Kudrolli, Arshad
Friction of a slider on a granular layer: Nonmonotonic thickness dependence and effect of boundary the effective friction encountered by a mass sliding on a granular layer as a function of bed thickness and boundary roughness conditions. The observed friction has minima for a small number of layers before
Friction dynamics of confined weakly adhering boundary layers.
Mazuyer, Denis; Cayer-Barrioz, Juliette; Tonck, André; Jarnias, Frédéric
2008-04-15
The nanotribological behavior of self-assembled monolayers is investigated. The latter accommodate friction through transient relaxation and dilatancy effects whose kinetics depends on the structure of the confined layers. Thus, the molecular ordering onto the surfaces controls the level and the stability of the friction coefficient. Moreover, the behavior of these systems is theoretically accounted for using a model based on the kinetics of formation and rupture of adhesive bonds between the two shearing surfaces with an additional viscous term. PMID:18327959
Progress in Boundary Layer Control: Robust ReducedOrder Control of SkinFriction Drag
Ferguson, Thomas S.
Progress in Boundary Layer Control: Robust ReducedOrder Control of SkinFriction Drag by L drag reduction and eventually the flow is relaminarized. \\Lambda Corresponding author: Telephone (310, in other words, to the problem of reducing drag produced by skin friction. ``The skin friction constitutes
THEORETICAL SKIN-FRICTION LAW IN A TURBULENT BOUNDARY LAYER A. CHESKIDOV
Cheskidov, Alexey
THEORETICAL SKIN-FRICTION LAW IN A TURBULENT BOUNDARY LAYER A. CHESKIDOV ABSTRACT. We study of the skin-friction coefficient in a wide range of Reynolds numbers based on momentum thickness, and deduce-stream turbulence intensity, while one-parameter family of solutions, obtained using our skin-friction coefficient
Effect of boundary vibration on the frictional behavior of a dense sheared granular layer
B. Ferdowsi; M. Griffa; R. A. Guyer; P. A. Johnson; J. Carmeliet
2014-01-24
We report results of 3D Discrete Element Method (DEM) simulations aiming at investigating the role of the boundary vibration in inducing frictional weakening in sheared granular layers. We study the role of different vibration amplitudes applied at various shear stress levels, for a granular layer in the stick-slip regime and in the steady-sliding regime. Results are reported in terms of friction drops and kinetic energy release associated with frictional weakening events. We find that larger vibration amplitude induces larger frictional weakening events. The results show evidence of a threshold below which no induced frictional weakening takes place. Friction drop size is found to be dependent on the shear stress at the time of vibration. A significant increase in the ratio between the number of slipping contacts to the number of sticking contacts in the granular layer is observed for large vibration amplitudes. These vibration-induced contact rearrangements enhance particle mobilization and induces a friction drop and kinetic energy release. This observation provides some insight into the grain-scale mechanisms of frictional weakening by boundary vibration in a dense sheared granular layer. In addition to characterizing the basic physics of vibration induced shear weakening, we are attempting to understand how a fault fails in the earth under seismic wave forcing. This is the well know phenomenon of dynamic earthquake triggering. We believe that the granular physics are key to this understanding.
Laser interferometer/Preston tube skin-friction comparison in shock/boundary-layer interaction
NASA Technical Reports Server (NTRS)
Kim, K.-S.; Lee, Y.; Settles, G. S.
1991-01-01
An evaluation is conducted of the accuracy of the 'Preston tube' surface pitot-pressure skin friction measurement method relative to the already proven laser interferometer skin-friction meter in a swept shock wave/turbulent boundary-layer interaction. The Preston tube was used to estimate the total shear-stress distribution in a fin-generated swept shock-wave/turbulent boundary-layer interaction. The Keener-Hopkins calibration method using the isentropic relation to calculate the Preston-tube Mach number produces the best results.
Effects of Riblets on Skin Friction in High-Speed Turbulent Boundary Layers
NASA Technical Reports Server (NTRS)
Duan, Lian; Choudhari, Meelan M.
2012-01-01
Direct numerical simulations of spatially developing turbulent boundary layers over riblets are conducted to examine the effects of riblets on skin friction at supersonic speeds. Zero-pressure gradient boundary layers with an adiabatic wall, a Mach number of M1 = 2.5, and a Reynolds number based on momentum thickness of Re = 1720 are considered. Simulations are conducted for boundary-layer flows over a clean surface and symmetric V- groove riblets with nominal spacings of 20 and 40 wall units. The DNS results confirm the few existing experimental observations and show that a drag reduction of approximately 7% is achieved for riblets with proper spacing. The influence of riblets on turbulence statistics is analyzed in detail with an emphasis on identifying the differences, if any, between the drag reduction mechanisms for incompressible and high-speed boundary layers.
Skin-Friction Measurements in a 3-D, Supersonic Shock-Wave/Boundary-Layer Interaction
NASA Technical Reports Server (NTRS)
Wideman, J. K.; Brown, J. L.; Miles, J. B.; Ozcan, O.
1994-01-01
The experimental documentation of a three-dimensional shock-wave/boundary-layer interaction in a nominal Mach 3 cylinder, aligned with the free-stream flow, and 20 deg. half-angle conical flare offset 1.27 cm from the cylinder centerline. Surface oil flow, laser light sheet illumination, and schlieren were used to document the flow topology. The data includes surface-pressure and skin-friction measurements. A laser interferometric skin friction data. Included in the skin-friction data are measurements within separated regions and three-dimensional measurements in highly-swept regions. The skin-friction data will be particularly valuable in turbulence modeling and computational fluid dynamics validation.
Boundary Layer Skin Friction in the Vicinity of Multiple Jets in Crossflow
NASA Astrophysics Data System (ADS)
Peterson, Sean; Plesniak, Michael
2000-11-01
Multiple jets in crossflow are commonly used for gas turbine film cooling and other industrial applications. Various flow structures, such as the pair(s) of counter-rotating vortices, influence the jet trajectory, separation and reattachment phenomena, and ultimately the surface skin friction and heat transfer. This study utilized a single row of five "short" injection hole jets separated in the spanwise direction by three jet diameters, which were injected into a crossflow at a 90-degree inclination. When short holes are used, i.e. L/D = 1 or less, the external flowfield is influenced by the flow within the holes and supply plenum, especially by separation events. A Fringe Imaging Skin Friction (FISF) technique was employed to investigate the effect of velocity ratio (0.5 to 1.0) and plenum flow direction on the skin friction in the boundary layer between and downstream of the injection holes. Interference fringes produced by a thin oil film deposited on the surface were imaged by a digital camera/frame grabber and processed to infer the skin friction distributions. Correlation between the skin friction distributions and other reported flow characteristics, and their relation to film cooling effectiveness, will be discussed.
NASA Technical Reports Server (NTRS)
Richmond, Robert Chafee (Inventor); Schramm, Jr., Harry F. (Inventor); Defalco, Francis G. (Inventor)
2013-01-01
A wear and/or friction reducing additive for a lubricating fluid in which the additive is a combination of a moderately hydrophilic single-phase compound and an anti-wear and/or anti-friction aqueous salt solution. The aqueous salt solution produces a coating on boundary layer surfaces. The lubricating fluid can be an emulsion-free hydrophobic oil, hydraulic fluid, antifreeze, or water. Preferably, the moderately hydrophilic single-phase compound is sulfonated castor oil and the aqueous salt solution additionally contains boric acid and zinc oxide. The emulsions produced by the aqueous salt solutions, the moderately hydrophilic single-phase compounds, or the combination thereof provide targeted boundary layer organizers that significantly enhance the anti-wear and/or anti-friction properties of the base lubricant by decreasing wear and/or friction of sliding and/or rolling surfaces at boundary layers.
NASA Technical Reports Server (NTRS)
Garrison, T. J.; Settles, G. S.; Narayanswami, N.; Knight, D. D.
1994-01-01
Wall shear stress measurements beneath crossing-shock-wave/turbulent boundary-layer interactions have been made for three interactions of different strengths. The interactions are generated by two sharp fins at symetric angles of attack mounted on a flat plate. The shear stress measurements were made for fin angles of 7 and 11 deg at Mach 3 and 15 deg at Mach 3.85. The measurements were made using a laser interferometer skin-friction meter, a device that determines the wall shear by optically measuring the time rate of thinning of an oil film placed on the test model surface. Results of the measurements reveal high skin-friction coefficients in the vicinity of the fin/plate junction and the presence of quasi-two-dimensional flow separation on the interaction center line. Additionally, two Navier-Stokes computations, one using a Baldwin-Lomax turbulence model and one using a k-epsilon model, are compared with the experimental results for the Mach 3.85, 15-deg interaction case. Although the k-epsilon model did a reasonable job of predicting the overall trend in portions of the skin-friction distribution, neither computation fully captured the physics of the near-surface flow in this complex interaction.
NASA Technical Reports Server (NTRS)
Richmond, Robert Chaffee (Inventor); Schramm, Jr., Harry F. (Inventor); Defalco, Francis G. (Inventor)
2015-01-01
Lubrication additives of the current invention require formation of emulsions in base lubricants, created with an aqueous salt solution plus a single-phase compound such that partitioning within the resulting emulsion provides thermodynamically targeted compounds for boundary layer organization thus establishing anti-friction and/or anti-wear. The single-phase compound is termed "boundary layer organizer", abbreviated BLO. These emulsion-contained compounds energetically favor association with tribologic surfaces in accord with the Second Law of Thermodynamics, and will organize boundary layers on those surfaces in ways specific to the chemistry of the salt and BLO additives. In this way friction modifications may be provided by BLOs targeted to boundary layers via emulsions within lubricating fluids, wherein those lubricating fluids may be water-based or oil-based.
NASA Technical Reports Server (NTRS)
Frankl, F.; Voishel, V.
1943-01-01
In the present report an investigation is made on a flat plate in a two-dimensional compressible flow of the effect of compressibility and heating on the turbulent frictional drag coefficient in the boundary layer of an airfoil or wing radiator. The analysis is based on the Prandtl-Karman theory of the turbulent boundary later and the Stodola-Crocco, theorem on the linear relation between the total energy of the flow and its velocity. Formulas are obtained for the velocity distribution and the frictional drag law in a turbulent boundary later with the compressibility effect and heat transfer taken into account. It is found that with increase of compressibility and temperature at full retardation of the flow (the temperature when the velocity of the flow at a given point is reduced to zero in case of an adiabatic process in the gas) at a constant R (sub x), the frictional drag coefficient C (sub f) decreased, both of these factors acting in the same sense.
NASA Technical Reports Server (NTRS)
Howard, F. G.; Strokowski, A. J.
1978-01-01
Experiments were conducted to determine the reduction in surface skin friction and the effectiveness of surface cooling downstream of one to four successive flush slots injecting cold air at an angle of 10 deg into a turbulent Mach 6 boundary layer. Data were obtained by direct measurement of surface shear and equilibrium temperatures, respectively. Increasing the number of slots decreased the skin friction, but the incremental improvement in skin-friction reduction decreased as the number of slots was increased. Cooling effectiveness was found to improve, for a given total mass injection, as the number of slots was increased from one to four. Comparison with previously reported step-slot data, however, indicated that step slots with tangential injection are more effective for both reducing skin friction and cooling than the present flush-slot configuration. Finite-difference predictions are in reasonable agreement with skin-friction data and with boundary-layer profile data.
NASA Technical Reports Server (NTRS)
Garrison, T. J.; Settles, G. S.
1993-01-01
Wall shear stress measurements beneath crossingshock wave/turbulent boundary-layer interactions have been made for three interactions of different strengths. The interactions are generated by two sharp fins at symmetric angles of attack mounted on a flat plate. The shear stress measurements were made for fin angles of 7 and 11 degrees at Mach 3 and 15 degrees at Mach 4. The measurements were made using a Laser Interferometer Skin Friction (LISF) meter; a device which determines the wail shear by optically measuring the time rate of thinning of an oil film placed on the test model surface. Results of the measurements reveal high skin friction coefficients in the vicinity of the fin/plate junction and the presence of quasi-two-dimensional flow separation on the interaction centerline. Additionally, two Navier-Stokes computations, one using a Baldwin-Lomax turbulence model and one using a k- model, are compared to the experimental results for the Mach 4, 15 degree interaction case. While the k- model did a reasonable job of predicting the overall trend in portions of the skin friction distribution, neither computation fully captured the physics of the near surface flow in this complex interaction.
Boundary-layer transition and global skin friction measurement with an oil-fringe imaging technique
NASA Technical Reports Server (NTRS)
Monson, Daryl J.; Mateer, George G.; Menter, Florian R.
1993-01-01
A new oil-fringe imaging system skin friction (FISF) technique to measure skin friction on wind tunnel models is presented. In the method used to demonstrate the technique, lines of oil are applied on surfaces that connect the intended sets of measurement points, and then a wind tunnel is run so that the oil thins and forms interference fringes that are spaced in proportion to local skin friction. After a run the fringe spacings are imaged with a CCD-array digital camera and measured on a computer. Skin friction and transition measurements on a two-dimensional wing are presented and compared with computational predictions.
NASA Astrophysics Data System (ADS)
Aljallis, Elias; Sarshar, Mohammad Amin; Datla, Raju; Sikka, Vinod; Jones, Andrew; Choi, Chang-Hwan
2013-02-01
In this paper, we report the measurement of skin friction drag on superhydrophobic-coated flat plates in high Reynolds (Re) number boundary layer flows, using a high-speed towing tank system. Aluminum flat plates with a large area (4 feet × 2 feet, 3/8 in. thick) and sharpened leading/trailing edges (1 in. long) were prepared as a boundary layer flow model. Spray coating of hydrophobic nanoparticles was applied to make two different types of superhydrophobic coatings: one with low contact angle and high contact angle hysteresis, and the other with high contact angle and low contact angle hysteresis. Skin friction drag of the superhydrophobic plates was measured in the flow speed up to 30 ft/s to cover transition and turbulent flow regimes (105 < ReL < 107), and was compared to that of an uncoated bare aluminum plate. A significant drag reduction was observed on the superhydrophobic plate with high contact angle and low contact angle hysteresis up to ˜30% in transition regime (105 < ReL < 106), which is attributed to the shear-reducing air layer entrapped on the superhydrophobic surface. However, in fully turbulence regime (106 < ReL < 107), an increase of drag was observed, which is ascribed to the morphology of the surface air layer and its depletion by high shear flow. The texture of superhydrophobic coatings led to form a rugged morphology of the entrapped air layer, which would behave like microscale roughness to the liquid flow and offset the drag-reducing effects in the turbulent flow. Moreover, when the superhydrophobic coating became wet due to the removal of air by high shear at the boundary, it would amplify the surface roughness of solid wall and increase the drag in the turbulent flow. The results illustrate that drag reduction is not solely dependent on the superhydrophobicity of a surface (e.g., contact angle and air fraction), but the morphology and stability of the surface air layer are also critical for the effective drag reduction using superhydrophobic surfaces, especially in high Re number turbulent flow regimes.
NASA Astrophysics Data System (ADS)
Hua, Huichun; Su, Xiaohong
2015-05-01
This paper is devoted to the analysis of the unsteady magnetohydrodynamic (MHD) boundary layer flow and heat transfer on a permeable stretching sheet embedded in a moving incompressible viscous fluid. The combined effects of Ohmic heating, thermal radiation, frictional heating and internal heat absorption/generation are taken into account. The governing time dependent nonlinear boundary layer equations are converted into a systemof nonlinear ordinary differential equations by similarity transformations. Some analytical results that give the characteristics of the velocity field in the boundary layer are presented and proved. The governing equations are then solved by using the shooting technique along with the fourth order Runge-Kutta method. The analytical properties proved in this paper are consistent with those obtained by the numerical method. Furthermore, the effects of the various parameters on the velocity and temperature fields are presented graphically and discussed in detail.
Wahidi, R.; Chakroun, W.; Al-Fahed, S.
2005-11-01
Skin-friction coefficient of turbulent boundary layer flow over a smooth-wall with transverse square grooves was investigated. Four grooved-wall cases were investigated. The four grooved-wall configurations are single 5mm square grooved-wall, and 5mm square grooves spaced 10, 20 and 40 element widths apart in the streamwise direction. Laser-Doppler Anemometer (LDA) was used for the mean velocity and turbulence intensity measurements. The skin-friction coefficient determined from the velocity profile increases sharply just downstream of the groove. This overshoot is followed by an undershoot and then relaxation back to the smooth-wall value. This behavior is observed in most grooved-wall cases. Integrating the skin-friction coefficient in the streamwise direction indicates that there is an increase in the overall drag in all the grooved-wall cases.
NASA Technical Reports Server (NTRS)
Barr, P. K.
1980-01-01
An analysis is presented of the reliability of various generally accepted empirical expressions for the prediction of the skin-friction coefficient C/sub f/ of turbulent boundary layers at low Reynolds numbers in zero-pressure-gradient flows on a smooth flat plate. The skin-friction coefficients predicted from these expressions were compared to the skin-friction coefficients of experimental profiles that were determined from a graphical method formulated from the law of the wall. These expressions are found to predict values that are consistently different than those obtained from the graphical method over the range 600 Re/sub theta 2000. A curve-fitted empirical relationship was developed from the present data and yields a better estimated value of C/sub f/ in this range. The data, covering the range 200 Re/sub theta 7000, provide insight into the nature of transitional flows. They show that fully developed turbulent boundary layers occur at Reynolds numbers Re/sub theta/ down to 425. Below this level there appears to be a well-ordered evolutionary process from the laminar to the turbulent profiles. These profiles clearly display the development of the turbulent core region and the shrinking of the laminar sublayer with increasing values of Re/sub theta/.
NASA Astrophysics Data System (ADS)
Klein, E. C.; Flesch, L. M.; Holt, W. E.
2009-12-01
We present dynamic solutions for the seismogenic layer of the India-Eurasia collision zone. We exploit a forward dynamic modeling approach, where body force distributions, inferred lateral variations in linear effective viscosity, and known far-field velocity boundary conditions are defined. Body forces are the differences in gravity potential energy per unit area (GPE), which are calculated as the depth integral of vertical stress from the surface down to a common depth reference (20 km below sea level). In our models of the seismogenic layer, depth-integrated viscosities are proportional to the assumed long-term friction on faults and inversely proportional to the long-term strain rates. Lateral variations in linear effective viscosity of the modeled layer span over 5 orders of magnitude. The velocity boundary conditions are defined using long-term plate motion estimates. Self-consistent dynamic strain rate tensor solutions to the force-balance equations were solved and tested for best-fit match with kinematic strain rate and velocity fields of central and east Asia defined by a large set of Quaternary fault observations. We investigate models using a range of long-term fault friction coefficients from 0.02 - 1.0 under hydrostatic pore pressure conditions. Assessment of fitness of the dynamic solutions to deformation indicators is evaluated using four measures. The forward dynamic strain rate tensor styles are scored by misfit to the kinematic strain rate tensor styles inferred from Kostrov summation of Quaternary fault observations. The ratio of dynamic strain rates to kinematic model strain rates are compared. Dynamic model velocity fields are scored via reduced chi-square misfit with the long-term kinematic model velocity field defined by Quaternary fault observations. Dynamic model velocity fields are scored via reduced chi-square misfit with GPS velocity observations. Preliminary results indicate that models defined with low fault friction (0.05 < ? < 0.40) achieve a better fit to Quaternary deformation indicators than models with models with high fault friction coefficients. Such models indicate that deviatoric stresses associated with internal crustal buoyancies dominate over deviatoric stresses associated with velocity boundary conditions within the Tibetan Plateau. Conversely, deviatoric stresses associated with boundary conditions dominate over deviatoric stresses associated with internal crustal buoyancies within Tarim Basin and the Tien Shan.
Heat Transfer Through Turbulent Friction Layers
NASA Technical Reports Server (NTRS)
Reichardt, H.
1943-01-01
The "general Prandtl number" Pr(exp 1) - A(sub q)/A Pr, aside from the Reynolds number determines the ratio of turbulent to molecular heat transfer, and the temperature distribution in turbulent friction layers. A(sub q) = exchange coefficient for heat; A = exchange coefficient for momentum transfer. A formula is derived from the equation defining the general Prandtl number which describes the temperature as a function of the velocity. For fully developed thermal boundary layers all questions relating to heat transfer to and from incompressible fluids can be treated in a simple manner if the ratio of the turbulent shear stress to the total stress T(sub t)/T in the layers near the wall is known, and if the A(sub q)/A can be regarded as independent of the distance from the wall. The velocity distribution across a flat smooth channel and deep into the laminar sublayer was measured for isothermal flow to establish the shear stress ratio T(sub t)/T and to extend the universal wall friction law. The values of T(sub t)/T which resulted from these measurements can be approximately represented by a linear function of the velocity in the laminar-turbulent transition zone. The effect of the temperature relationship of the material values on the flow near the wall is briefly analyzed. It was found that the velocity at the laminar boundary (in contrast to the thickness of the laminar layer) is approximately independent of the temperature distribution. The temperature gradient at the wall and the distribution of temperature and heat flow in the turbulent friction layers were calculated on the basis of the data under two equations. The derived formulas and the figures reveal the effects of the Prandtl number, the Reynolds number, the exchange quantities and the temperature relationship of the material values.
The Atmospheric Boundary Layer
ERIC Educational Resources Information Center
Tennekes, Hendrik
1974-01-01
Discusses some important parameters of the boundary layer and effects of turbulence on the circulation and energy dissipation of the atmosphere. Indicates that boundary-layer research plays an important role in long-term forecasting and the study of air-pollution meteorology. (CC)
Boundary Layer Theory. Part 1; Laminar Flows
NASA Technical Reports Server (NTRS)
Schlichting, H.
1949-01-01
The purpose of this presentation is to give you a survey of a field of aerodynamics which has for a number of years been attracting an ever growing interest. The subject is the theory of flows with friction, and, within that field, particularly the theory of friction layers, or boundary layers. As you know, a great many considerations of aerodynamics are based on the so-called ideal fluid, that is, the frictionless incompressible fluid. By neglect of compressibility and friction the extensive mathematical theory of the ideal fluid (potential theory) has been made possible.
NASA Astrophysics Data System (ADS)
Geredeli, Pelin G.; Lasiecka, Irena; Webster, Justin T.
In this paper dynamic von Karman equations with localized interior damping supported in a boundary collar are considered. Hadamard well-posedness for von Karman plates with various types of nonlinear damping are well known, and the long-time behavior of nonlinear plates has been a topic of recent interest. Since the von Karman plate system is of "hyperbolic type" with critical nonlinearity (noncompact with respect to the phase space), this latter topic is particularly challenging in the case of geometrically constrained, nonlinear damping. In this paper we first show the existence of a compact global attractor for finite energy solutions, and we then prove that the attractor is both smooth and finite dimensional. Thus, the hyperbolic-like flow is stabilized asymptotically to a smooth and finite dimensional set.
Geredeli, Pelin G; Webster, Justin T
2012-01-01
In this paper dynamic von Karman equations with localized interior damping supported in a boundary collar are considered. Hadamard well-posedness for von Karman plates with various types of nonlinear damping are well-known, and the long-time behavior of nonlinear plates has been a topic of recent interest. Since the von Karman plate system is of "hyperbolic type" with critical nonlinearity (noncompact with respect to the phase space), this latter topic is particularly challenging in the case of geometrically constrained and nonlinear damping. In this paper we first show the existence of a compact global attractor for finite-energy solutions, and we then prove that the attractor is both smooth and finite dimensional. Thus, the hyperbolic-like flow is stabilized asymptotically to a smooth and finite dimensional set. Key terms: dynamical systems, long-time behavior, global attractors, nonlinear plates, nonlinear damping, localized damping
Investigation of lubricants under boundary friction
NASA Technical Reports Server (NTRS)
Heidebroek, E; Pietsch, E
1942-01-01
Numerous observations of such lubrication processes within range of boundary friction on journal bearings and gear tooth profiles have strengthened the supposition that it should be possible to study the attendant phenomena with engineering methods and equipment. These considerations formed the basis of the present studies, which have led to the discovery of relations governing the suitability of bearing surfaces and the concept of "lubricating quality."
Boundary layer simulator improvement
NASA Technical Reports Server (NTRS)
Praharaj, Sarat C.; Schmitz, Craig P.; Nouri, Joseph A.
1989-01-01
Boundary Layer Integral Matrix Procedure (BLIMPJ) has been identified by the propulsion community as the rigorous boundary layer program in connection with the existing JANNAF reference programs. The improvements made to BLIMPJ and described herein have potential applications in the design of the future Orbit Transfer Vehicle engines. The turbulence model is validated to include the effects of wall roughness and a way is devised to treat multiple smooth-rough surfaces. A prediction of relaminarization regions is examined as is the combined effects of wall cooling and surface roughness on relaminarization. A turbulence model to represent the effects of constant condensed phase loading is given. A procedure is described for thrust decrement calculation in thick boundary layers by coupling the T-D Kinetics Program and BLIMPJ and a way is provided for thrust loss optimization. Potential experimental studies in rocket nozzles are identified along with the required instrumentation to provide accurate measurements in support of the presented new analytical models.
NASA Technical Reports Server (NTRS)
Adamson, T. C., Jr.; Liou, M. S.; Messiter, A. F.
1980-01-01
An asymptotic description is derived for the interaction between a shock wave and a turbulent boundary layer in transonic flow, for a particular limiting case. The dimensionless difference between the external flow velocity and critical sound speed is taken to be much smaller than one, but large in comparison with the dimensionless friction velocity. The basic results are derived for a flat plate, and corrections for longitudinal wall curvature and for flow in a circular pipe are also shown. Solutions are given for the wall pressure distribution and the shape of the shock wave. Solutions for the wall shear stress are obtained, and a criterion for incipient separation is derived. Simplified solutions for both the wall pressure and skin friction distributions in the interaction region are given. These results are presented in a form suitable for use in computer programs.
Boundary layer simulator improvement
NASA Technical Reports Server (NTRS)
Praharaj, S. C.; Schmitz, C.; Frost, C.; Engel, C. D.; Fuller, C. E.; Bender, R. L.; Pond, J.
1984-01-01
High chamber pressure expander cycles proposed for orbit transfer vehicles depend primarily on the heat energy transmitted from the combustion products through the thrust wall chamber wall. The heat transfer to the nozzle wall is affected by such variables as wall roughness, relamarization, and the presence of particles in the flow. Motor performance loss for these nozzles with thick boundary layers is inaccurate using the existing procedure coded BLIMPJ. Modifications and innovations to the code are examined. Updated routines are listed.
Diverging boundary layers with zero streamwise pressure gradient
NASA Technical Reports Server (NTRS)
Pauley, Wayne R.; Eaton, John K.; Cutler, Andrew D.
1989-01-01
The effects of spanwise divergence on the boundary layer forming between a pair of embedded streamwise vortices with the common flow between them directed toward the wall was studied. Measurements indicate that divergence controls the rate of development of the boundary layer and that large divergence significantly retards boundary layer growth and enhances skin friction. For strongly diverging boundary layers, divergence accounts for nearly all of the local skin friction. Even with divergence, however, the local similarity relationships for two-dimensional boundary layers are satisfactory. Although divergence modifies the mean development of the boundary layer, it does not significantly modify the turbulence structure. In the present experiments with a zero streamwise pressure gradient, it was found that spanwise divergence dit not significantly affect the Reynolds stress and the turbulent triple product distributions.
Boundary layer transition studies
NASA Technical Reports Server (NTRS)
Watmuff, Jonathan H.
1995-01-01
A small-scale wind tunnel previously used for turbulent boundary layer experiments was modified for two sets of boundary layer transition studies. The first study concerns a laminar separation/turbulent reattachment. The pressure gradient and unit Reynolds number are the same as the fully turbulent flow of Spalart and Watmuff. Without the trip wire, a laminar layer asymptotes to a Falkner & Skan similarity solution in the FPG. Application of the APG causes the layer to separate and a highly turbulent and approximately 2D mean flow reattachment occurs downstream. In an effort to gain some physical insight into the flow processes a small impulsive disturbance was introduced at the C(sub p) minimum. The facility is totally automated and phase-averaged data are measured on a point-by-point basis using unprecedently large grids. The evolution of the disturbance has been tracked all the way into the reattachment region and beyond into the fully turbulent boundary layer. At first, the amplitude decays exponentially with streamwise distance in the APG region, where the layer remains attached, i.e. the layer is viscously stable. After separation, the rate of decay slows, and a point of minimum amplitude is reached where the contours of the wave packet exhibit dispersive characteristics. From this point, exponential growth of the amplitude of the disturbance is observed in the detached shear layer, i.e. the dominant instability mechanism is inviscid. A group of large-scale 3D vortex loops emerges in the vicinity of the reattachment. Remarkably, the second loop retains its identify far downstream in the turbulent boundary layer. The results provide a level of detail usually associated with CFD. Substantial modifications were made to the facility for the second study concerning disturbances generated by Suction Holes for laminar flow Control (LFC). The test section incorporates suction through interchangeable porous test surfaces. Detailed studies have been made using isolated holes in the impervious test plate that used to establish the Blasius base flow. The suction is perturbed harmonically and data are averaged on the basis of the phase of the disturbance, for conditions corresponding to strong suction and without suction. The technique was enhanced by using up to nine multiple probes to reduce the experimental run-time. In both cases, 3D contour surfaces in the vicinity of the hole show highly 3D TS waves which fan out in the spanwise direction forming bow-shaped waves downstream. The case without suction has proved useful for evaluating calculation methods. With suction, the perturbations on the centerline are much stronger and decay less rapidly, while the TS waves in the far field are similar to the case without suction. Downstream, the contour surfaces of the TS waves develop spanwise irregularities which eventually form into clumps. The spanwise clumping is evidence of a secondary instability that could be associated with suction vortices. Designers of porous surfaces use Goldsmith's Criterion to minimize cross-stream interactions. It is shown that partial TS wave cancellation is possible, depending on the hole spacing, disturbance frequency and free-stream velocity. New high-performance Constant Temperature Hot-Wire Anemometers were designed and built, based on a linear system theory analysis that can be extended to arbitrary order. The motivation was to achieve the highest possible frequency reponse while ensuring overall system stability. The performance is equal to or superior to commercially available instruments at about 10% of the cost. Details, such as fabrication drawings and a parts list, have been published to enable the instrument to be construced by others.
On dynamical friction in a gaseous medium with a boundary
NASA Astrophysics Data System (ADS)
Namouni, Fathi
2011-02-01
Dynamical friction arises from the interaction of a perturber and the gravitational wake it excites in the ambient medium. We study the effects of the presence of a boundary on dynamical friction by studying analytically the interaction of perturber with uniform rectilinear motion in a uniform homogeneous medium with a reflecting planar boundary. Wake reflection at a medium's boundary may occur at the edges of truncated disks perturbed by planetary or stellar companions as well as in numerical simulations of planet-disk interaction with no-outflow boundary conditions. In this paper, we show that the presence of the boundary modifies the behaviour of dynamical friction significantly. We find that perturbers are invariably pushed away from the boundary and reach a terminal subsonic velocity near Mach 0.37 regardless of initial velocity. Dynamical friction may even be reversed for Mach numbers less than 0.37 thereby accelerating instead of decelerating the perturber. Perturbers moving parallel to the boundary feel additional friction orthogonal to the direction of motion that is much stronger than the standard friction along the direction of motion. These results indicate that the common use of the standard Chandrasekhar formula as a short hand estimate of dynamical friction may be inadequate as observed in various numerical simulations.
NASA Astrophysics Data System (ADS)
Costigliola, V.
2010-09-01
It has long been known that specific atmospheric processes, such as weather and longer-term climatic fluctuations, affect human health. The biometeorological literature refers to this relationship as meteorotropism, defined as a change in an organism that is correlated with a change in atmospheric conditions. Plenty of (patho)physiological functions are affected by those conditions - like the respiratory diseases - and currently it is difficult to put any limits for pathologies developed in reply. Nowadays the importance of atmospheric boundary layer and health is increasingly recognised. A number of epidemiologic studies have reported associations between ambient concentrations of air pollution, specifically particulate pollution, and adverse health effects, even at the relatively low concentrations of pollution found. Since 1995 there have been over twenty-one studies from four continents that have explicitly examined the association between ambient air pollutant mixes and daily mortality. Statistically significant and positive associations have been reported in data from various locations around the world, all with varying air pollutant concentrations, weather conditions, population characteristics and public health policies. Particular role has been given to atmospheric boundary layer processes, the impact of which for specific patient-cohort is, however, not well understood till now. Assessing and monitoring air quality are thus fundamental to improve Europe's welfare. One of current projects run by the "European Medical Association" - PASODOBLE will develop and demonstrate user-driven downstream information services for the regional and local air quality sectors by combining space-based and in-situ data with models in 4 thematic service lines: - Health community support for hospitals, pharmacies, doctors and people at risk - Public information for regions, cities, tourist industry and sporting event organizers - Compliance monitoring support on particulate matter for regional environmental agencies - Local forecast model evaluation support for local authorities and city bodies. Giving value to the above listed aspects, PASODOBLE objectives are following: - Evolution of existing and development of new sustainable air quality services for Europe on regional and local scales - Development and testing of a generic service framework for coordinated input data acquisition and customizable user-friendly access to services - Utilization of multiple cycles of delivery, use and assessment versus requirements and market planning in cooperation with users - Promotion and harmonisation of best practise tools for air quality communities. Further European multidisciplinary projects should be created to better understand the most prevalent atmospheric factors to be impacted in predictive, preventive and personalised medicine considered as the central concept for future medicine.
Boundary-layer moisture regimes
NASA Technical Reports Server (NTRS)
Mahrt, L.
1991-01-01
Boundary-layer moisture fluctuations are estimated by analyzing HAPEX and FIFE data collected on 52 aircraft flight legs. Moisture fluctuations were given considerable attention in the HAPEX flights, which were 120 km long, and flew 150 m over one area of homogeneous terrain. The repetitions permit statistical consideration of motion characteristics on horizontal scales. Two prototypical boundary layer regimes are discovered: the entrainment-drying boundary layer, and the moistening boundary layer. The latter demonstrates positive moisture skewness close to the surface related to high surface evaporation. The former is characterized by boundary-layer instability, weak surface evaporation, and drier air aloft, leading to unexpected negative moisture skewness. It is noted that 10 km moisture variations with horizontal gradients are often found in narrow zones of horizontal convergence, called mesoscale moisture fronts. A negative moisture to temperature correlation, due to surface energy budget inhomogeneity, is shown to incur large mesoscale variations of relative humidity.
Novel parameterisations in the boundary layer
Plant, Robert
in the boundary layer Â p.3/1 #12;(Carter 2011) Novel parameterisations in the boundary layer Â p.4/1 #12;Cascade/1 #12;Cascade: rainfall pdf (Holloway 2011) Novel parameterisations in the boundary layer Â p.6/1 #12 with the boundary layer: perspectives from ensemble forecasting Novel parameterisations in the boundary layer Â p.1
Experimental measurements of unsteady turbulent boundary layers near separation
NASA Technical Reports Server (NTRS)
Simpson, R. L.
1982-01-01
Investigations conducted to document the behavior of turbulent boundary layers on flat surfaces that separate due to adverse pressure gradients are reported. Laser and hot wire anemometers measured turbulence and flow structure of a steady free stream separating turbulent boundary layer produced on the flow of a wind tunnel section. The effects of sinusoidal and unsteadiness of the free stream velocity on this separating turbulent boundary layer at a reduced frequency were determined. A friction gage and a thermal tuft were developed and used to measure the surface skin friction and the near wall fraction of time the flow moves downstream for several cases. Abstracts are provided of several articles which discuss the effects of the periodic free stream unsteadiness on the structure or separating turbulent boundary layers.
Vortex boundary-layer interactions
NASA Technical Reports Server (NTRS)
Bradshaw, P.
1985-01-01
The interaction of a turbulent boundary layer on a flat plate with a strong artificially generated longitudinal vortex which may or may not actually enter the boundary layer is studied. The vortices are generated by a delta wing suspended ahead of the test plate, so that the configuration is approximately that of a close coupled carnard with zero main-wing sweep and an invisible body. All necessary configuration and parametric checks are completed, and data acquisition and analysis on the first configuration chosen for detailed study, in which the vortex starts to merge with the boundary layer a short distance downstream of the leading edge of the test plate, are nearly complete.
Approximation theory for boundary layer suction through individual slits
NASA Technical Reports Server (NTRS)
Walz, A.
1979-01-01
The basic concepts of influencing boundary layers are summarized, especially the prevention of flow detachment and the reduction of frictional resistance. A mathematical analysis of suction through a slit is presented with two parameters, for thickness and for shape of the boundary layer, being introduced to specify the flow's velocity profile behind the slit. An approximation of the shape parameter produces a useful formula, which can be used to determine the most favorable position of the slit. An aerodynamic example is given.
Boundary Layer Control on Airfoils.
ERIC Educational Resources Information Center
Gerhab, George; Eastlake, Charles
1991-01-01
A phenomena, boundary layer control (BLC), produced when visualizing the fluidlike flow of air is described. The use of BLC in modifying aerodynamic characteristics of airfoils, race cars, and boats is discussed. (KR)
The wave-induced boundary layer under long internal waves
NASA Astrophysics Data System (ADS)
Lin, Yuncheng; Redekopp, Larry G.
2011-08-01
The boundary layer formed under the footprint of an internal solitary wave is studied by numerical simulation for waves of depression in a two-layer model of the density stratification. The inviscid outer flow, in the perspective of boundary-layer theory, is based on an exact solution for the long wave-phase speed, yielding a family of fully nonlinear solitary wave solutions of the extended Korteweg-de Vries equation. The wave-induced boundary layer corresponding to this outer flow is then studied by means of simulation employing the Reynolds-averaged Navier-Stokes (RANS) formulation coupled with a turbulence closure model validated for wall-bounded flows. Boundary-layer characteristics are computed for an extensive range of environmental conditions and wave amplitudes. Boundary-layer transition, identified by monitoring the eddy viscosity, is correlated in terms of a boundary-layer Reynolds number. The frictional drag is evaluated for laminar, transitional, and turbulent cases, and correlations are presented for the friction coefficient plus relevant measures of the boundary-layer thickness.
Frictional anisotropy under boundary lubrication: effect of surface texture.
Ajayi, O. O.; Erck, R. A.; Lorenzo-Martin, C.; Fenske, G. R.; Energy Systems
2009-06-15
The friction coefficient was measured under boundary lubrication with a ball-on-flat contact configuration in unidirectional sliding. The ball was smooth and hardened 52100 steel. Discs were made from case-carburized and hardened 4620, annealed 1080, and 1018 steels with directionally ground surfaces. A synthetic lubricant of stock polyalphaolefin was used for testing. During testing with each material, a frictional spike was observed whenever the ball slid parallel to the grinding ridge on the disc surface. The average friction coefficient for all tests was about 0.1, which is typical for the boundary lubrication regime. The magnitude of the frictional spikes, which reached as high as a friction coefficient of 0.25, and their persistence depended on the hardness of the disc surface. On the basis of elastohydrodynamic theory, coupled with the observation of severe plastic deformation on the ridges parallel to the sliding direction, the frictional spike could be due to localized plastic deformation on the disc surface at locations of minimal thickness for the lubricant fluid film. This hypothesis was further supported by lack of frictional spikes in tests using discs coated with a thin film of diamond-like carbon, in which plastic deformation is minimal.
Physics of magnetospheric boundary layers
NASA Technical Reports Server (NTRS)
Cairns, Iver H.
1995-01-01
This final report was concerned with the ideas that: (1) magnetospheric boundary layers link disparate regions of the magnetosphere-solar wind system together; and (2) global behavior of the magnetosphere can be understood only by understanding its internal linking mechanisms and those with the solar wind. The research project involved simultaneous research on the global-, meso-, and micro-scale physics of the magnetosphere and its boundary layers, which included the bow shock, the magnetosheath, the plasma sheet boundary layer, and the ionosphere. Analytic, numerical, and simulation projects were performed on these subjects, as well as comparisons of theoretical results with observational data. Other related activity included in the research included: (1) prediction of geomagnetic activity; (2) global MHD (magnetohydrodynamic) simulations; (3) Alfven resonance heating; and (4) Critical Ionization Velocity (CIV) effect. In the appendixes are list of personnel involved, list of papers published; and reprints or photocopies of papers produced for this report.
from Classical Boundary Layer to Interacting Boundary Layer
Lagrée, Pierre-Yves
Pierre-Yves Institut Jean le Rond d'Alembert CNRS UPMC Paris 06 Numerical simulation and fluid mechanics simple set of equations: Integral equations (1D) · cross comparisons in some cases of NS/ RNSP/ Integral /Viscous Inviscid Interactions Le Balleur 78, Carter 79, Cebeci 70s Veldman 81 - Boundary layer Asymptotics
Nonparallel stability of boundary layers
NASA Technical Reports Server (NTRS)
Nayfeh, Ali H.
1987-01-01
The asymptotic formulations of the nonparallel linear stability of incompressible growing boundary layers are critically reviewed. These formulations can be divided into two approaches. The first approach combines a numerical method with either the method of multiple scales, or the method of averaging, of the Wentzel-Kramers-Brillouin (WKB) approximation; all these methods yield the same result. The second approach combined a multi-structure theory with the method of multiple scales. The first approach yields results that are in excellent agreement with all available experimental data, including the growth rates as well as the neutral stability curve. The derivation of the linear stability of the incompressible growing boundary layers is explained.
Steady-state wear and friction in boundary lubrication studies
NASA Technical Reports Server (NTRS)
Loomis, W. R.; Jones, W. R., Jr.
1980-01-01
A friction and wear study was made at 20 C to obtain improved reproducibility and reliability in boundary lubrication testing. Ester-base and C-ether-base fluids were used to lubricate a pure iron rider in sliding contact with a rotating M-50 steel disk in a friction and wear apparatus. Conditions included loads of 1/2 and 1 kg and sliding velocities of 3.6 to 18.2 m/min in a dry air atmosphere and stepwise time intervals from 1 to 250 min for wear measurements. The wear rate results were compared with those from previous studies where a single 25 min test period was used. Satisfactory test conditions for studying friction and wear in boundary lubrication for this apparatus were found to be 1 kg load; sliding velocities of 7.1 to 9.1 m/min (50 rpm disk speed); and use of a time stepwise test procedure. Highly reproducible steady-state wear rates and steady-state friction coefficients were determined under boundary conditions. Wear rates and coefficients of friction were constant following initially high values during run-in periods.
METEOROLOGY 130 Boundary Layer Meteorology
Clements, Craig
on sounding analyses with data. Other specialized topics will be covered including similarity theory, time) Measuring the Boundary Layer · Balloons · Radars · Sodars · Towers (micrometeorology) · Measuring Turbulence · Sonic anemometry · Radiometers 6) Sounding Profile Analysis · Skew-t diagrams · Other profiles 7) Basic
Physics of magnetospheric boundary layers
NASA Technical Reports Server (NTRS)
Cairns, I. H.
1993-01-01
The central ideas of this grant are that the magnetospheric boundary layers link disparate regions of the magnetosphere together, and the global behavior of the magnetosphere can be understood only by understanding the linking mechanisms. Accordingly the present grant includes simultaneous research on the global, meso-, and micro-scale physics of the magnetosphere and its boundary layers. These boundary layers include the bow shock, magnetosheath, the plasma sheet boundary layer, and the ionosphere. Analytic, numerical and simulation projects have been performed on these subjects, as well as comparison of theoretical results with observational data. Very good progress has been made, with four papers published or in press and two additional papers submitted for publication during the six month period 1 June - 30 November 1993. At least two projects are currently being written up. In addition, members of the group have given papers at scientific meetings. The further structure of this report is as follows: section two contains brief accounts of research completed during the last six months, while section three describes the research projects intended for the grant's final period.
