Sample records for friction boundary layer

  1. Friction of a slider on a granular layer: Nonmonotonic thickness dependence and effect of boundary conditions

    E-print Network

    Kudrolli, Arshad

    Friction of a slider on a granular layer: Nonmonotonic thickness dependence and effect of boundary the effective friction encountered by a mass sliding on a granular layer as a function of bed thickness and boundary roughness conditions. The observed friction has minima for a small number of layers before

  2. THEORETICAL SKIN-FRICTION LAW IN A TURBULENT BOUNDARY LAYER A. CHESKIDOV

    E-print Network

    Cheskidov, Alexey

    THEORETICAL SKIN-FRICTION LAW IN A TURBULENT BOUNDARY LAYER A. CHESKIDOV ABSTRACT. We study of the skin-friction coefficient in a wide range of Reynolds numbers based on momentum thickness, and deduce-stream turbulence intensity, while one-parameter family of solutions, obtained using our skin-friction coefficient

  3. Skin friction and Reynolds stress measurements for a turbulent boundary layer following manipulation using flat plates

    NASA Technical Reports Server (NTRS)

    Westphal, R. V.

    1986-01-01

    Research has been undertaken to experimentally study the alterations in turbulent boundary-layer properties due to turbulence manipulation using thin flat plates. Plate geometry and placement within the boundary layer were selected to coincide with recent studies. Direct, local measurements of skin friction and Reynolds stresses were made within the boundary layer downstream of the manipulator devices for cases with an approach momentum thickness Reynolds number of 3700. A strong tendency for recovery of the Reynolds stresses was observed, accompanied by local skin-friction reductions of up to 15 percent. The mean velocity profile in the manipulated flow displayed the same similarity shape in the logarithmic region as a natural boundary layer, but had an enhanced wake component. The results indicate that the plate wake plays an important role in the boundary layer response to this sort of manipulation.

  4. Effects of Riblets on Skin Friction in High-Speed Turbulent Boundary Layers

    NASA Technical Reports Server (NTRS)

    Duan, Lian; Choudhari, Meelan M.

    2012-01-01

    Direct numerical simulations of spatially developing turbulent boundary layers over riblets are conducted to examine the effects of riblets on skin friction at supersonic speeds. Zero-pressure gradient boundary layers with an adiabatic wall, a Mach number of M1 = 2.5, and a Reynolds number based on momentum thickness of Re = 1720 are considered. Simulations are conducted for boundary-layer flows over a clean surface and symmetric V- groove riblets with nominal spacings of 20 and 40 wall units. The DNS results confirm the few existing experimental observations and show that a drag reduction of approximately 7% is achieved for riblets with proper spacing. The influence of riblets on turbulence statistics is analyzed in detail with an emphasis on identifying the differences, if any, between the drag reduction mechanisms for incompressible and high-speed boundary layers.

  5. Skin-Friction Measurements in a 3-D, Supersonic Shock-Wave/Boundary-Layer Interaction

    NASA Technical Reports Server (NTRS)

    Wideman, J. K.; Brown, J. L.; Miles, J. B.; Ozcan, O.

    1994-01-01

    The experimental documentation of a three-dimensional shock-wave/boundary-layer interaction in a nominal Mach 3 cylinder, aligned with the free-stream flow, and 20 deg. half-angle conical flare offset 1.27 cm from the cylinder centerline. Surface oil flow, laser light sheet illumination, and schlieren were used to document the flow topology. The data includes surface-pressure and skin-friction measurements. A laser interferometric skin friction data. Included in the skin-friction data are measurements within separated regions and three-dimensional measurements in highly-swept regions. The skin-friction data will be particularly valuable in turbulence modeling and computational fluid dynamics validation.

  6. Skin friction and velocity profile family for compressible turbulent boundary layers

    NASA Technical Reports Server (NTRS)

    Huang, P. G.; Bradshaw, P.; Coakley, T. J.

    1993-01-01

    The paper presents a general approach to constructing mean velocity profiles for compressible turbulent boundary layers with isothermal or adiabatic walls. The theory is based on a density-weighted transformation that allows the extension of the incompressible similarity laws of the wall to the compressible regions. The velocity profile family is compared to a range of experimental data, and excellent agreement is obtained. A self-consistent skin friction law, which satisfies the proposed velocity profile family, is derived and compared with the well-known Van Driest II theory for boundary layers in zero pressure gradient. The results are found to be at least as good as those obtained by using the Van Driest II transformation.

  7. Friction and Wear Modifiers Using Solvent Partitioning of Hydrophilic Surface-interactive Chemicals Contained in Boundary Layer-targeted Emulsions

    NASA Technical Reports Server (NTRS)

    Richmond, Robert Chafee (Inventor); Schramm, Jr., Harry F. (Inventor); Defalco, Francis G. (Inventor)

    2013-01-01

    A wear and/or friction reducing additive for a lubricating fluid in which the additive is a combination of a moderately hydrophilic single-phase compound and an anti-wear and/or anti-friction aqueous salt solution. The aqueous salt solution produces a coating on boundary layer surfaces. The lubricating fluid can be an emulsion-free hydrophobic oil, hydraulic fluid, antifreeze, or water. Preferably, the moderately hydrophilic single-phase compound is sulfonated castor oil and the aqueous salt solution additionally contains boric acid and zinc oxide. The emulsions produced by the aqueous salt solutions, the moderately hydrophilic single-phase compounds, or the combination thereof provide targeted boundary layer organizers that significantly enhance the anti-wear and/or anti-friction properties of the base lubricant by decreasing wear and/or friction of sliding and/or rolling surfaces at boundary layers.

  8. Laser interferometer skin-friction measurements of crossing-shock-wave/turbulent-boundary-layer interactions

    NASA Astrophysics Data System (ADS)

    Garrison, T. J.; Settles, G. S.; Narayanswami, N.; Knight, D. D.

    1994-06-01

    Wall shear stress measurements beneath crossing-shock-wave / turbulent boundary-layer interactions have been made for three interactions of different strengths. The interactions are generated by two sharp fins at symmetric angles of attack mounted on a flat plate. The shear stress measurements were made for fin angles of 7 and 11 deg at Mach 3 and 15 deg at Mach 3.85. The measurements were made using a laser interferometer skin-friction meter, a device that determines the wall shear by optically measuring the time rate of thinning of an oil film placed on the test model surface.

  9. A skin friction model for axisymmetric turbulent boundary layers along long thin circular cylinders

    NASA Astrophysics Data System (ADS)

    Jordan, Stephen A.

    2013-07-01

    Only a few engineering design models are presently available that adequately depict the axisymmetric skin friction (Cf) maturity along long thin turbulent cylinders. This deficit rests essentially on the experimental and numerical difficulties of measuring (or computing) the spatial evolution of the thin cylinder turbulence. Consequently, the present axisymmetric Cf models have questionable accuracy. Herein, we attempt to formulate a more robust Cf model that owns acceptable error. The formulation is founded on triple integration of the governing equation system that represents a thin cylinder turbulent boundary layer (TBL) at statistical steady-state in appropriate dimensionless units. The final model requires only the radius-based Reynolds number (Rea) and transverse curvature (?/a) as input parameters. We tuned the accompanying coefficients empirically via an expanded statistical database (over 60 data points) that house new Cf values from large-eddy simulations (LES). The LES computations employed a turbulence inflow generation procedure that permits spatial resolution of the TBL at low-high Reynolds numbers and transverse curvatures. Compared to the new skin friction database, the Cf model revealed averaged predictive errors under 5% with a 3.5% standard deviation. Apart from owning higher values than the flat plate TBL, the most distinguishing characteristic of the axisymmetric skin friction is its rising levels when the boundary layer thickness exceeds the cylinder radius. All Cf levels diminish with increasing Reynolds number. These unique features differentiate the axisymmetric TBL along thin cylinders as a separate canonical flow when compared to the turbulent wall shear-layers of channels, pipes, and planar-type geometries.

  10. Laser interferometer skin-friction measurements of crossing-shock-wave/turbulent-boundary-layer interactions

    NASA Astrophysics Data System (ADS)

    Garrison, T. J.; Settles, G. S.; Narayanswami, N.; Knight, D. D.

    1994-06-01

    Wall shear stress measurements beneath crossing-shock-wave/turbulent boundary-layer interactions have been made for three interactions of different strengths. The interactions are generated by two sharp fins at symetric angles of attack mounted on a flat plate. The shear stress measurements were made for fin angles of 7 and 11 deg at Mach 3 and 15 deg at Mach 3.85. The measurements were made using a laser interferometer skin-friction meter, a device that determines the wall shear by optically measuring the time rate of thinning of an oil film placed on the test model surface. Results of the measurements reveal high skin-friction coefficients in the vicinity of the fin/plate junction and the presence of quasi-two-dimensional flow separation on the interaction center line. Additionally, two Navier-Stokes computations, one using a Baldwin-Lomax turbulence model and one using a k-epsilon model, are compared with the experimental results for the Mach 3.85, 15-deg interaction case. Although the k-epsilon model did a reasonable job of predicting the overall trend in portions of the skin-friction distribution, neither computation fully captured the physics of the near-surface flow in this complex interaction.

  11. Friction of a slider on a granular layer: Non-monotonic thickness dependence and effect of boundary conditions

    E-print Network

    Saloome Siavoshi; Ashish V. Orpe; Arshad Kudrolli

    2005-12-22

    We investigate the effective friction encountered by a mass sliding on a granular layer as a function of bed thickness and boundary roughness conditions. The observed friction has minima for a small number of layers before it increases and saturates to a value which depends on the roughness of the sliding surface. We use an index-matched interstitial liquid to probe the internal motion of the grains with fluorescence imaging in a regime where the liquid has no significant effect on the measured friction. The shear profiles obtained as a function of depth show decrease in slip near the sliding surface as the layer thickness is increased. We propose that the friction depends on the degree of grain confinement relative to the sliding surfaces.

  12. Boundary-layer Development and Skin Friction at Mach Number 3.05

    NASA Technical Reports Server (NTRS)

    Brinich, Paul F; Diaconis, Nick S

    1952-01-01

    Experimental and theoretical results are presented for boundary layer studies consisting of Schlieren observations and momentum surveys made on hollow cylinder models with their axes aligned parallel to the stream. Results were obtained for three model diameters and for natural and artificially induced turbulent boundary layer flows.

  13. Direct measurements and analysis of skin friction and cooling downstream of multiple flush-slot injection into a turbulent Mach 6 boundary layer

    NASA Technical Reports Server (NTRS)

    Howard, F. G.; Strokowski, A. J.

    1978-01-01

    Experiments were conducted to determine the reduction in surface skin friction and the effectiveness of surface cooling downstream of one to four successive flush slots injecting cold air at an angle of 10 deg into a turbulent Mach 6 boundary layer. Data were obtained by direct measurement of surface shear and equilibrium temperatures, respectively. Increasing the number of slots decreased the skin friction, but the incremental improvement in skin-friction reduction decreased as the number of slots was increased. Cooling effectiveness was found to improve, for a given total mass injection, as the number of slots was increased from one to four. Comparison with previously reported step-slot data, however, indicated that step slots with tangential injection are more effective for both reducing skin friction and cooling than the present flush-slot configuration. Finite-difference predictions are in reasonable agreement with skin-friction data and with boundary-layer profile data.

  14. A robust post-processing method to determine skin friction in turbulent boundary layers from the velocity profile

    NASA Astrophysics Data System (ADS)

    Rodríguez-López, Eduardo; Bruce, Paul J. K.; Buxton, Oliver R. H.

    2015-04-01

    The present paper describes a method to extrapolate the mean wall shear stress, , and the accurate relative position of a velocity probe with respect to the wall, , from an experimentally measured mean velocity profile in a turbulent boundary layer. Validation is made between experimental and direct numerical simulation data of turbulent boundary layer flows with independent measurement of the shear stress. The set of parameters which minimize the residual error with respect to the canonical description of the boundary layer profile is taken as the solution. Several methods are compared, testing different descriptions of the canonical mean velocity profile (with and without overshoot over the logarithmic law) and different definitions of the residual function of the optimization. The von Kármán constant is used as a parameter of the fitting process in order to avoid any hypothesis regarding its value that may be affected by different initial or boundary conditions of the flow. Results show that the best method provides an accuracy of for the estimation of the friction velocity and for the position of the wall. The robustness of the method is tested including unconverged near-wall measurements, pressure gradient, and reduced number of points; the importance of the location of the first point is also tested, and it is shown that the method presents a high robustness even in highly distorted flows, keeping the aforementioned accuracies if one acquires at least one data point in . The wake component and the thickness of the boundary layer are also simultaneously extrapolated from the mean velocity profile. This results in the first study, to the knowledge of the authors, where a five-parameter fitting is carried out without any assumption on the von Kármán constant and the limits of the logarithmic layer further from its existence.

  15. Laser Interferometer Skin-Friction measurements of crossing-shock wave/turbulent boundary-layer interactions

    NASA Astrophysics Data System (ADS)

    Garrison, T. J.; Settles, G. S.

    1993-07-01

    Wall shear stress measurements beneath crossingshock wave/turbulent boundary-layer interactions have been made for three interactions of different strengths. The interactions are generated by two sharp fins at symmetric angles of attack mounted on a flat plate. The shear stress measurements were made for fin angles of 7 and 11 degrees at Mach 3 and 15 degrees at Mach 4. The measurements were made using a Laser Interferometer Skin Friction (LISF) meter; a device which determines the wail shear by optically measuring the time rate of thinning of an oil film placed on the test model surface. Results of the measurements reveal high skin friction coefficients in the vicinity of the fin/plate junction and the presence of quasi-two-dimensional flow separation on the interaction centerline. Additionally, two Navier-Stokes computations, one using a Baldwin-Lomax turbulence model and one using a k-~ model, are compared to the experimental results for the Mach 4, 15 degree interaction case. While the k-~ model did a reasonable job of predicting the overall trend in portions of the skin friction distribution, neither computation fully captured the physics of the near surface flow in this complex interaction.

  16. Boundary-layer transition and global skin friction measurement with an oil-fringe imaging technique

    NASA Technical Reports Server (NTRS)

    Monson, Daryl J.; Mateer, George G.; Menter, Florian R.

    1993-01-01

    A new oil-fringe imaging system skin friction (FISF) technique to measure skin friction on wind tunnel models is presented. In the method used to demonstrate the technique, lines of oil are applied on surfaces that connect the intended sets of measurement points, and then a wind tunnel is run so that the oil thins and forms interference fringes that are spaced in proportion to local skin friction. After a run the fringe spacings are imaged with a CCD-array digital camera and measured on a computer. Skin friction and transition measurements on a two-dimensional wing are presented and compared with computational predictions.

  17. High-Reynolds-number turbulent-boundary-layer wall pressure fluctuations with skin-friction reduction by air injection.

    PubMed

    Winkel, Eric S; Elbing, Brian R; Ceccio, Steven L; Perlin, Marc; Dowling, David R

    2008-05-01

    The hydrodynamic pressure fluctuations that occur on the solid surface beneath a turbulent boundary layer are a common source of flow noise. This paper reports multipoint surface pressure fluctuation measurements in water beneath a high-Reynolds-number turbulent boundary layer with wall injection of air to reduce skin-friction drag. The experiments were conducted in the U.S. Navy's Large Cavitation Channel on a 12.9-m-long, 3.05-m-wide hydrodynamically smooth flat plate at freestream speeds up to 20 ms and downstream-distance-based Reynolds numbers exceeding 200 x 10(6). Air was injected from one of two spanwise slots through flush-mounted porous stainless steel frits (approximately 40 microm mean pore diameter) at volume flow rates from 17.8 to 142.5 l/s per meter span. The two injectors were located 1.32 and 9.78 m from the model's leading edge and spanned the center 87% of the test model. Surface pressure measurements were made with 16 flush-mounted transducers in an "L-shaped" array located 10.7 m from the plate's leading edge. When compared to no-injection conditions, the observed wall-pressure variance was reduced by as much as 87% with air injection. In addition, air injection altered the inferred convection speed of pressure fluctuation sources and the streamwise coherence of pressure fluctuations. PMID:18529171

  18. In-flight compressible turbulent boundary layer measurements on a hollow cylinder at a Mach number of 3.0. [supersonic heat transfer and skin friction

    NASA Technical Reports Server (NTRS)

    Quinn, R. D.; Gong, L.

    1978-01-01

    Skin temperatures, shearing forces, surface static pressures, and boundary layer pitot pressures and total temperatures were measured on a hollow cylinder 3.04 meters long and 0.437 meter in diameter mounted beneath the fuselage of the YF-12A airplane. The data were obtained at a nominal free stream Mach number of 3.0 and at wall-to-recovery temperature ratios of 0.66 to 0.91. The free stream Reynolds number had a minimal value of 4.2 million per meter. Heat transfer coefficients and skin friction coefficients were derived from skin temperature time histories and shear force measurements, respectively. Boundary layer velocity profiles were derived from pitot pressure measurements, and a Reynolds analogy factor of 1.11 was obtained from the measured heat transfer and skin friction data. The skin friction coefficients predicted by the theory of van Driest were in excellent agreement with the measurements. Theoretical heat transfer coefficients, in the form of Stanton numbers calculated by using a modified Reynolds analogy between skin friction and heat transfer, were compared with measured values. The measured velocity profiles were compared to Coles' incompressible law-of-the-wall profile.

  19. The behavior of the skin-friction coefficient of a turbulent boundary layer flow over a flat plate with differently configured transverse square grooves

    SciTech Connect

    Wahidi, R.; Chakroun, W.; Al-Fahed, S. [Faculty of Engineering, Mechanical Engineering, Kuwait University, P.O. Box 5969, 13060 Safat (Kuwait)

    2005-11-01

    Skin-friction coefficient of turbulent boundary layer flow over a smooth-wall with transverse square grooves was investigated. Four grooved-wall cases were investigated. The four grooved-wall configurations are single 5mm square grooved-wall, and 5mm square grooves spaced 10, 20 and 40 element widths apart in the streamwise direction. Laser-Doppler Anemometer (LDA) was used for the mean velocity and turbulence intensity measurements. The skin-friction coefficient determined from the velocity profile increases sharply just downstream of the groove. This overshoot is followed by an undershoot and then relaxation back to the smooth-wall value. This behavior is observed in most grooved-wall cases. Integrating the skin-friction coefficient in the streamwise direction indicates that there is an increase in the overall drag in all the grooved-wall cases.

  20. Calculation of skin-friction coefficients for low Reynolds number turbulent boundary layer flows. M.S. Thesis - California Univ. at Davis

    NASA Technical Reports Server (NTRS)

    Barr, P. K.

    1980-01-01

    An analysis is presented of the reliability of various generally accepted empirical expressions for the prediction of the skin-friction coefficient C/sub f/ of turbulent boundary layers at low Reynolds numbers in zero-pressure-gradient flows on a smooth flat plate. The skin-friction coefficients predicted from these expressions were compared to the skin-friction coefficients of experimental profiles that were determined from a graphical method formulated from the law of the wall. These expressions are found to predict values that are consistently different than those obtained from the graphical method over the range 600 Re/sub theta 2000. A curve-fitted empirical relationship was developed from the present data and yields a better estimated value of C/sub f/ in this range. The data, covering the range 200 Re/sub theta 7000, provide insight into the nature of transitional flows. They show that fully developed turbulent boundary layers occur at Reynolds numbers Re/sub theta/ down to 425. Below this level there appears to be a well-ordered evolutionary process from the laminar to the turbulent profiles. These profiles clearly display the development of the turbulent core region and the shrinking of the laminar sublayer with increasing values of Re/sub theta/.

  1. Stratified Atmospheric Boundary Layers

    Microsoft Academic Search

    L. Mahrt

    1999-01-01

    Various features of different stability regimes of the stable boundary layer are discussed. Traditional layering is examined in terms of the roughness sublayer, surface layer, local similarity, z-less stratification and the region near the boundary-layer top. In the very stable case, the strongest turbulence may be detached from the surface and generated by shear associated with a low level jet,

  2. Heat Transfer Through Turbulent Friction Layers

    NASA Technical Reports Server (NTRS)

    Reichardt, H.

    1943-01-01

    The "general Prandtl number" Pr(exp 1) - A(sub q)/A Pr, aside from the Reynolds number determines the ratio of turbulent to molecular heat transfer, and the temperature distribution in turbulent friction layers. A(sub q) = exchange coefficient for heat; A = exchange coefficient for momentum transfer. A formula is derived from the equation defining the general Prandtl number which describes the temperature as a function of the velocity. For fully developed thermal boundary layers all questions relating to heat transfer to and from incompressible fluids can be treated in a simple manner if the ratio of the turbulent shear stress to the total stress T(sub t)/T in the layers near the wall is known, and if the A(sub q)/A can be regarded as independent of the distance from the wall. The velocity distribution across a flat smooth channel and deep into the laminar sublayer was measured for isothermal flow to establish the shear stress ratio T(sub t)/T and to extend the universal wall friction law. The values of T(sub t)/T which resulted from these measurements can be approximately represented by a linear function of the velocity in the laminar-turbulent transition zone. The effect of the temperature relationship of the material values on the flow near the wall is briefly analyzed. It was found that the velocity at the laminar boundary (in contrast to the thickness of the laminar layer) is approximately independent of the temperature distribution. The temperature gradient at the wall and the distribution of temperature and heat flow in the turbulent friction layers were calculated on the basis of the data under two equations. The derived formulas and the figures reveal the effects of the Prandtl number, the Reynolds number, the exchange quantities and the temperature relationship of the material values.

  3. The atmospheric boundary layer

    Microsoft Academic Search

    J. R. Garratt

    1992-01-01

    In this book, the author successfully reviews the current state of affairs in boundary-layer meteorology research. The book is organized into nine chapters. The first chapter is an introduction to the topic of the atmospheric boundary layer. The second chapter is a survey of turbulence theory. The third chapter reviews the similarity relationships that have been formulated for the various

  4. The Atmospheric Boundary Layer

    ERIC Educational Resources Information Center

    Tennekes, Hendrik

    1974-01-01

    Discusses some important parameters of the boundary layer and effects of turbulence on the circulation and energy dissipation of the atmosphere. Indicates that boundary-layer research plays an important role in long-term forecasting and the study of air-pollution meteorology. (CC)

  5. Ventilated oscillatory boundary layers

    NASA Astrophysics Data System (ADS)

    Conley, Daniel C.; Inman, Douglas L.

    1993-02-01

    A combination of field and laboratory experiments are made in order to expand our knowledge of naturally occurring oscillatory boundary layers. Chapter 1 describes field observations of the development of wave driven boundary layers at the fluid sediment interface. Under the crest of the wave, this development can be idealized as an identifiable sequence of three parts. The latter parts of this development are never observed to occur under the trough of the wave despite similarities in wave orbital velocity and acceleration. It is proposed that wave induced boundary ventilation, the oscillatory flow through the surface of a permeable bed, may be responsible for this apparent developmental asymmetry. In chapter 2, a laboratory study is presented of ventilated oscillatory boundary layers. These are boundary layers arising from a flow which oscillates parallel to a permeable bed which is subject to oscillating percolation of the same frequency as the bed parallel flow. Measurements of boundary layer velocities, bed stress and turbulent flow properties are presented. It is observed that suction (flow into the bed) enhances the near bed velocities and bed stress while injection (flow out of the bed) leads to a reduction in these quantities. As the ventilated oscillatory boundary layer experiences both these phenomena in one full cycle, the result is a net stress and a net boundary layer velocity in an otherwise symmetric flow. While production of turbulence attributable to injection is enhanced, the finite time required for this to occur leads to greater vertically averaged turbulence in the suction half cycle. Turbulence generated in the suction half cycle is maintained in a compact layer much closer to the bed. These effects appear to hold for Re ranging from 10(exp 5) to 10(exp 6) and for oscillations other than sinusoidal.

  6. Friction microprobe investigation of particle layer effects on sliding friction

    SciTech Connect

    Blau, P.J.

    1993-01-01

    Interfacial particles (third-bodies), resulting from wear or external contamination, can alter and even dominate the frictional behavior of solid-solid sliding in the absence of effective particle removal processes (e.g., lubricant flow). A unique friction microprobe, developed at Oak Ridge National Laboratory, was used to conduct fine- scale friction studies using 1.0 mm diameter stainless steel spheres sliding on several sizes of loose layers of fine aluminum oxide powders on both aluminum and alumina surfaces. Conventional, pin-on-disk experiments were conducted to compare behavior with the friction microprobe results. The behavior of the relatively thick particle layers was found to be independent of the nature of underlying substrate, substantiating previous work by other investigators. The time-dependent behavior of friction, for a spherical macrocontact starting from rest, could generally be represented by a series of five rather distinct phases involving static compression, slider breakaway, transition to steady state, and dynamic layer instability. A friction model for the steady state condition, which incorporates lamellar powder layer behavior, is described.

  7. Boundary layer simulator improvement

    NASA Technical Reports Server (NTRS)

    Praharaj, Sarat C.; Schmitz, Craig P.; Nouri, Joseph A.

    1989-01-01

    Boundary Layer Integral Matrix Procedure (BLIMPJ) has been identified by the propulsion community as the rigorous boundary layer program in connection with the existing JANNAF reference programs. The improvements made to BLIMPJ and described herein have potential applications in the design of the future Orbit Transfer Vehicle engines. The turbulence model is validated to include the effects of wall roughness and a way is devised to treat multiple smooth-rough surfaces. A prediction of relaminarization regions is examined as is the combined effects of wall cooling and surface roughness on relaminarization. A turbulence model to represent the effects of constant condensed phase loading is given. A procedure is described for thrust decrement calculation in thick boundary layers by coupling the T-D Kinetics Program and BLIMPJ and a way is provided for thrust loss optimization. Potential experimental studies in rocket nozzles are identified along with the required instrumentation to provide accurate measurements in support of the presented new analytical models.

  8. Investigation of lubricants under boundary friction

    NASA Technical Reports Server (NTRS)

    Heidebroek, E; Pietsch, E

    1942-01-01

    Numerous observations of such lubrication processes within range of boundary friction on journal bearings and gear tooth profiles have strengthened the supposition that it should be possible to study the attendant phenomena with engineering methods and equipment. These considerations formed the basis of the present studies, which have led to the discovery of relations governing the suitability of bearing surfaces and the concept of "lubricating quality."

  9. Frictional properties of diamondlike carbon layers

    NASA Astrophysics Data System (ADS)

    Enke, K.; Dimigen, H.; Hübsch, H.

    1980-02-01

    Hard diamondlike carbon layers have been deposited on silicon by rf plasma deposition using acetylene as working gas. For the first time the dependence of the sliding friction coefficient ? on the water vapor content of a nitrogen atmosphere was measured. An increase of ? with increasing humidity has been found, with ? ranging from 0.01 to 0.19. A steel ball was employed as the friction partner. The wear of the layers has been assessed by measuring their durability during friction experiments. It has been shown, contrary to other publications, that the durability has a maximum in the range 0.5-5.0% of relative humidity.

  10. Plasma sheet boundary layer

    Microsoft Academic Search

    T. E. Eastman; L. A. Frank; W.K. Peterson; W. Lennartsson

    1984-01-01

    The plasma sheet boundary layer is a temporally variable transition region located between the magnetotail lobes and the central plasma sheet. We have made a survey of these regions by using particle spectra and three-dimensional velocity-space distributions sampled by the ISEE 1 LEPEDEA. Ion composition measurements obtained by the Lockhead ion mass spectrometers indicate that ionospheric ions play a crucial

  11. Boundary Conditions for Collisional Grain Flows at Bumpy, Frictional Walls

    NASA Astrophysics Data System (ADS)

    Jenkins, James T.

    We outline the derivation of conditions that determine the slip velocity and flux of fluctuation energy for collisional flows of frictional spheres at bumpy, frictional boundaries with either cylindrical or spherical bumps. We illustrate their use by solving for the profiles of fluctuation velocity, mean velocity, and volume fraction in steady, fully developed shearing flows between boundaries with frictional, cylindrical features.

  12. Boundary layer simulator improvement

    NASA Technical Reports Server (NTRS)

    Praharaj, S. C.; Schmitz, C.; Frost, C.; Engel, C. D.; Fuller, C. E.; Bender, R. L.; Pond, J.

    1984-01-01

    High chamber pressure expander cycles proposed for orbit transfer vehicles depend primarily on the heat energy transmitted from the combustion products through the thrust wall chamber wall. The heat transfer to the nozzle wall is affected by such variables as wall roughness, relamarization, and the presence of particles in the flow. Motor performance loss for these nozzles with thick boundary layers is inaccurate using the existing procedure coded BLIMPJ. Modifications and innovations to the code are examined. Updated routines are listed.

  13. Interaction between a normal shock wave and a turbulent boundary layer at high transonic speeds. Part 1: Pressure distribution. Part 2: Wall shear stress. Part 3: Simplified formulas for the prediction of surface pressures and skin friction

    NASA Technical Reports Server (NTRS)

    Adamson, T. C., Jr.; Liou, M. S.; Messiter, A. F.

    1980-01-01

    An asymptotic description is derived for the interaction between a shock wave and a turbulent boundary layer in transonic flow, for a particular limiting case. The dimensionless difference between the external flow velocity and critical sound speed is taken to be much smaller than one, but large in comparison with the dimensionless friction velocity. The basic results are derived for a flat plate, and corrections for longitudinal wall curvature and for flow in a circular pipe are also shown. Solutions are given for the wall pressure distribution and the shape of the shock wave. Solutions for the wall shear stress are obtained, and a criterion for incipient separation is derived. Simplified solutions for both the wall pressure and skin friction distributions in the interaction region are given. These results are presented in a form suitable for use in computer programs.

  14. Boundary Layer Meteorology (METR 5103)

    E-print Network

    Droegemeier, Kelvin K.

    of the atmospheric boundary layer dynamics and thermodynamics will be taught. Basic concepts of turbulence theory will be discussed and analyzed. Applications of this theory in the atmospheric boundary layer and mesoscale modeling and simulation of turbulent flows in atmospheric boundary layers under different meteorological conditions

  15. 5, 31913223, 2005 Boundary layer

    E-print Network

    Boyer, Edmond

    atmospheric research station (53.32 N, 9.90 W) on the west coast of Ireland.25 Boundary layer depthACPD 5, 3191­3223, 2005 Boundary layer structure during NAMBLEX E. G. Norton et al. Title Page Discussions Boundary layer structure and decoupling from synoptic scale flow during NAMBLEX E. G. Norton 1 , G

  16. Boundary Layer Meteorology (METR 5103)

    E-print Network

    Droegemeier, Kelvin K.

    of the atmospheric boundary layer dynamics and thermodynamics, including the basic concepts of turbulence theory conditions will be discussed and critically analyzed. Role of the boundary layer in atmospheric processes be considered. Atmospheric boundary layer types ranging from strongly stable to neutral and to strongly unstable

  17. 10, 1990119938, 2010 Boundary layer

    E-print Network

    Weber, Rodney

    ACPD 10, 19901­19938, 2010 Boundary layer dynamics over London J. F. Barlow et al. Title Page (ACP). Please refer to the corresponding final paper in ACP if available. Boundary layer dynamics over Boundary layer dynamics over London J. F. Barlow et al. Title Page Abstract Introduction Conclusions

  18. THE MARTIAN ATMOSPHERIC BOUNDARY LAYER

    E-print Network

    Spiga, Aymeric

    THE MARTIAN ATMOSPHERIC BOUNDARY LAYER A. Petrosyan,1 B. Galperin,2 S. E. Larsen,3 S. R. Lewis,4 A September 2011. [1] The planetary boundary layer (PBL) represents the part of the atmosphere), The Martian atmospheric boundary layer, Rev. Geophys., 49, RG3005, doi:10.1029/2010RG000351. 1. INTRODUCTION

  19. METEOROLOGY 130 Boundary Layer Meteorology

    E-print Network

    Clements, Craig

    is designed to introduce the student to the atmospheric boundary layer and its properties. The course 1. To be able to describe the atmospheric boundary layer conceptually using figures and plots. 2. To understand how measurements of the atmospheric boundary layer are made. Reading and Textbook Roland Stull

  20. Diverging boundary layers with zero streamwise pressure gradient

    NASA Technical Reports Server (NTRS)

    Pauley, Wayne R.; Eaton, John K.; Cutler, Andrew D.

    1989-01-01

    The effects of spanwise divergence on the boundary layer forming between a pair of embedded streamwise vortices with the common flow between them directed toward the wall was studied. Measurements indicate that divergence controls the rate of development of the boundary layer and that large divergence significantly retards boundary layer growth and enhances skin friction. For strongly diverging boundary layers, divergence accounts for nearly all of the local skin friction. Even with divergence, however, the local similarity relationships for two-dimensional boundary layers are satisfactory. Although divergence modifies the mean development of the boundary layer, it does not significantly modify the turbulence structure. In the present experiments with a zero streamwise pressure gradient, it was found that spanwise divergence dit not significantly affect the Reynolds stress and the turbulent triple product distributions.

  1. Boundary layer transition studies

    NASA Technical Reports Server (NTRS)

    Watmuff, Jonathan H.

    1995-01-01

    A small-scale wind tunnel previously used for turbulent boundary layer experiments was modified for two sets of boundary layer transition studies. The first study concerns a laminar separation/turbulent reattachment. The pressure gradient and unit Reynolds number are the same as the fully turbulent flow of Spalart and Watmuff. Without the trip wire, a laminar layer asymptotes to a Falkner & Skan similarity solution in the FPG. Application of the APG causes the layer to separate and a highly turbulent and approximately 2D mean flow reattachment occurs downstream. In an effort to gain some physical insight into the flow processes a small impulsive disturbance was introduced at the C(sub p) minimum. The facility is totally automated and phase-averaged data are measured on a point-by-point basis using unprecedently large grids. The evolution of the disturbance has been tracked all the way into the reattachment region and beyond into the fully turbulent boundary layer. At first, the amplitude decays exponentially with streamwise distance in the APG region, where the layer remains attached, i.e. the layer is viscously stable. After separation, the rate of decay slows, and a point of minimum amplitude is reached where the contours of the wave packet exhibit dispersive characteristics. From this point, exponential growth of the amplitude of the disturbance is observed in the detached shear layer, i.e. the dominant instability mechanism is inviscid. A group of large-scale 3D vortex loops emerges in the vicinity of the reattachment. Remarkably, the second loop retains its identify far downstream in the turbulent boundary layer. The results provide a level of detail usually associated with CFD. Substantial modifications were made to the facility for the second study concerning disturbances generated by Suction Holes for laminar flow Control (LFC). The test section incorporates suction through interchangeable porous test surfaces. Detailed studies have been made using isolated holes in the impervious test plate that used to establish the Blasius base flow. The suction is perturbed harmonically and data are averaged on the basis of the phase of the disturbance, for conditions corresponding to strong suction and without suction. The technique was enhanced by using up to nine multiple probes to reduce the experimental run-time. In both cases, 3D contour surfaces in the vicinity of the hole show highly 3D TS waves which fan out in the spanwise direction forming bow-shaped waves downstream. The case without suction has proved useful for evaluating calculation methods. With suction, the perturbations on the centerline are much stronger and decay less rapidly, while the TS waves in the far field are similar to the case without suction. Downstream, the contour surfaces of the TS waves develop spanwise irregularities which eventually form into clumps. The spanwise clumping is evidence of a secondary instability that could be associated with suction vortices. Designers of porous surfaces use Goldsmith's Criterion to minimize cross-stream interactions. It is shown that partial TS wave cancellation is possible, depending on the hole spacing, disturbance frequency and free-stream velocity. New high-performance Constant Temperature Hot-Wire Anemometers were designed and built, based on a linear system theory analysis that can be extended to arbitrary order. The motivation was to achieve the highest possible frequency reponse while ensuring overall system stability. The performance is equal to or superior to commercially available instruments at about 10% of the cost. Details, such as fabrication drawings and a parts list, have been published to enable the instrument to be construced by others.

  2. Corrosion-mechanical wear in boundary friction

    Microsoft Academic Search

    O. K. Angelopulo; V. F. Pichugin; E. A. Petrosyants

    1976-01-01

    In the interaction of the metal with the electrolyte there is adsorption of the surfaceactive elements of the medium, ions or whole molecules (from weak electrolytes), on the surface of the metal [2]. The ions adsorbed from water solutions form and increase the hydrate coating of the solid, changing the mechanical properties of the boundary layers of the liquid. In

  3. Progress in modeling hypersonic turbulent boundary layers

    NASA Technical Reports Server (NTRS)

    Zeman, Otto

    1993-01-01

    A good knowledge of the turbulence structure, wall heat transfer, and friction in turbulent boundary layers (TBL) at high speeds is required for the design of hypersonic air breathing airplanes and reentry space vehicles. This work reports on recent progress in the modeling of high speed TBL flows. The specific research goal described here is the development of a second order closure model for zero pressure gradient TBL's for the range of Mach numbers up to hypersonic speeds with arbitrary wall cooling requirements.

  4. Sink flow turbulent boundary layers

    Microsoft Academic Search

    M. B. Jones; Ivan Marusic; A. E. Perry

    1998-01-01

    An experimental investigation of turbulent boundary layers developing in a sink flow pressure gradient was undertaken. Three flow cases were studied, corresponding to acceleration strengths K=5.4×10-7 3.6×10-7 and 2.7×10-7. Sink flow boundary layers are of fundamental importance, as they represent the only smooth wall boundary layer that may evolve to a state of precise equilibrium. A precise equilibrium layer is

  5. Boundary-Layer & health

    NASA Astrophysics Data System (ADS)

    Costigliola, V.

    2010-09-01

    It has long been known that specific atmospheric processes, such as weather and longer-term climatic fluctuations, affect human health. The biometeorological literature refers to this relationship as meteorotropism, defined as a change in an organism that is correlated with a change in atmospheric conditions. Plenty of (patho)physiological functions are affected by those conditions - like the respiratory diseases - and currently it is difficult to put any limits for pathologies developed in reply. Nowadays the importance of atmospheric boundary layer and health is increasingly recognised. A number of epidemiologic studies have reported associations between ambient concentrations of air pollution, specifically particulate pollution, and adverse health effects, even at the relatively low concentrations of pollution found. Since 1995 there have been over twenty-one studies from four continents that have explicitly examined the association between ambient air pollutant mixes and daily mortality. Statistically significant and positive associations have been reported in data from various locations around the world, all with varying air pollutant concentrations, weather conditions, population characteristics and public health policies. Particular role has been given to atmospheric boundary layer processes, the impact of which for specific patient-cohort is, however, not well understood till now. Assessing and monitoring air quality are thus fundamental to improve Europe's welfare. One of current projects run by the "European Medical Association" - PASODOBLE will develop and demonstrate user-driven downstream information services for the regional and local air quality sectors by combining space-based and in-situ data with models in 4 thematic service lines: - Health community support for hospitals, pharmacies, doctors and people at risk - Public information for regions, cities, tourist industry and sporting event organizers - Compliance monitoring support on particulate matter for regional environmental agencies - Local forecast model evaluation support for local authorities and city bodies. Giving value to the above listed aspects, PASODOBLE objectives are following: - Evolution of existing and development of new sustainable air quality services for Europe on regional and local scales - Development and testing of a generic service framework for coordinated input data acquisition and customizable user-friendly access to services - Utilization of multiple cycles of delivery, use and assessment versus requirements and market planning in cooperation with users - Promotion and harmonisation of best practise tools for air quality communities. Further European multidisciplinary projects should be created to better understand the most prevalent atmospheric factors to be impacted in predictive, preventive and personalised medicine considered as the central concept for future medicine.

  6. Scaling the atmospheric boundary layer

    Microsoft Academic Search

    A. A. M. Holtslag; F. T. M. Nieuwstadt

    1986-01-01

    We review scaling regimes of the idealized Atmospheric Boundary Layer. The main emphasis is given on recent findings for stable conditions. We present diagrams in which the scaling regimes are illustrated as a function of the major boundary-layer parameters. A discussion is given on the different properties of the scaling regimes in unstable and stable conditions.

  7. Modeling the urban boundary layer

    NASA Technical Reports Server (NTRS)

    Bergstrom, R. W., Jr.

    1976-01-01

    A summary and evaluation is given of the Workshop on Modeling the Urban Boundary Layer; held in Las Vegas on May 5, 1975. Edited summaries from each of the session chairpersons are also given. The sessions were: (1) formulation and solution techniques, (2) K-theory versus higher order closure, (3) surface heat and moisture balance, (4) initialization and boundary problems, (5) nocturnal boundary layer, and (6) verification of models.

  8. Some characteristics of turbulent boundary layers in rapidly accelerated flows

    NASA Technical Reports Server (NTRS)

    Brinich, P. F.; Neumann, H. E.

    1971-01-01

    An analysis of time-mean-turbulent boundary layer velocity profiles measured in a rapidly accelerating flow suggests that the outer region of the velocity profiles consists of essentially inviscid, rotational flow. The extent of this inviscid outer region was observed in some cases to exceed 90 percent of what is ordinarily thought of as the turbulent boundary layer thickness. On the other hand, the inner frictional region of these velocity profiles appears to have turbulent characteristics similar to those of more conventional turbulent boundary layers. Hence, the outer edge boundary condition for this inner region is more properly the external rotational flow region than the free stream.

  9. Transfer films and friction under boundary lubrication

    Microsoft Academic Search

    Jean-Michel Martin; Carol Grossiord; Thierry Le Mogne; Jinichi Igarashi

    2000-01-01

    The role of transfer phenomena in the mechanisms of friction reduction by organic molybdenum compounds is studied with the aid of ultrahigh vacuum (UHV) analytical tribometry. Additives used are zinc dithiophosphate (Zndtp), molybdenum dithiophosphate (Modtp), molybdenum dithiocarbamate (Modtc) and Modtc\\/Zndtp combinations. Experiments involve UHV friction tests on tribofilms formed previously and in situ surface analyses by Auger electron spectroscopy (AES)

  10. Approximation theory for boundary layer suction through individual slits

    NASA Technical Reports Server (NTRS)

    Walz, A.

    1979-01-01

    The basic concepts of influencing boundary layers are summarized, especially the prevention of flow detachment and the reduction of frictional resistance. A mathematical analysis of suction through a slit is presented with two parameters, for thickness and for shape of the boundary layer, being introduced to specify the flow's velocity profile behind the slit. An approximation of the shape parameter produces a useful formula, which can be used to determine the most favorable position of the slit. An aerodynamic example is given.

  11. Boundary Layer Control on Airfoils.

    ERIC Educational Resources Information Center

    Gerhab, George; Eastlake, Charles

    1991-01-01

    A phenomena, boundary layer control (BLC), produced when visualizing the fluidlike flow of air is described. The use of BLC in modifying aerodynamic characteristics of airfoils, race cars, and boats is discussed. (KR)

  12. Asymptotic similarity in turbulent boundary layers

    NASA Astrophysics Data System (ADS)

    Duncan, Richard D.

    The turbulent boundary layer is one of the most fundamental and important applications of fluid mechanics. Despite great practical interest and its direct impact on frictional drag among its many important consequences, no theory absent of significant inference or assumption exists. Numerical simulations and empirical guidance are used to produce models and adequate predictions, but even minor improvements in modeling parameters or physical understanding could translate into significant improvements in the efficiency of aerodynamic and hydrodynamic vehicles. Classically, turbulent boundary layers and fully-developed turbulent channels and pipes are considered members of the same "family," with similar "inner" versus "outer" descriptions. However, recent advances in experiments, simulations, and data processing have questioned this, and, as a result, their fundamental physics. To address a full range of pressure gradient boundary layers, a new approach to the governing equations and physical description of wall-bounded flows is formulated, using a two variable similarity approach and many of the tools of the classical method with slight but significant variations. A new set of similarity requirements for the characteristic scales of the problem is found, and when these requirements are applied to the classical "inner" and "outer" scales, a "similarity map" is developed providing a clear prediction of what flow conditions should result in self-similar forms. An empirical model with a small number of parameters and a form reminiscent of Coles' "wall plus wake" is developed for the streamwise Reynolds stress, and shown to fit experimental and numerical data from a number of turbulent boundary layers as well as other wall-bounded flows. It appears from this model and its scaling using the free-stream velocity that the true asymptotic form of u'2 may not become self-evident until Retheta ? 275,000 or delta+ ? 105, if not higher. A perturbation expansion made possible by the novel inclusion of the scaled streamwise coordinate is used to make an excellent prediction of the shear Reynolds stress in zero pressure gradient boundary layers and channel flows, requiring only a streamwise mean velocity profile and the new similarity map. Extension to other flows is promising, though more information about the normal Reynolds stresses is needed. This expansion is further used to infer a three layer structure in the turbulent boundary layer, and modified two layer structure in fully-developed flows, by using the classical inner and logarithmic profiles to determine which portions of the boundary layer are dominated by viscosity, inertia, or turbulence. A new inner function for U+ is developed, based on the three layer description, providing a much more simplified representative form of the streamwise mean velocity nearest the wall.

  13. Frictional anisotropy under boundary lubrication: effect of surface texture.

    SciTech Connect

    Ajayi, O. O.; Erck, R. A.; Lorenzo-Martin, C.; Fenske, G. R.; Energy Systems

    2009-06-15

    The friction coefficient was measured under boundary lubrication with a ball-on-flat contact configuration in unidirectional sliding. The ball was smooth and hardened 52100 steel. Discs were made from case-carburized and hardened 4620, annealed 1080, and 1018 steels with directionally ground surfaces. A synthetic lubricant of stock polyalphaolefin was used for testing. During testing with each material, a frictional spike was observed whenever the ball slid parallel to the grinding ridge on the disc surface. The average friction coefficient for all tests was about 0.1, which is typical for the boundary lubrication regime. The magnitude of the frictional spikes, which reached as high as a friction coefficient of 0.25, and their persistence depended on the hardness of the disc surface. On the basis of elastohydrodynamic theory, coupled with the observation of severe plastic deformation on the ridges parallel to the sliding direction, the frictional spike could be due to localized plastic deformation on the disc surface at locations of minimal thickness for the lubricant fluid film. This hypothesis was further supported by lack of frictional spikes in tests using discs coated with a thin film of diamond-like carbon, in which plastic deformation is minimal.

  14. Physics of magnetospheric boundary layers

    NASA Technical Reports Server (NTRS)

    Cairns, Iver H.

    1995-01-01

    This final report was concerned with the ideas that: (1) magnetospheric boundary layers link disparate regions of the magnetosphere-solar wind system together; and (2) global behavior of the magnetosphere can be understood only by understanding its internal linking mechanisms and those with the solar wind. The research project involved simultaneous research on the global-, meso-, and micro-scale physics of the magnetosphere and its boundary layers, which included the bow shock, the magnetosheath, the plasma sheet boundary layer, and the ionosphere. Analytic, numerical, and simulation projects were performed on these subjects, as well as comparisons of theoretical results with observational data. Other related activity included in the research included: (1) prediction of geomagnetic activity; (2) global MHD (magnetohydrodynamic) simulations; (3) Alfven resonance heating; and (4) Critical Ionization Velocity (CIV) effect. In the appendixes are list of personnel involved, list of papers published; and reprints or photocopies of papers produced for this report.

  15. Nonparallel stability of boundary layers

    NASA Technical Reports Server (NTRS)

    Nayfeh, Ali H.

    1987-01-01

    The asymptotic formulations of the nonparallel linear stability of incompressible growing boundary layers are critically reviewed. These formulations can be divided into two approaches. The first approach combines a numerical method with either the method of multiple scales, or the method of averaging, of the Wentzel-Kramers-Brillouin (WKB) approximation; all these methods yield the same result. The second approach combined a multi-structure theory with the method of multiple scales. The first approach yields results that are in excellent agreement with all available experimental data, including the growth rates as well as the neutral stability curve. The derivation of the linear stability of the incompressible growing boundary layers is explained.

  16. Mathematical models of momentum transfer in the boundary layer

    NASA Astrophysics Data System (ADS)

    Laptev, A. G.; Farakhov, T. M.

    2013-05-01

    Consideration has been given to the processes of momentum transfer in the laminar and turbulent boundary layers on a plate and in a tube. Original models for calculation of the tangential stress, friction factors, boundary-layer thickness, and coefficients of momentum transfer in the boundary layers on a plate and in a tube have been obtained under different conditions of motion of the gas medium. Examples of calculation of the indicated characteristics have been given; the results obtained have been compared to the existing experimental data. The obtained equations and methods of determination of the characteristics of the boundary layer can be used in designing industrial heat- and mass-exchange apparatuses of various structures and other equipment.

  17. Contact problems with friction for hemitropic solids: boundary variational inequality approach

    Microsoft Academic Search

    A. Gachechiladze; R. Gachechiladze; J. Gwinner; D. Natroshvili

    2011-01-01

    We study the interior and exterior contact problems for hemitropic elastic solids. We treat the cases when the friction effects, described by Tresca friction (given friction model), are taken into consideration either on some part of the boundary of the body or on the whole boundary. We equivalently reduce these problems to a boundary variational inequality with the help of

  18. Turbulence intensity similarity laws for high Reynolds number boundary layers

    NASA Astrophysics Data System (ADS)

    Kunkel, Gary; Marusic, Ivan

    2002-11-01

    Data obtained in the surface layer of the atmospheric boundary layer at the SLTEST (Surface Layer Turbulence and Environmental Science Test) facility located on the western Utah salt flats are used to analyze current turbulence intensity similarity laws. The high Reynolds number data are shown to be consistent with the Marusic, Uddin and Perry (Phys. Fluids 1997) formulation which applies for the outer region of the boundary layer, approximately 100 <= z+ <= Re_?. Here z is wall-normal position and Re_? is the Reynolds number based on boundary layer thickness and friction velocity. This formulation is based on the attached eddy hypothesis and shows that the streamwise turbulence intensity normalized with friction velocity scales as a function of both z+ and Re_?, while the wall-normal turbulence intensity scales only with wall variables. Corresponding spectra will also be presented. Additional laboratory experimental data will be analyzed and a new extended formulation will be presented which applies across the entire boundary layer. The extended formulation appears to explain the empirical mixed inner and outer velocity scaling proposed by DeGraaff and Eaton ( J. Fluid Mech. 2000).

  19. Internal friction and boundary conditions in lossy fluid seabeds

    SciTech Connect

    Deane, G.B. [Marine Physical Laboratory, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093-0238 (United States)] [Marine Physical Laboratory, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093-0238 (United States)

    1997-01-01

    There are two distinct mechanisms associated with compressional wave absorption in lossy media, internal relaxation and internal friction. For the special case of propagation in an homogeneous, unbounded medium, both mechanisms can be modeled by adopting the convention of a complex sound speed and are, in this sense, equivalent. For the more realistic case of propagation in a stratified medium, the convention of complex sound speed does not give a correct description for losses which modify the linearized equation of motion, such as internal friction. In the presence of boundaries, internal friction can be modeled by the introduction of a complex quiescent density in addition to complex sound speed. Propagation models which use complex sound speed only in the presence of boundaries make the tacit assumption that seafloor losses are caused by internal relaxations only. A solution is developed for propagation in a lossy Pekeris channel where absorption in the lower fluid is caused by internal friction. The example that has been considered yields a sound level 3 dB less than the standard description over a 50-km path. {copyright} {ital 1997 Acoustical Society of America.}

  20. Study of boundary-layer transition using transonic-cone preston tube data

    NASA Technical Reports Server (NTRS)

    Reed, T. D.; Moretti, P. M.

    1980-01-01

    The laminar boundary layer on a 10 degree cone in a transonic wind tunnel was studied. The inviscid flow and boundary layer development were simulated by computer programs. The effects of pitch and yaw angles on the boundary layer were examined. Preston-tube data, taken on the boundary-layer-transition cone in the NASA Ames 11 ft transonic wind tunnel, were used to develope a correlation which relates the measurements to theoretical values of laminar skin friction. The recommended correlation is based on a compressible form of the classical law-of-the-wall. The computer codes successfully simulates the laminar boundary layer for near-zero pitch and yaw angles. However, in cases of significant pitch and/or yaw angles, the flow is three dimensional and the boundary layer computer code used here cannot provide a satisfactory model. The skin-friction correlation is thought to be valid for body geometries other than cones.

  1. Large-Eddy Simulations of Longitudinal Vortices Embedded in a Turbulent Boundary Layer

    E-print Network

    Mittal, Rajat

    or delay the boundary-layer separation on an airfoil surface [1] or to reduce the turbulent skin friction] and Ma [6]. They made 3-D laser Doppler anemometer (LDA) [5] and hot-wire [6] measurements of near the effects of vortices on local skin friction modification and found that the vortices significantly

  2. Tribological Properties of Surface Layer with Boron in Friction Pairs

    NASA Astrophysics Data System (ADS)

    Lubas, Janusz

    The aim of the present work is to determine the influence of technologically produced boron surface layers on the friction parameters in the sliding pairs under the conditions of mixed friction. The tribological evaluation included ion nitrided, pack borided, laser borided, quenched and tempered surface layers and TiB2 coating deposited on 38CrAlMo5-10, 46Cr2 and 30MnB4 steels. Modified surface layers of annular samples were matched under test conditions with counter-sample made from AlSn20 bearing alloy. Tested sliding pairs were lubricated with 15 W/40 Lotos mineral engine oil. The tribological tests were conducted on a T-05 block on ring tester. The applied steel surface layer modification with boron allows surface layers to be created with pre-determined tribological characteristics required for the elements of kinematic pairs operating in the conditions of sliding friction. Pack boronizing reduces the friction coefficient during the start-up of the frictional pair and the maximum start-up resistance level is similar to the levels of pairs with nitrided surface layers.

  3. Nonequilibrium chemistry boundary layer integral matrix procedure

    NASA Technical Reports Server (NTRS)

    Tong, H.; Buckingham, A. C.; Morse, H. L.

    1973-01-01

    The development of an analytic procedure for the calculation of nonequilibrium boundary layer flows over surfaces of arbitrary catalycities is described. An existing equilibrium boundary layer integral matrix code was extended to include nonequilibrium chemistry while retaining all of the general boundary condition features built into the original code. For particular application to the pitch-plane of shuttle type vehicles, an approximate procedure was developed to estimate the nonequilibrium and nonisentropic state at the edge of the boundary layer.

  4. Modelling the transitional boundary layer

    NASA Technical Reports Server (NTRS)

    Narasimha, R.

    1990-01-01

    Recent developments in the modelling of the transition zone in the boundary layer are reviewed (the zone being defined as extending from the station where intermittency begins to depart from zero to that where it is nearly unity). The value of using a new non-dimensional spot formation rate parameter, and the importance of allowing for so-called subtransitions within the transition zone, are both stressed. Models do reasonably well in constant pressure 2-dimensional flows, but in the presence of strong pressure gradients further improvements are needed. The linear combination approach works surprisingly well in most cases, but would not be so successful in situations where a purely laminar boundary layer would separate but a transitional one would not. Intermittency-weighted eddy viscosity methods do not predict peak surface parameters well without the introduction of an overshooting transition function whose connection with the spot theory of transition is obscure. Suggestions are made for further work that now appears necessary for developing improved models of the transition zone.

  5. Turbulent boundary layer behind a separation zone

    Microsoft Academic Search

    P. Wauschkuhn; V. I. Vasanta Ram

    1975-01-01

    The turbulent boundary layer after reattachment following separation on a backward-facing step in incompressible flow has been studied experimentally. Hot-wire measurements of the velocity and shear-stress distribution in the boundary layer were made. Furthermore the local wall shear stress was measured by a sub-layer fence. For a considerable distance downstream of reattachment the boundary layer exhibits a region not obeying

  6. Investigation and modeling of frictional boundary conditions in oblique cutting of aluminum alloys

    NASA Astrophysics Data System (ADS)

    Kilic, Dursun Sedat

    Friction at the cutting tool interface has been studied for 60 years, yet an accurate model of friction is largely unavailable, especially in operations such as turning, where the interface is inaccessible due the continuous contact between chip and tool. A historical perspective of friction in turning is provided to better understand the purpose of this thesis. The contradictions arising from different frictional boundary condition assumptions in machining were analyzed. Experimental observations were substantiated in the light of the literature review. Friction conditions at the tool chip interface were found to be more complex than the simple models of seizure followed by sliding, which is accepted in most machining models. This thesis investigated the surface topology of cutting tools in conventional turning operation, which is one of the oldest and common machining processes. Two different aluminum alloys Al-2024 and Al-6061 were used in turning experiments with carbide tools to define the frictional conditions as these alloys exhibited a wide range of frictional contacts at different machining conditions. Experiments were conducted using carbide cutting tools at a range of speeds, feed rates, and depths of cut, which are commonly utilized in industrial applications. The analysis of tool chip interface at microscopic levels revealed further details of seizure and sliding zone formation. Newer techniques developed in microscopy and surface characterization were used to characterize the interface in a non-destructive manner. Scanning electron microscopy (SEM), surface profilometer and laser scanning confocal microscopy (LSCM) techniques helped us in the understanding of the frictional boundaries. Analysis of SEM images obtained by turning experiments revealed three distinct regions whose topology is closely related to turning parameters. These different zones were named as primary sticking zone, sliding zone and secondary sticking zone. Furthermore, with the assistance of a developed computer code, the real area of contact and each different contact area were determined numerically. Therefore, this study is the first attempt in literature both identifies the frictional contact areas and computes their exact numerical values. The SEM backscattering technique showed that the workpiece material behavior is different in the built up edge and sticking areas. This finding was especially used to identify the preliminary and secondary sticking areas. Thus, it has been showed first time that the deposited layers on frictional areas show different material characteristics. With the help of tool surface image analysis, area calculation algorithm, chemical composition identification, and earlier efforts cited in the literature, we proposed a stress-model which accurately predicted experimental normal and shear forces in oblique cutting of aluminum alloys for most tested conditions.

