yield estimates that are in good agreement with available data. These results suggest that sediment budget techniques that require moderate levels of fieldwork can be used to provide relatively accurate technical assessments for use in the TMDL process. The sediment budget also identifies the most significant sediment sources and suggests a framework within which effective erosion control strategies can be developed.

  6. Multivariate analysis for source identification of pollution in sediment of Linggi River, Malaysia.

    PubMed

    Elias, Md Suhaimi; Ibrahim, Shariff; Samuding, Kamarudin; Rahman, Shamsiah Ab; Wo, Yii Mei; Daung, Jeremy Andy Dominic

    2018-03-29

    Rapid socioeconomic development in the Linggi River Basin has contributed to the significant increase of pollution discharge into the Linggi River and its adjacent coastal areas. The toxic element contents and distributions in the sediment samples collected along the Linggi River were determined using neutron activation analysis (NAA) and inductively coupled plasma-mass spectrometry (ICP-MS) techniques. The measured mean concentration of As, Cd, Pb, Sb, U, Th and Zn is relatively higher compared to the continental crust value of the respective element. Most of the elements (As, Cr, Fe, Pb, Sb and Zn) exceeded the freshwater sediment quality guideline-threshold effect concentration (FSQG-TEC) value. Downstream stations of the Linggi River showed that As concentrations in sediment exceeded the freshwater sediment quality guideline-probable effect concentration (FSQG-PEC) value. This indicates that the concentration of As will give an adverse effect to the growth of sediment-dwelling organisms. Generally, the Linggi River sediment can be categorised as unpolluted to strongly polluted and unpolluted to strongly to extremely polluted. The correlation matrix of metal-metal relationship, principle component analysis (PCA) and cluster analysis (CA) indicates that the pollution sources of Cu, Ni, Zn, Cd and Pb in sediments of the Linggi River originated from the industry of electronics and electroplating. Elements of As, Cr, Sb and Fe mainly originated from motor-vehicle workshops and metal work, whilst U and Th originated from natural processes such as terrestrial runoff and land erosion.

  7. Effects of lead-spiked sediments on freshwater bivalve, Hyridella australis: linking organism metal exposure-dose-response.

    PubMed

    Marasinghe Wadige, Chamani P M; Taylor, Anne M; Maher, William A; Ubrihien, Rodney P; Krikowa, Frank

    2014-04-01

    Lead entering aquatic ecosystems adsorbs to sediments and has the potential to cause adverse effects on the health of benthic organisms. To evaluate the freshwater bivalve Hyridella australis as a bioindicator for sediment toxicity, their exposure-dose and response to lead contaminated sediments (< 0.01, 205 ± 9 and 419 ± 16 μg/g dry mass) was investigated in laboratory microcosms using 28 day exposures. Despite high concentrations of lead in the sediments, organisms accumulated low concentrations of lead in their tissues after 28 days of exposure (low treatment: 2.2 ± 0.2 μg/g dry mass, high treatment: 4.2 ± 0.1 μg/g dry mass), however, accumulated lead concentrations in lead exposed organisms were two fold (low treatment) and four fold (high treatment) higher than that of unexposed organisms (1.2 ± 0.3 μg/g dry mass). Accumulation of lead by H. australis may have occurred as analogues of calcium and magnesium. Labial palps accumulated significantly more lead than other tissues. Of the lead accumulated in the hepatopancreas, 83%-91% was detoxified and stored in metal rich granules. The proportions and concentrations of lead in this fraction increased with lead exposure, which suggests that lead detoxification pathway plays an important role in metal tolerance of H. australis. The biologically active lead was mainly present in the mitochondrial fraction which increased with lead exposure. Total antioxidant capacity of H. australis significantly decreased while lipid peroxidation and lysosomal membrane destabilation increased with lead exposure. This study showed a clear lead exposure-dose-response relationship and indicates that H. australis would be a good biomonitor for lead in freshwater ecosystems. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. The filter feeder Dreissena polymorpha affects nutrient, silicon, and metal(loid) mobilization from freshwater sediments.

    PubMed

    Schaller, Jörg; Planer-Friedrich, Britta

    2017-05-01

    Organic sediments in aquatic ecosystems are well known sinks for nutrients, silicon, and metal(loid)s. Organic matter-consuming organisms like invertebrate shredders, grazers, and bioturbators significantly affect element fixation or remobilization by changing redox conditions or binding properties of organic sediments. Little is known about the effect of filter feeders, like the zebra mussel Dreissena polymorpha, an invasive organism in North American and European freshwater ecosystems. A laboratory batch experiment exposing D. polymorpha (∼1200 organisms per m 2 ) to organic sediment from a site contaminated with arsenic, copper, lead, and uranium revealed a significant uptake and accumulation of arsenic, copper, iron, and especially uranium both into the soft body tissues and the seashell. This is in line with previous observations of metal(loid) accumulation from biomonitoring studies. Regarding its environmental impact, D. polymorpha significantly contributed to mobilization of silicon, iron, phosphorus, arsenic, and copper and to immobilization of uranium (p < 0.001), probably driven by redox conditions, microbial activity within the gut system, or active control of element homeostasis. No net mobilization or immobilization was observed for zinc and lead, because of their low mobility at the prevailing pH of 7.5-8.5. The present results suggest that D. polymorpha can both ameliorate (nutrient mobilization, immobilization of toxicants mobile under oxic conditions) or aggravate negative effects (mobilization of toxicants mobile under reducing conditions) in ecosystems. Relating the results of the present study to observed population densities in natural freshwater ecosystems suggests a significant influence of D. polymorpha on element cycling and needs to be considered in future studies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Biodegradation of trichloroethylene and its anaerobic daughter products in freshwater wetland sediments

    USGS Publications Warehouse

    Lorah, M.M.; Olsen, L.D.

    2001-01-01

    Laboratory microcosms were prepared under methanogenic, sulfate-reducing, and aerobic conditions using sediment and groundwater from a freshwater wetland that is a discharge area for a trichloroethylene (TCE) to evaluate potential biodegradation rates of TCE and its anaerobic daughter products (cis-1,2-dichloroethylene, trans-1,2-dichloroethylene, and vinyl chloride (VC)). Anaerobic degradation of TCE was about an order of magnitude faster under methanogenic conditions than under sulfate-reducing conditions. Both 12DCE and VC were found under sulfate-reducing conditions in the microcosms containing the wetland sediment, but their production, especially for VC, was substantially slower than under methanogenic conditions. Methane concentrations remained approximately constant (when losses in the formalin-amended controls are considered) in the microcosms amended with TCE and increased in the microcosms amended with the 12DCE isomers and VC during the first 18-25 days of incubation. The most rapid decrease in concentrations of TCE, cis-12DCE, trans-12DCE, and VC was found after aerobic methane-oxidizing conditions were definitely established.

  10. Phase 1 Studies: Impacts of Commercial Navigation Traffic on Freshwater Mussels: A Review

    DTIC Science & Technology

    1989-10-01

    physical effects can stress or kill pelagic fish eggs and larvae, bottom-dwelling invertebrates such as freshwater mussels (Family: Unionidae), aquatic ...affect freshwater mu sels in large waterways. Many studies on freshwater mussels have stressed the importance of sediment free water and clean stable...effects of low to moderate levels of increased water velocity or elevated 17 suspended sediments on freshwater bivalves. The second part describes

  11. Response of sediment microbial community structure in a freshwater reservoir to manipulations in oxygen availability.

    PubMed

    Bryant, Lee D; Little, John C; Bürgmann, Helmut

    2012-04-01

    Hypolimnetic oxygenation systems (HOx) are being increasingly used in freshwater reservoirs to elevate dissolved oxygen levels in the hypolimnion and suppress sediment-water fluxes of soluble metals (e.g. Fe and Mn) which are often microbially mediated. We assessed changes in sediment microbial community structure and corresponding biogeochemical cycling on a reservoir-wide scale as a function of HOx operations. Sediment microbial biomass as quantified by DNA concentration was increased in regions most influenced by the HOx. Following an initial decrease in biomass in the upper sediment while oxygen concentrations were low, biomass typically increased at all depths as the 4-month-long oxygenation season progressed. A distinct shift in microbial community structure was only observed at the end of the season in the upper sediment near the HOx. While this shift was correlated to HOx-enhanced oxygen availability, increased TOC levels and precipitation of Fe- and Mn-oxides, abiotic controls on Fe and Mn cycling, and/or the adaptability of many bacteria to variations in prevailing electron acceptors may explain the delayed response and the comparatively limited changes at other locations. While the sediment microbial community proved remarkably resistant to relatively short-term changes in HOx operations, HOx-induced variation in microbial structure, biomass, and activity was observed after a full season of oxygenation. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  12. Field studies of estuarine turbidity under different freshwater flow conditions, Kaipara River, New Zealand

    NASA Astrophysics Data System (ADS)

    Mitchell, Steven B.; Green, Malcolm O.; MacDonald, Iain T.; Pritchard, Mark

    2017-11-01

    We present a first interpretation of three days of measurements made in 2013 from the tidal reaches of the Kaipara River (New Zealand) under both low and high freshwater inputs and a neap tidal cycle. During the first day, we occupied two stations that were approximately 6 km apart in a tidal reach that runs for 25 km from the river mouth to the upstream limit of tidal influence. During the second day, longitudinal surveys were conducted over a distance of 6 km centred on the upstream station. The data reveal a turbidity maximum in the form of a high-concentration 'plug' of suspended mud that was advected downstream on the ebbing tide past the upper (HB) measurement station and which exchanged sediment with the seabed by settling at low slack water and by resuspension in the early flooding tide. The data suggest that fine sediment is transported landwards and trapped in the upper part of the tidal reach under these low-flow conditions. On the third day of measurements we repeated the experiments of the first day but later in the year, for a much higher freshwater flow. This interpretation of our data set highlights the potential contribution of a range of processes to the generation of the observed suspended-sediment signals, including resuspension of local bed sediment, advection by the tidal current, settling of suspended sediment over a long timescale compared to the advection timescale, advection of longitudinal gradients in suspended sediment, and suppression of vertical mixing by density stratification of the water column. The level of temporal and spatial detail afforded by these measurements allows a much clearer understanding of the timing and importance of vertical stratification on the transport of suspended particulate matter than is generally possible using fixed-point sensors.

  13. 15N indicates an active N-cycling microbial community in low carbon, freshwater sediments.

    NASA Astrophysics Data System (ADS)

    Sheik, C.

    2017-12-01

    Earth's large lakes are unique aquatic ecosystems, but we know little of the microbial life driving sedimentary biogeochemical cycles and ultimately the isotopic record. In several of these large lakes, water column productivity is constrained by element limitation, such as phosphorus and iron, creating oligotrophic water column conditions that drive low organic matter content in sediments. Yet, these sediments are biogeochemically active and have been shown to have oxygen consumption rates akin to pelagic ocean sediments and complex sulfur cycling dynamics. Thus, large oligotrophic lakes provide unique and interesting biogeochemical contrast to highly productive freshwater and coastal marine systems. Using Lake Superior as our study site, we found microbial community structure followed patterns in bulk sediment carbon and nitrogen concentrations. These observed patterns were loosely driven by land proximity, as some stations are more coastal and have higher rates of sedimentation, allochthonous carbon inputs and productivity than pelagic sites. Interestingly, upper sediment carbon and nitrogen stable isotopes were quite different from water column. Sediment carbon and nitrogen isotopes correlated significantly with microbial community structure. However, 15N showed much stronger correlation than 13C, and became heavier with core depth. Coinciding with the increase in 15N values, we see evidence of both denitrification and anammox processes in 16S rRNA gene libraries and metagenome assembled genomes. Given that microorganisms prefer light isotopes and that these N-cycling processes both contribute to N2 production and efflux from the sediment, the increase in 15N with sediment depth suggests microbial turnover. Abundance of these genomes also varies with depth suggesting these novel microorganisms are partitioning into specific sediment geochemical zones. Additionally, several of these genomes contain genes involved in sulphur cycling, suggesting a dual

  14. Vertical and horizontal distribution of sediment nitrite-dependent methane-oxidizing organisms in a mesotrophic freshwater reservoir.

    PubMed

    Long, Yan; Liu, Changbao; Lin, Hengliang; Li, Ningning; Guo, Qingwei; Xie, Shuguang

    2017-06-01

    In the present study, we investigated the spatial change of sediment nitrite-dependent anaerobic methane-oxidizing (n-damo) organisms in the mesotrophic freshwater Gaozhou Reservoir (6 different sampling locations and 2 sediment depths (0-5 cm, 5-10 cm)), one of the largest drinking water reservoirs in China. The abundance of sediment n-damo bacteria was quantified using quantitative polymerase chain reaction assay, while the richness, diversity, and composition of n-damo pmoA gene sequences were characterized using clone library analysis. Vertical and horizontal changes in sediment n-damo bacterial abundance occurred in Gaozhou Reservoir, with 1.37 × 10 5 to 8.24 × 10 5 n-damo 16S rRNA gene copies per gram of dry sediment. Considerable horizontal and vertical variations of n-damo pmoA gene diversity (Shannon index = 0.32-2.50) and composition also occurred in this reservoir. Various types of sediment n-damo pmoA genes existed in Gaozhou Reservoir. A small proportion of n-damo pmoA gene sequences (19.1%) were related to those recovered from "Candidatus Methylomirabilis oxyfera". Our results suggested that sediment n-damo pmoA gene diversity might be regulated by nitrite, while n-damo pmoA gene richness might be governed by multiple environmental factors, including total organic carbon, total phosphorus, nitrite, and total nitrogen.

  15. Methylation of Hg downstream from the Bonanza Hg mine, Oregon

    USGS Publications Warehouse

    Gray, John E.; Hines, Mark E.; Krabbenhoft, David P.; Thoms, Bryn

    2012-01-01

    Speciation of Hg and conversion to methyl-Hg were evaluated in stream sediment, stream water, and aquatic snails collected downstream from the Bonanza Hg mine, Oregon. Total production from the Bonanza mine was >1360t of Hg, during mining from the late 1800s to 1960, ranking it as an intermediate sized Hg mine on an international scale. The primary objective of this study was to evaluate the distribution, transport, and methylation of Hg downstream from a Hg mine in a coastal temperate climatic zone. Data shown here for methyl-Hg, a neurotoxin hazardous to humans, are the first reported for sediment and water from this area. Stream sediment collected from Foster Creek flowing downstream from the Bonanza mine contained elevated Hg concentrations that ranged from 590 to 71,000ng/g, all of which (except the most distal sample) exceeded the probable effect concentration (PEC) of 1060ng/g, the Hg concentration above which harmful effects are likely to be observed in sediment-dwelling organisms. Concentrations of methyl-Hg in stream sediment collected from Foster Creek varied from 11 to 62ng/g and were highly elevated compared to regional baseline concentrations (0.11-0.82ng/g) established in this study. Methyl-Hg concentrations in stream sediment collected in this study showed a significant correlation with total organic C (TOC, R2=0.62), generally indicating increased methyl-Hg formation with increasing TOC in sediment. Isotopic-tracer methods indicated that several samples of Foster Creek sediment exhibited high rates of Hg-methylation. Concentrations of Hg in water collected downstream from the mine varied from 17 to 270ng/L and were also elevated compared to baselines, but all were below the 770ng/L Hg standard recommended by the USEPA to protect against chronic effects to aquatic wildlife. Concentrations of methyl-Hg in the water collected from Foster Creek ranged from 0.17 to 1.8ng/L, which were elevated compared to regional baseline sites upstream and downstream

  16. Diversity and Dynamics of Microbial Community Structure in Different Mangrove, Marine and Freshwater Sediments During Anaerobic Debromination of PBDEs

    PubMed Central

    Wang, Ya Fen; Zhu, Hao Wen; Wang, Ying; Zhang, Xiang Ling; Tam, Nora Fung Yee

    2018-01-01

    Little is known about the diversity and succession of indigenous microbial community during debromination of polybrominated diphenyl ethers (PBDEs). This study examined the diversity and dynamics of microbial community structure in eight saline (mangrove and marine) and freshwater sediment microcosms exhibiting different debrominating capabilities for hexa-BDE 153, a common congener in sediments, using terminal restriction fragment length polymorphism (T-RFLP) and clone library analyses. The results showed that microbial community structure greatly differed between the saline and freshwater microcosms, likely leading to distinct variations in their debrominating capabilities and pathways. Higher relative abundances of Chloroflexi and Deltaproteobacteria succeed by Alphaproteobacteria and Betaproteobacteria were detected in the two mangrove microcosms with the fastest debrominating capabilities mainly via para pathway, respectively; the dominance of Alphaproteobacteria resulted in less accumulation of tetra-BDEs and more complete debromination of lower brominated congeners (from di- to tetra-BDEs). Meanwhile, the shifts in both microbial community structure and PBDE profiles were relatively small in the less efficient freshwater microcosms, with relatively more ortho and meta brominated products of BDE-153 resulted. Coincidently, one of the freshwater microcosms showed sudden increases of Chloroflexi and Deltaproteobacteria by the end of incubation, which synchronized with the increase in the removal rate of BDE-153. The significant relationship between microbial community structure and PBDEs was confirmed by redundancy analysis (18.7% of total variance explained, P = 0.002). However, the relative abundance of the well-known dechlorinator Dehalococcoides showed no clear correlation with the debrominating capability across different microcosms. These findings shed light in the significance of microbial community network in different saline environments on enhancement

  17. Diversity and Dynamics of Microbial Community Structure in Different Mangrove, Marine and Freshwater Sediments During Anaerobic Debromination of PBDEs.

    PubMed

    Wang, Ya Fen; Zhu, Hao Wen; Wang, Ying; Zhang, Xiang Ling; Tam, Nora Fung Yee

    2018-01-01

    Little is known about the diversity and succession of indigenous microbial community during debromination of polybrominated diphenyl ethers (PBDEs). This study examined the diversity and dynamics of microbial community structure in eight saline (mangrove and marine) and freshwater sediment microcosms exhibiting different debrominating capabilities for hexa-BDE 153, a common congener in sediments, using terminal restriction fragment length polymorphism (T-RFLP) and clone library analyses. The results showed that microbial community structure greatly differed between the saline and freshwater microcosms, likely leading to distinct variations in their debrominating capabilities and pathways. Higher relative abundances of Chloroflexi and Deltaproteobacteria succeed by Alphaproteobacteria and Betaproteobacteria were detected in the two mangrove microcosms with the fastest debrominating capabilities mainly via para pathway, respectively; the dominance of Alphaproteobacteria resulted in less accumulation of tetra-BDEs and more complete debromination of lower brominated congeners (from di- to tetra-BDEs). Meanwhile, the shifts in both microbial community structure and PBDE profiles were relatively small in the less efficient freshwater microcosms, with relatively more ortho and meta brominated products of BDE-153 resulted. Coincidently, one of the freshwater microcosms showed sudden increases of Chloroflexi and Deltaproteobacteria by the end of incubation, which synchronized with the increase in the removal rate of BDE-153. The significant relationship between microbial community structure and PBDEs was confirmed by redundancy analysis (18.7% of total variance explained, P = 0.002). However, the relative abundance of the well-known dechlorinator Dehalococcoides showed no clear correlation with the debrominating capability across different microcosms. These findings shed light in the significance of microbial community network in different saline environments on enhancement

  18. Bioavailability of trace metals in sediments of a recovering freshwater coastal wetland in China's Yellow River Delta, and risk assessment for the macrobenthic community.

    PubMed

    Yang, Wei; Li, Xiaoxiao; Pei, Jun; Sun, Tao; Shao, Dongdong; Bai, Junhong; Li, Yanxia

    2017-12-01

    We investigated the speciation of trace metals and their ecological risks to macrobenthic communities in a recovering coastal wetland of China's Yellow River Delta during the freshwater release project. We established 16 sampling sites in three restoration areas and one intertidal reference area, and collected sediments and macrobenthos four times from 2014 to 2015. The instability index for the trace metals showed a moderate risk for Mn and a high risk for Cd. For both Mn and Cd, the carbonate and FeMn-bound fractions appear to contribute mostly to the instability and bioavailability indexes, but for Cd, the exchangeable fraction also have a much higher contribution. The bioavailability index indicated higher bioavailability of trace metals in freshwater restoration areas than that in the intertidal area. The single-factor contamination index indicated that most trace metal concentrations in the macrobenthos were in excess of the national standard. The biota-sediment accumulation factor suggested that the macrobenthos accumulated most As, Cd, and Cu. Redundancy analysis showed clear relationships between the macrobenthos and sediment metal concentrations. Our results will help wetland managers to assess the bioaccumulation risks based on metal speciation, and to improve management of these recovering freshwater wetland ecosystems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Spatial Patterns of Plant Litter and Sedimentation in a Tidal Freshwater Marsh and Implications for Marsh Persistence

    NASA Astrophysics Data System (ADS)

    Elmore, A. J.; Cadol, D. D.; Palinkas, C. M.; Engelhardt, K. A.

    2014-12-01

    The maintenance of marsh platform elevation under sea level rise is dependent on sedimentation and biomass conversion to soil organic material. These physical and biological processes interact within the tidal zone, resulting in elevation-dependent processes contributing to marsh accretion. Here we explore spatial pattern in plant litter, a variable related to productivity, to understand its role in physical and biological interactions in a freshwater marsh. Plant litter that persists through the dormant season has an extended period of influence on ecosystem processes. We conducted a field and remote sensing analysis of plant litter height, biomass, vertical cover, and stem density (collectively termed plant litter structure) at a tidal freshwater marsh located along the Potomac River estuary. We completed two years of repeat RTK GPS surveys with corresponding measurements of litter height (over 2000 observations) to train a non-parametric random forest decision tree to predict litter height. LiDAR and field observations show that plant litter height increases with increasing elevation, although important deviations from this relationship are apparent. These spatial patterns exhibit stability from year to year and lead to corresponding patterns in soil organic matter content, revealed by loss on ignition of surface sediments. The amount of mineral material embedded within plant litter decreases with increasing elevation, representing an important trade-off with litter structure. Therefore, at low elevations where litter structure is short and sparse, the role of plant litter is to capture sediment; at high elevations where litter structure is tall and dense, litter contributes organic matter to soil development. Despite these tradeoffs, changes in elevation over time are consistent across elevation, with only small positive differences in elevation gain over time at elevations where the most sediment is deposited or where litter exhibits the most biomass.

  20. Downstream lightening and upward heavying, sorting of sediments of uniform grain size but differing in density

    NASA Astrophysics Data System (ADS)

    Viparelli, E.; Solari, L.; Hill, K. M.

    2014-12-01

    Downstream fining, i.e. the tendency for a gradual decrease in grain size in the downstream direction, has been observed and studied in alluvial rivers and in laboratory flumes. Laboratory experiments and field observations show that the vertical sorting pattern over a small Gilbert delta front is characterized by an upward fining profile, with preferential deposition of coarse particles in the lowermost part of the deposit. The present work is an attempt to answer the following questions. Are there analogous sorting patterns in mixtures of sediment particles having the same grain size but differing density? To investigate this, we performed experiments at the Hydrosystems Laboratory at the University of Illinois at Urbana-Champaign. During the experiments a Gilbert delta formed and migrated downstream allowing for the study of transport and sorting processes on the surface and within the deposit. The experimental results show 1) preferential deposition of heavy particles in the upstream part of the deposit associated with a pattern of "downstream lightening"; and 2) a vertical sorting pattern over the delta front characterized by a pattern of "upward heavying" with preferential deposition of light particles in the lowermost part of the deposit. The observed downstream lightening is analogous of the downstream fining with preferential deposition of heavy (coarse) particles in the upstream part of the deposit. The observed upward heavying was unexpected because, considering the particle mass alone, the heavy (coarse) particles should have been preferentially deposited in the lowermost part of the deposit. Further, the application of classical fractional bedload transport relations suggests that in the case of mixtures of particles of uniform size and different densities equal mobility is not approached. We hypothesize that granular physics mechanisms traditionally associated with sheared granular flows may be responsible for the observed upward heavying and for the

  1. Unexpected and novel putative viruses in the sediments of a deep-dark permanently anoxic freshwater habitat

    PubMed Central

    Borrel, Guillaume; Colombet, Jonathan; Robin, Agnès; Lehours, Anne-Catherine; Prangishvili, David; Sime-Ngando, Télesphore

    2012-01-01

    Morphological diversity, abundance and community structure of viruses were examined in the deep and anoxic sediments of the volcanic Lake Pavin (France). The sediment core, encompassing 130 years of sedimentation, was subsampled every centimeter. High viral abundances were recorded and correlated to prokaryotic densities. Abundances of viruses and prokaryotes decreased with the depth, contrasting the pattern of virus-to-prokaryote ratio. According to fingerprint analyses, the community structure of viruses, bacteria and archaea gradually changed, and communities of the surface (0–10 cm) could be discriminated from those of the intermediate (11–27 cm) and deep (28–40 cm) sediment layers. Viral morphotypes similar to virions of ubiquitous dsDNA viruses of bacteria were observed. Exceptional morphotypes, previously never reported in freshwater systems, were also detected. Some of these resembled dsDNA viruses of hyperthermophilic and hyperhalophilic archaea. Moreover, unusual types of spherical and cubic virus-like particles (VLPs) were observed. Infected prokaryotic cells were detected in the whole sediment core, and their vertical distribution correlated with both viral and prokaryotic abundances. Pleomorphic ellipsoid VLPs were visible in filamentous cells tentatively identified as representatives of the archaeal genus Methanosaeta, a major group of methane producers on earth. PMID:22648129

  2. Unexpected and novel putative viruses in the sediments of a deep-dark permanently anoxic freshwater habitat.

    PubMed

    Borrel, Guillaume; Colombet, Jonathan; Robin, Agnès; Lehours, Anne-Catherine; Prangishvili, David; Sime-Ngando, Télesphore

    2012-11-01

    Morphological diversity, abundance and community structure of viruses were examined in the deep and anoxic sediments of the volcanic Lake Pavin (France). The sediment core, encompassing 130 years of sedimentation, was subsampled every centimeter. High viral abundances were recorded and correlated to prokaryotic densities. Abundances of viruses and prokaryotes decreased with the depth, contrasting the pattern of virus-to-prokaryote ratio. According to fingerprint analyses, the community structure of viruses, bacteria and archaea gradually changed, and communities of the surface (0-10 cm) could be discriminated from those of the intermediate (11-27 cm) and deep (28-40 cm) sediment layers. Viral morphotypes similar to virions of ubiquitous dsDNA viruses of bacteria were observed. Exceptional morphotypes, previously never reported in freshwater systems, were also detected. Some of these resembled dsDNA viruses of hyperthermophilic and hyperhalophilic archaea. Moreover, unusual types of spherical and cubic virus-like particles (VLPs) were observed. Infected prokaryotic cells were detected in the whole sediment core, and their vertical distribution correlated with both viral and prokaryotic abundances. Pleomorphic ellipsoid VLPs were visible in filamentous cells tentatively identified as representatives of the archaeal genus Methanosaeta, a major group of methane producers on earth.

  3. What makes a healthy environment for native freshwater mussels?

    USGS Publications Warehouse

    ,

    2000-01-01

    Freshwater mussels are sensitive to contamination of sediment that they inhabit and to the water that they filter, making the presence of live, adult mussels an excellent indicator of ecosystem health and stability. Freshwater mussels are relatively immobile, imbedded in the streambed with part of the shell sticking up into the water so that they can filter water to obtain oxygen and food. This lack of mobility makes them particularly vulnerable to water and sediment contamination, changes in sedimentation, or prolonged drought. Thus, ecosystem health and stability are critical for their reproduction and survival.

  4. Preparation and characterization of nickel-spiked freshwater sediments for toxicity tests: toward more environmentally realistic nickel partitioning

    USGS Publications Warehouse

    Brumbaugh, William G.; Besser, John M.; Ingersoll, Christopher G.; May, Thomas W.; Ivey, Chris D.; Schlekat, Christian E.; Garman, Emily R.

    2013-01-01

    Two spiking methods were compared and nickel (Ni) partitioning was evaluated during a series of toxicity tests with 8 different freshwater sediments having a range of physicochemical characteristics. A 2-step spiking approach with immediate pH adjustment by addition of NaOH at a 2:1 molar ratio to the spiked Ni was effective in producing consistent pH and other chemical characteristics across a range of Ni spiking levels. When Ni was spiked into sediment having a high acid-volatile sulfide and organic matter content, a total equilibration period of at least 10 wk was needed to stabilize Ni partitioning. However, highest spiking levels evidently exceeded sediment binding capacities; therefore, a 7-d equilibration in toxicity test chambers and 8 volume-additions/d of aerobic overlying water were used to avoid unrealistic Ni partitioning during toxicity testing. The 7-d pretest equilibration allowed excess spiked Ni and other ions from pH adjustment to diffuse from sediment porewater and promoted development of an environmentally relevant, 0.5- to 1-cm oxic/suboxic sediment layer in the test chambers. Among the 8 different spiked sediments, the logarithm of sediment/porewater distribution coefficient values (log Kd) for Ni during the toxicity tests ranged from 3.5 to 4.5. These Kd values closely match the range of values reported for various field Ni-contaminated sediments, indicating that testing conditions with our spiked sediments were environmentally realistic.

  5. Occurrence, spatial distribution, and ecological risks of typical hydroxylated polybrominated diphenyl ethers in surface sediments from a large freshwater lake of China.

    PubMed

    Liu, Dan; Wu, Sheng-Min; Zhang, Qin; Guo, Min; Cheng, Jie; Zhang, Sheng-Hu; Yao, Cheng; Chen, Jian-Qiu

    2017-02-01

    Hydroxylated polybrominated diphenyl ethers (OH-PBDEs) have been frequently observed in marine aquatic environments; however, little information is available on the occurrence of these compounds in freshwater aquatic environments, including freshwater lakes. In this study, we investigated the occurrence and spatial distribution of typical OH-PBDEs, including 2'-OH-BDE-68, 3-OH-BDE-47, 5-OH-BDE-47, and 6-OH-BDE-47 in surface sediments of Taihu Lake. 3-OH-BDE-47 was the predominant congener, followed by 5-OH-BDE-47, 2'-OH-BDE-68, and 6-OH-BDE-47. Distributions of these compounds are drastically different between sampling site which may be a result of differences in nearby point sources, such as the discharge of industrial wastewater and e-waste leachate. The positive correlation between ∑OH-PBDEs and total organic carbon (TOC) was moderate (r = 0.485, p < 0.05), and site S3 and S15 were excluded due to point source pollution, suggesting that OH-PBDEs concentrations were controlled by sediment TOC content, as well as other factors. The pairwise correlations between the concentrations of these compounds suggest that these compounds may have similar input sources and environmental behavior. The target compounds in the sediments of Lake Taihu pose low risks to aquatic organisms. Results show that OH-PBDEs in Lake Taihu are largely dependent on pollution sources. Because of bioaccumulation and subsequent harmful effects on aquatic organisms, the concentrations of OH-PBDEs in freshwater ecosystems are of environmental concern.

  6. Methymercury Formation in Marine and Freshwater Systems: Sediment Characteristics, Microbial Activity and SRB Phylogeny Control Formation Rates and Food-Chain Exposure

    NASA Astrophysics Data System (ADS)

    King, J. K.; Saunders, F. M.

    2004-05-01

    Mercury research in freshwater and marine systems suggests that sediment characteristics such as organic substrate, mercury speciation, and sulfate/sulfide concentrations influence availability of inorganic mercury for methylation. Similarly, sediment characteristics also influence sulfate-reducing bacterial (SRB) respiration as well as the presence/distribution of phylogenetic groups responsible for mercury methylation. Our work illustrates that the process of methylmercury formation in freshwater and marine systems are not dissimilar. Rather, the same geochemical parameters and SRB phylogenetic groups determine the propensity for methylmercury formation and are applicable in both fresh- and marine-water systems. The presentation will include our integration of sediment geochemical and microbial parameters affecting mercury methylation in specific freshwater and marine systems. Constructed wetlands planted with Schoenoplectus californicus and amended with gypsum (CaSO4) have demonstrated a capacity to remove inorganic mercury from industrial outfalls. However, bioaccumulation studies of periphyton, eastern mosquitofish (Gambusia holbrooki) and lake chubsucker (Erimyzon sucetta) were conducted in order to ascertain the availability of wetland-generated methylmercury to biota. Total mercury concentrations in mosquitofish from non-sulfate treated controls and the reference location were significantly lower than those from the low and high sulfate treatments while mean total mercury concentrations in lake chubsuckers were also significantly elevated in the high sulfate treatment compared to the low sulfate, control and reference populations. Methylmercury concentrations in periphyton also corresponded with mercury levels found in the tissue of the lake chubsuckers, and these findings fit well given the trophic levels identified for both species of fish. Overall, data from this study suggest that the initial use of gypsum to accelerate the maturity of a constructed

  7. Effects of clay minerals and organic matter in formulated sediments on the bioavailability of sediment-associated uranium to the freshwater midge, Chironomus dilutus.

    PubMed

    Crawford, Sarah E; Liber, Karsten

    2015-11-01

    It is well established that bioavailability influences metal toxicity in aquatic ecosystems. However, the factors and mechanisms that influence uranium (U) bioavailability and toxicity in sediment have not been thoroughly evaluated, despite evidence that suggests different sediment components can influence the sorption and interaction of some metals. Given that dissolved U is generally accepted as being the primary bioavailable fraction of U, it is hypothesized that adsorption and interaction of U with different sediment components will influence the bioavailability of U in sediment. We investigated the effects of key sediment physicochemical properties on the bioavailability of U to a model freshwater benthic invertebrate, Chironomus dilutus. Several 10-day spiked sediment bioaccumulation experiments were performed, exposing C. dilutus larvae to a variety of formulated sediments spiked with different concentrations of U (5, 50 and/or 200 mg U/kg d.w.). Mean accumulation of U in C. dilutus larvae decreased significantly from 1195 to 10 mg U/kg d.w. as kaolin clay content increased from 0% to 60% in sediment spiked with 50 mg U/kg d.w. Similarly, higher organic matter content also resulted in a significant reduction of U bioaccumulation in C. dilutus larvae, indicating a reduction in U bioavailability. Concentrations of U in both the overlying water and sediment pore water displayed a strong positive relationship to U bioaccumulation in C. dilutus larvae (r(2) = 0.77, p<0.001 and r(2) = 0.57, p < 0.001, respectively) for all experiments, while total U concentrations in the sediment had a poor relationship to U bioaccumulation (r(2) = 0.10, p = 0.028). Results from this research confirm that sediment clay and organic matter content play a significant role in altering U bioavailability, which is important in informing risk assessments of U contaminated sites and in the development of site-specific sediment quality guidelines for U. Copyright © 2015 Elsevier B.V. All

  8. A Stochastic Model For Extracting Sediment Delivery Timescales From Sediment Budgets

    NASA Astrophysics Data System (ADS)

    Pizzuto, J. E.; Benthem, A.; Karwan, D. L.; Keeler, J. J.; Skalak, K.

    2015-12-01

    Watershed managers need to quantify sediment storage and delivery timescales to understand the time required for best management practices to improve downstream water quality. To address this need, we route sediment downstream using a random walk through a series of valley compartments spaced at 1 km intervals. The probability of storage within each compartment, q, is specified from a sediment budget and is defined as the ratio of the volume deposited to the annual sediment flux. Within each compartment, the probability of sediment moving directly downstream without being stored is p=1-q. If sediment is stored within a compartment, its "resting time" is specified by a stochastic exponential waiting time distribution with a mean of 10 years. After a particle's waiting time is over, it moves downstream to the next compartment by fluvial transport. Over a distance of "n" compartments, a sediment particle may be stored from 0 to n times with the probability of each outcome (store or not store) specified by the binomial distribution. We assign q = 0.02, a stream velocity of 0.5 m/s, an event "intermittency "of 0.01, and assume a balanced sediment budget. Travel time probability density functions have a steep peak at the shortest times, representing rapid transport in the channel of the fraction of sediment that moves downstream without being stored. However, the probability of moving downstream "n" km without storage is pn (0.90 for 5 km, 0.36 for 50 km, 0.006 for 250 km), so travel times are increasingly dominated by storage with increasing distance. Median travel times for 5, 50, and 250 km are 0.03, 4.4, and 46.5 years. After a distance of approximately 2/q or 100 km (2/0.02/km), the median travel time is determined by storage timescales, and active fluvial transport is irrelevant. Our model extracts travel time statistics from sediment budgets, and can be cast as a differential equation and solved numerically for more complex systems.

  9. Cytotoxicity of TiO{sub 2} nanoparticles towards freshwater sediment microorganisms at low exposure concentrations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumari, Jyoti; Kumar, Deepak; Mathur, Ankita

    2014-11-15

    There is a persistent need to assess the effects of TiO{sub 2} nanoparticles on the aquatic ecosystem owing to their increasing usage in consumer products and risk of environmental release. The current study is focused on TiO{sub 2} nanoparticle-induced acute toxicity at sub-ppm level (≤1 ppm) on the three different freshwater sediment bacterial isolates and their consortium under two different irradiation (visible light and dark) conditions. The consortium of the bacterial isolates was found to be less affected by the exposure to the nanoparticles compared to the individual cells. The oxidative stress contributed considerably towards the cytotoxicity under both lightmore » and dark conditions. A statistically significant increase in membrane permeability was noted under the dark conditions as compared to the light conditions. The optical and fluorescence microscopic images showed aggregation and chain formation of the bacterial cells, when exposed to the nanoparticles. The electron microscopic (SEM, TEM) observations suggested considerable damage of cells and bio-uptake of nanoparticles. The exopolysaccrides (EPS) production and biofilm formation were noted to increase in the presence of the nanoparticles, and expression of the key genes involved in biofilm formation was studied by RT-PCR. - Highlights: • Toxicity of NPs towards freshwater sediment bacteria at sub-ppm concentrations. • Decreased toxicity of the nanoparticles in the consortium of microorganisms. • Enhanced bacterial resistance through EPS and biofilm formation in the presence of NPs. • Considerable surface damage of cells and internalization of NPs. • Gene expression analyses related to biofilm formation in the presence of NPs.« less

  10. Combined Fe/P and Fe/S ratios as a practicable index for estimating the release potential of internal-P in freshwater sediment.

    PubMed

    Wang, Jingfu; Chen, Jingan; Guo, Jianyang; Sun, Qingqing; Yang, Haiquan

    2018-04-01

    Release of phosphorus (P) from sediment is a major source of P in many freshwater lakes. Currently, assessing the ability of sediment to release P, which is valuable to the management of water eutrophication, remains a challenge. Thus, the purpose of this study was to find effective indexes for predicting the release potential of internal-P. In this study, high-resolution diffusive gradients in thin films (DGT) and conventional sequential extraction were used to characterize the distribution and speciation of P, iron (Fe), and sulfur (S) in the surface sediment of a mildly eutrophic reservoir in southwestern China. Sediment samples exhibited large variations in Fe, S, and P, thereby providing favorable conditions for investigating the effects of Fe and S on sediment P mobilization. In contrast to traditional knowledge, our results show that total P (TP) and redox-sensitive P(BD-P) are poorly correlated with releasable P(DGT-P). This implies that high levels of sedimentary TP and BD-P do not necessarily result in an elevated release of internal-P under anaerobic conditions. Sedimentary P release was greatly suppressed at ratios of Fe/P > 30 and Fe/S > 6. Significant positive correlations between DGT-P and DGT-Fe or DGT-S suggest that Fe and S play an important role in governing the mobility of sedimentary P. These results support the combined Fe/P and Fe/S ratios as an effective and practicable index for assessing the ability of sediment to release P. Thus, our study provides a new and simple method for assessing sedimentary P pollution in freshwater ecosystems.

  11. Assimilation of remote sensing observations into a sediment transport model of China's largest freshwater lake: spatial and temporal effects.

    PubMed

    Zhang, Peng; Chen, Xiaoling; Lu, Jianzhong; Zhang, Wei

    2015-12-01

    Numerical models are important tools that are used in studies of sediment dynamics in inland and coastal waters, and these models can now benefit from the use of integrated remote sensing observations. This study explores a scheme for assimilating remotely sensed suspended sediment (from charge-coupled device (CCD) images obtained from the Huanjing (HJ) satellite) into a two-dimensional sediment transport model of Poyang Lake, the largest freshwater lake in China. Optimal interpolation is used as the assimilation method, and model predictions are obtained by combining four remote sensing images. The parameters for optimal interpolation are determined through a series of assimilation experiments evaluating the sediment predictions based on field measurements. The model with assimilation of remotely sensed sediment reduces the root-mean-square error of the predicted sediment concentrations by 39.4% relative to the model without assimilation, demonstrating the effectiveness of the assimilation scheme. The spatial effect of assimilation is explored by comparing model predictions with remotely sensed sediment, revealing that the model with assimilation generates reasonable spatial distribution patterns of suspended sediment. The temporal effect of assimilation on the model's predictive capabilities varies spatially, with an average temporal effect of approximately 10.8 days. The current velocities which dominate the rate and direction of sediment transport most likely result in spatial differences in the temporal effect of assimilation on model predictions.

  12. Sediment traps with guiding channel and hybrid check dams improve controlled sediment retention

    NASA Astrophysics Data System (ADS)

    Schwindt, Sebastian; Franca, Mário J.; Reffo, Alessandro; Schleiss, Anton J.

    2018-03-01

    Sediment traps with partially open check dams are crucial elements for flood protection in alpine regions. The trapping of sediment is necessary when intense sediment transport occurs during floods that may endanger urban areas at downstream river reaches. In turn, the unwanted permanent trapping of sediment during small, non-hazardous floods can result in the ecological and morphological degradation of downstream reaches. This study experimentally analyses a novel concept for permeable sediment traps. For ensuring the sediment transfer up to small floods, a guiding channel implemented in the deposition area of a sediment trap was systematically studied. The bankfull discharge of the guiding channel corresponds to a dominant morphological discharge. At the downstream end of the guiding channel, a permeable barrier (check dam) triggers sediment retention and deposition. The permeable barrier consists of a bar screen for mechanical deposition control, superposed to a flow constriction for the hydraulic control. The barrier obstructs hazardous sediment transport for discharges that are higher than the bankfull discharge of the guiding channel without the risk of unwanted sediment flushing (massive self-cleaning).

  13. Ecogeomorphological feedbacks in a tidal freshwater marsh

    NASA Astrophysics Data System (ADS)

    Palinkas, C. M.; Engelhardt, K.

    2013-12-01

    Tidal freshwater marshes are critical components of fluvial and estuarine ecosystems. However, ecogeomorphological feedbacks (i.e., feedbacks between sediment dynamics and the vegetation community) in freshwater marshes have not received as much attention as within their saltwater counterparts. This study evaluates the role of these feedbacks in stabilizing marsh-surface elevation, relative to sea-level rise, in Dyke Marsh Preserve (Potomac River, USA). Specifically, we relate the composition of the vegetation community to current and historical patterns of sedimentation that occur on bimonthly to decadal time scales. Along with a ~3-year time series of bimonthly and seasonal-scale observations, 210Pb (half-life 22.3 y) profiles are used to identify sites with relatively steady sediment accumulation (i.e., stable sediments) and those with numerous deposition/erosion events (i.e., unstable sediments). Differences in the vegetation community (e.g., composition, stem density) and sediment character (e.g., organic content, grain size) among sites in each of these stability categories are examined with statistical techniques and compared to observations of marsh-surface elevation change. The resulting insights are placed into a geomorphological context to assess the potential response of this marsh to rapid global environmental change.

  14. Pools, channel form, and sediment storage in wood-restored streams: Potential effects on downstream reservoirs

    NASA Astrophysics Data System (ADS)

    Elosegi, Arturo; Díez, José Ramón; Flores, Lorea; Molinero, Jon

    2017-02-01

    Large wood (LW, or pieces of dead wood longer than 1 m and thicker than 10 cm in diameter) is a key element in forested streams, but its abundance has decreased worldwide as a result of snagging and clearing of riparian forests. Therefore, many restoration projects introduce LW into stream channels to enhance geomorphology, biotic communities, and ecosystem functioning. Because LW enhances the retention of organic matter and sediments, its restoration can reduce siltation in receiving reservoirs, although so far little information on this subject is available. We studied the effects of restoring the natural loading of LW in four streams in the Aiako Harria Natural Park (the Basque Country, Spain) in pool abundance, channel form, and storage of organic matter and sediments. In all reaches log jams induced the formation of new geomorphic features and changes in physical habitat, especially an increase in the number and size of pools and in the formation of gravel bars and organic deposits. The storage of organic matter increased 5- to 88-fold and streambed level rose 7 ± 4 to 21 ± 4 cm on average, resulting in the storage of 35.2 ± 19.7 to 711 ± 375 m3 (733-1400 m3 ha- 1 y- 1) of sediment per reach. Extrapolation of these results to the entire drainage basin suggests that basinwide restoration of LW loading would enhance the retention potential of stream channels by 66,817 ± 27,804 m3 (1075 m3 ha- 1 y- 1) of sediment and by 361 t (5.32 T ha- 1 y- 1) of organic matter, which represents 60% of the estimated annual inputs of sediments to the downstream Añarbe Reservoir and almost twice as much as the annual input of organic matter to the entire river network. Therefore, basinwide restoration of LW loading is a potentially important tool to manage catchments that feed reservoirs, where retention of sediments and organic matter can be considered important ecosystem services as they reduce reservoir siltation.

  15. Morphology analysis in middle-downstream area of Progo River due to the debris flow

    NASA Astrophysics Data System (ADS)

    Fitriadin, Ahmad Azmi; Ikhsan, Jaza'ul; Harsanto, Puji

    2017-06-01

    One of the problems that occur in Progo River is the formation of sediment in the downstream section. The sediment material in the upstream becomes the source of sediment at the downstream area. Excess sediment supply from the upstream causes morphological changes in a relatively short time. The morphological changes in riverbed will affect hydraulics conditions. Hydraulic has an important role in the process of aggradation and degradation in the riverbed. Furthermore, the process of erosion and sedimentation will affect the stability of the construction in the water. In Progo River, there are some buildings of infrastructure such as revetment, bridge, irrigation intake, groundsill, and weir. Based on the results of a numerical model of the hydraulic analysis system, there was approximately 87,000,000 m3 of sediment on Progo River in 2015. In fact, aggradation and degradation occurred very intensively in the middle-downstream area of Progo River. Sediment movement simulation also showed that the sediment supply of lava could prevent excessive bed degradation. Nevertheless, the absence of sediment supply will lead to bed degradation process. It indicates that the management of the sediment supply in the upstream area must be managed properly.

  16. Toxicity and bioaccumulation of sediment-associated contaminants using freshwater invertebrates: A review of methods and applications

    USGS Publications Warehouse

    Ingersoll, C.G.; Ankley, G.T.; Benoit, D.A.; Brunson, E.L.; Burton, G.A.; Dwyer, F.J.; Hoke, R.A.; Landrum, P.F.; Norberg-King, T. J.; Winger, P.V.

    1995-01-01

    This paper reviews recent developments in methods for evaluating the toxicity and bioaccumulation of contaminants associated with freshwater sediments and summarizes example case studies demonstrating the application of these methods. Over the past decade, research has emphasized development of more specific testing procedures for conducting 10-d toxicity tests with the amphipod Hyalella azteca and the midge Chironomus tentans. Toxicity endpoints measured in these tests are survival for H. azteca and survival and growth for C. tentans. Guidance has also been developed for conducting 28-d bioaccumulation tests with the oligochaete Lumbriculus variegatus, including determination of bioaccumulation kinetics for different compound classes. These methods have been applied to a variety of sediments to address issues ranging from site assessments to bioavailability of organic and inorganic contaminants using field-collected and laboratory-spiked samples. Survival and growth of controls routinely meet or exceed test acceptability criteria. Results of laboratory bioaccumulation studies with L. variegatus have been confirmed with comparisons to residues (PCBs, PAHs, DDT) present from synoptically collected field populations of oligochaetes. Additional method development is currently underway to develop chronic toxicity tests and to provide additional data-confirming responses observed in laboratory sediment tests with natural benthic populations.

  17. Accelerated removal of pyrene and benzo[a]pyrene in freshwater sediments with amendment of cyanobacteria-derived organic matter.

    PubMed

    Yan, Zaisheng; Jiang, Helong; Li, Xiaohong; Shi, Yuan

    2014-05-15

    The removal of pyrene and benzo[a]pyrene (BaP) were investigated in freshwater sediments with amendment of seven different organic matters including cyanobacteria-derived organic matter (COM), plant-derived organic matter (POM), and humic substances (HS). During the 210 days of experiments, the amendment of COM or HS enhanced significantly the removal of pyrene and BaP in sediments, especially with fresh COM (FCOM) treatment much superior to HS. On the contrary, degradation of these polycyclic aromatic hydrocarbons (PAHs) was not significantly improved and even inhibited in POM-amended sediments. The first-order rate constants of pyrene and BaP degradation in the FCOM-amended sediments reached 0.00540±0.00017d(-1) and 0.00517±0.00057d(-1), respectively, and were about three and five folds of those in the control treatment. The enhanced PAHs degradation in FCOM-amended sediments was related to higher PAH-degrading bacteria number and bioavailability with a result of biostimulation and priming effect by labile carbon and high-value nutrition in FCOM. Thus, this study improved our understanding about effects of settled biomass from cyanobacterial blooms, which occurred frequently in eutrophic aquatic ecosystems, on the natural attenuation of PAHs in sediments. Furthermore, this study would also help develop a new promising approach to remediate PAH-contaminated sediments through utilization of cyanobacterial bloom biomass. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Influence of silver nanoparticles on benthic oxygen consumption of microbial communities in freshwater sediments determined by microelectrodes.

    PubMed

    Miao, Lingzhan; Wang, Chao; Hou, Jun; Wang, Peifang; Ao, Yanhui; Li, Yi; Yao, Yu; Lv, Bowen; Yang, Yangyang; You, Guoxiang; Xu, Yi

    2017-05-01

    The increased use of silver nanoparticles (AgNPs) will inevitably result in the release of these particles into aquatic environments, with sediments as a substantial sink. However, we do not know whether AgNPs present potential impacts in sediment functioning. In this study, a microcosm approach was constructed, and the potential impacts of AgNPs and PVP-coated AgNPs on oxygen consumption in freshwater sediments (collected from Taihu Lake) were determined using oxygen microelectrodes. To our knowledge, this is the first time that microelectrodes have been used to estimate the impacts of AgNPs in sediments. The steady-state oxygen microprofiles showed that environmental relevant concentration (1 mg/L nano-Ag) did not lead to an apparent change in the oxygen consumption rates of benthic microbial communities in sediment. The addition of 10 mg/L uncoated AgNPs resulted in remarkable differences in the oxygen concentration profiles within 4-5 h and significantly inhibited the oxygen consumption of benthic microbial communities in the upper sediment layer (∼1 mm) after 100 h. Simultaneously, an increase of oxygen consumption in sediment lower zones was observed. These results may suggest that aerobic microorganisms in the upper layer of the sediment reduced metabolic activity to avoid the toxic stress from AgNPs. Concomitantly, facultative aerobes below the metabolically active upper layer switched from fermentation or anaerobic respiration to aerobic respiration as oxygen bioavailability increased in the lower zones of the sediment. In addition, PVP coating reduced the nanotoxicity of AgNPs in benthic microorganisms due to the decreased dissolution of AgNPs in the filtered overlying water, a phenomenon that merits further investigation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Effect Of Iron On The Sensitivity Of Hydrogen, Acetate, And Butyrate Metabolism To Inhibition By Long-Chain Fatty Acids In Vegetable-Oil-Enriched Freshwater Sediments

    EPA Science Inventory

    Freshwater sediment microbial communities enriched by growth on vegetable oil in the presence of a substoichiometric amount of ferric hydroxide (sufficient to accept about 12% of the vegetable-oil-derived electrons) degrade vegetable oil to methane faster than similar microbial c...

  20. A field investigation of the relationship between zinc and acid volatile sulfide concentrations in freshwater sediments

    USGS Publications Warehouse

    Ankley, Gerald T.; Liber, Karsten; Call, Daniel J.; Markee, Thomas P.; Canfield, Timothy J.; Ingersoll, Christopher G.

    1996-01-01

    Understanding relationships between cationic metals such as cadmium, copper, nickel, lead and zinc, and amorphous iron sulfides, measured as acid volatile sulfide (AVS), is key to predicting metal bioavailability and toxicity insediments. The objective of the present study was to assess seasonal and spatial variations of AVS in freshwater sediments contaminated with zinc. Sediments were sampled from three streams with varying levels of zinc contamination at two different times, March and June of 1995, representing cold- and warm-weather situations. Interstitial (pore) water concentrations of zinc, and solid phase concentrations of AVS and zinc were measured in surficial and deep sediment horizons. Toxicity tests (10-d) with the amphipodHyalella azteca were conducted using intact cores. Sediment zinc concentrations from six sites within the primary test stream differed by about five-fold, and also varied seasonally. Acid volatile sulfide concentrations were generally lower than those of zinc, and pore water zinc concentrations typically were elevated. There was a positive correlation between solid-phase AVS and zinc concentrations, suggesting that the system was dominated by zinc, as opposed to iron sulfides. In contrast to expectations arising from some studies of seasonal variations of AVS in iron-dominated systems, AVS concentrations were smaller in June than in March. However, this was likely due to a major storm event and associated sediment scouring before the June sampling, rather than to seasonal processes related to variations in temperature and dissolved oxygen. Based upon an indirect analysis of depth variations in AVS, there was some indication that zinc sulfide might be less prone to oxidation than iron sulfide. There was a strong correlation between toxicity of the sediment samples toH. azteca and interstitial water concentrations of zinc; however, the possible contribution of other contaminants to sediment toxicity cannot be dismissed.

  1. Toxicity of sediments from lead-zinc mining areas to juvenile freshwater mussels (Lampsilis siliquoidea) compared to standard test organisms

    USGS Publications Warehouse

    Besser, John M.; Ingersoll, Christopher G.; Brumbaugh, William G.; Kemble, Nile E.; May, Thomas W.; Wang, Ning; MacDonald, Donald D.; Roberts, Andrew D.

    2015-01-01

    Sediment toxicity tests compared chronic effects on survival, growth, and biomass of juvenile freshwater mussels (28-d exposures with Lampsilis siliquoidea) to the responses of standard test organisms—amphipods (28-d exposures with Hyalella azteca) and midges (10-d exposures with Chironomus dilutus)—in sediments from 2 lead–zinc mining areas: the Tri-State Mining District and Southeast Missouri Mining District. Mussel tests were conducted in sediments sieved to <0.25 mm to facilitate recovery of juvenile mussels (2–4 mo old). Sediments were contaminated primarily with lead, zinc, and cadmium, with greater zinc and cadmium concentrations in Tri-State sediments and greater lead concentrations in southeast Missouri sediments. The frequency of highly toxic responses (reduced 10% or more relative to reference sites) in Tri-State sediments was greatest for amphipod survival (25% of samples), midge biomass (20%), and mussel survival (14%). In southeast Missouri sediments, the frequency of highly toxic samples was greatest for mussel biomass (25%) and amphipod biomass (13%). Thresholds for metal toxicity to mussels, expressed as hazard quotients based on probable effect concentrations, were lower for southeast Missouri sediments than for Tri-State sediments. Southeast Missouri sites with toxic sediments had 2 or fewer live mussel taxa in a concurrent mussel population survey, compared with 7 to 26 taxa at reference sites. These results demonstrate that sediment toxicity tests with juvenile mussels can be conducted reliably by modifying existing standard methods; that the sensitivity of mussels to metals can be similar to or greater than standard test organisms; and that responses of mussels in laboratory toxicity tests are consistent with effects on wild mussel populations.

  2. Availability of ferric iron for microbial reduction in bottom sediments of the freshwater tidal Potomac River

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lovley, D.R.; Phillips, E.J.P.

    1986-10-01

    The distribution of Fe(III), its availability for microbial reduction, and factors controlling Fe(III) availability were investigated in sediments from a freshwater site in the Potomac River Estuary. Fe(III) reduction in sediments incubated under anaerobic conditions and depth profiles of oxalate-extractable Fe(III) indicated that Fe(III) reduction was limited to depths of 4 cm or less, with the most intense Fe(III) reduction in the top 1 cm. In incubations of the upper 4 cm of the sediments, Fe(III) reduction was as important as methane production as a pathway for anaerobic electron flow because of the high rates of Fe(III) reduction in themore » 0- 0.5-cm interval. Most of the oxalate-extractable Fe(III) in the sediments was not reduced and persisted to a depth of at least 20 cm. The incomplete reduction was not the result of a lack of suitable electron donors. The oxalate-extractable Fe(III) that was preserved in the sediments was considered to be in a form other than amorphous Fe(III) oxyhydroxide, since synthetic amorphous Fe(III) oxyhydroxide, amorphous Fe(III) oxyhydroxide adsorbed onto clay, and amorphous Fe(III) oxyhydroxide saturated with adsorbed phosphate or fulvic acids were all readily reduced. Fe/sub 3/O/sub 4/ and the mixed Fe(III)-Fe(II) compound(s) that were produced during the reduction of amorphous Fe(III) oxyhydroxide in an enrichment culture were oxalate extractable but were not reduced, suggesting that mixed Fe(III)-Fe(II) compounds might account for the persistence of oxalate-extractable Fe(III) in the sediments.« less

  3. Massive Freshwater discharges: an example from Glacial Lake Missoula

    NASA Astrophysics Data System (ADS)

    Lopes, C.; Mix, A. C.

    2016-12-01

    Massive inputs of freshwater into the ocean are known to disrupt climate. This has been fairly studied in the North Atlantic with freshwater inputs from the Laurentide ice sheet and glacial Lake Agassiz. The association of these discharges with global warming has lead us to look for such prints in marine sediments. Here we show the records of Glacial Lake Missoula outbursts during the warming singe the Last Glacial Maximum in two marine cores off Oregon and California that show the presence of freshwater diatoms that are linked to massive discharges of freshwater from the glacial lake Missoula. The dynamics and timing of these north Pacific mega-flood events are fairly constrained by terrestrial records, however, the consequences of such discharges of freshwater in the northeast Pacific regional circulation remains unknown. Nevertheless we were able to estimate a salinity decrease of almost 6.0 PSU more than 400 km to the south (off northern California) during the last glacial interval (from 16-31 calendar (cal) k.y. B.P.). Anomalously high abundances of freshwater diatoms in marine sediments from the region precede generally accepted dates for the existence of glacial Lake Missoula, implying that large flooding events were also common during the advance of the Cordilleran Ice Sheet.

  4. Sediment retention in a bottomland hardwood wetland in Eastern Arkansas

    USGS Publications Warehouse

    Kleiss, B.A.

    1996-01-01

    One of the often-stated functions of wetlands is their ability to remove sediments and other particulates from water, thus improving water quality in the adjacent aquatic system. However, actual rates of suspended sediment removal have rarely been measured in freshwater wetland systems. To address this issue, suspended sediment dynamics were measured in a 85-km2 bottomland hardwood (BLH) wetland adjacent to the highly turbid Cache River in eastern Arkansas during the 1988-1990 water years. A suspended sediment mass balance was calculated using depth-integrated, flow-weighted daily measurements at wetland inflow and outflow points. Over the three-year period, suspended sediment load decreased an average of 14% between upstream and downstream sampling points. To test the idea that the suspended sediments were retained by the adjacent wetland and to determine what portion of the BLH forest was most responsible for retaining the suspended sediments, concurrent measurements of sediment accretion were made at 30 sites in the wetland using feldspar clay marker horizons, sedimentation disks, the 137cesium method, and dendrogeomorphic techniques. Sedimentation rates exceeding 1 cm/yr were measured in frequently flooded areas dominated by Nyssa aquatica and Taxodium distichum. Maximum sedimentation rates did not occur on the natural levee, as would be predicted by classical fluvial geomorphology, but in the "first bottom," where retention time of the water reached a maximum. Multiple regression was used to relate sedimentation rates with several physical and biological factors. A combination of distance from the river, flood duration, and tree basal area accounted for nearly 90% of the variation in sedimentation rates.

  5. PAH occurrence in chalk river systems from the Jura region (France). Pertinence of suspended particulate matter and sediment as matrices for river quality monitoring.

    PubMed

    Chiffre, Axelle; Degiorgi, François; Morin-Crini, Nadia; Bolard, Audrey; Chanez, Etienne; Badot, Pierre-Marie

    2015-11-01

    This study investigates the variations of polycyclic aromatic hydrocarbon (PAH) levels in surface water, suspended particulate matter (SPM) and sediment upstream and downstream of the discharges of two wastewater treatment plant (WWTP) effluents. Relationships between the levels of PAHs in these different matrices were also investigated. The sum of 16 US EPA PAHs ranged from 73.5 to 728.0 ng L(-1) in surface water and from 85.4 to 313.1 ng L(-1) in effluent. In SPM and sediment, ∑16PAHs ranged from 749.6 to 2,463 μg kg(-1) and from 690.7 μg kg(-1) to 3,625.6 μg kg(-1), respectively. Investigations performed upstream and downstream of both studied WWTPs showed that WWTP discharges may contribute to the overall PAH contaminations in the Loue and the Doubs rivers. Comparison between gammarid populations upstream and downstream of WWTP discharge showed that biota was impacted by the WWTP effluents. When based only on surface water samples, the assessment of freshwater quality did not provide evidence for a marked PAH contamination in either of the rivers studied. However, using SPM and sediment samples, we found PAH contents exceeding sediment quality guidelines. We conclude that sediment and SPM are relevant matrices to assess overall PAH contamination in aquatic ecosystems. Furthermore, we found a positive linear correlation between PAH contents of SPM and sediment, showing that SPM represents an integrating matrix which is able to provide meaningful data about the overall contamination over a given time span.

  6. Characterization of heavy metal concentrations in the sediments of three freshwater rivers in Huludao City, Northeast China.

    PubMed

    Zheng, Na; Wang, Qichao; Liang, Zhongzhu; Zheng, Dongmei

    2008-07-01

    Wuli River, Cishan River, and Lianshan River are three freshwater rivers flowing through Huludao City, in a region of northeast China strongly affected by industrialization. Contamination assessment has never been conducted in a comprehensive way. For the first time, the contamination of three rivers impacted by different sources in the same city was compared. This work investigated the distribution and sources of Hg, Pb, Cd, Zn and Cu in the surface sediments of Wuli River, Cishan River, and Lianshan River, and assessed heavy metal toxicity risk with the application of two different sets of Sediment Quality Guideline (SQG) indices (effect range low/effect range median values, ERL/ERM; and threshold effect level/probable effect level, TEL/PEL). Furthermore, this study used a toxic unit approach to compare and gauge the individual and combined metal contamination for Hg, Pb, Cd, Zn and Cu. Results showed that Hg contamination in the sediments of Wuli River originated from previous sediment contamination of the chlor-alkali producing industry, and Pb, Cd, Zn and Cu contamination was mainly derived from atmospheric deposition and unknown small pollution sources. Heavy metal contamination to Cishan River sediments was mainly derived from Huludao Zinc Plant, while atmospheric deposition, sewage wastewater and unknown small pollution were the primary sources for Lianshan River. The potential acute toxicity in sediment of Wuli River may be primarily due to Hg contamination. Hg is the major toxicity contributor, accounting for 53.3-93.2%, 7.9-54.9% to total toxicity in Wuli River and Lianshan River, respectively, followed by Cd. In Cishan River, Cd is the major sediment toxicity contributor, however, accounting for 63.2-66.9% of total toxicity.

  7. Higher trophic level affects nutrient, silicon, metal(loid), and radionuclide mobilization from freshwater sediments

    NASA Astrophysics Data System (ADS)

    Schaller, Jörg; Planer-Friedrich, Britta

    2017-04-01

    Organic sediments in aquatic ecosystems are well known sinks for nutrients, silicon, and metal(loid)s. Organic matter-decomposing organisms like invertebrate shredders, grazers, bioturbators, and filter feeder are key-species for the carbon and energy turnover within the decomposer community. We could show that invertebrate shredders and grazer affect element fixation or remobilization by changing binding properties of organic sediments and the attached biofilm. Bioturbators affect element fixation or remobilization by changing redox conditions within the uppermost sediment layer. Last but not least filter feeders, like the zebra mussel Dreissena polymorpha, an invasive organism in North American and European freshwater ecosystems significantly contributed to element mobilization of silicon, iron, phosphorus, arsenic, and copper and to immobilization of uranium (p<0.001), probably driven by redox conditions, microbial activity within the gut system, or active control of element homeostasis. Except of the filter feeder D. polymorpha, the invertebrates are able to minimize the accumulation of non-nutrient elements due to specific strategies, which is an important strategy for species living in systems tending to element accumulation. However, D. polymorpha revealed a significant uptake and accumulation of arsenic, copper, iron, and especially uranium both into the soft body tissues and the seashell. This accumulation by D. polymorpha is in line with previous observations of metal(loid) accumulation from biomonitoring studies. In summary, higher trophic level strongly contributes to element fixation or remobilization in aquatic systems.

  8. Effects of spatial and temporal variation of acid-volatile sulfide on the bioavailability of copper and zinc in freshwater sediments

    USGS Publications Warehouse

    Besser, John M.; Ingersoll, Christopher G.; Giesty, John P.

    1996-01-01

    Variation in concentrations of acid-volatile sulfide (AVS) in sediments from the upper Clark Fork River of Montana, USA, was associated with differences in bioaccumulation of Cu and Zn and growth of larvae of the midge, Chironomus tentans. Growth of midge larvae was significantly greater and bioaccumulation of Cu was significantly less in surface sections (0–3 cm depth) of sediment cores, which had greater concentrations of AVS and lesser ratios of simultaneously extracted metals to AVS (SEM:AVS ratios) than in subsurface sediments (6–9 cm). Concentrations of AVS were significantly less in sediments incubated with oxic overlying water for 9 weeks than in the same sediments incubated under anoxic conditions. Bioaccumulation of Cu differed significantly between incubation treatments, corresponding to differences in concentrations of AVS and SEM:AVS ratios, although midge growth did not. Bioaccumulation of Zn did not differ significantly between depth strata of sediment cores or between incubation treatments. When results from the two sets of bioassays were combined, bioaccumulation of Cu and Zn, but not growth, was significantly correlated with SEM:AVS ratios and other estimates of bioavailable metal fractions in sediments. Growth of midge larvae was significantly correlated with bioaccumulation of Zn, but not Cu, suggesting that Zn was the greater contributor to the toxicity of these sediments. Assessments of the toxicity of metal-contaminated freshwater sediments should consider the effects of spatial and temporal variation in AVS concentrations on metal bioavailability.

  9. Availability of ferric iron for microbial reduction in bottom sediments of the freshwater tidal potomac river.

    PubMed

    Lovley, D R; Phillips, E J

    1986-10-01

    The distribution of Fe(III), its availability for microbial reduction, and factors controlling Fe(III) availability were investigated in sediments from a freshwater site in the Potomac River Estuary. Fe(III) reduction in sediments incubated under anaerobic conditions and depth profiles of oxalate-extractable Fe(III) indicated that Fe(III) reduction was limited to depths of 4 cm or less, with the most intense Fe(III) reduction in the top 1 cm. In incubations of the upper 4 cm of the sediments, Fe(III) reduction was as important as methane production as a pathway for anaerobic electron flow because of the high rates of Fe(III) reduction in the 0- to 0.5-cm interval. Most of the oxalate-extractable Fe(III) in the sediments was not reduced and persisted to a depth of at least 20 cm. The incomplete reduction was not the result of a lack of suitable electron donors. The oxalate-extractable Fe(III) that was preserved in the sediments was considered to be in a form other than amorphous Fe(III) oxyhydroxide, since synthetic amorphous Fe(III) oxyhydroxide, amorphous Fe(III) oxyhydroxide adsorbed onto clay, and amorphous Fe(III) oxyhydroxide saturated with adsorbed phosphate or fulvic acids were all readily reduced. Fe(3)O(4) and the mixed Fe(III)-Fe(II) compound(s) that were produced during the reduction of amorphous Fe(III) oxyhydroxide in an enrichment culture were oxalate extractable but were not reduced, suggesting that mixed Fe(III)-Fe(II) compounds might account for the persistence of oxalate-extractable Fe(III) in the sediments. The availability of microbially reducible Fe(III) in surficial sediments demonstrates that microbial Fe(III) reduction can be important to organic matter decomposition and iron geochemistry. However, the overall extent of microbial Fe(III) reduction is governed by the inability of microorganisms to reduce most of the Fe(III) in the sediment.

  10. A comparison of the response of Simocephalus mixtus (Cladocera) and Daphnia magna to contaminated freshwater sediments.

    PubMed

    Martínez-Jerónimo, Fernando; Cruz-Cisneros, Jade Lizette; García-Hernández, Leonardo

    2008-09-01

    The southeast region of Mexico is characterized by intensive oil industry activities carried out by the national public enterprise Petróleos Mexicanos (PEMEX). The freshwater lagoon "El Limón", located in the municipality of Macuspana, state of Tabasco, Mexico, has received over 40 years discharges of untreated waste waters from the Petrochemical Complex "Ciudad PEMEX", located on the border of the lagoon. To assess the toxicity of the sediments and, hence, to obtain information on the biological effects of these contaminating discharges, the cladoceran Simocephalus mixtus was used as a test organism in acute (48h) and chronic (12d) toxicity assays. For comparison purposes, bioassays were also conducted with the reference cladoceran Daphnia magna. The sediments of this lagoon contain important amounts of metals and hydrocarbons that have been accumulated over time; however, the acute tests only registered reduced lethal effects on the test organisms (maxima of 10% and 17% mortality for D. magna and S. mixtus, respectively). This may be due to low bioavailability of the pollutants present in the sediments. On the other hand, partial or total inhibition and delay in the start of reproduction, reduction in clutch sizes, reduced survival, as well as reduction in the size of adults and offspring were recorded in the chronic assays. The most evident chronic effects were found in S. mixtus; in this species, reproduction was inhibited up to 72%, whereas D. magna was only affected by 24%. We determined that S. mixtus is a more sensitive test organism than D. magna to assess whole-sediment toxicity in tropical environments, and that chronic exposure bioassays are required for an integrated sediment evaluation. The sediments from "El Limón" lagoon induced chronic intoxication responses and, therefore, remediation measures are urgently needed to recover environmental conditions suitable for the development of its aquatic biota.