THE MARTIAN ATMOSPHERIC BOUNDARY LAYER
Spiga, Aymeric
the atmosphere and the surface. On Mars, this represents the lowest 10 km of the atmosphere during the daytime and variable region of the atmosphere at virtually all locations on Mars, with addi- tional variabilityTHE MARTIAN ATMOSPHERIC BOUNDARY LAYER A. Petrosyan,1 B. Galperin,2 S. E. Larsen,3 S. R. Lewis,4 A
Fifty Years of Boundary-Layer Theory and Experiment
NASA Technical Reports Server (NTRS)
Dryden, Hugh L.
1955-01-01
The year 1954 marked the 50th anniversary of the Prandtl boundary-layer theory from which we may date the beginning of man's understanding of the dynamics of real fluids. A backward look at this aspect of the history of the last 50 years may be instructive. This paper (1) attempts to compress the events of those 50 years into a few thousand words, to tell in this brief space the interesting story of the development of a new concept, its slow acceptance and growth, its spread from group to group within its country of origin, and its diffusion to other countries of the world. The original brief paper of Prandtl (2) was presented at the Third International Mathematical Congress at Heidelberg in 1904 and published in the following year. It was an attempt to explain the d'Alembert paradox, namely, that the neglect of the small friction of air in the theory resulted in the prediction of zero resistance to motion. Prandtl set himself the task of computing the motion of a fluid of small friction, so small that its effect could be neglected everywhere except where large velocity differences were present or a cumulative effect of friction occurred This led to the concept of boundary layer, or transition layer, near the wall of a body immersed in a fluid stream in which the velocity rises from zero to the free-stream value. It is interesting that Prandtl used the term Grenzsehicht (boundary layer) only once and the term Ubergangsschicht (transition layer) seven times in the brief article. Later writers also used Reibungsschicht (friction layer), but most writers today use Grenzschicht (boundary layer).
Velocities, turbulence, and skin friction in a deep-sea logarithmic layer
NASA Astrophysics Data System (ADS)
Gust, Giselher; Weatherly, Georges L.
1985-05-01
Speed, turbulence, skin friction, and drag measurements made with metal-clad hot wires, epoxy-coated hot films, and Savonius rotors are reported for a deep-sea boundary layer at a water depth of ˜5000 m. They include data from heights z < 30 cm, a region hitherto only investigated in detail by Chriss and Caldwell (1982) for a shelf site. A mean speed logarithmic layer was observed at 3 < z < 200 cm. The difference between the friction velocity u*log determined from the speed profiles and the skin friction u*skin measured by flush-mounted hot films was statistically significant at the 95% level in five out of eight analyzed burst intervals. This result suggests form-drag influence on the vertical mean flow profile. Although identified from the mean speed data as a hydrodynamically rough boundary layer, the turbulence and bottom stress intensities at the deep-sea site were found to be reduced by more than 40% compared to smooth-wall open-channel flow and planetary boundary layers. Applicability of the universal law of the wall has not been confirmed for this deep-sea boundary layer.
Transition in hypersonic boundary layers
NASA Astrophysics Data System (ADS)
Zhang, Chuanhong; Zhu, Yiding; Chen, Xi; Yuan, Huijing; Wu, Jiezhi; Chen, Shiyi; Lee, Cunbiao; Gad-el-Hak, Mohamed
2015-10-01
Transition and turbulence production in a hypersonic boundary layer is investigated in a Mach 6 wind tunnel using Rayleigh-scattering visualization, fast-response pressure measurements, and particle image velocimetry. It is found that the second-mode instability is a key modulator of the transition process. Although the second-mode is primarily an acoustic wave, it causes the formation of high-frequency vortical waves, which triggers a fast transition to turbulence.
Jupiter's deep magnetotail boundary layer
NASA Astrophysics Data System (ADS)
Nicolaou, G.; McComas, D. J.; Bagenal, F.; Elliott, H. A.; Ebert, R. W.
2015-06-01
In 2007 the New Horizons (NH) spacecraft flew by Jupiter for a gravity assist en route to Pluto. After closest approach on day of year (DOY) 58, 2007, NH followed a tailward trajectory that provided a unique opportunity to explore the deep jovian magnetotail and the surrounding magnetosheath. After DOY 132, 16 magnetopause crossings were observed between 1654 and 2429 Jupiter radii (Rj) along the dusk flank tailward of the planet. In some cases the crossings were identified as rapid transitions from the magnetotail to the magnetosheath and vice versa. In other cases a boundary layer was observed just inside the magnetopause. Solar Wind Around Pluto (SWAP) is an instrument on board NH that obtained spectra of low energy ions during the flyby period. We use a forward model including the SWAP instrument response to derive plasma parameters (density, temperature and velocity) which best reproduce the observations. We also vary the plasma parameters in our model in order to fit the observations more accurately on occasions where the measurements exhibit significant variability. We compare the properties of the plasma in the boundary layer with those of the magnetosheath plasma derived in our earlier work. We attempt to estimate the magnetic field in the boundary layer assuming pressure balance between it and the magnetosheath. Finally, we investigate several possible scenarios to assess if magnetopause movement and structure could cause the variations seen in the data.
An approximate analytical solution of the laminar boundary layer equations
NASA Astrophysics Data System (ADS)
Yuan, Yi-Wu
1993-01-01
Using the pressure gradient as the new variable instead of the ordinary longitudinal coordinate x, Liu (1981) transformed the ordinary laminar boundary equations into a new form. On this basis, Liu obtained the frictional stress factor by using the graphical method. In this paper the same variable replacement is used, and an approximate analytical solution of the laminar boundary layer equations is obtained by the series method. Also obtained is a formula for the frictional stress factor. For the case of the main function without the term of the constant, a further simplification is made. The error of the frictional stress factor obtained is still less than 10 percent, compared with that of Liu.
Unsteady turbulent boundary layers in swimming rainbow trout.
Yanase, Kazutaka; Saarenrinne, Pentti
2015-05-01
The boundary layers of rainbow trout, Oncorhynchus mykiss, swimming at 1.02±0.09?L?s(-1) (mean±s.d., N=4), were measured by the particle image velocimetry (PIV) technique at a Reynolds number of 4×10(5). The boundary layer profile showed unsteadiness, oscillating above and beneath the classical logarithmic law of the wall with body motion. Across the entire surface regions that were measured, local Reynolds numbers based on momentum thickness, which is the distance that is perpendicular to the fish surface through which the boundary layer momentum flows at free-stream velocity, were greater than the critical value of 320 for the laminar-to-turbulent transition. The skin friction was dampened on the convex surface while the surface was moving towards a free-stream flow and increased on the concave surface while retreating. These observations contradict the result of a previous study using different species swimming by different methods. Boundary layer compression accompanied by an increase in local skin friction was not observed. Thus, the overall results may not support absolutely the Bone-Lighthill boundary layer thinning hypothesis that the undulatory motions of swimming fish cause a large increase in their friction drag because of the compression of the boundary layer. In some cases, marginal flow separation occurred on the convex surface in the relatively anterior surface region, but the separated flow reattached to the fish surface immediately downstream. Therefore, we believe that a severe impact due to induced drag components (i.e. pressure drag) on the swimming performance, an inevitable consequence of flow separation, was avoided. PMID:25750412
A fast method to solve incompressible boundary layer interaction problems
NASA Astrophysics Data System (ADS)
Veldman, A. E. P.; Dijkstra, D.
1981-06-01
The mutual influence of pressure and displacement thickness is recognized by simultaneously updating both these quantities as the boundary layer is marched. A survey of hierarchical and nonhierarchical solutions is presented. The iteration technique was implemented in a full boundary layer approach and a triple-deck formulation. Results were calculated for the flat plate trailing edge interaction problem, for backward and forward facing steps and for the Carter/Wornom trough. In all cases fast convergence is obtained. Separation, reattachment, dividing streamline and skin friction are found to be virtually identical.
Study of boundary-layer transition using transonic-cone preston tube data
NASA Technical Reports Server (NTRS)
Reed, T. D.; Moretti, P. M.
1980-01-01
The laminar boundary layer on a 10 degree cone in a transonic wind tunnel was studied. The inviscid flow and boundary layer development were simulated by computer programs. The effects of pitch and yaw angles on the boundary layer were examined. Preston-tube data, taken on the boundary-layer-transition cone in the NASA Ames 11 ft transonic wind tunnel, were used to develope a correlation which relates the measurements to theoretical values of laminar skin friction. The recommended correlation is based on a compressible form of the classical law-of-the-wall. The computer codes successfully simulates the laminar boundary layer for near-zero pitch and yaw angles. However, in cases of significant pitch and/or yaw angles, the flow is three dimensional and the boundary layer computer code used here cannot provide a satisfactory model. The skin-friction correlation is thought to be valid for body geometries other than cones.
Role of friction in pattern formation in oscillated granular layers
Sung Joon Moon; J. B. Swift; Harry L. Swinney
2006-08-10
Particles in granular flows are often modeled as frictionless (smooth) inelastic spheres; however, there exist no frictionless grains, just as there are no elastic grains. Our molecular dynamics simulations reveal that friction is essential for realistic modeling of vertically oscillated granular layers: simulations of frictionless particles yield patterns with an onset at a container acceleration about 30% smaller than that observed in experiments and simulations with friction. More importantly, even though square and hexagonal patterns form for a wide range of the oscillation parameters in experiments and in our simulations of frictional inelastic particles, only stripe patterns form in the simulations without friction, even if the inelasticity is increased to obtain as much dissipation as in frictional particles. We also consider the effect of particle friction on the shock wave that forms each time the granular layer strikes the container. While a shock wave still forms for frictionless particles, the height and time dependence of the hydrodynamic fields differ for the cases with and without friction.
Application of algebraic-RNG eddy viscosity model to simulation of transitional boundary layer flow
NASA Technical Reports Server (NTRS)
Yakhot, Alexander; Kedar, Omer; Orszag, Steven A.
1992-01-01
An algebraic eddy-viscosity model is derived from the renormalization group (RNG) theory of turbulence. A new length scale, based on boundary layer characteristics (displacement thickness, shape factor), is proposed. The model was applied to transitional boundary layer flow over a flat plate. Integral characteristics, such as the total skin friction coefficient, and mean velocity profile across the boundary layer, are found to be in good agreement with experimental data.
Nonequilibrium chemistry boundary layer integral matrix procedure
NASA Technical Reports Server (NTRS)
Tong, H.; Buckingham, A. C.; Morse, H. L.
1973-01-01
The development of an analytic procedure for the calculation of nonequilibrium boundary layer flows over surfaces of arbitrary catalycities is described. An existing equilibrium boundary layer integral matrix code was extended to include nonequilibrium chemistry while retaining all of the general boundary condition features built into the original code. For particular application to the pitch-plane of shuttle type vehicles, an approximate procedure was developed to estimate the nonequilibrium and nonisentropic state at the edge of the boundary layer.
Frictional rheology of a confined adsorbed polymer layer.
Cayer-Barrioz, Juliette; Mazuyer, Denis; Tonck, André; Yamaguchi, Elaine
2009-09-15
The sliding dynamics of a confined adsorbed polymer layer is investigated at the nanoscale. A combined mechanical and physical approach is used to model the rheology and structure of the adsorbed layer. The confinement at short distances governs the nanotribological behavior of the polymer layer formed close to the surface. It appears that the Amontons' proportionality between frictional and normal stresses does not hold here: the higher the contact pressure, the lower the friction. Besides, the sliding stress is strongly dependent on the velocity: it increases with the sliding velocity. Using a model based on the kinetics of formation and rupture of adhesive bonds between the two shearing surfaces theoretically accounts for the behavior of this system. This approach allows us to correlate the frictional properties to the molecular organization on the surfaces. PMID:19572533
Large eddy simulation of boundary layer flow under cnoidal waves
NASA Astrophysics Data System (ADS)
Li, Yin-Jun; Chen, Jiang-Bo; Zhou, Ji-Fu; Zhang, Qiang
2015-09-01
Water waves in coastal areas are generally nonlinear, exhibiting asymmetric velocity profiles with different amplitudes of crest and trough. The behaviors of the boundary layer under asymmetric waves are of great significance for sediment transport in natural circumstances. While previous studies have mainly focused on linear or symmetric waves, asymmetric wave-induced flows remain unclear, particularly in the flow regime with high Reynolds numbers. Taking cnoidal wave as a typical example of asymmetric waves, we propose to use an infinite immersed plate oscillating cnoidally in its own plane in quiescent water to simulate asymmetric wave boundary layer. A large eddy simulation approach with Smagorinsky subgrid model is adopted to investigate the flow characteristics of the boundary layer. It is verified that the model well reproduces experimental and theoretical results. Then a series of numerical experiments are carried out to study the boundary layer beneath cnoidal waves from laminar to fully developed turbulent regimes at high Reynolds numbers, larger than ever studied before. Results of velocity profile, wall shear stress, friction coefficient, phase lead between velocity and wall shear stress, and the boundary layer thickness are obtained. The dependencies of these boundary layer properties on the asymmetric degree and Reynolds number are discussed in detail.
Boundary Layer Heights from CALIOP
NASA Astrophysics Data System (ADS)
Kuehn, R.; Ackerman, S. A.; Holz, R.; Roubert, L.
2012-12-01
This work is focused on the development of a planetary boundary layer (PBL) height retrieval algorithm for CALIOP and validation studies. Our current approach uses a wavelet covariance transform analysis technique to find the top of the boundary layer. We use the methodology similar to that found in Davis et. al. 2000, ours has been developed to work with the lower SNR data provided by CALIOP, and is intended to work autonomously. Concurrently developed with the CALIOP algorithm we will show results from a PBL height retrieval algorithm from profiles of potential temperature, these are derived from Aircraft Meteorological DAta Relay (AMDAR) observations. Results from 5 years of collocated AMDAR - CALIOP retrievals near O'Hare airport demonstrate good agreement between the CALIOP - AMDAR retrievals. In addition, because we are able to make daily retrievals from the AMDAR measurements, we are able to observe the seasonal and annual variation in the PBL height at airports that have sufficient instrumented-aircraft traffic. Also, a comparison has been done between the CALIOP retrievals and the NASA Langley airborne High Spectral Resolution Lidar (HSRL) PBL height retrievals acquired during the GoMACCS experiment. Results of this comparison, like the AMDAR comparison are favorable. Our current work also involves the analysis and verification of the CALIOP PBL height retrieval from the 6 year CALIOP global data set. Results from this analysis will also be presented.
Polymer Effects on Heat Transport in Laminar Boundary Layer Flow
Roberto Benzi; Emily S. C. Ching; Vivien W. S. Chu
2011-04-27
We consider a laminar Blasius boundary-layer flow above a slightly heated horizontal plate and study the effect of polymer additives on the heat transport. We show that the action of the polymers can be understood as a space-dependent effective viscosity that first increases from the zero-shear value then decreases exponentially back to the zero-shear value as one moves away from the boundary. We find that with such an effective viscosity, both the horizontal and vertical velocities near the plate are decreased thus leading to an increase in the friction drag and a decrease in the heat transport in the flow.
Microgravity Effects on Plant Boundary Layers
NASA Technical Reports Server (NTRS)
Stutte, Gary; Monje, Oscar
2005-01-01
The goal of these series of experiment was to determine the effects of microgravity conditions on the developmental boundary layers in roots and leaves and to determine the effects of air flow on boundary layer development. It is hypothesized that microgravity induces larger boundary layers around plant organs because of the absence of buoyancy-driven convection. These larger boundary layers may affect normal metabolic function because they may reduce the fluxes of heat and metabolically active gases (e.g., oxygen, water vapor, and carbon dioxide. These experiments are to test whether there is a change in boundary layer associated with microgravity, quantify the change if it exists, and determine influence of air velocity on boundary layer thickness under different gravity conditions.
Magnetohydrodynamic boundary layers in the earth core
NASA Astrophysics Data System (ADS)
Starchenko, S. V.
1993-02-01
The structure of the self-consistent MHD boundary layers surrounding the liquid inner core of the earth is determined. It is shown that this structure is governed by the latitude and the radial component of the large-scale magnetic field at the boundary. From an analysis of the boundary magnetic field it was found that the core-crust boundary layer is significantly thickened in the narrow near-equator zone. Estimates are made of the scale and the characteristic values of the magnetic fields outside and inside the boundary layers.
Turbulent boundary-layer structure of flows over freshwater biofilms
NASA Astrophysics Data System (ADS)
Walker, J. M.; Sargison, J. E.; Henderson, A. D.
2013-12-01
The structure of the turbulent boundary-layer for flows over freshwater biofilms dominated by the diatom Tabellaria flocculosa was investigated. Biofilms were grown on large test plates under flow conditions in an Australian hydropower canal for periods up to 12 months. Velocity-profile measurements were obtained using LDV in a recirculating water tunnel for biofouled, smooth and artificially sandgrain roughened surfaces over a momentum thickness Reynolds number range of 3,000-8,000. Significant increases in skin friction coefficient of up to 160 % were measured over smooth-wall values. The effective roughnesses of the biofilms, k s, were significantly higher than their physical roughness measured using novel photogrammetry techniques and consisted of the physical roughness and a component due to the vibration of the biofilm mat. The biofilms displayed a k-type roughness function, and a logarithmic relationship was found between the roughness function and roughness Reynolds number based on the maximum peak-to-valley height of the biofilm, R t. The structure of the boundary layer adhered to Townsend's wall-similarity hypothesis even though the scale separation between the effective roughness height and the boundary-layer thickness was small. The biofouled velocity-defect profiles collapsed with smooth and sandgrain profiles in the outer region of the boundary layer. The Reynolds stresses and quadrant analysis also collapsed in the outer region of the boundary layer.
Particle motion in atmospheric boundary layers of Mars and Earth
NASA Technical Reports Server (NTRS)
White, B. R.; Iversen, J. D.; Greeley, R.; Pollack, J. B.
1975-01-01
To study the eolian mechanics of saltating particles, both an experimental investigation of the flow field around a model crater in an atmospheric boundary layer wind tunnel and numerical solutions of the two- and three-dimensional equations of motion of a single particle under the influence of a turbulent boundary layer were conducted. Two-dimensional particle motion was calculated for flow near the surfaces of both Earth and Mars. For the case of Earth both a turbulent boundary layer with a viscous sublayer and one without were calculated. For the case of Mars it was only necessary to calculate turbulent boundary layer flow with a laminar sublayer because of the low values of friction Reynolds number; however, it was necessary to include the effects of slip flow on a particle caused by the rarefied Martian atmosphere. In the equations of motion the lift force functions were developed to act on a single particle only in the laminar sublayer or a corresponding small region of high shear near the surface for a fully turbulent boundary layer. The lift force functions were developed from the analytical work by Saffman concerning the lift force acting on a particle in simple shear flow.
Boundary layers of the earth's outer magnetosphere
NASA Technical Reports Server (NTRS)
Eastman, T. E.; Frank, L. A.
1984-01-01
The magnetospheric boundary layer and the plasma-sheet boundary layer are the primary boundary layers of the earth's outer magnetosphere. Recent satellite observations indicate that they provide for more than 50 percent of the plasma and energy transport in the outer magnetosphere although they constitute less than 5 percent by volume. Relative to the energy density in the source regions, plasma in the magnetospheric boundary layer is predominantly deenergized whereas plasma in the plasma-sheet boundary layer has been accelerated. The reconnection hypothesis continues to provide a useful framework for comparing data sampled in the highly dynamic magnetospheric environment. Observations of 'flux transfer events' and other detailed features near the boundaries have been recently interpreted in terms of nonsteady-state reconnection. Alternative hypotheses are also being investigated. More work needs to be done, both in theory and observation, to determine whether reconnection actually occurs in the magnetosphere and, if so, whether it is important for overall magnetospheric dynamics.
The benthic boundary layer under fully-nonlinear internal solitary waves of depression
NASA Astrophysics Data System (ADS)
Lin, Yuncheng; Redekopp, Larry
2010-11-01
Long internal waves are common features on the continental shelf and in lakes, but their dissipation via benthic boundary layer drag is largely unknown, particularly when the wave amplitudes are large and boundary layer corrections based on linear theory are clearly invalid. In general, the wave-induced boundary layer experiences a continuous favorable-to-adverse variation of the pressure gradient, undergoes transition, may reach a strongly turbulent state, and frequently separates near the point of maximum adverse pressure gradient in the lee of the wave. In this study a model for fully-nonlinear solitary waves of depression in a two-layer stratification is employed as the inviscid base state, and a RANS solver with k-? turbulence model is used to compute the stationary boundary layer under the wave. Local friction coefficients and eddy viscosities are computed in the footprint of the wave. Locations of boundary layer separation are computed as well as the integrated frictional drag over the region of attached boundary layer flow. Boundary layer characteristics are presented for a range of environmental conditions, Reynolds numbers, and surface roughness in an attempt to provide a quantitative measure of the frictional drag of long internal waves in realistic, shallow environs.
Shock-like structures in the tropical cyclone boundary layer
NASA Astrophysics Data System (ADS)
Williams, Gabriel J.; Taft, Richard K.; McNoldy, Brian D.; Schubert, Wayne H.
2013-06-01
This paper presents high horizontal resolution solutions of an axisymmetric, constant depth, slab boundary layer model designed to simulate the radial inflow and boundary layer pumping of a hurricane. Shock-like structures of increasing intensity appear for category 1-5 hurricanes. For example, in the category 3 case, the u>(?u/?r>) term in the radial equation of motion produces a shock-like structure in the radial wind, i.e., near the radius of maximum tangential wind the boundary layer radial inflow decreases from approximately 22 m s-1 to zero over a radial distance of a few kilometers. Associated with this large convergence is a spike in the radial distribution of boundary layer pumping, with updrafts larger than 22 m s-1 at a height of 1000 m. Based on these model results, it is argued that observed hurricane updrafts of this magnitude so close to the ocean surface are attributable to the dry dynamics of the frictional boundary layer rather than moist convective dynamics. The shock-like structure in the boundary layer radial wind also has important consequences for the evolution of the tangential wind and the vertical component of vorticity. On the inner side of the shock the tangential wind tendency is essentially zero, while on the outer side of the shock the tangential wind tendency is large due to the large radial inflow there. The result is the development of a U-shaped tangential wind profile and the development of a thin region of large vorticity. In many respects, the model solutions resemble the remarkable structures observed in the boundary layer of Hurricane Hugo (1989).
Atmospheric Boundary Layer (ABL) Spring 2015
Collett Jr., Jeffrey L.
week) ATS 101 Instructor: Richard H. Johnson (ATS 305; Phone: 491-8321; E-mail: johnson@atmos.colostate.edu) Course notes: Atmospheric Boundary Layer Notes (2015) by Richard H. Johnson (available online at http Boundary Layer · Hinze (1959) Turbulence · Koschmieder (1993) B´enard Cells and Taylor Vortices · Kundu
Cyclone separator having boundary layer turbulence control
Krishna, Coimbatore R. (Mt. Sinai, NY); Milau, Julius S. (Port Jefferson, NY)
1985-01-01
A cyclone separator including boundary layer turbulence control that is operable to prevent undue build-up of particulate material at selected critical areas on the separator walls, by selectively varying the fluid pressure at those areas to maintain the momentum of the vortex, thereby preventing particulate material from inducing turbulence in the boundary layer of the vortical fluid flow through the separator.
LDV measurements of turbulent baroclinic boundary layers
Neuwald, P.; Reichenbach, H.; Kuhl, A.L.
1993-07-01
Described here are shock tube experiments of nonsteady, turbulent boundary layers with large density variations. A dense-gas layer was created by injecting Freon through the porous floor of the shock tube. As the shock front propagated along the layer, vorticity was created at the air-Freon interface by an inviscid, baroclinic mechanism. Shadow-schlieren photography was used to visualize the turbulent mixing in this baroclinic boundary layer. Laser-Doppler-Velocimetry (LDV) was used to measure the streamwise velocity histories at 14 heights. After transition, the boundary layer profiles may be approximated by a power-law function u {approximately} u{sup {alpha}} where {alpha} {approx_equal} 3/8. This value lies between the clean flat plate value ({alpha} = 1/7) and the dusty boundary layer value ({alpha} {approx_equal} 0.7), and is controlled by the gas density near the wall.
Computation of the shock-wave boundary layer interaction with flow separation
NASA Technical Reports Server (NTRS)
Ardonceau, P.; Alziary, T.; Aymer, D.
1980-01-01
The boundary layer concept is used to describe the flow near the wall. The external flow is approximated by a pressure displacement relationship (tangent wedge in linearized supersonic flow). The boundary layer equations are solved in finite difference form and the question of the presence and unicity of the solution is considered for the direct problem (assumed pressure) or converse problem (assumed displacement thickness, friction ratio). The coupling algorithm presented implicitly processes the downstream boundary condition necessary to correctly define the interacting boundary layer problem. The algorithm uses a Newton linearization technique to provide a fast convergence.
Syed, Irshad Hussain
1995-01-01
with the help of two grids of 93 and 71 percent porosity respectively. Skin friction was determined from the measured boundary layer profiles. A rake of Preston tubes was used to measure spanwise skin friction distribution on both surfaces. Goertler vortices...
Turbulence structure and polymer drag reduction in adverse pressure gradient boundary layers
NASA Astrophysics Data System (ADS)
Koskie, John E.; Tiederman, William G.
1991-12-01
The ability of some solutions of long chain polymers to greatly reduce the pressure drop in pipes is well documented and commercially applied. In addition, a number of experiments indicate that large reductions of wall friction are possible by injecting polymer into a boundary layer. Therefore, it is reasonable to expect that drag reducing polymers could significantly improve the performance of submersibles when introduced into the boundary layers on the fore and sides of the vessel. However, once polymer is injected at these locations it is unlikely to leave the boundary layer because these polymers have very low mass diffusivities in water and boundary layers continually entrain fluid rather than eject it. As a result, one can expect that drag reducing polymers will be present in the adverse pressure gradient boundary layers on the aft of a vessel whenever the frictional drag on the fore and sides is reduced with polymers. Direct measurements of adverse pressure gradient turbulent boundary layers in which drag reducing polymers are present are not available. However, at fixed speeds, the net drag on a propeller hydrofoil increases while lift decreases when submerged in polymer solution. This apparent increase in form drag suggests a sudden increase in the displacement thickness of the boundary layers which may indicate separation. Therefore, it is necessary to establish whether conditions exist under which turbulent boundary layers of polymer solutions will not separate when they encounter adverse pressure gradients.
NASA Technical Reports Server (NTRS)
Roach, Robert L.; Nelson, Chris; Sakowski, Barbara; Darling, Douglas; Vandewall, Allan G.
1992-01-01
A finite difference boundary layer algorithm was developed to model viscous effects when an inviscid core flow solution is given. This algorithm solved each boundary layer equation separately, then iterated to find a solution. Solving the boundary layer equations sequentially was 2.4 to 4.0 times faster than solving the boundary layer equations simultaneously. This algorithm used a modified Baldwin-Lomax turbulence model, a weighted average of forward and backward differencing of the pressure gradient, and a backward sweep of the pressure. With these modifications, the boundary layer algorithm was able to model flows with and without separation. The number of grid points used in the boundary layer algorithm affected the stability of the algorithm as well as the accuracy of the predictions of friction coefficients and momentum thicknesses. Results of this boundary layer algorithm compared well with experimental observations of friction coefficients and momentum thicknesses. In addition, when used interactively with an inviscid flow algorithm, this boundary layer algorithm corrected for viscous effects to give a good match with experimental observations for pressures in a supersonic inlet.
NASA Technical Reports Server (NTRS)
Roach, Robert L.; Nelson, Chris; Sakowski, Barbara; Darling, Douglas; Van De Wall, Allan G.
1992-01-01
A finite difference boundary layer algorithm was developed to model viscous effects when an inviscid core flow solution is given. This algorithm solved each boundary layer equation separately, then iterated to find a solution. Solving the boundary layer equations sequentially was 2.4 to 4.0 times faster than solving the boundary layer equations simultaneously. This algorithm used a modified Baldwin-Lomax turbulence model, a weighted average of forward and backward differencing of the pressure gradient, and a backward sweep of the pressure. With these modifications, the boundary layer algorithm was able to model flows with and without separation. The number of grid points used in the boundary layer algorithm affected the stability of the algorithm affected the stability of the algorithm as well as the accuracy of the predictions of friction coefficients and momentum thicknesses. Results of this boundary layer algorithm compared well with experimental observations of friction coefficients and momentum thicknesses. In addition, when used interactively with an inviscid flow algorithm, this boundary layer algorithm corrected for viscous effects to give a good match with experimental observations for pressures in a supersonic inlet.
Friction, Frontogenesis, and the Stratification of the Surface Mixed Layer LEIF THOMAS*
Ferrari, Raffaele
Friction, Frontogenesis, and the Stratification of the Surface Mixed Layer LEIF THOMAS* Department restratification resulting from frontogenesis in regions of confluent flow. Frictional forces acting of friction versus frontogenesis in the restratification of the mixed layer and are tested using numerical
Cheskidov, Alexey
, 47.27.E-, 47.27.em, 47.27.nb Keywords: turbulent boundary layer, rough wall, Leray-alpha model to many researchers. For smooth-wall turbulent boundary layers, both direct and indirect techniques have theoretical method to derive a skin-friction correlation for smooth-wall turbulent boundary layers
Propulsion via buoyancy driven boundary layer
Doyle, Brian Patrick
2011-01-01
Heating a sloped surface generates a well-studied boundary layer flow, but the resulting surface forces have never been studied in propulsion applications. We built a triangular wedge to test this effect by mounting a ...
Interactive boundary layers in turbulent flow
NASA Astrophysics Data System (ADS)
Cousteix, Jean; Mauss, Jacques
2007-09-01
An asymptotic analysis of the structure of the flow at high Reynolds number around a streamlined body is presented. The boundary layer is turbulent. This question is studied with the successive complementary expansion method, SCEM. The starting point is to look for a uniformly valid approximation (UVA) of the velocity field, including the boundary layer and the external flow. Thanks to the use of generalized expansions, SCEM leads to the theory of interactive boundary layer, IBL. For many years, IBL model has been used successfully to calculate aerodynamic flows. Here, the IBL model is fully justified with rational mathematical arguments. The construction of a UVA of the velocity profile in the boundary layer is also studied. To cite this article: J. Cousteix, J. Mauss, C. R. Mecanique 335 (2007).
W.ORKING KNOWLENGE BOUNDARY LAYER
Ha, Taekjip
between the ball and the surrounding air. Indeed, the art of pitching is largely the art of manipulating) is faster than on the left side (above at bot- tom), On the faster side, the boundary layer separates
Boundary-layer control for drag reduction
NASA Technical Reports Server (NTRS)
Harvey, William D.
1988-01-01
Although the number of possible applications of boundary-layer control is large, a discussion is given only of those that have received the most attention recently at NASA Langley Research Center to improve airfoil drag characteristics. This research concerns stabilizing the laminar boundary layer through geometric shaping (natural laminar flow, NLF) and active control involving the removal of a portion of the laminar boundary layer (laminar flow control, LFC) either through discrete slots or a perforated surface. At low Reynolds numbers, a combination of shaping and forced transition has been used to achieve the desired run of laminar flow and control of laminar separation. In the design of both natural laminar flow and laminar flow control airfoils and wings, boundary layer stability codes play an important role. A discussion of some recent stability calculations using both incompressible and compressible codes is given.
Boundary layer flow visualization for flight testing
NASA Technical Reports Server (NTRS)
Obara, Clifford J.
1986-01-01
Flow visualization is used extensively in flight testing to determine aerodynamic characteristics such as surface flow direction and boundary layer state. Several visualization techniques are available to the aerodynamicist. Two of the most popular are oil flows and sublimating chemicals. Oil is used to visualize boundary layer transition, shock wave location, regions of separated flow, and surface flow direction. Boundary layer transition can also be visualized with sublimating chemicals. A summary of these two techniques is discussed, and the use of sublimating chemicals is examined in some detail. The different modes of boundary layer transition are characterized by different patterns in the sublimating chemical coating. The discussion includes interpretation of these chemical patterns and the temperature and velocity operating limitations of the chemical substances. Information for selection of appropriate chemicals for a desired set of flight conditions is provided.
Swept shock/boundary layer interaction experiments in support of CFD code validation
NASA Technical Reports Server (NTRS)
Settles, G. S.; Lee, Y.
1990-01-01
Research on the topic of shock wave/turbulent boundary layer interaction was carried out. Skin friction and surface pressure measurements in fin-induced, swept interactions were conducted, and heat transfer measurements in the same flows are planned. The skin friction data for a strong interaction case (Mach 4, fin-angles equal 16 and 20 degrees) were obtained, and their comparison with computational results was published. Surface pressure data for weak-to-strong fin interactions were also obtained.
Boundary-layer stability and airfoil design
NASA Technical Reports Server (NTRS)
Viken, Jeffrey K.
1986-01-01
Several different natural laminar flow (NLF) airfoils have been analyzed for stability of the laminar boundary layer using linear stability codes. The NLF airfoils analyzed come from three different design conditions: incompressible; compressible with no sweep; and compressible with sweep. Some of the design problems are discussed, concentrating on those problems associated with keeping the boundary layer laminar. Also, there is a discussion on how a linear stability analysis was effectively used to improve the design for some of the airfoils.
Solute boundary layer on a rotating crystal
NASA Astrophysics Data System (ADS)
Povinelli, Michelle L.; Korpela, Seppo A.; Chait, Arnon
1994-11-01
A perturbation analysis has been carried out for the solutal boundary layer next to a rotating crystal. Our aim is to extend the classical results of Burton, Prim and Slicher [1] in order to obtain higher order terms in asymptotic expansions for the concentration field and boundary-layer thickness. Expressions for the effective segregation coefficient are directly obtained from the concentration solution in the two limits that correspond to weak and strong rotation.
Hypersonic boundary layer transition and control
NASA Astrophysics Data System (ADS)
Maslov, A. A.; Poplavskaya, T.; Bountin, D. A.
In the present paper an overview of the recent studies of a hypersonic laminar boundary layer and shock layer receptivity and stability are presented. Main attention is paid to investigations of nonlinear wave interaction. New active and passive methods of hypersonic stability control are described too.
Lear jet boundary layer/shear layer laser propagation experiments
NASA Technical Reports Server (NTRS)
Gilbert, K.
1980-01-01
Optical degradations of aircraft turbulent boundary layers with shear layers generated by aerodynamic fences are analyzed. A collimated 2.5 cm diameter helium-neon laser (0.63 microns) traversed the approximate 5 cm thick natural aircraft boundary layer in double pass via a reflective airfoil. In addition, several flights examined shear layer-induced optical degradation. Flight altitudes ranged from 1.5 to 12 km, while Mach numbers were varied from 0.3 to 0.8. Average line spread function (LSF) and Modulation Transfer Function (MTF) data were obtained by averaging a large number of tilt-removed curves. Fourier transforming the resulting average MTF yields an LSF, thus affording a direct comparison of the two optical measurements. Agreement was good for the aerodynamic fence arrangement, but only fair in the case of a turbulent boundary layer. Values of phase variance inferred from the LSF instrument for a single pass through the random flow and corrected for a large aperture ranged from 0.08 to 0.11 waves (lambda = .63 microns) for the boundary layer. Corresponding values for the fence vary from 0.08 to 0.16 waves. Extrapolation of these values to 10.6 microns suggests negligible degradation for a CO2 laser transmitted through a 5 cm thick, subsonic turbulent boundary layer.
Some Basic Aspects of Magnetohydrodynamic Boundary-Layer Flows
NASA Technical Reports Server (NTRS)
Hess, Robert V.
1959-01-01
An appraisal is made of existing solutions of magnetohydrodynamic boundary-layer equations for stagnation flow and flat-plate flow, and some new solutions are given. Since an exact solution of the equations of magnetohydrodynamics requires complicated simultaneous treatment of the equations of fluid flow and of electromagnetism, certain simplifying assumptions are generally introduced. The full implications of these assumptions have not been brought out properly in several recent papers. It is shown in the present report that for the particular law of deformation which the magnetic lines are assumed to follow in these papers a magnet situated inside the missile nose would not be able to take up any drag forces; to do so it would have to be placed in the flow away from the nose. It is also shown that for the assumption that potential flow is maintained outside the boundary layer, the deformation of the magnetic lines is restricted to small values. The literature contains serious disagreements with regard to reductions in heat-transfer rates due to magnetic action at the nose of a missile, and these disagreements are shown to be mainly due to different interpretations of reentry conditions rather than more complicated effects. In the present paper the magnetohydrodynamic boundary-layer equation is also expressed in a simple form that is especially convenient for physical interpretation. This is done by adapting methods to magnetic forces which in the past have been used for forces due to gravitational or centrifugal action. The simplified approach is used to develop some new solutions of boundary-layer flow and to reinterpret certain solutions existing in the literature. An asymptotic boundary-layer solution representing a fixed velocity profile and shear is found. Special emphasis is put on estimating skin friction and heat-transfer rates.
High Speed Boundary Layer Stability and Control
NASA Astrophysics Data System (ADS)
Maslov, A. A.
2011-09-01
In the present paper an overview of the recent studies of a hypersonic laminar boundary layer and shock layer receptivity and stability are presented. Main attention is paid to investigations of nonlinear wave interaction. It is shown that nonlinear interactions of the second mode play significant role in laminar-turbulent transition and intermode interaction is different for solid and porous walls. The paper deals with two different techniques of transition control. The first one, namely, ultrasonically absorptive coating (UAC) is a passive technique which uses porous materials on the wall to suppress growing acoustic disturbances in the boundary layer. The second one is based on wave interference and intermode interaction and uses blowing-suction method to suppress acoustic in the boundary layer.
Dependence of Boundary Layer Mixing On Lateral Boundary Conditions
NASA Astrophysics Data System (ADS)
Straub, D.
Ocean circulation models often show strong mixing in association with lateral bound- ary layers. Such mixing is generally considered to be artifactual rather than real. Fur- thermore, the severity of the problem is boundary condition dependent. For example, an inconsistency between geostrophy and insulating boundary conditions on tempera- ture and salinity cause many modelers to opt for the no slip, rather than slip boundary condtion on the tangential component of momentum. As modellers increasingly move into the eddy revealing regime, biharmonic, rather than harmonic dissipative operators are likely to become more common. Biharmonic operators, however, require specifi- cation of additional boundary conditions. For example, there are several `natural ex- tensions' to each of the slip and no slip conditions. Here, these various possiblities are considered in the context of a simple model. Particular attention is payed to how mixing (and the associated overturning cell) is affected by the choice of boundary condition.
Modelling of unsteady transitional boundary layers
NASA Astrophysics Data System (ADS)
Addison, J. S.; Hodson, H. P.
1991-06-01
In turbomachinery, a considerable proportion of the blade surface area can be covered by transitional boundary layers. This means that accurate prediction of the profile loss and boundary layer behavior in general depends on the accurate modeling of the transitional boundary layers, especially at low Reynolds numbers. This paper presents a model for determining the intermittency resulting from the unsteady transition caused by the passage of wakes over a blade surface. The model is founded on work by Emmons (1951) who showed that the intermittency could be calculated from a knowledge of the behavior of randomly formed turbulent spots. The model is used to calculate the development of the boundary layer on the rotor of a low Reynolds number single-stage turbine. The predictions are compared with experimental results obtained using surface-mounted hot-film anemometers and hot-wire traverses of the rotor mid-span boundary layer at two different rotor-stator gaps. The validity and limitations of the model are discussed.
Boundary Layer Cloudiness Parameterizations Using ARM Observations
Bruce Albrecht
2004-09-15
This study used DOE ARM data and facilities to: (1) study macroscopic properties of continental stratus clouds at SGP and the factors controlling these properties, (2) develop a scientific basis for understanding the processes responsible for the formation of boundary layer clouds using ARM observations in conjunction with simple parametric models and LES, and (3) evaluate cumulus cloud characteristics retrieved from the MMCR operating at TWP-Nauru. In addition we have used high resolution 94 GHz observations of boundary layer clouds and precipitation to: (1) develop techniques for using high temporal resolution Doppler velocities to study large-eddy circulations and turbulence in boundary layer clouds and estimate the limitations of using current and past MMCR data for boundary layer cloud studies, (2) evaluate the capability and limitations of the current MMCR data for estimating reflectivity, vertical velocities, and spectral under low- signal-to-noise conditions associated with weak no n-precipitating clouds, (3) develop possible sampling modes for the new MMCR processors to allow for adequate sampling of boundary layer clouds, and (4) retrieve updraft and downdraft structures under precipitating conditions.
The kinematics of turbulent boundary layer structure
NASA Technical Reports Server (NTRS)
Robinson, Stephen Kern
1991-01-01
The long history of research into the internal structure of turbulent boundary layers has not provided a unified picture of the physics responsible for turbulence production and dissipation. The goals of the present research are to: (1) define the current state of boundary layer structure knowledge; and (2) utilize direct numerical simulation results to help close the unresolved issues identified in part A and to unify the fragmented knowledge of various coherent motions into a consistent kinematic model of boundary layer structure. The results of the current study show that all classes of coherent motion in the low Reynolds number turbulent boundary layer may be related to vortical structures, but that no single form of vortex is representative of the wide variety of vortical structures observed. In particular, ejection and sweep motions, as well as entrainment from the free-streem are shown to have strong spatial and temporal relationships with vortical structures. Disturbances of vortex size, location, and intensity show that quasi-streamwise vortices dominate the buffer region, while transverse vortices and vortical arches dominate the wake region. Both types of vortical structure are common in the log region. The interrelationships between the various structures and the population distributions of vortices are combined into a conceptual kinematic model for the boundary layer. Aspects of vortical structure dynamics are also postulated, based on time-sequence animations of the numerically simulated flow.
Force microscopy of layering and friction in an ionic liquid.
Hoth, Judith; Hausen, Florian; Müser, Martin H; Bennewitz, Roland
2014-07-16
The mechanical properties of the ionic liquid 1-butyl-1-methylpyrrolidinium tris(pentafluoroethyl) trifluorophosphate ([Py1,4][FAP]) in confinement between a SiOx and a Au(1 1 1) surface are investigated by means of atomic force microscopy (AFM) under electrochemical control. Up to 12 layers of ion pairs can be detected through force measurements while approaching the tip of the AFM to the surface. The particular shape of the force versus distance curve is explained by a model for the interaction between tip, gold surface and ionic liquid, which assumes an exponentially decaying oscillatory force originating from bulk liquid density correlations. Jumps in the tip-sample distance upon approach correspond to jumps of the compliant force sensor between branches of the oscillatory force curve. Frictional force between the laterally moving tip and the surface is detected only after partial penetration of the last double layer between tip and surface. PMID:24919549
NASA Technical Reports Server (NTRS)
Mack, L. M.