  7. Flat plate turbulent boundary-layer control using vertical LEBUs

    NASA Astrophysics Data System (ADS)

    Kornilov, V. I.; Boiko, A. V.

    Necessity of aerodynamic drag reduction of aircrafts and other moving objects stimulates researchers for finding out new means of the near-wall turbulence control. In [1] it has been found that the vertical positioning of the LEBUs in boundary layer can be much more efficient compared to the conventional horizontal one, although, according to the same authors, the devices were far from being optimized. Present work is focused upon the study of possibility of turbulent skin-friction reduction using flow-aligned vertical LEBUs, the LEBUs being mounted perpendicular to the flat plate surface in nominally gradient-free incompressible turbulent boundary layer. The Reynolds number based on the momentum thickness of the boundary layer at the LEBUs' position was 1099. All measurements were performed using a computer-controlled automated system of space/time hot wire visualization of mean and fluctuating components of the velocity field. The system provided accuracy not worse than approximately ±2 µm along x, y, and z coordinates. Local skin friction C f in the regular (unmodified) shear flow was determined from the condition of the best correspondence between measured and and classic velocity coefficient profiles in the region of the law of the wall functionality U^+ = A log y+ + B with known coefficients A and B. In the modified boundary layer C f was determined by the mean velocity gradient at the wall (partial U/partial y)_{y=0}. The measurement technique is given in more detail in [2].

  8. Turbulent oceanic western-boundary layers at low latitude

    NASA Astrophysics Data System (ADS)

    Quam Cyrille Akuetevi, Cataria; Wirth, Achim

    2013-04-01

    Low latitude oceanic western-boundary layers range within the most turbulent regions in the worlds ocean. The Somali current system with the Great Whirl and the Brazilian current system with its eddy shedding are the most prominent examples. Results from analytical calculations and integration of a one layer reduced-gravity fine resolution shallow water model is used to entangle this turbulent dynamics. Two types of wind-forcing are applied: a remote Trade wind forcing with maximum shear along the equator and a local Monsoon wind forcing with maximum shear in the vicinity of the boundary. For high values of the viscosity (> 1000m2s-1) the stationary solutions compare well to analytical predictions using Munk and inertial layer theory. When lowering the friction parameter time dependence results. The onset of instability is strongly influenced by inertial effects. The unstable boundary current proceeds as a succession of anti-cyclonic coherent eddies performing a chaotic dynamics in a turbulent flow. The dynamics is governed by the turbulent fluxes of mass and momentum. We determine these fluxes by analyzing the (potential) vorticity dynamics. We demonstrate that the boundary-layer can be separated in four sub-layers, which are (starting from the boundary): (1) the viscous sub-layer (2) the turbulent buffer-layer (3) the layer containing the coherent structures and (4) the extended boundary layer. The characteristics of each sub-layer and the corresponding turbulent fluxes are determined, as are the dependence on latitude and the type of forcing. A new pragmatic method of determining the eddy viscosity, based on Munk-layer theory, is proposed. Results are compared to observations and solutions of the multi-level primitive equation model (DRAKKAR).

  9. Turbulent boundary layer turbulence intensity similarity formulations

    Microsoft Academic Search

    Gary Kunkel; Ivan Marusic

    2003-01-01

    High Reynolds number data obtained in the surface layer of the atmospheric boundary layer at the SLTEST facility are used to analyze and further develop turbulence intensity similarity laws. The analysis of these similarity laws leads to implications concerning the interaction of the inner- and outer-portions of the boundary layer. Namely, the model used to extended formulations across the entire

  10. Atmospheric boundary layer research at Cabauw

    Microsoft Academic Search

    A. P. VAN ULDEN; J. Wieringa

    1996-01-01

    At Cabauw, The Netherlands, a 213 m high mast specifically built for meteorological research has been operational since 1973. Its site, construction, instrumentation and observation programs are reviewed. Regarding analysis of the boundary layer at Cabauw, the following subjects are discussed:- terrain roughness;- Monin-Obukhov theory in practice;- the structure of stable boundary layers;- observed evolution of fog layers;- inversion rise

  11. Active Boundary Layer Trip for Supersonic Flows

    NASA Astrophysics Data System (ADS)

    Schloegel, F.; Panigua, G.; Tirtey, S.

    2009-01-01

    The last decade has been full of excitement and success for the hypersonic community thanks to various Scramjet ground tests and launches. These studies have shown promising potentials but the viability to perform commercial flights at Mach 8 is still to be demonstrated. An ideal Scramjet is one which is capable of self- starting over a wide range of angles of attack and Mach number. The Scramjet designer has to ensure that the boundary layer over the inlet ramp is fully turbulent where shocks impact, hence reducing the risks of chocked flow conditions. Most studies have issued the efficiency of roughness trip to trigger the boundary layer transition. At hypersonic speed, heat transfer and drag dramatically increase resulting in skin friction averaging at 40% of the overall drag. This study investigates the possibility of triggering transition using perpendicular air jets on a flat plate place in a hypersonic cross-flow. Experiments were conducted in the von Karman Institute hypersonic blow down wind tunnel H3. This facility is mounted with a Mach 6 contoured nozzles and provides flows with Reynolds number in the range of 10x106/m to 30x106/m. The model consist of a flat plate manufactured with a built -in settling chamber, equipped with a pressure tap and a thermocouple to monitor the jet conditions. A first flat plate was manufactured with a black-coated Plexiglas top, for surface heat transfer measurement using an infrared camera. On the second model, a Upilex sheet equipped with 32 thin film gages was glued, time dependent heat transfer measurements up to 60kHz. The jet injection conditions have been varied and a Mach number of 5.5 kept constant. The flow topology was investigated using fast schlieren techniques and oil flow, in order to gain a better understanding.

  12. Boundary layer theory and subduction

    SciTech Connect

    Fowler, A.C. [Oxford Univ., Oxford (United Kingdom)

    1993-12-01

    Numerical models of thermally activated convective flow in Earth`s mantle do not resemble active plate tectonics because of their inability to model successfully the process of subduction, other than by the inclusion of artificial weak zones. Here we show, using a boundary layer argument, how the `rigid lid` style of convection favored by thermoviscous fluids leads to lithospheric stresses which may realistically exceed the yield stress and thus cause subduction ot occur through the visoc-plastic failure of lithospheric rock. An explicit criterion for the failure of the lid is given, which is sensitive to the internal viscosity eta(sub a) below the lid. For numbers appropriate to Earth`s mantle, this criterion is approximately eta(sub a) greater than 10(exp 21) Pa s.

  13. Vortex boundary-layer interactions

    NASA Technical Reports Server (NTRS)

    Bradshaw, P.

    1986-01-01

    Parametric studies to identify a vortex generator were completed. Data acquisition in the first chosen configuration, in which a longitudinal vortex pair generated by an isolated delta wing starts to merge with a turbulent boundary layer on a flat plate fairly close to the leading edge is nearly completed. Work on a delta-wing/flat-plate combination, consisting of a flow visualization and hot wire measurements taken with a computer controlled traverse gear and data logging system were completed. Data taking and analysis have continued, and sample results for another cross stream plane are presented. Available data include all mean velocity components, second order mean products of turbulent fluctuations, and third order mean products. Implementation of a faster data logging system was accomplished.

  14. An experimental investigation of turbulent boundary layers along curved surfaces

    NASA Technical Reports Server (NTRS)

    So, R. M. C.; Mellor, G. L.

    1972-01-01

    A curved wall tunnel was designed, and an equilibrium turbulent boundary layer was set up on the straight section preceding the curved test section. Turbulent boundary layer flows with uniform and adverse pressure distributions along convex and concave walls were investigated. Hot-wire measurements along the convex surface indicated that turbulent mixing between fluid layers was very much reduced. However, the law of the wall held and the skin friction, thus determined, correlated well with other measurements. Hot-wire measurements along the concave test wall revealed a system of longitudinal vortices inside the boundary layer and confirmed that concave curvature enhances mixing. A self-consistent set of turbulent boundary layer equations for flows along curved surfaces was derived together with a modified eddy viscosity. Solution of these equations together with the modified eddy viscosity gave results that correlated well with the present data on flows along the convex surface with arbitrary pressure distribution. However, it could only be used to predict the mean characteristics of the flow along concave walls because of the existence of the system of longitudinal vortices inside the boundary layer.

  15. Polymer Effects on Heat Transport in Laminar Boundary Layer Flow

    E-print Network

    Roberto Benzi; Emily S. C. Ching; Vivien W. S. Chu

    2011-04-27

    We consider a laminar Blasius boundary-layer flow above a slightly heated horizontal plate and study the effect of polymer additives on the heat transport. We show that the action of the polymers can be understood as a space-dependent effective viscosity that first increases from the zero-shear value then decreases exponentially back to the zero-shear value as one moves away from the boundary. We find that with such an effective viscosity, both the horizontal and vertical velocities near the plate are decreased thus leading to an increase in the friction drag and a decrease in the heat transport in the flow.

  16. Structure of the low latitude boundary layer

    NASA Technical Reports Server (NTRS)

    Sckopke, N.; Paschmann, G.; Haerendel, G.; Sonnerup, B. U. O.; Bame, S. J.; Forbes, T. G.; Hones, E. W., Jr.; Russell, C. T.

    1980-01-01

    Observations at high temporal resolution of the frontside magnetopause and plasma boundary layer, made with the LASL/MPE fast plasma analyzer onboard the ISEE 1 and 2 spacecraft, revealed a complex quasiperiodic structure of some of the observed boundary layers. A cool tailward streaming boundary layer plasma was seen intermittently, with intervening periods of hot tenuous plasma which has properties similar to the magnetospheric population. While individual encounters with the boundary layer plasma last only a few minutes, the total observation time may extend over one hour or more.

  17. Atmospheric tides on Venus. III - The planetary boundary layer

    NASA Technical Reports Server (NTRS)

    Dobrovolskis, A. R.

    1983-01-01

    Diurnal solar heating of Venus' surface produces variable temperatures, winds, and pressure gradients within a shallow layer at the bottom of the atmosphere. The corresponding asymmetric mass distribution experiences a tidal torque tending to maintain Venus' slow retrograde rotation. It is shown that including viscosity in the boundary layer does not materially affect the balance of torques. On the other hand, friction between the air and ground can reduce the predicted wind speeds from about 5 to about 1 m/sec in the lower atmosphere, more consistent with the observations from Venus landers and descent probes. Implications for aeolian activity on Venus' surface and for future missions are discussed.

  18. Boundary layers of the earth's outer magnetosphere

    NASA Technical Reports Server (NTRS)

    Eastman, T. E.; Frank, L. A.

    1984-01-01

    The magnetospheric boundary layer and the plasma-sheet boundary layer are the primary boundary layers of the earth's outer magnetosphere. Recent satellite observations indicate that they provide for more than 50 percent of the plasma and energy transport in the outer magnetosphere although they constitute less than 5 percent by volume. Relative to the energy density in the source regions, plasma in the magnetospheric boundary layer is predominantly deenergized whereas plasma in the plasma-sheet boundary layer has been accelerated. The reconnection hypothesis continues to provide a useful framework for comparing data sampled in the highly dynamic magnetospheric environment. Observations of 'flux transfer events' and other detailed features near the boundaries have been recently interpreted in terms of nonsteady-state reconnection. Alternative hypotheses are also being investigated. More work needs to be done, both in theory and observation, to determine whether reconnection actually occurs in the magnetosphere and, if so, whether it is important for overall magnetospheric dynamics.

  19. Stabilization of boundary layer streaks by plasma actuators

    NASA Astrophysics Data System (ADS)

    Riherd, Mark; Roy, Subrata

    2014-03-01

    A flow's transition from laminar to turbulent leads to increased levels of skin friction. In recent years, dielectric barrier discharge actuators have been shown to be able to delay the onset of turbulence in boundary layers. While the laminar to turbulent transition process can be initiated by several different instability mechanisms, so far, only stabilization of the Tollmien-Schlichting path to transition has received significant attention, leaving the stabilization of other transition paths using these actuators less explored. To fill that void, a bi-global stability analysis is used here to examine the stabilization of boundary layer streaks in a laminar boundary layer. These streaks, which are important to both transient and by-pass instability mechanisms, are damped by the addition of a flow-wise oriented plasma body force to the boundary layer. Depending on the magnitude of the plasma actuation, this damping can be up to 25% of the perturbation's kinetic energy. The damping mechanism appears to be due to highly localized effects in the immediate vicinity of the body force, and when examined using a linearized Reynolds-averaged Navier-Stokes energy balance, indicate negative production of the perturbation's kinetic energy. Parametric studies of the stabilization have also been performed, varying the magnitude of the plasma actuator's body force and the spanwise wavenumber of the actuation. Based on these parametric studies, the damping of the boundary layer streaks appears to be linear with respect to the total amount of body force applied to the flow.

  20. Particle motion in atmospheric boundary layers of Mars and Earth

    NASA Technical Reports Server (NTRS)

    White, B. R.; Iversen, J. D.; Greeley, R.; Pollack, J. B.

    1975-01-01

    To study the eolian mechanics of saltating particles, both an experimental investigation of the flow field around a model crater in an atmospheric boundary layer wind tunnel and numerical solutions of the two- and three-dimensional equations of motion of a single particle under the influence of a turbulent boundary layer were conducted. Two-dimensional particle motion was calculated for flow near the surfaces of both Earth and Mars. For the case of Earth both a turbulent boundary layer with a viscous sublayer and one without were calculated. For the case of Mars it was only necessary to calculate turbulent boundary layer flow with a laminar sublayer because of the low values of friction Reynolds number; however, it was necessary to include the effects of slip flow on a particle caused by the rarefied Martian atmosphere. In the equations of motion the lift force functions were developed to act on a single particle only in the laminar sublayer or a corresponding small region of high shear near the surface for a fully turbulent boundary layer. The lift force functions were developed from the analytical work by Saffman concerning the lift force acting on a particle in simple shear flow.

  1. Transitional and turbulent boundary layer with heat transfer

    NASA Astrophysics Data System (ADS)

    Wu, Xiaohua; Moin, Parviz

    2010-08-01

    We report on our direct numerical simulation of an incompressible, nominally zero-pressure-gradient flat-plate boundary layer from momentum thickness Reynolds number 80-1950. Heat transfer between the constant-temperature solid surface and the free-stream is also simulated with molecular Prandtl number Pr=1. Skin-friction coefficient and other boundary layer parameters follow the Blasius solutions prior to the onset of turbulent spots. Throughout the entire flat-plate, the ratio of Stanton number and skin-friction St/Cf deviates from the exact Reynolds analogy value of 0.5 by less than 1.5%. Mean velocity and Reynolds stresses agree with experimental data over an extended turbulent region downstream of transition. Normalized rms wall-pressure fluctuation increases gradually with the streamwise growth of the turbulent boundary layer. Wall shear stress fluctuation, ?w,rms'+, on the other hand, remains constant at approximately 0.44 over the range, 800boundary layer edge with no near-wall secondary peak, in good agreement with previous boundary layer heat transfer experiments. In the transitional region, turbulent spots are tightly packed with numerous hairpin vortices. With the advection and merging of turbulent spots, these young isolated hairpin forests develop into the downstream turbulent region. Isosurfaces of temperature up to Re?=1900 are found to display well-resolved signatures of hairpin vortices, which indicates the persistence of the hairpin forests.

  2. Cyclone separator having boundary layer turbulence control

    DOEpatents

    Krishna, Coimbatore R. (Mt. Sinai, NY); Milau, Julius S. (Port Jefferson, NY)

    1985-01-01

    A cyclone separator including boundary layer turbulence control that is operable to prevent undue build-up of particulate material at selected critical areas on the separator walls, by selectively varying the fluid pressure at those areas to maintain the momentum of the vortex, thereby preventing particulate material from inducing turbulence in the boundary layer of the vortical fluid flow through the separator.

  3. Turbulence structure in a hypersonic boundary layer

    NASA Astrophysics Data System (ADS)

    Baumgartner, Mark Lawrence

    1997-10-01

    This dissertation provides new insights into the structure of compressible turbulent boundary layers in the hypersonic regime. Previous studies of compressible turbulent boundary layers have indicated that subtle differences may exist between subsonic and supersonic layers with respect to their structure angles, length scales, and intermittency functions. It was believed that a study at hypersonic speeds would provide information on characteristic differences attributable to Mach number effects. Towards this goal, a Mach 8 wind tunnel with a 9' axisymmetric test section was built at the Gas Dynamics Laboratory at Princeton University. The Mach 8 facility can produce flows with stagnation temperatures up to 1050 F (840 K) and stagnation pressures up to 1300 psi (9 MPa). Unit Reynolds numbers obtainable in the facility range from 3×106/m to 20×106/m. The focus of this dissertation is the zero-pressure- gradient hypersonic turbulent boundary layer on a flat plate. Mean pitot pressure and stagnation temperature surveys of the boundary layer at a Reynolds number Re/sb/theta/approx 3600 under moderately cold wall boundary conditions were performed and compared with theoretical predictions and previous experiments. Cross-sectional images of a hypersonic turbulent boundary layer were produced using filtered Rayleigh scattering to study the instantaneous structure of the boundary layer (previous visualizations of hypersonic boundary layers have relied on shadow-graph or schlieren techniques). The resulting images provided qualitative and quantitative information about turbulent structure which were then compared with those of sub- and supersonic data.

  4. Numerical simulation of a controlled boundary layer

    NASA Technical Reports Server (NTRS)

    Zang, Thomas A.; Hussaini, M. Yousuff

    1986-01-01

    The problem of interest is the boundary layer over a flat plate. The three standard laminar flow control (LFC) techniques are pressure gradient, suction, and heating. The parameters used to describe the amount of control in the context of the boundary layer equations are introduced. The numerical method required to find the mean flow, the linear eigenvalues of the Orr-Sommerfeld equation, and the full, nonlinear, 3-D solution of the Navier-Stokes equations are outlined. A secondary instability exists for the parallel boundary subject to uniform pressure gradient, suction, or heating. Selective control of the spanwise mode reduces the secondary instability in the parallel boundary layer at low Reynolds number.

  5. Boundary Layers of Air Adjacent to Cylinders

    PubMed Central

    Nobel, Park S.

    1974-01-01

    Using existing heat transfer data, a relatively simple expression was developed for estimating the effective thickness of the boundary layer of air surrounding cylinders. For wind velocities from 10 to 1000 cm/second, the calculated boundary-layer thickness agreed with that determined for water vapor diffusion from a moistened cylindrical surface 2 cm in diameter. It correctly predicted the resistance for water vapor movement across the boundary layers adjacent to the (cylindrical) inflorescence stems of Xanthorrhoea australis R. Br. and Scirpus validus Vahl and the leaves of Allium cepa L. The boundary-layer thickness decreased as the turbulence intensity increased. For a turbulence intensity representative of field conditions (0.5) and for ?windd between 200 and 30,000 cm2/second (where ?wind is the mean wind velocity and d is the cylinder diameter), the effective boundary-layer thickness in centimeters was equal to [Formula: see text]. PMID:16658855

  6. LDV measurements of turbulent baroclinic boundary layers

    SciTech Connect

    Neuwald, P.; Reichenbach, H. [Fraunhofer-Institut fuer Kurzzeitdynamik - Ernst-Mach-Institut (EMI), Freiburg im Breisgau (Germany); Kuhl, A.L. [Lawrence Livermore National Lab., El Segundo, CA (United States)

    1993-07-01

    Described here are shock tube experiments of nonsteady, turbulent boundary layers with large density variations. A dense-gas layer was created by injecting Freon through the porous floor of the shock tube. As the shock front propagated along the layer, vorticity was created at the air-Freon interface by an inviscid, baroclinic mechanism. Shadow-schlieren photography was used to visualize the turbulent mixing in this baroclinic boundary layer. Laser-Doppler-Velocimetry (LDV) was used to measure the streamwise velocity histories at 14 heights. After transition, the boundary layer profiles may be approximated by a power-law function u {approximately} u{sup {alpha}} where {alpha} {approx_equal} 3/8. This value lies between the clean flat plate value ({alpha} = 1/7) and the dusty boundary layer value ({alpha} {approx_equal} 0.7), and is controlled by the gas density near the wall.

  7. Effect of sulphide layers on the tribological behavior of steels under boundary lubrication conditions

    NASA Astrophysics Data System (ADS)

    Ning, Zhang; Da-Ming, Zhuang; Jia-Jun, Liu; Xiao-Dong, Fang; Ming-Xi, Guan

    2001-09-01

    Sulphide layers were prepared on the surface of AISI 1045 steel by ion sulphurization. The anti-scuffing, friction-reducing, and wear-resistant behavior of these sulphurized surfaces were investigated systematically using a ball-on-disc wear tester with engine oil as a lubricant. SEM, EDX, XPS, and AES were used to examine the morphologies and compositions of wear scars and boundary films. Sulphide layers improved anti-scuffing properties remarkably at low sliding velocities, and exhibited good friction-reducing and wear-resistant effects. During friction the sulphide layer promoted the growth of oxide, and iron sulphide could be decomposed and regenerated to form FeS again on the rubbing surface. An appropriately thick sulphide layer optimizes the sulphur-to-oxygen concentration in the boundary film resulting in the highest load-bearing capacity, and shows that thicker sulphide layers are unnecessary.

  8. Turbulent boundary layers subjected to multiple curvatures and pressure gradients

    NASA Technical Reports Server (NTRS)

    Bandyopadhyay, Promode R.; Ahmed, Anwar

    1993-01-01

    The effects of abruptly applied cycles of curvatures and pressure gradients on turbulent boundary layers are examined experimentally. Two two-dimensional curved test surfaces are considered: one has a sequence of concave and convex longitudinal surface curvatures and the other has a sequence of convex and concave curvatures. The choice of the curvature sequences were motivated by a desire to study the asymmetric response of turbulent boundary layers to convex and concave curvatures. The relaxation of a boundary layer from the effects of these two opposite sequences has been compared. The effect of the accompaying sequences of pressure gradient has also been examined but the effect of curvature dominates. The growth of internal layers at the curvature junctions have been studied. Measurements of the Gortler and corner vortex systems have been made. The boundary layer recovering from the sequence of concave to convex curvature has a sustained lower skin friction level than in that recovering from the sequence of convex to concave curvature. The amplification and suppression of turbulence due to the curvature sequences have also been studied.

  9. Numerical Solutions of Free Convection Boundary Layer Flow on a Solid Sphere with Convective Boundary Conditions

    NASA Astrophysics Data System (ADS)

    Alkasasbeh, H. T.; Salleh, M. Z.; Tahar, R. M.; Nazar, R.

    2014-04-01

    The free convection boundary layer flow on a solid sphere with convective boundary conditions has been investigated. The basic equations of boundary layer are transformed into a non-dimensional form and reduced to nonlinear systems of partial differential equations are solved numerically using an implicit finite difference scheme known as the Keller-box method. Numerical results are obtained for the wall temperature, the local heat transfer coefficient and the local skin friction coefficient, as well as the velocity and temperature profiles of the fluid. The features of the flow and heat transfer characteristics for Prandtl number, Pr = 0.7 7 and 100, the conjugate parameter y = 0.05, 0.1, 0.2 and the coordinate running along the surface of the sphere, 0° <= x <= 120° are analyzed and discussed.

  10. Computation of the shock-wave boundary layer interaction with flow separation

    NASA Technical Reports Server (NTRS)

    Ardonceau, P.; Alziary, T.; Aymer, D.

    1980-01-01

    The boundary layer concept is used to describe the flow near the wall. The external flow is approximated by a pressure displacement relationship (tangent wedge in linearized supersonic flow). The boundary layer equations are solved in finite difference form and the question of the presence and unicity of the solution is considered for the direct problem (assumed pressure) or converse problem (assumed displacement thickness, friction ratio). The coupling algorithm presented implicitly processes the downstream boundary condition necessary to correctly define the interacting boundary layer problem. The algorithm uses a Newton linearization technique to provide a fast convergence.

  11. The Drag in a Navier-Stokes Flow with Friction-Driven Boundary Conditions

    E-print Network

    Paris-Sud XI, Université de

    The Drag in a Navier-Stokes Flow with Friction-Driven Boundary Conditions Matthieu Bonnivard Abstract We consider the drag of an obstacle in a Navier-Stokes flow, associated to the friction for the asymptotic effect of rough boundaries on the solutions to the Navier-Stokes equations. Consequently

  12. An experimental study of the development of longitudinal vortex pairs embedded in a turbulent boundary layer

    NASA Technical Reports Server (NTRS)

    Pauley, Wayne R.; Eaton, John K.

    1987-01-01

    The mean streamwise development of pairs of longitudinal vortices embedded in an otherwise two-dimensional turbulent boundary layer was studied. Planes of closely spaced measurements of the three components of mean velocity were obtained at several streamwise locations, and the vorticity and circulation were calculated. Skin-friction measurements were also made. It was found that the rate of vorticity spreading in a vortex was greatly increased by close proximity of other vortices. The rate of streamwise circulation decrease was significantly greater for corotating vortices than for counter rotating vortices. Boundary-layer thinning and increased skin friction occured in regions where the secondary flow induced by the pairs was directed toward the wall; the boundary layer was thickened and skin friction reduced where the secondary flow was directed away from the wall.

  13. Planetary Boundary Layer Simulation Using TASS

    NASA Technical Reports Server (NTRS)

    Schowalter, David G.; DeCroix, David S.; Lin, Yuh-Lang; Arya, S. Pal; Kaplan, Michael

    1996-01-01

    Boundary conditions to an existing large-eddy simulation model have been changed in order to simulate turbulence in the atmospheric boundary layer. Several options are now available, including the use of a surface energy balance. In addition, we compare convective boundary layer simulations with the Wangara and Minnesota field experiments as well as with other model results. We find excellent agreement of modelled mean profiles of wind and temperature with observations and good agreement for velocity variances. Neutral boundary simulation results are compared with theory and with previously used models. Agreement with theory is reasonable, while agreement with previous models is excellent.

  14. Energy transport using natural convection boundary layers

    SciTech Connect

    Anderson, R.

    1986-04-01

    Natural convection is one of the major modes of energy transport in passive solar buildings. There are two primary mechanisms for natural convection heat transport through an aperture between building zones: (1) bulk density differences created by temperature differences between zones; and (2) thermosyphon pumping created by natural convection boundary layers. The primary objective of the present study is to compare the characteristics of bulk density driven and boundary layer driven flow, and discuss some of the advantages associated with the use of natural convection boundary layers to transport energy in solar building applications.

  15. Boundary layers on longitudinally grooved walls (riblets)

    NASA Astrophysics Data System (ADS)

    Fulachier, L.; Djenidi, L.; Anselmet, F.

    1987-10-01

    The boundary layer of riblets has been investigated in a hydrodynamic wind tunnel. For the case of triangularly grooved riblets, laser velocimetry visualizations show flow stabilization to occur for a turbulent boundary layer, and a decreased longitudinal velocity profile slope and a rapid relaxation downstream to occur for a laminar boundary layer. U-shaped grooves are found to have no effect. Visualizations of triangularly gooved riblets of several dimensions indicate that no counterrotating vortices exist in the grooves. This result is confirmed by profiles of the longitudinal velocity component, which show an increase in the velocity gradient near the crest and a significant decrease in the groove.

  16. Boundary-layer linear stability theory

    NASA Technical Reports Server (NTRS)

    Mack, L. M.

    1984-01-01

    Most fluid flows are turbulent rather than laminar and the reason for this was studied. One of the earliest explanations was that laminar flow is unstable, and the linear instability theory was first developed to explore this possibility. A series of early papers by Rayleigh produced many notable results concerning the instability of inviscid flows, such as the discovery of inflectional instability. Viscosity was commonly thought to act only to stabilize the flow, and flows with convex velocity profiles appeared to be stable. The investigations that led to a viscous theory of boundary layer instability was reported. The earliest application of linear stability theory to transition prediction calculated the amplitude ratio of the most amplified frequency as a function of Reynolds number for a Blasius boundary layer, and found that this quantity had values between five and nine at the observed Ret. The experiment of Schubauer and Skramstad (1947) completely reversed the prevailing option and fully vindicated the Gottingen proponents of the theory. This experiment demonstrated the existence of instability waves in a boundary layer, their connection with transition, and the quantitative description of their behavior by the theory of Tollmien and Schlichting. It is generally accepted that flow parameters such as pressure gradient, suction and heat transfer qualitatively affect transition in the manner predicted by the linear theory, and in particular that a flow predicted to be stable by the theory should remain laminar. The linear theory, in the form of the e9, or N-factor is today in routine use in engineering studies of laminar flow. The stability theory to boundary layers with pressure gradients and suction was applied. The only large body of numerical results for exact boundary layer solutions before the advent of the computer age by calculating the stability characteristics of the Falkner-Skan family of velocity profiles are given. When the digital computer reached a stage of development which permit the direct solution of the primary differential equations, numerical results were obtained from the linear theory during the next 10 years for many different boundary layer flows: three dimensional boundary layers; free convention boundary layers; compressible boundary layers; boundary layers on compliant walls; a recomputation of Falkner-Skan flows; unsteady boundary layers; and heated wall boundary layers.

  17. The effect of freestream turbulence and outer layer manipulation on turbulent boundary layer flow on surfaces with convex and concave curvatures

    E-print Network

    Syed, Irshad Hussain

    1995-01-01

    with the help of two grids of 93 and 71 percent porosity respectively. Skin friction was determined from the measured boundary layer profiles. A rake of Preston tubes was used to measure spanwise skin friction distribution on both surfaces. Goertler vortices...

  18. Turbulent boundary-layer control with plasma spanwise travelling waves

    NASA Astrophysics Data System (ADS)

    Whalley, Richard D.; Choi, Kwing-So

    2014-08-01

    Arrays of dielectric-barrier-discharge plasma actuators have been designed to generate spanwise travelling waves in the turbulent boundary layer for possible skin-friction drag reductions. Particle image velocimetry was used to elucidate the modifications to turbulence structures created by the plasma spanwise travelling waves. It has been observed that the plasma spanwise travelling waves amalgamated streamwise vortices, lifting low-speed fluid from the near-wall region up and around the peripheries of their cores to form wide ribbons of low-speed streamwise velocity within the viscous sublayer.

  19. Exact Calculation of Laminar Boundary Layer in Longitudinal Flow over a Flat Plate with Homogeneous Suction

    NASA Technical Reports Server (NTRS)

    Iglisch, Rudolf

    1949-01-01

    Lately it has been proposed to reduce the friction drag of a body in a flow for the technically important large Reynolds numbers by the following expedient: the boundary layer, normally turbulent, is artificially kept laminar up to high Reynolds numbers by suction. The reduction in friction drag thus obtained is of the order of magnitude of 60 to 80 percent of the turbulent friction drag, since the latter, for large Reynolds numbers, is several times the laminar friction drag. In considering the idea mentioned one has first to consider whether suction is a possible means of keeping the boundary layer laminar. This question can be answered by a theoretical investigation of the stability of the laminar boundary layer with suction. A knowledge, as accurate as possible, of the velocity distribution in the laminar boundary layer with suction forms the starting point for the stability investigation. E. Schlichting recently gave a survey of the present state of calculation of the laminar boundary layer with suction.

  20. Dynamic Acoustic Detection of Boundary Layer transition

    NASA Technical Reports Server (NTRS)

    Grohs, Jonathan R.

    1995-01-01

    The wind tunnel investigation into the acoustic nature of boundary layer transition using miniature microphones. This research is the groundwork for entry into the National Transonic Facility (NTF) at the NASA Langley Research Center (LaRC). Due to the extreme environmental conditions of NTF testing, low temperatures and high pressures, traditional boundary layer detection methods are not available. The emphasis of this project and further studies is acoustical sampling of a typical boundary layer and environmental durability of the miniature microphones. The research was conducted with the 14 by 22 Foot Subsonic Tunnel, concurrent with another wind tunnel test. Using the resources of LaRC, a full inquiry into the feasibility of using Knowles Electronics, Inc. EM-3086 microphones to detect the surface boundary layer, under differing conditions, was completed. This report shall discuss the difficulties encountered, product performance and observations, and future research adaptability of this method.

  1. Propulsion via buoyancy driven boundary layer

    E-print Network

    Doyle, Brian Patrick

    2011-01-01

    Heating a sloped surface generates a well-studied boundary layer flow, but the resulting surface forces have never been studied in propulsion applications. We built a triangular wedge to test this effect by mounting a ...

  2. Boundary layer flow visualization for flight testing

    NASA Technical Reports Server (NTRS)

    Obara, Clifford J.

    1986-01-01

    Flow visualization is used extensively in flight testing to determine aerodynamic characteristics such as surface flow direction and boundary layer state. Several visualization techniques are available to the aerodynamicist. Two of the most popular are oil flows and sublimating chemicals. Oil is used to visualize boundary layer transition, shock wave location, regions of separated flow, and surface flow direction. Boundary layer transition can also be visualized with sublimating chemicals. A summary of these two techniques is discussed, and the use of sublimating chemicals is examined in some detail. The different modes of boundary layer transition are characterized by different patterns in the sublimating chemical coating. The discussion includes interpretation of these chemical patterns and the temperature and velocity operating limitations of the chemical substances. Information for selection of appropriate chemicals for a desired set of flight conditions is provided.

  3. Designing LES of the High Reynolds Surface Layer to Account for Numerical Friction in the Algorithm.

    NASA Astrophysics Data System (ADS)

    Brasseur, James; Vijayakumar, Ganesh; Churchfield, Matthew; Lavely, Adam; Paterson, Eric; Moriarty, Patrick

    2011-11-01

    Numerical friction stabilizes large-eddy simulation (LES), but also impacts accuracy. We explore this issue using a theory (Brasseur & Wei 2010) where the LES is designed in a 3-parameter space that quantifies the level of friction in the SFS stress model (ReLES), the relative content of resolved to SFS stress (), and surface layer resolution. To achieve law-of-the-wall in the mean, the LES must be in the ``high-accuracy zone'' (HAZ) of the -ReLES parameter space. Using rough-wall channel flow and atmospheric boundary layer LES, we analyze simulations that are identical except for spectral vs. finite volume (FV) algorithms. Numerical friction shifts the LES away from the HAZ in the -ReLES parameter space consistent with changes in mean shear-rate. The effective low pass filter from numerical friction shifts the total stress from resolved to subfilter-scale contributions, and effect that is more apparent when the spectral version of the LES is in the HAZ. A consequence is the enhancement of streamwise coherence in turbulence structure, particularly apparent in the integral scales. We shall discuss the requirements to adjust the FV LES to match a corresponding spectral LES in the HAZ, and differences in efficiency and accuracy. Support: NSF, DOE.

  4. Large Eddy Simulation of Atmospheric Convective Boundary Layer with Realistic

    E-print Network

    Fedorovich, Evgeni

    Large Eddy Simulation of Atmospheric Convective Boundary Layer with Realistic Environmental atmospheric environmental forcings. Analysis of several simulated convec- tive boundary layer (CBL) cases toward dynamic adjustment of environmental parameters in LES of atmospheric boundary layer flows

  5. Boundary-layer stability and airfoil design

    NASA Technical Reports Server (NTRS)

    Viken, Jeffrey K.

    1986-01-01

    Several different natural laminar flow (NLF) airfoils have been analyzed for stability of the laminar boundary layer using linear stability codes. The NLF airfoils analyzed come from three different design conditions: incompressible; compressible with no sweep; and compressible with sweep. Some of the design problems are discussed, concentrating on those problems associated with keeping the boundary layer laminar. Also, there is a discussion on how a linear stability analysis was effectively used to improve the design for some of the airfoils.

  6. Thunderstorm influence on boundary layer winds

    E-print Network

    Schmidt, Jill Marie

    1986-01-01

    THUNDERSTORM INFLUENCE ON BOUNDARY LAYER WINDS A Thesis by JILL MARIE SCHMIDT Submitted to the Graduate College of Texas ASM University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE December 1986 Major... Subject: Meteorology THUNDERSTORM INFLUENCE ON BOUNDARY LAYER WINDS A Thesis by JILL MARIE SCHMIDT Approved as to style and content by: James R. Scog s (Chairman of Committee) Kenneth C. Brundidge (Member) Qmer . Jenklns (Member) James R...

  7. Two-fluid boundary layer stability

    Microsoft Academic Search

    G. Degrez; G. S. R. Sarma

    1998-01-01

    The stability of a two-fluid boundary layer is investigated. A boundary layer shears a second fluid that is bounded by the wall and the shearing fluid. The eigenvalue problem governing the linear stability of the configuration is solved using an efficient shooting-search method. Besides the Tollmien-Schlichting mode (hard mode) found in the classical hydrodynamical stability theory an additional Yih-mode (interfacial

  8. Hairpin vortices in turbulent boundary layers

    NASA Astrophysics Data System (ADS)

    Eitel-Amor, G.; Örlü, R.; Schlatter, P.; Flores, O.

    2015-02-01

    The present work presents a number of parallel and spatially developing simulations of boundary layers to address the question of whether hairpin vortices are a dominant feature of near-wall turbulence, and which role they play during transition. In the first part, the parent-offspring regeneration mechanism is investigated in parallel (temporal) simulations of a single hairpin vortex introduced in a mean shear flow corresponding to either turbulent channels or boundary layers (Re? ? 590). The effect of a turbulent background superimposed on the mean flow is considered by using an eddy viscosity computed from resolved simulations. Tracking the vortical structure downstream, it is found that secondary hairpins are only created shortly after initialization, with all rotational structures decaying for later times. For hairpins in a clean (laminar) environment, the decay is relatively slow, while hairpins in weak turbulent environments (10% of ?t) dissipate after a couple of eddy turnover times. In the second part, the role of hairpin vortices in laminar-turbulent transition is studied using simulations of spatial boundary layers tripped by hairpin vortices. These vortices are generated by means of specific volumetric forces representing an ejection event, creating a synthetic turbulent boundary layer initially dominated by hairpin-like vortices. These hairpins are advected towards the wake region of the boundary layer, while a sinusoidal instability of the streaks near the wall results in rapid development of a turbulent boundary layer. For Re? > 400, the boundary layer is fully developed, with no evidence of hairpin vortices reaching into the wall region. The results from both the parallel and spatial simulations strongly suggest that the regeneration process is rather short-lived and may not sustain once a turbulent background is developed. From the transitional flow simulations, it is conjectured that the forest of hairpins reported in former direct numerical simulation studies is reminiscent of the transitional boundary layer and may not be connected to some aspects of the dynamics of the fully developed wall-bounded turbulence.

  9. Friction, Frontogenesis, and the Stratification of the Surface Mixed Layer LEIF THOMAS*

    E-print Network

    Thompson, Andrew

    Friction, Frontogenesis, and the Stratification of the Surface Mixed Layer LEIF THOMAS* Department restratification resulting from frontogenesis in regions of confluent flow. Frictional forces acting of friction versus frontogenesis in the restratification of the mixed layer and are tested using numerical

  10. The passive control of compressible boundary layer growth by boundary layer trips

    NASA Technical Reports Server (NTRS)

    Chou, J. H.; Childs, M. E.

    1985-01-01

    The passive control of compressible boundary layer growth by boundary layer trips has been studied experimentally. Axisymmetric trips and three dimensional trips were used in this study. The nomial freestream Mach numbers are 1.5 and 4. The results show that trips are effective in promoting boundary layer growth. Trips are more effective for Mach 1.5 flows than for Mach 4 flows.

  11. On similarity in the atmospheric boundary layer

    Microsoft Academic Search

    Zbigniew Sorbjan

    1986-01-01

    A similarity theory for the atmospheric boundary layer is presented. The Monin-Obukhov similarity theory for the surface layer is a particular case of this new theory, for the case of z ? 0. Universal functions which are in agreement with empirical data are obtained for the stable and convective regimes.

  12. Boundary layers in centrifugal compressors. [application of boundary layer theory to compressor design

    NASA Technical Reports Server (NTRS)

    Dean, R. C., Jr.

    1974-01-01

    The utility of boundary-layer theory in the design of centrifugal compressors is demonstrated. Boundary-layer development in the diffuser entry region is shown to be important to stage efficiency. The result of an earnest attempt to analyze this boundary layer with the best tools available is displayed. Acceptable prediction accuracy was not achieved. The inaccuracy of boundary-layer analysis in this case would result in stage efficiency prediction as much as four points low. Fluid dynamic reasons for analysis failure are discussed with support from flow data. Empirical correlations used today to circumnavigate the weakness of the theory are illustrated.

  13. Ground observations of magnetospheric boundary layer phenomena

    SciTech Connect

    McHenry, M.A.; Clauer, C.R. (Stanford Univ., CA (USA)); Friis-Christensen, E. (Danish Meteorological Inst., Copenhagen (Denmark)); Newell, P.T. (Johns Hopkins Univ., Laurel, MD (USA)); Kelly, J.D. (SRI International, Menlo Park, CA (USA))

    1990-09-01

    Several classes of traveling vortices in the dayside ionospheric convection have been detected and tracked using the Greenland magnetometer chain (Friis-Christensen et al., 1988, McHenry et al., 1989). One class observed during quiet times consists of a continuous series of vortices moving generally anti-sunward for several hours at a time. The vortices strength is seen to be approximately steady and neighboring vortices rotate in opposite directions. Sondrestrom radar observations show that the vortices are located at the ionospheric convection reversal boundary. Low altitude DMSP observations indicate the vortices are on field lines which map to the inner edge of the low latitude boundary layer. Because the vortices are conjugate to the boundary layer, repeat in a regular fashion and travel antisunward, the authors argue that this class of vortices is caused by the Kelvin-Helmholtz instability of the inner edge of the magnetospheric boundary layer.

  14. Some Basic Aspects of Magnetohydrodynamic Boundary-Layer Flows

    NASA Technical Reports Server (NTRS)

    Hess, Robert V.

    1959-01-01

    An appraisal is made of existing solutions of magnetohydrodynamic boundary-layer equations for stagnation flow and flat-plate flow, and some new solutions are given. Since an exact solution of the equations of magnetohydrodynamics requires complicated simultaneous treatment of the equations of fluid flow and of electromagnetism, certain simplifying assumptions are generally introduced. The full implications of these assumptions have not been brought out properly in several recent papers. It is shown in the present report that for the particular law of deformation which the magnetic lines are assumed to follow in these papers a magnet situated inside the missile nose would not be able to take up any drag forces; to do so it would have to be placed in the flow away from the nose. It is also shown that for the assumption that potential flow is maintained outside the boundary layer, the deformation of the magnetic lines is restricted to small values. The literature contains serious disagreements with regard to reductions in heat-transfer rates due to magnetic action at the nose of a missile, and these disagreements are shown to be mainly due to different interpretations of reentry conditions rather than more complicated effects. In the present paper the magnetohydrodynamic boundary-layer equation is also expressed in a simple form that is especially convenient for physical interpretation. This is done by adapting methods to magnetic forces which in the past have been used for forces due to gravitational or centrifugal action. The simplified approach is used to develop some new solutions of boundary-layer flow and to reinterpret certain solutions existing in the literature. An asymptotic boundary-layer solution representing a fixed velocity profile and shear is found. Special emphasis is put on estimating skin friction and heat-transfer rates.

  15. Lear jet boundary layer/shear layer laser propagation experiments

    NASA Astrophysics Data System (ADS)

    Gilbert, K.

    1980-04-01

    Optical degradations of aircraft turbulent boundary layers with shear layers generated by aerodynamic fences are analyzed. A collimated 2.5 cm diameter helium-neon laser (0.63 microns) traversed the approximate 5 cm thick natural aircraft boundary layer in double pass via a reflective airfoil. In addition, several flights examined shear layer-induced optical degradation. Flight altitudes ranged from 1.5 to 12 km, while Mach numbers were varied from 0.3 to 0.8. Average line spread function (LSF) and Modulation Transfer Function (MTF) data were obtained by averaging a large number of tilt-removed curves. Fourier transforming the resulting average MTF yields an LSF, thus affording a direct comparison of the two optical measurements. Agreement was good for the aerodynamic fence arrangement, but only fair in the case of a turbulent boundary layer. Values of phase variance inferred from the LSF instrument for a single pass through the random flow and corrected for a large aperture ranged from 0.08 to 0.11 waves (lambda = .63 microns) for the boundary layer. Corresponding values for the fence vary from 0.08 to 0.16 waves. Extrapolation of these values to 10.6 microns suggests negligible degradation for a CO2 laser transmitted through a 5 cm thick, subsonic turbulent boundary layer.

  16. Lear jet boundary layer/shear layer laser propagation experiments

    NASA Technical Reports Server (NTRS)

    Gilbert, K.

    1980-01-01

    Optical degradations of aircraft turbulent boundary layers with shear layers generated by aerodynamic fences are analyzed. A collimated 2.5 cm diameter helium-neon laser (0.63 microns) traversed the approximate 5 cm thick natural aircraft boundary layer in double pass via a reflective airfoil. In addition, several flights examined shear layer-induced optical degradation. Flight altitudes ranged from 1.5 to 12 km, while Mach numbers were varied from 0.3 to 0.8. Average line spread function (LSF) and Modulation Transfer Function (MTF) data were obtained by averaging a large number of tilt-removed curves. Fourier transforming the resulting average MTF yields an LSF, thus affording a direct comparison of the two optical measurements. Agreement was good for the aerodynamic fence arrangement, but only fair in the case of a turbulent boundary layer. Values of phase variance inferred from the LSF instrument for a single pass through the random flow and corrected for a large aperture ranged from 0.08 to 0.11 waves (lambda = .63 microns) for the boundary layer. Corresponding values for the fence vary from 0.08 to 0.16 waves. Extrapolation of these values to 10.6 microns suggests negligible degradation for a CO2 laser transmitted through a 5 cm thick, subsonic turbulent boundary layer.

  17. The influence of free-stream turbulence on turbulent boundary layers with mild adverse pressure gradients

    NASA Technical Reports Server (NTRS)

    Hoffmann, J. A.; Kassir, S. M.; Larwood, S. M.

    1989-01-01

    The influence of near isotropic free-stream turbulence on the shape factors and skin friction coefficients of turbulent boundary layers is presented for the cases of zero and mild adverse pressure gradients. With free-stream turbulence, improved fluid mixing occurs in boundary layers with adverse pressure gradients relative to the zero pressure gradient condition, with the same free-stream turbulence intensity and length scale. Stronger boundary layers with lower shape factors occur as a result of a lower ratio of the integral scale of turbulence to the boundary layer thickness, and to vortex stretching of the turbulent eddies in the free-stream, both of which act to improve the transmission of momentum from the free-stream to the boundary layers.

  18. Modification in drag of turbulent boundary layers resulting from manipulation of large-scale structures

    NASA Technical Reports Server (NTRS)

    Corke, T. C.; Guezennec, Y.; Nagib, H. M.

    1981-01-01

    The effects of placing a parallel-plate turbulence manipulator in a boundary layer are documented through flow visualization and hot wire measurements. The boundary layer manipulator was designed to manage the large scale structures of turbulence leading to a reduction in surface drag. The differences in the turbulent structure of the boundary layer are summarized to demonstrate differences in various flow properties. The manipulator inhibited the intermittent large scale structure of the turbulent boundary layer for at least 70 boundary layer thicknesses downstream. With the removal of the large scale, the streamwise turbulence intensity levels near the wall were reduced. The downstream distribution of the skin friction was also altered by the introduction of the manipulator.

  19. Boundary Layer Cloudiness Parameterizations Using ARM Observations

    SciTech Connect

    Bruce Albrecht

    2004-09-15

    This study used DOE ARM data and facilities to: (1) study macroscopic properties of continental stratus clouds at SGP and the factors controlling these properties, (2) develop a scientific basis for understanding the processes responsible for the formation of boundary layer clouds using ARM observations in conjunction with simple parametric models and LES, and (3) evaluate cumulus cloud characteristics retrieved from the MMCR operating at TWP-Nauru. In addition we have used high resolution 94 GHz observations of boundary layer clouds and precipitation to: (1) develop techniques for using high temporal resolution Doppler velocities to study large-eddy circulations and turbulence in boundary layer clouds and estimate the limitations of using current and past MMCR data for boundary layer cloud studies, (2) evaluate the capability and limitations of the current MMCR data for estimating reflectivity, vertical velocities, and spectral under low- signal-to-noise conditions associated with weak no n-precipitating clouds, (3) develop possible sampling modes for the new MMCR processors to allow for adequate sampling of boundary layer clouds, and (4) retrieve updraft and downdraft structures under precipitating conditions.

  20. High enthalpy hypersonic boundary layer flow

    NASA Technical Reports Server (NTRS)

    Yanow, G.

    1972-01-01

    A theoretical and experimental study of an ionizing laminar boundary layer formed by a very high enthalpy flow (in excess of 12 eV per atom or 7000 cal/gm) with allowance for the presence of helium driver gas is described. The theoretical investigation has shown that the use of variable transport properties and their respective derivatives is very important in the solution of equilibrium boundary layer equations of high enthalpy flow. The effect of low level helium contamination on the surface heat transfer rate is minimal. The variation of ionization is much smaller in a chemically frozen boundary layer solution than in an equilibrium boundary layer calculation and consequently, the variation of the transport properties in the case of the former was not essential in the integration. The experiments have been conducted in a free piston shock tunnel, and a detailed study of its nozzle operation, including the effects of low levels of helium driver gas contamination has been made. Neither the extreme solutions of an equilibrium nor of a frozen boundary layer will adequately predict surface heat transfer rate in very high enthalpy flows.

  1. The kinematics of turbulent boundary layer structure

    NASA Technical Reports Server (NTRS)

    Robinson, Stephen Kern

    1991-01-01

    The long history of research into the internal structure of turbulent boundary layers has not provided a unified picture of the physics responsible for turbulence production and dissipation. The goals of the present research are to: (1) define the current state of boundary layer structure knowledge; and (2) utilize direct numerical simulation results to help close the unresolved issues identified in part A and to unify the fragmented knowledge of various coherent motions into a consistent kinematic model of boundary layer structure. The results of the current study show that all classes of coherent motion in the low Reynolds number turbulent boundary layer may be related to vortical structures, but that no single form of vortex is representative of the wide variety of vortical structures observed. In particular, ejection and sweep motions, as well as entrainment from the free-streem are shown to have strong spatial and temporal relationships with vortical structures. Disturbances of vortex size, location, and intensity show that quasi-streamwise vortices dominate the buffer region, while transverse vortices and vortical arches dominate the wake region. Both types of vortical structure are common in the log region. The interrelationships between the various structures and the population distributions of vortices are combined into a conceptual kinematic model for the boundary layer. Aspects of vortical structure dynamics are also postulated, based on time-sequence animations of the numerically simulated flow.

  2. Boundary-Layer-Ingesting Inlet Flow Control

    NASA Technical Reports Server (NTRS)

    Owens, Lewis R.; Allan, Brian G.; Gorton, Susan A.

    2008-01-01

    An experimental study was conducted to provide the first demonstration of an active flow control system for a flush-mounted inlet with significant boundary-layer-ingestion in transonic flow conditions. The effectiveness of the flow control in reducing the circumferential distortion at the engine fan-face location was assessed using a 2.5%-scale model of a boundary-layer-ingesting offset diffusing inlet. The inlet was flush mounted to the tunnel wall and ingested a large boundary layer with a boundary-layer-to-inlet height ratio of 35%. Different jet distribution patterns and jet mass flow rates were used in the inlet to control distortion. A vane configuration was also tested. Finally a hybrid vane/jet configuration was tested leveraging strengths of both types of devices. Measurements were made of the onset boundary layer, the duct surface static pressures, and the mass flow rates through the duct and the flow control actuators. The distortion and pressure recovery were measured at the aerodynamic interface plane. The data show that control jets and vanes reduce circumferential distortion to acceptable levels. The point-design vane configuration produced higher distortion levels at off-design settings. The hybrid vane/jet flow control configuration reduced the off-design distortion levels to acceptable ones and used less than 0.5% of the inlet mass flow to supply the jets.

  3. Turbulent boundary layer turbulence intensity similarity formulations.

    NASA Astrophysics Data System (ADS)

    Kunkel, Gary; Marusic, Ivan

    2003-11-01

    High Reynolds number data obtained in the surface layer of the atmospheric boundary layer at the SLTEST facility are used to analyze and further develop turbulence intensity similarity laws. The analysis of these similarity laws leads to implications concerning the interaction of the inner- and outer-portions of the boundary layer. Namely, the model used to extended formulations across the entire turbulent boundary layer suggests the outer portion of the flow does affect the inner portion of the flow. This seems to indicate that turbulence in the near-wall region is not autonomous as suggested by other work. The data were obtained in both `fully' rough and `transitionally' rough boundary layers, and are found to be consistent with the implications of the attached eddy hypothesis as well as Townsend's Reynolds number similarity hypothesis. The latter is in disagreement with recent laboratory studies which suggest roughness does affect the energy-containing motions in the outer portion of the layer. From comparisons with high Reynolds number data, an explanation for this disagreement is given, as are results from new laboratory data.

  4. Boundary-layer depth and entrainment zone characterization with a boundary-layer profiler

    Microsoft Academic Search

    Wayne M. Angevine; Allen B. White; S. K. Avery

    1994-01-01

    A technique for determining the height of the convective atmospheric boundary layer (CBL) with a 915 MHz boundary-layer profiler is discussed. The results are compared with CBL heights determined from radiosonde measurements. The profiler provides continuous CBL height measurements with very good time resolution (30 minutes or less), allowing for detailed understanding of the growth and fluctuations of the CBL.

  5. Mechanics of Boundary Layer Transition. Part 5: Boundary Layer Stability theory in incompressible and compressible flow

    NASA Technical Reports Server (NTRS)

    Mack, L. M.

    1967-01-01

    The fundamentals of stability theory, its chief results, and the physical mechanisms at work are presented. The stability theory of the laminar boundary determines whether a small disturbance introduced into the boundary layer will amplify or damp. If the disturbance damps, the boundary layer remains laminar. If the disturbance amplifies, and by a sufficient amount, then transition to turbulence eventually takes place. The stability theory establishes those states of the boundary layer which are most likely to lead to transition, identifys those frequencies which are the most dangerous, and indicates how the external parameters can best be changed to avoid transition.

  6. An analytic similarity theory for the planetary boundary layer stabilized by surface buoyancy

    Microsoft Academic Search

    Miles G. McPhee

    1981-01-01

    An analytic solution for a steady, horizontally homogeneous boundary layer with rotation, [ f ] , and surface friction velocity, û*, subjected to surface buoyancy characterized by Obukhov length L, is proposed as follows. Nondimensional variables are [ zeta = fz\\/eta _ * u_ * ,hat u = eta _ * hat U\\/hat u_ * ,hat T = hat tau

  7. Controlling the large-scale motions in a turbulent boundary layer

    E-print Network

    Marusic, Ivan

    for modulating levels of the skin-friction drag. For this we use a rectangular wall-normal jet to target spanwise array of sen- sors, located downstream of the jet records any modifications to the large to study the effects across the depth of boundary layer. It is found that the jet is able to create a low

  8. Unsteady turbulent boundary layers with flow reversal

    NASA Technical Reports Server (NTRS)

    Patel, V. C.; Nash, J. F.

    1975-01-01

    A theoretical study is carried out to search for the appearance of a singularity in a family of time-dependent turbulent boundary layers with embedded reverse-flow regions and determine the conditions necessary for its appearance. Further insight is gained into the development of unsteady turbulent boundary layers. The calculations performed for a family of prescribed external velocity distributions in which the relative importance of the effects of time-dependence, compared to those of spatial diffusion, are controlled by a given parameter. The conditions necessary for the appearance of a singularity appears to involve the existence of an appropriate relationship between the dominant velocities in the reversed-flow region and the rate of forward movement of the flow reversal point. The results support the hypothesis that a singularity will exist in the flow if and only if the typical reversed-flow velocities exceed the rate of penetration of the reversed flow into the oncoming boundary layer.

  9. Reynolds shear stress measurements in a separated boundary layer flow

    NASA Technical Reports Server (NTRS)

    Driver, David M.

    1991-01-01

    Turbulence measurements were obtained for two cases of boundary layer flow with an adverse pressure gradient, one attached and the other separated. A three-component laser Doppler velocimeter system was used to measure three mean velocity components, all six Reynolds stress components, and all ten velocity triple product correlations. Independent measurements of skin-friction obtained with a laser oil-flow interferometer were used to examine the law of the wall in adverse pressure gradient flows where p(+) is less than 0.05. Strong similiarities were seen between the two adverse pressure gradient flows and free shear layer type flows. Eddy viscosities, dissipation rates, and pressure-strain rates were deduced from the data and compared to various turbulence modeling assumptions.

  10. Calculation methods for compressible turbulent boundary layers, 1976

    NASA Technical Reports Server (NTRS)

    Bushnell, D. M.; Cary, A. M., Jr.; Harris, J. E.

    1977-01-01

    Equations and closure methods for compressible turbulent boundary layers are discussed. Flow phenomena peculiar to calculation of these boundary layers were considered, along with calculations of three dimensional compressible turbulent boundary layers. Procedures for ascertaining nonsimilar two and three dimensional compressible turbulent boundary layers were appended, including finite difference, finite element, and mass-weighted residual methods.