  11. A TOXICITY ASSESSMENT APPROACH TO EVALUATING IN-SITU BIOREMEDIATION OF PAH CONTAMINATED SEDIMENTS

    EPA Science Inventory

    Freshwater and marine sediment toxicity tests were used to measure baseline toxicity of sediment samples collected from New Jersey/New York Harbor (NJ/NY) (non-PAH- contaminated) sediment (ERC). Four freshwater toxicity tests were used: 1) amphipod (Hyalella azteca) mortality and...

  12. The impact of a hydroelectric power plant on the sediment load in downstream water bodies, Svartisen, northern Norway.

    PubMed

    Bogen, J; Bønsnes, T E

    2001-02-05

    When the Svartisen hydroelectric power plant was put into operation, extensive sediment pollution was observed in the downstream fjord area. This paper discusses the impact of the power plant and the contribution from various sources of sediment. Computation of the sediment load was based on samples collected one to four times per day. Grain size distribution analyses of suspended sediments were carried out and used as input in a routing model to study the movement of sediments through the system. Suspended sediment delivered to the fjord before the power station was constructed was measured as 8360 metric tons as an annual mean for a 12-year period. During the years 1995-1996 when the power plant was operating, the total suspended load through the power station was measured as 32609 and 30254 metric tons, respectively. Grain size distribution analyses indicate a major change in the composition of the sediments from 9% clay before the power plant was operative to 50-60% clay afterwards. This change, together with the increase in sediment load, is believed to be one of the main causes of the drastic reduction in secchi depths in the fjord. The effect of the suspended sediment load on the fjord water turbidity was evaluated by co-plotting secchi depth and power station water discharge. Measurements during 1995 and 1996 showed that at the innermost of these locations the water failed to attain the minimum requirement of 2 m secchi depth. In later years secchi depths were above the specified level. In 1997 and 1998 the conditions improved. At the more distal locality, the conditions were acceptable with only a few exceptions. A routing model was applied to data acquired at a location 2 km from the power station in order to calculate the contributions from various sediment sources. This model indicated that the contribution from reservoir bed erosion dominated in 1994 but decreased significantly in 1995. Future operation of the power station will mostly take place with

  13. Antibiotic Resistance in Aeromonas Upstream and Downstream of a Water Resource Recovery Facility

    PubMed Central

    Henderson, Samantha K.; Askew, Maegan L.; Risenhoover, Hollie G.; McAndrews, Chrystle R.; Kennedy, S. Dawn; Paine, C. Sue

    2014-01-01

    Aeromonas strains isolated from sediments upstream and downstream of a water resource recovery facility (WRRF) over a two-year time period were tested for susceptibility to thirteen antibiotics. Incidence of resistance to antibiotics, antibiotic resistance phenotypes, and diversity (based on resistance phenotypes) were compared in the two populations. At the beginning of the study, the upstream and downstream Aeromonas populations were different for incidence of antibiotic resistance (p < 0.01), resistance phenotypes (p < 0.005), and diversity. However, these differences declined over time and were not significant at the end of the study. These results (1) indicate that antibiotic resistance in Aeromonas in stream sediments fluctuates considerably over time and (2) suggest that WRRF effluent does not, when examined over the long term, affect antibiotic resistance in Aeromonas in downstream sediment. PMID:25327024

  14. Sediment Transport Over Run-of-River Dams

    NASA Astrophysics Data System (ADS)

    O'Brien, M.; Magilligan, F. J.; Renshaw, C. E.

    2016-12-01

    Dams have numerous documented effects that can degrade river habitat downstream. One significant effect of large dams is their ability to trap sediment delivered from upstream. This trapping can alter sediment transport and grain size downstream - effects that often motivate dam removal decisions. However, recent indirect observations and modeling studies indicate that small, run-of-river (ROR) dams, which do not impede discharge, may actually leak sediment downstream. However, there are no direct measurements of sediment flux over ROR dams. This study investigates flow and sediment transport over four to six different New England ROR dams over a summer-fall field season. Sediment flux was measured using turbidity meters and tracer (RFID) cobbles. Sediment transport was also monitored through an undammed control site and through a river where two ROR dams were recently removed. These data were used to predict the conditions that contribute to sediment transport and trapping. Year 1 data show that tracer rocks of up to 61 mm were transported over a 3 m ROR dam in peak flows of 84% of bankfull stage. These tracer rocks were transported over and 10 m beyond the dam and continue to move downstream. During the same event, comparable suspended sediment fluxes of up to 81 g/s were recorded both upstream and downstream of the dam at near-synchronous timestamps. These results demonstrate the potential for sediment transport through dammed rivers, even in discharge events that do not exceed bankfull. This research elucidates the effects of ROR dams and the controls on sediment transport and trapping, contributions that may aid in dam management decisions.

  15. Concentration, distribution, and translocation of mercury and methylmercury in mine-waste, sediment, soil, water, and fish collected near the Abbadia San Salvatore mercury mine, Monte Amiata district, Italy

    USGS Publications Warehouse

    Rimondi, V.; Gray, J.E.; Costagliola, P.; Vaselli, O.; Lattanzi, P.

    2012-01-01

    The distribution and translocation of mercury (Hg) was studied in the Paglia River ecosystem, located downstream from the inactive Abbadia San Salvatore mine (ASSM). The ASSM is part of the Monte Amiata Hg district, Southern Tuscany, Italy, which was one of the world’s largest Hg districts. Concentrations of Hg and methyl-Hg were determined in mine-waste calcine (retorted ore), sediment, water, soil, and freshwater fish collected from the ASSM and the downstream Paglia River. Concentrations of Hg in calcine samples ranged from 25 to 1500 μg/g, all of which exceeded the industrial soil contamination level for Hg of 5 μg/g used in Italy. Stream and lake sediment samples collected downstream from the ASSM ranged in Hg concentration from 0.26 to 15 μg/g, of which more than 50% exceeded the probable effect concentration for Hg of 1.06 μg/g, the concentration above which harmful effects are likely to be observed in sediment-dwelling organisms. Stream and lake sediment methyl-Hg concentrations showed a significant correlation with TOC indicating considerable methylation and potential bioavailability of Hg. Stream water contained Hg as high as 1400 ng/L, but only one water sample exceeded the 1000 ng/L drinking water Hg standard used in Italy. Concentrations of Hg were elevated in freshwater fish muscle samples and ranged from 0.16 to 1.2 μg/g (wet weight), averaged 0.84 μg/g, and 96% of these exceeded the 0.3 μg/g (methyl-Hg, wet weight) USEPA fish muscle standard recommended to protect human health. Analysis of fish muscle for methyl-Hg confirmed that > 90% of the Hg in these fish is methyl-Hg. Such highly elevated Hg concentrations in fish indicated active methylation, significant bioavailability, and uptake of Hg by fish in the Paglia River ecosystem. Methyl-Hg is highly toxic and the high Hg concentrations in these fish represent a potential pathway of Hg to the human food chain.

  16. Toxicity of triphenyltin and tributyltin to the freshwater mudsnail Potamopyrgus antipodarum in a new sediment biotest.

    PubMed

    Duft, Martina; Schulte-Oehlmann, Ulrike; Tillmann, Michaela; Markert, Bernd; Oehlmann, Jörg

    2003-01-01

    The effects of two suspected endocrine-disrupting chemicals, the xeno-androgens triphenyltin (TPT) and tributyltin (TBT), were investigated in a new whole-sediment biotest with the freshwater mudsnail Potamopyrgus antipodarum (Gastropoda, Prosobranchia). Artificial sediments were spiked with seven concentrations, ranging from 10 to 500 microg nominal TPT-Sn/kg dry weight and TBT-Sn/kg dry weight, respectively. We analyzed the responses of the test species after two, four, and eight weeks exposure. For both compounds, P. antipodarum exhibited a sharp decline in the number of embryos sheltered in its brood pouch in a time- and concentration-dependent manner in comparison to the control sediment. The number of new, still unshelled embryos turned out to be the most sensitive parameter. The lowest-observed-effect concentration (LOEC) was equivalent to the lowest administered concentration (10 microg/kg of each test compound) for most parameters and thus no no-observed-effect concentration (NOEC) could be established. The calculation of effect concentrations (EC10) resulted in even lower values for both substances (EC10 after eight weeks for unshelled embryos: 0.03 microg TPT-Sn/kg, EC10 after four weeks for unshelled embryos: 0.98 microg TBT-Sn/kg). Our results indicate that P. antipodarum is highly sensitive to both endocrine disruptors TPT and TBT at environmentally relevant concentrations.

  17. Problems with the dating of sediment core using excess (210)Pb in a freshwater system impacted by large scale watershed changes.

    PubMed

    Baskaran, Mark; Nix, Joe; Kuyper, Clark; Karunakara, N

    2014-12-01

    Pb-210 dating of freshwater and coastal sediments have been extensively conducted over the past 40 years for historical pollution reconstruction studies, sediment focusing, sediment accumulation and mixing rate determination. In areas where there is large scale disturbance of sediments and the watershed, the vertical profiles of excess (210)Pb ((210)Pbxs) could provide erroneous or less reliable information on sediment accumulation rates. We analyzed one sediment core from Hendrix Lake in southwestern Arkansas for excess (210)Pb and (137)Cs. There is no decrease in excess (210)Pb activity with depth while the (137)Cs profile indicates sharp peak corresponding to 1963 and the (137)Cs penetration depth of (137)Cs corresponds to 1952. The historical data on the accelerated mercury mining during 1931-1944 resulted in large-scale Hg input to this watershed. Using the peak Hg activity as a time marker, the obtained sediment accumulation rates agree well with the (137)Cs-based rates. Four independent evidences (two-marker events based on (137)Cs and two marker events based on Hg mining activity) result in about the same sedimentation rates and thus, we endorse earlier suggestion that (210)Pb profile always needs to be validated with at least one another independent method. We also present a concise discussion on what important factors that can affect the vertical profiles of (210)Pbxs in relatively smaller lakes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. The long-term nutrient accumulation with respect to anthropogenic impacts in the sediments from two freshwater marshes (Xianghai Wetlands, Northeast China).

    PubMed

    Wang, Guo-Ping; Liu, Jing-Shuang; Tang, Jie

    2004-12-01

    Sediment cores, representing a range of watershed characteristics and anthropogenic impacts, were collected from two freshwater marshes at the Xianghai wetlands (Ramsar site no. 548) in order to trace the historical variation of nutrient accumulation. Cores were (210)Pb- and (137)Cs-dated, and these data were used to calculate sedimentation rates and sediment accumulation rates. Ranges of dry mass accumulation rates and sedimentation rates were 0.27-0.96 g m(-2)yr(-1) and 0.27-0.90 cm yr(-1), respectively. The effect of human activities on increased sediment accumulation rates was observed. Nutrients (TOC, N, P, and S) in sediment were analyzed and nutrient concentration and accumulation were compared in two marshes with different hydrologic regime: an "open" marsh (E-0) and a partly "closed" marsh (F-0). Differences in physical and chemical characteristics between sediments of "open" and partly "closed" marsh were also observed. The "open" marsh sequestered much higher amounts of TOC (1.82%), N (981.1 mg kg(-1)), P (212.17 mg kg(-1)), and S (759.32 mg kg(-1)) than partly "closed" marsh (TOC: 0.32%, N: 415.35 mg kg(-1), P: 139.64 mg kg(-1), and S: 624.45 mg kg(-1)), and the "open" marsh indicated a rather large historical variability of TOC, N, P, and S inputs from alluvial deposits. Nutrient inputs (2.16-251.80 g TOC m(-2) yr(-1), 0.43-20.12 g N m(-2) yr(-1), 0.39-3.03 g P m(-2) yr(-1), 1.60-15.13 g S m(-2) yr(-1)) into the Xianghai wetlands of China are in the high range compared with reported nutrient accumulation rates for freshwater marshes in USA. The vertical variation, particularly for N, P, and S indicated the input history of the nutrients of the Xianghai wetlands developed in three periods--before 1950s, 1950-1980s, and after 1980s. The ratios between anthropogenic and natural inputs showed that the relative anthropogenic inputs of TOC, N, P, and S have been severalfold (TOC: 1.68-11.21, N: 0.47-3.67, P: 0.24-1.36, and S: 1.46-2.96) greater than values

  19. Sediment Transport and Deposition Resulting from a Dam-Removal Sediment Pulse: Milltown Dam, Clark Fork River, MT

    NASA Astrophysics Data System (ADS)

    Wilcox, A. C.

    2010-12-01

    The removal of Milltown Dam in 2008 from the Clark Fork River, Montana, USA, lowered base level at the dam site by 9 m and triggered erosion of nearly 600,000 metric tons of predominantly fine reservoir sediment. Bedload and bed-material sampling, repeat topographic surveys, sediment transport modeling, geochemical fingerprinting of downstream sediments, and Lidar analysis have all been applied to study the upstream and downstream effects of the dam removal. In the years since dam breaching, successive years with similar peak flows (3-year recurrence interval) were followed by a third year with below-average runoff. Nearly all of the documented reservoir erosion occurred in the first year, when sand and silt was eroded and transported downstream. In subsequent years, minimal reservoir erosion occurred, in part as a result of active management to prevent further reservoir erosion, but coarse material eroded from the reservoir has dispersed downstream. Upstream responses in this system have been strongly mediated by Superfund remediation activities in Milltown Reservoir, in which over two million metric tons of contaminated sediments have been mechanically excavated. Downstream aggradation has been limited in the main channel but was initially substantial in bars and side channels of a multi-thread reach 21 to 25 km downstream of the dam site, suggesting that channel change has been influenced far more by the antecedent depositional environment than by proximity to the source of the sediment pulse. Comparison of observed erosion with pre-removal modeling shows that reservoir erosion exceeded model predictions by two orders of magnitude in the unconfined Clark Fork arm of the reservoir. In addition, fine reservoir sediments predicted to move exclusively in suspension traveled as bedload at lower transport stages. The resulting fine sediment deposition in substrate interstices, on bars, and in side channels of the gravel- and cobble-bed Clark Fork River is the most

  20. Marine nutrient contributions to tidal creeks in Virginia: spawning marine fish as nutrient vectors to freshwater ecosystems

    NASA Astrophysics Data System (ADS)

    Macavoy, S. E.; Garman, G. C.

    2006-12-01

    Coastal freshwater streams are typically viewed as conduits for the transport of sediment and nutrients to the coasts. Some coastal streams however experience seasonal migrations of anadromous fish returning to the freshwater to spawn. The fish may be vectors for the delivery of marine nutrients to nutrient poor freshwater in the form of excreted waste and post-spawning carcasses. Nutrients derived from marine sources are 13C, 15N and 34S enriched relative to nutrients in freshwater. Here we examine sediment, particulate organic matter (POM), invertebrates and fish in two tidal freshwater tributaries of the James River USA. The d15N of POM became elevated (from 3.8 to 6.5%), coincident with the arrival of anadromous river herring (Alosa sp), indicating a pulse of marine nitrogen. However, the elevated 15N was not observed in sediment samples or among invertebrates, which did not experience a seasonal isotopic shift (there were significant differences however among the guilds of invertebrate). Anadromous Alosa aestivalis captured within the tidal freshwater were 13C and 34S enriched (-19.3 and 17.2%, respectively) relative to resident freshwater fishes (-26.4 and 3.6% respectively) captured within 2 weeks of the Alosa. Although it is likely that marine derived nitrogen was detected in the tidal freshwater, it was not in sufficient abundance to change the isotope signature of most ecosystem components.

  1. On extracting sediment transport information from measurements of luminescence in river sediment

    USGS Publications Warehouse

    Gray, Harrison J.; Tucker, Gregory E.; Mahan, Shannon; McGuire, Chris; Rhodes, Edward J.

    2017-01-01

    Accurately quantifying sediment transport rates in rivers remains an important goal for geomorphologists, hydraulic engineers, and environmental scientists. However, current techniques for measuring long-time scale (102–106 years) transport rates are laborious, and formulae to predict transport are notoriously inaccurate. Here we attempt to estimate sediment transport rates by using luminescence, a property of common sedimentary minerals that is used by the geoscience community for geochronology. This method is advantageous because of the ease of measurement on ubiquitous quartz and feldspar sand. We develop a model from first principles by using conservation of energy and sediment mass to explain the downstream pattern of luminescence in river channel sediment. We show that the model can accurately reproduce the luminescence observed in previously published field measurements from two rivers with very different sediment transport styles. The model demonstrates that the downstream pattern of river sand luminescence should show exponential-like decay in the headwaters which asymptotes to a constant value with further downstream distance. The parameters from the model can then be used to estimate the time-averaged virtual velocity, characteristic transport lengthscale, storage time scale, and floodplain exchange rate of fine sand-sized sediment in a fluvial system. The sediment transport values predicted from the luminescence method show a broader range than those reported in the literature, but the results are nonetheless encouraging and suggest that luminescence demonstrates potential as a sediment transport indicator. However, caution is warranted when applying the model as the complex nature of sediment transport can sometimes invalidate underlying simplifications.

  2. Direct and indirect effects of copper-contaminated sediments on the functions of model freshwater ecosystems.

    PubMed

    Gardham, Stephanie; Chariton, Anthony A; Hose, Grant C

    2015-01-01

    Copper is acutely toxic to, and directly affects, primary producers and decomposers, which are key players in essential processes such as the nutrient cycle in freshwater ecosystems. Even though the indirect effects of metals (for example effects due to changes in species interactions) may be more common than direct effects, little is known about the indirect effects of copper on primary producers and decomposers. The effects of copper on phytoplankton, macrophytes, periphyton and organic matter decomposition in an outdoor lentic mesocosm facility were assessed, and links between the responses examined. Copper directly decreased macrophyte growth, subsurface organic matter decomposition, and the potential for high phytoplankton Chlorophyll a concentrations. However, periphyton cover and organic matter decomposition on the surface of the sediment were stimulated by the presence of copper. These latter responses were attributed to indirect effects, due to a reduction in grazing pressure from snails, particularly Physa acuta, in the higher copper-contaminated mesocosms. This permitted the growth of periphyton and other heterotrophs, ultimately increasing decomposition at the sediment surface. The present study demonstrates the pronounced influence indirect effects may have on ecological function, findings that may not be observed in traditional laboratory studies (which utilize single species or simplistic communities).

  3. Sharing the rivers: Balancing the needs of people and fish against the backdrop of heavy sediment loads downstream from Mount Rainier, Washington

    NASA Astrophysics Data System (ADS)

    Magirl, C. S.; Czuba, J. A.; Czuba, C. R.; Curran, C. A.

    2012-12-01

    Despite heavy sediment loads, large winter floods, and floodplain development, the rivers draining Mount Rainier, a 4,392-m glaciated stratovolcano within 85 km of sea level at Puget Sound, Washington, support important populations of anadromous salmonids, including Chinook salmon and steelhead trout, both listed as threatened under the Endangered Species Act. Aggressive river-management approaches of the early 20th century, such as bank armoring and gravel dredging, are being replaced by more ecologically sensitive approaches including setback levees. However, ongoing aggradation rates of up to 8 cm/yr in lowland reaches present acute challenges for resource managers tasked with ensuring flood protection without deleterious impacts to aquatic ecology. Using historical sediment-load data and a recent reservoir survey of sediment accumulation, rivers draining Mount Rainer were found to carry total sediment yields of 350 to 2,000 tonnes/km2/yr, notably larger than sediment yields of 50 to 200 tonnes/km2/yr typical for other Cascade Range rivers. An estimated 70 to 94% of the total sediment load in lowland reaches originates from the volcano. Looking toward the future, transport-capacity analyses and sediment-transport modeling suggest that large increases in bedload and associated aggradation will result from modest increases in rainfall and runoff that are predicted under future climate conditions. If large sediment loads and associated aggradation continue, creative solutions and long-term management strategies are required to protect people and structures in the floodplain downstream of Mount Rainier while preserving aquatic ecosystems.

  4. Distribution and diversity of anaerobic ammonium oxidation (anammox) bacteria in the sediment of a eutrophic freshwater lake, Lake Kitaura, Japan.

    PubMed

    Yoshinaga, Ikuo; Amano, Teruki; Yamagishi, Takao; Okada, Kentaro; Ueda, Shingo; Sako, Yoshihiko; Suwa, Yuichi

    2011-01-01

    Although the emission of N(2) via anaerobic ammonium oxidation (anammox) is a key process in the elimination of nitrogenous compounds from aquatic environments, little information is available regarding its significance and the relevant microorganisms (anammox bacteria) in eutrophic freshwater lakes. In the present study, the anammox bacteria in the sediment of a eutrophic lake in Japan, Lake Kitaura, were examined using a (15)N-tracer technique to measure their potential anammox activity. Potential anammox activity was localized to the northern region of the lake where a stable supply of both NH(4)(+) and NO(3)(-) existed in the sediment. These results suggest the contribution of anammox bacteria to the total emission of N(2) from sediment in this eutrophic lake to not be negligible. Moreover, selective PCR successfully amplified anammox bacteria-related (Brocadiales-related) 16S rRNA genes from sediment samples in which potential anammox activity was observed. The clone libraries consisted of diverse phylotypes except the genus "Scalindua"-lineages, and the lineages of genus "Brocadia" were dominantly recovered, followed by the genus "Kuenenia"-lineages. Most of them, however, were novel and phylogenetically distinguishable from known Brocadiales species. A unique population of anammox bacteria inhabits and potentially contributes to the emission of N(2) from Lake Kitaura.

  5. Episodic Sediment Supply from Mountains and Downstream Emplacement within Large Lowland Basins: Seeking a Sink-to-Source Synthesis

    NASA Astrophysics Data System (ADS)

    Aalto, R. E.

    2009-12-01

    Application of a new geochronological method for high-resolution 210-Pb dating over the past 5 years has facilitated the identification of individual floodplain sedimentation events across disparate large river basins: three examples from ongoing research include a pristine 720,000 km2 basin in northern Bolivia, a 36,000 km2 basin in Papua New Guinea, and the 70,000 km2 Sacramento River Basin in California. Published and new research suggests that large, rapid-rise, cold-phase ENSO floods account for the preponderance of sediment accumulation within the two tropical systems, and that extreme floods associated with ENSO similarly correspond to transport and deposition of material within the extensive floodways along the Sacramento River. The vast scale of these temporally discrete deposits within such large river systems (typically 10s to 100s of millions of tonnes) begs the question: where did all this material come from? Huge deposits require similarly massive episodic supply and transport of material from upstream, often specifically within the very short timescale of a single large flood event. What data and techniques are available to track and balance such enormous mass budgets? This presentation explores this general theme with new data from the three iconic systems identified above. New daily discharge data are coupled with 210-Pb concentrations and particle size distribution in sediment to elucidate the considerable inter-annual variation of sediment supply from the Andes, resulting from the interaction of Andean erosion, anthropogenic effects, and the dynamics of extreme climate. Biogeochemical and/or geochemical tracers can be employed for all three study basins to track sediment from source to sink (or alternatively, working from the well-defined sink to the less-constrained source), providing insight into the geomorphic processes that modulate the efflux, transport, intermediate channel/floodplain storage, and downstream delivery of sediment during

  6. Review of samples of tailings, soils and stream sediment adjacent to and downstream from the Ruth Mine, Inyo County, California

    USGS Publications Warehouse

    Rytuba, James J.; Kim, Christopher S.; Goldstein, Daniel N.

    2011-01-01

    The Ruth Mine and mill are located in the western Mojave Desert in Inyo County, California (fig. 1). The mill processed gold-silver (Au-Ag) ores mined from the Ruth Au-Ag deposit, which is adjacent to the mill site. The Ruth Au-Ag deposit is hosted in Mesozoic intrusive rocks and is similar to other Au-Ag deposits in the western Mojave Desert that are associated with Miocene volcanic centers that formed on a basement of Mesozoic granitic rocks (Bateman, 1907; Gardner, 1954; Rytuba, 1996). The volcanic rocks consist of silicic domes and associated flows, pyroclastic rocks, and subvolcanic intrusions (fig. 2) that were emplaced into Mesozoic silicic intrusive rocks (Troxel and Morton, 1962). The Ruth Mine is on Federal land managed by the U.S. Bureau of Land Management (BLM). Tailings from the mine have been eroded and transported downstream into Homewood Canyon and then into Searles Valley (figs. 3, 4, 5, and 6). The BLM provided recreational facilities at the mine site for day-use hikers and restored and maintained the original mine buildings in collaboration with local citizen groups for use by visitors (fig. 7). The BLM requested that the U.S. Geological Survey (USGS), in collaboration with Chapman University, measure arsenic (As) and other geochemical constituents in soils and tailings at the mine site and in stream sediments downstream from the mine in Homewood Canyon and in Searles Valley (fig. 3). The request was made because initial sampling of the site by BLM staff indicated high concentrations of As in tailings and soils adjacent to the Ruth Mine. This report summarizes data obtained from field sampling of mine tailings and soils adjacent to the Ruth Mine and stream sediments downstream from the mine on June 7, 2009. Our results permit a preliminary assessment of the sources of As and associated chemical constituents that could potentially impact humans and biota.

  7. It Takes Two to Tango: When and Where Dual Nutrient (N & P) Reductions Are Needed to Protect Lakes and Downstream Ecosystems.

    PubMed

    Paerl, Hans W; Scott, J Thad; McCarthy, Mark J; Newell, Silvia E; Gardner, Wayne S; Havens, Karl E; Hoffman, Daniel K; Wilhelm, Steven W; Wurtsbaugh, Wayne A

    2016-10-06

    Preventing harmful algal blooms (HABs) is needed to protect lakes and downstream ecosystems. Traditionally, reducing phosphorus (P) inputs was the prescribed solution for lakes, based on the assumption that P universally limits HAB formation. Reduction of P inputs has decreased HABs in many lakes, but was not successful in others. Thus, the "P-only" paradigm is overgeneralized. Whole-lake experiments indicate that HABs are often stimulated more by combined P and nitrogen (N) enrichment rather than N or P alone, indicating that the dynamics of both nutrients are important for HAB control. The changing paradigm from P-only to consideration of dual nutrient control is supported by studies indicating that (1) biological N fixation cannot always meet lake ecosystem N needs, and (2) that anthropogenic N and P loading has increased dramatically in recent decades. Sediment P accumulation supports long-term internal loading, while N may escape via denitrification, leading to perpetual N deficits. Hence, controlling both N and P inputs will help control HABs in some lakes and also reduce N export to downstream N-sensitive ecosystems. Managers should consider whether balanced control of N and P will most effectively reduce HABs along the freshwater-marine continuum.

  8. A new sampler design for measuring sedimentation in streams

    USGS Publications Warehouse

    Hedrick, Lara B.; Welsh, S.A.; Hedrick, J.D.

    2005-01-01

    Sedimentation alters aquatic habitats and negatively affects fish and invertebrate communities but is difficult to quantify. To monitor bed load sedimentation, we designed a sampler with a 10.16-cm polyvinyl chloride coupling and removable sediment trap. We conducted a trial study of our samplers in riffle and pool habitats upstream and downstream of highway construction on a first-order Appalachian stream. Sediment samples were collected over three 6-week intervals, dried, and separated into five size-classes by means of nested sieves (U.S. standard sieve numbers 4, 8, 14, and 20). Downstream sediment accumulated in size-classes 1 and 2, and the total amount accumulated was significantly greater during all three sampling periods. Size-classes 3 and 4 had significantly greater amounts of sediment for the first two sampling periods at the downstream site. Differences between upstream and downstream sites narrowed during the 5-month sampling period. This probably reflects changes in site conditions, including the addition of more effective sediment control measures after the first 6-week period of the study. The sediment sampler design allowed for long-term placement of traps without continual disturbance of the streambed and was successful at providing repeat measures of sediment at paired sites. ?? Copyright by the American Fisheries Society 2005.

  9. Relative contribution of iron reduction to sediments organic matter mineralization in contrasting habitats of a shallow eutrophic freshwater lake.

    PubMed

    Chen, Mo; Jiang, He-Long

    2016-06-01

    Iron reduction is one of the important organic matter (OM) mineralization pathway in sediments. Here we investigated the rates and the relative contribution of iron reduction to OM mineralization in Zhushan bay (ZSB, cyanobacterial bloom biomass (CBB)-dominated habitats) and East Taihu Lake (ETL, submerged macrophypes (SM)-dominated habitats) of Lake Taihu, China. Anaerobic microcosm incubation revealed that the rate of iron reduction at ZSB (4.42 μmol cm(-3) d(-1)) in summer was almost 1.5 times higher than at ETL (3.13 μmol cm(-3) d(-1)). Iron reduction accounted for 66.5% (ZSB) and 31.8% (ETL) of total anaerobic carbon mineralization, respectively. No detectable methanogenesis was found at ZSB, while methanogenesis was responsible for 16.7% of total anaerobic respiration in sediments of ETL. Geochemical analysis of solid phase constituents indicated that ZSB surface sediments experienced highly oxidizing conditions with much higher amorphous Fe(III) (71 mmol m(-2)) than ETL (11 mmol m(-2)). Conversely, AVS inventories at ETL (38 mmol m(-2)) were up to 30 times higher than at ZSB (1.27 mmol m(-2)), indicating significant sulfate reduction in sediments of ETL. Overall results suggested that varying carbon sources and distinct geochemical characterizations of the sediments in contrasting habitats significantly influenced the rate of iron reduction and the pathway of C mineralization in a large freshwater lake. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Potential Impacts of Climate Change on Sediment - Water Exchange of Mercury in a Managed Flood Conveyance System

    NASA Astrophysics Data System (ADS)

    Heim, W. A.; Stephenson, M.; Negrey, J.; Gill, G. A.; Coale, K. H.; DiGiorgio, C.; Harris, R. C.

    2016-12-01

    Yolo Bypass is the largest flood bypass in the Sacramento Valley, California. During high flow flood events water is diverted into the Yolo Bypass from the Sacramento River to control river stage and protect the cities of Sacramento, West Sacramento, and Davis from flooding. Climate change projections for the Yolo Bypass indicate the risk of flooding will increase. An increase in flooding would result in increased connectivity of the flood plain with downstream habitats as well as provide conditions favorable for in situ production of methylmercury (MeHg). Conversion of inorganic mercury (Hg) to the more toxic organic form MeHg in freshwater systems is generally accepted to be mediated by bacteria activity. There are a number of environmental variables (organic carbon, sulfate, oxygen) and conditions (temperature, porosity, soil type) that could influence the net production of MeHg and its ultimate release into the water column. This study investigated sediment-water exchange of both Hg and MeHg from the following habitat types in the Yolo Bypass: wild rice, white rice, seasonal wetlands, irrigated pasture, non-irrigated pasture, fallow land, farm land, freshwater tidal wetland, and agricultural drain. Two methods were used to determine sediment-water exchange of inorganic and organic mercury; first a direct assessment using incubated cores and second, modeling the sediment-water exchange from measurements of interstitial pore water concentration gradients. Results indicate habitat type, land use, and flooding influence Hg and MeHg fluxes. If flooding frequency increases in the Yolo Bypass mercury fluxes are expected to increase resulting in an increase in Hg load to downstream habitats and an increase in biotic exposure to MeHg in the system. A next step will be to utilize data generated from this study in the Dynamic Mercury Cycling Model (D-MCM) which will be used to improve our understanding of factors controlling production and transport of Hg and MeHg in the

  11. The fluvial sediment budget of a dammed river (upper Muga, southern Pyrenees)

    NASA Astrophysics Data System (ADS)

    Piqué, G.; Batalla, R. J.; López, R.; Sabater, S.

    2017-09-01

    Many rivers in the Mediterranean region are regulated for urban and agricultural purposes. Reservoir presence and operation results in flow alteration and sediment discontinuity, altering the longitudinal structure of the fluvial system. This study presents a 3-year sediment budget of a highly dammed Mediterranean river (the Muga, southern Pyrenees), which has experienced flow regulation since the 1969 owing to a 61-hm3 reservoir. Flow discharge and suspended sediment concentration were monitored immediately upstream and downstream from the reservoir, whereas bedload transport was estimated by means of bedload formulae and estimated from regional data. Results show how the dam modifies river flow, reducing the magnitude of floods and shortening its duration. At the same time, duration of low flows increases. The downstream flow regime follows reservoir releases that are mostly driven by the irrigation needs in the lowlands. Likewise, suspended sediment and bedload transport are shown to be notably affected by the dam. Sediment transport upstream was mainly associated with floods and was therefore concentrated in short periods of time (i.e., > 90% of the sediment load occurred in < 1% of the time). Downstream from the dam, sediments were transported more constantly (i.e., 90% of the load was carried during 50% of the time). Total sediment load upstream from the dam equalled 23,074 t, while downstream it was < 1000 t. Upstream, sediment load was equally distributed between suspension and bedload (i.e., 10,278 and 12,796 t respectively), whereas suspension dominated sediment transport downstream. More than 95% of the sediments transported from the upstream basins were trapped in the reservoir, a fact that explains the sediment deficit and the river bed armouring observed downstream. Overall, the dam disrupted the natural water and sediment fluxes, generating a highly modified environment downstream. Below the dam, the whole ecosystem shifted to stable conditions owing

  12. Watershed sustainability: Downstream effects of timber harvest in the Ozarks of Missouri

    USGS Publications Warehouse

    Jacobson, Robert B.

    2004-01-01

    The downstream effects of timber harvest in the Ozarks of Missouri can be evaluated by analogy to other geographic areas and by historical analysis of responses to past land use activities. Based on research from other geographic regions, timber harvest in the Ozarks would be expected to have minor effects on annual water yield and dissolved-phase water quality. The potential exists for haul roads to increase stormflow discharges and sediment yields. Of the possible downstream effects, sediment yield is potentially the most severe and difficult to predict; siting and design of roads are probably the most critical management concerns for minimizing downstream effects. Historical analysis shows that Ozark streams have been destabilized by past land use practices, primarily in the riparian zone. Therefore, present-day timber harvest takes place in a landscape where streams have lowered resilience to disturbance. Predictions of future downstream effects of timber harvest in the Ozarks are complicated by the inherent complexity of cumulative watershed effects and the lack of detailed, long-term instrumental records at appropriate scales.

  13. Composition analysis and material characterization of an emulsifying extracellular polysaccharide (EPS) produced by Bacillus megaterium RB-05: a hydrodynamic sediment-attached isolate of freshwater origin.

    PubMed

    Chowdhury, S R; Manna, S; Saha, P; Basak, R K; Sen, R; Roy, D; Adhikari, B

    2011-12-01

    This work was aimed to isolate, purify and characterize an extracellular polysaccharide (EPS) produced by a freshwater dynamic sediment-attached micro-organism, Bacillus megaterium RB-05, and study its emulsifying potential in different hydrocarbon media. Bacillus megaterium RB-05 was found to produce EPSs in glucose mineral salts medium, and maximum yield (0.864 g l(-1) ) was achieved after 24-h incubation. The recovery rates of the polysaccharide material by ion-exchange and gel filtration chromatography were around 67 and 93%, respectively. As evident from HPLC and FT-IR analyses, the polysaccharide was found to be a heteropolymer-containing glucose, galactose, mannose, arabinose, fucose and N-acetyl glucosamine. Different oligosaccharide combinations namely hexose(3), hexose(4), hexose(5) deoxyhexose(1) and hexose(5) deoxyhexose(1) pentose(3) were obtained after partial hydrolysis of the polymer using MALDI-ToF-MS. The polysaccharide with an average molecular weight of 170 kDa and thermal stability up to 180°C showed pseudoplastic rheology and significant emulsifying activity in hydrocarbon media. Isolated polysaccharide was found to be of high molecular weight and thermally stable. The purified EPS fraction was composed of hexose, pentose and deoxyhexose sugar residues, which is a rare combination for bacterial polysaccharides. Emulsifying property was either better or comparable to that of other commercially available natural gums and polysaccharides. This is probably one of the few reports about characterizing an emulsifying EPS produced by a freshwater sediment-attached bacterium. The results of this study contribute to understand the influence of chemical composition and material properties of a new microbial polysaccharide on its application in industrial biotechnology. Furthermore, this work reconfirms freshwater dynamic sediment as a potential habitat for bioprospecting extracellular polymer-producing bacteria. This study will improve our knowledge on

  14. Accounting for Long Term Sediment Storage in a Watershed Scale Numerical Model for Suspended Sediment Routing

    NASA Astrophysics Data System (ADS)

    Keeler, J. J.; Pizzuto, J. E.; Skalak, K.; Karwan, D. L.; Benthem, A.; Ackerman, T. R.

    2015-12-01

    Quantifying the delivery of suspended sediment from upland sources to downstream receiving waters is important for watershed management, but current routing models fail to accurately represent lag times in delivery resulting from sediment storage. In this study, we route suspended sediment tagged by a characteristic tracer using a 1-dimensional model that implicitly includes storage and remobilization processes and timescales. From an input location where tagged sediment is added, the model advects suspended sediment downstream at the velocity of the stream (adjusted for the intermittency of transport events). Deposition rates are specified by the fraction of the suspended load stored per kilometer of downstream transport (presumably available from a sediment budget). Tagged sediment leaving storage is evaluated from a convolution equation based on the probability distribution function (pdf) of sediment storage waiting times; this approach avoids the difficulty of accurately representing complex processes of sediment remobilization from floodplain and other deposits. To illustrate the role of storage on sediment delivery, we compare exponential and bounded power-law waiting time pdfs with identical means of 94 years. In both cases, the median travel time for sediment to reach the depocenter in fluvial systems less than 40km long is governed by in-channel transport and is unaffected by sediment storage. As the channel length increases, however, the median sediment travel time reflects storage rather than in-channel transport; travel times do not vary significantly between the two different waiting time functions. At distances of 50, 100, and 200 km, the median travel time for suspended sediment is 36, 136, and 325 years, orders of magnitude slower than travel times associated with in-channel transport. These computations demonstrate that storage can be neglected for short rivers, but for longer systems, storage controls the delivery of suspended sediment.

  15. Sediment-Submersed Macrophyte Relationships in Freshwater Systems.

    DTIC Science & Technology

    1982-06-01

    aide if necessary and Identify by block nuobe.) Aquatic plants Fresh- water ecology Fresh- water flora Sedimentation and deposition 20, A114 ACT...a large and important source of N and P for rooted aquatic macrophytes, but K is probably supplied to these plants primarily from the water . .Xy... aquatic systems. In a subsequent related investigation, K uptake by Hydr~ia verticiZZata Royle from sediment versus overlying water was evaluated in

  16. Using the Asian clam as an indicator of microplastic pollution in freshwater ecosystems.

    PubMed

    Su, Lei; Cai, Huiwen; Kolandhasamy, Prabhu; Wu, Chenxi; Rochman, Chelsea M; Shi, Huahong

    2018-03-01

    Bioindicators play an important role in understanding pollution levels, bioavailability and the ecological risks of contaminants. Several bioindicators have been suggested for understanding microplastic in the marine environment. A bioindicator for microplastics in the freshwater environment does not exist. In our previous studies, we found a high frequency of microplastic pollution in the Asian clam (Corbicula fluminea) in Taihu Lake, China. In the present study, we conducted a large-scale survey of microplastic pollution in Asian clams, water and sediment from 21 sites in the Middle-Lower Yangtze River Basin from August to October of 2016. The Asian clam was available in all sites, which included diverse freshwater systems such as lakes, rivers and estuaries. Microplastics were found at concentrations ranging from 0.3-4.9 items/g (or 0.4-5.0 items/individual) in clams, 0.5-3.1 items/L in water and 15-160 items/kg in sediment. Microfibers were the most dominant types of microplastics found, accounting for 60-100% in clams across all sampling sites. The size of microplastics ranged from 0.021-4.83 mm, and microplastics in the range of 0.25-1 mm were dominant. The abundance, size distribution and color patterns of microplastics in clams more closely resembled those in sediment than in water. Because microplastic pollution in the Asian clam reflected the variability of microplastic pollution in the freshwater environments, we demonstrated the Asian clam as an bioindicator of microplastic pollution in freshwater systems, particularly for sediments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Sediment supply versus local hydraulic controls on sediment transport and storage in a river with large sediment loads

    USGS Publications Warehouse

    Dean, David; Topping, David; Schmidt, John C.; Griffiths, Ronald; Sabol, Thomas

    2016-01-01

    The Rio Grande in the Big Bend region of Texas, USA, and Chihuahua and Coahuila, Mexico, undergoes rapid geomorphic changes as a result of its large sediment supply and variable hydrology; thus, it is a useful natural laboratory to investigate the relative importance of flow strength and sediment supply in controlling alluvial channel change. We analyzed a suite of sediment transport and geomorphic data to determine the cumulative influence of different flood types on changing channel form. In this study, physically based analyses suggest that channel change in the Rio Grande is controlled by both changes in flow strength and sediment supply over different spatial and temporal scales. Channel narrowing is primarily caused by substantial deposition of sediment supplied to the Rio Grande during tributary-sourced flash floods. Tributary floods have large suspended-sediment concentrations, occur for short durations, and attenuate rapidly downstream in the Rio Grande, depositing much of their sediment in downstream reaches. Long-duration floods on the mainstem have the capacity to enlarge the Rio Grande, and these floods, released from upstream dams, can either erode or deposit sediment in the Rio Grande depending upon the antecedent in-channel sediment supply and the magnitude and duration of the flood. Geomorphic and sediment transport analyses show that the locations and rates of sand erosion and deposition during long-duration floods are most strongly controlled by spatial changes in flow strength, largely through changes in channel slope. However, spatial differences in the in-channel sediment supply regulate sediment evacuation or accumulation over time in long reaches (greater than a kilometer).

  18. Rapid reservoir erosion, hyperconcentrated flow, and downstream deposition triggered by breaching of 38 m tall Condit Dam, White Salmon River, Washington

    USGS Publications Warehouse

    Wilcox, Andrew C.; O'Connor, James E.; Major, Jon J.

    2014-01-01

    Condit Dam on the White Salmon River, Washington, a 38 m high dam impounding a large volume (1.8 million m3) of fine-grained sediment (60% sand, 35% silt and clay, and 5% gravel), was rapidly breached in October 2011. This unique dam decommissioning produced dramatic upstream and downstream geomorphic responses in the hours and weeks following breaching. Blasting a 5 m wide hole into the base of the dam resulted in rapid reservoir drawdown, abruptly releasing ~1.6 million m3 of reservoir water, exposing reservoir sediment to erosion, and triggering mass failures of the thickly accumulated reservoir sediment. Within 90 min of breaching, the reservoir's water and ~10% of its sediment had evacuated. At a gauging station 2.3 km downstream, flow increased briefly by 400 m3 s−1during passage of the initial pulse of released reservoir water, followed by a highly concentrated flow phase—up to 32% sediment by volume—as landslide-generated slurries from the reservoir moved downstream. This hyperconcentrated flow, analogous to those following volcanic eruptions or large landslides, draped the downstream river with predominantly fine sand. During the ensuing weeks, suspended-sediment concentration declined and sand and gravel bed load derived from continued reservoir erosion aggraded the channel by >1 m at the gauging station, after which the river incised back to near its initial elevation at this site. Within 15 weeks after breaching, over 1 million m3 of suspended load is estimated to have passed the gauging station, consistent with estimates that >60% of the reservoir's sediment had eroded. This dam removal highlights the influence of interactions among reservoir erosion processes, sediment composition, and style of decommissioning on rate of reservoir erosion and consequent downstream behavior of released sediment.

  19. Microbial Sulfate Reduction Enhances Arsenic Mobility Downstream of Zerovalent-Iron-Based Permeable Reactive Barrier.

    PubMed

    Kumar, Naresh; Couture, Raoul-Marie; Millot, Romain; Battaglia-Brunet, Fabienne; Rose, Jérôme

    2016-07-19

    We assessed the potential of zerovalent-iron- (Fe(0)) based permeable reactive barrier (PRB) systems for arsenic (As) remediation in the presence or absence of microbial sulfate reduction. We conducted long-term (200 day) flow-through column experiments to investigate the mechanisms of As transformation and mobility in aquifer sediment (in particular, the PRB downstream linkage). Changes in As speciation in the aqueous phase were monitored continuously. Speciation in the solid phase was determined at the end of the experiment using X-ray absorption near-edge structure (XANES) spectroscopy analysis. We identified thio-As species in solution and AsS in solid phase, which suggests that the As(V) was reduced to As(III) and precipitated as AsS under sulfate-reducing conditions and remained as As(V) under abiotic conditions, even with low redox potential and high Fe(II) content (4.5 mM). Our results suggest that the microbial sulfate reduction plays a key role in the mobilization of As from Fe-rich aquifer sediment under anoxic conditions. Furthermore, they illustrate that the upstream-downstream linkage of PRB affects the speciation and mobility of As in downstream aquifer sediment, where up to 47% of total As initially present in the sediment was leached out in the form of mobile thio-As species.

  20. Bed Sediment Monitoring of Multiple Contiguous Small Dam Removals

    NASA Astrophysics Data System (ADS)

    Galster, J. C.; Wyrick, J. R.

    2010-12-01

    Dam removal is crucial for reconnecting river habitats, restoring passage of fish and other aquatic organisms, and restoring the free flow of water and sediment. However, removal of obsolete dams is often resisted due to concerns of releasing sediment and initiating channel instability. Two dams on the Musconetcong River in northern New Jersey have been removed as part of a watershed-wide effort to remove or breach all major obstructions to restore the river to its original free-flowing state. The two dams were consecutively situated 1 kilometer apart and their removals provided an opportunity to study the geomorphic response in the form of bed elevation changes and sediment size through pre- and post-removal monitoring. Initial geomorphic surveys of the riverbed in the vicinity of and between the two dams have shown areas of erosion and deposition. These surveys have established a set of control points along the river channel between the two dams, and confirm the downstream movement of a sediment plume and localized areas of erosion. At the upstream dam, comparisons pre- and post-dam removal surveys show greater than 100 cubic meters of sediment being both eroded and deposited within the site. Most but not all of the erosion occurred around the newly exposed sediment bar upstream of the former dam, where the thalweg has reestablished itself following the dam’s removal. Areas that were excavated during removal have experienced deposition. Most of the deposition occurred downstream and on the left-hand bank. Due to the two low flow culverts in the former dam, a mid-channel sediment bar formed but has subsequently eroded. At the downstream dam site, erosion has removed up to 1.1 m of sediment from the bed in places while depositing up to 0.5 m sediment in others. As sediment from the former impoundment migrated through the project site, areas excavated during the removal became areas of deposition following the removal, and; alternately, areas in the channel

  1. Stochastic modeling of Cryptosporidium parvum to predict transport, retention, and downstream exposure

    NASA Astrophysics Data System (ADS)

    Drummond, J. D.; Boano, F.; Atwill, E. R.; Li, X.; Harter, T.; Packman, A. I.

    2016-12-01

    Rivers are a means of rapid and long-distance transmission of pathogenic microorganisms from upstream terrestrial sources. Thus, significant fluxes of pathogen loads from agricultural lands can occur due to transport in surface waters. Pathogens enter streams and rivers in a variety of processes, notably overland flow, shallow groundwater discharge, and direct inputs from host populations such as humans and other vertebrate species. Viruses, bacteria, and parasites can enter a stream and persist in the environment for varying amounts of time. Of particular concern is the protozoal parasite, Cryptosporidium parvum, which can remain infective for weeks to months under cool and moist conditions, with the infectious state (oocysts) largely resistant to chlorination. In order to manage water-borne diseases more effectively we need to better predict how microbes behave in freshwater systems, particularly how they are transported downstream in rivers and in the process interact with the streambed and other solid surfaces. Microbes continuously immobilize and resuspend during downstream transport due to a variety of processes, such as gravitational settling, attachment to in-stream structures such as submerged macrophytes, and hyporheic exchange and filtration within underlying sediments. These various interactions result in a wide range of microbial residence times in the streambed and therefore influence the persistence of pathogenic microbes in the stream environment. We developed a stochastic mobile-immobile model to describe these microbial transport and retention processes in streams and rivers that also accounts for microbial inactivation. We used the model to assess the transport, retention, and inactivation of C. parvum within stream environments, specifically under representative flow conditions of California streams where C. parvum exposure can be at higher risk due to agricultural nonpoint sources. The results demonstrate that the combination of stream reach

  2. Factors affecting the dissipation of pharmaceuticals in freshwater sediments.

    PubMed

    Al-Khazrajy, Omar S A; Bergström, Ed; Boxall, Alistair B A

    2018-03-01

    Degradation is one of the key processes governing the impact of pharmaceuticals in the aquatic environment. Most studies on the degradation of pharmaceuticals have focused on soil and sludge, with fewer exploring persistence in aquatic sediments. We investigated the dissipation of 6 pharmaceuticals from different therapeutic classes in a range of sediment types. Dissipation of each pharmaceutical was found to follow first-order exponential decay. Half-lives in the sediments ranged from 9.5 (atenolol) to 78.8 (amitriptyline) d. Under sterile conditions, the persistence of pharmaceuticals was considerably longer. Stepwise multiple linear regression analysis was performed to explore the relationships between half-lives of the pharmaceuticals, sediment physicochemical properties, and sorption coefficients for the compounds. Sediment clay, silt, and organic carbon content and microbial activity were the predominant factors related to the degradation rates of diltiazem, cimetidine, and ranitidine. Regression analysis failed to highlight a key property which may be responsible for observed differences in the degradation of the other pharmaceuticals. The present results suggest that the degradation rate of pharmaceuticals in sediments is determined by different factors and processes and does not exclusively depend on a single sediment parameter. Environ Toxicol Chem 2018;37:829-838. © 2017 SETAC. © 2017 SETAC.

  3. Sediment Transport During Three Controlled-Flood Experiments on the Colorado River Downstream from Glen Canyon Dam, with Implications for Eddy-Sandbar Deposition in Grand Canyon National Park

    USGS Publications Warehouse

    Topping, David J.; Rubin, David M.; Grams, Paul E.; Griffiths, Ronald E.; Sabol, Thomas A.; Voichick, Nicholas; Tusso, Robert B.; Vanaman, Karen M.; McDonald, Richard R.

    2010-01-01

    Three large-scale field experiments were conducted on the Colorado River downstream from Glen Canyon Dam in 1996, 2004, and 2008 to evaluate whether artificial (that is, controlled) floods released from the dam could be used in conjunction with the sand supplied by downstream tributaries to rebuild and sustainably maintain eddy sandbars in the river in Grand Canyon National Park. Higher suspended-sand concentrations during a controlled flood will lead to greater eddy-sandbar deposition rates. During each controlled flood experiment, sediment-transport and bed-sediment data were collected to evaluate sediment-supply effects on sandbar deposition. Data collection substantially increased in spatial and temporal density with each subsequent experiment. The suspended- and bed-sediment data collected during all three controlled-flood experiments are presented and analyzed in this report. Analysis of these data indicate that in designing the hydrograph of a controlled flood that is optimized for sandbar deposition in a given reach of the Colorado River, both the magnitude and the grain size of the sand supply must be considered. Because of the opposing physical effects of bed-sand area and bed-sand grain size in regulating suspended-sand concentration, larger amounts of coarser sand on the bed can lead to lower suspended-sand concentrations, and thus lower rates of sandbar deposition, during a controlled flood than can lesser amounts of finer sand on the bed. Although suspended-sand concentrations were higher at all study sites during the 2008 controlled-flood experiment (CFE) than during either the 1996 or 2004 CFEs, these higher concentrations were likely associated with more sand on the bed of the Colorado River in only lower Glen Canyon. More sand was likely present on the bed of the river in Grand Canyon during the 1996 CFE than during either the 2004 or 2008 CFEs. The question still remains as to whether sandbars can be sustained in the Colorado River in Grand

  4. Head-of-tide bottleneck of particulate material transport from watersheds to estuaries

    NASA Astrophysics Data System (ADS)

    Ensign, Scott H.; Noe, Gregory B.; Hupp, Cliff R.; Skalak, Katherine J.

    2015-12-01

    We measured rates of sediment, C, N, and P accumulation at four floodplain sites spanning the nontidal through oligohaline Choptank and Pocomoke Rivers, Maryland, USA. Ceramic tiles were used to collect sediment for a year and sediment cores were collected to derive decadal sedimentation rates using 137Cs. The results showed highest rates of short- and long-term sediment, C, N, and P accumulation occurred in tidal freshwater forests at the head of tide on the Choptank and the oligohaline marsh of the Pocomoke River, and lowest rates occurred in the downstream tidal freshwater forests in both rivers. Presumably, watershed material was mostly trapped at the head of tide, and estuarine material was trapped in oligohaline marshes. This hydrologic transport bottleneck at the head of tide stores most available watershed sediment, C, N, and P creating a sediment shadow in lower tidal freshwater forests potentially limiting their resilience to sea level rise.

  5. Head-of-tide bottleneck of particulate material transport from watersheds to estuaries

    USGS Publications Warehouse

    Ensign, Scott H.; Noe, Gregory; Hupp, Cliff R.; Skalak, Katherine

    2015-01-01

    We measured rates of sediment, C, N, and P accumulation at four floodplain sites spanning the nontidal through oligohaline Choptank and Pocomoke Rivers, Maryland, USA. Ceramic tiles were used to collect sediment for a year and sediment cores were collected to derive decadal sedimentation rates using 137Cs. The results showed highest rates of short- and long-term sediment, C, N, and P accumulation occurred in tidal freshwater forests at the head of tide on the Choptank and the oligohaline marsh of the Pocomoke River, and lowest rates occurred in the downstream tidal freshwater forests in both rivers. Presumably, watershed material was mostly trapped at the head of tide, and estuarine material was trapped in oligohaline marshes. This hydrologic transport bottleneck at the head of tide stores most available watershed sediment, C, N, and P creating a sediment shadow in lower tidal freshwater forests potentially limiting their resilience to sea level rise.

  6. Are freshwater diversion projects in Louisiana wetlands doing more harm than good?

    NASA Astrophysics Data System (ADS)

    Schulz, C. J.; Childers, G. W.

    2009-12-01

    Several freshwater diversion projects are online and many more are proposed, drastically altering the hydrology and nutrient flux in Louisiana wetlands. The intention of these massive projects is to prevent saltwater intrusion and provide sediments and nutrients to combat coastal erosion and subsidence. A proposed mechanism that such diversions decrease land loss is through the increase in vegetative biomass accumulation, leading to net gains in organic sediments. Although freshwater and nutrients can enhance primary production, it is unclear what impact these waters will have on existing sediment organic reservoirs. There are a limited, but growing number of studies suggesting that nutrient additions to wetland systems can lead to enhanced soil decomposition; thus, freshwater diversion projects may actually enhance wetland deterioration. A wetland restoration project delivering five million gallons per day of treated domestic effluent to the Joyce Wildlife Management Area (JWMA) marsh began in 2006. The treated effluent is similar to Mississippi River water with respect to alkalinity and reactive nitrogen concentrations. Sediment carbon and nitrogen content was monitored pre and post restoration project commencement and decreased significantly over a two year period from 2006 to 2008. The change in water chemistry (alkalinity/pH and reactive nitrogen) was expected to have an impact on microbial activities in these sediments. The microbial community composition of methanogens and archaeal ammonia oxidizers (as monitored by mcrA and amoA gene clone libraries, respectively) also shifted during this time period. Microcosm experiments using relatively un-impacted JWMA sediments with cellulose amendments showed increased methane production (i.e. enhanced organic matter / plant matter decomposition) corresponding to increasing alkalinity. Possible mechanisms accounting for these observations can be explained by thermodynamic constraints in anaerobic degradation pathways.

  7. Sediment size of surface floodplain sediments along a large lowland river

    NASA Astrophysics Data System (ADS)

    Swanson, K. M.; Day, G.; Dietrich, W. E.

    2007-12-01

    Data on size distribution of surface sediment across a floodplain should place important constraints of modeling of floodplain deposition. Diffusive or advective models would predict that, generally, grain size should decrease away from channel banks. Variations in grain size downstream along floodplains may depend on downstream fining of river bed material, exchange rate with river banks and net deposition onto the floodplain. Here we report detailed grain size analyses taken from 17 floodplain transects along 450 km (along channel distance) reach of the middle Fly River, Papua New Guinea. Field studies have documented a systematic change in floodplain characteristics downstream from forested, more topographically elevated and topography bounded by an actively shifting mainstem channel to a downstream swamp grass, low elevation topography along which the river meanders are currently stagnant. Frequency and duration of flooding increase downstream. Flooding occurs both by overbank flows and by injections of floodwaters up tributary and tie channels connected to the mainstem. Previous studies show that about 40% of the total discharge of water passes across the floodplain, and, correspondingly, about 40% of the total load is deposited on the plain - decreasing exponentially from channel bank. We find that floodplain sediment is most sandy at the channel bank. Grain size rapidly declines away from the bank, but surprisingly two trends were also observed. A relatively short distance from the bank the surface material is finest, but with further distance from the bank (out to greater than 1 km from the 250 m wide channel) clay content decreases and silt content increases. The changes are small but repeated at most of the transects. The second trend is that bank material fines downstream, corresponding to a downstream finding bed material, but once away from the bank, there is a weak tendency for a given distance away from the bank the floodplain surface deposits to

  8. Microplastics in freshwater systems: a review of the emerging threats, identification of knowledge gaps and prioritisation of research needs.

    PubMed

    Eerkes-Medrano, Dafne; Thompson, Richard C; Aldridge, David C

    2015-05-15

    Plastic contamination is an increasing environmental problem in marine systems where it has spread globally to even the most remote habitats. Plastic pieces in smaller size scales, microplastics (particles <5 mm), have reached high densities (e.g., 100,000 items per m(3)) in waters and sediments, and are interacting with organisms and the environment in a variety of ways. Early investigations of freshwater systems suggest microplastic presence and interactions are equally as far reaching as are being observed in marine systems. Microplastics are being detected in freshwaters of Europe, North America, and Asia, and the first organismal studies are finding that freshwater fauna across a range of feeding guilds ingest microplastics. Drawing from the marine literature and these initial freshwater studies, we review the issue of microplastics in freshwater systems to summarise current understanding, identify knowledge gaps and suggest future research priorities. Evidence suggests that freshwater systems may share similarities to marine systems in the types of forces that transport microplastics (e.g. surface currents); the prevalence of microplastics (e.g. numerically abundant and ubiquitous); the approaches used for detection, identification and quantification (e.g. density separation, filtration, sieving and infrared spectroscopy); and the potential impacts (e.g. physical damage to organisms that ingest them, chemical transfer of toxicants). Differences between freshwater and marine systems include the closer proximity to point sources in freshwaters, the typically smaller sizes of freshwater systems, and spatial and temporal differences in the mixing/transport of particles by physical forces. These differences between marine and freshwater systems may lead to differences in the type of microplastics present. For example, rivers may show a predictable pattern in microplastic characteristics (size, shape, relative abundance) based on waste sources (e.g. household vs

  9. Influence of Wastewater Discharge on the Metabolic Potential of the Microbial Community in River Sediments.

    PubMed

    Li, Dong; Sharp, Jonathan O; Drewes, Jörg E

    2016-01-01

    To reveal the variation of microbial community functions during water filtration process in river sediments, which has been utilized widely in natural water treatment systems, this study investigates the influence of municipal wastewater discharge to streams on the phylotype and metabolic potential of the microbiome in upstream and particularly various depths of downstream river sediments. Cluster analyses based on both microbial phylogenetic and functional data collectively revealed that shallow upstream sediments grouped with those from deeper subsurface downstream regions. These sediment samples were distinct from those found in shallow downstream sediments. Functional genes associated with carbohydrate, xenobiotic, and certain amino acid metabolisms were overrepresented in upstream and deep downstream samples. In contrast, the more immediate contact with wastewater discharge in shallow downstream samples resulted in an increase in the relative abundance of genes associated with nitrogen, sulfur, purine and pyrimidine metabolisms, as well as restriction-modification systems. More diverse bacterial phyla were associated with upstream and deep downstream sediments, mainly including Actinobacteria, Planctomycetes, and Firmicutes. In contrast, in shallow downstream sediments, genera affiliated with Betaproteobacteria and Gammaproteobacteria were enriched with putative functions that included ammonia and sulfur oxidation, polyphosphate accumulation, and methylotrophic bacteria. Collectively, these results highlight the enhanced capabilities of microbial communities residing in deeper stream sediments for the transformation of water contaminants and thus provide a foundation for better design of natural water treatment systems to further improve the removal of contaminants.

  10. Modeling grain size adjustments in the downstream reach following run-of-river development

    NASA Astrophysics Data System (ADS)

    Fuller, Theodore K.; Venditti, Jeremy G.; Nelson, Peter A.; Palen, Wendy J.

    2016-04-01

    Disruptions to sediment supply continuity caused by run-of-river (RoR) hydropower development have the potential to cause downstream changes in surface sediment grain size which can influence the productivity of salmon habitat. The most common approach to understanding the impacts of RoR hydropower is to study channel changes in the years following project development, but by then, any impacts are manifest and difficult to reverse. Here we use a more proactive approach, focused on predicting impacts in the project planning stage. We use a one-dimensional morphodynamic model to test the hypothesis that the greatest risk of geomorphic change and impact to salmon habitat from a temporary sediment supply disruption exists where predevelopment sediment supply is high and project design creates substantial sediment storage volume. We focus on the potential impacts in the reach downstream of a powerhouse for a range of development scenarios that are typical of projects developed in the Pacific Northwest and British Columbia. Results indicate that increases in the median bed surface size (D50) are minor if development occurs on low sediment supply streams (<1 mm for supply rates 1 × 10-5 m2 s-1 or lower), and substantial for development on high sediment supply streams (8-30 mm for supply rates between 5.5 × 10-4 and 1 × 10-3 m2 s-1). However, high sediment supply streams recover rapidly to the predevelopment surface D50 (˜1 year) if sediment supply can be reestablished.

  11. Bisphenol analogues in surface water and sediment from the shallow Chinese freshwater lakes: Occurrence, distribution, source apportionment, and ecological and human health risk.

    PubMed

    Yan, Zhengyu; Liu, Yanhua; Yan, Kun; Wu, Shengmin; Han, Zhihua; Guo, Ruixin; Chen, Meihong; Yang, Qiulian; Zhang, Shenghu; Chen, Jianqiu

    2017-10-01

    Compared to Bisphenol A (BPA), current knowledge on the spatial distribution, potential sources and environmental risk assessment of other bisphenol analogues (BPs) remains limited. The occurrence, distribution and sources of seven BPs were investigated in the surface water and sediment from Taihu Lake and Luoma Lake, which are the Chinese shallow freshwater lakes. Because there are many industries and living areas around Taihu Lake, the total concentrations of ∑BPs were much higher than that in Luoma Lake, which is away from the industry-intensive areas. For the two lakes, BPA was still the dominant BPs in both surface water and sediment, followed by BPF and BPS. The spatial distribution and principal component analysis showed that BPs in Luoma Lake was relatively homogeneous and the potential sources were relatively simple than that in Taihu Lake. The spatial distribution of BPs in sediment of Taihu Lake indicated that ∑BPs positively correlated with the TOC content. For both Taihu Lake and Luoma Lake, the risk assessment at the sampling sites showed that no high risk in surface water and sediment (RQ t  < 1.0, and EEQ t  < 1.0 ng E 2 /L). Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Adjustment of the San Francisco estuary and watershed to decreasing sediment supply in the 20th century

    USGS Publications Warehouse

    Schoellhamer, David H.; Wright, Scott A.; Drexler, Judith Z.

    2013-01-01

    The general progression of human land use is an initial disturbance (e.g., deforestation, mining, agricultural expansion, overgrazing, and urbanization) that creates a sediment pulse to an estuary followed by dams that reduce sediment supply. We present a conceptual model of the effects of increasing followed by decreasing sediment supply that includes four sequential regimes, which propagate downstream: a stationary natural regime, transient increasing sediment supply, transient decreasing sediment supply, and a stationary altered regime. The model features characteristic lines that separate the four regimes. Previous studies of the San Francisco Estuary and watershed are synthesized in the context of this conceptual model. Hydraulic mining for gold in the watershed increased sediment supply to the estuary in the late 1800s. Adjustment to decreasing sediment supply began in the watershed and upper estuary around 1900 and in the lower estuary in the 1950s. Large freshwater flow in the late 1990s caused a step adjustment throughout the estuary and watershed. It is likely that the estuary and watershed are still capable of adjusting but further adjustment will be as steps that occur only during greater floods than previously experienced during the adjustment period. Humans are actively managing the system to try to prevent greater floods. If this hypothesis of step changes occurring for larger flows is true, then the return interval of step changes will increase or, if humans successfully control floods in perpetuity, there will be no more step changes.

  13. High-quality draft genome sequence of Effusibacillus lacus strain skLN1T, facultative anaerobic spore-former isolated from freshwater lake sediment.

    PubMed

    Watanabe, Miho; Tokizawa, Riho; Kojima, Hisaya; Fukui, Manabu

    2017-01-01

    10.1601/nm.25721 strain skLN1 T is the type strain of the type species in the genus 10.1601/nm.25720 which is the one of the genera in the family 10.1601/nm.5070 within the phylum 10.1601/nm.3874. 10.1601/nm.25721 strain skLN1 T is a Gram-positive, spore-forming thermophilic neutrophile isolated from freshwater lake sediment. Here, we present the draft genome sequence of strain skLN1 T , which consists of 3,902,380 bp with a G + C content of 50.38%.

  14. Development of a Long-term Sampling Network to Monitor Restoration Success in the Southwest Coastal Everglades: Vegetation, Hydrology, and Sediments

    USGS Publications Warehouse

    Smith, Thomas J.

    2004-01-01

    Introduction and History Hurricane Andrew, a Category 5 storm, crossed the southern Florida peninsula on the morning of August 24, 1992 (Fig. 1). Following the storm, the National Park Service conducted an environmental damage assessment to gauge the storm's impacts on the natural resources of south Florida Park Service holdings (Pimm et al., 1994). Although hurricanes have impacted Park Service lands such as the Everglades in the past (Houston and Powell, 2003), no systematic, permanent sampling scheme has been established to monitor long-term recovery (or lack thereof) following disturbance. In October 1992, vegetation monitoring plots were established in heavily damaged areas of mangrove forest on the southwest coast of the Everlgades, along the Lostmans and Broad Rivers (Smith et al., 1994, see Fig. 2). As the permanent plot network was being established, funding was awarded for the South Florida Global Climate Change project (SOFL-GCC). This led to the establishment of a network of hydrological monitoring stations (Anderson and Smith, 2004). Finally, sediment elevation tables (SETs) were installed at many locations. SETs provide the means to measure very small changes (2 mm) in the sediment surface elevation accurately over time (Cahoon et al., 2002). We also set up marker horizons to measure accretion of sediment at each site (Smith and Cahoon, 2003). Sampling sites were located along three transects extending from upstream freshwater wetlands to downstream saltwater wetlands along the Shark, Lostmans and Chatham Rivers in Everglades National Park (Fig. 2). While we were developing our sampling network for basic scientific research needs, concern mounted over the health of the Greater Everglades Ecosystem and in particular over the influence of decreased freshwater flows (Smith et al., 1989). Ecosystem restoration planning was begun, resulting in the multi-agency, $8 billion Comprehensive Everglades Restoration Plan (CERP). Our co-located sampling networks

  15. SEDIMENT TOXICITY IDENTIFICATION EVALUATION (TIE)PHASE I,II,III GUIDANCE DOCUMENT

    EPA Science Inventory

    Sediment contamination in the United States has been amply documented and, in order to comply with the 1972 Clean Water Act, the U.S. Environmental Protection Agency must address the issue of toxic sediments. Contaminated sediments from a number of freshwater and marine sites hav...

  16. Interactions between Channel Morphology and the Propagation of Coarse Sediment Augmentations Downstream from Dams

    NASA Astrophysics Data System (ADS)

    Gaeuman, D. A.; Dickenson, S.; Pyles, M.

    2009-12-01

    Gravel augmentations are being implemented in a number of streams where natural recruitment of gravel is impeded by dams. Uncertainties relevant to the management of gravel augmentations include the quantities of gravel needed to achieve habitat benefits at downstream locations and the temporal and spatial scales over which those benefits that will be realized. The solution to such questions depends to a large extent on how gravel slugs evolve as the material is transported downstream, i.e., whether the gravel translates downstream as a coherent wave or whether it tends to disperse. A number of recent studies conducted in laboratory flumes or by numerical simulation that gravels slugs tend to disperse rather than translate. However, these studies do not consider the influence of channel morphology on slug behavior. Initial monitoring results based from 2 California streams suggest that natural channel morphology suppresses slug dispersion because the gravel tends to accumulate in discrete deposition zones. Field mapping and about 200 tracer stones implanted with passive integrated transponder (PIT) tags show that gravel recruitment piles of about 80 tons each placed in Grass Valley Creek in 2007 and 2008 were deposited as 2 new bars immediately downstream. The more upstream of the 2 bars formed during the 2007 winter and spring flood season, whereas the more downstream bar did not appear until the following year. A sharp deposition front and an absence of tracers in the reaches downstream strongly suggest that none of the added gravel was transported downstream beyond the area of bar formation in either year. A relatively small proportion of the mobilized tracer particles (59%) were located following the 2007 flood season, probably due to deep burial in the newly deposited bar and to radio interference caused by the high concentration of tracers in a small area. The proportion of newly introduced or previously-located tracers that were relocated in 2009 was

  17. Quantifying the main sediment sources in agricultural landscapes of Southern Brazil cultivated with conventional and conservation practices

    NASA Astrophysics Data System (ADS)

    Evrard, Olivier; Le Gall, Marion; Tiecher, Tales; Gomes Minella, Jean Paolo; Laceby, J. Patrick; Ayrault, Sophie

    2017-04-01

    Agricultural expansion that occurred in the 1960s in Southern Brazil significantly increased soil erosion and sediment supply to the river networks. To limit the deleterious impacts of soil erosion, conservation practices were progressively implemented in the 1990s, including the direct sowing of crops on a soil densely covered with plant residues, contour farming, the installation of ponds to trap sediment in the landscape and the use of crop rotations. However, there remains a lack of observational data to investigate the impact of these conservation practices on soil erosion and sediment supply. This data is crucial to protect soil resources and maintain the sustainability of food production systems in this region of the world characterized by a rapidly increasing population. Accordingly, sediment sources were investigated in the Guaporé catchment (2,032 km2) representative of the cultivated environments found in this part of the world. In the upper catchment, the landscape is characterized by gentle slopes and deep soils (Ferralsols, Nitisols) corresponding to the edge of the basaltic plateau. Soybean, corn and wheat under direct sowing are the main crops in this area. In contrast, steep and shallow soils (Luvisols, Acrisols, Leptosols) highly connected to the rivers are found in the lower catchment, where tobacco and corn fields are cultivated with conventional ploughing. These soil types were characterized by elemental geochemistry and 87Sr/86Sr ratios. Sediment sources were then modelled using the optimal suite of properties (87Sr/86Sr ratios, K, Ti, Co, As, Ba, and Pb). The results demonstrate that sediment collected at the catchment outlet during two hydrological years (2012-2014) mainly originated from downstream soils (Luvisols, Acrisols, Leptosols; 92±3%), with this proportion remaining stable throughout the monitoring period. This research indicates that conservation practices implemented in the upper catchment are effective and that similar methods

  18. DENITRIFICATION AND NITROGEN DYNAMICS IN SEDIMENTS OF A MID-ATLANTIC INCISED STREAM DEPOSITED WITH DEEP LEGACY SEDIMENTS.