1967-01-01
The fundamentals of stability theory, its chief results, and the physical mechanisms at work are presented. The stability theory of the laminar boundary determines whether a small disturbance introduced into the boundary layer will amplify or damp. If the disturbance damps, the boundary layer remains laminar. If the disturbance amplifies, and by a sufficient amount, then transition to turbulence eventually takes place. The stability theory establishes those states of the boundary layer which are most likely to lead to transition, identifys those frequencies which are the most dangerous, and indicates how the external parameters can best be changed to avoid transition.
Calculation methods for compressible turbulent boundary layers, 1976
NASA Technical Reports Server (NTRS)
Bushnell, D. M.; Cary, A. M., Jr.; Harris, J. E.
1977-01-01
Equations and closure methods for compressible turbulent boundary layers are discussed. Flow phenomena peculiar to calculation of these boundary layers were considered, along with calculations of three dimensional compressible turbulent boundary layers. Procedures for ascertaining nonsimilar two and three dimensional compressible turbulent boundary layers were appended, including finite difference, finite element, and mass-weighted residual methods.
Hypersonic Boundary Layer Instability Over a Corner
NASA Technical Reports Server (NTRS)
Balakumar, Ponnampalam; Zhao, Hong-Wu; McClinton, Charles (Technical Monitor)
2001-01-01
A boundary-layer transition study over a compression corner was conducted under a hypersonic flow condition. Due to the discontinuities in boundary layer flow, the full Navier-Stokes equations were solved to simulate the development of disturbance in the boundary layer. A linear stability analysis and PSE method were used to get the initial disturbance for parallel and non-parallel flow respectively. A 2-D code was developed to solve the full Navier-stokes by using WENO(weighted essentially non-oscillating) scheme. The given numerical results show the evolution of the linear disturbance for the most amplified disturbance in supersonic and hypersonic flow over a compression ramp. The nonlinear computations also determined the minimal amplitudes necessary to cause transition at a designed location.
Numerical simulation of supersonic boundary layer transition
NASA Technical Reports Server (NTRS)
Guo, Y.; Adams, N. A.; Sandham, N. D.; Kleiser, L.
1994-01-01
The present contribution reviews some of the recent progress obtained at our group in the direct numerical simulation (DNS) of compressible boundary layer transition. Elements of the different simulation approaches and numerical techniques employed are surveyed. Temporal and spatial simulations, as well as comparisons with results obtained from Parabolized Stability Equations, are discussed. DNS results are given for flat plate boundary layers in the Mach number range 1.6 to 4.5. A temporal DNS at Mach 4.5 has been continued through breakdown all the way to the turbulent stage. In addition results obtained with a recently developed extended temporal DNS approach are presented, which takes into account some nonparallel effects of a growing boundary layer. Results from this approach are quite close to those of spatial DNS, while preserving the efficiency of the temporal DNS.
Asymptotic modelling for separating boundary layers
NASA Astrophysics Data System (ADS)
Mauss, Jacques
The method of matched asymptotic expansions is used to explain bow the triple deck structure in a boundary layer can be formed. In the context of a laminar steady flow of an incompressible fluid over a flat plate, a theory is developed to explain the separation over significant wall disturbances. In particular, we show that the triple deck structure is the first perturbation that can both displace the classical boundary layer and cause separation of the flow. Above this exist a serie of perturbations, smaller but "stronger", that cause a separation of the boundary layer without displacing it. This serie is limited by the smallest perturbation compatible with the hypothesis of the theory, thus leading to a theory in double deck.
Experimental study of nozzle wall boundary layers at Mach numbers 20 to 47
NASA Technical Reports Server (NTRS)
Kemp, J. H., Jr.; Owen, F. K.
1972-01-01
The nozzle wall boundary layer of an M-50 helium tunnel was investigated with pitot pressure, total temperature, skin friction, and wall heat transfer measurements at five stations and hot wire measurements at two stations. The results indicated that the boundary layer was turbulent with a thick viscous sublayer. Pressure gradients were observed across the boundary layer; the effect of these gradients on the equations of motion are discussed. The direct skin friction measurements were higher than expected from empirical predictions; the Reynolds analogy factors however were lower than expected. Hot wire measurements indicated mass flow fluctuations as large as 80 percent of the local mean mass flow at the edge of the viscous sublayer with a maximum value relative to the edge mass flow of about 15 percent at gamma about equal to 0.8.
Separation behavior of boundary layers on three-dimensional wings
NASA Technical Reports Server (NTRS)
Stock, H. W.
1981-01-01
An inverse boundary layer procedure for calculating separated, turbulent boundary layers at infinitely long, crabbing wing was developed. The procedure was developed for calculating three dimensional, incompressible turbulent boundary layers was expanded to adiabatic, compressible flows. Example calculations with transsonic wings were made including viscose effects. In this case an approximated calculation method described for areas of separated, turbulent boundary layers, permitting calculation of this displacement thickness. The laminar boundary layer development was calculated with inclined ellipsoids.
Coastal boundary layer transition within tropical cyclones at landfall
NASA Astrophysics Data System (ADS)
Howard, James Robert
Hurricanes pose a great risk to life and property with their high winds, excessive rainfall, wave action, and storm surge. Predicting changes within hurricanes at and near the time of landfall requires an understanding of the dynamics that drive the boundary layer flow. Forecasters predict the timing, duration, and effects of the intense winds associated with a hurricane when it comes ashore, while emergency management officials call for public evacuations based upon these forecasts. One region where understanding the magnitude and structure of the wind is critical is within the surface layer just downstream of the coastline in the onshore flow. Within this region the flow begins to adjust to changes in surface triggered by its passage from the shallow coastal waters to the less homogeneous and rougher land. This adjustment may include a slowing of the mean wind with an increase in turbulence, both resulting from the increased friction of the man-made and natural terrain. Hurricane observing programs consisting of portable and mobile equipment and regional coastal mesoscale observing networks are leading to a better understanding of the processes involved with these flow modifications. The Texas Tech University Wind Engineering Mobile Instrumented Tower Experiment (WEMITE) continues to play a leading role in the observation and analysis of the boundary layer of tropical cyclones at landfall. In order to gain further insight into the characteristics of this coastal transition zone, experiments were planned utilizing portable in-situ and remote measuring devices to be placed within the onshore flow at landfall. Experiment plan designs along with results from these experiments are discussed, including the analysis of a dataset collected by multiple institutions during the landfall of Hurricane Lili (2002) along the south-central Louisiana coast. Investigation reveals the existence of frictionally-induced changes in the boundary layer downwind of the coastline within the right semicircle with respect to Lili's forward motion. In the outer reaches of Lili, these transitions appear similar to internal boundary layers produced by flow moving over an abrupt change in surface. The impact on the magnitude of the wind within this near-shore region is a reduction of 4--10% per 10 km distance from the coast up to 50 km inland for open terrain. Results of the study show this reduction to be an exponential function of distance from the coast, which is dependent upon surface roughness. This rate of wind decay slows with farther progression inland and appears to be much faster than the rate found in some modeling studies. In contrast, near Lili's circulation center, little or no decrease in the magnitude of the mean wind was found for distances of up to 20 km inland.
Orbiter Boundary Layer Transition Prediction Tool Enhancements
NASA Technical Reports Server (NTRS)
Berry, Scott A.; King, Rudolph A.; Kegerise, Michael A.; Wood, William A.; McGinley, Catherine B.; Berger, Karen T.; Anderson, Brian P.
2010-01-01
Updates to an analytic tool developed for Shuttle support to predict the onset of boundary layer transition resulting from thermal protection system damage or repair are presented. The boundary layer transition tool is part of a suite of tools that analyze the local aerothermodynamic environment to enable informed disposition of damage for making recommendations to fly as is or to repair. Using mission specific trajectory information and details of each d agmea site or repair, the expected time (and thus Mach number) of transition onset is predicted to help define proper environments for use in subsequent thermal and stress analysis of the thermal protection system and structure. The boundary layer transition criteria utilized within the tool were updated based on new local boundary layer properties obtained from high fidelity computational solutions. Also, new ground-based measurements were obtained to allow for a wider parametric variation with both protuberances and cavities and then the resulting correlations were calibrated against updated flight data. The end result is to provide correlations that allow increased confidence with the resulting transition predictions. Recently, a new approach was adopted to remove conservatism in terms of sustained turbulence along the wing leading edge. Finally, some of the newer flight data are also discussed in terms of how these results reflect back on the updated correlations.
Boundary layer control device for duct silencers
NASA Technical Reports Server (NTRS)
Schmitz, Fredric H. (inventor); Soderman, Paul T. (inventor)
1993-01-01
A boundary layer control device includes a porous cover plate, an acoustic absorber disposed under the porous cover plate, and a porous flow resistive membrane interposed between the porous cover plate and the acoustic absorber. The porous flow resistive membrane has a flow resistance low enough to permit sound to enter the acoustic absorber and high enough to damp unsteady flow oscillations.
Thick diffusion limit boundary layer test problems
Bailey, T. S.; Warsa, J. S.; Chang, J. H.; Adams, M. L.
2013-07-01
We develop two simple test problems that quantify the behavior of computational transport solutions in the presence of boundary layers that are not resolved by the spatial grid. In particular we study the quantitative effects of 'contamination' terms that, according to previous asymptotic analyses, may have a detrimental effect on the solutions obtained by both discontinuous finite element (DFEM) and characteristic-method (CM) spatial discretizations, at least for boundary layers caused by azimuthally asymmetric incident intensities. Few numerical results have illustrated the effects of this contamination, and none have quantified it to our knowledge. Our test problems use leading-order analytic solutions that should be equal to zero in the problem interior, which means the observed interior solution is the error introduced by the contamination terms. Results from DFEM solutions demonstrate that the contamination terms can cause error propagation into the problem interior for both orthogonal and non-orthogonal grids, and that this error is much worse for non-orthogonal grids. This behavior is consistent with the predictions of previous analyses. We conclude that these boundary layer test problems and their variants are useful tools for the study of errors that are introduced by unresolved boundary layers in diffusive transport problems. (authors)
A Vertically Resolved Planetary Boundary Layer
NASA Technical Reports Server (NTRS)
Helfand, H. M.
1984-01-01
Increase of the vertical resolution of the GLAS Fourth Order General Circulation Model (GCM) near the Earth's surface and installation of a new package of parameterization schemes for subgrid-scale physical processes were sought so that the GLAS Model GCM will predict the resolved vertical structure of the planetary boundary layer (PBL) for all grid points.
Boundary Layer Transition on X-43A
NASA Technical Reports Server (NTRS)
Berry, Scott; Daryabeigi, Kamran; Wurster, Kathryn; Bittner, Robert
2008-01-01
The successful Mach 7 and 10 flights of the first fully integrated scramjet propulsion systems by the Hyper-X (X-43A) program have provided the means with which to verify the original design methodologies and assumptions. As part of Hyper-X s propulsion-airframe integration, the forebody was designed to include a spanwise array of vortex generators to promote boundary layer transition ahead of the engine. Turbulence at the inlet is thought to provide the most reliable engine design and allows direct scaling of flight results to groundbased data. Pre-flight estimations of boundary layer transition, for both Mach 7 and 10 flight conditions, suggested that forebody boundary layer trips were required to ensure fully turbulent conditions upstream of the inlet. This paper presents the results of an analysis of the thermocouple measurements used to infer the dynamics of the transition process during the trajectories for both flights, on both the lower surface (to assess trip performance) and the upper surface (to assess natural transition). The approach used in the analysis of the thermocouple data is outlined, along with a discussion of the calculated local flow properties that correspond to the transition events as identified in the flight data. The present analysis has confirmed that the boundary layer trips performed as expected for both flights, providing turbulent flow ahead of the inlet during critical portions of the trajectory, while the upper surface was laminar as predicted by the pre-flight analysis.
Planetary Boundary Layer from AERI and MPL
Sawyer, Virginia
2014-02-13
The distribution and transport of aerosol emitted to the lower troposphere is governed by the height of the planetary boundary layer (PBL), which limits the dilution of pollutants and influences boundary-layer convection. Because radiative heating and cooling of the surface strongly affect the PBL top height, it follows diurnal and seasonal cycles and may vary by hundreds of meters over a 24-hour period. The cap the PBL imposes on low-level aerosol transport makes aerosol concentration an effective proxy for PBL height: the top of the PBL is marked by a rapid transition from polluted, well-mixed boundary-layer air to the cleaner, more stratified free troposphere. Micropulse lidar (MPL) can provide much higher temporal resolution than radiosonde and better vertical resolution than infrared spectrometer (AERI), but PBL heights from all three instruments at the ARM SGP site are compared to one another for validation. If there is agreement among them, the higher-resolution remote sensing-derived PBL heights can accurately fill in the gaps left by the low frequency of radiosonde launches, and thus improve model parameterizations and our understanding of boundary-layer processes.
Structure measurements in a synthetic turbulent boundary layer
NASA Astrophysics Data System (ADS)
Arakeri, Jaywant H.
1987-09-01
Extensive hot-wire measurements have been made to determine the structure of the large eddy in a synthejc turbulent boundary layer on a flat-plate model. The experiments were carried out in a wind tunnel at a nominal free-stream velocity of 12 m/s. The synthetic turbulent boundary layer had a hexagonal pattern of eddies and a ratio of streamwise scale to spanwise scale of 3.2:1. The measured celerity of the large eddy was 84.2 percent of the free-stream velocity. There was some loss of coherence, but very little distortion, as the eddies moved downstream. Several mean properties of the synthetic boundary layer were found to agree quite well with the mean properties of a natural turbulent boundary layer at the same Reynolds number. The large eddy is composed of a pair of primary counter-rotating vortices about five [...] long in the streamwise direction and about one [...] apart in the spanwise direction, where [...] is the mean boundary-layer thickness. The sense of the primary pair is such as to pump fluid away from the wall in the region between the vortices. A secondary pair of counter-rotating streamwise vortices, having a sense opposite to that of the primary pair, is observed outside of and slightly downstream from the primary vortices. Both pairs of vortices extend across the full thickness of the boundary layer and are inclined at a shallow angle to the surface of the flat plate. The data show that the mean vorticity vectors are not tangential to the large-eddy vortices. In fact, the streamwise and normal vorticity components that signal the presence of the eddy are of the same order of magnitude. Definite signatures are obtained in terms of the mean skin-friction coefficient and the mean wake parameter averaged at constant phase. Velocities induced by the vortices are partly responsible for entrainment of irrotational fluid, for transport of momentum, for generation of Reynolds stresses, and for maintenance of streamwise and normal vorticity in the outer flow. A stretching mechanism is important in matching spanwise vorticity close to the wall to variations in turbulent shearing stress. Regions where the stretching term is large coincide with regions of large wall shearing stress and large turbulence production.
NASA Technical Reports Server (NTRS)
Schlichting, H.
1949-01-01
Various ways were tried recently to decrease the friction drag of a body in a flow; they all employ influencing the boundary layer. One of them consists in keeping the boundary layer Laminar by suction; promising tests have been carried out. Since for large Reynolds numbers the friction drag of the laminar boundary layer is much lower than that of the turbulent boundary layer, a considerable saving in drag results from keeping the boundary layer laminar, even with the blower power required for suction taken into account. The boundary layer is kept laminar by suction in two ways: first, by reduction of the thickness of the boundary layer and second, by the fact that the suction changes the form of the velocity distribution so that it becomes more stable, in a manner similar to the change by a pressure drop. There by the critical Reynolds number of the boundary layer (USigma*/V) (sub crit) becomes considerably higher than for the case without suction. This latter circumstance takes full effect only if continuous suction is applied which one might visualize realized through a porous wall. Thus the suction quantities required for keeping the boundary layer laminar become so small that the suction must be regarded as a very promising auxiliary means for drag reduction.
LAMINAR BOUNDARY-LAYER THEORY: A 20TH CENTURY PARADOX?
Cowley, Stephen J.
of Cambridge, Silver Street, Cambridge CB3 9EW, UK. S.J.Cowley@damtp.cam.ac.uk Keywords: Boundary layer, shear number, Re, is large. In a more general sense we will use `boundary-layer theory' (BLT) to refer to any or not there are boundaries). 20th Century. Prandtl (1904) published his seminal paper on the foundations of boundary-layer
NASA Technical Reports Server (NTRS)
Rashidnia, N.; Falco, R. E.
1987-01-01
A specially designed wind tunnel was used to examine the effects of tandemly arranged parallel plate manipulators (TAPPMs) on a turbulent boundary-layer structure and the associated drag. Momentum balances, as well as measurements of the local shear stress from the velocity gradient near the wall, were used to obtain the net drag and local skin friction changes. Two TAPPMs, identical except for the thickness of their plates, were used in the study. Results with .003 inch plates were a maximum net drag reduction of 10 percent at 58 beta sub o (using a momentum balance). At 20 beta sub o, simultaneous laser sheet flow visualization and hot-wire anemometry data showed that the Reynolds stress in the large eddies was significantly reduced, as were the streamwise and normal velocity components. Using space-time correlations the reductions were again identified. Furthermore, quantitative flow visualization showed that the outward normal velocity of the inner region was also significantly decreased in the region around 20 beta sub o. However, throughout the first 130 beta sub o, the measured sublayer thickness with the TAPPMs in place was 15 to 20 percent greater. The data showed that the skin friction, as well as the structure of the turbulence, was strongly modified in the first 35 beta sub o, but that they both significantly relaxed toward unmanipulated boundary layer values by 50 beta sub o.
Artificial thickening of transonic boundary layers
NASA Technical Reports Server (NTRS)
Otten, L. J.; Van Kuren, J. T.
1976-01-01
A wind-tunnel experiment was performed to examine the effect of turbulence enhancers on the growth of a flat-plate turbulent boundary layer. The free-stream Mach number was varied from 0.6 to 0.9 with unit Reynolds numbers of 6.56 million/m and 13.12 million/m. Several configurations of high-drag objects were mounted near the leading edge of a long flat plate to introduce momentum losses. Measurements of both mean and time-variable flow parameters were made at downstream locations to quantify the influence of the turbulence enhancers. A configuration consisting of two rows of alternately spaced, vertical, 0.317-cm-diameter cylinders of 16 and 12 diameters length produced 1/9to 1/7-power velocity profiles. Unsteady total-temperature and static-pressure profiles were found to be similar to natural turbulent boundary-layer profiles. The techniques presented can be useful whenever thick turbulent boundary layers are required, but the natural growth of the layer is limited by the test facility.
Laminar boundary layers in convective heat transport
Christian Seis
2012-12-12
We study Rayleigh-Benard convection in the high-Rayleigh-number and high-Prandtl-number regime, i.e., we consider a fluid in a container that is exposed to strong heating of the bottom and cooling of the top plate in the absence of inertia effects. While the dynamics in the bulk are characterized by a chaotic convective heat flow, the boundary layers at the horizontal container plates are essentially conducting and thus the fluid is motionless. Consequently, the average temperature exhibits a linear profile in the boundary layers. In this article, we rigorously investigate the average temperature and oscillations in the boundary layer via local bounds on the temperature field. Moreover, we deduce that the temperature profile is indeed essentially linear close to the horizontal container plates. Our results are uniform in the system parameters (e.g. the Rayleigh number) up to logarithmic correction terms. An important tool in our analysis is a new Hardy-type estimate for the convecting velocity field, which can be used to control the fluid motion in the layer. The bounds on the temperature field are derived with the help of local maximal regularity estimates for convection-diffusion equations.
Laboratory Investigation of Boundary Layer Processes*
NASA Astrophysics Data System (ADS)
Amatucci, William
2002-11-01
Boundary layers are often found in plasmas both in the lab, such as at the edges of laser-produced plasmas, and in natural settings, such as the magnetosphere. These are regions in which plasma characteristics undergo rapid transition and are usually the sites of wave activity. An investigation of boundary layer processes has been conducted in the NRL Space Physics Simulation Chamber (SPSC). A method has been developed to create a boundary layer with controllable density gradients and transverse electric fields with arbitrary amplitude and scale length as small as one-fourth of an ion gyroradius. This method involves interpenetrating plasmas with different diameters, whose plasma potentials can be controlled. Under these conditions, waves in the lower hybrid frequency range have been observed and their characteristics documented. Theoretical work indicates that the observed mode characteristics are similar to those expected for the Electron-Ion Hybrid Instability.^1 As an illustration, we apply our results to space plasmas and the dynamics of the plasma sheet boundary layer (PSBL). The PSBL is key in the transfer of solar wind mass, energy, and momentum into the magnetosphere and ultimately into the auroral regions. During times of solar activity, the PSBL can become compressed to widths on the order of an ion gyroradius and can contain localized transverse electric fields similar to those generated in the SPSC experiments. At these times, thin layers of energetic electrons and broadband wave activity have been observed in the PSBL. The details of the response of a plasma to such conditions and the observable signatures are the focus of this study. ^1 Ganguli et al., Phys. Fluids, 31, 2753 (1988); Romero et al., Geophys. Res. Lett., 17, 2313 (1990).
Bursting frequency prediction in turbulent boundary layers
LIOU,WILLIAM W.; FANG,YICHUNG
2000-02-01
The frequencies of the bursting events associated with the streamwise coherent structures of spatially developing incompressible turbulent boundary layers were predicted using global numerical solution of the Orr-Sommerfeld and the vertical vorticity equations of hydrodynamic stability problems. The structures were modeled as wavelike disturbances associated with the turbulent mean flow. The global method developed here involves the use of second and fourth order accurate finite difference formula for the differential equations as well as the boundary conditions. An automated prediction tool, BURFIT, was developed. The predicted resonance frequencies were found to agree very well with previous results using a local shooting technique and measured data.
A comparison of opposition control in turbulent boundary layer and turbulent channel flow
NASA Astrophysics Data System (ADS)
Stroh, A.; Frohnapfel, B.; Schlatter, P.; Hasegawa, Y.
2015-07-01
A comparison between classical opposition control applied in the configuration of a fully developed turbulent channel flow and applied locally in a spatially developing turbulent boundary layer is presented. It is found that the control scheme yields similar drag reduction rates if compared at the same friction Reynolds numbers. However, a detailed analysis of the dynamical contributions to the skin friction coefficient reveals significant differences in the mechanism behind the drag reduction. While drag reduction in turbulent channel flow is entirely based on the attenuation of the Reynolds shear stress, the modification of the spatial flow development is essential for the turbulent boundary layer in terms of achievable drag reduction. It is shown that drag reduction due to this spatial development contribution becomes more pronounced with increasing Reynolds number (up to Re? = 660, based on friction velocity and boundary layer thickness) and even exceeds drag reduction due to attenuation of the Reynolds shear stress. In terms of an overall energy balance, it is found that opposition control is less efficient in the turbulent boundary layer due to the inherently larger fluctuation intensities in the near wall region.
BOREAS AFM-6 Boundary Layer Height Data
NASA Technical Reports Server (NTRS)
Wilczak, James; Hall, Forrest G. (Editor); Newcomer, Jeffrey A. (Editor); Smith, David E. (Technical Monitor)
2000-01-01
The Boreal Ecosystem-Atmosphere Study (BOREAS) Airborne Fluxes and Meteorology (AFM)-6 team from National Oceanic and Atmospheric Adminsitration/Environment Technology Laboratory (NOAA/ETL) operated a 915-MHz wind/Radio Acoustic Sounding System (RASS) profiler system in the Southern Study Area (SSA) near the Old Jack Pine (OJP) site. This data set provides boundary layer height information over the site. The data were collected from 21 May 1994 to 20 Sep 1994 and are stored in tabular ASCII files. The boundary layer height data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884).
Sound radiation from a turbulent boundary layer
NASA Astrophysics Data System (ADS)
Hu, Zhiwei; Morfey, Christopher L.; Sandham, Neil D.
2006-09-01
Sound radiation due to fluctuating viscous wall shear stresses in a plane turbulent boundary layer is investigated by a two-stage procedure using direct numerical simulation (DNS) databases for incompressible turbulent Poiseuille flow in a plane channel, at Reynolds numbers up to Re?=1440. The power spectral density of radiated pressure and spectra of sound power per unit wall area are calculated in the low Mach number limit by substituting source terms obtained from DNS into a Ffowcs Williams-Hawkings wave equation and using a half-space Green function. The same DNS data are used to predict the spectrum of turbulent boundary layer noise measured in a diffuser downstream of a fully developed channel flow [Greshilov and Mironov, Sov. Phys. Acoust. 29, 275 (1983)]. The measured spectrum is ˜15dB higher at low frequencies, but converges with the prediction at high frequencies.
The role of nonlinear critical layers in boundary layer transition
NASA Technical Reports Server (NTRS)
Goldstein, M.E.
1995-01-01
Asymptotic methods are used to describe the nonlinear self-interaction between pairs of oblique instability modes that eventually develops when initially linear spatially growing instability waves evolve downstream in nominally two-dimensional laminar boundary layers. The first nonlinear reaction takes place locally within a so-called 'critical layer', with the flow outside this layer consisting of a locally parallel mean flow plus a pair of oblique instability waves - which may or may not be accompanied by an associated plane wave. The amplitudes of these waves, which are completely determined by nonlinear effects within the critical layer, satisfy either a single integro-differential equation or a pair of integro-differential equations with quadratic to quartic-type nonlinearities. The physical implications of these equations are discussed.
Three dimensional boundary layers in internal flows
NASA Technical Reports Server (NTRS)
Bodonyi, R. J.
1987-01-01
A numerical study of the effects of viscous-inviscid interactions in three-dimensional duct flows is presented. In particular interacting flows for which the oncoming flow is not fully-developed were considered. In this case there is a thin boundary layer still present upstream of the surface distortion, as opposed to the fully-developed pipe flow situation wherein the flow is viscous across the cross section.
Boundary Layer Transition Results From STS-114
NASA Technical Reports Server (NTRS)
Berry, Scott A.; Horvath, Thomas J.; Cassady, Amy M.; Kirk, Benjamin S.; Wang, K. C.; Hyatt, Andrew J.
2006-01-01
The tool for predicting the onset of boundary layer transition from damage to and/or repair of the thermal protection system developed in support of Shuttle Return to Flight is compared to the STS-114 flight results. The Boundary Layer Transition (BLT) Tool is part of a suite of tools that analyze the aerothermodynamic environment of the local thermal protection system to allow informed disposition of damage for making recommendations to fly as is or to repair. Using mission specific trajectory information and details of each damage site or repair, the expected time of transition onset is predicted to help determine the proper aerothermodynamic environment to use in the subsequent thermal and stress analysis of the local structure. The boundary layer transition criteria utilized for the tool was developed from ground-based measurements to account for the effect of both protuberances and cavities and has been calibrated against flight data. Computed local boundary layer edge conditions provided the means to correlate the experimental results and then to extrapolate to flight. During STS-114, the BLT Tool was utilized and was part of the decision making process to perform an extravehicular activity to remove the large gap fillers. The role of the BLT Tool during this mission, along with the supporting information that was acquired for the on-orbit analysis, is reviewed. Once the large gap fillers were removed, all remaining damage sites were cleared for reentry as is. Post-flight analysis of the transition onset time revealed excellent agreement with BLT Tool predictions.
Boundary Layer Control for Hypersonic Airbreathing Vehicles
NASA Technical Reports Server (NTRS)
Berry, Scott A.; Nowak, Robert J.; Horvath, Thomas J.
2004-01-01
Active and passive methods for tripping hypersonic boundary layers have been examined in NASA Langley Research Center wind tunnels using a Hyper-X model. This investigation assessed several concepts for forcing transition, including passive discrete roughness elements and active mass addition (or blowing), in the 20-Inch Mach 6 Air and the 31-Inch Mach 10 Air Tunnels. Heat transfer distributions obtained via phosphor thermography, shock system details, and surface streamline patterns were measured on a 0.333-scale model of the Hyper-X forebody. The comparisons between the active and passive methods for boundary layer control were conducted at test conditions that nearly match the Hyper-X nominal Mach 7 flight test-point of an angle-of-attack of 2-deg and length Reynolds number of 5.6 million. For passive roughness, the primary parametric variation was a range of trip heights within the calculated boundary layer thickness for several trip concepts. The passive roughness study resulted in a swept ramp configuration, scaled to be roughly 0.6 of the calculated boundary layer thickness, being selected for the Mach 7 flight vehicle. For the active blowing study, the manifold pressure was systematically varied (while monitoring the mass flow) for each configuration to determine the jet penetration height, with schlieren, and transition movement, with the phosphor system, for comparison to the passive results. All the blowing concepts tested, which included various rows of sonic orifices (holes), two- and three-dimensional slots, and random porosity, provided transition onset near the trip location with manifold stagnation pressures on the order of 40 times the model surface static pressure, which is adequate to ensure sonic jets. The present results indicate that the jet penetration height for blowing was roughly half the height required with passive roughness elements for an equivalent amount of transition movement.
Reduction of turbulent drag: Boundary layer manipulators
NASA Astrophysics Data System (ADS)
Coustols, E.
1989-03-01
The drag reduction on airbus profiles is investigated. External and internal boundary layer manipulators are applied. The wind tunnel wall geometry and the model surface geometry are modified, carving riblets in the sense of the main flow. The change induced in the flow are studied using hotwire anemometry and spectral analysis. Direct drag measurements on Airbus profiles indicate a drag reduction of 3.5 percent. Experiments using cylindrical bodies in transonic flow show a drag reduction of 8 percent.
System Identification and Active Control of a Turbulent Boundary Layer
Rathnasingham, Ruben
An experimental investigation is made into the active control of the near-wall region of a turbulent boundary layer using a linear control scheme. System identification in the boundary layer provides optimal transfer ...
Typhoon kinematic and thermodynamic boundary layer structure from dropsonde composites
NASA Astrophysics Data System (ADS)
Ming, Jie; Zhang, Jun A.; Rogers, Robert F.
2015-04-01
The data from 438 Global Positioning System dropsondes in six typhoons are analyzed to investigate the mean atmospheric boundary layer structure in a composite framework. Following a recent study on boundary layer height in Atlantic hurricanes, we aim to quantify characteristics of boundary layer height scales in Western Pacific typhoons including the inflow layer depth (hinflow), height of the maximum tangential wind speed (hvtmax), and thermodynamic mixed layer depth. In addition, the kinematic and thermodynamic boundary layer structures are compared between the dropsonde composites using data in typhoons and hurricanes. Our results show that similar to the hurricane composite, there is a separation between the kinematic and thermodynamic boundary layer heights in typhoons, with the thermodynamic boundary layer depth being much smaller than hinflow and hvtmax in the typhoon boundary layer. All three boundary layer height scales tend to decrease toward the storm center. Our results confirm that the conceptual model of Zhang et al. (2011a) for boundary layer height variation is applicable to typhoon conditions. The kinematic boundary layer structure is generally similar between the typhoon and hurricane composites, but the typhoon composite shows a deeper inflow layer outside the eyewall than the hurricane composite. The thermodynamic structure of the typhoon boundary layer composite is warmer and moister outside the radius of maximum wind speed than the hurricane composite. This difference is attributed to different environmental conditions associated with typhoons compared to the hurricanes studied here.
Shock layers and boundary layers in hypersonic flows
NASA Astrophysics Data System (ADS)
Cousteix, J.; Arnal, D.; Aupoix, B.; Brazier, J. Ph.; Lafon, A.
This paper presents an overview of the physical and numerical aspects of flows encountered around a vehicle in hypersonic flight. These problems are typically related to the reentry phase of a space shuttle into the atmosphere. Nonetheless, it is believed that the material given here is a good background for other applications. Compared with the standard aerodynamic problems on an aircraft in transonic or supersonic flight, hypersonic flows are characterized by a much higher level of energy. The high temperature of the flow can lead to thermochemical non-equilibrium, with chemical reactions and vibrational relaxation. These effects are of prime importance in the evaluation of the heating of the body and they may affect general flow features, including the wall pressure. Basic elements are discussed to understand the physics of these phenomena. Applications are given in the framework of boundary layer calculations and of numerical solutions of the Navier-Stokes equations. In the front of the vehicle, a strong bow shock wave forms and the boundary layer is fed by a rotational flow. A discussion is given concerning how a boundary layer theory can account for these effects. At lower altitudes, the velocity of the flow remains large, the Reynolds number increases and the flow becomes turbulent. In this context, laminar-turbulent transition and turbulence modelling are discussed.
Numerical investigation of turbulence models for shock separated boundary-layer flows
NASA Technical Reports Server (NTRS)
Viegas, J. R.; Coakley, T. J.
1977-01-01
Numerical solutions of the Navier-Stokes equations for shock separated turbulent boundary-layer flows are presented. Several turbulence models are investigated and assessed by their ability to predict the physical phenomena associated with two extensively documented experiments. The experimental flows consist of shock-wave boundary-layer interactions in axisymmetric internal and external geometries at Mach numbers of 1.5 and 7, respectively. Algebraic and one-equation eddy viscosity models are used to describe the Reynolds shear stress. Calculated values of skin friction, wall pressure distribution, kinetic energy of turbulence, and heat transfer are compared with measurements.
Deplacement effect of the laminar boundary layer and the pressure drag
NASA Technical Reports Server (NTRS)
Gortler, H
1951-01-01
The displacement effect of the boundary layer on the outer frictionless flow is discussed for both steady and unsteady flows. The analysis is restricted to cases in which the potential flow pressure distribution remains valid for the boundary-layer calculation. Formulas are given for the dependence of the pressure drag, friction drag, and total drag of circular cylinders on the time from the start of motion for cases in which the velocity varies as a power of the time. Formulas for the locations and for the time for the appearance of the separation point are given for two dimensional bodies of arbitrary shape.
THEORETICAL SKINFRICTION LAW IN A TURBULENT BOUNDARY LAYER A. CHESKIDOV
Cheskidov, Alexey
transitional and turbulent boundary layers using a turbulent velocity profile equation recently deÂ rived from law, matches experimental data in the turbulent boundary layer for moderately large Reynolds numbers of a turbulentÂboundary layer flow, the filÂ ter length scale #11;, which represents the averaged
LAMINAR BOUNDARY-LAYER THEORY: A 20TH CENTURY PARADOX?
Cowley, Stephen J.
to be considered. Such a cascade of scales often limits the quantitative usefulness of solutions, although boundary-layer of Cambridge, Silver Street, Cambridge CB3 9EW, UK. S.J.Cowley@damtp.cam.ac.uk Keywords: Boundary layer, shear onto a consideration of large-Reynolds- number asymptotic instability theory. A key aspect of boundary-layer
NASA Technical Reports Server (NTRS)
Hopkins, E. J.
1974-01-01
Two methods for determining the virtual origin of turbulent boundary layers in hypersonic flow are evaluated. The results of the analyses are restricted to wind-tunnel models having sharp-edged surfaces with zero or small pressure gradients. Virtual origin and skin friction estimates from these two methods are compared with values from a base method for which the virtual origin is calculated from the measured momentum thickness at a station downstream of boundary layer transition.
Boundary-layer flow of a micropolar fluid on a continuous moving or fixed surface
NASA Astrophysics Data System (ADS)
Ishak, A.; Nazar, R.; Pop, I.
2006-05-01
The present paper deals with the analysis of boundary-layer flow of a micropolar fluid on a fixed or continuous moving plane surface. Both parallel and reverse moving surfaces to the free stream are considered. The resulting system of nonlinear ordinary differential equations is solved numerically using the Keller-box method. Numerical results are obtained for skin friction coefficient, local Nusselt number, velocity, angular velocity, and temperature profiles. The results indicate that the effect of the material parameter on skin friction and heat transfer depends on the velocity ratio of the plate and the fluid.
Boundary layers in favourable pressure gradients
NASA Astrophysics Data System (ADS)
Piomelli, Ugo
2012-11-01
Turbulent boundary layers subjected to freestream acceleration due to a favorable pressure gradient (FPG) are common in many engineering applications. For strong acceleration the flow tends to revert to a laminar state; whether it re-laminarizes fully depends on the strength of the acceleration, and on the distance over which the acceleration is maintained. As the pressure gradient is removed, the flow may then return to a turbulent state; the re-transitioning process is strongly affected by the state of the turbulence at the end of the acceleration region. In this talk we present results of simulations of turbulent flow in flat-plate boundary layers subjected to strong acceleration, exceeding the critical Reynolds number for extended distance. Two Reynolds numbers are considered: a low one is studied by direct simulations, a higher one by large-eddy simulations. As the acceleration increases, the logarithmic layer is initially preserved, albeit with a higher value of the von Kàrmàn constant; in the region of high acceleration, however, the velocity profile becomes laminar-like; in the high- Re case, a new logarithmic layer is established shortly after the end of the acceleration, while in the low- Re case re-transition occurs much later. Good agreement of the high- Re LES with the experimental data is observed. The region of maximum acceleration is characterized by significant reorganization of the wall layer, with streaks that remain stable for very long distances. Frozen turbulence advected from upstream is still present, but it does not adjust to the freestream acceleration (i.e., the freestream velocity increases, but the turbulent kinetic energy maintains its upstream value); the residual turbulent fluctuations are large enough that, once the acceleration ends, a bypass-like transition process is triggered.
Multiscale Structures in Tropical Cyclone Boundary Layers
NASA Astrophysics Data System (ADS)
Foster, Ralph
2015-04-01
We present recent advances in the development of the resonant triad interaction model of large scale roll vortices in the tropical cyclone boundary layer. The relatively shallow, high shear and strong surface buoyancy flux conditions that characterize the tropical cyclone boundary layer make it an ideal environment for the formation of mixed shear/convection roll vortices. The most commonly documented rolls tend to align close to the mean wind direction and have aspect ratios (wavelength/depth) of near 2.5 to 4. Some observations suggest much smaller scale rolls are nearly ubiquitous in the near surface layer. Recent analyses of synthetic aperture radar images of the sea surface under tropical cyclones find nearly ubiquitous signatures of very large aspect ratio rolls, with wavelengths of order 10 km or greater. These rolls apparently extend from the surface into the lower troposphere. Our studies hypothesize that nonlinear triad wave-wave interactions are a likely candidate to explain the formation and persistence of these large aspect ratio modes, the variability in detectability of "standard roll vortices and a possible reason why such large scale rolls are not formed in mesoscale numerical models.
Niu, Fenglin
The role of chemical boundary layers in regulating the thickness of continental and oceanic thermal the drift of continents and the eventual fate of oceanic thermal boundary layers, e.g., subduction) at the base of the oceanic and continental thermal boundary layers. This manuscript explores the endmember
Performance and boundary-layer evaluation of a sonic inlet
NASA Technical Reports Server (NTRS)
Schmidt, J. F.; Ruggeri, R. S.
1976-01-01
Tests were conducted to determine the boundary layer characteristics and aerodynamic performance of a radial vane sonic inlet with a length/diameter ratio of 1 for several vane configurations. The sonic inlet was designed with a slight wavy wall type of diffuser geometry, which permits operation at high inlet Mach numbers (sufficiently high for good noise suppression) without boundary layer flow separation and with good total pressure recovery. A new method for evaluating the turbulent boundary layer was developed to separate the boundary layer from the inviscid core flow, which is characterized by a total pressure variation from hub to tip, and to determine the experimental boundary layer parameters.
Studies of the Martian boundary-layer
NASA Astrophysics Data System (ADS)
Davy, Richard A. J.
2009-12-01
A coupled boundary layer---aeolian dust model of the Martian atmosphere is presented. This model was developed to determine how radiation scattering, absorption and emission by dust affects the boundary layer and, in turn, how this affects the dust distribution in the atmosphere. This was achieved by coupling a planetary boundary layer (PBL) model with a dynamical dust model. The model is applied to the 1977B dust storm optical data of Viking Lander 1 and our analysis indicates a significant improvement over previous 1D studies of dust storm decay. By calibrating the model to observations of temperature and pressure from the Phoenix lander we have simulated the atmospheric ice formation observed by the Phoenix LIDAR and explored the potential influences of such formations on the atmospheric conditions. By simulating dust settling between multiple LIDAR observations we have estimated the effective radius of suspended dust, which is found to be in the range of estimates made by other methods. Thermocouples at three levels on a 1-m mast on the deck of the Phoenix lander provided temperature data throughout the 151 sol Phoenix mission. Air temperatures showed a large diurnal cycle which showed little sol to sol variation, especially over the first 90 sots of the mission. Daytime temperatures at the top (2 m) level typically rose to about 243 K (-30 C) in early afternoon and had large (10 K) turbulent fluctuations. These are analysed and used to estimate heat fluxes which are found to be in the range 2-10 W m-2 .
Calculation of boundary layers of oscillating airfoils
NASA Technical Reports Server (NTRS)
Cebeci, T.; Carr, L. W.
1984-01-01
A two-point finite difference unsteady laminar and turbulent boundary layer computational method was used to investigate the properties of the flow around an airfoil (NACA 0012) oscillating through angles of attack up to 18 degrees, for reduced frequencies of 0.01 and 0.20. The unsteady potential flow was determined using the unsteady potential flow method of Geissler. The influence of transition location on stal behavior was investigated, using both experimentally determined transition information, and transition located at the pressure peak; the results show the need for viscous-inviscid interaction in future computation of such flows.
Boundary-layer Transition at Supersonic Speeds
NASA Technical Reports Server (NTRS)
Low, George M
1956-01-01
Recent results of the effects of Mach number, stream turbulence, leading-edge geometry, leading-edge sweep, surface temperature, surface finish, pressure gradient, and angle of attack on boundary-layer transition are summarized. Factors that delay transition are nose blunting, surface cooling, and favorable pressure gradient. Leading-edge sweep and excessive surface roughness tend to promote early transition. The effects of leading-edge blunting on two-dimensional surfaces and surface cooling can be predicted adequately by existing theories, at least in the moderate Mach number range.
The minisodar and planetary boundary layer studies
Coulter, R.L.
1996-06-01
The minisodar, in addition to being smaller than conventional sodar, operates at higher frequencies, obtains usable signal returns closer to the surface, and can use smaller range gates. Because the max range is generally limited to the lower 200 m above the surface, the minisodar is not able to interrogate the entire daytime atmospheric Planetary Boundary Layer (PBL); however it can be a very useful tool for understanding the PBL. In concert with other instruments, the minisodar can add significant new insights to our understanding of the PBL. This paper gives examples of past and potential uses of minisodars in such situations.
Technology Transfer Automated Retrieval System (TEKTRAN)
The frictional behaviors of soybean oil and heat modified soybean oils with different Gardner scale viscosities as additives in hexadecane have been examined in a boundary lubrication test regime (steel contacts) using Langmuir adsorption model. The free energy of adsorption (delta-Gads) of various...
The Role of Adsorbed Water on the Friction of a Layer of Submicron Particles CHARLES G. SAMMIS,1
Ze'ev, Reches
friction with an apparent coefficient near l = 0.6 at low slip speeds to a coefficient near l = 0 layer enables the otherwise rough particles to rotate, the coefficient of friction will drop to l = 0 layer vaporizes, the particles contact and lock, and the coefficient of friction rises to l = 0
Sound Radiation from a Turbulent Boundary Layer
NASA Technical Reports Server (NTRS)
Laufer, J.
1961-01-01
If the restriction of incompressibility in the turbulence problem is relaxed, the phenomenon of energy radiation in the form of sound from the turbulent zone arises. In order to calculate this radiated energy, it is shown that new statistical quantities, such as time-space correlation tensors, have to be known within the turbulent zone in addition to the conventional quantities. For the particular case of the turbulent boundary layer, indications are that the intensity of radiation becomes significant only in supersonic flows. Under these conditions, the recent work of Phillips is examined together with some experimental findings of the author. It is shown that the qualitative features of the radiation field (intensity, directionality) as predicted by the theory are consistent with the measurements; however, even for the highest Mach number flow, some of the assumptions of the asymptotic theory are not yet satisfied in the experiments. Finally, the question of turbulence damping due to radiation is discussed, with the result that in the Mach number range covered by the experiments, the energy lost from the boundary layer due to radiation is a small percentage of the work done by the wall shearing stresses.