  11. Boundary-Layer Meteorology An International Journal of Physical,

    E-print Network

    Marusic, Ivan

    Processes in the Atmospheric Boundary Layer ISSN 0006-8314 Volume 147 Number 1 Boundary-Layer Meteorol (20131 23 Boundary-Layer Meteorology An International Journal of Physical, Chemical and Biological after publication. #12;Boundary-Layer Meteorol (2013) 147:41­50 DOI 10.1007/s10546-012-9777-7 ARTICLE

  12. ESE 134: BOUNDARY LAYER AND CLOUD DYNAMICS -SPRING 2013 SYLLABUS

    E-print Network

    Bordoni, Simona

    of clouds and atmospheric boundary layers, from a phenomenological overview of cloud and boundary layer) · The Atmospheric Boundary Layer, J. R. Garratt (Cambridge UP, 1992) · Turbulence in the Atmosphere, J. C. WyngaardESE 134: BOUNDARY LAYER AND CLOUD DYNAMICS - SPRING 2013 SYLLABUS Introduction to the dynamics

  13. Body surface adaptations to boundary-layer dynamics.

    PubMed

    Videler, J J

    1995-01-01

    Evolutionary processes have adapted nektonic animals to interact efficiently with the water that surrounds them. Not all these adaptations serve the same purpose. This paper concentrates on reduction of drag due to friction in the boundary layer close to the body surface. Mucus, compliant skins, scales, riblets and roughness may influence the flow velocity gradient, the type of flow and the thickness of the boundary layer around animals, and may seriously affect their drag in a positive or negative way. The long-chain polymers found in mucus decrease the pressure gradient and considerably reduced drag due to friction. The effect is probably due to channelling of the flow particles in the direction of the main flow, resulting in a reduction of turbulence. Compliant surfaces could probably reduce drag by equalising and distributing pressure pulses. However, the existing evidence that drag reduction actually occurs is not convincing. There is no indication that instantaneous heating, reducing the viscosity in the boundary layer, is used by animals as a drag-reducing technique. Small longitudinal ridges on rows of scales on fish can reduce shear stress in the boundary by a maximum of 10% compared with the shear stress of a smooth surface. The mechanism is based on the impedance of cross flow under well-defined conditions. The effect has been visualized with the use of particle image velocimetry techniques. The function of the swords and spears of several fast, pelagic, predatory fish species is still enigmatic. The surface structure of the sword of a swordfish is shown to be both rough and porous. The height of the roughness elements on the tip of the sword is close to the critical value for the induction of a laminar-to-turbulent flow transition at moderate cruising speeds. A flow tank is described that is designed to visualize the effects of surface imperfections on flow in the boundary layer in direct comparison with a smooth flat wall. The flow in a 1 m long, 10 cm high and 1 cm wide channel is visualized by illuminating the particles in a thin laser light sheet. The first results show that a rough surface increases the shear stress in the boundary layer and makes it thinner. The function of the roughness on the sword of a swordfish is probably to reduce the total drag by generating premature turbulence and by boundary layer thinning, despite an increased friction over the surface of the sword. The function of the porous surface structures on the sword, and of the porous skins of sharks and of the castor oil fish, will probably be discovered soon using new particle image velocimetry techniques applied under strong magnification to visualize the local behaviour of the flow. PMID:8571218

  14. Turbulence models for compressible boundary layers

    NASA Technical Reports Server (NTRS)

    Huang, P. G.; Bradshaw, P.; Coakley, T. J.

    1994-01-01

    It is shown that to satisfy the general accepted compressible law of the wall derived from the Van Driest transformation, turbulence modeling coefficients must actually be functions of density gradients. The transformed velocity profiles obtained by using standard turbulence model constants have too small a value of the effective von Karman constant kappa in the log-law region (inner layer). Thus, if the model is otherwise accurate, the wake component is overpredicted and the predicted skin friction is lower than the expected value.

  15. Boundary-layer theory for blast waves

    NASA Technical Reports Server (NTRS)

    Kim, K. B.; Berger, S. A.; Kamel, M. M.; Korobeinikov, V. P.; Oppenheim, A. K.

    1975-01-01

    It is profitable to consider the blast wave as a flow field consisting of two regions: the outer, which retains the properties of the inviscid solution, and the inner, which is governed by flow equations including terms expressing the effects of heat transfer and, concomitantly, viscosity. The latter region thus plays the role of a boundary layer. Reported here is an analytical method developed for the study of such layers, based on the matched asymptotic expansion technique combined with patched solutions.

  16. Separation behavior of boundary layers on three-dimensional wings

    NASA Technical Reports Server (NTRS)

    Stock, H. W.

    1981-01-01

    An inverse boundary layer procedure for calculating separated, turbulent boundary layers at infinitely long, crabbing wing was developed. The procedure was developed for calculating three dimensional, incompressible turbulent boundary layers was expanded to adiabatic, compressible flows. Example calculations with transsonic wings were made including viscose effects. In this case an approximated calculation method described for areas of separated, turbulent boundary layers, permitting calculation of this displacement thickness. The laminar boundary layer development was calculated with inclined ellipsoids.

  17. Force microscopy of layering and friction in an ionic liquid

    NASA Astrophysics Data System (ADS)

    Hoth, Judith; Hausen, Florian; Müser, Martin H.; Bennewitz, Roland

    2014-07-01

    The mechanical properties of the ionic liquid 1-butyl-1-methylpyrrolidinium tris(pentafluoroethyl) trifluorophosphate ([Py1,4][FAP]) in confinement between a SiOx and a Au(1?1?1) surface are investigated by means of atomic force microscopy (AFM) under electrochemical control. Up to 12 layers of ion pairs can be detected through force measurements while approaching the tip of the AFM to the surface. The particular shape of the force versus distance curve is explained by a model for the interaction between tip, gold surface and ionic liquid, which assumes an exponentially decaying oscillatory force originating from bulk liquid density correlations. Jumps in the tip-sample distance upon approach correspond to jumps of the compliant force sensor between branches of the oscillatory force curve. Frictional force between the laterally moving tip and the surface is detected only after partial penetration of the last double layer between tip and surface.

  18. INDIVIDUAL TURBULENT CELL INTERACTION: BASIS FOR BOUNDARY LAYER ESTABLISHMENT

    EPA Science Inventory

    Boundary layers are important in determining the forces on objects in flowing fluids, mixing characteristics, and other phenomena. For example, benthic boundary layers are frequently active resuspension layers that determine bottom turbidity and transniissivity. Traditionally, bo...

  19. The influence of free-stream turbulence on turbulent boundary layers with mild adverse pressure gradients

    NASA Technical Reports Server (NTRS)

    Hoffmann, Jon A.

    1988-01-01

    The influence of near isotropic free-stream turbulence on the shape factors and skin friction coefficients of turbulent bounday layers is presented for the cases of zero and mild adverse pressure gradients. With free-stream turbulence, improved fluid mixing occurs in boundary layers with adverse pressure gradients relative to the zero pressure gradient condition, with the same free-stream turbulence intensity and length scale. Stronger boundary layers with lower shape factors occur as a result of a lower ratio of the integral scale of turbulence to the boundary layer thickness, and to vortex stretching of the turbulent eddies in the free stream, both of which act to improve the transmission of momentum from the free stream to the boundary layers.

  20. Controls on boundary layer ventilation: Boundary layer processes and large-scale dynamics

    NASA Astrophysics Data System (ADS)

    Sinclair, V. A.; Gray, S. L.; Belcher, S. E.

    2010-06-01

    Midlatitude cyclones are important contributors to boundary layer ventilation. However, it is uncertain how efficient such systems are at transporting pollutants out of the boundary layer, and variations between cyclones are unexplained. In this study 15 idealized baroclinic life cycles, with a passive tracer included, are simulated to identify the relative importance of two transport processes: horizontal divergence and convergence within the boundary layer and large-scale advection by the warm conveyor belt. Results show that the amount of ventilation is insensitive to surface drag over a realistic range of values. This indicates that although boundary layer processes are necessary for ventilation they do not control the magnitude of ventilation. A diagnostic for the mass flux out of the boundary layer has been developed to identify the synoptic-scale variables controlling the strength of ascent in the warm conveyor belt. A very high level of correlation (R2 values exceeding 0.98) is found between the diagnostic and the actual mass flux computed from the simulations. This demonstrates that the large-scale dynamics control the amount of ventilation, and the efficiency of midlatitude cyclones to ventilate the boundary layer can be estimated using the new mass flux diagnostic. We conclude that meteorological analyses, such as ERA-40, are sufficient to quantify boundary layer ventilation by the large-scale dynamics.

  1. Goertler instability of a hypersonic boundary layer

    Microsoft Academic Search

    L. de Luca; G. Cardone; D. Aymer de la Chevalerie; A. Fonteneau

    1993-01-01

    The Goertler instability of a hypersonic boundary layer and its influence on the wall heat transfer are experimentally analyzed. Measurements, made in a wind tunnel by means of a computerized infrared (IR) imaging system, refer to the flow over two-dimensional concave walls. Wall temperature maps (that are interpreted as surface flow visualizations) and spanwise heat transfer fluctuations are presented. Measured

  2. Planetary Boundary Layer from AERI and MPL

    SciTech Connect

    Sawyer, Virginia

    2014-02-13

    The distribution and transport of aerosol emitted to the lower troposphere is governed by the height of the planetary boundary layer (PBL), which limits the dilution of pollutants and influences boundary-layer convection. Because radiative heating and cooling of the surface strongly affect the PBL top height, it follows diurnal and seasonal cycles and may vary by hundreds of meters over a 24-hour period. The cap the PBL imposes on low-level aerosol transport makes aerosol concentration an effective proxy for PBL height: the top of the PBL is marked by a rapid transition from polluted, well-mixed boundary-layer air to the cleaner, more stratified free troposphere. Micropulse lidar (MPL) can provide much higher temporal resolution than radiosonde and better vertical resolution than infrared spectrometer (AERI), but PBL heights from all three instruments at the ARM SGP site are compared to one another for validation. If there is agreement among them, the higher-resolution remote sensing-derived PBL heights can accurately fill in the gaps left by the low frequency of radiosonde launches, and thus improve model parameterizations and our understanding of boundary-layer processes.

  3. A Vertically Resolved Planetary Boundary Layer

    NASA Technical Reports Server (NTRS)

    Helfand, H. M.

    1984-01-01

    Increase of the vertical resolution of the GLAS Fourth Order General Circulation Model (GCM) near the Earth's surface and installation of a new package of parameterization schemes for subgrid-scale physical processes were sought so that the GLAS Model GCM will predict the resolved vertical structure of the planetary boundary layer (PBL) for all grid points.

  4. Measurement of a Mass Transfer Boundary Layer

    Microsoft Academic Search

    P. E. Doe

    1967-01-01

    DATA on momentum transfer from velocity measurements are usually applied to mass transfer processes using the accepted analogies between heat, mass and momentum transfer1. Doubts about these analogies, in particular their application to turbulent flow, have led me to develop a method of measuring the wet bulb depression of water vapour in a mass transfer boundary layer formed by water

  5. New evolution equations for turbulent boundary layers

    Microsoft Academic Search

    A. E. Perry

    1998-01-01

    Perry, Marusic & Li (1994) (Phys. Fluids, vol. 6(2) part 2) initially developed a mathematical framework for computing the evolution of boundary layers using classical similarity laws such as Prandtl's law of the wall and Coles' law of the wake together with the momentum integral and differential equations. It was found that these equations show that there are 4 parameters

  6. Orbiter Boundary Layer Transition Prediction Tool Enhancements

    NASA Technical Reports Server (NTRS)

    Berry, Scott A.; King, Rudolph A.; Kegerise, Michael A.; Wood, William A.; McGinley, Catherine B.; Berger, Karen T.; Anderson, Brian P.

    2010-01-01

    Updates to an analytic tool developed for Shuttle support to predict the onset of boundary layer transition resulting from thermal protection system damage or repair are presented. The boundary layer transition tool is part of a suite of tools that analyze the local aerothermodynamic environment to enable informed disposition of damage for making recommendations to fly as is or to repair. Using mission specific trajectory information and details of each d agmea site or repair, the expected time (and thus Mach number) of transition onset is predicted to help define proper environments for use in subsequent thermal and stress analysis of the thermal protection system and structure. The boundary layer transition criteria utilized within the tool were updated based on new local boundary layer properties obtained from high fidelity computational solutions. Also, new ground-based measurements were obtained to allow for a wider parametric variation with both protuberances and cavities and then the resulting correlations were calibrated against updated flight data. The end result is to provide correlations that allow increased confidence with the resulting transition predictions. Recently, a new approach was adopted to remove conservatism in terms of sustained turbulence along the wing leading edge. Finally, some of the newer flight data are also discussed in terms of how these results reflect back on the updated correlations.

  7. Planetary Boundary Layer from AERI and MPL

    DOE Data Explorer

    Sawyer, Virginia

    The distribution and transport of aerosol emitted to the lower troposphere is governed by the height of the planetary boundary layer (PBL), which limits the dilution of pollutants and influences boundary-layer convection. Because radiative heating and cooling of the surface strongly affect the PBL top height, it follows diurnal and seasonal cycles and may vary by hundreds of meters over a 24-hour period. The cap the PBL imposes on low-level aerosol transport makes aerosol concentration an effective proxy for PBL height: the top of the PBL is marked by a rapid transition from polluted, well-mixed boundary-layer air to the cleaner, more stratified free troposphere. Micropulse lidar (MPL) can provide much higher temporal resolution than radiosonde and better vertical resolution than infrared spectrometer (AERI), but PBL heights from all three instruments at the ARM SGP site are compared to one another for validation. If there is agreement among them, the higher-resolution remote sensing-derived PBL heights can accurately fill in the gaps left by the low frequency of radiosonde launches, and thus improve model parameterizations and our understanding of boundary-layer processes.

  8. Thick diffusion limit boundary layer test problems

    SciTech Connect

    Bailey, T. S. [Lawrence Livermore National Laboratory, 7000 East Avenue, L-095, Livermore, CA 94551 (United States); Warsa, J. S.; Chang, J. H. [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87544 (United States); Adams, M. L. [Texas A and M University, Department of Nuclear Engineering, College Station, TX 77843-3133 (United States)

    2013-07-01

    We develop two simple test problems that quantify the behavior of computational transport solutions in the presence of boundary layers that are not resolved by the spatial grid. In particular we study the quantitative effects of 'contamination' terms that, according to previous asymptotic analyses, may have a detrimental effect on the solutions obtained by both discontinuous finite element (DFEM) and characteristic-method (CM) spatial discretizations, at least for boundary layers caused by azimuthally asymmetric incident intensities. Few numerical results have illustrated the effects of this contamination, and none have quantified it to our knowledge. Our test problems use leading-order analytic solutions that should be equal to zero in the problem interior, which means the observed interior solution is the error introduced by the contamination terms. Results from DFEM solutions demonstrate that the contamination terms can cause error propagation into the problem interior for both orthogonal and non-orthogonal grids, and that this error is much worse for non-orthogonal grids. This behavior is consistent with the predictions of previous analyses. We conclude that these boundary layer test problems and their variants are useful tools for the study of errors that are introduced by unresolved boundary layers in diffusive transport problems. (authors)

  9. Heat Transport in the Atmospheric Boundary Layer

    Microsoft Academic Search

    L. Mahrt; J. Paumier

    1984-01-01

    The structure of turbulence and transport of heat is examined from data obtained from 11 aircraft soundings executed in heated boundary layers during the Air Mass Transformation Experiment. Various influences on the turbulent transport are revealed by analyzing properties of the joint frequency distribution in polar coordinate. Such an analysis allows determination of a correlation coefficient and fluctuation amplitude as

  10. An Approximate Method for Calculation of the Laminar Boundary Layer with Suction for Bodies of Arbitrary Shape

    NASA Technical Reports Server (NTRS)

    Schlichting, H.

    1949-01-01

    Various ways were tried recently to decrease the friction drag of a body in a flow; they all employ influencing the boundary layer. One of them consists in keeping the boundary layer Laminar by suction; promising tests have been carried out. Since for large Reynolds numbers the friction drag of the laminar boundary layer is much lower than that of the turbulent boundary layer, a considerable saving in drag results from keeping the boundary layer laminar, even with the blower power required for suction taken into account. The boundary layer is kept laminar by suction in two ways: first, by reduction of the thickness of the boundary layer and second, by the fact that the suction changes the form of the velocity distribution so that it becomes more stable, in a manner similar to the change by a pressure drop. There by the critical Reynolds number of the boundary layer (USigma*/V) (sub crit) becomes considerably higher than for the case without suction. This latter circumstance takes full effect only if continuous suction is applied which one might visualize realized through a porous wall. Thus the suction quantities required for keeping the boundary layer laminar become so small that the suction must be regarded as a very promising auxiliary means for drag reduction.

  11. Changes in the turbulent boundary layer structure associated with net drag reduction by outer layer manipulators

    NASA Technical Reports Server (NTRS)

    Rashidnia, N.; Falco, R. E.

    1987-01-01

    A specially designed wind tunnel was used to examine the effects of tandemly arranged parallel plate manipulators (TAPPMs) on a turbulent boundary-layer structure and the associated drag. Momentum balances, as well as measurements of the local shear stress from the velocity gradient near the wall, were used to obtain the net drag and local skin friction changes. Two TAPPMs, identical except for the thickness of their plates, were used in the study. Results with .003 inch plates were a maximum net drag reduction of 10 percent at 58 beta sub o (using a momentum balance). At 20 beta sub o, simultaneous laser sheet flow visualization and hot-wire anemometry data showed that the Reynolds stress in the large eddies was significantly reduced, as were the streamwise and normal velocity components. Using space-time correlations the reductions were again identified. Furthermore, quantitative flow visualization showed that the outward normal velocity of the inner region was also significantly decreased in the region around 20 beta sub o. However, throughout the first 130 beta sub o, the measured sublayer thickness with the TAPPMs in place was 15 to 20 percent greater. The data showed that the skin friction, as well as the structure of the turbulence, was strongly modified in the first 35 beta sub o, but that they both significantly relaxed toward unmanipulated boundary layer values by 50 beta sub o.

  12. Bursting frequency prediction in turbulent boundary layers

    SciTech Connect

    LIOU,WILLIAM W.; FANG,YICHUNG

    2000-02-01

    The frequencies of the bursting events associated with the streamwise coherent structures of spatially developing incompressible turbulent boundary layers were predicted using global numerical solution of the Orr-Sommerfeld and the vertical vorticity equations of hydrodynamic stability problems. The structures were modeled as wavelike disturbances associated with the turbulent mean flow. The global method developed here involves the use of second and fourth order accurate finite difference formula for the differential equations as well as the boundary conditions. An automated prediction tool, BURFIT, was developed. The predicted resonance frequencies were found to agree very well with previous results using a local shooting technique and measured data.

  13. Towards Petascale DNS of High Reynolds-Number Turbulent Boundary Layer

    NASA Astrophysics Data System (ADS)

    Webster, Keegan R.

    In flight vehicles, a large portion of fuel consumption is due to skin-friction drag. Reduction of this drag will significantly reduce the fuel consumption of flight vehicles and help our nation to reduce CO 2 emissions. In order to reduce skin-friction drag, an increased understanding of wall-turbulence is needed. Direct numerical simulation (DNS) of spatially developing turbulent boundary layers (SDTBL) can provide the fundamental understanding of wall-turbulence in order to produce models for Reynolds averaged Navier-Stokes (RANS) and large-eddy simulations (LES). DNS of SDTBL over a flat plate at Retheta = 1430 - 2900 were performed. Improvements were made to the DNS code allowing for higher Reynolds number simulations towards petascale DNS of turbulent boundary layers. Mesh refinement and improvements to the inflow and outflow boundary conditions have resulted in turbulence statistics that match more closely to experimental results. The Reynolds stresses and the terms of their evolution equations are reported.

  14. Two-fluid boundary layer stability

    NASA Astrophysics Data System (ADS)

    Özgen, S.; Degrez, G.; Sarma, G. S. R.

    1998-11-01

    The stability of a two-fluid boundary layer is investigated. A boundary layer shears a second fluid that is bounded by the wall and the shearing fluid. The eigenvalue problem governing the linear stability of the configuration is solved using an efficient shooting-search method. Besides the Tollmien-Schlichting mode (hard mode) found in the classical hydrodynamical stability theory an additional Yih-mode (interfacial mode) exists due to the two-fluid interface. Effects of viscosity and density stratifications, thickness of the bounded fluid, gravity, surface tension as well as the non-Newtonian character of the lower fluid on the stability characteristics are determined. The interfacial mode is found to be very sensitive against viscosity stratification. However, with a highly viscous liquid layer, the system approaches a single-layer behavior. The shear-thinning non-Newtonian liquid layer is observed to have a stabilizing effect for both of the modes. Surface tension is stabilizing for short waves for the interfacial mode but a more complex effect was observed for the hard mode. Gravity is stabilizing with a favorable density stratification. Density stratification alone is destabilizing for low and moderate values of this parameter but becomes stabilizing for higher values. When the external boundary layer profile is turbulent, the interfacial mode is more likely to be observed in an experiment. Agreement of the obtained results with experimental, theoretical and numerical results reported in the literature is good. This is encouraging as the study is intended for solving the stability characteristics of de/anti-icing fluid-air systems and comparing the results with the experimental data when they become available.

  15. Burst vortex/boundary layer interaction

    NASA Technical Reports Server (NTRS)

    Bradshaw, P.; Naaseri, M.

    1988-01-01

    Several configurations of delta wing vortex generator and boundary layer test plate were tested, and two final ones selected. Sample measurements and flow visualizations in the candidate configurations, together with more detailed measurements in one of the two final arrangements, which were selected so that a pure vortex bursts repeatably and then interacts, in as simple fashion as possible, with a simple turbulent boundary layer, are included. It is concluded that different intensities of bursting or breakdown, like different strengths of shock wave or hydraulic jump, can be produced by minor changes of configuration. The weaker breakdowns do not produce flow reversal. The initial measurements were done with a fairly weak, but repeatable, breakdown. Basic measurements on the second final arrangement, with a stronger breakdown, are in progress.

  16. Boundary layer flow in Trombe wall ducts

    NASA Astrophysics Data System (ADS)

    Pratt, R.; Karaki, S.

    1980-07-01

    A finite difference material solution technique for the boundary layer equations with an eddy viscosity formulation for turbulence is developed for two-dimensional free convection duct flows. Heat transfer and mass flow rates for air are determined for ducts of uniform but unequal surface temperatures characteristic of Trombe wall ducts. The effect of vents through the wall are modeled as an external pressure drop. Correlations of Nusselt versus Grashof numbers using the duct height as the reference length reduce the heat transfer results for a given vent restriction to a single curve for duct aspect ratios from 10 to 100. Limits to the solution due to the onset of downward flow of air near the cooler surface and the consequent breakdown of the boundary layer assumption are presented.

  17. Boundary layer transition detection by luminescence imaging

    NASA Technical Reports Server (NTRS)

    Mclachlan, B. G.; Bell, J. H.; Gallery, J.; Gouterman, M.; Callis, J.

    1993-01-01

    In recent experiments we have demonstrated the feasibility of a new approach to boundary layer transition detection. This new approach employs the temperature dependence of certain photoluminescent materials in the form of a surface coating or 'paint' to detect the change in heat transfer characteristics that accompany boundary layer transition. The feasibility experiments were conducted for low subsonic to transonic Mach numbers on two-dimensional airfoil and flat plate configurations. Paint derived transition locations were determined and compared to those obtained from Preston pressure probe measurements. Artificial heating of the models was used to obtain transition temperature signatures suitable for the instrumentation available to us. Initial estimates show, however, that passive kinetic heating at high Mach numbers is a promising alternative.

  18. An experimental study into the effects of streamwise and spanwise acceleration in a turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    Pearce, N. F.; Denissenko, P.; Lockerby, D. A.

    2012-12-01

    We compare two turbulent boundary layers produced in a low-speed water channel experiment. Both are subjected to an identical streamwise pressure gradient generated via a lateral contraction of the channel, and an additional spanwise pressure gradient is imposed on one of the layers by curving the contraction walls. Despite a relatively high streamwise acceleration, hot-film probe measurements of the mean-velocity distributions show that the Reynolds number increases whilst the coefficient of friction decreases downstream. Visualization of the viscous layers using hydrogen bubbles reveal an increase in the non-dimensional streak spacing in response to the acceleration. Changes in statistical moments of the streamwise velocity near the wall suggest an increased dominance of high-velocity fluctuations. The near-wall streaks and velocity statistics have little sensitivity to the boundary layer three-dimensionality induced by the spanwise pressure gradient, with the boundary-layer crossflow velocity reaching 11 % that of the local freestream velocity.

  19. An experimental study into the effects of streamwise and spanwise acceleration in a turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    Pearce, N. F.; Denissenko, P.; Lockerby, D. A.

    2013-01-01

    We compare two turbulent boundary layers produced in a low-speed water channel experiment. Both are subjected to an identical streamwise pressure gradient generated via a lateral contraction of the channel, and an additional spanwise pressure gradient is imposed on one of the layers by curving the contraction walls. Despite a relatively high streamwise acceleration, hot-film probe measurements of the mean-velocity distributions show that the Reynolds number increases whilst the coefficient of friction decreases downstream. Visualization of the viscous layers using hydrogen bubbles reveal an increase in the non-dimensional streak spacing in response to the acceleration. Changes in statistical moments of the streamwise velocity near the wall suggest an increased dominance of high-velocity fluctuations. The near-wall streaks and velocity statistics have little sensitivity to the boundary layer three-dimensionality induced by the spanwise pressure gradient, with the boundary-layer crossflow velocity reaching 11 % that of the local freestream velocity.

  20. Boundary Layer Control for Hypersonic Airbreathing Vehicles

    NASA Technical Reports Server (NTRS)

    Berry, Scott A.; Nowak, Robert J.; Horvath, Thomas J.

    2004-01-01

    Active and passive methods for tripping hypersonic boundary layers have been examined in NASA Langley Research Center wind tunnels using a Hyper-X model. This investigation assessed several concepts for forcing transition, including passive discrete roughness elements and active mass addition (or blowing), in the 20-Inch Mach 6 Air and the 31-Inch Mach 10 Air Tunnels. Heat transfer distributions obtained via phosphor thermography, shock system details, and surface streamline patterns were measured on a 0.333-scale model of the Hyper-X forebody. The comparisons between the active and passive methods for boundary layer control were conducted at test conditions that nearly match the Hyper-X nominal Mach 7 flight test-point of an angle-of-attack of 2-deg and length Reynolds number of 5.6 million. For passive roughness, the primary parametric variation was a range of trip heights within the calculated boundary layer thickness for several trip concepts. The passive roughness study resulted in a swept ramp configuration, scaled to be roughly 0.6 of the calculated boundary layer thickness, being selected for the Mach 7 flight vehicle. For the active blowing study, the manifold pressure was systematically varied (while monitoring the mass flow) for each configuration to determine the jet penetration height, with schlieren, and transition movement, with the phosphor system, for comparison to the passive results. All the blowing concepts tested, which included various rows of sonic orifices (holes), two- and three-dimensional slots, and random porosity, provided transition onset near the trip location with manifold stagnation pressures on the order of 40 times the model surface static pressure, which is adequate to ensure sonic jets. The present results indicate that the jet penetration height for blowing was roughly half the height required with passive roughness elements for an equivalent amount of transition movement.

  1. Boundary Layer Transition Results From STS-114

    NASA Technical Reports Server (NTRS)

    Berry, Scott A.; Horvath, Thomas J.; Cassady, Amy M.; Kirk, Benjamin S.; Wang, K. C.; Hyatt, Andrew J.

    2006-01-01

    The tool for predicting the onset of boundary layer transition from damage to and/or repair of the thermal protection system developed in support of Shuttle Return to Flight is compared to the STS-114 flight results. The Boundary Layer Transition (BLT) Tool is part of a suite of tools that analyze the aerothermodynamic environment of the local thermal protection system to allow informed disposition of damage for making recommendations to fly as is or to repair. Using mission specific trajectory information and details of each damage site or repair, the expected time of transition onset is predicted to help determine the proper aerothermodynamic environment to use in the subsequent thermal and stress analysis of the local structure. The boundary layer transition criteria utilized for the tool was developed from ground-based measurements to account for the effect of both protuberances and cavities and has been calibrated against flight data. Computed local boundary layer edge conditions provided the means to correlate the experimental results and then to extrapolate to flight. During STS-114, the BLT Tool was utilized and was part of the decision making process to perform an extravehicular activity to remove the large gap fillers. The role of the BLT Tool during this mission, along with the supporting information that was acquired for the on-orbit analysis, is reviewed. Once the large gap fillers were removed, all remaining damage sites were cleared for reentry as is. Post-flight analysis of the transition onset time revealed excellent agreement with BLT Tool predictions.

  2. Linear Controllers for Turbulent Boundary Layers

    Microsoft Academic Search

    Junwoo Lim; John Kim; Sung-Moon Kang; Jason Speyer

    2000-01-01

    Several recent studies have shown that controllers based on a linear system theory work surprisingly well in turbulent flows, suggesting that a linear mechanism may play an important role even in turbulent flows. It has been also shown that non-normality of the linearized Navier-Stokes equations is an essential characteristic in the regeneration of near-wall turbulence structures in turbulent boundary layers.

  3. The boundary layer on compressor cascade blades

    NASA Technical Reports Server (NTRS)

    Deutsch, S.

    1981-01-01

    Some redesign of the cascade facility was necessary in order to incoporate the requirements of the LDA system into the design. Of particular importance was the intended use of a combination of suction upstream of the blade pack with diverging pack walls, as opposed to blade pack suction alone, for spanwise dimensionality control. An ARL blade was used to redo some tests using this arrangement. Preliminary testing and boundary layer measurements began on the double circular arc blades.

  4. The capillary boundary layer for standing waves

    Microsoft Academic Search

    John Miles

    1991-01-01

    The linear, free-surface oscillations of an inviscid fluid in a cylindrical basin subject to the contact-line condition are determined through a boundary-layer approximation. The primary result is a corresponding form factor. Explicit results are derived for circular and rectangular cylinders and compared with Grahem-Eagle's (1983) results for the circular cylinder and Hocking's (1987) results for the two-dimensional problem. The exact

  5. Boundary layer cutting in turbulent liquid sheets

    NASA Astrophysics Data System (ADS)

    Durbin, S. G.; Yoda, M.; Abdel-Khalik, S. I.; Sadowski, D. L.

    2003-11-01

    Turbulent liquid sheets have been proposed to protect solid structures in inertial fusion energy power plants by absorbing damaging radiation and debris. Minimizing surface ripple in these flows will reduce interference with the beams that ignite the fuel and initiate fusion. Wu et al. [Atom. Sprays 5:175 (1995)] showed that ``boundary layer removal'' suppressed primary breakup in turbulent round jets. The effect of boundary layer cutting on the free-surface smoothness of turbulent liquid sheets was therefore studied experimentally for vertical turbulent sheets of water issuing downwards into ambient air. Sheets issuing from a two-dimensional fifth-order polynomial contraction nozzle with an exit aspect ratio of 10 and thickness (small dimension) ? = 1 cm were investigated at Reynolds numbers based on ? up to 1.3 × 10^5. A knife edge is used to ``cut'' away O(0.1 mm) of the flow on one side of the sheet near the nozzle exit. Initial conditions just upstream of the nozzle exit are quantified by laser-Doppler velocimetry. Planar laser-induced fluorescence was used to visualize and measure the free surface geometry of the liquid sheet in the near-field region of this flow up to 25? downstream of the nozzle exit. Boundary layer cutting was shown to significantly reduce surface ripple of the jet as characterized by the standard deviation of the free-surface position.

  6. Momentum Transport in the Convective Boundary Layer

    NASA Astrophysics Data System (ADS)

    Soares, P. M. M.; Miranda, P. M. A.; Martins, J.; Teixeira, J.

    2010-09-01

    The sub-grid scale transport of momentum in the boundary layer is generally treated as a diffusive process in atmospheric models. However, results for the mean wind are frequently poor in test cases, and it is not clear how important are those fluxes in the performance of the models. Nevertheless, it is clear that convective momentum transport in a key issue in the atmospheric circulation, and in the interactions across multiple space and time scales. In the case of scalar fluxes, such as potential temperature and water vapour, it has been shown that "non-local" transport plays an important role in the turbulent transport, implying that a purely diffusive representation is insufficient. Counter-gradient, mass-flux theories and the combined eddy-diffusivity/mass-flux (EDMF) scheme were built to overcome that problem. The role of non-local effects in momentum is still largely an opened question. In the present study we use a extensive set of results from LES simulations to diagnose vertical profiles of momentum related quantities in different convective boundary layers: the nieuwstadt clear boundary layer, the trade wind cumulus BOMEX case, the shallow cumulus diurnal cycle from the ARM experiment and a LBA deep convection case. In many situations these results show that the momentum transport made by organized structures, as clouds, updraughts and downdraughts contribute significantly to the total turbulent flux, suggesting that they should be included in convective parameterizations.

  7. Entropy production in relativistic jet boundary layers

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna; Begelman, Mitchell C.

    2015-01-01

    Hot relativistic jets, passing through a background medium with a pressure gradient p ? r-? where 2 < ? ? 8/3, develop a shocked boundary layer containing a significant fraction of the jet power. In previous work, we developed a self-similar description of the boundary layer assuming isentropic flow, but we found that such models respect global energy conservation only for the special case ? = 8/3. Here, we demonstrate that models with ? < 8/3 can be made self-consistent if we relax the assumption of constant specific entropy. Instead, the entropy must increase with increasing r along the boundary layer, presumably due to multiple shocks driven into the flow as it gradually collimates. The increase in specific entropy slows the acceleration rate of the flow and provides a source of internal energy that could be channelled into radiation. We suggest that this process may be important for determining the radiative characteristics of tidal disruption events and gamma-ray bursts from collapsars.

  8. The role of nonlinear critical layers in boundary layer transition

    NASA Technical Reports Server (NTRS)

    Goldstein, M.E.

    1995-01-01

    Asymptotic methods are used to describe the nonlinear self-interaction between pairs of oblique instability modes that eventually develops when initially linear spatially growing instability waves evolve downstream in nominally two-dimensional laminar boundary layers. The first nonlinear reaction takes place locally within a so-called 'critical layer', with the flow outside this layer consisting of a locally parallel mean flow plus a pair of oblique instability waves - which may or may not be accompanied by an associated plane wave. The amplitudes of these waves, which are completely determined by nonlinear effects within the critical layer, satisfy either a single integro-differential equation or a pair of integro-differential equations with quadratic to quartic-type nonlinearities. The physical implications of these equations are discussed.

  9. The Role of Boundary Layer Processes in Limiting PV Homogenization

    E-print Network

    Zhang, Yang

    A ?-plane multilevel quasigeostrophic channel model with interactive static stability and a simplified parameterization of atmospheric boundary layer physics is used to study the role of different boundary layer processes ...

  10. Relaxation of an unsteady turbulent boundary layer on a flat plate in an expansion tube

    NASA Technical Reports Server (NTRS)

    Gurta, R. N.; Trimpi, R. L.

    1974-01-01

    An analysis is presented for the relaxation of a turbulent boundary layer on a semi-infinite flat plate after passage of a shock wave and a trailing driver gas-driven gas interface. The problem has special application to expansion-tube flows. The flow-governing equations have been transformed into the Crocco variables, and a time-similar solution is presented in terms of the dimensionless distance-time variable alpha and the dimensionless velocity variable beta. An eddy-viscosity model, similar to that of time-steady boundary layers, is applied to the inner and outer regions of the boundary layer. A turbulent Prandtl number equal to the molecular Prandtl number is used to relate the turbulent heat flux to the eddy viscosity. The numerical results, obtained by using the Gauss-Seidel line-relaxation method, indicate that a fully turbulent boundary layer relaxes faster to the final steady-state values of heat transfer and skin friction than a laminar boundary layer. The results also give a fairly good estimate of the local skin friction and heat transfer for near steady-flow conditions.

  11. Unsteadiness of Shock Wave / Boundary Layer Interactions

    NASA Astrophysics Data System (ADS)

    Clemens, Noel

    2009-11-01

    Shock wave / boundary layer interactions are an important feature of high-speed flows that occur in a wide range of practical configurations including aircraft control surfaces, inlets, missile base flows, nozzles, and rotating machinery. These interactions are often associated with severe boundary layer separation, which is highly unsteady, and exhibits high fluctuating pressure and heat loads. The unsteady motions are characterized by a wide range of frequencies, including low-frequency motions that are about two orders of magnitude lower than those that characterize the upstream boundary layer. It is these low-frequency motions that are of most interest because they have been the most difficult to explain and model. Despite significant work over the past few decades, the source of the low-frequency motions remains a topic of intense debate. Owing to a flurry of activity over the past decade on this single topic we are close to developing a comprehensive understanding of the low-frequency unsteadiness. For example, recent work in our laboratory and others suggests that the driving mechanism is related to low-frequency fluctuations in the upstream boundary layer. However, several recent studies suggest the dominant mechanism is an intrinsic instability of the separated flow. Here we attempt to reconcile these views by arguing that the low-frequency unsteadiness is driven by both upstream and downstream processes, but the relative importance of each mechanism depends on the strength (or length-scale) of separation. In cases where the separation bubble is relatively small, then the flow is intermittently separated, and there exists a strong correlation between upstream velocity fluctuations and the separation bubble dynamics. It appears that superstructures in the upstream boundary layer can play an important role in driving the unsteadiness for this case. It is not clear, however, if the upstream fluctuations directly move the separation point or indirectly couple to a global instability. In cases where the separation is strong (and the bubble large) then the bubble pulsates owing to a global instability, as has been suggested by other researchers. In this case upstream turbulence may serve mainly as a source of broadband fluctuations that seed the large-scale instability of the separated flow.

  12. Quasi-Coherent Structures In Turbulent Boundary Layers

    NASA Technical Reports Server (NTRS)

    Robinson, S. K.; Kline, S. J.; Spalart, P. R.

    1992-01-01

    Two-part report reviews knowledge of coherent structures in turbulent boundary layers. Part I describes processes and status of cooperative project to summarize data from research on boundary-layer turbulence. Part II presents results of study of numerically simulated flat-plate canonical turbulent boundary layer.

  13. EXPERIMENTAL AND THEORETICAL INVESTIGATIONS IN AN OSCILLATORY TURBULENT BOUNDARY LAYER

    Microsoft Academic Search

    Ivar G. Jonsson; Niels A. Carlsen

    1976-01-01

    The oscillatory flow near the sea bed under a wave motion is always rough turbulent in a coastal zone. This type of an oscillatory boundary layer (or “wave boundary layer”) was therefore chosen as a subject for detailed velocity measurements, from which characteristics such as shear stresses, eddy viscosities, energy loss, and boundary layer thickness were determined.

  14. Thermal Effects in the Atmospheric Boundary Layer above the North

    E-print Network

    Heinemann, Detlev

    Thermal Effects in the Atmospheric Boundary Layer above the North Sea by Saskia Tautz A thesis Background 6 2.1 Atmospheric Boundary Layer . . . . . . . . . . . . . . . . . . . . 6 2.1.1 Basics.1.5 Fluxes in the Boundary layer . . . . . . . . . . . . . . . . 8 2.2 Measurement of Fluxes

  15. Near surface turbulence in a smooth wall atmospheric boundary layer

    E-print Network

    Morris, Scott C.

    1 Near surface turbulence in a smooth wall atmospheric boundary layer Scott C. Morris (s is to acquire measurements in the atmospheric boundary layer. For example, Van Atta and Chen (1970) used hot-wires in the atmospheric boundary layer over an ocean sur- face to learn more about structure functions in wall bounded

  16. CIRES Research Associate Arctic Cloud and Boundary Layer Processes

    E-print Network

    Colorado at Boulder, University of

    for a research associate, postdoctoral scientist to study Arctic atmospheric boundary- layer processes, the atmospheric boundary layer and the surface in the Arctic environment using existing observational data setsCIRES Research Associate Arctic Cloud and Boundary Layer Processes The Cooperative Institute

  17. OFFSHORE BOUNDARY-LAYER MODELLING H. Bergstrm1

    E-print Network

    for this are excluded. Field experiments in the Baltic Sea area, [1], have shown that the atmospheric boundary layer farOFFSHORE BOUNDARY-LAYER MODELLING H. Bergström1 and R. Barthelmie2 1) Uppsala Univ., Dept. of Earth and low-level jets. The paper describes results from the boundary-layer modelling work package (WP4

  18. Direct measurements of wall shear stress by buried wire gages in a shock-wave boundary-layer interaction region

    NASA Technical Reports Server (NTRS)

    Murthy, V. S.; Rose, W. C.

    1977-01-01

    Detailed measurements of wall shear stress (skin friction) were made with specially developed buried wire gages in the interaction regions of a Mach 2.9 turbulent boundary layer with externally generated shocks. Separation and reattachment points inferred by these measurements support the findings of earlier experiments which used a surface oil flow technique and pitot profile measurements. The measurements further indicate that the boundary layer tends to attain significantly higher skin-friction values downstream of the interaction region as compared to upstream. Comparisons between measured wall shear stress and published results of some theoretical calculation schemes show that the general, but not detailed, behavior is predicted well by such schemes.

  19. Numerical solution of the free convection boundary layer flow over a horizontal circular cylinder with convective boundary conditions

    NASA Astrophysics Data System (ADS)

    Sarif, Norhafizah Md; Salleh, Mohd Zuki; Tahar, Razman Mat; Nazar, Roslinda

    2014-06-01

    Numerical solution for the steady free convection boundary layer flow near the lower stagnation point of a horizontal circular cylinder subjected to a convective boundary condition, where the heat is supplied to the fluid through a bounding surface with a finite heat capacity are presented in this paper. The governing boundary layer equations are transformed using non-similar variables into non-similar equations and were solved numerically using an implicit finite difference scheme known as the Keller-box method. The solutions are obtained for the skin friction coefficient, the local wall temperature, as well as the velocity and temperature profiles with two the variations of two parameters, namely the conjugate parameter ? and the Prandtl number Pr.

  20. Turbulence modeling for sharp-fin-induced shock wave/turbulent boundary-layer interactions

    NASA Technical Reports Server (NTRS)

    Horstman, C. C.

    1990-01-01

    Solutions of the Reynolds averaged Navier-Stokes equations are presented and compared with a family of experimental results for the 3-D interaction of a sharp fin induced shock wave with a turbulent boundary layer. Several algebraic and two equation eddy viscosity turbulence models are employed. The computed results are compared with experimental surface pressure, skin friction, and yaw angle data as well as the overall size of the interaction. Although the major feature of the flow fields are correctly predicted, several discrepancies are noted. Namely, the maximum skin friction values are significantly underpredicted for the strongest interaction cases. These and other deficiencies are discussed.

  1. Hypersonic Boundary Layer/Oblique Shockwave Interaction

    NASA Astrophysics Data System (ADS)

    Lindsay, Haile

    2005-11-01

    The hypersonic boundary layer/oblique shockwave interaction problem was defined with the use of the full Navier-Stokes (NS) equations and a FORTRAN code was developed to provide numerical solutions to this problem. Further, this problem was studied under two specified sets of boundary conditions: adiabatic wall and constant wall conditions. The MacCormack Technique was used in developing this NS code. To validate the numerical code, the flat plate problem was solved, and the results compared to that published in established journals. In solving these problems, engineering tools such as, FORTRAN, TECPLOT, and EXCEL, were used to generate plots of the primitive variables, such as, the velocity components, u and v, density, and the temperature T. Selected plots were reproduced from various references in validating the work done for the flat plate and hypersonic boundary layer/oblique shockwave interaction problems. All preliminary results indicated that the code was validated and the results obtained agreed with the physical behavior of the flow fields. Now that an aerospace engineering tool was developed, it is recommended that future designers seek to further its development by making the code user-friendly and that they further test accuracy of the code by solving other 2D fluid dynamic problems.

  2. Boundary-Layer-Ingesting Inlet Flow Control

    NASA Technical Reports Server (NTRS)

    Owens, Lewis R.; Allan, Brian G.; Gorton, Susan A.

    2006-01-01

    This paper gives an overview of a research study conducted in support of the small-scale demonstration of an active flow control system for a boundary-layer-ingesting (BLI) inlet. The effectiveness of active flow control in reducing engine inlet circumferential distortion was assessed using a 2.5% scale model of a 35% boundary-layer-ingesting flush-mounted, offset, diffusing inlet. This experiment was conducted in the NASA Langley 0.3-meter Transonic Cryogenic Tunnel at flight Mach numbers with a model inlet specifically designed for this type of testing. High mass flow actuators controlled the flow through distributed control jets providing the active flow control. A vortex generator point design configuration was also tested for comparison purposes and to provide a means to examine a hybrid vortex generator and control jets configuration. Measurements were made of the onset boundary layer, the duct surface static pressures, and the mass flow through the duct and the actuators. The distortion and pressure recovery were determined by 40 total pressure measurements on 8 rake arms each separated by 45 degrees and were located at the aerodynamic interface plane. The test matrix was limited to a maximum free-stream Mach number of 0.85 with scaled mass flows through the inlet for that condition. The data show that the flow control jets alone can reduce circumferential distortion (DPCPavg) from 0.055 to about 0.015 using about 2.5% of inlet mass flow. The vortex generators also reduced the circumferential distortion from 0.055 to 0.010 near the inlet mass flow design point. Lower inlet mass flow settings with the vortex generator configuration produced higher distortion levels that were reduced to acceptable levels using a hybrid vortex generator/control jets configuration that required less than 1% of the inlet mass flow.

  3. Boundary-Layer-Ingesting Inlet Flow Control

    NASA Technical Reports Server (NTRS)

    Owens, Lewis R.; Allan, Brian G.; Gorton, Susan A.

    2006-01-01

    This paper gives an overview of a research study conducted in support of the small-scale demonstration of an active flow control system for a boundary-layer-ingesting (BLI) inlet. The effectiveness of active flow control in reducing engine inlet circumferential distortion was assessed using a 2.5% scale model of a 35% boundary-layer-ingesting flush-mounted, offset, diffusing inlet. This experiment was conducted in the NASA Langley 0.3-meter Transonic Cryogenic Tunnel at flight Mach numbers with a model inlet specifically designed for this type of testing. High mass flow actuators controlled the flow through distributed control jets providing the active flow control. A vortex generator point design configuration was also tested for comparison purposes and to provide a means to examine a hybrid vortex generator and control jets configuration. Measurements were made of the onset boundary layer, the duct surface static pressures, and the mass flow through the duct and the actuators. The distortion and pressure recovery were determined by 40 total pressure measurements on 8 rake arms each separated by 45 degrees and were located at the aerodynamic interface plane. The test matrix was limited to a maximum free-stream Mach number of 0.85 with scaled mass flows through the inlet for that condition. The data show that the flow control jets alone can reduce circumferential distortion (DPCP(sub avg)) from 0.055 to about 0.015 using about 2.5% of inlet mass flow. The vortex generators also reduced the circumferential distortion from 0.055 to 0.010 near the inlet mass flow design point. Lower inlet mass flow settings with the vortex generator configuration produced higher distortion levels that were reduced to acceptable levels using a hybrid vortex generator/control jets configuration that required less than 1% of the inlet mass flow.

  4. Polymer friction-transfer layers and their use as orienting substrates

    SciTech Connect

    Motamedi, F.; Ihn, K.J.; Fenwick, D.; Wittmann, J.C.; Smith, P. [Univ. of California, Santa Barbara, CA (United States)

    1993-12-31

    A variety of polymers were investigated as candidates for the formation of oriented layers by friction transfer. Only polyethylene, the liquid-crystalline Vectra{reg_sign} and fluorinated ethylene-propylene copolymer were found to yield oriented transfer layers in addition to the previously described PTFE layers. These layers, in turn, were found to induce the oriented growth of a variety of species deposited onto them from the melt, solution or vapor phase. Comparison of these orientation-inducing friction-transfer layers, however, showed the poly(tetrafluoroethylene) [PTFE] layer to be superior.

  5. Performance and boundary-layer evaluation of a sonic inlet

    NASA Technical Reports Server (NTRS)

    Schmidt, J. F.; Ruggeri, R. S.

    1976-01-01

    Tests were conducted to determine the boundary layer characteristics and aerodynamic performance of a radial vane sonic inlet with a length/diameter ratio of 1 for several vane configurations. The sonic inlet was designed with a slight wavy wall type of diffuser geometry, which permits operation at high inlet Mach numbers (sufficiently high for good noise suppression) without boundary layer flow separation and with good total pressure recovery. A new method for evaluating the turbulent boundary layer was developed to separate the boundary layer from the inviscid core flow, which is characterized by a total pressure variation from hub to tip, and to determine the experimental boundary layer parameters.

  6. The minisodar and planetary boundary layer studies

    SciTech Connect

    Coulter, R.L.

    1996-06-01

    The minisodar, in addition to being smaller than conventional sodar, operates at higher frequencies, obtains usable signal returns closer to the surface, and can use smaller range gates. Because the max range is generally limited to the lower 200 m above the surface, the minisodar is not able to interrogate the entire daytime atmospheric Planetary Boundary Layer (PBL); however it can be a very useful tool for understanding the PBL. In concert with other instruments, the minisodar can add significant new insights to our understanding of the PBL. This paper gives examples of past and potential uses of minisodars in such situations.

  7. Coherent motions in the turbulent boundary layer

    NASA Technical Reports Server (NTRS)

    Robinson, Stephen K.

    1991-01-01

    The role of coherent structures in the production and dissipation of turbulence in a boundary layer is characterized, summarizing the results of recent investigations. Coherent motion is defined as a three-dimensional region of flow where at least one fundamental variable exhibits significant correlation with itself or with another variable over a space or time range significantly larger than the smallest local scales of the flow. Sections are then devoted to flow-visualization experiments, statistical analyses, numerical simulation techniques, the history of coherent-structure studies, vortices and vortical structures, conceptual models, and predictive models. Diagrams and graphs are provided.

  8. Boundary-layer Transition at Supersonic Speeds

    NASA Technical Reports Server (NTRS)

    Low, George M

    1956-01-01

    Recent results of the effects of Mach number, stream turbulence, leading-edge geometry, leading-edge sweep, surface temperature, surface finish, pressure gradient, and angle of attack on boundary-layer transition are summarized. Factors that delay transition are nose blunting, surface cooling, and favorable pressure gradient. Leading-edge sweep and excessive surface roughness tend to promote early transition. The effects of leading-edge blunting on two-dimensional surfaces and surface cooling can be predicted adequately by existing theories, at least in the moderate Mach number range.

  9. The boundary layer on compressor cascade blades

    NASA Technical Reports Server (NTRS)

    Deutsch, S.

    1981-01-01

    The flow field about an airfoil in cascade at a Reynolds number of 5 x 10 to the 5th power is described. Hot wire and laser anemometry are combined with flow visualization techniques in order to obtain detailed flow data (e.g., boundary layer profiles, points of separation, and the transition zone) on a cascade of relatively highly loaded blades. Benchmark data is provided for the evaluation of current and future predictive models, in this way aiding in the compressor design process.

  10. Sound radiation due to boundary layer transition

    NASA Technical Reports Server (NTRS)

    Wang, Meng

    1993-01-01

    This report describes progress made to date towards calculations of noise produced by the laminar-turbulence transition process in a low Mach number boundary layer formed on a rigid wall. The primary objectives of the study are to elucidate the physical mechanisms by which acoustic waves are generated, to clarify the roles of the fluctuating Reynolds stress and the viscous stress in the presence of a solid surface, and to determine the relative efficiency as a noise source of the various transition stages. In particular, we will examine the acoustic characteristics and directivity associated with three-dimensional instability waves, the detached high-shear layer, and turbulent spots following a laminar breakdown. Additionally, attention will be paid to the unsteady surface pressures during the transition, which provide a source of flow noise as well as a forcing function for wall vibration in both aeronautical and marine applications.

  11. Tidal and subtidal variability in the sloping benthic boundary layer

    NASA Astrophysics Data System (ADS)

    White, M.

    1994-04-01

    Observations are presented of the benthic boundary layer (BBL) structure for two sites on the continental slope, west of the British Isles. Variability at the tidal (M2) and subtidal frequencies is discussed. A mean poleward, along-isobath current is present at both sites, with periodic (5-8 days) reversals observed in the flow. These reversals cause a change in the water column stratification close (<100 m) to the seabed. The relationship between the direction of the along- and cross-slope flow, stratification, and the change of temperature in the frictional layer, relative to that above it, is consistent with Ekman veering induced up/downwelling close to the slope. The BBL temperature (density) structure is highly variable at the tidal frequency. There is a periodic variability in the current shear and associated Richardson number (Ri), particularly for the region where the bottom slope is close to critical for the M2 internal tide. Mixed or gravitationally unstable density layers are generated about one buoyancy period after the minimum Ri are observed. The mixed layers are transient, however, and do not persist throughout the tidal cycle. Indirect estimates of the vertical turbulent eddy diffusivity (K?) were made from conductivity-temperature-depth (CTD) yoyo casts, and its variability through a tidal cycle measured. A background level of 10-4 m2 s-1 is estimated with high values O(10-2 m2 s-1) measured for the times associated with the generation of mixed or inverted density layers. A mean value ofK? = 15-50×10-4 m2 s-1 is found. The observations are compared to recent models of the sloping BBL and laboratory experiments, with particular emphasis on the transient nature of the BBL and the influence of internal wave reflection from the slope.

  12. ADSORPTION MODELING OF FATTY ESTERS AND OLEIC ESTOLIDES VIA BOUNDARY LUBRICATION COEFFICIENT OF FRICTION MEASUREMENTS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The frictional behaviors of a variety of fatty esters (methyl palmitate (MP), methyl laurate (ML), and 2-ethylhexyl oleate (EHO)) and oleic estolide esters (methyl oleic estolide ester (ME) and 2-ethylhexyl oleic estolide ester (EHE)) as additives in hexadecane have been examined in a boundary lubri...

  13. Adsorption Behavior of Heat Modified Soybean Oil via Boundary Lubrication Coefficient of Friction Measurements

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The frictional behaviors of soybean oil and heat modified soybean oils with different Gardner scale viscosities as additives in hexadecane have been examined in a boundary lubrication test regime (steel contacts) using Langmuir adsorption model. The free energy of adsorption (delta-Gads) of various...

  14. X-33 Hypersonic Boundary Layer Transition

    NASA Technical Reports Server (NTRS)

    Berry, Scott A.; Horvath, Thomas J.; Hollis, Brian R.; Thompson, Richard A.; Hamilton, H. Harris, II

    1999-01-01

    Boundary layer and aeroheating characteristics of several X-33 configurations have been experimentally examined in the Langley 20-Inch Mach 6 Air Tunnel. Global surface heat transfer distributions, surface streamline patterns, and shock shapes were measured on 0.013-scale models at Mach 6 in air. Parametric variations include angles-of-attack of 20-deg, 30-deg, and 40-deg; Reynolds numbers based on model length of 0.9 to 6.6 million; and body-flap deflections of 0, 10 and 20-deg. The effects of discrete and distributed roughness elements on boundary layer transition, which included trip height, size, location, and distribution, both on and off the windward centerline, were investigated. The discrete roughness results on centerline were used to provide a transition correlation for the X-33 flight vehicle that was applicable across the range of reentry angles of attack. The attachment line discrete roughness results were shown to be consistent with the centerline results, as no increased sensitivity to roughness along the attachment line was identified. The effect of bowed panels was qualitatively shown to be less effective than the discrete trips; however, the distributed nature of the bowed panels affected a larger percent of the aft-body windward surface than a single discrete trip.

  15. Boundary Layer Transition Flight Experiment Overview

    NASA Technical Reports Server (NTRS)

    Berger, Karen T.; Anderson, Brian P.; Campbell, Charles H.; Garske, Michael T.; Saucedo, Luis A.; Kinder, Gerald R.; Micklos, Ann M.

    2011-01-01

    In support of the Boundary Layer Transition Flight Experiment (BLT FE) Project, a manufactured protuberance tile was installed on the port wing of Space Shuttle Orbiter Discovery for STS-119, STS-128, STS-131 and STS-133 as well as Space Shuttle Endeavour for STS-134. Additional instrumentation was installed in order to obtain more spatially resolved measurements downstream of the protuberance. This paper provides an overview of the BLT FE Project with emphasis on the STS-131 and STS-133 results. A high-level overview of the in-situ flight data is presented, along with a summary of the comparisons between pre- and post-flight analysis predictions and flight data. Comparisons show that empirically correlated predictions for boundary layer transition onset time closely match the flight data, while predicted surface temperatures were significantly higher than observed flight temperatures. A thermocouple anomaly observed on a number of the missions is discussed as are a number of the mitigation actions that will be taken on the final flight, STS-134, including potential alterations of the flight trajectory and changes to the flight instrumentation.

  16. Boundary layer flow on a vibrating surface

    NASA Astrophysics Data System (ADS)

    Carlsson, Fredrik; Bakchinov, Andrey; Löfdahl, Lennart

    2000-11-01

    Boundary layers subjected to vibrating surfaces occur in many engineering applications. The surfaces of vehicles may vibrate, for instance, a ship’s hull vibrates at varying eigenfrequencies and eigenmodes due to the power plant of these vessels. There is little information available on this subject, and it is therefore not generally understood how these vibrations affect the fluid flows on the vibrating surface. To investigate these phenomena in greater detail, a test rig is designed and evaluated. The rig consists of a vibrating surface attached to a larger flat plate mounted in a low-speed wind tunnel. Two-dimensional vibrations of the surface in the fundamental mode are considered, and therefore the vibrating surface is clamped only on two sides to the flat plate. The surface is excited in the centerline using a crankshaft with adjustable amplitude (0-5 mm), designed and manufactured for this purpose. A frequency range of zero up to the first fundamental frequency of the surface can be studied. Detailed information of the rig and its performance characteristics along with preliminary measurements in the boundary layer over the vibrating surface will be presented.

  17. Sound Radiation from a Turbulent Boundary Layer

    NASA Technical Reports Server (NTRS)

    Laufer, J.