    EPA Science Inventory

    Excess legacy sediments deposited in former impounded streams frequently bury Holocene pre-settlement wetlands, decrease in-situ nitrogen removal, and increase nitrogen transport downstream, particularly where deep incised channels limit sediment-water interactions. This has prom...

  19. Longitudinal distribution of Chironomidae (Diptera) downstream from a dam in a neotropical river.

    PubMed

    Pinha, G D; Aviz, D; Lopes Filho, D R; Petsch, D K; Marchese, M R; Takeda, A M

    2013-08-01

    The damming of a river causes dangerous consequences on structure of the environment downstream of the dam, modifying the sediment composition, which impose major adjustments in longitudinal distribution of benthic community. The construction of Engenheiro Sérgio Motta Dam in the Upper Paraná River has caused impacts on the aquatic communities, which are not yet fully known. This work aimed to provide more information about the effects of this impoundment on the structure of Chironomidae larvae assemblage. The analysis of data of physical and chemical variables in relation to biological data of 8 longitudinal sections in the Upper Paraná River showed that composition of Chironomidae larvae of stations near Engenheiro Sérgio Motta Dam differed of the other stations (farther of the Dam). The predominance of coarse sediments at stations upstream and finer sediments further downstream affected the choice of habitat by different morphotypes of Chironomidae and it caused a change in the structure of this assemblage in the longitudinal stretch.

  20. Extended Kd distributions for freshwater environment.

    PubMed

    Boyer, Patrick; Wells, Claire; Howard, Brenda

    2018-06-18

    Many of the freshwater K d values required for quantifying radionuclide transfer in the environment (e.g. ERICA Tool, Symbiose modelling platform) are either poorly reported in the literature or not available. To partially address this deficiency, Working Group 4 of the IAEA program MODARIA (2012-2015) has completed an update of the freshwater K d databases and K d distributions given in TRS 472 (IAEA, 2010). Over 2300 new values for 27 new elements were added to the dataset and 270 new K d values were added for the 25 elements already included in TRS 472 (IAEA, 2010). For 49 chemical elements, the K d values have been classified according to three solid-liquid exchange conditions (adsorption, desorption and field) as was previously carried out in TRS 472. Additionally, the K d values were classified into two environmental components (suspended and deposited sediments). Each combination (radionuclide x component x condition) was associated with log-normal distributions when there was at least ten K d values in the dataset and to a geometric mean when there was less than ten values. The enhanced K d dataset shows that K d values for suspended sediments are significantly higher than for deposited sediments and that the variability of K d distributions are higher for deposited than for suspended sediments. For suspended sediments in field conditions, the variability of K d distributions can be significantly reduced as a function of the suspended load that explains more than 50% of the variability of the K d datasets of U, Si, Mo, Pb, S, Se, Cd, Ca, B, K, Ra and Po. The distinction between adsorption and desorption conditions is justified for deterministic calculations because the geometric means are systematically greater in desorption conditions. Conversely, this distinction is less relevant for probabilistic calculations due to systematic overlapping between the K d distributions of these two conditions. Copyright © 2018. Published by Elsevier Ltd.

  1. Wood and Sediment Dynamics in River Corridors

    NASA Astrophysics Data System (ADS)

    Wohl, E.; Scott, D.

    2015-12-01

    Large wood along rivers influences entrainment, transport, and storage of mineral sediment and particulate organic matter. We review how wood alters sediment dynamics and explore patterns among volumes of instream wood, sediment storage, and residual pools for dispersed pieces of wood, logjams, and beaver dams. We hypothesized that: volume of sediment per unit area of channel stored in association with wood is inversely proportional to drainage area; the form of sediment storage changes downstream; sediment storage correlates most strongly with wood load; and volume of sediment stored behind beaver dams correlates with pond area. Lack of data from larger drainage areas limits tests of these hypotheses, but analyses suggest a negative correlation between sediment volume and drainage area and a positive correlation between wood and sediment volume. The form of sediment storage in relation to wood changes downstream, with wedges of sediment upstream from jammed steps most prevalent in small, steep channels and more dispersed sediment storage in lower gradient channels. Use of a published relation between sediment volume, channel width, and gradient predicted about half of the variation in sediment stored upstream from jammed steps. Sediment volume correlates well with beaver pond area. Historically more abundant instream wood and beaver populations likely equated to greater sediment storage within river corridors. This review of the existing literature on wood and sediment dynamics highlights the lack of studies on larger rivers.

  2. Salmonella rarely detected in Mississippi coastal waters and sediment.

    PubMed

    Carr, M R; Wang, S Y; McLean, T I; Flood, C J; Ellender, R D

    2010-12-01

    Standards for the rapid detection of individual pathogens from environmental samples have not been developed, but in their absence, the use of molecular-based detection methods coupled with traditional microbiology techniques allows for rapid and accurate pathogen detection from environmental waters and sediment. The aim of this research was to combine the use of enrichment with PCR for detection of Salmonella in Mississippi coastal waters and sediment and observe if that presence correlated with levels of enterococci and climatological variables. Salmonella were primarily found in samples that underwent nutrient enrichment and were present more frequently in freshwater than marine waters. Salmonella were detected infrequently in marine and freshwater sediments. There was a significant positive correlation between the presence of detectable Salmonella and the average enterococcal count. An inverse relationship, however, was observed between the frequency of detection and the levels of salinity, turbidity and sunlight exposure. Results from this study indicated the presence of Salmonella in Mississippi coastal waters, and sediments are very low with significant differences between freshwater and marine environments. Using pathogenic and novel nonpathogenic molecular markers, Salmonella do not appear to be a significant pathogenic genus along the Mississippi Coast. © 2010 The Authors. Journal of Applied Microbiology © 2010 The Society for Applied Microbiology.

  3. Do predator-prey relationships on the river bed affect fine sediment ingress?

    NASA Astrophysics Data System (ADS)

    Mathers, Kate; Rice, Stephen; Wood, Paul

    2016-04-01

    Ecosystem engineers are organisms that alter their physical environment and thereby influence the flow of resources through ecosystems. In rivers, several ecosystem engineers are also important geomorphological agents that modify fluvial sediment dynamics. By altering channel morphology and bed material characteristics, such modifications can affect the availability of habitats for other organisms, with implications for ecosystem health and wider community composition. In this way geomorphological and ecological systems are intimately interconnected. This paper focuses on one element of this intricate abiotic-biotic coupling: the interaction between fine sediment ingress into the river bed and the predator-prey relationships of aquatic organisms living on and in the river bed. Signal crayfish (Pacifastacus leniusculus) have been shown to modify fine sediment fluxes in rivers, but their effect on fine sediment ingress into riverbeds remains unclear. Many macroinvertebrate taxa have adapted avoidance strategies to avoid predation by crayfish, with one example being the freshwater shrimp (Gammarus pulex) which relies on open interstitial spaces within subsurface sediments as a refuge from crayfish predation. Fine sedimentation that fills gravelly frameworks may preclude access to those spaces, therefore leaving freshwater shrimp susceptible to predation. Ex-situ experiments were conducted which sought to examine: i) if freshwater shrimps and signal crayfish, alone and in combination, influenced fine sediment infiltration rates; and ii) whether modifications to substratum composition, specifically the introduction of fine sediment, modified predator-prey interactions. The results demonstrate that crayfish are significant geomorphic agents and that fine sediment ingress rates were significantly enhanced in their presence compared to control conditions or the presence of only freshwater shrimps. The combination of both organisms (i.e. allowing the interaction between

  4. Possible Climatic Signal Recorded by Alkenone Distributions in Sediments from Freshwater and Saline Lakes on the Skarvsnes and Skallen Areas, Antarctica

    NASA Astrophysics Data System (ADS)

    Sawada, K.; Takeda, M.; Takano, Y.

    2014-12-01

    The distribution of long-chain (C37 - C39) alkenones in marine sediment has been well documented to record paleo-sea surface temperatures. The alkenones were also found in sediments of terrestrial saline lakes, and recently the calibrations of alkenone unsaturation indices - temperature have been established in continental areas. Furthermore, these biomarkers have been identified in lacustrine sediments on high-latitudinal terrestrial areas such as Greenland and Antarctica. In the present study, the alkenones were identified in the lacustrine sediment cores in freshwater (Lake Naga-ike) and saline lakes (Lake Suribati and Lake Funazoko) on the Skarvsnes, and a saline lake (Lake Skallen Oh-ike) on the Skallen, Antarctica. Here, we report that the alkenone distribution in the Antarctic lakes was examined as paleotemperature proxy. C37-C38 Tetra- and tri-unsaturated alkenones and C37 tetra- and tri-unsaturated alkenoates are identified in all sediment samples. The C37 di-unsaturated (C37:2) alkenones can be identified in sediments of surface layers (0-15 cm) of Lake Naga-ike and layers of 160-190 cm depth, in which age is ca. 3000 years BP by 14C dating, in Lake Skallen Ohike, and alkenone unsaturation index (UK37) is analyzed from these sediments. By using a calibration obtained from a culture strain Chrysotila lamellosa as reported by Nakamura et al. (2014), paleotemperatures are calculated to be 9.2-15ºC in surface sediments of Lake Naga-ike and 6.8-8.6ºC in Lake Skallen Oh-ike, respectively. The estimated temperatures are concordant with summer temperature of lake waters observed in Lake Naga-ike. Also, the highest concentrations of the alkenones and alkenoates are observed in deeper (older) sediment layers from Lake Naga-ikes, which has not been connected the ocean and intruded sea water. This implies that the alkenones are originated from indigenous biological organism(s) in Antarctic lake water. The class distributions (unsaturation ratios) of alkenones

  5. Optimal control of suspended sediment distribution model of Talaga lake

    NASA Astrophysics Data System (ADS)

    Ratianingsih, R.; Resnawati, Azim, Mardlijah, Widodo, B.

    2017-08-01

    Talaga Lake is one of several lakes in Central Sulawesi that potentially to be managed in multi purposes scheme because of its characteristic. The scheme is addressed not only due to the lake maintenance because of its sediment but also due to the Algae farming for its biodiesel fuel. This paper governs a suspended sediment distribution model of Talaga lake. The model is derived from the two dimensional hydrodynamic shallow water equations of the mass and momentum conservation law of sediment transport. An order reduction of the model gives six equations of hyperbolic systems of the depth, two dimension directional velocities and sediment concentration while the bed elevation as the second order of turbulent diffusion and dispersion are neglected. The system is discreted and linearized such that could be solved numerically by box-Keller method for some initial and boundary condition. The solutions shows that the downstream velocity is play a role in transversal direction of stream function flow. The downstream accumulated sediment indicate that the suspended sediment and its changing should be controlled by optimizing the downstream velocity and transversal suspended sediment changing due to the ideal algae growth need.

  6. Biodegradation of 17β-estradiol, estrone and testosterone in stream sediments

    USGS Publications Warehouse

    Bradley, Paul M.; Barber, Larry B.; Chapelle, Francis H.; Gray, James L.; Kolpin, Dana W.; McMahon, Peter B.

    2009-01-01

    Biodegradation of 17β-estradiol (E2), estrone (E1), and testosterone (T) was investigated in three wastewater treatment plant (WWTP) affected streams in the United States. Relative differences in the mineralization of [4-14C] substrates were assessed in oxic microcosms containing saturated sediment or water-only from locations upstream and downstream of the WWTP outfall in each system. Upstream sediment demonstrated significant mineralization of the “A” ring of E2, E1, and T, with biodegradation of T consistently greater than that of E2 and no systematic difference in E2 and E1 biodegradation. “A” ring mineralization also was observed in downstream sediment, with E1 and T mineralization being substantially depressed relative to upstream samples. In marked contrast, E2 mineralization in sediment immediately downstream from the WWTP outfalls was more than double that in upstream sediment. E2 mineralization was observed in water, albeit at insufficient rate to prevent substantial downstream transport. The results indicate that, in combination with sediment sorption processes which effectively scavenge hydrophobic contaminants from the water column and immobilize them in the vicinity of the WWTP outfall, aerobic biodegradation of reproductive hormones can be an environmentally important mechanism for nonconservative (destructive) attenuation of hormonal endocrine disruptors in effluent-affected streams.

  7. Static renewal tests using Anodonta imbecillis (freshwater mussels). Anodonta imbecillis QA test 1, Clinch River-Environmental Restoration Program (CR-ERP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simbeck, D.J.

    1993-12-31

    Toxicity testing of split whole sediment samples using juvenile freshwater mussels (Anodonta imbecillis) was conducted by TVA and CR-ERP personnel as part of the CR-ERP biomonitoring study of Clinch River sediments to provide a quality assurance mechanism for test organism quality and overall performance of the test. In addition, testing included procedures comparing daily renewal versus non-renewal of test sediments. Testing of sediment samples collected July 15 from Poplar Creek Miles 6.0 and 5.1 was conducted from July 21--30, 1993. Results from this test showed no toxicity (survival effects) to fresh-water mussels during a 9-day exposure to the sediments. Sidemore » by side testing of sediments with daily sediment renewal and no sediment renewal showed no differences between methods. This may be due to the absence of toxicity in both samples and may not reflect true differences between the two methods for toxic sediment. Attachments to this report include: Chain of custody forms -- originals; Toxicity test bench sheets and statistical analyses; and Ammonia analysis request and results.« less

  8. An Arctic Ocean freshwater event as the trigger of the Younger Dryas stadial? Answers from Arctic deep-sea sediment cores

    NASA Astrophysics Data System (ADS)

    Spielhagen, Robert F.

    2017-04-01

    At ca. 12.8-11.5 ka the northern hemisphere climate experienced a dramatic fall-back to quasi-glacial conditions. Since the late 1980s, a major meltwater ejection to the North Atlantic through the Gulf of St.Lawrence was considered the most likely trigger for this "Younger Dryas event". It may have caused a slowdown of the Atlantic meridional overturning circulation (AMOC) and a diminished heat transport to the northern latitudes. However, field evidence from the potential meltwater route in North America has been discussed controversially in the last years, and the detection of a freshwater signal in marine sediments off the St.Lawrence river rendered difficult. More recently, the idea of an "Arctic route" of meltwater originating from proglacial lake Agassiz was put forward (Tarasov & Peltier, Nature 2005) and has gained further attraction through evidence from radiogenic isotopes (Not and Hillaire-Marcel; Nature Comm., 2012) and through modelling results of Condron and Winsor (PNAS, 2012) which showed that only a freshwater outflow through Fram Strait was capable of triggering a climate perturbation like the Younger Dryas. Here I present a review of isotopic records from the Arctic Ocean, the Fram Strait, and the Greenland Sea in search of evidence for a strong freshwater event in the Arctic Ocean at the onset of the Younger Dryas, supporting an Arctic origin of the trigger. A number of Arctic cores show a light planktic oxygen isotope spike at 13 ka. For several of them the age model is detailed enough to exclude a confusion with other deglacial spikes. On the central Arctic Lomonosov Ridge there is even evidence for a diminshed intermediate/bottom water circulation immediately following the freshwater event. On the other hand, there are many records which do not show a meltwater spike in the critical time interval, most likely because of low temporal resolution, a thick ice cover and/or a habitat change of the planktic foraminifers. The largest uncertainty is

  9. PREDICTING THE TOXICITY OF SEDIMENTS SPIKED WITH SILVER

    EPA Science Inventory

    Previous experiments conducted with freshwater sediments spiked with silver have shown that, when expressed on a dry weight basis, the toxicity of silver is sediment-specific and dependent on the form of silver added (e.g., AgNO3, Ag2S). This study was conducted to assess the use...

  10. Static renewal tests using Anodonta imbecillis (freshwater mussels). Anodonta imbecillis QA test 3, Clinch River-Environmental Restoration Program (CR-ERP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simbeck, D.J.

    1994-12-31

    Toxicity testing of split whole sediment samples using juvenile freshwater mussels (Anodonta imbecillis) was conducted by TVA to provide a quality assurance mechanism for test organism quality and overall performance of the test being conducted by CR-ERP personnel as part of the CR-ERP biomonitoring study of Clinch River sediments. Testing of sediment samples collected May 5 from Poplar Creek Miles 6.0 and 2.9 was conducted from May 10--19, 1994. Results from this test showed no toxicity (survival effects) to fresh-water mussels during a 9-day exposure to the sediments. Attachments to this report include: Chain of custody form -- original; Toxicitymore » test bench sheets; Ammonia analysis request and results; Meter calibration log sheets; and Training documentation forms.« less

  11. Static renewal tests using Anodonta imbecillis (freshwater mussels). Anodonta imbecillis QA test 2, Clinch River-Environmental Restoration Program (CR-ERP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simbeck, D.J.

    1993-12-31

    Toxicity testing of split whole sediment samples using juvenile freshwater mussels (Anodonta imbecillis) was conducted by TVA to provide a quality assurance mechanism for test organism quality and overall performance of the test being conducted by CR-ERP personnel as part of the CR-ERP biomonitoring study of Clinch River sediments. Testing of sediment samples collected August 14 from Poplar Creek Miles 6.0 and 4.3 was conducted from August 24--September 2, 1993. Results from this test showed no toxicity (survival effects) to fresh-water mussels during a 9-day exposure to the sediments. Attachments to this report include: Chain of custody form -- original;more » Toxicity test bench sheets and statistical analyses; and Ammonia analysis request and results.« less

  12. Static renewal tests using Anodonta imbecillis (freshwater mussels). Anodonta imbecillis QA test 4, Clinch River-Environmental Restoration Program (CR-ERP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simbeck, D.J.

    1994-12-31

    Toxicity testing of split whole sediment samples using juvenile freshwater mussels (Anodonta imbecillis) was conducted by TVA to provide a quality assurance mechanism for test organisms quality and overall performance of the test being conducted by CR-ERP personnel as part of the CR-ERP biomonitoring study of Clinch River sediments. Testing of sediment samples collected September 8 from Poplar Creek Miles 6.0 and 1.0 was conducted September 13--22, 1994. Results from this test showed no toxicity (survival effects) to fresh-water mussels during a 9-day exposure to the sediments. Attachments to this report include: Chain of custody form -- original; Toxicity testmore » bench sheets; Ammonia analysis request and results; and Meter calibration log sheets.« less

  13. Freshwater mussel response to bedform movement: experimental stream studies

    NASA Astrophysics Data System (ADS)

    Kozarek, J. L.; MacGregor, K. R.; Hornbach, D.; Hove, M.

    2017-12-01

    Freshwater mussels are intrinsically linked to near-bed sediment dynamics, but it remains unclear how mussels respond to changing sediment loads across spatial and temporal scales. The interactions between mussels and sediment transport are complex and often involve feedback loops. Mussels are filter feeders removing suspended particles from the water column and the physical presence of mussels can have significant impacts on the structure of riverbed habitat. We investigated the feedbacks between mussels, flow, and migrating bedforms during flood experiments in the St. Anthony Falls Laboratory Outdoor StreamLab (OSL) at the University of Minnesota. The OSL is a field-scale sand-bed meandering stream channel with independent control over sediment feed (recirculated) and water flow (diverted from the Mississippi River). Mussel location, orientation to flow, and protrusion from sediment was surveyed immediately before, after, and one and two days after each flood event. Flow fields, bed shear stress, bedform migration, and bar topography were measured during each flooding event with and without mussels present (density = 4/m2 and 8/m2) to quantify the influence of mussels on channel morphology and bedform migration. Mobile bedforms (up to 14 cm high) were present for all flood events with quasi-equilibrium, aggrading, and degrading bed conditions. Mussels moved little horizontally during all flood events, but were shown to move quickly to deeper water after the flood receded. However, mussels moved vertically, burrowing or being buried under mobile bedforms, during each flood event. The research presented here will focus on feedbacks between three mussel species with different shell sculptures, flow conditions, and migrating bedforms during flooding events. These results reveal how freshwater mussels respond to and affect flow and sediment transport during flood events that are difficult to observe in the field.

  14. An overview of the refinements and improvements to the USEPA’s sediment toxicity methods for freshwater sediment

    EPA Science Inventory

    Sediment toxicity tests are used for contaminated sediments, chemical registration, and water quality criteria evaluations and can be a core component of ecological risk assessments at contaminated sediments sites. Standard methods for conducting sediment toxicity tests have been...

  15. Geomorphic response of rivers to glacial retreat and increasing peak flows downstream from Mount Rainier, Washington

    NASA Astrophysics Data System (ADS)

    Czuba, J. A.; Barnas, C. R.; Magirl, C. S.; Voss, F. D.

    2010-12-01

    On Mount Rainier, Washington, the National Park Service has documented widespread aggradation of as much as 10 m since the early 20th century, of rivers draining the glaciated stratovolcano. This rapid sedimentation appears to be related to glacial retreat and also may be a function of the increased magnitude and timing of peak flows that mobilize and transport sediment. We are conducting an assessment of the Puget Lowland rivers that drain Mount Rainier, 25-100 km downstream from the park boundary, to document the geomorphic response of the downstream reaches given the widespread aggradation upstream. These downstream reaches provide critical aquatic habitat for spawning and rearing of several species of salmonids, including endangered Chinook salmon and steelhead. Fluvial sedimentation can have both deleterious and beneficial effects on aquatic habitat depending on sediment particle size, river slope and width, and river management. To date, our work shows sedimentation of as much as 2 m between 1984 and 2009 in these lowland rivers. Aggradation rates that were calculated by comparing channel change at 156 cross sections, ranged between 4.8 and 9.1 cm/yr in reaches where rivers exit the mountain front and enter the lowland. Analysis of streamflow-gaging station data from throughout the watersheds draining Mount Rainier show rapid incision and aggradation, suggesting pulses of coarse-grained bedload may be moving down the mountainous rivers as kinetic waves. Preliminary results, however, seem to indicate that the rivers in the Puget Lowland have not yet experienced significant widespread sedimentation directly related to glacial retreat. Estimating the time of arrival of mobilized alluvium is a critical need for resource managers given the potential effects of sedimentation on river flood-conveyance capacity, fish habitat, and estuarine wetlands.

  16. Factors influencing mercury in freshwater surface sediments of northeastern North America

    USGS Publications Warehouse

    Kamman, N.C.; Chalmers, A.; Clair, T.A.; Major, A.; Moore, R.B.; Norton, S.A.; Shanley, J.B.

    2005-01-01

    We report on an inventory and analysis of sediment mercury (Hg) concentrations from 579 sites across northeastern North America. Sediment Hg concentrations ranged from the limit of detection ca. 0.01-3.7 ??g g -1 (dry weight, d.w.), and the average concentration was 0.19 ??g g-1 (d.w.) Sediment methylmercury concentrations ranged from 0.15 to 21 ng g-1 (d.w.) and the mean concentration was 3.83 ng g -1 (d.w.). Total Hg concentrations (HgT) were greatest in lakes > reservoirs > rivers, although the proportion of Hg as methylmercury showed an inverse pattern. Total Hg was weakly and positively correlated with the sediment organic matter and percent of watershed as forested land, and weakly and negatively correlated with sediment solids content, drainage area, and agricultural land. Sediment methylmercury concentrations were weakly and positively correlated to wetland area, and weakly and negatively correlated to drainage area. Methylmercury, expressed as a percentage of HgT was positively correlated to agricultural land area. For sites with co-located sediment and fish-tissue sampling results, there was no relationship between sediment Hg and fish-tissue Hg. Finally, our data indicate that at least 44% of waters across the region have sediment HgT concentrations in excess of Canadian and United States minimum sediment contaminant guidelines for the protection of aquatic biota. ?? 2005 Springer Science+Business Media, Inc.

  17. Role of hydrological events in sediment and sediment-associated heavy metals transport within a continental transboundary river system - Tuul River case study (Mongolia)

    NASA Astrophysics Data System (ADS)

    Pietroń, Jan; Jarsjö, Jerker

    2013-04-01

    The concentration of heavy metals in rivers is often greater in the sediment load than in the water solution. Overall, heavy metal conveyance with sediment transport is a significant contributor to the global transport of heavy metals. Heavy metals once released to a river system may remain in the deposits of the river from short to very long times, for instance depending on to which extent erosion and deposition can influence the sediment mass stored in the river bed. In general, the mobility of contaminated sediments to downstream water recipients may to large extent be governed by natural sediment transport dynamics during hydrological events, such as flow peaks following heavy rainfalls. The Tuul River (Northern Mongolia) belongs to a Tuul River-Orkhon River-Selenga River- transboundary river system that discharges into Lake Baikal. The river system is largely characterized by its natural hydrological regime with numerous rapid peak flow events of the spring-summer periods. However, recent studies indicate contamination of fine sediment with heavy metals coming from placer gold mining area (Zaamar Goldfield) located along the downstream Tuul River. In this work, the general idea is to create a one-dimensional sediment transport model of the downstream Tuul River, and use field-data supported modeling to investigate natural erosion-deposition rates and the role of peak flows in natural sediment transport at 14 km reach just downstream the gold mining area. The model results show that the sediment load of the finest investigated grain size has a great potential to be eroded from the bed of the studied reach, especially during the main peak flow events. However, the same events are associated with a significant deposition of the finest material. The model results also show different hysteresis behavior of the sediment load rating curves (clockwise and counter-clockwise) during the main peak flow events. These are interpreted as effects of changing in

  18. A Search for Freshwater in the Saline Aquifers of Coastal Bangladesh

    NASA Astrophysics Data System (ADS)

    Peters, C.; Hornberger, G. M.

    2017-12-01

    Can we locate pockets of freshwater amidst brackish groundwater in remote villages in Bangladesh? This study explores what we can infer about local groundwater-surface water (GW-SW) interactions in the polders of coastal Bangladesh. In this underdeveloped region, the shallow groundwater is primarily brackish with unpredictable apportioning of freshwater pockets. We use transects of piezometers, cores, electromagnetic induction, and water chemistry surveys to explore two sources of potential fresh groundwater: (1) tidal channel-aquifer exchange and (2) meteoric recharge. Freshwater is difficult to find due to disparate subsurface lithology, asymmetrical tidal dynamics, extreme seasonal fluctuations in rainfall, and limited field data. Observations suggest substantial lateral variability in shallow subsurface conductivity profiles as well as tidal pressure signals in piezometers. Nevertheless, active exchange of freshwater may be limited due to low permeability of banks and surface sediments limits. Small scale heterogeneity in delta formation likely caused much of the groundwater salinity variation. Without adequate ground truthing of groundwater quality, the ability to deduce the exact location of freshwater pockets may be restricted.

  19. Role of ecological factors and reproductive strategies in structuring freshwater mussel communities

    Treesearch

    Wendell R. Haag; Melvin L. Warren

    1998-01-01

    Freshwater mussel community composition within two drainage basins in Alabama, U.S.A., was better explained by patterns of variability in the fish community and the type of strategy used by mussels for infecting host-fishes than by patterns of variability in microhabitat. Mussel species richness increased in a downstream direction, and large-stream sites were...

  20. Isolation and Characterization of Acetate-Utilizing Anaerobes from a Freshwater Sediment.

    PubMed

    Scholten, J.C.M.; Stams, A.J.M.

    2000-12-01

    Acetate-degrading anaerobic microorganisms in freshwater sediment were quantified by the most probable number technique. From the highest dilutions a methanogenic, a sulfate-reducing, and a nitrate-reducing microorganism were isolated with acetate as substrate. The methanogen (culture AMPB-Zg) was non-motile and rod-shaped with blunted ends (0.5-1 mm x 3-4 mm long). Doubling times with acetate at 30-35 degrees C were 5.6-8.1 days. The methanogen grew only on acetate. Analysis of the 16S rRNA sequence showed that AMPB-Zg is closely related to Methanosaeta concilii. The isolated sulfate-reducing bacterium (strain ASRB-Zg) was rod-shaped with pointed ends (0.5-0.7 mm x 1.5-3.5 mm long), weakly motile, spore forming, and gram positive. At the optimum growth temperature of 30 degrees C the doubling times with acetate were 3.9-5.3 days. The bacterium grew on a range of organic acids, such as acetate, butyrate, fumarate, and benzoate, but did not grow autotrophically with H2, CO2, and sulfate. The closest relative of strain ASRB-Zg is Desulfotomaculum acetoxidans. The nitrate-reducing bacterium (strain ANRB-Zg) was rod-shaped (0.5-0.7 mm x 0.7-1 mm long), weakly motile, and gram negative. Optimum growth with acetate occurred at 20-25 degrees C. The bacterium grew on a range of organic substrates, such as acetate, butyrate, lactate, and glucose, and did grow autotrophically with H2, CO2, and oxygen but not with nitrate. In the presence of acetate and nitrate, thiosulfate was oxidized to sulfate. Phylogenetically, the closest relative of strain ANRB-Zg is Variovorax paradoxus.

  1. Isotopic composition of inorganic mercury and methylmercury downstream of a historical gold mining region

    USGS Publications Warehouse

    Donovan, Patrick M.; Blum, Joel D.; Singer, Michael B.; Marvin-DiPasquale, Mark C.; Tsui, Martin T.K.

    2016-01-01

    We measured total mercury (THg) and monomethyl mercury (MMHg) concentrations and mercury (Hg) isotopic compositions in sediment and aquatic organisms from the Yuba River (California, USA) to identify Hg sources and biogeochemical transformations downstream of a historical gold mining region. Sediment THg concentrations and δ202Hg decreased from the upper Yuba Fan to the lower Yuba Fan and the Feather River. These results are consistent with the release of Hg during gold mining followed by downstream mixing and dilution. The Hg isotopic composition of Yuba Fan sediment (δ202Hg = −0.38 ± 0.17‰ and Δ199Hg = 0.04 ± 0.03‰; mean ± 1 SD, n = 7) provides a fingerprint of inorganic Hg (IHg) that could be methylated locally or after transport downstream. The isotopic composition of MMHg in the Yuba River food web was estimated using biota with a range of %MMHg (the percent of THg present as MMHg) and compared to IHg in sediment, algae, and the food web. The estimated δ202Hg of MMHg prior to photodegradation (−1.29 to −1.07‰) was lower than that of IHg and we suggest this is due to mass-dependent fractionation (MDF) of up to −0.9‰ between IHg and MMHg. This result is in contrast to net positive MDF (+0.4 to +0.8‰) previously observed in lakes, estuaries, coastal oceans, and forests. We hypothesize that this unique relationship could be due to differences in the extent or pathway of biotic MMHg degradation in stream environments.

  2. Isotopic Composition of Inorganic Mercury and Methylmercury Downstream of a Historical Gold Mining Region.

    PubMed

    Donovan, Patrick M; Blum, Joel D; Singer, Michael Bliss; Marvin-DiPasquale, Mark; Tsui, Martin T K

    2016-02-16

    We measured total mercury (THg) and monomethyl mercury (MMHg) concentrations and mercury (Hg) isotopic compositions in sediment and aquatic organisms from the Yuba River (California, USA) to identify Hg sources and biogeochemical transformations downstream of a historical gold mining region. Sediment THg concentrations and δ(202)Hg decreased from the upper Yuba Fan to the lower Yuba Fan and the Feather River. These results are consistent with the release of Hg during gold mining followed by downstream mixing and dilution. The Hg isotopic composition of Yuba Fan sediment (δ(202)Hg = -0.38 ± 0.17‰ and Δ(199)Hg = 0.04 ± 0.03‰; mean ± 1 SD, n = 7) provides a fingerprint of inorganic Hg (IHg) that could be methylated locally or after transport downstream. The isotopic composition of MMHg in the Yuba River food web was estimated using biota with a range of %MMHg (the percent of THg present as MMHg) and compared to IHg in sediment, algae, and the food web. The estimated δ(202)Hg of MMHg prior to photodegradation (-1.29 to -1.07‰) was lower than that of IHg and we suggest this is due to mass-dependent fractionation (MDF) of up to -0.9‰ between IHg and MMHg. This result is in contrast to net positive MDF (+0.4 to +0.8‰) previously observed in lakes, estuaries, coastal oceans, and forests. We hypothesize that this unique relationship could be due to differences in the extent or pathway of biotic MMHg degradation in stream environments.

  3. Spatial and temporal distribution of microplastics in water and sediments of a freshwater system (Antuã River, Portugal).

    PubMed

    Rodrigues, M O; Abrantes, N; Gonçalves, F J M; Nogueira, H; Marques, J C; Gonçalves, A M M

    2018-08-15

    Microplastics (particles with a size<5mm), one of the most emerging aquatic pollutants, are of particular concern since they can reach high densities and interact with biotic and abiotic environment. The occurrence of microplastics in freshwater systems is less understood than in marine environment. Hence, the present study aims to provide new insights into microplastics abundances and distribution in Antuã River (Portugal) by applying the isolation method of wet peroxide oxidation with addition of zinc chloride to water and sediment samples collected in March and October 2016, in three sampling sites. The abundance of microplastics in water ranged from 5 to 8.3mgm -3 or 58-193itemsm -3 in March and from 5.8-51.7mgm -3 or 71-1265itemsm -3 in October. In sediments, the abundance ranged from 13.5-52.7mgkg -1 or 100-629itemskg -1 in March and from 2.6-71.4mgkg -1 or 18-514itemskg -1 in October. The water and sediment samples with the greatest abundances were from São João da Madeira and Aguincheira, respectively. Spatio-temporal distribution showed different pattern according to methodological approaches, seasonal and hydrodynamic conditions and the proximity to urban/industry areas. Analysis of plastics by Fourier transform infrared spectroscopy underline polyethylene and polypropylene as the most common polymer types identified in this work. The low medium high oxidation ratio was 56:22:22 (%) in March and 61:31:8 (%) in October. Foams and fibers were the most abundant type in São João da Madeira, while fibers and fragments were the most abundant in Aguincheira and Estarreja in water and sediment samples, respectively. This study emphasizes the importance of rivers as carriage systems of microplastics. Further studies should be performed to identify point sources in order to mitigate the microplastics contamination in aquatic systems. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Characterization of anaerobic heterotrophic bacteria isolated from freshwater lake sediments.

    PubMed Central

    Molongoski, J J; Klug, M J

    1976-01-01

    Strict anaerobic culture techniques were used to quantitatively and qualitatively evaluate the anaerobic heterotrophic bacteria present at the sediment-water interface of hyperutrophic Wintergreen Lake (Augusta, Mich.). Anaerobic plate counts remained constant from March through December, 1973, ranging from 2.4 X 10(6) to 5.7 X 10(6) organisms/g (dry weight) of sediment. The isolatable bacteria represented a small percentage of the total microbial community, which was shown by direct microscopic counts to be 2.0 X 10'' organisms/g (dry weight) of sediment during June and July. Bacteria of the genus Clostridium dominated the isolates obtained, accounting for 71.8% of the 960 isolates examined. A single species, Clostridium bifermentens, comprised 47.7% of the total. Additional bacterial groups and the percentage in which they were isolated included: Streptococcus sp. (10.8%), unidentified curved rods (9.5%y, gram-positive nonsporing rods (5.6%), and motile gram-negative rods (1.9%). Temperature growth studies demonstrated the ability of all the isolates to grow at in situ sediment temperatures. Gas-liqid radiochromatography was used to determine the soluble metabolic end products from [U-14C]glucose and a U-14C-labeled amino acid mixture by representative sedimentary clostridial isolates and by natural sediment microbial communities. At in situ temperatures the natural sediment microflora produced soluble fermentative end products characteristic of those elaborated by the clostridial isolates tested. These results are considered strong presumptive evidence that clostridia are actively metabolizing in the sediments of Wintergreen Lake. PMID:942211

  5. Can marine bacteria be recruited from freshwater sources and the air?

    PubMed Central

    Comte, Jérôme; Lindström, Eva S; Eiler, Alexander; Langenheder, Silke

    2014-01-01

    There is now clear evidence that microorganisms present biogeographic patterns, yet the processes that create and maintain them are still not well understood. In particular, the contribution of dispersal and its exact impact on local community composition is still unclear. For example, dispersing cells may not thrive in recipient environments, but may still remain part of the local species pool. Here, we experimentally tested if marine bacteria can be retrieved from freshwater communities (pelagic and sediment) and the atmosphere by exposing bacteria from three lakes, that differ in their proximity to the Norwegian Sea, to marine conditions. We found that the percentage of freshwater taxa decreased with increasing salinities, whereas marine taxa increased along the same gradient. Our results further showed that this increase was stronger for lake and sediment compared with air communities. Further, significant increases in the average niche breadth of taxa were found for all sources, and in particular lake water and sediment communities, at higher salinities. Our results therefore suggests that marine taxa can readily grow from freshwater sources, but that the response was likely driven by the growth of habitat generalists that are typically found in marine systems. Finally, there was a greater proportion of marine taxa found in communities originating from the lake closest to the Norwegian Sea. In summary, this study shows that the interplay between bacterial dispersal limitation and dispersal from internal and external sources may have an important role for community recovery in response to environmental change. PMID:24906016

  6. 5. AERATOR VIEW FROM DOWNSTREAM. FLUSH VALVE AT RIGHT OPENS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. AERATOR VIEW FROM DOWNSTREAM. FLUSH VALVE AT RIGHT OPENS TO CLEAR THE SYSTEM ABOVE THE SILT AND DEBRIS AND TO STOP THE FLOW OF WATER INTO THE SYSTEM DOWN LINE. BOX FLUME CONTINUES DOWN LINE TO SEDIMENTATION CHAMBER. - Kalaupapa Water Supply System, Waikolu Valley to Kalaupapa Settlement, Island of Molokai, Kalaupapa, Kalawao County, HI

  7. Microbial Iron(II) Oxidation in Littoral Freshwater Lake Sediment: The Potential for Competition between Phototrophic vs. Nitrate-Reducing Iron(II)-Oxidizers

    PubMed Central

    Melton, E. D.; Schmidt, C.; Kappler, A.

    2012-01-01

    The distribution of neutrophilic microbial iron oxidation is mainly determined by local gradients of oxygen, light, nitrate and ferrous iron. In the anoxic top part of littoral freshwater lake sediment, nitrate-reducing and phototrophic Fe(II)-oxidizers compete for the same e− donor; reduced iron. It is not yet understood how these microbes co-exist in the sediment and what role they play in the Fe cycle. We show that both metabolic types of anaerobic Fe(II)-oxidizing microorganisms are present in the same sediment layer directly beneath the oxic-anoxic sediment interface. The photoferrotrophic most probable number counted 3.4·105 cells·g−1 and the autotrophic and mixotrophic nitrate-reducing Fe(II)-oxidizers totaled 1.8·104 and 4.5·104 cells·g−1 dry weight sediment, respectively. To distinguish between the two microbial Fe(II) oxidation processes and assess their individual contribution to the sedimentary Fe cycle, littoral lake sediment was incubated in microcosm experiments. Nitrate-reducing Fe(II)-oxidizing bacteria exhibited a higher maximum Fe(II) oxidation rate per cell, in both pure cultures and microcosms, than photoferrotrophs. In microcosms, photoferrotrophs instantly started oxidizing Fe(II), whilst nitrate-reducing Fe(II)-oxidizers showed a significant lag-phase during which they probably use organics as e− donor before initiating Fe(II) oxidation. This suggests that they will be outcompeted by phototrophic Fe(II)-oxidizers during optimal light conditions; as phototrophs deplete Fe(II) before nitrate-reducing Fe(II)-oxidizers start Fe(II) oxidation. Thus, the co-existence of the two anaerobic Fe(II)-oxidizers may be possible due to a niche space separation in time by the day-night cycle, where nitrate-reducing Fe(II)-oxidizers oxidize Fe(II) during darkness and phototrophs play a dominant role in Fe(II) oxidation during daylight. Furthermore, metabolic flexibility of Fe(II)-oxidizing microbes may play a paramount role in the

  8. Multiyear Downstream Response to Dam Removal on the White Salmon River, WA

    NASA Astrophysics Data System (ADS)

    Wilcox, A. C.; O'Connor, J. E.; Major, J. J.

    2017-12-01

    The 2011 removal of the 38 m tall Condit Dam on the White Salmon River, Washington was one of the largest dam removals to date, in terms of both dam height and sediment release. We examined the multiyear geomorphic response to this event, through 2015, including in a bedrock-confined canyon and in a less-confined, backwater-influenced pool reach near the river's mouth, to the large, rapid influx of fine reservoir sediment produced by the breach and to subsequent sediment transfer in the free-flowing White Salmon River. In the canyon reach, aggraded sediments were rapidly eroded from riffles, returning them toward pre-breach bed elevations within weeks, but pool aggradation persisted for longer. The downstream, less-confined reach transformed from a deep pool to a narrower pool-riffle channel with alternate bars; multiyear observations showed persistence of bars and of this new and distinct morphology. This downstream reach marks a rare case in post-dam removal channel response; in most dam removals, channels have rapidly reverted toward pre-removal morphology, as in the canyon reach here. Comparison of the multiyear geomorphic evolution of the White Salmon River to other recent large dam removals in the U.S. allows evaluation of the relative influences of antecedent channel morphology, post-breach hydrology, and dam removal style, as well as providing a basis for predicting responses to future dam removals.

  9. Toxicological effects of polychlorinated biphenyls (PCBs) on freshwater turtles in the United States.

    PubMed

    Ming-Ch'eng Adams, Clare Isabel; Baker, Joel E; Kjellerup, Birthe V

    2016-07-01

    Prediction of vertebrate health effects originating from persistent organic pollutants (POPs) such as polychlorinated biphenyls (PCBs) has remained a challenge for decades thus making the identification of bioindicators difficult. POPs are predominantly present in soil and sediment, where they adhere to particles due to their hydrophobic characteristics. Animals inhabiting soil and sediment can be exposed to PCBs via dermal exposure while others may obtain PCBs through contaminated trophic interaction. Freshwater turtles can serve as bioindicators due to their strong site fidelity, longevity and varied diet. Previous research observed the health effects of PCBs on turtles such as decreased bone mass, changed sexual development and decreased immune responses through studying both contaminated sites along with laboratory experimentation. Higher deformity rates in juveniles, increased mortality and slower growth have also been observed. Toxicological effects of PCBs vary between species of freshwater turtles and depend on the concertation and configuration of PCB congeners. Evaluation of ecotoxicological effects of PCBs in non-endangered turtles could provide important knowledge about the health effects of endangered turtle species thus inform the design of remediation strategies. In this review, the PCB presence in freshwater turtle habitats and the ecotoxicological effects were investigated with the aim of utilizing the health status to identify areas of focus for freshwater turtle conservation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Abundance of Dioxygenase Genes Similar to Ralstonia sp. Strain U2 nagAc Is Correlated with Naphthalene Concentrations in Coal Tar-Contaminated Freshwater Sediments

    PubMed Central

    Dionisi, Hebe M.; Chewning, Christopher S.; Morgan, Katherine H.; Menn, Fu-Min; Easter, James P.; Sayler, Gary S.

    2004-01-01

    We designed a real-time PCR assay able to recognize dioxygenase large-subunit gene sequences with more than 90% similarity to the Ralstonia sp. strain U2 nagAc gene (nagAc-like gene sequences) in order to study the importance of organisms carrying these genes in the biodegradation of naphthalene. Sequencing of PCR products indicated that this real-time PCR assay was specific and able to detect a variety of nagAc-like gene sequences. One to 100 ng of contaminated-sediment total DNA in 25-μl reaction mixtures produced an amplification efficiency of 0.97 without evident PCR inhibition. The assay was applied to surficial freshwater sediment samples obtained in or in close proximity to a coal tar-contaminated Superfund site. Naphthalene concentrations in the analyzed samples varied between 0.18 and 106 mg/kg of dry weight sediment. The assay for nagAc-like sequences indicated the presence of (4.1 ± 0.7) × 103 to (2.9 ± 0.3) × 105 copies of nagAc-like dioxygenase genes per μg of DNA extracted from sediment samples. These values corresponded to (1.2 ± 0.6) × 105 to (5.4 ± 0.4) × 107 copies of this target per g of dry weight sediment when losses of DNA during extraction were taken into account. There was a positive correlation between naphthalene concentrations and nagAc-like gene copies per microgram of DNA (r = 0.89) and per gram of dry weight sediment (r = 0.77). These results provide evidence of the ecological significance of organisms carrying nagAc-like genes in the biodegradation of naphthalene. PMID:15240274

  11. Spatial and temporal patterns in channel change on the Snake River downstream from Jackson Lake dam, Wyoming

    NASA Astrophysics Data System (ADS)

    Nelson, Nicholas C.; Erwin, Susannah O.; Schmidt, John C.

    2013-10-01

    Operations of Jackson Lake dam (JLD) have altered the hydrology and sediment transport capacity of the Snake River in Grand Teton National Park. Prior research has provided conflicting assessments of whether the downstream river was perturbed into sediment surplus or sediment deficit. In this paper, we present the results of an aerial photo analysis designed to evaluate whether the history of channel change indicates either significant deficit or surplus of sediment that could be expressed as narrowing or expansion of the channel over time. We analyze changes in braid index, channel width, channel activity, and net channel change of the Snake River based on four series of aerial photographs. Between 1945 and 1969, a period of relatively small main-stem floods, widespread deposition, and up to 31% reduction in channel width occurred throughout the Snake River. Between 1969 and 2002, a period of large main-stem floods, the style of channel change reversed with a decrease in braid index and an increase in channel width of up to 31%. These substantial changes in the channel downstream from the dam primarily occurred in multithread reaches, regardless of proximity to tributaries, and no temporal progression of channel narrowing or widening was observed. We demonstrate that channel change downstream from JLD is more temporally and longitudinally complex than previously described.

  12. Continuous-flow centrifugation to collect suspended sediment for chemical analysis

    USGS Publications Warehouse

    Conn, Kathleen E.; Dinicola, Richard S.; Black, Robert W.; Cox, Stephen E.; Sheibley, Richard W.; Foreman, James R.; Senter, Craig A.; Peterson, Norman T.

    2016-12-22

    polychlorinated biphenyls. The particle-size distribution of the captured sediment changes to a more fine-grained sample during centrifugation, and the necessity to account for this change when extrapolating chemical concentrations on the centrifuged sediment sample to the environmental water system is discussed.The data produced using this method will help eliminate a data gap of suspended sediment-bound chemical concentrations, and will support management decisions, such as chemical source-control efforts or in-stream restoration activities. When coupled with streamflow and sediment flux data, it will improve estimates of riverine chemical fluxes, and will aid in assessing the importance and impacts of suspended sediment-bound chemicals to downstream freshwater and coastal marine ecosystems.

  13. Implementation of sediment dynamics in a global integrated assessment model for an improved simulation of nutrient retention and transfers in surface freshwaters

    NASA Astrophysics Data System (ADS)

    Vilmin, L.; Beusen, A.; Mogollón, J.; Bouwman, L.

    2017-12-01

    Sediment dynamics play a significant role in river biogeochemical functioning. They notably control the transfer of particle-bound nutrients, have a direct influence on light availability for primary production, and particle accumulation can affect oxic conditions of river beds. In the perspective of improving our current understanding of large scale nutrient fluxes in rivers, it is hence necessary to include these dynamics in global models. In this scope, we implement particle accumulation and remobilization in a coupled global hydrology-nutrient model (IMAGE-GNM), at a spatial resolution of 0.5°. The transfer of soil loss from natural and agricultural lands is simulated mechanistically, from headwater streams to estuaries. First tests of the model are performed in the Mississippi river basin. At a yearly time step for the period 1978-2000, the average difference between simulated and measured suspended sediment concentrations at the most downstream monitoring station is 25%. Sediment retention is estimated in the different Strahler stream orders, in lakes and reservoirs. We discuss: 1) the distribution of sediment loads to small streams, which has a significant effect on transfers through watersheds and larger scale river fluxes and 2) the potential effect of damming on the fate of particle-bound nutrients. These new developments are crucial for future assessments of large scale nutrient and carbon fluxes in river systems.

  14. A TOXICITY ASSESSMENT APPROACH FOR THE EVALUATION OF IN-SITU BIOREMEDIATION OF PAH CONTAMINATED SEDIMENTS

    EPA Science Inventory

    Freshwater and marine sediment toxicity test were used to measure baseline toxicity of sediment samples collected from New York/New Jersey Harbor (NY/NJH) and East River (ER) (PAH contaminated) sediments and to determine the effectiveness of the developed biotreatment strategies ...

  15. STABLE NITROGEN ISOTOPES AS INDICATORS OF ANTHOPOGENIC ACTIVITIES IN SMALL FRESHWATER SYSTEMS

    EPA Science Inventory

    Stable nitrogen isotope ratios ( 15N) were measured in fish, mussel, and sediment samples taken from 17 small freshwater sites to examine food chain length and trophic position across sites affected by differing levels of anthropogenic activity. Both shoreline development and fis...

  16. Modeling Hydrodynamics, Water Temperature, and Suspended Sediment in Detroit Lake, Oregon

    USGS Publications Warehouse

    Sullivan, Annett B.; Rounds, Stewart A.; Sobieszczyk, Steven; Bragg, Heather M.

    2007-01-01

    Detroit Lake is a large reservoir on the North Santiam River in west-central Oregon. Water temperature and suspended sediment are issues of concern in the river downstream of the reservoir. A CE-QUAL-W2 model was constructed to simulate hydrodynamics, water temperature, total dissolved solids, and suspended sediment in Detroit Lake. The model was calibrated for calendar years 2002 and 2003, and for a period of storm runoff from December 1, 2005, to February 1, 2006. Input data included lake bathymetry, meteorology, reservoir outflows, and tributary inflows, water temperatures, total dissolved solids, and suspended sediment concentrations. Two suspended sediment size groups were modeled: one for suspended sand and silt with particle diameters larger than 2 micrometers, and another for suspended clay with particle diameters less than or equal to 2 micrometers. The model was calibrated using lake stage data, lake profile data, and data from a continuous water-quality monitor on the North Santiam River near Niagara, about 6 kilometers downstream of Detroit Dam. The calibrated model was used to estimate sediment deposition in the reservoir, examine the sources of suspended sediment exiting the reservoir, and examine the effect of the reservoir on downstream water temperatures.

  17. Effect of Sediment Availability in Bedload-Dominated Rivers on Fluvial Geomorphic Equilibrium

    NASA Astrophysics Data System (ADS)

    Marti, M.

    2016-12-01

    Channels are known to compensate for changes in sediment supply via covariate changes in channel properties, yet the timescale for adjustment remains poorly constrained. We propose that reductions in sediment flux inhibit equilibrium re-establishment and thus impact the timescale of system adjustment. Using run-of-river dams as natural experiments, this study quantifies the geomorphic response of channels to sediment supply reduction. Channel traits that facilitate increased sediment trapping behind the dam, such as large reservoir storage capacity relative to annual inflow and low slope, were expected to inhibit a channel's ability to re-establish equilibrium following impoundment, lengthening the equilibrium establishment timescale to tens or hundreds of years. Reaches associated with increased trapping were therefore anticipated to exhibit non-equilibrium forms. Channel equilibrium was evaluated downstream of 8 ROR dams in New England with varying degrees of sediment trapping. Sites cover a range of watershed sizes (3-155 km2), channel slopes (.05-5%), 2-year discharges (1.5-60 m3/s) and storage capacity volumes. Because equilibrium channel form is just sufficient to mobilize grains under bankfull conditions in bedload-dominated rivers, the Shields parameter was used to assess equilibrium form. Unregulated, upstream Shields values and regulated, downstream values were calculated at 14 total cross-sections extending 300-450 m upstream and downstream of each dam. Sediment trapping was estimated using Brune's curve (1953). On the Charles Brown Brook (VT), a marginally significant (p=0.08) increase in Shields values from a mean of 0.14 upstream to 0.41 downstream of a 100+ year old dam was observed. In contrast, reaches downstream of the 100+ year old Pelham dam (MA) exhibit significantly lower Shields values. This suggests that trapping behind the dam inhibits the downstream channel from reaching an equilibrium state, but not always in the same way. Better

  18. Estimating sedimentation rates and sources in a partially urbanized catchment using caesium-137

    NASA Astrophysics Data System (ADS)

    Ormerod, L. M.

    1998-06-01

    While there has been increased interest in determining sedimentation rates and sources in agricultural and forested catchments in recent years, there have been few studies dealing with urbanized catchments. A study of sedimentation rates and sources within channel and floodplain deposits of a partially urbanized catchment has been undertaken using the 137Cs technique. Results for sedimentation rates showed no particular downstream pattern. This may be partially explained by underestimation of sedimentation rates at some sites by failure to sample the full 137Cs profile, floodplain erosion and deliberate removal of sediment. Evidence of lateral increases in net sedimentation rates with distance from the channel may be explained by increased floodplain erosion at sites closer to the channel and floodplain formation by lateral deposition. Potential sediment sources for the catchment were considered to be forest topsoil, subsurface material and sediments derived from urban areas, which were found to be predominantly subsurface material. Tracing techniques showed an increase in subsurface material for downstream sites, confirming expectations that subsurface material would increase in the downstream direction in response to the direct and indirect effects of urbanization.

  19. TIE METHODS FOR TOXICITY EVALUATION OF FRESHWATER SEDIMENTS

    EPA Science Inventory

    Three toxicity identification evaluation (TIE) methods, AVS spiking, zero-valent metal and cation exchange resin, have been used with metal contaminated and enriched sediments to remove the toxicity...

  20. In situ microbiota distinguished primary anthropogenic stressor in freshwater sediments.

    PubMed

    Xie, Yuwei; Floehr, Tilman; Zhang, Xiaowei; Xiao, Hongxia; Yang, Jianghua; Xia, Pu; Burton, G Allen; Hollert, Henner

    2018-08-01

    Conventional assessment and evaluation of sediment quality are based on laboratory-based ecotoxicological and chemical measurements with lack of concern for ecological relevance. Microbiotas in sediment are responsive to pollutants and can be used as alternative ecological indicators of sediment pollutants; however, the linkage between the microbial ecology and ecotoxicological endpoints in response to sediment contamination has been poorly evaluated. Here, in situ microbiotas from the Three Gorges Reservoir (TGR) area of the Yangtze River were characterized by DNA metabarcoding approaches, and then, changes of in situ microbiotas were compared with the ecotoxicological endpoint, aryl hydrocarbon receptor (AhR) mediated activity, and level of polycyclic aromatic hydrocarbons (PAHs) in sediments. PAHs and organic pollutant mixtures mediating AhR activity had different effects on the structures of microbiotas. Specifically, Shannon indices of protistan communities were negatively correlated with the levels of AhR mediated activity and PAHs. The sediment AhR activity was positively correlated with the relative abundance of prokaryotic Acetobacteraceae, but had a negative correlation with protistan Oxytrichidae. Furthermore, a quantitative classification model was built to predict the level of AhR activity based on the relative abundances of Acetobacteraceae and Oxytrichidae. These results suggested that in situ Protista communities could provide a useful tool for monitoring and assessing ecological stressors. The observed responses of microbial community provided supplementary evidence to support that the AhR-active pollutants, such as PAHs, were the primary stressors of the aquatic community in TGR area. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. IDENTIFICATION OF SEDIMENT SOURCE AREAS WITHIN A WATERSHED

    EPA Science Inventory

    Identification of sediment source areas is crucial for designing proper abatement strategies that reduce sediment and associated contaminant loading to receiving water downstream. In this study, two methodologies were developed to identify the source areas and their relative stre...

  2. Freshwater Megafauna: Flagships for Freshwater Biodiversity under Threat

    PubMed Central

    Carrizo, Savrina F.; Bremerich, Vanessa; Freyhof, Jörg; Harrison, Ian; He, Fengzhi; Langhans, Simone D.; Tockner, Klement; Zarfl, Christiane; Darwall, William

    2017-01-01

    Abstract Freshwater biodiversity is highly threatened and is decreasing more rapidly than its terrestrial or marine counterparts; however, freshwaters receive less attention and conservation investment than other ecosystems do. The diverse group of freshwater megafauna, including iconic species such as sturgeons, river dolphins, and turtles, could, if promoted, provide a valuable tool to raise awareness and funding for conservation. We found that freshwater megafauna inhabit every continent except Antarctica, with South America, Central Africa, and South and Southeast Asia being particularly species rich. Freshwater megafauna co-occur with up to 93% of mapped overall freshwater biodiversity. Fifty-eight percent of the 132 megafauna species included in the study are threatened, with 84% of their collective range falling outside of protected areas. Of all threatened freshwater species, 83% are found within the megafauna range, revealing the megafauna's capacity as flagship and umbrella species for fostering freshwater conservation. PMID:29599539

  3. Freshwater Megafauna: Flagships for Freshwater Biodiversity under Threat.

    PubMed

    Carrizo, Savrina F; Jähnig, Sonja C; Bremerich, Vanessa; Freyhof, Jörg; Harrison, Ian; He, Fengzhi; Langhans, Simone D; Tockner, Klement; Zarfl, Christiane; Darwall, William

    2017-10-01

    Freshwater biodiversity is highly threatened and is decreasing more rapidly than its terrestrial or marine counterparts; however, freshwaters receive less attention and conservation investment than other ecosystems do. The diverse group of freshwater megafauna, including iconic species such as sturgeons, river dolphins, and turtles, could, if promoted, provide a valuable tool to raise awareness and funding for conservation. We found that freshwater megafauna inhabit every continent except Antarctica, with South America, Central Africa, and South and Southeast Asia being particularly species rich. Freshwater megafauna co-occur with up to 93% of mapped overall freshwater biodiversity. Fifty-eight percent of the 132 megafauna species included in the study are threatened, with 84% of their collective range falling outside of protected areas. Of all threatened freshwater species, 83% are found within the megafauna range, revealing the megafauna's capacity as flagship and umbrella species for fostering freshwater conservation.

  4. Ecological impacts of lead mining on Ozark streams: toxicity of sediment and pore water.

    PubMed

    Besser, John M; Brumbaugh, William G; Allert, Ann L; Poulton, Barry C; Schmitt, Christopher J; Ingersoll, Christopher G

    2009-02-01

    We studied the toxicity of sediments downstream of lead-zinc mining areas in southeast Missouri, using chronic sediment toxicity tests with the amphipod, Hyalella azteca, and pore-water toxicity tests with the daphnid, Ceriodaphnia dubia. Tests conducted in 2002 documented reduced survival of amphipods in stream sediments collected near mining areas and reduced survival and reproduction of daphnids in most pore waters tested. Additional amphipod tests conducted in 2004 documented significant toxic effects of sediments from three streams downstream of mining areas: Strother Creek, West Fork Black River, and Bee Fork. Greatest toxicity occurred in sediments from a 6-km reach of upper Strother Creek, but significant toxic effects occurred in sediments collected at least 14 km downstream of mining in all three watersheds. Toxic effects were significantly correlated with metal concentrations (nickel, zinc, cadmium, and lead) in sediments and pore waters and were generally consistent with predictions of metal toxicity risks based on sediment quality guidelines, although ammonia and manganese may also have contributed to toxicity at a few sites. Responses of amphipods in sediment toxicity tests were significantly correlated with characteristics of benthic invertebrate communities in study streams. These results indicate that toxicity of metals associated with sediments contributes to adverse ecological effects in streams draining the Viburnum Trend mining district.

  5. Ecological impacts of lead mining on Ozark streams: Toxicity of sediment and pore water

    USGS Publications Warehouse

    Besser, J.M.; Brumbaugh, W.G.; Allert, A.L.; Poulton, B.C.; Schmitt, C.J.; Ingersoll, C.G.

    2009-01-01

    We studied the toxicity of sediments downstream of lead-zinc mining areas in southeast Missouri, using chronic sediment toxicity tests with the amphipod, Hyalella azteca, and pore-water toxicity tests with the daphnid, Ceriodaphnia dubia. Tests conducted in 2002 documented reduced survival of amphipods in stream sediments collected near mining areas and reduced survival and reproduction of daphnids in most pore waters tested. Additional amphipod tests conducted in 2004 documented significant toxic effects of sediments from three streams downstream of mining areas: Strother Creek, West Fork Black River, and Bee Fork. Greatest toxicity occurred in sediments from a 6-km reach of upper Strother Creek, but significant toxic effects occurred in sediments collected at least 14 km downstream of mining in all three watersheds. Toxic effects were significantly correlated with metal concentrations (nickel, zinc, cadmium, and lead) in sediments and pore waters and were generally consistent with predictions of metal toxicity risks based on sediment quality guidelines, although ammonia and manganese may also have contributed to toxicity at a few sites. Responses of amphipods in sediment toxicity tests were significantly correlated with characteristics of benthic invertebrate communities in study streams. These results indicate that toxicity of metals associated with sediments contributes to adverse ecological effects in streams draining the Viburnum Trend mining district.

  6. Laboratory experiments on dam-break flow of water-sediment mixtures

    USDA-ARS?s Scientific Manuscript database

    Dams induce sedimentation and store significant amounts of sediment as they age; therefore, dam failures often involve the release of sediment-laden water to the downstream floodplain. In particular, tailings dams, which are constructed to impound mining wastes, can cause devastating damage when the...

  7. Development and application of an innovative expert decision support system to manage sediments and to assess environmental risk in freshwater ecosystems.

    PubMed

    Dagnino, Alessandro; Bo, Tiziano; Copetta, Andrea; Fenoglio, Stefano; Oliveri, Caterina; Bencivenga, Mauro; Felli, Angelo; Viarengo, Aldo

    2013-10-01

    With the aim of supporting decision makers to manage contamination in freshwater environments, an innovative expert decision support system (EDSS) was developed. The EDSS was applied in a sediment quality assessment along the Bormida river (NW, Italy) which has been heavily contaminated by an upstream industrial site for more than a century. Sampling sites were classified by means of comparing chemical concentrations with effect-based target values (threshold and probable effect concentrations). The level of each contaminant and the combined toxic pressure were used to rank sites into three categories: (i) uncontaminated (8 sites), (ii) mildly contaminated (4) and (iii) heavily contaminated (19). In heavily contaminated sediments, an environmental risk index (EnvRI) was determined by means of integrating chemical data with ecotoxicological and ecological parameters (triad approach). In addition a sediment risk index (SedRI) was computed from combining chemical and ecotoxicological data. Eight sites exhibited EnvRI values ≥0.25, the safety threshold level (range of EnvRI values: 0.14-0.31) whereas SedRI exceeded the safety threshold level at 6 sites (range of SedRI values: 0.16-0.36). At sites classified as mildly contaminated, sublethal biomarkers were integrated with chemical data into a biological vulnerability index (BVI), which exceeded the safety threshold level at one site (BVI value: 0.28). Finally, potential human risk was assessed in selected stations (11 sites) by integrating genotoxicity biomarkers (GTI index falling in the range 0.00-0.53). General conclusions drawn from the EDSS data include: (i) in sites classified as heavily contaminated, only a few exhibited some significant, yet limited, effects on biodiversity; (ii) restrictions in re-using sediments from heavily contaminated sites found little support in ecotoxicological data; (iii) in the majority of the sites classified as mildly contaminated, tested organisms exhibited low response levels

  8. Limnobacter thiooxidans gen. nov., sp. nov., a novel thiosulfate-oxidizing bacterium isolated from freshwater lake sediment.

    PubMed

    Spring, S; Kämpfer, P; Schleifer, K H

    2001-07-01

    Two novel thiosulfate-oxidizing strains were isolated from sediment of the littoral zone of a freshwater lake (Lake Chiemsee, Bavaria, Germany). The new isolates, designated CS-K1 and CS-K2T, were gram-negative, slightly curved rods with pointed ends that were motile by means of single polar flagella. Both strains were obligately aerobic and grew on a variety of organic substrates, but not autotrophically. The utilization of thiosulfate led to an increase in the growth yield, indicating that these strains were able to grow chemolithoheterotrophically by oxidation of thiosulfate to sulfate. The optimum thiosulfate concentrations for growth were determined to be 10 mM for strain CS-K1 and 20 mM for strain CS-K2T. Phylogenetically, both strains were affiliated to the beta-Proteobacteria. Their characterization by a polyphasic approach resulted in the placement of both strains into a single species that is related only distantly to any known type species. Thus, the creation of a novel taxon is proposed, with the name Limnobacter thiooxidans gen. nov., sp. nov., to include the novel strains. In addition, the phylogenetic position of the chemolithoheterotrophic strain 'Thiobacillus' Q was determined.

  9. Chemometrical assessment of the electrical parameters obtained by long-term operating freshwater sediment microbial fuel cells.

    PubMed

    Mitov, Mario; Bardarov, Ivo; Mandjukov, Petko; Hubenova, Yolina

    2015-12-01

    The electrical parameters of nine freshwater sediment microbial fuel cells (SMFCs) were monitored for a period of over 20 months. The developed SMFCs, divided into three groups, were started up and continuously operated under different constant loads (100, 510 and 1100 Ω) for 2.5 months. At this stage of the experiment, the highest power density values, reaching 1.2 ± 0.2 mW/m(2), were achieved by the SMFCs loaded with 510 Ω. The maximum power obtained at periodical polarization during the rest period, however, ranged between 26.2 ± 2.8 and 35.3 ± 2.8 mW/m(2), strongly depending on the internal cell resistance. The statistical evaluation of data derived from the polarization curves shows that after 300 days of operation all examined SMFCs reached a steady-state and the system might be assumed as homoscedastic. The estimated values of standard and expanded uncertainties of the electric parameters indicate a high repeatability and reproducibility of the SMFCs' performance. Results obtained in subsequent discharge-recovery cycles reveal the opportunity for practical application of studied SMFCs as autonomous power sources.

  10. Impact of macrozoobenthic bioturbation and wind fluctuation interactions on net methylmercury in freshwater lakes.

    PubMed

    Wang, Peifang; Yao, Yu; Wang, Chao; Hou, Jun; Qian, Jin; Miao, Lingzhan

    2017-11-01

    The methylmercury (MeHg) as the toxic fractions has presented significant threats to biota in freshwater ecosystems. Hg methylation process is demonstrated to be manipulated by biota process (benthic disturbance and algae bloom existence) as well as the abiotic influence (wind fluctuation and illumination intensity) in freshwater ecosystems. However, the mechanisms influencing Hg methylation are still unclear, and the coupled influences of the biotic and abiotic process with the shifts in variation on methylmercury remain unexplored. Accordingly, an annular flume experiment which simulated the freshwater ecosystem, was conducted for 108 days to examine the influences of typical disturbance by chironomid larvae and wind fluctuations on MeHg variation in sediment profiles. The in-situ, passive sampler technique of revealing diffusive gradients in thin films (DGT) encompassed the special resin, based on referenced extraction and coloration-computer imaging densitometry, were employed to obtain labile MeHg, Fe, and S concentrations at high resolution. The results indicate that larval bioturbation during the initial period of the experiment could diminish bioavailable MeHg concentrations and change the diffusion direction of MeHg fluxes. However, this inhibitive effect on MeHg concentrations ceased with larvae eclosion. Compared to bioturbation, wind fluctuation exerted slow but sustained inhibition on MeHg release. Furthermore, the eight parameters (dissolved organic carbon (DOC), DO, labile Fe and S concentrations, pH, sulfate-reducing bacteria (SRB) abundance in sediment, oxidation-reduction potential (ORP) and EC) could explain more of variation in MeHg concentrations which indicated by the canonical correspondence analysis. And these eight parameters manifest higher explanatory power for MeHg distributed in newly formed sediment. More notably, the comparison results of the multiple and simple regression directly demonstrated the DOC was the fundamental and robust

  11. Decadal-timescale estuarine geomorphic change under future scenarios of climate and sediment supply

    USGS Publications Warehouse

    Ganju, N.K.; Schoellhamer, D.H.

    2010-01-01

    Future estuarine geomorphic change, in response to climate change, sea-level rise, and watershed sediment supply, may govern ecological function, navigation, and water quality. We estimated geomorphic changes in Suisun Bay, CA, under four scenarios using a tidal-timescale hydrodynamic/sediment transport model. Computational expense and data needs were reduced using the morphological hydrograph concept and the morphological acceleration factor. The four scenarios included (1) present-day conditions; (2) sea-level rise and freshwater flow changes of 2030; (3) sea-level rise and decreased watershed sediment supply of 2030; and (4) sea-level rise, freshwater flow changes, and decreased watershed sediment supply of 2030. Sea-level rise increased water levels thereby reducing wave-induced bottom shear stress and sediment redistribution during the wind-wave season. Decreased watershed sediment supply reduced net deposition within the estuary, while minor changes in freshwater flow timing and magnitude induced the smallest overall effect. In all future scenarios, net deposition in the entire estuary and in the shallowest areas did not keep pace with sea-level rise, suggesting that intertidal and wetland areas may struggle to maintain elevation. Tidal-timescale simulations using future conditions were also used to infer changes in optical depth: though sea-level rise acts to decrease mean light irradiance, decreased suspended-sediment concentrations increase irradiance, yielding small changes in optical depth. The modeling results also assisted with the development of a dimensionless estuarine geomorphic number representing the ratio of potential sediment import forces to sediment export forces; we found the number to be linearly related to relative geomorphic change in Suisun Bay. The methods implemented here are widely applicable to evaluating future scenarios of estuarine change over decadal timescales. ?? The Author(s) 2009.

  12. Capturing Bioavailable Organic Contaminants for Phase II Whole Sediment Toxicity Identification Evaluations

    EPA Science Inventory

    In Phase I of whole sediment TIEs, causes of toxicity to freshwater and marine organisms are characterized into broad toxicant classes including ammonia, metals and organic chemicals. In the whole sediment Phase I TIEs performed so far, organic chemicals have been shown to be t...

  13. Sediment concentration and turbidity changes during culvert removals.

    PubMed

    Foltz, Randy B; Yanosek, Kristina A; Brown, Timothy M

    2008-05-01

    The concentrations of sediment and turbidity in stream water were monitored during culvert removals to determine the short term effects of road obliteration. Sediment concentration was measured at 11 stream crossings among two locations in Idaho and one in Washington. Sediment concentration immediately below the culvert outlet exceeded levels above the culvert outlet by at least three orders of magnitude at all stream crossings. Sediment yields ranged from 170 to less than 1kg in the 24-h period following culvert removal. Turbidity exceeded the regulatory limits during culvert removal at all locations monitored in this study and remained above the limits beyond the monitoring periods of 24h at four of the locations. Sediment concentrations 100m downstream of the culvert outlet were reduced by an order of magnitude, but did not change the turbidity values sufficiently to meet regulatory limits. Sediment concentrations an average of 810m downstream of the culvert outlet were similar to sediment concentrations above the culvert for the entire excavation period and turbidity regulations were met. Mitigation consisting of two straw bales placed in the stream caused a significant reduction in sediment yield from an average of 67kg to an average of 1.6kg.