Boundary Layer Transition Flight Experiment Overview
NASA Technical Reports Server (NTRS)
Berger, Karen T.; Anderson, Brian P.; Campbell, Charles H.; Garske, Michael T.; Saucedo, Luis A.; Kinder, Gerald R.; Micklos, Ann M.
2011-01-01
In support of the Boundary Layer Transition Flight Experiment (BLT FE) Project, a manufactured protuberance tile was installed on the port wing of Space Shuttle Orbiter Discovery for STS-119, STS-128, STS-131 and STS-133 as well as Space Shuttle Endeavour for STS-134. Additional instrumentation was installed in order to obtain more spatially resolved measurements downstream of the protuberance. This paper provides an overview of the BLT FE Project with emphasis on the STS-131 and STS-133 results. A high-level overview of the in-situ flight data is presented, along with a summary of the comparisons between pre- and post-flight analysis predictions and flight data. Comparisons show that empirically correlated predictions for boundary layer transition onset time closely match the flight data, while predicted surface temperatures were significantly higher than observed flight temperatures. A thermocouple anomaly observed on a number of the missions is discussed as are a number of the mitigation actions that will be taken on the final flight, STS-134, including potential alterations of the flight trajectory and changes to the flight instrumentation.
A conditioned volumetric view of ``superstructure'' events in turbulent boundary layers
NASA Astrophysics Data System (ADS)
Hutchins, Nicholas; Ganapathisubramani, Bharathram; Monty, Jason; Marusic, Ivan; Chong, Min
2008-11-01
A conditionally averaged view of ``superstructure'' type events is presented for the case of zero pressure gradient turbulent boundary layers at friction Reynolds number, Re? 14,00. Detailed boundary layer traverses are acquired above a simultaneously sampled spanwise rake of 10 flush-mounted hot-film sensors, affixed to the tunnel wall with a spanwise spacing of approximately 0.08 boundary layer thicknesses (?). The data from the traversing probes are conditioned on the occurrence of superstructure-type footprints sensed by the wall array. The resulting data give a more complete volumetric view of the large-scale meandering log-region features than has previously been afforded by hot-wire rake and PIV measurements. Such detailed views are used to further investigate the existence of an amplitude modulation effect, in which the footprints of large ?- scaled structures (that typify the logarithmic region) have been observed to modulate the viscous-scaled near-wall cycle.
Friction-term response to boundary-condition type in flow models
Schaffranek, R.W.; Lai, C.
1996-01-01
The friction-slope term in the unsteady open-channel flow equations is examined using two numerical models based on different formulations of the governing equations and employing different solution methods. The purposes of the study are to analyze, evaluate, and demonstrate the behavior of the term in a set of controlled numerical experiments using varied types and combinations of boundary conditions. Results of numerical experiments illustrate that a given model can respond inconsistently for the identical resistance-coefficient value under different types and combinations of boundary conditions. Findings also demonstrate that two models employing different dependent variables and solution methods can respond similarly for the identical resistance-coefficient value under similar types and combinations of boundary conditions. Discussion of qualitative considerations and quantitative experimental results provides insight into the proper treatment, evaluation, and significance of the friction-slope term, thereby offering practical guidelines for model implementation and calibration.
NASA Astrophysics Data System (ADS)
Jang, Jinho; Choi, Soon Ho; Ahn, Sung-Mok; Kim, Booki; Seo, Jong Soo
2014-06-01
In an effort to cope with recent high oil price and global warming, developments of air lubricated ships have been pursued to reduce greenhouse gas emissions and to save fuel costs by reducing the frictional resistance. In this study, reduction in the frictional resistance by air lubrication with air layers generated on the lower surface of a flat plate was investigated experimentally in the large water tunnel of SSMB. The generated air layers were observed, and changes in the local frictional drag were measured at various flow rates of injected air. The results indicated that air lubrication with air layers might be useful in reducing the frictional resistance at specific conditions of air injection. Accordingly, resistance and self-propulsion tests for a 66K DWT bulk carrier were carried out in the towing tank of SSMB to estimate the expected net power savings.
Kinetic Boundary Layers and FluidKinetic Coupling in Semiconductors
Schmeiser, Christian
Kinetic Boundary Layers and FluidKinetic Coupling in Semiconductors Pierre Degond 1 and Christian, kinetic boundary layers are analyzed and higher order accurate boundary conditions are constructed are derived. As an application, interface conditi ons for the fluidkinetic coupling in a domain
Atomic-scale friction modulated by potential corrugation in multi-layered graphene materials
Zhuang, Chunqiang; Liu, Lei
2015-03-21
Friction is an important issue that has to be carefully treated for the fabrication of graphene-based nano-scale devices. So far, the friction mechanism of graphene materials on the atomic scale has not yet been clearly presented. Here, first-principles calculations were employed to unveil the friction behaviors and their atomic-scale mechanism. We found that potential corrugations on sliding surfaces dominate the friction force and the friction anisotropy of graphene materials. Higher friction forces correspond to larger corrugations of potential energy, which are tuned by the number of graphene layers. The friction anisotropy is determined by the regular distributions of potential energy. The sliding along a fold-line path (hollow-atop-hollow) has a relatively small potential energy barrier. Thus, the linear sliding observed in macroscopic friction experiments may probably be attributed to the fold-line sliding mode on the atomic scale. These findings can also be extended to other layer-structure materials, such as molybdenum disulfide (MoS{sub 2}) and graphene-like BN sheets.
Mixed convection boundary layer flow over a horizontal elliptic cylinder with constant heat flux
NASA Astrophysics Data System (ADS)
Javed, Tariq; Ahmad, Hussain; Ghaffari, Abuzar
2015-09-01
Mixed convection boundary layer flow of a viscous fluid over a horizontal elliptic cylinder with a constant heat flux is investigated numerically. The governing partial differential equations are transformed to non-dimensional form and then are solved by an efficient implicit finite different scheme known as Keller-box method. The solutions are expressed in the form of skin friction and Nusselt number, which are plotted against the eccentric angle. The effect of pertinent parameters such as mixed convection parameter, aspect ratio (ratio of lengths of minor axis to major axis), and Prandtl number on skin friction and Nusselt number are illustrated through graphs for both blunt and slender orientations. The increase in the value of mixed convection parameter results in increase in skin friction coefficient and Nusselt number for blunt as well as slender orientations.
Boundary layer roll circulations during FIRE
NASA Technical Reports Server (NTRS)
Shirer, Hampton N.; Haack, Tracy
1990-01-01
The probable mechanism underlying the development of boundary layer roll circulations are studied using wind and temperature profiles measured by the National Center for Atmospheric Research (NCAR) Electra during the stratocumulus phase of the First ISCCP Regional Experiment (FIRE). The expected, or preferred, roll orientations, horizontal wavelengths, and propagation periods are determined by finding the minimum values of the dynamic and thermodynamic forcing parameters, which here are the eddy Reynolds number (Re) and moist Rayleigh number (Ra sub m). These minimum values depend on the height z sub T of the capping temperature inversion and on the values of the Fourier coefficients of the background height-dependent vector wind profile. As input to our nonlinear spectral model, descent and ascent runs by the Electra provide for initial estimates of the inversion height and the wind profiles. In the first phase of the investigation presented here, a mechanism is said to be a probable contributor to the development of roll circulations within the stratocumulus-topped boundary layer if the modeled roll orientation and wavelengths agree with their observed values. Preliminary results using the 14-coefficient model of Haack-Hirschberg (1988) are discussed for the 7 July 1987 Electra Mission 188-A (Flight 5). This mission was flown across a sharp cloud boundary that was within a LANDSAT/SPOT scene. The stratocumulus deck was relatively solid in the eastern part of the scene, while there was a rapid decrease in cloud cover to scattered cumulus clouds aligned in streets to the west. These cloud streets were oriented nearly parallel to the mean wind direction in the layer, which was approximately 340 degrees. The hypothesis that roll circulations occurred in both the relatively clear and the cloudy regions is investigated using as model input a descent profile obtained in the relatively clear air and an ascent profile obtained in the cloudy air. Initial results for the clear air case are that the pure inflection point mode is not possible and the pure thermal mode was oriented 35 degrees to the right of the mean wind direction. The origin of this unacceptably large discrepancy between the observed and modeled results will be investigated further and the conclusions reported at the next FIRE workshop.
Ozone Chemistry in the High-Latitude Boundary Layer
Toohey, Darin W.
Ozone Chemistry in the High-Latitude Boundary Layer Linnea Avallone Department of Atmospheric layer ozone loss phenomenon · In situ observations of BrO at Arctic sites · Preliminary results from of boundary layer ozone loss #12;· Tropospheric Ozone has significant climate forcing at poles · ODEs affect
NASA Astrophysics Data System (ADS)
Matsuo, Yoshihiro; Clarke, Daryl D.; Ozeki, Shinichi
Friction materials such as disk pads, brake linings, and clutch facings are widely used for automotive applications. Friction materials function during braking due to frictional resistance that transforms kinetic energy into thermal energy. There has been a rudimentary evolution, from materials like leather or wood to asbestos fabric or asbestos fabric saturated with various resins such as asphalt or resin combined with pitch. These efforts were further developed by the use of woven asbestos material saturated by either rubber solution or liquid resin binder and functioned as an internal expanding brake, similar to brake lining system. The role of asbestos continued through the use of chopped asbestos saturated by rubber, but none was entirely successful due to the poor rubber heat resistance required for increased speeds and heavy gearing demands of the automobile industry. The use of phenolic resins as binder for asbestos friction materials provided the necessary thermal resistance and performance characteristics. Thus, the utility of asbestos as the main friction component, for over 100 years, has been significantly reduced in friction materials due to asbestos identity as a carcinogen. Steel and other fibrous components have displaced asbestos in disk pads. Currently, non-asbestos organics are the predominate friction material. Phenolic resins continue to be the preferred binder, and increased amounts are necessary to meet the requirements of highly functional asbestos-free disk pads for the automotive industry. With annual automobile production exceeding 70 million vehicles and additional automobile production occurring in developing countries worldwide and increasing yearly, the amount of phenolic resin for friction material is also increasing (Fig. 14.1).
Large-Eddy Simulation of the Flat-plate Turbulent Boundary Layer at High Reynolds numbers
NASA Astrophysics Data System (ADS)
Inoue, Michio
The near-wall, subgrid-scale (SGS) model [Chung and Pullin, "Large-eddy simulation and wall-modeling of turbulent channel flow'', J. Fluid Mech. 631, 281--309 (2009)] is used to perform large-eddy simulations (LES) of the incompressible developing, smooth-wall, flat-plate turbulent boundary layer. In this model, the stretched-vortex, SGS closure is utilized in conjunction with a tailored, near-wall model designed to incorporate anisotropic vorticity scales in the presence of the wall. The composite SGS-wall model is presently incorporated into a computer code suitable for the LES of developing flat-plate boundary layers. This is then used to study several aspects of zero- and adverse-pressure gradient turbulent boundary layers. First, LES of the zero-pressure gradient turbulent boundary layer are performed at Reynolds numbers Retheta based on the free-stream velocity and the momentum thickness in the range Retheta = 103-1012. Results include the inverse skin friction coefficient, 2/Cf , velocity profiles, the shape factor H, the Karman "constant", and the Coles wake factor as functions of Re theta. Comparisons with some direct numerical simulation (DNS) and experiment are made, including turbulent intensity data from atmospheric-layer measurements at Retheta = O (106). At extremely large Retheta , the empirical Coles-Fernholz relation for skin-friction coefficient provides a reasonable representation of the LES predictions. While the present LES methodology cannot of itself probe the structure of the near-wall region, the present results show turbulence intensities that scale on the wall-friction velocity and on the Clauser length scale over almost all of the outer boundary layer. It is argued that the LES is suggestive of the asymptotic, infinite Reynolds-number limit for the smooth-wall turbulent boundary layer and different ways in which this limit can be approached are discussed. The maximum Retheta of the present simulations appears to be limited by machine precision and it is speculated, but not demonstrated, that even larger Retheta could be achieved with quad- or higher-precision arithmetic. Second, the time series velocity signals obtained from LES within the logarithmic region of the zero-pressure gradient turbulent boundary layer are used in combination with an empirical, predictive inner--outer wall model [Marusic et al., "Predictive model for wall-bounded turbulent flow'', Science 329, 193 (2010)] to calculate the statistics of the fluctuating streamwise velocity in the inner region of the zero-pressure gradient turbulent boundary layer. Results, including spectra and moments up to fourth order, are compared with equivalent predictions using experimental time series, as well as with direct experimental measurements at Reynolds numbers Retau based on the friction velocity and the boundary layer thickness, Retau = 7,300, 13,600 and 19,000. LES combined with the wall model are then used to extend the inner-layer predictions to Reynolds numbers Retau = 62,000, 100,000 and 200,000 that lie within a gap in log(Retau) space between laboratory measurements and surface-layer, atmospheric experiments. The present results support a log-like increase in the near-wall peak of the streamwise turbulence intensities with Retau and also provide a means of extending LES results at large Reynolds numbers to the near-wall region of wall-bounded turbulent flows. Finally, we apply the wall model to LES of a turbulent boundary layer subject to an adverse pressure gradient. Computed statistics are found to be consistent with recent experiments and some Reynolds number similarity is observed over a range of two orders of magnitude.
The azimuthally averaged boundary layer structure of a numerically simulated major hurricane
NASA Astrophysics Data System (ADS)
Abarca, Sergio F.; Montgomery, Michael T.; McWilliams, James C.
2015-09-01
This work examines the azimuthally averaged boundary layer structure of a numerically simulated hurricane. We nominally define the hurricane boundary layer as the layer in which the effects of surface friction are associated with significant departures from gradient wind balance. The boundary layer in the intensifying primary and forming secondary eyewalls is found to be nonlinear. At large radii, exterior to the eyewalls, Ekman-like balance as traditionally defined, is found to hold true. Where significant departures from Ekman-like balance are found, the departures are characterized by large vertical advection of horizontal velocity through the depth of the boundary layer. Shock-like structures are not found to be prominent in the azimuthally averaged view of the vortex boundary layer, with the largest azimuthally averaged radial gradients of the radial and tangential velocities being on the order of only a few meters per second per kilometer. Also, in the radial regions of the eyewalls, at the height where the averaged tangential wind is a maximum, the radial advection of radial velocity is an order of magnitude smaller than the agradient force per unit mass. Some physical implications of these findings are discussed.
Turbulent eddy viscosity modeling in transonic shock/boundary-layer interactions
NASA Technical Reports Server (NTRS)
Inger, G. R.
1989-01-01
The treatment of turbulence effects on transonic shock/turbulent boundary layer interaction is addressed within the context of a triple deck approach valid for arbitrary practical Reynolds numbers between 1000 and 10 billion. The modeling of the eddy viscosity and basic turbulent boundary profile effects in each deck is examined in detail using Law-of-the-Wall/Law-of-the-Wake concepts as the foundation. Results of parametric studies showing how each of these turbulence model aspects influences typical interaction zone property distributions (wall pressure, displacement thickness and local skin friction) are presented and discussed.
Acoustics of laminar boundary layers breakdown
NASA Technical Reports Server (NTRS)
Wang, Meng
1994-01-01
Boundary layer flow transition has long been suggested as a potential noise source in both marine (sonar-dome self noise) and aeronautical (aircraft cabin noise) applications, owing to the highly transient nature of process. The design of effective noise control strategies relies upon a clear understanding of the source mechanisms associated with the unsteady flow dynamics during transition. Due to formidable mathematical difficulties, theoretical predictions either are limited to early linear and weakly nonlinear stages of transition, or employ acoustic analogy theories based on approximate source field data, often in the form of empirical correlation. In the present work, an approach which combines direct numerical simulation of the source field with the Lighthill acoustic analogy is utilized. This approach takes advantage of the recent advancement in computational capabilities to obtain detailed information about the flow-induced acoustic sources. The transitional boundary layer flow is computed by solving the incompressible Navier-Stokes equations without model assumptions, thus allowing a direct evaluation of the pseudosound as well as source functions, including the Lighthill stress tensor and the wall shear stress. The latter are used for calculating the radiated pressure field based on the Curle-Powell solution of the Lighthill equation. This procedure allows a quantitative assessment of noise source mechanisms and the associated radiation characteristics during transition from primary instability up to the laminar breakdown stage. In particular, one is interested in comparing the roles played by the fluctuating volume Reynolds stress and the wall-shear-stresses, and in identifying specific flow processes and structures that are effective noise generators.
Development of a laminar boundary layer behind a suction point
NASA Technical Reports Server (NTRS)
Wuest, Walter
1952-01-01
A theoretical investigation is made of the development of a laminar boundary layer behind a suction slot that is assumed to cut off part of the boundary layer without exerting any sink effect. The development, which is approximate, is based on the heat conduction equation. The heat conduction equation enters the analysis through a linearization of the Prandtl-Mises form of the boundary-layer equation.
Methods and results of boundary layer measurements on a glider
NASA Technical Reports Server (NTRS)
Nes, W. V.
1978-01-01
Boundary layer measurements were carried out on a glider under natural conditions. Two effects are investigated: the effect of inconstancy of the development of static pressure within the boundary layer and the effect of the negative pressure difference in a sublaminar boundary layer. The results obtained by means of an ion probe in parallel connection confirm those results obtained by means of a pressure probe. Additional effects which have occurred during these measurements are briefly dealt with.
Boundary Layer Transition Flight Experiment Implementation on OV-103
NASA Technical Reports Server (NTRS)
Spanos, Theodoros A.
2009-01-01
This slide presentation reviews the boundary layer transition experiment flown on Discovery. The purpose of the boundary layer transition flight experiment was to obtain hypersonic aero-thermodynamic data for the purpose of better understanding the flow transition from a laminar to turbulent boundary layer using a known height protuberance. The preparation of the shuttle is described, with the various groups responsibilities outlined. Views of the shuttle in flight with the experimental results are shown.
Improved Boundary Layer Depth Retrievals from MPLNET
NASA Technical Reports Server (NTRS)
Lewis, Jasper R.; Welton, Ellsworth J.; Molod, Andrea M.; Joseph, Everette
2013-01-01
Continuous lidar observations of the planetary boundary layer (PBL) depth have been made at the Micropulse Lidar Network (MPLNET) site in Greenbelt, MD since April 2001. However, because of issues with the operational PBL depth algorithm, the data is not reliable for determining seasonal and diurnal trends. Therefore, an improved PBL depth algorithm has been developed which uses a combination of the wavelet technique and image processing. The new algorithm is less susceptible to contamination by clouds and residual layers, and in general, produces lower PBL depths. A 2010 comparison shows the operational algorithm overestimates the daily mean PBL depth when compared to the improved algorithm (1.85 and 1.07 km, respectively). The improved MPLNET PBL depths are validated using radiosonde comparisons which suggests the algorithm performs well to determine the depth of a fully developed PBL. A comparison with the Goddard Earth Observing System-version 5 (GEOS-5) model suggests that the model may underestimate the maximum daytime PBL depth by 410 m during the spring and summer. The best agreement between MPLNET and GEOS-5 occurred during the fall and they diered the most in the winter.
Acoustic sounding in the planetary boundary layer
NASA Technical Reports Server (NTRS)
Kelly, E. H.
1974-01-01
Three case studies are presented involving data from an acoustic radar. The first two cases examine data collected during the passage of a mesoscale cold-air intrusion, probably thunderstorm outflow, and a synoptic-scale cold front. In these studies the radar data are compared to conventional meteorological data obtained from the WKY tower facility for the purpose of radar data interpretation. It is shown that the acoustic radar echoes reveal the boundary between warm and cold air and other areas of turbulent mixing, regions of strong vertical temperature gradients, and areas of weak or no wind shear. The third case study examines the relationship between the nocturnal radiation inversion and the low-level wind maximum or jet in the light of conclusions presented by Blackadar (1957). The low-level jet is seen forming well above the top of the inversion. Sudden rapid growth of the inversion occurs which brings the top of the inversion to a height equal that of the jet. Coincident with the rapid growth of the inversion is a sudden decrease in the intensity of the acoustic radar echoes in the inversion layer. It is suggested that the decrease in echo intensity reveals a decrease in turbulent mixing in the inversion layer as predicted by Blackadar. It is concluded that the acoustic radar can be a valuable tool for study in the lower atmosphere.
Structure and friction-reducing property of the sulfide layer produced by ion sulfuration
Ning, Z.; Da-Ming, Z.; Yan-Hua, W.; Jia-Jun, L.; Xiao-Dong, F.; Ming-Xi, G.
2000-04-01
Sulfide layers with a certain thickness were made on the surface of 1045 and 52100 steels by means of the low-temperature ion sulfuration technique. Metallography, scanning electron microscope (SEM) + energy-dispersive x-ray analysis (EDX), and x-ray diffraction (XRD) were adopted to analyze the structure of sulfide layers; the tribological properties of the layers lubricated by paraffin oil were also investigated on a reciprocating tester. The results showed that sulfide layer is porous, and its structure is mainly composed of FeS, FeS{sub 2}, and substrate phases. The sulfide layer possessed a remarkable friction-reducing effect; its friction coefficient was lower on average, by about 50%, than that of the surface without layer. With the increase of layer thickness, its friction coefficient was unchanged, and under low load conditions, its operational period was prolonged. Under the same experimental conditions, the operational period of sulfide layer on 52100 steel was longer than that on 1045 steel, and its friction coefficient was lower as well.
Force microscopy of layering and friction in an ionic liquid Judith Hotha,b
Mueser, Martin
Force microscopy of layering and friction in an ionic liquid Judith Hotha,b , Florian Hausena,1 of atomic force microscopy (AFM) under electrochemical control. Up to twelve layers of ion pairs can be detected through force measurements while approaching the tip of the AFM to the surface. The particular
Observations of the magnetospheric boundary layers. [International Magnetospheric Study
NASA Technical Reports Server (NTRS)
Eastman, T. E.
1984-01-01
Results on magnetospheric boundary layers are reviewed, emphasizing their dynamical importance based on hot plasma observations, energetic particle signatures, heavy ion contributions and the effects of wave-particle interactions. Satellite plasma observations show that 1% to 2% of the oncoming solar wind plasma enters the magnetosphere and is initially transported within the magnetospheric boundary layer. Some of this boundary layer plasma is entrained within the Earth's magnetotail where it can be accelerated. Tests are needed to determine the relative contributions of the primary acceleration processes whose effects are especially evident in the plasma sheet boundary layer.
NASA Technical Reports Server (NTRS)
Barnwell, R. W.; Dejarnette, F. R.; Wahls, R. A.
1987-01-01
A new turbulent boundary-layer method is developed which models the inner region with the law of the wall while the outer region uses Clauser's eddy viscosity in Matsuno's finite-difference method. The match point between the inner and outer regions as well as the wall shear stress are determined at each marching step during the computation. Results obtained for incompressible, two-dimensional flow over flat plates and ellipses are compared with solutions from a baseline method which uses a finite-difference method for the entire boundary layer. Since the present method used the finite-difference method in the outer region only, the number of grid points required was about half that needed for the baseline method. Accurate displacement and momentum thicknesses were predicted for all cases. Skin friction was predicted well for the flat plate, but the accuracy decreased significantly for the ellipses. Adding a wake functions to the law of the wall allows some of the pressure gradient effect to be taken into account thereby increasing the accuracy of the method.
NASA Astrophysics Data System (ADS)
Marsham, J. H.; Parker, D. J.; Grams, C. M.; Grey, W. M. F.; Johnson, B. T.
2008-05-01
Observations of the Saharan boundary layer, made during the GERBILS field campaign, show that mesoscale land surface temperature variations (which were related to albedo variations) induced mesoscale circulations, and that mesoscale and boundary-layer circulations affected dust uplift and transport. These processes are unrepresented in many climate models, but may have significant impacts on the vertical transport and uplift of desert dust. Mesoscale effects in particular tend to be difficult to parameterise. With weak winds along the aircraft track, land surface temperature anomalies with scales of greater than 10 km are shown to significantly affect boundary-layer temperatures and winds. Such anomalies are expected to affect the vertical mixing of the dusty and weakly stratified Saharan Air Layer (SAL). Mesoscale variations in winds are also shown to affect dust loadings in the boundary-layer. In a region of local uplift, with strong along-track winds, boundary-layer rolls are shown to lead to warm moist dusty updraughts in the boundary layer. Large eddy model (LEM) simulations suggest that these rolls increased uplift by approximately 30%. The modelled effects of boundary-layer convection on uplift is shown to be larger when the boundary-layer wind is decreased, and most significant when the mean wind is below the threshold for dust uplift and the boundary-layer convection leads to uplift which would not otherwise occur.
NASA Astrophysics Data System (ADS)
Nowotarski, Christopher J.
Nearly all previous numerical simulations of supercell thunderstorms have neglected surface uxes of heat, moisture, and momentum as well as horizontal inhomogeneities in the near-storm environment from resulting dry boundary layer convection. This investigation uses coupled radiation and land-surface schemes within an idealized cloud model to identify the effects of organized boundary layer convection in the form of horizontal convective rolls (HCRs) on the strength, structure, and evolution of simulated supercell thunderstorms. The in uence of HCRs and the importance of their orientation relative to storm motion is tested by comparing simulations with a convective boundary layer (CBL) against those with a horizontally homogeneous base state having the same mean environment. The impact of anvil shading on the CBL is tested by comparing simulations with and without the effects of clouds in the radiative transfer scheme. The results of these simulations indicate that HCRs provide a potentially important source of environmental vertical vorticity in the sheared, near-storm boundary layer. These vorticity perturbations are amplified both beneath the main supercell updraft and along the trailing out ow boundary, leading to the formation of occasionally intense misovortices. HCRs perpendicular to storm motion are found to have a detrimental effect on the strength and persistence of the lowlevel mesocyclone, particularly during its initial development. Though the mean environment is less supportive of low-level rotation with a wind profile conducive to HCRs oriented parallel to storm motion, such HCRs are found to often enhance the low-level mesocyclone circulation. When anvil shading is included, stabilization results in generally weaker low-level mesocyclone circulation, regardless of HCR orientation. Moreover, HCRs diminish in the near-storm environment such that the effects of HCRs on the supercell are mitigated. HCRs are also shown to be a necessary condition for the formation of so-called "feeder clouds" and anking line convection in these simulations. These findings suggest potentially important rami fications regarding both non-mesocyclone and mesocyclone tornadoes in supercell thunderstorms in an environment with active boundary layer convection.
Drag of a turbulent boundary layer with transverse 2D circular rods on the wall
NASA Astrophysics Data System (ADS)
Kamruzzaman, Md; Djenidi, L.; Antonia, R. A.; Talluru, K. M.
2015-06-01
In this paper, we present the results of a turbulent boundary layer developing over a rod-roughened wall with a spacing of ( is the spacing between two adjacent roughness elements, and is the rod diameter). Static pressure measurements are taken around a single roughness element to accurately determine the friction velocity, and the error in the origin, , which are the two prominent issues that surround rough-wall boundary layers. In addition, velocity measurements are taken at several streamwise locations using hot-wire anemometry to obtain from the momentum integral equation. Results showed that both methods give consistent values for , indicating that the contribution of the viscous drag over this rough wall is negligible. This supports the results of Perry et al. (J Fluid Mech 177:437-466, 1969) and Antonia and Luxton (J Fluid Mech 48(04):721-761, 1971) in a boundary layer and of Leonardi et al. (2003) in a channel flow but does not agree with those of Furuya et al. (J Fluids Eng 98(4):635-643, 1976). The results show that both and can be unambiguously measured on this particular rough wall. This paves the way for a proper comparison between the boundary layer developing over this wall and the smooth-wall turbulent boundary layer.
Stationary flow of non-Newtonian fluid with nonmonotone frictional boundary conditions
NASA Astrophysics Data System (ADS)
Dudek, Sylwia; Kalita, Piotr; Migórski, Stanis?aw
2015-10-01
We study the stationary two-dimensional incompressible flow of non-Newtonian fluid governed by a nonlinear constitutive law and with a multivalued nonmonotone subdifferential frictional boundary condition. We provide an abstract result on existence of solution to an operator inclusion modeling the flow phenomenon. We prove a theorem on existence and, under additional assumptions, also uniqueness of weak solution to the flow problem.
Three-dimensional boundary layer stability and transition
NASA Technical Reports Server (NTRS)
Malik, M. R.; Li, F.
1992-01-01
Nonparallel and nonlinear stability of a three-dimensional boundary layer, subject to crossflow instability, is investigated using parabolized stability equations (PSEs). Both traveling and stationary disturbances are considered and nonparallel effect on crossflow instability is found to be destabilizing. Our linear PSE results for stationary disturbances agree well with the results from direct solution of Navier-Stokes equations obtained by Spalart (1989). Nonlinear calculations have been carried out for stationary vortices and the computed wall vorticity pattern results in streamwise streaks which resemble remarkably well with the surface oil-flow visualizations in swept-wing experiments. Other features of the stationary vortex development (half-mushroom structure, inflected velocity profiles, vortex doubling, etc.) are also captured in our nonlinear calculations. Nonlinear interaction of the stationary amplitude of the stationary vortex is large as compared to the traveling mode, and the stationary vortex dominates most of the downstream development. When the two modes have the same initial amplitude, the traveling mode dominates the downstream development owing to its higher growth rate, and there is a tendency for the stationary mode to be suppressed. The effect of nonlinear wave development on the skin-friction coefficient is also computed.
Role of friction in pattern formation in oscillated granular layers Sung Joon Moon, # J. B. Swift grains. Our molecular dynamics simu lations reveal that friction is essential for realistic modeling at a container acceleration about 30% smaller than that observed in experiments and simulations with friction
Role of friction in pattern formation in oscillated granular layers Sung Joon Moon,* J. B. Swift as there are no elastic grains. Our molecular dynamics simulations reveal that friction is essential for realistic with friction. More importantly, even though square and hexagonal patterns form for a wide range
A New View on Origin, Role and Manipulation of Large Scales in Turbulent Boundary Layers
NASA Technical Reports Server (NTRS)
Corke, T. C.; Nagib, H. M.; Guezennec, Y. G.
1982-01-01
The potential of passive 'manipulators' for altering the large scale turbulent structures in boundary layers was investigated. Utilizing smoke wire visualization and multisensor probes, the experiment verified that the outer scales could be suppressed by simple arrangements of parallel plates. As a result of suppressing the outer scales in turbulent layers, a decrease in the streamwise growth of the boundary layer thickness was achieved and was coupled with a 30 percent decrease in the local wall friction coefficient. After accounting for the drag on the manipulator plates, the net drag reduction reached a value of 20 percent within 55 boundary layer thicknesses downstream of the device. No evidence for the reoccurrence of the outer scales was present at this streamwise distance thereby suggesting that further reductions in the net drag are attainable. The frequency of occurrence of the wall events is simultaneously dependent on the two parameters, Re2 delta sub 2 and Re sub x. As a result of being able to independently control the inner and outer boundary layer characteristics with these manipulators, a different view of these layers emerged.
Boundary layer features observed during NAME 2004
NASA Astrophysics Data System (ADS)
Stuckmeyer, Elizabeth A.
2011-12-01
S-Pol radar data from the North American Monsoon Experiment (NAME) are examined to investigate the characteristics of sea breezes that occurred during the North American Monsoon in the late summer of 2004, as well as their role in modulating monsoon convection. Zero degree plan position indicated (PPI) scans were examined to determine the presence of a sea breeze fine line in the S-Pol radar data. Sea breeze fine lines were typically observed over land very near the coast of the Gulf of California (GoC), and usually moved onshore around 1700--1800 UTC (11:00 AM--12:00 PM local time), and then continued to move slowly inland on the coastal plain. The sea breezes typically moved on land and dissipated before any significant interactions with Sierra Madre Occidental (SMO) convection could occur. Fine lines varied in reflectivity strength, but were typically around 10 to 20 dBZ. Surface winds from the Estacion Obispo (ETO) supersite were analyzed to confirm the presence of a shift in wind direction on days in which a fine line had been identified. Typically winds changed from light and variable to consistently out of the west or southwest. Vertical plots of S-Pol reflectivity were created to examine sea breeze structure in the vertical, but these were not found to be useful as the sea breeze signature was nearly impossible to distinguish from other boundary layer features. Horizontal structure was further investigated using wind profiler relative reflectivity, vertical velocity, and horizontal winds from the profiler located at ETO. Relative reflectivity and vertical velocity fields revealed a complex boundary layer structure on some days of repeating updrafts and downdrafts. Further examination of S-Pol PPI data revealed that these vertical motions are likely due to the presence of horizontal convective rolls. Profiler horizontal winds revealed that the depth and vertical structure of the sea breezes varied significantly from day to day, but that the height of the sea breeze is around 1 km above the ground. Sea breezes observed during NAME almost never initiated convection on their own. It is hypothesized that a weak thermal contrast between the GoC and the land leads to comparatively weak sea breezes, which don't have enough lift to trigger convection.
The role of adsorbed water on the friction of a layer of submicron particles
Sammis, Charles G.; Lockner, David A.; Reches, Ze’ev
2011-01-01
Anomalously low values of friction observed in layers of submicron particles deformed in simple shear at high slip velocities are explained as the consequence of a one nanometer thick layer of water adsorbed on the particles. The observed transition from normal friction with an apparent coefficient near ? = 0.6 at low slip speeds to a coefficient near ? = 0.3 at higher slip speeds is attributed to competition between the time required to extrude the water layer from between neighboring particles in a force chain and the average lifetime of the chain. At low slip speeds the time required for extrusion is less than the average lifetime of a chain so the particles make contact and lock. As slip speed increases, the average lifetime of a chain decreases until it is less than the extrusion time and the particles in a force chain never come into direct contact. If the adsorbed water layer enables the otherwise rough particles to rotate, the coefficient of friction will drop to ? = 0.3, appropriate for rotating spheres. At the highest slip speeds particle temperatures rise above 100°C, the water layer vaporizes, the particles contact and lock, and the coefficient of friction rises to ? = 0.6. The observed onset of weakening at slip speeds near 0.001 m/s is consistent with the measured viscosity of a 1 nm thick layer of adsorbed water, with a minimum particle radius of approximately 20 nm, and with reasonable assumptions about the distribution of force chains guided by experimental observation. The reduction of friction and the range of velocities over which it occurs decrease with increasing normal stress, as predicted by the model. Moreover, the analysis predicts that this high-speed weakening mechanism should operate only for particles with radii smaller than approximately 1 ?m. For larger particles the slip speed required for weakening is so large that frictional heating will evaporate the adsorbed water and weakening will not occur.
Effect of sound on boundary layer stability
NASA Technical Reports Server (NTRS)
Saric, William S.; Spencer, Shelly Anne
1993-01-01
Experiments are conducted in the Arizona State University Unsteady Wind Tunnel with a zero-pressure-gradient flat-plate model that has a 67:1 elliptical leading edge. Boundary-layer measurements are made of the streamwise fluctuating-velocity component in order to identify the amplified T-S waves that are forced by downstream-traveling sound waves. Measurements are taken with circular 3-D roughness elements placed at the Branch 1 neutral stability point for the frequency under consideration, and then with the roughness element downstream of Branch 1. These roughness elements have a principal chord dimension equal to 2 lambda(sub TS)/pi of the T-S waves under study and are 'stacked' in order to resemble a Gaussian height distribution. Measurements taken just downstream of the roughness (with leading-edge T-S waves, surface roughness T-S waves, instrumentation sting vibrations, and the Stokes wave subtracted) show the generation of 3-D T-S waves, but not in the characteristic heart-shaped disturbance field predicted by 3-D asymptotic theory. Maximum disturbance amplitudes are found on the roughness centerline. However, some near-field characteristics predicted by numerical modeling are observed.
Effect of sound on boundary layer stability
NASA Technical Reports Server (NTRS)
Saric, William S. (Principal Investigator); Spencer, Shelly Anne
1993-01-01
Experiments are conducted in the Arizona State University Unsteady Wind Tunnel with a zero-pressure-gradient flat-plate model that has a 67:1 elliptical leading edge. Boundary-layer measurements are made of the streamwise fluctuating-velocity component in order to identify the amplified T-S waves that are forced by downstream-travelling, sound waves. Measurements are taken with circular 3-D roughness elements placed at the Branch 1 neutral stability point for the frequency under consideration, and then with the roughness element downstream of Branch 1. These roughness elements have a principal chord dimension equal to 2(lambda)(sub TS)/pi, of the T-S waves under study and are 'stacked' in order to resemble a Gaussian height distribution. Measurements taken just downstream of the roughness (with leading-edge T-S waves, surface roughness T-S waves, instrumentation sting vibrations and the Stokes wave subtracted) show the generation of 3-D-T-S waves, but not in the characteristic heart-shaped disturbance field predicted by 3-D asymptotic theory. Maximum disturbance amplitudes are found on the roughness centerline. However, some near-field characteristics predicted by numerical modelling are observed.
Helical circulations in the typhoon boundary layer Ryan Ellis1
Businger, Steven
., 2008]. Numerical studies include two-scale boundary layer models [Ginis et al., 2004] and 3-D idealized observations of Zhang et al. [2008] and the two-scale boundary layer model of Ginis et al. [2004]. Ginis et al. [2008]. This may help explain damage patterns observed by Fujita [1992] in hurricanes Andrew and Iniki
LARGE EDDY SIMULATION OF TURBULENT BOUNDARY LAYERS OVER ROUGH BEDS
Pawlak, Geno
LARGE EDDY SIMULATION OF TURBULENT BOUNDARY LAYERS OVER ROUGH BEDS Krishnakumar Rajagopalan) is then used to simulate the turbulent boundary layer over the rough beds. The LES solver is first validated, pp 75-112. 3. JimÃ©nez J. Turbulent Flows over Rough Walls, Annu. Rev. Fluid mech. 2004. v36. pp173-96
NASA Astrophysics Data System (ADS)
Attili, Basem S.
2011-09-01
A boundary value method for solving a class of nonlinear singularly perturbed two point boundary value problems with a boundary layer at one end is proposed. Using singular perturbation analysis the method consists of solving two problems; namely, a reduced problem and a boundary layer correction problem. We use Pade' approximation to obtain the solution of the latter problem and to satisfy the condition at infinity. Numerical examples will be given to illustrate the method.
Friction phenomena in the overdamped three-layer model.
Jia, Li-Ping; Teki?, Jasmina; Yang, Yang; Wang, Cang-Long; Duan, Wen-Shan; Yang, Lei
2015-02-01
An overdamped three-layer model consisting of two harmonic chains of interacting particles, representing the upper and the middle layers, which move over the substrate potential, is studied in the present paper. A dc+ac force is applied only on the upper harmonic chain, and dynamics of both layers are investigated. The results show that the dynamical mode locking and Shapiro steps appear not only in the upper layer but also in the middle one. It is noted that the motion of particles in the upper layer corresponds to the standard Frenkel-Kontorova model. The dependence of the Shapiro steps of the middle layer on the system parameters are determined. It is shown that the height of the first Shapiro step of the upper layer is unrelated to the interaction parameters of the particles of both the upper and the middle layers, while the height of the first Shapiro step of the middle layer depend only on the interaction parameters of the particles of the middle layers. Two critical forces which transfer from locked state to the sliding one of both the upper and the middle layers are also studied. They depend on the amplitude and the frequency of the external ac driving force. PMID:25768573
Interaction between surface and atmosphere in a convective boundary layer
NASA Astrophysics Data System (ADS)
Garai, Anirban
Solar heating of the surface causes the near surface air to warm up and with sufficient buoyancy it ascends through the atmosphere as surface-layer plumes and thermals. The cold fluid from the upper part of the boundary layer descends as downdrafts. The downdrafts and thermals form streamwise roll vortices. All these turbulent coherent structures are important because they contribute most of the momentum and heat transport. While these structures have been studied in depth, their imprint on the surface through energy budget in a convective atmospheric boundary layer has received little attention. The main objective of the present study is to examine the turbulence-induced surface temperature fluctuations for different surface properties and stratification. Experiments were performed to measure atmospheric turbulence using sonic anemometers, fine wire thermocouples and LIDAR; and surface temperature using an infra-red camera over grass and artificial turf fields. The surface temperature fluctuations were found to be highly correlated to the turbulent coherent structures and follow the processes postulated in the surface renewal theory. The spatio-temporal scales and advection speed of the surface temperature fluctuation were found to match with those of turbulent coherent structures. A parametric direct numerical simulation (DNS) study was then performed by solving the solid-fluid heat transport mechanism numerically for varying solid thermal properties, solid thickness and strength of stratification. Even though there were large differences in the friction Reynolds and Richardson numbers between the experiments and numerical simulations, similar turbulent characteristics were observed. The ejection (sweep) events tend to be aligned with the streamwise direction to form roll vortices with unstable stratification. The solid-fluid interfacial temperature fluctuations increase with the decreases in solid thermal inertia; and with the increase in solid thickness to attain a constant value for a sufficiently thick solid. The temperature fluctuation changes from a Gaussian distribution near the wall to a positively skewed distribution away from the wall. The turbulent temperature fluctuations influence the solid interfacial temperature by thermal conduction only. These studies provided unique insights into the solid-fluid coupled heat transport in low and high Reynolds number flows. This turbulence induced surface temperature fluctuation can influence the performances of several satellite remote sensing models.
Destiny of earthward streaming plasma in the plasmasheet boundary layer
NASA Technical Reports Server (NTRS)
Green, J. L.; Horwitz, J. L.
1986-01-01
The dynamics of the earth's magnetotail have been investigated, and it has become clear that the plasmasheet boundary layer field lines map into the Region I Field-Aligned Currents (FAC) of the auroral zone. It is pointed out that the role of earthward streaming ions in the plasmasheet boundary layer may be of fundamental importance in the understanding of magnetotail dynamics, auroral zone physics, and especially for ionospheric-magnetospheric interactions. The present paper has the objective to evaluate propagation characteristics for the earthward streaming ions observed in the plasmasheet boundary layer. An investigation is conducted of the propagation characteristics of protons in the plasmasheet boundary layer using independent single particle dynamics, and conclusions are discussed. The density of earthward streaming ions found in the plasmasheet boundary layer should include the ring current as well as the auroral zone precipitaiton and inner plasmasheet regions of the magnetosphere.
Pitot-probe displacement in a supersonic turbulent boundary layer
NASA Technical Reports Server (NTRS)
Allen, J. M.
1972-01-01
Eight circular pitot probes ranging in size from 2 to 70 percent of the boundary-layer thickness were tested to provide experimental probe displacement results in a two-dimensional turbulent boundary layer at a nominal free-stream Mach number of 2 and unit Reynolds number of 8 million per meter. The displacement obtained in the study was larger than that reported by previous investigators in either an incompressible turbulent boundary layer or a supersonic laminar boundary layer. The large probes indicated distorted Mach number profiles, probably due to separation. When the probes were small enough to cause no appreciable distortion, the displacement was constant over most of the boundary layer. The displacement in the near-wall region decreased to negative displacement in some cases. This near-wall region was found to extend to about one probe diameter from the test surface.
NASA Technical Reports Server (NTRS)
Houdeville, R.; Cousteix, J.