    1961-01-01

    If the restriction of incompressibility in the turbulence problem is relaxed, the phenomenon of energy radiation in the form of sound from the turbulent zone arises. In order to calculate this radiated energy, it is shown that new statistical quantities, such as time-space correlation tensors, have to be known within the turbulent zone in addition to the conventional quantities. For the particular case of the turbulent boundary layer, indications are that the intensity of radiation becomes significant only in supersonic flows. Under these conditions, the recent work of Phillips is examined together with some experimental findings of the author. It is shown that the qualitative features of the radiation field (intensity, directionality) as predicted by the theory are consistent with the measurements; however, even for the highest Mach number flow, some of the assumptions of the asymptotic theory are not yet satisfied in the experiments. Finally, the question of turbulence damping due to radiation is discussed, with the result that in the Mach number range covered by the experiments, the energy lost from the boundary layer due to radiation is a small percentage of the work done by the wall shearing stresses.

  18. Friction

    Microsoft Academic Search

    Yoshihiro Matsuo; Daryl D. Clarke; Shinichi Ozeki

    2010-01-01

    \\u000a Friction materials such as disk pads, brake linings, and clutch facings are widely used for automotive applications. Friction\\u000a materials function during braking due to frictional resistance that transforms kinetic energy into thermal energy. There has\\u000a been a rudimentary evolution, from materials like leather or wood to asbestos fabric or asbestos fabric saturated with various\\u000a resins such as asphalt or resin

  19. A study of the effects of Lebu devices on turbulent boundary layer drag

    NASA Technical Reports Server (NTRS)

    Falco, R. E.

    1983-01-01

    Initial measurements of the changes in local skin friction, velocity profile shape, and turbulence structure which result from the placement of tandem plates parallel to the wall in the outer region of thick turbulent boundary layers were made. Using a tunnel with a .75 m x 1.2 m x 7.3 m test section, which diverged so as to keep the pressure gradient less than 2x1000/ft, on the test wall, a skin friction reduction of approximately 30% was measured at xi/h = 62. This relaxed to a reduction of approximately 16% at xi/h = 124 for h/delta M = .6. The c sub f measurements for both the normal and modified boundary layers were obtained by measuring the slope of the velocity profile within the linear sublayer. Visual results indicated a continued presence of strong large eddy structure downstream of the devices. Local skin friction reduction of 12% at xi/h = 62 was also obtained with the manipulators above the boundary layer at y/delta m = 1.1.

  20. Acoustics of friction.

    PubMed

    Akay, Adnan

    2002-04-01

    This article presents an overview of the acoustics of friction by covering friction sounds, friction-induced vibrations and waves in solids, and descriptions of other frictional phenomena related to acoustics. Friction, resulting from the sliding contact of solids, often gives rise to diverse forms of waves and oscillations within solids which frequently lead to radiation of sound to the surrounding media. Among the many everyday examples of friction sounds, violin music and brake noise in automobiles represent the two extremes in terms of the sounds they produce and the mechanisms by which they are generated. Of the multiple examples of friction sounds in nature, insect sounds are prominent. Friction also provides a means by which energy dissipation takes place at the interface of solids. Friction damping that develops between surfaces, such as joints and connections, in some cases requires only microscopic motion to dissipate energy. Modeling of friction-induced vibrations and friction damping in mechanical systems requires an accurate description of friction for which only approximations exist. While many of the components that contribute to friction can be modeled, computational requirements become prohibitive for their contemporaneous calculation. Furthermore, quantification of friction at the atomic scale still remains elusive. At the atomic scale, friction becomes a mechanism that converts the kinetic energy associated with the relative motion of surfaces to thermal energy. However, the description of the conversion to thermal energy represented by a disordered state of oscillations of atoms in a solid is still not well understood. At the macroscopic level, friction interacts with the vibrations and waves that it causes. Such interaction sets up a feedback between the friction force and waves at the surfaces, thereby making friction and surface motion interdependent. Such interdependence forms the basis for friction-induced motion as in the case of ultrasonic motors and other examples. Last, when considered phenomenologically, friction and boundary layer turbulence exhibit analogous properties and, when compared, each may provide clues to a better understanding of the other. PMID:12002837

  1. Turbulent boundary layer over solid and porous surfaces with small roughness

    NASA Technical Reports Server (NTRS)

    Kong, F. Y.; Schetz, J. A.; Collier, F.

    1982-01-01

    Skin friction and profiles of mean velocity, axial and normal turbulence intensity, and Reynolds stress in the untripped boundary layer were measured directly on a large diameter, axisymmetric body with: (1) a smooth, solid surface; (2) a sandpaper-roughened, solid surface; (3) a sintered metal, porous surface; (4) a smooth, perforated titanium surface; (5) a rough solid surface made of fine, diffusion bonded screening, and (6) a rough, porous surface of the same screening. Results obtained for each of these surfaces are discussed. It is shown that a rough, porous wall simply does not influence the boundary layer in the same way as a rough solid wall. Therefore, turbulent transport models for boundary layers over porous surfaces either with or without injection or suction, must include both surface roughness and porosity effects.

  2. SUPERSONIC SHEAR INSTABILITIES IN ASTROPHYSICAL BOUNDARY LAYERS

    SciTech Connect

    Belyaev, Mikhail A.; Rafikov, Roman R., E-mail: rrr@astro.princeton.edu [Department of Astrophysical Sciences, Princeton University, Ivy Lane, Princeton, NJ 08540 (United States)

    2012-06-20

    Disk accretion onto weakly magnetized astrophysical objects often proceeds via a boundary layer (BL) that forms near the object's surface, in which the rotation speed of the accreted gas changes rapidly. Here, we study the initial stages of formation for such a BL around a white dwarf or a young star by examining the hydrodynamical shear instabilities that may initiate mixing and momentum transport between the two fluids of different densities moving supersonically with respect to each other. We find that an initially laminar BL is unstable to two different kinds of instabilities. One is an instability of a supersonic vortex sheet (implying a discontinuous initial profile of the angular speed of the gas) in the presence of gravity, which we find to have a growth rate of order (but less than) the orbital frequency. The other is a sonic instability of a finite width, supersonic shear layer, which is similar to the Papaloizou-Pringle instability. It has a growth rate proportional to the shear inside the transition layer, which is of order the orbital frequency times the ratio of stellar radius to the BL thickness. For a BL that is thin compared to the radius of the star, the shear rate is much larger than the orbital frequency. Thus, we conclude that sonic instabilities play a dominant role in the initial stages of nonmagnetic BL formation and give rise to very fast mixing between disk gas and stellar fluid in the supersonic regime.

  3. Sliding frictional contact analysis of functionally graded piezoelectric layered half-plane

    Microsoft Academic Search

    Liao-Liang Ke; Yue-Sheng Wang; Jie Yang; Sritawat Kitipornchai

    2010-01-01

    This paper investigates the sliding frictional contact problem of a layered half-plane made of functionally graded piezoelectric\\u000a materials (FGPMs) in the plane strain state. It is assumed that the punch is a perfect electrical insulator with zero electric\\u000a charge distribution, and the friction within the contact region is of Coulomb type. The electro-elastic properties of the\\u000a FGPM layer vary exponentially

  4. Friction-term response to boundary-condition type in flow models

    USGS Publications Warehouse

    Schaffranek, R.W.; Lai, C.

    1996-01-01

    The friction-slope term in the unsteady open-channel flow equations is examined using two numerical models based on different formulations of the governing equations and employing different solution methods. The purposes of the study are to analyze, evaluate, and demonstrate the behavior of the term in a set of controlled numerical experiments using varied types and combinations of boundary conditions. Results of numerical experiments illustrate that a given model can respond inconsistently for the identical resistance-coefficient value under different types and combinations of boundary conditions. Findings also demonstrate that two models employing different dependent variables and solution methods can respond similarly for the identical resistance-coefficient value under similar types and combinations of boundary conditions. Discussion of qualitative considerations and quantitative experimental results provides insight into the proper treatment, evaluation, and significance of the friction-slope term, thereby offering practical guidelines for model implementation and calibration.

  5. Turbulent boundary layer of water waves near a smooth bottom

    Microsoft Academic Search

    1989-01-01

    A one?layer model describing wave?induced turbulent flows near a smooth bottom is presented. A time?invariant effective viscosity model, which is more realistic under natural conditions, is specified near a smooth bottom. The first and second order solutions are presented. These include the velocity profile, shear stress, friction Investigated. These include the velocity profile, shear stress, friction factor and mass transport.

  6. NETWORK NUMERICAL SIMULATION OF HYDROMAGNETIC MARANGONI MIXED CONVECTION BOUNDARY LAYERS

    Microsoft Academic Search

    J. Zueco; O. Anwar Bég

    2010-01-01

    The study of a steady coupled dissipative layer, known as the Mangaroni mixed convection boundary layer, in the presence of a magnetic field is presented. The mixed convection boundary layer is generated when in addition to Marangoni (thermocapillary) effects there are also buoyancy effects due to gravity and external pressure gradient effects. In the model considered the Marangoni coupling condition

  7. Formal Derivation of Boundary Layers in Fluid Mechanics

    Microsoft Academic Search

    David Gerard-Varet; G. Iooss

    2005-01-01

    Boundary layers appear in various areas of fluid dynamics, as oceanology, meteorology, or magnetohydrodynamics (MHD). Some of them are already mathematically well known, like the Ekman layers. Many others remain unstudied, and can be much more complex. The aim of this paper is to give both a unified presentation of the main boundary layers, and a simple method to derive

  8. Reduction of friction and wear by grooves applied on the nanoscale polished surface in boundary lubrication conditions

    NASA Astrophysics Data System (ADS)

    Stelmakh, Alexander U.; Pilgun, Yuriy V.; Kolenov, Sergiy O.; Kushchev, Alexey V.

    2014-05-01

    The evolution of a friction surface geometry with initially directed microscale grooves on a nanoscale polished surface in ring-on-block sliding contact is studied experimentally. Reduced wear and friction is observed when the orientation of grooves coincides with the direction of sliding. A new compressive-vacuum hypothesis of friction force nature under a condition of boundary lubrication is proposed, which successfully explains the observed phenomena. Grooves supply lubricant into the contact zone and facilitate its devacuumization, which lead to substantial reduction of surface wear. The obtained results enable developing optimized roughness profiles of friction surfaces to create high-performance durable friction units.

  9. Reduction of friction and wear by grooves applied on the nanoscale polished surface in boundary lubrication conditions

    PubMed Central

    2014-01-01

    The evolution of a friction surface geometry with initially directed microscale grooves on a nanoscale polished surface in ring-on-block sliding contact is studied experimentally. Reduced wear and friction is observed when the orientation of grooves coincides with the direction of sliding. A new compressive-vacuum hypothesis of friction force nature under a condition of boundary lubrication is proposed, which successfully explains the observed phenomena. Grooves supply lubricant into the contact zone and facilitate its devacuumization, which lead to substantial reduction of surface wear. The obtained results enable developing optimized roughness profiles of friction surfaces to create high-performance durable friction units. PMID:24872807

  10. A numerical study of longitudinal vortex interaction with a boundary layer

    NASA Technical Reports Server (NTRS)

    Russell, D. A.; Sankaran, L.

    1990-01-01

    A numerical study of vortex generator aerodynamics has been carried out with a reduced set of Navier-Stokes equations. These are used to model the physical process of longitudinal vortex interaction with a turbulent boundary layer on a flat plate in incompressible flow. Comparison with experimental data is used to validate the approach, and detailed predictions are made. Results show an increase in skin friction and a decrease in integral layer thicknesses where the flow is toward the wall, and the reverse where the flow is away from the wall. The major controlling parameters of vortex strength, spacing and height are each found to have optimum values for which the efficiency of boundary-layer thinning is maximized. Vortex core spreading and secondary vorticity produced in the layer are observed and studied, as well as circulation decay and other features of the flow.

  11. Acoustics of laminar boundary layers breakdown

    NASA Technical Reports Server (NTRS)

    Wang, Meng

    1994-01-01

    Boundary layer flow transition has long been suggested as a potential noise source in both marine (sonar-dome self noise) and aeronautical (aircraft cabin noise) applications, owing to the highly transient nature of process. The design of effective noise control strategies relies upon a clear understanding of the source mechanisms associated with the unsteady flow dynamics during transition. Due to formidable mathematical difficulties, theoretical predictions either are limited to early linear and weakly nonlinear stages of transition, or employ acoustic analogy theories based on approximate source field data, often in the form of empirical correlation. In the present work, an approach which combines direct numerical simulation of the source field with the Lighthill acoustic analogy is utilized. This approach takes advantage of the recent advancement in computational capabilities to obtain detailed information about the flow-induced acoustic sources. The transitional boundary layer flow is computed by solving the incompressible Navier-Stokes equations without model assumptions, thus allowing a direct evaluation of the pseudosound as well as source functions, including the Lighthill stress tensor and the wall shear stress. The latter are used for calculating the radiated pressure field based on the Curle-Powell solution of the Lighthill equation. This procedure allows a quantitative assessment of noise source mechanisms and the associated radiation characteristics during transition from primary instability up to the laminar breakdown stage. In particular, one is interested in comparing the roles played by the fluctuating volume Reynolds stress and the wall-shear-stresses, and in identifying specific flow processes and structures that are effective noise generators.

  12. Halogen chemistry in the marine boundary layer

    NASA Astrophysics Data System (ADS)

    Plane, J. M. C.; Gomez Martin, J. C.; Kumar, R.; Mahajan, A. S.; Oetjen, H.; Saunders, R. W.

    2009-04-01

    Important atmospheric sources of iodine include the air-sea exchange of biogenic iodocarbons, and the emission of I2 from macro-algae. The major source of bromine is the release of bromide ions from sea-salt aerosol. The subsequent atmospheric chemistry of these halogens (1), changes the oxidizing capacity of the marine boundary layer by destroying ozone and changing the hydroxyl radical concentration; (2), reacts efficiently with dimethyl sulphide and mercury (in the polar regions); and (3), leads to the formation of ultra-fine particles which may contribute to cloud condensation nuclei (CCN) and hence affect climate. This paper will report observations of IO, BrO, OIO and I2 made by the technique of differential optical absorption spectroscopy, in several contrasting marine environments: the equatorial mid-Atlantic (Cape Verde); mid-latitude clean coastal (Mace Head, Ireland); polluted coastal (Roscoff, France); and the polar marine boundary layer (Hudson Bay, Canada). Both IO and BrO are observed in all these locations at significant concentrations (> 1 pptv), and so have a major impact on (1) and (2) above. To complement the field campaigns we have also carried out wide-ranging laboratory investigation. A new study of OIO photochemistry shows that absorption in the visible bands between 490 and 630 nm leads to I atom production with a quantum yield of unity, which now means that iodine is a particularly powerful ozone-depleting agent. We have also studied the formation and growth kinetics of iodine oxide nano-particles, and their uptake of water, sulphuric acid and di-carboxylic organic acids, in order to model their growth to a size where they can act as CCN. Their ice-nucleating properties will also be reported.

  13. Soot and radiation in combusting boundary layers

    SciTech Connect

    Beier, R.A.

    1981-12-01

    In most fires thermal radiation is the dominant mode of heat transfer. Carbon particles within the fire are responsible for most of this emitted radiation and hence warrant quantification. As a first step toward understanding thermal radiation in full scale fires, an experimental and theoretical study is presented for a laminar combusting boundary layer. Carbon particulate volume fraction profiles and approximate particle size distributions are experimentally determined in both free and forced flow for several hydrocarbon fuels and PMMA (polymethylmethacrylate). A multiwavelength laser transmission technique determines a most probable radius and a total particle concentration which are two unknown parameters in an assumed Gauss size distribution. A sooting region is observed on the fuel rich side of the main reaction zone. For free flow, all the flames are in air, but the free stream ambient oxygen mass fraction is a variable in forced flow. To study the effects of radiation heat transfer, a model is developed for a laminar combusting boundary layer over a pyrolyzing fuel surface. An optically thin approximation simplifies the calculation of the radiant energy flux at the fuel surface. For the free flames in air, the liquid fuel soot volume fractions, f/sub v/, range from f/sub v/ approx. 10/sup -7/ for n-heptane, a paraffin, to f/sub v/ approx. 10/sup -7/ for toluene, an aromatic. The PMMA soot volume fractions, f/sub v/ approx. 5 x 10/sup -7/, are approximately the same as the values previously reported for pool fires. Soot volume fraction increases monotonically with ambient oxygen mass fraction in the forced flow flames. For all fuels tested, a most probable radius between 20 nm and 80 nm is obtained which varies only slightly with oxygen mass fraction, streamwise position, or distance normal to the fuel surface. The theoretical analysis yields nine dimensionless parameters, which control the mass flux rate at the pyrolyzing fuel surface.

  14. Slip Effects on Boundary Layer Flow and Heat Transfer Along a Stretching Cylinder

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, S.; Gorla, R. S. R.

    2013-06-01

    An axi-symmetric laminar boundary layer flow of a viscous incompressible fluid and heat transfer towards a stretching cylinder is presented. Velocity slip is considered instead of the no-slip condition at the boundary. Similarity transformations are used to convert the partial differential equations corresponding to the momentum and heat equations into non-linear ordinary differential equations. Numerical solutions of these equations are obtained by the shooting method. It is found that the velocity decreases with increasing the slip parameter. The skin friction as well as the heat transfer rate at the surface is larger for a cylinder compared to those for a flat plate.

  15. Winds in the Marine Boundary Layer: A Forecaster's Guide

    NSDL National Science Digital Library

    2014-09-14

    This module is intended for experienced forecasters moving from a land-based area to a coastal or Great Lakes region where both over-land and over-water forecast areas exist. This module highlights the differences between marine boundary layer and terrestrial boundary layer winds. The experienced forecaster is relatively familiar with the boundary layer over land and the associated implications for the wind field. Using this as a base, the module compares this known quantity with the lesser-known processes that occur in the marine boundary layer. Three major topics that influence marine boundary layer winds are discussed: stability within the boundary layer, isallobaric influence, and the effects of convection and tropical cyclones.

  16. Experiment on convex curvature effects in turbulent boundary layers.

    NASA Technical Reports Server (NTRS)

    So, R. M. C.; Mellor, G. L.

    1973-01-01

    Turbulent boundary layers along a convex surface of varying curvature were investigated in a specially designed boundary-layer tunnel. A fairly complete set of turbulence measurements was obtained. The effect of curvature is striking. For example, along a convex wall the Reynolds stress is decreased near the wall and vanishes about midway between the wall and the edge of a boundary layer where there exists a velocity profile gradient created upstream of the curved wall.

  17. Boundary Layer Transition Flight Experiment Implementation on OV-103

    NASA Technical Reports Server (NTRS)

    Spanos, Theodoros A.

    2009-01-01

    This slide presentation reviews the boundary layer transition experiment flown on Discovery. The purpose of the boundary layer transition flight experiment was to obtain hypersonic aero-thermodynamic data for the purpose of better understanding the flow transition from a laminar to turbulent boundary layer using a known height protuberance. The preparation of the shuttle is described, with the various groups responsibilities outlined. Views of the shuttle in flight with the experimental results are shown.

  18. Wind flow over ridges in simulated atmospheric boundary layers

    Microsoft Academic Search

    J. R. Pearse; D. Lindley; D. C. Stevenson

    1981-01-01

    The flows over four two-dimensional triangular hills and three two-dimensional bell-shaped hills have been investigated in a simulated rural atmospheric boundary layer modelled to a scale of 1:300: Further measurements were made over two of the triangular hills in a simulated rural boundary layer of 1: 3000 scale and in a simulated urban boundary layer modelled to a scale of

  19. Stratified Atmospheric Boundary Layers and Breakdown of Models

    Microsoft Academic Search

    L. Mahrt

    1998-01-01

    :   The goal of this study is to assess complications in atmospheric stable boundary layers which are not included in numerical\\u000a models of the stably stratified boundary layer and to provide a formulation of surface fluxes for use in numerical models.\\u000a Based on an extensive interpretive literature survey and new eddy correlation data for the stable boundary layer, this study

  20. Electromagnetic precipitation and ducting of particles in turbulent boundary layers

    NASA Technical Reports Server (NTRS)

    Davey, K. R.; Melcher, J. R.

    1980-01-01

    A method for analyzing magnetic migration of particles in turbulent flows is applied to the prediction of particle trajectories and densities in turbulent aerodynamic boundary layers. Results for conditions typical of aircraft with 30-40 micron particles indicate a large upstream collection and a 5% loss of particles during one pass through the boundary layer. The capacity of the magnetic field to achieve a balance with turbulent diffusion in confining the particles to the boundary layer is discussed.

  1. Improved Boundary Layer Depth Retrievals from MPLNET

    NASA Technical Reports Server (NTRS)

    Lewis, Jasper R.; Welton, Ellsworth J.; Molod, Andrea M.; Joseph, Everette

    2013-01-01

    Continuous lidar observations of the planetary boundary layer (PBL) depth have been made at the Micropulse Lidar Network (MPLNET) site in Greenbelt, MD since April 2001. However, because of issues with the operational PBL depth algorithm, the data is not reliable for determining seasonal and diurnal trends. Therefore, an improved PBL depth algorithm has been developed which uses a combination of the wavelet technique and image processing. The new algorithm is less susceptible to contamination by clouds and residual layers, and in general, produces lower PBL depths. A 2010 comparison shows the operational algorithm overestimates the daily mean PBL depth when compared to the improved algorithm (1.85 and 1.07 km, respectively). The improved MPLNET PBL depths are validated using radiosonde comparisons which suggests the algorithm performs well to determine the depth of a fully developed PBL. A comparison with the Goddard Earth Observing System-version 5 (GEOS-5) model suggests that the model may underestimate the maximum daytime PBL depth by 410 m during the spring and summer. The best agreement between MPLNET and GEOS-5 occurred during the fall and they diered the most in the winter.

  2. Atomic-scale friction modulated by potential corrugation in multi-layered graphene materials

    NASA Astrophysics Data System (ADS)

    Zhuang, Chunqiang; Liu, Lei

    2015-03-01

    Friction is an important issue that has to be carefully treated for the fabrication of graphene-based nano-scale devices. So far, the friction mechanism of graphene materials on the atomic scale has not yet been clearly presented. Here, first-principles calculations were employed to unveil the friction behaviors and their atomic-scale mechanism. We found that potential corrugations on sliding surfaces dominate the friction force and the friction anisotropy of graphene materials. Higher friction forces correspond to larger corrugations of potential energy, which are tuned by the number of graphene layers. The friction anisotropy is determined by the regular distributions of potential energy. The sliding along a fold-line path (hollow-atop-hollow) has a relatively small potential energy barrier. Thus, the linear sliding observed in macroscopic friction experiments may probably be attributed to the fold-line sliding mode on the atomic scale. These findings can also be extended to other layer-structure materials, such as molybdenum disulfide (MoS2) and graphene-like BN sheets.

  3. Seasonal Simulations of the Planetary Boundary Layer and Boundary-Layer Stratocumulus Clouds with a General Circulation Model

    Microsoft Academic Search

    David A. Randall; James A. Abeles; Thomas G. Corsetti

    1985-01-01

    The UCLA general circulation model (GCM) has been used to simulate the seasonally varying planetary boundary layer (PBL), as well as boundary-layer stratus and stratocumulus clouds. The PBL depth is a prognostic variable of the GCM, incorporated through the use of a vertical coordinate system in which the PBL is identified with the lowest model layer.Stratocumulus clouds are assumed to

  4. New evolution equations for turbulent boundary layers

    NASA Astrophysics Data System (ADS)

    Perry, A. E.

    1998-11-01

    Perry, Marusic & Li (1994) (Phys. Fluids, vol. 6(2) part 2) initially developed a mathematical framework for computing the evolution of boundary layers using classical similarity laws such as Prandtl's law of the wall and Coles' law of the wake together with the momentum integral and differential equations. It was found that these equations show that there are 4 parameters which control the streamwise evolution of the layer and the Reynolds shear stress distribution and these are S, ?, ? and ?. S = U_1/U_?, ? is Coles wake factor, ? is the Clauser pressure gradient parameter and ?=S?_cd?/dx. In this early work the evolution equations were incomplete and the only problems which could be solved were the so called quasi-equilibrium flow cases where it could be assumed that ? was sufficiently small to neglect its effect. Here we present the full set of evolution equations for finite ? so that the more general problem of non-equilibrium layers can be tackled. In this initial study here, closure is obtained assuming that \\calF[S, ?, ?, ?] = 0 and this function is mapped out semi-empirically. The formulation is consistent with the recently extended attached eddy hypothesis of Perry & Marusic (1995) (JFM vol. 298) from which once the mean flow evolution has been calculated, the broadband turbulence intensities and spectra can be calculated. The use of topology as a diagnostic tool to interpret DNS data tends to support this recently developed hypothesis (Chong et al. 1998) (JFM vol. 357) and preliminary modeling is carried out in conjunction with these evolution equations so as to obtain closure based on physical arguments. Some nonequilibrium flow data is compared with computations using these new evolution equations.

  5. Observations of the magnetospheric boundary layers. [International Magnetospheric Study

    NASA Technical Reports Server (NTRS)

    Eastman, T. E.

    1984-01-01

    Results on magnetospheric boundary layers are reviewed, emphasizing their dynamical importance based on hot plasma observations, energetic particle signatures, heavy ion contributions and the effects of wave-particle interactions. Satellite plasma observations show that 1% to 2% of the oncoming solar wind plasma enters the magnetosphere and is initially transported within the magnetospheric boundary layer. Some of this boundary layer plasma is entrained within the Earth's magnetotail where it can be accelerated. Tests are needed to determine the relative contributions of the primary acceleration processes whose effects are especially evident in the plasma sheet boundary layer.

  6. The effect of an aircraft's boundary layer on propeller noise

    NASA Astrophysics Data System (ADS)

    Belyaev, I. V.

    2012-07-01

    This study concerns the influence of the boundary layer at an aircraft's fuselage, simulated by an infinite hard cylinder, on propeller noise in the acoustic far field. Also studied is the effect of the boundary layer on noise as a function of the thickness and profile of the mean velocity of the boundary layer, the Mach number of the incident flow, and the rotation speed of the propeller. It is shown that the boundary layer at the fuselage can substantially modify propeller noise in the far field and should therefore be taken into account in calculating community noise.

  7. Friction

    NSDL National Science Digital Library

    2010-03-17

    This website from Kathleen Cummings Dominguez at the Illinois Institute of Technology provides a lesson plan on the concepts of friction. It describes a lesson plan which will engage students in active classroom learning.

  8. Study of boundary-layer transition using transonic cone Preston tube data

    NASA Technical Reports Server (NTRS)

    Reed, T. D.; Abu-Mostafa, A.

    1982-01-01

    Laminar layer Preston tube data on a sharp nose, ten degree cone obtained in the Ames 11 ft TWT and in flight tests are analyzed. During analyses of the laminar-boundary layer data, errors were discovered in both the wind tunnel and the flight data. A correction procedure for errors in the flight data is recommended which forces the flight data to exhibit some of the orderly characteristics of the wind tunnel data. From corrected wind tunnel data, a correlation is developed between Preston tube pressures and the corresponding values of theoretical laminar skin friction. Because of the uncertainty in correcting the flight data, a correlation for the unmodified data is developed, and, in addition, three other correlations are developed based on different correction procedures. Each of these correlations are used in conjunction with the wind tunnel correlation to define effective freestream unit Reynolds numbers for the 11 ft TWT over a Mach number range of 0.30 to 0.95. The maximum effective Reynolds numbers are approximately 6.5% higher than the normal values. These maximum values occur between freestream Mach numbers of 0.60 and 0.80. Smaller values are found outside this Mach number range. These results indicate wind tunnel noise affects the average laminar skin friction much less than it affects boundary layer transition. Data on the onset, extent, and end of boundary layer transition are summarized. Application of a procedure for studying the relative effects of varying nose radius on a ten degree cone at supercritical speeds indicates that increasing nose radius promotes boundary layer transition and separation of laminar boundary layers.

  9. Simulating supercell thunderstorms in a convective boundary layer: Effects on storm and boundary layer properties

    NASA Astrophysics Data System (ADS)

    Nowotarski, Christopher J.

    Nearly all previous numerical simulations of supercell thunderstorms have neglected surface uxes of heat, moisture, and momentum as well as horizontal inhomogeneities in the near-storm environment from resulting dry boundary layer convection. This investigation uses coupled radiation and land-surface schemes within an idealized cloud model to identify the effects of organized boundary layer convection in the form of horizontal convective rolls (HCRs) on the strength, structure, and evolution of simulated supercell thunderstorms. The in uence of HCRs and the importance of their orientation relative to storm motion is tested by comparing simulations with a convective boundary layer (CBL) against those with a horizontally homogeneous base state having the same mean environment. The impact of anvil shading on the CBL is tested by comparing simulations with and without the effects of clouds in the radiative transfer scheme. The results of these simulations indicate that HCRs provide a potentially important source of environmental vertical vorticity in the sheared, near-storm boundary layer. These vorticity perturbations are amplified both beneath the main supercell updraft and along the trailing out ow boundary, leading to the formation of occasionally intense misovortices. HCRs perpendicular to storm motion are found to have a detrimental effect on the strength and persistence of the lowlevel mesocyclone, particularly during its initial development. Though the mean environment is less supportive of low-level rotation with a wind profile conducive to HCRs oriented parallel to storm motion, such HCRs are found to often enhance the low-level mesocyclone circulation. When anvil shading is included, stabilization results in generally weaker low-level mesocyclone circulation, regardless of HCR orientation. Moreover, HCRs diminish in the near-storm environment such that the effects of HCRs on the supercell are mitigated. HCRs are also shown to be a necessary condition for the formation of so-called "feeder clouds" and anking line convection in these simulations. These findings suggest potentially important rami fications regarding both non-mesocyclone and mesocyclone tornadoes in supercell thunderstorms in an environment with active boundary layer convection.

  10. Evidence for the influence of wave-current interaction in a tidal boundary layer

    SciTech Connect

    Green, M.O. (Univ. of Cambridge (England)); Rees, J.M.; Pearson, N.D. (MAFF Fisheries Lab., Lowestoft (England))

    1990-06-15

    Near-bed velocity profiles were measured in 24-m water depth off the northeast coast of England. Superimposed on the tidal mean flow were progressively decaying wave-orbital motions; the data span a wide range of relative wave and current energies and offer an ideal opportunity to test wave-current boundary layer theory. The magnitude of the tide-modulated friction velocity appeared to decrease concurrently with the near-bed wave energy. Also, the discrepancy between roughness inferred from the measured velocity profiles and the expected roughness was greatest when the waves were most energetic. Both are consistent with wave-current theory. The best evidence for a dynamic effect of the waves on the mean flow above the wave boundary layer was the correlation of the roughness discrepancy with the regular tidal variation in the strength of the wave-orbital velocity relative to the mean flow. A model of the wave-current boundary layer was used to predict the time-averaged friction velocity, and the model predictions compared well with the observations with exceptions that formed two groups. The first group comprised observations from the time of peak observed bed shear stress. The second group comprised observations from the times of minimum observed bed shear stress. Since laboratory measurements imply wave-current interaction does not occur in the smooth-turbulent combined flow boundary layer, the predictions of time-averaged friction velocity were repeated using a smooth-turbulent pure-current model. The predictions were significantly improved, thus supporting that condition.

  11. Friction

    NASA Astrophysics Data System (ADS)

    Matsuo, Yoshihiro; Clarke, Daryl D.; Ozeki, Shinichi

    Friction materials such as disk pads, brake linings, and clutch facings are widely used for automotive applications. Friction materials function during braking due to frictional resistance that transforms kinetic energy into thermal energy. There has been a rudimentary evolution, from materials like leather or wood to asbestos fabric or asbestos fabric saturated with various resins such as asphalt or resin combined with pitch. These efforts were further developed by the use of woven asbestos material saturated by either rubber solution or liquid resin binder and functioned as an internal expanding brake, similar to brake lining system. The role of asbestos continued through the use of chopped asbestos saturated by rubber, but none was entirely successful due to the poor rubber heat resistance required for increased speeds and heavy gearing demands of the automobile industry. The use of phenolic resins as binder for asbestos friction materials provided the necessary thermal resistance and performance characteristics. Thus, the utility of asbestos as the main friction component, for over 100 years, has been significantly reduced in friction materials due to asbestos identity as a carcinogen. Steel and other fibrous components have displaced asbestos in disk pads. Currently, non-asbestos organics are the predominate friction material. Phenolic resins continue to be the preferred binder, and increased amounts are necessary to meet the requirements of highly functional asbestos-free disk pads for the automotive industry. With annual automobile production exceeding 70 million vehicles and additional automobile production occurring in developing countries worldwide and increasing yearly, the amount of phenolic resin for friction material is also increasing (Fig. 14.1). Fig. 14.1 Worldwide commercial vehicle production In recent years, increased fuel efficiency of passenger car is required due to the CO2 emission issue. One of the solutions to improve fuel efficiency is to lower the car body weight. It means that the weight of car components must be decreased. In the case of reduced weight for friction parts, the load applied to the friction parts would be higher (more heat also) and trend would lead to phenolic resins with improved heat resistance.

  12. Toward Uncertainty Quantification in Turbulent Boundary Layer Shock Interactions

    NASA Astrophysics Data System (ADS)

    Iaccarino, Gianluca

    2008-11-01

    The prediction of the interaction between shocks and turbulent boundary layers remains a challenge in computational fluid dynamics. The overall wall pressure and skin friction are typically misrepresented by conventional Reynolds-averaged approaches. Many modifications have been introduced to overcome model limitations: near wall behavior, turbulence anisotropy, response to compression, unsteadiness have been all identified as fundamental motivations for the incorrect predictions. This work attempts to clarify the relative importance of the various sources of errors in conventional two-equation turbulence models by introducing the concept of physics sensors. The first step is to determine the limitations of the various assumptions used in the model formulation. As an example the turbulence production across a shock is initially considered. It is well known that conventional models over predict the kinetic energy amplification. A sensor identifies the shock location and the turbulence production is locally modified by introducing a random variable representing the uncertainty is the precise amplification rate. Similarly the effect of turbulence anisotropy and near-wall treatment is considered. The corresponding stochastic problem is solved using a Monte Carlo technique and the solution envelope is compared to experimental data for the transonic flow over a bump.

  13. Internal Friction Evidence on the Formation of Grain Boundary in Al Powder Sintering Process

    NASA Astrophysics Data System (ADS)

    Hao, Gang-Ling; Wang, Xin-Fu; Li, Xian-Yu

    2015-02-01

    The temperature dependence of internal friction is first investigated to understand the microstructure transition during the sintering process for the green compact of aluminum powder. An internal friction (IF) peak is observed only during the first heating process while not in the subsequent cooling and repeated heating process. The temperature position of the peak is independent of the measuring frequency and the height decreases with the increasing frequency. The appearance of the peak is closely related to the weak bonding interfaces between deformed aluminum particles and increased dislocation density induced by the pressing. The appearance of the peak well responds to a recrystallization process of deformed particles and thus the formation of the grain boundary which is proven by the appearance of the grain boundary IF peak. The peak temperature position is rationalized with the onset of the recrystallization process during the sintering process.

  14. Control of the Transitional Boundary Layer

    NASA Astrophysics Data System (ADS)

    Belson, Brandt A.

    This work makes advances in the delay of boundary layer transition from laminar to turbulent flow via feedback control. The applications include the reduction of drag over streamline bodies (e.g., airplane wings) and the decrease of mixing and heat transfer (e.g., over turbine blades in jet engines). A difficulty in many fields is designing feedback controllers for high-dimensional systems, be they experiments or high-fidelity simulations, because the required time and resources are too large. A cheaper alternative is to approximate the high-dimensional system with a reduced-order model and design a controller for the model. We implement several model reduction algorithms in "modred", an open source and publicly available library that is applicable to a wide range of problems. We use this library to study the role of sensors and actuators in feedback control of transition in the 2D boundary layer. Previous work uses a feedforward configuration in which the sensor is upstream of the actuator, but we show that the actuator-sensor pair is unsuitable for feedback control due to an inability to sense the exponentially-growing Tollmien-Schlichting waves. A new actuator-sensor pair is chosen that more directly affects and measures the TS waves, and as a result it is effective in a feedback configuration. Lastly, the feedback controller is shown to outperform feedforward controllers in the presence of unmodeled disturbances. Next, we focus on a specific type of actuator, the single dielectric barrier discharge (SDBD) plasma actuator. An array of these plasma actuators is oriented to produce stream-wise vorticity and thus directly cancel the structures with the largest transient growth (so-called stream-wise streaks). We design a feedback controller using only experimental data by first developing an empirical input-output quasi-steady model. Then, we design feedback controllers for the model such that the controllers perform well when applied to the experiment. Lastly, we also simulate the plasma actuators and determine a suitable numerical model for the forces they create by comparing with experimental results. This physical force model is essential to future numerical studies on delaying bypass transition via feedback control and plasma actuation.

  15. Analytical Solution for the Convectively-Mixed Atmospheric Boundary Layer

    NASA Astrophysics Data System (ADS)

    Ouwersloot, H. G.; Vilà-Guerau de Arellano, J.

    2013-09-01

    Based on the prognostic equations of mixed-layer theory assuming a zeroth order jump at the entrainment zone, analytical solutions for the boundary-layer height evolution are derived with different degrees of accuracy. First, an exact implicit expression for the boundary-layer height for a situation without moisture is analytically derived without assuming any additional relationships or specific initial conditions. It is shown that to expand the solution to include moisture, only minor approximations have to be made. Second, for relatively large boundary-layer heights, the implicit representation is simplified to an explicit function. Third, a hybrid expression is proposed as a reasonable representation for the boundary-layer height evolution during the entire day. Subsequently, the analysis is extended to present the evolution of any boundary-layer averaged scalar, either inert or under idealized chemistry, as an analytical function of time and boundary-layer height. Finally, the analytical solutions are evaluated. This evaluation includes a sensitivity analysis of the boundary-layer height for the entrainment ratio, the free tropospheric lapse rate of the potential temperature, the time-integrated surface flux and the initial boundary-layer height and potential temperature jump.

  16. Steady-state frictional geostrophic circulation in a one-layer ocean model with thermodynamics

    NASA Astrophysics Data System (ADS)

    Scott, R. B.; Willmott, A. J.

    2002-10-01

    The governing equations are developed for a steady-state frictional geostrophic inhomogeneous 1.5-layer ocean model, with horizontal velocity field that is linearly sheared in the vertical coordinate. We show that in the adiabatic, thermally non-diffusive limit there are an infinite number of solutions for the temperature and depth fields of the subtropical gyre even with the constraint of identical mass within each temperature range. In the non-adiabatic case, a unique subtropical gyre solution exists that can exhibit a temperature front, containing an unbounded meridional gradient, in the northwest corner of the solution domain. The role of mixing of enthalpy in the western boundary layer (WBL) region was investigated by comparing the two extreme cases of no mixing and complete mixing of enthalpy in this region. Also investigated was the dependence of the meridional heat transport on the air-sea heat exchange coefficient, ?. The temperature field was found to be strongly influenced by mixing. However, both qualitatively and quantitatively, the heat transport is similar in the model with and without mixing. The heat transport attains a single local maximum at ?= ?c, that lies within values that are oceanographically relevant.

  17. A New View on Origin, Role and Manipulation of Large Scales in Turbulent Boundary Layers

    NASA Technical Reports Server (NTRS)

    Corke, T. C.; Nagib, H. M.; Guezennec, Y. G.

    1982-01-01

    The potential of passive 'manipulators' for altering the large scale turbulent structures in boundary layers was investigated. Utilizing smoke wire visualization and multisensor probes, the experiment verified that the outer scales could be suppressed by simple arrangements of parallel plates. As a result of suppressing the outer scales in turbulent layers, a decrease in the streamwise growth of the boundary layer thickness was achieved and was coupled with a 30 percent decrease in the local wall friction coefficient. After accounting for the drag on the manipulator plates, the net drag reduction reached a value of 20 percent within 55 boundary layer thicknesses downstream of the device. No evidence for the reoccurrence of the outer scales was present at this streamwise distance thereby suggesting that further reductions in the net drag are attainable. The frequency of occurrence of the wall events is simultaneously dependent on the two parameters, Re2 delta sub 2 and Re sub x. As a result of being able to independently control the inner and outer boundary layer characteristics with these manipulators, a different view of these layers emerged.

  18. Structural Changes in the Surface Friction Layer of a Polymeric Endoprosthesis Cup

    Microsoft Academic Search

    E. A. Tsvetkova; Zh. V. Kadolich; V. A. Goldade; L. S. Pinchuk

    2000-01-01

    A concept of creation of a polymeric insert for hip joint endoprostheses with the physiological and biomechanical properties typical of natural cartilage is proposed. The spherical friction surface of the insert is coated with a microporous layer imitating cartilage. This layer carries an electret charge, which improves the lubrication of the endoprosthesis with synovia and serves as a carrier of

  19. Effect of sound on boundary layer stability

    NASA Technical Reports Server (NTRS)

    Saric, William S.; Spencer, Shelly Anne

    1993-01-01

    Experiments are conducted in the Arizona State University Unsteady Wind Tunnel with a zero-pressure-gradient flat-plate model that has a 67:1 elliptical leading edge. Boundary-layer measurements are made of the streamwise fluctuating-velocity component in order to identify the amplified T-S waves that are forced by downstream-traveling sound waves. Measurements are taken with circular 3-D roughness elements placed at the Branch 1 neutral stability point for the frequency under consideration, and then with the roughness element downstream of Branch 1. These roughness elements have a principal chord dimension equal to 2 lambda(sub TS)/pi of the T-S waves under study and are 'stacked' in order to resemble a Gaussian height distribution. Measurements taken just downstream of the roughness (with leading-edge T-S waves, surface roughness T-S waves, instrumentation sting vibrations, and the Stokes wave subtracted) show the generation of 3-D T-S waves, but not in the characteristic heart-shaped disturbance field predicted by 3-D asymptotic theory. Maximum disturbance amplitudes are found on the roughness centerline. However, some near-field characteristics predicted by numerical modeling are observed.

  20. Effect of sound on boundary layer stability

    NASA Technical Reports Server (NTRS)

    Saric, William S. (Principal Investigator); Spencer, Shelly Anne

    1993-01-01

    Experiments are conducted in the Arizona State University Unsteady Wind Tunnel with a zero-pressure-gradient flat-plate model that has a 67:1 elliptical leading edge. Boundary-layer measurements are made of the streamwise fluctuating-velocity component in order to identify the amplified T-S waves that are forced by downstream-travelling, sound waves. Measurements are taken with circular 3-D roughness elements placed at the Branch 1 neutral stability point for the frequency under consideration, and then with the roughness element downstream of Branch 1. These roughness elements have a principal chord dimension equal to 2(lambda)(sub TS)/pi, of the T-S waves under study and are 'stacked' in order to resemble a Gaussian height distribution. Measurements taken just downstream of the roughness (with leading-edge T-S waves, surface roughness T-S waves, instrumentation sting vibrations and the Stokes wave subtracted) show the generation of 3-D-T-S waves, but not in the characteristic heart-shaped disturbance field predicted by 3-D asymptotic theory. Maximum disturbance amplitudes are found on the roughness centerline. However, some near-field characteristics predicted by numerical modelling are observed.

  1. Helical circulations in the typhoon boundary layer Ryan Ellis1

    E-print Network

    Businger, Steven

    ., 2008]. Numerical studies include two-scale boundary layer models [Ginis et al., 2004] and 3-D idealized observations of Zhang et al. [2008] and the two-scale boundary layer model of Ginis et al. [2004]. Ginis et al. [2008]. This may help explain damage patterns observed by Fujita [1992] in hurricanes Andrew and Iniki

  2. Reynolds number influences on turbulent boundary layer momentum transport

    Microsoft Academic Search

    Paththage A. Priyadarshana

    2004-01-01

    There are many engineering applications at Reynolds numbers orders of magnitude higher than existing turbulent boundary layer studies. Currently, the mechanisms for turbulent transport and the Reynolds number dependence of these mechanisms are not well understood. This dissertation presents Reynolds number influences on velocity and vorticity statistics, Reynolds shear stress, and velocity-vorticity correlations for turbulent boundary layers. Well resolved hot-wire

  3. Sun-Earth connection: Boundary layer waves and auroras

    Microsoft Academic Search

    G. S. Lakhina; B. T. Tsurutani; J. K. Arballo; C. Galvan

    2000-01-01

    Boundary layers are the sites where energy and momentum are exchanged between two distinct plasmas. Boundary layers occurring in space plasmas can support a wide spectrum of plasma waves spanning a frequency range of a few mHz to 100 kHz and beyond. The main characteristics of the broadband plasma waves (with frequencies > 1 Hz) observed in the magnetopause, polar

  4. Overview of the GEWEX Atmospheric Boundary Layer Study (GABLS)

    Microsoft Academic Search

    A. A. M. Holtslag; G. Svensson; S. Basu; B. Beare; F. C. Bosveld; J. Cuxart

    2012-01-01

    In 2001 the steering group of GEWEX (formally known as the Global Energy and Water Cycle Experiment) initiated the GEWEX Atmospheric Boundary Layer Study (GABLS). The objective of GABLS is to improve the representation of the atmospheric boundary layer in regional and large-scale atmospheric models. As such, GABLS provides a platform for model inter-comparison and development to benefit studies of

  5. Experiments on the wind tunnel simulation of atmospheric boundary layers

    Microsoft Academic Search

    Cesar Farell; Arun K. S. Iyengar

    1999-01-01

    The simulation of atmospheric boundary layers using spires, a barrier wall, and a fetch of roughness elements is discussed in the light of experiments carried out to reproduce the characteristics of a boundary layer for urban terrain conditions. Comparisons of wind tunnel and atmospheric data are presented, including mean-velocity profiles, turbulence intensities, turbulence spectra, and turbulence length scales, in particular

  6. Electromagnetic precipitation and ducting of particles in turbulent boundary layers

    Microsoft Academic Search

    K. R. Davey; J. R. Melcher

    1980-01-01

    A method for analyzing magnetic migration of particles in turbulent flows is applied to the prediction of particle trajectories and densities in turbulent aerodynamic boundary layers. Results for conditions typical of aircraft with 30-40 micron particles indicate a large upstream collection and a 5% loss of particles during one pass through the boundary layer. The capacity of the magnetic field

  7. Interaction between surface and atmosphere in a convective boundary layer

    NASA Astrophysics Data System (ADS)

    Garai, Anirban

    Solar heating of the surface causes the near surface air to warm up and with sufficient buoyancy it ascends through the atmosphere as surface-layer plumes and thermals. The cold fluid from the upper part of the boundary layer descends as downdrafts. The downdrafts and thermals form streamwise roll vortices. All these turbulent coherent structures are important because they contribute most of the momentum and heat transport. While these structures have been studied in depth, their imprint on the surface through energy budget in a convective atmospheric boundary layer has received little attention. The main objective of the present study is to examine the turbulence-induced surface temperature fluctuations for different surface properties and stratification. Experiments were performed to measure atmospheric turbulence using sonic anemometers, fine wire thermocouples and LIDAR; and surface temperature using an infra-red camera over grass and artificial turf fields. The surface temperature fluctuations were found to be highly correlated to the turbulent coherent structures and follow the processes postulated in the surface renewal theory. The spatio-temporal scales and advection speed of the surface temperature fluctuation were found to match with those of turbulent coherent structures. A parametric direct numerical simulation (DNS) study was then performed by solving the solid-fluid heat transport mechanism numerically for varying solid thermal properties, solid thickness and strength of stratification. Even though there were large differences in the friction Reynolds and Richardson numbers between the experiments and numerical simulations, similar turbulent characteristics were observed. The ejection (sweep) events tend to be aligned with the streamwise direction to form roll vortices with unstable stratification. The solid-fluid interfacial temperature fluctuations increase with the decreases in solid thermal inertia; and with the increase in solid thickness to attain a constant value for a sufficiently thick solid. The temperature fluctuation changes from a Gaussian distribution near the wall to a positively skewed distribution away from the wall. The turbulent temperature fluctuations influence the solid interfacial temperature by thermal conduction only. These studies provided unique insights into the solid-fluid coupled heat transport in low and high Reynolds number flows. This turbulence induced surface temperature fluctuation can influence the performances of several satellite remote sensing models.

  8. Direct numerical simulation of equilibrium turbulent boundary layers

    NASA Technical Reports Server (NTRS)

    Spalart, P. R.; Leonard, A.

    1985-01-01

    This paper describes the simulation of turbulent boundary layers by direct numerical solution of the three-dimensional, time-dependent Navier-Stokes equations, using a spectral method. The flow is incompressible, with Re sub delta = 1000. The equations are written in the self-similar coordinate system and periodic streamwise and spanwise boundary conditions are imposed. A family of nine 'equilibrium' boundary layers, from the strongly accelerated 'sink' flow to Stratford's separating boundary layer is treated. Good general agreement with experiments is observed. The effects of pressure gradients on the structures and statistics, both in the wall and wake regions are discussed.

  9. Boundary Layer Perturbations Generated from small Oscillating Bumps

    NASA Astrophysics Data System (ADS)

    Gaster, Michael

    1997-11-01

    Perturbations may be generated in a laminar boundary layer by various types of surface disturbance. Here we discuss the perturbations generted by the motion of a small piston mounted in the surface of a flat plate. Theoretical predictions of the flow field resulting from the periodic motion of the piston are made using the approximation that the steady base boundary layer is closely parallel and that the disturbance is sufficently small to warrant linearisation. These solutions are compared with measurements taken with a hot-wire anemometer of appropriate boundary layer experiments involving excitation by a piston of 2mm dia oscillating with amplitudes of 50 microns in a laminar boundary layer with a displacement thickness of 1mm. The Reynolds number of the boundary layer is roughly 1000 based on displacement thickness.

  10. Destiny of earthward streaming plasma in the plasmasheet boundary layer

    NASA Technical Reports Server (NTRS)

    Green, J. L.; Horwitz, J. L.

    1986-01-01

    The dynamics of the earth's magnetotail have been investigated, and it has become clear that the plasmasheet boundary layer field lines map into the Region I Field-Aligned Currents (FAC) of the auroral zone. It is pointed out that the role of earthward streaming ions in the plasmasheet boundary layer may be of fundamental importance in the understanding of magnetotail dynamics, auroral zone physics, and especially for ionospheric-magnetospheric interactions. The present paper has the objective to evaluate propagation characteristics for the earthward streaming ions observed in the plasmasheet boundary layer. An investigation is conducted of the propagation characteristics of protons in the plasmasheet boundary layer using independent single particle dynamics, and conclusions are discussed. The density of earthward streaming ions found in the plasmasheet boundary layer should include the ring current as well as the auroral zone precipitaiton and inner plasmasheet regions of the magnetosphere.

  11. On an Asymptotically Consistent Unsteady Interacting Boundary Layer

    NASA Technical Reports Server (NTRS)

    Bartels, Robert E.

    2007-01-01

    This paper develops the asymptotic matching of an unsteady compressible boundary layer to an inviscid flow. Of particular importance is the velocity injection or transpiration boundary condition derived by this theory. It is found that in general the transpiration will contain a slope of the displacement thickness and a time derivative of a density integral. The conditions under which the second term may be neglected, and its consistency with the established results of interacting boundary layer are discussed.

  12. Direct numerical simulation of spatially developing turbulent boundary layers with opposition control

    NASA Astrophysics Data System (ADS)

    Xia, Qian-Jin; Huang, Wei-Xi; Xu, Chun-Xiao; Cui, Gui-Xiang

    2015-04-01

    Opposition control of spatially developing turbulent boundary layers for skin friction drag reduction is studied by direct numerical simulations. The boundary layer extends 800?0 in the streamwise (x) direction, with ?0 denoting the momentum thickness at the flow inlet. The Reynolds number, based on the external flow velocity and the momentum thickness, ranges from 300 to 860. Opposition control applied in different streamwise ranges, i.e. 200\\lt x/{{? }0}\\lt 350 and 200\\lt x/{{? }0}\\lt 550, as well as the uncontrolled case, are simulated. Statistical results and instantaneous flow fields are presented, with special attention paid to the spatial evolution properties of the boundary layer flow with control and the underlying mechanism. It is observed that a long spatial transient region after the control start and a long recovery region after the control end are present in the streamwise direction. A maximum drag reduction rate of about 22% is obtained as the transient region is passed, and an overshoot in the local skin friction coefficient (Cf) occurs in the recovery region. A new identity is derived for dynamical decomposition of Cf. Reduction of Cf by opposition control and overshoot of Cf in the recovery region are explained by quantifying the contributions from the viscous shear stress term, the Reynolds shear stress term, the mean convection term and other terms.

  13. Role of friction in pattern formation in oscillated granular layers Sung Joon Moon, # J. B. Swift, and Harry L. Swinney

    E-print Network

    Texas at Austin. University of

    Role of friction in pattern formation in oscillated granular layers Sung Joon Moon, # J. B. Swift grains. Our molecular dynamics simu­ lations reveal that friction is essential for realistic modeling at a container acceleration about 30% smaller than that observed in experiments and simulations with friction

  14. Role of friction in pattern formation in oscillated granular layers Sung Joon Moon,* J. B. Swift, and Harry L. Swinney

    E-print Network

    Texas at Austin. University of

    Role of friction in pattern formation in oscillated granular layers Sung Joon Moon,* J. B. Swift as there are no elastic grains. Our molecular dynamics simulations reveal that friction is essential for realistic with friction. More importantly, even though square and hexagonal patterns form for a wide range

  15. First results of a study on turbulent boundary layers in oscillating flow with a mean adverse pressure gradient

    NASA Technical Reports Server (NTRS)

    Houdeville, R.; Cousteix, J.

    1979-01-01

    The development of a turbulent unsteady boundary layer with a mean pressure gradient strong enough to induce separation, in order to complete the extend results obtained for the flat plate configuration is presented. The longitudinal component of the velocity is measured using constant temperature hot wire anemometer. The region where negative velocities exist is investigated with a laser Doppler velocimeter system with BRAGG cells. The boundary layer responds by forced pulsation to the perturbation of potential flow. The unsteady effects observed are very important. The average location of the zero skin friction point moves periodically at the perturbation frequency. Average velocity profiles from different instants in the cycle are compared. The existence of a logarithmic region enables a simple calculation of the maximum phase shift of the velocity in the boundary layer. An attempt of calculation by an integral method of boundary layer development is presented, up to the point where reverse flow starts appearing.

  16. Thermal hysteresis and friction of phase boundary motion in ferromagnetic Ni52Mn23Ga25 single crystals

    NASA Astrophysics Data System (ADS)

    Wang, Wen-Hong; Chen, Jing-Lang; Liu, Zhu-Hong; Wu, Guang-Heng; Zhan, Wen-Shan

    2002-01-01

    We calculated the energy consumed for phase boundary motion in a Ni52Mn23Ga25 single-crystalline sample during martensitic transformation using a boundary friction phenomenological theory. It was found that the energy consumed for phase boundary motion is 13.14 J/mol, only a small part of the latent heat of martensitic transformation. Furthermore, the results of transformation loops measured by ac magnetic susceptibility proved that the thermal hysteresis of martensitic transformation is in direct proportion to the volume fraction of martensite. It was also indicated that the thermal hysteresis of martensitic transformation originates from the friction of phase boundary motion.

  17. Friction

    NSDL National Science Digital Library

    The representation demonstrates, through an animated, narrated slide-show, how frictional forces, including air resistance, can affect the motion of an object. This resource also includes an interactive test and review of the material. One is also able to download "myskoool" which allows allows one to download lessons to run offline and use anytime.

  18. The role of chemical boundary layers in regulating the thickness of continental and oceanic thermal boundary layers

    E-print Network

    Lee, Cin-Ty Aeolus

    The role of chemical boundary layers in regulating the thickness of continental and oceanic thermal boundary layers Cin-Ty Aeolus Lee*, Adrian Lenardic, Catherine M. Cooper, Fenglin Niu, Alan Levander Department of Earth Science, MS-126, Rice University, 6100 Main St., Houston, TX 77005, United States

  19. The role of adsorbed water on the friction of a layer of submicron particles

    USGS Publications Warehouse

    Sammis, Charles G.; Lockner, David A.; Reches, Ze’ev

    2011-01-01

    Anomalously low values of friction observed in layers of submicron particles deformed in simple shear at high slip velocities are explained as the consequence of a one nanometer thick layer of water adsorbed on the particles. The observed transition from normal friction with an apparent coefficient near ? = 0.6 at low slip speeds to a coefficient near ? = 0.3 at higher slip speeds is attributed to competition between the time required to extrude the water layer from between neighboring particles in a force chain and the average lifetime of the chain. At low slip speeds the time required for extrusion is less than the average lifetime of a chain so the particles make contact and lock. As slip speed increases, the average lifetime of a chain decreases until it is less than the extrusion time and the particles in a force chain never come into direct contact. If the adsorbed water layer enables the otherwise rough particles to rotate, the coefficient of friction will drop to ? = 0.3, appropriate for rotating spheres. At the highest slip speeds particle temperatures rise above 100°C, the water layer vaporizes, the particles contact and lock, and the coefficient of friction rises to ? = 0.6. The observed onset of weakening at slip speeds near 0.001 m/s is consistent with the measured viscosity of a 1 nm thick layer of adsorbed water, with a minimum particle radius of approximately 20 nm, and with reasonable assumptions about the distribution of force chains guided by experimental observation. The reduction of friction and the range of velocities over which it occurs decrease with increasing normal stress, as predicted by the model. Moreover, the analysis predicts that this high-speed weakening mechanism should operate only for particles with radii smaller than approximately 1 ?m. For larger particles the slip speed required for weakening is so large that frictional heating will evaporate the adsorbed water and weakening will not occur.