  14. 21,000 years of Ethiopian African monsoon variability recorded in sediments of the western Nile deep-sea fan: impact of the Nile freshwater inflow for the Mediterranean thermo-haline circulation

    NASA Astrophysics Data System (ADS)

    Revel, Marie; Colin, Christophe; Bernasconi, Stephano; Combourieu-Nebout, Nathalie; Ducassou, Emmanuelle; Rolland, Yann; Bosch, Delphine

    2014-05-01

    The Nile delta sedimentation constitutes a continuous high resolution (1.6 mm/year) record of Ethiopian African monsoon regime intensity. Multiproxy analyses performed on core MS27PT recovered in hemipelagic Nile sediment margin (<90 km outward of the Rosetta mouth of the Nile) allow the quantification of the Saharan aeolian dust and the Blue/White Nile River suspended matter frequency fluctuations during the last 21 cal. ka BP. The radiogenic Sr and Nd isotopes, clay mineralogy, bulk elemental composition and palynological analyses reveal large changes in source components, oscillating between a dominant aeolian Saharan contribution during the LGM and the Late Holocene (~4 to 2 cal. ka BP), a dominant Blue/Atbara Nile River contribution during the early Holocene (15 to 8.4 cal. ka BP) and a probable White Nile River contribution during the Middle Holocene (8.4 to 4 cal. ka BP). The following main features are highlighted: 1. The rapid shift from the LGM arid conditions to the African Humid Period (AHP) started at about 15 cal. ka BP. AHP extends until 8.4 cal. ka BP, and we suggest that the Ethiopian African Monsoon maximum between 12 and 8 cal. ka BP is responsible for a larger Blue/Atbara Nile sediment load and freshwater input into the Eastern Mediterranean Sea. 2. The transition between the AHP and the arid Late Holocene is gradual and occurs in two main phases between 8.4 and 6.5 cal. ka BP and 6.5 to 3.2 cal. ka BP. We suggest that the main rain belt shifted southward from 8.4 to ~4 cal. ka BP and was responsible for progressively reduced sediment load and freshwater input into the eastern Mediterranean Sea. 3. The aridification along the Nile catchments occurred from ~4 to 2 cal. ka BP. A dry period, which culminates at 3.2 cal. ka BP, and seems to coincide with a re-establishment of increased oceanic primary productivity in the western Mediterranean Sea. We postulate that the decrease in thermo-haline water Mediterranean circulation could be part of a

  15. Reclaiming freshwater sustainability in the Cadillac Desert

    PubMed Central

    Sabo, John L.; Sinha, Tushar; Bowling, Laura C.; Schoups, Gerrit H. W.; Wallender, Wesley W.; Campana, Michael E.; Cherkauer, Keith A.; Fuller, Pam L.; Graf, William L.; Hopmans, Jan W.; Kominoski, John S.; Taylor, Carissa; Trimble, Stanley W.; Webb, Robert H.; Wohl, Ellen E.

    2010-01-01

    Increasing human appropriation of freshwater resources presents a tangible limit to the sustainability of cities, agriculture, and ecosystems in the western United States. Marc Reisner tackles this theme in his 1986 classic Cadillac Desert: The American West and Its Disappearing Water. Reisner's analysis paints a portrait of region-wide hydrologic dysfunction in the western United States, suggesting that the storage capacity of reservoirs will be impaired by sediment infilling, croplands will be rendered infertile by salt, and water scarcity will pit growing desert cities against agribusiness in the face of dwindling water resources. Here we evaluate these claims using the best available data and scientific tools. Our analysis provides strong scientific support for many of Reisner's claims, except the notion that reservoir storage is imminently threatened by sediment. More broadly, we estimate that the equivalent of nearly 76% of streamflow in the Cadillac Desert region is currently appropriated by humans, and this figure could rise to nearly 86% under a doubling of the region's population. Thus, Reisner's incisive journalism led him to the same conclusions as those rendered by copious data, modern scientific tools, and the application of a more genuine scientific method. We close with a prospectus for reclaiming freshwater sustainability in the Cadillac Desert, including a suite of recommendations for reducing region-wide human appropriation of streamflow to a target level of 60%. PMID:21149727

  16. Reclaiming freshwater sustainability in the Cadillac Desert

    USGS Publications Warehouse

    Sabo, John L.; Sinha, Tushar; Bowling, Laura C.; Schoups, Gerrit H.W.; Wallender, Wesley W.; Campana, Michael E.; Cherkauer, Keith A.; Fuller, Pam L.; Graf, William L.; Hopmans, Jan W.; Kominoski, John S.; Taylor, Carissa; Trimble, Stanley W.; Webb, Robert H.; Wohl, Ellen E.

    2010-01-01

    Increasing human appropriation of freshwater resources presents a tangible limit to the sustainability of cities, agriculture, and ecosystems in the western United States. Marc Reisner tackles this theme in his 1986 classic Cadillac Desert: The American West and Its Disappearing Water. Reisner's analysis paints a portrait of region-wide hydrologic dysfunction in the western United States, suggesting that the storage capacity of reservoirs will be impaired by sediment infilling, croplands will be rendered infertile by salt, and water scarcity will pit growing desert cities against agribusiness in the face of dwindling water resources. Here we evaluate these claims using the best available data and scientific tools. Our analysis provides strong scientific support for many of Reisner's claims, except the notion that reservoir storage is imminently threatened by sediment. More broadly, we estimate that the equivalent of nearly 76% of streamflow in the Cadillac Desert region is currently appropriated by humans, and this figure could rise to nearly 86% under a doubling of the region's population. Thus, Reisner's incisive journalism led him to the same conclusions as those rendered by copious data, modern scientific tools, and the application of a more genuine scientific method. We close with a prospectus for reclaiming freshwater sustainability in the Cadillac Desert, including a suite of recommendations for reducing region-wide human appropriation of streamflow to a target level of 60%.

  17. Stormwater runoff drives viral community composition changes in inland freshwaters.

    PubMed

    Williamson, Kurt E; Harris, Jamie V; Green, Jasmin C; Rahman, Faraz; Chambers, Randolph M

    2014-01-01

    Storm events impact freshwater microbial communities by transporting terrestrial viruses and other microbes to freshwater systems, and by potentially resuspending microbes from bottom sediments. The magnitude of these impacts on freshwater ecosystems is unknown and largely unexplored. Field studies carried out at two discrete sites in coastal Virginia (USA) were used to characterize the viral load carried by runoff and to test the hypothesis that terrestrial viruses introduced through stormwater runoff change the composition of freshwater microbial communities. Field data gathered from an agricultural watershed indicated that primary runoff can contain viral densities approximating those of receiving waters. Furthermore, viruses attached to suspended colloids made up a large fraction of the total load, particularly in early stages of the storm. At a second field site (stormwater retention pond), RAPD-PCR profiling showed that the viral community of the pond changed dramatically over the course of two intense storms while relatively little change was observed over similar time scales in the absence of disturbance. Comparisons of planktonic and particle-associated viral communities revealed two completely distinct communities, suggesting that particle-associated viruses represent a potentially large and overlooked portion of aquatic viral abundance and diversity. Our findings show that stormwater runoff can quickly change the composition of freshwater microbial communities. Based on these findings, increased storms in the coastal mid-Atlantic region predicted by most climate change models will likely have important impacts on the structure and function of local freshwater microbial communities.

  18. Stormwater runoff drives viral community composition changes in inland freshwaters

    PubMed Central

    Williamson, Kurt E.; Harris, Jamie V.; Green, Jasmin C.; Rahman, Faraz; Chambers, Randolph M.

    2014-01-01

    Storm events impact freshwater microbial communities by transporting terrestrial viruses and other microbes to freshwater systems, and by potentially resuspending microbes from bottom sediments. The magnitude of these impacts on freshwater ecosystems is unknown and largely unexplored. Field studies carried out at two discrete sites in coastal Virginia (USA) were used to characterize the viral load carried by runoff and to test the hypothesis that terrestrial viruses introduced through stormwater runoff change the composition of freshwater microbial communities. Field data gathered from an agricultural watershed indicated that primary runoff can contain viral densities approximating those of receiving waters. Furthermore, viruses attached to suspended colloids made up a large fraction of the total load, particularly in early stages of the storm. At a second field site (stormwater retention pond), RAPD-PCR profiling showed that the viral community of the pond changed dramatically over the course of two intense storms while relatively little change was observed over similar time scales in the absence of disturbance. Comparisons of planktonic and particle-associated viral communities revealed two completely distinct communities, suggesting that particle-associated viruses represent a potentially large and overlooked portion of aquatic viral abundance and diversity. Our findings show that stormwater runoff can quickly change the composition of freshwater microbial communities. Based on these findings, increased storms in the coastal mid-Atlantic region predicted by most climate change models will likely have important impacts on the structure and function of local freshwater microbial communities. PMID:24672520

  19. Biodegradation of 17β-Estradiol, Estrone and Testosterone in Stream Sediments

    NASA Astrophysics Data System (ADS)

    Bradley, P. M.; Chapelle, F. H.; Barber, L. B.; McMahon, P. B.; Gray, J. L.; Kolpin, D. W.

    2009-12-01

    The potentials for in situ biodegradation of 17β-estradiol (E2), estrone (E1), and testosterone (T) were investigated in three, hydrologically-distinct, WWTP-impacted streams in the United States. Relative differences in the mineralization of [4-14C] substrates were assessed in oxic microcosms containing sediment or water-only from locations upstream and downstream of the WWTP outfall in each system. Upstream samples provided insight into the biodegradative potential of sediment microbial communities that were not under the immediate impact of WWTP effluent. Upstream sediment from all three systems demonstrated significant mineralization of the “A” ring of E2, E1 and T, with the potential of T biodegradation consistently greater than of E2 and no systematic difference in the potentials of E2 and E1. Downstream samples provided insight into the impacts of effluent on reproductive hormone biodegradation. Significant “A” ring mineralization was also observed in downstream sediment, with the potentials for E1 and T mineralization being substantially depressed relative to upstream samples. In marked contrast, the potentials for E2 mineralization immediately downstream of the WWTP outfalls were more than double that of upstream samples. E2 mineralization was also observed in water, albeit at insufficient rate to prevent substantial downstream transport in the water column. The results of this study indicate that, in combination with sediment sorption processes which effectively scavenge hydrophobic contaminants from the water column and immobilize them in the vicinity of the WWTP outfall, aerobic biodegradation of reproductive hormones can be an environmentally important mechanism for non-conservative (destructive) attenuation of hormonal endocrine disruptors in effluent-impacted streams.

  20. C, N, P export regimes from headwater catchments to downstream reaches

    NASA Astrophysics Data System (ADS)

    Dupas, R.; Musolff, A.; Jawitz, J. W.; Rao, P. S.; Jaeger, C. G.; Fleckenstein, J. H.; Rode, M.; Borchardt, D.

    2017-12-01

    Excessive amounts of nutrients and dissolved organic matter in freshwater bodies affect aquatic ecosystems. In this study, the spatial and temporal variability in nitrate (NO3), dissolved organic carbon (DOC) and soluble reactive phosphorus (SRP) was analyzed in the Selke river continuum from headwaters draining 1 - 3 km² catchments to downstream reaches representing spatially integrated signals from 184 - 456 km² catchments (part of TERENO - Terrestrial Environmental Observatories, in Germany). Three headwater catchments were selected as archetypes of the main landscape units (land use x lithology) present in the Selke catchment. Export regimes in headwater catchments were interpreted in terms of NO3, DOC and SRP land-to-stream transfer processes. Headwater signals were subtracted from downstream signals, with the differences interpreted in terms of in-stream processes and contribution of point-source emissions. The seasonal dynamics for NO3 were opposite those of DOC and SRP in all three headwater catchments, and spatial differences also showed NO3 contrasting with DOC and SRP. These dynamics were interpreted as the result of the interplay of hydrological and biogeochemical processes, for which riparian zones were hypothesized to play a determining role. In the two downstream reaches, NO3 was transported almost conservatively, whereas DOC was consumed and produced in the upper and lower river sections, respectively. The natural export regime of SRP in the three headwater catchments mimicked a point-source signal, which may lead to overestimation of domestic contributions in the downstream reaches. Monitoring the river continuum from headwaters to downstream reaches proved effective to investigate jointly land-to-stream and in-stream transport and transformation processes.

  1. Downstream reduction of rural channel size with contrasting urban effects in small coastal streams of southeastern Australia

    NASA Astrophysics Data System (ADS)

    Nanson, G. C.; Young, R. W.

    1981-07-01

    Although most streams show a downstream increase in channel size corresponding to a downstream increase in flood discharges, those flowing off the Illawarra escarpment of New South Wales show a marked reduction of channel size, accompanied by a down-stream increase in flood frequency in their lower reaches. Within the confined and steeply sloping valleys of the escarpment foothills, bed and bank sediments are relatively coarse and uncohesive, and channels increase in size, corresponding to increasing discharge downstream. However, once these streams emerge into more open rural valleys at lower slopes and are accompanied by extensive floodplains formed of fine cohesive sediment, there is a dramatic reduction in channel size. This decrease in channel size apparently results from a sudden decline in channel slope and associated stream power, the cohesive nature of downstream alluvium, its retention on the channel banks by a dense cover of pasture grasses, and the availability of an extensive floodplain to carry displaced floodwater. Under these conditions floodwaters very frequently spill out over the floodplain and the downstream channel-flow becomes a relatively unimportant component of the total peak discharge. This emphasizes the importance of these floodplains as a part of the total channel system. In situations where urban development has increased peak runoff and reduced the available area of effective floodplain, stream channels formed in this fine alluvium rapidly entrench and increase in cross-sectional area by 2-3 times. Minor man-induced channel alteration and maintenance appears to trigger this enlargement.

  2. The toxicity of molybdate to freshwater and marine organisms. II. Effects assessment of molybdate in the aquatic environment under REACH.

    PubMed

    Heijerick, D G; Regoli, L; Carey, S

    2012-10-01

    The REACH Molybdenum Consortium initiated an extensive research program in order to generate robust PNECs, based on the SSD approach, for both the freshwater and marine environments. This activity was part of the REACH dossier preparation and to form the basis for scientific dialogues with other national and international regulatory authorities. Chronic ecotoxicity data sets for the freshwater and marine environments served as starting point for the derivation of PNECs for both compartments, in accordance with the recommended derivation procedures established by the European Chemicals Agency (ECHA). The HC(5,50%)s that were derived from the generated Species Sensitivity Distributions were 38.2 mg Mo/L and 5.75 mg Mo/L for the freshwater and marine water compartment, respectively. Uncertainty analysis on both data sets and available data on bioaccumulation at high exposure levels justified an assessment factor of 3 on both HC(5,50%) leading to a PNEC(freshwater) of 12.7 mg Mo/L and a PNEC(marine) of 1.92 mg Mo/L. As there are currently insufficient ecotoxicological data available for the derivation of PNECs in the sediment compartment, the equilibrium partitioning method was applied; typical K(D)-values for both the freshwater and marine compartments were identified and combined with the respective PNEC, leading to a PNEC(sediment) of 22,600 mg/kg dry weight and 1980 mg/kg dry weight for freshwater and marine sediments, respectively. The chronic data sets were also used for the derivation of final chronic values using the procedures that are outlined by the US Environmental Protection Agency for deriving such water benchmarks. Comparing PNECs with FCVs showed that both methodologies result in comparable protective concentration levels for molybdenum in the environment. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Climate-driven shifts in sediment chemistry enhance methane production in northern lakes.

    PubMed

    Emilson, E J S; Carson, M A; Yakimovich, K M; Osterholz, H; Dittmar, T; Gunn, J M; Mykytczuk, N C S; Basiliko, N; Tanentzap, A J

    2018-05-04

    Freshwater ecosystems are a major source of methane (CH 4 ), contributing 0.65 Pg (in CO 2 equivalents) yr -1 towards global carbon emissions and offsetting ~25% of the terrestrial carbon sink. Most freshwater CH 4 emissions come from littoral sediments, where large quantities of plant material are decomposed. Climate change is predicted to shift plant community composition, and thus change the quality of inputs into detrital food webs, with the potential to affect CH 4 production. Here we find that variation in phenol availability from decomposing organic matter underlies large differences in CH 4 production in lake sediments. Production is at least 400-times higher from sediments composed of macrophyte litter compared to terrestrial sources because of inhibition of methanogenesis by phenol leachates. Our results now suggest that earth system models and carbon budgets should consider the effects of plant communities on sediment chemistry and ultimately CH 4 emissions at a global scale.

  4. Arsenic contamination in the freshwater fish ponds of Pearl River Delta: bioaccumulation and health risk assessment.

    PubMed

    Cheng, Zhang; Chen, Kun-Ci; Li, Kai-Bin; Nie, Xiang-Ping; Wu, Sheng Chun; Wong, Chris Kong-Chu; Wong, Ming-Hung

    2013-07-01

    This study investigated the extent of arsenic (As) contamination in five common species of freshwater fish (northern snakehead [Channa argus], mandrarin fish [Siniperca chuatsi], largemouth bass [Lepomis macrochirous], bighead carp [Aristichthys nobilis] and grass carp [Ctenopharyngodon idellus]) and their associated fish pond sediments collected from 18 freshwater fish ponds around the Pearl River Delta (PRD). The total As concentrations detected in fish muscle and sediment in freshwater ponds around the PRD were 0.05-3.01 mg kg(-1) wet weight (w. wt) and 8.41-22.76 mg kg(-1) dry weight (d. wt), respectively. In addition, the As content was positively correlated (p < 0.05) to total organic carbon (TOC) contents in sediments. Biota sediment accumulation factor (BSAF) showed that omnivorous fish and zooplankton accumulated higher concentrations of heavy metals from the sediment than carnivorous fish. In addition, feeding habits of fish also influence As accumulation in different fish species. In this study, two typical food chains of the aquaculture ponds were selected for investigation: (1) omnivorous food chain (zooplankton, grass carp and bighead carp) and (2) predatory food chain (zooplankton, mud carp and mandarin fish). Significant linear relationships were obtained between log As and δ (15)N. The slope of the regression (-0.066 and -0.078) of the log transformed As concentrations and δ (15)N values, as biomagnifications power, indicated there was no magnification or diminution of As from lower trophic levels (zooplankton) to fish in the aquaculture ponds. Consumption of largemouth bass, northern snakehead and bighead carp might impose health risks of Hong Kong residents consuming these fish to the local population, due to the fact that its cancer risk (CR) value exceeded the upper limit of the acceptable risk levels (10(-4)) stipulated by the USEPA.

  5. Heavy metal profile of water, sediment and freshwater cat fish, Chrysichthys nigrodigitatus (Siluriformes: Bagridae), of Cross River, Nigeria.

    PubMed

    Ayotunde, Ezekiel Olatunji; Offem, Benedict Obeten; Ada, Fidelis Bekeh

    2012-09-01

    Cross River serves as a major source of drinking water, transportation, agricultural activities and fishing in Cross River State, Nigeria. Since there is no formal control of effluents discharged into the river, it is important to monitor the levels of metals contaminants in it, thus assessing its suitability for domestic and agricultural use. In order to determine this, three sampling stations designated as Ikom (Station I), Obubra Ogada (Station II) and Calabar (Station III) were randomly selected to study. For this, ten samples of the freshwater Silver Catfish (Chryshchythys nigrogitatus) (29.4-39.5cm SL, 310-510g), sediment and water were collected from each sampling Station from June 2009-June 2010. The heavy metals profiles ofZn, Cu, Fe, Co, Pb, Cd and Cr, in water, sediments and fish muscle were analyzed by atomic absorption spectrophotometry (AAS). In fish, the heavy metals concentration was found to be Cu>Fe>Zn>Cu>Pb>Cd>Co; the highest mean concentration of Copper (0.297 +/- 0.022 microg/g), Cadmium (0.011 +/- 0.007 microg/g), Iron (0.371 +/- 0.489 microg/g), Lead (0.008 +/- 0.008 microg/g), were determined for the fish. In water, the order was found to be Fe>Pb>Zn>Cu>Cr>Cd>Co; the highest mean concentration of Iron (0.009 +/- 0.00) microg/g), Copper (0.015 +/- 0.01 microg/g), Lead (0.0002 +/- 0.00 microg/g) Cadmium (0.0006 +/- 0.001 microg/g), Zinc (0.0036 +/- 0.003 microg/g), were observed in the surface water, respectively. The highest mean concentration of Copper (0.037 +/- 0.03 microg/g), Iron (0.053 +/- 0.04 microg/g), Lead (0.0002 +/- 0.00 microg/g), Cobalt (0.0002 +/- 0.00 microg/g), Cadmium (0.0006 +/- 0.001 microg/g) and Zinc (.009 +/- 0.0015 microg/g) was observed in the bottom water. In sediments, the concentration order found was Zn>Fe>Cu>Pb>Co>Cd; the highest mean concentration of 0.057 +/- 0.04 microg/g, 0.043 +/- 0.03 microg/g, 0.0006 +/- 0.00 microg/g, 0.0002 +/- 0.00 microg/g, 0.0009 +/- 0.00 microg/g, 0.099 +/- 0.00404 microg/g in Iron

  6. Novel insights into freshwater hydrocarbon-rich sediments using metatranscriptomics: Opening the black box.

    PubMed

    Reid, Thomas; Chaganti, Subba Rao; Droppo, Ian G; Weisener, Christopher G

    2018-06-01

    Baseline biogeochemical surveys of natural environments is an often overlooked field of environmental studies. Too often research begins once contamination has occurred, with a knowledge gap as to how the affected area behaved prior to outside (often anthropogenic) influences. These baseline characterizations can provide insight into proposed bioremediation strategies crucial in cleaning up chemical spill sites or heavily mined regions. Hence, this study was conducted to survey the in-situ microbial activity within freshwater hydrocarbon-rich environments cutting through the McMurray formation - the geologic strata constituting the oil sands. We are the first to report in-situ functional variations among these freshwater microbial ecosystems using metatranscriptomics, providing insight into the in-situ gene expression within these naturally hydrocarbon-rich sites. Key genes involved in energy metabolism (nitrogen, sulfur and methane) and hydrocarbon degradation, including transcripts relating to the observed expression of methane oxidation are reported. This information provides better linkages between hydrocarbon impacted environments, closing knowledge gaps for optimizing not only oil sands mine reclamation but also enhancing microbial reclamation strategies in various freshwater environments. These finding can also be applied to existing contaminated environments, in need of efficient reclamation efforts. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Use of Sediment Core Records to Understand Anthropogenic Impacts on Carbon Delivery to the Sacramento-San Joaquin River Delta, CA

    NASA Astrophysics Data System (ADS)

    Canuel, E. A.; Lerberg, E.; Kuehl, S. S.; Dickhut, R. M.; Bianchi, T. S.; Wakeham, S. G.; Smith, R.

    2008-12-01

    Anthropogenic activities, including climate change, will influence connections between the hydrologic and carbon cycles as well as the exchange of materials between terrestrial and aquatic systems. Altered precipitation will influence the delivery of water, suspended sediment and carbon, while construction of dams and reservoirs and changes in land use alter the flow paths and transport of sediment and associated materials to downstream ecosystems. We used the Sacramento-San Joaquin River Delta CA (Delta, hereafter) as a model system for understanding how human activities influenced the delivery and composition of organic carbon (OC) over the past 50-60 years. Sediment cores from the Delta were used to examine human impacts on carbon sources, amounts, and ages. Sediment and carbon accumulation rates were four to eight-fold higher pre-1972 relative to post-1972, coincident with completion of several large reservoirs and increased agriculture and urbanization in the Delta watershed. Several classes of biomarkers demonstrate that terrigenous OC has decreased since the 1940s. Radiocarbon isotopes of TOC and fatty acids in surface sediments indicate that much of the OC is highly reworked (900-1400 years BP) and vascular plant biomarkers have the oldest ages suggesting erosion of soils. Together, these data suggest that human activities have altered the amount, sources, and ages of carbon accumulating in the Delta. Projected increases in aridity and changes in the timing and amounts of freshwater delivery associated with anthropogenic climate change are likely to exacerbate these modifications to the delivery of carbon and sediment.

  8. Temporal and spatial patterns of wetland sedimentation, West Tennessee

    USGS Publications Warehouse

    Hupp, C.R.; Bazemore, D.E.

    1993-01-01

    Dendrogeomorphic techniques were used to describe and interpret patterns of sedimentation rates at two forested wetland sites in West Tennessee. Fifty-five sampling stations were established along transects upstream and downstream from bridge structures, and 515 trees were examined for depth of sediment accretion and cored for age determination. Temporal variation in sedimentation rate may be related more to stream channelization and agricultural activity than to bridge and causeway construction. Sedimentation rates have increased substantially in the last 28 years, although channelized streams may have overall lower rates than unchannelized streams. Comparisons of sedimentation rates from deposition over artificial markers (short term) with those determined from tree-ring analysis (long-term) indicate that trends are similar where hydrogeomorphic conditions have not been altered substantially. No tendency for increased sedimentation upstream from bridges was observed. Deposition rates were inversely correlated with elevation and degree of ponding. Downstream deposition of sand splays appears to be related to flow constrictions and may be extensive. Mean overall rates of sedimentation (between 0.24 and 0.28 cm year-1), determined dendrogeomorphically, are comparable with other published rates. ?? 1993.

  9. Avoiding The Inevitable? Capacity Loss From Reservoir Sedimentation

    USGS Publications Warehouse

    Gray, John R.; Randle, Timothy J.; Collins, Kent L.

    2013-01-01

    The inexorable loss of capacity of the nation's reservoirs—sooner or later threatening water supplies for municipal, agricultural, and industrial uses—is but one of a number of deleterious effects wrought by sediment deposition. Trapped sediments can also damage or bury dam outlets, water intakes, and related infrastructure. Downstream effects of sediment capture and retention by reservoirs can include channel and habitat degradation and biotic alterations.

  10. Preliminary assessment of aggradation potential in the North Fork Stillaguamish River downstream of the State Route 530 landslide near Oso, Washington

    USGS Publications Warehouse

    Magirl, Christopher S.; Keith, Mackenzie K.; Anderson, Scott W.; O'Connor, Jim; Robert Aldrich,; Mastin, Mark C.

    2015-12-28

    On March 22, 2014, the State Route 530 Landslide near Oso, Washington, traveled almost 2 kilometers (km), destroyed more than 40 structures, and impounded the North Fork Stillaguamish River to a depth of 8 meters (m) and volume of 3.3×106 cubic meters (m3). The landslide killed 43 people. After overtopping and establishing a new channel through the landslide, the river incised into the landslide deposit over the course of 10 weeks draining the impoundment lake and mobilizing an estimated 280,000±56,000 m3 of predominantly sand-sized and finer sediment. During the first 4 weeks after the landslide, this eroded sediment caused downstream riverbed aggradation of 1–2 m within 1 km of the landslide and 0.4 m aggradation at Whitman Road Bridge, 3.5 km downstream. Winter high flows in 2014–15 were anticipated to mobilize an additional 220,000±44,000 m3 of sediment, potentially causing additional aggradation and exacerbating flood risk downstream of the landslide. Analysis of unit stream power and bed-material transport capacity along 35 km of the river corridor indicated that most fine-grained sediment will transport out of the North Fork Stillaguamish River, although some localized additional aggradation was possible. This new aggradation was not likely to exceed 0.1 m except in reaches within a few kilometers downstream of the landslide, where additional aggradation of up to 0.5 m is possible. Alternative river response scenarios, including continued mass wasting from the landslide scarp, major channel migration or avulsion, or the formation of large downstream wood jams, although unlikely, could result in reaches of significant local aggradation or channel change.

  11. Sequencing Insights into Microbial Communities in the Water and Sediments of Fenghe River, China.

    PubMed

    Lu, Sidan; Sun, Yujiao; Zhao, Xuan; Wang, Lei; Ding, Aizhong; Zhao, Xiaohui

    2016-07-01

    The connection between microbial community structure and spatial variation and pollution in river waters has been widely investigated. However, water and sediments together have rarely been explored. In this study, Illumina high-throughput sequencing was performed to analyze microbes in 24 water and sediment samples from natural to anthropogenic sources and from headstream to downstream areas. These data were used to assess variability in microbial community structure and diversity along in the Fenghe River, China. The relationship between bacterial diversity and environmental parameters was statistically analyzed. An average of 1682 operational taxonomic units was obtained. Microbial diversity increased from the headstream to downstream and tended to be greater in sediment compared with water. The water samples near the headstream endured relatively low Shannon and Chao1 indices. These diversity indices and the number of observed species in the water and sediment samples increase downstream. The parameters also differ in the two river tributaries. Community structures shift based on the extent of nitrogen pollution variation in the sediment and water samples. The four most dominant genera in the water community were Escherichia, Acinetobacter, Comamonadaceae, and Pseudomonas. In the sediments, the most dominant genera were Stramenopiles, Flavobacterium, Pseudomonas, and Comamonadaceae. The number of ammonia-oxidizing archaea in the headstream water slightly differed from that in the sediment but varied considerably in the downstream sediments. Statistical analysis showed that community variation is correlated with changes in ammonia nitrogen, total nitrogen, and nitrate nitrogen. This study identified different microbial community structures in river water and sediments. Overall this study emphasized the need to elucidate spatial variations in bacterial diversity in water and sediments associated with physicochemical gradients and to show the effects of such

  12. ATRAZINE DESORPTION KINETICS FROM A FRESH-WATER SEDIMENT

    EPA Science Inventory

    Research has shown that the sorption and desorption of neutral organic compounds to soils and sediments occurs in two stages, with an initial rapid sorption/desorption phase (usually less than an hour) followed by a slower phase that can last for several months to years for very ...

  13. Transport and Sources of Suspended Sediment in the Mill Creek Watershed, Johnson County, Northeast Kansas, 2006-07

    USGS Publications Warehouse

    Lee, Casey J.; Rasmussen, Patrick P.; Ziegler, Andrew C.; Fuller, Christopher C.

    2009-01-01

    The U.S. Geological Survey, in cooperation with the Johnson County Stormwater Management Program, evaluated suspended-sediment transport and sources in the urbanizing, 57.4 mi2 Mill Creek watershed from February 2006 through June 2007. Sediment transport and sources were assessed spatially by continuous monitoring of streamflow and turbidity as well as sampling of suspended sediment at nine sites in the watershed. Within Mill Creek subwatersheds (2.8-16.9 mi2), sediment loads at sites downstream from increased construction activity were substantially larger (per unit area) than those at sites downstream from mature urban areas or less-developed watersheds. Sediment transport downstream from construction sites primarily was limited by transport capacity (streamflow), whereas availability of sediment supplies primarily influenced transport downstream from mature urban areas. Downstream sampling sites typically had smaller sediment loads (per unit area) than headwater sites, likely because of sediment deposition in larger, less sloping stream channels. Among similarly sized storms, those with increased precipitation intensity transported more sediment at eight of the nine monitoring sites. Storms following periods of increased sediment loading transported less sediment at two of the nine monitoring sites. In addition to monitoring performed in the Mill Creek watershed, sediment loads were computed for the four other largest watersheds (48.6-65.7 mi2) in Johnson County (Blue River, Cedar, Indian, and Kill Creeks) during the study period. In contrast with results from smaller watersheds in Mill Creek, sediment load (per unit area) from the most urbanized watershed in Johnson County (Indian Creek) was more than double that of other large watersheds. Potential sources of this sediment include legacy sediment from earlier urban construction, accelerated stream-channel erosion, or erosion from specific construction sites, such as stream-channel disturbance during bridge

  14. Urbanization and nutrient retention in freshwater riparian wetlands

    USGS Publications Warehouse

    Hogan, D.M.; Walbridge, M.R.

    2007-01-01

    Urbanization can degrade water quality and alter watershed hydrology, with profound effects on the structure and function of both riparian wetlands (RWs) and aquatic ecosystems downstream. We used freshwater RWs in Fairfax County, Virginia, USA, as a model system to examine: (1) the effects of increasing urbanization (indexed by the percentage of impervious surface cover [%ISC] in the surrounding watershed) on nitrogen (N) and phosphorus (P) concentrations in surface soils and plant tissues, soil P saturation, and soil iron (Fe) chemistry; and (2) relationships between RW soil and plant nutrient chemistries vs. the physical and biotic integrity of adjacent streams. Soil total P and NaOH-extractable P (representing P bound to aluminum [Al] and Fe hydrous oxides) varied significantly but nonlinearly with %ISC (r2 = 0.69 and 0.57, respectively); a similar pattern was found for soil P saturation but not for soil total N. Relationships were best described by second-order polynomial equations. Riparian wetlands appear to receive greater P loads in moderately (8.6-13.3% ISC) than in highly (25.1-29.1% ISC) urbanized watersheds. These observations are consistent with alterations in watershed hydrology that occur with increasing urbanization, directing water and nutrient flows away from natural RWs. Significant increases in total and crystalline soil Fe (r 2 = 0.57 and 0.53, respectively) and decreases in relative soil Fe crystallinity with increasing %ISC suggest the mobilization and deposition of terrestrial sediments in RWs, likely due to construction activities in the surrounding watershed. Increases in RW plant tissue nutrient concentrations and %ISC in the surrounding watershed were negatively correlated with standard indices of the physical and biotic integrity of adjacent streams. In combination, these data suggest that nutrient and sediment inputs associated with urbanization and storm-water management are important variables that affect wetland ecosystem services

  15. Advances and opportunities in assessing contaminant sensitivity of freshwater mussel (unionidae) early life stages

    USGS Publications Warehouse

    Augspurger, T; Dwyer, F.J.; Ingersoll, C.G.; Kane, C.M.

    2007-01-01

    Freshwater mussels (family Unionidae, also referred to as freshwater pearly mussels, unionids, or naiades) are one of North America’s most endangered faunal groups. Near unanimity exists in characterizations of the imperilment of these ecologically, economically, and culturally important bivalve mollusks. Freshwater mussels are a renewable resource supporting a shell industry in the United States valued at $40–50 million annually [1]. In addition to being a food source for aquatic and terrestrial vertebrates, this diverse fauna helps stabilize sediment [2] and provides critical nutrient and energy cycling in streams and lakes by filtering phytoplankton, bacteria, and particulate organic matter from the water column [3]. Thirty-five species of freshwater mussels are extinct [4], 70 species are listed as threatened or endangered under the U.S. Endangered Species Act (www.fws.gov/endangered/wildlife.html), and nearly 180 species are identified as critically imperiled or vulnerable (www.natureserve.org/explorer). Declines in freshwater mussels are not unique to North America [5], but because the taxon reaches its greatest richness here, impacts are especially noteworthy.

  16. Effect of submerged, freshwater aquatic macrophytes and littoral sediments on pan evaporation in the Lake Balaton region, Hungary

    NASA Astrophysics Data System (ADS)

    Anda, A.; Simon, B.; Soos, G.; Teixeira da Silva, J. A.; Kucserka, T.

    2016-11-01

    The evaporation (Ep) of a US Class A pan (C) with submerged, freshwater aquatic macrophytes (Potamogeton perfoliatus, Myriophyllum spicatum and Najas marina), hereafter macrophytes (Ps) and a sediment-covered bottom (S) was measured in Hungary during 2014-2015 using reference E of Shuttleworth (Eo) and Penman-Monteith crop reference evapotranspiration (crop ETo). There were two main climatic controls affecting variation in E: direct (air and water temperature) and indirect (wind-mediated change affecting the penetration of sunlight; precipitation inflow, impacting plant emergence). Lower seasonal mean Ep rates of 2.75 ± 0.89, 2.83 ± 0.91 and 3.06 ± 1.14 mm day-1 were observed in C, S and Ps, respectively, during the wet 2014. In the 2015 season, higher overall daily mean Ep rates for C, S and Ps were 3.76 ± 1.3, 4.19 ± 1.34 and 4.65 ± 1.52 mm day-1, respectively. A comparison of US Class A pan Ep containing macrophytes/sediments with that of a standard US Class A pan showed that pan coefficients (Kap and Kas) might allow for more accurate on-site lake E estimates. In 2014, seasonal mean Kas and Kap were 1.04 ± 0.14 and 1.09 ± 0.18, respectively. Slightly higher Ka values were observed during the warm and dry 2015 (Kas: 1.15 ± 0.22; Kap: 1.26 ± 0.23). A Ka value greater than 1 indicates that the Ep of a US Class A pan containing macrophytes and sediment is always higher than that of C. The calculated Eo overestimated measured Ep of Ps during the course of this study. During the warm-dry growing season, crop ETo was closest to Ep of Ps. Empirical coefficients can be useful for estimating E of lakes with submerged macrophytes more precisely. The accuracy of the estimate of Keszthely Bay's E improved by 9.85% when Ka was determined on site.

  17. Freshwater Ecosystem Service Flow Model To Evaluate Regional Water Security: A Case Study In Beijing-Tianjin-Hebei Region, China

    NASA Astrophysics Data System (ADS)

    Li, D.; Li, S.

    2016-12-01

    Freshwater service, as the most important support ecosystem service, is essential to human survival and development. Many studies have evidenced the spatial differences in the supply and demand of ecosystem services and raised the concept of ecosystem service flow. However, rather few studies quantitatively characterize the freshwater service flow. This paper aims to quantify the effect of freshwater ecosystem service flow on downstream areas in Beijing-Tianjin-Hebei (BTH) region, China over 2000, 2005 and 2010. We computed the freshwater ecosystem service provision with InVEST model. We calculated freshwater ecosystem service consumption with water quota method. We simulated the freshwater ecosystem service flow using our simplified flow model and assessed the regional water security with the improved freshwater security index. The freshwater provision service mainly depends on climatic factors that cannot be influenced by management, while the freshwater consumption service is constrained by human activities. Furthermore, the decrease of water quota for agricultural, domestic and industrial water counteracts the impact of increasing freshwater demand. The analysis of freshwater ecosystem service flow reveals that the majority area of the BTH (69.2%) is affected by upstream freshwater. If freshwater ecosystem service flow is considered, the water safety areas of the whole BTH account for 66.9%, 66.1%, 71.3%, which increase 6.4%, 6.8% and 5.7% in 2000, 2005 and 2010, respectively. These results highlight the need to understand the teleconnections between distant freshwater ecosystem service provision and local freshwater ecosystem service use. This approach therefore helps managers choose specific management and investment strategies for critical upstream freshwater provisions across different regions.

  18. Final report (2002-2004): Benthic macroinvertebrate communities of reconstructed freshwater tidal wetlands in the Anacostia River, Washington, D.C

    USGS Publications Warehouse

    Brittingham, K.D.; Hammerschlag, R.S.

    2006-01-01

    Considerable work has been conducted on the benthic communities of inland aquatic systems, but there remains a paucity of effort on freshwater tidal wetlands. This study characterized the benthic macroinvertebrate communities of recently reconstructed urban freshwater tidal wetlands along the Anacostia River in Washington, D.C. The focus of the study was on the two main areas of Kingman Marsh, which were reconstructed by the U.S. Army Corps of Engineers in 2000 using Anacostia dredge material. Populations from this 'new' marsh were compared to those of similarly reconstructed Kenilworth Marsh (1993) just one half mile upstream, the relic reference Dueling Creek Marsh in the upper Anacostia estuary and the outside reference Patuxent freshwater tidal marsh in an adjacent watershed. Benthic macro invertebrate organisms were collected using selected techniques for evaluation including the Ekman bottom grab sampler, sediment corer, D-net and Hester-Dendy sampler. Samples were collected at least seasonally from tidal channels, tidal mudflats, three vegetation/sediment zones (low, middle and high marsh), and pools over a 3-year period (late 2001-2004). The macroinvertebrate communities present at the marsh sites proved to be good indicators of disturbance and stress (Kingman Marsh), pollution, urban vs. rural location (Kenilworth and Patuxent), and similarities between reconstructed and remnant wetlands (Kenilworth and Dueling Creek). Macroinvertebrate density was significantly greater at Kingman Marsh than Kenilworth Marsh due to more numerous chironomids and oligochaetes. This may reflect an increase in unvegetated sediments at Kingman (even at elevations above natural mudflat) due to grazing pressure from over-abundant resident Canada geese. Unvegetated sediments yielded greater macroinvertebrate abundance but lower richness than vegetated marsh sites. Data collected from this study provides information on the extent that benthic macroinvertebrate communities can serve

  19. PCP in the freshwater and marine environment of the European Union.

    PubMed

    Muir, J; Eduljee, G

    1999-09-15

    This study collates monitoring data principally from 1991 to 1996, relating levels of pentachlorophenol (PCP) in the freshwater and marine environments of the European Union (EU) Member States of Belgium, France, Germany, the Netherlands and the UK. In general, PCP levels in the open freshwater and marine environments displayed a downward trend in these countries, and where increased PCP concentrations were observed, these were tentatively linked to specific point discharges. The monitoring data were compared against the relevant predicted no-effect concentration (PNEC) for PCP in a particular environmental medium. On this basis, the study suggests that PCP does not pose a risk to the coastal, estuarine, marine waters or marine sediments of the above countries, and that any risks posed by PCP to the freshwater environment can largely be attributed to sediments contaminated with PCP from historic usage, or due to the continued use of small quantities of sodium pentachlorophenyl laurate in northern France. Further analysis of the data was not possible owing to the lack of systematic reporting by Member States, the lack of information on usage quantities and patterns, and inconsistent environmental surveillance and reporting of environmental data. This is particularly relevant for south-west France, Portugal and north-east Spain, the region which accounts for almost 90% of the EU's consumption of NaPCP. These issues need to be addressed at a pan-European level to better inform the selection of risk management measures and to improve the effectiveness of such measures.

  20. Nutrient, suspended sediment, and trace element loads in the Blackstone River Basin in Massachusetts and Rhode Island, 2007 to 2009

    USGS Publications Warehouse

    Zimmerman, Marc J.; Waldron, Marcus C.; DeSimone, Leslie A.

    2015-01-01

    Analysis of the representative constituents (total phosphorus, total chromium, and suspended sediment) upstream and downstream of impoundments indicated that the existing impoundments, such as Rice City Pond, can be sources of particulate contaminant loads in the Blackstone River. Loads of particulate phosphorus, particulate chromium, and suspended sediment were consistently higher downstream from Rice City Pond than upstream during high-flow events, and there was a positive, linear relation between streamflow and changes in these constituents from upstream to downstream of the impoundment. Thus, particulate contaminants were mobilized from Rice City Pond during high-flow events and transported downstream. In contrast, downstream loads of particulate phosphorus, particulate chromium, and suspended sediment were generally lower than or equal to upstream loads for the former Rockdale Pond impoundment. Sediments associated with the former impoundment at Rockdale Pond, breached in the late 1960s, did not appear to be mobilized during the high-flow events monitored during this study.

  1. Suspended sediment transport trough a large fluvial-tidal channel network

    USGS Publications Warehouse

    Wright, Scott A.; Morgan-King, Tara L.

    2015-01-01

    The confluence of the Sacramento and San Joaquin Rivers, CA, forms a large network of interconnected channels, referred to as the Sacramento-San Joaquin Delta (the Delta). The Delta comprises the transition zone from the fluvial influences of the upstream rivers and tidal influences of San Francisco Bay downstream. Formerly an extensive tidal marsh, the hydrodynamics and geomorphology of Delta have been substantially modified by humans to support agriculture, navigation, and water supply. These modifications, including construction of new channels, diking and draining of tidal wetlands, dredging of navigation channels, and the operation of large pumping facilities for distribution of freshwater from the Delta to other parts of the state, have had a dramatic impact on the physical and ecological processes within the Delta. To better understand the current physical processes, and their linkages to ecological processes, the USGS maintains an extensive network of flow, sediment, and water quality gages in the Delta. Flow gaging is accomplished through use of the index-velocity method, and sediment monitoring uses turbidity as a surrogate for suspended-sediment concentration. Herein, we present analyses of the transport and dispersal of suspended sediment through the complex network of channels in the Delta. The primary source of sediment to the Delta is the Sacramento River, which delivers pulses of sediment primarily during winter and spring runoff events. Upon reaching the Delta, the sediment pulses move through the fluvial-tidal transition while also encountering numerous channel junctions as the Sacramento River branches into several distributary channels. The monitoring network allows us to track these pulses through the network and document the dominant transport pathways for suspended sediment. Further, the flow gaging allows for an assessment of the relative effects of advection (the fluvial signal) and dispersion (from the tides) on the sediment pulses as they

  2. Meeting ecological and societal needs for freshwater

    USGS Publications Warehouse

    Baron, Jill S.; Poff, N.L.; Angermeier, P.L.; Dahm, Clifford N.; Gleick, P.H.; Hairston, N.G.; Jackson, R.B.; Johnston, C.A.; Richter, B.D.; Steinman, A.D.

    2002-01-01

    sinks” into which landscapes drain, they are greatly influenced by terrestrial processes, including many human uses or modifications of land and water. Freshwater ecosystems, whether lakes, wetlands, or rivers, have specific requirements in terms of quantity, quality, and seasonality of their water supplies. Sustainability normally requires these systems to fluctuate within a natural range of variation. Flow regime, sediment and organic matter inputs, thermal and light characteristics, chemical and nutrient characteristics, and biotic assemblages are fundamental defining attributes of freshwater ecosystems. These attributes impart relatively unique characteristics of productivity and biodiversity to each ecosystem. The natural range of variation in each of these attributes is critical to maintaining the integrity and dynamic potential of aquatic ecosystems; therefore, management should allow for dynamic change. Piecemeal approaches cannot solve the problems confronting freshwater ecosystems.Scientific definitions of the requirements to protect and maintain aquatic ecosystems are necessary but insufficient for establishing the appropriate distribution between societal and ecosystem water needs. For scientific knowledge to be implemented science must be connected to a political agenda for sustainable development. We offer these recommendations as a beginning to redress how water is viewed and managed in the United States: (1) Frame national and regional water management policies to explicitly incorporate freshwater ecosystem needs, particularly those related to naturally variable flow regimes and to the linking of water quality with water quantity; (2) Define water resources to include watersheds, so that freshwaters are viewed within a landscape, or systems context; (3) Increase communication and education across disciplines, especially among engineers, hydrologists, economists, and ecologists to facilitate an integrated view of freshwater resources; (4) Increase restoration

  3. Tracking the 10Be-26Al source-area signal in sediment-routing systems of arid central Australia

    NASA Astrophysics Data System (ADS)

    Struck, Martin; Jansen, John D.; Fujioka, Toshiyuki; Codilean, Alexandru T.; Fink, David; Fülöp, Réka-Hajnalka; Wilcken, Klaus M.; Price, David M.; Kotevski, Steven; Fifield, L. Keith; Chappell, John

    2018-05-01

    Sediment-routing systems continuously transfer information and mass from eroding source areas to depositional sinks. Understanding how these systems alter environmental signals is critical when it comes to inferring source-area properties from the sedimentary record. We measure cosmogenic 10Be and 26Al along three large sediment-routing systems ( ˜ 100 000 km2) in central Australia with the aim of tracking downstream variations in 10Be-26Al inventories and identifying the factors responsible for these variations. By comparing 56 new cosmogenic 10Be and 26Al measurements in stream sediments with matching data (n = 55) from source areas, we show that 10Be-26Al inventories in hillslope bedrock and soils set the benchmark for relative downstream modifications. Lithology is the primary determinant of erosion-rate variations in source areas and despite sediment mixing over hundreds of kilometres downstream, a distinct lithological signal is retained. Post-orogenic ranges yield catchment erosion rates of ˜ 6-11 m Myr-1 and silcrete-dominant areas erode as slow as ˜ 0.2 m Myr-1. 10Be-26Al inventories in stream sediments indicate that cumulative-burial terms increase downstream to mostly ˜ 400-800 kyr and up to ˜ 1.1 Myr. The magnitude of the burial signal correlates with increasing sediment cover downstream and reflects assimilation from storages with long exposure histories, such as alluvial fans, desert pavements, alluvial plains, and aeolian dunes. We propose that the tendency for large alluvial rivers to mask their 10Be-26Al source-area signal differs according to geomorphic setting. Signal preservation is favoured by (i) high sediment supply rates, (ii) high mean runoff, and (iii) a thick sedimentary basin pile. Conversely, signal masking prevails in landscapes of (i) low sediment supply and (ii) juxtaposition of sediment storages with notably different exposure histories.

  4. Mechanisms linking sediment supply and bar morphology: Results from a straight flume with alternate bars

    NASA Astrophysics Data System (ADS)

    Braudrick, C. A.; Minear, J. T.; Dietrich, W. E.; Dehart, M.; Sklar, L. S.

    2008-12-01

    One of the largest uncertainties in routing sediment through drainage networks is predicting the degree to which changes in sediment supply are mitigated by changes in sediment storage in bars. We hypothesize that changes in topographic steering link sediment supply and bar morphology. This hypothesis posits that increased sediment supply would enhance topographic steering over the bar, causing the bar to advance laterally into the pool. Contrarily, decreased supply would diminish topographic steering, causing bars to shrink laterally and pools to expand. We examined this hypothesis in a 28-m long, 0.86-m wide flume with a constant discharge of 5.4 l/s and sand with a median grain size of 0.8 mm. The conditions were sufficient to support alternate bars downstream of the upper 8-10 m, and the flume was run for approximately 65 hours at a constant discharge and sediment feed. The equilibrium slope was 0.0033. Once the channel reached equilibrium, the sediment feed was turned off while the discharge was held constant. During the first 25 hours after the feed was stopped, the sediment transport rate at the downstream end of the flume increased from 9.8 to 10.5 kg/hr as sediment was provided by incision at the upstream end of the flume. Because the bed was the only sediment source, sediment supply increased with distance down the flume. Once the feed was shut off, bar response differed between the upstream and downstream portions of the flume. Bars at the downstream end of the flume, where sediment supply increased relative to equilibrium conditions, swelled into the pool. These changes in bar morphology were accompanied by a decrease in surface grain size. Further upstream, where sediment supply was lower, the bars shrunk. These results suggest that there may be a linkage between topographic steering, bar morphology, and sediment supply, but further numerical tests and experimental manipulations are necessary to verify this linkage and to account for the effect of the

  5. Microplastics Reduce Short-Term Effects of Environmental Contaminants. Part II: Polyethylene Particles Decrease the Effect of Polycyclic Aromatic Hydrocarbons on Microorganisms.

    PubMed

    Kleinteich, Julia; Seidensticker, Sven; Marggrander, Nikolaj; Zarfl, Christiane

    2018-02-07

    Microplastic particles in terrestrial and aquatic ecosystems are currently discussed as an emerging persistent organic pollutant and as acting as a vector for hydrophobic chemicals. Microplastic particles may ultimately deposit and accumulate in soil as well as marine and freshwater sediments where they can be harmful to organisms. In this study, we tested the sensitivity of natural freshwater sediment bacterial communities (by genetic fingerprint) to exposure to microplastics (polyethylene, 2 and 20 mg/g sediment) and microplastics loaded with polycyclic aromatic hydrocarbons (PAHs, phenanthrene and anthracene), using a laboratory-based approach. After two weeks of incubation, the bacterial community composition from an unpolluted river section was altered by high concentrations of microplastics, whereas the community downstream of a wastewater treatment plant remained unchanged. Low microplastic concentrations loaded with phenanthrene or anthracene induced a less pronounced response in the sediment communities compared to the same total amount of phenanthrene or anthracene alone. In addition, biodegradation of the PAHs was reduced. This study shows, that microplastic can affect bacterial community composition in unpolluted freshwater sediments. Moreover, the results indicate that microplastics can serve as a vehicle for hydrophobic pollutants but bioavailability of the latter is reduced by the sorption to microplastics.

  6. Recent Advances in Studies of Coastal Marsh Sedimentation

    NASA Astrophysics Data System (ADS)

    Pasternack, G. B.; Leonard, L. A.

    2001-05-01

    Limited understanding of sedimentation processes in coastal marshes is a key constraint on the management of environmental impacts associated with sea level rise, degrading quality and quantity of aquatic habitats, and downstream impacts of watershed land use. The problem is exacerbated by complex interactions among physical, ecological, and chemical variables that impact sedimentation over a large range of spatio-temporal scales. These challenges are being met by increasingly sophisticated approaches which cross-fertilize from other disciplines or go even further to integrate multidisciplinary perspectives. One example of the former has been improved precision of fine scale measurements of fluid mechanics and sediment transport over marsh plains and application of those measurements in geomorphologic and coastal engineering models. This advancement has improved our understanding of marsh dynamics at a mechanistic level, which is key for improving the predictive capabilities of wetland models. An example of a multidisciplinary approach that has become very common is the combined usage of multiple monitoring, isotopic, and palynological methods for estimating sedimentation and erosion at a site over a range of time scales. By applying such combinations, it has been possible to piece apart the relative roles of natural processes such as sea level rise and storms from human impacts such as flow constrictions, channel dredging, and sediment supply changes. Beyond improving approaches used to study marshes, past work has led to new questions about marsh morphodynamics and how coastal marshes interact with upland watersheds. With the aid of chaos theory, some recent studies have asserted that coastal marsh channels are fractal and thus must follow universal laws in common with watershed drainages and other dendritic systems. Also, where marshes exist among a mosaic of habitats on a delta, research has revealed the relative roles of watershed versus coastal processes in

  7. Measuring benefits of protected area management: trends across realms and research gaps for freshwater systems.

    PubMed

    Adams, Vanessa M; Setterfield, Samantha A; Douglas, Michael M; Kennard, Mark J; Ferdinands, Keith

    2015-11-05

    Protected areas remain a cornerstone for global conservation. However, their effectiveness at halting biodiversity decline is not fully understood. Studies of protected area benefits have largely focused on measuring their impact on halting deforestation and have neglected to measure the impacts of protected areas on other threats. Evaluations that measure the impact of protected area management require more complex evaluation designs and datasets. This is the case across realms (terrestrial, freshwater, marine), but measuring the impact of protected area management in freshwater systems may be even more difficult owing to the high level of connectivity and potential for threat propagation within systems (e.g. downstream flow of pollution). We review the potential barriers to conducting impact evaluation for protected area management in freshwater systems. We contrast the barriers identified for freshwater systems to terrestrial systems and discuss potential measurable outcomes and confounders associated with protected area management across the two realms. We identify key research gaps in conducting impact evaluation in freshwater systems that relate to three of their major characteristics: variability, connectivity and time lags in outcomes. Lastly, we use Kakadu National Park world heritage area, the largest national park in Australia, as a case study to illustrate the challenges of measuring impacts of protected area management programmes for environmental outcomes in freshwater systems. © 2015 The Author(s).

  8. Measuring benefits of protected area management: trends across realms and research gaps for freshwater systems

    PubMed Central

    Adams, Vanessa M.; Setterfield, Samantha A.; Douglas, Michael M.; Kennard, Mark J.; Ferdinands, Keith

    2015-01-01

    Protected areas remain a cornerstone for global conservation. However, their effectiveness at halting biodiversity decline is not fully understood. Studies of protected area benefits have largely focused on measuring their impact on halting deforestation and have neglected to measure the impacts of protected areas on other threats. Evaluations that measure the impact of protected area management require more complex evaluation designs and datasets. This is the case across realms (terrestrial, freshwater, marine), but measuring the impact of protected area management in freshwater systems may be even more difficult owing to the high level of connectivity and potential for threat propagation within systems (e.g. downstream flow of pollution). We review the potential barriers to conducting impact evaluation for protected area management in freshwater systems. We contrast the barriers identified for freshwater systems to terrestrial systems and discuss potential measurable outcomes and confounders associated with protected area management across the two realms. We identify key research gaps in conducting impact evaluation in freshwater systems that relate to three of their major characteristics: variability, connectivity and time lags in outcomes. Lastly, we use Kakadu National Park world heritage area, the largest national park in Australia, as a case study to illustrate the challenges of measuring impacts of protected area management programmes for environmental outcomes in freshwater systems. PMID:26460127

  9. Dams and Rivers: A Primer on the Downstream Effects of Dams

    USGS Publications Warehouse

    Collier, Michael; Webb, Robert H.; Schmidt, John C.

    1996-01-01

    The U.S. Geological Survey is charged with monitoring the water and mineral resources of the United States. Beginning in 1889, the Survey established a network of water gaging stations across most of the country's rivers; some also measured sediment content of the water. Consequently, we now have valuable long-term data with which to track water supply, sediment transport, and the occurrence of floods. Many variables affect the flow of water from mountain brook to river delta. Some are short-term perturbations like summer thunderstorms. Others occur over a longer period of time, like the El Ninos that might be separated by a decade or more. We think of these variables as natural occurrences, but humans have exerted some of the most important changes -- water withdrawals for agriculture, inter-basin transfers, and especially the construction of an extensive system of dams. Dams have altered the flow of many of the Nation's rivers to meet societal needs. We expect floods to be contained. Irrigation is possible where deserts once existed. And water is released downstream not according to natural cycles but as dictated by a region's hour-by-hour needs for water or electricity. As a result, river channels below dams have changed dramatically. Depending on annual flow, flood peaks, and a river's sediment load, we might see changes such as sand building up in one channel, vegetation crowding into another, and extensive bank erosion in another. This Circular explores the emerging scientific arena of change in rivers below dams. This science tries first to understand and then anticipate changes to river beds and banks, and to riparian habitats and animal communities. To some degree, these downstream changes can be influenced by specific strategies of dam management. Scientists and resource managers have a duty to assemble this information and present it without bias to the rest of society. Society can then more intelligently choose a balance between the benefits and adverse

  10. Mobilization and attenuation of metals downstream from a base-metal mining site in the Matra Mountains, northeastern Hungary

    USGS Publications Warehouse

    Odor, L.; Wanty, R.B.; Horvath, I.; Fugedi, U.; ,

    1999-01-01

    Regional geochemical baseline values have been established for Hungary by the use of low-density stream-sediment surveys of flood-plain deposits of large drainage basins and of the fine fraction of stream sediments. The baseline values and anomaly thresholds thus produced helped to evaluate the importance of high toxic element concentrations found in soils in a valley downstream of a polymetallic vein-type base-metal mine. Erosion of the mine dumps and flotation dump, losses of metals during filtering, storage and transportation, human neglects, and operational breakdowns, have all contributed to the contamination of a small catchment basin in a procession of releases of solid waste. The sulfide-rich waste material weathers to a yellow color; this layer of 'yellow sand' blankets a narrow strip of the floodplain of Toka Creek in the valley near the town of Gyongyosoroszi. Contamination was spread out in the valley by floods. Metals present in the yellow sand include Pb, As, Cd, Cu, Zn, and Sb. Exposure of the local population to these metals may occur through inhalation of airborne particulates or by ingestion of these metals that are taken up by crops grown in the valley. To evaluate the areal extent and depth of the contamination, active stream sediment, flood-plain deposits, lake or reservoir sediments, soils, and surface water were sampled along the erosion pathways downstream of the mine and dumps. The flood-plain profile was sampled in detail to see the vertical distribution of elements and to relate the metal concentrations to the sedimentation and contamination histories of the flood plain. Downward migration of mobile Zn and Cd from the contaminated upper layers under supergene conditions is observed, while vertical migration of Pb, As, Hg and Sb appears to be insignificant. Soil profiles of 137Cs which originated from above-ground atomic bomb tests and the Chernobyl accident, provide good evidence that the upper 30-40 cm of the flood-plain sections, which

  11. Mercury contamination from mine and natural sources in Harley Gulch, downstream from the Abbott and Turkey Run Mercury Mines, Lake County, California

    NASA Astrophysics Data System (ADS)

    Hothem, R. L.; Rytuba, J. J.; Goldstein, D.; Brussee, B.

    2011-12-01

    The Abbott and Turkey Run Mercury (Hg) mine area in central California has released Hg tailings into the Harley Gulch watershed since 1862. Harley Gulch flows into Cache Creek which is a significant source of Hg into San Francisco Bay Delta. Thermal mine water effluent emanating from the Turkey Run adit flows into the upper part of the watershed. Despite remediation efforts, Hg tailings and enriched sediment remain in the Harley Gulch wetlands and in the creek downstream from the mine area. Water, sediment, and biota have been sampled from below the mine area to 15 km downstream to the confluence with Cache Creek in order to assess the impact of Hg on water quality and biota. Two previously unrecognized natural sources of Hg in the watershed are connate groundwater with elevated levels of Hg, and biogenic sediment composed of phytoplankton that accumulates in the upper part of the watershed during the dry season. The connate groundwater source contains isotopically-heavy Mg-Ca-Cl-CO3-SO4 water that has elevated concentrations of Ba, W, Ti, and Hg. This water first enters Harley Gulch in the central part of the wetland immediately downstream from the mine area and continues to contribute water downstream for a distance of 1.5 km. It is both chemically and isotopically distinct from the thermal mine water effluent from the Turkey Run adit. The biogenic source consists of blooms of phytoplankton that accumulate to a thickness of up to 0.2 m. Phytoplankton have a large bioaccumulation factor of Hg and monomethyl mercury (MMeHg) that results in a high concentrations of Hg and MMeHg (Hg: 5-25 μg/g, MMeHg 5.2 ng/g) in the biogenic sediment. The tan biogenic sediment at the surface consists of living diatoms and below it is a layer of black reduced biogenic sediment consisting of diatom fragments with micron- to submicron-sized FeS, HgS, and barite grains. Sulfate-reducing bacteria reduce sulfate to sulfide in the pore waters of the biogenic sediment that reacts with

  12. Large microplastic particles in sediments of tributaries of the River Thames, UK - Abundance, sources and methods for effective quantification.

    PubMed

    Horton, Alice A; Svendsen, Claus; Williams, Richard J; Spurgeon, David J; Lahive, Elma

    2017-01-15

    Sewage effluent input and population were chosen as predictors of microplastic presence in sediments at four sites in the River Thames basin (UK). Large microplastic particles (1mm-4mm) were extracted using a stepwise approach to include visual extraction, flotation and identification using Raman spectroscopy. Microplastics were found at all four sites. One site had significantly higher numbers of microplastics than other sites, average 66 particles 100g -1 , 91% of which were fragments. This site was downstream of a storm drain outfall receiving urban runoff; many of the fragments at this site were determined to be derived of thermoplastic road-surface marking paints. At the remaining three sites, fibres were the dominant particle type. The most common polymers identified included polypropylene, polyester and polyarylsulphone. This study describes two major new findings: presence of microplastic particles in a UK freshwater system and identification of road marking paints as a source of microplastics. This study is the first to quantify microplastics of any size in river sediments in the UK and links their presence to terrestrial sources including sewage and road marking paints. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  13. Microplastic Effect Thresholds for Freshwater Benthic Macroinvertebrates

    PubMed Central

    2018-01-01

    Now that microplastics have been detected in lakes, rivers, and estuaries all over the globe, evaluating their effects on biota has become an urgent research priority. This is the first study that aims at determining the effect thresholds for a battery of six freshwater benthic macroinvertebrates with different species traits, using a wide range of microplastic concentrations. Standardized 28 days single species bioassays were performed under environmentally relevant exposure conditions using polystyrene microplastics (20–500 μm) mixed with sediment at concentrations ranging from 0 to 40% sediment dry weight (dw). Microplastics caused no effects on the survival of Gammarus pulex, Hyalella azteca, Asellus aquaticus, Sphaerium corneum, and Tubifex spp. and no effects were found on the reproduction of Lumbriculus variegatus. No significant differences in growth were found for H. azteca, A. aquaticus, S. corneum, L. variegatus, and Tubifex spp. However, G. pulex showed a significant reduction in growth (EC10 = 1.07% sediment dw) and microplastic uptake was proportional with microplastic concentrations in sediment. These results indicate that although the risks of environmentally realistic concentrations of microplastics may be low, they still may affect the biodiversity and the functioning of aquatic communities which after all also depend on the sensitive species. PMID:29337537

  14. Microplastic Effect Thresholds for Freshwater Benthic Macroinvertebrates.

    PubMed

    Redondo-Hasselerharm, Paula E; Falahudin, Dede; Peeters, Edwin T H M; Koelmans, Albert A

    2018-02-20

    Now that microplastics have been detected in lakes, rivers, and estuaries all over the globe, evaluating their effects on biota has become an urgent research priority. This is the first study that aims at determining the effect thresholds for a battery of six freshwater benthic macroinvertebrates with different species traits, using a wide range of microplastic concentrations. Standardized 28 days single species bioassays were performed under environmentally relevant exposure conditions using polystyrene microplastics (20-500 μm) mixed with sediment at concentrations ranging from 0 to 40% sediment dry weight (dw). Microplastics caused no effects on the survival of Gammarus pulex, Hyalella azteca, Asellus aquaticus, Sphaerium corneum, and Tubifex spp. and no effects were found on the reproduction of Lumbriculus variegatus. No significant differences in growth were found for H. azteca, A. aquaticus, S. corneum, L. variegatus, and Tubifex spp. However, G. pulex showed a significant reduction in growth (EC 10 = 1.07% sediment dw) and microplastic uptake was proportional with microplastic concentrations in sediment. These results indicate that although the risks of environmentally realistic concentrations of microplastics may be low, they still may affect the biodiversity and the functioning of aquatic communities which after all also depend on the sensitive species.

  15. Characteristics of sediment data and annual suspended-sediment loads and yields for selected lower Missouri River mainstem and tributary stations, 1976-2008

    USGS Publications Warehouse

    Heimann, David C.; Rasmussen, Patrick P.; Cline, Teri L.; Pigue, Lori M.; Wagner, Holly R.

    2010-01-01

    Suspended-sediment data from 18 selected surface-water monitoring stations in the lower Missouri River Basin downstream from Gavins Point Dam were used in the computation of annual suspended-sediment and suspended-sand loads for 1976 through 2008. Three methods of suspended-sediment load determination were utilized and these included the subdivision method, regression of instantaneous turbidity with suspended-sediment concentrations at selected stations, and regression techniques using the Load Estimator (LOADEST) software. Characteristics of the suspended-sediment and streamflow data collected at the 18 monitoring stations and the tabulated annual suspended-sediment and suspended-sand loads and yields are presented.

  16. Changes in freshwater mussel communities linked to legacy pollution in the Lower Delaware River

    USGS Publications Warehouse

    Blakeslee, Carrie J.; Silldorff, Erik L.; Galbraith, Heather S.

    2018-01-01

    Freshwater mussels are among the most-imperiled organisms worldwide, although they provide a variety of important functions in the streams and rivers they inhabit. Among Atlantic-slope rivers, the Delaware River is known for its freshwater mussel diversity and biomass; however, limited data are available on the freshwater mussel fauna in the lower, non-tidal portion of the river. This section of the Delaware River has experienced decades of water-quality degradation from both industrial and municipal sources, primarily as a function of one of its major tributaries, the Lehigh River. We completed semi-quantitative snorkel surveys in 53.5 of the 121 km of the river to document mussel community composition and the continued impacts from pollution (particularly inputs from the Lehigh River) on mussel fauna. We detected changes in mussel catch per unit effort (CPUE) below the confluence of the Lehigh River, with significant declines in the dominant species Elliptio complanata (Eastern Elliptio) as we moved downstream from its confluence—CPUE dropped from 179 to 21 mussels/h. Patterns in mussel distribution around the Lehigh confluence matched chemical signatures of Lehigh water input. Specifically, Eastern Elliptio CPUE declined more quickly moving downstream on the Pennsylvania bank, where Lehigh River water input was more concentrated compared to the New Jersey bank. A definitive causal link remains to be established between the Lehigh River and the dramatic shifts in mussel community composition, warranting continued investigation as it relates to mussel conservation and restoration in the basin.

  17. Parameterization of wind turbine impacts on hydrodynamics and sediment transport

    NASA Astrophysics Data System (ADS)

    Rivier, Aurélie; Bennis, Anne-Claire; Pinon, Grégory; Magar, Vanesa; Gross, Markus

    2016-10-01

    Monopile foundations of offshore wind turbines modify the hydrodynamics and sediment transport at local and regional scales. The aim of this work is to assess these modifications and to parameterize them in a regional model. In the present study, this is achieved through a regional circulation model, coupled with a sediment transport module, using two approaches. One approach is to explicitly model the monopiles in the mesh as dry cells, and the other is to parameterize them by adding a drag force term to the momentum and turbulence equations. Idealised cases are run using hydrodynamical conditions and sediment grain sizes typical from the area located off Courseulles-sur-Mer (Normandy, France), where an offshore windfarm is under planning, to assess the capacity of the model to reproduce the effect of the monopile on the environment. Then, the model is applied to a real configuration on an area including the future offshore windfarm of Courseulles-sur-Mer. Four monopiles are represented in the model using both approaches, and modifications of the hydrodynamics and sediment transport are assessed over a tidal cycle. In relation to local hydrodynamic effects, it is observed that currents increase at the side of the monopile and decrease in front of and downstream of the monopile. In relation to sediment transport effect, the results show that resuspension and erosion occur around the monopile in locations where the current speed increases due to the monopile presence, and sediments deposit downstream where the bed shear stress is lower. During the tidal cycle, wakes downstream of the monopile reach the following monopile and modify the velocity magnitude and suspended sediment concentration patterns around the second monopile.

  18. Vegetation composition, nutrient, and sediment dynamics along a floodplain landscape

    USGS Publications Warehouse

    Rybicki, Nancy B.; Noe, Gregory; Hupp, Cliff R.; Robinson, Myles

    2015-01-01

    Forested floodplains are important landscape features for retaining river nutrients and sediment loads but there is uncertainty in how vegetation influences nutrient and sediment retention. In order to understand the role of vegetation in nutrient and sediment trapping, we quantified species composition and the uptake of nutrients in plant material relative to landscape position and ecosystem attributes in an urban, Piedmont watershed in Virginia, USA. We investigated in situ interactions among vegetative composition, abundance, carbon (C), nitrogen (N) and phosphorus (P) fluxes and ecosystem attributes such as water level, shading, soil nutrient mineralization, and sediment deposition. This study revealed strong associations between vegetation and nutrient and sediment cycling processes at the plot scale and in the longitudinal dimension, but there were few strong patterns between these aspects at the scale of geomorphic features (levee, backswamp, and toe-slope). Patterns reflected the nature of the valley setting rather than a simple downstream continuum. Plant nutrient uptake and sediment trapping were greatest at downstream sites with the widest floodplain and lowest gradient where the hydrologic connection between the floodplain and stream is greater. Sediment trapping increased in association with higher herbaceous plant coverage and lower tree canopy density that, in turn, was associated with a more water tolerant tree community found in the lower watershed but not at the most downstream site in the watershed. Despite urbanization effects on the hydrology, this floodplain functioned as an efficient nutrient trap. N and P flux rates of herbaceous biomass and total litterfall more than accounted for the N and P mineralization flux rate, indicating that vegetation incorporated nearly all mineralized nutrients into biomass.