1979-01-01
The development of a turbulent unsteady boundary layer with a mean pressure gradient strong enough to induce separation, in order to complete the extend results obtained for the flat plate configuration is presented. The longitudinal component of the velocity is measured using constant temperature hot wire anemometer. The region where negative velocities exist is investigated with a laser Doppler velocimeter system with BRAGG cells. The boundary layer responds by forced pulsation to the perturbation of potential flow. The unsteady effects observed are very important. The average location of the zero skin friction point moves periodically at the perturbation frequency. Average velocity profiles from different instants in the cycle are compared. The existence of a logarithmic region enables a simple calculation of the maximum phase shift of the velocity in the boundary layer. An attempt of calculation by an integral method of boundary layer development is presented, up to the point where reverse flow starts appearing.
Hogan, Robin
Many studies evaluating model boundary-layer schemes focus either on near-surface parameters for use in model evaluation. In this paper we show how surface and long-term Doppler lidar observations in the UK to evaluate a climatology of boundary layer type forecast by the UK Met Office Unified Model
On Reflection of Shock Waves from Boundary Layers
NASA Technical Reports Server (NTRS)
Liepmann, H W; Roshko, A; Dhawan, S
1952-01-01
Measurements are presented at Mach numbers from about 1.3 to 1.5 of reflection characteristics and the relative upstream influence of shock waves impinging on a flat surface with both laminar and turbulent boundary layers. The difference between impulse and step waves is discussed and their interaction with the boundary layer is compared. General considerations on the experimental production of shock waves from wedges and cones and examples of reflection of shock waves from supersonic shear layers are also presented.
Symmetries in Turbulent Boundary Layer Flows
NASA Technical Reports Server (NTRS)
Oberlack, M.
1996-01-01
The objective is the development of a new theory which enables the algorithmic computation of all self-similar mean velocity profiles. The theory is based on Liegroup analysis and unifies a large set of self-similar solutions for the mean velocity of stationary parallel turbulent shear flows. The results include the logarithmic law of the wall, an algebraic law, the viscous sublayer, the linear region in the middle of a Couette flow and in the middle of a rotating channel flow, and a new exponential mean velocity profile not previously reported. Experimental results taken in the outer parts of a high Reynolds number flat-plate boundary layer, strongly support the exponential profile. From experimental as well as from DNS data of a turbulent channel flow the algebraic scaling law could be confirmed in both the center region and in the near wall region. In the case of the logarithmic law of the wall, the scaling with the wall distance arises as a result of the analysis and has not been assumed in the derivation. The crucial part of the derivation of all the different mean velocity profiles is to consider the invariance of the equation for the velocity fluctuations at the same time as the invariance of the equation for the velocity product equations. The latter is the dyad product of the velocity fluctuations with the equation for the velocity fluctuations. It has been proven that all the invariant solutions are also consistent with similarity of all velocity moment equations up to any arbitrary order.
Boundary-layer type classification and pollutant mixing
NASA Astrophysics Data System (ADS)
Harvey, N. J.
For the first time, Doppler lidar and sonic anemometer data are used to objectively classify the observed boundary layer into nine different types based on the Met Office scheme. Examples of these types are decoupled stratocumulus cloud, cumulus capped and stable with no turbulent cloud. This method is applied to three years of data from the Chilbolton Observatory, UK, to create climatology of boundary-layer type. This climatology exhibits clear seasonal and diurnal cycles with the most common type over the three years being a cloud-free stable boundary layer. The decoupled stratocumulus type and the cumulus cloud under a stratocumulus layer type are diagnosed 10.3% and 1.0% of the period respectively. This new observationally based boundary layer classification is used to evaluate the boundary-layer type diagnosed by the 4 km and 12 km resolution versions of the Met Office Unified Model. The model is found to predict too many decoupled stratocumulus boundary layers by a factor of 1.8, in both the stable and unstable regime. Stratocumulus cloud is present in the morning in the model but it is underestimated in the afternoon. The skill of the model in predicting boundary-layer type at the correct time has also been assessed using the symmetric extremal, dependence index measure of skill. This analysis revealed that the skill of predicting the correct boundary-layer cloud type was much lower than the skill of predicting the presence of cloud. The skill of prediction is not affected by model resolution. Finally, a set of idealised single column modelling experiments have been conducted to investigate the impact of boundary-layer type diagnosis on the vertical distribution of pollutants.
The friction factor of two-dimensional rough-boundary turbulent soap film flows
Nicholas Guttenberg; Nigel Goldenfeld
2009-03-25
We use momentum transfer arguments to predict the friction factor $f$ in two-dimensional turbulent soap-film flows with rough boundaries (an analogue of three-dimensional pipe flow) as a function of Reynolds number Re and roughness $r$, considering separately the inverse energy cascade and the forward enstrophy cascade. At intermediate Re, we predict a Blasius-like friction factor scaling of $f\\propto\\textrm{Re}^{-1/2}$ in flows dominated by the enstrophy cascade, distinct from the energy cascade scaling of $\\textrm{Re}^{-1/4}$. For large Re, $f \\sim r$ in the enstrophy-dominated case. We use conformal map techniques to perform direct numerical simulations that are in satisfactory agreement with theory, and exhibit data collapse scaling of roughness-induced criticality, previously shown to arise in the 3D pipe data of Nikuradse.
Boundary Layer Rolls Observed Above and Below a Jet in a Marine Boundary Layer
NASA Astrophysics Data System (ADS)
Foster, R. C.; Emmitt, G. D.; Godwin, K.; Greco, S.
2013-12-01
We have flown a coherent Doppler wind lidar (DWL) on the Cirpas Twin Otter off the California coast near Monterey since 2003. One scientific purpose of these flights is to understand the relationship between the turbulent fluxes measured on the aircraft or on other platforms and the observed structure of the marine boundary layer (MBL). Two common features are found in the MBL flow: (1) a strong jet at approximately 200 m above the sea surface; and (2) organized large eddies (OLE) in the form of roll vortices that are approximately aligned along the mean wind direction. On two flights (April 13, 2007 and September 30, 2012), the DWL data indicated that roll OLE existed simultaneously both above and below the jet. The DWL winds suggest that the OLE in these layers are sometimes independent and sometimes connected. Standard flux data are obtained on the Twin Otter at flight level, which is nominally 300 m. The 10 Hz wind and temperature data exhibit variability at spatial scales corresponding to the OLE wavelength. We have constructed a nonlinear theoretical model that includes triad wave-wave interactions to test the hypothesis that rolls could form both above and below the jet. This model shows that this is possible and that the rolls in the two layers could have unique characteristics compared to standard boundary layer rolls. The model further shows that the rolls above and below the jet are due to separate instabilities that interact. This is consistent with the observations of both connected and independent OLE above and below the jet. Contrast-enhanced DWL line-of-sight winds. Jet maximum 200 m below aircraft. Typical resonant triad solution for rolls above and below a PBL jet.
On the theory of laminar boundary layers involving separation
NASA Technical Reports Server (NTRS)
Von Karman, TH; Millikan, C
1934-01-01
This paper presents a mathematical discussion of the laminar boundary layer, which was developed with a view of facilitating the investigation of those boundary layers in particular for which the phenomenon of separation occurs. The treatment starts with a slight modification of the form of the boundary layer equation first published by Von Mises. Two approximate solutions of this equation are found, one of which is exact at the outer edge of the boundary layer while the other is exact at the wall. The final solution is obtained by joining these two solutions at the inflection points of the velocity profiles. The final solution is given in terms of a series of universal functions for a fairly broad class of potential velocity distributions outside of the boundary layer. Detailed calculations of the boundary layer characteristics are worked out for the case in which the potential velocity is a linear function of the distance from the upstream stagnation point. Finally, the complete separation point characteristics are determined for the boundary layer associated with a potential velocity distribution made up of two linear functions of the distance from the stagnation point. It appears that extensions of the detailed calculations to more complex potential flows can be fairly easily carried out by using the explicit formulae given in the paper. (author)
Implementation of wall boundary conditions for transpiration in F3D thin-layer Navier-Stokes code
NASA Technical Reports Server (NTRS)
Kandula, M.; Martin, F. W., Jr.
1991-01-01
Numerical boundary conditions for mass injection/suction at the wall are incorporated in the thin-layer Navier-Stokes code, F3D. The accuracy of the boundary conditions and the code is assessed by a detailed comparison of the predictions of velocity distributions and skin-friction coefficients with exact similarity solutions for laminar flow over a flat plate with variable blowing/suction, and measurements for turbulent flow past a flat plate with uniform blowing. In laminar flow, F3D predictions for friction coefficient compare well with exact similarity solution with and without suction, but produces large errors at moderate-to-large values of blowing. A slight Mach number dependence of skin-friction coefficient due to blowing in turbulent flow is computed by F3D code. Predicted surface pressures for turbulent flow past an airfoil with mass injection are in qualitative agreement with measurements for a flat plate.
Boundary layer for the NavierStokesalpha model of fluid turbulence #
Cheskidov, Alexey
as in the turbulent boundary layer for moderately large Reynolds numbers. 1. Introduction 1.1. Boundary layer BoundaryÂlayerBoundary layer for the NavierÂStokesÂalpha model of fluid turbulence # A. CHESKIDOV Abstract We study boundary layer turbulence using the NavierÂStokesÂalpha model obÂ taining an extension
Boundary layer for the Navier-Stokes-alpha model of fluid turbulence
Cheskidov, Alexey
, and boundary layer equations for the averaged quantities Â¯u, Â¯v, Â¯p and fluctuating parts u , and v can as in the turbulent boundary layer for moderately large Reynolds numbers. 1. Introduction 1.1. Boundary layer Boundary-layerBoundary layer for the Navier-Stokes-alpha model of fluid turbulence A. CHESKIDOV Abstract We study
NASA Technical Reports Server (NTRS)
Shaw, R. J.
1979-01-01
The forced mixing process of a turbulent boundary layer in an axisymmetric annular diffuser using conventional wing-like vortex generators was studied. Flow field measurements were made at four axial locations downstream of the vortex generators. At each axial location, a total of 25 equally spaced profiles were measured behind three consecutive vortex generators which formed two pairs of vortex generators. Hot film anemometry probes measured the boundary layer turbulence structure at the same locations where pressure measurements were made. Both single and cross film probes were used. The diffuser turbulence data was teken only for a nominal inlet Mach number of 0.3. Three vortex generator configurations were tested. The differences between configurations involved changes in size and relative vortex generator positions. All three vortex generator configurations tested provided increases in diffuser performance. Distinct differences in the boundary layer integral properties and skin friction levels were noted between configurations. The axial turbulence intensity and Reynolds stress profiles measured displayed similarities in trends but differences in levels for the three configurations.
NASA Astrophysics Data System (ADS)
Williams, Peter T.
2016-01-01
Twenty-five years ago, Pringle suggested a boundary-layer origin for jets from YSOs. The jets were driven by a toroidal magnetic field generated by strong shear in the accretion boundary layer. Such a mechanism is clearly non-magnetocentrifugal in nature.Nearly fifteen years ago, we suggested a cartoon of the jet-launching mechanism in protostars in which shear, acting upon MHD turbulence generated by the magnetorotational instability (MRI), generated a tangled, toroidal magnetic field capable of driving a jet. This picture, which is also manifestly non-magnetocentrifugal in nature, relied upon a novel model for MRI-driven MHD turbulence based on a viscoelastic, rather than a viscous, prescription for the turbulent stress. Our hypothesis has some clear similarities to Pringle's mechanism, but it relied upon a large envelope surrounding the central star.An accretion boundary layer has long been recognized as a promising source for protostellar jets in good part because in a standard thin disk, matter loses circa half of all its accretion energy in this layer, but it is problematic to drive a well-collimated outflow from a boundary layer in a thin disk. In this presentation, we argue paradoxically that the "boundary layer" can drive jets when a true boundary layer, like the thin disk, does not exist. This changes the inner boundary condition for viscous angular momentum flux in the disk.The standard argument for a thin boundary layer is, we argue, circular. In high accretion-rate systems, or when the gas cannot cool efficiently, there is no reason to suspect the turbulent viscosity in this boundary layer to be small, and therefore neither is the boundary layer. When the boundary layer becomes larger than the central accretor itself, it is arguably no longer a boundary layer, but rather an envelope. It is still, however, a substantial source of power and toroidal MRI-driven magnetic fields.It is, again, only in relatively hot or high-accretion rate systems in which the boundary layer would be expected to inflate and so disappear. Not coincidentally, it is in such systems, such as Class 0 and Class I protostars, in which we have the strongest evidence for powerful, well-collimated jet outflows.
NASA Technical Reports Server (NTRS)
Miner, E. W.; Lewis, C. H.
1972-01-01
An implicit finite difference method has been applied to tangential slot injection into supersonic turbulent boundary layer flows. In addition, the effects induced by the interaction between the boundary layer displacement thickness and the external pressure field are considered. In the present method, three different eddy viscosity models have been used to specify the turbulent momentum exchange. One model depends on the species concentration profile and the species conservation equation has been included in the system of governing partial differential equations. Results are compared with experimental data at stream Mach numbers of 2.4 and 6.0 and with results of another finite difference method. Good agreement was generally obtained for the reduction of wall skin friction with slot injection and with experimental Mach number and pitot pressure profiles. Calculations with the effects of pressure interaction included showed these effects to be smaller than effects of changing eddy viscosity models.
Investigation of blown boundary layers with an improved wall jet system
NASA Technical Reports Server (NTRS)
Saripalli, K. R.; Simpson, R. L.
1980-01-01
Measurements were made in a two dimensional incompressible wall jet submerged under a thick upstream boundary layer with a zero pressure gradient and an adverse pressure gradient. The measurements included mean velocity and Reynolds stresses profiles, skin friction, and turbulence spectra. The measurements were confined to practical ratios (less than 2) of the jet velocity to the free stream velocity. The wall jet used in the experiments had an asymmetric velocity profile with a relatively higher concentration of momentum away from the wall. An asymmetric jet velocity profile has distinct advantages over a uniform jet velocity profile, especially in the control of separation. Predictions were made using Irwin's (1974) method for blown boundary layers. The predictions clearly show the difference in flow development between an asymmetric jet velocity profile and a uniform jet velocity profile.
The Compressible Laminar Boundary Layer with Heat Transfer and Arbitrary Pressure Gradient
NASA Technical Reports Server (NTRS)
Cohen, Clarence B; Reshotko, Eli
1956-01-01
An approximate method for the calculation of the compressible laminar boundary layer with heat transfer and arbitrary pressure gradient, based on Thwaites' correlation concept, is presented. With the definition of dimensionless shear and heat-transfer parameters and an assumed correlation of these parameters in terms of a momentum parameter, a complete system of relations for calculating skin friction and heat transfer results. Knowledge of velocity or temperature profiles is not necessary in using this calculation method. When the method is applied to a convergent-divergent, axially symmetric rocket nozzle, it shows that high rates of heat transfer are obtained at the initial stagnation point and at the throat of the nozzle. Also indicated are negative displacement thicknesses in the convergent portion of the nozzle; these occur because of the high density within the lower portions of the cooled boundary layer. (author)
A novel concept for subsonic inlet boundary-layer control
NASA Technical Reports Server (NTRS)
Miller, B. A.
1977-01-01
A self-bleeding method for boundary layer control is described and tested for a subsonic inlet designed to operate in the flowfield generated by high angles of attack. Naturally occurring surface static pressure gradients are used to remove the boundary layer from a separation-prone region of the inlet and to reinject it at a less critical location with a net performance gain. The results suggest that this self-bleeding method for boundary-layer control might be successfully applied to other inlets operating at extreme aerodynamic conditions.
Formation of pre-sheath boundary layers in electronegative plasmas
Vitello, P., LLNL
1998-05-01
In electronegative plasmas Coulomb scattering between positive and negative ions can lead to the formation of a pre-sheath boundary layer containing the bulk of the negative ions. The negative ion boundary layer forms when momentum transfer from positive to negative ions dominates the negative ion acceleration from the electric field. This condition is met in Inductively Coupled Plasma reactors that operate at low pressure and high plasma density. Simulations of the GEC reactor for Chlorine and Oxygen chemistries using the INDUCT95 2D model are presented showing the pre-sheath boundary layer structure as a function of applied power and neutral pressure.
Structure of turbulence in three-dimensional boundary layers
NASA Technical Reports Server (NTRS)
Subramanian, Chelakara S.
1993-01-01
This report provides an overview of the three dimensional turbulent boundary layer concepts and of the currently available experimental information for their turbulence modeling. It is found that more reliable turbulence data, especially of the Reynolds stress transport terms, is needed to improve the existing modeling capabilities. An experiment is proposed to study the three dimensional boundary layer formed by a 'sink flow' in a fully developed two dimensional turbulent boundary layer. Also, the mean and turbulence field measurement procedure using a three component laser Doppler velocimeter is described.
An experimental investigation of turbulent boundary layers at high Mach number and Reynolds numbers
NASA Technical Reports Server (NTRS)
Holden, M. S.
1972-01-01
Skin friction, heat transfer and pressure measurements were obtained in laminar, transitional and turbulent boundary layers on flat plates at Mach numbers from 7 to 13 at wall-to-free stream stagnation temperature ratios from 0.1 to 0.3. Measurements in laminar flows were in excellent agreement with the theory of Cheng. Correlations of the transition measurements with measurements on flight vehicles and in ballistic ranges show good agreement. Our transition measurements do not correlate well with those of Pate and Schueler. Comparisons have been made between the skin friction and heat transfer measurements and the theories of Van Driest, Eckert and Spalding and Chi. These comparisons reveal in general that at the high end of our Mach number range (10-13) the theory of Van Driest is in best agreement with the data, whereas at lower Mach numbers (6.5-10) the Spalding Chi theory is in better agreement with the measurements.
B. D. Ganapol
2010-06-19
A new highly accurate algorithm for the solution of the Falkner-Skan equation of boundary layer theory is presented. The algorithm, based on a Maclaurin series representation, finds its coefficients from recurrence. In addition, Wynn-epsilon convergence acceleration and continuous analytical continuation enable an accurate evaluation. The most accurate skin friction coefficients (shooting angle) to date are presented along with comparisons to past and present values found in the literature. The algorithm, coded in FORTRAN, uses neither enhanced precision arithmetic beyond quadruple precision nor computer algebra to achieve results in a timely fashion. Key Words: Falkner-Skan flow; Blasius flow; Wynn-epsilon acceleration; Romberg acceleration; Continuous analytical continuation
Estimating the Monin-Obukhov length in the stable boundary layer for dispersion calculations
NASA Astrophysics Data System (ADS)
Venkatram, A.
1980-12-01
Analysis of data collected during the Prairie Grass, Kansas and Minnesota experiments reveals the following empirical relationship between the Monin-Obukhov length L and the friction velocity u *: L = Au * 2, A = 1.1 × 103s2m-1. This result combined with the formulation for the height of the stable boundary layer h suggested by Zilitinkevich (1972) leads to h ? u * 3/2 f-1/2 where f is the Coriolis parameter. Data from the Minnesota study (Caughey et al., 1979) provide ample support for this expression. These empirical equations for L and h are useful for routine dispersion estimates during stable conditions.
NASA Technical Reports Server (NTRS)
Stallings, R. L., Jr.; Lamb, M.
1980-01-01
The wind tunnel tests were conducted both with and without boundary layer trips at Mach 3 and nominal free stream Reynolds numbers per meter ranging from 3.3 x 10 the 6th power. Instrumentation consisted of pressure orifices, thermocouples, a boundary layer pitot pressure rake, and a floating element skin friction balance. Measurements from both wind tunnel and flight were compared with existing engineering prediction methods.
NASA Technical Reports Server (NTRS)
Anderson, P. S.; Kays, W. M.; Moffat, R. J.
1972-01-01
An experimental investigation of transpired turbulent boundary layers in zero and adverse pressure gradients has been carried out. Profiles of: (1) the mean velocity, (2) the three intensities of the turbulent fluctuations, and (3) the Reynolds stress were obtained by hot-wire anemometry. The friction coefficients were measured by using an integrated form of the boundary layer equation to extrapolate the measured shear stress profiles to the wall.
Lecture Series "Boundary Layer Theory". Part I - Laminar Flows. Part 1; Laminar Flows
NASA Technical Reports Server (NTRS)
Schlichting, H.
1949-01-01
In the lecture series starting today author want to give a survey of a field of aerodynamics which has for a number of years been attracting an ever growing interest. The subject is the theory of flows with friction, and, within that field, particularly the theory of friction layers, or boundary layers. A great many considerations of aerodynamics are based on the ideal fluid, that is the frictionless incompressibility and fluid. By neglect of compressibility and friction the extensive mathematical theory of the ideal fluid, (potential theory) has been made possible. Actual liquids and gases satisfy the condition of incomressibility rather well if the velocities are not extremely high or, more accurately, if they are small in comparison with sonic velocity. For air, for instance, the change in volume due to compressibility amounts to about 1 percent for a velocity of 60 meters per second. The hypothesis of absence of friction is not satisfied by any actual fluid; however, it is true that most technically important fluids, for instance air and water, have a very small friction coefficient and therefore behave in many cases almost like the ideal frictionless fluid. Many flow phenomena, in particular most cases of lift, can be treated satisfactorily, - that is, the calculations are in good agreement with the test results, -under the assumption of frictionless fluid. However, the calculations with frictionless flow show a very serious deficiency; namely, the fact, known as d'Alembert's paradox, that in frictionless flow each body has zero drag whereas in actual flow each body experiences a drag of greater or smaller magnitude. For a long time the theory has been unable to bridge this gap between the theory of frictionless flow and the experimental findings about actual flow. The cause of this fundamental discrepancy is the viscosity which is neglected in the theory of ideal fluid; however, in spite of its extraordinary smallness it is decisive for the course of the flow phenomena.
Examining A Hypersonic Turbulent Boundary Layer at Low Reynolds Number
Semper, Michael Thomas
2013-05-15
The purpose of the current study was to answer several questions related to hypersonic, low Reynolds number, turbulent boundary layers, of which available data related to turbulence quantities is scarce. To that end, a ...
Analysis of civil aircraft propulsors with boundary layer ingestion
Hall, David Kenneth
2015-01-01
This thesis describes (i) guidelines for propulsor sizing, and (ii) strategies for fan turbomachinery conceptual design, for a boundary layer ingesting (BLI) propulsion system for advanced civil transport aircraft. For the ...
Performance of a boundary layer ingesting propulsion system
Plas, Angélique (Angélique Pascale)
2006-01-01
This thesis presents an assessment of the aerodynamic performance of an aircraft propulsion system, with embedded engines, in the presence of aircraft fuselage boundary layer ingestion (BLI). The emphasis is on defining ...
Large Eddy Simulation of Atmospheric Convective Boundary Layer with Realistic
Fedorovich, Evgeni
to evaluate, qualitatively and quantitatively, various physical mechanisms that determine CBL flow structureLarge Eddy Simulation of Atmospheric Convective Boundary Layer with Realistic Environmental in which simulations are run. This study investigates LES initialization options using realistic
Boundary-Layer Meteorology An International Journal of Physical,
Lebedev, Vladimir
1 23 Boundary-Layer Meteorology An International Journal of Physical, Chemical and Biological atmosphere is of great importance for a variety of disciplines, from meteorology and urban planning to botany
Energy efficient engine, low-pressure turbine boundary layer program
NASA Technical Reports Server (NTRS)
Gardner, W. B.
1981-01-01
A study was conducted to investigate development of boundary layers under the influence of velocity distributions simulating the suction side of two state-of-the-art turbine airfoils: a forward loaded airfoil (squared-off design) and an aft loaded airfoil (aft-loaded design). These velocity distributions were simulated in a boundary layer wind tunnel. Detailed measurements of boundary layer mean velocity and turbulence intensity profiles were obtained for an inlet turbulence level of 2.4 percent and an exit Reynolds number of 800,000. Flush-mounted hot film probes identified the boundary layer transition regimes in the adverse pressure gradient regions for both velocity distributions. Wall intermittency data showed good agreement with the correlations of Dhawan and Narasimha for the intermittency factor distribution in transitional flow regimes.
Interacting turbulent boundary layer over a wavy wall
NASA Technical Reports Server (NTRS)
Polak, A.; Werle, M. J.
1977-01-01
The two dimensional supersonic flow of a thick turbulent boundary layer over a train of relatively small wave-like protuberances is considered. The flow conditions and the geometry are such that there exists a strong interaction between the viscous and inviscid flow. The problem cannot be solved without inclusion of interaction effects due to the occurrence of the separation singularity in classical boundary layer methods. The interacting boundary layer equations are solved numerically using a time-like relaxation method with turbulence effects represented by the inclusion of the eddy viscosity model. Results are presented for flow over a train of up to six waves for Mach numbers of 10 and 32 million/meter, and wall temperature rations (T sub w/T sub 0) of 0.4 and 0.8. Limited comparisons with independent experimental and analytical results are also given. Detailed results on the influence of small protuberances on surface heating by boundary layers are presented.
Multidimensional Longwave Forcing of Boundary Layer Cloud Systems
Mechem, David B.; Kogan, Yefim L.; Ovtchinnikov, Mikhail; Davis, Anthony B.; Evans, K. Franklin; Ellingson, Robert G.
2008-12-01
radiative transfer, however, differ little. For the solid cloud case, relative to using IPA, the MD simulation exhibits a slight reduction in entrainment rate and boundary layer total kinetic energy (TKE) relative to the IPA simulation. This reduction...
Distributed Roughness Receptivity in a Flat Plate Boundary Layer
Kuester, Matthew Scott
2014-04-18
Surface roughness can affect boundary layer transition by acting as a receptivity mechanism for transient growth. Several experiments have investigated transient growth created by discrete roughness elements; however, very few experiments have...
Report of secondary flows, boundary layers, turbulence and wave team
NASA Technical Reports Server (NTRS)
Doviak, R.
1980-01-01
Correspondence concerning the comparison of horizontal wind fields, two dimensional spectra, heat flux, mesoscale divergence and deformation in the prestorm environment, and thunderstorm gust front winds is presented. Other subjects include the use of radar to determine heating rate and evaporation near the Earth's surface for an unstable boundary layer and statistical considerations in the estimation of wind fields from single Doppler radar and application to prestorm boundary layer observations.
Shock wave oscillation driven by turbulent boundary layer fluctuations
NASA Technical Reports Server (NTRS)
Plotkin, K. J.
1972-01-01
Pressure fluctuations due to the interaction of a shock wave with a turbulent boundary layer were investigated. A simple model is proposed in which the shock wave is convected from its mean position by velocity fluctuations in the turbulent boundary layer. Displacement of the shock is assumed limited by a linear restoring mechanism. Predictions of peak root mean square pressure fluctuation and spectral density are in excellent agreement with available experimental data.
Tropical boundary layer equilibrium in the last ice age
NASA Technical Reports Server (NTRS)
Betts, Alan K.; Ridgway, W.
1992-01-01
A radiative-convective boundary layer model is used to assess the effect of changing sea surface temperature, pressure, wind speed, and the energy export from the tropics on the boundary layer equilibrium equivalent potential temperature. It remains difficult to reconcile the observations that during the last glacial maximum (18,000 yr BP) the snowline on the tropical mountains fell 950 m, while the tropical sea surface temperatures fell only 1-2 K.
Classification of structures in the stable boundary layer
NASA Astrophysics Data System (ADS)
Belusic, Danijel
2015-04-01
Ubiquitous but generally unknown flow structures populate the stable boundary layer at scales larger than turbulence. They introduce nonstationarity, affect the generation of turbulence and induce fluxes. Classification of the structures into clusters based on a similarity measure could reduce their apparent complexity and lead to better understanding of their characteristics and mechanisms. Here we explore different approaches to detect and classify structures, the usefulness of those approaches, and their potential to provide better understanding of the stable boundary layer.
Flow visualization of shock-boundary layer interaction
NASA Technical Reports Server (NTRS)
Hingst, W. R.; Jurkovich, M.
1982-01-01
Two and three-dimensional shock-boundary layer interaction data were obtained from supersonic wind tunnel tests. These interactions are studied both with and without boundary layer bleed. The data verify computational fluid dynamic codes. Surface static pressure, pitot pressure, flow angularity, and bleed rates, are studied by flow visualization techniques. Surface oil flow using fluorescent dye and laser sheet using water droplets as the scattering material are used for flow visualization.
On stability of free laminar boundary layer between parallel streams
NASA Technical Reports Server (NTRS)
Lessen, Martin
1950-01-01
An analysis and calculations on the stability of the free laminar boundary layer between parallel streams were made for an incompressible fluid using the Tollmien-Schlichting theory of small disturbances. Because the boundary conditions are at infinity, two solutions of the Orr-Sommerfeld stability equations need not be considered, and the remaining two solutions are exponential in character at the infinite boundaries. The calculations show that the flow is unstable except for very low Reynolds numbers.
Dense gas boundary layer experiments: Visualization, pressure measurements, concentration evaluation
Reichenbach, H.; Neuwald, P.; Kuhl, A.L.
1992-11-01
This technical report describes methods that were applied to investigate turbulent boundary layers generated by inviscid, baroclinic effects. The Cranz-Schardin 24-sparks camera was used to visualize the interactions of a planar shock wave with a Freon R12-layer. The shock propagates more slowly in the Freon layer than in air because of its smaller sound speed. This causes the shock front to be curved and to be reflected between the wall and the layer interface. As a consequence of the reflection process, a series of compression and expansion waves radiate from the layer. Large fluctuations in the streamwise velocity and in pressure develop for about 1 ms. These waves strongly perturb the interface shear layer, which rapidly transitions to a turbulent boundary flow. Pressure measurements showed that the fluctuations in the Freon layer reach a peak pressure 4 times higher than in the turbulent boundary flow. To characterize the preshock Freon boundary layer, concentration measurements were performed with a differential interferometry technique. The refraction index of Freon R12 is so high that Mach-Zehnder interferometry was not successful in these experiments. The evaluation of the concentration profile is described here in detail. Method and results of corresponding LDV measurements under the same conditions are presented in a different report, EMI Report T 9/92. The authors plan to continue the dense gas layer investigations with the gas combination helium/Freon.
Development of instrumentation for boundary layer transition detection
NASA Astrophysics Data System (ADS)
Harrison, Steven B.
A steady state heat transfer technique is developed and evaluated for detecting boundary layer transition on a flat plate in incompressible flow. The method involves adhering encapsulated temperature sensitive liquid crystals to a constant heat flux surface. A heater composed of unidirectional carbon fibers is developed and tested with the aim of in-flight boundary layer transition detection on a natural laminar flow nacelle. The individual and combined influences of surface heating and favorable pressure gradient on boundary layer transition are considered. Heating is found to be a destabilizing influence on the boundary layer, while a favorable pressure gradient is a stabilizing influence. A Stanton number correlates the movement of transition with heating for zero pressure gradient flat plate boundary layers. No similar correlation is found when a favorable pressure gradient accompanies the heating. Heating is more destabilizing in a favorable pressure gradient than in zero pressure gradient. Shear sensitive liquid crystal is used to detect transition and to obtain, for the first time, quantitative measurements of surface shear stress in a transitional boundary layer. This involves calibrating the time required for the liquid crystal film to experience a texture change when subjected to a shearing force. Using this technique, shear sensitive liquid crystal shows promise for full coverage measurement of surface shear stress in low speed flows.
Experimental studies on two dimensional shock boundary layer interactions
NASA Technical Reports Server (NTRS)
Skebe, S. A.; Greber, I.; Hingst, W. R.
1984-01-01
Experiments have been performed on the interaction of oblique shock waves with flat plate boundary layers in the 30.48 cm x 30.48 cm (1 ft. x 1 ft.) supersonic wind tunnel at NASA Lewis Research Center. High accuracy measurements of the plate surface static pressure and shear stress distributions as well as boundary layer velocity profiles were obtained through the interaction region. Documentation was also performed of the tunnel test section flow field and of the two-dimensionality of the interaction regions. The findings provide detailed description of two-dimensional interaction with initially laminar boundary layers over the Mach number range 2.0 to 4.0. Additional information with regard to interactions involving initially transitional boundary layers is presented over the Mach number range 2.0 to 3.0 and those for initially turbulent boundary layers at Mach 2.0. These experiments were directed toward providing well documented information of high accuracy useful as test cases for analytic and numerical calculations. Flow conditions encompassed a Reynolds number range of 4.72E6 to 2.95E7 per meter. The shock boundary layer interaction results were found to be generally in good agreement with the experimental work of previous authors both in terms of direct numerical comparison and in support of correlations establishing laminar separation characteristics.
Orbiter Boundary Layer Transition Stability Modeling at Flight Entry Conditions
NASA Technical Reports Server (NTRS)
Bartkowicz, Matt; Johnson, Heath; Candler, Graham; Campbell, Charles H.
2009-01-01
State of the art boundary layer stability modeling capabilities are increasingly seeing application to entry flight vehicles. With the advent of user friendly and robust implementations of two-dimensional chemical nonequilibrium stability modeling with the STABL/PSE-CHEM software, the need for flight data to calibrate such analyses capabilities becomes more critical. Recent efforts to perform entry flight testing with the Orbiter geometry related to entry aerothermodynamics and boundary layer transition is allowing for a heightened focus on the Orbiter configuration. A significant advancement in the state of the art can likely be achieved by establishing a basis of understanding for the occurrence of boundary layer transition on the Orbiter due to discrete protruding gap fillers and the nominal distributed roughness of the actual thermal protection system. Recent success in demonstrating centerline two-dimensional stability modeling on the centerline of the Orbiter at flight entry conditions provides a starting point for additional investigations. The more detailed paper will include smooth Orbiter configuration boundary layer stability results for several typical orbiter entry conditions. In addition, the numerical modeling approach for establishing the mean laminar flow will be reviewed and the method for determining boundary layer disturbance growth will be overviewed. In addition, if actual Orbiter TPS surface data obtained via digital surface scans become available, it may be possible to investigate the effects of an as-flown flight configuration on boundary layer transition compared to a smooth CAD reference.
Grain-boundary motion in layered phases
NASA Astrophysics Data System (ADS)
Boyer, Denis; Viñals, Jorge
2001-06-01
We study the motion of a grain boundary that separates two sets of mutually perpendicular rolls in Rayleigh-Bénard convection above onset. The problem is treated either analytically from the corresponding amplitude equations, or numerically by solving the Swift-Hohenberg equation. We find that if the rolls are curved by a slow transversal modulation, a net translation of the boundary follows. We show analytically that although this motion is a nonlinear effect, it occurs in a time scale much shorter than that of the linear relaxation of the curved rolls. The total distance traveled by the boundary scales as ?-1/2, where ? is the reduced Rayleigh number. We obtain analytical expressions for the relaxation rate of the modulation and for the time-dependent traveling velocity of the boundary, and especially their dependence on wave number. The results agree well with direct numerical solutions of the Swift-Hohenberg equation. We finally discuss the implications of our results on the coarsening rate of an ensemble of differently oriented domains in which grain-boundary motion through curved rolls is the dominant coarsening mechanism.
Evaluation of boundary lubricants using steady-state wear and friction
NASA Technical Reports Server (NTRS)
Loomis, W. R.; Jones, W. R., Jr.
1981-01-01
A friction and wear study was made at 20 C to establish operating limits and procedures for obtaining improved reproducibility and reliability in boundary lubrication testing. Ester base and C-other base fluids were used to lubricate a pure iron rider in sliding contact with a rotating M-50 steel disk in a pin-on-disk apparatus. Results of a parametric study with varying loads and speeds slowed that satisfactory test conditions for studying the direction and wear characteristics in the boundary lubrication regime with this test device were found to be 1 kilogram load; 7 to 9 meters-per-minute (50 rpm) surface speed; dry air test atmosphere (less than 100 ppm H2O); and use of a time stepwise procedure for measuring wear. Highly reproducible steady-state wear rates resulted from the two fluid studies which had a linearity of about 99 percent after initially higher wear rates and friction coefficients during run-in periods of 20 to 40 minutes.
Application of a Reynolds stress model to separating boundary layers
NASA Technical Reports Server (NTRS)
Ko, Sung HO
1993-01-01
Separating turbulent boundary layers occur in many practical engineering applications. Nonetheless, the physics of separation/reattachment of flows is poorly understood. During the past decade, various turbulence models were proposed and their ability to successfully predict some types of flows was shown. However. prediction of separating/reattaching flows is still a formidable task for model developers. The present study is concerned with the process of separation from a smooth surface. Features of turbulent separating boundary layers that are relevant to modeling include the following: the occurrence of zero wall shear stress, which causes breakdown of the boundary layer approximation; the law of the wall not being satisfied in the mean back flow region; high turbulence levels in the separated region; a significant low-frequency motion in the separation bubble; and the turbulence structure of the separated shear layer being quite different from that of either the mixing layers or the boundary layers. These special characteristics of separating boundary layers make it difficult for simple turbulence models to correctly predict their behavior.
NASA Technical Reports Server (NTRS)
Oliver, A. B.; Lillard, R. P.; Blaisdell, G. A.; Lyrintizis, A. S.
2006-01-01
The capability of the OVERFLOW code to accurately compute high-speed turbulent boundary layers and turbulent shock-boundary layer interactions is being evaluated. Configurations being investigated include a Mach 2.87 flat plate to compare experimental velocity profiles and boundary layer growth, a Mach 6 flat plate to compare experimental surface heat transfer,a direct numerical simulation (DNS) at Mach 2.25 for turbulent quantities, and several Mach 3 compression ramps to compare computations of shock-boundary layer interactions to experimental laser doppler velocimetry (LDV) data and hot-wire data. The present paper describes outlines the study and presents preliminary results for two of the flat plate cases and two small-angle compression corner test cases.
Low-Friction Adsorbed Layers of a Triblock Copolymer Additive in Oil-Based Lubrication.
Yamada, Shinji; Fujihara, Ami; Yusa, Shin-Ichi; Tanabe, Tadao; Kurihara, Kazue
2015-11-10
The tribological properties of the dilute solution of an ABA triblock copolymer, poly(11-acrylamidoundecanoic acid)-block-poly(stearyl methacrylate)-block-poly(11-acrylamidoundecanoic acid (A5S992A5), in poly(?-olefin) (PAO) confined between mica surfaces were investigated using the surface forces apparatus (SFA). Friction force was measured as a function of applied load and sliding velocity, and the film thickness and contact geometry during sliding were analyzed using the fringes of equal chromatic order (FECO) in the SFA. The results were contrasted with those of confined PAO films; the effects of the addition of A5S992A5 on the tribological properties were discussed. The thickness of the A5S992A5/PAO system varied with time after surface preparation and with repetitive sliding motions. The thickness was within the range from 40 to 70 nm 1 day after preparation (the Day1 film), and was about 20 nm on the following day (the Day2 film). The thickness of the confined PAO film was thinner than 1.4 nm, indicating that the A5S992A5/PAO system formed thick adsorbed layers on mica surfaces. The friction coefficient was about 0.03 to 0.04 for the Day1 film and well below 0.01 for the Day2 film, which were 1 or 2 orders of magnitude lower than the values for the confined PAO films. The time dependent changes of the adsorbed layer thickness and friction properties should be caused by the relatively low solubility of A5S992A5 in PAO. The detailed analysis of the contact geometry and friction behaviors implies that the particularly low friction of the Day2 film originates from the following factors: (i) shrinkage of the A5S992A5 molecules (mainly the poly(stearyl methacrylate) blocks) that leads to a viscoelastic properties of the adsorbed layers; and (ii) the intervening PAO layer between the adsorbed polymer layers that constitutes a high-fluidity sliding interface. Our results suggest that the block copolymer having relatively low solubility in a lubricant base oil is effective at forming low-friction adsorbed layers in oil-based lubrication. PMID:26479685
NASA Technical Reports Server (NTRS)
Boyle, R. J.; Haas, J. E.; Katsanis, T.
1984-01-01
A method for calculating turbine stage performance is described. The usefulness of the method is demonstrated by comparing measured and predicted efficiencies for nine different stages. Comparisons are made over a range of turbine pressure ratios and rotor speeds. A quasi-3D flow analysis is used to account for complex passage geometries. Boundary layer analyses are done to account for losses due to friction. Empirical loss models are used to account for incidence, secondary flow, disc windage, and clearance losses.
NASA Technical Reports Server (NTRS)
Rumsey, C. L.
2009-01-01
The ability of kappa-omega models to predict compressible turbulent skin friction in hypersonic boundary layers is investigated. Although uncorrected two-equation models can agree well with correlations for hot-wall cases, they tend to perform progressively worse - particularly for cold walls - as the Mach number is increased in the hypersonic regime. Simple algebraic models such as Baldwin-Lomax perform better compared to experiments and correlations in these circumstances. Many of the compressibility corrections described in the literature are summarized here. These include corrections that have only a small influence for kappa-omega models, or that apply only in specific circumstances. The most widely-used general corrections were designed for use with jet or mixing-layer free shear flows. A less well-known dilatation-dissipation correction intended for boundary layer flows is also tested, and is shown to agree reasonably well with the Baldwin-Lomax model at cold-wall conditions. It exhibits a less dramatic influence than the free shear type of correction. There is clearly a need for improved understanding and better overall physical modeling for turbulence models applied to hypersonic boundary layer flows.
ON AERODYNAMIC AND BOUNDARY LAYER RESISTANCES WITHIN DRY DEPOSITION MODELS
There have been many empirical parameterizations for the aerodynamic and boundary layer resistances proposed in the literature, e.g. those of the Meyers Multi-Layer Deposition Model (MLM) used with the nation-wide dry deposition network. Many include arbitrary constants or par...
NASA Technical Reports Server (NTRS)
Sohn, Ki-Hyeon; Reshotko, Eli
1991-01-01
A detailed investigation to document momentum and thermal development of boundary layers undergoing natural transition on a heated flat plate was performed. Experimental results of both overall and conditionally sampled characteristics of laminar, transitional, and low Reynolds number turbulent boundary layers are presented. Measurements were acquired in a low-speed, closed-loop wind tunnel with a freestream velocity of 100 ft/s and zero pressure gradient over a range of freestream turbulence intensities (TI) from 0.4 to 6 percent. The distributions of skin friction, heat transfer rate and Reynolds shear stress were all consistent with previously published data. Reynolds analogy factors for R(sub theta) is less than 2300 were found to be well predicted by laminar and turbulent correlations which accounted for an unheated starting length. The measured laminar value of Reynolds analogy factor was as much as 53 percent higher than the Pr(sup -2/3). A small dependence of turbulent results on TI was observed. Conditional sampling performed in the transitional boundary layer indicated the existence of a near-wall drop in intermittency, pronounced at certain low intermittencies, which is consistent with the cross-sectional shape of turbulent spots observed by others. Non-turbulent intervals were observed to possess large magnitudes of near-wall unsteadiness and turbulent intervals had peak values as much as 50 percent higher than were measured at fully turbulent stations. Non-turbulent and turbulent profiles in transitional boundary layers cannot be simply treated as Blasius and fully turbulent profiles, respectively. The boundary layer spectra indicate predicted selective amplification of T-S waves for TI is approximately 0.4 percent. However, for TI is approximately 0.8 and 1.1 percent, T-S waves are localized very near the wall and do not play a dominant role in transition process.