  20. Existence and general decay for nondissipative distributed systems with boundary frictional and memory dampings and acoustic boundary conditions

    NASA Astrophysics Data System (ADS)

    Liu, Wenjun; Chen, Kewang

    2014-12-01

    In this paper, we study the existence and general energy decay rate of global solutions for nondissipative distributed systems u''-triangle u+h(nabla u)=0 with boundary frictional and memory dampings and acoustic boundary conditions. For the existence of solutions, we prove the global existence of weak solution by using Faedo-Galerkin's method and compactness arguments. For the energy decay rate, we first consider the general nonlinear case of h satisfying a smallness condition and prove the general energy decay rate by using perturbed modified energy method. Then, we consider the linear case of h: {h(nabla u)=-nabla?\\cdotnabla u} and prove the general decay estimates of equivalent energy.

  1. Boundary Layer Rolls Observed Above and Below a Jet in a Marine Boundary Layer

    NASA Astrophysics Data System (ADS)

    Foster, R. C.; Emmitt, G. D.; Godwin, K.; Greco, S.

    2013-12-01

    We have flown a coherent Doppler wind lidar (DWL) on the Cirpas Twin Otter off the California coast near Monterey since 2003. One scientific purpose of these flights is to understand the relationship between the turbulent fluxes measured on the aircraft or on other platforms and the observed structure of the marine boundary layer (MBL). Two common features are found in the MBL flow: (1) a strong jet at approximately 200 m above the sea surface; and (2) organized large eddies (OLE) in the form of roll vortices that are approximately aligned along the mean wind direction. On two flights (April 13, 2007 and September 30, 2012), the DWL data indicated that roll OLE existed simultaneously both above and below the jet. The DWL winds suggest that the OLE in these layers are sometimes independent and sometimes connected. Standard flux data are obtained on the Twin Otter at flight level, which is nominally 300 m. The 10 Hz wind and temperature data exhibit variability at spatial scales corresponding to the OLE wavelength. We have constructed a nonlinear theoretical model that includes triad wave-wave interactions to test the hypothesis that rolls could form both above and below the jet. This model shows that this is possible and that the rolls in the two layers could have unique characteristics compared to standard boundary layer rolls. The model further shows that the rolls above and below the jet are due to separate instabilities that interact. This is consistent with the observations of both connected and independent OLE above and below the jet. Contrast-enhanced DWL line-of-sight winds. Jet maximum 200 m below aircraft. Typical resonant triad solution for rolls above and below a PBL jet.

  2. Friction phenomena in the overdamped three-layer model

    NASA Astrophysics Data System (ADS)

    Jia, Li-Ping; Teki?, Jasmina; Yang, Yang; Wang, Cang-Long; Duan, Wen-Shan; Yang, Lei

    2015-02-01

    An overdamped three-layer model consisting of two harmonic chains of interacting particles, representing the upper and the middle layers, which move over the substrate potential, is studied in the present paper. A dc +ac force is applied only on the upper harmonic chain, and dynamics of both layers are investigated. The results show that the dynamical mode locking and Shapiro steps appear not only in the upper layer but also in the middle one. It is noted that the motion of particles in the upper layer corresponds to the standard Frenkel-Kontorova model. The dependence of the Shapiro steps of the middle layer on the system parameters are determined. It is shown that the height of the first Shapiro step of the upper layer is unrelated to the interaction parameters of the particles of both the upper and the middle layers, while the height of the first Shapiro step of the middle layer depend only on the interaction parameters of the particles of the middle layers. Two critical forces which transfer from locked state to the sliding one of both the upper and the middle layers are also studied. They depend on the amplitude and the frequency of the external ac driving force.

  3. Turbulence intensity similarity laws for high Reynolds number boundary layers

    Microsoft Academic Search

    Gary Kunkel; Ivan Marusic

    2002-01-01

    Data obtained in the surface layer of the atmospheric boundary layer at the SLTEST (Surface Layer Turbulence and Environmental Science Test) facility located on the western Utah salt flats are used to analyze current turbulence intensity similarity laws. The high Reynolds number data are shown to be consistent with the Marusic, Uddin and Perry (Phys. Fluids 1997) formulation which applies

  4. Titan's planetary boundary layer structure at the Huygens landing site

    Microsoft Academic Search

    Tetsuya Tokano; Francesca Ferri; Giacomo Colombatti; Teemu Mäkinen; Marcello Fulchignoni

    2006-01-01

    Huygens Atmospheric Structure Instrument (HASI) for the first time performed an in situ measurement of the thermal structure in Titan's atmosphere with a vertical resolution sufficient to analyze the planetary boundary layer (PBL). The vertical potential temperature profile reveals the presence of a weakly convective PBL, with a surface layer thickness of 10 m and an outer layer with a

  5. Characteristics of vortex packets in a boundary layer

    Microsoft Academic Search

    Bharathram Ganapathisubramani; Ellen Longmire; Ivan Marusic

    2002-01-01

    Stereo PIV was used to measure all three velocity components in streamwise-spanwise (x-y) planes of a turbulent boundary layer at Re_tau = 1060. Datasets were obtained in the log layer and beyond. The vector fields in the log layer (z^+ = 92 and 150, z - wall normal direction) revealed signatures of vortex packets similar to those found by Adrian

  6. The friction factor of two-dimensional rough-boundary turbulent soap film flows

    E-print Network

    Nicholas Guttenberg; Nigel Goldenfeld

    2009-03-25

    We use momentum transfer arguments to predict the friction factor $f$ in two-dimensional turbulent soap-film flows with rough boundaries (an analogue of three-dimensional pipe flow) as a function of Reynolds number Re and roughness $r$, considering separately the inverse energy cascade and the forward enstrophy cascade. At intermediate Re, we predict a Blasius-like friction factor scaling of $f\\propto\\textrm{Re}^{-1/2}$ in flows dominated by the enstrophy cascade, distinct from the energy cascade scaling of $\\textrm{Re}^{-1/4}$. For large Re, $f \\sim r$ in the enstrophy-dominated case. We use conformal map techniques to perform direct numerical simulations that are in satisfactory agreement with theory, and exhibit data collapse scaling of roughness-induced criticality, previously shown to arise in the 3D pipe data of Nikuradse.

  7. Implementation of wall boundary conditions for transpiration in F3D thin-layer Navier-Stokes code

    NASA Technical Reports Server (NTRS)

    Kandula, M.; Martin, F. W., Jr.

    1991-01-01

    Numerical boundary conditions for mass injection/suction at the wall are incorporated in the thin-layer Navier-Stokes code, F3D. The accuracy of the boundary conditions and the code is assessed by a detailed comparison of the predictions of velocity distributions and skin-friction coefficients with exact similarity solutions for laminar flow over a flat plate with variable blowing/suction, and measurements for turbulent flow past a flat plate with uniform blowing. In laminar flow, F3D predictions for friction coefficient compare well with exact similarity solution with and without suction, but produces large errors at moderate-to-large values of blowing. A slight Mach number dependence of skin-friction coefficient due to blowing in turbulent flow is computed by F3D code. Predicted surface pressures for turbulent flow past an airfoil with mass injection are in qualitative agreement with measurements for a flat plate.

  8. Comparison of theoretical and experimental boundary-layer development in a Mach 2.5 mixed-compression inlet

    NASA Technical Reports Server (NTRS)

    Hingst, W. R.; Towne, C. E.

    1974-01-01

    An analytical investigation was made of the boundary layer flow in an axisymmetric Mach 2.5 mixed compression inlet, and the results were compared with experimental measurements. The inlet tests were conducted in the Lewis 10- by 10-foot supersonic wind tunnel at a unit Reynolds number of 8.2 million/m. The inlet incorporated porous bleed regions for boundary layer control, and the effect of this bleed was taken into account in the analysis. The experimental boundary layer data were analyzed by using similarity laws from which the skin friction coefficient was obtained. The boundary layer analysis included predictions of laminar and turbulent boundary layer growth, transition, and the effects of the shock boundary layer interactions. In addition, the surface static pressures were compared with those obtained from an inviscid characteristics program. The results of investigation showed that the analytical techniques gave satisfactory predictions of the boundary layer flow except in regions that were badly distorted by the terminal shock.

  9. An Experimental Investigation of Forced Mixing of a Turbulent Boundary Layer in an Annular Diffuser. Ph.D. Thesis - Ohio State Univ.; [for boundary layer control

    NASA Technical Reports Server (NTRS)

    Shaw, R. J.

    1979-01-01

    The forced mixing process of a turbulent boundary layer in an axisymmetric annular diffuser using conventional wing-like vortex generators was studied. Flow field measurements were made at four axial locations downstream of the vortex generators. At each axial location, a total of 25 equally spaced profiles were measured behind three consecutive vortex generators which formed two pairs of vortex generators. Hot film anemometry probes measured the boundary layer turbulence structure at the same locations where pressure measurements were made. Both single and cross film probes were used. The diffuser turbulence data was teken only for a nominal inlet Mach number of 0.3. Three vortex generator configurations were tested. The differences between configurations involved changes in size and relative vortex generator positions. All three vortex generator configurations tested provided increases in diffuser performance. Distinct differences in the boundary layer integral properties and skin friction levels were noted between configurations. The axial turbulence intensity and Reynolds stress profiles measured displayed similarities in trends but differences in levels for the three configurations.

  10. Influences on the Height of the Stable Boundary Layer as seen in LES

    SciTech Connect

    Kosovic, B; Lundquist, J

    2004-06-15

    Climate models, numerical weather prediction (NWP) models, and atmospheric dispersion models often rely on parameterizations of planetary boundary layer height. In the case of a stable boundary layer, errors in boundary layer height estimation can result in gross errors in boundary-layer evolution and in prediction of turbulent mixing within the boundary layer.

  11. Boundary-layer predictions for small low-speed contractions

    NASA Technical Reports Server (NTRS)

    Mehta, Rabindra D.; Bell, James H.

    1989-01-01

    The present scheme for the prediction of boundary-layer development in small, low-speed wind tunnel contraction sections proceeds by calculating the wall pressure distributions, and hence the wall velocity distributions, by means of a three-dimensional potential-flow method. For the family of contractions presently treated, the assumption of a laminar boundary layer appears to be justified; the measured boundary layer momentum thicknesses at the exit of the four contractions were found to lie within 10 percent of predicted values.

  12. Boundary layer receptivity to convected gusts and sound

    NASA Astrophysics Data System (ADS)

    Parekh, D. E.; Pulvin, P.; Wlezien, R. W.

    The receptivity of a laminar boundary layer to sound and convected gusts is examined experimentally, considering the coupling between these external disturbances and the boundary layer in the vicinity of a 24:1 elliptic leading edge, a porous strip, and a forward-facing step. A conventional loudspeaker generates the acoustic disturbance, and an array of oscillating ribbons produces a vortical disturbance in the form of a periodic convected gust. Techniques for decoupling the excitation from the boundary layer response and comparisons of receptivity mechanisms are discussed.

  13. Observations of the magnetopause current layer: Cases with no boundary layer and tests of recent models

    NASA Technical Reports Server (NTRS)

    Eastman, Timothy E.

    1995-01-01

    Evidence for the probable existence of magnetospheric boundary layers was first presented by Hones, et al. (1972), based on VELA satellite plasma observations (no magnetic field measurements were obtained). This magnetotail boundary layer is now known to be the tailward extension of the high-latitude boundary layer or plasma mantle (first uniquely identified using HEOS 2 plasma and field observations by Rosenbauer et al., 1975) and the low-latitude boundary layer (first uniquely identified using IMP 6 plasma and field observations by Eastman et al., 1976). The magnetospheric boundary layer is the region of magnetosheath-like plasma located Earthward of, but generally contiguous with the magnetopause. This boundary layer is typically identified by comparing low-energy (less than 10 keV) ion spectra across the magnetopause. Low-energy electron measurements are also useful for identifying the boundary layer because the shocked solar wind or magnetosheath has a characteristic spectral signature for electrons as well. However, there are magnetopause crossings where low-energy electrons might suggest a depletion layer outside the magnetopause even though the traditional field-rotation signature indicates that this same region is a boundary layer Earthward of the current layer. Our analyses avoided crossings which exhibit such ambiguities. Pristine magnetopause crossings are magnetopause crossings for which the current layer is well defined and for which there is no adjoining magnetospheric boundary layer as defined above. Although most magnetopause models to date apply to such crossings, few comparisons between such theory and observations of pristine magnetopause crossings have been made because most crossings have an associated magnetospheric boundary layer which significantly affects the applicable boundary conditions for the magnetopause current layer. Furthermore, almost no observational studies of magnetopause microstructure have been done even though key theoretical issues have been discussed for over two decades. This is because plasma instruments deployed prior to the ISEE and AMPTE missions did not have the required time resolution and most ISEE investigations to-date have focused on tests of MHD plasma models, especially reconnection. More recently, many phenomenological and theoretical models have been developed to explain the existence and characteristics of the magnetospheric boundary layers with only limited success to date. The cases with no boundary layer treated in this study provide a contrary set of conditions to those observed with a boundary layer. For the measured parameters of such cases, a successful boundary layer model should predict no plasma penetration across the magnetopause. Thus, this research project provides the first direct observational tests of magnetopause models using pristine magnetopause crossings and provides important new results on magnetopause microstructure and associated kinetic processes.

  14. Influence of High Freestream Turbulence on Smooth, Favorable Pressure Gradient Turbulent Boundary Layers

    NASA Astrophysics Data System (ADS)

    Lebron-Bosques, Jose; Torres-Nieves, Sheilla; Brzek, Brian; Castillo, Luciano; Bayoan Cal, Raul; Meneveau, Charles

    2007-11-01

    Experiments were conducted at the Corrsin Wind Tunnel at The Johns Hopkins University to understand the effects of high freestream turbulence on a smooth, favorable pressure gradient turbulent boundary layer. Freestream turbulence (Tu<=6%) was generated using an active grid, and values of Re?<=2570 were obtained. Measurements of the streamwise and wall-normal components of the mean velocity deficit and Reynolds stresses have been performed using Laser Doppler Anemometry. It is shown than none of the existing scales are able to collapse the mean velocity profiles and strong evidence of multiple scales is observed. Furthermore, a reduction in the wake region caused a decrease in the mean velocity gradient near the edge of the boundary layer. Moreover, turbulence production will be evaluated to study if this is the cause of an increase in the Reynolds stresses. It is also found that high freestream turbulence causes the skin friction to increase due to a higher velocity gradient at the wall.

  15. The Compressible Laminar Boundary Layer with Heat Transfer and Arbitrary Pressure Gradient

    NASA Technical Reports Server (NTRS)

    Cohen, Clarence B; Reshotko, Eli

    1956-01-01

    An approximate method for the calculation of the compressible laminar boundary layer with heat transfer and arbitrary pressure gradient, based on Thwaites' correlation concept, is presented. With the definition of dimensionless shear and heat-transfer parameters and an assumed correlation of these parameters in terms of a momentum parameter, a complete system of relations for calculating skin friction and heat transfer results. Knowledge of velocity or temperature profiles is not necessary in using this calculation method. When the method is applied to a convergent-divergent, axially symmetric rocket nozzle, it shows that high rates of heat transfer are obtained at the initial stagnation point and at the throat of the nozzle. Also indicated are negative displacement thicknesses in the convergent portion of the nozzle; these occur because of the high density within the lower portions of the cooled boundary layer. (author)

  16. Experimental study of boundary layer transition on a heated flat plate

    NASA Technical Reports Server (NTRS)

    Sohn, K. H.; Reshotko, E.; Zaman, K. B. M. Q.

    1991-01-01

    A detailed investigation to the document momentum and thermal development of boundary layers undergoing natural transition on a heated flat plate was performed. Experimental results of both overall and conditionally sampled characteristics of laminar, transitional, and low Reynolds number turbulent boundary layers are presented. Measurements were done in a low-speed, closed-loop wind tunnel with a freestream velocity of 100 ft/s and zero pressure gradient over a range of freestream turbulence intensities from 0.4 to 6 percent. The distributions of skin friction, heat transfer rate, and Reynolds shear stress were all consistent with previously published data. Reynolds analogy factors for momentum thickness Reynolds number, Re(sub theta) less than 2300 were found to be well predicted by laminar and turbulent correlations which accounted for an unheated starting length and uniform heat flux. A small dependence of turbulence results on the freestream turbulence intensity was observed.

  17. Investigation of blown boundary layers with an improved wall jet system

    NASA Technical Reports Server (NTRS)

    Saripalli, K. R.; Simpson, R. L.

    1980-01-01

    Measurements were made in a two dimensional incompressible wall jet submerged under a thick upstream boundary layer with a zero pressure gradient and an adverse pressure gradient. The measurements included mean velocity and Reynolds stresses profiles, skin friction, and turbulence spectra. The measurements were confined to practical ratios (less than 2) of the jet velocity to the free stream velocity. The wall jet used in the experiments had an asymmetric velocity profile with a relatively higher concentration of momentum away from the wall. An asymmetric jet velocity profile has distinct advantages over a uniform jet velocity profile, especially in the control of separation. Predictions were made using Irwin's (1974) method for blown boundary layers. The predictions clearly show the difference in flow development between an asymmetric jet velocity profile and a uniform jet velocity profile.

  18. A boundary-layer model for Mars - Comparison with Viking lander and entry data

    NASA Astrophysics Data System (ADS)

    Haberle, R. M.; Houben, H. C.; Hertenstein, R.; Herdtle, T.

    1993-06-01

    A 1D boundary-layer model of Mars based on a momentum equation that describes friction, pressure gradient, and Coriolis forces is presented. Frictional forces and convective heating are computed using the level-2 turbulence closure theory of Mellor and Yamada (1974). The model takes into account the radiative effects of CO2 gas and suspended dust particles. Both radiation and convection depend on surface temperatures which are computed from a surface heat budget. Model predictions are compared with available observations from Viking landers. It is concluded that, in general, the model reproduces the basic features of the temperature data. The agreement is particularly good at entry time for the V L-2 site, where the model and observations are within several degrees at all levels for which data are available.

  19. Turbulent boundary layer measurements over flat surfaces coated by nanostructured marine antifoulings

    NASA Astrophysics Data System (ADS)

    Ünal, U?ur Oral; Ünal, Burcu; Atlar, Mehmet

    2012-06-01

    Whilst recent developments of nanotechnology are being exploited by chemists and marine biologists to understand how the completely environmentally friendly foul release coatings can control marine biofouling and how they can be developed further, the understanding of the hydrodynamic performances of these new generation coatings is being overlooked. This paper aims to investigate the relative boundary layer, roughness and drag characteristics of some novel nanostructured coatings, which were developed through a multi-European and multi-disciplined collaborative research project AMBIO (2010), within the framework of turbulent flows over rough surfaces. Zero-pressure-gradient, turbulent boundary layer flow measurements were conducted over flat surfaces coated with several newly developed nanostructured antifouling paints, along with some classic reference surfaces and a state-of-the-art commercial coating, in the Emerson Cavitation Tunnel (ECT) of Newcastle University. A large flat plane test bed that included interchangeable flat test sections was used for the experiments. The boundary layer data were collected with the aid of a two-dimensional DANTEC Laser Doppler Velocimetry (LDV) system. These measurements provided the main hydrodynamic properties of the newly developed nanostructured coatings including local skin friction coefficients, roughness functions and Reynolds stresses. The tests and subsequent analysis indicated the exceptionally good frictional properties of all coatings tested, in particular, the drag benefit of some new nanostructured coatings in the Reynolds number range investigated. The rapidly decreasing roughness function trends of AKZO19 and AKZO20 as the ks^{ + } increases were remarkable along with the dissimilar roughness function character of all tested coatings to the well-known correlation curves warranting further research at higher Reynolds numbers. The wall similarity concept for the Reynolds stresses was only validated for the transitionally rough surfaces from (y + \\varepsilon)^{ + } ? 100 up to the end of the boundary layer.

  20. Frictional Heating Recoded in Vitrinite Reflectance Within Coal Material Concentrated Layer: the Cretaceous Shimanto Belt

    NASA Astrophysics Data System (ADS)

    Kiyohiko, M.; Hashimoto, Y.; Hirose, T.; Kitamura, M.

    2013-12-01

    Frictional heating by faulting is related to effective friction coefficient, displacement, and thickness of fault. Geological records of frictional heating have been measured from some faults by various methods and applied to reconstructions of the fault slip behaviors (i.e., Fulton et al., 2012). Vitrinite reflectance (Ro) is one of the methods to detect the geological records of frictional heating. Vitrinite is a kind of coal maceral. Degree of coalification is related to Ro. In the previous studies, using Ro, frictional heating was identified along some faults including shallow deocollement and mega-splay fault in Nankai trough (Sakaguchi et al., 2011). The similar geological evidence can be observed in exhumed accretionary complexes. In this study, we tried to detect the evidence of frictional heating along minor faults developed in an exhumed accretionary complex using Ro. A coal concentrated layer was found in an exhumed accretionary complex, Shimanto Belt, SW Japan. The thickness of the coal concentrated layer is about 80 cm. Some faults are developed within the coal concentrated layer. Thickness of the faults is about a few mm to 1 cm. The coal concentrated layer is appropriate to examine the distribution of Ro. I measured Ro from samples collected around and outside of the layer. Ro of the sample more than 3cm away from the fault was about 1.0% in average. This value is corresponds the background value in this area. On the other hand, Ro of the samples within 3 cm from the fault shows bimodal distribution in histogram representing 1.0% and 1.2% at the peaks. This higher peak can indicate the frictional heating by faulting. Temperature by frictional heating was estimated from Ro following methods of O'Hara (2004), Fulton et al (2012) and Kitamura et al (2013). O'Hara (2004) set cooling rates as 100c/Ma and 0.035, 1.0c/s. Fulton et al. (2012) calculated temperature evolution at and around a fault on the basis of frictional heating and heat diffusion. Both used the reaction formula by Sweeney and Burnham (1990) to convert the estimated temperature to Ro. Kitamura et al (2013) made a relationship between temperature and Ro directly from friction experiments with temperature monitoring. In the experiments, Ro is significantly higher at a temperature than that from Sweeney and Burnham (1990), suggesting mechanical effects may make the Ro higher. The estimated temperature of host rock and fault in this study using methods of O'Hara (2004), Fulton et al. (2012) and Kitamura et al. (2013) were 146c and 460-540c, 178.5c and 460-510c, and 178.5c and 260c, respectively. In the case of methods of O'Hara (2004) and Fulton et al (2012), 0.2 of friction coefficient with 1m displacement was estimated. At method of Kitamura et al (2013), friction coefficient was calculated as 75% lower with 1m displacement. Very low friction coefficient was estimated at the coal concentrated layer.

  1. The turbulent boundary layer on a porous plate: An experimental study of the fluid mechanics for adverse free stream pressure gradients

    NASA Technical Reports Server (NTRS)

    Anderson, P. S.; Kays, W. M.; Moffat, R. J.

    1972-01-01

    An experimental investigation of transpired turbulent boundary layers in zero and adverse pressure gradients has been carried out. Profiles of: (1) the mean velocity, (2) the three intensities of the turbulent fluctuations, and (3) the Reynolds stress were obtained by hot-wire anemometry. The friction coefficients were measured by using an integrated form of the boundary layer equation to extrapolate the measured shear stress profiles to the wall.

  2. Stability of the laminar boundary layer in a streamwise corner

    NASA Astrophysics Data System (ADS)

    Lakin, W. D.; Hussaini, M. Y.

    1984-05-01

    The stability of viscous, incompressible flow along a streamwise corner, often called the corner boundary layer problem is examined. The semi-infinite boundary value problem satisfied by small amplitude disturbances in the 'bending boundary layer' region is obtained. The mean secondary flow induced by the corner exhibits a flow reversal in this region. Uniformly valid 'first approximations' to solutions of the governing differential equations are derived. Uniformity at infinity is achieved by a suitable choice of the large parameter and use of an approximate Langer variable. Approximations to solutions of balanced type have a phase shift across the critical layer which is associated with instabilities in the case of two dimensional boundary layer profiles. Previously announced in STAR as N84-17532

  3. Control and Identification of Turbulent Boundary Layer Separation

    NASA Technical Reports Server (NTRS)

    Seifert, Avi; Pack-Melton, La Tunia

    2004-01-01

    Effective delay of turbulent boundary layer separation could be achieved via closed-loop control. Constructing such a system requires that sensor data be processed, real-time, and fed into the controller to determine the output. Current methods for detection of turbulent boundary layer separation are lacking the capability of localized, fast and reliable identification of the boundary layer state. A method is proposed for short-time FFT processing of time series, measured by hot-film sensors, with the purpose of identifying the alternation of the balance between small and large scales as the boundary layer separates, favoring the large scales. The method has been validated by comparison to other criteria of separation detection and over a range of baseline and controlled flow conditions on a simplified high-lift system, incorporating active flow control.

  4. Stability of the laminar boundary layer in a streamwise corner

    NASA Technical Reports Server (NTRS)

    Lakin, W. D.

    1984-01-01

    The stability of viscous, incompressible flow along a streamwise corner, often called the corner boundary layer problem is examined. The semi-infinite boundary value problem satisfied by small amplitude disturbances in the "bending boundary layer' region is obtained. The mean secondary flow induced by the corner exhibits a flow reversal in this region. Uniformly valid "first approximations' to solutions of the governing differential equations are derived. Uniformity at infinity is achieved by a suitable choice of the large parameter and use of an approximate Langer variable. Approximations to solutions of balanced type have a phase shift across the critical layer which is associated with instabilities in the case of two dimensional boundary layer profiles.

  5. Performance of a boundary layer ingesting propulsion system

    E-print Network

    Plas, Angélique (Angélique Pascale)

    2006-01-01

    This thesis presents an assessment of the aerodynamic performance of an aircraft propulsion system, with embedded engines, in the presence of aircraft fuselage boundary layer ingestion (BLI). The emphasis is on defining ...

  6. Distributed Roughness Receptivity in a Flat Plate Boundary Layer

    E-print Network

    Kuester, Matthew Scott

    2014-04-18

    manufactured using rapid prototyping and installed flush with the wall in a flat plate boundary layer. The main objective was to compare the wakes of the discrete roughness and the combined roughness to examine if the distributed roughness shields...

  7. Investigation of the Stable Atmospheric Boundary Layer at Halley Antarctica

    NASA Astrophysics Data System (ADS)

    Rodrigo, Javier Sanz; Anderson, Philip S.

    2013-09-01

    Boundary-layer measurements from the Brunt Ice Shelf, Antarctica are analyzed to determine flux-profile relationships. Dimensionless quantities are derived in the standard approach from estimates of wind shear, potential temperature gradient, Richardson number, eddy diffusivities for momentum and heat, Prandtl number, mixing length and turbulent kinetic energy. Nieuwstadt local scaling theory for the stable atmospheric boundary-layer appears to work well departing only slightly from expressions found in mid-latitudes. An - single-column model of the stable boundary layer is implemented based on local scaling arguments. Simulations based on the first GEWEX Atmospheric Boundary-Layer Study case study are validated against ensemble-averaged profiles for various stability classes. A stability-dependent function of the dimensionless turbulent kinetic energy allows a better fit to the ensemble profiles.

  8. Coherent Motions of the Turbulent Boundary Layer (Invited)

    NASA Astrophysics Data System (ADS)

    Adrian, R. J.

    2009-12-01

    Over the last decade a model has been developed in which the structure of the turbulent boundary consists of quasi-streamwise vortices near the wall, a hierarchy of hairpin vortex packets that extends through the logarithmic layer, large-scale motions having streamwise extent of the order of the thickness of the boundary layer, and very-large-scale motions that are much longer than the boundary layer thickness. Figure 1 shows a cartoon sketch of the hairpin packet hierarchy. The evidence indicates that the large and very-large-scale motions become increasingly important as the Reynolds number increases, implying that geophysical boundary layer have considerably different character than low Reynolds number laboratory experiments and simulations. Work is in progress to discern the form of the large motions and incorporate them into a more complete model. Fig. 1. Hierarchy of hairpin packets begins at the surface.

  9. Examining A Hypersonic Turbulent Boundary Layer at Low Reynolds Number

    E-print Network

    Semper, Michael Thomas

    2013-05-15

    The purpose of the current study was to answer several questions related to hypersonic, low Reynolds number, turbulent boundary layers, of which available data related to turbulence quantities is scarce. To that end, a unique research facility...

  10. Calculations of unsteady turbulent boundary layers with flow reversal

    NASA Technical Reports Server (NTRS)

    Nash, J. F.; Patel, V. C.

    1975-01-01

    The results are presented of a series of computational experiments aimed at studying the characteristics of time-dependent turbulent boundary layers with embedded reversed-flow regions. A calculation method developed earlier was extended to boundary layers with reversed flows for this purpose. The calculations were performed for an idealized family of external velocity distributions, and covered a range of degrees of unsteadiness. The results confirmed those of previous studies in demonstrating that the point of flow reversal is nonsingular in a time-dependent boundary layer. A singularity was observed to develop downstream of reversal, under certain conditions, accompanied by the breakdown of the boundary-layer approximations. A tentative hypothesis was advanced in an attempt to predict the appearance of the singularity, and is shown to be consistent with the calculated results.

  11. ATMOSPHERIC DISPERSION MODELING BASED UPON BOUNDARY LAYER PARAMETERIZATION

    EPA Science Inventory

    Characteristic scaling parameters in the planetary boundary layer have been applied to estimate the dispersion of nonbuoyant gaseous pollutants. Vertical and lateral spread are treated separately, and the choice of parameters for the dispersion models depends upon the actual stat...

  12. Numerical solutions for unsteady laminar boundary layers behind blast waves

    NASA Astrophysics Data System (ADS)

    Liu, S. W.; Mirels, H.

    1980-04-01

    The paper presents the similarity solutions obtained for laminar boundary layers behind a power-law shock associated with a blast wave. A finite-difference method based on Blottner's numerical scheme (1970) is used. The results are valid, at all times, in the entire flow region between the shock front and the immediate vicinity of the blast-wave origin provided the boundary layer remains laminar.

  13. Benthic boundary layer processes in the Lower Florida Keys

    Microsoft Academic Search

    D. L. Lavoie; M. D. Richardson; C. Holmes

    1997-01-01

    This special issue of Geo-Marine Letters, “Benthic Boundary Layer Processes in the Lower Florida Keys,” includes 12 papers that present preliminary results from the\\u000a Key West Campaign. The Dry Tortugas and Marquesas Keys test sites were selected by a group of 115 scientists and technicians\\u000a to study benthic boundary layer processes in a carbonate environment controlled by bioturbation and biogeochemical

  14. Report of secondary flows, boundary layers, turbulence and wave team

    NASA Technical Reports Server (NTRS)

    Doviak, R.

    1980-01-01

    Correspondence concerning the comparison of horizontal wind fields, two dimensional spectra, heat flux, mesoscale divergence and deformation in the prestorm environment, and thunderstorm gust front winds is presented. Other subjects include the use of radar to determine heating rate and evaporation near the Earth's surface for an unstable boundary layer and statistical considerations in the estimation of wind fields from single Doppler radar and application to prestorm boundary layer observations.

  15. Sun-Earth connection: Boundary layer waves and auroras

    Microsoft Academic Search

    G S Lakhina; B T Tsurutani; J K Arballo; C Galvan

    2000-01-01

    Boundary layers are the sites where energy and momentum are exchanged between two distinct plasmas. Boundary layers occurring\\u000a in space plasmas can support a wide spectrum of plasma waves spanning a frequency range of a few mHz to 100 kHz and beyond.\\u000a The main characteristics of the broadband plasma waves (with frequencies >1 Hz) observed in the magnetopause, polar cap,

  16. Spectral stability of Prandtl boundary layers: an overview

    E-print Network

    Emmanuel Grenier; Yan Guo; Toan T. Nguyen

    2014-06-17

    In this paper we show how the stability of Prandtl boundary layers is linked to the stability of shear flows in the incompressible Navier Stokes equations. We then recall classical physical instability results, and give a short educational presentation of the construction of unstable modes for Orr Sommerfeld equations. We end the paper with a conjecture concerning the validity of Prandtl boundary layer asymptotic expansions.

  17. Reynolds Stress Budgets in Couette and Boundary Layer Flows

    Microsoft Academic Search

    Jukka Komminaho; Martin Skote

    2002-01-01

    Reynolds stress budgets for both Couette and boundary layer flows are evaluated and presented. Data are taken from direct\\u000a numerical simulations of rotating and non-rotating plane turbulent Couette flow and turbulent boundary layer with and without\\u000a adverse pressure gradient. Comparison of the total shear stress for the two types of flows suggests that the Couette case\\u000a may be regarded as

  18. Separating and turbulent boundary layer calculations using polynomial interpretation

    NASA Technical Reports Server (NTRS)

    Rubin, S. G.; Rivera, S.

    1977-01-01

    Higher order numerical methods derived from polynomial spline interpolation or Hermitian differencing are applied to a separating laminar boundary layer, i.e., the Howarth problem, and the turbulent flat plate boundary layer flow. Preliminary results are presented. It is found that accuracy equal to that of conventional second order accurate finite difference methods is achieved with many fewer mesh points and with reduced computer storage and time requirements.

  19. Cross-equatorial and boundary layer exchange: A FGGE review

    NASA Technical Reports Server (NTRS)

    Young, J. A.

    1985-01-01

    The Global Weather Experiment (FGGE) provided unique data on the interesting phenomenon of cross-equatorial flow. Such motion is a key element of the seasonal cycle of the tropics, especially in monsoonal regions. The IIb obserations, IIIb assimilations, and implied dynamics of the flows are reviewed. Additional emphasis is given to the low level branches concentrated in the planetary boundary layer, including air sea interaction and vertical turbulence processes. The results of a recent MONEX Boundary Layer Workshop are summarized.

  20. Stability of three-dimensional supersonic boundary layers

    NASA Astrophysics Data System (ADS)

    Balakumar, Ponnampalam; Reed, Helen L.

    1991-04-01

    A rotating cone that is located in a supersonic free stream at zero angle of attack is used as a model to investigate the stability of three-dimensional supersonic boundary layers. The boundary-layer profiles on the surface are calculated using the Cebeci-Keller box scheme. The stability equations are solved to determine the eigenvalues using a two-point fourth-order finite-difference scheme [Malik et al., Z. Angew. Math. Phys. 33, 189 (1982)]. The results show that the amplification rate of the first mode is increased by a factor of 2 to 4 due to the cross-flow, compared with a two-dimensional flow with the same streamwise profile. This increase decreases with increasing Mach number. The instability with cross-flow covers a wide range of unstable frequencies (including zero) and wave numbers. The results also show that the second mode in a three-dimensional boundary layer is oblique whereas the second mode in a two-dimensional boundary layer is two dimensional. The maximum amplification rate of the second mode decreases more slowly with increasing wave angle in a three-dimensional boundary layer than in a two-dimensional boundary layer. It is concluded that the cross-flow instability becomes important for cross-flow Reynolds number on the order of 50 for low Mach numbers and 100 for high Mach numbers, this Reynolds number range corresponds to a maximum cross-flow velocity of about 4%.

  1. Turbulent boundary layer in high Rayleigh number convection in air.

    PubMed

    du Puits, Ronald; Li, Ling; Resagk, Christian; Thess, André; Willert, Christian

    2014-03-28

    Flow visualizations and particle image velocimetry measurements in the boundary layer of a Rayleigh-Bénard experiment are presented for the Rayleigh number Ra=1.4×1010. Our visualizations indicate that the appearance of the flow structures is similar to ordinary (isothermal) turbulent boundary layers. Our particle image velocimetry measurements show that vorticity with both positive and negative sign is generated and that the smallest flow structures are 1 order of magnitude smaller than the boundary layer thickness. Additional local measurements using laser Doppler velocimetry yield turbulence intensities up to I=0.4 as in turbulent atmospheric boundary layers. From our observations, we conclude that the convective boundary layer becomes turbulent locally and temporarily although its Reynolds number Re?200 is considerably smaller than the value 420 underlying existing phenomenological theories. We think that, in turbulent Rayleigh-Bénard convection, the transition of the boundary layer towards turbulence depends on subtle details of the flow field and is therefore not universal. PMID:24724653

  2. Critical Averaging Time for Atmospheric Boundary Layer Fluxes

    NASA Astrophysics Data System (ADS)

    Holmes, H.

    2005-11-01

    Calculation of heat and momentum fluxes in the Atmospheric Boundary Layer (ABL) requires separating the turbulent signal into mean and fluctuating components. Since the ABL is not statistically stationary, separation of these components depends on the inherent scales of motion in the flow. A new method is presented that utilizes energy spectra and cospectra analyses of raw velocity and temperature signals to select a critical averaging time, tc, for calculating the unsteady mean components of those signals. The new method is applied to high quality sonic anemometry data acquired at the Surface Layer Turbulence and Environmental Science Test (SLTEST) Facility located in Utah's western desert. Results for the unstable boundary layer show a correlation between tc and the characteristic time scale based on the ratio of mixed layer depth and convective velocity. Extension of the new method toward selection of a critical averaging time appropriate for the near-neutral boundary layer will also be discussed.

  3. Dense gas boundary layer experiments: Visualization, pressure measurements, concentration evaluation

    SciTech Connect

    Reichenbach, H.; Neuwald, P. [Ernst-Mach-Institut, Freiburg (DE); Kuhl, A.L. [R and D Associates, Los Angeles, CA (United States)

    1992-11-01

    This technical report describes methods that were applied to investigate turbulent boundary layers generated by inviscid, baroclinic effects. The Cranz-Schardin 24-sparks camera was used to visualize the interactions of a planar shock wave with a Freon R12-layer. The shock propagates more slowly in the Freon layer than in air because of its smaller sound speed. This causes the shock front to be curved and to be reflected between the wall and the layer interface. As a consequence of the reflection process, a series of compression and expansion waves radiate from the layer. Large fluctuations in the streamwise velocity and in pressure develop for about 1 ms. These waves strongly perturb the interface shear layer, which rapidly transitions to a turbulent boundary flow. Pressure measurements showed that the fluctuations in the Freon layer reach a peak pressure 4 times higher than in the turbulent boundary flow. To characterize the preshock Freon boundary layer, concentration measurements were performed with a differential interferometry technique. The refraction index of Freon R12 is so high that Mach-Zehnder interferometry was not successful in these experiments. The evaluation of the concentration profile is described here in detail. Method and results of corresponding LDV measurements under the same conditions are presented in a different report, EMI Report T 9/92. The authors plan to continue the dense gas layer investigations with the gas combination helium/Freon.

  4. Application of a Reynolds stress model to separating boundary layers

    NASA Technical Reports Server (NTRS)

    Ko, Sung HO

    1993-01-01

    Separating turbulent boundary layers occur in many practical engineering applications. Nonetheless, the physics of separation/reattachment of flows is poorly understood. During the past decade, various turbulence models were proposed and their ability to successfully predict some types of flows was shown. However. prediction of separating/reattaching flows is still a formidable task for model developers. The present study is concerned with the process of separation from a smooth surface. Features of turbulent separating boundary layers that are relevant to modeling include the following: the occurrence of zero wall shear stress, which causes breakdown of the boundary layer approximation; the law of the wall not being satisfied in the mean back flow region; high turbulence levels in the separated region; a significant low-frequency motion in the separation bubble; and the turbulence structure of the separated shear layer being quite different from that of either the mixing layers or the boundary layers. These special characteristics of separating boundary layers make it difficult for simple turbulence models to correctly predict their behavior.

  5. Validation of High-Speed Turbulent Boundary Layer and Shock-Boundary Layer Interaction Computations with the OVERFLOW Code

    NASA Technical Reports Server (NTRS)

    Oliver, A. B.; Lillard, R. P.; Blaisdell, G. A.; Lyrintizis, A. S.

    2006-01-01

    The capability of the OVERFLOW code to accurately compute high-speed turbulent boundary layers and turbulent shock-boundary layer interactions is being evaluated. Configurations being investigated include a Mach 2.87 flat plate to compare experimental velocity profiles and boundary layer growth, a Mach 6 flat plate to compare experimental surface heat transfer,a direct numerical simulation (DNS) at Mach 2.25 for turbulent quantities, and several Mach 3 compression ramps to compare computations of shock-boundary layer interactions to experimental laser doppler velocimetry (LDV) data and hot-wire data. The present paper describes outlines the study and presents preliminary results for two of the flat plate cases and two small-angle compression corner test cases.

  6. Atmospheric Boundary Layer (ABL) Spring 2013

    E-print Network

    in the Atmosphere · Chandrasekahr (1961) Hydrodynamic and Hydromagnetic Stability · Garratt (1992) The Atmospheric] · Ekman layer · Turbulent Kinetic Energy equation [Ch. 5] · Flow Stability (Richardson No.) [Ch. 5

  7. Evaluation of boundary lubricants using steady-state wear and friction

    NASA Technical Reports Server (NTRS)

    Loomis, W. R.; Jones, W. R., Jr.

    1981-01-01

    A friction and wear study was made at 20 C to establish operating limits and procedures for obtaining improved reproducibility and reliability in boundary lubrication testing. Ester base and C-other base fluids were used to lubricate a pure iron rider in sliding contact with a rotating M-50 steel disk in a pin-on-disk apparatus. Results of a parametric study with varying loads and speeds slowed that satisfactory test conditions for studying the direction and wear characteristics in the boundary lubrication regime with this test device were found to be 1 kilogram load; 7 to 9 meters-per-minute (50 rpm) surface speed; dry air test atmosphere (less than 100 ppm H2O); and use of a time stepwise procedure for measuring wear. Highly reproducible steady-state wear rates resulted from the two fluid studies which had a linearity of about 99 percent after initially higher wear rates and friction coefficients during run-in periods of 20 to 40 minutes.

  8. Scaling Properties of Temperature Spectra and Heat-Flux Cospectra in the Surface Friction Layer Beneath an Unstable Outer Layer

    NASA Astrophysics Data System (ADS)

    Laubach, Johannes; McNaughton, Keith G.

    2009-11-01

    Temperature variance and temperature power spectra in the unstable surface layer have always presented a problem to the standard Monin-Obukhov similarity model. Recently that problem has intensified with the demonstration by Smedman et al. (2007, Q J Roy Meteorol Soc 133: 37-51) that temperature spectra and heat-flux cospectra can have two distinct peaks in slightly unstable conditions, and by McNaughton et al. (2007, Nonlinear Process Geophys 14: 257-271) who showed that the wavenumber of the peak of temperature spectra in a convective boundary layer (CBL), closely above the surface friction layer (SFL), can be sensitive to the CBL depth, z i. Neither the two-peak form at slight instability nor the dependence of peak position on z i at large instability is compatible with the Monin-Obukhov model. Here we examine the properties of temperature spectra and heat-flux cospectra from between these extremes, i.e. from within the unstable SFL, in two experiments. The analysis is based on McNaughton’s model of the turbulence structure in the SFL. According to this model, heat is transported through most of the SFL by sheet plumes, created by the action of impinging outer eddies. The smallest and most effective of these outer eddies have sizes that scale on SFL depth, z s. The z s-scale eddies and plumes are organised within the overall convection pattern in the CBL, and in turn they organise the motion of smaller eddies within the SFL, whose sizes scale on height, z. The main experimental results are: (1) the peak amplitudes of the temperature spectra in the SFL are collapsed with a scaling factor {(z_sz)^{1/3}\\varepsilon_o^{2/3}} divided by the square of the surface temperature flux, where {\\varepsilon_o} is the dissipation rate of turbulent energy in the outer CBL (above the SFL); (2) the peak wavenumbers of the temperature spectra are collapsed with the mixed length scale ( z i z s)1/2; (3) the peak wavenumbers of the heat-flux cospectra are collapsed with the doubly-mixed length scale ( z i z s)1/4 z 1/2; (4) for z/ z s < 0.03, the peak in the cospectrum is replaced by another peak at a wavenumber about a magnitude larger. This peak’s position scales on z; (5) all these findings are consistent with the observations of Smedman et al.

  9. Turbulence in a Convective Marine Atmospheric Boundary Layer

    Microsoft Academic Search

    Shu-Hsien Chou; David Atlas; Eueng-Nan Yeh

    1986-01-01

    The structure and kinetic energy budget of turbulence in the convective marine atmospheric boundary layer as observed by aircraft during a cold air outbreak have been studied using mixed layer scaling. The results are significantly different from those of previous studies under conditions closer to free convection. The normalized turbulent kinetic energy and turbulent transport are about twice those found

  10. Observational Study of the Atmospheric Boundary Layer over Antarctica

    Microsoft Academic Search

    Zbigniew Sorbjan; Yuji Kodama; Gerd Wendler

    1986-01-01

    During the austral summer of 1982\\/83, measurements of wind and temperature profiles were made through the atmospheric boundary layer in Adelie Land, East Antarctica, an area known for strong katabatic winds. It was found that a shallow but strong temperature inversion was developed at night, and destroyed during the day, resulting in the development of a well-mixed layer. Wind hodographs

  11. Basic entrainment equations for the atmospheric boundary layer

    Microsoft Academic Search

    H. Tennekes; A. G. M. Driedonks

    1981-01-01

    The parameterization of penetrative convection and other cases of turbulent entrainment by the atmospheric boundary layer is reviewed in this paper. The conservation equations for a one-layer model of entrainment are straightforward; all modeling problems arise in the context of the parameterization of various terms in the budget of turbulent kinetic energy. There is no consensus in the literature on

  12. Urban air pollution modelling and measurements of boundary layer height

    Microsoft Academic Search

    F. Davies; D. R. Middleton; K. E. Bozier

    2007-01-01

    An urban field trial has been undertaken with the aim of assessing the performance of the boundary layer height (BLH) determination of two models: the Met Office Unified Model (UM) and a Gaussian-type plume model, ADMS. Pulsed Doppler lidar data were used to measure mixing layer height and cloud base heights for a variety of meteorological conditions over a 3

  13. The Boundary Layer between Electrodes and a Thermal Plasma

    Microsoft Academic Search

    S. A. Self; L. D. Eskin

    1983-01-01

    The electrical boundary layer between an isothermal, weakly ionized plasma and a plane electrode is discussed. Following a formulation of the complete problem, the governing equations are solved in the quasi-neutral continuum approximation to give explicit results for the ionization nonequilibrium layer. This allows three critical current densities to be identified: the first when a cathode must emit electrons; the

  14. EART 265 Lecture Notes: Boundary Layers We're interested here mainly in boundary layers relevant to planets, i.e. those of planetary atmo-

    E-print Network

    Nimmo, Francis

    EART 265 Lecture Notes: Boundary Layers We're interested here mainly in boundary layers relevant to planets, i.e. those of planetary atmo- spheres, oceans and uid cores. Of these, the atmospheric boundary. There is a another class of important boundary layer problems involving aerodynamics of objects moving in uids, i

  15. Compressibility Considerations for kappa-omega Turbulence Models in Hypersonic Boundary Layer Applications

    NASA Technical Reports Server (NTRS)

    Rumsey, C. L.

    2009-01-01

    The ability of kappa-omega models to predict compressible turbulent skin friction in hypersonic boundary layers is investigated. Although uncorrected two-equation models can agree well with correlations for hot-wall cases, they tend to perform progressively worse - particularly for cold walls - as the Mach number is increased in the hypersonic regime. Simple algebraic models such as Baldwin-Lomax perform better compared to experiments and correlations in these circumstances. Many of the compressibility corrections described in the literature are summarized here. These include corrections that have only a small influence for kappa-omega models, or that apply only in specific circumstances. The most widely-used general corrections were designed for use with jet or mixing-layer free shear flows. A less well-known dilatation-dissipation correction intended for boundary layer flows is also tested, and is shown to agree reasonably well with the Baldwin-Lomax model at cold-wall conditions. It exhibits a less dramatic influence than the free shear type of correction. There is clearly a need for improved understanding and better overall physical modeling for turbulence models applied to hypersonic boundary layer flows.

  16. Influence of a recent Transition Model on Complex Nonsteady Boundary Layer Flows with Dynamic Stall and Multiple Phases

    Microsoft Academic Search

    Adam Lavely; Michael Kinzel; Ganesh Vijayakumar; James Brasseur; Eric Paterson; Jules Lindau

    2010-01-01

    Computational fluid dynamics (CFD) simulations are prone to inaccuracies associated with incorrectly formulated physical models. Common in CFD is the spurious treatment as locally laminar flow regions as turbulent, resulting in incorrect turbulent-boundary-layer profiles, separated-flow behavior, and local skin-friction coefficients. The combined effects impacts global measures like drag, lift coefficient, and wake intensity. Recently, Menter & Langtry (AIAA 47 2009)

  17. Comparison between measured turbine stage performance and the predicted performance using quasi-3D flow and boundary layer analyses

    NASA Technical Reports Server (NTRS)

    Boyle, R. J.; Haas, J. E.; Katsanis, T.

    1984-01-01

    A method for calculating turbine stage performance is described. The usefulness of the method is demonstrated by comparing measured and predicted efficiencies for nine different stages. Comparisons are made over a range of turbine pressure ratios and rotor speeds. A quasi-3D flow analysis is used to account for complex passage geometries. Boundary layer analyses are done to account for losses due to friction. Empirical loss models are used to account for incidence, secondary flow, disc windage, and clearance losses.

  18. A Gaussian treatment for the friction issue of Lennard-Jones potential in layered materials: Application to friction between graphene, MoS2, and black phosphorus

    NASA Astrophysics Data System (ADS)

    Jiang, Jin-Wu; Park, Harold S.

    2015-03-01

    The Lennard-Jones potential is widely used to describe the interlayer interactions within layered materials like graphene. However, it is also widely known that this potential strongly underestimates the frictional properties for layered materials. Here, we propose to supplement the Lennard-Jones potential by a Gaussian-type potential, which enables more accurate calculations of the frictional properties of two-dimensional layered materials. Furthermore, the Gaussian potential is computationally simple as it introduces only one additional potential parameter that is determined by the interlayer shear mode in the layered structure. The resulting Lennard-Jones-Gaussian potential is applied to compute the interlayer cohesive energy and frictional energy for graphene, MoS2, black phosphorus, and their heterostructures.

  19. Coupling of magnetopause-boundary layer to the polar ionosphere

    NASA Technical Reports Server (NTRS)

    Wei, C. Q.; Lee, L. C.

    1993-01-01

    The plasma dynamics in the low-latitude boundary layer and its coupling to the polar ionosphere under boundary conditions at the magnetopause are investigated. In the presence of a driven plasma flow along the magnetopause, the Kelvin-Helmholtz instability can develop, leading to the formation and growth of plasma vortices in the boundary layer. The finite ionospheric conductivity leads to the decay of these vortices. The competing effect of the formation and decay of vortices leads to the formation of strong vortices only in a limited region. Several enhanced field-aligned power density regions associated with the boundary layer vortices and the upward field-aligned current (FAC) filaments can be found along the postnoon auroral oval. These enhanced field-aligned power density regions may account for the observed auroral bright spots.

  20. Experimental study of boundary layer transition with elevated freestream turbulence on a heated flat plate

    NASA Technical Reports Server (NTRS)

    Sohn, Ki-Hyeon; Reshotko, Eli

    1991-01-01

    A detailed investigation to document momentum and thermal development of boundary layers undergoing natural transition on a heated flat plate was performed. Experimental results of both overall and conditionally sampled characteristics of laminar, transitional, and low Reynolds number turbulent boundary layers are presented. Measurements were acquired in a low-speed, closed-loop wind tunnel with a freestream velocity of 100 ft/s and zero pressure gradient over a range of freestream turbulence intensities (TI) from 0.4 to 6 percent. The distributions of skin friction, heat transfer rate and Reynolds shear stress were all consistent with previously published data. Reynolds analogy factors for R(sub theta) is less than 2300 were found to be well predicted by laminar and turbulent correlations which accounted for an unheated starting length. The measured laminar value of Reynolds analogy factor was as much as 53 percent higher than the Pr(sup -2/3). A small dependence of turbulent results on TI was observed. Conditional sampling performed in the transitional boundary layer indicated the existence of a near-wall drop in intermittency, pronounced at certain low intermittencies, which is consistent with the cross-sectional shape of turbulent spots observed by others. Non-turbulent intervals were observed to possess large magnitudes of near-wall unsteadiness and turbulent intervals had peak values as much as 50 percent higher than were measured at fully turbulent stations. Non-turbulent and turbulent profiles in transitional boundary layers cannot be simply treated as Blasius and fully turbulent profiles, respectively. The boundary layer spectra indicate predicted selective amplification of T-S waves for TI is approximately 0.4 percent. However, for TI is approximately 0.8 and 1.1 percent, T-S waves are localized very near the wall and do not play a dominant role in transition process.

  1. The Temporal Behavior of the Atmospheric Boundary Layer in Israel

    Microsoft Academic Search

    Uri Dayan; Jacob Rodnizki

    1999-01-01

    Upper-air measurements collected for three consecutive years (1987-89) from the Israel Meteorological Service permanent sounding site, in Beit-Dagan, Israel, enabled the temporal behavior of the atmospheric boundary layer over Israel to be characterized. Data analyzed consisted of the layer depth, the thermal gradient within the layer, and occurrence frequency of radiative and elevated inversions. To adequately represent the multiyear seasonal

  2. Secondary Electron Intensity Contrast Imaging and Friction Properties of Micromechanically Cleaved Graphene Layers on Insulating Substrates

    NASA Astrophysics Data System (ADS)

    Gupta, S.; Heintzman, E.; Jasinski, J.

    2014-09-01

    We report on the surface properties (friction and work function) of micromechanically cleaved graphene layers placed on thermally gown thick insulating (˜295 nm of SiO2) films on commercial Si (001) substrates. By employing atomic force microscopy (AFM) and scanning electron microscopy with varying primary-electron acceleration voltage ( V acc) in secondary electron imaging (SEI) mode, we determined the coefficient of friction ( ?) and electronic work function ( ?), respectively, as functions of the number of graphene layers ( n). The friction coefficient was deduced from line scans of friction maps obtained simultaneously while measuring AFM topography. The findings show that supported mono-, bi-, and trilayer graphene all yield similar results (˜0.03), in contrast to multilayer (˜0.027) and thicker graphite (˜0.015) flakes. From the SEI contrast variation, we obtained a reproducible discrete distribution of SE intensity stemming from atomically thick graphene layers on a thick insulating substrate. We were able to determine the number of graphene layers (i.e., n) from the SE intensity contrast or the SE intensity itself. Moreover, we found a distinct linear relationship between the relative SE intensity from the graphene layers and their number, provided a relatively lower V acc was used. The different contrast in SEI micrographs at lower V acc is attributed to the fact that the generation of secondary electrons emitted from the graphene was affected by the different work functions corresponding to different n values (or thickness contrast, C). This simple and facile method is superior to the conventional optical method in its capability to characterize graphene over sub-1- ?m2 areas on various insulating substrates. These results are supplemented by optical microscopy, high-resolution transmission electron microscopy, and Raman spectroscopy and Raman mapping that yield the structural quality (or disorder) of the graphene layers, albeit semiquantitatively.

  3. Boundary-layer control by electric fields A feasibility study

    E-print Network

    Mendes, R V

    1998-01-01

    A problem of great concern in aviation and submarine propulsion is the control of the boundary layer and, in particular, the methods to extend the laminar region as a means to decrease noise and fuel consumption. In this paper we study the flow of air along an airfoil when a layer of ionized gas and a longitudinal electric field are created in the boundary layer region. By deriving scaling solutions and more accurate numerical solutions we discuss the possibility of achieving significant boundary layer control for realistic physical parameters. Practical design formulas and criteria are obtained. We also discuss the perspectives for active control of the laminar-to-turbulent transition fluctuations by electromagnetic field modulation.

  4. Free convection boundary layer flow near the lower stagnation point of a solid sphere with convective boundary conditions in a micropolar fluid

    NASA Astrophysics Data System (ADS)

    Alkasasbeh, Hamzeh Taha; Salleh, Mohd Zuki; Tahar, Razman Mat; Nazar, Roslinda; Pop, Ioan

    2014-06-01

    In this paper, the mathematical model for free convection boundary layer flow in a micropolar fluid near the lower stagnation point of a solid sphere with convective boundary conditions, in which the heat is supplied through a bounding surface of finite thickness and finite heat capacity, is considered. The transformed and reduced boundary layer equations in the form of ordinary differential equations are solved numerically using an implicit finite difference scheme known as the Keller-box method. Numerical solutions are obtained for the local wall temperature and the local skin friction coefficient, as well as the velocity, angular velocity and temperature profiles. The features of the flow and heat transfer characteristics for different values of the material or micropolar parameter K, the Prandtl number Prand the conjugate parameter ?are analyzed and discussed.

  5. The structure of a three-dimensional turbulent boundary layer

    NASA Technical Reports Server (NTRS)

    Degani, A. T.; Smith, F. T.; Walker, J. D. A.

    1993-01-01

    The three-dimensional turbulent boundary layer is shown to have a self-consistent two-layer asymptotic structure in the limit of large Reynolds number. In a streamline coordinate system, the streamwise velocity distribution is similar to that in two-dimensional flows, having a defect-function form in the outer layer which is adjusted to zero at the wall through an inner wall layer. An asymptotic expansion accurate to two orders is required for the cross-stream velocity which is shown to exhibit a logarithmic form in the overlap region. The inner wall-layer flow is collateral to leading order but the influence of the pressure gradient, at large but finite Reynolds numbers, is not negligible and can cause substantial skewing of the velocity profile near the wall. Conditions under which the boundary layer achieves self-similarity and the governing set of ordinary differential equations for the outer layer are derived. The calculated solution of these equations is matched asymptotically to an inner wall-layer solution and the composite profiles so formed describe the flow throughout the entire boundary layer. The effects of Reynolds number and cross-stream pressure gradient on the crossstream velocity profile are discussed and it is shown that the location of the maximum cross-stream velocity is within the overlap region.