  19. The use of an aeration system to prevent thermal stratification of a freshwater impoundment and its effect on downstream fish assemblages.

    PubMed

    Miles, N G; West, R J

    2011-03-01

    Warm-water riverine fish assemblages were investigated downstream of an impoundment before and after thermal stratification and the associated cold-water pollution was prevented using an aeration system. Temperatures below the dam significantly increased after installation of the aeration system and this correlated with an increased abundance and greater number of species downstream. Overall, aeration appeared to be beneficial for both the lake (upstream) and the downstream riverine environments. © 2011 The Authors. Journal of Fish Biology © 2011 The Fisheries Society of the British Isles.

  20. Influence of hydropower dams on the composition of the suspended and riverbank sediments in the Danube.

    PubMed

    Klaver, Gerard; van Os, Bertil; Negrel, Philippe; Petelet-Giraud, Emmanuelle

    2007-08-01

    Large hydropower dams have major impacts on flow regime, sediment transport and the characteristics of water and sediment in downstream rivers. The Gabcikovo and Iron Gate dams divide the studied Danube transect (rkm 1895-795) into three parts. In the Gabcikovo Reservoir (length of 40km) only a part of the incoming suspended sediments were deposited. Contrary to this, in the much larger Iron Gate backwater zone and reservoir (length of 310km) all riverine suspended sediments were deposited within the reservoir. Subsequently, suspended sediments were transported by tributaries into the Iron Gate backwater zone. Here they were modified by fractional sedimentation before they transgressed downstream via the dams. Compared with undammed Danube sections, Iron Gate reservoir sediment and suspended matter showed higher clay contents and different K/Ga and Metal/Ga ratios. These findings emphasize the importance of reservoir-river sediment-fractionation.

  1. Annual sediment flux estimates in a tidal strait using surrogate measurements

    USGS Publications Warehouse

    Ganju, N.K.; Schoellhamer, D.H.

    2006-01-01

    Annual suspended-sediment flux estimates through Carquinez Strait (the seaward boundary of Suisun Bay, California) are provided based on surrogate measurements for advective, dispersive, and Stokes drift flux. The surrogates are landward watershed discharge, suspended-sediment concentration at one location in the Strait, and the longitudinal salinity gradient. The first two surrogates substitute for tidally averaged discharge and velocity-weighted suspended-sediment concentration in the Strait, thereby providing advective flux estimates, while Stokes drift is estimated with suspended-sediment concentration alone. Dispersive flux is estimated using the product of longitudinal salinity gradient and the root-mean-square value of velocity-weighted suspended-sediment concentration as an added surrogate variable. Cross-sectional measurements validated the use of surrogates during the monitoring period. During high freshwater flow advective and dispersive flux were in the seaward direction, while landward dispersive flux dominated and advective flux approached zero during low freshwater flow. Stokes drift flux was consistently in the landward direction. Wetter than average years led to net export from Suisun Bay, while dry years led to net sediment import. Relatively low watershed sediment fluxes to Suisun Bay contribute to net export during the wet season, while gravitational circulation in Carquinez Strait and higher suspended-sediment concentrations in San Pablo Bay (seaward end of Carquinez Strait) are responsible for the net import of sediment during the dry season. Annual predictions of suspended-sediment fluxes, using these methods, will allow for a sediment budget for Suisun Bay, which has implications for marsh restoration and nutrient/contaminant transport. These methods also provide a general framework for estimating sediment fluxes in estuarine environments, where temporal and spatial variability of transport are large. ?? 2006 Elsevier Ltd. All rights

  2. Increased sediment loads cause non-linear decreases in seagrass suitable habitat extent

    PubMed Central

    Atkinson, Scott; Klein, Carissa Joy; Weber, Tony; Possingham, Hugh P.

    2017-01-01

    Land-based activities, including deforestation, agriculture, and urbanisation, cause increased erosion, reduced inland and coastal water quality, and subsequent loss or degradation of downstream coastal marine ecosystems. Quantitative approaches to link sediment loads from catchments to metrics of downstream marine ecosystem state are required to calculate the cost effectiveness of taking conservation actions on land to benefits accrued in the ocean. Here we quantify the relationship between sediment loads derived from landscapes to habitat suitability of seagrass meadows in Moreton Bay, Queensland, Australia. We use the following approach: (1) a catchment hydrological model generates sediment loads; (2) a statistical model links sediment loads to water clarity at monthly time-steps; (3) a species distribution model (SDM) factors in water clarity, bathymetry, wave height, and substrate suitability to predict seagrass habitat suitability at monthly time-steps; and (4) a statistical model quantifies the effect of sediment loads on area of seagrass suitable habitat in a given year. The relationship between sediment loads and seagrass suitable habitat is non-linear: large increases in sediment have a disproportionately large negative impact on availability of seagrass suitable habitat. Varying the temporal scale of analysis (monthly vs. yearly), or varying the threshold value used to delineate predicted seagrass presence vs. absence, both affect the magnitude, but not the overall shape, of the relationship between sediment loads and seagrass suitable habitat area. Quantifying the link between sediment produced from catchments and extent of downstream marine ecosystems allows assessment of the relative costs and benefits of taking conservation actions on land or in the ocean, respectively, to marine ecosystems. PMID:29125843

  3. Geomorphic and Ecological Issues in Removal of Sediment-Filled Dams in the California Coast Ranges (Invited)

    NASA Astrophysics Data System (ADS)

    Kondolf, G. M.; Oreilly, C.

    2010-12-01

    Water-supply reservoirs in the actively eroding California Coast Ranges are vulnerable to sediment filling, thus creating obsolete impounding dams (Minear & Kondolf 2009). Once full of sediment, there is more impetus to remove dams for public safety and fish passage, but managing accumulated sediments becomes a dominant issue in dam removal planning. We analyzed the planning process and sediment management analyses for five dams, all of which have important ecological resources but whose dam removal options are constrained by potential impacts to downstream urban populations. Ringe Dam on Malibu Ck, Matilija Dam on the Ventura River, Searsville Dam on San Francisquito Ck, and Upper York Creek Dam on York Ck cut off important habitat for anadromous steelhead trout (Oncorhynchus mykiss). San Clemente Dam on the Carmel River has a working fish ladder, but only some of the migratory steelhead use it. By virtue of having filled with sediment, all five dams are at greater risk of seismic failure. San Clemente Dam is at greater risk because its foundation is on alluvium (not bedrock), and the poor-quality concrete in Matilija Dam is deteriorating from an akali-aggregate reaction. Simply removing the dams and allowing accumulated sediments to be transported downstream is not an option because all these rivers have extremely expensive houses along downstream banks and floodplains, so that allowing the downstream channel to aggrade with dam-dervied sediments could expose agencies to liability for future flood losses. Analyses of potential sediment transport have been based mostly on application of tractive force models, and have supported management responses ranging from in-situ stabilization (San Clemente and Matilija) to removal of stored sediment (York) to annual dredging to maintain capacity and prevent sediment passing over the dam (proposed for Searsville).

  4. Mesozooplankton affinities in a recovering freshwater estuary

    NASA Astrophysics Data System (ADS)

    Chambord, Sophie; Maris, Tom; Colas, Fanny; Van Engeland, Tom; Sossou, Akoko-C.; Azémar, Frédéric; Le Coz, Maïwen; Cox, Tom; Buisson, Laetitia; Souissi, Sami; Meire, Patrick; Tackx, Michèle

    2016-08-01

    Water quality of the Scheldt estuary (Belgium/The Netherlands) has considerably improved in recent years, especially in the upstream, freshwater reaches. Within the zooplankton community, the copepod Eurytemora affinis, typically abundant in brackish water and quasi-absent from freshwater before 2007, has since substantially developed in the latter, where it now represents 90% of the crustacean mesozooplankton community. Simultaneously, cyclopoid copepod abundance has greatly decreased, while cladoceran abundance did not change. The study aim was: 1) to verify if the zooplankton community described for the period 2007-2009 by Mialet et al. (2011) has stabilized until present, and 2) to look for the environmental conditions favouring E. affinis development and causing changes in the upstream freshwater zooplankton community. The 2002-2012 temporal evolution of the zooplankton distribution at three stations in the upstream freshwater Scheldt estuary was analyzed. Water quality remained better after 2007 than before, and some factors revealed continuous improvement in annual mean concentrations (e.g. increase in O2, decrease in BOD5 and NH4sbnd N concentration). The increase in oxygen and the decrease in NH4sbnd N concentration, together with low discharge during summer were the main environmental factors explaining the development and timing of E. affinis in the upstream freshwater reach. In this reach, E. affinis maximal abundance is shifted to higher temperatures (summer) compared to its typical maximum spring abundance peak in the brackish zone of the Scheldt estuary and in most temperate estuaries. The changes in zooplankton community followed a temporal and spatial gradient induced by the spatio-temporal evolution of water quality improvement. The most downstream station (3) allowed E. affinis development (oxygen concentration > 4 mg L-1; NH4sbnd N concentration < 2 mg L-1, discharge (Q) < 50 m3 s-1) from 2007 onwards, and this station showed the highest E

  5. Developing a biomonitoring tool for fine sediment

    NASA Astrophysics Data System (ADS)

    Turley, Matt; Bilotta, Gary; Brazier, Richard; Extence, Chris

    2014-05-01

    Sediment is an essential component of freshwater ecosystems; however anthropogenic activities can lead to elevated sediment delivery which can impact on the physical, chemical and biological characteristics of these ecosystems. Ultimately, this can result in a loss of ecosystem services worth more than 1.7 trillion per annum. As such it is important that sediment, which is one of the most commonly attributed causes of water quality impairment globally, is managed in order to minimise these impacts. The current EU environmental quality standard for sediment (monitored in the form of suspended solids) is 25 mg L-1 for all environments. It is widely recognised that this standard is unsuitable and not ecologically relevant. Furthermore, it requires a substantial resource investment to monitor sediment in this form as part of national and international water resource legislation. In recognition of this the development of sediment-specific biomonitoring tools is receiving increasing attention. The Proportion of Sediment-Sensitive Invertebrates (PSI) index is one such tool that is designed to indicate levels of fine sediment (

  6. Assessment of mercury and methylmercury in water, sediment, and biota in Sulphur Creek in the vicinity of the Clyde Gold Mine and the Elgin Mercury Mine, Colusa County, California

    USGS Publications Warehouse

    Hothem, Roger L.; Rytuba, James J.; Brussee, Brianne E.; Goldstein, Daniel N.

    2013-01-01

    At the request of the U.S. Bureau of Land Management, we performed a study during April–July 2010 to characterize mercury (Hg), monomethyl mercury (MMeHg), and other geochemical constituents in sediment, water, and biota at the Clyde Gold Mine and the Elgin Mercury Mine, located in neighboring subwatersheds of Sulphur Creek, Colusa County, California. This study was in support of a Comprehensive Environmental Response, Compensation, and Liability Act - Removal Site Investigation. The investigation was in response to an abatement notification from the California Central Valley Regional Water Quality Control Board to evaluate the release of Hg from the Clyde and Elgin mines. Samples of water, sediment, and biota (aquatic macroinvertebrates) were collected from sites upstream and downstream from the two mine sites to evaluate the level of Hg contamination contributed by each mine to the aquatic ecosystem. Physical parameters, as well as dissolved organic carbon, total Hg (HgT), and MMeHg were analyzed in water and sediment. Other relevant geochemical constituents were analyzed in sediment, filtered water, and unfiltered water. Samples of aquatic macroinvertebrates from each mine were analyzed for HgT and MMeHg. The presence of low to moderate concentrations of HgT and MMeHg in water, sediment, and biota from the Freshwater Branch of Sulphur Creek, and the lack of significant increases in these concentrations downstream from the Clyde Mine indicated that this mine is not a significant source of Hg to the watershed during low flow conditions. Although concentrations of HgT and MMeHg were generally higher in samples of sediment and water from the Elgin Mine compared to the Clyde Mine, concentrations in comparable biota from the two mine areas were similar. It is likely that highly saline effluent from nearby hot springs contribute more Hg to the West Fork of Sulphur Creek than the mine waste material at the Elgin Mine.

  7. Effect of sediment transport boundary conditions on the numerical modeling of bed morphodynamics

    USDA-ARS?s Scientific Manuscript database

    Experimental sediment transport studies in laboratory flumes can use two sediment-supply methods: an imposed feed at the upstream end or recirculation of sediment from the downstream end to the upstream end. These methods generally produce similar equilibrium bed morphology, but temporal evolution c...

  8. Emergent macrophytes modify the abundance and community composition of ammonia oxidizers in their rhizosphere sediments.

    PubMed

    Zhao, Dayong; He, Xiaowei; Huang, Rui; Yan, Wenming; Yu, Zhongbo

    2017-07-01

    Ammonia oxidation is a crucial process in global nitrogen cycling, which is catalyzed by the ammonia oxidizers. Emergent plants play important roles in the freshwater ecosystem. Therefore, it is meaningful to investigate the effects of emergent macrophytes on the abundance and community composition of ammonia oxidizers. In the present study, two commonly found emergent macrophytes (Zizania caduciflora and Phragmitas communis) were obtained from freshwater lakes and the abundance and community composition of the ammonia-oxidizing prokaryotes in the rhizosphere sediments of these emergent macrophytes were investigated. The abundance of the bacterial amoA gene was higher in the rhizosphere sediments of the emergent macrophytes than those of bulk sediments. Significant positive correlation was found between the potential nitrification rates (PNRs) and the abundance of bacterial amoA gene, suggesting that ammonia-oxidizing bacteria (AOB) might play an important role in the nitrification process of the rhizosphere sediments of emergent macrophytes. The Nitrosotalea cluster is the dominant ammonia-oxidizing archaea (AOA) group in all the sediment samples. Analysis of AOB group showed that the N. europaeal cluster dominated the rhizosphere sediments of Z. caduciflora and the bulk sediments, whereas the Nitrosospira cluster was the dominant AOB group in the rhizosphere sediments of P. communis. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Modeling tidal freshwater marsh sustainability in the Sacramento-San Joaquin Delta under a broad suite of potential future scenarios

    USGS Publications Warehouse

    Swanson, Kathleen M.; Drexler, Judith Z.; Fuller, Christopher C.; Schoellhamer, David H.

    2015-01-01

    In this paper, we report on the adaptation and application of a one-dimensional marsh surface elevation model, the Wetland Accretion Rate Model of Ecosystem Resilience (WARMER), to explore the conditions that lead to sustainable tidal freshwater marshes in the Sacramento–San Joaquin Delta. We defined marsh accretion parameters to encapsulate the range of observed values over historic and modern time-scales based on measurements from four marshes in high and low energy fluvial environments as well as possible future trends in sediment supply and mean sea level. A sensitivity analysis of 450 simulations was conducted encompassing a range of eScholarship provides open access, scholarly publishing services to the University of California and delivers a dynamic research platform to scholars worldwide. porosity values, initial elevations, organic and inorganic matter accumulation rates, and sea-level rise rates. For the range of inputs considered, the magnitude of SLR over the next century was the primary driver of marsh surface elevation change. Sediment supply was the secondary control. More than 84% of the scenarios resulted in sustainable marshes with 88 cm of SLR by 2100, but only 32% and 11% of the scenarios resulted in surviving marshes when SLR was increased to 133 cm and 179 cm, respectively. Marshes situated in high-energy zones were marginally more resilient than those in low-energy zones because of their higher inorganic sediment supply. Overall, the results from this modeling exercise suggest that marshes at the upstream reaches of the Delta—where SLR may be attenuated—and high energy marshes along major channels with high inorganic sediment accumulation rates will be more resilient to global SLR in excess of 88 cm over the next century than their downstream and low-energy counterparts. However, considerable uncertainties exist in the projected rates of sea-level rise and sediment avail-ability. In addition, more research is needed to constrain future

  10. New element for optimizing the functioning of sediment traps

    NASA Astrophysics Data System (ADS)

    Schwindt, Sebastian; Franca, Mário; Schleiss, Anton

    2017-04-01

    Sediment traps protect urban areas against excessive sediment transport during hazardous floods and consist typically of a retention basin with an open sediment check dam at the downstream end. The design, as well as the morphological processes within the retention basin, were analyzed by several authors. With regard to open sediment check dams two types of triggering mechanisms for the initiation of sediment retention can be distinguished: (1) mechanical and (2) hydraulic clogging of the structure. Recent studies have shown that outlet structures combining both clogging principles may be considered to avoid undesired self-flushing. Further elements of check dams are conceivable, e.g. for retaining or conveying driftwood. This study analyses experimentally working principles and design criteria of standard elements of sediment traps. Furthermore, it introduces a new structural element to the sediment trap design with a guiding channel in the retention reservoir. Taking into account the natural shape of mountain rivers, the guiding channel has a trapezoidal cross-section shape and a rough but fixed bed. The effect of the guiding channel on sediment deposition pattern and re-mobilization are studied by means of physical model experiments with a standardized hydrograph and variable sediment supply. The results are evaluated by means of zenithal pictures and bedload transport rate, measured at the downstream end of the model. Major advantages of the combined use of both clogging principles include an improved control of the initiation of sediment deposition in order to allow for sediment transfer for small floods and a reduction of hazards related to self-flushing.

  11. Phylogenetic Diversity of T4-Type Phages in Sediments from the Subtropical Pearl River Estuary

    PubMed Central

    He, Maoqiu; Cai, Lanlan; Zhang, Chuanlun; Jiao, Nianzhi; Zhang, Rui

    2017-01-01

    Viruses are an abundant and active component of marine sediments and play a significant role in microbial ecology and biogeochemical cycling at local and global scales. To obtain a better understanding of the ecological characteristics of the viriobenthos, the abundance and morphology of viruses and the diversity and community structure of T4-type phages were systematically investigated in the surface sediments of the subtropical Pearl River Estuary (PRE). Viral abundances ranged from 4.49 × 108 to 11.7 × 108 viruses/g and prokaryotic abundances ranged from 2.63 × 108 to 9.55 × 108 cells/g, and both decreased from freshwater to saltwater. Diverse viral morphotypes, including tailed, spherical, filamentous, and rod-shaped viruses, were observed using transmission electron microscopy. Analysis of the major capsid gene (g23) indicated that the sediment T4-type phages were highly diverse and, similar to the trend in viral abundances, their diversity decreased as the salinity increased. Phylogenetic analysis suggested that most of the g23 operational taxonomic units were affiliated with marine, paddy soil, and lake groups. The T4-type phage communities in freshwater and saltwater sediments showed obvious differences, which were related to changes in the Pearl River discharge. The results of this study demonstrated both allochthonous and autochthonous sources of the viral community in the PRE sediments and the movement of certain T4-type viral groups between the freshwater and saline water biomes. PMID:28572798

  12. Assessment of biomarkers for contaminants of emerging concern on aquatic organisms downstream of a municipal wastewater discharge.

    PubMed

    Jasinska, Edyta J; Goss, Greg G; Gillis, Patricia L; Van Der Kraak, Glen J; Matsumoto, Jacqueline; de Souza Machado, Anderson A; Giacomin, Marina; Moon, Thomas W; Massarsky, Andrey; Gagné, Francois; Servos, Mark R; Wilson, Joanna; Sultana, Tamanna; Metcalfe, Chris D

    2015-10-15

    Contaminants of emerging concern (CECs), including pharmaceuticals, personal care products and estrogens, are detected in wastewater treatment plant (WWTP) discharges. However, analytical monitoring of wastewater and surface water does not indicate whether CECs are affecting the organisms downstream. In this study, fathead minnows (Pimephales promelas) and freshwater mussels Pyganodon grandis Say, 1829 (synonym: Anodonta grandis Say, 1829) were caged for 4 weeks in the North Saskatchewan River, upstream and downstream of the discharge from the WWTP that serves the Edmonton, AB, Canada. Passive samplers deployed indicated that concentrations of pharmaceuticals, personal care products, an estrogen (estrone) and an androgen (androstenedione) were elevated at sites downstream of the WWTP discharge. Several biomarkers of exposure were significantly altered in the tissues of caged fathead minnows and freshwater mussels relative to the upstream reference sites. Biomarkers altered in fish included induction of CYP3A metabolism, an increase in vitellogenin (Vtg) gene expression in male minnows, elevated ratios of oxidized to total glutathione (i.e. GSSG/TGSH), and an increase in the activity of antioxidant enzymes (i.e. glutathione reductase, glutathione-S-transferase). In mussels, there were no significant changes in biomarkers of oxidative stress and the levels of Vtg-like proteins were reduced, not elevated, indicating a generalized stress response. Immune function was altered in mussels, as indicated by elevated lysosomal activity per hemocyte in P. grandis caged closest to the wastewater discharge. This immune response may be due to exposure to bacterial pathogens in the wastewater. Multivariate analysis indicated a response to the CECs Carbamazepine (CBZ) and Trimethoprim (TPM). Overall, these data indicate that there is a 1 km zone of impact for aquatic organisms downstream of WWTP discharge. However, multiple stressors in municipal wastewater make measurement and

  13. Stream-sediment geochemistry in mining-impacted streams : sediment mobilized by floods in the Coeur d'Alene-Spokane River system, Idaho and Washington

    USGS Publications Warehouse

    Box, Stephen E.; Bookstrom, Arthur A.; Ikramuddin, Mohammed

    2005-01-01

    Environmental problems associated with the dispersion of metal-enriched sediment into the Coeur d'Alene-Spokane River system downstream from the Coeur d'Alene Mining District in northern Idaho have been a cause of litigation since 1903, 18 years after the initiation of mining for lead, zinc, and silver. Although direct dumping of waste materials into the river by active mining operations stopped in 1968, metal-enriched sediment continues to be mobilized during times of high runoff and deposited on valley flood plains and in Coeur d'Alene Lake (Horowitz and others, 1993). To gauge the geographic and temporal variations in the metal contents of flood sediment and to provide constraints on the sources and processes responsible for those variations, we collected samples of suspended sediment and overbank deposits during and after four high-flow events in 1995, 1996, and 1997 in the Coeur d'Alene-Spokane River system with estimated recurrence intervals ranging from 2 to 100 years. Suspended sediment enriched in lead, zinc, silver, antimony, arsenic, cadmium, and copper was detected over a distance of more than 130 mi (the downstream extent of sampling) downstream of the mining district. Strong correlations of all these elements in suspended sediment with each other and with iron and manganese are apparent when samples are grouped by reach (tributaries to the South Fork of the Coeur d'Alene River, the South Fork of the Coeur d'Alene River, the main stem of the Coeur d'Alene River, and the Spokane River). Elemental correlations with iron and manganese, along with observations by scanning electron microscopy, indicate that most of the trace metals are associated with Fe and Mn oxyhydroxide compounds. Changes in elemental correlations by reach suggest that the sources of metal-enriched sediment change along the length of the drainage. Metal contents of suspended sediment generally increase through the mining district along the South Fork of the Coeur d'Alene River, decrease

  14. Characterising and classifying agricultural drainage channels for sediment and phosphorus management

    NASA Astrophysics Data System (ADS)

    Shore, Mairead; Jordan, Phil; Mellander, Per-Erik; Quinn, Mary Kelly; Daly, Karen; Sims, James Tom; Melland, Alice

    2016-04-01

    In agricultural landscapes, surface ditches and streams can significantly influence the attenuation and transfer of sediment and phosphorus (P) from upstream sources to receiving water-bodies. The sediment attenuation and/or transfer capacity of these features depends on channel physical characteristics. This is similar for P, in addition to the sediment physico-chemical characteristics. Therefore, a greater understanding of (i) channel physical characteristics and (ii) the associated sediment physico-chemical characteristics could be used to develop channel-specific management strategies for the reduction of downstream sediment and P transfers. Using a detailed field survey of surface channel networks in a well-drained arable and a poorly-drained grassland catchment (both c.10km2), this study (i) characterised all ditches and streams in both catchments, (ii) investigated the physico-chemical characteristics of sediments in a subset of ditches, (iii) classified all channels into four classes of fine sediment retention and/or transfer likelihood based on a comparison of physical characteristics (slope and drainage area) with observations of fine sediment accumulation and (iv) considered P management strategies that are suited to each class. Mehlich3-Al/P and Mehlich3-Ca/P contents of ditch sediments in the well (non-calcareous) and poorly (calcareous) drained catchments, respectively, indicated potential for soluble P retention (above thresholds of 11.7 and 74, respectively). In general, ditches with low slopes had the greatest potential to retain fine sediment and associated particulate P. As sediments in these catchments are likely to primarily adsorb, rather than release soluble P, these flat ditches are also likely to reduce soluble P loading downstream. Ditches with moderate-high slopes had the greatest potential to mobilise fine sediment and associated P during event flows. Ditch dimensions were not closely related to their indicative flow volumes and were

  15. Spatiotemporal assessment (quarter century) of pulp mill metal(loid) contaminated sediment to inform remediation decisions.

    PubMed

    Hoffman, Emma; Lyons, James; Boxall, James; Robertson, Cam; Lake, Craig B; Walker, Tony R

    2017-06-01

    A bleached kraft pulp mill in Nova Scotia has discharged effluent wastewater into Boat Harbour, a former tidal estuary within Pictou Landing First Nation since 1967. Fifty years of effluent discharge into Boat Harbour has created >170,000 m 3 of unconsolidated sediment, impacted by inorganic and organic contaminants, including metal[loid]s, polycyclic aromatic hydrocarbons (PAHs), dioxins, and furans. This study aimed to characterize metal(loid)-impacted sediments to inform decisions for a $89 million CAD sediment remediation program. The remediation goals are to return this impacted aquatic site to pre-mill tidal conditions. To understand historical sediment characteristics, spatiotemporal variation covering ~quarter century, of metal(loid) sediment concentrations across 103 Boat Harbour samples from 81 stations and four reference locations, were assessed by reviewing secondary data from 1992 to 2015. Metal(loid) sediment concentrations were compared to current Canadian freshwater and marine sediment quality guidelines (SQGs). Seven metal(loid)s, As, Cd, Cr, Cu, Pb, Hg, and Zn, exceeded low effect freshwater and marine SQGs; six, As, Cd, Cr, Pb, Hg, and Zn, exceeded severe effect freshwater SQGs; and four, Cd, Cu, Hg, and Zn, exceeded severe effect marine SQGs. Metal(loid) concentrations varied widely across three distinct temporal periods. Significantly higher Cd, Cu, Pb, Hg, and Zn concentrations were measured between 1998 and 2000, compared to earlier, 1992-1996 and more recent 2003-2015 data. Most samples, 69%, were shallow (0-15 cm), leaving deeper horizons under-characterized. Geographic information system (GIS) techniques also revealed inadequate spatial coverage, presenting challenges for remedy decisions regarding vertical and horizontal delineation of contaminants. Review of historical monitoring data revealed that gaps still exist in our understanding of sediment characteristics in Boat Harbour, including spatial, vertical and horizontal, and temporal

  16. Assessing exposure risks for freshwater tilapia species posed by mercury and methylmercury.

    PubMed

    Cheng, Yi-Hsien; Lin, Yi-Jun; You, Shu-Han; Yang, Ying-Fei; How, Chun Ming; Tseng, Yi-Ting; Chen, Wei-Yu; Liao, Chung-Min

    2016-08-01

    Waterborne and dietborne exposures of freshwater fish to mercury (Hg) in the forms of inorganic (Hg(II)) and organic (methylmercury or MeHg) affect their growth, development, and reproduction. However, an integrated mechanistic risk model framework to predict the impact of Hg(II)/MeHg on freshwater fish is lacking. Here, we integrated biokinetic, physiological and biogeographic data to calibrate and then establish key risk indices-hazardous quotient and exceedance risk-for freshwater tilapia species across geographic ranges of several major rivers in Taiwan. We found that Hg(II) burden was highest in kidney followed by gill, intestine, liver, blood, and muscle. Our results showed that Hg was less likely to pose mortality risk (mortality rate less than 5 %) for freshwater tilapia species. However, Hg is likely to pose the potential hazard to aquatic environments constrained by safety levels for aquatic organisms. Sensitivity analysis showed that amount of Hg accumulated in tilapia was most influenced by sediment uptake rate. Our approach opens up new possibilities for predicting future fish population health with the impacts of continued Hg exposure to provide information on which fish are deemed safe for human consumption.

  17. Risk assessment of residual DDTs in freshwater and marine fish cultivated around the Pearl River Delta, China.

    PubMed

    Leung, S Y; Kwok, C K; Nie, X P; Cheung, K C; Wong, M H

    2010-02-01

    Six species of freshwater fish collected from 10 fishponds in Shunde and Zhongshan, China, four species of marine fishes collected from different mariculture farms [four in Hong Kong (Tung Lung Chau, Ma Wan, Cheung Chau and Kat O) and two in mainland China (Daya Bay and Shenzhen)] together with feed (both trash fish and commercial pellets) and sediment were analyzed for DDTs. Total DDTs in freshwater fish flesh decreased in the order of: carnivores [1742 microg/kg lipid weight (l.w.)] > herbivores (165 microg/kg, l.w.) > omnivores (42.5 microg/kg, l.w.), with the highest concentration detected in mandarin fish (Siniperca chuatsi) (2641 microg/kg, l.w.). For marine fish, snubnose pompano (Trachinotus blochii) and orange-spotted grouper (Epinephelus coioides) collected in Ma Wan contained elevated levels of total DDTs (2590 and 2034 microg/kg l.w., respectively). Trash fish used in both freshwater and marine fish farms contained significantly higher levels (86.5-641 microg/kg l.w.) (p < 0.05) of DDTs than in commercial pellets, but correlations between DDT levels in fish feed and muscle were not significant. The elevated biota-sediment accumulating factor for tilapia (Tilapia mossambicus) (24.1) indicated that accumulation of DDTs from sediment to the fish was evident. It can be concluded that trash fish should not be used for fish culture in order to lower the level of residual DDTs in fish muscle.

  18. Sinks and sources: Assessing microplastic abundance in river sediment and deposit feeders in an Austral temperate urban river system.

    PubMed

    Nel, Holly A; Dalu, Tatenda; Wasserman, Ryan J

    2018-01-15

    Microplastics are important novel pollutants in freshwaters but their behaviour in river sediments is poorly understood due to the large amounts of coloured dissolved organic matter that impede sample processing. The present study aimed to 1.) estimate the microplastic pollution dynamics in an urban river system experiencing temporal differences in river flow, and 2.) investigate the potential use of chironomids as indicators of microplastic pollution levels in degraded freshwater environments. Microplastic levels were estimated from sediment and Chironomus spp. larvae collected from various sites along the Bloukrans River system, in the Eastern Cape South Africa during the summer and winter season. River flow, water depth, channel width, substrate embeddedness and sediment organic matter were simultaneously collected from each site. The winter season was characterised by elevated microplastic abundances, likely as a result of lower energy and increased sediment deposition associated with reduced river flow. In addition, results showed that particle distribution may be governed by various other external factors, such as substrate type and sediment organic matter. The study further highlighted that deposit feeders associated with the benthic river habitats, namely Chironomus spp. ingest microplastics and that the seasonal differences in sediment microplastic dynamics were reflected in chironomid microplastic abundance. There was a positive, though weakly significant relationship between deposit feeders and sediment suggesting that deposit feeders such as Chironomus spp. larvae could serve as an important indicator of microplastic loads within freshwater ecosystems. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Mississippi and Atchafalaya River Influence on Sediment Porewater Chemistry

    EPA Science Inventory

    The Louisiana continental shelf (LCS) receives 380 km3 of freshwater per year from the Mississippi and Atchafalaya Rivers. Sources and transport of nutrients and organic matter (OM) delivered to the LCS may result in spatial variation in sediment biogeochemistry important for un...

  20. The fate of large sediment inputs in rivers: Implications for watershed and waterway management

    Treesearch

    Thomas E. Lisle

    2000-01-01

    Valued resources in and along stream channels are commonly many river miles downstream of large sediment inputs such as landslides. Evaluating and predicting the arrival, severity, and duration of sediment impacts thus requires an understanding of how river channels digest elevated sediment loads.

  1. SEDIMENT TOXICITY IDENTIFICATION EVALUATION (TIE) ...

    EPA Pesticide Factsheets

    Sediment contamination in the United States has been amply documented and, in order to comply with the 1972 Clean Water Act, the U.S. Environmental Protection Agency must address the issue of toxic sediments. Contaminated sediments from a number of freshwater and marine sites have demonstrated acute and/or chronic toxicity to a variety of test species, as well as adverse ecological effects such as population declines and changes in community structure. However, simply knowing that a sediment is toxic has limited use. This document provides guidance on the performance of sediment Toxicity Identification and Evaluation (TIE). TIE methods allow for the identification of toxic chemicals or chemical classes causing observed toxicity. The identification of pollutants responsible for toxicity of contaminated sediments has broad application in a number of EPA programs as the methods can be used within the total maximum daily load (TMDL) framework, to link sediment toxicity to specific dischargers, to design cost-effective remediation programs, and to identify environmentally protective options for dredged material disposal. In addition, the identification of specific problem contaminants in sediments could prove to be very useful to EPA programs involved in the development of water or sediment quality guidelines, and the registration of new products such as pesticides. Finally, knowledge of the causes of toxicity that influence ecological changes such as community struc

  2. Plastic pollution in freshwater ecosystems: macro-, meso-, and microplastic debris in a floodplain lake.

    PubMed

    Blettler, Martin C M; Ulla, Maria Alicia; Rabuffetti, Ana Pia; Garello, Nicolás

    2017-10-23

    Plastic pollution is considered an important environmental problem by the United Nations Environment Programme, and it is identified, alongside climate change, as an emerging issue that might affect biological diversity and human health. However, despite research efforts investigating plastics in oceans, relatively little studies have focused on freshwater systems. The aim of this study was to estimate the spatial distribution, types, and characteristics of macro-, meso-, and microplastic fragments in shoreline sediments of a freshwater lake. Food wrappers (mainly polypropylene and polystyrene), bags (high- and low-density polyethylene), bottles (polyethylene terephthalate), and disposable Styrofoam food containers (expanded polystyrene) were the dominant macroplastics recorded in this study. Contrary to other studies, herein macroplastic item surveys would not serve as surrogates for microplastic items. This is disadvantageous since macroplastic surveys are relatively easier to conduct. Otherwise, an average of 25 mesoplastics (mainly expanded polystyrene) and 704 microplastic particles (diverse resins) were recorded per square meter in sandy sediments. Comparisons with other studies from freshwater and marine beaches indicated similar relevance of plastic contamination, demonstrating for the first time that plastic pollution is a serious problem in the Paraná floodplain lakes. This study is also valuable from a social/educational point of view, since plastic waste has been ignored in the Paraná catchment as a pollutant problem, and therefore, the outcome of the current study is a relevant contribution for decision makers.

  3. Seasonal Variation, Export Dynamics and Consumption of Freshwater Invertebrates in an Estuarine Environment

    NASA Astrophysics Data System (ADS)

    Williams, D. D.; Williams, N. E.

    1998-03-01

    In the Aber Estuary, North Wales, significant numbers of freshwater benthic invertebrates occurred in the tidal freshwater area. Distinct seasonal patterns were observed in their longitudinal zonation which appeared to be unrelated to variations in tidal inundation. The December extension downstream of freshwater taxa is hypothesized to be in response to decreasing water temperatures. In April, larvae/nymphs of the Trichoptera (caddisflies), Ephemeroptera (mayflies) and Plecoptera (stoneflies) ranged as far as a site inundated by 80·9% of all high tides, and larval Elmidae and Chironomidae (midges) occurred at the most marine site (inundated twice daily by all high tides). In July, with the exception of the Chironomidae, the range of most aquatic insects had contracted to the upper estuary. Although, in general, densities of aquatic insects decreased towards the lower estuary, significant densities persisted there. For example, maxima of 3514 chironomid larvae and 48 caddisfly larvae m -2were recorded at the 80·9% inundation site. An estimated 31×10 6freshwater invertebrates (weighing 62·6 kg), per annum, passed from fresh water into salt water across any given transect along the estuary. In comparison, the annual influx of invertebrates carried upstream by incoming tides was estimated to be 1·9×10 6(6·2%; weighing 2·5 kg). Predominant in the downstream drift were the larvae/nymphs and/or pupae of chironomids, mayflies, stoneflies and caddisflies. The ' reverse ' drift comprised mainly copepods, ostracods, amphipods and oligochaetes. Mites and the brackishwater amphipod Gammarus zaddachicommonly moved in both directions. Highest drift densities occurred in July, whereas the lowest densities occurred in late autumn and winter. Multiple regression analysis showed no relationship between total drift or ' reverse ' drift densities and any of the measured environmental variables. Many of the freshwater invertebrates appeared not to die upon passing into tidal

  4. Seasonal variations in the characteristics of superficial sediments in a macrotidal estuary (the Seine inlet, France)

    NASA Astrophysics Data System (ADS)

    Lesourd, S.; Lesueur, P.; Brun-Cottan, J. C.; Garnaud, S.; Poupinet, N.

    2003-09-01

    Seasonal variations in the sedimentary regime in the mouth of the Seine river, a macrotidal estuary, are described for a 3-year period. The aim of this study is to characterize and to understand the main governing mechanisms, using data from more than a thousand of superficial sediment grab samples or box cores gathered throughout the study period. Analyses of lithofacies and rheological properties were carried out. The distribution of sediments is governed by seasonal meteorological variations. The surface covered by mud reaches a maximum (40% of the total mouth area) during winter. After the winter, the soft mud deposits are progressively redistributed throughout the whole estuary area and onto the shelf. During the lowest freshwater flow at the end of summer, the fine-grained sediments cover less than 20% of the river mouth area. These seasonal variations mainly depend on the river discharge intensity, but are also linked to wave activity. In the study area, the amount of fine-grained deposits after high river flow periods depends on (1) volume of mud erodable within the estuary, (2) the duration of the flood tidal influx, and (3) the duration preceding the particular annual high river flow. During the last decades, filling of the estuary upstream from Honfleur has led to a downstream shift of the fine-grained sediment deposition area; following this, the present-day mud deposition area is in the open part of the estuary, in the subtidal shallow area. Subsequently, fresh mud deposits undergo intense hydrodynamical and meteorological effects, and are partly reworked by waves and tidal currents effects. In this study, it is shown that the behaviour of suspended matter and of superficial sediments is strongly influenced by short but intense events including high river flows and gales.

  5. Impacts of large dams on downstream flow conditions of rivers: Aggradation and reduction of the Medjerda channel capacity downstream of the Sidi Salem dam (Tunisia)

    NASA Astrophysics Data System (ADS)

    Zahar, Yadh; Ghorbel, Abdelmajid; Albergel, Jean

    2008-04-01

    SummarySince the opening of the Sidi Salem dam on the watercourse of the Medjerda, in 1981, an alarming narrowing of the riverbed in the lower valley has been observed. This geo-morphological change is attributed to different factors ranking from the reduction in the discharge flows, which used to clean out the riverbed to the periodic releases of turbid water undertaken to remove the silt deposition inside the reservoir, which increased the sediment deposition in the downstream channel. Other smaller hydraulic projects are also held responsible for the loss of the water velocity including a series of concrete sills meant to raise water levels, numerous cross bridges and the management of the downstream Laroussia dam regulating the discharge from the Cap Bon canal. The above anthropogenic factors, in conjunction with natural topographical conditions characterized by a generally shallow slope and a very sinuous watercourse, led to an extremely rapid aggradation of the downstream channel-bed. This paper proposes an analysis of this process and argues that the resulting reduction in channel capacity is one of the major causes of the large floods experienced in the country since 1996.

  6. Management and the conservation of freshwater ecosystems

    USGS Publications Warehouse

    Wipfli, Mark S.; Richardson, John S.

    2015-01-01

    Riparian and freshwater ecosystems are typically tightly coupled, especially in their natural states, and the linkages that couple them frequently exert strong influence on their associated invertebrate and fish fauna (e.g. Gregory et al., 1991; Naiman et al., 2010). Riparian habitats, and the condition of these habitats, further plays a key role in the ecology of these fresh waters, influencing critical processes such as water, nutrient and sediment delivery and dynamics; prey resources for fish and other consumers, and other organic materials exchanged between aquatic and terrestrial habitats (Nakano et al., 1999; Naiman et al., 2010); light and water temperature dynamics that in turn affect food web processes and fish metabolism and growth; aquatic physical habitat (wood); and terrestrial consumers that prey upon fishes (Bisson & Bilby, 1998; Naiman et al., 2010; Wipfli & Baxter, 2010). These processes in turn directly or indirectly influence fishes in freshwater systems (Wang et al., 2001; Pusey & Arthington, 2003; Allan, 2004; Richardson et al., 2010a).

  7. Effects of urbanization, construction activity, management practices, and impoundments on suspended-sediment transport in Johnson County, northeast Kansas, February 2006 through November 2008

    USGS Publications Warehouse

    Lee, Casey J.; Ziegler, Andrew C.

    2010-01-01

    The U.S. Geological Survey, in cooperation with the Johnson County, Kansas, Stormwater Management Program, investigated the effects of urbanization, construction activity, management practices, and impoundments on suspended-sediment transport in Johnson County from February 2006 through November 2008. Streamgages and continuous turbidity sensors were operated at 15 sites within the urbanizing 57-square-mile Mill Creek Basin, and 4 sites downstream from the other largest basins (49 to 66 square miles) in Johnson County. The largest sediment yields in Johnson County were observed downstream from basins with increased construction activity. Sediment yields attributed to the largest (68 acre) active construction site in the study area were 9,300 tons per square mile in 2007 and 12,200 tons per square mile in 2008; 5 to 55 times larger than yields observed at other sampling sites. However, given erodible soils and steep slopes at this site, sediment yields were relatively small compared to the range in historic values from construction sites without erosion and sediment controls in the United States (2,300 to 140,000 tons per square mile). Downstream from this construction site, a sediment forebay and wetland were constructed in series upstream from Shawnee Mission Lake, a 120-acre reservoir within Shawnee Mission Park. Although the original intent of the sediment forebay and constructed wetland were unrelated to upstream construction, they were nonetheless evaluated in 2008 to characterize sediment removal before stream entry into the lake. The sediment forebay was estimated to reduce 33 percent of sediment transported to the lake, whereas the wetland did not appear to decrease downstream sediment transport. Comparisons of time-series data and relations between turbidity and sediment concentration indicate that larger silt-sized particles were deposited within the sediment forebay, whereas smaller silt and clay-sized sediments were transported through the wetland and

  8. Loosely bound oxytetracycline in riverine sediments from two tributaries of the Chesapeake Bay

    USGS Publications Warehouse

    Simon, N.S.

    2005-01-01

    The fate of antibiotics that bind to riverine sediment is not well understood. A solution used in geochemical extraction schemes to determine loosely bound species in sediments, 1 M MgCl2 (pH 8), was chosen to determine loosely bound, and potentially bioavailable, tetracycline antibiotics (TCs), including oxytetracycline (5-OH tetracycline) (OTC) in sediment samples from two rivers on the eastern shore of the Chesapeake Bay. Bottom sediments were collected at sites upstream from, at, and downstream from municipal sewage-treatment plants (STPs) situated on two natural waterways, Yellow Bank Stream, MD, and the Pocomoke River, MD. Concentrations of easily desorbed OTC ranged from 0.6 to approximately 1.2 ??g g-1 dry wt sediment in Yellow Bank Stream and from 0.7 to approximately 3.3 ??g g-1 dry wt sediment in the Pocomoke River. Concentrations of easily desorbable OTC were generally smaller in sediment upstream than in sediment downstream from the STP in the Pocomoke River. STPs and poultry manure are both potential sources of OTC to these streams. OTC that is loosely bound to sediment is subject to desorption. Other researchers have found desorbed TCs to be biologically active compounds.

  9. Fern Spore Longevity in Saline Water: Can Sea Bottom Sediments Maintain a Viable Spore Bank?

    PubMed Central

    de Groot, G. Arjen; During, Heinjo

    2013-01-01

    Freshwater and marine sediments often harbor reservoirs of plant diaspores, from which germination and establishment may occur whenever the sediment falls dry. Therewith, they form valuable records of historical inter- and intraspecific diversity, and are increasingly exploited to facilitate diversity establishment in new or restored nature areas. Yet, while ferns may constitute a considerable part of a vegetation’s diversity and sediments are known to contain fern spores, little is known about their longevity, which may suffer from inundation and - in sea bottoms - salt stress. We tested the potential of ferns to establish from a sea or lake bottom, using experimental studies on spore survival and gametophyte formation, as well as a spore bank analysis on sediments from a former Dutch inland sea. Our experimental results revealed clear differences among species. For Asplenium scolopendrium and Gymnocarpium dryopteris, spore germination was not affected by inundated storage alone, but decreased with rising salt concentrations. In contrast, for Asplenium trichomanes subsp. quadrivalens germination decreased following inundation, but not in response to salt. Germination rates decreased with time of storage in saline water. Smaller and less viable gametophytes were produced when saline storage lasted for a year. Effects on germination and gametophyte development clearly differed among genotypes of A. scolopendrium. Spore bank analyses detected no viable spores in marine sediment layers. Only two very small gametophytes (identified as Thelypteris palustris via DNA barcoding) emerged from freshwater sediments. Both died before maturation. We conclude that marine, and likely even freshwater sediments, will generally be of little value for long-term storage of fern diversity. The development of any fern vegetation on a former sea floor will depend heavily on the deposition of spores onto the drained land by natural or artificial means of dispersal. PMID:24223951

  10. Evolution of a sediment wave in an experimental channel

    Treesearch

    Thomas E. Lisle; James E. Pizzuto; Hiroshi Ikeda; Fujiko Iseya; Yoshinori Kodama

    1997-01-01

    Abstract - The routing of bed material through channels is poorly understood. We approach the problem by observing and modeling the fate of a low-amplitude sediment wave of poorly sorted sand that we introduced into an experimental channel transporting sediment identical to that of the introduced wave. The wave essentially dispersed upstream and downstream without...

  11. Freshwater diatomite deposits in the western United States

    USGS Publications Warehouse

    Wallace, Alan R.; Frank, David G.; Founie, Alan

    2006-01-01

    Freshwater diatomite deposits in the Western United States are found in lake beds that formed millions of years ago. These diatom-rich sediments are among the Nation's largest commercial diatomite deposits. Each deposit contains billions of tiny diatom skeletons, which are widely used for filtration, absorption, and abrasives. New studies by the U.S. Geological Survey (USGS) are revealing how ancient lakes in the Western States produced such large numbers of diatoms. These findings can be used by both land-use managers and mining companies to better evaluate diatomite resources in the region.

  12. MODIFICATION OF METAL PARTITIONING BY SUPPLEMENTING ACID VOLATILE SULFIDE IN FRESHWATER SEDIMENTS

    EPA Science Inventory

    Acid volatile sulfide is a component of sediments which complexes some cationic metals and thereby influences the toxicity of these metals to benthic organisms. EPA has proposed AVS as a key normalization phase for the development of sediment quality criteria for metals. Experime...

  13. Regiospecific dechlorination of pentachlorophenol by dichlorophenol-adapted microorganisms in freshwater, anaerobic sediment slurries.

    PubMed Central

    Bryant, F O; Hale, D D; Rogers, J E

    1991-01-01

    The reductive dechlorination of pentachlorophenol (PCP) was investigated in anaerobic sediments that contained nonadapted or 2,4- or 3,4-dichlorophenol (DCP)-adapted microbial communities. Adaptation of sediment communities increased the rate of conversion of 2,4- or 3,4-DCP to monochlorophenols (CPs) and eliminated the lag phase before dechlorination was observed. Both 2,4- and 3,4-DCP-adapted sediment communities dechlorinated the six DCP isomers to CPs. The specificity of chlorine removal from the DCP isomers indicated a preference for ortho-chlorine removal by 2,4-DCP-adapted sediment communities and for para-chlorine removal by 3,4-DCP-adapted sediment communities. Sediment slurries containing nonadapted microbial communities either did not dechlorinate PCP or did so following a lag phase of at least 40 days. Sediment communities adapted to dechlorinate 2,4- or 3,4-DCP dechlorinated PCP without an initial lag phase. The 2,4-DCP-adapted communities initially removed the ortho-chlorine from PCP, whereas the 3,4-DCP-adapted communities initially removed the para-chlorine from PCP. A 1:1 mixture of the adapted sediment communities also dechlorinated PCP without a lag phase. Dechlorination by the mixture was regiospecific, following a para greater than ortho greater than meta order of chlorine removal. Intermediate products of degradation, 2,3,5,6-tetrachlorophenol, 2,3,5-trichlorophenol, 3,5-DCP, 3-CP, and phenol, were identified by a combination of cochromatography (high-pressure liquid chromatography) with standards and gas chromatography-mass spectrometry. PMID:1768102

  14. TOXICITY CHARACTERIZATION PROCEDURES FOR ORGANIC TOXICANTS IN BULK SEDIMENTS

    EPA Science Inventory

    We have been pursuing development of toxicant characterization, isolation, and identification procedures for organic toxicants that can be applied in the context of 10-d solid-phase sediment tests measuring survival and growth of freshwater in the context of 10-d solid-phase sedi...

  15. Effects of sediment characteristics on the toxicity of chromium(III) and chromium(VI) to the amphipod, Hyalella azteca

    USGS Publications Warehouse

    Besser, J.M.; Brumbaugh, W.G.; Kemble, N.E.; May, T.W.; Ingersoll, C.G.

    2004-01-01

    We evaluated the influence of sediment characteristics, acid-volatile sulfide (AVS) and organic matter (OM), on the toxicity of chromium (Cr) in freshwater sediments. We conducted chronic (28-42-d) toxicity tests with the amphipod Hyalella azteca exposed to Cr(VI) and Cr(III) in water and in spiked sediments. Waterborne Cr(VI) caused reduced survival of amphipods with a median lethal concentration (LC50) of 40 ??g/L. Cr(VI) spiked into test sediments with differing levels of AVS resulted in graded decreases in AVS and sediment OM. Only Cr(VI)-spiked sediments with low AVS concentrations (<1 ??mol/g) caused significant amphipod mortality. Waterborne Cr(III) concentrations near solubility limits caused decreased survival of amphipods at pH 7 and pH 8 but not at pH 6. Sediments spiked with high levels of Cr(III) did not affect amphipod survival but had minor effects on growth and inconsistent effects on reproduction. Pore waters of some Cr(III)-spiked sediments contained measurable concentrations of Cr(VI), but observed toxic effects did not correspond closely to Cr concentrations in sediment or pore waters. Our results indicate that risks of Cr toxicity are low in freshwater sediments containing substantial concentrations of AVS.

  16. Freshwater monsoon related inputs in the Japan Sea: a diatom record from IODP core U1427

    NASA Astrophysics Data System (ADS)

    Ventura, C. P. L.; Lopes, C.

    2016-12-01

    Monsoon rainfall is the life-blood of more than half the world's population. Extensive research is being conducted in order to refine projections regarding the impact of anthropogenic climate change on these systems. The East Asian monsoon (EAM) plays a significant role in large-scale climate variability. Due to its importance to global climate and world's population, there is an urgent need for greater understanding of this system, especially during past climate changes. The input of freshwater from the monsoon precipitation brings specific markers, such as freshwater diatoms and specific diatom ecological assemblages that are preserved in marine sediments. Freshwater diatoms are easily identifiable and have been used in the North Pacific to reconstruct environmental conditions (Lopes et al 2006) and flooding episodes (Lopes and Mix, 2009). Here we show preliminary results of freshwater diatoms records that are linked with river discharge due to increase land rainfall that can be derived from Monsoon rainfall. We extend our preliminary study to the past 400ky.

  17. Sediment regime constraints on river restoration - An example from the lower Missouri river

    USGS Publications Warehouse

    Jacobson, R.B.; Blevins, D.W.; Bitner, C.J.

    2009-01-01

    Dammed rivers are subject to changes in their flow, water-quality, and sediment regimes. Each of these changes may contribute to diminished aquatic habitat quality and quantity. Of the three factors, an altered sediment regime is a particularly unyielding challenge on many dammed rivers. The magnitude of the challenge is illustrated on the Lower Missouri River, where the largest water storage system in North America has decreased the downriver suspended-sediment load to 0.2%–17% of pre-dam loads. In response to the altered sediment regime, the Lower Missouri River channel has incised as much as 3.5 m just downstream of Gavins Point Dam, although the bed has been stable to slightly aggrading at other locations farther downstream. Effects of channel engineering and commercial dredging are superimposed on the broad-scale adjustments to the altered sediment regime.The altered sediment regime and geomorphic adjustments constrain restoration and management opportunities. Incision and aggradation limit some objectives of flow-regime management: In incising river segments, ecologically desirable reconnection of the floodplain requires discharges that are beyond operational limits, whereas in aggrading river segments, small spring pulses may inundate or saturate low-lying farmlands. Lack of sediment in the incising river segment downstream of Gavins Point Dam also limits sustainable restoration of sand-bar habitat for bird species listed under the Endangered Species Act. Creation of new shallow-water habitat for native fishes involves taking sediment out of floodplain storage and reintroducing most or all of it to the river, raising concerns about increased sediment, nutrient, and contaminant loads. Calculations indicate that effects of individual restoration projects are small relative to background loads, but cumulative effects may depend on sequence and locations of projects. An understanding of current and historical sediment fluxes, and how they vary along the river

  18. Sediment contributions from floodplains and legacy sediments to Piedmont streams of Baltimore County, Maryland

    NASA Astrophysics Data System (ADS)

    Donovan, Mitchell; Miller, Andrew; Baker, Matthew; Gellis, Allen

    2015-04-01

    Disparity between watershed erosion rates and downstream sediment delivery has remained an important theme in geomorphology for many decades, with the role of floodplains in sediment storage as a common focus. In the Piedmont Province of the eastern USA, upland deforestation and agricultural land use following European settlement led to accumulation of thick packages of overbank sediment in valley bottoms, commonly referred to as legacy deposits. Previous authors have argued that legacy deposits represent a potentially important source of modern sediment loads following remobilization by lateral migration and progressive channel widening. This paper seeks to quantify (1) rates of sediment remobilization from Baltimore County floodplains by channel migration and bank erosion, (2) proportions of streambank sediment derived from legacy deposits, and (3) potential contribution of net streambank erosion and legacy sediments to downstream sediment yield within the Mid-Atlantic Piedmont. We calculated measurable gross erosion and deposition rates within the fluvial corridor along 40 valley segments from 18 watersheds with drainage areas between 0.18 and 155 km2 in Baltimore County, Maryland. We compared stream channel and floodplain morphology from lidar-based digital elevation data collected in 2005 with channel positions recorded on 1:2400 scale topographic maps from 1959-1961 in order to quantify 44-46 years of channel change. Sediment bulk density and particle size distributions were characterized from streambank and channel deposit samples and used for volume to mass conversions and for comparison with other sediment sources. Average annual lateral migration rates ranged from 0.04 to 0.19 m/y, which represented an annual migration of 2.5% (0.9-4.4%) channel width across all study segments, suggesting that channel dimensions may be used as reasonable predictors of bank erosion rates. Gross bank erosion rates varied from 43 to 310 Mg/km/y (median = 114) and were

  19. MINIATURIZED SEDIMENT PROCEDURES FOR ASESSING TOXICITY USING MARINE AND FRESHWATER AMPHIPODS AND EMBRYO/LARVAL FISH

    EPA Science Inventory

    Sediment toxicity tests are needed that can be conducted with less sediment volume and fewer organisms. Bench scale remediation techniques often produce less sediment than is required to perform the standardized sediment methods and the excess sediments that are generated present...

  20. Microplastics Reduce Short-Term Effects of Environmental Contaminants. Part II: Polyethylene Particles Decrease the Effect of Polycyclic Aromatic Hydrocarbons on Microorganisms

    PubMed Central

    Kleinteich, Julia; Marggrander, Nikolaj; Zarfl, Christiane

    2018-01-01

    Microplastic particles in terrestrial and aquatic ecosystems are currently discussed as an emerging persistent organic pollutant and as acting as a vector for hydrophobic chemicals. Microplastic particles may ultimately deposit and accumulate in soil as well as marine and freshwater sediments where they can be harmful to organisms. In this study, we tested the sensitivity of natural freshwater sediment bacterial communities (by genetic fingerprint) to exposure to microplastics (polyethylene, 2 and 20 mg/g sediment) and microplastics loaded with polycyclic aromatic hydrocarbons (PAHs, phenanthrene and anthracene), using a laboratory-based approach. After two weeks of incubation, the bacterial community composition from an unpolluted river section was altered by high concentrations of microplastics, whereas the community downstream of a wastewater treatment plant remained unchanged. Low microplastic concentrations loaded with phenanthrene or anthracene induced a less pronounced response in the sediment communities compared to the same total amount of phenanthrene or anthracene alone. In addition, biodegradation of the PAHs was reduced. This study shows, that microplastic can affect bacterial community composition in unpolluted freshwater sediments. Moreover, the results indicate that microplastics can serve as a vehicle for hydrophobic pollutants but bioavailability of the latter is reduced by the sorption to microplastics. PMID:29414906

  1. First post-fire flush in a Mediterranean temporary stream: source ascription in bed sediments

    NASA Astrophysics Data System (ADS)

    Estrany Bertos, Joan; García-Comendador, Julián; Fortesa, Josep; Calsamiglia, Aleix; Garcias, Francesca

    2017-04-01

    First flushes can be of great importance for suspended-sediment transport in fluvial systems of drylands, being temporary streams a characteristic feature of Mediterranean basins. After a wildfire, storm flows may enhance runoff delivery to channels and then increasing the first-flush effect. 137Cs and 210Pbex were used as tracers for recognizing the first post-fire flush effect in the source ascription of bed sediments temporarily stored in a Mediterranean temporary stream severely affected by a wildfire. Thirty potential sediment source samples were collected along the main stem of a catchment located in Mallorca (Spain) during a field campaign developed some weeks after the wildfire. The sample collection was designed considering the wildfire affection, and also distinguishing between soil surface and channel bank. To quantify the relative source contribution to the bed sediment temporarily stored, five sediment samples -deposited during the first storm occurred three months after the wildfire- were collected into the bed stream of the main channel. The 137Cs and 210Pbex concentrations were measured by gamma spectrometry. Then, a linear mixing model was used to establish the relative contribution of each source type to the bed sediments discerning between the most upstream and the downstream parts of the catchment. Post-fire first-flush effect was generated by a torrential event with a suspended-sediment concentration peak ca. 33,618 mg L-1, although transmission losses under a very low runoff coefficient (1%) promoted sediment deposition. Significant differences were observed in fallout radionuclide concentrations between burned surface soil and channel bank samples (p < 0.05), as well as between burned and unburned sources at the downstream part of the catchment (p < 0.01). The radioactivity concentrations in bed sediments samples were statistically similar (p > 0.05). Source ascription in bed sediments in the middle stream shows that 67% was generated in

  2. Spatial and temporal trends in PCBs in sediment along the lower Rhone River, France

    USGS Publications Warehouse

    Desmet, Marc; Mourier, Brice; Mahler, Barbara J.; Van Metre, Peter C.; Roux, Gwenaelle; Persat, Henri; Lefevre, Irene; Peretti, Annie; Chapron, Emmanuel; Anaelle, Simonneau; Miege, Cecile; Babut, Marc

    2012-01-01

    Despite increasingly strict control of polychlorinated biphenyl (PCB) releases in France since the mid-1970s, PCB contamination of fish recently has emerged as a major concern in the lower Rhone River basin. We measured PCB concentrations in Rhone sediment to evaluate the effects of PCB releases from major urban and industrial areas, sediment redistribution by large floods, and regulatory controls on PCB trends from 1970 to present. Profiles of PCBs (the sum of seven indicator PCB congeners) were reconstructed from sediment cores collected from an off-river rural reference site and from three depositional areas along the Rhone upstream and downstream from the city of Lyon, France. Core chronology was determined from radionuclide profiles and flood deposits. PCB concentrations increased progressively in the downstream direction, and reached a maximum concentration in 1991 of 281 μg/kg at the most downstream site. At the rural reference site and at the upstream Rhone site, PCB concentrations peaked in the 1970s (maximum concentration of 13 and 78 μg/kg, respectively) and have decreased exponentially since then. PCB concentrations in the middle and downstream cores were elevated into the early 1990s, decreased very rapidly until 2000, and since then have remained relatively stable. Congener profiles for three time windows (1965–80, 1986–93, and 2000–08) were similar in the three sediment cores from the Rhone and different from those at the rural reference site. The results indicate that permitted discharges from a hazardous-waste treatment facility upstream from Lyon might have contributed to high concentrations into the 1980-90s, but that industrial discharges from the greater Lyon area and tributaries to the Rhone near Lyon have had a greater contribution since the 1990s. There is little indication that PCB concentration in sediments downstream from Lyon will decrease over at least the short term.

  3. The Freshwater Information Platform - an online network supporting freshwater biodiversity research and policy

    NASA Astrophysics Data System (ADS)

    Schmidt-Kloiber, Astrid; De Wever, Aaike; Bremerich, Vanessa; Strackbein, Jörg; Hering, Daniel; Jähnig, Sonja; Kiesel, Jens; Martens, Koen; Tockner, Klement

    2017-04-01

    Species distribution data is crucial for improving our understanding of biodiversity and its threats. This is especially the case for freshwater environments, which are heavily affected by the global biodiversity crisis. Currently, a huge body of freshwater biodiversity data is often difficult to access, because systematic data publishing practices have not yet been adopted by the freshwater research community. The Freshwater Information Platform (FIP; www.freshwaterplatform.eu) - initiated through the BioFresh project - aims at pooling freshwater related research information from a variety of projects and initiatives to make it easily accessible for scientists, water managers and conservationists as well as the interested public. It consists of several major components, three of which we want to specifically address: (1) The Freshwater Biodiversity Data Portal aims at mobilising freshwater biodiversity data, making them online available Datasets in the portal are described and documented in the (2) Freshwater Metadatabase and published as open access articles in the Freshwater Metadata Journal. The use of collected datasets for large-scale analyses and models is demonstrated in the (3) Global Freshwater Biodiversity Atlas that publishes interactive online maps featuring research results on freshwater biodiversity, resources, threats and conservation priorities. Here we present the main components of the FIP as tools to streamline open access freshwater data publication arguing this will improve the capacity to protect and manage freshwater biodiversity in the face of global change.

  4. SEDIMENT SOURCES IN AN URBANIZING, MIXED LAND-USE WATERSHED. (R825284)

    EPA Science Inventory

    Abstract

    The Issaquah Creek watershed is a rapidly urbanizing watershed of 144 km2 in western Washington, where sediment aggradation of the main channel and delivery of fine sediment into a large downstream lake have raised increasingly frequent concern...

  5. Feasibility of estimate sediment yield in the non-sediment monitoring station area - A case study of Alishan River watershed,Taiwan

    NASA Astrophysics Data System (ADS)

    Chang, ChiaChi; Chan, HsunChuan; Jia, YaFei; Zhang, YaoXin

    2017-04-01

    Due to the steep topography, frail geology and concentrated rainfall in wet season, slope disaster occurred frequently in Taiwan. In addition, heavy rainfall induced landslides in upper watersheds. The sediment yield on the slopeland affects the sediment transport in the river. Sediment deposits on the river bed reduce the river cross section and change the flow direction. Furthermore, it generates risks to residents' lives and property in the downstream. The Taiwanese government has been devoting increasing efforts on the sedimentary management issues and on reduction in disaster occurrence. However, due to the limited information on the environmental conditions in the upper stream, it is difficult to set up the sedimentary monitoring equipment. This study used the upper stream of the Qingshuei River, the Alishan River, as a study area. In August 2009, Typhoon Morakot caused the sedimentation of midstream and downstream river courses in the Alishan River. Because there is no any sediment monitoring stations within the Alishan River watershed, the sediment yield values are hard to determine. The objective of this study is to establish a method to analyze the event-landslide sediment transport in the river on the upper watershed. This study numerically investigated the sediment transport in the Alishan River by using the KINEROS 2 model developed by the United States Department of Agriculture and the CCHE1D model developed by the National Center for Computational Hydroscience and Engineering. The simulated results represent the morphology changes in the Alishan River during the typhoon events. The results consist of a critical strategy reference for the sedimentary management for the Alishan River watershed.

  6. Effects of feeding and organism loading rate on PCB accumulation by Lumbriculus variegatus in sediment bioaccumulation testing

    EPA Science Inventory

    Sediment bioaccumulation test methods published by USEPA and ASTM in 2000 specify that the Lumbriculus variegatus, a freshwater oligochaete, should not be fed during the 28-day exposure and recommends an organism loading rate of total organic carbon in sediment to organism dry we...

  7. Modelling of sedimentation and remobilization in in-line storage sewers for stormwater treatment.

    PubMed

    Frehmann, T; Flores, C; Luekewille, F; Mietzel, T; Spengler, B; Geiger, W F

    2005-01-01

    A special arrangement of combined sewer overflow tanks is the in-line storage sewer with downstream discharge (ISS-down). This layout has the advantage that, besides the sewer system, no other structures are required for stormwater treatment. The verification of the efficiency with respect to the processes of sedimentation and remobilization of sediment within the in-line storage sewer with downstream discharge is carried out in a combination of a field and a pilot plant study. The model study was carried out using a pilot plant model scaled 1:13. The following is intended to present some results of the pilot plant study and the mathematical empirical modelling of the sedimentation and remobilization process.

  8. Assessment of suspended-sediment transport, bedload, and dissolved oxygen during a short-term drawdown of Fall Creek Lake, Oregon, winter 2012-13

    USGS Publications Warehouse

    Schenk, Liam N.; Bragg, Heather M.

    2014-01-01

    The drawdown of Fall Creek Lake resulted in the net transport of approximately 50,300 tons of sediment from the lake during a 6-day drawdown operation, based on computed daily values of suspended-sediment load downstream of Fall Creek Dam and the two main tributaries to Fall Creek Lake. A suspended-sediment budget calculated for 72 days of the study period indicates that as a result of drawdown operations, there was approximately 16,300 tons of sediment deposition within the reaches of Fall Creek and the Middle Fork Willamette River between Fall Creek Dam and the streamgage on the Middle Fork Willamette River at Jasper, Oregon. Bedload samples collected at the station downstream of Fall Creek Dam during the drawdown were primarily composed of medium to fine sands and accounted for an average of 11 percent of the total instantaneous sediment load (also termed sediment discharge) during sample collection. Monitoring of dissolved oxygen at the station downstream of Fall Creek Dam showed an initial decrease in dissolved oxygen concurrent with the sediment release over the span of 5 hours, though the extent of dissolved oxygen depletion is unknown because of extreme and rapid fouling of the probe by the large amount of sediment in transport. Dissolved oxygen returned to background levels downstream of Fall Creek Dam on December 18, 2012, approximately 1 day after the end of the drawdown operation.

  9. Hydrodynamic controls on the downstream elimination of gravel, and implications for fluvial-deltaic stratigraphy: two end-member case studies from the Selenga River, Russia, and the Mississippi River, U.S.A.

    NASA Astrophysics Data System (ADS)

    Nittrouer, J. A.

    2015-12-01

    The downstream termination of gravel is measured for two fluvial-deltaic systems: the Selenga and Mississippi rivers. These end-members vary by an order of magnitude for slope, water and sediment discharge, and delta area. Moreover, the contrast between the tectonic regimes of the receiving basins is stark: the Selenga delta is located along the deep-water margin of Lake Baikal, which is an active half-graben rift basin, while the Mississippi discharges onto a passive margin with little tectonic influence. Nevertheless, the two rivers share a striking sedimentological similarity: near the delta apex, gravel is eliminated from the downstream dispersal system, and so sediment reaching the land-water interface is exclusively sand and mud. Field data for both rivers, including sediment samples and water discharge and flow velocity measurements, are used to validate morphodynamic models that assess the downstream changes in fluid stress and gravel transport. The analyses show that there are two distinct mechanisms that drive gravel deposition and prohibit dispersal throughout the delta. For the Selenga, water partitioning among bifurcating channels produces a non-linear reduction in shear stress and gravel deposition. For the Mississippi, backwater flow arrests the downstream movement of gravel during low and moderate water discharges, and although floods overcome backwater and produce uniform flow to the outlet, the duration of floods is too short to disperse gravel throughout the delta. Given sufficient time, model results indicate that both rivers should approach morphodynamic equilibrium, whereby aggradation due to sediment deposition raises local bed slope and sediment transport capacity, thereby facilitating downstream gravel movement. However, both systems possess unique characteristics that prevent this process from occurring. For the Selenga, tectonically induced movements regularly down drop portions of the delta below base level, forcing renewed delta

  10. QUANTIFYING SEDIMENT CONTRIBUTIONS TO THE GUÁNICA BAY PUERTO RICO

    EPA Science Inventory

    The island of Puerto Rico faces considerable challenges regarding sustainable land use and effects of land use on adjacent freshwater and marine ecosystem services. In watersheds feeding Guánica Bay (southwestern Puerto Rico), increased soil erosion and sediment loading to strea...

  11. Ecoenzymatic Stoichiometry of Microbial Organic Nutrient Acquisition in Soil and Sediment

    EPA Science Inventory

    Terrestrial soils and freshwater sediments contain reserves of organic carbon estimated at 1500 Pg and 0.2 Pg, respectively. Mineralization of this organic matter by heterotrophic microorganisms drives global carbon and nutrient cycles, controlling plant production and atmospher...

  12. Early pleistocene sediments at Great Blakenham, Suffolk, England

    NASA Astrophysics Data System (ADS)

    Gibbard, P. L.; Allen, P.; Field, M. H.; Hallam, D. F.

    Detailed investigation of a fine sediment sequence, the College Farm Silty Clay Member, that overlies the Creeting Sands (Early Pleistocene) in Suffolk, is presented. The sedimentary sequence is thought to represent a freshwater pool accumulation in a small coastal embayment. Palaeobotanical investigation of the sediment indicates that it accumulated during the late temperate substage of a temperate (interglacial) event. The occurrence of Tsuga pollen, associated with abundant remains of the water fern Azolla tegeliensis indicate that the deposits are of Early Pleistocene age and are correlated with a later part of the Antian-Bramertonian Stage. Correlation with Tiglian TO substage in The Netherlands' sequence is most likely. The sediments' normal palaeomagnetic polarity reinforces the biostratigraphical correlation.