A numerical investigation of boundary layer quasi-equilibrium
NASA Astrophysics Data System (ADS)
Thayer-Calder, K.; Randall, David
2015-01-01
Despite the large energy input from surface evaporation, the moist static energy (MSE) of the tropical boundary layer remains relatively constant on large spatial and temporal scales due to lifting of vapor by cloudy updrafts and the addition of dry air from the layers above. Arakawa and Schubert (1974) suggested that drying is due mainly to clear-air turbulent entrainment between cloudy updrafts, while Raymond (1995) described drying due mainly to convective downdrafts. We used cloud-resolving numerical simulations to investigate the transport of MSE into the boundary layer and found turbulent entrainment between clouds to be the dominant process.
Feasibility study of optical boundary layer transition detection method
NASA Technical Reports Server (NTRS)
Azzazy, M.; Modarress, D.; Trolinger, J. D.
1986-01-01
A high sensitivity differential interferometer was developed to locate the region where the boundary layer flow undergoes transition from laminar to turbulent. Two laboratory experimental configurations were used to evaluate the performance of the interferometer: open shear layer, and low speed wind tunnel turbulent spot configuration. In each experiment, small temperature fluctuations were introduced as the signal source. Simultaneous cold wire measurements were compared with the interferometer data. The comparison shows that the interferometer is sensitive to very weak phase variations in the order of 0.001 the laser wavelength. An attempt to detect boundary layer transition over a flat plate at NASA-Langley Unitary Supersonic Wind Tunnel using the interferometer system was performed. The phase variations during boundary layer transition in the supersonic wind tunnel were beyond the minimum signal-to-noise level of the instrument.
Aeroelastically deflecting flaps for shock/boundary-layer interaction control
NASA Astrophysics Data System (ADS)
Gefroh, D.; Loth, E.; Dutton, C.; Hafenrichter, E.
2003-06-01
An aeroelastic mesoflap system has been developed to improve the downstream flow properties of an oblique shock/boundary-layer interaction. The mesoflap system employs a set of small flaps over a cavity, whereby the flaps downstream of the interaction bend downward aeroelastically to bleed the flow and the upstream flaps bend upward to re-inject this same mass flow upstream. This recirculating system requires no net mass bleed and therefore has advantages for boundary layer control in external or mixed-compression supersonic aircraft inlets. In addition, the system may be applicable in other aerospace applications where boundary-layer control can help remedy the adverse effects of shock interactions. Several mesoflap systems have been fabricated and examined experimentally to investigate their aerodynamic and structural performance. Each mesoflap is rigidly attached to a spar on its upstream end while the remainder of the flap is free to deflect aeroelastically. The flap length is nominally a few boundary-layer thicknesses in dimension, while the flap thickness is small enough to allow tip deflections that are of the order of the boundary-layer momentum thickness. Experiments were conducted for a Mach 2.41 impinging oblique shock wave interaction with a turbulent boundary layer. Spanwise-centered laser Doppler velocimeter measurements indicate that certain mesoflap designs can show significant flow improvement as compared to the solid-wall case, including increased stagnation pressure recovery and a 7% reduction in boundary layer thickness and sonic thickness. However, one drawback of the mesoflap system is the potential for fatigue, which in some cases led to microcracking followed by flap failure. Structural design improvements to alleviate and avoid this problem included a lower profile spar design, substitution of Nitinol for aluminum as the flap material, and use of stress-relieving holes at the ends of the flap cut-outs.
NASA Technical Reports Server (NTRS)
Vanness, W.
1978-01-01
A summary report of boundary layer studies is presented. Preliminary results of experimental measurements show that: (1) A very thin layer (approximately 0.4 mm) of the boundary layer seems to be accelerated; (2) the static pressure of the outer flow does not remain exactly constant through the boundary layer; and (3) an oncoming boundary layer which is already turbulent at the suction point can again become laminar behind this point without being completely sucked off.
The Boundary Layer Late Afternoon and Sunset Turbulence Project
NASA Astrophysics Data System (ADS)
Lothon, Marie; Lohou, Fabienne; Darbieu, Clara; Couvreux, Fleur; Pino, David; Blay, Estel; Vila-Guerau de Arellano, Jordi; Pietersen, Henk; Hartogensis, Oscar; Pardyjak, Eric; Alexander, Daniel; Reuder, Joachim; Baaserud, Line; Nilsson, Erik; Jimenez, Maria Antonia; Faloona, Ian; Sastre-Marugan, Mariano; Angevine, Wayne M.; Canut, Guylaine; Bazile, Eric
2014-05-01
The BLLAST (Boundary Layer Late Afternoon and Sunset Turbulence) project aims at better understanding the turbulence processes which occur during the transition from a well-mixed convective boundary layer to a residual layer overlying a stabilized nocturnal layer. This phase of the diurnal cycle is challenging from both modeling and observational perspectives: it is transitory, most of the forcings are small or null during the transition and the turbulence regime changes from the fully convective regime of turbulence, close to homogeneous and isotropic, toward more heterogeneous and intermittent turbulence during its decay. Those issues motivated a field campaign that was conducted from 14 June to 8 July 2011 in southern France in complex terrain and consisted of a range of integrated instrument platforms including: full-size aircraft, Remotely Piloted Airplane Systems (RPAS), remote sensing instruments, radiosoundings, tethered balloons, surface flux stations, and various meteorological towers deployed over different surface covers. The boundary layer, from the earth's surface to free troposphere was densely probed during the entire day, with a focus and intense observations from midday until sunset. The field dataset now forms the base of a set of studies utilizing the observations and several types of models including: Large Eddy Simulation, Mesoscale models, forecast models. The presentation will expose an overview of this experiment and of the current observational and modeling studies, with the focus on: the turbulence decay process within the entire boundary layer from surface to the top, the mesoscale forcings of importance during BLLAST, the ability of the forecast models to represent the diurnal cycle, the relevance of the Monin Obukhov similarity theory, and shallow drainage flows. Reference: Lothon M. et al., 2012. The Boundary-Layer Late Afternoon and Sunset Turbulence field experiment, Proc. of the 20th Symposium on Boundary-Layers and Turbulence, 7-13 July, Boston, MA, USA.
Nature, theory and modelling of geophysical convective planetary boundary layers
NASA Astrophysics Data System (ADS)
Zilitinkevich, Sergej
2015-04-01
Geophysical convective planetary boundary layers (CPBLs) are still poorly reproduced in oceanographic, hydrological and meteorological models. Besides the mean flow and usual shear-generated turbulence, CPBLs involve two types of motion disregarded in conventional theories: 'anarchy turbulence' comprised of the buoyancy-driven plumes, merging to form larger plumes instead of breaking down, as postulated in conventional theory (Zilitinkevich, 1973), large-scale organised structures fed by the potential energy of unstable stratification through inverse energy transfer in convective turbulence (and performing non-local transports irrespective of mean gradients of transporting properties). C-PBLs are strongly mixed and go on growing as long as the boundary layer remains unstable. Penetration of the mixed layer into the weakly turbulent, stably stratified free flow causes turbulent transports through the CPBL outer boundary. The proposed theory, taking into account the above listed features of CPBL, is based on the following recent developments: prognostic CPBL-depth equation in combination with diagnostic algorithm for turbulence fluxes at the CPBL inner and outer boundaries (Zilitinkevich, 1991, 2012, 2013; Zilitinkevich et al., 2006, 2012), deterministic model of self-organised convective structures combined with statistical turbulence-closure model of turbulence in the CPBL core (Zilitinkevich, 2013). It is demonstrated that the overall vertical transports are performed mostly by turbulence in the surface layer and entrainment layer (at the CPBL inner and outer boundaries) and mostly by organised structures in the CPBL core (Hellsten and Zilitinkevich, 2013). Principal difference between structural and turbulent mixing plays an important role in a number of practical problems: transport and dispersion of admixtures, microphysics of fogs and clouds, etc. The surface-layer turbulence in atmospheric and marine CPBLs is strongly enhanced by the velocity shears in horizontal branches of organised structures. This mechanism (Zilitinkevich et al., 2006), was overlooked in conventional local theories, such as the Monin-Obukhov similarity theory, and convective heat/mass transfer law: Nu~Ra1/3, where Nu and Ra are the Nusselt number and Raleigh numbers. References Hellsten A., Zilitinkevich S., 2013: Role of convective structures and background turbulence in the dry convective boundary layer. Boundary-Layer Meteorol. 149, 323-353. Zilitinkevich, S.S., 1973: Shear convection. Boundary-Layer Meteorol. 3, 416-423. Zilitinkevich, S.S., 1991: Turbulent Penetrative Convection, Avebury Technical, Aldershot, 180 pp. Zilitinkevich S.S., 2012: The Height of the Atmospheric Planetary Boundary layer: State of the Art and New Development - Chapter 13 in 'National Security and Human Health Implications of Climate Change', edited by H.J.S. Fernando, Z. Klai?, J.L. McKulley, NATO Science for Peace and Security Series - C: Environmental Security (ISBN 978-94-007-2429-7), Springer, 147-161. Zilitinkevich S.S., 2013: Atmospheric Turbulence and Planetary Boundary Layers. Fizmatlit, Moscow, 248 pp. Zilitinkevich, S.S., Hunt, J.C.R., Grachev, A.A., Esau, I.N., Lalas, D.P., Akylas, E., Tombrou, M., Fairall, C.W., Fernando, H.J.S., Baklanov, and A., Joffre, S.M., 2006: The influence of large convective eddies on the surface layer turbulence. Quart. J. Roy. Met. Soc. 132, 1423-1456. Zilitinkevich S.S., Tyuryakov S.A., Troitskaya Yu. I., Mareev E., 2012: Theoretical models of the height of the atmospheric planetary boundary layer and turbulent entrainment at its upper boundary. Izvestija RAN, FAO, 48, No.1, 150-160 Zilitinkevich, S.S., Elperin, T., Kleeorin, N., Rogachevskii, I., Esau, I.N., 2013: A hierarchy of energy- and flux-budget (EFB) turbulence closure models for stably stratified geophysical flows. Boundary-Layer Meteorol. 146, 341-373.
Diamagnetic boundary layers - A kinetic theory. [for collisionless magnetized plasmas
NASA Technical Reports Server (NTRS)
Lemaire, J.; Burlaga, L. F.
1976-01-01
A kinetic theory is presented for boundary layers associated with MHD tangential 'discontinuities' in a collisionless magnetized plasma, such as those observed in the solar wind. The theory consists of finding self-consistent solutions of Vlasov's equation and Maxwell's equation for stationary one-dimensional boundary layers separating two Maxwellian plasma states. Layers in which the current is carried by electrons are found to have a thickness of the order of a few electron gyroradii, but the drift speed of the current-carrying electrons is found to exceed the Alfven speed, and accordingly such layers are not stable. Several types of layers in which the current is carried by protons are discussed; in particular, cases are considered in which the magnetic-field intensity, direction, or both, changed across the layer. In every case, the thickness was of the order of a few proton gyroradii, and the field changed smoothly, although the characteristics depended somewhat on the boundary conditions. The drift speed was always less than the Alfven speed, consistent with stability of such structures. These results are consistent with observations of boundary layers in the solar wind near 1 AU.
New concepts on the interfacial friction behavior between flat steel ribbon layers
Zheng, J.; Zhu, G.
1995-11-01
Flat steel ribbon wound pressure vessels are widely used in chemical, petrochemical, and other industries. However, no satisfactory theoretical formulae are available to estimate the additional strengthening induced by the friction between the layers. Effective normal stress in the ribbon wide direction and shear stress are new concepts for describing such strengthening effect. These concepts are analyzed further to obtain expressions for both axial and circumferential bursting pressure, and stresses of the vessel. Comparison with one set of experimental results shows excellent agreement.
NASA Astrophysics Data System (ADS)
Lyashenko, I. A.; Manko, N. N.
2015-09-01
An analysis of an ultrathin lubricant layer squeezed between two atomically-smooth solid surfaces during their reciprocal motion is performed. Considering the deformation defect of the shear modulus, the effect of additive fluctuations of stress, strain, and temperature on melting of the lubricating material is investigated. The influence of the system parameters of the phase diagram is investigated for the case where the temperature intensity noise and the friction surface temperature control the regions of dry, liquid and stick-slip friction. The plots of effective potential and probability distribution are constructed as a function of stress, whose form controls the mode of friction.
Bending Boundary Layers in Laminated-Composite Circular Cylindrical Shells
NASA Technical Reports Server (NTRS)
Nemeth, Michael P.; Smeltzer, Stanley S., III
2000-01-01
An analytical, parametric study of the attenuation of bending boundary layers or edge effects in balanced and unbalanced, symmetrically and unsymmetrically laminated thin cylindrical shells is presented for nine contemporary material systems. The analysis is based on the linear Sanders-Koiter shell equations and specializations to the Love-Kirchhoff shell equations and Donnell's equations are included. Two nondimensional parameters are identified that characterize and quantify the effects of laminate orthotropy and laminate anisotropy on the bending boundary-layer decay length in a very general and encompassing manner. A substantial number of structural design technology results are presented for a wide range of laminated-composite cylinders. For all the laminate constructions considered, the results show that the differences between results that were obtained with the Sanders-Koiter shell equations, the Love-Kirchhoff shell equations, and Donnell's equations are negligible. The results also show that the effect of anisotropy in the form of coupling between pure bending and twisting has a negligible effect on the size of the bending boundary-layer decay length of the balanced, symmetrically laminated cylinders considered. Moreover, the results show that coupling between the various types of shell anisotropies has a negligible effect on the calculation of the bending boundary-layer decay length in most cases. The results also show that in some cases neglecting the shell anisotropy results in underestimating the bending boundary-layer decay length and in other cases it results in an overestimation.
Bending Boundary Layers in Laminated-Composite Circular Cylindrical Shells
NASA Technical Reports Server (NTRS)
Nemeth, Michael P.; Smeltzer, Stanley S., III
2000-01-01
A study of the attenuation of bending boundary layers in balanced and unbalanced, symmetrically and unsymmetrically laminated cylindrical shells is presented for nine contemporary material systems. The analysis is based on the linear Sanders-Koiter shell equations and specializations to the Love-Kirchhoff shell equations and Donnell's equations are included. Two nondimensional parameters are identified that characterize the effects of laminate orthotropy and anisotropy on the bending boundary-layer decay length in a very general manner. A substantial number of structural design technology results are presented for a wide range of laminated-composite cylinders. For all laminates considered, the results show that the differences between results obtained with the Sanders-Koiter shell equations, the Love-Kirchhoff shell equations, and Donnell's equations are negligible. The results also show that the effect of anisotropy in the form of coupling between pure bending and twisting has a negligible effect on the size of the bending boundary-layer decay length of the balanced, symmetrically laminated cylinders considered. Moreover, the results show that coupling between the various types of shell anisotropies has a negligible effect on the calculation of the bending boundary-layer decay length in most cases. The results also show that, in some cases, neglecting the shell anisotropy results in underestimating the bending boundary-layer decay length and, in other cases, results in an overestimation.
Interferometric data for a shock-wave/boundary-layer interaction
NASA Technical Reports Server (NTRS)
Dunagan, Stephen E.; Brown, James L.; Miles, John B.
1986-01-01
An experimental study of the axisymmetric shock-wave / boundary-layer strong interaction flow generated in the vicinity of a cylinder-cone intersection was conducted. The study data are useful in the documentation and understanding of compressible turbulent strong interaction flows, and are part of a more general effort to improve turbulence modeling for compressible two- and three-dimensional strong viscous/inviscid interactions. The nominal free stream Mach number was 2.85. Tunnel total pressures of 1.7 and 3.4 atm provided Reynolds number values of 18 x 10(6) and 36 x 10(6) based on model length. Three cone angles were studied giving negligible, incipient, and large scale flow separation. The initial cylinder boundary layer upstream of the interaction had a thickness of 1.0 cm. The subsonic layer of the cylinder boundary layer was quite thin, and in all cases, the shock wave penetrated a significant portion of the boundary layer. Owing to the thickness of the cylinder boundary layer, considerable structural detail was resolved for the three shock-wave / boundary-layer interaction cases considered. The primary emphasis was on the application of the holographic interferometry technique. The density field was deduced from an interferometric analysis based on the Able transform. Supporting data were obtained using a 2-D laser velocimeter, as well as mean wall pressure and oil flow measurements. The attached flow case was observed to be steady, while the separated cases exhibited shock unsteadiness. Comparisons with Navier-Stokes computations using a two-equation turbulence model are presented.
Adda-Bedia, Mokhtar
MEMS-based contact stress field measurements at a rough elastomeric layer: local test of Amontons/Universit´e Paris 6, Paris, France Abstract. We present the results of recent friction experiments in which a MEMS
The turbulent structure of the internal boundary layer near the shore
NASA Astrophysics Data System (ADS)
Ohara, Toshimasa; Ogawa, Yasushi
1985-05-01
The mean structure within the internal boundary layer (IBL) near the shore, which develop from the coast in the presence of a sea breeze, has been described in Part I of this study (Ogawa and Ohara, 1984). This paper presents the results of the similarity and energy budget analysis for the purpose of parameterization of the turbulent structure within the IBL. The analysis of the turbulent kinetic energy balance, turbulent intensities and spectra show that the wind is strongly affected by mechanical turbulence in comparison with the past results in a fully developed convective layer where thermal convection dominated. The standard deviations of the wind velocities normalized by the friction velocity u * (surface-layer scaling parameter) are functions only of the normalized height z/Z i within 160 m of the shoreline, where Z i is the IBL. On the other hand, the standard deviations of temperature normalized by ?* (mixing-layer scaling parameter) have less scatter with distance than those normalized by T * (surface-layer scaling parameter). The data showed that both u * (not a mixed-layer parameter), and Z i (not a surface-layer parameter) are necessary to describe the turbulent characteristics of the IBL near the shore.
Spectral Gap Energy Transfer in Atmospheric Boundary Layer
NASA Astrophysics Data System (ADS)
Bhushan, S.; Walters, K.; Barros, A. P.; Nogueira, M.
2012-12-01
Experimental measurements of atmospheric turbulence energy spectra show E(k) ~ k-3 slopes at synoptic scales (~ 600 km - 2000 km) and k-5/3 slopes at the mesoscales (< 400 km). The -5/3 spectra is presumably related to 3D turbulence which is dominated by the classical Kolmogrov energy cascade. The -3 spectra is related to 2D turbulence, which is dominated by strong forward scatter of enstrophy and weak forward scatter of energy. In classical 2D turbulence theory, it is expected that a strong backward energy cascade would develop at the synoptic scale, and that circulation would grow infinitely. To limit this backward transfer, energy arrest at macroscales must be introduced. The most commonly used turbulence models developed to mimic the above energy transfer include the energy backscatter model for 2D turbulence in the horizontal plane via Large Eddy Simulation (LES) models, dissipative URANS models in the vertical plane, and Ekman friction for the energy arrest. One of the controversial issues surrounding the atmospheric turbulence spectra is the explanation of the generation of the 2D and 3D spectra and transition between them, for energy injection at the synoptic scales. Lilly (1989) proposed that the existence of 2D and 3D spectra can only be explained by the presence of an additional energy injection in the meso-scale region. A second issue is related to the observations of dual peak spectra with small variance in meso-scale, suggesting that the energy transfer occurs across a spectral gap (Van Der Hoven, 1957). Several studies have confirmed the spectral gap for the meso-scale circulations, and have suggested that they are enhanced by smaller scale vertical convection rather than by the synoptic scales. Further, the widely accepted energy arrest mechanism by boundary layer friction is closely related to the spectral gap transfer. This study proposes an energy transfer mechanism for atmospheric turbulence with synoptic scale injection, wherein the generation of 2D and 3D spectra is explained using spectral gap energy transfer. The existence of the spectral gap energy transfer is validated by performing LES for the interaction of large scale circulation with a wall, and studying the evolution of the energy spectra both near to and far from the wall. Simulations are also performed using the Advanced Weather and Research Forecasting (WRF-ARW) for moist zonal flow over Gaussian ridge, and the energy spectra close and away from the ground are studied. The energy spectra predicted by WRF-ARW are qualitatively compared with LES results to emphasize the limitations of the currently used turbulence parameterizations. Ongoing validation efforts include: (1) extending the interaction of large scale circulation with wall simulations to finer grids to capture a wider range of wavenumbers; and (2) a coupled 2D-3D simulation is planned to predict the entire atmospheric turbulence spectra at a very low computational expense. The overarching objective of this study to develop turbulence modeling capability based on the energy transfer mechanisms proposed in this study. Such a model will be implemented in WRF-ARW, and applied to atmospheric simulations, for example the prediction of moisture convergence patterns at the meso-scale in the southeast United States (Tao & Barros, 2008).
Hot-Film and Hot-Wire Anemometry for a Boundary Layer Active Flow Control Test
NASA Technical Reports Server (NTRS)
Lenahan, Keven C.; Schatzman, David M.; Wilson, Jacob Samuel
2013-01-01
Unsteady active flow control (AFC) has been used experimentally for many years to minimize bluff-body drag. This technology could significantly improve performance of rotorcraft by cleaning up flow separation. It is important, then, that new actuator technologies be studied for application to future vehicles. A boundary layer wind tunnel was constructed with a 1ft-x-3ft test section and unsteady measurement instrumentation to study how AFC manipulates the boundary layer to overcome adverse pressure gradients and flow separation. This unsteady flow control research requires unsteady measurement methods. In order to measure the boundary layer characteristics, both hot-wire and hot-film Constant Temperature Anemometry is used. A hot-wire probe is mounted in the flow to measure velocity while a hot-film array lays on the test surface to measure skin friction. Hot-film sensors are connected to an anemometer, a Wheatstone bridge circuit with an output that corresponds to the dynamic flow response. From this output, the time varying flow field, turbulence, and flow reversal can be characterized. Tuning the anemometers requires a fan test on the hot-film sensors to adjust each output. This is a delicate process as several variables drastically affect the data, including control resistance, signal input, trim, and gain settings.
Feasibility of generating an artificial burst in a turbulent boundary layer, phase 2
NASA Technical Reports Server (NTRS)
Gad-El-hak, Mohamed
1989-01-01
Various drag accounts for about half of the total drag on commercial aircraft at subsonic cruise conditions. Two avenues are available to achieve drag reduction: either laminar flow control or turbulence manipulation. The present research deals with the latter approach. The primary objective of Phase 2 research was to investigate experimentally the feasibility of substantially reducing the skin-friction drag in a turbulent boundary layer. The method combines the beneficial effects of suction and a longitudinally ribbed surface. At a sufficiently large spanwise separation, the streamwise grooves act as a nucleation site causing a focusing of low-speed streaks over the peaks. Suction is then applied intermittently through longitudinal slots located at selected locations along those peaks to obliterate the low-speed regions and to prevent bursting. Phase 2 research was divided into two tasks. In the first, selective suction from a single streamwise slot was used to eliminate either a single burst-like event or a periodic train of artificially generated bursts in laminar and turbulent boundary layers that develop on a flat plate towed in a water channel. The results indicate that equivalent values of the suction coefficient as low as 0.0006 were sufficient to eliminate the artificially generated bursts in a laminar boundary layer.
Boundary Layer Regimes Conducive to Formation of Dust Devils on Mars
NASA Astrophysics Data System (ADS)
Williams, B.; Nair, U. S.
2014-12-01
Dust devils on Mars contribute to maintenance of background atmospheric aerosol loading and thus dust radiative forcing, which is an important modulator of Martian climate. Dust devils also cause surface erosion and change in surface albedo which impacts radiative energy budget. Thus there is a need for parameterizing dust devil impacts in Martian climate models. In this context it is important to understand environmental conditions that are favorable for formation of dust devils on Mars and associated implications for diurnal, seasonal, and geographical variation of dust devil occurrence. On earth, prior studies show that thresholds of ratio of convective and friction scale velocities may be used to identify boundary layer regimes that are conducive to formation of dust devils. On earth, a w*/u* ratio in excess of 5 is found to be conducive for formation of dust devils. In this study, meteorological observations collected during the Viking Lander mission are used to constrain Martian boundary layer model simulations, which is then used to estimate w*/u* ratio. The w*/u* ratio is computed for several case days during which dust devil occurrence was detected. A majority of dust devils occurred in convective boundary layer regimes characterized by w*/u* ratios exceeding 10. The above described analysis is being extended to other mars mission landing sites and results from the extended analysis will also be presented.
Planetary boundary layer regimes conducive to dust devil formation on Mars
NASA Astrophysics Data System (ADS)
Williams, Bryce Robert
Dust devils on Mars contribute to background atmospheric dust opacity and the resulting radiative forcing is an important modulator of Martian climate. In this context it is important to understand diurnal, seasonal, and geographical variation of dust devil occurrence on Mars. Boundary layer regimes conducive to dust devil formation on Earth are characterized by the ratio of convective to friction scaling velocities (w*u*) greater than 5. Boundary layer modeling, constrained using in situ observations from Mars lander and rover missions, is used to estimate w*u* for dust devils events imaged or inferred during the missions. Analysis conducted for 261 events shows that Martian boundary layer regimes conducive to formation of dust devils are defined by w*u* ratios greater than 7.4. This threshold is used to infer diurnal, seasonal and geographic variability of dust devil formation potential on Mars. This methodology is able to explain major features of temporal and spatial variability of dust devils on Mars.
Turbulence structure of the marine stable boundary layer over the Baltic Sea
Smedman, A.S.; Hoegstroem, U.
1994-12-31
For more than half of the year the land surfaces surrounding the Baltic Sea is warmer than the sea surface, and the marine boundary layer over the Baltic is stable. Observations, at various sites in the Baltic Sea area during the last decade. also indicate frequent occurrence of low-level jets at the top of the stable boundary layer. In many cases the marine jet can be considered as an analogy in space to the evolution of the nocturnal jet with time. The frictional decoupling occurs when warm air over the land is flowing out over the sea. Data from two areas together with model simulations are used in this study to characterize turbulence structure in the marine boundary layer. The measurements include profiles of wind and temperature on towers situated at two isolated islands, together with turbulence recordings and aircraft measurements. Also wave height and water surface temperature have been measured. The model simulations are performed with a second-order closure model.
Multiple pass and multiple layer friction stir welding and material enhancement processes
Feng, Zhili (Knoxville, TN) [Knoxville, TN; David, Stan A. (Knoxville, TN) [Knoxville, TN; Frederick, David Alan (Harriman, TN) [Harriman, TN
2010-07-27
Processes for friction stir welding, typically for comparatively thick plate materials using multiple passes and multiple layers of a friction stir welding tool. In some embodiments a first portion of a fabrication preform and a second portion of the fabrication preform are placed adjacent to each other to form a joint, and there may be a groove adjacent the joint. The joint is welded and then, where a groove exists, a filler may be disposed in the groove, and the seams between the filler and the first and second portions of the fabrication preform may be friction stir welded. In some embodiments two portions of a fabrication preform are abutted to form a joint, where the joint may, for example, be a lap joint, a bevel joint or a butt joint. In some embodiments a plurality of passes of a friction stir welding tool may be used, with some passes welding from one side of a fabrication preform and other passes welding from the other side of the fabrication preform.
Interacting boundary-layer solutions for laminar separated flow past airfoils
NASA Technical Reports Server (NTRS)
Burggraf, O. R.
1984-01-01
Numerical solutions of the interacting laminar boundary layer equations are presented for two symmetric airfoils at zero incidence: the NACA 0012 and the NACA 66 sub 3-108 airfoils. The potential flow was computed using Carlson's code, and viscous interaction was treated following a Hilbert integral scheme due to Veldman. Effects of various grid parameters are studied, and pressure and skin friction distributions are compared at several Reynolds numbers. For the NACA 0012 airfoil, Reynolds number is varied from a value just below separation (R sub N = 3000) to a value for which extensive separation occurs (R sub N = 100,000). For the 66 sub 3-018 airfoil, results are given at intermediate values (R sub N - 10,000 and 40,000). The method fails to converge for greater values of Reynolds number, corresponding to the development of very thin well separated shear layers where transition to turbulence would occur naturally.
Heat transfer and fluid mechanics measurements in transitional boundary layer flows
NASA Technical Reports Server (NTRS)
Wang, T.; Simon, T. W.; Buddhavarapu, J.
1985-01-01
Experimental results are presented to document hydrodynamic and thermal development of flat-plate boundary layers undergoing natural transition. Local heat transfer coefficients, skin friction coefficients and profiles of velocity, temperature and Reynolds normal and shear stresses are presented. A case with no transition and transitional cases with 0.68 percent and 2.0 percent free-stream disturbance intensities were investigated. The locations of transition are consistent with earlier data. A late-laminar state with significant levels of turbulence is documented. In late-transitional and early-turbulent flows, turbulent Prandtl number and conduction layer thickness values exceed, and the Reynolds analogy factor is less than, values previously measured in fully turbulent flows.
Vortex Generators to Control Boundary Layer Interactions
NASA Technical Reports Server (NTRS)
Babinsky, Holger (Inventor); Loth, Eric (Inventor); Lee, Sang (Inventor)
2014-01-01
Devices for generating streamwise vorticity in a boundary includes various forms of vortex generators. One form of a split-ramp vortex generator includes a first ramp element and a second ramp element with front ends and back ends, ramp surfaces extending between the front ends and the back ends, and vertical surfaces extending between the front ends and the back ends adjacent the ramp surfaces. A flow channel is between the first ramp element and the second ramp element. The back ends of the ramp elements have a height greater than a height of the front ends, and the front ends of the ramp elements have a width greater than a width of the back ends.
Atmospheric boundary layer processes during a total solar eclipse
SethuRaman, S.; Prabhu, A.; Narahari Rao, K.; Narasimha, R.
1980-01-01
The total solar eclipse that occurred over the southern part of India on February 16, 1980, gave a unique opportunity to study the earth's atmospheric boundary layer. The meteorological experiments during the 1980 solar eclipse were conducted at Raichur, India (16/sup 0/12'N, 77/sup 0/21'E) located in the state of Karnataka, approximately 400-m above sea level. The main objective was to determine the changes in the earth's atmosphere during and immediately after the eclipse. The goal was to study the changes in the momentum and heat fluxes in the boundary layer due to the eclipse. Measurements were made for 2 days prior to and 1 day after the day of the eclipse to determine background characteristics of the boundary layer which might be site-dependent.
Roughness Induced Transition in a Supersonic Boundary Layer
NASA Technical Reports Server (NTRS)
Balakumar, Ponnampalam; Kergerise, Michael A.
2013-01-01
Direct numerical simulation is used to investigate the transition induced by threedimensional isolated roughness elements in a supersonic boundary layer at a free stream Mach number of 3.5. Simulations are performed for two different configurations: one is a square planform roughness and the other is a diamond planform roughness. The mean-flow calculations show that the roughness induces counter rotating streamwise vortices downstream of the roughness. These vortices persist for a long distance downstream and lift the low momentum fluid from the near wall region and place it near the outer part of the boundary layer. This forms highly inflectional boundary layer profiles. These observations agree with recent experimental observations. The receptivity calculations showed that the amplitudes of the mass-flux fluctuations near the neutral point for the diamond shape roughness are the same as the amplitude of the acoustic disturbances. They are three times smaller for the square shape roughness.
An investigation of shock/turbulent boundary layer bleed interactions
NASA Technical Reports Server (NTRS)
Hamed, A.; Shih, S. H.; Yeuan, J. J.
1992-01-01
A numerical investigation was conducted to determine the effect of bleed on oblique shock wave/turbulent boundary layer interactions. The numerical solution to the compressible Navier-Stokes equations reveal the flow details throughout the interaction zone and inside the normal bleed slot. Results are presented for an incident oblique shock of sufficient strength to cause boundary layer separation in the absence of bleed. Bleed is applied across the shock impingement location over a range of bleed mass flow rates corresponding to different values of plenum pressures. The results indicate a complex flow structure with large variations in both normal and tangential flow velocities across the bleed slot. The flow entrainment into the slot is accompanied by an expansion-compression wave system with a bow shock originating inside the bleed slot. Increasing the bleed mass flow by decreasing the plenum pressure caused an initial decrease then a later increase in the boundary layer momentum and displacement thickness downstream of the interaction.
Defects and boundary layers in non-Euclidean plates
NASA Astrophysics Data System (ADS)
Gemmer, J. A.; Venkataramani, S. C.
2012-12-01
We investigate the behaviour of non-Euclidean plates with constant negative Gaussian curvature using the Föppl-von Kármán reduced theory of elasticity. Motivated by recent experimental results, we focus on annuli with a periodic profile. We prove rigorous upper and lower bounds for the elastic energy that scales like the thickness squared. In particular we show that are only two types of global minimizers—deformations that remain flat and saddle shaped deformations with isolated regions of stretching near the edge of the annulus. We also show that there exist local minimizers with a periodic profile that have additional boundary layers near their lines of inflection. These additional boundary layers are a new phenomenon in thin elastic sheets and are necessary to regularize jump discontinuities in the azimuthal curvature across lines of inflection. We rigorously derive scaling laws for the width of these boundary layers as a function of the thickness of the sheet.
Finite volume solution of the compressible boundary-layer equations
NASA Technical Reports Server (NTRS)
Loyd, B.; Murman, E. M.
1986-01-01
A box-type finite volume discretization is applied to the integral form of the compressible boundary layer equations. Boundary layer scaling is introduced through the grid construction: streamwise grid lines follow eta = y/h = const., where y is the normal coordinate and h(x) is a scale factor proportional to the boundary layer thickness. With this grid, similarity can be applied explicity to calculate initial conditions. The finite volume method preserves the physical transparency of the integral equations in the discrete approximation. The resulting scheme is accurate, efficient, and conceptually simple. Computations for similar and non-similar flows show excellent agreement with tabulated results, solutions computed with Keller's Box scheme, and experimental data.
Hypersonic flow separation in shock wave boundary layer interactions
NASA Technical Reports Server (NTRS)
Hamed, A.; Kumar, Ajay
1992-01-01
An assessment is presented for the experimental data on separated flow in shock wave turbulent boundary layer interactions at hypersonic and supersonic speeds. The data base consists mainly of two dimensional and axisymmetric interactions in compression corners or cylinder-flares, and externally generated oblique shock interactions with boundary layers over flat plates or cylindrical surfaces. The conditions leading to flow separation and the subsequent changes in the flow empirical correlations for incipient separation are reviewed. The effects of the Mach number, Reynolds number, surface cooling and the methods of detecting separation are discussed. The pertinent experimental data for the separated flow characteristics in separated turbulent boundary layer shock interaction are also presented and discussed.
Boundary layer effects on particle impaction and capture
NASA Technical Reports Server (NTRS)
Rosner, D. E.; Fernandez De La Mora, J.
1984-01-01
The inertial impaction and deposition of small particles on larger bodies with viscous boundary layers are considered theoretically, in a detailed comment on a paper by Menguturk et al. (1983). Topics addressed include cushion effects, the dimensionless groups corresponding to the diameter range (3-6 microns) examined by Menguturk et al. in a numerical example, analogous effects of particle-gas energy and mass exchange in boundary layers, and the combined effects of particle inertia and diffusion. It is argued that the inertial effects can be characterized in terms of a body, boundary-layer, or sublayer Stokes number. In a reply by Menguturk et al., the focus is on the application of the theoretical model to the erosion of blade surfaces in large gas turbines; the Stokes number is found to be of limited practical value in these cases, because the particle motion is not primarily normal to the blade surfaces.
Numerical Simulations of Wake/Boundary Layer Interactions
NASA Technical Reports Server (NTRS)
Piomelli, Ugo; Choudhari, Meelan M.; Ovchinnikov, Victor; Balaras, Elias
2003-01-01
Direct and large-eddy simulations of the interaction between the wake of a circular cylinder and a flat-plate boundary layer are conducted. Two Reynolds numbers are examined. The simulations indicate that at the lower Reynolds number the boundary layer is buffeted by the unsteady Karman vortex street shed by the cylinder. The fluctuations, however, cannot be self-sustained due to the low Reynolds-number, and the flow does not reach a turbulent state within the computational domain. In contrast, in the higher Reynolds-number case, boundary-layer fluctuations persist after the wake has decayed (due, in part, to the higher values of the local Reynolds number Re(sub theta) achieved in this case); some evidence could be observed that a self-sustaining turbulence generation cycle was beginning to be established.
Inverse boundary-layer theory and comparison with experiment
NASA Technical Reports Server (NTRS)
Carter, J. E.
1978-01-01
Inverse boundary layer computational procedures, which permit nonsingular solutions at separation and reattachment, are presented. In the first technique, which is for incompressible flow, the displacement thickness is prescribed; in the second technique, for compressible flow, a perturbation mass flow is the prescribed condition. The pressure is deduced implicitly along with the solution in each of these techniques. Laminar and turbulent computations, which are typical of separated flow, are presented and comparisons are made with experimental data. In both inverse procedures, finite difference techniques are used along with Newton iteration. The resulting procedure is no more complicated than conventional boundary layer computations. These separated boundary layer techniques appear to be well suited for complete viscous-inviscid interaction computations.
A compilation of unsteady turbulent boundary-layer experimental data
NASA Technical Reports Server (NTRS)
Carr, L. W.
1981-01-01
An extensive literature search was conducted and those experiments related to unsteady boundary layer behavior were cataloged. In addition, an international survey of industrial, university, and governmental research laboratories was made in which new and ongoing experimental programs associated with unsteady turbulent boundary layer research were identified. Pertinent references were reviewed and classified based on the technical emphasis of the various experiments. Experiments that include instantaneous or ensemble averaged profiles of boundary layer variables are stressed. The experimental apparatus and flow conditions are described and summaries of acquired data and significant conclusions are summarized. Measurements obtained from the experiments which exist in digital form were stored on magnetic tape. Instructions are given for accessing these data sets for further analysis.
Additive thermochemical effects in turbulent erosive boundary layers
Buckingham, A.C.; Levatin, J.L.
1983-01-18
Previously obtained interior ballistics and wall boundary layer modeling results indicate that significant reduction in erosive heating can be expected when finely divided particles are dispersed through the propellant combustion flow field. Attention was first placed on the particle size influences, together with particle dispersal dynamics in both turbulent combustion core flow and the erosive wall boundary layer region. Submicron thermochemically inert particles were predicted to disperse readily to the near wall region where they were then entrained in the boundary layer. This was estimated to substantially reduce the predicted erosive heat and mass transfer and experimentally confirmed. Examination of the time-averaged turbulent boundary layer macrostructure changes indicated that inertial influences were primarily responsible for this reduction in erosive heating to gun barrel walls. The boundary layers were thickened by the additives and erosive diffusion gradients were correspondingly reduced. The isolated inertial mechanisms are now understood but are difficult to apply in general dimensional analysis scaling or in analytical heat transfer correlation predictions. Three major factors which contribute to these difficulties are: time dependence of both developing mean flow and particle field; turbulence-particle interactions; and thermochemical heat release and exchange between reactive gas components and particles, particles and wall surface, and reactive gas and wall surface. To help illustrate the influence of thes mechanisms and provide a basis for prediction, the influence of submicron additives in unsteady turbulent boundary layer growth and interaction regions adjacent to a model of a chemically active metallic (steel) surface are examined. Equilibrium chemistry is assumed for all phases.
Receptivity of Hypersonic Boundary Layers over Straight and Flared Cones
NASA Technical Reports Server (NTRS)
Balakumar, Ponnampalam; Kegerise, Michael A.
2010-01-01
The effects of adverse pressure gradients on the receptivity and stability of hypersonic boundary layers were numerically investigated. Simulations were performed for boundary layer flows over a straight cone and two flared cones. The steady and the unsteady flow fields were obtained by solving the two-dimensional Navier-Stokes equations in axi-symmetric coordinates using the 5th order accurate weighted essentially non-oscillatory (WENO) scheme for space discretization and using third-order total-variation-diminishing (TVD) Runge-Kutta scheme for time integration. The mean boundary layer profiles were analyzed using local stability and non-local parabolized stability equations (PSE) methods. After the most amplified disturbances were identified, two-dimensional plane acoustic waves were introduced at the outer boundary of the computational domain and time accurate simulations were performed. The adverse pressure gradient was found to affect the boundary layer stability in two important ways. Firstly, the frequency of the most amplified second-mode disturbance was increased relative to the zero pressure gradient case. Secondly, the amplification of first- and second-mode disturbances was increased. Although an adverse pressure gradient enhances instability wave growth rates, small nose-tip bluntness was found to delay transition due to the low receptivity coefficient and the resulting weak initial amplitude of the instability waves. The computed and measured amplitude-frequency spectrums in all three cases agree very well in terms of frequency and the shape except for the amplitude.
Numerical Study of Boundary-Layer in Aerodynamics
NASA Technical Reports Server (NTRS)
Shih, Tom I-P.
1997-01-01
The accomplishments made in the following three tasks are described: (1) The first task was to study shock-wave boundary-layer interactions with bleed - this study is relevant to boundary-layer control in external and mixed-compression inlets of supersonic aircraft; (2) The second task was to test RAAKE, a code developed for computing turbulence quantities; and (3) The third task was to compute flow around the Ames ER-2 aircraft that has been retrofitted with containers over its wings and fuselage. The appendices include two reports submitted to AIAA for publication.
Simulation of glancing shock wave and boundary layer interaction
NASA Technical Reports Server (NTRS)
Hung, Ching-Mao
1989-01-01
Shock waves generated by sharp fins, glancing across a laminar boundary layer growing over a flat plate, are simulated numerically. Several basic issues concerning the resultant three-dimensional flow separation are studied. Using the same number of grid points, different grid spacings are employed to investigate the effects of grid resolution on the origin of the line of separation. Various shock strengths (generated by different fin angles) are used to study the so-called separated and unseparated boundary layer and to establish the existence or absence of the secondary separation. The usual interpretations of the flow field from previous studies and new interpretations arising from the present simulation are discussed.
Axisymmetric fundamental solutions for a finite layer with impeded boundaries.
Cheng, Ze-Hai; Chen, Yun-Min; Ling, Dao-Sheng; Tang, Xiao-Wu
2003-01-01
Axisymmetric fundamental solutions that are applied in the consolidation calculations of a finite clay layer with impeded boundaries were derived. Laplace and Hankel integral transforms were utilized with respect to time and radial coordinates, respectively in the analysis. The derivation of fundamental solutions considers two-boundary value problems involving unit point loading and ring loading in the vertical. The solutions are extended to circular distributed and strip distributed normal load. The computation and analysis of settlements, vertical total stress and excess pore pressure in the consolidation layer subject to circular loading are presented. PMID:12861613
Lower Atmospheric Boundary Layer Experiment (LABLE) Final Campaign Report
Klein, P; Bonin, TA; Newman, JF; Turner, DD; Chilson, P; Blumberg, WG; Mishra, S; Wainwright, CE; Carney, M; Jacobsen, EP; Wharton, S
2015-11-01
The Lower Atmospheric Boundary Layer Experiment (LABLE) included two measurement campaigns conducted at the Atmospheric Radiation Measurement (ARM) Southern Great Plains site in Oklahoma during 2012 and 2013. LABLE was designed as a multi-phase, low-cost collaboration among the University of Oklahoma, the National Severe Storms Laboratory, Lawrence Livermore National Laboratory, and the ARM program. A unique aspect was the role of graduate students in LABLE. They served as principal investigators and took the lead in designing and conducting experiments using different sampling strategies to best resolve boundary-layer phenomena.
Carbon vaporization into a nonequilibrium, stagnation-point boundary layer
NASA Technical Reports Server (NTRS)
Suzuki, T.