  6. Design and Evaluation of a New Boundary-Layer Rake for Flight Testing

    NASA Technical Reports Server (NTRS)

    Bui, Trong T.; Oates, David L.; Gonsalez, Jose C.

    2000-01-01

    A new boundary-layer rake has been designed and built for flight testing on the NASA Dryden Flight Research Center F-15B/Flight Test Fixture. A feature unique to this rake is its curved body, which allows pitot tubes to be more densely clustered in the near-wall region than conventional rakes allow. This curved rake design has a complex three-dimensional shape that requires innovative solid-modeling and machining techniques. Finite-element stress analysis of the new design shows high factors of safety. The rake has passed a ground test in which random vibration measuring 12 g rms was applied for 20 min in each of the three normal directions. Aerodynamic evaluation of the rake has been conducted in the NASA Glenn Research Center 8 x 6 Supersonic Wind Tunnel at Mach 0-2. The pitot pressures from the new rake agree with conventional rake data over the range of Mach numbers tested. The boundary-layer profiles computed from the rake data have been shown to have the standard logarithmic-law profile. Skin friction values computed from the rake data using the Clauser plot method agree with the Preston tube results and the van Driest II compressible skin friction correlation to approximately +/-5 percent.

  7. Revisiting Surface Heat-Flux and Temperature Boundary Conditions in Models of Stably Stratified Boundary-Layer Flows

    NASA Astrophysics Data System (ADS)

    Gibbs, Jeremy A.; Fedorovich, Evgeni; Shapiro, Alan

    2015-02-01

    Two formulations of the surface thermal boundary condition commonly employed in numerical modelling of atmospheric stably stratified surface-layer flows are evaluated using analytical considerations and observational data from the Cabauw site in the Netherlands. The first condition is stated in terms of the surface heat flux and the second is stated in terms of the vertical potential temperature difference. The similarity relationships used to relate the flux and the difference are based on conventional log-linear expressions for vertical profiles of wind velocity and potential temperature. The heat-flux formulation results in two physically meaningful values for the friction velocity with no obvious criteria available to choose between solutions. Both solutions can be obtained numerically, which casts doubt on discarding one of the solutions as was previously suggested based on stability arguments. This solution ambiguity problem is identified as the key issue of the heat-flux condition formulation. In addition, the agreement between the temperature difference evaluated from similarity solutions and their measurement-derived counterparts from the Cabauw dataset appears to be very poor. Extra caution should be paid to the iterative procedures used in the model algorithms realizing the heat-flux condition as they could often provide only partial solutions for the friction velocity and associated temperature difference. Using temperature difference as the lower boundary condition bypasses the ambiguity problem and provides physically meaningful values of heat flux for a broader range of stability condition in terms of the flux Richardson number. However, the agreement between solutions and observations of the heat flux is again rather poor. In general, there is a great need for practicable similarity relationships capable of treating the vertical turbulent transport of momentum and heat under conditions of strong stratification in the surface layer.

  8. Proceedings of the 1993 American Control Conference, San Francisco, CA, June 1993, pp. 1910-1914. 1910 Friction Modeling and Control in Boundary Lubrication

    E-print Network

    Dupont, Pierre

    -1914. 1910 Friction Modeling and Control in Boundary Lubrication Pierre E. Dupont and Eric P. Dunlap and lubricated line contacts of hardened tool steel are described and a state variable friction model possessing and on the lubricant between them. In general, the friction-velocity curves for hard ma- terials separated by liquid

  9. Direct numerical simulations of turbulent thermal boundary layers subjected to adverse streamwise pressure gradients

    NASA Astrophysics Data System (ADS)

    Araya, Guillermo; Castillo, Luciano

    2013-09-01

    An innovative method for prescribing turbulent thermal inflow information in spatially developing boundary layers under streamwise pressure gradients is introduced for attached flows. The approach is tested and validated in a suite of Direct Numerical Simulations (DNS) of thermal boundary layers for zero (ZPG) and adverse (APG) pressure gradients with momentum thickness Reynolds numbers (Re?) up to 3000. The turbulent thermal data are generated based on the dynamic multi-scale approach proposed by Araya et al. ["A dynamic multi-scale approach for turbulent inflow boundary conditions in spatially evolving flows," J. Fluid Mech. 670, 581-605 (2011)], which is extended to include thermal field simulations in the present article. The approach is based on the original rescaling-recycling method developed by Lund, Wu, and Squires ["Generation of turbulent inflow data for spatially developing boundary layer simulations," J. Comput. Phys. 140, 233-258 (1998)] for ZPG flows. Isothermal walls are considered for the thermal field and the molecular Prandtl number is 0.71. In addition, only inlet momentum/thermal boundary layer thicknesses must be prescribed while other flow parameters such as the inlet friction velocity, u?, and friction temperature, ??, are computed dynamically based on the flow solution obtained downstream by means of a test plane. This plane is located between the inlet and recycle stations. Based on the unique and extensive DNS results of heat transfer obtained in this investigation, the effects of Reynolds numbers and adverse pressure gradients on the flow and thermal parameters are also explored and visualized. The principal outcome of adverse pressure gradient on the flow parameters has been determined as a secondary peak, particularly on the streamwise velocity fluctuations in the outer region, which shows clear evidence of energy production in the outer flow and not only in the buffer layer as traditionally known. Nevertheless, this peak is not so obvious on the thermal fluctuations but it is hypothesized that the reason is mainly attributed to the absence of a freestream thermal gradient, as imposed in the velocity field. Furthermore, the high-speed streaks in the buffer layer are observed to be notably shorter and wider in a Strong APG than in the ZPG case. Finally, a significant decrease of the turbulent Prandtl number is attributed to the presence of a Strong APG.

  10. Use of Boundary Layer Transition Detection to Validate Full-Scale Flight Performance Predictions

    NASA Technical Reports Server (NTRS)

    Hamner, Marvine; Owens, L. R., Jr.; Wahls, R. A.; Yeh, David

    1999-01-01

    Full-scale flight performance predictions can be made using CFD or a combination of CFD and analytical skin-friction predictions. However, no matter what method is used to obtain full-scale flight performance predictions knowledge of the boundary layer state is critical. The implementation of CFD codes solving the Navier-Stokes equations to obtain these predictions is still a time consuming, expensive process. In addition, to ultimately obtain accurate performance predictions the transition location must be fixed in the CFD model. An example, using the M2.4-7A geometry, of the change in Navier-Stokes solution with changes in transition and in turbulence model will be shown. Oil flow visualization using the M2.4-7A 4.0% scale model in the 14'x22' wind tunnel shows that fixing transition at 10% x/c in the CFD model best captures the flow physics of the wing flow field. A less costly method of obtaining full-scale performance predictions is the use of non-linear Euler codes or linear CFD codes, such as panel methods, combined with analytical skin-friction predictions. Again, knowledge of the boundary layer state is critical to the accurate determination of full-scale flight performance. Boundary layer transition detection has been performed at 0.3 and 0.9 Mach numbers over an extensive Reynolds number range using the 2.2% scale Reference H model in the NTF. A temperature sensitive paint system was used to determine the boundary layer state for these conditions. Data was obtained for three configurations: the baseline, undeflected flaps configuration; the transonic cruise configuration; and, the high-lift configuration. It was determined that at low Reynolds number conditions, in the 8 to 10 million Reynolds number range, the baseline configuration has extensive regions of laminar flow, in fact significantly more than analytical skin-friction methods predict. This configuration is fully turbulent at about 30 million Reynolds number for both 0.3 and 0.9, Mach numbers. Both the transonic cruise and the high-lift configurations were fully turbulent aft of the leading-edge flap hingeline at all Reynolds numbers.

  11. Boundary-value problem for two-dimensional fluctuations in boundary layers

    Microsoft Academic Search

    S. Tsuge; H. L. Rogler

    1985-01-01

    The streamwise evolution of disturbances in a boundary layer is described as an asymptotic solution of the forced Orr-Sommerfeld equation. The velocity fluctuations and their derivations are specified along the y-axis. With these boundary conditions, the effects are included of vortical and irrotational free stream disturbances, fluctuations originating from leading edges, and discrete eigenmodes. A Fourier transform in time and

  12. Numerical Studies of Boundary-Layer Receptivity

    NASA Technical Reports Server (NTRS)

    Reed, Helen L.

    1995-01-01

    Direct numerical simulations (DNS) of the acoustic receptivity process on a semi-infinite flat plate with a modified-super-elliptic (MSE) leading edge are performed. The incompressible Navier-Stokes equations are solved in stream-function/vorticity form in a general curvilinear coordinate system. The steady basic-state solution is found by solving the governing equations using an alternating direction implicit (ADI) procedure which takes advantage of the parallelism present in line-splitting techniques. Time-harmonic oscillations of the farfield velocity are applied as unsteady boundary conditions to the unsteady disturbance equations. An efficient time-harmonic scheme is used to produce the disturbance solutions. Buffer-zone techniques have been applied to eliminate wave reflection from the outflow boundary. The spatial evolution of Tollmien-Schlichting (T-S) waves is analyzed and compared with experiment and theory. The effects of nose-radius, frequency, Reynolds number, angle of attack, and amplitude of the acoustic wave are investigated. This work is being performed in conjunction with the experiments at the Arizona State University Unsteady Wind Tunnel under the direction of Professor William Saric. The simulations are of the same configuration and parameters used in the wind-tunnel experiments.

  13. Bending Boundary Layers in Laminated-Composite Circular Cylindrical Shells

    NASA Technical Reports Server (NTRS)

    Nemeth, Michael P.; Smeltzer, Stanley S., III

    2000-01-01

    An analytical, parametric study of the attenuation of bending boundary layers or edge effects in balanced and unbalanced, symmetrically and unsymmetrically laminated thin cylindrical shells is presented for nine contemporary material systems. The analysis is based on the linear Sanders-Koiter shell equations and specializations to the Love-Kirchhoff shell equations and Donnell's equations are included. Two nondimensional parameters are identified that characterize and quantify the effects of laminate orthotropy and laminate anisotropy on the bending boundary-layer decay length in a very general and encompassing manner. A substantial number of structural design technology results are presented for a wide range of laminated-composite cylinders. For all the laminate constructions considered, the results show that the differences between results that were obtained with the Sanders-Koiter shell equations, the Love-Kirchhoff shell equations, and Donnell's equations are negligible. The results also show that the effect of anisotropy in the form of coupling between pure bending and twisting has a negligible effect on the size of the bending boundary-layer decay length of the balanced, symmetrically laminated cylinders considered. Moreover, the results show that coupling between the various types of shell anisotropies has a negligible effect on the calculation of the bending boundary-layer decay length in most cases. The results also show that in some cases neglecting the shell anisotropy results in underestimating the bending boundary-layer decay length and in other cases it results in an overestimation.

  14. Laminar boundary layers behind blast and detonation waves

    NASA Astrophysics Data System (ADS)

    Du, X.; Liu, W. S.; Glass, I. I.

    1982-08-01

    Boundary layer flows in air behind nonuniform strong blast waves and in the burned gas of a stoichiometric mixture of hydrogen and oxygen behind uniform Chapman-Jouguet detonation waves were investigated. The results show that the Prandtl number profoundly influences boundary layer flow. For a blast wave and Pr less than unity it controls a boundary layer velocity overshoot which decreases with increasing Prandtl number. For a Chapman-Jouguet detonation wave similar results are obtained for a Pr = 0.72; however, for an actual Pr = 2.26, a flow reversal occurs away from the wave where the inviscid flow velocity approaches a small value. The viscous exponent was found to have a significant effect on the wall shear stresses and heat transfer. The effect of the wall temperature is small. Velocity profiles were computed for spherical and planar detonation waves. Because of the rapid decrease in density behind a blast wave, the boundary layer thickness becomes very much larger than their detonation wave counterparts at the same wave velocity (but different physical conditions). The velocity boundary layer thickness in air behind a quasistationary planar shock wave is somewhat more than for a planar detonation wave at the same wave velocity (but in different gases). The heat transfer to the wall behind a planar detonation wave was calculated.

  15. Strong vortex/boundary layer interactions. I - Vortices high

    NASA Astrophysics Data System (ADS)

    Cutler, A. D.; Bradshaw, P.

    1993-04-01

    Detailed measurements with hot-wires and pressure probes are presented for the interaction between a turbulent longitudinal vortex pair with 'common flow' down, and a turbulent boundary layer. The interaction has a larger value of the vortex circulation parameter, and therefore better represents many aircraft/vortex interactions, than those studied previously. The vortices move down towards the boundary layer, but only the outer parts of the vortices actually enter it. Beneath the vortices the boundary layer is thinned by lateral divergence to the extent that it almost ceases to grow. Outboard of the vortices the boundary layer is thickened by lateral convergence. The changes in turbulence structure parameters in the boundary layer appear to be due to the effects of 'extra-rate-of-strain' produced by lateral divergence (or convergence) and by free-stream turbulence. The effect of the interaction on the vortices (other than the inviscid effect of the image vortices below the surface) is small. The flow constitutes a searching test case for prediction methods for three-dimensional turbulent flows.

  16. Bending Boundary Layers in Laminated-Composite Circular Cylindrical Shells

    NASA Technical Reports Server (NTRS)

    Nemeth, Michael P.; Smeltzer, Stanley S., III

    2000-01-01

    A study of the attenuation of bending boundary layers in balanced and unbalanced, symmetrically and unsymmetrically laminated cylindrical shells is presented for nine contemporary material systems. The analysis is based on the linear Sanders-Koiter shell equations and specializations to the Love-Kirchhoff shell equations and Donnell's equations are included. Two nondimensional parameters are identified that characterize the effects of laminate orthotropy and anisotropy on the bending boundary-layer decay length in a very general manner. A substantial number of structural design technology results are presented for a wide range of laminated-composite cylinders. For all laminates considered, the results show that the differences between results obtained with the Sanders-Koiter shell equations, the Love-Kirchhoff shell equations, and Donnell's equations are negligible. The results also show that the effect of anisotropy in the form of coupling between pure bending and twisting has a negligible effect on the size of the bending boundary-layer decay length of the balanced, symmetrically laminated cylinders considered. Moreover, the results show that coupling between the various types of shell anisotropies has a negligible effect on the calculation of the bending boundary-layer decay length in most cases. The results also show that, in some cases, neglecting the shell anisotropy results in underestimating the bending boundary-layer decay length and, in other cases, results in an overestimation.

  17. Characterizing Boundary Layer Properties for Estimating Urban Greenhouse Gas Emissions

    NASA Astrophysics Data System (ADS)

    Hardesty, R. M.; Brewer, A.; Sandberg, S.; Weickmann, A.; Sweeney, C.; Karion, A.; Davis, K. J.; Shepson, P. B.; Lauvaux, T.; Cambaliza, M. L.; Miles, N. L.; Whetstone, J. R.

    2013-12-01

    The Indianapolis Flux Experiment (INFLUX) aims to develop, evaluate and improve methodologies for quantification of greenhouse gas fluxes from urban areas through a multi-year modeling and observational study. The study incorporates measurements of greenhouse gases from periodic aircraft observations as well as from a surface-based network of towers in the area. Recently, we installed a scanning Doppler lidar east of downtown Indianapolis to characterize boundary layer properties important for the aircraft and modeling studies. A scan sequence, including conical scans, vertical scans along two orthogonal directions, and zenith staring is repeated every 20 minutes. The lidar measurements of the radial velocity and backscatter intensity are processed to estimate boundary layer depth, turbulent mixing, aerosol distribution, and wind speed and direction. These lidar-derived boundary layer parameters are used in conjunction with the aircraft greenhouse gas concentration measurements in mass-balance studies and for investigating model performance. The lidar wind profile measurements can also be ingested into models to improve inverse flux estimates. We present here an overview of the first several months of lidar observations from Indianapolis, including performance evaluation, comparison with model estimates, diurnal and seasonal variability of the measurements, and use of the data for model ingest. We also discuss different techniques for estimating boundary layer depth from the observations and the application for mass-balance studies, and introduce plans for deploying a second instrument to study horizontal variability of the measured boundary layer properties.

  18. 3-D Flow Visualization of a Turbulent Boundary Layer

    NASA Astrophysics Data System (ADS)

    Thurow, Brian; Williams, Steven; Lynch, Kyle

    2009-11-01

    A recently developed 3-D flow visualization technique is used to visualize large-scale structures in a turbulent boundary layer. The technique is based on the scanning of a laser light sheet through the flow field similar to that of Delo and Smits (1997). High-speeds are possible using a recently developed MHz rate pulse burst laser system, an ultra-high-speed camera capable of 500,000 fps and a galvanometric scanning mirror yielding a total acquisition time of 136 microseconds for a 220 x 220 x 68 voxel image. In these experiments, smoke is seeded into the boundary layer formed on the wall of a low-speed wind tunnel. The boundary layer is approximately 1.5'' thick at the imaging location with a free stream velocity of 24 ft/s yielding a Reynolds number of 18,000 based on boundary layer thickness. The 3-D image volume is approximately 4'' x 4'' x 4''. Preliminary results using 3-D iso-surface visualizations show a collection of elongated large-scale structures inclined in the streamwise direction. The spanwise width of the structures, which are located in the outer region, is on the order of 25 -- 50% of the boundary layer thickness.

  19. A novel polyvinyl alcohol hydrogel functionalized with organic boundary lubricant for use as low-friction cartilage substitute: synthesis, physical/chemical, mechanical, and friction characterization.

    PubMed

    Blum, Michelle M; Ovaert, Timothy C

    2012-10-01

    A novel material design was developed by functionalizing polyvinyl alcohol hydrogel with an organic low-friction boundary lubricant (molar ratios of 0.2, 0.5, and 1.0 moles of lauroyl chloride). The hydrogels were fabricated using two different techniques. First, the boundary lubricant was initially functionalized to the polymer, then the hydrogels were created by physically crosslinking the reacted polymer. Second, hydrogels were initially created by crosslinking pure polyvinyl alcohol, with the functionalization reaction performed on the fully formed gel. After the reaction, Fourier transform infrared spectroscopy and attenuated total reflectance spectra revealed a clear ester peak, the diminishment of the alcohol peak, and the amplification of the alkyl peaks, which confirmed attachment of the hydrocarbon chains to the polymer. Additional chemical characterization occurred through elemental analysis where an average increase of 22% carbon and 40% hydrogen provided further confirmation of attachment. Physical characterization of the boundary lubricant functionalized hydrogels was performed by water content and contact angle measurements. Water content dependency showed that method 1 had a direct relationship with boundary lubricant concentration, and method 2 displayed an inverse relationship. The contact angle increased as boundary lubricant concentration increased for the pure matrix material for both processing methods, suggesting that the hydrocarbons produced surface properties that mimic natural cartilage, and contact behavior of the biphasic system was dependent on processing method. Friction tests demonstrated a significant decrease in friction coefficient, with a maximum decrease of 70% and a minimum decrease of 24% for boundary lubricant functionalized hydrogels compared with nonfunctionalized polyvinyl alcohol hydrogels. PMID:22807285

  20. Interferometric data for a shock-wave/boundary-layer interaction

    NASA Technical Reports Server (NTRS)

    Dunagan, Stephen E.; Brown, James L.; Miles, John B.

    1986-01-01

    An experimental study of the axisymmetric shock-wave / boundary-layer strong interaction flow generated in the vicinity of a cylinder-cone intersection was conducted. The study data are useful in the documentation and understanding of compressible turbulent strong interaction flows, and are part of a more general effort to improve turbulence modeling for compressible two- and three-dimensional strong viscous/inviscid interactions. The nominal free stream Mach number was 2.85. Tunnel total pressures of 1.7 and 3.4 atm provided Reynolds number values of 18 x 10(6) and 36 x 10(6) based on model length. Three cone angles were studied giving negligible, incipient, and large scale flow separation. The initial cylinder boundary layer upstream of the interaction had a thickness of 1.0 cm. The subsonic layer of the cylinder boundary layer was quite thin, and in all cases, the shock wave penetrated a significant portion of the boundary layer. Owing to the thickness of the cylinder boundary layer, considerable structural detail was resolved for the three shock-wave / boundary-layer interaction cases considered. The primary emphasis was on the application of the holographic interferometry technique. The density field was deduced from an interferometric analysis based on the Able transform. Supporting data were obtained using a 2-D laser velocimeter, as well as mean wall pressure and oil flow measurements. The attached flow case was observed to be steady, while the separated cases exhibited shock unsteadiness. Comparisons with Navier-Stokes computations using a two-equation turbulence model are presented.

  1. Vortex Generators to Control Boundary Layer Interactions

    NASA Technical Reports Server (NTRS)

    Babinsky, Holger (Inventor); Loth, Eric (Inventor); Lee, Sang (Inventor)

    2014-01-01

    Devices for generating streamwise vorticity in a boundary includes various forms of vortex generators. One form of a split-ramp vortex generator includes a first ramp element and a second ramp element with front ends and back ends, ramp surfaces extending between the front ends and the back ends, and vertical surfaces extending between the front ends and the back ends adjacent the ramp surfaces. A flow channel is between the first ramp element and the second ramp element. The back ends of the ramp elements have a height greater than a height of the front ends, and the front ends of the ramp elements have a width greater than a width of the back ends.

  2. Effect of frictional heating on the surface-layer structure and tribological properties of titanium nickelide

    NASA Astrophysics Data System (ADS)

    Korshunov, L. G.; Pushin, V. G.; Chernenko, N. L.

    2011-09-01

    The effect of frictional heating (whose intensity was varied at the expense of changes in the sliding velocity from 0.35 to 9.00 m/s) on the rate of wear, friction coefficient, friction thermopower, structure, and microhardness of the Ti49.4Ni50.6 alloy in a microcrystalline (MC) state with grains 20-30 ?m in size and in a submicrocrystalline (SMC) state with grains 300 nm in size has been investigated. The tribological tests were conducted under the conditions of dry sliding friction in air using the finger-disk (made of steel Kh12M, hardness HRC = 63) scheme at a normal load of 98 N. Due to the frictional heating, the temperature in the surface layer 0.5 mm thick of the samples changed from 150-200 (at a sliding velocity of 0.35 m/s) to 1100°C (at a velocity of 9 m/s). The alloy structure has been studied with the help of metallographic and electronmicroscopic (scanning and transmission microscopy) methods. It has been shown that the rate of wear of the titanium nickelide in the MC and SMC structural states is more than an order of magnitude lower than in the 12Kh18N9 steel and several times less than in the 40Kh13 steel. The fracture of the friction surface of the titanium nickelide occurs predominantly by the fatigue or oxidation-fatigue mechanisms, which are characterized by a relatively low wear rate, whereas the 40Kh13 and 12Kh18N9 steels show a tendency to intense thermal adhesive wear (seizure) at velocities higher than 0.35 m/s. It has been shown by the electron-microscopic investigation that nanocrystalline structures consisting of crystals of the B2 phase, oxides of the TiO2 type, and some amount of martensite B19' are formed in the process of friction in the surface layer of the titanium nickelide. It has been concluded that an enhanced wear resistance of the titanium nickelide is caused by the high heat resistance (strength) and high fracture toughness of the nanocrystalline B2 phase and by the presence of high-strength thermostable oxides of the TiO2 type formed upon friction.

  3. Turbulence structure of the marine stable boundary layer over the Baltic Sea

    SciTech Connect

    Smedman, A.S.; Hoegstroem, U. [Univ. of Uppsala (Sweden)

    1994-12-31

    For more than half of the year the land surfaces surrounding the Baltic Sea is warmer than the sea surface, and the marine boundary layer over the Baltic is stable. Observations, at various sites in the Baltic Sea area during the last decade. also indicate frequent occurrence of low-level jets at the top of the stable boundary layer. In many cases the marine jet can be considered as an analogy in space to the evolution of the nocturnal jet with time. The frictional decoupling occurs when warm air over the land is flowing out over the sea. Data from two areas together with model simulations are used in this study to characterize turbulence structure in the marine boundary layer. The measurements include profiles of wind and temperature on towers situated at two isolated islands, together with turbulence recordings and aircraft measurements. Also wave height and water surface temperature have been measured. The model simulations are performed with a second-order closure model.

  4. Hot-Film and Hot-Wire Anemometry for a Boundary Layer Active Flow Control Test

    NASA Technical Reports Server (NTRS)

    Lenahan, Keven C.; Schatzman, David M.; Wilson, Jacob Samuel

    2013-01-01

    Unsteady active flow control (AFC) has been used experimentally for many years to minimize bluff-body drag. This technology could significantly improve performance of rotorcraft by cleaning up flow separation. It is important, then, that new actuator technologies be studied for application to future vehicles. A boundary layer wind tunnel was constructed with a 1ft-x-3ft test section and unsteady measurement instrumentation to study how AFC manipulates the boundary layer to overcome adverse pressure gradients and flow separation. This unsteady flow control research requires unsteady measurement methods. In order to measure the boundary layer characteristics, both hot-wire and hot-film Constant Temperature Anemometry is used. A hot-wire probe is mounted in the flow to measure velocity while a hot-film array lays on the test surface to measure skin friction. Hot-film sensors are connected to an anemometer, a Wheatstone bridge circuit with an output that corresponds to the dynamic flow response. From this output, the time varying flow field, turbulence, and flow reversal can be characterized. Tuning the anemometers requires a fan test on the hot-film sensors to adjust each output. This is a delicate process as several variables drastically affect the data, including control resistance, signal input, trim, and gain settings.

  5. Feasibility of generating an artificial burst in a turbulent boundary layer, phase 2

    NASA Technical Reports Server (NTRS)

    Gad-El-hak, Mohamed

    1989-01-01

    Various drag accounts for about half of the total drag on commercial aircraft at subsonic cruise conditions. Two avenues are available to achieve drag reduction: either laminar flow control or turbulence manipulation. The present research deals with the latter approach. The primary objective of Phase 2 research was to investigate experimentally the feasibility of substantially reducing the skin-friction drag in a turbulent boundary layer. The method combines the beneficial effects of suction and a longitudinally ribbed surface. At a sufficiently large spanwise separation, the streamwise grooves act as a nucleation site causing a focusing of low-speed streaks over the peaks. Suction is then applied intermittently through longitudinal slots located at selected locations along those peaks to obliterate the low-speed regions and to prevent bursting. Phase 2 research was divided into two tasks. In the first, selective suction from a single streamwise slot was used to eliminate either a single burst-like event or a periodic train of artificially generated bursts in laminar and turbulent boundary layers that develop on a flat plate towed in a water channel. The results indicate that equivalent values of the suction coefficient as low as 0.0006 were sufficient to eliminate the artificially generated bursts in a laminar boundary layer.

  6. Fabrication of Nano-Composite Surface Layers on Aluminium Employing Friction Stir Processing Technique

    SciTech Connect

    Bozorg, S. F. K.; Zarghani, A. S.; Zarei-Hanzaki, A. [School of Metallurgy and Materials Engineering, Faculty of Engineering, University of Tehran, Tehran, P.O. Box: 14395-553 (Iran, Islamic Republic of)

    2010-03-11

    Al/Al{sub 2}O{sub 3} nano-composite surface layer was fabricated via friction stir processing technique. Commercial AA6082 aluminium alloy extruded bar and nanometric Al{sub 2}O{sub 3} powder were subjected to friction stir processing at a substrate travel speed of 80 mm/min and a tool rotation speed of 1000 rpm using a hardened H-13 tool steel. The grain structure and reinforcement particles were investigated by using optical and scanning electron microscopy. Results show that Al{sub 2}O{sub 3} particles can be more uniformly dispread in aluminium substrate by increasing the number of processing passes. Also, hardness enhancement of the nano-composite surface layer was found. This is attributed to uniform dispersion of Al{sub 2}O{sub 3} particles.

  7. Roughness Induced Transition in a Supersonic Boundary Layer

    NASA Technical Reports Server (NTRS)

    Balakumar, Ponnampalam; Kergerise, Michael A.

    2013-01-01

    Direct numerical simulation is used to investigate the transition induced by threedimensional isolated roughness elements in a supersonic boundary layer at a free stream Mach number of 3.5. Simulations are performed for two different configurations: one is a square planform roughness and the other is a diamond planform roughness. The mean-flow calculations show that the roughness induces counter rotating streamwise vortices downstream of the roughness. These vortices persist for a long distance downstream and lift the low momentum fluid from the near wall region and place it near the outer part of the boundary layer. This forms highly inflectional boundary layer profiles. These observations agree with recent experimental observations. The receptivity calculations showed that the amplitudes of the mass-flux fluctuations near the neutral point for the diamond shape roughness are the same as the amplitude of the acoustic disturbances. They are three times smaller for the square shape roughness.

  8. The Turbulent Boundary Layer on a Rough Curvilinear Surface

    NASA Technical Reports Server (NTRS)

    Droblenkov, V. F.

    1958-01-01

    A number of semiempirical approximate methods exist for determining the characteristics of the turbulent boundary layer on a curvilinear surface. At present, among these methods, the one proposed by L. G. Loitsianskii is given frequent practical application. This method is sufficiently effective and permits, in the case of wing profiles with technically smooth surfaces, calculating the basic characteristics of the boundary layer and the values of the overall drag with an accuracy which suffices for practical purposes. The idea of making use of the basic integral momentum equation ((d delta(sup xx))/dx) + ((V' delta(sup xx))/V) (2 + H) = (tau(sub 0))/(rho V(exp 2)) proves to be fruitful also for the solution of the problems in the determination of the characteristics of the turbulent boundary layer on a rough surface.

  9. Sound from boundary layer flow over steps and gaps

    NASA Astrophysics Data System (ADS)

    Ryan Catlett, M.; Devenport, William; Glegg, Stewart A. L.

    2014-09-01

    This study is concerned with the radiated sound from boundary layer flows over small forward and backward steps and gap configurations of similar dimension. These measurements were performed in the Virginia Tech Anechoic Wall Jet Facility for step heights that ranged from approximately 10 percent to 100 percent of the incoming boundary layer height. The results show the influence of step height and boundary layer edge velocity on the far-field sound from forward and backward steps. Neither source shows clear dipole directivity and at least the larger step heights considered in this study are shown to not be acoustically compact. A new mixed scaling normalization is proposed for the far-field spectra from both types of step. Backward steps are shown to be much weaker producers of far-field sound than similarly sized forward steps. The implications of this behavior are discussed with respect to the far-field sound measured from various gap flows.

  10. Effects of forebody geometry on subsonic boundary-layer stability

    NASA Technical Reports Server (NTRS)

    Dodbele, Simha S.

    1990-01-01

    As part of an effort to develop computational techniques for design of natural laminar flow fuselages, a computational study was made of the effect of forebody geometry on laminar boundary layer stability on axisymmetric body shapes. The effects of nose radius on the stability of the incompressible laminar boundary layer was computationally investigated using linear stability theory for body length Reynolds numbers representative of small and medium-sized airplanes. The steepness of the pressure gradient and the value of the minimum pressure (both functions of fineness ratio) govern the stability of laminar flow possible on an axisymmetric body at a given Reynolds number. It was found that to keep the laminar boundary layer stable for extended lengths, it is important to have a small nose radius. However, nose shapes with extremely small nose radii produce large pressure peaks at off-design angles of attack and can produce vortices which would adversely affect transition.

  11. Effect of Blowing on Boundary Layer of Scarf Inlet

    NASA Technical Reports Server (NTRS)

    Gerhold, Carl H.; Clark, Lorenzo R.

    2004-01-01

    When aircraft operate in stationary or low speed conditions, airflow into the engine accelerates around the inlet lip and pockets of turbulence that cause noise and vibration can be ingested. This problem has been encountered with engines equipped with the scarf inlet, both in full scale and in model tests, where the noise produced during the static test makes it difficult to assess the noise reduction performance of the scarf inlet. NASA Langley researchers have implemented boundary layer control in an attempt to reduce the influence of the flow nonuniformity in a 12-in. diameter model of a high bypass fan engine mounted in an anechoic chamber. Static pressures and boundary layer profiles were measured in the inlet and far field acoustic measurements were made to assess the effectiveness of the blowing treatment. The blowing system was found to lack the authority to overcome the inlet distortions. Methods to improve the implementation of boundary layer control to reduce inlet distortion are discussed.

  12. A compilation of unsteady turbulent boundary-layer experimental data

    NASA Technical Reports Server (NTRS)

    Carr, L. W.

    1981-01-01

    An extensive literature search was conducted and those experiments related to unsteady boundary layer behavior were cataloged. In addition, an international survey of industrial, university, and governmental research laboratories was made in which new and ongoing experimental programs associated with unsteady turbulent boundary layer research were identified. Pertinent references were reviewed and classified based on the technical emphasis of the various experiments. Experiments that include instantaneous or ensemble averaged profiles of boundary layer variables are stressed. The experimental apparatus and flow conditions are described and summaries of acquired data and significant conclusions are summarized. Measurements obtained from the experiments which exist in digital form were stored on magnetic tape. Instructions are given for accessing these data sets for further analysis.

  13. Experimental study of a three-dimensional pressure-driven turbulent boundary layer

    SciTech Connect

    Olcmen, S.M.; Simpson, R.L. [Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (United States)

    1995-05-01

    The characteristics of an incompressible 3-D turbulent boundary layer generated by a wing-body junction flow was studied experimentally. The data presented include time-mean static pressure and directly measured skin-friction magnitude on the wall. The mean velocity and all Reynolds stresses from a three-velocity-component fiber-optic laser-Doppler anemometer are presented at several stations along a line determined by the mean velocity vector component parallel to the wall in the layer where the u(sup 2) kinematic normal stress is maximum (normal stress coordinate system). The difference of the flow studied here lies in the fact that the mean flow variables depend on three spatial axes rather than two axes, such as flows in which the three-dimensionality of the flow has been generated either by a rotating cylinder or by a pressure gradient in one direction only throughout the flow.

  14. Heat transfer and fluid mechanics measurements in transitional boundary layer flows

    NASA Technical Reports Server (NTRS)

    Wang, T.; Simon, T. W.; Buddhavarapu, J.

    1985-01-01

    Experimental results are presented to document hydrodynamic and thermal development of flat-plate boundary layers undergoing natural transition. Local heat transfer coefficients, skin friction coefficients and profiles of velocity, temperature and Reynolds normal and shear stresses are presented. A case with no transition and transitional cases with 0.68 percent and 2.0 percent free-stream disturbance intensities were investigated. The locations of transition are consistent with earlier data. A late-laminar state with significant levels of turbulence is documented. In late-transitional and early-turbulent flows, turbulent Prandtl number and conduction layer thickness values exceed, and the Reynolds analogy factor is less than, values previously measured in fully turbulent flows.

  15. The turbulent boundary layer directly behind the reattachment of a separation area

    Microsoft Academic Search

    P. Wauschkuhn; V. Vasanta Ram

    1975-01-01

    The parameters measured in the study include the pressure distribution at the wall, the wall shear stress characteristics, the distribution of the mean velocity in the boundary layer, and the distribution of the Reynolds shear stress in the boundary layer. The relaxation characteristics of the boundary layer are discussed. The characteristics of the flow in the boundary layer do not

  16. Spectral characteristics of velocity and vorticity fluxes in an unstratified turbulent boundary layer

    E-print Network

    Lien, Ren-Chieh

    with the empirical form found in the atmospheric boundary layer. In the inertial subrange the momentum flux of turbulence spectral properties have been conducted in the atmospheric boundary layer, e.g., the 1968 Kansas spectral properties in the oceanic boundary layer com- pared to studies in the atmospheric boundary layer

  17. Surface heterogeneity effects on regional-scale fluxes in stable boundary layers: surface temperature transitions

    E-print Network

    Stoll, Rob

    understanding of homogeneous stable boundary layers (SBLs). However, in general, the atmospheric boundary layerSurface heterogeneity effects on regional-scale fluxes in stable boundary layers: surface temperature distributions on regional-scale turbulent fluxes in the stable boundary layer (SBL). Simulations

  18. Time Scales of the Trade Wind Boundary Layer Adjustment GILLES BELLON

    E-print Network

    Ribes, Aurélien

    of the trade wind atmospheric boundary layer to an abrupt sea surface warming is in- vestigated using a large of the boundary layer depth. 1. Introduction The trade wind atmospheric boundary layer can be consideredTime Scales of the Trade Wind Boundary Layer Adjustment GILLES BELLON Centre National de Recherches

  19. De Bilt, 2010 | Technical report; TR-315 Assimilation of Cabauw boundary layer

    E-print Network

    Stoffelen, Ad

    ;#12;Assimilation of Cabauw boundary layer observations in an atmospheric single-column model using an ensemble the structure and transport properties of the atmospheric boundary layer (ABL). Boundary layer processes have the full atmospheric column over the Netherland of which the atmospheric boundary layer forms the lowest

  20. Static friction force between catalyst layer and micro porous layer and its effect on deformations of membrane electrode assemblies under swelling

    NASA Astrophysics Data System (ADS)

    Uchiyama, Tomoaki; Kumei, Hideyuki; Yoshida, Toshihiko; Ishihara, Kazuhiko

    2014-12-01

    Membrane electrode assemblies (MEAs) composed of a Nafion membrane and heat-transferred catalyst layers (CLs) were employed in this study. The deformation of MEAs between micro porous layers (MPLs)/gas diffusion layers (GDLs) was investigated in response to humidity cycles. The MEA deformed into wrinkle shapes at lower contact pressures and exhibited bulge deformation at higher contact pressures. Wrinkles were generated by large in-plane swelling after buckling when swelling could not be restricted by the friction force from MPLs. Next, the static friction coefficient between the MEA and MPL was measured, and a friction mechanism was investigated. The static friction coefficient was 0.43 at the contact pressure of 0.22 MPa between the MEA and MPL and increased with the increase in the contact pressure. The surface observation of the MPL after the friction test indicated that a static friction was generated by the contact of the convex MPL and flat CL surface. The static friction force and swelling force were calculated to investigate the effect of the static friction force on the MEA deformation. The static friction force, which was more than 12% of the swelling force, could prevent wrinkles in 33 ?m thick MEA.

  1. New concepts on the interfacial friction behavior between flat steel ribbon layers

    SciTech Connect

    Zheng, J.; Zhu, G. [Zhejiang Univ., Hangzhou (China). Institute of Chemical Machinery and Equipment

    1995-11-01

    Flat steel ribbon wound pressure vessels are widely used in chemical, petrochemical, and other industries. However, no satisfactory theoretical formulae are available to estimate the additional strengthening induced by the friction between the layers. Effective normal stress in the ribbon wide direction and shear stress are new concepts for describing such strengthening effect. These concepts are analyzed further to obtain expressions for both axial and circumferential bursting pressure, and stresses of the vessel. Comparison with one set of experimental results shows excellent agreement.

  2. Entrainment results from the Flatland boundary layer experiments

    NASA Astrophysics Data System (ADS)

    Angevine, Wayne M.; Grimsdell, Alison W.; McKeen, Stuart A.; Warnock, J. M.

    1998-06-01

    A primary objective of the 1995 and 1996 Flatland boundary layer experiments, known as Flatland95 and Flatland96, was to measure and characterize entrainment at the top of the convective boundary layer. The experiments took place in the area near the Flatland Atmospheric Observatory near Champaign-Urbana, Illinois, in August-September 1995 and June-August 1996. The site is interesting because it is extraordinarily flat, has uniform land use, and is situated in a prime agricultural area. Measurements in the entrainment zone are difficult to make due to the time and space scales involved. We will present entrainment estimates derived from budget calculations with data from UHF wind profiling radars and from radiosondes. The results demonstrate that the remote sensing instruments produce results comparable to radiosondes and have significant advantages for boundary layer studies. Surface flux measurements are also used in the calculations. Direct heating by shortwave radiation absorbed by aerosols in the boundary layer is found to be an important component of the boundary layer heat budgets. The entrainment virtual temperature flux and the ratio of entrainment to surface flux found from the budget calculations are somewhat larger than expected. Advection of warm air, which is not accounted for in the budget calculations, is probably a factor in some periods but may not be significant in the full data set. For the full data set, the mean entrainment velocity found from the heat budget is 0.03±0.01 m s-1, slightly less than the mean rate of change of the boundary layer height. The mean entrainment ratio AR is 0.51±0.12 and the median is 0.43, comparable to results from some other studies in comparable conditions.

  3. Wet but not slippery: boundary friction in tree frog adhesive toe pads

    PubMed Central

    Federle, W; Barnes, W.J.P; Baumgartner, W; Drechsler, P; Smith, J.M

    2006-01-01

    Tree frogs are remarkable for their capacity to cling to smooth surfaces using large toe pads. The adhesive skin of tree frog toe pads is characterized by peg-studded hexagonal cells separated by deep channels into which mucus glands open. The pads are completely wetted with watery mucus, which led previous authors to suggest that attachment is solely due to capillary and viscous forces generated by the fluid-filled joint between the pad and the substrate. Here, we present evidence from single-toe force measurements, laser tweezer microrheometry of pad mucus and interference reflection microscopy of the contact zone in Litoria caerulea, that tree frog attachment forces are significantly enhanced by close contacts and boundary friction between the pad epidermis and the substrate, facilitated by the highly regular pad microstructure. PMID:16971337

  4. Receptivity of Hypersonic Boundary Layers over Straight and Flared Cones

    NASA Technical Reports Server (NTRS)

    Balakumar, Ponnampalam; Kegerise, Michael A.

    2010-01-01

    The effects of adverse pressure gradients on the receptivity and stability of hypersonic boundary layers were numerically investigated. Simulations were performed for boundary layer flows over a straight cone and two flared cones. The steady and the unsteady flow fields were obtained by solving the two-dimensional Navier-Stokes equations in axi-symmetric coordinates using the 5th order accurate weighted essentially non-oscillatory (WENO) scheme for space discretization and using third-order total-variation-diminishing (TVD) Runge-Kutta scheme for time integration. The mean boundary layer profiles were analyzed using local stability and non-local parabolized stability equations (PSE) methods. After the most amplified disturbances were identified, two-dimensional plane acoustic waves were introduced at the outer boundary of the computational domain and time accurate simulations were performed. The adverse pressure gradient was found to affect the boundary layer stability in two important ways. Firstly, the frequency of the most amplified second-mode disturbance was increased relative to the zero pressure gradient case. Secondly, the amplification of first- and second-mode disturbances was increased. Although an adverse pressure gradient enhances instability wave growth rates, small nose-tip bluntness was found to delay transition due to the low receptivity coefficient and the resulting weak initial amplitude of the instability waves. The computed and measured amplitude-frequency spectrums in all three cases agree very well in terms of frequency and the shape except for the amplitude.

  5. An Innovative Flow-Measuring Device: Thermocouple Boundary Layer Rake

    NASA Technical Reports Server (NTRS)

    Hwang, Danny P.; Fralick, Gustave C.; Martin, Lisa C.; Wrbanek, John D.; Blaha, Charles A.

    2001-01-01

    An innovative flow-measuring device, a thermocouple boundary layer rake, was developed. The sensor detects the flow by using a thin-film thermocouple (TC) array to measure the temperature difference across a heater strip. The heater and TC arrays are microfabricated on a constant-thickness quartz strut with low heat conductivity. The device can measure the velocity profile well into the boundary layer, about 65 gm from the surface, which is almost four times closer to the surface than has been possible with the previously used total pressure tube.

  6. Interaction between strong longitudinal vortices and turbulent boundary layers

    NASA Technical Reports Server (NTRS)

    Cutler, A. D.; Naaseri, M.; Bradshaw, P.

    1989-01-01

    The latest stages of work on the interaction between longitudinal vortices and turbulent boundary layers show that very large changes in turbulence structure occur when the vortices are strong (crossflow angles of order 20 deg). The changes are poorly correlated by current turbulence models and go well beyond the rotation of the stress tensor in the vortex region that is explicitly represented by the exact 'generation' (exchange) terms in the Reynolds-stress transport equations. Measurements in the interaction between a burst vortex and a boundary layer show qualitatively similar results to the unburst case, but shed useful light on the bursting process itself.

  7. Numerical Study of Boundary-Layer in Aerodynamics

    NASA Technical Reports Server (NTRS)

    Shih, Tom I-P.

    1997-01-01

    The accomplishments made in the following three tasks are described: (1) The first task was to study shock-wave boundary-layer interactions with bleed - this study is relevant to boundary-layer control in external and mixed-compression inlets of supersonic aircraft; (2) The second task was to test RAAKE, a code developed for computing turbulence quantities; and (3) The third task was to compute flow around the Ames ER-2 aircraft that has been retrofitted with containers over its wings and fuselage. The appendices include two reports submitted to AIAA for publication.

  8. Passive and active control of boundary layer transition

    NASA Astrophysics Data System (ADS)

    Nosenchuck, Daniel Mark

    It is well known that laminar-turbulent boundary layer transition is initiated by the formation of Tollmien-Schlichting laminar instability waves. The amplification rates of these waves are strongly dependent on the shape of the boundary layer velocity profile. Consequently, the transition process can be controlled by modifying the velocity profile. This can be accomplished by controlling the pressure gradient (dp/dx), using boundary layer suction, installing surface roughness elements, or by surface heating or cooling. Methods used to modify the transition process through changes in the mean velocity profile are called "passive" in this paper. There exists a large set of experiments and theory on the application of passive methods for boundary layer control. In the present work only surface heating will be addressed.Transition measurements were made on a heated flat plate in water. Results are presented for several plate wall temperature distributions. An increase by a factor of 2.5 in transition Reynolds number was observed for a 5°C isothermal wall overheat. Buoyancy effects on transition were minimal due to the small Richardson and Grashof numbers encountered in the experiments.The amplification of laminar instability waves is comparatively to process, taking place over many boundary layer thicknesses. After the slow amplification of the laminar instability waves, transition occurs by a strong three dimensional dynamic instability. It appears possible to attenuate (or reinforce) the instability waves by introducing amplitude-and phase-controlled perturbations into the laminar boundary layer using feedback control system. This method is called "active" control and forms the larger part of the research reported in this thesis.A combination of sensors, activators and feedback control electronics is required for active control. The sensors used in the experiments are flush-mounted hot film wall shear robes. A new type of activator was developed using thin, flush-mounted surface heating elements to excite instability waves in the laminar boundary layer by periodic (active) heating.Experimental evidence is presented illustrating the effects of periodically heated flush mounted strips in perturbing a flat plate boundary layer in water. The results of superposition of forced laminar instability waves are also given. Finally, an active feedback-control system using a single hot film probe and strip heater was developed to control natural laminar instability waves in real time. It is shown that when the natural waves were attenuated, the transition length was increased by 25%, requiring only 10 watts of strip heater power. To accomplish the same transition delay using passive heating, the internal heating pads had to supply 1900 watts of power.

  9. Characteristics of turbulence in boundary layer with zero pressure gradient

    NASA Technical Reports Server (NTRS)

    Klebanoff, P S

    1955-01-01

    The results of an experimental investigation of a turbulent boundary layer with zero pressure gradient are presented. Measurements with the hot-wire anemometer were made of turbulent energy and turbulent shear stress, probability density and flattening factor of u-fluctuation (fluctuation in x-direction), spectra of turbulent energy and shear stress, and turbulent dissipation. The importance of the region near the wall and the inadequacy of the concept of local isotropy are demonstrated. Attention is given to the energy balance and the intermittent character of the outer region of the boundary layer. Also several interesting features of the spectral distribution of the turbulent motions are discussed.

  10. A model of the wall boundary layer for ducted propellers

    NASA Astrophysics Data System (ADS)

    Eversman, Walter; Moehring, Willi

    1987-10-01

    The objective of the present study is to include a representation of a wall boundary layer in an existing finite element model of the propeller in the wind tunnel environment. The major consideration is that the new formulation should introduce only modest alterations in the numerical model and should still be capable of producing economical predictions of the radiated acoustic field. This is accomplished by using a stepped approximation in which the velocity profile is piecewise constant in layers. In the limit of infinitesimally thin layers, the velocity profile of the stepped approximation coincides with that of the continuous profile. The approach described here could also be useful in modeling the boundary layer in other duct applications, particularly in the computation of the radiated acoustic field for sources contained in a duct.

  11. A model of the wall boundary layer for ducted propellers

    NASA Technical Reports Server (NTRS)

    Eversman, Walter; Moehring, Willi

    1987-01-01

    The objective of the present study is to include a representation of a wall boundary layer in an existing finite element model of the propeller in the wind tunnel environment. The major consideration is that the new formulation should introduce only modest alterations in the numerical model and should still be capable of producing economical predictions of the radiated acoustic field. This is accomplished by using a stepped approximation in which the velocity profile is piecewise constant in layers. In the limit of infinitesimally thin layers, the velocity profile of the stepped approximation coincides with that of the continuous profile. The approach described here could also be useful in modeling the boundary layer in other duct applications, particularly in the computation of the radiated acoustic field for sources contained in a duct.

  12. The Saharan atmospheric boundary layer: Turbulence, stratification and mixing

    NASA Astrophysics Data System (ADS)

    Garcia-Carreras, Luis; Parker, Douglas J.; Marsham, John H.; Rosenberg, Philip D.; Marenco, Franco; Mcquaid, James B.

    2013-04-01

    High-resolution large-eddy model simulations, combined with aircraft and radiosonde observations from the Fennec observational campaign are used to describe the vertical structure of the Saharan atmospheric boundary layer (SABL). The SABL, probably the deepest dry convective boundary layer on Earth, is crucial in controlling the vertical redistribution and long-range transport of dust, heat, water and momentum in the Sahara, with significant implications for the large-scale Saharan heat low and West African monsoon systems. The daytime SABL has a unique structure, with an actively growing convective region driven by high sensible heating at the surface, capped by a weak (?1K) temperature inversion and a deep, near-neutrally stratified Saharan residual layer (SRL) above it, which is mostly well mixed in humidity and temperature and reaches a height of ~500hPa. Large-eddy model (LEM) simulations were initialized with radiosonde data and driven by surface heat flux observations from Fennec supersite-1 at Bordj Bardji Mokhtar (BBM), southern Algeria. Aircraft observations are used to validate the processes of interest identified in the model, as well as providing unprecedented detail of the turbulent characteristics of the SABL. Regular radiosondes from BBM during June 2011 are used to generate a climatology of the day-time SABL structure, providing further evidence that the processes identified with the LEM are recurrent features of the real SABL. The model is shown to reproduce the typical SABL structure from observations, and different tracers are used to illustrate the penetration of the convective boundary layer into the residual layer above as well as mixing processes internal to the residual layer. Despite the homogeneous surface fluxes and tracer initialization, the large characteristic length-scale of the turbulent eddies leads to large horizontal changes in boundary layer depth (which control the formation of clouds) and significant heterogeneity in tracer concentrations, demonstrating the potential for variability in, for example, dust concentrations independent of external forcings. The residual layer, where long-range transport can take place, is analyzed in particular detail. Various processes which can lead to transport into and mixing within the residual layer are explored, including shear-driven turbulence at the residual layer top and the potential for detrainment from the convective boundary layer top due to the combination of a weak lid and a neutral layer above.

  13. Bidirectional mixing in an ACE 1 marine boundary layer overlain by a second turbulent layer

    NASA Astrophysics Data System (ADS)

    Russell, Lynn M.; Lenschow, Donald H.; Laursen, Krista K.; Krummel, Paul B.; Siems, Steven T.; Bandy, Alan R.; Thornton, Donald C.; Bates, Timothy S.

    1998-01-01

    In the Lagrangian B flights of the First Aerosol Characterization Experiment (ACE 1), the chemistry and dynamics of the postfrontal air mass were characterized by tracking a constant-level balloon launched into the air mass for three consecutive 8-hour flights of the instrumented National Center for Atmospheric Research C-130 aircraft during a 33-hour period. The boundary layer extended to a height of 400 to 700 m during this period, with its top defined by changes in the amount of turbulent mixing measured rather than by an inversion. Above the planetary boundary layer to a height of 1400 to 1900 m, a second layer was capped with a more pronounced temperature inversion and contained only intermittent turbulence. Since this layer served as a reservoir and mixing zone for boundary layer and free tropospheric air, we have called it a buffer layer to emphasize its differences from previous concepts of a residual or intermediate layer. Estimates of the entrainment rate of dimethyl sulfide (DMS) and aerosol particles between the boundary layer and the buffer layer demonstrated that exchange occurred across the interface between these two layers in both upward and downward directions. In situ measurements of aerosol particles revealed highly concentrated, nucleation-mode aerosol particles between 10 and 30 nm diameter at the beginning of the first Lagrangian B flight in the buffer layer, while few were present in the boundary layer. Observations during the second and third flights indicate that aerosol particles of this size were mixing downward into the boundary layer from the buffer layer while DMS was transported upward. This fortuitous enhancement of aerosol particles in the buffer layer allowed simultaneous use of DMS and aerosol particle budgets to track the bidirectional entrainment rates. These estimates were compared to those from measurements of mean vertical motion and boundary layer growth rate, and from estimates of the fluxes and changes in concentration across the layer interface. In addition, three different techniques were used to estimate DMS emission rates from the ocean surface and showed good agreement: (1) evalulation of the DMS and aerosol mean concentration budgets, (2) seawater DMS concentrations and an air-sea exchange velocity, and (3) the mixed-layer gradient technique.

  14. Magnetic field maxima in the low latitude boundary layer

    NASA Technical Reports Server (NTRS)

    Sonnerup, B.; Paschmann, G.; Phan, T.-D.; Luehr, H.

    1992-01-01

    The magnetic field often exhibits a maximum in the earth's low-latitude boundary layer. Examples of this behavior are shown using data from the AMPTE/IRM spacecraft, and it is argued that two fundamentally distinct causes exist for the excess field: (1) a depression, within the layer, of the population of medium-energy ions of magnetospheric origin and (2) field curvature effects associated with undulations of the magnetopause itself.

  15. Some Turbulence Characteristics in Stable Atmospheric Boundary Layer Flow

    Microsoft Academic Search

    Ann-Sofi Smedman

    1991-01-01

    Atmospheric boundary layer measurements during stable and near neutral condition from seven sites in different kinds of terrain have been analyzed in order to find relationships among turbulence parameters.The shape of the spectral and cospectral distributions turned out to be well represented by the universal expressions found for ideal sites.For near neutral conditions in the surface layer w\\/u( increases and

  16. Friction properties of the plate boundary megathrust beneath the frontal wedge near the Japan Trench: an inference from topographic variation

    NASA Astrophysics Data System (ADS)

    Koge, Hiroaki; Fujiwara, Toshiya; Kodaira, Shuichi; Sasaki, Tomoyuki; Kameda, Jun; Kitamura, Yujin; Hamahashi, Mari; Fukuchi, Rina; Yamaguchi, Asuka; Hamada, Yohei; Ashi, Juichiro; Kimura, Gaku

    2014-12-01

    The 2011 Tohoku-Oki earthquake (Mw 9.0) produced a fault rupture that extended to the toe of the Japan Trench. The deformation and frictional properties beneath the forearc are keys that can help to elucidate this unusual event. In the present study, to investigate the frictional properties of the shallow part of the plate boundary, we applied the critically tapered Coulomb wedge theory to the Japan Trench and obtained the effective coefficient of basal friction and Hubbert-Rubey pore fluid pressure ratio (?) of the wedge beneath the lower slope. We extracted the surface slope angle and décollement dip angle (which are the necessary topographic parameters for applying the critical taper theory) from seismic reflection and refraction survey data at 12 sites in the frontal wedges of the Japan Trench. We found that the angle between the décollement and back-stop interface generally decreases toward the north. The measured taper angle and inferred effective friction coefficient were remarkably high at three locations. The southernmost area, which had the highest coefficient of basal friction, coincides with the area where the seamount is colliding offshore of Fukushima. The second area with a high effective coefficient of basal friction coincides with the maximum slip location during the 2011 Tohoku-Oki earthquake. The area of the 2011 earthquake rupture was topographically unique from other forearc regions in the Japan Trench. The strain energy accumulation near the trench axis may have proceeded because of the relatively high friction, and later this caused a large slip and collapse of the wedge. The location off Sanriku, where there are neither seamount collisions nor rupture propagation, also has a high coefficient of basal friction. The characteristics of the taper angle, effective coefficient of basal friction, and pore fluid pressure ratio along the Japan Trench presented herein may contribute to the understanding of the relationship between the geometry of the prism and the potential for generating seismo-tsunamigenic slips.

  17. Study of nonlinear behaviors and modal reductions for friction destabilized systems. Application to an elastic layer

    NASA Astrophysics Data System (ADS)

    Loyer, A.; Sinou, J.-J.; Chiello, O.; Lorang, X.

    2012-02-01

    As noise reduction tends to be part of environmental directives, predicting squeal noise generated by disc brakes is an important industrial issue. It involves both the transient and stationary nonlinear dynamics of self-excited systems with frictional contact. Time simulation of the phenomenon is an attractive option for reducing experiment costs. However, since such computations using full finite element models of industrial disc brake systems is time-consuming, model reduction has to be performed. In this paper, both the transient and stationary nonlinear behaviors of the friction destabilized system and the effect of dynamical reduction on the nonlinear response of a simple friction destabilized system are carried out. The first part provides a description of the general modeling retained for friction destabilized systems. Then, discretization and solving processes for the stability analysis and the temporal evolution are presented. The third part presents an analysis of a sliding elastic layer for different operating conditions, in order to better understand the nonlinear behavior of such systems. Finally, spatial model reduction is performed with different kinds of reduction bases in order to analyze the different effects of modal reductions. This clearly shows the necessity of including static modes in the reduction basis and that nonlinear interactions between unstable modes are very difficult to represent with reduced bases. Finally, the proposed model and the associated studies are intended to be the benchmark cases for future comparison.