  13. Modeling of the Contaminated Sediment in the Erft River

    NASA Astrophysics Data System (ADS)

    Hu, Wei; Westrich, Bernhard; Rode, Michael

    2010-05-01

    Sediment transport processes play an important role in the surface water systems coupled with rainfall-runoff and contaminant transport. Pollutants like heavy metals adsorbed mainly by fine sediment particles can be deposited, eroded or transported further downstream. When the toxic pollutants deposited before and covered by cleaner sediment are remobilized by large flow events such as floods, they pose a hidden threat to the human health and environment. In the Erft River, due to mining activities in the past, the heavy metals release from the tributary Veybach on the downstream water and sediment quality is significant. Recent measurements prove the decreasing concentration trend of heavy metals in the river bed sediment from the Veybach. One-dimensional hydrodynamic model COSMOS is used to model the complicated water flow, sediment erosion, deposition and contaminant mixing and transport in the mainstream of the Erft River. It is based on a finite-difference formulation and consists of one-dimensional, unsteady sub-model of flow and transport, coupled with a sub-model of the layered sediment bed. The model accounts for the following governing physical-chemical processes: convective and dispersive transport, turbulent mixing deposited sediment surface, deposition, consolidation, aging and erosion of sediment, adsorption-desorption of pollutants to suspended particles and losses of pollutants due to decay or volatilization. The results reproduce the decreasing profile of the pollutant concentration in the river bed sediment nicely. Further modeling is to analysis the influence of the mixing process at the water-riverbed interface on the contaminant transport, hydrological scenarios impact on the remobilization of the sink of pollutant and its negative consequences on the river basin.

  14. Microbial degradation of hydrochlorofluorocarbons (CHCl2F and CHCl2CF3) in soils and sediments

    USGS Publications Warehouse

    Oremland, R.S.; Lonergan, D.J.; Culbertson, C.W.; Lovley, D.R.

    1996-01-01

    The ability of microorganisms to degrade trace levels of the hydrochlorofluorocarbons HCFC-21 and HCFC-123 was investigated. Methanotroph- linked oxidation of HCFC-21 was observed in aerobic soils, and anaerobic degradation of HCFC-21 occurred in freshwater and salt marsh sediments. Microbial degradation of HCFC-123 was observed in anoxic freshwater and salt marsh sediments, and the recovery of 1,1,1-trifluoro-2-chloroethane indicated the involvement of reductive dechlorination. No degradation of HCFC-123 was observed in aerobic soils. In same experiments, HCFCs were degraded at low (parts per billion) concentrations, raising the possibility that bacteria in nature remove HCFCs from the atmosphere.

  15. Economic valuation of the downstream hydrological effects of land use change: Large hydroelectric reservoirs

    NASA Astrophysics Data System (ADS)

    Aylward, Bruce Allan

    1998-12-01

    Land use change that accompanies economic development and population growth is intended to raise the economic productivity of land. An inevitable by product of this process is the alteration of natural vegetation and downstream hydrological function. This dissertation explores hydrological externalities of land use change in detail, particularly with regard to their economic impact on large hydroelectric reservoirs (LHRs). A review of the linkages between land use, hydrological function and downstream economic activity suggests that on theoretical grounds the net welfare effect of land use change on hydrological function will be indeterminate. Review of the literature suggests that, though the effects of downstream sedimentation will typically be negative, they may often be of little practical significance. The literature on water quantity impacts is sparse at best. This is most surprising in the case of the literature on LHRs where the potentially important and positive effects of increased water yield are typically ignored in favor of simplistic efforts to document the negative effects of reservoir sedimentation. In order to improve the methodological basis for the economic valuation of hydrological externalities, the dissertation considers existing techniques for the evaluation of non-marketed goods and services, clarifying the manner in which they have been and, in the future, may be applied to the topic at hand. A deterministic simulation model is then constructed for the case of LHRs. The model incorporates the effect of changes in water yield, the seasonal pattern of water yield and sedimentation of live and dead storage volumes as they affect reservoir operation and the production of hydroelectricity. The welfare effects of changes in the productivity of the LHR in the short run and changes to the power system expansion plan in the long run are evaluated using the marginal opportunity costs of alternative power sources and power plants, respectively. A case

  16. Natural attenuation of chlorinated hydrocarbons in a freshwater wetland

    USGS Publications Warehouse

    Lora, Michelle M.; Olsen, Lisa D.; Smith, Barrett L.; Alleman, Bruce C.; Leeson, Andrea

    1997-01-01

    Natural attenuation of chlorinated volatile organic compounds (VOC's) occurs as ground water discharges from a sand aquifer to a freshwater wetland at Aberdeen Proving Ground, Md. Field and laboratory results indicate that biotransformation in the anaerobic wetland sediments is an important attenuation process. Relatively high concentrations of the parent compounds trichloroethylene (TCE) and 1,1,2,2-tetrachloroethane (PCA) and low or undetectable concentrations of daughter products were measured in the aquifer. In contrast, relatively high concentrations of the daughter products cis- and trans-1,2-dichloroethylene (12DCE); vinyl chloride (VC); 1,1,2-trichloroethane (112TCA); and 1,2-dichloroethane (12DCA) were measured in ground water in the wetland sediments, although total VOC concentrations decreased upward from about 1 mu mol/L (micromoles per liter) at the base of the wetland sediments to less than 0.2 near the surface. Microcosm experiments showed that 12DCE and VC are produced from anaerobic degradation of both TCE and PCA; PCA degradation also produced 112TCA and 12DCA.

  17. Magnetic properties of Surabaya river sediments, East Java, Indonesia

    NASA Astrophysics Data System (ADS)

    Mariyanto, Bijaksana, Satria

    2017-07-01

    Surabaya river is one of urban rivers in East Java Province, Indonesia that is a part of Brantas river that flows in four urban and industrial cities of Mojokerto, Gresik, Sidoarjo, and Surabaya. The urban populations and industries along the river pose serious threat to the river mainly for their anthropogenic pollutants. This study aims to characterize the magnetic properties of sediments in various locations along Surabaya river and correlate these magnetic properties to the level of pollution along the river. Samples are taken and measured through a series of magnetic measurements. The mass-specific magnetic susceptibility of sediments ranges from 259.4 to 1134.8 × 10-8 m3kg-1. The magnetic minerals are predominantly PSD to MD magnetite with the grain size range from 6 to 14 μm. The mass-specific magnetic susceptibility tends to decreases downstream as accumulation of magnetic minerals in sediments is affected not only by the amount of household and industrial wastes but also by sediment dredging, construction of embankments, and extensive erosion arround the river. Sediments located in the industrial zone on the upstream area tend to have higher mass-specific magnetic susceptibility than in the non-industrial zones on the downstream area.

  18. From bottles to stream reaches and networks: Consequences of scale in how we interpret the function of freshwaters in the carbon cycle

    NASA Astrophysics Data System (ADS)

    Hotchkiss, E. R.

    2017-12-01

    Freshwater biological processes can alter the quantity and quality of organic carbon (OC) inputs from land before they are transported downstream, but the relative role of hydrologic transport and in-stream processing is still not well quantified at the scale of fluvial networks. Despite much research on the role of biology and hydrology in governing the form and fate of C in inland waters, conclusions about the function of freshwater ecosystems in modifying OC still largely depend on where we draw our ecosystem boundaries, i.e., the spatial scale of measurements used to assess OC transformations. Here I review freshwater OC uptake rates derived from bioassay incubations, synoptic modeling, reach-scale experiments, and ecosystem OC spiraling estimates. Median OC uptake velocities from standard bioassay incubations (0.02 m/d) and synoptic modeling (0.04 m/d) are 1-2 orders of magnitude lower than reach-scale experimental DOC additions and ecosystem OC spiraling estimates (2.2 and 0.27 m/d, respectively) in streams and rivers. Together, ecosystem metabolism and OC fluxes can be used to estimate the distance OC travels before being consumed and respired as CO2 through biological processes (i.e., OC spiraling), allowing for a more mechanistic understanding of the role of ecosystem processes and hydrologic fluxes in modifying downstream OC transport. Beyond the reach scale, data from stream network and stream-lake-river modeling simulations show how we may use linked sampling sites within networks to better understand the integrated sources and fate of OC in freshwaters. We currently underestimate the role of upstream processes in contributing to downstream fluxes: moving from single-ecosystem comparisons to linked-ecosystem simulations increases the contribution of in situ OC processing to CO2 emissions from 30% to >40%. Insights from literature reviews, ecosystem process measurements, and model simulations provide a framework for future considerations of integrated C

  19. Microbial interactions in sediment communities.

    PubMed

    Laanbroek, H J; Veldkamp, H

    1982-06-11

    Mineralization of organic matter in aquatic ecosystems with shallow waters occurs to a large extent in their sediments under anoxic conditions. This is achieved by a community of bacteria, which are the catalysts in a sequence of processes. Of the two possible terminal processes, methanogenesis and sulphate reduction, the first usually dominates in freshwater systems, whereas in estuarine and marine sediments electrons are mainly channelled to sulphate. Interactions between sulphate-reducing and methanogenic bacteria are described. Sulphate-reducing bacteria also show interactions with fermentative bacteria. After a brief description of properties of sulphate-reducing and fermentative bacteria occurring in sediments, examples are given of interactions between them. This is followed by the presentation of some results obtained from studies on competition for L-lactate between organisms belonging to both groups. It is shown that sulphate-reducing bacteria could successfully compete for L-lactate when this was available in growth-limiting amounts with sufficient sulphate and iron. Finally, a brief discussion is given of ecological niches of sulphide-oxidizing bacteria thriving in the upper sediment layers.

  20. Anoxia stimulates microbially catalyzed metal release from Animas River sediments.

    PubMed

    Saup, Casey M; Williams, Kenneth H; Rodríguez-Freire, Lucía; Cerrato, José M; Johnston, Michael D; Wilkins, Michael J

    2017-04-19

    The Gold King Mine spill in August 2015 released 11 million liters of metal-rich mine waste to the Animas River watershed, an area that has been previously exposed to historical mining activity spanning more than a century. Although adsorption onto fluvial sediments was responsible for rapid immobilization of a significant fraction of the spill-associated metals, patterns of longer-term mobility are poorly constrained. Metals associated with river sediments collected downstream of the Gold King Mine in August 2015 exhibited distinct presence and abundance patterns linked to location and mineralogy. Simulating riverbed burial and development of anoxic conditions, sediment microcosm experiments amended with Animas River dissolved organic carbon revealed the release of specific metal pools coupled to microbial Fe- and SO 4 2- -reduction. Results suggest that future sedimentation and burial of riverbed materials may drive longer-term changes in patterns of metal remobilization linked to anaerobic microbial metabolism, potentially driving decreases in downstream water quality. Such patterns emphasize the need for long-term water monitoring efforts in metal-impacted watersheds.

  1. Anoxia stimulates microbially catalyzed metal release from Animas River sediments

    DOE PAGES

    Saup, Casey M.; Williams, Kenneth H.; Rodríguez-Freire, Lucía; ...

    2017-03-06

    The Gold King Mine spill in August 2015 released 11 million liters of metal-rich mine waste to the Animas River watershed, an area that has been previously exposed to historical mining activity spanning more than a century. Although adsorption onto fluvial sediments was responsible for rapid immobilization of a significant fraction of the spill-associated metals, patterns of longer-term mobility are poorly constrained. Metals associated with river sediments collected downstream of the Gold King Mine in August 2015 exhibited distinct presence and abundance patterns linked to location and mineralogy. Simulating riverbed burial and development of anoxic conditions, sediment microcosm experiments amendedmore » with Animas River dissolved organic carbon revealed the release of specific metal pools coupled to microbial Fe- and SO 4 2-reduction. Results suggest that future sedimentation and burial of riverbed materials may drive longer-term changes in patterns of metal remobilization linked to anaerobic microbial metabolism, potentially driving decreases in downstream water quality. Such patterns emphasize the need for long-term water monitoring efforts in metal-impacted watersheds.« less

  2. Anoxia stimulates microbially catalyzed metal release from Animas River sediments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saup, Casey M.; Williams, Kenneth H.; Rodríguez-Freire, Lucía

    The Gold King Mine spill in August 2015 released 11 million liters of metal-rich mine waste to the Animas River watershed, an area that has been previously exposed to historical mining activity spanning more than a century. Although adsorption onto fluvial sediments was responsible for rapid immobilization of a significant fraction of the spill-associated metals, patterns of longer-term mobility are poorly constrained. Metals associated with river sediments collected downstream of the Gold King Mine in August 2015 exhibited distinct presence and abundance patterns linked to location and mineralogy. Simulating riverbed burial and development of anoxic conditions, sediment microcosm experiments amendedmore » with Animas River dissolved organic carbon revealed the release of specific metal pools coupled to microbial Fe- and SO 4 2-reduction. Results suggest that future sedimentation and burial of riverbed materials may drive longer-term changes in patterns of metal remobilization linked to anaerobic microbial metabolism, potentially driving decreases in downstream water quality. Such patterns emphasize the need for long-term water monitoring efforts in metal-impacted watersheds.« less

  3. Effects of highway runoff on the quality of water and bed sediments of two wetlands in central Florida

    USGS Publications Warehouse

    Schiffer, D.M.

    1989-01-01

    Results of a study of the effects of highway runoff on the chemical quality of water and bed sediments of a cypress wetlands and a freshwater marsh in central Florida indicate that detention of the runoff prior to release into the wetland reduces concentrations of automobile-related chemicals in the water and bed sediments in the wetland. Detention of highway runoff for the cypress wetland occurs in a 68-ft by 139-ft detention pond, and in a 12-ft by 25 ft trash retainer for the freshwater marsh. The analysis of the chemical data for water and bed sediments indicates that many of the observed differences in chemistry are due to the difference in detention facilities. Water quality generally improved from the inlet to the outlet of both wetlands. Only inlet and outlet data were collected at the cypress wetland, and these showed a reduction in concentrations through the wetland. Spatial data collected at the freshwater marsh indicated that constituent concentrations in water generally decreased with distance from the inlet. Results of analysis of variance of grouped data for 40 water quality variables at the freshwater marsh inferred that 26 of the 40 variables tested were significantly different among five general locations within the wetland: inlet, outlet, near, intermediate, and far sites (with respect to the inlet). Results from this study indicate that detention structures, larger than the trash retainer at the freshwater marsh, may cause sufficient sorption and settling of substances contained in highway runoff to minimize the transport and deposition of some undesirable chemicals into wetlands. (USGS)

  4. Abrasion and Fragmentation Processes in Marly Sediment Transport

    NASA Astrophysics Data System (ADS)

    Le Bouteiller, C.; Naaim, F.; Mathys, N.; Lave, J.; Kaitna, R.

    2009-04-01

    In the highly erosive marly catchments of Draix (Southern Alps, France), downstream fining of sediments has been observed and can not be explained by selective sorting. Moreover, high concentrations of suspended fine sediment (up to 800 g/L) are measured during flood events in these basins. These observations lead to the hypothesis that abrasion and fragmentation of marly sediments during transport play an important role in the production of fine sediments. Several experiments are conducted in order to quantify these processes: material from the river bed is introduced into the water flow in a circular flume as well as in a large scale rotating drum. Abrasion rates range from 5 to 15%/km, depending on the lithology: marls from the upper basin are more erosive than those from the lower basin. Modifications of grain size distribution in the rough fraction are also observed. Field measurements are also conducted. Downstream of the main marly sediment sources, the river bed is composed of marls and limestone pebbles. We have sampled the river bed for analysis of grain size distribution and lithology. First results show a decrease of the proportion of marls along the river bed. This is in accordance with the high erosion rates observed in our laboratory experiments. Further investigations are planned in order to study more precisely marl grain size distribution, especially in the finer fraction.

  5. Suspended-sediment and fresh-water discharges in the Ob and Yenisey rivers, 1960-1988

    USGS Publications Warehouse

    Meade, R.H.; Bobrovitskaya, N.N.; Babkin, V.I.

    2000-01-01

    Of the world's great rivers, the Ob and Yenisey rank among the largest suppliers of fresh water and among the smallest suppliers of suspended sediment to the coastal ocean. Sediment in the middle reaches of the rivers is mobilized from bordering terraces and exchanged between channels and flood plains. Sediment in the lower reaches of these great rivers is deposited and stored (permanently, on a millennial time scale) in flood plains. Sediment discharges, already small under natural conditions, are diminished further by large manmade reservoirs that trap significant proportions of the moving solids. The long winter freeze and sudden spring breakup impose a peakedness in seasonal water runoff and sediment discharge that contrasts markedly with that in rivers of the tropics and more temperate climates. Very little sediment from the Ob and Yenisey rivers is being transported to the open waters of the Arctic Ocean under present conditions.

  6. Sediment in a Michigan trout stream, its source movement, and some effects on fish habitat.

    Treesearch

    Edward A. Hansen

    1971-01-01

    A sediment budget was constructed from 3 years of measurements on a pool and riffle stream. Total sediment load increased five times along a 26-mile length of stream; most sediment came from 204 eroding banks. Three-fourths of the total sediment load was sand size. The area of streambed covered with sand decreased downstream, indicating that the transporting...

  7. Persistent Hg contamination and occurrence of Hg-methylating transcript (hgcA) downstream of a chlor-alkali plant in the Olt River (Romania).

    PubMed

    Bravo, Andrea G; Loizeau, Jean-Luc; Dranguet, Perrine; Makri, Stamatina; Björn, Erik; Ungureanu, Viorel Gh; Slaveykova, Vera I; Cosio, Claudia

    2016-06-01

    Chlor-alkali plants using mercury (Hg) cell technology are acute point sources of Hg pollution in the aquatic environment. While there have been recent efforts to reduce the use of Hg cells, some of the emitted Hg can be transformed to neurotoxic methylmercury (MeHg). Here, we aimed (i) to study the dispersion of Hg in four reservoirs located downstream of a chlor-alkali plant along the Olt River (Romania) and (ii) to track the activity of bacterial functional genes involved in Hg methylation. Total Hg (THg) concentrations in water and sediments decreased successively from the initial reservoir to downstream reservoirs. Suspended fine size particles and seston appeared to be responsible for the transport of THg into downstream reservoirs, while macrophytes reflected the local bioavailability of Hg. The concentration and proportion of MeHg were correlated with THg, but were not correlated with bacterial activity in sediments, while the abundance of hgcA transcript correlated with organic matter and Cl(-) concentration, indicating the importance of Hg bioavailability in sediments for Hg methylation. Our data clearly highlights the importance of considering Hg contamination as a legacy pollutant since there is a high risk of continued Hg accumulation in food webs long after Hg-cell phase out.

  8. A simple control for sediment-toxicity exposures using the amphipod, Hyalella azteca

    USGS Publications Warehouse

    Lasier, Peter J.; Urich, Matthew L.

    2014-01-01

    Sediment-toxicity exposures comparing survival and growth of the freshwater amphipod, Hyalella azteca, are often components of aquatic-habitat assessments. Standardized exposure methods have been established and require evaluations for quality assurance. Test acceptability using performance-based criteria can be determined from exposures to control sediments, which are collected from the environment or formulated from commercially available components. Amending sand with leached alfalfa solids provided a simple formulated sediment that elicited consistently acceptable survival and growth in 28-day exposures with and without a daily feeding regime. A procedure is described for preparing the sediment along with results from comparisons among sand, amended sand, and field-collected sediments that incorporated three feeding regimes.

  9. First-year growth, condition, and size-selective winter mortality of freshwater drum in the lower Missouri River

    USGS Publications Warehouse

    Braaten, P.J.; Guy, C.S.

    2004-01-01

    We compared first-year growth and relative condition (Kn) of the 1997 and 1998 year-classes of freshwater drum Aplodinotus grunniens among three sites in a 235-km reach of the channelized Missouri River and tested for the occurrence of size-selective overwinter mortality during the first winter. Prewinter mean length was 15 mm greater, mean weight was 8 g greater, and mean Kn was 5% greater at the upstream site than at the downstream site. The prewinter mean length of age-0 freshwater drum was significantly greater in 1997 (115 mm) than in 1998 (109 mm), but Kn was significantly greater in 1998 (107) than in 1997 (102). There was no evidence that density-dependent interactions influenced prewinter growth and Kn. Size-selective overwinter mortality of the smallest size-classes of freshwater drum occurred at two of three sites during the 1997-1998 winter, and K n decreased 9-15%. Size-selective overwinter mortality of the 1998 cohort of freshwater drum did not occur during the 1998-1999 winter, and K n declined 0-10%. A prolonged growing season (through early December 1998), in conjunction with less severe winter water temperature conditions, apparently minimized the incidence of size-selective overwinter mortality for the 1998 cohort of freshwater drum. We conclude that size-selective overwinter mortality of age-0 freshwater drum occurs in the lower channelized Missouri River but depends on the length of the prewinter growing season, winter duration, and the severity of winter water temperatures.

  10. Use of 16S rRNA-targeted oligonucleotide probes to investigate the distribution of sulphate-reducing bacteria in estuarine sediments.

    PubMed

    Purdy, K J.; Nedwell, D B.; Embley, T M.; Takii, S

    2001-07-01

    The distribution of sulphate-reducing bacteria (SRBs) in three anaerobic sediments, one predominantly freshwater and low sulphate and two predominantly marine and high sulphate, on the River Tama, Tokyo, Japan, was investigated using 16S rRNA-targeted oligonucleotide probes. Hybridisation results and sulphate reduction measurements indicated that SRBs are a minor part of the bacterial population in the freshwater sediments. Only Desulfobulbus and Desulfobacterium were detected, representing 1.6% of the general bacterial probe signal. In contrast, the SRB community detected at the two marine-dominated sites was larger and more diverse, representing 10-11.4% of the bacterial signal and with Desulfobacter, Desulfovibrio, Desulfobulbus and Desulfobacterium detected. In contrast to previous reports our results suggest that Desulfovibrio may not always be the most abundant SRB in anaerobic sediments. Acetate-utilising Desulfobacter were the dominant SRB in the marine-dominated sediments, and Desulfobulbus and Desulfobacterium were active in low-sulphate sediments, where they may utilise electron acceptors other than sulphate.

  11. Human health risk assessment in relation to environmental pollution of two artificial freshwater lakes in The Netherlands.

    PubMed

    Albering, H J; Rila, J P; Moonen, E J; Hoogewerff, J A; Kleinjans, J C

    1999-01-01

    A human health risk assessment has been performed in relation to recreational activities on two artificial freshwater lakes along the river Meuse in The Netherlands. Although the discharges of contaminants into the river Meuse have been reduced in the last decades, which is reflected in decreasing concentrations of pollutants in surface water and suspended matter, the levels in sediments are more persistent. Sediments of the two freshwater lakes appear highly polluted and may pose a health risk in relation to recreational activities. To quantify health risks for carcinogenic (e.g., polycyclic aromatic hydrocarbons) as well as noncarcinogenic compounds (e.g., heavy metals), an exposure assessment model was used. First, we used a standard model that solely uses data on sediment pollution as the input parameter, which is the standard procedure in sediment quality assessments in The Netherlands. The highest intake appeared to be associated with the consumption of contaminated fish and resulted in a health risk for Pb and Zn (hazard index exceeded 1). For the other heavy metals and for benzo(a)pyrene, the total averaged exposure levels were below levels of concern. Secondly, input data for a more location-specific calculation procedure were provided via analyses of samples from sediment, surface water, and suspended matter. When these data (concentrations in surface water) were taken into account, the risk due to consumption of contaminated fish decreased by more than two orders of magnitude and appeared to be negligible. In both exposure assessments, many assumptions were made that contribute to a major degree to the uncertainty of this risk assessment. However, this health risk evaluation is useful as a screening methodology for assessing the urgency of sediment remediation actions.

  12. Freshwater Macroinvertebrates.

    ERIC Educational Resources Information Center

    Nalepa, T. F.

    1978-01-01

    Presents a literature review of freshwater biology particularly freshwater macroinvertebrates and their effect on water pollution, covering publications of 1976-77. A list of 158 references is also presented. (HM)

  13. Sediment contributions from floodplains and legacy sediments to Piedmont streams of Baltimore County, Maryland

    USGS Publications Warehouse

    Donovan, Mitchell; Miller, Andrew; Baker, Matthew; Gellis, Allen C.

    2015-01-01

    Disparity between watershed erosion rates and downstream sediment delivery has remained an important theme in geomorphology for many decades, with the role of floodplains in sediment storage as a common focus. In the Piedmont Province of the eastern USA, upland deforestation and agricultural land use following European settlement led to accumulation of thick packages of overbank sediment in valley bottoms, commonly referred to as legacy deposits. Previous authors have argued that legacy deposits represent a potentially important source of modern sediment loads following remobilization by lateral migration and progressive channel widening. This paper seeks to quantify (1) rates of sediment remobilization from Baltimore County floodplains by channel migration and bank erosion, (2) proportions of streambank sediment derived from legacy deposits, and (3) potential contribution of net streambank erosion and legacy sediments to downstream sediment yield within the Mid-Atlantic Piedmont.We calculated measurable gross erosion and deposition rates within the fluvial corridor along 40 valley segments from 18 watersheds with drainage areas between 0.18 and 155 km2 in Baltimore County, Maryland. We compared stream channel and floodplain morphology from lidar-based digital elevation data collected in 2005 with channel positions recorded on 1:2400 scale topographic maps from 1959–1961 in order to quantify 44–46 years of channel change. Sediment bulk density and particle size distributions were characterized from streambank and channel deposit samples and used for volume to mass conversions and for comparison with other sediment sources.Average annual lateral migration rates ranged from 0.04 to 0.19 m/y, which represented an annual migration of 2.5% (0.9–4.4%) channel width across all study segments, suggesting that channel dimensions may be used as reasonable predictors of bank erosion rates. Gross bank erosion rates varied from 43 to 310 Mg/km/y (median = 114) and

  14. Design of a sediment-monitoring gaging network on ephemeral tributaries of the Colorado River in Glen, Marble, and Grand Canyons, Arizona

    USGS Publications Warehouse

    Griffiths, Ronald E.; Topping, David J.; Anderson, Robert S.; Hancock, Gregory S.; Melis, Theodore S.

    2014-01-01

    Management of sediment in rivers downstream from dams requires knowledge of both the sediment supply and downstream sediment transport. In some dam-regulated rivers, the amount of sediment supplied by easily measured major tributaries may overwhelm the amount of sediment supplied by the more difficult to measure lesser tributaries. In this first class of rivers, managers need only know the amount of sediment supplied by these major tributaries. However, in other regulated rivers, the cumulative amount of sediment supplied by the lesser tributaries may approach the total supplied by the major tributaries. The Colorado River downstream from Glen Canyon has been hypothesized to be one such river. If this is correct, then management of sediment in the Colorado River in the part of Glen Canyon National Recreation Area downstream from the dam and in Grand Canyon National Park may require knowledge of the sediment supply from all tributaries. Although two major tributaries, the Paria and Little Colorado Rivers, are well documented as the largest two suppliers of sediment to the Colorado River downstream from Glen Canyon Dam, the contributions of sediment supplied by the ephemeral lesser tributaries of the Colorado River in the lowermost Glen Canyon, and Marble and Grand Canyons are much less constrained. Previous studies have estimated amounts of sediment supplied by these tributaries ranging from very little to almost as much as the amount supplied by the Paria River. Because none of these previous studies relied on direct measurement of sediment transport in any of the ephemeral tributaries in Glen, Marble, or Grand Canyons, there may be significant errors in the magnitudes of sediment supplies estimated during these studies. To reduce the uncertainty in the sediment supply by better constraining the sediment yield of the ephemeral lesser tributaries, the U.S. Geological Survey Grand Canyon Monitoring and Research Center established eight sediment-monitoring gaging

  15. Persistence of Episodic Extreme Events: Sustained Colluvial Contributions of Fine Sediment to Vermont Rivers Post-Irene

    NASA Astrophysics Data System (ADS)

    Dethier, E.; Magilligan, F. J.; Renshaw, C. E.; Sinclair, D.

    2014-12-01

    Tropical Storm Irene generated devastating floods in New England in 2011, causing more than $500 million of damage. In intervening years, many geomorphic signs of disturbance have attenuated, suggesting that impacts may be ephemeral. Yet persistent impact continues: channel-proximal landslide scars linger as point sources of fine sediment 3 yrs post-Irene. We evaluate the legacy of this major disturbance while also testing conceptual models of hillslope-channel connectivity and subsequent downstream sediment routing. We measure sustained landslide erosion by comparing DEMs generated by a Terrestrial Laser Scanner and trace sediment mobility using in-channel measurements of embeddedness, sediment concentration, and fallout radionuclide activity. We augmented detailed temporal sampling of an 850 m2 landslide along a 2nd-order stream with a spatially robust summer 2014 field campaign, scanning an additional 12 landslides. The initially sampled landslide eroded 250 m3 of sediment between fall 2013 and May 2014, averaging 0.3 m of erosion with nearly all erosion occurring during a two-week spring snowmelt. Landslide sediments had high measured 7Be activity (t1/2=53.4 d), caused by subaerial exposure; sediment collected downstream of the landslide had higher 7Be activity than that collected upstream, suggesting landslide provenance. Channel sediment upstream of the landslide had remained in the channel long enough for 7Be to decay below detectable activity. Embeddedness, a measure of fine sediment on a channel bed, was higher downstream of the landslide than upstream. Remote sensing reveals >50 similar landslides within the White River alone, and hundreds more in Vermont. Thus, landslide scar inputs may continue to influence the regional fine sediment budget. Ongoing successive scans in multiple watersheds show erosion continues in summer, an observation corroborated by elevated suspended sediment concentrations downstream of landslides after rain events. Summertime

  16. Quantification of Hydroxylated Polybrominated Diphenyl Ethers (OH-BDEs), Triclosan, and Related Compounds in Freshwater and Coastal Systems

    PubMed Central

    Kerrigan, Jill F.; Engstrom, Daniel R.; Yee, Donald; Sueper, Charles; Erickson, Paul R.; Grandbois, Matthew; McNeill, Kristopher; Arnold, William A.

    2015-01-01

    Hydroxylated polybrominated diphenyl ethers (OH-BDEs) are a new class of contaminants of emerging concern, but the relative roles of natural and anthropogenic sources remain uncertain. Polybrominated diphenyl ethers (PBDEs) are used as brominated flame retardants, and they are a potential source of OH-BDEs via oxidative transformations. OH-BDEs are also natural products in marine systems. In this study, OH-BDEs were measured in water and sediment of freshwater and coastal systems along with the anthropogenic wastewater-marker compound triclosan and its photoproduct dioxin, 2,8-dichlorodibenzo-p-dioxin. The 6-OH-BDE 47 congener and its brominated dioxin (1,3,7-tribromodibenzo-p-dioxin) photoproduct were the only OH-BDE and brominated dioxin detected in surface sediments from San Francisco Bay, the anthropogenically impacted coastal site, where levels increased along a north-south gradient. Triclosan, 6-OH-BDE 47, 6-OH-BDE 90, 6-OH-BDE 99, and (only once) 6’-OH-BDE 100 were detected in two sediment cores from San Francisco Bay. The occurrence of 6-OH-BDE 47 and 1,3,7-tribromodibenzo-p-dioxin sediments in Point Reyes National Seashore, a marine system with limited anthropogenic impact, was generally lower than in San Francisco Bay surface sediments. OH-BDEs were not detected in freshwater lakes. The spatial and temporal trends of triclosan, 2,8-dichlorodibenzo-p-dioxin, OH-BDEs, and brominated dioxins observed in this study suggest that the dominant source of OH-BDEs in these systems is likely natural production, but their occurrence may be enhanced in San Francisco Bay by anthropogenic activities. PMID:26466159

  17. Geomorphic Effects of Gravel Augmentation and Bank Re-erosion on the Old Rhine River Downstream From The Kembs Dam (France, Germany)

    NASA Astrophysics Data System (ADS)

    Chardon, V.; Laurent, S.; Piegay, H.; Arnaud, F.; Houssier, J.; Serouilou, J.; Clutier, A.

    2017-12-01

    The Old Rhine is a 50 km by-passed reach downstream from the Kembs diversion dam in the Alsacian plain (France/Germany). It has been impacted by engineering works since the 19th century. This reach exhibits poor ecological functionalities due to severe geomorphological alterations (e.g., channel bed stabilization, narrowing, degradation and armoring, sediment deficit). In the frame of the Kembs power plant relicensing (2010), Électricité de France has undertaken two gravel augmentations (18 000 and 30 000 m3) and three controlled bank erosions following riprap protection removal over 300 m bank length to enhance bedload transport and habitat diversification. A first pilot gravel augmentation was also implemented in 2010 (23 000 m3). A geomorphological monitoring based on bedload tracking, grain size analyses and topo-bathymetric surveys has been performed on the three gravel augmentation reaches and one of the controlled bank erosion sites to assess the efficiency and sustainability of these actions (2010-2017). Results show that augmented gravels are entrained for a Q2 flood. Gravels moved several hundred meters for moderate floods and up to one kilometer for more intense floods (Q15), while sediment deposition mainly diffused within the channel. Morphological and grain size diversification, including sediment refinement, are still relatively limited following gravel augmentation. Furthermore, sediment armoring reestablished once the sediment wave moved more downstream, after only four to six years, due to the stability and the narrowness of the channel but also by the absence of upstream bedload supply. Habitat diversification was higher on the controlled bank erosion site thanks to the presence of two artificial groynes, even though eroded sediment volumes were lower than expected (less than 1500m3 for a Q15 flood). This monitoring demonstrates gravel augmentations are not sufficient to really diversify geomorphological conditions of the Old Rhine. Channel

  18. Quantifying sediment dynamics on alluvial fans, Iglesia basin, south Central Argentine Andes

    NASA Astrophysics Data System (ADS)

    Harries, Rebekah; Kirstein, Linda; Whittaker, Alex; Attal, Mikael; Peralta, Silvio

    2017-04-01

    Qualitative interpretations of environmental change drawn from alluvial fan stratigraphy typically tie the deposition of greater volumes of coarser sediment to wetter climatic periods. For example, step changes in sediment flux and discharge associated with glacial-interglacial cycles are often linked to the progradation and back stepping of a fan's toe (Harvey et al, 2002). Indeed, more recent quantitative stratigraphic models demonstrate changes in the volume and calibre of sediment fluxed from an uplifted catchment can produce predictable shifts in the rate at which fluvial deposits fine downstream (Duller et al. 2010, Armitage et al. 2011). These interpretations, however, make three important assumptions: 1) the volume and calibre of the sediment transferred from an eroding mountain belt to a depositional basin is directly related to climate through some value of time-averaged discharge or catchment wetness; 2) lateral sources of sediment, such as tributaries, do not significantly influence the pattern of deposition in a basin and, similarly, 3) the reworking of older fan surfaces is minimal and does not impact the depositional pattern of younger deposits. Here we demonstrate each of these assumptions underestimates the importance of variance in transportable grain sizes in influencing the local and basin-wide deposited grain size trends. Using the Iglesia basin in the Argentine south Central Andes as a natural laboratory, we compare three large, adjacent, alluvial fan systems whose catchments experience the same background tectonic and climatic forcing. We find regional climate forcing is not expressed uniformly in the downstream grain size fining rates of their modern systems. Furthermore, we observe the variance in transportable grain sizes supplied from each primary catchment and the variance of material introduced by tributaries and fan surfaces downstream can act as first order controls on the rate of downstream fining. We also raise the importance of

  19. Evolving Role of Passive Samplers in Whole Sediment Toxicity Identification Evaluations

    EPA Science Inventory

    In Phase I of whole sediment TIEs, causes of toxicity to freshwater and marine organisms are characterized into broad toxicant classes including ammonia, metals and organic chemicals. In Phase II of the TIE, the specific toxicants causing observed toxicity are identified. For a...

  20. Regional hydroclimate response to freshwater fluxes from the Fennoscandian Ice Sheet during the Last Termination

    NASA Astrophysics Data System (ADS)

    Macdonald, F. A.; Schmitz, M. D.; Condon, D. J.; Zhu, M.; Rooney, A. D.; Brandon, A. D.

    2014-12-01

    Resolving the effects of freshwater forcing during the last glacial-interglacial transition, the Last Termination, is critical to our comprehension of rapid climate change. In particular, the role of Fennoscandian Ice Sheet (FIS) and freshwater from the eastern seaboard of the North Atlantic has been entirely disregarded in the context of the abrupt regional hydroclimate shifts that characterized this period. Here we infer freshwater input variations from the FIS to the Nordic Seas based on two accurately dated hydroclimate reconstructions from lake sediment records from Southern Sweden and one SST reconstruction from the Nordic Seas. The records indicate a number of abrupt freshwater discharges into the Nordic Seas at the start of the Bølling interstadial and during the Allerød interstadial. We observe that these intervals of enhanced FIS freshwater outflow correspond to different modalities of hydroclimate regime shifts in Greenland. Using a set of climate model simulations, we show that the dominant Greenland hydroclimate state can be influenced by the degree of FIS freshwater recirculation in the Nordic Seas, which redirects the excess of sea ice partitioned into the Barents Sea towards the eastern Greenland Current. The tradeoff between buildup and recirculation of sea ice in the Nordic Seas generate large-scale sea-level pressure anomalies that may explain the sign and magnitude of the isotopic and temperature changes inferred from Greenland and North European reconstructions. We conclude that air-sea interactions in the North Atlantic are more sensitive to Fennoscandian freshwater forcing than previously thought. These results could help to solve the problematic relationship between origin, timing and magnitude of freshwater perturbations and abrupt deglacial changes in North Atlantic Ocean circulation in numerical simulations.

  1. DECHLORINATION ACTIVITY (CROSS-ACCLIMATION) OF FRESHWATER SEDIMENTS ADAPTED TO MONO- AND DI-CHLOROPHENOLS

    EPA Science Inventory

    The reductive dechlorination of chlorophenols (CPs) in sediment slurries (10% solids) adapted to dechlorinate mono- and di-CPs (DCP) was investigated to define the regiospecificity of the dechlorination reaction. nadapted sediment slurries amended with various ortho-substituted C...

  2. The behavioural characteristics of sediment properties and their implications for sediment fingerprinting as an approach for identifying sediment sources in river basins

    NASA Astrophysics Data System (ADS)

    Koiter, A. J.; Owens, P. N.; Petticrew, E. L.; Lobb, D. A.

    2013-10-01

    Sediment fingerprinting is a technique that is increasingly being used to improve the understanding of sediment dynamics within river basins. At present, one of the main limitations of the technique is the ability to link sediment back to their sources due to the non-conservative nature of many of the sediment properties. The processes that occur between the sediment source locations and the point of collection downstream are not well understood or quantified and currently represent a black-box in the sediment fingerprinting approach. The literature on sediment fingerprinting tends to assume that there is a direct connection between sources and sinks, while much of the broader environmental sedimentology literature identifies that numerous chemical, biological and physical transformations and alterations can occur as sediment moves through the landscape. The focus of this paper is on the processes that drive particle size and organic matter selectivity and biological, geochemical and physical transformations and how understanding these processes can be used to guide sampling protocols, fingerprint selection and data interpretation. The application of statistical approaches without consideration of how unique sediment fingerprints have developed and how robust they are within the environment is a major limitation of many recent studies. This review summarises the current information, identifies areas that need further investigation and provides recommendations for sediment fingerprinting that should be considered for adoption in future studies if the full potential and utility of the approach are to be realised.

  3. Environmental controls on the speciation and distribution of mercury in surface sediments of a tropical estuary, India.

    PubMed

    Chakraborty, Parthasarathi; Babu, P V Raghunadh

    2015-06-15

    Distribution and speciation of mercury (Hg) in the sediments from a tropical estuary (Godavari estuary) was influenced by the changing physico-chemical parameters of the overlying water column. The sediments from the upstream and downstream of the estuary were uncontaminated but the sediments from the middle of the estuary were contaminated by Hg. The concentrations of Hg became considerably less during the monsoon and post monsoon period. Total Hg concentrations and its speciation (at the middle of the estuary) were dependent on the salinity of the overlying water column. However, salinity had little or no effect on Hg association with organic phases in the sediments at downstream. Increasing pH of the overlying water column corresponded with an increase in the total Hg content in the sediments. Total organic carbon in the sediments played an important role in controlling Hg partitioning in the system. Uncomplexed Hg binding ligands were available in the sediments. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Records of River Variation in the Shells of Freshwater Bivalves

    NASA Astrophysics Data System (ADS)

    Carroll, M.; Romanek, C.

    2005-12-01

    The skeletons of hard-shelled invertebrates such as corals and bivalves are commonly used in marine settings as archives of environmental information. They are less commonly used in freshwater settings where variability in water chemistry makes it more difficult to calibrate chemical proxies such as the Sr:Ca in a shell. Our objective is to evaluate whether trace element concentrations in freshwater bivalve shells contain information on environmental conditions. Multiple elements (Ba, Cu, Mn and Sr) were analyzed within the shells of modern bivalves from four streams on DOE's Savannah River Site in S.C. Laser Ablation ICP-MS was used to measure elemental concentrations across five aragonitic shells from each site. These elements were chosen because they are present in detectable concentrations (ppm) in the shell and they have been suggested as useful proxies for temperature, rainfall, productivity and pollution. Results were compared to historical monthly site records of water chemistry and chemical analyses of water samples collected from the streams where the clams were found. The average shell concentrations of Sr and Mn were significantly different between sites and increased proportionally to water concentration. This was not observed for Ba and Cu. For example, the Ba concentrations of shells collected at a site downstream of a lake were higher than those for shells from stream sites with significantly higher dissolved Ba concentrations. Copper was only detected at dark growth lines with the number of lines and shell material between them varying between shells within the same stream. Intrashell profiles of Ba, Sr and Mn concentrations exhibited cyclical variation. The magnitude of cyclical variation for Mn and Sr within a shell corresponds with the annual variation in monthly water sample concentrations. Again, this pattern was not observed for Ba, especially in shells from the site downstream of a lake. This supports suggestions that particulate organic

  5. Niche specificity of ammonia-oxidizing archaeal and bacterial communities in a freshwater wetland receiving municipal wastewater in Daqing, Northeast China.

    PubMed

    Lee, Kwok-Ho; Wang, Yong-Feng; Li, Hui; Gu, Ji-Dong

    2014-12-01

    Ecophysiological differences between ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) enable them to adapt to different niches in complex freshwater wetland ecosystems. The community characters of AOA and AOB in the different niches in a freshwater wetland receiving municipal wastewater, as well as the physicochemical parameters of sediment/soil samples, were investigated in this study. AOA community structures varied and separated from each other among four different niches. Wetland vegetation including aquatic macrophytes and terrestrial plants affected the AOA community composition but less for AOB, whereas sediment depths might contribute to the AOB community shift. The diversity of AOA communities was higher than that of AOB across all four niches. Archaeal and bacterial amoA genes (encoding for the alpha-subunit of ammonia monooxygenases) were most diverse in the dry-land niche, indicating O2 availability might favor ammonia oxidation. The majority of AOA amoA sequences belonged to the Soil/sediment Cluster B in the freshwater wetland ecosystems, while the dominant AOB amoA sequences were affiliated with Nitrosospira-like cluster. In the Nitrosospira-like cluster, AOB amoA gene sequences affiliated with the uncultured ammonia-oxidizing beta-proteobacteria constituted the largest portion (99%). Moreover, independent methods for phylogenetic tree analysis supported high parsimony bootstrap values. As a consequence, it is proposed that Nitrosospira-like amoA gene sequences recovered in this study represent a potentially novel cluster, grouping with the sequences from Gulf of Mexico deposited in the public databases.

  6. Impacts of upstream drought and water withdrawals on the health and survival of downstream estuarine oyster populations

    PubMed Central

    Petes, Laura E; Brown, Alicia J; Knight, Carley R

    2012-01-01

    Increases in the frequency, duration, and severity of regional drought pose major threats to the health and integrity of downstream ecosystems. During 2007–2008, the U.S. southeast experienced one of the most severe droughts on record. Drought and water withdrawals in the upstream watershed led to decreased freshwater input to Apalachicola Bay, Florida, an estuary that is home to a diversity of commercially and ecologically important organisms. This study applied a combination of laboratory experiments and field observations to investigate the effects of reduced freshwater input on Apalachicola oysters. Oysters suffered significant disease-related mortality under high-salinity, drought conditions, particularly during the warm summer months. Mortality was size-specific, with large oysters of commercially harvestable size being more susceptible than small oysters. A potential salinity threshold was revealed between 17 and 25 ppt, where small oysters began to suffer mortality, and large oysters exhibited an increase in mortality. These findings have important implications for watershed management, because upstream freshwater releases could be carefully timed and allocated during stressful periods of the summer to reduce disease-related oyster mortality. Integrated, forward-looking water management is needed, particularly under future scenarios of climate change and human population growth, to sustain the valuable ecosystem services on which humans depend. PMID:22957175

  7. Suspended-sediment flux and retention in a backwater tidal slough complex near the landward boundary of an estuary

    USGS Publications Warehouse

    Morgan-King, Tara L.; Schoellhamer, David H.

    2013-01-01

    Backwater tidal sloughs are commonly found at the landward boundary of estuaries. The Cache Slough complex is a backwater tidal region within the Upper Sacramento–San Joaquin Delta that includes two features that are relevant for resource managers: (1) relatively high abundance of the endangered fish, delta smelt (Hypomesus transpacificus), which prefers turbid water and (2) a recently flooded shallow island, Liberty Island, that is a prototype for habitat restoration. We characterized the turbidity around Liberty Island by measuring suspended-sediment flux at four locations from July 2008 through December 2010. An estuarine turbidity maximum in the backwater Cache Slough complex is created by tidal asymmetry, a limited tidal excursion, and wind-wave resuspension. During the study, there was a net export of sediment, though sediment accumulates within the region from landward tidal transport during the dry season. Sediment is continually resuspended by both wind waves and flood tide currents. The suspended-sediment mass oscillates within the region until winter freshwater flow pulses flush it seaward. The hydrodynamic characteristics within the backwater region such as low freshwater flow during the dry season, flood tide dominance, and a limited tidal excursion favor sediment retention.

  8. Integrating Sediment Connectivity into Water Resources Management Trough a Graph Theoretic, Stochastic Modeling Framework.

    NASA Astrophysics Data System (ADS)

    Schmitt, R. J. P.; Castelletti, A.; Bizzi, S.

    2014-12-01

    Understanding sediment transport processes at the river basin scale, their temporal spectra and spatial patterns is key to identify and minimize morphologic risks associated to channel adjustments processes. This work contributes a stochastic framework for modeling bed-load connectivity based on recent advances in the field (e.g., Bizzi & Lerner, 2013; Czubas & Foufoulas-Georgiu, 2014). It presents river managers with novel indicators from reach scale vulnerability to channel adjustment in large river networks with sparse hydrologic and sediment observations. The framework comprises three steps. First, based on a distributed hydrological model and remotely sensed information, the framework identifies a representative grain size class for each reach. Second, sediment residence time distributions are calculated for each reach in a Monte-Carlo approach applying standard sediment transport equations driven by local hydraulic conditions. Third, a network analysis defines the up- and downstream connectivity for various travel times resulting in characteristic up/downstream connectivity signatures for each reach. Channel vulnerability indicators quantify the imbalance between up/downstream connectivity for each travel time domain, representing process dependent latency of morphologic response. Last, based on the stochastic core of the model, a sensitivity analysis identifies drivers of change and major sources of uncertainty in order to target key detrimental processes and to guide effective gathering of additional data. The application, limitation and integration into a decision analytic framework is demonstrated for a major part of the Red River Basin in Northern Vietnam (179.000 km2). Here, a plethora of anthropic alterations ranging from large reservoir construction to land-use changes results in major downstream deterioration and calls for deriving concerted sediment management strategies to mitigate current and limit future morphologic alterations.

  9. Comparison of community structures of Candidatus Methylomirabilis oxyfera-like bacteria of NC10 phylum in different freshwater habitats.

    PubMed

    Shen, Li-Dong; Wu, Hong-Sheng; Gao, Zhi-Qiu; Liu, Xu; Li, Ji

    2016-05-09

    Methane oxidation coupled to nitrite reduction is mediated by 'Candidatus Methylomirabilis oxyfera' (M. oxyfera), which belongs to the NC10 phylum. In this study, the community composition and diversity of M. oxyfera-like bacteria of NC10 phylum were examined and compared in four different freshwater habitats, including reservoir sediments (RS), pond sediments (PS), wetland sediments (WS) and paddy soils (PAS), by using Illumina-based 16S rRNA gene sequencing. The recovered NC10-related sequences accounted for 0.4-2.5% of the 16S rRNA pool in the examined habitats, and the highest percentage was found in WS. The diversity of NC10 bacteria were the highest in RS, medium in WS, and lowest in PS and PAS. The observed number of OTUs (operational taxonomic unit; at 3% cut-off) were 97, 46, 61 and 40, respectively, in RS, PS, WS and PAS. A heterogeneous distribution of NC10 bacterial communities was observed in the examined habitats, though group B members were the dominant bacteria in each habitat. The copy numbers of NC10 bacterial 16S rRNA genes ranged between 5.8 × 10(6) and 3.2 × 10(7) copies g(-1) sediment/soil in the examined habitats. These results are helpful for a systematic understanding of NC10 bacterial communities in different types of freshwater habitats.

  10. Toxicity of Nano-Zero Valent Iron to Freshwater and Marine Organisms

    PubMed Central

    Keller, Arturo A.; Garner, Kendra; Miller, Robert J.; Lenihan, Hunter S.

    2012-01-01

    We tested whether three commercial forms (uncoated, organic coating, and iron oxide coating) of nano zero-valent iron (nZVI) are toxic to freshwater and marine organisms, specifically three species of marine phytoplankton, one species of freshwater phytoplankton, and a freshwater zooplankton species (Daphnia magna), because these organisms may be exposed downstream of where nZVI is applied to remediate polluted soil. The aggregation and reactivity of the three types of nZVI varied considerably, which was reflected in their toxicity. Since levels of Fe2+ and Fe3+ increase as the nZVI react, we also evaluated their toxicity independently. All four phytoplankton species displayed decreasing population growth rates, and Daphnia magna showed increasing mortality, in response to increasing levels of nZVI, and to a lesser degree with increasing Fe2+ and Fe3+. All forms of nZVI aggregated in soil and water, especially in the presence of a high concentration of calcium ions in groundwater, thus reducing their transports through the environment. However, uncoated nZVI aggregated extremely rapidly, thus vastly reducing the probability of environmental transport and potential for toxicity. This information can be used to design a risk management strategy to arrest the transport of injected nZVI beyond the intended remediation area, by injecting inert calcium salts as a barrier to transport. PMID:22952836

  11. Response of a tidal freshwater marsh to changes in sea level and suspended-sediment concentrations

    NASA Astrophysics Data System (ADS)

    Palinkas, C. M.

    2016-02-01

    Tidal marshes are among the world's most valuable ecosystems from a variety of perspectives, but they are also perhaps the most threatened by environmental changes, such as increased rates of sea-level rise and decreased concentrations of fluvial suspended sediments. In this study, time-series measurements of sedimentation over 5 years (2010-2014) at Dyke Marsh Preserve (Potomac River, VA, USA) are used to evaluate the influence of environmental drivers on sediment accretion within the marsh. To do so, bimonthly (deposition on ceramic tiles) and seasonal-scale (from 7Be (half-life 53.3 d) measurements) sedimentation rates are placed in the context of factors that can influence inorganic sediment availability and delivery to the marsh platform, specifically winds, river discharge, suspended-sediment concentrations (SSC; calculated from rating curves), and local sea level. Because of marsh geography and dominant storm patterns in this area, the influence of events is complex - wind speed and direction are negatively correlated with local sea level but positively correlated with SSC. This is, stronger winds from a more westerly direction drive water seaward of the marsh platform; increased precipitation results in higher river discharge and SSC from runoff and/or sediment resuspension. At the bimonthly scale, changes in sea level are correlated with both the rate and character (organic content) of sediments collected on tiles, but there was no relationship between sedimentation rates and SSC. Instead, bimonthly sedimentation rates are correlated with the fluvial sediment load (product of river discharge and SSC), which is not often included in models of marsh accretion. These trends are similar for seasonal-scale observations, though statistical tests are not as robust. These results suggest that, while events drive sedimentation within the marsh, their influence can be obscured over longer time scales that incorporate quiescent times of non-deposition.

  12. Statistical modelling of suspended sediment load in small basin located at Colombian Andes

    NASA Astrophysics Data System (ADS)

    Javier, Montoya Luis

    2016-04-01

    In this study a statistical modelling for the estimate the sediment yield based on available observations of water discharge and suspended sediment concentration were done. A multivariate model was applicate to analyze the 33 years of daily suspended sediments load available at a La Garrucha gauging station. A regional analysis were conducted to find a non-dimensional sediment load duration curve. These curves were used to estimate flow and sediments regimen at other inner point at the basin where there are located the Calderas reservoir. The record of sedimentation in the reservoir were used to validate the estimate mean sediments load. A periodical flushing in the reservoir is necessary to maintain the reservoir at the best operating capacity. The non-dimensional sediment load duration curve obtaining was used to find a sediment concentration during high flow regimen (10% of time these values were met or exceeded).These sediment concentration of high flow regimen has been assumed as a concentration that allow an 'environmental flushing', because it try to reproduce the natural regimen of sediments at the river and it sends a sediment concentration that environment can withstand. The sediment transport capacity for these sediment load were verified with a 1D model in order to respect the environmental constraints downstream of the dam. Field data were collected to understand the physical phenomena involved in flushing dynamics in the reservoir and downstream of the dam. These model allow to define an operations rules for the flushing to minimize the environmental effects.

  13. An application of excess lead-210 analysis for the study of fine sediment connectivity in a Mediterranean mountain basin with badlands, the Vallcebre research catchments

    NASA Astrophysics Data System (ADS)

    Moreno de las Heras, Mariano; Gallart, Francesc; Latron, Jérôme; Martínez-Carreras, Núria; Ferrer, Laura; Estrany, Joan

    2017-04-01

    Analysis of sediment dynamics in Mediterranean environments is fundamental to basin management, particularly for mountain catchments with badlands, which affect water bodies and freshwater ecosystems. Connectivity has emerged in Environmental and Earth Sciences as an evolution of the sediment delivery concept, providing a useful framework for understanding how sediments are transferred between geomorphic zones of the catchment. This study explores the feasibility of excess lead-210 (210Pbex) to analyse sediment connectivity in a 4-km2 Mediterranean mountain basin with badlands (the Vallcebre research catchments, Eastern Pyrenees) by applying simple 210Pbex mass-balance models for hypothesis generation and experimental testing in the field. Badland surfaces in the basin are weathered by freezing during the winter and are further eroded in summer by the effect of high-intensity storms. The eroded sediments may remain deposited within the catchment streams from months to years. Application of 210Pbex balance models in our basin proposes: (i) a saw-tooth seasonal pattern of badland surface 210Pbex activities (increasing from October to May, and depleted in summer) and (ii) a downstream increase in sediment activity due to fallout lead-210 accumulation in streambed sediment deposits. Both deposited and suspended sediments collected at the Vallcebre catchments showed, in general, low sediment 210Pbex concentrations, illustrating their fresh-rock origin at the badland sites, but also hampering the understanding of sediment 210Pbex patterns due to high measurement uncertainty (particularly for sediments with d50>20µm) and to strong dependence on sediment sampling methodology. Suspended sediment 210Pbex activity reproduced the simulated seasonal activity patterns for the badland surfaces. Contrary to the in-stream transit increases of sediment 210Pbex activity that were predicted by our model simulations, fallout lead-210 concentrations in the suspended sediments decreased

  14. Geochemistry of molybdenum in some stream sediments and waters

    NASA Astrophysics Data System (ADS)

    Kaback, Dawn S.; Runnells, Donald D.

    1980-03-01

    Elevated concentrations of Mo are present in both the waters and sediments of Tenmile Creek, downstream from the large Mo deposit at Climax. Colorado. Concentrations of Mo reach a maximum of 10mg/1 in the water and 384μ/g in the (-) 80 mesh fraction of the sediment. The Mo anomaly extends for more than 80 km downstream from Climax, and results from the mining and milling at Climax. Background Mo concentrations in the nearby mountainous area are < 10μg/l (water) and < 5μg/g (sediment). Immediately below three small unmined Mo-rich orebodies elsewhere in Colorado < 3μg/l Mo are present in the waters and 20-30μg/g Mo in the fine fraction of the sediments. The Mo in the sediment of Tenmile Creek is chiefly adsorbed on coatings of amorphous Fe oxyhydroxide. and is similar to its form below two small, unmined Mo deposits. Mining has not changed the character of the chemical processes responsible for Mo dispersion from the Climax site. A modified version of the WATEQF computer program ( PLUMMERet al., 1976) predicts that Tenmile Creek is undersaturated with respect to ferrimolybdite. molybdenite, powellite, and ilsemannite. The Mo in the stream water occurs as the molybdate ion which can be adsorbed on amorphous Fe oxyhydroxides. These predictions are supported by the absence of Mo minerals in the sediment of Tenmile Creek.

  15. Sediment concentrations, flow conditions, and downstream evolution of two turbidity currents, Monterey Canyon, USA

    USGS Publications Warehouse

    Xu, Jingping; Octavio E. Sequeiros,; Noble, Marlene A.

    2014-01-01

    The capacity of turbidity currents to carry sand and coarser sediment from shallow to deep regions in the submarine environment has attracted the attention of researchers from different disciplines. Yet not only are field measurements of oceanic turbidity currents a rare achievement, but also the data that have been collected consist mostly of velocity records with very limited or no suspended sediment concentration or grain size distribution data. This work focuses on two turbidity currents measured in Monterey Canyon in 2002 with emphasis on suspended sediment from unique samples collected within the body of these currents. It is shown that concentration and grain size of the suspended material, primarily controlled by the source of the gravity flows and their interaction with bed material, play a significant role in shaping the characteristics of the turbidity currents as they travel down the canyon. Before the flows reach their normal or quasi-steady state, which is defined by bed slope, bed roughness, and suspended grain size, they might pass through a preliminary adjustment stage where they are subject to capacity-driven deposition, and release heavy material in excess. Flows composed of fine (silt/clay) sediments tend to be thicker than those with sands. The measured velocity and concentration data confirm that flow patterns differ between the front and body of turbidity currents and that, even after reaching normal state, the flow regime can be radically disrupted by abrupt changes in canyon morphology.

  16. Presence of enteric viruses in freshwater and their removal by the conventional drinking water treatment process.

    PubMed Central

    Hurst, C. J.

    1991-01-01

    A review of results published in English or French between 1980 and 1990 was carried out to determine the levels of indigenous human enteric viruses in untreated surface and subsurface freshwaters, as well as in drinking water that had undergone the complete conventional treatment process. For this purpose, the conventional treatment process was defined as an operation that included coagulation followed by sedimentation, filtration, and disinfection. Also assessed was the stepwise efficiency of the conventional treatment process, as practised at full-scale facilities, for removing indigenous viruses from naturally occurring freshwaters. A list was compiled of statistical correlations relating to the occurrence of indigenous viruses in water. PMID:1647273

  17. Subtropical freshwater storages: a major source of nitrous oxide and methane?

    NASA Astrophysics Data System (ADS)

    Sturm, Katrin; Grinham, Alistair; Yuan, Zhiguo

    2013-04-01

    Studies of greenhouse gas cycling in subtropical water bodies, particularly in the Southern Hemisphere, are very limited. This represents an important gap in our understanding of global emissions as the higher temperatures experienced in the subtropics will likely accelerate greenhouse gas production and consumption. Critical to understanding the net impact of these accelerated rates are detailed studies of representative systems within this region. In this paper we present a model artificial freshwater storage: Gold Creek Dam in South East Queensland, Australia. Freshwater storages are commonplace for drinking water and irrigation purposes in Australia as unpredictable rainfall patterns make river and ground water sources unreliable. Over 85 % of Australian rivers are modified with weirs and dams providing permanent inundation of previously terrestrial environments. The higher temperatures experienced at these latitudes drive thermal stratification of these systems as well as rapidly deoxygenate bottom waters. High organic matter availability in the sediment zone as well as the anoxic overlying water provide ideal conditions for reduced products (including methane and ammonia) from microbial processing to be formed and diffuse into bottom waters. A mid-water metalimnion is generally associated with large gradients in dissolved oxygen availability and reduced metabolites undergo oxidation prior to their emission from water surface. An intensive field study was undertaken to improve understanding of production and transformation rates of methane and nitrous oxide from the sediments, through the water column and to the atmosphere. Sediment nutrient (ammonia, nitrite/nitrate and filterable reactive phosphorus) and greenhouse gas (methane and nitrous oxide) porewater samples were collected at selected sites. To determine the magnitude of the benthic sediment contribution of methane and nitrous oxide to the water column sediment incubations were conducted in the

  18. Sedimentation Impacts Modeling for the Lower Elwha River

    NASA Astrophysics Data System (ADS)

    Beggs, M.; Kosaka, M.; Sigel, A.; Vandermause, R.; Lauer, J. W.

    2012-12-01

    The removal of Glines Canyon and Elwha Dams from the Elwha River, northwest Washington, is intended to restore natural geomorphic and ecological processes to the Elwha River basin. Prior to the start of dam removal, over 16 million cubic meters of sediment had accumulated in the reservoirs above the two dams. As dam removal progresses, a portion of this sediment will erode and then be deposited on the downstream river bed and floodplain. To address uncertainty in downstream response to the project, the United States Bureau of Reclamation is implementing an adaptive management plan that relies upon continuous monitoring of water levels at a set of stream gages along the river. To interpret the monitoring data and allow for rapid assessment of the rate of downstream sedimentation, we developed rating curves at several locations along the lower Elwha River. The curves consider a range of possible sedimentation scenarios, each involving different sedimentation levels and/or locations. One scenario considers sedimentation primarily in the river channel, another considers sedimentation primarily on the floodplain, and a third considers both possibilities in tandem. We modeled these scenarios using two separate approaches. First, we modified the cross sections in an existing U.S. Army Corps of Engineers HEC-RAS model to represent possible changes associated with geomorphic adjustment to the dam removals. In-channel sedimentation was assumed to occur as a constant fraction of the bankfull depth at any given section, thereby focusing geomorphic change in relatively deep pool areas. In the HEC-RAS model, off-channel sedimentation was assumed uniform. The HEC-RAS model showed that both low-flow and flood hydraulics are much more sensitive to plausible levels of in-channel sedimentation than to plausible levels of overbank sedimentation. The wide floodplain, complex secondary channels, and geomorphic evolution since the original cross sections were surveyed raise some

  19. Geomorphic Response to Significant Sediment Loading Along Tahoma Creek on Mount Rainier, WA

    NASA Astrophysics Data System (ADS)

    Anderson, S.; Kennard, P.; Pitlick, J.

    2012-12-01

    Increased sediment loading in streams draining the flanks of Mt. Rainier has caused significant damage to National Park Service infrastructure and has prompted concern in downstream communities. The processes driving sedimentation and the controls on downstream response are explored in the 37 km2 Tahoma Creek basin, using repeat LiDAR surveys supplemented with additional topographic datasets. DEM differencing between 2003 and 2008 LiDAR datasets shows that over 2.2 million cubic meters of material was evacuated from the upper reaches of the basin, predominately in the form of debris flows. These debris flows were sourced in recently exposed lateral moraines, bulking through the broad collapse of unstable hillslopes. 40% of this material was deposited in the historic debris fan 4-6 km downstream of the terminus, while 55% completely exited the system at the downstream point of the surveys. Distinct zones of aggradation and incision of up to one meter are present along the lower channel and appear to be controlled by valley constrictions and inflections. However, the lower channel has shown remarkable long-term stability in the face of significant sediment loads. Alder ages suggest fluvial high stands in the late 70's and early 90's, immediately following periods of significant debris flow activity, yet the river quickly returned to pre-disturbance elevations. On longer time scales, the presence of old-growth forest on adjacent floodplain/terrace surfaces indicates broad stability on both vertical and horizontal planes. More than a passive indicator, these forested surfaces play a significant role in maintaining channel stability through increased overbank roughness and the formation of bank-armoring log jams. Sediment transport mechanics along this lower reach are explored using the TomSED sediment transport model, driven by data from an extensive sediment sampling and stream gaging effort. In its current state, the model is able to replicate the stability of the

  20. Downstream Channel Change and Bed-material Transport along the North Fork Stillaguamish River Following the March 22, 2014 SR530 Landslide, Northwestern Washington, USA

    NASA Astrophysics Data System (ADS)

    Keith, M. K.; Anderson, S. W.; Magirl, C. S.

    2015-12-01

    The March 22, 2014, catastrophic landslide near Oso, Washington, rapidly emplaced approximately 8 million m3 of slide material onto the valley floor, blocking the North Fork Stillaguamish River. Overtopping of the landslide dam and subsequent channel incision through the deposit mobilized large volumes of the glacial outwash, till, and lacustrine (silts and clays) sediment. The abundant sediment introduced to the gravel-bed channel prompted concerns of downstream aggradation and elevated hazards from seasonal flooding and channel migration. Our assessment of downstream aggradation potential and channel change was primarily based on 1) comparison of pre-slide to post-slide field-based and remote-sensing observations, 2) measurements of bedload transport, and 3) modeling of bedload transport for eight flow scenarios between 25% of the 2-year flow and the 100-year flow at several sites along the lower 65-km alluvial portion of the river. Although measurements of pre-slide grain-size distributions were highly variable from year to year, comparison of those counts to 2014 post-slide measurements show a general fining of channel and bar surface material. Between 2014 and 2015, we observed coarsening at some bars, most notably for sediment smaller than 4 mm. From aerial photograph inspection, the shape, size, and distribution of gravel and sand bars between the landslide and the mouth of the North Fork Stillaguamish River appears to have been relatively unchanged between 2013 and 2015. Post-slide bedload transport capacity rates were calculated using Parker, Wilcock and Crowe, and two forms of Recking equations. Transport capacities for the narrow and confined channel where it has incised through the landslide are much greater compared with the low gradient and wide floodplain segments downstream. Nevertheless, because of fine grain sizes within the landslide debris, most of the sediment has been transported through the downstream channel, resulting in minimal aggradation.

  1. Identification of water-quality trends using sediment cores from Dillon Reservoir, Summit County, Colorado

    USGS Publications Warehouse

    Greve, Adrienne I.; Spahr, Norman E.; Van Metre, Peter C.; Wilson, Jennifer T.

    2001-01-01

    Since the construction of Dillon Reservoir, in Summit County, Colorado, in 1963, its drainage area has been the site of rapid urban development and the continued influence of historical mining. In an effort to assess changes in water quality within the drainage area, sediment cores were collected from Dillon Reservoir in 1997. The sediment cores were analyzed for pesticides, polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), and trace elements. Pesticides, PCBs, and PAHs were used to determine the effects of urban development, and trace elements were used to identify mining contributions. Water-quality and streambed-sediment samples, collected at the mouth of three streams that drain into Dillon Reservoir, were analyzed for trace elements. Of the 14 pesticides and 3 PCBs for which the sediment samples were analyzed, only 2 pesticides were detected. Low amounts of dichloro-diphenyldichloroethylene (DDE) and dichloro-diphenyldichloroethane (DDD), metabolites of dichlorodiphenyltrichloroethane (DDT), were found at core depths of 5 centimeters and below 15 centimeters in a core collected near the dam. The longest core, which was collected near the dam, spanned the entire sedimentation history of the reservoir. Concentrations of total combustion PAH and the ratio of fluoranthene to pyrene in the core sample decreased with core depth and increased over time. This relation is likely due to growth in residential and tourist populations in the region. Comparisons between core samples gathered in each arm of the reservoir showed the highest PAH concentrations were found in the Tenmile Creek arm, the only arm that has an urban area on its shores, the town of Frisco. All PAH concentrations, except the pyrene concentration in one segment in the core near the dam and acenaphthylene concentrations in the tops of three cores taken in the reservoir arms, were below Canadian interim freshwater sediment-quality guidelines. Concentrations of arsenic, cadmium

  2. The rate and pattern of bed incision and bank adjustment on the Colorado River in Glen Canyon downstream from Glen Canyon Dam, 1956-2000

    USGS Publications Warehouse

    Grams, P.E.; Schmidt, J.C.; Topping, D.J.

    2007-01-01

    Closure of Glen Canyon Dam in 1963 transformed the Colorado River by reducing the magnitude and duration of spring floods, increasing the magnitude of base flows, and trapping fine sediment delivered from the upper watershed. These changes caused the channel downstream in Glen Canyon to incise, armor, and narrow. This study synthesizes over 45 yr of channel-change measurements and demonstrates that the rate and style of channel adjustment are directly related to both natural processes associated with sediment deficit and human decisions about dam operations. Although bed lowering in lower Glen Canyon began when the first cofferdam was installed in 1959, most incision occurred in 1965 in conjunction with 14 pulsed high flows that scoured an average of 2.6 m of sediment from the center of the channel. The average grain size of bed material has increased from 0.25 mm in 1956 to over 20 mm in 1999. The magnitude of incision at riffles decreases with distance downstream from the dam, while the magnitude of sediment evacuation from pools is spatially variable and extends farther downstream. Analysis of bed-material mobility indicates that the increase in bed-material grain size and reduction in reach-average gradient are consistent with the transformation of an adjustable-bed alluvial river to a channel with a stable bed that is rarely mobilized. Decreased magnitude of peak discharges in the post-dam regime coupled with channel incision and the associated downward shifts of stage-discharge relations have caused sandbar and terrace erosion and the transformation of previously active sandbars and gravel bars to abandoned deposits that are no longer inundated. Erosion has been concentrated in a few pre-dam terraces that eroded rapidly for brief periods and have since stabilized. The abundance of abandoned deposits decreases downstream in conjunction with decreasing magnitude of shift in the stage-discharge relations. In the downstream part of the study area where riffles

  3. Human health risk assessment in relation to environmental pollution of two artificial freshwater lakes in The Netherlands.