1978-01-01
The heat transfer to the stagnation point of an ablating carbonaceous heat shield, where both the gas-phase boundary layer and the heterogeneous surface reactions are not in chemical equilibrium, is examined. Specifically, the nonequilibrium changes in the mass fraction profiles of carbon species calculated for frozen flow are studied. A set of equations describing the steady-state, nonequilibrium laminar boundary layer in the axisymmetric stagnation region, over an ablating graphite surface, is solved, with allowance for the effects of finite rate of carbon vaporization.
Carrillo, Jan-Michael; Brown, W Michael; Dobrynin, Andrey
2012-01-01
We study friction between charged and neutral brush layers of bottle-brush macromolecules using molecular dynamics simulations. In our simulations the solvent molecules were treated explicitly. The deformation of the bottle-brush macromolecules under the shear were studied as a function of the substrate separation and shear stress. For charged bottle-brush layers we study effect of the added salt on the brush lubricating properties to elucidate factors responsible for energy dissipation in charged and neutral brush systems. Our simulations have shown that for both charged and neutral brush systems the main deformation mode of the bottle-brush macromolecule is associated with the backbone deformation. This deformation mode manifests itself in the backbone deformation ratio, , and shear viscosity, , to be universal functions of the Weissenberg number W. The value of the friction coefficient, , and viscosity, , are larger for the charged bottle-brush coatings in comparison with those for neutral brushes at the same separation distance, D, between substrates. The additional energy dissipation generated by brush sliding in charged bottle-brush systems is due to electrostatic coupling between bottle-brush and counterion motion. This coupling weakens as salt concentration, cs, increases resulting in values of the viscosity, , and friction coefficient, , approaching corresponding values obtained for neutral brush systems.
A model of wind shear and turbulence in the surface boundary layer
NASA Technical Reports Server (NTRS)
Luers, J. K.
1973-01-01
A model of wind and turbulence has been described for the surface boundary layer. The wind structure in the surface layer is considered to be a function of the surface parameters, stability, and height. The surface parameters considered are: (1) the surface roughness length; (2) the surface friction velocity; and (3) the zero plane displacement height. The stability parameter, Z/L, where L is the Monin-Obukov stability length, describes the thermal effect on the wind profile. The logarithmic wind profile is used to describe the mean wind field in the neutral boundary layer, and a logarithmic profile with a stability defect is used to describe the stable and unstable atmospheric conditions. For the very stable conditions, the logarithmic wind law does not hold. Under this condition, the layers of the atmosphere become disconnected and large scale frontal motions are the predominate factor in defining the wind profile. Figures are presented which represent some typical wind profiles in the very stable condition.
Second mode interactions in supersonic boundary layers
NASA Technical Reports Server (NTRS)
Erlebacher, Gordon; Hussaini, M. Y.
1990-01-01
The nonlinear evolution of a two-dimensional second mode unstable wave in a Mach 4.5 wall-bounded flow is computed by solving the full time-dependent compressible Navier-Stokes equations. A highly accurate solution is obtained using spectral collocation methods. It is shown that departure from linearity first occurs in the critical layer due to the cubic nonlinearities in the momentum equation. This is a direct result of the large density perturbations in this regime. Time evolution studies of the growth rate as a function of normal distance from the plate suggests that the mode is evolving toward a nonlinear saturated state, and that this problem is possibly amenable to standard weakly nonlinear perturbation methods.
NASA Astrophysics Data System (ADS)
Koge, Hiroaki; Fujiwara, Toshiya; Kodaira, Shuichi; Sasaki, Tomoyuki; Kameda, Jun; Kitamura, Yujin; Hamahashi, Mari; Fukuchi, Rina; Yamaguchi, Asuka; Hamada, Yohei; Ashi, Juichiro; Kimura, Gaku
2014-12-01
The 2011 Tohoku-Oki earthquake (Mw 9.0) produced a fault rupture that extended to the toe of the Japan Trench. The deformation and frictional properties beneath the forearc are keys that can help to elucidate this unusual event. In the present study, to investigate the frictional properties of the shallow part of the plate boundary, we applied the critically tapered Coulomb wedge theory to the Japan Trench and obtained the effective coefficient of basal friction and Hubbert-Rubey pore fluid pressure ratio (?) of the wedge beneath the lower slope. We extracted the surface slope angle and décollement dip angle (which are the necessary topographic parameters for applying the critical taper theory) from seismic reflection and refraction survey data at 12 sites in the frontal wedges of the Japan Trench. We found that the angle between the décollement and back-stop interface generally decreases toward the north. The measured taper angle and inferred effective friction coefficient were remarkably high at three locations. The southernmost area, which had the highest coefficient of basal friction, coincides with the area where the seamount is colliding offshore of Fukushima. The second area with a high effective coefficient of basal friction coincides with the maximum slip location during the 2011 Tohoku-Oki earthquake. The area of the 2011 earthquake rupture was topographically unique from other forearc regions in the Japan Trench. The strain energy accumulation near the trench axis may have proceeded because of the relatively high friction, and later this caused a large slip and collapse of the wedge. The location off Sanriku, where there are neither seamount collisions nor rupture propagation, also has a high coefficient of basal friction. The characteristics of the taper angle, effective coefficient of basal friction, and pore fluid pressure ratio along the Japan Trench presented herein may contribute to the understanding of the relationship between the geometry of the prism and the potential for generating seismo-tsunamigenic slips.
Magnetic field maxima in the low latitude boundary layer
NASA Technical Reports Server (NTRS)
Sonnerup, B.; Paschmann, G.; Phan, T.-D.; Luehr, H.
1992-01-01
The magnetic field often exhibits a maximum in the earth's low-latitude boundary layer. Examples of this behavior are shown using data from the AMPTE/IRM spacecraft, and it is argued that two fundamentally distinct causes exist for the excess field: (1) a depression, within the layer, of the population of medium-energy ions of magnetospheric origin and (2) field curvature effects associated with undulations of the magnetopause itself.
Magnetic field maxima in the low latitude boundary layer
Sonnerup, B. ); Paschmann, G.; Phan, T.D. ); Luehr, H. )
1992-09-04
The magnetic field often exhibits a maximum in the Earth's low-latitude boundary layer. The authors show examples of this behavior, using data from the AMPTE/IRM spacecraft, and argue that two fundamentally distinct causes exist for the excess field: (1) a depression, within the layer, of the population of medium-energy ions of magnetospheric origin; (2) field curvature effects associated with undulations of the magnetopause itself.
Role of interfacial friction for flow instabilities in a thin polar-ordered active fluid layer
NASA Astrophysics Data System (ADS)
Sarkar, Niladri; Basu, Abhik
2015-11-01
We construct a generic coarse-grained dynamics of a thin inflexible planar layer of polar-ordered suspension of active particles that is frictionally coupled to an embedding isotropic passive fluid medium with a friction coefficient ? . Being controlled by ? , our model provides a unified framework to describe the long-wavelength behavior of a variety of thin polar-ordered systems, ranging from wet to dry active matter and free-standing active films. Investigations of the linear instabilities around a chosen orientationally ordered uniform reference state reveal generic moving and static instabilities in the system that can depend sensitively on ? . Based on our results, we discuss estimation of bounds on ? in experimentally accessible systems.
Role of interfacial friction for flow instabilities in a thin polar ordered active fluid layer
Niladri Sarkar; Abhik Basu
2015-10-20
We construct a generic coarse-grained dynamics of a thin inflexible planar layer of polar-ordered suspension of active particles, that is frictionally coupled to an embedding isotropic passive fluid medium with a friction coefficient $\\Gamma$. Being controlled by $\\Gamma$, our model provides a unified framework to describe the long wavelength behaviour of a variety of thin polar-ordered systems, ranging from {\\em wet} to {\\em dry} active matters and free standing active films. Investigations of the linear instabilities around a chosen orientationally ordered uniform reference state reveal generic moving and static instabilities in the system, that can depend sensitively on $\\Gamma$. Based on our results, we discuss estimation of bounds on $\\Gamma$ in experimentally accessible systems.
AIRCRAFT OBSERVATIONS OF THE MEAN AND TURBULENT STRUCTURE OF A SHALLOW BOUNDARY LAYER OVER THE
Brooks, Ian M.
-layer evolution made by the U.K. Meteorological Office's C-130 Hercules research aircraft over the Persian Gulf in the lower 3050% of the boundary layer. Scaling of boundary-layer turbulence statistics using local
NASA Technical Reports Server (NTRS)
Omori, S.
1973-01-01
The turbulent kinetic energy equation is coupled with boundary layer equations to solve the characteristics of compressible turbulent boundary layers with mass injection and combustion. The Reynolds stress is related to the turbulent kinetic energy using the Prandtl-Wieghardt formulation. When a lean mixture of hydrogen and nitrogen is injected through a porous plate into the subsonic turbulent boundary layer of air flow and ignited by external means, the turbulent kinetic energy increases twice as much as that of noncombusting flow with the same mass injection rate of nitrogen. The magnitudes of eddy viscosity between combusting and noncombusting flows with injection, however, are almost the same due to temperature effects, while the distributions are different. The velocity profiles are significantly affected by combustion; that is, combustion alters the velocity profile as if the mass injection rate is increased, reducing the skin-friction as a result of a smaller velocity gradient at the wall. If pure hydrogen as a transpiration coolant is injected into a rocket nozzle boundary layer flow of combustion products, the temperature drops significantly across the boundary layer due to the high heat capacity of hydrogen. At a certain distance from the wall, hydrogen reacts with the combustion products, liberating an extensive amount of heat. The resulting large increase in temperature reduces the eddy viscosity in this region.
Existence results for nano boundary layer flows with nonlinear Navier boundary condition
NASA Astrophysics Data System (ADS)
Shivanian, Elyas
2013-12-01
The standard no slip boundary condition of classical fluid mechanics is no longer valid at the micro- and nano-scale and should be replaced by a boundary condition that allows some degree of tangential slip. In the present work, the classical laminar boundary layer equation of the flow away from the origin past a wedge with the no-slip boundary condition replaced by a nonlinear Navier boundary condition is revisited. This boundary condition includes an arbitrary index parameter, denoted by n>0, which appears in the coefficients of the differential equation to be solved. It is proved corresponding to the value n=1/3, there are exactly three situations for the problem: (i) there is no solution; (ii) there exist two solutions; (iii) there exist four solutions. Furthermore, the exact analytical solution of the problem is given in terms of parabolic cylinder functions for further physical interpretations.
Accurate velocity measurements of boundary-layer flows using Doppler optical coherence tomography
NASA Astrophysics Data System (ADS)
Haavisto, Sanna; Salmela, Juha; Koponen, Antti
2015-05-01
Pulsed ultrasound Doppler velocimetry and nuclear magnetic resonance imaging are popular non-invasive measurement methods for flows of opaque fluids. The spatial and temporal resolution of these methods, however, is quite limited, and they lack accuracy, especially close to solid boundaries. In this paper, we show that solution to these problems is achieved by using Doppler optical coherence tomography (DOCT). DOCT provides simultaneous information about the fluid structure and velocity with very high spatial and temporal resolution. For benchmarking of the method we use water as the reference fluid. We show how DOCT gives a very good agreement with theory for the velocity profile, skin friction and viscosity directly from the measurement signal. The velocity profile extends from the turbulent region to viscous sublayer, and viscosity of the fluid can be calculated also from a turbulent flow with a good accuracy. Overall, DOCT is seen to be very well suited for providing new insight into boundary-layer flows, rheology and skin friction.
Investigations on entropy layer along hypersonic hyperboloids using a defect boundary layer
NASA Technical Reports Server (NTRS)
Brazier, J. P.; Aupoix, B.; Cousteix, J.
1992-01-01
A defect approach coupled with matched asymptotic expansions is used to derive a new set of boundary layer equations. This method ensures a smooth matching of the boundary layer with the inviscid solution. These equations are solved to calculate boundary layers over hypersonic blunt bodies involving the entropy gradient effect. Systematic comparisons are made for both axisymmetric and plane flows in several cases with different Mach and Reynolds numbers. After a brief survey of the entropy layer characteristics, the defect boundary layer results are compared with standard boundary layer and full Navier-Stokes solutions. The entropy gradient effects are found to be more important in the axisymmetric case than in the plane one. The wall temperature has a great influence on the results through the displacement effect. Good predictions can be obtained with the defect approach over a cold wall in the nose region, with a first order solution. However, the defect approach gives less accurate results far from the nose on axisymmetric bodies because of the thinning of the entropy layer.
Determination of Stability and Translation in a Boundary Layer
NASA Technical Reports Server (NTRS)
Crepeau, John; Tobak, Murray
1996-01-01
Reducing the infinite degrees of freedom inherent in fluid motion into a manageable number of modes to analyze fluid motion is presented. The concepts behind the center manifold technique are used. Study of the Blasius boundary layer and a precise description of stability within the flow field are discussed.
ON HYDROMAGNETIC STRESSES IN ACCRETION DISK BOUNDARY LAYERS
Pessah, Martin E.; Chan, Chi-kwan E-mail: ckch@nordita.org
2012-05-20
Detailed calculations of the physical structure of accretion disk boundary layers, and thus their inferred observational properties, rely on the assumption that angular momentum transport is opposite to the radial angular frequency gradient of the disk. The standard model for turbulent shear viscosity satisfies this assumption by construction. However, this behavior is not supported by numerical simulations of turbulent magnetohydrodynamic (MHD) accretion disks, which show that angular momentum transport driven by the magnetorotational instability (MRI) is inefficient in disk regions where, as expected in boundary layers, the angular frequency increases with radius. In order to shed light on physically viable mechanisms for angular momentum transport in this inner disk region, we examine the generation of hydromagnetic stresses and energy density in differentially rotating backgrounds with angular frequencies that increase outward in the shearing-sheet framework. We isolate the modes that are unrelated to the standard MRI and provide analytic solutions for the long-term evolution of the resulting shearing MHD waves. We show that, although the energy density of these waves can be amplified significantly, their associated stresses oscillate around zero, rendering them an inefficient mechanism to transport significant angular momentum (inward). These findings are consistent with the results obtained in numerical simulations of MHD accretion disk boundary layers and challenge the standard assumption of efficient angular momentum transport in the inner disk regions. This suggests that the detailed structure of turbulent MHD accretion disk boundary layers could differ appreciably from those derived within the standard framework of turbulent shear viscosity.
Measurements Of Shock-Separated Turbulent Boundary Layers
NASA Technical Reports Server (NTRS)
Brown, J. D.; Brown, J. L.; Kussoy, M. I.
1990-01-01
Report documents surface and flow-field measurements of two- and three-dimensional, shock-separated, turbulent boundary layers. Data tabulated to facilitate comparison with other measurements and computations. Shows shock-interaction shadowgraph and oil-flow pattern for each angle. Plotted profiles given for pressures, velocities, Reynolds stresses, and turbulent kinetic energies.
Iodine monoxide in the Western Pacific marine boundary layer
NASA Astrophysics Data System (ADS)
Großmann, K.; Frieß, U.; Peters, E.; Wittrock, F.; Lampel, J.; Yilmaz, S.; Tschritter, J.; Sommariva, R.; von Glasow, R.; Quack, B.; Krüger, K.; Pfeilsticker, K.; Platt, U.
2013-03-01
A latitudinal cross-section and vertical profiles of iodine monoxide (IO) are reported from the marine boundary layer of the Western Pacific. The measurements were taken using Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) during the TransBrom cruise of the German research vessel Sonne, which led from Tomakomai, Japan (42° N, 141° E) through the Western Pacific to Townsville, Australia (19° S, 146° E) in October 2009. In the marine boundary layer within the tropics (between 20° N and 5° S), IO mixing ratios ranged between 1 and 2.2 ppt, whereas in the subtropics and at mid-latitudes typical IO mixing ratios were around 1 ppt in the daytime. The profile retrieval reveals that the bulk of the IO was located in the lower part of the marine boundary layer. Photochemical simulations indicate that the organic iodine precursors observed during the cruise (CH3I, CH2I2, CH2ClI, CH2BrI) are not sufficient to explain the measured IO mixing ratios. Reasonable agreement between measured and modelled IO can only be achieved if an additional sea-air flux of inorganic iodine (e.g., I2) is assumed in the model. Our observations add further evidence to previous studies that reactive iodine is an important oxidant in the marine boundary layer.
Boundary layer control of rotating convection Eric M. King1
weakens, and three-dimensional, turbulent convection can occur (Fig. 1b). It is commonly assumed is the fluid's viscous diffusivity and k is the fluid's thermal diffusivity. Many non-rotating convection be explained in terms of boundary layer dynamics. A convecting fluid volume consists of two distinct dynamical
Hair receptor sensitivity to changes in laminar boundary layer shape.
Dickinson, B T
2010-03-01
Biologists have shown that bat wings contain distributed arrays of flow-sensitive hair receptors. The hair receptors are hypothesized to feedback information on airflows over the bat wing for enhanced stability or maneuverability during flight. Here, we study the geometric specialization of hair-like structures for the detection of changes in boundary layer velocity profiles (shapes). A quasi-steady model that relates the flow velocity profile incident on the longitudinal axis of a hair to the resultant moment and shear force at the hair base is developed. The hair length relative to the boundary layer momentum thickness that maximizes the resultant moment and shear-force sensitivity to changes in boundary layer shape is determined. The sensitivity of the resultant moment and shear force is shown to be highly dependent on hair length. Hairs that linearly taper to a point are shown to provide greater output sensitivity than hairs of uniform cross-section. On an order of magnitude basis, the computed optimal hair lengths are in agreement with the range of hair receptor lengths measured on individual bat species. These results support the hypothesis that bats use hair receptors for detecting changes in boundary layer shape and provide geometric guidelines for artificial hair sensor design and application. PMID:20157224
Stratified Flow over Topography: Wave Generation and Boundary Layer Separation
Sutherland, Bruce
Stratified Flow over Topography: Wave Generation and Boundary Layer Separation B. R. Sutherland topography. We have chosen to use periodic, finiteamplitude hills which are representative of the Earth upon internal waves generated by flow over rough topography. 1 Introduction Internal waves propagate
Stratified Flow over Topography: Wave Generation and Boundary Layer Separation
Sutherland, Bruce
Stratified Flow over Topography: Wave Generation and Boundary Layer Separation B. R. Sutherland topography. We have chosen to use periodic, finite-amplitude hills which are representative of the Earth upon internal waves generated by flow over rough topography. 1 Introduction Internal waves propagate
Numerical Study of Flat-Plate Boundary Layer Bypass Transition.
NASA Astrophysics Data System (ADS)
Ovchinnikov, Victor; Piomelli, Ugo; Choudhari, Meelan M.
2004-11-01
Previous numerical simulations of boundary-layer bypass transition due to free-stream-turbulence (FST) have focused primarily on the transition region itself, using an ad hoc inflow condition downstream of the plate leading edge. This approach involves significant assumptions regarding the spatial evolution of FST and its penetration into the boundary layer. Additionally, the effects of FST length-scale have largely been ignored, which can lead to incorrect decay rates over the boundary layer, making a quantitative comparison with experiments difficult. We present DNS of boundary-layer bypass transition, which addresses some of the above limitations by including the super-elliptic leading edge of the flat-plate model inside the computational domain. The FST is generated upstream of the plate, enabling the leading-edge/FST interaction region to be fully captured in the simulations. The FST also has the same decay rate as in the experiments of Roach and Brierlay (1992), facilitating a direct comparison with the experimental data.
Carbon transport in the bottom boundary layer. Final report
Agrawal, Y.C.
1998-10-05
This report summarizes the activities and findings from a field experiment devised to estimate the rates and mechanisms of transport of carbon across the continental shelves. The specific site chosen for the experiment was the mid-Atlantic Bight, a region off the North Carolina coast. The experiment involved a large contingent of scientists from many institutions. The specific component of the program was the transport of carbon in the bottom boundary layer. The postulate mechanisms of transport of carbon in the bottom boundary layer are: resuspension and advection, downward deposition, and accumulation. The high turbulence levels in the bottom boundary layer require the understanding of the coupling between turbulence and bottom sediments. The specific issues addressed in the work reported here were: (a) What is the sediment response to forcing by currents and waves? (b) What is the turbulence climate in the bottom boundary layer at this site? and (c) What is the rate at which settling leads to carbon sequestering in bottom sediments at offshore sites?
Stability of Supersonic Boundary Layers Over Blunt Wedges
NASA Technical Reports Server (NTRS)
Balakumar, Ponnampalam
2006-01-01
Receptivity and stability of supersonic boundary layers over blunt flat plates and wedges are numerically investigated at a free stream Mach number of 3.5 and at a high Reynolds number of 10(exp 6)/inch. Both the steady and unsteady solutions are obtained by solving the full Navier-Stokes equations using the 5th-order accurate weighted essentially non-oscillatory (WENO) scheme for space discretization and using third-order total-variation-diminishing (TVD) Runge-Kutta scheme for time integration. Computations are performed for a flat plate with leading edge thicknesses of 0.0001, 0.001, 0.005 and 0.01 inches that give Reynolds numbers based on the leading edge thickness ranging from 1000 to 10000. Calculations are also performed for a wedge of 10 degrees half angle with different leading edge radii 0.001 and 0.01 inches. The linear stability results showed that the bluntness has a strong stabilizing effect on the stability of two-dimensional boundary layers. The transition Reynolds number for a flat plate with a leading edge thickness of 0.01 inches is about 3.5 times larger than it is for the Blasius boundary layer. It was also revealed that boundary layers on blunt wedges are far more stable than on blunt flat plates.
Large-Scale Streamwise Turbulent Structures in Hypersonic Boundary Layers
English, Benjamin L.
2013-04-22
Prior research in the field of boundary layer turbulence has identified streamwise-elongated large-scale turbulence structures in both low speed compressible and high speed (M=2.0) flow. No experimental work has been done in any flow of M> or =3...
FLUID MODELING OF ATMOSPHERIC DISPERSION IN THE CONVECTIVE BOUNDARY LAYER
Study of convective boundary layer (CBL) processes has depended largely upon laboratory analogs for many years. The pioneering work of Willis and Deardorff (1974) and some 35 subsequent papers by the same authors showed that much useful research could be accomplished with a re...
Boundary-Layer Receptivity and Integrated Transition Prediction
NASA Technical Reports Server (NTRS)
Chang, Chau-Lyan; Choudhari, Meelan
2005-01-01
The adjoint parabold stability equations (PSE) formulation is used to calculate the boundary layer receptivity to localized surface roughness and suction for compressible boundary layers. Receptivity efficiency functions predicted by the adjoint PSE approach agree well with results based on other nonparallel methods including linearized Navier-Stokes equations for both Tollmien-Schlichting waves and crossflow instability in swept wing boundary layers. The receptivity efficiency function can be regarded as the Green's function to the disturbance amplitude evolution in a nonparallel (growing) boundary layer. Given the Fourier transformed geometry factor distribution along the chordwise direction, the linear disturbance amplitude evolution for a finite size, distributed nonuniformity can be computed by evaluating the integral effects of both disturbance generation and linear amplification. The synergistic approach via the linear adjoint PSE for receptivity and nonlinear PSE for disturbance evolution downstream of the leading edge forms the basis for an integrated transition prediction tool. Eventually, such physics-based, high fidelity prediction methods could simulate the transition process from the disturbance generation through the nonlinear breakdown in a holistic manner.
Secondary three-dimensional instability in compressible boundary layers
NASA Technical Reports Server (NTRS)
El-Hady, Nabil M.
1989-01-01
Three dimensional linear secondary instability theory is extended for compressible boundary layers on a flat plate in the presence of finite amplitude Tollmien-Schlichting waves. The focus is on principal parametric resonance responsible for strong growth of subharmonics in low disturbance environment.
ATMOSPHERIC DISPERSION IN THE ARCTIC: WINTERTIME BOUNDARY-LAYER MEASUREMENTS
The wintertime arctic atmospheric boundary layer was investigated with micro-meteorological and SF6 tracer measurements collected in Prudhoe Bay, AK. he flat, snow-covered tundra surface at this site generates a very small (0.03 cm) surface roughness. he relatively warm maritime ...
IMPACT OF BOUNDARY-LAYER CUTTING ON FREE-SURFACE
Collection · Cuvette opening = 1 cm × 1 cm w/ 1 mm walls · 5 cuvettes placed side by side Cuvette #3 centered / (m2·s)] Equivalent number density, N [m-3] zs x Cuvettes y z 54 3 2 1 #12;13 Boundary-Layer Cutter
On the Effects of Surface Roughness on Boundary Layer Transition
NASA Technical Reports Server (NTRS)
Choudhari, Meelan M.; Li, Fei; Chang, Chau-Lyan; Edwards, Jack
2009-01-01
Surface roughness can influence laminar-turbulent transition in many different ways. This paper outlines selected analyses performed at the NASA Langley Research Center, ranging in speed from subsonic to hypersonic Mach numbers and highlighting the beneficial as well as adverse roles of the surface roughness in technological applications. The first theme pertains to boundary-layer tripping on the forebody of a hypersonic airbreathing configuration via a spanwise periodic array of trip elements, with the goal of understanding the physical mechanisms underlying roughness-induced transition in a high-speed boundary layer. The effect of an isolated, finite amplitude roughness element on a supersonic boundary layer is considered next. The other set of flow configurations examined herein corresponds to roughness based laminar flow control in subsonic and supersonic swept wing boundary layers. A common theme to all of the above configurations is the need to apply higher fidelity, physics based techniques to develop reliable predictions of roughness effects on laminar-turbulent transition.
Numerical Calculations of Shock-Wave/Boundary-Layer Flow Interactions
NASA Technical Reports Server (NTRS)
Huang, P. G.; Liou, W. W.
1994-01-01
The paper presents results of calculations for 2-D supersonic turbulent compression corner flows. The results seem to indicate that the newer, improved kappa-epsilon models offer limited advantages over the standard kappa-epsilon model in predicting the shock-wave/boundary-layer flows in the 2-D compression corner over a wide range of corner angles and flow conditions.
Radiation-dominated, relativistic jets and their boundary layers
NASA Astrophysics Data System (ADS)
Coughlin, Eric Robert; Begelman, Mitchell C.
2015-01-01
The energetics of certain astrophysical jets, such as those launched from the progenitors of long gamma-ray bursts and super-Eddington tidal disruption events, are likely dominated by radiation. In the limit that the outflow is optically thick, the shear boundary layer that develops between the jet and the ambient medium is mediated by radiation viscosity. We use the relativistic equations of radiation hydrodynamics in the viscous limit, accurate to first order in the mean-free path of a photon, to describe the dynamics of the boundary layer. A set of boundary layer equations is derived and we solve them in a self-similar manner, demonstrating in the process how the compressibility of the fluid, the variation of the viscosity coefficient, and the relativistic nature of the velocity affect the structure and dynamics of the boundary layer. We apply the model to the case of Swift J1644+57, the recently-observed, jetted, super-Eddington tidal distruption event, in an attempt to place tighter constraints on the physical characteristics of the jet.
ORIGINAL PAPER Mechanical filtering by the boundary layer and fluidstructure
McHenry, Matt
in larval zebrafish (Danio rerio). The model predicts that the boundary layer of flow over the body filters flow signals. Keywords Fish Á Mechanosensation Á Hair cells Á Biomechanics Á Zebrafish List cupula deflection ms cupula deflection by vibrating sphere qm density of cupular material qw density
Retinal layer segmentation of macular OCT images using boundary classification.
Lang, Andrew; Carass, Aaron; Hauser, Matthew; Sotirchos, Elias S; Calabresi, Peter A; Ying, Howard S; Prince, Jerry L
2013-07-01
Optical coherence tomography (OCT) has proven to be an essential imaging modality for ophthalmology and is proving to be very important in neurology. OCT enables high resolution imaging of the retina, both at the optic nerve head and the macula. Macular retinal layer thicknesses provide useful diagnostic information and have been shown to correlate well with measures of disease severity in several diseases. Since manual segmentation of these layers is time consuming and prone to bias, automatic segmentation methods are critical for full utilization of this technology. In this work, we build a random forest classifier to segment eight retinal layers in macular cube images acquired by OCT. The random forest classifier learns the boundary pixels between layers, producing an accurate probability map for each boundary, which is then processed to finalize the boundaries. Using this algorithm, we can accurately segment the entire retina contained in the macular cube to an accuracy of at least 4.3 microns for any of the nine boundaries. Experiments were carried out on both healthy and multiple sclerosis subjects, with no difference in the accuracy of our algorithm found between the groups. PMID:23847738
Modeling Disturbance Dynamics in Transitional and Turbulent Boundary Layers
NASA Technical Reports Server (NTRS)
Grosch, C. E.; Gatski, T. B. (Technical Monitor)
2002-01-01
The dynamics of an ensemble of linear disturbances in boundary-layer flows at various Reynolds numbers is studied through an analysis of the transport equations for the mean disturbance kinetic energy and energy dissipation rate. Effects of adverse and favorable pressure-gradients on the disturbance dynamics are also included in the analysis. Unlike the fully turbulent regime where nonlinear phase scrambling of the fluctuations affects the flow field even in proximity to the wall, the early stage transition regime fluctuations studied here are influenced across the boundary layer by the solid boundary. In addition, the dominating dynamics in the disturbance kinetic energy equation is governed by the energy production, pressure-transport and viscous diffusion - also in contrast to the fully turbulent regime. For the disturbance dissipation rate, a dynamic balance exists between the destruction and diffusion of dissipation.
Effects of mesoscale surface inhomogeneities on atmospheric boundary layer transfer
Shaw, W.J.; Doran, J.C.; Hubbe, J.M.
1992-09-01
Defining the nature of turbulent transfer over horizontally inhomogeneous surfaces remains one of the challenges in meteorology. Because the transfer of energy and momentum through the atmospheric boundary layer forms part of the lower boundary condition for global climate models (GCMs), the problem is important. Over the last two decades, advances in sensor and computer technology wave made good point measurements of turbulent fluxes fairly routine. A fundamental question with respect to climate models, however, is how such point measurements are related to average fluxes over the area of a GCM grid box. In this paper we will use data from the field program to depict the evolution of the boundary layer over adjacent, sharply contrasting surface types on two separate occasions. We will then use simple scaling based on the observations to argue that sub-gridscale motions would often be likely to significantly alter the estimates and resulting parameterizations of GCM-scale surface fluxes in the region.
On Supersonic-Inlet Boundary-Layer Bleed Flow
NASA Technical Reports Server (NTRS)
Harloff, Gary J.; Smith, Gregory E.
1995-01-01
Boundary-layer bleed in supersonic inlets is typically used to avoid separation from adverse shock-wave/boundary-layer interactions and subsequent total pressure losses in the subsonic diffuser and to improve normal shock stability. Methodologies used to determine bleed requirements are reviewed. Empirical sonic flow coefficients are currently used to determine the bleed hole pattern. These coefficients depend on local Mach number, pressure ratio, hole geometry, etc. A new analytical bleed method is presented to compute sonic flow coefficients for holes and narrow slots and predictions are compared with published data to illustrate the accuracy of the model. The model can be used by inlet designers and as a bleed boundary condition for computational fluid dynamic studies.
Anomalous plasma diffusion and the magnetopause boundary layer
NASA Technical Reports Server (NTRS)
Treumann, Rudolf A.; Labelle, James; Haerendel, Gerhard; Pottelette, Raymond
1992-01-01
An overview of the current state of anomalous diffusion research at the magnetopause and its role in the formation of the magnetopause boundary layer is presented. Plasma wave measurements in the boundary layer indicate that most of the relevant unstable wave modes contribute negligibly to the diffusion process at the magnetopause under magnetically undisturbed northward IMF conditions. The most promising instability is the lower hybrid drift instability, which may yield diffusion coefficients of the right order if the highest measured wave intensities are assumed. It is concluded that global stationary diffusion due to wave-particle interactions does not take place at the magnetopause. Microscopic wave-particle interaction and anomalous diffusion may contribute to locally break the MD frozen-in conditions and help in transporting large amounts of magnetosheath plasma across the magnetospheric boundary.
Provenance of the K/T boundary layers
NASA Technical Reports Server (NTRS)
Hildebrand, A. R.; Boynton, W. V.
1988-01-01
An array of chemical, physical and isotopic evidence indicates that an impact into oceanic crust terminated the Cretaceous Period. Approximately 1500 cu km of debris, dispersed by the impact fireball, fell out globally in marine and nonmarine environments producing a 2 to 4 mm thick layer (fireball layer). In North American locales, the fireball layer overlies a 15 to 25 mm thick layer of similar but distinct composition. This 15 to 25 mm layer (ejecta layer) may represent approximately 1000 cu km of lower energy ejecta from a nearby impact site. Isotopic and chemical evidence supports a mantle provenance for the bulk of the layers. The extraordinary REE pattern of the boundary clays was modelled as a mixture of oceanic crust, mantle, and approximately 10 percent continental material. The results are presented. If the siderophiles of the ejecta layer were derived solely from the mantle, a test may be available to see if the siderophile element anomaly of the fireball layer had an extraterrestrial origin. Radiogenic Os-187 is depleted in the mantle relative to an undifferentiated chondritic source. Os-187/Os-186 ratios of 1.049 and 1.108 were calculated for the ejecta and fireball layers, respectively.
NASA Technical Reports Server (NTRS)
Tetervin, Neal; Lin, Chia Chiao
1951-01-01
A general integral form of the boundary-layer equation, valid for either laminar or turbulent incompressible boundary-layer flow, is derived. By using the experimental finding that all velocity profiles of the turbulent boundary layer form essentially a single-parameter family, the general equation is changed to an equation for the space rate of change of the velocity-profile shape parameter. The lack of precise knowledge concerning the surface shear and the distribution of the shearing stress across turbulent boundary layers prevented the attainment of a reliable method for calculating the behavior of turbulent boundary layers.
NASA Astrophysics Data System (ADS)
Ferrill, David A.; Morris, Alan P.; McGinnis, Ronald N.
2012-11-01
"Fault drag" (deflection of beds or other markers into folds that are convex in the direction of relative slip) is often interpreted as the product of frictional sliding along a fault and progressive tilting of beds with increased amount of displacement along a fault. We analyze two sets of normal faults, with throws ranging from 0.5 m to 5 m, and associated fault-related folds in mechanically layered upper Cretaceous carbonate, anhydrite, and shale in central Texas. For each fault set, we interpret the fault displacement and fault-related folds exposed in outcrop to represent different stages in the developmental sequence. In both fault sets, faults in dolostone or limestone lose displacement and tip into less competent anhydrite or shale where deformation is accommodated by folding and smaller scale deformation. Fold wavelength is established early and at small displacement (< 1 m throw). With increasing displacement the monoclinal fold limb steepens and is extended parallel to bedding, locally producing boudinage in the most competent bed between incompetent beds. Clay smear is well developed where a 0.35 m thick clay shale is locally thinned to 0.1 m associated with fault throws of 0.5 to 5 m. Bed tilting and the development of apparent drag is not the product of frictional sliding but instead folding at the tip of an arrested, in this case upwardly, propagating normal fault. We conclude that synthetic dip associated with steep normal faults (i.e., fault drag) should not be assumed to be the product of frictional drag, but must be considered in the context of the mechanical stratigraphy. Instead, fault-tip folding in mechanically layered rocks produces synthetic dip (drag) early in the fault development history prior to propagation of the fault tip through the folded layer.
Turbulent boundary layer on a convex, curved surface
NASA Technical Reports Server (NTRS)
Gillis, J. C.; Johnston, J. P.; Kays, W. M.; Moffat, R. J.
1980-01-01
The effects of strong convex curvature on boundary layer turbulence were investigated. The data gathered on the behavior of Reynolds stress suggested the formulation of a simple turbulence model. Three sets of data were taken on two separate facilities. Both rigs had flow from a flat surface, over a convex surface with 90 deg of turning, and then onto a flat recovery surface. The geometry was adjusted so that, for both rigs, the pressure gradient along the test surface was zero - thus avoiding any effects of streamwise acceleration on the wall layers. Results show that after a sudden introduction of curvature, the shear stress in the outer part of the boundary layer is sharply diminished and is even slightly negative near the edge. The wall shear also drops off quickly downstream. In contrast, when the surface suddenly becomes flat again, the wall shear and shear stress profiles recover very slowly towards flat wall conditions.
Lidar boundary layer observations and ozone measurements in Sofia, Bulgaria
NASA Astrophysics Data System (ADS)
Grigorieva, V.; Kolev, N.; Donev, E.; Ivanov, D.; Kaprielov, B.; Kolev, I.
2008-12-01
Remote-sensing technique (aerosol LIDAR), that provides a opportunity to investigate atmospheric boundary layer structure and determine the height of the mixing layer, was used. Simultaneous observations of the convective boundary layer development and surface ozone concentration dynamics between early morning and afternoon are presented. Contribution of the two processes (photochemical ozone formation and vertical advection) driven by increasing solar radiation to ozone content is analysed on the base of experimental data received during summer campaign of 2005 in Sofia, Bulgaria. Also, simultaneous diurnal surface ozone and meteorological parameters (temperature, solar radiation, wind speed and direction, relative humidity) measurements carried out during summer - spring time of 2006 are presented. An examination of the relationships between ozone and meteorological factors provided evidence for the processes defining observed ozone pollution.
Lateral straining of turbulent boundary layers. I - Streamline divergence
NASA Technical Reports Server (NTRS)
Saddoughi, Seyed G.; Joubert, Peter N.
1991-01-01
The effect of prolonged streamline divergence on developing turbulent boundary layers is investigated using an experimental approximation of the source flow over a flat plate to achieve a simple divergence. Results are presented of hot-wire measurements for the planes of symmetry of two layers which had the same (low) Reynolds number and were developed in the presence of the same amount of simple divergence with a maximum divergence parameter of about 0.075 but with different (by a factor of 2) pressure-gradient parameters. It was found that there were two overlapping stages of development. In the initial stage, which covered a distance of about 20 initial boundary-layer thicknesses from the start of divergence, the coupled effects of both the pressure gradient and divergence were present. In the second region, which lasts nearly to the end of the diverging section, the pressure-gradient effects were negligible.
BLSTA: A boundary layer code for stability analysis
NASA Technical Reports Server (NTRS)
Wie, Yong-Sun
1992-01-01
A computer program is developed to solve the compressible, laminar boundary-layer equations for two-dimensional flow, axisymmetric flow, and quasi-three-dimensional flows including the flow along the plane of symmetry, flow along the leading-edge attachment line, and swept-wing flows with a conical flow approximation. The finite-difference numerical procedure used to solve the governing equations is second-order accurate. The flow over a wide range of speed, from subsonic to hypersonic speed with perfect gas assumption, can be calculated. Various wall boundary conditions, such as wall suction or blowing and hot or cold walls, can be applied. The results indicate that this boundary-layer code gives velocity and temperature profiles which are accurate, smooth, and continuous through the first and second normal derivatives. The code presented herein can be coupled with a stability analysis code and used to predict the onset of the boundary-layer transition which enables the assessment of the laminar flow control techniques. A user's manual is also included.
Investigation Of Boundary Layers Fine Structure In Arid Regions
NASA Astrophysics Data System (ADS)
Golitsyn, G. S.; Granberg, I. G.; Andronova, A. V.; Zilitinkevich, S. S.; Smirnov, V. V.; Ponomarev, V. M.
In connection with insufficiency of the quantitative items of information about the structure of surface and boundary layers structure of the atmosphere in the periods previous dusty ejection, and also absence of the description of an arid atmospheres micrometeorological mode, when the dry spreading surface thermally is non-uniform, that is characteristic for midday hours, the forwarding researches of fine structure of boundary layers in deserted regions of Kalmykia (1995-1997) and on dried bottom of the Aral sea (1991-1992 and in 1998) were carried out. Is was established that in dry hot weather above sandy "saucers" at heights of 1-2 meters there are micro- inversions of temperature and humidity. On our supervisions, this process occurs at temperatures of air above 25 deg.C and relative humidity less than 40%. Thus the gra- dient of temperature in bottom (5 cm) layer in absence of an external wind reaches 200-500 , i.e., arises strongly unstable subsurface boundary layer. Thus during dehydration of aggregate particles consisting, as has shown the soil anal- ysis, from particles of size 80-150 microns, the organic-mineral compositions (OMC) are allocated, and the thin-dispersion aerosol is formed. These thin-dispersion par- ticles (0.01-0.1 microns) first accumulate in this layer, and then at the expense of strong temperature (vertical and horizontal) gradient pass through viscous sub-layer and rise above, as whirlwinds - standing motionless thermics, or dust-devils, or as sim- ple convective of flows. During investigations, is was established, that in a hot season in absence of dusty storms convective processes lift into air from sandy landscapes of Kalmykia and Sub-Aral regions, consisting from aggregate particles, significant amounts of long-living aerosol of size less than 5 microns (including thin-dispersion (0.01-0.1 microns) aerosol), which renders essential influence on formation of aerosol pollution of an atmosphere and, thus, on a climate. Is was established, that the in- termediate condition between unstable and homogeneous atmosphere is characteristic for a structure of a boundary layer during dusty ejection. The analysis of the basic characteristics of boundary layers fine structure in deserted regions was carried out.
NASA Technical Reports Server (NTRS)
Ashby, G. C., Jr.; Harris, J. E.
1974-01-01
Wave and skin-friction drag have been numerically calculated for a series of power-law bodies at a Mach number of 6 and Reynolds numbers, based on body length, from 1.5 million to 9.5 million. Pressure distributions were computed on the nose by the inverse method and on the body by the method of characteristics. These pressure distributions and the measured locations of boundary-layer transition were used in a nonsimilar-boundary-layer program to determine viscous effects. A coupled iterative approach between the boundary-layer and pressure-distribution programs was used to account for boundary-layer displacement-thickness effects. The calculated-drag coefficients compared well with previously obtained experimental data.
A modeling study of marine boundary layer clouds
NASA Technical Reports Server (NTRS)
Wang, Shouping; Fitzjarrald, Daniel E.
1993-01-01
Marine boundary layer (MBL) clouds are important components of the earth's climate system. These clouds drastically reduce the amount of solar radiation absorbed by the earth, but have little effect on the emitted infrared radiation on top of the atmosphere. In addition, these clouds are intimately involved in regulating boundary layer turbulent fluxes. For these reasons, it is important that general circulation models used for climate studies must realistically simulate the global distribution of the MBL. While the importance of these cloud systems is well recognized, many physical processes involved in these clouds are poorly understood and their representation in large-scale models remains an unresolved problem. The present research aims at the development and improvement of the parameterization of these cloud systems and an understanding of physical processes involved. This goal is addressed in two ways. One is to use regional modeling approach to validate and evaluate two-layer marine boundary layer models using satellite and ground-truth observations; the other is to combine this simple model with a high-order turbulence closure model to study the transition processes from stratocumulus to shallow cumulus clouds. Progress made in this effort is presented.
The Role of Lateral Boundary Conditions and Boundary Layer in air Quality Modelling System
NASA Astrophysics Data System (ADS)
Piot, M.; Jorba, O.; Jimenez, P.; Baldasano, J.