  18. Multiple pass and multiple layer friction stir welding and material enhancement processes

    DOEpatents

    Feng, Zhili (Knoxville, TN) [Knoxville, TN; David, Stan A. (Knoxville, TN) [Knoxville, TN; Frederick, David Alan (Harriman, TN) [Harriman, TN

    2010-07-27

    Processes for friction stir welding, typically for comparatively thick plate materials using multiple passes and multiple layers of a friction stir welding tool. In some embodiments a first portion of a fabrication preform and a second portion of the fabrication preform are placed adjacent to each other to form a joint, and there may be a groove adjacent the joint. The joint is welded and then, where a groove exists, a filler may be disposed in the groove, and the seams between the filler and the first and second portions of the fabrication preform may be friction stir welded. In some embodiments two portions of a fabrication preform are abutted to form a joint, where the joint may, for example, be a lap joint, a bevel joint or a butt joint. In some embodiments a plurality of passes of a friction stir welding tool may be used, with some passes welding from one side of a fabrication preform and other passes welding from the other side of the fabrication preform.

  19. Calculation of eddy viscosity in a compressible turbulent boundary layer with mass injection and chemical reaction, volume 1. [theoretical analysis

    NASA Technical Reports Server (NTRS)

    Omori, S.

    1973-01-01

    The turbulent kinetic energy equation is coupled with boundary layer equations to solve the characteristics of compressible turbulent boundary layers with mass injection and combustion. The Reynolds stress is related to the turbulent kinetic energy using the Prandtl-Wieghardt formulation. When a lean mixture of hydrogen and nitrogen is injected through a porous plate into the subsonic turbulent boundary layer of air flow and ignited by external means, the turbulent kinetic energy increases twice as much as that of noncombusting flow with the same mass injection rate of nitrogen. The magnitudes of eddy viscosity between combusting and noncombusting flows with injection, however, are almost the same due to temperature effects, while the distributions are different. The velocity profiles are significantly affected by combustion; that is, combustion alters the velocity profile as if the mass injection rate is increased, reducing the skin-friction as a result of a smaller velocity gradient at the wall. If pure hydrogen as a transpiration coolant is injected into a rocket nozzle boundary layer flow of combustion products, the temperature drops significantly across the boundary layer due to the high heat capacity of hydrogen. At a certain distance from the wall, hydrogen reacts with the combustion products, liberating an extensive amount of heat. The resulting large increase in temperature reduces the eddy viscosity in this region.

  20. Synergetic model of boundary friction taking into account spatial nonuniformity of stresses, strain, and temperature

    NASA Astrophysics Data System (ADS)

    Lyashenko, I. A.; Manko, N. N.

    2014-12-01

    Spatial nonuniformity of stresses, strain, and temperature of a lubricating layer is taken into account in the context of the synergetic model. We consider the motion of interacting surfaces in opposite directions with identical velocities as well as the situation when the lower surface is rigidly fixed and the upper is displaced with a fixed velocity. In both cases, the spatial profiles of stresses, strains, and temperature are obtained. Allowance for the spatial distribution of the parameters makes it possible to describe the nontrivial non-Newtonian behavior of the effective shear viscosity of the lubricant. The effect of the temperature of the surfaces and the viscosity of the lubricant on the steady-state friction regime is analyzed.

  1. Spatial structures and scaling in the Convective Boundary Layer

    NASA Astrophysics Data System (ADS)

    Badas, M. G.; Querzoli, G.

    2011-04-01

    We performed an investigation on spatial features of the Convective Boundary Layer (CBL) of the atmosphere, which was simulated in a laboratory model and analyzed by means of image analysis techniques. This flow is dominated by large, anisotropic vortical structures, whose spatial organization affects the scalar transport and therefore the fluxes across the boundary layer. With the aim of investigating the spatial structure and scaling in the Convective Boundary Layer, two-dimensional velocity fields were measured, on a vertical plane, by means of a pyramidal Lucas-Kanade algorithm. The coherent structures characterizing the turbulent convection were educed by analyzing the Finite-Time Lyapunov Exponent fields, which also revealed interesting phenomenological features linked to the mixing processes occurring in the Convective Boundary Layer. Both velocity and vorticity fields were analyzed in a scale-invariance framework. Data analysis showed that normalized probability distribution functions for velocity differences are dependent on the scale and tend to become Gaussian for large separations. Extended Self Similarity holds true for velocity structure functions computed within the mixing layer, and their scaling exponents are interpreted well in the phenomenological framework of the Hierarchical Structure Model. Specifically, ? parameter, which is related to the similarity between weak and strong vortices, reveals a higher degree of intermittency for the vertical velocity component with respect to the horizontal one. On the other hand, the analysis of circulation structure functions shows that scaling exponents are fairly constant in the lowest part of the mixed layer, and their values are in agreement with those reported in Benzi et al. (Phys Rev E 55:3739-3742, 1997) for shear turbulence. Moreover, the relationship between circulation and velocity scaling exponents is analyzed, and it is found to be linear in the bottom part of the mixing layer. The investigation of the CBL spatial features, which has seldom been studied experimentally, has important implications for the comprehension of the mixing dynamics, as well as in turbulence closure models.

  2. Unsteady Boundary Layer Flow and Heat Transfer of a Casson Fluid past an Oscillating Vertical Plate with Newtonian Heating

    PubMed Central

    Hussanan, Abid; Zuki Salleh, Mohd; Tahar, Razman Mat; Khan, Ilyas

    2014-01-01

    In this paper, the heat transfer effect on the unsteady boundary layer flow of a Casson fluid past an infinite oscillating vertical plate with Newtonian heating is investigated. The governing equations are transformed to a systems of linear partial differential equations using appropriate non-dimensional variables. The resulting equations are solved analytically by using the Laplace transform method and the expressions for velocity and temperature are obtained. They satisfy all imposed initial and boundary conditions and reduce to some well-known solutions for Newtonian fluids. Numerical results for velocity, temperature, skin friction and Nusselt number are shown in various graphs and discussed for embedded flow parameters. It is found that velocity decreases as Casson parameters increases and thermal boundary layer thickness increases with increasing Newtonian heating parameter. PMID:25302782

  3. The bottom boundary layer of the deep ocean

    Microsoft Academic Search

    Laurence Armi; Robert C. Millard

    1976-01-01

    Some aspects of the bottom boundary layer of the deep ocean are exhibited in profiles of salinity and temperature made with a Woods Hole Oceanographic Institution\\/Brown CTD microprofiler. Profiles from the center of the Hatteras Abyssal Plain have a signature that is characteristic of mixing up a uniformly stratified region. Over rough or sloping topography, to the east and west

  4. The structure of turbulent boundary layers along mildly curved surfaces

    Microsoft Academic Search

    B. R. Ramaprian; B. G. Shivaprasad

    1978-01-01

    The structure of turbulence in boundary layers along mildly curved convex and concave surfaces is studied. Measurements of turbulent energy balance, autocorrelations, auto- and cross-power spectra, amplitude probability distributions, and conditional correlations are reported. It is observed that even mild curvature has very strong effects on the various aspects of the turbulent structure. For example, convex curvature suppresses the diffusion

  5. Turbulence measurements in boundary layers along mildly curved surfaces

    Microsoft Academic Search

    B. G. Shivaprasad; B. R. Ramaprian

    1978-01-01

    This paper presents results of turbulence measurements in boundary layers over surfaces of mild longitudinal curvature. The study indicates that convex wall curvature decreases both the length and velocity scales of turbulent motions, whereas concave curvature has the opposite effect. While being qualitatively similar to those brought about by stronger wall curvature, mild curvature effects are found to be much

  6. Accommodation between transpiring vegetation and the convective boundary layer

    Microsoft Academic Search

    J. L. Monteith

    1995-01-01

    A simple scheme is developed to describe how vegetation and the convective boundary layer (CBL) interact during daylight in terms of water and sensible heat exchange. The response of vegetation to a prescribed atmospheric state is defined by a quadratic equation obtained by combining the Penman-Monteith equation with a new relation between surface conductance and transpiration rate based on laboratory

  7. Modelling hyporheic exchange: From the boundary layer to the basin

    E-print Network

    Marusic, Ivan

    Modelling hyporheic exchange: From the boundary layer to the basin M.J. Stewardson a , S.B. Grant a processes at the basin-scale including nutrient cycling and retention; movements of organisms to complete hydrological connectivity at the basin-scale but this is not true for the vertical dimension. Understanding

  8. ANALYTICAL PARAMETERIZATIONS OF DIFFUSION: THE CONVECTIVE BOUNDARY LAYER

    EPA Science Inventory

    A brief review is made of data bases which have been used for developing diffusion parameterizations for the convective boundary layer (CBL). A variety of parameterizations for lateral and vertical dispersion, (sigma sub) and (sigma sub z), are surveyed; some of these include mec...

  9. Critical Averaging Time for Atmospheric Boundary Layer Fluxes

    Microsoft Academic Search

    H. Holmes

    2005-01-01

    Calculation of heat and momentum fluxes in the Atmospheric Boundary Layer (ABL) requires separating the turbulent signal into mean and fluctuating components. Since the ABL is not statistically stationary, separation of these components depends on the inherent scales of motion in the flow. A new method is presented that utilizes energy spectra and cospectra analyses of raw velocity and temperature

  10. Evidence of reactive iodine chemistry in the Arctic boundary layer

    Microsoft Academic Search

    Anoop S. Mahajan; Marvin Shaw; Hilke Oetjen; Karen E. Hornsby; Lucy J. Carpenter; Lars Kaleschke; Xiangshan Tian-Kunze; James D. Lee; Sarah J. Moller; Peter Edwards; Roisin Commane; Trevor Ingham; Dwayne E. Heard; John M. C. Plane

    2010-01-01

    Although it has recently been established that iodine plays an important role in the atmospheric chemistry of coastal Antarctica, where it occurs at levels which cause significant ozone (O3) depletion and changes in the atmospheric oxidising capacity, iodine oxides have not previously been observed conclusively in the Arctic boundary layer (BL). This paper describes differential optical absorption spectroscopy (DOAS) observations

  11. Turbulent dispersion in the Atmospheric Convective Boundary Layer

    Microsoft Academic Search

    A. Dosio

    2005-01-01

    The dispersion of a plume in the Atmospheric Boundary Layer is a very complex phenomenon that includes the transport, the mixing and the chemical transformations of the plume material. When a plume is dispersed in the ABL, its shape, evolution, and internal structure are determined by the interaction between the plume and the turbulent eddies that characterize the atmospheric motion.

  12. The role of acoustic feedback in boundary-layer instability

    NASA Astrophysics Data System (ADS)

    Wu, Xuesong

    2013-10-01

    In this paper, the classical triple-deck formalism is employed to investigate two instability problems in which acoustic feedback loop plays an essential role. The first concerns a boundary layer over a flat plate, on which two well separated roughness elements are present. A spatially amplifying Tollmien-Schlichting (T-S) wave between the roughness elements is scattered by the downstream roughness to emit a sound wave, which propagates upstream and impinges on the upstream roughness to regenerate the T-S wave thereby forming a closed feedback loop in the streamwise direction. Numerical calculations suggest that at high Reynolds numbers and for moderate roughness heights the long-range acoustic coupling may lead to global instability, which is characterized by self-sustained oscillations at discrete frequencies. The dominant peak frequency may jump from one value to another as the Reynolds number, or the distance between the roughness elements, is varied gradually. The second problem concerns supersonic 'twin boundary layers', which develop along the two well-separated parallel flat plates. The two boundary layers are in mutual interaction through the impinging and reflected acoustic waves. It is found that the interaction leads to a new instability that is absent in the usual unconfined boundary layer.

  13. Simulations of Serpentine Plasma Actuators in a Laminar Boundary Layer

    E-print Network

    Roy, Subrata

    Simulations of Serpentine Plasma Actuators in a Laminar Boundary Layer Mark Riherd and Subrata Roy to the addition of the serpentine actuation are also measured. Nomenclature u, v, w Flow velocities p Pressure U geometry actuator,17,18 and the serpentine geometry actuator.18 The geometry relevant to the present work

  14. Transition correlations in three-dimensional boundary layers

    NASA Astrophysics Data System (ADS)

    Reed, Helen L.; Haynes, Timothy S.

    1994-05-01

    The stability and transition characteristics of three-dimensional boundary-layer flows are examined. First, the flow over a rotating cone is considered computationally. An increase of stagnation temperature is found to be only slightly stabilizing. Parameter studies on the simple rotating-cone geometry provide a large database of three-dimensional boundary-layer profiles and associated stability characteristics. To determine the possibility of correlating transition location with parameters based purely on basic-state three-dimensional boundary-layer profile characteristics, an empirical transition location of N = 9 is assumed. Transition location does not correlate with the traditional crossflow Reynolds number. A more appropriate definition for crossflow Reynolds number is found and termed R(sub cf). This new parameter appears to correlate for transition location when plotted against maximum crossflow velocity. Then, the flow over a yawed cone is considered experimentally. The correlation results obtained from the rotating-cone work are applied to the actual measured transition locations on two different yawed-cone models under various angle-of-attack conditions in two different experimental facilities and are verified. This correlation is only suggested as a tool for preliminary transition prediction and design in three-dimensional boundary layers; once a preliminary shape is selected, further linear stability theory or parabolized stability equation calculations are strongly urged.

  15. Transition correlations in three-dimensional boundary layers

    NASA Astrophysics Data System (ADS)

    Reed, Helen L.; Haynes, Timothy S.

    1994-05-01

    The stability and transition characteristics of three-dimensional boundary-layer flows are examined. First, the flow over a rotating cone is considered computationally. An increase of stagnation temperature is found to be only slightly stabilizing. Parameter studies on the simple rotating-cone geometry provide a large database of three-dimensional boundary-layer profiles and associated stability characteristics. To determine the possibility of correlating transition location with parameters based purely on basic-state three-dimensional boundary-layer profile characteristics, an empirical transition location of N = 9 is assumed. Transition location does not correlate with the traditional crossflow Reynolds number. A more appropriate definition for crossflow Reynolds number is found and termed R(sub cf(new)). This new parameter appears to correlate for transition location when plotted against maximum crossflow velocity. Then, the flow over a yawed cone is considered experimentally. The correlation results obtained from the rotating-cone work are applied to the actual measured transition locations on two different yawed-cone models under various angle-of-attack conditions in two different experimental facilities and are verified. This correlation is only suggested as a tool for preliminary transition prediction and design in three-dimensional boundary layers; once a preliminary shape is selected, further linear stability theory or parabolized stability equation calculations are strongly urged.

  16. Boundary layer effects above a Himalayan valley near Mount Everest

    Microsoft Academic Search

    Fanglin Sun; Yaoming Ma; Maoshan Li; Weiqiang Ma; Hui Tian; Stefan Metzger

    2007-01-01

    Periodical Wind Profiler and Radio Acoustic Sounding System observations have been commenced at the Himalayas' northern slope nearby Mount Everest in September 2005. Primarily data sets obtained 25 km remote from the glacier edge are utilized for a preliminary discussion of planetary boundary layer circulation resembling high alpine mountainous regions. Substantial findings include the detection of two wind shears and

  17. Determination of Stability and Translation in a Boundary Layer

    NASA Technical Reports Server (NTRS)

    Crepeau, John; Tobak, Murray

    1996-01-01

    Reducing the infinite degrees of freedom inherent in fluid motion into a manageable number of modes to analyze fluid motion is presented. The concepts behind the center manifold technique are used. Study of the Blasius boundary layer and a precise description of stability within the flow field are discussed.

  18. ATMOSPHERIC DISPERSION IN THE ARCTIC: WINTERTIME BOUNDARY-LAYER MEASUREMENTS

    EPA Science Inventory

    The wintertime arctic atmospheric boundary layer was investigated with micro-meteorological and SF6 tracer measurements collected in Prudhoe Bay, AK. he flat, snow-covered tundra surface at this site generates a very small (0.03 cm) surface roughness. he relatively warm maritime ...

  19. Effects of surface wave breaking on the oceanic boundary layer

    Microsoft Academic Search

    Hailun He; Dake Chen

    2011-01-01

    Existing laboratory studies suggest that surface wave breaking may exert a significant impact on the formation and evolution of oceanic surface boundary layer, which plays an important role in the ocean-atmosphere coupled system. However, present climate models either neglect the effects of wave breaking or treat them implicitly through some crude parameterization. Here we use a one-dimensional ocean model (General

  20. Vertical velocity structure of nonprecipitating continental boundary layer stratocumulus clouds

    Microsoft Academic Search

    Virendra P. Ghate; Bruce A. Albrecht; Pavlos Kollias

    2010-01-01

    Continental boundary layer (BL) stratocumulus clouds affect the local weather by modulating the surface energy and moisture budgets and are also intimately tied to the diurnal cycle of the turbulence in the BL. Vertical velocity structure of these clouds is studied using data from the Atmospheric Radiation Measurement Program's Southern Great Plains observing facility located near Lamont, Oklahoma. Data from

  1. CFD simulation of the atmospheric boundary layer: wall function problems

    Microsoft Academic Search

    Bert Blocken; Ted Stathopoulos; Jan Carmeliet

    Accurate Computational Fluid Dynamics (CFD) simulations of atmospheric boundary layer (ABL) flow are essential for a wide variety of atmospheric studies including pollutant dispersion and deposition. The accuracy of such simulations can be seriously compromised when wall-function roughness modifications based on experimental data for sand-grain roughened pipes and channels are applied at the bottom of the computational domain. This type

  2. An Asymptotic Description of the Attached, Turbulent, Oscillatory Boundary Layer

    Microsoft Academic Search

    M. J. Butler; P. W. Duck; P. K. Stansby

    1998-01-01

    The attached, temporally-oscillating turbulent boundary layer is investigated by use of asymptotic matching techniques, valid for the limit of large Reynolds numbers. Much of the analysis is applicable to generally accepted turbulence models (which satisfy a few basic assumptions as detailed in the paper), and this is then applied in particular to two well established turbulence models, namely the k

  3. CFD simulation of the atmospheric boundary layer: wall function problems

    Microsoft Academic Search

    Bert Blocken; Ted Stathopoulos; Jan Carmeliet

    2007-01-01

    Accurate Computational Fluid Dynamics (CFD) simulations of atmospheric boundary layer (ABL) flow are essential for a wide variety of atmospheric studies including pollutant dispersion and deposition. The accuracy of such simulations can be seriously compromised when wall-function roughness modifications based on experimental data for sand-grain roughened pipes and channels are applied at the bottom of the computational domain. This type

  4. Turbulent boundary layer on a mildly curved convex surface

    Microsoft Academic Search

    M. M. Gibson; C. A. Verriopoulos

    1984-01-01

    Extensive single point turbulence measurements made in the boundary layer on a mildly curved heated convex wall show that the turbulence heat fluxes and Stanton number are more sensitive to a change in wall curvature than the Reynolds stresses and skinfriction coefficient, and that downstream, as the flow adjusts to new curved conditions, the St\\/cf ratio of Reynolds analogy is

  5. Laminarization of Turbulent Boundary Layer on Flexible and Rigid Surfaces

    NASA Technical Reports Server (NTRS)

    Maestrello, Lucio

    2001-01-01

    An investigation of the control of turbulent boundary layer flow over flexible and rigid surfaces downstream of a concave-convex geometry has been made. The concave-convex curvature induces centrifugal forces and a pressure gradient on the growth of the turbulent boundary layer. The favorable gradient is not sufficient to overcome the unfavorable; thus, the net effect is a destabilizing, of the flow into Gortler instabilities. This study shows that control of the turbulent boundary layer and structural loading can be successfully achieved by using localized surface heating because the subsequent cooling and geometrical shaping downstream over a favorable pressure gradient is effective in laminarization of the turbulence. Wires embedded in a thermally insulated substrate provide surface heating. The laminarized velocity profile adjusts to a lower Reynolds number, and the structure responds to a lower loading. In the laminarization, the turbulent energy is dissipated by molecular transport by both viscous and conductivity mechanisms. Laminarization reduces spanwise vorticity because of the longitudinal cooling gradient of the sublayer profile. The results demonstrate that the curvature-induced mean pressure gradient enhances the receptivity of the flow to localized surface heating, a potentially viable mechanism to laminarize turbulent boundary layer flow; thus, the flow reduces the response of the flexible structure and the resultant sound radiation.

  6. Detection of boundary-layer transitions in wind tunnels

    NASA Technical Reports Server (NTRS)

    Wood, W. R.; Somers, D. M.

    1978-01-01

    Accelerometer replaces stethoscope in technique for detection of laminar-to-turbulent boundary-layer transitions on wind-tunnel models. Technique allows measurements above or below atmospheric pressure because human operator is not required within tunnel. Data may be taken from accelerometer, and pressure transducer simultaneously, and delivered to systems for analysis.

  7. Large-Scale Streamwise Turbulent Structures in Hypersonic Boundary Layers

    E-print Network

    English, Benjamin L.

    2013-04-22

    Velocimetry in a M = 4.9 blow-down wind tunnel accompanied by a series of data analysis in order to identify the existence of streamwise-elongated large-scale turbulence structures in a hypersonic boundary layer. Furthermore, this study identified physical...

  8. Atmospheric boundary layer studies in FIFE - Challenges and advances

    NASA Technical Reports Server (NTRS)

    Kelly, Robert D.

    1992-01-01

    A review is presented of a number of other articles concerning the atmospheric boundary layer (ABL) that focus on challenges and progress in experimental design and analysis represented by those studies. The articles address problems posed by the experimental site itself (inhomogeneity of terrain, size, and vegetation) and examine relationships between the ABL and remote sensing measurements.

  9. On the Effects of Surface Roughness on Boundary Layer Transition

    NASA Technical Reports Server (NTRS)

    Choudhari, Meelan M.; Li, Fei; Chang, Chau-Lyan; Edwards, Jack

    2009-01-01

    Surface roughness can influence laminar-turbulent transition in many different ways. This paper outlines selected analyses performed at the NASA Langley Research Center, ranging in speed from subsonic to hypersonic Mach numbers and highlighting the beneficial as well as adverse roles of the surface roughness in technological applications. The first theme pertains to boundary-layer tripping on the forebody of a hypersonic airbreathing configuration via a spanwise periodic array of trip elements, with the goal of understanding the physical mechanisms underlying roughness-induced transition in a high-speed boundary layer. The effect of an isolated, finite amplitude roughness element on a supersonic boundary layer is considered next. The other set of flow configurations examined herein corresponds to roughness based laminar flow control in subsonic and supersonic swept wing boundary layers. A common theme to all of the above configurations is the need to apply higher fidelity, physics based techniques to develop reliable predictions of roughness effects on laminar-turbulent transition.

  10. Current problems in the stratocumulus-topped atmospheric boundary layer

    Microsoft Academic Search

    A. G. M. Driedonks; P. G. Duynkerke

    1989-01-01

    Extended sheets of stratocumulus (Sc) in the upper part of the atmospheric boundary layer (ABL) often occur under appropriate meteorological conditions. These cloud decks are important both in climate studies and in weather forecasting. We review the current knowledge of the turbulent structure of the ABL capped by a cloud deck, in the light of recent observations and model studies.

  11. FLUID MODELING OF ATMOSPHERIC DISPERSION IN THE CONVECTIVE BOUNDARY LAYER

    EPA Science Inventory

    Study of convective boundary layer (CBL) processes has depended largely upon laboratory analogs for many years. The pioneering work of Willis and Deardorff (1974) and some 35 subsequent papers by the same authors showed that much useful research could be accomplished with a re...

  12. Von Kármán's Constant in Atmospheric Boundary Layer Flow: Reevaluated

    Microsoft Academic Search

    Ulf Högström

    1985-01-01

    A field experiment has been carried out with the specific objective in mind to determine the value of von Kármán's constant in atmospheric boundary layer flow, and also to investigate its possible dependence on the surface Rossby number Ro0. Data from three field measurement campaigns at Marsta, Sweden, were used in the analysis. Depending on the ground cover: deep snow

  13. A Simulation of the Wangara Atmospheric Boundary Layer Data

    Microsoft Academic Search

    Tetsuji Yamada; George Mellor

    1975-01-01

    Previously, the authors have studied a hierarchy of turbulent boundary layer models, all based on the same closure assumptions for the triple turbulence moments. The models differ in complexity by virtue of a systematic process of neglecting certain of the tendency and diffusion terms in the dynamic equations for the turbulent moments. Based on this work a Level 3 model

  14. Entrainment effects in the well-mixed atmospheric boundary layer

    Microsoft Academic Search

    A. G. M. Driedonks; H. Tennekes

    1984-01-01

    We discuss the structure and evolution of a cloud-free atmospheric boundary layer (ABL) during daytime over land, starting from a shallow ABL at sunrise and developing into a deep ABL with strong convection in the afternoon. The structure of the turbulence in the lower half of a convective ABL capped by an inversion is reasonably well understood. Less is known

  15. Prediction of laminar and turbulent boundary layer with rotation

    NASA Astrophysics Data System (ADS)

    Zhang, Guoqing; Hua, Yaonan; Wu, Chunghua

    1990-08-01

    This paper studies the laminar and turbulent boundary layer with rotation in a two-dimensional rotating channel by using varying steps, staggered grids, and an implicit central difference scheme. Six computational examples show that the predicted data and the measured ones match quite well. The paper also discusses modifying the turbulence model with rotation.

  16. Passive Control of Supersonic Rectangular Jets through Boundary Layer Swirl

    NASA Astrophysics Data System (ADS)

    Han, Sang Yeop; Taghavi, Ray R.; Farokhi, Saeed

    2013-06-01

    Mixing characteristics of under-expanded supersonic jets emerging from plane and notched rectangular nozzles are computationally studied using nozzle exit boundary layer swirl as a mean of passive flow control. The coupling of the rectangular jet instability modes, such as flapping, and the swirl is investigated. A three-dimensional unsteady Reynolds-Averaged Navier-Stokes (RANS) code with shock adaptive grids is utilized. For plane rectangular nozzle with boundary layer swirl, the flapping and spanwise oscillations are captured in the jet's small and large dimensions at twice the frequencies of the nozzles without swirl. A symmetrical oscillatory mode is also observed in the jet with double the frequency of spanwise oscillation mode. For the notched rectangular nozzle with boundary layer swirl, the flapping oscillation in the small jet dimension and the spanwise oscillation in the large jet dimension are observed at the same frequency as those without boundary layer swirl. The mass flow rates in jets at 11 and 8 nozzle heights downstream of the nozzles increased by nearly 25% and 41% for the plane and notched rectangular nozzles respectively, due to swirl. The axial gross thrust penalty due to induced swirl was 5.1% for the plane and 4.9% for the notched rectangular nozzle.

  17. The effect of tangential blowing on boundary-layer profiles

    E-print Network

    Olson, Milford Eugene

    1967-01-01

    in the boundary layer without blowing (f. p. s. ) u - u 0 ix 11S'2 t&B HVH&' Obg (CCH'2 i&F&&gn) Uco Free st& ca&, velocity (f . p. s. ) Bionic. sloi jet velocity (f. p. s. ) Bl owang slui w& dtll (ln. ) Hor zoot al di stance (in. or f i . ) Veriical...

  18. On Tollmien–Schlichting-like waves in streaky boundary layers

    Microsoft Academic Search

    Carlo Cossu; Luca Brandt

    2004-01-01

    The linear stability of the boundary layer developing on a flat plate in the presence of finite-amplitude, steady and spanwise periodic streamwise streaks is investigated. The streak amplitudes considered here are below the threshold for onset of the inviscid inflectional instability of sinuous perturbations. It is found that, as the amplitude of the streaks is increased, the most unstable viscous

  19. Modeling Disturbance Dynamics in Transitional and Turbulent Boundary Layers

    NASA Technical Reports Server (NTRS)

    Grosch, C. E.; Gatski, T. B. (Technical Monitor)

    2002-01-01

    The dynamics of an ensemble of linear disturbances in boundary-layer flows at various Reynolds numbers is studied through an analysis of the transport equations for the mean disturbance kinetic energy and energy dissipation rate. Effects of adverse and favorable pressure-gradients on the disturbance dynamics are also included in the analysis. Unlike the fully turbulent regime where nonlinear phase scrambling of the fluctuations affects the flow field even in proximity to the wall, the early stage transition regime fluctuations studied here are influenced across the boundary layer by the solid boundary. In addition, the dominating dynamics in the disturbance kinetic energy equation is governed by the energy production, pressure-transport and viscous diffusion - also in contrast to the fully turbulent regime. For the disturbance dissipation rate, a dynamic balance exists between the destruction and diffusion of dissipation.

  20. Linear and nonlinear stability of the Blasius boundary layer

    NASA Technical Reports Server (NTRS)

    Bertolotti, F. P.; Herbert, TH.; Spalart, P. R.

    1992-01-01

    Two new techniques for the study of the linear and nonlinear instability in growing boundary layers are presented. The first technique employs partial differential equations of parabolic type exploiting the slow change of the mean flow, disturbance velocity profiles, wavelengths, and growth rates in the streamwise direction. The second technique solves the Navier-Stokes equation for spatially evolving disturbances using buffer zones adjacent to the inflow and outflow boundaries. Results of both techniques are in excellent agreement. The linear and nonlinear development of Tollmien-Schlichting (TS) waves in the Blasius boundary layer is investigated with both techniques and with a local procedure based on a system of ordinary differential equations. The results are compared with previous work and the effects of non-parallelism and nonlinearity are clarified. The effect of nonparallelism is confirmed to be weak and, consequently, not responsible for the discrepancies between measurements and theoretical results for parallel flow.

  1. Effects of mesoscale surface inhomogeneities on atmospheric boundary layer transfer

    SciTech Connect

    Shaw, W.J.; Doran, J.C.; Hubbe, J.M.

    1992-09-01

    Defining the nature of turbulent transfer over horizontally inhomogeneous surfaces remains one of the challenges in meteorology. Because the transfer of energy and momentum through the atmospheric boundary layer forms part of the lower boundary condition for global climate models (GCMs), the problem is important. Over the last two decades, advances in sensor and computer technology wave made good point measurements of turbulent fluxes fairly routine. A fundamental question with respect to climate models, however, is how such point measurements are related to average fluxes over the area of a GCM grid box. In this paper we will use data from the field program to depict the evolution of the boundary layer over adjacent, sharply contrasting surface types on two separate occasions. We will then use simple scaling based on the observations to argue that sub-gridscale motions would often be likely to significantly alter the estimates and resulting parameterizations of GCM-scale surface fluxes in the region.

  2. Explicit Solvent Simulations of Friction between Brush Layers of Charged and Neutral Bottle-Brush Macromolecules

    SciTech Connect

    Carrillo, Jan-Michael [University of Connecticut] [University of Connecticut; Brown, W Michael [ORNL] [ORNL; Dobrynin, Andrey [University of Connecticut] [University of Connecticut

    2012-01-01

    We study friction between charged and neutral brush layers of bottle-brush macromolecules using molecular dynamics simulations. In our simulations the solvent molecules were treated explicitly. The deformation of the bottle-brush macromolecules under the shear were studied as a function of the substrate separation and shear stress. For charged bottle-brush layers we study effect of the added salt on the brush lubricating properties to elucidate factors responsible for energy dissipation in charged and neutral brush systems. Our simulations have shown that for both charged and neutral brush systems the main deformation mode of the bottle-brush macromolecule is associated with the backbone deformation. This deformation mode manifests itself in the backbone deformation ratio, , and shear viscosity, , to be universal functions of the Weissenberg number W. The value of the friction coefficient, , and viscosity, , are larger for the charged bottle-brush coatings in comparison with those for neutral brushes at the same separation distance, D, between substrates. The additional energy dissipation generated by brush sliding in charged bottle-brush systems is due to electrostatic coupling between bottle-brush and counterion motion. This coupling weakens as salt concentration, cs, increases resulting in values of the viscosity, , and friction coefficient, , approaching corresponding values obtained for neutral brush systems.

  3. A general integral form of the boundary-layer equation for incompressible flow with an application to the calculation of the separation point of turbulent boundary layers

    NASA Technical Reports Server (NTRS)

    Tetervin, Neal; Lin, Chia Chiao

    1951-01-01

    A general integral form of the boundary-layer equation, valid for either laminar or turbulent incompressible boundary-layer flow, is derived. By using the experimental finding that all velocity profiles of the turbulent boundary layer form essentially a single-parameter family, the general equation is changed to an equation for the space rate of change of the velocity-profile shape parameter. The lack of precise knowledge concerning the surface shear and the distribution of the shearing stress across turbulent boundary layers prevented the attainment of a reliable method for calculating the behavior of turbulent boundary layers.

  4. Linear segmentation algorithm for detecting layer boundary with lidar.

    PubMed

    Mao, Feiyue; Gong, Wei; Logan, Timothy

    2013-11-01

    The automatic detection of aerosol- and cloud-layer boundary (base and top) is important in atmospheric lidar data processing, because the boundary information is not only useful for environment and climate studies, but can also be used as input for further data processing. Previous methods have demonstrated limitations in defining the base and top, window-size setting, and have neglected the in-layer attenuation. To overcome these limitations, we present a new layer detection scheme for up-looking lidars based on linear segmentation with a reasonable threshold setting, boundary selecting, and false positive removing strategies. Preliminary results from both real and simulated data show that this algorithm cannot only detect the layer-base as accurate as the simple multi-scale method, but can also detect the layer-top more accurately than that of the simple multi-scale method. Our algorithm can be directly applied to uncalibrated data without requiring any additional measurements or window size selections. PMID:24216909

  5. Characteristics of nonlinear evolution of wavepackets in boundary layers

    NASA Astrophysics Data System (ADS)

    Yu, Min; Luo, JiSheng; Li, Jia

    2013-02-01

    The nonlinear evolution of a finite-amplitude disturbance in a 3-D supersonic boundary layer over a cone was investigated recently by Liu et al. using direct numerical simulation (DNS). It was found that certain small-scale 3-D disturbances amplified rapidly. These disturbances exhibit the characteristics of second modes, and the most amplified components have a well-defined spanwise wavelength, indicating a clear selectivity of the amplification. In the case of a cone, the three-dimensionality of the base flow and the disturbances themselves may be responsible for the rapid amplification. In order to ascertain which of these two effects are essential, in this study we carried out DNS of the nonlinear evolution of a spanwise localized disturbance (wavepacket) in a flat-plate boundary layer. A similar amplification of small-scale disturbances was observed, suggesting that the direct reason for the rapid amplification is the three-dimensionality of the disturbances rather than the three-dimensional nature of the base flow, even though the latter does alter the spanwise distribution of the disturbance. The rapid growth of 3-D waves may be attributed to the secondary instability mechanism. Further simulations were performed for a wavepacket of first modes in a supersonic boundary layer and of Tollmien-Schlichting (T-S) waves in an incompressible boundary layer. The results show that the amplifying components are in the band centered at zero spanwise wavenumber rather than at a finite spanwise wavenumber. It is therefore concluded that the rapid growth of 3-D disturbances in a band centered at a preferred large spanwise wavenumber is the main characteristic of nonlinear evolution of second mode disturbances in supersonic boundary layers.

  6. The influence of bulges on boundary-layer instability

    NASA Technical Reports Server (NTRS)

    Elli, S.; Vandam, C. P.

    1992-01-01

    Local disturbances caused by a spanwise surface corrugation affect the position of the boundary-layer transition, and so the drag, of an object. This premature transition from laminar to turbulent flow is often associated with a separation of the laminar boundary-layer from its surface. Also the roughness-induced separation bubble provides an important link between the pressure and velocity fluctuations in the environment and the development of the disturbance in the laminar boundary-layer, i.e., the receptivity problem. To investigate the influence of a laminar separation bubble on boundary-layer instability, a separated flow generated by a velocity gradient over a flat plate was analyzed by direct numerical simulation using finite-difference solutions of the Navier-Stokes equations. The bubble acts as a strong amplifier of the instability waves and a highly nonlinear flow field is shown to develop downstream of the bubble. Consequently, the results of the direct numerical simulation differ noticeably from those of the classical linear stability theory proving the fact that the nonparallel effects together with the nonlinear interactions are crucial to this flow development. In the present paper, the effect of physical perturbations such as humps and hollows on boundary-layer instability is analyzed. This problem has been considered theoretically by several researchers (e.g., Nayfeh et al., 1987 and 1990; Cebeci et al., 1988). They used linear stability theory in their approach which does not include the nonparallel nor the nonlinear effects. Therefore, to account for these important effects in studying flow over humps and hollows the direct simulation technique is being implemented in generalized coordinates.

  7. The influence of bulges on boundary-layer instability

    NASA Astrophysics Data System (ADS)

    Elli, S.; Vandam, C. P.

    Local disturbances caused by a spanwise surface corrugation affect the position of the boundary-layer transition, and so the drag, of an object. This premature transition from laminar to turbulent flow is often associated with a separation of the laminar boundary-layer from its surface. Also the roughness-induced separation bubble provides an important link between the pressure and velocity fluctuations in the environment and the development of the disturbance in the laminar boundary-layer, i.e., the receptivity problem. To investigate the influence of a laminar separation bubble on boundary-layer instability, a separated flow generated by a velocity gradient over a flat plate was analyzed by direct numerical simulation using finite-difference solutions of the Navier-Stokes equations. The bubble acts as a strong amplifier of the instability waves and a highly nonlinear flow field is shown to develop downstream of the bubble. Consequently, the results of the direct numerical simulation differ noticeably from those of the classical linear stability theory proving the fact that the nonparallel effects together with the nonlinear interactions are crucial to this flow development. In the present paper, the effect of physical perturbations such as humps and hollows on boundary-layer instability is analyzed. This problem has been considered theoretically by several researchers (e.g., Nayfeh et al., 1987 and 1990; Cebeci et al., 1988). They used linear stability theory in their approach which does not include the nonparallel nor the nonlinear effects. Therefore, to account for these important effects in studying flow over humps and hollows the direct simulation technique is being implemented in generalized coordinates.

  8. The effect of concave surface curvature on turbulent boundary layers

    NASA Astrophysics Data System (ADS)

    Hoffmann, P. H.; Muck, K. C.; Bradshaw, P.

    1985-12-01

    The response of a turbulent boundary layer to suddenly applied concave surface curvature is investigated. The main conclusion of this and the companion paper by Muck, Hoffmann and Bradshaw (1985) is that the effects of concave (destabilizing) and convex (stabilizing) curvature on boundary layers - and presumably on other shear layers - are totally different, even qualitatively. As shown in Muck, Hoffmann and Bradshaw (1985), convex curvature tends to attenuate the pre-existing turbulence and, at least in the case of mild curvature, there are no large changes in statistical average shape. Concave curvature, on the other hand, can lead to the quasi-inviscid generation of longitudinal ('Taylor-Goertler') vortices, and it is shown that significant changes in the turbulence structure are induced both directly by the curvature and indirectly by the vortices.

  9. On buffer layers as non-reflecting computational boundaries

    NASA Technical Reports Server (NTRS)

    Hayder, M. Ehtesham; Turkel, Eli L.

    1996-01-01

    We examine an absorbing buffer layer technique for use as a non-reflecting boundary condition in the numerical simulation of flows. One such formulation was by Ta'asan and Nark for the linearized Euler equations. They modified the flow inside the buffer zone to artificially make it supersonic in the layer. We examine how this approach can be extended to the nonlinear Euler equations. We consider both a conservative and a non-conservative form modifying the governing equations in the buffer layer. We compare this with the case that the governing equations in the layer are the same as in the interior domain. We test the effectiveness of these buffer layers by a simulation of an excited axisymmetric jet based on a nonlinear compressible Navier-Stokes equations.

  10. Mass transfer dominated by thermal diffusion in laminar boundary layers

    NASA Astrophysics Data System (ADS)

    García-Ybarra, Pedro L.; Castillo, Jose L.

    1997-04-01

    The concentration distribution of massive dilute species (e.g. aerosols, heavy vapours, etc.) carried in a gas stream in non-isothermal boundary layers is studied in the large-Schmidt-number limit, Sc[dbl greater-than sign]1, including the cross-mass-transport by thermal diffusion (Ludwig Soret effect). In self-similar laminar boundary layers, the mass fraction distribution of the dilute species is governed by a second-order ordinary differential equation whose solution becomes a singular perturbation problem when Sc[dbl greater-than sign]1. Depending on the sign of the temperature gradient, the solutions exhibit different qualitative behaviour. First, when the thermal diffusion transport is directed toward the wall, the boundary layer can be divided into two separated regions: an outer region characterized by the cooperation of advection and thermal diffusion and an inner region in the vicinity of the wall, where Brownian diffusion accommodates the mass fraction to the value required by the boundary condition at the wall. Secondly, when the thermal diffusion transport is directed away from the wall, thus competing with the advective transport, both effects balance each other at some intermediate value of the similarity variable and a thin intermediate diffusive layer separating two outer regions should be considered around this location. The character of the outer solutions changes sharply across this thin layer, which corresponds to a second-order regular turning point of the differential mass transport equation. In the outer zone from the inner layer down to the wall, exponentially small terms must be considered to account for the diffusive leakage of the massive species. In the inner zone, the equation is solved in terms of the Whittaker function and the whole mass fraction distribution is determined by matching with the outer solutions. The distinguished limit of Brownian diffusion with a weak thermal diffusion is also analysed and shown to match the two cases mentioned above.

  11. A numerical treatment of steady, frictional boundary currents in a homogeneous ocean applied to a semi-enclosed basin

    E-print Network

    Jacobs, Clifford Albert

    1967-01-01

    = Tee. ns A 8;. 'vt L'n s-sr s iiF in ps: tial fulf'llr . ent ef th, . re:Iu;reorients or the de~sec of Ivfr, STISR OF SCI' 3 'Lr JQ' sion Suhj ct: ~ Ei SIC A L O'C 4, Q+l OGRAlof'Y A NUMERICAL TREATMENT OF STEADY, FRICTIONAL BOUNDARY CURRENTS IN A... shape of a homogeneous ocean of constant depth. Neglecting nonlinear field accelerations, a frictional model is formulated which allov;s for vertical and horizontal exchange of sno- r. eniuna due to turbulence. Two limiting cases of this complete...

  12. Application of a general boundary layer analysis to turbulent boundary layers subjected to strong favorable pressure gradients

    Microsoft Academic Search

    J. P. Kreskovsky; S. J. Shamroth; H. McDonald

    1975-01-01

    Theoretical predictions of turbulent boundary layer development under the influence of strong favorable pressure gradients made using a finite-difference calculation procedure are compared to experimental data. Comparisons are presented for low speed flows with and without wall heat transfer as well as for supersonic flows with adiabatic walls. The turbulence model used is governed by an integral form of the

  13. The effects of micro-vortex generators on normal shock wave/boundary layer interactions

    NASA Astrophysics Data System (ADS)

    Herges, Thomas G.

    Shock wave/boundary-layer interactions (SWBLIs) are complex flow phenomena that are important in the design and performance of internal supersonic and transonic flow fields such as engine inlets. This investigation was undertaken to study the effects of passive flow control devices on normal shock wave/boundary layer interactions in an effort to gain insight into the physics that govern these complex interactions. The work concentrates on analyzing the effects of vortex generators (VGs) as a flow control method by contributing a greater understanding of the flowfield generated by these devices and characterizing their effects on the SWBLI. The vortex generators are utilized with the goal of improving boundary layer health (i.e., reducing/increasing the boundary-layer incompressible shape factor/skin friction coefficient) through a SWBLI, increasing pressure recovery, and reducing flow distortion at the aerodynamic interface plane while adding minimal drag to the system. The investigation encompasses experiments in both small-scale and large-scale inlet testing, allowing multiple test beds for improving the characterization and understanding of vortex generators. Small-scale facility experiments implemented instantaneous schlieren photography, surface oil-flow visualization, pressure-sensitive paint, and particle image velocimetry to characterize the effects of an array of microramps on a normal shock wave/boundary-layer interaction. These diagnostics measured the time-averaged and instantaneous flow organization in the vicinity of the microramps and SWBLI. The results reveal that a microramp produces a complex vortex structure in its wake with two primary counter-rotating vortices surrounded by a train of Kelvin- Helmholtz (K-H) vortices. A streamwise velocity deficit is observed in the region of the primary vortices in addition to an induced upwash/downwash which persists through the normal shock with reduced strength. The microramp flow control also increased the spanwise-averaged skin-friction coefficient and reduced the spanwise-averaged incompressible shape factor, thereby improving the health of the boundary layer. The velocity in the near-wall region appears to be the best indicator of microramp effectiveness at controlling SWBLIs. Continued analysis of additional micro-vortex generator designs in the small-scale facility revealed reduced separation within a subsonic diffuser downstream of the normal shock wave/boundary layer interaction. The resulting attached flow within the diffuser from the micro-vortex generator control devices reduces shock wave position and pressure RMS fluctuations within the diffuser along with increased pressure recovery through the shock and at the entrance of the diffuser. The largest effect was observed by the micro-vortex generators that produce the strongest streamwise vortices. High-speed pressure measurements also indicated that the vortex generators shift the energy of the pressure fluctuations to higher frequencies. Implementation of micro-vortex generators into a large-scale, supersonic, axisymmetric, relaxed-compression inlet have been investigated with the use of a unique and novel flow-visualization measurement system designed and successfully used for the analysis of both upstream micro-VGs (MVGs) and downstream VGs utilizing surface oil-flow visualization and pressure-sensitive paint measurements. The inlet centerbody and downstream diffuser vortex-generator regions were imaged during wind-tunnel testing internally through the inlet cowl with the diagnostic system attached to the cowl. Surface-flow visualization revealed separated regions along the inlet centerbody for large mass-flow rates without vortex generators. Upstream vortex generators did reduce separation in the subsonic diffuser, and a unique perspective of the flowfield produced by the downstream vortex generators was obtained. In addition, pressure distributions on the inlet centerbody and vortex generators were measured with pressure-sensitive paint. At low mass-flow ratios the onset of buzz occurs in the lar

  14. Boundary-Layer Meteorol (2010) 134:367-386 DOI 10.1007/s10546-009-9452-9

    E-print Network

    Reading, University of

    2010-01-01

    · Synoptically-forced boundary layer 1 Introduction The atmospheric boundary layers is typically thought of underBoundary-Layer Meteorol (2010) 134:367-386 DOI 10.1007/s10546-009-9452-9 The Moist Boundary Layer layer in this transport. We expand a conceptual model of dry boundary-layer structure under synoptic

  15. BLSTA: A boundary layer code for stability analysis

    NASA Technical Reports Server (NTRS)

    Wie, Yong-Sun

    1992-01-01

    A computer program is developed to solve the compressible, laminar boundary-layer equations for two-dimensional flow, axisymmetric flow, and quasi-three-dimensional flows including the flow along the plane of symmetry, flow along the leading-edge attachment line, and swept-wing flows with a conical flow approximation. The finite-difference numerical procedure used to solve the governing equations is second-order accurate. The flow over a wide range of speed, from subsonic to hypersonic speed with perfect gas assumption, can be calculated. Various wall boundary conditions, such as wall suction or blowing and hot or cold walls, can be applied. The results indicate that this boundary-layer code gives velocity and temperature profiles which are accurate, smooth, and continuous through the first and second normal derivatives. The code presented herein can be coupled with a stability analysis code and used to predict the onset of the boundary-layer transition which enables the assessment of the laminar flow control techniques. A user's manual is also included.

  16. Snodar: a new instrument to measure the height of the boundary layer on the Antarctic plateau

    E-print Network

    Ashley, Michael C. B.

    Snodar: a new instrument to measure the height of the boundary layer on the Antarctic plateau Colin boundary layer on the Antarctic plateau is of particular importance to designers of optical telescopes of the atmospheric boundary layer at Dome A and Dome C on the Antarctic plateau. Snodar, or Surface layer Non

  17. Post-doctoral position in atmospheric boundary layer dynamics Analysis of BLLAST field experiment

    E-print Network

    Post-doctoral position in atmospheric boundary layer dynamics Analysis of BLLAST field experiment. Background: The international BLLAST project (Boundary Layer Late Afternoon and Sunset Turbulence, http the daytime well-mixed, convective boundary layer (CBL), decays to an intermittently turbulent "residual layer

  18. A modeling study of marine boundary layer clouds

    NASA Technical Reports Server (NTRS)

    Wang, Shouping; Fitzjarrald, Daniel E.

    1993-01-01

    Marine boundary layer (MBL) clouds are important components of the earth's climate system. These clouds drastically reduce the amount of solar radiation absorbed by the earth, but have little effect on the emitted infrared radiation on top of the atmosphere. In addition, these clouds are intimately involved in regulating boundary layer turbulent fluxes. For these reasons, it is important that general circulation models used for climate studies must realistically simulate the global distribution of the MBL. While the importance of these cloud systems is well recognized, many physical processes involved in these clouds are poorly understood and their representation in large-scale models remains an unresolved problem. The present research aims at the development and improvement of the parameterization of these cloud systems and an understanding of physical processes involved. This goal is addressed in two ways. One is to use regional modeling approach to validate and evaluate two-layer marine boundary layer models using satellite and ground-truth observations; the other is to combine this simple model with a high-order turbulence closure model to study the transition processes from stratocumulus to shallow cumulus clouds. Progress made in this effort is presented.

  19. Separated and Recovering Turbulent Boundary Layer Flow Behind a Backward Facing Step For Different Reynolds Numbers

    NASA Technical Reports Server (NTRS)

    Jovic, Srba; Kutler, Paul F. (Technical Monitor)

    1994-01-01

    Experimental results for a two-dimensional separated turbulent boundary layer behind a backward facing step for five different Reynolds numbers are reported. Results are presented in the form of tables, graphs and a floppy disk for an easy access of the data. Reynolds number based on the step height was varied by changing the reference velocity upstream of the step, U(sub o), and the step height, h. Hot-wire measurement techniques were used to measure three Reynolds stresses and four triple-velocity correlations. In addition, surface pressure and skin friction coefficients were measured. All hot-wire measurements were acquired in a measuring domain which excluded recirculating flow region due to the directional insensitivity of hot-wires. The downstream extent of the domain from the step was 51 h for the largest and I 14h for the smallest step height. This significant downstream length permitted extensive study of the flow recovery. Prediction of perturbed flows and their recovery is particularly attractive for popular turbulence models since variations of turbulence length and time scales and flow interactions in different regions are generally inadequately predicted. The data indicate that the flow in the free shear layer region behaves like the plane mixing layer up to about 2/3 of the mean reattachment length when the flow interaction with the wall commences the flow recovery to that of an ordinary turbulent boundary layer structure. These changes of the flow do not occur abruptly with the change of boundary conditions. A reattachment region represents a transitional region where the flow undergoes the most dramatic adjustments to the new boundary conditions. Large eddies, created in the upstream free-shear layer region, are being torn, recirculated, reentrained back into the main stream interacting with the incoming flow structure. It is foreseeable that it is quite difficult to describe the physics of this region in a rational and quantitative manner other than statistical. Downstream of the reattachment point the flow recovers at different rates near the wall, in the newly developing internal boundary layer, and in the outer part of the flow. It appears that Reynolds stresses do not fully recover up to the longest recovery length of 114 h.

  20. Boundary-layer transition and displacement thickness effects on zero-lift drag of a series of power-law bodies at Mach 6

    NASA Technical Reports Server (NTRS)

    Ashby, G. C., Jr.; Harris, J. E.

    1974-01-01

    Wave and skin-friction drag have been numerically calculated for a series of power-law bodies at a Mach number of 6 and Reynolds numbers, based on body length, from 1.5 million to 9.5 million. Pressure distributions were computed on the nose by the inverse method and on the body by the method of characteristics. These pressure distributions and the measured locations of boundary-layer transition were used in a nonsimilar-boundary-layer program to determine viscous effects. A coupled iterative approach between the boundary-layer and pressure-distribution programs was used to account for boundary-layer displacement-thickness effects. The calculated-drag coefficients compared well with previously obtained experimental data.

  1. Aero-optic characteristics of turbulent compressible boundary layers

    NASA Astrophysics Data System (ADS)

    Wyckham, Christopher Mark

    This dissertation presents a detailed study of the aberrating effect on a plane incident wavefront of light due to its passage through a turbulent, compressible boundary layer. This aberration has important implications for the design of airborne optical systems for imaging, communications, or projection. A Shack-Hartmann sensor and associated data analysis software suite were developed and validated for the high resolution measurement of two dimensional wavefront phase. Significant improvements in wavefront reconstruction were achieved by using the calculated centroid uncertainties to weight the least squares fitting of the phase surface. Using the Shack-Hartmann sensor in a high speed, one dimensional mode, individual structures are observed propagating past the sensor in a transonic flow. The uncertainties on the reconstructed phase in this mode are very high, however. In a two dimensional mode the uncertainties are greatly reduced and a large database of individual, uncorrelated wavefronts was collected, allowing statistics to be calculated such as the rms wavefront height and the Strehl ratio. Data were collected at transonic and hypersonic speeds and with no injection or with helium or nitrogen injection into the boundary layer. In all cases except the hypersonic helium injection case, the time averaged wavefronts reveal no features in the boundary layer which are steady in time. In the hypersonic helium injection case, however, steady, longitudinal features are observed, in agreement with previous observations. When helium is injected for window cooling at high speeds, the results show there may be an opportunity to reduce the resulting distortion by taking advantage of the stable structures that form in the boundary layer by using a low bandwidth adaptive optic system. A new scaling argument is also presented to allow the prediction and comparison of wavefront data for different compressible boundary layer flow conditions. The proposed formula gives promising results over a very wide range of Mach numbers and conditions when used to compare the current work as well as previous work by others, and may prove to be a crucial tool in the study of boundary layer aero-optic behavior.

  2. Extensional fault-propagation folding in mechanically layered rocks: The case against the frictional drag mechanism

    NASA Astrophysics Data System (ADS)

    Ferrill, David A.; Morris, Alan P.; McGinnis, Ronald N.

    2012-11-01

    "Fault drag" (deflection of beds or other markers into folds that are convex in the direction of relative slip) is often interpreted as the product of frictional sliding along a fault and progressive tilting of beds with increased amount of displacement along a fault. We analyze two sets of normal faults, with throws ranging from 0.5 m to 5 m, and associated fault-related folds in mechanically layered upper Cretaceous carbonate, anhydrite, and shale in central Texas. For each fault set, we interpret the fault displacement and fault-related folds exposed in outcrop to represent different stages in the developmental sequence. In both fault sets, faults in dolostone or limestone lose displacement and tip into less competent anhydrite or shale where deformation is accommodated by folding and smaller scale deformation. Fold wavelength is established early and at small displacement (< 1 m throw). With increasing displacement the monoclinal fold limb steepens and is extended parallel to bedding, locally producing boudinage in the most competent bed between incompetent beds. Clay smear is well developed where a 0.35 m thick clay shale is locally thinned to 0.1 m associated with fault throws of 0.5 to 5 m. Bed tilting and the development of apparent drag is not the product of frictional sliding but instead folding at the tip of an arrested, in this case upwardly, propagating normal fault. We conclude that synthetic dip associated with steep normal faults (i.e., fault drag) should not be assumed to be the product of frictional drag, but must be considered in the context of the mechanical stratigraphy. Instead, fault-tip folding in mechanically layered rocks produces synthetic dip (drag) early in the fault development history prior to propagation of the fault tip through the folded layer.

  3. Computer program for calculation of real gas turbulent boundary layers with variable edge entropy

    NASA Technical Reports Server (NTRS)

    Boney, L. R.

    1974-01-01

    A user's manual for a computer program which calculates real gas turbulent boundary layers with variable edge entropy on a blunt cone or flat plate at zero angle of attack is presented. An integral method is used. The method includes the effect of real gas in thermodynamic equilibrium and variable edge entropy. A modified Crocco enthalpy velocity relationship is used for the enthalpy profiles and an empirical correlation of the N-power law profile is used for the velocity profile. The skin-friction-coefficient expressions of Spalding and Chi and Van Driest are used in the solution of the momentum equation and in the heat-transfer predictions that use several modified forms of Reynolds analogy.

  4. A novel boundary layer sensor utilizing domain switching in ferroelectric liquid crystals

    NASA Technical Reports Server (NTRS)

    Parmar, D. S.

    1991-01-01

    This paper describes the design and the principles of operation of a novel sensor for the optical detection of a shear stress field induced by air or gas flow on a rigid surface. The detection relies on the effects of shear-induced optical switching in ferroelectric liquid crystals. It is shown that the method overcomes many of the limitations of similar measuring techniques including those using cholesteric liquid crystals. The present method offers a preferred alternative for flow visualization and skin friction measurements in wind-tunnel experiments on laminar boundary layer transition investigations. A theoretical model for the optical response to shear stress is presented together with a schematic diagram of the experimental setup.