    PubMed Central

    Albering, H J; Rila, J P; Moonen, E J; Hoogewerff, J A; Kleinjans, J C

    1999-01-01

    A human health risk assessment has been performed in relation to recreational activities on two artificial freshwater lakes along the river Meuse in The Netherlands. Although the discharges of contaminants into the river Meuse have been reduced in the last decades, which is reflected in decreasing concentrations of pollutants in surface water and suspended matter, the levels in sediments are more persistent. Sediments of the two freshwater lakes appear highly polluted and may pose a health risk in relation to recreational activities. To quantify health risks for carcinogenic (e.g., polycyclic aromatic hydrocarbons) as well as noncarcinogenic compounds (e.g., heavy metals), an exposure assessment model was used. First, we used a standard model that solely uses data on sediment pollution as the input parameter, which is the standard procedure in sediment quality assessments in The Netherlands. The highest intake appeared to be associated with the consumption of contaminated fish and resulted in a health risk for Pb and Zn (hazard index exceeded 1). For the other heavy metals and for benzo(a)pyrene, the total averaged exposure levels were below levels of concern. Secondly, input data for a more location-specific calculation procedure were provided via analyses of samples from sediment, surface water, and suspended matter. When these data (concentrations in surface water) were taken into account, the risk due to consumption of contaminated fish decreased by more than two orders of magnitude and appeared to be negligible. In both exposure assessments, many assumptions were made that contribute to a major degree to the uncertainty of this risk assessment. However, this health risk evaluation is useful as a screening methodology for assessing the urgency of sediment remediation actions. Images Figure 1 Figure 2 Figure 3 PMID:9872714

  4. Sediment delivery after a wildfire

    USGS Publications Warehouse

    Reneau, Steven L.; Katzman, D.; Kuyumjian, G.A.; Lavine, A.; Malmon, D.V.

    2007-01-01

    We use a record of sedimentation a small reservoir within the Cerro Grande burn area, New Mexico, to document postfire delivery of ash, other fine-grained sediment carried in suspension within floods, and coarse-grained sediment transported as bedload over a five-year period. Ash content of sediment layers is estimated using fallout 137Cs as a tracer, and ash concentrations are shown to rapidly decrease through a series of moderate-intensity convective storms in the first rainy season after the fire. Over 90% of the ash was delivered to the reservoir in the first year, and ash concentrations in suspended sediment were negligible after the second year. Delivery of the remainder of the fine sediment also declined rapidly after the first year despite the occurrence of higher-intensity storms in the second year. Fine sediment loads after five years remained significantly above prefire averages. Deposition of coarse-grained sediment was irregular in time and was associated with transport by snowmelt runoff of sediment stored along the upstream channel during short-duration summer floods. Coarse sediment delivery in the first four years was strongly correlated with snowmelt volume, suggesting a transport-limited system with abundant available sediment. Transport rates of coarse sediment declined in the fifth year, consistent with a transition to a more stable channel as the accessible sediment supply was depleted and the channel bed coarsened. Maximum impacts from ash and other fine-grained sediment therefore occurred soon after the fire, whereas the downstream impacts from coarse-grained sediment were attenuated by the more gradual process of bedload sediment transport. ?? 2007 Geological Society of America.

  5. Residual levels of rare earth elements in freshwater and marine fish and their health risk assessment from Shandong, China.

    PubMed

    Yang, Luping; Wang, Xining; Nie, Hongqian; Shao, Lijun; Wang, Guoling; Liu, Yongjun

    2016-06-15

    The total concentrations of rare earth elements (ΣREE) were quantified in 251 samples from 10 common species of freshwater and marine fish in seventeen cities of Shandong, China. ΣREE obtained from the freshwater fish ranged from 34.0 to 37.9ngg(-1) (wet weight) and marine fish from 12.7 to 37.6ngg(-1). The ratio of LREE to HREE was 13.7:1 and 10:1 for freshwater and marine fish, respectively. This suggests that freshwater fish exhibit greater REE concentrations than marine fish and the biological effects of LREE are higher than HREE. Results revealed a similar REE distribution pattern between those fish and coastal sediments, abiding the "abundance law". The health risk assessment demonstrated the EDIs of REEs in fish were significantly lower than the ADI, indicating that the consumption of these fish presents little risk to human health. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Effects of sedimentation on soil physical and chemical properties and vegetation characteristics in sand dunes at the Southern Dongting Lake region, China

    NASA Astrophysics Data System (ADS)

    Pan, Ying; Zhang, Hao; Li, Xu; Xie, Yonghong

    2016-11-01

    Sedimentation is recognized as a major factor determining the ecosystem processes of lake beaches; however, the underlying mechanisms, especially in freshwater sand dunes, have been insufficiently studied. To this end, nine belt transects from nine freshwater sand dunes, classified into low (<23.7 m), medium (25.4-26.0 m), and high-elevation groups (>28.1 m) based on their elevations in 1972, were sampled to investigate differences in sedimentation rate and soil and vegetation characteristics in Southern Dongting Lake, China. Sedimentation rate, soil sand content, and soil pH increased, whereas soil clay, fine silt, moisture (MC), organic matter (OM), total N, and total K content, in addition to the growth and biodiversity of sand dune plants generally decreased with decreasing belt transect elevation. Regression analyses revealed that the negative effects of sedimentation on the ecosystem functions of sand dunes could be attributed to higher fine sand content in deposited sediments and stronger inhibition of plant growth. These results are consistent with previous studies performed in coastal sand dunes, which highlights the importance of sedimentation in determining ecological processes.

  7. Effects of episodic sediment supply on bedload transport rate in mountain rivers. Detecting debris flow activity using continuous monitoring

    NASA Astrophysics Data System (ADS)

    Uchida, Taro; Sakurai, Wataru; Iuchi, Takuma; Izumiyama, Hiroaki; Borgatti, Lisa; Marcato, Gianluca; Pasuto, Alessandro

    2018-04-01

    Monitoring of sediment transport from hillslopes to channel networks as a consequence of floods with suspended and bedload transport, hyperconcentrated flows, debris and mud flows is essential not only for scientific issues, but also for prevention and mitigation of natural disasters, i.e. for hazard assessment, land use planning and design of torrent control interventions. In steep, potentially unstable terrains, ground-based continuous monitoring of hillslope and hydrological processes is still highly localized and expensive, especially in terms of manpower. In recent years, new seismic and acoustic methods have been developed for continuous bedload monitoring in mountain rivers. Since downstream bedload transport rate is controlled by upstream sediment supply from tributary channels and bed-external sources, continuous bedload monitoring might be an effective tool for detecting the sediments mobilized by debris flow processes in the upper catchment and thus represent an indirect method to monitor slope instability processes at the catchment scale. However, there is poor information about the effects of episodic sediment supply from upstream bed-external sources on downstream bedload transport rate at a single flood time scale. We have examined the effects of sediment supply due to upstream debris flow events on downstream bedload transport rate along the Yotagiri River, central Japan. To do this, we have conducted continuous bedload observations using a hydrophone (Japanese pipe microphone) located 6.4 km downstream the lower end of a tributary affected by debris flows. Two debris flows occurred during the two-years-long observation period. As expected, bedload transport rate for a given flow depth showed to be larger after storms triggering debris flows. That is, although the magnitude of sediment supply from debris flows is not large, their effect on bedload is propagating >6 km downstream at a single flood time scale. This indicates that continuous bedload

  8. Evaluation of the Reference Envelope Approach for Assessing Toxicity in Contaminated Surficial Urban Freshwater Sediments

    EPA Science Inventory

    The reference envelope (RE) has been proposed as an alternative approach to assess sediment toxicity to overcome limitations imposed by the use of control sediments including differences in non-contaminant characteristics and low statistical power when many test sediments are com...

  9. Numerical Simulation of Missouri River Bed Evolution Downstream of Gavins Point Dam

    NASA Astrophysics Data System (ADS)

    Sulaiman, Z. A.; Blum, M. D.; Lephart, G.; Viparelli, E.

    2016-12-01

    The Missouri River originates in the Rocky Mountains in western Montana and joins the Mississippi River near Saint Louis, Missouri. In the 1900s dam construction and river engineering works, such as river alignment, narrowing and bank protections were performed in the Missouri River basin to control the flood flows, ensure navigation and use the water for agricultural, industrial and municipal needs, for the production of hydroelectric power generation and for recreation. These projects altered the flow and the sediment transport regimes in the river and the exchange of sediment between the river and the adjoining floodplain. Here we focus on the long term effect of dam construction and channel narrowing on the 1200 km long reach of the Missouri River between Gavins Point Dam, Nebraska and South Dakota, and the confluence with the Mississippi River. Field observations show that two downstream migrating waves of channel bed degradation formed in this reach in response to the changes in flow regime, sediment load and channel geometry. We implemented a one dimensional morphodynamic model for large, low slope sand bed rivers, we validated the model at field scale by comparing the numerical results with the available field data and we use the model to 1) predict the magnitude and the migration rate of the waves of degradation at engineering time scales ( 150 years into the future), 2) quantify the changes in the sand load delivered to the Mississippi River, where field observations at Thebes, i.e. downstream of Saint Louis, suggest a decline in the mean annual sand load in the past 50 years, and 3) identify the role of the main tributaries - Little Sioux River, Platte River and Kansas River - on the wave migration speed and the annual sand load in the Missouri River main channel.

  10. Geochemical peculiarities of sediments in the northeastern Black Sea

    NASA Astrophysics Data System (ADS)

    Rozanov, A. G.; Gursky, Yu. N.

    2016-11-01

    We present the results of chemical determinations of Al, Fe, Mn, Cu, Ni, Co, Cr, Pb, Sb, and As in Black Sea sediments over a profile from the Kerch Strait to the eastern part of a deep depression (2210 m). The lithological and geochemical variations were studied in the horizontal and vertical profiles of sediments up to 3 m thick. The tendencies in the distributions of the studied metals during Pleistocene and Holocene sedimentation were analyzed beginning from Neoeuxinian freshwater deposits via the overlaying Drevnechernomorian beds with elevated contents of sapropel to modern clayey carbonate deposits with coccolithophorids. Statistical factor analysis isolated five factors: two main factors (75% of the total dispersion) and three subordinate factors. The first leading biogenic factor (47% of dispersion) reflects the correlation between Corg, Cu, and Ni; the second terrigenous factor (28% of dispersion) combimes Fe, Al, Cr, and Sb. The chemical composition of the sediments reflects the manifestation of diagenesis of landslide processes and mud volcanism along with sedimentation regularities.

  11. Multi-residue screening of prioritised human pharmaceuticals, illicit drugs and bactericides in sediments and sludge.

    PubMed

    Langford, Katherine H; Reid, Malcolm; Thomas, Kevin V

    2011-08-01

    A robust multi-residue method was developed for the analysis of a selection of pharmaceutical compounds, illicit drugs and personal care product bactericides in sediments and sludges. Human pharmaceuticals were selected for analysis in Scottish sewage sludge and freshwater sediments based on prescription, physico-chemical and occurrence data. The method was suitable for the analysis of the selected illicit drugs amphetamine, benzoylecgonine, cocaine, and methamphetamine, the pharmaceuticals atenolol, bendroflumethiazide, carbamazepine, citalopram, diclofenac, fluoxetine, ibuprofen, and salbutamol, and the bactericides triclosan and triclocarban in sewage sludge and freshwater sediment. The method provided an overall recovery of between 56 and 128%, RSDs of between 2 and 19% and LODs of between 1 and 50 ng g(-1). Using the methodology the human pharmaceuticals atenolol, carbamazepine and citalopram and the bactericides triclosan and triclocarban were detected in Scottish sewage sludge. The illicit drugs cocaine, its metabolite benzoylecgonine, amphetamine and methamphetamine were not detected in any of the samples analysed. Triclosan and triclocarban were present at the highest concentrations with triclocarban detected in all but one sample and showing a pattern of co-occurrence in both sludge and sediment samples.

  12. Vegetation Influences on Tidal Freshwater Marsh Sedimentation and Accretion

    NASA Astrophysics Data System (ADS)

    Cadol, D. D.; Elmore, A. J.; Engelhardt, K.; Palinkas, C. M.

    2011-12-01

    Continued sea level rise, and the potential for acceleration over the next century, threatens low-lying natural and cultural resources throughout the world. In the national capital region of the United States, for example, the National Park Service manages over 50 km^2 of land along the shores of the tidal Potomac River and its tributaries that may be affected by sea level rise. Dyke Marsh Wildlife Preserve on the Potomac River south of Washington, DC, is one such resource with a rich history of scientific investigation. It is a candidate for restoration to replace marsh area lost to dredging in the 1960s, yet for restoration to succeed in the long term, accretion must maintain the marsh surface within the tidal range of rising relative sea level. Marsh surface accretion rates tend to increase with depth in the tidal frame until a threshold depth is reached below which marsh vegetation cannot be sustained. Suspended sediment concentration, salinity, tidal range, and vegetation community all influence the relationship between depth and accretion rate. The complex interactions among these factors make sedimentation rates difficult to generalize across sites. Surface elevation tables (SET) and feldspar marker horizons have been monitored at 9 locations in Dyke Marsh for 5 years, providing detailed data on sedimentation, subsidence, and net accretion rates at these locations. We combine these data with spatially rich vegetation surveys, a LiDAR derived 1-m digital elevation model of the marsh, and temperature-derived inundation durations to model accretion rates across the marsh. Temperature loggers suggest a delayed arrival of tidal water within the marsh relative to that predicted by elevation alone, likely due to hydraulic resistance caused by vegetation. Wave driven coastal erosion has contributed to bank retreat rates of ~2.5 m/yr along the Potomac River side of the marsh while depositing a small berm of material inland of the retreating shoreline. Excluding sites

  13. Integrating the social, hydrological and ecological dimensions of freshwater health: The Freshwater Health Index.

    PubMed

    Vollmer, Derek; Shaad, Kashif; Souter, Nicholas J; Farrell, Tracy; Dudgeon, David; Sullivan, Caroline A; Fauconnier, Isabelle; MacDonald, Glen M; McCartney, Matthew P; Power, Alison G; McNally, Amy; Andelman, Sandy J; Capon, Timothy; Devineni, Naresh; Apirumanekul, Chusit; Ng, Cho Nam; Rebecca Shaw, M; Wang, Raymond Yu; Lai, Chengguang; Wang, Zhaoli; Regan, Helen M

    2018-06-15

    Degradation of freshwater ecosystems and the services they provide is a primary cause of increasing water insecurity, raising the need for integrated solutions to freshwater management. While methods for characterizing the multi-faceted challenges of managing freshwater ecosystems abound, they tend to emphasize either social or ecological dimensions and fall short of being truly integrative. This paper suggests that management for sustainability of freshwater systems needs to consider the linkages between human water uses, freshwater ecosystems and governance. We present a conceptualization of freshwater resources as part of an integrated social-ecological system and propose a set of corresponding indicators to monitor freshwater ecosystem health and to highlight priorities for management. We demonstrate an application of this new framework -the Freshwater Health Index (FHI) - in the Dongjiang River Basin in southern China, where stakeholders are addressing multiple and conflicting freshwater demands. By combining empirical and modeled datasets with surveys to gauge stakeholders' preferences and elicit expert information about governance mechanisms, the FHI helps stakeholders understand the status of freshwater ecosystems in their basin, how ecosystems are being manipulated to enhance or decrease water-related services, and how well the existing water resource management regime is equipped to govern these dynamics over time. This framework helps to operationalize a truly integrated approach to water resource management by recognizing the interplay between governance, stakeholders, freshwater ecosystems and the services they provide. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  14. Evaluation of a fine sediment removal tool in spring-fed and snowmelt driven streams

    USGS Publications Warehouse

    Sepulveda, Adam; Layhee, Megan J.; Sutphin, Zach; Sechrist, Juddson D.

    2015-01-01

    The accumulation of fine-grained sediments impairs the structure and function of streams, so removing fine sediments may be required to achieve restoration objectives. There has been little work on methods of removing excess sediment or on the efficacy of the methods. We used a 4-year before-after-control-impact design in southeastern Idaho streams to test a fine sediment removal system (FSRS) manufactured by Streamside Environmental LLC. The FSRS agitates fine sediment in the substrate with clean pump water and then vacuums the sediment out of the stream with a second pump. Our objectives were: 1) to test if the FSRS can selectively remove fine sediment; 2) to monitor the bio-physical responses in FSRS treated and downstream waters; and 3) to compare the bio-physical responses to the FSRS in spring-fed and snowmelt driven stream reaches. The FSRS removed ~ 14 metric tons of sediment from the two treated reaches. More than 90% of this sediment was < 2 mm, indicating that the FSRS selected for fine sediment in both stream types. Sustained effects of removing this sediment were confined to substrate improvements in treated reaches. Embeddedness in the spring-fed reach decreased and subsurface grain size in spring-fed and snowmelt driven reaches increased. We did not detect any sustained invertebrate or fish responses in treated reaches or any detrimental bio-physical responses in downstream waters. These results indicate that the FSRS reduced fine sediment levels but sediment removal did not reverse the impacts of sediment accumulation to stream biota within our monitoring time frame.

  15. Biodegradation of 17β-estradiol, estrone, and testosterone in stream sediments

    USGS Publications Warehouse

    Bradley, P.M.; Chapelle, F.H.; Barber, L.B.; McMahon, P.B.; Gray, J.L.; Kolpin, D.W.

    2009-01-01

    The release of endocrine-disrupting chemicals (EDCs) in wastewater treatment plant (WWTP) effluent poses a significant threat to the ecology of surface water receptors, due to impacts on the hormonal control, sexual development, reproductive success and community structure of the indigenous aquatic organisms and associated wildlife. Among the EDCs commonly observed in WWTP effluent, the natural [e.g., 17??-estradiol (E2) and estrone (E1)] and synthetic [e.g., ethynylestradiol (EE2)] estrogens are particular concerns owing to their high endocrine reactivity in both in vitro and in vivo laboratory models. These reproductive hormones have been identified as the primary cause of estrogenic effects in wastewater effluent, with greater than 95% of the estrogen receptor agonist activity in effluent attributed to this contaminant group. The potentials for in situ biodegradation of 17??-estradiol (E2), estrone (E1), and testosterone (T) were investigated in three, hydrologically-distinct, WWTP-impacted streams in the United States. Relative differences in the mineralization of [4-14C] substrates were assessed in oxic microcosms containing sediment or water-only from locations upstream and downstream of the WWTP outfall in each system. Upstream samples provided insight into the biodegradative potential of sediment microbial communities that were not under the immediate impact of WWTP effluent. Upstream sediment from all three systems demonstrated significant mineralization of the "A" ring of E2, E1 and T, with the potential of T biodegradation consistently greater than of E2 and no systematic difference in the potentials of E2 and E1. Downstream samples provided insight into the impacts of effluent on reproductive hormone biodegradation. Significant "A" ring mineralization was also observed in downstream sediment, with the potentials for E1 and T mineralization being substantially depressed relative to upstream samples. In marked contrast, the potentials for E2

  16. Tidal river sediments in the Washington, D.C. area. 111 Biological effects associated with sediment contamination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schlekat, C.E.; McGee, B.L.; Boward, D.M.

    1994-06-01

    Sediment toxicity and benthic marcroinvertebrate community structure were measured as one component of a study conceived to determine the distribution and effect of sediment contamination in tidal freshwater portions of the Potomac and Anacostia rivers in the Washington, D.C., area. Samples were collected at 15 sites. Analyses included a partial life cycle (28 d) whole sediment test using the amphipod Hyalella azteca (Talitridae) and an assessment of benthic community structure. Survival and growth (as estimated by amphipod length) were experimental endpoints for the toxicity test. Significant mortality was observed in 5 to 10 sites in the lower Anacostia River basinmore » and at the main channel Potomac River site. Sublethal toxicity, as measured by inhibition of amphipod growth, was not observed. Toxicity test results were in general agreement with synoptically measured sediment contaminant concentrations. Porewater total ammonia (NH{sub 3} + NH{sub 4}{sup +}) appears to be responsible for the toxicity of sediments from the Potomac River, while correlation analysis and simultaneously extracted metals: acid volatile sulfide (SEM:AVA) results suggest that the toxicity associated with Anacostia River sediments was due to organic compounds. Twenty-eight macroinvertebrate taxa were identified among all sites, with richness varying from 5 to 17 taxa per site. Groups of benthic assemblages identified by group-average cluster analysis exhibited variable agreement with sediment chemical and sediment toxicity results. Integration of toxicological, chemical, and ecological components suggests that adverse environmental effects manifest in lower Anacostia River benthos result from chemical contamination of sediment. 37 refs., 2 figs., 7 tabs.« less

  17. Sediment core and glacial environment reconstruction - a method review

    NASA Astrophysics Data System (ADS)

    Bakke, Jostein; Paasche, Øyvind

    2010-05-01

    Alpine glaciers are often located in remote and high-altitude regions of the world, areas that only rarely are covered by instrumental records. Reconstructions of glaciers has therefore proven useful for understanding past climate dynamics on both shorter and longer time-scales. One major drawback with glacier reconstructions based solely on moraine chronologies - by far the most common -, is that due to selective preservation of moraine ridges such records do not exclude the possibility of multiple Holocene glacier advances. This problem is true regardless whether cosmogenic isotopes or lichenometry have been used to date the moraines, or also radiocarbon dating of mega-fossils buried in till or underneath the moraines themselves. To overcome this problem Karlén (1976) initially suggested that glacial erosion and the associated production of rock-flour deposited in downstream lakes could provide a continuous record of glacial fluctuations, hence overcoming the problem of incomplete reconstructions. We want to discuss the methods used to reconstruct past glacier activity based on sediments deposited in distal glacier-fed lakes. By quantifying physical properties of glacial and extra-glacial sediments deposited in catchments, and in downstream lakes and fjords, it is possible to isolate and identify past glacier activity - size and production rate - that subsequently can be used to reconstruct changing environmental shifts and trends. Changes in average sediment evacuation from alpine glaciers are mainly governed by glacier size and the mass turnover gradient, determining the deformation rate at any given time. The amount of solid precipitation (mainly winter accumulation) versus loss due to melting during the ablation-season (mainly summer temperature) determines the mass turnover gradient in either positive or negative direction. A prevailing positive net balance will lead to higher sedimentation rates and vice versa, which in turn can be recorded in downstream

  18. Ascribing soil erosion of hillslope components to river sediment yield.

    PubMed

    Nosrati, Kazem

    2017-06-01

    In recent decades, soil erosion has increased in catchments of Iran. It is, therefore, necessary to understand soil erosion processes and sources in order to mitigate this problem. Geomorphic landforms play an important role in influencing water erosion. Therefore, ascribing hillslope components soil erosion to river sediment yield could be useful for soil and sediment management in order to decrease the off-site effects related to downstream sedimentation areas. The main objectives of this study were to apply radionuclide tracers and soil organic carbon to determine relative contributions of hillslope component sediment sources in two land use types (forest and crop field) by using a Bayesian-mixing model, as well as to estimate the uncertainty in sediment fingerprinting in a mountainous catchment of western Iran. In this analysis, 137 Cs, 40 K, 238 U, 226 Ra, 232 Th and soil organic carbon tracers were measured in 32 different sampling sites from four hillslope component sediment sources (summit, shoulder, backslope, and toeslope) in forested and crop fields along with six bed sediment samples at the downstream reach of the catchment. To quantify the sediment source proportions, the Bayesian mixing model was based on (1) primary sediment sources and (2) combined primary and secondary sediment sources. The results of both approaches indicated that erosion from crop field shoulder dominated the sources of river sediments. The estimated contribution of crop field shoulder for all river samples was 63.7% (32.4-79.8%) for primary sediment sources approach, and 67% (15.3%-81.7%) for the combined primary and secondary sources approach. The Bayesian mixing model, based on an optimum set of tracers, estimated that the highest contribution of soil erosion in crop field land use and shoulder-component landforms constituted the most important land-use factor. This technique could, therefore, be a useful tool for soil and sediment control management strategies. Copyright

  19. Tracing crop-specific sediment sources in agricultural catchments

    NASA Astrophysics Data System (ADS)

    Blake, William H.; Ficken, Katherine J.; Taylor, Philip; Russell, Mark A.; Walling, Desmond E.

    2012-02-01

    A Compound Specific Stable Isotope (CSSI) sediment tracing approach is evaluated for the first time in an agricultural catchment setting against established geochemical fingerprinting techniques. The work demonstrates that novel CSSI techniques have the potential to provide important support for soil resource management policies and inform sediment risk assessment for the protection of aquatic habitats and water resources. Analysis of soil material from a range of crop covers in a mixed land-use agricultural catchment shows that the carbon CSSI signatures of particle-reactive fatty acids label surface agricultural soil with distinct crop-specific signatures, thus permitting sediment eroded from each land-cover to be tracked downstream. High resolution sediment sampling during a storm event and analysis for CSSI and conventional geochemical fingerprints elucidated temporal patterns of sediment mobilisation under different crop regimes and the specific contribution that each crop type makes to downstream sediment load. Pasture sources (65% of the catchment area) dominated the sediment load but areal yield (0.13 ± 0.02 t ha - 1 ) was considerably less than that for winter wheat (0.44 ± 0.15 t ha - 1 ). While temporal patterns in crop response matched runoff and erosion response predictions based on plot-scale rainfall simulation experiments, comparison of biomarker and geochemical fingerprinting data indicated that the latter overestimated cultivated land inputs to catchment sediment yield due to inability to discriminate temporary pasture (in rotation) from cultivated land. This discrepancy, however, presents an opportunity since combination of the two datasets revealed the extremely localised nature of erosion from permanent pasture fields in this system (estimated at up to 0.5 t ha - 1 ). The novel use of CSSI and geochemical tracers in tandem provided unique insights into sediment source dynamics that could not have been derived from each method alone. Research

  20. Recent Developments in Whole Sediment Toxicity Identification Evaluations: Innovations in Manipulations and Endpoints

    EPA Science Inventory

    Whole sediment Toxicity Identification Evaluation (TIE) methods were developed primarily in the late 1990s and early 2000s in research programs dedicated to developing manipulations and endpoints to characterize and identify causes of toxicity to benthic freshwater and marine org...

  1. Trait-based modelling of bioaccumulation by freshwater benthic invertebrates.

    PubMed

    Sidney, Livia Alvarenga; Diepens, Noël J; Guo, Xiaoying; Koelmans, Albert A

    2016-07-01

    Understanding the role of species traits in chemical exposure is crucial for bioaccumulation and toxicity assessment of chemicals. We measured and modelled bioaccumulation of polychlorinated biphenyls (PCBs) in Chironomus riparius, Hyalella azteca, Lumbriculus variegatus and Sphaerium corneum. We used a battery test procedure with multiple enclosures in one aquarium, which maximized uniformity of exposure for the different species, such that the remaining variability was due mostly to species traits. The relative importance of uptake from either pore water or sediment ingestion was manipulated by using 28 d aged standard OECD sediment with low (1%) and medium (5%) OM content and 13 months aged sediment with medium OM (5%) content. Survival was ≥76% and wet weight increased for all species. Reproduction of H. azteca and weight gain of H. azteca and S. corneum were significantly higher in the medium OM aged sediments than in other sediments, perhaps due to a more developed microbial community (i.e., increase in food resources). Biota-sediment accumulation factors (BSAF) ranged from 3 to 114, depending on species and PCB congener, with C. riparius (3-10)freshwater taxonomic groups were compared with their marine counterparts and showed overlapping values. The dynamic bioaccumulation model with species-specific bioaccumulation parameters fitted well to the experimental data and showed that bioaccumulation parameters were depended on species traits. Enclosure-based battery tests and mechanistic BSAF models are expected to improve the quality of the exposure assessment in whole sediment toxicity tests. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Characterizing and simulating sediment loads and transport in the lower part of the San Antonio River Basin

    USGS Publications Warehouse

    Banta, J. Ryan; Ockerman, Darwin J.; Crow, Cassi; Opsahl, Stephen P.

    2015-01-01

    This extended abstract is based on the U.S. Geological Survey Scientific Investigations Reports by Crow et al. (2013) and Banta and Ockerman (2014). Suspended sediment in rivers and streams can play an important role in ecological health of rivers and estuaries and consequently is an important issue for water-resource managers. The quantity and type of suspended sediment can affect the biological communities (Wood and Armitage, 1997), the concentration and movement of natural constituents and anthropogenic contaminants (Moran and others, 2012), and the amount of sediment deposition in coastal environments (Milliman and Meade, 1983). To better understand suspended-sediment characteristics in the San Antonio River Basin, the U.S. Geological Survey (USGS), in cooperation with the San Antonio River Authority and Texas Water Development Board, conducted a two-phase study to (1) collect and analyze sediment data to characterize sediment conditions in the San Antonio River downstream of San Antonio, Texas, and (2) develop and calibrate a watershed model to simulate hydrologic conditions and suspended-sediment loads for four watersheds in the San Antonio River Basin, downstream from San Antonio, Texas.

  3. PROCEDURES FOR THE DERIVATION OF EQUILIBRIUM PARTITIONING SEDIMENT BENCHMARKS (ESBS) FOR THE PROTECTION OF BENTHIC ORGANISMS: COMPENDIUM OF TIER 2 VALUES FOR NONIONIC ORGANICS

    EPA Science Inventory

    This equilibrium partitioning sediment benchmark (ESB) document describes procedures to derive concentrations for 32 nonionic organic chemicals in sediment which are protective of the presence of freshwater and marine benthic organisms. The equilibrium partitioning (EqP) approach...

  4. Evaluation of stream water quality data generated from MODIS images in modeling total suspended solid emission to a freshwater lake.

    PubMed

    Ayana, Essayas K; Worqlul, Abeyou W; Steenhuis, Tammo S

    2015-08-01

    Modeling of suspended sediment emission into freshwater lakes is challenging due to data gaps in developing countries. Existing models simulate sediment concentration at a gauging station upstream and none of these studies had modeled total suspended solids (TSS) emissions by inflowing rivers to freshwater lakes as there are no TSS measurements at the river mouth in the upper Blue Nile basin. In this study a 10year TSS time series data generated from remotely sensed MODIS/Terra images using established empirical relationship is applied to calibrate and validate a hydrology model for Lake Tana in Upper Blue Nile Basin. The result showed that at a monthly time scale TSS at the river mouth can be replicated with Nash-Sutcliffe efficiency (NS) of 0.34 for calibration and 0.21 for validation periods. Percent bias (PBIAS) and ratio of the root-mean-square error to the standard deviation of measured data (RSR) are all within range. Given the inaccessibility and costliness to measure TSS at river mouths to a lake the results found here are considered useful for suspended sediment budget studies in water bodies of the basin. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Alteration in Solid State Phosphorous With Depth in Sediments Along the Salinity Transition Zone of a Major Chesapeake Bay Tributary

    NASA Astrophysics Data System (ADS)

    Hartzell, J. L.; Jordan, T. E.

    2006-05-01

    Determining the fate of particulate phosphorus in estuaries is essential for addressing the widespread problem of estuarine eutrophication, and is key to understanding P cycling and developing accurate global P budgets. Prominent reservoirs of P in surficial sediments include particulate P associated with iron or organic C. However, the importance of these reservoirs changes with the decomposition of organic matter and the reduction of iron. Also, the importance of iron bound P may decrease with increasing salinity due to the formation of iron sulfides. To investigate estuarine P burial and its relationship to salinity, we collected sediment cores of one-meter depth along the salinity gradient of the Patuxent River estuary (Maryland, USA), a major tributary of Chesapeake Bay. The sediments were analyzed using a sequential sedimentary extraction procedure that quantifies five separate reservoirs of particulate P. Total phosphorus concentrations in freshwater sediments were significantly higher than those in more saline sediments at all depths. Conversely, porewater phosphate concentrations were significantly lower in freshwater sediments than in the more saline sediments. Total P in the saline sediment cores decreased with depth, correlating to a reduction in iron-bound P. However, we did not find a concurrent increase in authigenic apatite with depth. Our findings indicate that mechanisms controlling changes in P sorption to sediments change profoundly with salinity and may contribute to increased bioavailability of phosphates with increasing salinity.

  6. Modeling chemical accumulation in sediment of small waterbodies accounting for sediment transport and water-sediment exchange processes over long periods.

    PubMed

    Patterson, David Albert; Strehmel, Alexander; Erzgräber, Beate; Hammel, Klaus

    2017-12-01

    In a recent scientific opinion of the European Food Safety Authority it is argued that the accumulation of plant protection products in sediments over long time periods may be an environmentally significant process. Therefore, the European Food Safety Authority proposed a calculation to account for plant protection product accumulation. This calculation, however, considers plant protection product degradation within sediment as the only dissipation route, and does not account for sediment dynamics or back-diffusion into the water column. The hydraulic model Hydrologic Engineering Center-River Analysis System (HEC-RAS; US Army Corps of Engineers) was parameterized to assess sediment transport and deposition dynamics within the FOrum for Co-ordination of pesticide fate models and their USe (FOCUS) scenarios in simulations spanning 20 yr. The results show that only 10 to 50% of incoming sediment would be deposited. The remaining portion of sediment particles is transported across the downstream boundary. For a generic plant protection product substance this resulted in deposition of only 20 to 50% of incoming plant protection product substance. In a separate analysis, the FOCUS TOXSWA model was utilized to examine the relative importance of degradation versus back-diffusion as loss processes from the sediment compartment for a diverse range of generic plant protection products. In simulations spanning 20 yr, it was shown that back-diffusion was generally the dominant dissipation process. The results of the present study show that sediment dynamics and back-diffusion should be considered when calculating long-term plant protection product accumulation in sediment. Neglecting these may lead to a systematic overestimation of accumulation. Environ Toxicol Chem 2017;36:3223-3231. © 2017 SETAC. © 2017 SETAC.

  7. Bed structure and bedload transport: Sediment grain reorientation in response to high and low flows in an experimental flume

    NASA Astrophysics Data System (ADS)

    Gurer, M.; Sullivan, S.; Masteller, C.

    2016-12-01

    Bedload is a regime of sediment transport that occurs when particles roll, hop, or bounce downstream. This mode of transport represents an important portion of the sediment load in a gravel river. Despite numerous studies focused on bedload transport, it still remains difficult to predict accurately due to the complex arrangement of riverbed particles. The formation of gravel clusters, stones being imbricated, or streamlined, and other interlocked arrangements, as well as grains armoring the bed, all tend to stabilize gravel channels and decrease bed mobility. Typically, the development of bed structure usually occurs as sediment moves downstream. However, it is unclear that gravel bed structure can be developed during weaker flows that do not generate significant sediment transport. We examine how individual sediment grains reorient themselves during low flow conditions, in the absence of sediment transport, and during high flow conditions, as bedload transport occurs. We then perform flume experiments where we expose a gravel bed to varying durations of low flow and raise the water level, simulating a flood and transporting sediment. We also compare the long-axis orientations of grains before and after each low flow period and transport. We find that sediment grains reorient themselves differently during low and high flows. During low flow, grains appear to reorient themselves with the long-axes towards cross-stream direction, or perpendicular to the flow, with longer duration flows resulting in more pronounced cross-stream orientation. During high flow, grains orient themselves with their long-axes facing downstream or parallel to the flow, similar to imbricated grains observed in the sedimentary record. Further, when transport occurs, we find that median grain orientation is strongly correlated with bedload transport rates (R^2 = 0.98). We also observe that median grain orientations more perpendicular to downstream flow result in reduced transport rates. This

  8. Ecosystem impacts of Alpine water intakes for hydropower: the challenge of sediment management

    NASA Astrophysics Data System (ADS)

    Gabbud, Chrystelle; Lane, Stuart

    2016-04-01

    Natural Alpine flow regimes are strongly modified by anthropogenic activities, notably water abstraction or impoundment for hydroelectric power production, which impacts upon both river discharge and sediment transfer systems, and in turn upon flora and fauna downstream. These kinds of impacts are well studied where rivers are regulated by dams, with sediment retained in the associated reservoirs although occasional flushing may be required (a frequency typically of many years). Such impacts may be managed by environmental flows or e-flows, whose restoration value has been shown in a number of research publications. However, there has been less attention in relation to the e-flows needed at water intakes which in Alpine environments may be associated with serious sediment-related problems. Water intakes have a very smaller sediment storage capacity than dams and thus may need to be flushed of accumulated sediment more regularly. In an Alpine setting, because rates of erosion are naturally higher, sediment is flushed in 'purges' with a frequency that may even be sub-daily at certain times of the year. Purges feed the river with solid material, but as the means of transporting it, the water, is being abstracted, sediment transport capacity is reduced. In theory, this does not eliminate sediment connectivity, but rather reduces it: the sediment is still delivered, but it can only be transported for a reduced duration; and the results may be profound hydrogeomorphic and ecosystem impacts, including downstream aggradation. In this study, we present results from a combined study of fluvial geomorphology, hydrology and ecosystem impacts of flow abstraction at water intakes. Using hydrodynamic modelling, we show that because the duration of remobilisation of purges and the peak discharge are much shorter than under natural flows, this causes the formation of a zone of sediment aggradation that moves progressively downstream as a sediment wave, leading to sedimentation

  9. Sediments in marsh ponds of the Gulf Coast Chenier Plain: Effects of structural marsh management and salinity

    USGS Publications Warehouse

    Bolduc, F.; Afton, A.D.

    2005-01-01

    Physical characteristics of sediments in coastal marsh ponds (flooded zones of marsh associated with little vegetation) have important ecological consequences because they determine compositions of benthic invertebrate communities, which in turn influence compositions of waterbird communities. Sediments in marsh ponds of the Gulf Coast Chenier Plain potentially are affected by (1) structural marsh management (levees, water control structures and impoundments; SMM), and (2) variation in salinity. Based on available literature concerning effects of SMM on sediments in emergent plant zones (zones of marsh occasionally flooded and associated with dense vegetation) of coastal marshes, we predicted that SMM would increase sediment carbon content and sediment hardness, and decrease oxygen penetration (O2 depth) and the silt-clay fraction in marsh pond sediments. Assuming that freshwater marshes are more productive than are saline marshes, we also predicted that sediments of impounded freshwater marsh ponds would contain more carbon than those of impounded oligohaline and mesohaline marsh ponds, whereas C:N ratio, sediment hardness, silt-clay fraction, and O2 depth would be similar among pond types. Accordingly, we measured sediment variables within ponds of impounded and unimpounded marshes on Rockefeller State Wildlife Refuge, near Grand Chenier, Louisiana. To test the above predictions, we compared sediment variables (1) between ponds of impounded (IM) and unimpounded mesohaline marshes (UM), and (2) among ponds of impounded freshwater (IF), oligohaline (IO), and mesohaline (IM) marshes. An a priori multivariate analysis of variance (MANOVA) contrast indicated that sediments differed between IM and UM marsh ponds. As predicted, the silt-clay fraction and O2 depth were lower and carbon content, C:N ratio, and sediment hardness were higher in IM than in UM marsh ponds. An a priori MANOVA contrast also indicated that sediments differed among IF, IO, and IM marsh ponds. As

  10. Sterols of a contemporary lacustrine sediment. [in English postglacial lake

    NASA Technical Reports Server (NTRS)

    Gaskell, S. J.; Eglinton, G.

    1976-01-01

    Results are reported for detailed sterol analyses of several depths (corresponding to between zero and about 150 yr in age) in a contemporary lacustrine sediment from a freshwater lake of postglacial origin in England. Delta 5-, delta 22-, and delta 5,22-sterols are identified along with 5 alpha- and 5 beta-stanols as well as a C26 stanol with a C7 side chain. Solvent extraction yields carbon number distributions for the 5 alpha- and 5 beta-stanol sediment constituents that parallel the corresponding delta 5-sterol distributions. The amounts of 5 alpha-stanols are found to exceed those of 5 beta-stanols in the sediment, and variations in the ratio of 5 alpha- to 5 beta-stanol between sediment samples from similar depths are shown to suggest an inhomogeneity of the sediment. It is found that the sterol composition of sediment cores varies markedly with depth, reflecting both the effects of a sterol hydrogenation process and a changing input to the sediment. It is concluded that C29 sterols, of probable higher-plant origin, predominate at lower sediment depths while C27 sterols, possibly derived from autochthonous sources, are more abundant in the surface sediment.

  11. Influence of Cougar Reservoir Drawdown on Sediment and DDT Transport and Deposition in the McKenzie River Basin, Oregon, Water Years 2002-04

    USGS Publications Warehouse

    Anderson, Chauncey W.

    2007-01-01

    Construction of a selective withdrawal tower at Cougar Reservoir in the South Fork McKenzie River, Oregon, during 2002-05 resulted in a prolonged release of sediment and high-turbidity water to downstream reaches throughout the summer of 2002, with additional episodic releases during storms in the following winters. Suspended-sediment concentrations and loads at five continuously monitored turbidity and discharge gaging stations were estimated using regression methods. Deposition in salmonid spawning beds was measured using infiltration bags. Stations were located upstream and downstream of Cougar Reservoir in the South Fork McKenzie River, in the mainstem of the McKenzie River upstream of the South Fork and downstream of Blue River, and in Blue River downstream of Blue River Reservoir. During 2002, Cougar Reservoir released approximately 17,000 tons of suspended sediment into the South Fork McKenzie River, or more than twice the incoming load from the South Fork upstream of the reservoir. In 2003 and 2004, the release of sediment from Cougar Reservoir decreased to 10,900 and 4,100 tons, respectively. Although Cougar Reservoir likely was a substantial source of sediment to the lower reaches during water years 2002 and 2003, the lack of continuous turbidity monitoring at stations other than the South Fork McKenzie River prior to January 2003 prevents quantification of the actual contribution to the mainstem. During water year 2004, the only year with complete records at all sites, Cougar Reservoir released about 24 percent (4,100 tons) of the sediment load estimated on the mainstem near Vida (16,900 tons); however, the relative contribution of Cougar Reservoir is expected to have been substantially larger during 2002 and 2003 when the newly exposed river channel in the upper reaches of the reservoir was actively eroding and migrating. Deposition of fine (less than 0.063-millimeter diameter) sediment into spawning beds, measured with the use of deployed infiltration

  12. Spatial and Temporal Patterns of Suspended Sediment Yields in Nested Urban Catchments

    NASA Astrophysics Data System (ADS)

    Kemper, J. T.; Miller, A. J.; Welty, C.

    2017-12-01

    In a highly regulated area such as the Chesapeake Bay watershed, suspended sediment is a matter of primary concern. Near real-time turbidity and discharge data have been collected continuously for more than four years at five stream gages representing three nested watershed scales (1-2 sq km, 5-6 sq km, 14 sq km) in the highly impervious Dead Run watershed, located in Baltimore County, MD. Using turbidity-concentration relationships based on sample analyses at the gage site, sediment yields for each station can be quantified for a variety of temporal scales. Sediment yields have been calculated for 60+ different storms across four years. Yields show significant spatial variation, both at equivalent sub-watershed scales and from headwaters to mouth. Yields are higher at the headwater station with older development and virtually no stormwater management (DR5) than at the station with more recent development and more extensive stormwater management (DR2). However, this pattern is reversed for the stations at the next larger scale: yields are lower at DR4, downstream of DR5, than at DR3, downstream of DR2. This suggests spatial variation in the dominant sediment sources within each subwatershed. Additionally, C-Q hysteresis curves display consistent counterclockwise behavior at the DR4 station, in contrast to the consistent clockwise behavior displayed at the DR3 station. This further suggests variation in dominant sediment sources (perhaps distal vs local, respectively). We observe consistent seasonal trends in the relative magnitudes of sediment yield for different subwatersheds (e.g. DR3>DR4 in summer, DR5>DR2 in spring). We also observe significant year-to-year variation in sediment yield at the headwater and intermediate scales, whereas yields at the 14 sq km scale are largely similar across the monitored years. This observation would be consistent with the possibility that internal storage and remobilization tend to modulate downstream yields even with spatial

  13. Review of: An analysis of flooding in Elk River and Freshwater Creek watersheds, Humboldt County, California (prepared by The Pacific Lumber Company, Scotia, California)

    Treesearch

    L. M. Reid

    1999-01-01

    The reviewed report (PL 1999) attempts to demonstrate that logging conducted over the past decade or so in Freshwater and Elk watersheds has not caused increased flooding in downstream portions of the watersheds. However, most of the report's sections include information that supports the hypothesis that logging has aggravated flood hazard, produce conclusions...

  14. Numerical Model of Channel and Aquatic Habitat Response to Sediment Pulses in Mountain Rivers of Central Idaho

    NASA Astrophysics Data System (ADS)

    Lewicki, M.; Buffington, J. M.; Thurow, R. F.; Isaak, D. J.

    2006-12-01

    Mountain rivers in central Idaho receive pulsed sediment inputs from a variety of mass wasting processes (side-slope landslides, rockfalls, and tributary debris flows). Tributary debris flows and hyperconcentrated flows are particularly common due to winter "rain-on-snow" events and summer thunderstorms, the effects of which are amplified by frequent wildfire and resultant changes in vegetation, soil characteristics, and basin hydrology. Tributary confluences in the study area are commonly characterized by debris fans built by these repeated sediment pulses, providing long-term controls on channel slope, hydraulics and sediment transport capacity in the mainstem channel network. These long-term impacts are magnified during debris-flow events, which deliver additional sediment and wood debris to the fan and may block the mainstem river. These changes in physical conditions also influence local and downstream habitat for aquatic species, and can impact local human infrastructure (roads, bridges). Here, we conduct numerical simulations using a modified version of Cui's [2005] network routing model to examine bedload transport and debris-fan evolution in medium- sized watersheds (65-570 km2) of south-central Idaho. We test and calibrate the model using data from a series of postfire debris-flow events that occurred from 2003-4. We investigate model sensitivity to different controlling factors (location of the pulse within the stream network, volume of the pulse, and size distribution of the input material). We predict that on decadal time scales, sediment pulses cause a local coarsening of the channel bed in the vicinity of the sediment input, and a wave of downstream fining over several kilometers of the river (as long as the pulse material is not coarser than the stream bed itself). The grain-size distribution of the pulse influences its rate of erosion, the rate and magnitude of downstream fining, and the time required for system recovery. The effects of textural

  15. Sediment-quality assessment of Franklin D. Roosevelt Lake and the upstream reach of the Columbia River, Washington, 1992

    USGS Publications Warehouse

    Bortleson, Gilbert Carl; Cox, S.E.; Munn, M.D.; Schumaker, R.J.; Block, E.K.

    2001-01-01

    Elevated concentrations of trace elements were found in bed sediment of Lake Roosevelt and the Columbia River, its principal source of inflow. Trace-element concentrations in whole water samples did not exceed criteria for freshwater organisms. Bed sediments of Lake Roosevelt were analyzed for organic compounds associated with wood-pulp waste. Dioxins and furans were found in suspended sediment and water of the Columbia River. Abundance and diversity of benthic invertebrate communities were analyzed.

  16. Towards a better understanding on how large wood is controlling longitudinal sediment (dis)connectivity in mountain streams - concepts and first results

    NASA Astrophysics Data System (ADS)

    Schuchardt, Anne; Pöppl, Ronald; Morche, David

    2016-04-01

    Large wood (LW) provides various ecological and morphological functions. Recent research has focused on habitat diversity and abundance, effects on channel planforms, pool formation, flow regimes and increased storage of organic matter as well as storage of fine sediment. While LW studies and sediment transport rates are the focus of numerous research questions, the influence of large channel blocking barriers (e.g. LW) and their impact on sediment trapping and decoupling transportation pathways is less studied. This project tries to diminish the obvious gap and deals with the modifications of the sediment connectivity by LW. To investigate the influence of large wood on sediment transporting processes and sediment connectivity, the spatial distribution and characterization of LW (>1 m in length and >10 cm in diameter) in channels is examined by field mapping and dGPS measurements. Channel hydraulic parameters are determined by field measurements of channel long profiles and cross sections. To quantify the direct effects of LW on discharge and bed load transport the flow velocity and bed load up- and downstream of LW is measured using an Ott-Nautilus and a portable Helley-Smith bed load sampler during different water stages. Sediment storages behind LWD accumulations will be monitored with dGPS. While accumulation of sediment indicates in-channel sediment storage and thus disconnection from downstream bed load transport, erosion of sediment evidences downstream sediment connectivity. First results will be presented from two study areas in mountain ranges in Germany (Wetterstein Mountain Range) and Austria (Bohemian Massif).

  17. Screening of freshwater and seawater microalgae strains in fully controlled photobioreactors for biodiesel production.

    PubMed

    Taleb, A; Kandilian, R; Touchard, R; Montalescot, V; Rinaldi, T; Taha, S; Takache, H; Marchal, L; Legrand, J; Pruvost, J

    2016-10-01

    Strain selection is one of the primary hurdles facing cost-effective microalgal biodiesel production. Indeed, the strain used affects both upstream and downstream biodiesel production processes. This study presents a screening procedure that considers the most significant criteria in microalgal biodiesel production including TAG production and wet extraction and recovery of TAGs. Fourteen freshwater and seawater strains were investigated. Large variation was observed between the strains in all the screening criteria. The overall screening procedure ultimately led to the identification of Parachlorella kessleri UTEX2229 and Nannochloropsis gaditana CCMP527 as the best freshwater and seawater strains, respectively. They featured the largest areal TAG productivity equal to 2.7×10(-3) and 2.3×10(-3)kgm(-2)d(-1), respectively. These two strains also displayed encouraging cell fragility in a high pressure bead milling process with 69% and 98% cell disruption at 1750bar making them remarkable strains for TAG extraction in wet environment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Combined use of radiocarbon and stable carbon isotope to constrain the sources and cycling of particulate organic carbon in a large freshwater lake, China.

    PubMed

    Chen, Jingan; Yang, Haiquan; Zeng, Yan; Guo, Jianyang; Song, Yilong; Ding, Wei

    2018-06-01

    The concentrations and isotopic compositions of dissolved inorganic carbon (DIC) and particulate organic carbon (POC) were measured in order to better constrain the sources and cycling of POC in Lake Fuxian, the largest deep freshwater lake in China. Model results based on the combined δ 13 C and Δ 14 C, showed that the average lake-wide contributions of autochthonous POC, terrestrial POC, and resuspended sediment POC to the bulk POC in Lake Fuxian were 61%, 22%, and 17%, respectively. This indicated autochthonous POC might play a dominant role in sustaining large oligotrophic lake ecosystem. A mean 17% contribution of resuspended sediment POC to the bulk POC implied that sediment might have more significant influence on aquatic environment and ecosystem than previously recognized in large deep lakes. The contributions of different sources POC to the water-column POC were a function of the initial composition of the source materials, photosynthesis, physical regime of the lake, sediment resuspension, respiration and degradation of organic matter, and were affected indirectly by environmental factors such as light, temperature, DO, wind speed, turbidity, and nutrient concentration. This study is not only the first systematic investigation on the radiocarbon and stable isotope compositions of POC in large deep freshwater lake in China, but also one of the most extensive radiocarbon studies on the ecosystem of any great lakes in the world. The unique data constrain relative influences of autochthonous POC, terrestrial POC, and resuspended sediment POC, and deepen the understanding of the POC cycling in large freshwater lakes. This study is far from comprehensive, but it serves to highlight the potential of combined radiocarbon and stable carbon isotope for constraining the sources and cycling of POC in large lake system. More radiocarbon investigations on the water-column POC and the aquatic food webs are necessary to illuminate further the fate of autochthonous POC

  19. The fate of nitrogen is linked to iron(II) availability in a freshwater lake sediment

    NASA Astrophysics Data System (ADS)

    Robertson, Elizabeth K.; Thamdrup, Bo

    2017-05-01

    The fate of nitrogen in natural environments is controlled by anaerobic nitrate-reducing processes by which nitrogen is removed as N2 or retained as NH4+. These processes can potentially be driven by oxidation of reduced inorganic compounds at oxic-anoxic interfaces. Several studies have investigated the use of Fe2+ as an electron donor in nitrate reduction in bacterial cultures, however current information on this process in the environment is sparse. We aimed to determine whether nitrate-reducing processes in the freshwater Lake Almind (Silkeborg, Denmark) were linked to Fe2+ oxidation. Anaerobic sediment slurries were supplemented with 15N-substrates and electron donors (Fe2+ and/or acetate) to characterize nitrate-reducing processes under environmentally relevant substrate concentrations and at higher concentrations traditionally used in microbial enrichment studies. Dissimilatory nitrate reduction to ammonium, DNRA, was stimulated by Fe2+ addition in 7 of 10 slurry experiments and in some cases, denitrification was concomitantly reduced. The determined kinetic parameters (Vmax and Km) for Fe2+-driven DNRA were 4.7 μmol N L-1 d-1 and 33.8 μmol Fe2+ L-1, respectively and reaction stoichiometry for Fe2+:NH4+ (8.2:1) was consistent with that of predicted stoichiometry (8:1). Conversely, under enrichment conditions, denitrification was greatly increased while DNRA rates remained unchanged. Increased Fe2+ concentrations may be exploited by DNRA organisms and have an inhibitory effect on denitrification, thus Fe2+ may play a role in regulating N transformations in Lake Almind. Furthermore, we suggest enrichment conditions may promote the adaptation or change of microbial communities to optimally utilize the available high substrate concentrations; misrepresenting metabolisms occurring in situ.

  20. Sediment transport and water-quality characteristics and loads, White River, northwestern Colorado, water years 1975-88

    USGS Publications Warehouse

    Tobin, R.L.

    1993-01-01

    Streamflow, sediment, and water-quality data are summarized for 6 sites on the White River, Colorado for water years 1975-88. Correlation techniques were used to estimate annual data for unmeasured years. Annual stream discharge in the main stem of the White River ranged from about 200,000 to about 1 million acre-feet. Generally, bedload was less than/= 3.3 percent of total sediment load. Annual suspended-sediment loads ranged from about 2,100 tons at the upstream sites on the North Fork and South Fork of the White River to about 2 million tons at the most downstream site. Average annual suspended-sediment loads ranged from about 11,000 tons at the upstream sites to about 705,000 tons at the most downstream site. Annual capacity losses in a 50,000 acre-ft reservoir could range from less than 0.01 percent near upstream sites to about 2.5 percent near downstream sites. Maximum water temperatures in the White River ranged from less than 20 to 25 C in summer. Specific conductance ranged from 200 to 1,000 microsiemens/cm. Generally, values of pH ranged from 7.6 to 8.8, and concentrations of dissolved oxygen were greater than 6.0 mg/L. In small streamflows, values of pH and dissolved oxygen were affected by biologic processes. Composition of dissolved solids in the White River was mostly calcium, bicarbonate, and(or) sulfate. Changes in the composition of dissolved solids caused by the changes in the concentrations of sodium and sulfate were greatest in small stream discharges. Annual loads of dissolved solids ranged from 21,100 tons in the South Fork to about 480,000 tons at the most downstream site. Total solids transport in the White River was mostly as dissolved solids at upstream sites and mostly as suspended sediment at downstream sites. Concentration ranges of nutrients and trace constituents were determined.

  1. Importance of measuring discharge and sediment transport in lesser tributaries when closing sediment budgets

    NASA Astrophysics Data System (ADS)

    Griffiths, Ronald E.; Topping, David J.

    2017-11-01

    Sediment budgets are an important tool for understanding how riverine ecosystems respond to perturbations. Changes in the quantity and grain size distribution of sediment within river systems affect the channel morphology and related habitat resources. It is therefore important for resource managers to know if a river reach is in a state of sediment accumulation, deficit or stasis. Many sediment-budget studies have estimated the sediment loads of ungaged tributaries using regional sediment-yield equations or other similar techniques. While these approaches may be valid in regions where rainfall and geology are uniform over large areas, use of sediment-yield equations may lead to poor estimations of loads in regions where rainfall events, contributing geology, and vegetation have large spatial and/or temporal variability. Previous estimates of the combined mean-annual sediment load of all ungaged tributaries to the Colorado River downstream from Glen Canyon Dam vary by over a factor of three; this range in estimated sediment loads has resulted in different researchers reaching opposite conclusions on the sign (accumulation or deficit) of the sediment budget for particular reaches of the Colorado River. To better evaluate the supply of fine sediment (sand, silt, and clay) from these tributaries to the Colorado River, eight gages were established on previously ungaged tributaries in Glen, Marble, and Grand canyons. Results from this sediment-monitoring network show that previous estimates of the annual sediment loads of these tributaries were too high and that the sediment budget for the Colorado River below Glen Canyon Dam is more negative than previously calculated by most researchers. As a result of locally intense rainfall events with footprints smaller than the receiving basin, floods from a single tributary in semi-arid regions can have large (≥ 10 ×) differences in sediment concentrations between equal magnitude flows. Because sediment loads do not

  2. Recognition and dynamics of syntectonic sediment routing systems, southern Pyrenees

    NASA Astrophysics Data System (ADS)

    Allen, P. A.; Duller, R.; Fordyce, S.; Smithells, R.; Springett, J.; Whitchurch, A.; Whittaker, A.; Carter, A.; Fedele, J.-J.

    2009-04-01

    The erosional, transportational and depositional aspects of the biogeochemical cycles involving particulate sediment and solutes are integrated in sediment routing systems. The component parts of these tectonic-geomorphic systems communicate with each other, especially in response to changes in external forcing mechanisms such as tectonic perturbations and climate change; that is, sediment routing systems are characterized by important teleconnections. We are only just beginning to understand how these teleconnections work, and what it means for the spatial and temporal scales of system behaviour. One strategy for investigating the dynamics of sediment routing systems is to link information on the denudation of upstream source regions with downstream patterns of deposition. This is most likely to be fruitful where upstream catchments are tectonically active. Sediment is released into basins whose long-term subsidence is also controlled by tectonic activity. The spatial distribution of subsidence and the magnitude of the sediment discharge from the catchment are critical factors in the dispersal of sediment of different grain size and composition away from a mountain front. We investigate the coarse clastic sediment routing systems of mid-late Eocene age (40-34 Ma) that were deposited in basins located at the boundary of the Axial Zone and the thrust belt of the South-Central Unit on the southern flank of the Pyrenees, Spain. Most of the fan deposits of interest are found in the Pobla Basin, situated north of Tremp, which benefits from outstanding exposure conditions and rigorous previous work on biostratigraphy, magnetostratigraphy and sedimentology (Mellere 1993; Beamud et al. 2003). Distinct fan depositional systems can be identified and mapped on the basis of their sediment composition, detrital thermochronology, facies and architectures, which can be related to correspondingly distinct catchment properties (size, location, exhumational history, lithologies

  3. Sediment impact assessment of check-dam removal strategies on a mountain river in Taiwan

    NASA Astrophysics Data System (ADS)

    Kuo, W.; Wang, H.; Stark, C. P.

    2011-12-01

    Dam removal is important for reconnecting river habitats and restoring the free flow of water and sediment, so managing accumulated sediments is crucial in dam removal planning as the cost and potential impacts of dam removal can vary substantially depending on local conditions. A key uncertainty in dam removal is the fate of reservoir sediment stored upstream of the dam. Release of impounded sediment could raise downstream bed elevations leading to flooding, increase lateral channel mobility leading to bank erosion, and potentially bury downstream ecologically sensitive habitats if the sediment is fine. The ability to predict the sediment impacts of dam removal in highly sediment-filled systems is thus increasingly important as the number of such dam-removal cases is growing. Due to the safety concerns and the need for habitat restoration for the Formosan landlocked salmon, the Shei-Pa National Park in Taiwan removed the 15m high Chijiawan "No. 1 Check Dam" in late May 2011. During the planning process prior to removal, we conducted field surveys, numerical simulations, and flume experiments to determine sediment impacts and to suggest appropriate dam removal strategies. We collected river-bed topography and sediment bulk samples in 2010 to establish the channel geometry and grain-size distribution for modeling input. The scaled flume experiment was designed to provide insights on how and if the position of a notch location and size would affect the rate and amount of reservoir erosion under particular discharges. Observations indicated that choices of notch location can force the river to migrate differently. For long-term prediction, we used the quasi-two-dimensional numerical model NETSTARS (Network of Stream Tube model for Alluvial River Simulation) to simulate the channel responses. These simulations indicated that high suspended sediment concentrations would be the most likely major concern in the first year, while concerns for downstream sediment deposition

  4. Downstream change of velocity in rivers

    USGS Publications Warehouse

    Leopold, Luna Bergere

    1953-01-01

    Because river slope generally decreases in a downstream direction, it is generally supposed that velocity of flow also decreases downstream. Analysis of some of the large number of velocity measurements made at stream-gaging stations demonstrates that mean velocity generally tends to increase downstream. Although there are many reaches in nearly all rivers where mean velocity decreases downstream, the general tendency for conservation or for downstream increase was found in all data studied.Computations of bed velocity indicate that this parameter also tends to increase downstream.Near the streambed, shear in the vertical profile of velocity (rate of decrease of velocity with depth) tends to decrease downstream. This down-valley decrease of shear implies decreasing competence downstream.

  5. Experimental study of hydraulics and sediment capture efficiency in catchbasins.

    PubMed

    Tang, Yangbo; Zhu, David Z; Rajaratnam, N; van Duin, Bert

    2016-12-01

    Catchbasins (also known as gully pot in the UK and Australia) are used to receive surface runoff and drain the stormwater into storm sewers. The recent interest in catchbasins is to improve their effectiveness in removing sediments in stormwater. An experimental study was conducted to examine the hydraulic features and sediment capture efficiency in catchbasins, with and without a bottom sump. A sump basin is found to increase the sediment capture efficiency significantly. The effect of inlet control devices, which are commonly used to control the amount of flow into the downstream storm sewer system, is also studied. These devices will increase the water depth in the catchbasin and increase the sediment capture efficiency. Equations are developed for predicting the sediment capture efficiency in catchbasins.

  6. Estimating accumulation rates and physical properties of sediment behind a dam: Englebright Lake, Yuba River, northern California

    USGS Publications Warehouse

    Snyder, Noah P.; Rubin, David M.; Alpers, Charles N.; Childs, Jonathan R.; Curtis, Jennifer A.; Flint, Lorraine E.; Wright, Scott A.

    2004-01-01

    Studies of reservoir sedimentation are vital to understanding scientific and management issues related to watershed sediment budgets, depositional processes, reservoir operations, and dam decommissioning. Here we quantify the mass, organic content, and grain-size distribution of a reservoir deposit in northern California by two methods of extrapolating measurements of sediment physical properties from cores to the entire volume of impounded material. Englebright Dam, completed in 1940, is located on the Yuba River in the Sierra Nevada foothills. A research program is underway to assess the feasibility of introducing wild anadromous fish species to the river upstream of the dam. Possible management scenarios include removing or lowering the dam, which could cause downstream transport of stored sediment. In 2001 the volume of sediments deposited behind Englebright Dam occupied 25.5% of the original reservoir capacity. The physical properties of this deposit were calculated using data from a coring campaign that sampled the entire reservoir sediment thickness (6–32 m) at six locations in the downstream ∼3/4 of the reservoir. As a result, the sediment in the downstream part of the reservoir is well characterized, but in the coarse, upstream part of the reservoir, only surficial sediments were sampled, so calculations there are more uncertain. Extrapolation from one-dimensional vertical sections of sediment sampled in cores to entire three-dimensional volumes of the reservoir deposit is accomplished via two methods, using assumptions of variable and constant layer thickness. Overall, the two extrapolation methods yield nearly identical estimates of the mass of the reservoir deposit of ∼26 × 106 metric tons (t) of material, of which 64.7–68.5% is sand and gravel. Over the 61 year reservoir history this corresponds to a maximum basin-wide sediment yield of ∼340 t/km2/yr, assuming no contribution from upstream parts of the watershed impounded by other dams. The

  7. Water quality, bed-sediment quality, and simulation of potential contaminant transport in Foster Creek, Berkeley County, South Carolina, 1991-93

    USGS Publications Warehouse

    Campbell, T.R.; Bower, D.E.

    1996-01-01

    Foster Creek, a freshwater tidal creek in Berkeley County, South Carolina, is located in an area of potential contaminant sources from residential, commercial, light industrial, and military activities. The creek is used as a secondary source of drinking water for the surrounding Charleston area. Foster Creek meets most of the freshwater- quality requirements of State and Federal regulatory agencies, but often contains low concentrations of dissolved oxygen and has been characterized as eutrophic. Investigations of water- and bed-sediment quality were made between 1991 and 1993 to assess the effects of anthropogenic sources of contamination on Foster Creek. Low-flow surface-water samples were generally free of toxic compounds with the exception of laboratory artifacts and naturally occurring trace metals. Storm-runoff samples generally contained very low concentrations (near detection limits) of a small number of volatile and semivolatile organics and naturally occurring trace metals. Concentrations of toxic compounds in excess of current (1995) South Carolina Department of Health and Environmental Control and U.S. Environmental Protection Agency regulations were not detected in surface-water samples collected from Foster Creek. Chemical analyses of streambed sediments indicated minimal anthropogenic effects on sediment quality. The particle-tracking option of the U.S. Geological Survey one-dimensional unsteady-flow model (BRANCH) indicated that as the simulated volume of rainfall runoff increased in the Foster Creek Basin, simulated particles in Foster Creek were transported greater distances. Simulating flow through the Bushy Park Dam (also known as Back River Dam) had little effect on particle movement in Foster Creek. Simulating typical withdrawal rates at a water-supply intake resulted in a slight attraction of particles toward the intake during conditions of relatively low runoff. These withdrawals had a greater influence on particles downstream of the intake

  8. Fate of N,N-Bis-(2,4,6-Trichlorophenyl)-Urea in a Freshwater Sediment

    DTIC Science & Technology

    1990-05-01

    sediments of Canal Creek, an estuarine system within the U.S. Army Aberdeen Proving Grounds, Maryland. Initial gas-chromatographic studies by Hydroponics ...33, Hydroponics Corporation, 1983. Courtney, W.A., and Langston, W.J., "Uptake of Polychlorinated Biphenyl (Aroclor 1254) from Sediment and from

  9. Stratigraphy and historic accumulation of mercury in recent depositional sediments in the Sudbury River, Massachusetts, USA

    USGS Publications Warehouse

    Frazier, Bradley E.; Wiener, James G.; Rada, Ronald G.; Engstrom, Daniel R.

    2000-01-01

    The distribution and deposition of sedimentary mercury in the Sudbury River were linked to an industrial complex (Nyanza site) that operated from 1917 through 1978. In two reservoirs just downstream from the Nyanza site, estimated rates of mercury accumulation increased markedly in the 1920s and 1930s, were greatest during 1976-1982, decreased within 5 years after industrial operations ceased, and have decreased further since capping of contaminated soil at the Nyanza site was completed in 1991. The most contaminated sediments were typically buried, yet the 0- to 1-cm stratum remained substantially contaminated in all cores. Mercury accumulating in the surficial, reservoir sediments was probably from continuing, albeit much lesser, inputs from the Nyanza site, whereas recent inputs to downstream wetland areas were attributed to recycling of sedimentary mercury or to mercury from unidentified local sources. In the reservoirs, burial of highly contaminated sediments is gradually decreasing the amount of sedimentary mercury available for methylation. In downstream wetlands, however, sedimentary mercury seemed to be more available than that in the reservoirs for physical transport and biogeochemical cycling.

  10. Aquatic Plant Control Research Program. Effects of Organic Amendments to Sediment on Freshwater Macrophyte Growth.

    DTIC Science & Technology

    1983-10-01

    Wiley and Sons, New York. Anderson, L. W. 1978. Abscisic acid induces formation of floating leaves in the heterophyllous aquatic angiosperm Potamogeton...the total sediment were determined following digestion in red-fuming nitric acid . Nutrients in sediment amendments and in macrophyte biomass were deter...inorganic matter. Organic matter content was 10% of dry sedi- ment mass. •* Sediment nutrient concentrations were determined following strong acidic

  11. Effects of sedimentation on soil physical and chemical properties and vegetation characteristics in sand dunes at the Southern Dongting Lake region, China

    PubMed Central

    Pan, Ying; Zhang, Hao; Li, Xu; Xie, Yonghong

    2016-01-01

    Sedimentation is recognized as a major factor determining the ecosystem processes of lake beaches; however, the underlying mechanisms, especially in freshwater sand dunes, have been insufficiently studied. To this end, nine belt transects from nine freshwater sand dunes, classified into low (<23.7 m), medium (25.4–26.0 m), and high-elevation groups (>28.1 m) based on their elevations in 1972, were sampled to investigate differences in sedimentation rate and soil and vegetation characteristics in Southern Dongting Lake, China. Sedimentation rate, soil sand content, and soil pH increased, whereas soil clay, fine silt, moisture (MC), organic matter (OM), total N, and total K content, in addition to the growth and biodiversity of sand dune plants generally decreased with decreasing belt transect elevation. Regression analyses revealed that the negative effects of sedimentation on the ecosystem functions of sand dunes could be attributed to higher fine sand content in deposited sediments and stronger inhibition of plant growth. These results are consistent with previous studies performed in coastal sand dunes, which highlights the importance of sedimentation in determining ecological processes. PMID:27808154

  12. Sampling method, storage and pretreatment of sediment affect AVS concentrations with consequences for bioassay responses.

    PubMed

    De Lange, H J; Van Griethuysen, C; Koelmans, A A

    2008-01-01

    Sediment treatment and sediment storage may alter sediment toxicity, and consequently biotic response. Purpose of our study was to combine these three aspects (treatment-toxicity-biotic response) in one integrated approach. We used Acid Volatile Sulfide (AVS) concentrations as a proxy of the disturbance of the sediment. AVS and Simultaneously Extracted Metal (SEM) concentrations were compared to bioassay responses with the freshwater benthic macroinvertebrate Asellus aquaticus. Storage conditions and sediment treatment affected AVS but not SEM levels. AVS can be used as a proxy for sediment disturbance. The best way to pretreat the sediment for use in a bioassay in order to maintain initial AVS conditions was to sample the sediment with an Ekman grab, immediately store it in a jar without headspace, and freeze it as soon as possible. In a survey using seven different sediments, bioassay responses of A. aquaticus were correlated with SEM and AVS characteristics.

  13. Local to regional scale industrial heavy metal pollution recorded in sediments of large freshwater lakes in central Europe (lakes Geneva and Lucerne) over the last centuries.