  5. Simulation and optimal control of wind-farm boundary layers

    NASA Astrophysics Data System (ADS)

    Meyers, Johan; Goit, Jay

    2014-05-01

    In large wind farms, the effect of turbine wakes, and their interaction leads to a reduction in farm efficiency, with power generated by turbines in a farm being lower than that of a lone-standing turbine by up to 50%. In very large wind farms or `deep arrays', this efficiency loss is related to interaction of the wind farms with the planetary boundary layer, leading to lower wind speeds at turbine level. Moreover, for these cases it has been demonstrated both in simulations and wind-tunnel experiments that the wind-farm energy extraction is dominated by the vertical turbulent transport of kinetic energy from higher regions in the boundary layer towards the turbine level. In the current study, we investigate the use of optimal control techniques combined with Large-Eddy Simulations (LES) of wind-farm boundary layer interaction for the increase of total energy extraction in very large `infinite' wind farms. We consider the individual wind turbines as flow actuators, whose energy extraction can be dynamically regulated in time so as to optimally influence the turbulent flow field, maximizing the wind farm power. For the simulation of wind-farm boundary layers we use large-eddy simulations in combination with actuator-disk and actuator-line representations of wind turbines. Simulations are performed in our in-house pseudo-spectral code SP-Wind that combines Fourier-spectral discretization in horizontal directions with a fourth-order finite-volume approach in the vertical direction. For the optimal control study, we consider the dynamic control of turbine-thrust coefficients in an actuator-disk model. They represent the effect of turbine blades that can actively pitch in time, changing the lift- and drag coefficients of the turbine blades. Optimal model-predictive control (or optimal receding horizon control) is used, where the model simply consists of the full LES equations, and the time horizon is approximately 280 seconds. The optimization is performed using a nonlinear conjugate gradient method, and the gradients are calculated by solving the adjoint LES equations. We find that the extracted farm power increases by approximately 20% when using optimal model-predictive control. However, the increased power output is also responsible for an increase in turbulent dissipation, and a deceleration of the boundary layer. Further investigating the energy balances in the boundary layer, it is observed that this deceleration is mainly occurring in the outer layer as a result of higher turbulent energy fluxes towards the turbines. In a second optimization case, we penalize boundary-layer deceleration, and find an increase of energy extraction of approximately 10%. In this case, increased energy extraction is balanced by a reduction in of turbulent dissipation in the boundary layer. J.M. acknowledges support from the European Research Council (FP7-Ideas, grant no. 306471). Simulations were performed on the computing infrastructure of the VSC Flemish Supercomputer Center, funded by the Hercules Foundation and the Flemish Government.

  6. Skin friction drag measurements by LDV

    NASA Technical Reports Server (NTRS)

    Mazumder, M. K.; Wanchoo, S.; Mcleod, P. C.; Ballard, G. S.; Mozumdar, S.; Caraballo, N.

    1981-01-01

    A laser Doppler velocimeter employing a microscope objective as the receiving lens has been developed for measuring fluid velocity inside the boundary layer flow field with a spatial resolution of 40 microns. The method was applied for direct measurement of aerodynamic skin friction drag from the measured velocity gradient at the wall. Experimental results obtained on skin friction and on velocity components in a turbulent boundary layer on a low speed wind tunnel showed good agreement with previously reported data using conventional instruments such as hot-wire anemometers and Preston tubes. The method thus provides a tool for measurement and control of skin friction on aerodynamic bodies without perturbing the flow field.

  7. Bandgap tunability at single-layer molybdenum disulphide grain boundaries

    NASA Astrophysics Data System (ADS)

    Huang, Yu Li; Chen, Yifeng; Zhang, Wenjing; Quek, Su Ying; Chen, Chang-Hsiao; Li, Lain-Jong; Hsu, Wei-Ting; Chang, Wen-Hao; Zheng, Yu Jie; Chen, Wei; Wee, Andrew T. S.

    2015-02-01

    Two-dimensional transition metal dichalcogenides have emerged as a new class of semiconductor materials with novel electronic and optical properties of interest to future nanoelectronics technology. Single-layer molybdenum disulphide, which represents a prototype two-dimensional transition metal dichalcogenide, has an electronic bandgap that increases with decreasing layer thickness. Using high-resolution scanning tunnelling microscopy and spectroscopy, we measure the apparent quasiparticle energy gap to be 2.40±0.05?eV for single-layer, 2.10±0.05?eV for bilayer and 1.75±0.05?eV for trilayer molybdenum disulphide, which were directly grown on a graphite substrate by chemical vapour deposition method. More interestingly, we report an unexpected bandgap tunability (as large as 0.85±0.05?eV) with distance from the grain boundary in single-layer molybdenum disulphide, which also depends on the grain misorientation angle. This work opens up new possibilities for flexible electronic and optoelectronic devices with tunable bandgaps that utilize both the control of two-dimensional layer thickness and the grain boundary engineering.

  8. Bandgap tunability at single-layer molybdenum disulphide grain boundaries.

    PubMed

    Huang, Yu Li; Chen, Yifeng; Zhang, Wenjing; Quek, Su Ying; Chen, Chang-Hsiao; Li, Lain-Jong; Hsu, Wei-Ting; Chang, Wen-Hao; Zheng, Yu Jie; Chen, Wei; Wee, Andrew T S

    2015-01-01

    Two-dimensional transition metal dichalcogenides have emerged as a new class of semiconductor materials with novel electronic and optical properties of interest to future nanoelectronics technology. Single-layer molybdenum disulphide, which represents a prototype two-dimensional transition metal dichalcogenide, has an electronic bandgap that increases with decreasing layer thickness. Using high-resolution scanning tunnelling microscopy and spectroscopy, we measure the apparent quasiparticle energy gap to be 2.40±0.05?eV for single-layer, 2.10±0.05?eV for bilayer and 1.75±0.05?eV for trilayer molybdenum disulphide, which were directly grown on a graphite substrate by chemical vapour deposition method. More interestingly, we report an unexpected bandgap tunability (as large as 0.85±0.05?eV) with distance from the grain boundary in single-layer molybdenum disulphide, which also depends on the grain misorientation angle. This work opens up new possibilities for flexible electronic and optoelectronic devices with tunable bandgaps that utilize both the control of two-dimensional layer thickness and the grain boundary engineering. PMID:25687991

  9. Estimating the turbulence characteristics in the bottom boundary layer of Monterey Canyon

    NASA Astrophysics Data System (ADS)

    Yang, Jingling; Li, Peiliang; Liu, Cong

    2015-04-01

    From April 24 to October 25, 2011, an Acoustic Doppler Velocimeter (ADV) continually running for 185 d was mounted on the smooth ridge at the edge of Monterey Canyon to observe turbulence in the bottom boundary layer. The ADV was set at 1.4 m above the bed bottom, continuously run for 1 min with a 2-minute interval with sampling frequency 64 Hz. The long-time continual observation is significant to reveal variations of turbulent characteristics and show some differences from the classic traditional turbulent theory. Eliminating the noise by the `Phase-Space Thresholding Method', rotating the coordinate and low-pass filtering the velocity were applied for data processing. This paper was mainly to estimate the turbulent kinetic energy dissipation rate by the inertial dissipation method, friction velocity, drag coefficient and significant periods of the turbulent characteristics with the ADV data. The results show that there is a strong, rotating bottom flow up to 0.398 m s-1 with predominantly semidiurnal period and less significantly diurnal and semilunar period. The turbulent kinetic energy dissipation rate ranges from 1.09×10-8 W kg-1 to 6.62×10-5 W kg-1, which can vary with 2 or 3 orders of magnitude in one day. The daily averaged variations of friction velocity and drag coefficient are 6.50×10-3-2.32×10-2 m s-1 and 6.30×10-3-4.36×10-2, respectively. All the characteristics have a remarkable semidiurnal period. In the bottom boundary layer with a rotating tide, the parameterized coefficients to describe ?- u* and ?- E t relationships are much smaller than the traditional value.

  10. Transport of contaminants in the planetary boundary layer

    NASA Technical Reports Server (NTRS)

    Lee, I. Y.; Swan, P. R.

    1978-01-01

    A planetary boundary layer model is described and used to simulate PBL phenomena including cloud formation and pollution transport in the San Francisco Bay Area. The effect of events in the PBL on air pollution is considered, and governing equations for the average momentum, potential temperature, water vapor mixing ratio, and air contaminants are presented. These equations are derived by integrating the basic equations vertically through the mixed layer. Characteristics of the day selected for simulation are reported, and the results suggest that the diurnally cyclic features of the mesoscale motion, including clouds and air pollution, can be simulated in a readily interpretable way with the model.

  11. Simulation of the diurnal evolution of the atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Ilyushin, B. B.

    2014-05-01

    Results of simulating the diurnal evolution of the atmospheric boundary layer (ABL) with a second-order closure model are presented. The model includes new algebraic expressions for triple correlations to describe their behavior over the entire height of the mixed layer adequately to measurements. The model also takes into account the influence of long-wave radiation on the heat balance, which becomes important in the nocturnal ABL. The modeling results are compared with 24-h ABL evolution simulations by the third-order closure model and available in situ and laboratory measurements.

  12. Nonlinear Interaction of Frequency-Detuned Modes in Boundary Layers

    NASA Technical Reports Server (NTRS)

    Mankbadi, Reda R.

    1993-01-01

    The present critical-layer asymptotic analysis for the nonlinear interaction of frequency-detuned modes in boundary-layer transition indicates that the interaction between a plane mode at the fundamental frequency and a pair of symmetrical oblique waves at the near-subharmonic frequency amplifies another pair of symmetrical oblique waves at the 'mirror frequency'. This type of interaction is stronger in the frequency-detuned case than the resonant triad case, and leads to a sharp drop in the oblique waves' peak with small detuning.

  13. Turbulent boundary layers with large streamline curvature effects

    NASA Technical Reports Server (NTRS)

    So, R. M. C.; Mellor, G. L.

    1978-01-01

    It has been shown that turbulent flows are greatly affected by streamline curvature. In spite of this and the fact that curved shear flows are frequently encountered in engineering applications, the predictions of such flows are relatively less developed than the predictions of two-dimensional plane flows. Recently, various attempts were made by different investigators; however, their methods are only successful when the product of the boundary layer thickness to the local surface curvature is approximately 0.05. The present paper investigates the more general case where this product is in the range from 0.1 to 0.5. Results show that the calculated boundary-layer characteristics for arbitrary free stream conditions are in good agreement with measurements.

  14. Boundary Layer Turbulence Index: Progress and Recent Developments

    E-print Network

    Pryor, Kenneth L

    2008-01-01

    A boundary layer turbulence index (TIBL) product has been developed to assess the potential for turbulence in the lower troposphere, generated using RUC-2 numerical model data. The index algorithm approximates boundary layer turbulent kinetic energy by parameterizing vertical wind shear, responsible for mechanical production of TKE, and kinematic heat flux, parameterized by the vertical temperature lapse rate and responsible for buoyant production of TKE. Validation for the TIBL product has been conducted for selected nonconvective wind events during the 2008 winter season over the Idaho National Laboratory mesonet domain. This paper presents studies of four significant wind events between December 2007 and February 2008 over southeastern Idaho. Based on the favorable results highlighted from validation statistics and in the case studies, the RUC TIBL product has demonstrated operational utility in assessing turbulence hazards to low-flying aircraft and ground transportation, and in the assessment of wildfire...

  15. Possibilities for drag reduction by boundary layer control

    NASA Technical Reports Server (NTRS)

    Naiman, I.

    1946-01-01

    The mechanics of laminar boundary layer transition are reviewed. Drag possibilities for boundary layer control are analyzed using assumed conditions of transition Reynolds number, inlet loss, number of slots, blower efficiency, and duct losses. Although the results of such analysis are highly favorable, those obtained by experimental investigations yield conflicting results, showing only small gains, and sometimes losses. Reduction of this data indicates that there is a lower limit to the quantity of air which must be removed at the slot in order to stabilize the laminar flow. The removal of insufficient air permits transition to occur while the removal of excessive amounts of air results in high power costs, with a net drag increases. With the estimated value of flow coefficient and duct losses equal to half the dynamic pressure, drag reductions of 50% may be obtained; with twice this flow coefficient, the drag saving is reduced to 25%.

  16. Effects of surface wave breaking on the oceanic boundary layer

    NASA Astrophysics Data System (ADS)

    He, Hailun; Chen, Dake

    2011-04-01

    Existing laboratory studies suggest that surface wave breaking may exert a significant impact on the formation and evolution of oceanic surface boundary layer, which plays an important role in the ocean-atmosphere coupled system. However, present climate models either neglect the effects of wave breaking or treat them implicitly through some crude parameterization. Here we use a one-dimensional ocean model (General Ocean Turbulence Model, GOTM) to investigate the effects of wave breaking on the oceanic boundary layer on diurnal to seasonal time scales. First a set of idealized experiments are carried out to demonstrate the basic physics and the necessity to include wave breaking. Then the model is applied to simulating observations at the northern North Sea and the Ocean Weather Station Papa, which shows that properly accounting for wave breaking effects can improve model performance and help it to successfully capture the observed upper ocean variability.

  17. Additive erosion reduction influences in the turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    Buckingham, A. C.

    1981-05-01

    Results of a sequence of flow, heat and mass transfer calculations are presented which theoretically characterize the erosive environment at the wall surface of refractory metal coated and uncoated gun barrels. The theoretical results include analysis of the wall surface temperature, heat flux, and shear stress time histories on thin (10 mil.) Cr, Mo, Nb, and Ta plated steel barrel walls as uncoated steel walls. The calculations combine effects of a number of separate processes which were previously (and purposely) studied individually. These include solid particle additive concentrations, gas wall thermochemical influences, and transient turbulent wall boundary layer flow with multicomponent molecular diffusion and reactions from interaction of propellant combustion and the eroding surface. The boundary layer model includes particulate additive concentrations as well as propellant combustion products, considered for the present to be in the local thermochemical equilibrium.

  18. Works on theory of flapping wing. [considering boundary layer

    NASA Technical Reports Server (NTRS)

    Golubev, V. V.

    1980-01-01

    It is shown mathematically that taking account of the boundary layer is the only way to develop a theory of flapping wings without violating the basic observations and mathematics of hydromechanics. A theory of thrust generation by flapping wings can be developed if the conventional downstream velocity discontinuity surface is replaced with the observed Karman type vortex streets behind a flapping wing. Experiments show that the direction of such vortices is the reverse of that of conventional Karman streets. The streets form by breakdown of the boundary layer. Detailed analysis of the movements of certain birds and insects during flight 'in place' is fully consistent with this theory of the lift, thrust and drag of flapping wings. Further directions for research into flight with flapping wings are indicated.

  19. A review of unsteady turbulent boundary-layer experiments

    NASA Technical Reports Server (NTRS)

    Carr, L. W.

    1981-01-01

    The essential results of a comprehensive review of existing unsteady turbulent boundary-layer experiments are presented. Different types of unsteady flow facilities are described, and the related unsteady turbulent boundary-layer experiments are cataloged and discussed. The measurements that were obtained in the various experiments are described, and a complete list of experimental results is presented. All the experiments that measured instantaneous values of velocity, turbulence intensity, or turbulent shear stress are identified, and the availability of digital data is indicated. The results of the experiments are analyzed, and several significant trends are identified. An assessment of the available data is presented, delineating gaps in the existing data, and indicating where new or extended information is needed. Guidelines for future experiments are included.

  20. Boundary layer integral matrix procedure code modifications and verifications

    NASA Technical Reports Server (NTRS)

    Evans, R. M.; Morse, H. L.

    1974-01-01

    A summary of modifications to Aerotherm's Boundary Layer Integral Matrix Procedure (BLIMP) code is presented. These modifications represent a preliminary effort to make BLIMP compatible with other JANNAF codes and to adjust the code for specific application to rocket nozzle flows. Results of the initial verification of the code for prediction of rocket nozzle type flows are discussed. For those cases in which measured free stream flow conditions were used as input to the code, the boundary layer predictions and measurements are in excellent agreement. In two cases, with free stream flow conditions calculated by another JANNAF code (TDK) for use as input to BLIMP, the predictions and the data were in fair agreement for one case and in poor agreement for the other case. The poor agreement is believed to result from failure of the turbulent model in BLIMP to account for laminarization of a turbulent flow. Recommendations for further code modifications and improvements are also presented.

  1. Investigation of Turbulent Boundary-Layer Separation Using Laser Velocimetry

    NASA Technical Reports Server (NTRS)

    Modarress, D.; Johnson, D. A.

    1979-01-01

    Boundary-layer measurements realized by laser velocimetry are presented for a Much 2.9, two-dimensional, shock-wave/turbulent boundary-layer interaction containing an extensive region of separated flow. Mean velocity and turbulent intensity profiles were obtained from upstream of the interaction zone to downstream of the mean reattachment point. The superiority of the laser velocimeter technique over pressure sensors in turbulent separated flows is demonstrated by a comparison of the laser velocimeter data with results obtained from local pilot and static pressure measurements for the same flow conditions. The locations of the mean separation and reattachment points as deduced from the mean velocity measurements are compared to oil-now visualization results. Representative velocity probability density functions obtained in the separated now region are also presented. Critical to the success of this investigation were: the use of Bragg cell frequency shifting and artificial seeding of the now with submicron light-scattering particles.

  2. Turbulent heat flux measurements in a transitional boundary layer

    NASA Technical Reports Server (NTRS)

    Sohn, K. H.; Zaman, K. B. M. Q.; Reshotko, E.

    1992-01-01

    During an experimental investigation of the transitional boundary layer over a heated flat plate, an unexpected result was encountered for the turbulent heat flux (bar-v't'). This quantity, representing the correlation between the fluctuating normal velocity and the temperature, was measured to be negative near the wall under certain conditions. The result was unexpected as it implied a counter-gradient heat transfer by the turbulent fluctuations. Possible reasons for this anomalous result were further investigated. The possible causes considered for this negative bar-v't' were: (1) plausible measurement error and peculiarity of the flow facility, (2) large probe size effect, (3) 'streaky structure' in the near wall boundary layer, and (4) contributions from other terms usually assumed negligible in the energy equation including the Reynolds heat flux in the streamwise direction (bar-u't'). Even though the energy balance has remained inconclusive, none of the items (1) to (3) appear to be contributing directly to the anomaly.

  3. Atmospheric surface and boundary layers of the Amazon Basin

    NASA Technical Reports Server (NTRS)

    Garstang, Michael

    1987-01-01

    Three phases of work were performed: design of and preparation for the Amazon Boundary Layer Experiment (ABLE 2-A); execution of the ABLE 2-A field program; and analysis of the ABLE 2-A data. Three areas of experiment design were dealt with: surface based meteorological measurements; aircraft missions; and project meteorological support. The primary goal was to obtain a good description of the structure of the atmosphere immediately above the rain forest canopy (top of canopy to a few thousand meters), to describe this region during the growing daytime phase of the boundary layer; and to examine the nighttime stratified state. A secondary objective was to examine the role that deep convective storms play in the vertical transport of heat, water vapor, and other trace gases. While significant progress was made, much of the analysis remains to be done.

  4. Vortex/boundary-layer interactions: Data report, volume 1

    NASA Technical Reports Server (NTRS)

    Cutler, A. D.; Bradshaw, P.

    1987-01-01

    This report summarizes the work done under NASA Grant NAGw-581, Vortex/Boundary Layer Interactions. The experimental methods are discussed in detail and numerical results are presented, but are not fully interpreted. This report should be useful to anyone who wishes to make further use of the data (available on floppy disc or magnetic tape) for the development of turbulence models or the validation of predictive methods. Journal papers are in course of preparation.

  5. Vortex/boundary-layer interactions: Data report, volume 2

    NASA Technical Reports Server (NTRS)

    Cutler, A. D.; Bradshaw, P.

    1987-01-01

    This report summarizes the work done under NASA grant NAGw-581, Vortex/Boundary-Layer Interactions, to date. The experimental methods are discussed in detail and the results presented as a large number of figures, but are not fully interpreted. This report should be useful to anyone who wishes to make further use of the data (available on floppy disc or magnetic tape) for the development of turbulence models or the validation of predictive methods. Journal papers are in preparation.

  6. Partially exposed polymer dispersed liquid crystals for boundary layer investigations

    NASA Technical Reports Server (NTRS)

    Parmar, Devendra S.; Singh, Jag J.

    1992-01-01

    A new configuration termed partially exposed polymer dispersed liquid crystal in which the liquid crystal microdroplets dispersed in a rigid polymer matrix are partially entrapped on the free surface of the thin film deposited on a glass substrate is reported. Optical transmission characteristics of the partially exposed polymer dispersed liquid crystal thin film in response to an air flow induced shear stress field reveal its potential as a sensor for gas flow and boundary layer investigations.

  7. Plasmoid observations in the distant plasma sheet boundary layer

    SciTech Connect

    Moldwin, M.B.; Hughes, W.J. (Boston Univ., MA (United States))

    1992-10-01

    Substorm associated large amplitude bipolar magnetic events occurred when ISEE 3 was in the distant geotail's plasma sheet boundary layer (PSBL). The characteristics of these events, their substorm association and their possible source mechanisms are examined. We propose that these PSBL events are signatures of a passing plasmoid in the plasma sheet, analogous to the traveling compression region model in the geomagnetic lobes. 20 refs.

  8. The cycling of sulfur dioxide in the marine boundary layer

    SciTech Connect

    Yvon, S.A.

    1994-12-31

    The atmospheric cycling of sulfur dioxide (SO{sub 2}) is examined through the use of field measurements and photochemical modeling. A question exists as to whether or not SO{sub 2} is a major product of dimethylsulfide (DMS) oxidation and subsequently important in the formation of new particles and cloud condensation nuclei (CCN). The relative magnitudes of the different sources and sinks of SO{sub 2} in the remote marine boundary layer are looked at using field measurements of SO{sub 2}, DMS, and hydrogen sulfide (H{sub 2}S) and a time dependent photochemical box model of an air mass in the marine boundary layer. A new automated technique for measuring So{sub 2} was developed. It enables continuous real-time measurement of SO{sub 2} using HPLC/Fluorescence at parts-per-trillion levels. Atmospheric and seawater DMS and atmospheric H{sub 2}S were also measured during these cruises in order to definite the biogenic sources of SO{sub 2}. The observed SO{sub 2} levels in the marine boundary layer are much lower than those predicted by current photochemical models using the measured DMS concentrations. Also, current models predict that SO{sub 2} should have a pronounced diel cycle that is anticorrelated to that of DMS, however, there is no observable diel cycle in the SO{sub 2} data. Using a time-dependent photochemical box model and a model of the aqueous phase sea-salt aerosol chemistry, we examine the role of heterogeneous loss to sea-salt aerosols as a potentially important but previously unaccounted for sink for SO{sub 2} in the marine boundary layer. Our results indicate that this is a large sink for SO{sub 2} in this region.

  9. Prediction of boundary-layer characteristics of an oscillating airfoil

    NASA Technical Reports Server (NTRS)

    Cebeci, T.; Carr, L. W.

    1981-01-01

    The evolution of unsteady boundary layers on oscillating airfoils is investigated by solving the governing equations by the Characteristic Box scheme. The difficulties associated with computing the first profile on a given time line, and the velocity profiles with partial flow reversal are solved. A sample calculation is performed for an external velocity distribution typical of those found near the leading edge of thin airfoils. The viability of the calculation procedure is demonstrated.

  10. A Sensitivity Theory for the Equilibrium Boundary Layer Over Land

    NASA Astrophysics Data System (ADS)

    Cronin, T.

    2013-12-01

    Due to the intrinsic complexities associated with modeling land-atmosphere interactions, global models typically use elaborate land surface and boundary layer physics parameterizations. Unfortunately, it is difficult to use elaborate models, by themselves, to develop a deeper understanding of how land surface parameters affect the coupled land-atmosphere system. At the same time, it is also increasingly important to gain a deeper understanding of the role of changes in land cover, land use, and ecosystem function as forcings and feedbacks in past and future climate change. Here, we outline the new framework of boundary layer climate sensitivity, which is based on surface energy balance, just as global climate sensitivity is based on top-of-atmosphere energy balance. We develop an analytic theory for the boundary layer climate sensitivity of an idealized model of a diurnally-averaged well-mixed boundary layer over land (Betts, 2000). This analytic sensitivity theory identifies changes in the properties of the land surface - including moisture availability, albedo, and aerodynamic roughness - as forcings, and identifies strong negative feedbacks associated with the surface fluxes of latent and sensible heat. We show that our theory can explain nearly all of the sensitivity of the Betts (2000) full system of equations, and find that nonlinear forcing functions are key to understanding changes in temperature caused by large changes in surface properties; this is directly analogous to the case of climate sensitivity, where nonlinear radiative forcing functions are key to understanding the response of global temperature to large changes in greenhouse gas concentrations. Favorable comparison of the theory and the simulation results from a two-column radiative convective model suggests that the theory may be broadly useful for unifying our understanding of how changes in land use or ecosystem function may affect climate change.

  11. Performances of feature tracking in turbulent boundary layer investigation

    Microsoft Academic Search

    M. Miozzi; B. Jacob; A. Olivieri

    2008-01-01

    In this paper, we describe the application of a feature tracking (FT) algorithm for the measurement of velocity statistics\\u000a in a turbulent boundary layer over a flat plate at Re\\u000a ? ? 3,700. The feature tracking algorithm is based on an optical flow approach. Displacements are obtained by searching the\\u000a parameters of the mapping between interrogation windows in the first and second

  12. The growth of Goertler vortices in compressible boundary layers

    NASA Technical Reports Server (NTRS)

    Hall, Philip; Malik, Mujeeb R.

    1987-01-01

    The linear instability of Goertler vortices in compressible boundary layers is considered. Using asymptotic methods in the high wavenumber regime, it is shown that a growth rate estimate can be found by solving a sequence of linear equations. The growth rate obtained in this way takes non-parallel effects into account and can be found much more easily than by ordinary differential equation eigenvalue calculations associated with parallel flow theories.

  13. The Turbulent Structure of Drag Reducing Boundary Layer Flows

    Microsoft Academic Search

    C. M. White; V. Somandepalli; M. G. Mungal

    The turbulent structure of wall-bounded drag reduced flow has been studied with particle image velocimetry (PIV) in a zero-pressure-gradient boundary layer. Drag reduction was achieved by injection of a concentrated polymer solution through a spanwise slot along the test wall at a distance approximately 2 m upstream of the PIV measurement station. For comparison, water was injected at the same

  14. Numerical solution of the resistive magnetohydrodynamic boundary-layer equations

    SciTech Connect

    Glasser, A.H.; Jardin, S.C.; Tesauro, G.

    1983-10-01

    Three different techniques are presented for numerical solution of the equations governing the boundary layer of resistive magnetohydrodynamic tearing and interchange instabilities in toroidal geometry. Excellent agreement among these methods and with analytical results provides confidence in the correctness of the results. Solutions obtained in regimes where analytical medthods fail indicate a new scaling for the tearing mode as well as the existence of a new regime of stability.

  15. Boundary layer elasto-optic switching in ferroelectric liquid crystals

    NASA Technical Reports Server (NTRS)

    Parmar, D. S.

    1992-01-01

    The first experimental observation of a change in the director azimuthal angle due to applied shear stress is reported in a sample configuration involving a liquid-crystal-coated top surface exposed directly to gas flow. The electrooptic response caused by the shear stress is large, fast, and reversible. These findings are relevant to the use of liquid crystals in boundary layer investigations on wind tunnel models.

  16. Turbulence models for boundary layers on axisymmetric bodies

    Microsoft Academic Search

    C. Li; T. Cebeci

    1985-01-01

    This report describes two turbulence models for boundary layers on axisymmetric bodies. The turbulence models are the algebraic eddy-viscosity formulation of Cebeci and Smith and the form of the two-equation transport approach suggested by Hanjalic and Launder. In both cases, the governing equations are solved in finite-difference form using Keller's box scheme and the computer program described by Bradshaw, Cebeci,

  17. Numerical study of sink-flow boundary layers

    Microsoft Academic Search

    Philippe R. Spalart

    1986-01-01

    Direct numerical simulations of sink-flow boundary layers, with acceleration parameters K between 1.5 x 10 to the -6th and 3.0 x 10 to the -6th, are presented. The three-dimensional, time-dependent Navier-Stokes equations are solved numerically, using a spectral method, with about one million degrees of freedom. The flow is assumed to be statistically steady, and self-similar. A multiple-scale approximation and

  18. Boundary Layer Transition Experiments in Support of the Hypersonics Program

    NASA Technical Reports Server (NTRS)

    Berry, Scott A.; Chen, Fang-Jenq; Wilder, Michael C.; Reda, Daniel C.

    2007-01-01

    Two experimental boundary layer transition studies in support of fundamental hypersonics research are reviewed. The two studies are the HyBoLT flight experiment and a new ballistic range effort. Details are provided of the objectives and approach associated with each experimental program. The establishment of experimental databases from ground and flight are to provide better understanding of high-speed flows and data to validate and guide the development of simulation tools.

  19. LASTRAC.3d: Transition Prediction in 3D Boundary Layers

    NASA Technical Reports Server (NTRS)

    Chang, Chau-Lyan

    2004-01-01

    Langley Stability and Transition Analysis Code (LASTRAC) is a general-purpose, physics-based transition prediction code released by NASA for laminar flow control studies and transition research. This paper describes the LASTRAC extension to general three-dimensional (3D) boundary layers such as finite swept wings, cones, or bodies at an angle of attack. The stability problem is formulated by using a body-fitted nonorthogonal curvilinear coordinate system constructed on the body surface. The nonorthogonal coordinate system offers a variety of marching paths and spanwise waveforms. In the extreme case of an infinite swept wing boundary layer, marching with a nonorthogonal coordinate produces identical solutions to those obtained with an orthogonal coordinate system using the earlier release of LASTRAC. Several methods to formulate the 3D parabolized stability equations (PSE) are discussed. A surface-marching procedure akin to that for 3D boundary layer equations may be used to solve the 3D parabolized disturbance equations. On the other hand, the local line-marching PSE method, formulated as an easy extension from its 2D counterpart and capable of handling the spanwise mean flow and disturbance variation, offers an alternative. A linear stability theory or parabolized stability equations based N-factor analysis carried out along the streamline direction with a fixed wavelength and downstream-varying spanwise direction constitutes an efficient engineering approach to study instability wave evolution in a 3D boundary layer. The surface-marching PSE method enables a consistent treatment of the disturbance evolution along both streamwise and spanwise directions but requires more stringent initial conditions. Both PSE methods and the traditional LST approach are implemented in the LASTRAC.3d code. Several test cases for tapered or finite swept wings and cones at an angle of attack are discussed.

  20. Improving Subtropical Boundary Layer Cloudiness in the 2011 NCEP GFS

    SciTech Connect

    Fletcher, J. K.; Bretherton, Christopher S.; Xiao, Heng; Sun, Ruiyu N.; Han, J.

    2014-09-23

    The current operational version of National Centers for Environmental Prediction (NCEP) Global Forecasting System (GFS) shows significant low cloud bias. These biases also appear in the Coupled Forecast System (CFS), which is developed from the GFS. These low cloud biases degrade seasonal and longer climate forecasts, particularly of short-wave cloud radiative forcing, and affect predicted sea surface temperature. Reducing this bias in the GFS will aid the development of future CFS versions and contributes to NCEP's goal of unified weather and climate modelling. Changes are made to the shallow convection and planetary boundary layer parameterisations to make them more consistent with current knowledge of these processes and to reduce the low cloud bias. These changes are tested in a single-column version of GFS and in global simulations with GFS coupled to a dynamical ocean model. In the single-column model, we focus on changing parameters that set the following: the strength of shallow cumulus lateral entrainment, the conversion of updraught liquid water to precipitation and grid-scale condensate, shallow cumulus cloud top, and the effect of shallow convection in stratocumulus environments. Results show that these changes improve the single-column simulations when compared to large eddy simulations, in particular through decreasing the precipitation efficiency of boundary layer clouds. These changes, combined with a few other model improvements, also reduce boundary layer cloud and albedo biases in global coupled simulations.

  1. Effect of thermally induced perturbation in supersonic boundary layers

    NASA Astrophysics Data System (ADS)

    Yan, Hong; Gaitonde, Datta

    2010-06-01

    This paper investigates the mechanism of steady and unsteady thermal perturbation (also denoted as thermal bump) in a Mach 1.5 flat plate boundary layer. A high-fidelity upwind-biased third-order Roe scheme is used with the compressive van Leer harmonic limiter on a suitably refined mesh. The study consists of two parts. In the first part, the effects of the steady and pulsed thermal bumps are explored. It is shown that the finite-span thermal bumps generate streamwise vortices. With steady heating, the disturbance decays downstream. However, when the thermal bump is pulsed, vortex shedding is observed and the streamwise vortical disturbance grows with downstream distance, consistent with linear stability analysis. The integrated disturbance energy indicates that streamwise kinetic disturbance energy growth dominates over those associated with other two velocity and thermodynamic components. The second part of this paper explores the physical consequences of the nonlinear dynamics between the vortices produced by the pulsed bump and the compressible boundary layer. The resulting three-dimensional flow distortion generates hairpin structures which are aligned in the streamwise direction, suggesting that the transition process bears some similarity to K-type breakdown. The arrangement of these vortices is connected to the low-speed streaks observed in the evolving boundary layer. The shape factor, velocity, and Reynolds stress profiles suggest that the perturbed flow shows initiation of transition to turbulence, but remains transitional at the end of the plate.

  2. Coupling of magnetopause-boundary layer to the polar ionosphere

    SciTech Connect

    Wei, C.Q.; Lee, L.C. (Univ. of Alaska, Fairbanks (United States))

    1993-04-01

    The authors develop a model which seeks to explain ultraviolet auroral images from the Viking satellite which show periodic bright regions which resemble [open quotes]beads[close quotes] or [open quotes]pearls[close quotes] aligned along the postnoon auroral oval. ULF geomagnetic pulsations observed in the cusp region are also addressed by this model. The model addresses plasma dynamics in the low-latitude boundary layer and interactions with the polar ionosphere by means of field-aligned current. The Kelvin-Helmholtz instability can develop in the presence of driven plasma flow, which can lead to the formation and growth of plasma vortices in the boundary layer. The finite conductivity of the earth ionosphere causes these vortices to decay. However regions of enhanced field-aligned power density in the postnoon auroral oval can be associated with field-aligned current filaments and boundary layer vortices. These structures may explain the observed bright spots. The authors also discuss the frequency spectrum and the polarization state of the pulsations.

  3. Parameterization of Momentum Transport for the Convective Boundary Layer

    NASA Astrophysics Data System (ADS)

    Soares, P. M.; Miranda, P.; Teixeira, J.

    2009-12-01

    The sub-grid scale transport of momentum in the boundary layer is generally treated as a diffusive process in atmospheric models. However, results for the mean wind are frequently poor in test cases, and it is not clear how important are those fluxes in the performance of the models. In the case of scalar fluxes, such as potential temperature and water vapour, it has been shown that “non-local” transport plays an important role in the turbulent transport, implying that a purely diffusive representation is insufficient. Counter-gradient, mass-flux theories and the combined eddy-diffusivity/mass-flux (EDMF) scheme were built to overcome that problem. The role of non-local effects in momentum is still largely an opened question. In the present study we use results from LES simulations to diagnose vertical profiles of momentum fluxes in different convective boundary layers: the nieuwstadt clear boundary layer, the trade wind cumulus BOMEX case, the shallow cumulus diurnal cycle from the ARM experiment and a LBA shallow convection case. In many situations these results show that the momentum transport made by organized updraughts contribute significantly to the total turbulent flux, suggesting that they may be included in convective parameterizations. The vertical turbulent flux partition dependency on the shear is also explored.

  4. The Parametrization of Momentum Transport in the Boundary Layer

    NASA Astrophysics Data System (ADS)

    Soares, P. M.; Miranda, P. M.; Teixeira, J.

    2010-12-01

    The sub-grid scale transport of momentum in the boundary layer is generally treated as a diffusive process in atmospheric models. However, results for the mean wind are frequently poor in test cases, and it is not clear how important are those fluxes in the performance of the models. In the case of scalar fluxes, such as potential temperature and water vapour, it has been shown that “non-local” transport plays an important role in the turbulent transport, implying that a purely diffusive representation is insufficient. Counter-gradient, mass-flux theories and the combined eddy-diffusivity/mass-flux (EDMF) scheme were built to overcome that problem. The role of non-local effects in momentum is still largely an opened question. In the present study we use results from LES simulations to diagnose vertical profiles of momentum fluxes in different convective boundary layers: the nieuwstadt clear boundary layer, the trade wind cumulus BOMEX case, the shallow cumulus diurnal cycle from the ARM experiment and a LBA shallow convection case. In many situations these results show that the momentum transport made by organized updraughts contribute significantly to the total turbulent flux, suggesting that they may be included in convective parameterizations. The vertical turbulent flux partition dependency on the shear is also explored.

  5. The nonlinear development of Gortler vortices in growing boundary layers

    NASA Technical Reports Server (NTRS)

    Hall, Philip

    1986-01-01

    The development of Gortler vortices in boundary layers over curved walls in the nonlinear regime is investigated. The growth of the boundary layer makes a parallel flow analysis impossible except in the high wavenumber regime so in general the instability equations must be integrated numerically. Here the spanwise dependence of the basic flow is described using Fourier series expansion whilst the normal and streamwise variations are taken into account using finite differences. The calculations suggest that a given disturbance imposed at some position along the wall will eventually reach a local equilibrium state essentially independent of the initial conditions. In fact, the equilibrium state reached is qualitatively similar to the large amplitude high wave-number solution described asymptotically by Hall (1982). In general, it is found that the nonlinear interactions are dominated by a mean field type of interaction between the mean flow and the fundamental. Thus, even though higher harmonics of the fundamental are necessarily generated, most of the disturbance energy is confined to the mean flow correction and the fundamental. A major result of the calculations is finding that the downstream velocity field develops a strongly inflection character as the flow moves downstream. The latter result suggests that the major effect of Gortler vortices on boundary layers of practical importance might be to make them highly receptive to rapidly growing Rayleigh modes of instability.

  6. Acoustic explorations of the upper ocean boundary layer

    NASA Astrophysics Data System (ADS)

    Vagle, Svein

    2005-04-01

    The upper ocean boundary layer is an important but difficult to probe part of the ocean. A better understanding of small scale processes at the air-sea interface, including the vertical transfer of gases, heat, mass and momentum, are crucial to improving our understanding of the coupling between atmosphere and ocean. Also, this part of the ocean contains a significant part of the total biomass at all trophic levels and is therefore of great interest to researchers in a range of different fields. Innovative measurement plays a critical role in developing our understanding of the processes involved in the boundary layer, and the availability of low-cost, compact, digital signal processors and sonar technology in self-contained and cabled configurations has led to a number of exciting developments. This talk summarizes some recent explorations of this dynamic boundary layer using both active and passive acoustics. The resonant behavior of upper ocean bubbles combined with single and multi-frequency broad band active and passive devices are now giving us invaluable information on air-sea gas transfer, estimation of biological production, marine mammal behavior, wind speed and precipitation, surface and internal waves, turbulence, and acoustic communication in the surf zone.

  7. Viscous Forces in Velocity Boundary Layers around Planetary Ionospheres.

    PubMed

    Pérez-De-Tejada

    1999-11-01

    A discussion is presented to examine the role of viscous forces in the transport of solar wind momentum to the ionospheric plasma of weakly magnetized planets (Venus and Mars). Observational data are used to make a comparison of the Reynolds and Maxwell stresses that are operative in the interaction of the solar wind with local plasma (planetary ionospheres). Measurements show the presence of a velocity boundary layer formed around the flanks of the ionosphere where the shocked solar wind has reached super-Alfvénic speeds. It is found that the Reynolds stresses in the solar wind at that region can be larger than the Maxwell stresses and thus are necessary in the local acceleration of the ionospheric plasma. From an order-of-magnitude calculation of the Reynolds stresses, it is possible to derive values of the kinematic viscosity and the Reynolds number that are suitable to the gyrotropic motion of the solar wind particles across the boundary layer. The value of the kinematic viscosity is comparable to those inferred from studies of the transport of solar wind momentum to the earth's magnetosphere and thus suggest a common property of the solar wind around planetary obstacles. Similar conditions could also be applicable to velocity boundary layers formed in other plasma interaction problems in astrophysics. PMID:10511515

  8. Measurements of Instability and Transition in Hypersonic Boundary Layers

    NASA Astrophysics Data System (ADS)

    Casper, K. M.; Schneider, S. P.; Beresh, S. J.

    2011-08-01

    Several studies on boundary-layer instability and transition have been conducted in the Boeing/AFOSR-Mach 6 Quiet Tunnel (BAM6QT) and the Sandia Hypersonic Wind Tunnels (HWT) at Mach 5 and 8. The first study looked at the effect of freestream noise on roughness- induced transition on a blunt cone. Temperature-sensitive paints were used to visualize the wake of an isolated roughness element at zero deg angle of attack in the BAM6QT. Transition was always delayed under quiet flow compared to noisy flow, even for an effective trip height. The second study measured transitional surface pressure fluctuations on a seven degree half-angle sharp cone in the HWT under noisy flow and in the BAM6QT under noisy and quiet flow. Fluctuations under laminar boundary layers reflected tunnel noise levels. Transition on the model only occurred under noisy flow, and fluctuations peaked during transition. Measurements of second- mode waves showed the waves started to grow under a laminar boundary layer, saturated, and then broke down near the peak in transitional pressure fluctuations. The third study looked at the development of wave packets and turbulent spots on the BAM6QT nozzle wall. A spark perturber was used to generate controlled disturbances. Measurements of the internal structure of the pressure field of the disturbances were made.

  9. Receptivity of Hypersonic Boundary Layers to Acoustic and Vortical Disturbances

    NASA Technical Reports Server (NTRS)

    Balakamar, P.; Kegerise, Michael A.

    2011-01-01

    Boundary layer receptivity to two-dimensional acoustic disturbances at different incidence angles and to vortical disturbances is investigated by solving the Navier-Stokes equations for Mach 6 flow over a 7deg half-angle sharp-tipped wedge and a cone. Higher order spatial and temporal schemes are employed to obtain the solution. The results show that the instability waves are generated in the leading edge region and that the boundary layer is much more receptive to slow acoustic waves as compared to the fast waves. It is found that the receptivity of the boundary layer on the windward side (with respect to the acoustic forcing) decreases when the incidence angle is increased from 0 to 30 degrees. However, the receptivity coefficient for the leeward side is found to vary relatively weakly with the incidence angle. The maximum receptivity is obtained when the wave incident angle is about 20 degrees. Vortical disturbances also generate unstable second modes, however the receptivity coefficients are smaller than that for the acoustic waves. Vortical disturbances first generate the fast acoustic modes and they switch to the slow mode near the continuous spectrum.

  10. Improving subtropical boundary layer cloudiness in the 2011 NCEP GFS

    NASA Astrophysics Data System (ADS)

    Fletcher, J. K.; Bretherton, C. S.; Xiao, H.; Sun, R.; Han, J.

    2014-04-01

    The current operational version of National Centers for Environmental Prediction (NCEP) Global Forecasting System (GFS) shows significant low cloud bias. These biases also appear in the Coupled Forecast System (CFS), which is developed from the GFS. These low cloud biases degrade seasonal and longer climate forecasts, particularly of shortwave cloud radiative forcing, and affect predicted sea-surface temperature. Reducing this bias in the GFS will aid the development of future CFS versions and contributes to NCEP's goal of unified weather and climate modelling. Changes are made to the shallow convection and planetary boundary layer parametrisations to make them more consistent with current knowledge of these processes and to reduce the low cloud bias. These changes are tested in a single-column version of GFS and in global simulations with GFS coupled to a dynamical ocean model. In the single column model, we focus on changing parameters that set the following: the strength of shallow cumulus lateral entrainment, the conversion of updraught liquid water to precipitation and grid-scale condensate, shallow cumulus cloud top, and the effect of shallow convection in stratocumulus environments. Results show that these changes improve the single-column simulations when compared to large eddy simulations, in particular through decreasing the precipitation efficiency of boundary layer clouds. These changes, combined with a few other model improvements, also reduce boundary layer cloud and albedo biases in global coupled simulations.

  11. Numerical Investigation of a Fuselage Boundary Layer Ingestion Propulsion Concept

    NASA Technical Reports Server (NTRS)

    Elmiligui, Alaa A.; Fredericks, William J.; Guynn, Mark D.; Campbell, Richard L.

    2013-01-01

    In the present study, a numerical assessment of the performance of fuselage boundary layer ingestion (BLI) propulsion techniques was conducted. This study is an initial investigation into coupling the aerodynamics of the fuselage with a BLI propulsion system to determine if there is sufficient potential to warrant further investigation of this concept. Numerical simulations of flow around baseline, Boundary Layer Controlled (BLC), and propelled boundary layer controlled airships were performed. Computed results showed good agreement with wind tunnel data and previous numerical studies. Numerical simulations and sensitivity analysis were then conducted on four BLI configurations. The two design variables selected for the parametric study of the new configurations were the inlet area and the inlet to exit area ratio. Current results show that BLI propulsors may offer power savings of up to 85% over the baseline configuration. These interim results include the simplifying assumption that inlet ram drag is negligible and therefore likely overstate the reduction in power. It has been found that inlet ram drag is not negligible and should be included in future analysis.

  12. Multi-dimensional Longwave Forcing of Boundary Layer Cloud Systems

    SciTech Connect

    Mechem, David B.; Kogan, Y. L.; Ovtchinnikov, Mikhail; Davis, Anthony B; Evans, K. F.; Ellingson, Robert G.

    2008-12-20

    The importance of multi-dimensional (MD) longwave radiative effects on cloud dynamics is evaluated in a large eddy simulation (LES) framework employing multi-dimensional radiative transfer (Spherical Harmonics Discrete Ordinate Method —SHDOM). Simulations are performed for a case of unbroken, marine boundary layer stratocumulus and a broken field of trade cumulus. “Snapshot” calculations of MD and IPA (independent pixel approximation —1D) radiative transfer applied to LES cloud fields show that the total radiative forcing changes only slightly, although the MD effects significantly modify the spatial structure of the radiative forcing. Simulations of each cloud type employing MD and IPA radiative transfer, however, differ little. For the solid cloud case, relative to using IPA, the MD simulation exhibits a slight reduction in entrainment rate and boundary layer TKE relative to the IPA simulation. This reduction is consistent with both the slight decrease in net radiative forcing and a negative correlation between local vertical velocity and radiative forcing, which implies a damping of boundary layer eddies. Snapshot calculations of the broken cloud case suggest a slight increase in radiative cooling, though few systematic differences are noted in the interactive simulations. We attribute this result to the fact that radiative cooling is a relatively minor contribution to the total energetics. For the cloud systems in this study, the use of IPA longwave radiative transfer is sufficiently accurate to capture the dynamical behavior of BL clouds. Further investigations are required in order to generalize this conclusion for other cloud types and longer time integrations. 1

  13. Surface-cooling effects on compressible boundary-layer instability

    NASA Technical Reports Server (NTRS)

    Seddougui, Sharon O.; Bowles, R. I.; Smith, F. T.

    1990-01-01

    The influence of surface cooling on compressible boundary layer instability is discussed theoretically for both viscous and inviscid modes, at high Reynolds numbers. The cooling enhances the surface heat transfer and shear stress, creating a high heat transfer sublayer. This has the effect of distorting and accentuating the viscous Tollmien-Schlichting modes to such an extent that their spatial growth rates become comparable with, and can even exceed, the growth rates of inviscid modes, including those found previously. This is for moderate cooling, and it applies at any Mach number. In addition, the moderate cooling destabilizes otherwise stable viscous or inviscid modes, in particular triggering outward-traveling waves at the edge of the boundary layer in the supersonic regime. Severe cooling is also discussed as it brings compressible dynamics directly into play within the viscous sublayer. All the new cooled modes found involve the heat transfer sublayer quite actively, and they are often multi-structured in form and may be distinct from those observed in previous computational and experimental investigations. The corresponding nonlinear processes are also pointed out with regard to transition in the cooled compressible boundary layer. Finally, comparisons with Lysenko and Maslov's (1984) experiments on surface cooling are presented.

  14. Improving subtropical boundary layer cloudiness in the 2011 NCEP GFS

    NASA Astrophysics Data System (ADS)

    Fletcher, J. K.; Bretherton, C. S.; Xiao, H.; Sun, R.; Han, J.

    2014-09-01

    The current operational version of National Centers for Environmental Prediction (NCEP) Global Forecasting System (GFS) shows significant low cloud bias. These biases also appear in the Coupled Forecast System (CFS), which is developed from the GFS. These low cloud biases degrade seasonal and longer climate forecasts, particularly of short-wave cloud radiative forcing, and affect predicted sea surface temperature. Reducing this bias in the GFS will aid the development of future CFS versions and contributes to NCEP's goal of unified weather and climate modelling. Changes are made to the shallow convection and planetary boundary layer parameterisations to make them more consistent with current knowledge of these processes and to reduce the low cloud bias. These changes are tested in a single-column version of GFS and in global simulations with GFS coupled to a dynamical ocean model. In the single-column model, we focus on changing parameters that set the following: the strength of shallow cumulus lateral entrainment, the conversion of updraught liquid water to precipitation and grid-scale condensate, shallow cumulus cloud top, and the effect of shallow convection in stratocumulus environments. Results show that these changes improve the single-column simulations when compared to large eddy simulations, in particular through decreasing the precipitation efficiency of boundary layer clouds. These changes, combined with a few other model improvements, also reduce boundary layer cloud and albedo biases in global coupled simulations.

  15. Review of Orbiter Flight Boundary Layer Transition Data

    NASA Technical Reports Server (NTRS)

    Mcginley, Catherine B.; Berry, Scott A.; Kinder, Gerald R.; Barnell, maria; Wang, Kuo C.; Kirk, Benjamin S.

    2006-01-01

    In support of the Shuttle Return to Flight program, a tool was developed to predict when boundary layer transition would occur on the lower surface of the orbiter during reentry due to the presence of protuberances and cavities in the thermal protection system. This predictive tool was developed based on extensive wind tunnel tests conducted after the loss of the Space Shuttle Columbia. Recognizing that wind tunnels cannot simulate the exact conditions an orbiter encounters as it re-enters the atmosphere, a preliminary attempt was made to use the documented flight related damage and the orbiter transition times, as deduced from flight instrumentation, to calibrate the predictive tool. After flight STS-114, the Boundary Layer Transition Team decided that a more in-depth analysis of the historical flight data was needed to better determine the root causes of the occasional early transition times of some of the past shuttle flights. In this paper we discuss our methodology for the analysis, the various sources of shuttle damage information, the analysis of the flight thermocouple data, and how the results compare to the Boundary Layer Transition prediction tool designed for Return to Flight.

  16. Thermocapillary Bubble Migration: Thermal Boundary Layers for Large Marangoni Numbers

    NASA Technical Reports Server (NTRS)

    Balasubramaniam, R.; Subramanian, R. S.

    1996-01-01

    The migration of an isolated gas bubble in an immiscible liquid possessing a temperature gradient is analyzed in the absence of gravity. The driving force for the bubble motion is the shear stress at the interface which is a consequence of the temperature dependence of the surface tension. The analysis is performed under conditions for which the Marangoni number is large, i.e. energy is transferred predominantly by convection. Velocity fields in the limit of both small and large Reynolds numbers are used. The thermal problem is treated by standard boundary layer theory. The outer temperature field is obtained in the vicinity of the bubble. A similarity solution is obtained for the inner temperature field. For both small and large Reynolds numbers, the asymptotic values of the scaled migration velocity of the bubble in the limit of large Marangoni numbers are calculated. The results show that the migration velocity has the same scaling for both low and large Reynolds numbers, but with a different coefficient. Higher order thermal boundary layers are analyzed for the large Reynolds number flow field and the higher order corrections to the migration velocity are obtained. Results are also presented for the momentum boundary layer and the thermal wake behind the bubble, for large Reynolds number conditions.

  17. Mixing dynamics within a turbid bottom boundary layer

    NASA Astrophysics Data System (ADS)

    Bastida, I.; Planella, J.; Roget, E.

    2009-04-01

    Mixing dynamics within a turbid bottom boundary layer in a littoral zone of the Mediterranean Sea is analyzed. Data were taken in June 2004 with a free falling microstructure profiler. Mesoscale dynamics in the region was influenced by the outflow of the Ebre River and by the southwestern Catalan Current originating in the Gulf of Genoa. The magnitude of the near bottom current was 5-8 cm/s and the flow was affected by inertial oscillations. During the entire field campaign, the wind of ~ 6 m/s was from the northeast. The mean depth of the upper mixed layer was about 15 m, the thermocline occupied the depth range between 15 and 30 m, and the thickness of the turbid bottom boundary layer varied from 8 to 12 m. Different stations ranged from 15 to 60 m depth. Thorpe displacement, Th, was used to determine the turbulent patches and, in general, Thmax within the patches and the Thorpe scale, LTh, were found to be highly correlated and linearly dependent: Tmax= 2.6LTh. If Thmax and LTh were calculated at equidistant segments of the profiles, then Thmax ~ LTh0.85. Within the bottom layer turbulent patches were found to affect 35% of the total depth of the layer. The median size of the patches was 41 cm and their median buoyancy Reynolds number was 252. State of the turbulence within the bottom layer is discussed based on the turbulent Reynolds and the turbulent Froude numbers. According to the hydrodynamic diagram and the vertical profiles of the turbulent kinetic energy dissipation rate, different zones are identified, including an upper interface where Kelvin-Helmholtz instability develop. The different station-dependent structure of the turbidity profiles is related to the different mixing dynamics. Mean turbulent diffusivity of the turbid layer was obtained following the Osborn approach and found to be 2 x 10-5 m2/s.

  18. Vegetation-atmosphere interactions and boundary layer cumulus clouds

    NASA Astrophysics Data System (ADS)

    Freedman, Jeffrey Michael

    2000-07-01

    A study of vegetation-atmosphere interactions and boundary layer cumulus clouds (``BLcu'') in terms of seasonal trends (i.e., heat and moisture tendencies) and short-term events (specifically the modification of in situ air masses) is presented. In the northeastern U.S., in response to increasing insolation and sensible heat flux, both the mixed layer height (zi) and lifting condensation level (LCL) peak (~1300 and 1700 m) just before the start of the growing season. With the commencement of transpiration, the Bowen ratio (?) falls abruptly (from greater than 3 to less than 1) as additional moisture is transpired into the boundary layer, and zi and the LCL decrease. By late spring, boundary layer cumulus cloud frequency increases sharply, as the mixed layer approaches a new equilibrium. At Harvard Forest during 1995, afternoon net carbon uptake (Fco2 ) was 52% greater on days with boundary layer cumulus clouds than clear days. For 1996-1998, afternoon Fco2 was also enhanced, especially during dry periods. The same enhancement, albeit reduced, was observed at a northern jack pine site during the BOREAS project, despite very different phenological, hydrological, and climatological regimes. Sixteen frontal sequences affecting the northeastern U.S. were analyzed in terms of local and regional contributions to the temperature and moisture tendency equations. A composite of sequences featuring the daily appearance of BLcu indicates a diminished role for entrainment and other external forcings due to the daily occurrence of a rapid growth phase in ML diurnal evolution subsequent to day 1. From the sequence minimum (day 2) in temperature and moisture, surface flux convergence accounts for about 50% of the overall net moistening and heating of the mixed layer. Model sensitivity tests show that changes in subsidence and ? ?? affect ML processes most on day 1; dining subsequent days, the rapid growth phase dominates the ML growth equation, and reduces the impact of these external terms, confirming the observations referred to above. Finally, increasing the regional Bowen ratio (?reg) to 3.5 reduces BLcu fraction to <20% and produces little net moistening of the ML; whereas reducing ?reg by 30% increases sequence BLcu coverage by 30-80%. Changes in land-use resulting in a loss of forest cover may diminish BLcu frequency due to a reduction in evapotranspiration and consequent higher LCLs. This positive feedback, whereby reduced BLcu frequency leads to higher surface temperatures (and LCLs), may also significantly reduce net C uptake, which has important implications for existing and potential climate change scenarios.

  19. Direct Numerical Simulations of High-Speed Turbulent Boundary Layers over Riblets

    NASA Technical Reports Server (NTRS)

    Duan, Lian; Choudhari, Meelan, M.

    2014-01-01

    Direct numerical simulations (DNS) of spatially developing turbulent boundary layers over riblets with a broad range of riblet spacings are conducted to investigate the effects of riblets on skin friction at high speeds. Zero-pressure gradient boundary layers under two flow conditions (Mach 2:5 with T(sub w)/T(sub r) = 1 and Mach 7:2 with T(sub w)/T(sub r) = 0:5) are considered. The DNS results show that the drag-reduction curve (delta C(sub f)/C(sub f) vs l(sup +)(sub g )) at both supersonic speeds follows the trend of low-speed data and consists of a `viscous' regime for small riblet size, a `breakdown' regime with optimal drag reduction, and a `drag-increasing' regime for larger riblet sizes. At l l(sup +)(sub g) approx. 10 (corresponding to s+ approx 20 for the current triangular riblets), drag reduction of approximately 7% is achieved at both Mach numbers, and con rms the observations of the few existing experiments under supersonic conditions. The Mach- number dependence of the drag-reduction curve occurs for riblet sizes that are larger than the optimal size, with smaller slopes of (delta C(sub f)/C(sub f) for larger freestream Mach numbers. The Reynolds analogy holds with 2(C(sub h)=C(sub f) approximately equal to that of at plates for both drag-reducing and drag-increasing configurations.

  20. Effect of Freestream Turbulence over Rough, Favorable Pressure Gradient Turbulent Boundary Layers

    NASA Astrophysics Data System (ADS)

    Torres-Nieves, Sheilla; Lebron-Bosques, Jose; Brzek, Brian; Castillo, Luciano; Bayoan Cal, Raul; Meneveau, Charles

    2007-11-01

    Laser Doppler anemometry measurements are performed downstream of an active grid in the Corrsin wind tunnel at The Johns Hopkins University to study the effect of freestream turbulence (Tu<=7%), surface roughness and external favorable pressure gradient. Overall, the effect of freestream turbulence has proven to be dominant over pressure gradient and roughness. Mean profiles show that freestream turbulence effects alter the entire boundary layer including the inner flow. A reduction in the wake is also seen. Moreover, freestream turbulence increases the Reynolds stresses, making the values near the edge of the boundary layer to be non-zero. For the streamwise fluctuations, turbulence intensity affects the inner and outer regions, while the wall-normal and shear stress only change in the outer flow. Also, it is seen that roughness prevents the streamwise fluctuations from increasing near the wall, mainly because of the destruction of the viscous regions. Furthermore, a 20% increase in the skin friction is reported, 25% more than the increase obtained over smooth surfaces.