    PubMed

    Thevenon, Florian; Graham, Neil D; Chiaradia, Massimo; Arpagaus, Philippe; Wildi, Walter; Poté, John

    2011-12-15

    This research first focuses on the spatial and temporal patterns of heavy metals from contrasting environments (highly polluted to deepwater sites) of Lake Geneva. The mercury (Hg) and lead (Pb) records from two deepwater sites show that the heavy metal variations before the industrial period are primarily linked to natural weathering input of trace elements. By opposition, the discharge of industrial treated wastewaters into Vidy Bay of Lake Geneva during the second part of the 20th century, involved the sedimentation of highly metal-contaminated sediments in the area surrounding the WWTP outlet pipe discharge. Eventually, a new Pb isotope record of sediments from Lake Lucerne identifies the long-term increasing anthropogenic lead pollution after ca. 1500, probably due to the development of metallurgical activities during the High Middle Ages. These data furthermore allows to compare the recent anthropogenic sources of water pollution from three of the largest freshwater lakes of Western Europe (lakes Geneva, Lucerne, and Constance). High increases in Pb and Hg highlight the regional impact of industrial pollution after ca. 1750-1850, and the decrease of metal pollution in the 1980s due to the effects of remediation strategies such as the implementation of wastewater treatment plants (WWTPs). However, at all the studied sites, the recent metal concentrations remain higher than pre-industrial levels. Moreover, the local scale pollution data reveal two highly contaminated sites (>100 μg Pb/g dry weight sediment) by industrial activities, during the late-19th and early-20th centuries (Lake Lucerne) and during the second part of the 20th century (Vidy Bay of Lake Geneva). Overall, the regional scale pollution history inferred from the three large and deep perialpine lakes points out at the pollution of water systems by heavy metals during the last two centuries due to the discharge of industrial effluents. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Channel erosion in a rapidly urbanizing region of Tijuana, Mexico: Enlargement downstream of channel hardpoints

    NASA Astrophysics Data System (ADS)

    Taniguchi, Kristine; Biggs, Trent; Langendoen, Eddy; Castillo, Carlos; Gudiño, Napoleon; Yuan, Yongping; Liden, Douglas

    2016-04-01

    Urban-induced erosion in Tijuana, Mexico, has led to excessive sediment deposition in the Tijuana Estuary in the United States. Urban areas in developing countries, in contrast to developed countries, are characterized by much lower proportions of vegetation and impervious surfaces due to limited access to urban services such as road paving and landscaping, and larger proportions of exposed soils. In developing countries, traditional watershed scale variables such as impervious surfaces may not be good predictors of channel enlargement. In this research, we surveyed the stream channel network of an erodible tributary of the Tijuana River Watershed, Los Laureles Canyon, at 125 locations, including repeat surveys from 2008. Structure from Motion (SfM) and 3D photo-reconstruction techniques were used to create digital terrain models of stream reaches upstream and downstream of channel hardpoints. Channels are unstable downstream of hardpoints, with incision up to 2 meters and widening up to 12 meters. Coordinated channelization is essential to avoid piece-meal approaches that lead to channel degradation. Watershed impervious area is not a good predictor of channel erosion due to the overriding importance of hardpoints and likely to the high sediment supply from the unpaved roads which prevents channel erosion throughout the stream network.

  15. Evidence of Mercurial Contamination and Denundation Downstream of New Idria Mercury Mine, San Benito County, California

    NASA Astrophysics Data System (ADS)

    Letsinger, H. E.; Sharma, R. K.; Weinman, B.

    2014-12-01

    California's Central Valley water quality and soils are essential to the survival of the valley's communities and agriculture. Therefore, detection of possible contaminants within the valley streams and soils are paramount to the protection of this land and the people that depend upon it. Here we explore the impact of the contaminated stream beds near the New Idria Mercury Mine site, San Benito County, California. Previous work by Ganguli et al. (2000) has been done in this area to determine the mercury levels associated with the water that flows near the ghost town of New Idria. We performed geochemical analyses on the finer bed sediments from channels draining the area, as well as the coarser sediments taken from along the channel banks, to determine mercury transport downriver from the source. Using a novel application of tau, a mass transfer coefficient typically used in critical zone studies or soil production and weathering rates, we determine downstream weathering, accumulation, and transport of mercury. Our initial geochemical data showed higher tau values upstream as well as within the banks of the contaminated streambed and a greater accumulation of mercury near the pollution source (i.e., mine tailings, (τ ~ 103)). Tau results also show elevated mercurial levels existing downstream, with accumulations in mid- (τ ~ 102) and down-stream (τ ~ 10) reaches. Combining tau results with more traditional indices of chemical weathering (CIA) support consistent overall Hg-weathering processes with low levels of chemical weathering and higher dominance of coupled physical-anthropogenic weathering.

  16. Freshwater Fish Communities

    EPA Science Inventory

    Freshwater fish are ecologically important in stream ecosystems, and they provide people with significant food, recreation, and conservation value as biological indicator of freshwater streams. Historically, the streams and rivers of southern New England supported moderately dive...

  17. Get In and Get Out: Assessing Stream Sediment Loading from Short Duration Forest Harvest Operations and Rapid Haul Road Decommissioning.

    NASA Astrophysics Data System (ADS)

    Corrigan, A.; Silins, U.; Stone, M.

    2016-12-01

    Best management practices (BMPs) and associated erosion control measures for mitigating sediment impacts from forestry roads and road-stream crossings are well documented. While rapid road decommissioning after forestry operations may serve to limit broader impacts on sediment production in high value headwater streams, few studies have evaluated the combined effects of accelerated harvest operations and rapid retirement of logging roads and road-stream crossings on stream sediment. The objectives of this study were to evaluate the initial impacts of these strategies on fine sediment loading and fate during a short duration harvesting operation in 3 headwater sub-catchments in the southwestern Rocky Mountains of Alberta, Canada. A multi-pronged sampling approach (ISCOs, event focused grab sampling, continuous wash load sampling, and stream bed sediment intrusion measurements) was used to measure sediment loading and deposition in streambeds upstream and downstream of road-stream bridge crossings during harvest operations (2015) and after road and bridge crossing retirement (2016). Sediment production from forestry roads was generally much lower than has been reported from other studies in similar settings. Average total suspended solids (TSS) downstream of the bridge crossings were actually lower (-3.28 g/L; -0.704 g/L) than upstream of two bridge crossings while in-stream sediment sources contributed to elevated sediment downstream of a third road-stream crossing. Minimal in stream sediment impacts from forest harvest and road-stream crossings was likely a reflection of combined factors including a) employment of erosion control BMPs to roads and bridge crossings, b) rapid decommissioning of roads and crossings to limit exposure of linear land disturbance features, and c) drier El Niño climatic conditions during the study.

  18. Controls on sediment cover in bedrock-alluvial channels of the Henry Mountains, Utah

    NASA Astrophysics Data System (ADS)

    Hodge, R. A.; Yager, E.; Johnson, J. P.; Tranmer, A.

    2017-12-01

    The location and extent of sediment cover in bedrock-alluvial channels influences sediment transport rates, channel incision and instream ecology. However, factors affecting sediment cover and how it responds to changes in relative sediment supply have rarely been quantitatively evaluated in field settings. Using field surveys and SFM analysis of channel reach topography, we quantified sediment cover and channel properties including slope, width, grain size distributions, and bedrock and alluvial roughness in North Wash and Chelada Creek in the Henry Mountains, Utah. Along reaches where upstream sediment supply does not appear to be restricted, we find that the fraction of local bedrock exposure increases as a function of local relative transport capacity . In a downstream section of Chelada Creek, decadal-scale sediment supply has been restricted by an upstream culvert that has caused a backwater effect and corresponding upstream deposition. In this section, alluvial cover is uncorrelated with local stream power. To test the impact of relative sediment supply on sediment cover, a 1D sediment transport model was used to predict the equilibrium sediment cover in Chelada Creek under varying flow and sediment supply conditions. Sediment transport in each model section was predicted using the partial cover model of Johnson (2015), which accounts for differences in bedrock and alluvial roughness on critical shear stress and flow resistance. Model runs in which sediment supply was approximately equal to mean transport capacity produced a pattern of sediment cover which best matched the field observations upstream of the culvert. However, runs where sediment supply was under-capacity produced the pattern most similar to field observations downstream of the culvert, consistent with our field-based interpretations. Model results were insensitive to initial sediment cover, and equilibrium was relatively quickly reached, suggesting that the channel is responsive to changes in

  19. Concentration of arsenic in water, sediments and fish species from naturally contaminated rivers.

    PubMed

    Rosso, Juan José; Schenone, Nahuel F; Pérez Carrera, Alejo; Fernández Cirelli, Alicia

    2013-04-01

    Arsenic (As) may occur in surface freshwater ecosystems as a consequence of both natural contamination and anthropogenic activities. In this paper, As concentrations in muscle samples of 10 fish species, sediments and surface water from three naturally contaminated rivers in a central region of Argentina are reported. The study area is one of the largest regions in the world with high As concentrations in groundwater. However, information of As in freshwater ecosystems and associated biota is scarce. An extensive spatial variability of As concentrations in water and sediments of sampled ecosystems was observed. Geochemical indices indicated that sediments ranged from mostly unpolluted to strongly polluted. The concentration of As in sediments averaged 6.58 μg/g ranging from 0.23 to 59.53 μg/g. Arsenic in sediments barely followed (r = 0.361; p = 0.118) the level of contamination of water. All rivers showed high concentrations of As in surface waters, ranging from 55 to 195 μg/L. The average concentration of As in fish was 1.76 μg/g. The level of contamination with As differed significantly between species. Moreover, the level of bioaccumulation of As in fish species related to the concentration of As in water and sediments also differed between species. Whilst some fish species seemed to be able to regulate the uptake of this metalloid, the concentration of As in the large catfish Rhamdia quelen mostly followed the concentration of As in abiotic compartments. The erratic pattern of As concentrations in fish and sediments regardless of the invariable high levels in surface waters suggests the existence of complex biogeochemical processes behind the distribution patterns of As in these naturally contaminated ecosystems.

  20. Habitat generalists and specialists in microbial communities across a terrestrial-freshwater gradient

    NASA Astrophysics Data System (ADS)

    Monard, C.; Gantner, S.; Bertilsson, S.; Hallin, S.; Stenlid, J.

    2016-11-01

    Observations of distributions of microorganisms and their differences in community composition across habitats provide evidence of biogeographical patterns. However, little is known about the processes controlling transfers across habitat gradients. By analysing the overall microbial community composition (bacteria, fungi, archaea) across a terrestrial-freshwater gradient, the aim of this study was to understand the spatial distribution patterns of populations and identify taxa capable of crossing biome borders. Barcoded 454 pyrosequencing of taxonomic gene markers was used to describe the microbial communities in adjacent soil, freshwater and sediment samples and study the role of biotic and spatial factors in shaping their composition. Few habitat generalists but a high number of specialists were detected indicating that microbial community composition was mainly regulated by species sorting and niche partitioning. Biotic interactions within microbial groups based on an association network underlined the importance of Actinobacteria, Sordariomycetes, Agaricomycetes and Nitrososphaerales in connecting among biomes. Even if dispersion seemed limited, the shore of the lake represented a transition area, allowing populations to cross the biome boundaries. In finding few broadly distributed populations, our study points to biome specialization within microbial communities with limited potential for dispersal and colonization of new habitats along the terrestrial-freshwater continuum.

  1. Sediment connectivity in a small catchment with badlands: Testing connectivity indices using fallout radionuclide tracers at the Vallcebre Research Catchments.

    NASA Astrophysics Data System (ADS)

    Gallart, Francesc; Latron, Jérôme; Vuolo, Diego; Martínez-Carreras, Núria; Pérez-Gallego, Nuria; Estrany, Joan; Ferrer, Laura

    2015-04-01

    At the Vallcebre Research Catchments (South Eastern Pyrenees), results obtained during over 20 years showed that badlands are the primary sources of sediments to the drainage network. Parent lutitic rocks are weathered during winter producing regoliths, which are eroded from badland surfaces mainly during summer intense rainstorms. Even if the produced sediments are mainly fine, due to the ephemeral nature of summer runoff events most of them are deposited on the stream beds, where may remain during some time (months to years). Within the MEDhyCON project, a fallout radionuclides (FRNs) tracing experiment (i.e., excess lead 210 (Pbx-210) and beryllium 7 (Be-7)) is being carried out in order to investigate sediment connectivity. A simplified Pbx-210 balance model on badland surfaces suggested a seasonal sawtooth-like activity pattern: FRN would be accumulated in regoliths from October to June and depleted in summer. Early summer erosion events would produce the sediments with the highest activity whereas late summer events would produce sediments with the least activity coming from the deeper regolith horizons. These findings lead us to intend two sediment connectivity indices analysing respectively the temporal and spatial variability of the Pb-210 activities within the fine sediments: (1) The temporal variability of activities in suspended sediments at the gauging stations, being a measure of sediment transfer, ergo connectivity; a high variability mimicking regolith activity temporal pattern would represent high connectivity, whereas a low variability would involve that the sediments were pooled in a large and slowly moving stock. (2) The ratio between fine sediment activities at the sources and fine stream sediment activities downstream; fine stream sediment activities higher than those at their sources and increasing downstream (ratio lower than the unity) may indicate long-term permanence (low connectivity) of sediments in the stream beds, because once

  2. Transport of sediment through a channel network during a post-fire debris flow

    NASA Astrophysics Data System (ADS)

    Nyman, P.; Box, W. A. C.; Langhans, C.; Stout, J. C.; Keesstra, S.; Sheridan, G. J.

    2017-12-01

    Transport processes linking sediment in steep headwaters with rivers during high magnitude events are rarely examined in detail, particularly in forested settings where major erosion events are rare and opportunities for collecting data are limited. Yet high magnitude events in headwaters are known to drive landscape change. This study examines how a debris flow after wildfire impacts on sediment transport from small headwaters (0.02 km2) through a step pool stream system within a larger 14 km2 catchment, which drains into the East Ovens River in SE Australia. Sediment delivery from debris flows was modelled and downstream deposition of sediment was measured using a combination of aerial imagery and field surveys. Particle size distributions were measured for all major deposits. These data were summarised to map sediment flux as a continuous variable over the drainage network. Total deposition throughout the stream network was 39 x 103 m3. Catchment efflux was 61 x 103 m3 (specific sediment yield of 78 ton ha-1), which equates to 400-800 years of background erosion, based on measurements in nearby catchments. Despite the low gradient (ca. 0.1 m m-1) of the main channel there was no systematic downstream sorting in sediment deposits in the catchment. This is due to debris flow processes operating throughout the stream network, with lateral inputs sustaining the process in low gradient channels, except in the most downstream reaches where the flow transitioned towards hyper-concentrated flow. Overall, a large proportion ( 88%) of the eroded fine fraction (<63 micron) exited the catchment, when compared to the overall ratio (55%) of erosion to deposition. The geomorphic legacy of this post-wildfire event depends on scale. In the lower channels (steam order 4-5), where erosion was nearly equal to deposition, the event had no real impact on total sediment volumes stored. In upper channels (stream orders < 3) erosion was widespread but deposition rates were low. So

  3. Sediment phosphorus speciation and mobility under dynamic redox conditions

    NASA Astrophysics Data System (ADS)

    Parsons, Chris T.; Rezanezhad, Fereidoun; O'Connell, David W.; Van Cappellen, Philippe

    2017-07-01

    Anthropogenic nutrient enrichment has caused phosphorus (P) accumulation in many freshwater sediments, raising concerns that internal loading from legacy P may delay the recovery of aquatic ecosystems suffering from eutrophication. Benthic recycling of P strongly depends on the redox regime within surficial sediment. In many shallow environments, redox conditions tend to be highly dynamic as a result of, among others, bioturbation by macrofauna, root activity, sediment resuspension and seasonal variations in bottom-water oxygen (O2) concentrations. To gain insight into the mobility and biogeochemistry of P under fluctuating redox conditions, a suspension of sediment from a hypereutrophic freshwater marsh was exposed to alternating 7-day periods of purging with air and nitrogen gas (N2), for a total duration of 74 days, in a bioreactor system. We present comprehensive data time series of bulk aqueous- and solid-phase chemistry, solid-phase phosphorus speciation and hydrolytic enzyme activities demonstrating the mass balanced redistribution of P in sediment during redox cycling. Aqueous phosphate concentrations remained low ( ˜ 2.5 µM) under oxic conditions due to sorption to iron(III) oxyhydroxides. During anoxic periods, once nitrate was depleted, the reductive dissolution of iron(III) oxyhydroxides released P. However, only 4.5 % of the released P accumulated in solution while the rest was redistributed between the MgCl2 and NaHCO3 extractable fractions of the solid phase. Thus, under the short redox fluctuations imposed in the experiments, P remobilization to the aqueous phase remained relatively limited. Orthophosphate predominated at all times during the experiment in both the solid and aqueous phase. Combined P monoesters and diesters accounted for between 9 and 16 % of sediment particulate P. Phosphatase activities up to 2.4 mmol h-1 kg-1 indicated the potential for rapid mineralization of organic P (Po), in particular during periods of aeration when the

  4. The effect of bioturbation by Lumbriculus variegatus on transport and distribution of lead in a freshwater microcosm.

    PubMed

    Blankson, Emmanuel R; Klerks, Paul L

    2016-05-01

    The present study investigated the effect of bioturbation by the oligochaete worm Lumbriculus variegatus on the transport and environmental distribution of lead (Pb). Experiments used L. variegatus at densities of 0 ind./m(2), 2093 ind./m(2), and 8372 ind./m(2), in freshwater microcosms with Pb-spiked sediment. At the end of the 14-d experiment, Pb levels in the water column, tissues of L. variegatus, and sediment were determined, and bioturbation was quantified using luminophores. The bioturbation by L. variegatus increased Pb transport from the sediment to the water column. However, it did not significantly affect Pb bioaccumulation by L. variegatus or Pb levels in the sediment. The biodiffusion coefficient (Db) was positively related to worm density, but did not differ between Pb-spiked sediment and uncontaminated sediment. The latter finding suggests that Pb at the 100 μg/g concentration used in the present study did not affect L. variegatus bioturbation. The present study shows that bioturbation can enhance Pb transfer across the sediment-water interface and thus enhance Pb availability to organisms in the water column. © 2015 SETAC.

  5. Effects of surface and groundwater interactions on phosphorus transport within streambank sediments.

    PubMed

    Thompson, Carol A; McFarland, Anne M S

    2010-01-01

    Understanding internal stream P transfers is important in controlling eutrophication. To determine the direction of groundwater and surface water interactions and evaluate P retention within streambank sediments, groundwater well pairs, about 5-m deep, were installed at three locations along a second-order, eutrophic stream in north-central Texas. Well cores were analyzed for P, and groundwater levels were monitored for about 2 yr. Water levels in wells furthest upstream always indicated a losing stream, while wells further downstream showed a gaining stream except during flow reversals with storm events and periods with reservoir backwater. Total-P from well cores ranged from 54 to 254 mg kg(-1) and was typically high near surface, decreased downward until redoximorphic features were encountered and then increased notably with depth to near or above surface concentrations. Very little extractable P occurred in sediments from the two upstream well sets; however, the set furthest downstream showed extractable P throughout with a high of 21 mg kg(-1) near the bottom. Repeated wetting-drying at sites A and B as noted by redoximorphic features may have shifted P into more stable sediment-bound forms. The decrease in extractable P at sites A and B compared to site C may be explained by conditions at C that were wetter and potentially anaerobic. Because the overall stream reach was more often losing than gaining, there appears to be a mass flow of P into streambank sediments. Streambank erosion may then transport this P downstream if not controlled.

  6. Temperature calibration and phylogenetically distinct distributions for freshwater alkenones: Evidence from northern Alaskan lakes

    NASA Astrophysics Data System (ADS)

    Longo, William M.; Theroux, Susanna; Giblin, Anne E.; Zheng, Yinsui; Dillon, James T.; Huang, Yongsong

    2016-05-01

    Alkenones are a class of unsaturated long-chain ketone biomarkers that have been used to reconstruct sea surface temperature and, more recently, continental temperature, by way of alkenone unsaturation indices (e.g. U37K and U37K‧). Alkenones are frequently found in brackish and saline lakes, however species effects confound temperature reconstructions when multiple alkenone-producing species with different temperature responses are present. Interestingly, available genetic data indicate that numerous freshwater lakes host a distinct phylotype of alkenone-producing haptophyte algae (the Group I or Greenland phylotype), providing evidence that species effects may be diminished in freshwater lakes. These findings encourage further investigation of alkenone paleotemperature proxies in freshwater systems. Here, we investigated lakes from northern Alaska (n = 35) and show that alkenones commonly occurred in freshwater lakes, where they featured distinct distributions, characterized by dominant C37:4 alkenones and a series of tri-unsaturated alkenone isomers. The distributions were characteristic of Group I-type alkenone distributions previously identified in Greenland and North America. Our analysis of suspended particulate matter from Toolik Lake (68° 38‧N, 149° 36‧W) yielded the first in situ freshwater U37K calibration (U37K = 0.021 * T - 0.68; r2 = 0.85; n = 52; RMSE = ±1.37 °C). We explored the environmental significance of the tri-unsaturated isomers using our northern Alaskan lakes dataset in conjunction with new data from haptophyte cultures and Canadian surface sediments. Our results show that these temperature-sensitive isomers are biomarkers for the Group I phylotype and indicators of multiple-species effects. Together, these findings highlight freshwater lakes as valuable targets for continental alkenone-based paleotemperature reconstructions and demonstrate the significance of the recently discovered tri-unsaturated isomers.

  7. Rotenone persistence in freshwater ponds: Effects of temperature and sediment adsorption

    USGS Publications Warehouse

    Dawson, V.K.; Gingerich, W.H.; Davis, R.A.; Gilderhus, P.A.

    1991-01-01

    The persistence of rotenone was compared between a cement-lined pond (0.04 hectare) and an earthen-bottom pond (0.02 hectare) treated with 5 I?L Noxfish/L (250 I?g rotenone/L) during spring, summer, and fall. Water temperatures on the days of treatment in each season were 8, 22, and 15A?C, respectively. Both ponds were filled with pond water from a common source 1 week before each of the three treatments. Water samples (filtered and unfiltered) and sediment samples were analyzed by high-performance liquid chromatography to monitor the decrease of rotenone until residues were at or below the detection limit (<2.0 I?g/L for water and < 25 ng/g for sediments). The loss of rotenone from water generally followed a first-order rate ofdecay. Rotenone disappeared two to three times faster in the earthen pond than in the concrete pond. The rotenone half-life times in the spring, summer, and fall treatments were 3.7, 1.3, and 5.2 d, respectively, in the concrete pond, and 1.8, 0.7, and 1.8 d in the earthen pond. Rates of decay in both ponds were directly correlated with water temperature. Filtered water samples from both ponds contained less rotenone than unfiltered water, indicating that some rotenone was bound to suspended material. The highest concentration of rotenone in sediment samples was 102 ng/g; residues decreased to below the detection limit within 14 d in the spring treatment and within 3 d in the summer and fall treatments.

  8. Improving sediment-quality guidelines for nickel: development and application of predictive bioavailability models to assess chronic toxicity of nickel in freshwater sediments

    USGS Publications Warehouse

    Vangheluwe, Marnix L. U.; Verdonck, Frederik A. M.; Besser, John M.; Brumbaugh, William G.; Ingersoll, Christopher G.; Schlekat, Christan E.; Rogevich Garman, Emily

    2013-01-01

    Within the framework of European Union chemical legislations an extensive data set on the chronic toxicity of sediment nickel has been generated. In the initial phase of testing, tests were conducted with 8 taxa of benthic invertebrates in 2 nickel-spiked sediments, including 1 reasonable worst-case sediment with low concentrations of acid-volatile sulfide (AVS) and total organic carbon. The following species were tested: amphipods (Hyalella azteca, Gammarus pseudolimnaeus), mayflies (Hexagenia sp.), oligochaetes (Tubifex tubifex, Lumbriculus variegatus), mussels (Lampsilis siliquoidea), and midges (Chironomus dilutus, Chironomus riparius). In the second phase, tests were conducted with the most sensitive species in 6 additional spiked sediments, thus generating chronic toxicity data for a total of 8 nickel-spiked sediments. A species sensitivity distribution was elaborated based on 10% effective concentrations yielding a threshold value of 94 mg Ni/kg dry weight under reasonable worst-case conditions. Data from all sediments were used to model predictive bioavailability relationships between chronic toxicity thresholds (20% effective concentrations) and AVS and Fe, and these models were used to derive site-specific sediment-quality criteria. Normalization of toxicity values reduced the intersediment variability in toxicity values significantly for the amphipod species Hyalella azteca and G. pseudolimnaeus, but these relationships were less clearly defined for the mayfly Hexagenia sp. Application of the models to prevailing local conditions resulted in threshold values ranging from 126 mg to 281 mg Ni/kg dry weight, based on the AVS model, and 143 mg to 265 mg Ni/kg dry weight, based on the Fe model

  9. Influence of sediment chemistry and sediment toxicity on macroinvertebrate communities across 99 wadable streams of the Midwestern USA

    USGS Publications Warehouse

    Moran, Patrick W.; Nowell, Lisa H.; Kemble, Nile E.; Mahler, Barbara J.; Waite, Ian R.; Van Metre, Peter C.

    2017-01-01

    Simultaneous assessment of sediment chemistry, sediment toxicity, and macroinvertebrate communities can provide multiple lines of evidence when investigating relations between sediment contaminants and ecological degradation. These three measures were evaluated at 99 wadable stream sites across 11 states in the Midwestern United States during the summer of 2013 to assess sediment pollution across a large agricultural landscape. This evaluation considers an extensive suite of sediment chemistry totaling 274 analytes (polycyclic aromatic hydrocarbons, organochlorine compounds, polychlorinated biphenyls, polybrominated diphenyl ethers, trace elements, and current-use pesticides) and a mixture assessment based on the ratios of detected compounds to available effects-based benchmarks. The sediments were tested for toxicity with the amphipod Hyalella azteca (28-d exposure), the midge Chironomus dilutus (10-d), and, at a few sites, with the freshwater mussel Lampsilis siliquoidea (28-d). Sediment concentrations, normalized to organic carbon content, infrequently exceeded benchmarks for aquatic health, which was generally consistent with low rates of observed toxicity. However, the benchmark-based mixture score and the pyrethroid insecticide bifenthrin were significantly related to observed sediment toxicity. The sediment mixture score and bifenthrin were also significant predictors of the upper limits of several univariate measures of the macroinvertebrate community (EPT percent, MMI (Macroinvertebrate Multimetric Index) Score, Ephemeroptera and Trichoptera richness) using quantile regression. Multivariate pattern matching (Mantel-like tests) of macroinvertebrate species per site to identified contaminant metrics and sediment toxicity also indicate that the sediment mixture score and bifenthrin have weak, albeit significant, influence on the observed invertebrate community composition. Together, these three lines of evidence (toxicity tests, univariate metrics, and

  10. Evaluation of phase II toxicity identification evaluation methods for freshwater whole sediment and interstitial water.

    PubMed

    Phillips, Bryn M; Anderson, Brian S; Hunt, John W; Clark, Sara L; Voorhees, Jennifer P; Tjeerdema, Ron S; Casteline, Jane; Stewart, Margaret

    2009-02-01

    Phase I whole sediment toxicity identification evaluation (TIE) methods have been developed to characterize the cause of toxicity as organic chemicals, metals, or ammonia. In Phase II identification treatments, resins added to whole sediment to reduce toxicity caused by metals and organics can be separated and eluted much like solid-phase extraction (SPE) columns are eluted for interstitial water. In this study, formulated reference sediments spiked with toxic concentrations of copper, fluoranthene, and nonylphenol were subjected to whole sediment and interstitial water TIE treatments to evaluate Phase I and II TIE procedures for identifying the cause of toxicity to Hyalella azteca. Phase I TIE treatments consisted of adding adsorbent resins to whole sediment, and using SPE columns to remove spiked chemicals from interstitial water. Phase II treatments consisted of eluting resins and SPE columns and the preparation and testing of eluates for toxicity and chemistry. Whole sediment resins and SPE columns significantly reduced toxicity, and the eluates from all treatments contained toxic concentrations of the spiked chemical except for interstitial water fluoranthene. Toxic unit analysis based on median lethal concentrations (LC50s) allowed for the comparison of chemical concentrations among treatments, and demonstrated that the bioavailability of some chemicals was reduced in some samples and treatments. The concentration of fluoranthene in the resin eluate closely approximated the original interstitial water concentration, but the resin eluate concentrations of copper and nonylphenol were much higher than the original interstitial water concentrations. Phase II whole sediment TIE treatments provided complementary lines of evidence to the interstitial water TIE results.

  11. Effect of biostimulation on the microbial community in PCB-contaminated sediments through periodic amendment of sediment with iron.

    PubMed

    Srinivasa Varadhan, A; Khodadoust, Amid P; Brenner, Richard C

    2011-10-01

    Reductive dehalogenation of polychlorinated biphenyls (PCBs) by indigenous dehalorespiring microorganisms in contaminated sediments may be enhanced via biostimulation by supplying hydrogen generated through the anaerobic corrosion of elemental iron added to the sediment. In this study, the effect of periodic amendment of sediment with various dosages of iron on the microbial community present in sediment was investigated using phospholipid fatty acid analysis (PLFA) over a period of 18 months. Three PCB-contaminated sediments (two freshwater lake sediments and one marine sediment) were used. Signature biomarker analysis of the microbial community present in all three sediments revealed the enrichment of Dehalococcoides species, the population of which was sustained for a longer period of time when the sediment microcosms were amended with the lower dosage of iron (0.01 g iron per g dry sediment) every 6 months as compared to the blank system (without iron). Lower microbial stress levels were reported for the system periodically amended with 0.01 g of iron per g dry sediment every 6 months, thus reducing the competition from other hydrogen-utilizing microorganisms like methanogens, iron reducers, and sulfate reducers. The concentration of hydrogen in the system was found to be an important factor influencing the shift in microbial communities in all sediments with time. Periodic amendment of sediment with larger dosages of iron every 3 months resulted in the early prevalence of Geobacteraceae and sulfate-reducing bacteria followed by methanogens. An average pH of 8.4 (range of 8.2-8.6) and an average hydrogen concentration of 0.75% (range of 0.3-1.2%) observed between 6 and 15 months of the study were found to be conducive to sustaining the population of Dehalococcoides species in the three sediments amended with 0.01 g iron per g dry sediment. Biostimulation of indigenous PCB dechlorinators by the periodic amendment of contaminated sediments with low dosages of

  12. Transport and deposition of asbestos-rich sediment in the Sumas River, Whatcom County, Washington

    USGS Publications Warehouse

    Curran, Christopher A.; Anderson, Scott W.; Barbash, Jack E.; Magirl, Christopher S.; Cox, Stephen E.; Norton, Katherine K.; Gendaszek, Andrew S.; Spanjer, Andrew R.; Foreman, James R.

    2016-02-08

    Heavy sediment loads in the Sumas River of Whatcom County, Washington, increase seasonal turbidity and cause locally acute sedimentation. Most sediment in the Sumas River is derived from a deep-seated landslide of serpentinite that is located on Sumas Mountain and drained by Swift Creek, a tributary to the Sumas River. This mafic sediment contains high amounts of naturally occurring asbestiform chrysotile. A known human-health hazard, asbestiform chrysotile comprises 0.25–37 percent, by mass, of the total suspended sediment sampled from the Sumas River as part of this study, which included part of water year 2011 and all of water years 2012 and 2013. The suspended-sediment load in the Sumas River at South Pass Road, 0.6 kilometers (km) downstream of the confluence with Swift Creek, was 22,000 tonnes (t) in water year 2012 and 49,000 t in water year 2013. The suspended‑sediment load at Telegraph Road, 18.8 km downstream of the Swift Creek confluence, was 22,000 t in water year 2012 and 27,000 t in water year 2013. Although hydrologic conditions during the study were wetter than normal overall, the 2-year flood peak was only modestly exceeded in water years 2011 and 2013; runoff‑driven geomorphic disturbance to the watershed, which might have involved mass wasting from the landslide, seemed unexceptional. In water year 2012, flood peaks were modest, and the annual streamflow was normal. The fact that suspended-sediment loads in water year 2012 were equivalent at sites 0.6 and 18.8 km downstream of the sediment source indicates that the conservation of suspended‑sediment load can occur under normal hydrologic conditions. The substantial decrease in suspended-sediment load in the downstream direction in water year 2013 was attributed to either sedimentation in the intervening river reach, transfer to bedload as an alternate mode of sediment transport, or both.The sediment in the Sumas River is distinct from sediment in most other river systems because of the

  13. The Dynamics of Coarse Sediment Transfer in an Upland Bedrock River

    NASA Astrophysics Data System (ADS)

    Warburton, J.; Hardy, R. J.; Ferguson, R. I.; Cray, A.

    2010-12-01

    Bedrock channels in UK environments have received relatively little attention despite their importance within upland river systems and their influence on controlling the conveyance of sediment downstream. This poster describes the transfer of coarse sediment through Trout Beck, an upland bedrock reach in the North Pennines, UK. The transport of coarse sediment has been quantified through field monitoring of sediment characteristics, repeat magnetic tracer surveys and in-situ bed load impact sensors. This was carried out in conjunction with surveys of channel morphology (using terrestrial laser scanning and repeat dGPS measurements) and continuous flow monitoring. The interaction between mobile sediment and channel morphology is partly conditioned by the extent of alluvial sediment cover. Sediment storage is patchy with partially alluvial and alluvial sections of the channel, interspersed with bedrock reaches containing very little sediment except in hydraulically sheltered sites. There are notable differences in sediment dynamics between these different sections of the river channel which have a considerable influence on conveyance of sediment through the reach. In bedrock sections the low resistance to flow and stable channel boundaries result in little sediment storage and during periods when flow is competent there is downstream conveyance of the full grain-size distribution of sediment. Detailed morphological survey has provided the necessary boundary conditions, along with the flow data, to apply a one-dimensional hydraulic model (HEC-RAS) of the bedrock study reach. The modelling results have quantified the hydraulic regime of the channel. Using local shear stress as a proxy for sediment transport, sediment transport potential for the dominant grain-size distribution of the reach (16-256 mm) has been assessed for different locations in the channel. There are significant differences in the critical threshold of shear stress for sediment transport down the

  14. Nature of distribution of mercury in the sediments of the river Yamuna (tributary of the Ganges), India.

    PubMed

    Subramanian, V; Madhavan, N; Saxena, Rajinder; Lundin, Lars-Christer

    2003-06-01

    Suspended Particulate Matter (SPM), surface (bed sediments) and short length cores of sediments collected from the largest tributary of the river Ganges, namely the river Yamuna, were analysed for total mercury as well as its fractionation in various size and chemical sites in the sediments following standard procedures. Also, attempts were made to determine the vertical distribution in sediments in relation to the recent timescale of a few decades. Our observations indicate that the SPM in general showed higher levels of total mercury compared to the surface sediments while at places the enhancement could be by a factor of 10, say around 25 microg g(-1) in the downstream region that integrates the industrial midstream and agricultural downstream terrain near its confluence with the Ganges. Surface sediments in the upstream direction near the Himalayan foothills and SPM in the lower reaches showed significant high Index of Geoaccumulation (Igeo) as defined by Müller. Size fractionation studies indicate that the finer fraction preferentially showed higher levels of mercury while in the lower reaches of the river, the total mercury is equitably distributed among all size fractions. The proportion of the residual fraction of mercury in relation to mobile fractions, in general decreases downstream towards its confluence with the Ganges river. In sediment cores, the vertical distribution show systematic peaks of mercury indicating that addition of this toxic metal to the aquatic system is in direct proportion to the increase in various types of human activities such as thermal power plants, land use changes (urbanisation) in the midstream region and intensive fertiliser application in lower reaches of this vast river basin.

  15. Wildfire disturbance, erosion and sedimentation risks following the Waldo Canyon Fire in Colorado

    NASA Astrophysics Data System (ADS)

    Flint, K.; Kinoshita, A. M.; Chin, A.; Florsheim, J. L.; Nourbakhshbeidokhti, S.

    2016-12-01

    Wildfire is a landscape-scale disturbance that causes abrupt changes to hydrological responses and sediment flux during subsequent storms. Burning hillslope vegetation during wildfires induces changes to sediment supply and stream flow magnitude. Altered post-fire processes such as channel erosion and sedimentation or flooding enhance downstream hazards that may threaten human populations and physical aquatic habitat over various time scales. Using data from a small drainage basin (Williams Canyon, 4.7 km2) in the Colorado front range burned by the 2012 Waldo Fire as a case study, we investigate post-fire recovery and assess changes in fire-related risks to downstream areas. Our local ground-based precipitation, field measurements, terrestrial Light Detection and Ranging (LiDAR) scanning together with satellite-based remote sensing data (i.e. Landsat) provide a basis for time series analyses of reach-scale erosion and sedimentation response to rainfall patterns as vegetation patterns change following the wildfire. As a first step in quantifying the likelihood and consequences of specific risk scenarios, we examine changes in the combined probability of storm flows and post-fire erosion and sedimentation as vegetation recovers within the study watershed. We explore possible feedbacks and thresholds related to vegetation-hydrology-sediment interactions following wildfire under changing climate regimes. This information is needed to assist in post-fire management to promote sustainability of wildland fluvial systems.

  16. Perfluorinated chemicals in surface waters and sediments from northwest Georgia, USA, and their bioaccumulation in Lumbriculus variegatus

    USGS Publications Warehouse

    Lasier, Peter J.; Washington, John W.; Hassan, Sayed M.; Jenkins, Thomas M.

    2011-01-01

    Concentrations of perfluorinated chemicals (PFCs) were measured in surface waters and sediments from the Coosa River watershed in northwest Georgia, USA, to examine their distribution downstream of a suspected source. Samples from eight sites were analyzed using liquid chromatography-tandem mass spectrometry. Sediments were also used in 28-d exposures with the aquatic oligochaete, Lumbriculus variegatus, to assess PFC bioaccumulation. Concentrations of PFCs in surface waters and sediments increased significantly below a land-application site (LAS) of municipal/industrial wastewater and were further elevated by unknown sources downstream. Perfluorinated carboxylic acids (PFCAs) with eight or fewer carbons were the most prominent in surface waters. Those with 10 or more carbons predominated sediment and tissue samples. Perfluorooctane sulfonate (PFOS) was the major homolog in contaminated sediments and tissues. This pattern among sediment PFC concentrations was consistent among sites and reflected homolog concentrations emanating from the LAS. Concentrations of PFCs in oligochaete tissues revealed patterns similar to those observed in the respective sediments. The tendency to bioaccumulate increased with PFCA chain length and the presence of the sulfonate moiety. Biota-sediment accumulation factors indicated that short-chain PFCAs with fewer than seven carbons may be environmentally benign alternatives in aquatic ecosystems; however, sulfonates with four to seven carbons may be as likely to bioaccumulate as PFOS.

  17. Dynamics of copper and zinc sedimentation in a lagooning system receiving landfill leachate.

    PubMed

    Guigue, Julien; Mathieu, Olivier; Lévêque, Jean; Denimal, Sophie; Steinmann, Marc; Milloux, Marie-Jeanne; Grisey, Hervé

    2013-11-01

    This study characterises the sediment dredged from a lagooning system composed of a settling pond and three lagoons that receive leachates from a municipal solid waste (MSW) landfill in France. Organic carbon, carbonate, iron oxyhydroxides, copper (Cu) and zinc (Zn) concentrations were measured in the sediment collected from upstream to downstream in the lagooning system. In order to complete our investigation of sedimentation mechanisms, leachates were sampled in both dry (spring) and wet (winter) seasonal conditions. Precipitation of calcite and amorphous Fe-oxyhydroxides and sedimentation of organic matter occurred in the settling pond. Since different distributions of Zn and Cu concentrations are measured in sediment samples collected downstream in the lagooning system, it is suggested that these elements were not distributed in a similar way in the leachate fractions during the first stage of treatment in the settling pond, so that their sedimentation dynamics in the lagooning system differ. In the lagoons, it was found that organic carbon plays a major role in Cu and Zn mobility and trapping. The presence of macrophytes along the edges provided an input of organic matter that enhanced Cu and Zn scavenging. This edge effect resulted in a two-fold increase in Cu and Zn concentrations in the sediment deposited near the banks of the lagoons, thus confirming the importance of vegetation for the retention of Cu and Zn in lagooning systems. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. AN EVALUATION OF ELECTRODE INSERTION TECHNIQUES FOR MEASUREMENT OF REDOX POTENTIAL IN ESTUARINE SEDIMENTS

    EPA Science Inventory

    Eh measurements by electrodes are commonly used to characterize redox status of sediments in freshwater, marine and estuarine studies, due to the relative ease and rapidity of data collection. In our studies of fine-grained estuarine seabeds, we observed that Eh values measured i...

  19. Tidal controls on riverbed denitrification along a tidal freshwater zone

    NASA Astrophysics Data System (ADS)

    Knights, Deon; Sawyer, Audrey H.; Barnes, Rebecca T.; Musial, Cole T.; Bray, Samuel

    2017-01-01

    In coastal rivers, tidal pumping enhances the exchange of oxygen-rich river water across the sediment-water interface, controlling nitrogen cycling in riverbed sediment. We developed a one-dimensional, fluid flow and solute transport model that quantifies the influence of tidal pumping on nitrate removal and applied it to the tidal freshwater zone (TFZ) of White Clay Creek (Delaware, USA). In field observations and models, both oxygenated river water and anoxic groundwater deliver nitrate to carbon-rich riverbed sediment. A zone of nitrate removal forms beneath the aerobic interval, which expands and contracts over daily timescales due to tidal pumping. At high tide when oxygen-rich river water infiltrates into the bed, denitrification rates decrease by 25% relative to low tide. In the absence of tidal pumping, our model predicts that the aerobic zone would be thinner, and denitrification rates would increase by 10%. As tidal amplitude increases toward the coast, nitrate removal rates should decrease due to enhanced oxygen exchange across the sediment-water interface, based on sensitivity analysis. Denitrification hot spots in TFZs are more likely to occur in less permeable sediment under lower tidal ranges and higher rates of ambient groundwater discharge. Our models suggest that tidal pumping is not efficient at removing surface water nitrate but can remove up to 81% of nitrate from discharging groundwater in the TFZ of White Clay Creek. Given the high population densities of coastal watersheds, the reactive riverbeds of TFZs play a critical role in mitigating new nitrogen loads to coasts.

  20. Influence of sulfate input on freshwater sediments: Insights from incubation experiments

    USGS Publications Warehouse

    Szynkiewicz, Anna; Jedrysek, Mariusz Orion; Kurasiewicz, M.; Mastalerz, Maria

    2008-01-01

    Incubation experiments were carried out under high and low SO42 - conditions to investigate the buffering capacity of lake sediments. Increased SO42 - content in the water column enhanced microbial SO42 - reduction, causing a continuous decrease of SO42 - content from 1086 to 83 mg/L paralleled by an increase of pH in the water column from 3.76 to 7.20. These changes were accompanied by decreased methanogenesis in the incubated sediments. The results demonstrate that the buffering capacity resulted from a variety of biodegradation pathways controlled to a large extent by SO42 - reduction, rather than by direct anaerobic oxidation of CH4. This is documented by distinctly lower ??13C values (from -73.99 to -65.24???) of the CH4 generated under higher SO42 - conditions compared to higher ??13C values (from -68.98 to -61.37???) of the CH4 generated under lower SO42 - conditions. ?? 2008 Elsevier Ltd. All rights reserved.

  1. Reductive dehalogenation activity of indigenous microorganism in sediments of the Hackensack River, New Jersey.

    PubMed

    Sohn, Seo Yean; Häggblom, Max M

    2016-07-01

    Organohalogen pollutants are of concern in many river and estuarine environments, such as the New York-New Jersey Harbor estuary and its tributaries. The Hackensack River is contaminated with various metals, hydrocarbons and halogenated organics, including polychlorinated biphenyls (PCBs) and polychlorinated dibenzo-p-dioxins. In order to examine the potential for microbial reductive dechlorination by indigenous microorganisms, sediment samples were collected from five different estuarine locations along the Hackensack River. Hexachlorobenzene (HCB), hexabromobenzene (HBB), and pentachloroaniline (PCA) were selected as model organohalogen pollutants to assess anaerobic dehalogenating potential. Dechlorinating activity of HCB and PCA was observed in sediment microcosms for all sampling sites. HCB was dechlorinated via pentachlorobenzene (PeCB) and trichlorobenzene (TriCB) to dichlorobenzene (DCB). PCA was dechlorinated via tetrachloroaniline (TeCA), trichloroanilines (TriCA), and dichloroanilines (DCA) to monochloroaniline (MCA). No HBB debromination was observed over 12 months of incubation. However, with HCB as a co-substrate slow HBB debromination was observed with production of tetrabromobenzene (TeBB) and tribromobenzene (TriBB). Chloroflexi specific 16S rRNA gene PCR-DGGE followed by sequence analysis detected Dehalococcoides species in sediments of the freshwater location, but not in the estuarine site. Analysis targeting 12 putative reductive dehalogenase (rdh) genes showed that these were enriched concomitant with HCB or PCA dechlorination in freshwater sediment microcosms. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Fate and Transport of Organic Contaminants in Coastal Marsh Sediments Resulting from the 2010 Gulf Oil Spill

    NASA Astrophysics Data System (ADS)

    Natter, M.; Keevan, J.; Lee, M.; Keimowitz, A.; Savrda, C.; Son, A.; Okeke, B.; Wang, Y.

    2011-12-01

    up to hundreds of mg/kg, are on the order of one to two magnitudes higher than those at pristine and slightly contaminated sites. These DOC levels also interestingly increase with depth, possibly indicating saltwater-freshwater mixing near the sediment surface or freshwater recharge from rainfall. The spatial changes in DOC indicate that seawater and oil invaded along the deeper portion of the marsh sediments due to their higher density with respect to freshwater. TOC and DOC data clearly indicate that not all the spilled oil rose to the water surface and washed on-shore. Plumes of partially degraded oil could be spreading at various levels of the water column and feeding the underlying sediments. Geochemical biomarkers and stable isotopes (carbon and nitrogen) analyses of wetland plants, oiled sediments, and initial crude oils are underway to trace the sources of oil and the extent of oil degradation in impacted wetlands.

  3. From "E-flows" to "Sed-flows": Managing the Problem of Sediment in High Altitude Hydropower Systems

    NASA Astrophysics Data System (ADS)

    Gabbud, C.; Lane, S. N.

    2017-12-01

    The connections between stream hydraulics, geomorphology and ecosystems in mountain rivers have been substantially perturbed by humans, for example through flow regulation related to hydropower activities. It is well known that the ecosystem impacts downstream of hydropower dams may be managed by a properly designed compensation release or environmental flows ("e-flows"), and such flows may also include sediment considerations (e.g. to break up bed armor). However, there has been much less attention given to the ecosystem impacts of water intakes (where water is extracted and transferred for storage and/or power production), even though in many mountain systems such intakes may be prevalent. Flow intakes tend to be smaller than dams and because they fill quickly in the presence of sediment delivery, they often need to be flushed, many times within a day in Alpine glaciated catchments with high sediment yields. The associated short duration "flood" flow is characterised by very high sediment concentrations, which may drastically modify downstream habitat, both during the floods but also due to subsequent accumulation of "legacy" sediment. The impacts on flora and fauna of these systems have not been well studied. In addition, there are no guidelines established that might allow the design of "e-flows" that also treat this sediment problem, something we call "sed-flows". Through an Alpine field example, we quantify the hydrological, geomorphological, and ecosystem impacts of Alpine water transfer systems. The high sediment concentrations of these flushing flows lead to very high rates of channel disturbance downstream, superimposed upon long-term and progressive bed sediment accumulation. Monthly macroinvertebrate surveys over almost a two-year period showed that reductions in the flushing rate reduced rates of disturbance substantially, and led to rapid macroinvertebrate recovery, even in the seasons (autumn and winter) when biological activity should be reduced

  4. Habitat change and geomorphic response related to sediment releases during reservoir drawdowns at Fall Creek Lake, Oregon

    NASA Astrophysics Data System (ADS)

    Keith, M. K.; Wallick, R.; Bangs, B. L.; Taylor, G.; Gordon, G. W.; White, J. S.; Mangano, J.

    2017-12-01

    Reservoir drawdowns at Fall Creek Lake, Oregon lower lake levels to facilitate downstream passage of juvenile spring Chinook salmon through the 55-m high dam. Since 2011, annual fall and winter drawdowns have improved fish passage, but temporarily lowering the lake nearly to streambed has increased downstream transport of predominantly fine (<2 mm) sediment to the lower gravel-bed reaches of Fall Creek and the Middle Fork Willamette River. Repeated releases of reservoir sediments have uncertain long-term consequences for downstream reaches where dam construction has reduced peak flows, coarse sediment transport, and habitat creation. Here, we evaluate site and reach-scale geomorphic responses to sediment released from the reservoir over 2011-17. At the reach-scale, sediment aggradation is most apparent in low velocity zones along channel margins and in side channels and alcoves of Fall Creek nearest to the dam. These areas accumulate sediment following the drawdown and are colonized with vegetation, such as reed canary grass, thereby increasing the trapping efficiency for fine sediment during the following year's drawdown. Fine sediment accumulation in off-channel areas has reduced the available rearing area for some salmonid species but may provide alternative habitat suitable for other native aquatic species such as Pacific lamprey ammocoetes that live in fine substrates for several years. Changes in off-channel aquatic habitat and bare gravel bars related to the drawdowns are small relative to the historically dynamic conditions on the Middle Fork (presently stable). Fall Creek, historically and presently stable, has fewer off-channel areas than the Middle Fork, so filling those areas has greater reach-scale impacts on habitat. Locally, deposition measured following the 2015 drawdown showed most aggradation on high-elevation gravel bars and low-elevation floodplains occurred when flows were higher on Fall Creek ( 2,000 ft3/s) and the Middle Fork (near bankfull

  5. Methane flux from mangrove sediments along the southwestern coast of Puerto Rico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sotomayor, D.; Corredor, J.E.; Morell, J.M.

    1994-03-01

    Although the sediments of coastal marine mangrove forests have been considered a minor source of atmospheric methane, these estimate have been based on sparse data from similar areas. We have gathered evidence that shows that external nutrient and freshwater loading in mangrove sediments may have a significant effect on methane flux. Experiments were performed to examine methane fluxes from anaerobic sediments in a mangrove forest subjected to secondary sewage effluents on the southwestern coast of Puerto Rico. Emission rates were measured in situ using a static chamber technique, and subsequent laboratory analysis of samples was by gas chromatography using amore » flame ionization detector. Results indicate that methane flux rates were lowest at the landward fringe nearest to the effluent discharge, higher in the seaward fringe occupied by red mangroves, and highest in the transition zone between black and red mangrove communities, with average values of 4 mg CH[sub 4] m[sup [minus]2] d[sup [minus]1], 42 mg CH[sub 4] m[sup [minus]2] d[sup [minus]1], and 82 mg CH[sub 4] m[sup [minus]2] d[sup [minus]1], respectively. Overall mean values show these sediments may emit as much as 40 times more methane than unimpacted pristine areas. Pneumatophores of Aviciennia germinans have been found to serve as conduits to the atmosphere for this gas. Fluctuating water level overlying the mangrove sediment is an important environmental factor controlling seasonal and interannual CH[sub 4] flux variations. Environmental controls such as freshwater inputs and increased nutrient loading influence in situ methane emissions from these environments. 34 refs., 3 figs., 3 tabs.« less

  6. Importance of measuring discharge and sediment transport in lesser tributaries when closing sediment budgets

    USGS Publications Warehouse

    Griffiths, Ronald; Topping, David

    2017-01-01

    Sediment budgets are an important tool for understanding how riverine ecosystems respond to perturbations. Changes in the quantity and grain size distribution of sediment within river systems affect the channel morphology and related habitat resources. It is therefore important for resource managers to know if a river reach is in a state of sediment accumulation, deficit or stasis. Many sediment-budget studies have estimated the sediment loads of ungaged tributaries using regional sediment-yield equations or other similar techniques. While these approaches may be valid in regions where rainfall and geology are uniform over large areas, use of sediment-yield equations may lead to poor estimations of loads in regions where rainfall events, contributing geology, and vegetation have large spatial and/or temporal variability.Previous estimates of the combined mean-annual sediment load of all ungaged tributaries to the Colorado River downstream from Glen Canyon Dam vary by over a factor of three; this range in estimated sediment loads has resulted in different researchers reaching opposite conclusions on the sign (accumulation or deficit) of the sediment budget for particular reaches of the Colorado River. To better evaluate the supply of fine sediment (sand, silt, and clay) from these tributaries to the Colorado River, eight gages were established on previously ungaged tributaries in Glen, Marble, and Grand canyons. Results from this sediment-monitoring network show that previous estimates of the annual sediment loads of these tributaries were too high and that the sediment budget for the Colorado River below Glen Canyon Dam is more negative than previously calculated by most researchers. As a result of locally intense rainfall events with footprints smaller than the receiving basin, floods from a single tributary in semi-arid regions can have large (≥ 10 ×) differences in sediment concentrations between equal magnitude flows. Because sediment loads do not

  7. Evaluating forest management effects on erosion, sediment, and runoff: Caspar Creek and northwestern California

    Treesearch

    Raymond M. Rice; Robert R. Ziemer; Jack Lewis

    2004-01-01

    The effects of multiple logging disturbances on peak flows and suspended sediment loads from second-growth redwood watersheds were approximately additive. Downstream increases were no greater than would be expected from the proportion of the area disturbed. Annual sediment load increases of from 123 to 269% were measured in tributary watersheds but were not detected at...

  8. The influence of controlled floods on fine sediment storage in debris fan-affected canyons of the Colorado River basin

    USGS Publications Warehouse

    Mueller, Erich R.; Grams, Paul E.; Schmidt, John C.; Hazel, Joseph E.; Alexander, Jason S.; Kaplinski, Matt

    2014-01-01

    Prior to the construction of large dams on the Green and Colorado Rivers, annual floods aggraded sandbars in lateral flow-recirculation eddies with fine sediment scoured from the bed and delivered from upstream. Flows greater than normal dam operations may be used to mimic this process in an attempt to increase time-averaged sandbar size. These controlled floods may rebuild sandbars, but sediment deficit conditions downstream from the dams restrict the frequency that controlled floods produce beneficial results. Here, we integrate complimentary, long-term monitoring data sets from the Colorado River in Marble and Grand Canyons downstream from Glen Canyon dam and the Green River in the Canyon of Lodore downstream from Flaming Gorge dam. Since the mid-1990s, several controlled floods have occurred in these canyon rivers. These controlled floods scour fine sediment from the bed and build sandbars in eddies, thus increasing channel relief. These changes are short-lived, however, as interflood dam operations erode sandbars within several months to years. Controlled flood response and interflood changes in bed elevation are more variable in Marble Canyon and Grand Canyon, likely reflecting more variable fine sediment supply and stronger transience in channel bed sediment storage. Despite these differences, neither system shows a trend in fine-sediment storage during the period in which controlled floods were monitored. These results demonstrate that controlled floods build eddy sandbars and increase channel relief for short interflood periods, and this response may be typical in other dam-influenced canyon rivers. The degree to which these features persist depends on the frequency of controlled floods, but careful consideration of sediment supply is necessary to avoid increasing the long-term sediment deficit.

  9. Pollutant Transport and Fate: Relations Between Flow-paths and Downstream Impacts of Human Activities

    NASA Astrophysics Data System (ADS)

    Thorslund, J.; Jarsjo, J.; Destouni, G.

    2017-12-01

    The quality of freshwater resources is increasingly impacted by human activities. Humans also extensively change the structure of landscapes, which may alter natural hydrological processes. To manage and maintain freshwater of good water quality, it is critical to understand how pollutants are released into, transported and transformed within the hydrological system. Some key scientific questions include: What are net downstream impacts of pollutants across different hydroclimatic and human disturbance conditions, and on different scales? What are the functions within and between components of the landscape, such as wetlands, on mitigating pollutant load delivery to downstream recipients? We explore these questions by synthesizing results from several relevant case study examples of intensely human-impacted hydrological systems. These case study sites have been specifically evaluated in terms of net impact of human activities on pollutant input to the aquatic system, as well as flow-path distributions trough wetlands as a potential ecosystem service of pollutant mitigation. Results shows that although individual wetlands have high retention capacity, efficient net retention effects were not always achieved at a larger landscape scale. Evidence suggests that the function of wetlands as mitigation solutions to pollutant loads is largely controlled by large-scale parallel and circular flow-paths, through which multiple wetlands are interconnected in the landscape. To achieve net mitigation effects at large scale, a large fraction of the polluted large-scale flows must be transported through multiple connected wetlands. Although such large-scale flow interactions are critical for assessing water pollution spreading and fate through the landscape, our synthesis shows a frequent lack of knowledge at such scales. We suggest ways forward for addressing the mismatch between the large scales at which key pollutant pressures and water quality changes take place and the

  10. Fate of nano- and microplastic in freshwater systems: A modeling study.

    PubMed

    Besseling, Ellen; Quik, Joris T K; Sun, Muzhi; Koelmans, Albert A

    2017-01-01

    Riverine transport to the marine environment is an important pathway for microplastic. However, information on fate and transport of nano- and microplastic in freshwater systems is lacking. Here we present scenario studies on the fate and transport of nano-to millimetre sized spherical particles like microbeads (100 nm-10 mm) with a state of the art spatiotemporally resolved hydrological model. The model accounts for advective transport, homo- and heteroaggregation, sedimentation-resuspension, polymer degradation, presence of biofilm and burial. Literature data were used to parameterize the model and additionally the attachment efficiency for heteroaggregation was determined experimentally. The attachment efficiency ranged from 0.004 to 0.2 for 70 nm and 1050 nm polystyrene particles aggregating with kaolin or bentonite clays in natural freshwater. Modeled effects of polymer density (1-1.5 kg/L) and biofilm formation were not large, due to the fact that variations in polymer density are largely overwhelmed by excess mass of suspended solids that form heteroaggregates with microplastic. Particle size had a dramatic effect on the modeled fate and retention of microplastic and on the positioning of the accumulation hot spots in the sediment along the river. Remarkably, retention was lowest (18-25%) for intermediate sized particles of about 5 μm, which implies that the smaller submicron particles as well as larger micro- and millimetre sized plastic are preferentially retained. Our results suggest that river hydrodynamics affect microplastic size distributions with profound implications for emissions to marine systems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Freshwater bacteria release methane as a byproduct of phosphorus acquisition.

    PubMed

    Yao, Mengyin; Henny, Cynthia; Maresca, Julia A

    2016-09-30

    Freshwater lakes emit large amounts of methane, some of which is produced in oxic surface waters. Two potential pathways for aerobic methane production exist: methanogenesis in oxygenated water, which has been observed in some lakes, or demethylation of small organic molecules. Although methane is produced via demethylation in oxic marine environments, this mechanism of methane release has not yet been demonstrated in freshwater systems. Genes related to the C-P lyase pathway, which cleaves C-P bonds in phosphonate compounds, were found in a metagenomic survey of the surface water of Lake Matano, which is chronically P-starved and methane-rich. We demonstrate that four bacterial isolates from Lake Matano obtain P from methylphosphonate and release methane, and that this activity is repressed by phosphate. We further demonstrate that expression of phnJ, which encodes the enzyme that releases methane, is higher in the presence of methylphosphonate and lower when both methylphosphonate and phosphate are added. This gene is also found in most of the metagenomic data sets from freshwater environments. These experiments link methylphosphonate degradation and methane production with gene expression and phosphate availability in freshwater organisms, and suggest that some of the excess methane in the Lake Matano surface water, and in other methane-rich lakes, may be produced by P-starved bacteria. Methane is an important greenhouse gas, and contributes substantially to global warming. Although freshwater environments are known to release methane into the atmosphere, estimates of the amount of methane emitted by freshwater lakes vary from 8 to 73 Tg per year. Methane emissions are difficult to predict in part because the source of the methane can vary: it is the end product of the energy-conserving pathway in methanogenic archaea, which predominantly live in anoxic sediments or waters, but have also been identified in some oxic freshwater environments. More recently

  12. Multi-channel resistivity investigations of the freshwater-saltwater interface: A new tool to study an old problem

    USGS Publications Warehouse

    Swarzenski, P.W.; Kruse, S.; Reich, C.; Swarzenski, W.V.

    2007-01-01

    It has been well established that fresh or brackish groundwater can exist both near and far from shore in many coastal and marine environments. The often permeable nature of marine sediments and the underlying bedrock provides abundant pathways for submarine groundwater discharge. While submarine groundwater discharge as a coastal hydrogeological phenomenon has been widely recognized, only recent advances in both geochemical tracers and geophysical tools have enabled a realistic, systematic quantification of the scales and rates of this coastal groundwater discharge. Here we present multichannel electrical resistivity results using both a time series, stationary cable that has 56 electrodes spaced 2 m apart, as well as a 120 m streaming resistivity cable that has two current-producing electrodes and eight potential electrodes spaced 10 m apart. As the cable position remains fixed in stationary mode, we can examine in high resolution tidal forcing on the freshwater-saltwater interface. Using a boat to conduct streaming resistivity surveys, relatively large spatial transects can be rapidly (travel speed -2-3 knots) acquired in shallow (-1-20 m) waters. Sediment formation factors, used to convert resistivity values to salinity, were calculated from porewater and sediment samples collected during the installation of an offshore well in Tampa Bay, Florida, USA. Here we examine the seabed resistivity from sites within Tampa Bay using both stationary and streaming configurations and discuss their overall effectiveness as a new tool to examine the dynamic nature of the freshwater-saltwater interface.

  13. Sources, spatial variation, and speciation of heavy metals in sediments of the Tamagawa River in Central Japan.

    PubMed

    Shikazono, N; Tatewaki, K; Mohiuddin, K M; Nakano, T; Zakir, H M

    2012-01-01

    Sediments of the Tamagawa River in central Japan were studied to explain the spatial variation, to identify the sources of heavy metals, and to evaluate the anthropogenic influence on these pollutants in the river. Sediment samples were collected from 20 sites along the river (five upstream, four midstream, and 11 downstream). Heavy metal concentrations, viz. chromium, nickel, copper, zinc, lead, cadmium, and molybdenum, in the samples were measured using inductively coupled plasma-mass spectroscopy. The chemical speciations of heavy metals in the sediments were identified by the widely used five-step Hall method. Lead isotopes were analyzed to identify what portion is contributed by anthropogenic sources. The total heavy metal concentrations were compared with global averages for continental crust (shale) and average values for Japanese river sediments. The mean heavy metal concentrations were higher in downstream sediments than in upstream and midstream samples, and the concentrations in the silt samples were higher than those in the sand samples. Speciation results demonstrate that, for chromium and nickel, the residual fractions were dominant. These findings imply that the influence of anthropogenic chromium and nickel contamination is negligible, while copper, zinc, and lead were mostly extracted in the non-residual fraction (metals in adsorbed/exchangeable/carbonate forms or bound to amorphous Fe oxyhydroxides, crystalline Fe oxides, or organic matter), indicating that these elements have high chemical mobility. The proportion of lead (Pb) isotopes in the downstream silt samples indicates that Pb accumulation is primarily derived from anthropogenic sources.

  14. Examination of rare earth element concentration patterns in freshwater fish tissues.

    PubMed

    Mayfield, David B; Fairbrother, Anne

    2015-02-01

    Rare earth elements (REEs or lanthanides) were measured in ten freshwater fish species from a reservoir in Washington State (United States). The REE distribution patterns were examined within fillet and whole body tissues for three size classes. Total concentrations (ΣREE) ranged from 0.014 to 3.0 mg kg(-1) (dry weight) and averaged 0.243 mg kg(-1) (dry weight). Tissue concentration patterns indicated that REEs accumulated to a greater extent in organs, viscera, and bone compared to muscle (fillet) tissues. Benthic feeding species (exposed to sediments) exhibited greater concentrations of REEs than pelagic omnivorous or piscivorous fish species. Decreasing REE concentrations were found with increasing age, total length or weight for largescale and longnose suckers, smallmouth bass, and walleye. Concentration patterns in this system were consistent with natural conditions without anthropogenic sources of REEs. These data provide additional reference information with regard to the fate and transport of REEs in freshwater fish tissues in a large aquatic system. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Authigenic vivianite in Potomac River sediments: control by ferric oxy-hydroxides.

    USGS Publications Warehouse

    Hearn, P.P.; Parkhurst, D.L.; Callender, E.

    1983-01-01

    Sand-size aggregates of vivianite crystals occur in the uppermost sediments of the Potomac River estuary immediately downstream from the outfall of a sewage treatment plant at the southernmost boundary of the District of Columbia, USA. They are most abundant in a small area of coarse sand (dredge spoil) which contrasts with the adjacent, much finer sediments. The sewage outfall supplies both reducing conditions and abundant phosphate. Analyses and calculations indicate that the pore waters in all the adjacent sediments are supersaturated with respect to vivianite. Its concentration in the coarse sand is attributed to the absence there of amorphous ferric oxyhydroxides, which are present in the finer sediments and preferentially absorb the phosphate ion. -H.R.B.

  16. Sediment sources in an urbanizing, mixed land-use watershed

    NASA Astrophysics Data System (ADS)

    Nelson, Erin J.; Booth, Derek B.

    2002-07-01

    The Issaquah Creek watershed is a rapidly urbanizing watershed of 144 km 2 in western Washington, where sediment aggradation of the main channel and delivery of fine sediment into a large downstream lake have raised increasingly frequent concerns over flooding, loss of fish habitat, and degraded water quality. A watershed-scale sediment budget was evaluated to determine the relative effects of land-use practices, including urbanization, on sediment supply and delivery, and to guide management responses towards the most effective source-reduction strategies. Human activity in the watershed, particularly urban development, has caused an increase of nearly 50% in the annual sediment yield, now estimated to be 44 tonnes km -2 yr -1. The main sources of sediment in the watershed are landslides (50%), channel-bank erosion (20%), and road-surface erosion (15%). This assessment characterizes the role of human activity in mixed-use watersheds such as this, and it demonstrates some of the key processes, particularly enhanced stream-channel erosion, by which urban development alters sediment loads.

  17. Modeling subglacial sediment discharge in 1-dimension: comparison with measurments and implications for glacial retreat

    NASA Astrophysics Data System (ADS)

    Delaney, I. A.; Werder, M.; Farinotti, D.

    2017-12-01

    In recent decades increased sedimentation rates have been observed in reservoirs downstream of some retreating glaciers. This material either originates from slopes recently exposed by glacier retreat and no longer stabilized by ice, or subglacially, where pressurized melt water transports sediments from the glacier bed. Some evidence suggests that recently exposed periglacial areas can stablize relatively quickly and in some catchments provides a smaller precentage of the total sediment compared to the subglacial environment. As a result, in order predict and forecast sediment yield from glaciated catchments as glaciers thin and thier hydrology evolves, a subglacial sediment transport model must be implemented. Here a simple 1-dimensional glacio-hydraulic model uses the Darcy-Weissbach relationship to determine shear-stress of presurized water on the glacier bed. This is coupled with a sediment transport relationship to determine quantity of discharged material from the glacier snout. Several tuning factors allow calibration and the model to reproduces processes known to occur subglacially, including seasonal evolution of sediment expulsion and deposition of sediment on adverse slopes of overdeepenings. To asses the model's application to real glaciers, sediment flux data has been collected from Gornergletscher, Aletschgletscher and Griesgletscher in the Swiss Alps over time-scales of up to decades. By calibrating to these data, the skill of the model in recreating sediment trends and volumes is assesed. The outputs capture annual erosion quanities relatively well, however, challenges exist in capturing inter-annual variations in sediment discharge. Many of the model's short comings relate to caputuring the spatial distribution of sediment throughout the glacier bed, which is particularing difficult in 1-dimension. However, this work suggests that a simple models can be used to predict subglacial sediment transport with reasonable ability. Additionally, further

  18. Application of endocrine disruptor screening program fish short-term reproduction assay: Reproduction and endocrine function in fathead minnow (Pimephales promelas) and killifish (Fundulus heteroclitus) exposed to Bermuda pond sediment.

    PubMed

    Fort, Douglas J; Mathis, Michael; Fort, Chelsea E; Fort, Hayley M; Bacon, Jamie P

    2015-06-01

    A modified tier 1 Endocrine Disruptor Screening Program (EDSP) 21-d fish short-term reproduction assay (FSTRA) was used to evaluate the effects of sediment exposure from freshwater and brackish ponds in Bermuda on reproductive fecundity and endocrine function in fathead minnow (Pimephales promelas) and killifish (Fundulus heteroclitus). Reproductively active male and female fish were exposed to control sediment and sediment from 2 freshwater ponds (fathead minnow) and 2 marine ponds (killifish) contaminated with polyaromatic hydrocarbons and metals via flow-through exposure for 21 d. Reproductive fecundity was monitored daily. At termination, the status of the reproductive endocrine system was assessed by the gonadosomatic index, gonadal histology, plasma steroids (estrogen [E2], testosterone [T], and 11-ketotestosterone [11-KT]), steroidogenic enzymes (aromatase and combined 3β/17β -hydroxysteroid dehydrogenase [3β/17β-HSD]), and plasma vitellogenin (VTG). Decreased reproductive fecundity, lower male body weight, and altered endocrinological measures of reproductive status were observed in both species. Higher plasma T levels in female minnows and 11-KT levels in both male and female minnows and female killifish exposed to freshwater and brackish sediments, respectively. Decreased female E2 and VTG levels and gonadal cytochrome P19 (aromatase) activity were also found in sediment exposed females from both species. No effect on female 3β/17β-HSD activity was found in either species. The FSTRA provided a robust model capable of modification to evaluate reproductive effects of sediment exposure in fish. © 2015 SETAC.

  19. Dynamic characteristics of sulfur, iron and phosphorus in coastal polluted sediments, north China.

    PubMed

    Sun, Qiyao; Sheng, Yanqing; Yang, Jian; Di Bonito, Marcello; Mortimer, Robert J G

    2016-12-01

    The cycling of sulfur (S), iron (Fe) and phosphorus (P) in sediments and pore water can impact the water quality of overlying water. In a heavily polluted river estuary (Yantai, China), vertical profiles of fluxes of dissolved sulfide, Fe 2+ and dissolved reactive phosphorus (DRP) in sediment pore water were investigated by the Diffusive Gradients in Thin films technique (DGT). Vertical fluxes of S, Fe, P in intertidal sediment showed the availability of DRP increased while the sulfide decreased with depth in surface sediment, indicating that sulfide accumulation could enhance P release in anoxic sediment. In sites with contrasting salinity, the relative dominance of iron and sulfate reduction was different, with iron reduction dominant over sulfate reduction in the upper sediment at an intertidal site but the reverse true in a freshwater site, with the other process dominating at depth in each case. Phosphate release was largely controlled by iron reduction. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. "Forest management effects on erosion, sediment, and runoff: Lessons from Caspar Creek and northwestern California"

    Treesearch

    Raymond M. Rice; Robert R. Ziemer; Jack Lewis

    2001-01-01

    Abstract - The effects of multiple logging disturbances on peak flows and suspended sediment loads from second-growth redwood watersheds were approximately additive. Downstream increases were no greater than would be expected from the proportion of the area disturbed. Annual sediment load increases of from 123 to 269% were measured in tributary watersheds but were...