2008-12-01
Often in Europe, high concentrations of O3 and NOx exceed the allowed maximum levels defined by the European Commission. The model system WRF-CMAQ is a regional air quality modelling system, which we applied to the European continent with a horizontal resolution of 12km × 12km and 8 vertical layers for CMAQ. The EMEP emission inventory was compiled and applied to the model domain. Due to uncertain external influence, the definition of adequate lateral boundary conditions for gas phase chemistry in a regional model is a complex issue and an important source of errors. Sensitivity studies were performed for a tested month (May 2004) to assess the impact of boundary conditions and boundary layer on the quality of the simulations. In order to evaluate the performances of the model, model simulations were compared to 70 and 21 stations from the EMEP network for O3 and NO2, respectively, throughout Europe. Basically, synthetic boundary conditions over 6 vertical layers were used in preliminary simulations. Then, climatological data provided by the global climate-chemistry model LMDz-INCA2 were used to define consistent lateral conditions and simulations were also performed using the May-2004 data from this model (both over 6 or 15 layers). Climatological data provided reliable conditions for the model boundaries but did not improve the quality of simulated O3 in the model domain (mean normalized gross error (MNGE) of 23% compared to 20% for synthetic profiles). Besides, the use of higher vertical resolution notably improved the trend and daily variations of O3 and hindered unrealistic subsidence of O3-enriched air from aloft, reducing the MNGE from 23% to 18%. The chemistry of NO2 was found to be mostly governed by local emissions, with little influence of the boundary conditions. A best-fitting configuration of boundary conditions will be discussed. Also, this work analyzes the influence of two different planetary boundary layer (PBL) parameterization schemes: the YSU PBL scheme based on Hong. et al (1996) and a new stable boundary layer scheme allowing the computation of vertical diffusion coefficients at all timesteps. The two schemes do not differ sufficiently from one another to lead to a significant improvement in the simulation of the chemistry. In the view of excessive NO2 simulated at night, other PBL parameterizations will be discussed.
Numerical Simulation of a Spatially Evolving Supersonic Turbulent Boundary Layer
NASA Technical Reports Server (NTRS)
Gatski, T. B.; Erlebacher, G.
2002-01-01
The results from direct numerical simulations of a spatially evolving, supersonic, flat-plate turbulent boundary-layer flow, with free-stream Mach number of 2.25 are presented. The simulated flow field extends from a transition region, initiated by wall suction and blowing near the inflow boundary, into the fully turbulent regime. Distributions of mean and turbulent flow quantities are obtained and an analysis of these quantities is performed at a downstream station corresponding to Re(sub x)= 5.548 x10(exp 6) based on distance from the leading edge.
Edge Plasma Boundary Layer Generated By Kink Modes in Tokamaks
L.E. Zakharov
2010-11-22
This paper describes the structure of the electric current generated by external kink modes at the plasma edge using the ideally conducting plasma model. It is found that the edge current layer is created by both wall touching and free boundary kink modes. Near marginal stability, the total edge current has a universal expression as a result of partial compensation of the ?-functional surface current by the bulk current at the edge. The resolution of an apparent paradox with the pressure balance across the plasma boundary in the presence of the surface currents is provided.
Fullerenes in the cretaceous-tertiary boundary layer.
Heymann, D; Chibante, L P; Brooks, R R; Wolbach, W S; Smalley, R E
1994-07-29
High-pressure liquid chromatography with ultraviolet-visible spectral analysis of toluene extracts of samples from two Cretaceous-Tertiary (K-T) boundary sites in New Zealand has revealed the presence of C(60) at concentrations of 0.1 to 0.2 parts per million of the associated soot. This technique verified also that fullerenes are produced in similar amounts in the soots of common flames under ambient atmospheric conditions. Therefore, the C(60) in the K-T boundary layer may have originated in the extensive wildfires that were associated with the cataclysmic impact event that terminated the Mezozoic era about 65 million years ago. PMID:17752762
Computer program for calculation of real gas turbulent boundary layers with variable edge entropy
NASA Technical Reports Server (NTRS)
Boney, L. R.
1974-01-01
A user's manual for a computer program which calculates real gas turbulent boundary layers with variable edge entropy on a blunt cone or flat plate at zero angle of attack is presented. An integral method is used. The method includes the effect of real gas in thermodynamic equilibrium and variable edge entropy. A modified Crocco enthalpy velocity relationship is used for the enthalpy profiles and an empirical correlation of the N-power law profile is used for the velocity profile. The skin-friction-coefficient expressions of Spalding and Chi and Van Driest are used in the solution of the momentum equation and in the heat-transfer predictions that use several modified forms of Reynolds analogy.
Simulation and optimal control of wind-farm boundary layers
NASA Astrophysics Data System (ADS)
Meyers, Johan; Goit, Jay
2014-05-01
In large wind farms, the effect of turbine wakes, and their interaction leads to a reduction in farm efficiency, with power generated by turbines in a farm being lower than that of a lone-standing turbine by up to 50%. In very large wind farms or `deep arrays', this efficiency loss is related to interaction of the wind farms with the planetary boundary layer, leading to lower wind speeds at turbine level. Moreover, for these cases it has been demonstrated both in simulations and wind-tunnel experiments that the wind-farm energy extraction is dominated by the vertical turbulent transport of kinetic energy from higher regions in the boundary layer towards the turbine level. In the current study, we investigate the use of optimal control techniques combined with Large-Eddy Simulations (LES) of wind-farm boundary layer interaction for the increase of total energy extraction in very large `infinite' wind farms. We consider the individual wind turbines as flow actuators, whose energy extraction can be dynamically regulated in time so as to optimally influence the turbulent flow field, maximizing the wind farm power. For the simulation of wind-farm boundary layers we use large-eddy simulations in combination with actuator-disk and actuator-line representations of wind turbines. Simulations are performed in our in-house pseudo-spectral code SP-Wind that combines Fourier-spectral discretization in horizontal directions with a fourth-order finite-volume approach in the vertical direction. For the optimal control study, we consider the dynamic control of turbine-thrust coefficients in an actuator-disk model. They represent the effect of turbine blades that can actively pitch in time, changing the lift- and drag coefficients of the turbine blades. Optimal model-predictive control (or optimal receding horizon control) is used, where the model simply consists of the full LES equations, and the time horizon is approximately 280 seconds. The optimization is performed using a nonlinear conjugate gradient method, and the gradients are calculated by solving the adjoint LES equations. We find that the extracted farm power increases by approximately 20% when using optimal model-predictive control. However, the increased power output is also responsible for an increase in turbulent dissipation, and a deceleration of the boundary layer. Further investigating the energy balances in the boundary layer, it is observed that this deceleration is mainly occurring in the outer layer as a result of higher turbulent energy fluxes towards the turbines. In a second optimization case, we penalize boundary-layer deceleration, and find an increase of energy extraction of approximately 10%. In this case, increased energy extraction is balanced by a reduction in of turbulent dissipation in the boundary layer. J.M. acknowledges support from the European Research Council (FP7-Ideas, grant no. 306471). Simulations were performed on the computing infrastructure of the VSC Flemish Supercomputer Center, funded by the Hercules Foundation and the Flemish Government.
Boundary layer ozone - An airborne survey above the Amazon Basin
NASA Technical Reports Server (NTRS)
Gregory, Gerald L.; Browell, Edward V.; Warren, Linda S.
1988-01-01
Ozone data obtained over the forest canopy of the Amazon Basin during July and August 1985 in the course of NASA's Amazon Boundary Layer Experiment 2A are discussed, and ozone profiles obtained during flights from Belem to Tabatinga, Brazil, are analyzed to determine any cross-basin effects. The analyses of ozone data indicate that the mixed layer of the Amazon Basin, for the conditions of undisturbed meteorology and in the absence of biomass burning, is a significant sink for tropospheric ozone. As the coast is approached, marine influences are noted at about 300 km inland, and a transition from a forest-controlled mixed layer to a marine-controlled mixed layer is noted.
NASA Astrophysics Data System (ADS)
Bandyopadhyay, P. R.; Castano, J. M.; Thivierge, D. P.
2008-03-01
Drag reduction of high-Reynolds-number axisymmetric bodies in saltwater flow using numerous small Lorentz actuators is considered. The actuators are three-dimensional and each of them encompasses the footprint of approximately one turbulence production domain at a Reynolds number Re? of 103, based on friction velocity and boundary layer thickness. The actuators seed the turbulent boundary layer locally with pulsing toroids of vorticity that straddle the periphery of the actuators. The central downward jet of the toroid counters the upward flow between naturally occurring near-wall vortex pairs. Owing to the presence of the wall, the downward central jet is deflected into wall-jets that lie underneath the toroid. The agglomerated effects of the pulsing of the power applied to the three-dimensional actuators are modeled as Stokes oscillators. An axisymmetric body containing 210 numbers of subcentimeter-scale electromagnetic surface actuators was built. Measurements over this body show that drag reduction efficiency is higher compared to that expected in two-dimensional actuators at similar Reynolds numbers. Drag reduction depends on the parameter StT+/(2?Re?n), where St is Stuart number and T+ is pulsing time scale in wall-layer variables, approximately in the same manner as two-dimensional actuators do. However, the exponent n is zero—not 1.0 like that in two-dimensional actuators. At Re??103, the same three-dimensional actuators would no longer match the footprints of the unit turbulence production domains and the same applied power would be a weaker perturbation on the streak vorticity. A denser clustering of three-dimensional actuators for the same input power is a likely solution for higher Reynolds numbers.
Transport of contaminants in the planetary boundary layer
NASA Technical Reports Server (NTRS)
Lee, I. Y.; Swan, P. R.
1978-01-01
A planetary boundary layer model is described and used to simulate PBL phenomena including cloud formation and pollution transport in the San Francisco Bay Area. The effect of events in the PBL on air pollution is considered, and governing equations for the average momentum, potential temperature, water vapor mixing ratio, and air contaminants are presented. These equations are derived by integrating the basic equations vertically through the mixed layer. Characteristics of the day selected for simulation are reported, and the results suggest that the diurnally cyclic features of the mesoscale motion, including clouds and air pollution, can be simulated in a readily interpretable way with the model.
Atmospheric surface and boundary layers of the Amazon Basin
NASA Technical Reports Server (NTRS)
Garstang, Michael
1987-01-01
Three phases of work were performed: design of and preparation for the Amazon Boundary Layer Experiment (ABLE 2-A); execution of the ABLE 2-A field program; and analysis of the ABLE 2-A data. Three areas of experiment design were dealt with: surface based meteorological measurements; aircraft missions; and project meteorological support. The primary goal was to obtain a good description of the structure of the atmosphere immediately above the rain forest canopy (top of canopy to a few thousand meters), to describe this region during the growing daytime phase of the boundary layer; and to examine the nighttime stratified state. A secondary objective was to examine the role that deep convective storms play in the vertical transport of heat, water vapor, and other trace gases. While significant progress was made, much of the analysis remains to be done.
Works on theory of flapping wing. [considering boundary layer
NASA Technical Reports Server (NTRS)
Golubev, V. V.
1980-01-01
It is shown mathematically that taking account of the boundary layer is the only way to develop a theory of flapping wings without violating the basic observations and mathematics of hydromechanics. A theory of thrust generation by flapping wings can be developed if the conventional downstream velocity discontinuity surface is replaced with the observed Karman type vortex streets behind a flapping wing. Experiments show that the direction of such vortices is the reverse of that of conventional Karman streets. The streets form by breakdown of the boundary layer. Detailed analysis of the movements of certain birds and insects during flight 'in place' is fully consistent with this theory of the lift, thrust and drag of flapping wings. Further directions for research into flight with flapping wings are indicated.
Boundary layer development on turbine airfoil suction surfaces
NASA Technical Reports Server (NTRS)
Sharma, O. P.; Wells, R. A.; Schlinker, R. H.; Bailey, D. A.
1981-01-01
The results of a study supported by NASA under the Energy Efficient Engine Program, conducted to investigate the development of boundary layers under the influence of velocity distributions that simulate the suction sides of two state-of-the-art turbine airfoils, are presented. One velocity distribution represented a forward loaded airfoil ('squared-off' design), while the other represented an aft loaded airfoil ('aft loaded' design). These velocity distributions were simulated in a low-speed, high-aspect-ratio wind tunnel specifically designed for boundary layer investigations. It is intended that the detailed data presented in this paper be used to develop improved turbulence model suitable for application to turbine airfoil design.
Excitation of Crossflow Instabilities in a Swept Wing Boundary Layer
NASA Technical Reports Server (NTRS)
Carpenter, Mark H.; Choudhari, Meelan; Li, Fei; Streett, Craig L.; Chang, Chau-Lyan
2010-01-01
The problem of crossflow receptivity is considered in the context of a canonical 3D boundary layer (viz., the swept Hiemenz boundary layer) and a swept airfoil used recently in the SWIFT flight experiment performed at Texas A&M University. First, Hiemenz flow is used to analyze localized receptivity due to a spanwise periodic array of small amplitude roughness elements, with the goal of quantifying the effects of array size and location. Excitation of crossflow modes via nonlocalized but deterministic distribution of surface nonuniformity is also considered and contrasted with roughness induced acoustic excitation of Tollmien-Schlichting waves. Finally, roughness measurements on the SWIFT model are used to model the effects of random, spatially distributed roughness of sufficiently small amplitude with the eventual goal of enabling predictions of initial crossflow disturbance amplitudes as functions of surface roughness parameters.
Crossing shock wave-turbulent boundary layer interactions
NASA Technical Reports Server (NTRS)
Narayanswami, N.; Knight, D. D.; Bogdonoff, S. M.; Horstman, C. C.
1991-01-01
Three-dimensional interactions between crossing shock waves generated by symmetric sharp fins and a turbulent boundary layer on a flat plate are investigated experimentally and theoretically at Mach number 2.95 and freestream unit Reynolds number 1.96 x 10 to the 7th/ft. The incoming boundary layer has a thickness of 4 mm at the location of the fin leading edges. A comparison of experimental and computational results for two sets of fin angles (11 x 11 and 9 x 9 deg) shows general agreement with regard to surface pressure measurements and surface streamline patterns. The principal feature of the streamline structure is a collision of counterrotating vortical structures emanating from near the fin leading edges and meeting at the geometric centerline of the interaction.
Benthic boundary layer processes in the Lower Florida Keys
Lavoie, D.L.; Richardson, M.D.; Holmes, C.
1997-01-01
This special issue of Geo-Marine Letters, "Benthic Boundary Layer Processes in the Lower Florida Keys," includes 12 papers that present preliminary results from the Key West Campaign. The Dry Tortugas and Marquesas Keys test sites were selected by a group of 115 scientists and technicians to study benthic boundary layer processes in a carbonate environment controlled by bioturbation and biogeochemical processes. Major activities included remote sediment classification; high-frequency acoustic scattering experiments; sediment sampling for radiological, geotechnical, biological, biogeochemical, physical, and geoacoustic studies; and hydrodynamic studies using an instrumented tetrapod. All these data are being used to improve our understanding of the effects of environmental processes on sediment structure and behavior.
Clues and modelling for missing boundary layer in cataclysmic variables
Huang, M.; Sion, E.M.; Sparks, W.M.
1996-12-31
Recently, it has become observationally evident that during a dwarf nova (DN) outburst, a significant portion of the gravitational energy accreted onto the white dwarf (WD) may not be radiated away instantly from a narrow boundary layer as predicted by the standard disk theory. Instead, it may be stored in the WD through various mechanisms and the radiative area may be much larger; thus the long-puzzling {ital missing boundary layer} may be accounted for when the response of the WD to the accretion is considered. The results from our group and collaborators on this aspect are outlined in the first part. A progress report on the development, of a new numerical model forms the second.
Fluctuating pressure loads under high speed boundary layers
NASA Technical Reports Server (NTRS)
Zorumski, William E.
1987-01-01
Aeroacoustic fatigue is anticipated to control the design of significant portions of the structures of high-speed vehicles. This is due to contemplated long-duration flights at high dynamic pressures and Mach numbers with related high skin temperatures. Fluctuating pressure loads are comparatively small beneath attached turbulent boundary layers, but become important in regions of flow separation such as compression and expansion corners on elevons and rudders. The most intense loads are due to shock/boundary-layer interaction. These flows may occur in the engine-exhaust wall jet and in flows over control surfaces. A brief review is given of available research in these areas with a description of work under way at Langley Research Center.
A review of unsteady turbulent boundary-layer experiments
NASA Technical Reports Server (NTRS)
Carr, L. W.
1981-01-01
The essential results of a comprehensive review of existing unsteady turbulent boundary-layer experiments are presented. Different types of unsteady flow facilities are described, and the related unsteady turbulent boundary-layer experiments are cataloged and discussed. The measurements that were obtained in the various experiments are described, and a complete list of experimental results is presented. All the experiments that measured instantaneous values of velocity, turbulence intensity, or turbulent shear stress are identified, and the availability of digital data is indicated. The results of the experiments are analyzed, and several significant trends are identified. An assessment of the available data is presented, delineating gaps in the existing data, and indicating where new or extended information is needed. Guidelines for future experiments are included.
Investigation of Turbulent Boundary-Layer Separation Using Laser Velocimetry
NASA Technical Reports Server (NTRS)
Modarress, D.; Johnson, D. A.
1979-01-01
Boundary-layer measurements realized by laser velocimetry are presented for a Much 2.9, two-dimensional, shock-wave/turbulent boundary-layer interaction containing an extensive region of separated flow. Mean velocity and turbulent intensity profiles were obtained from upstream of the interaction zone to downstream of the mean reattachment point. The superiority of the laser velocimeter technique over pressure sensors in turbulent separated flows is demonstrated by a comparison of the laser velocimeter data with results obtained from local pilot and static pressure measurements for the same flow conditions. The locations of the mean separation and reattachment points as deduced from the mean velocity measurements are compared to oil-now visualization results. Representative velocity probability density functions obtained in the separated now region are also presented. Critical to the success of this investigation were: the use of Bragg cell frequency shifting and artificial seeding of the now with submicron light-scattering particles.
Additive erosion reduction influences in the turbulent boundary layer
Buckingham, A.C.
1981-05-06
Results of a sequence of flow, heat and mass transfer calculations are presented which theoretically characterize the erosive environment at the wall surface of refractory metal coated and uncoated gun barrels. The theoretical results include analysis of the wall surface temperature, heat flux, and shear stress time histories on thin (10 mil. or 0.254 mm) Cr, Mo, Nb, and Ta plated steel barrel walls as uncoated steel walls. The calculations combine effects of a number of separate processes which have been previously (and purposely) studied individually. These include solid particle additive concentrations, gas-wall thermo-chemical influences, and transient turbulent wall boundary layer flow with multi-component molecular diffusion and reactions from interaction of propellant combustion and the eroding surface. The boundary layer model includes particulate additive concentrations as well as propellant combustion products, considered for the present to be in the local thermochemical equilibrium.
Additive erosion reduction influences in the turbulent boundary layer
NASA Astrophysics Data System (ADS)
Buckingham, A. C.
1981-05-01
Results of a sequence of flow, heat and mass transfer calculations are presented which theoretically characterize the erosive environment at the wall surface of refractory metal coated and uncoated gun barrels. The theoretical results include analysis of the wall surface temperature, heat flux, and shear stress time histories on thin (10 mil.) Cr, Mo, Nb, and Ta plated steel barrel walls as uncoated steel walls. The calculations combine effects of a number of separate processes which were previously (and purposely) studied individually. These include solid particle additive concentrations, gas wall thermochemical influences, and transient turbulent wall boundary layer flow with multicomponent molecular diffusion and reactions from interaction of propellant combustion and the eroding surface. The boundary layer model includes particulate additive concentrations as well as propellant combustion products, considered for the present to be in the local thermochemical equilibrium.
Boundary-layer turbulence as a kangaroo process
NASA Astrophysics Data System (ADS)
Dekker, H.; de Leeuw, G.; Maassen van den Brink, A.
1995-09-01
A nonlocal mixing-length theory of turbulence transport by finite size eddies is developed by means of a novel evaluation of the Reynolds stress. The analysis involves the contruct of a sample path space and a stochastic closure hypothesis. The simplifying property of exhange (strong eddies) is satisfied by an analytical sampling rate model. A nonlinear scaling relation maps the path space onto the semi-infinite boundary layer. The underlying near-wall behavior of fluctuating velocities perfectly agrees with recent direct numerical simulations. The resulting integro-differential equation for the mixing of scalar densities represents fully developed boundary-layer turbulence as a nondiffusive (Kubo-Anderson or kangaroo) type of stochastic process. The model involves a scaling exponent ? (with ?-->? in the diffusion limit). For the (partly analytical) solution for the mean velocity profile, excellent agreement with the experimental data yields ?~=0.58.
Boundary layer integral matrix procedure code modifications and verifications
NASA Technical Reports Server (NTRS)
Evans, R. M.; Morse, H. L.
1974-01-01
A summary of modifications to Aerotherm's Boundary Layer Integral Matrix Procedure (BLIMP) code is presented. These modifications represent a preliminary effort to make BLIMP compatible with other JANNAF codes and to adjust the code for specific application to rocket nozzle flows. Results of the initial verification of the code for prediction of rocket nozzle type flows are discussed. For those cases in which measured free stream flow conditions were used as input to the code, the boundary layer predictions and measurements are in excellent agreement. In two cases, with free stream flow conditions calculated by another JANNAF code (TDK) for use as input to BLIMP, the predictions and the data were in fair agreement for one case and in poor agreement for the other case. The poor agreement is believed to result from failure of the turbulent model in BLIMP to account for laminarization of a turbulent flow. Recommendations for further code modifications and improvements are also presented.
Asymptotically optimal unsaturated lattice cubature formulae with bounded boundary layer
Ramazanov, M D
2013-07-31
This paper describes a new algorithm for constructing lattice cubature formulae with bounded boundary layer. These formulae are unsaturated (in the sense of Babenko) both with respect to the order and in regard to the property of asymptotic optimality on W{sub 2}{sup m}-spaces, m element of (n/2,?). Most of the results obtained apply also to W{sub 2}{sup ?}(R{sup n})-spaces with a hypoelliptic multiplier of smoothness ?. Bibliography: 6 titles.
Boundary Layer Transition Experiments in Support of the Hypersonics Program
NASA Technical Reports Server (NTRS)
Berry, Scott A.; Chen, Fang-Jenq; Wilder, Michael C.; Reda, Daniel C.
2007-01-01
Two experimental boundary layer transition studies in support of fundamental hypersonics research are reviewed. The two studies are the HyBoLT flight experiment and a new ballistic range effort. Details are provided of the objectives and approach associated with each experimental program. The establishment of experimental databases from ground and flight are to provide better understanding of high-speed flows and data to validate and guide the development of simulation tools.
Defects and boundary layers in non-Euclidean plates
Gemmer, John
2012-01-01
We investigate the behaviour of non-Euclidean plates with constant negative Gaussian curvature using the F\\"oppl-von K\\'arm\\'an reduced theory of elasticity. Motivated by recent experimental results, we focus on annuli with a periodic profile. We prove rigorous upper and lower bounds for the elastic energy that scales like the thickness squared. We also investigate the scaling with thickness of boundary layers where the stretching energy is concentrated with decreasing thickness.
Topographically generated internal waves and boundary layer instabilities
NASA Astrophysics Data System (ADS)
Soontiens, Nancy; Stastna, Marek; Waite, Michael L.
2015-08-01
Flow over topography has been shown to generate finite amplitude internal waves upstream, over the topography and downstream. Such waves can interact with the viscous bottom boundary layer to produce vigorous instabilities. However, the strength and size of such instabilities depends on whether viscosity significantly modifies the wave generation process, which is usually treated using inviscid theory in the literature. In this work, we contrast cases in which boundary layer separation profoundly alters the wave generation process and cases for which the generated internal waves largely match inviscid theory. All results are generated using a numerical model that simulates stratified flow over topography. Several issues with using a wave-based Reynolds number to describe boundary layer properties are discussed by comparing simulations with modifications to the domain depth, background velocity, and viscosity. For hill-like topography, three-dimensional aspects of the instabilities are also discussed. Decreasing the Reynolds number by a factor of four (by increasing the viscosity), while leaving the primary two-dimensional instabilities largely unchanged, drastically affects their three-dimensionalization. Several cases at the laboratory scale with a depth of 1 m are examined in both two and three dimensions and a subset of the cases is scaled up to a field scale 10-m deep fluid while maintaining similar values for the background current and viscosity. At this scale, increasing the viscosity by an order of magnitude does not significantly change the wave properties but does alter the wave's interaction with the bottom boundary layer through the bottom shear stress. Finally, two subcritical cases for which disturbances are able to propagate upstream showcase a set of instabilities forming on the upstream slope of the elevated topography. The time scale over which these instabilities develop is related to but distinct from the advective time scale of the waves. At a non-dimensional time when instabilities have formed in the field scale case, no instabilities have yet formed in the lab scale case.
Linear stability theory and three-dimensional boundary layer transition
NASA Technical Reports Server (NTRS)
Spall, Robert E.; Malik, Mujeeb R.
1992-01-01
The viewgraphs and discussion of linear stability theory and three dimensional boundary layer transition are provided. The ability to predict, using analytical tools, the location of boundary layer transition over aircraft-type configurations is of great importance to designers interested in laminar flow control (LFC). The e(sup N) method has proven to be fairly effective in predicting, in a consistent manner, the location of the onset of transition for simple geometries in low disturbance environments. This method provides a correlation between the most amplified single normal mode and the experimental location of the onset of transition. Studies indicate that values of N between 8 and 10 correlate well with the onset of transition. For most previous calculations, the mean flows were restricted to two-dimensional or axisymmetric cases, or have employed simple three-dimensional mean flows (e.g., rotating disk, infinite swept wing, or tapered swept wing with straight isobars). Unfortunately, for flows over general wing configurations, and for nearly all flows over fuselage-type bodies at incidence, the analysis of fully three-dimensional flow fields is required. Results obtained for the linear stability of fully three-dimensional boundary layers formed over both wing and fuselage-type geometries, and for both high and low speed flows are discussed. When possible, transition estimates form the e(sup N) method are compared to experimentally determined locations. The stability calculations are made using a modified version of the linear stability code COSAL. Mean flows were computed using both Navier Stokes and boundary-layer codes.
Vortex/boundary-layer interactions: Data report, volume 1
NASA Technical Reports Server (NTRS)
Cutler, A. D.; Bradshaw, P.
1987-01-01
This report summarizes the work done under NASA Grant NAGw-581, Vortex/Boundary Layer Interactions. The experimental methods are discussed in detail and numerical results are presented, but are not fully interpreted. This report should be useful to anyone who wishes to make further use of the data (available on floppy disc or magnetic tape) for the development of turbulence models or the validation of predictive methods. Journal papers are in course of preparation.
Stability of High-Speed, Three-Dimensional Boundary Layers
Craig, Stuart A
2015-04-02
-developing inflection points lead to secondary inviscid instability (Kohama et al., 1991; Malik et al., 1994; Wassermann & Kloker, 2002; White & Saric, 2005; Bonfigli & Kloker, 2007). It is these secondary instabilities rather than the primary wave that eventually cause... the breakdown to transition. It was predicted by Malik et al. (1996) and confirmed experimentally by White & Saric (2005) that two classes of secondary instability exist in the crossflow boundary layer. Type-I modes are dominated by the ?U/?z extrema, and type...
SCALING OF THE ANOMALOUS BOOST IN RELATIVISTIC JET BOUNDARY LAYER
Zenitani, Seiji; Hesse, Michael; Klimas, Alex
2010-04-01
We investigate the one-dimensional interaction of a relativistic jet and an external medium. Relativistic magnetohydrodynamic simulations show an anomalous boost of the jet fluid in the boundary layer, as previously reported. We describe the boost mechanism using an ideal relativistic fluid and magnetohydrodynamic theory. The kinetic model is also examined for further understanding. Simple scaling laws for the maximum Lorentz factor are derived, and verified by the simulations.
Kubo-Anderson Mixing in the Turbulent Boundary Layer
NASA Astrophysics Data System (ADS)
Dekker, H.; de Leeuw, G.; Brink, A. Maassen Van Den
A novel ab initio analysis of the Reynolds stress is presented in order to model non-local turbulence transport. The theory involves a sample path space and a stochastic hypothesis. A scaling relation maps the path space onto the boundary layer. Analytical sampling rates are shown to model mixing by exchange. Nonlocal mixing involves a scaling exponent ??0.58 (??? in the diffusion limit). The resulting transport equation represents a nondiffusive (Kubo-Anderson or kangaroo) type stochastic process.
The nonlinear development of Goertler vortices in growing boundary layers
NASA Technical Reports Server (NTRS)
Hall, Philip
1988-01-01
The development of Goertler vortices in boundary layers over curved walls in the nonlinear regime is investigated. The growth of the boundary layer makes a parallel flow analysis impossible except in the high wavenumber regime so in general the instability equations must be integrated numerically. Here the spanwise dependence of the basic flow is described using Fourier series expansion while the normal and streamwise variations are taken into account using finite differences. The calculations suggest that a given disturbance imposed at some position along the wall will eventually reach a local equilibrium state essentially independent of the initial conditions. In fact, the equilibrium state reached is qualitatively similar to the large amplitude high wave-number solution described asymptotically by Hall (1982). In general, it is found that the nonlinear interactions are dominated by a mean field type of interaction between the mean flow and the fundamental. Thus, even though higher harmonics of the fundamental are necessarily generated, most of the disturbance energy is confined to the mean flow correction and the fundamental. A major result of the calculations is finding that the downstream velocity field develops a strongly inflectional character as the flow moves downstream. The latter result suggests that the major effect of Goertler vortices on boundary layers of practical importance might be to make them highly receptive to rapidly growing Rayleigh modes of instability.
The nonlinear development of Gortler vortices in growing boundary layers
NASA Technical Reports Server (NTRS)
Hall, Philip
1986-01-01
The development of Gortler vortices in boundary layers over curved walls in the nonlinear regime is investigated. The growth of the boundary layer makes a parallel flow analysis impossible except in the high wavenumber regime so in general the instability equations must be integrated numerically. Here the spanwise dependence of the basic flow is described using Fourier series expansion whilst the normal and streamwise variations are taken into account using finite differences. The calculations suggest that a given disturbance imposed at some position along the wall will eventually reach a local equilibrium state essentially independent of the initial conditions. In fact, the equilibrium state reached is qualitatively similar to the large amplitude high wave-number solution described asymptotically by Hall (1982). In general, it is found that the nonlinear interactions are dominated by a mean field type of interaction between the mean flow and the fundamental. Thus, even though higher harmonics of the fundamental are necessarily generated, most of the disturbance energy is confined to the mean flow correction and the fundamental. A major result of the calculations is finding that the downstream velocity field develops a strongly inflection character as the flow moves downstream. The latter result suggests that the major effect of Gortler vortices on boundary layers of practical importance might be to make them highly receptive to rapidly growing Rayleigh modes of instability.
Review of Orbiter Flight Boundary Layer Transition Data
NASA Technical Reports Server (NTRS)
Mcginley, Catherine B.; Berry, Scott A.; Kinder, Gerald R.; Barnell, maria; Wang, Kuo C.; Kirk, Benjamin S.
2006-01-01
In support of the Shuttle Return to Flight program, a tool was developed to predict when boundary layer transition would occur on the lower surface of the orbiter during reentry due to the presence of protuberances and cavities in the thermal protection system. This predictive tool was developed based on extensive wind tunnel tests conducted after the loss of the Space Shuttle Columbia. Recognizing that wind tunnels cannot simulate the exact conditions an orbiter encounters as it re-enters the atmosphere, a preliminary attempt was made to use the documented flight related damage and the orbiter transition times, as deduced from flight instrumentation, to calibrate the predictive tool. After flight STS-114, the Boundary Layer Transition Team decided that a more in-depth analysis of the historical flight data was needed to better determine the root causes of the occasional early transition times of some of the past shuttle flights. In this paper we discuss our methodology for the analysis, the various sources of shuttle damage information, the analysis of the flight thermocouple data, and how the results compare to the Boundary Layer Transition prediction tool designed for Return to Flight.
Turbulent thermal boundary layers subjected to severe acceleration
NASA Astrophysics Data System (ADS)
Araya, Guillermo; Castillo, Luciano
2013-11-01
Favorable turbulent boundary layers are flows of great importance in industry. Particularly, understanding the mechanisms of quasi-laminarization by means of a very strong favorable streamwise pressure gradient is indeed crucial in drag reduction and energy management applications. Furthermore, due to the low Reynolds numbers involved in the quasi-laminarization process, abundant experimental investigation can be found in the literature for the past few decades. However, several grey zones still remain unsolved, principally associated with the difficulties that experiments encounter as the boundary layer becomes smaller. In addition, little attention has been paid to the heat transfer in a quasi-laminarization process. In this investigation, DNS of spatially-developing turbulent thermal boundary layers with prescribed very strong favorable pressure gradients (K = 4 × 10-6) are performed. Realistic inflow conditions are prescribed based on the Dynamic Multi-scale Approach (DMA) [Araya et al. JFM, Vol. 670, pp. 581-605, 2011]. In this sense the flow carries the footprint of turbulence, particularly in the streamwise component of the Reynolds stresses.
Boundary layer control by means of wall parallel Lorentz forces
NASA Astrophysics Data System (ADS)
Weier, T.; Fey, U.; Gerbeth, G.; Mutschke, G.; Lielausis, O.; Platacis, E.
2001-06-01
Lorentz forces can be used to control the near wall flow of low conducting liquids like sea-water. To achieve force densities strong enough to modify the flow, both magnetic and electric fields have to be applied to the fluid. Here, wall parallel Lorentz forces in the streamwise direction were used to influence the velocity profile of a flat plate boundary layer as well as the flow around a symmetric hydrofoil. Velocity measurements inside the boundary layer and direct force measurements are given for the flat plate. At moderate force strength, the mean velocity profile is characterized by a momentum thickness smaller than in the unforced case, whereas at high enough Hartmann numbers a wall jet develops. Additionally, a turbulent, but approximately non-growing boundary layer has been observed. The effect of a suction-side, streamwise Lorentz force on a NACA-0017-like hydrofoil is quantified by means of force balance measurements. Depending on the angle of attack, two different effects are observed. (1) At small angles of incidence, a moderate increase in lift due to additional circulation is observed. Simultaneously, a decrease in drag of the hydrofoil is caused by the momentum added. (2) At higher angles of attack, where the unforced hydrofoil would normally stall, a more pronounced lift increase and a corresponding drag reduction are observed due to separation prevention. Figs 8, Refs 15.
Numerical simulation of shock/turbulent boundary layer interaction
NASA Technical Reports Server (NTRS)
Biringen, Sedat; Hatay, Ferhat F.
1993-01-01
Most flows of aerodynamic interest are compressible and turbulent. However, our present knowledge on the structures and mechanisms of turbulence is mostly based on incompressible flows. In the present work, compressibility effects in turbulent, high-speed, boundary layer flows are systematically investigated using the Direct Numerical Simulation (DNS) approach. Three-dimensional, time-dependent, fully nonlinear, compressible Navier-Stokes equations were numerically integrated by high-order finite-difference methods; no modeling for turbulence is used during the solution because the available resolution is sufficient to capture the relevant scales. The boundary layer problem deals with fully-turbulent compressible flows over flat geometries. Apart from its practical relevance to technological flows, turbulent compressible boundary layer flow is the simplest experimentally realizable turbulent compressible flow. Still, measuring difficulties prohibit a detailed experimental description of the flow, especially in the near-wall region. DNS studies provide a viable means to probe the physics of compressible turbulence in this region. The focus of this work is to explore the paths of energy transfer through which compressible turbulence is sustained. The structural similarities and differences between the incompressible and compressible turbulence are also investigated. The energy flow patterns or energy cascades are found to be directly related to the evolution of vortical structures which are generated in the near-wall region. Near-wall structures, and mechanisms which are not readily accessible through physical experiments are analyzed and their critical role on the evolution and the behavior of the flow is documented extensively.
Viscous Forces in Velocity Boundary Layers around Planetary Ionospheres.
Pérez-De-Tejada
1999-11-01
A discussion is presented to examine the role of viscous forces in the transport of solar wind momentum to the ionospheric plasma of weakly magnetized planets (Venus and Mars). Observational data are used to make a comparison of the Reynolds and Maxwell stresses that are operative in the interaction of the solar wind with local plasma (planetary ionospheres). Measurements show the presence of a velocity boundary layer formed around the flanks of the ionosphere where the shocked solar wind has reached super-Alfvénic speeds. It is found that the Reynolds stresses in the solar wind at that region can be larger than the Maxwell stresses and thus are necessary in the local acceleration of the ionospheric plasma. From an order-of-magnitude calculation of the Reynolds stresses, it is possible to derive values of the kinematic viscosity and the Reynolds number that are suitable to the gyrotropic motion of the solar wind particles across the boundary layer. The value of the kinematic viscosity is comparable to those inferred from studies of the transport of solar wind momentum to the earth's magnetosphere and thus suggest a common property of the solar wind around planetary obstacles. Similar conditions could also be applicable to velocity boundary layers formed in other plasma interaction problems in astrophysics. PMID:10511515
Cloud-Scale Numerical Modeling of the Arctic Boundary Layer
NASA Technical Reports Server (NTRS)
Krueger, Steven K.
1998-01-01
The interactions between sea ice, open ocean, atmospheric radiation, and clouds over the Arctic Ocean exert a strong influence on global climate. Uncertainties in the formulation of interactive air-sea-ice processes in global climate models (GCMs) result in large differences between the Arctic, and global, climates simulated by different models. Arctic stratus clouds are not well-simulated by GCMs, yet exert a strong influence on the surface energy budget of the Arctic. Leads (channels of open water in sea ice) have significant impacts on the large-scale budgets during the Arctic winter, when they contribute about 50 percent of the surface fluxes over the Arctic Ocean, but cover only 1 to 2 percent of its area. Convective plumes generated by wide leads may penetrate the surface inversion and produce condensate that spreads up to 250 km downwind of the lead, and may significantly affect the longwave radiative fluxes at the surface and thereby the sea ice thickness. The effects of leads and boundary layer clouds must be accurately represented in climate models to allow possible feedbacks between them and the sea ice thickness. The FIRE III Arctic boundary layer clouds field program, in conjunction with the SHEBA ice camp and the ARM North Slope of Alaska and Adjacent Arctic Ocean site, will offer an unprecedented opportunity to greatly improve our ability to parameterize the important effects of leads and boundary layer clouds in GCMs.
Boundary layer structure during sea breeze conditions at Ahtopol, Bulgaria
NASA Astrophysics Data System (ADS)
Barantiev, D.; Batchvarova, E.; Novitzky, M. A.
2012-04-01
Continuous sodar (Scintec MFAS) and ultrasonic anemometer (Typhoon - Obninsk make) measurements were initiated in summer 2008 at the meteorological observatory of Ahtopol at the Black Sea coast (south-east Bulgaria) under a Bulgarian-Russian collaborative programme. These observations of high resolution form the basis for studies of the atmospheric boundary layer turbulence and vertical structure at a coastal site. This sodar is unique in Bulgaria and provides the first continuous high resolution data on the wind profile up to 400 - 500 m above the ground. In addition, the continuous turbulence parameters monitoring allows atmospheric boundary studies needed for different applications. The meteorological observatory at Ahtopol is under development as a background atmospheric composition station in coastal area and the wind data are essential for the studies of gases exchange under breeze conditions. The measurements revealed quite different sea breeze seasons during the years 2008 to 2011 and within the individual seasons, a number of different sea breeze types were identified depending on the interaction of local and larger-scale forcing. In this study we investigate the turbulence parameters and the vertical structure of the boundary layer related to only to sea breeze conditions. We also study the wind profile within the first 400 - 500 m above the ground. For the surface layer, we test the free convection theory against the sodar observations.
Improved Inlet Noise Attenuation by Alteration of Boundary Layer Profiles
NASA Technical Reports Server (NTRS)
Mani, Ramani; Luedke, Jon; Jones, Michael G.; Nark, Douglas M.
2004-01-01
Acoustic liners are an essential component of technology used to reduce aircraft engine noise. Flow affects attenuation due to the liner in several ways, one of which is that boundary layers adjacent to the liner refract the sound. In the case of inlet noise, the boundary layer causes sound to be refracted away from the liner, thus degrading attenuation. A concept to improve attenuation by the liner by alteration of inlet boundary layer profiles is presented. The alteration of profiles is achieved by inlet blowing. Computational fluid dynamics and duct mode propagation theory for ducts carrying a parallel sheared flow have been used to design experiments to explore such a possibility in the NASA Langley Research Center Grazing Incidence Tube using an inlet blowing scheme developed at General Electric Global Research. The effects of inlet blowing on two liner configurations were evaluated. Calculated results will be shown for blowing ratios (injected flow/duct flow) of approximately 12% and frequencies up to 3 kHz. These results emphasize changes of attenuation achieved by blowing for the two liners. Experimental results of measured flow profiles (with and without blowing) in the Grazing Incidence Tube, and of corresponding changes in attenuation by the liner due to blowing will be presented.
A planetary boundary layer observational capability in Kansas
Wesely, M.L.; Coulter, R.L.; Klazura, G.E.
1997-03-01
An initiative is underway to establish the Argonne Boundary Layer Experiments (ABLE) facility to provide continuous, long-term observations of the planetary boundary layer (PBL) with state-of-the-art instruments. Planning for ABLE began during 1995, and implementation is expected to be mostly complete by 1998. ABLE will be located within the area now occupied by the Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site of DOE`s Atmospheric Radiation Measurement (ARM) program. The Argonne facility will concentrate on measuring at spatial scales considerably smaller than addressed with CART. When it is fully functional, ABLE will offer atmospheric scientists the opportunity to remotely {open_quote}collect{close_quote} data in real time without necessarily leaving their home offices. Specialized computer analysis and visualization software will be developed and provided by ABLE to facilitate analysis by remote users. ABLE will host specialized field campaigns for which it can provide supplementary measurements and the required facilities for shorter-term instrument deployments. In addition, ABLE will function as the proving ground for new technologies for atmospheric boundary layer research. 1 ref., 1 fig.
Improving Subtropical Boundary Layer Cloudiness in the 2011 NCEP GFS
Fletcher, J. K.; Bretherton, Christopher S.; Xiao, Heng; Sun, Ruiyu N.; Han, J.
2014-09-23
The current operational version of National Centers for Environmental Prediction (NCEP) Global Forecasting System (GFS) shows significant low cloud bias. These biases also appear in the Coupled Forecast System (CFS), which is developed from the GFS. These low cloud biases degrade seasonal and longer climate forecasts, particularly of short-wave cloud radiative forcing, and affect predicted sea surface temperature. Reducing this bias in the GFS will aid the development of future CFS versions and contributes to NCEP's goal of unified weather and climate modelling. Changes are made to the shallow convection and planetary boundary layer parameterisations to make them more consistent with current knowledge of these processes and to reduce the low cloud bias. These changes are tested in a single-column version of GFS and in global simulations with GFS coupled to a dynamical ocean model. In the single-column model, we focus on changing parameters that set the following: the strength of shallow cumulus lateral entrainment, the conversion of updraught liquid water to precipitation and grid-scale condensate, shallow cumulus cloud top, and the effect of shallow convection in stratocumulus environments. Results show that these changes improve the single-column simulations when compared to large eddy simulations, in particular through decreasing the precipitation efficiency of boundary layer clouds. These changes, combined with a few other model improvements, also reduce boundary layer cloud and albedo biases in global coupled simulations.
Receptivity of Hypersonic Boundary Layers to Acoustic and Vortical Disturbances
NASA Technical Reports Server (NTRS)
Balakamar, P.; Kegerise, Michael A.
2011-01-01
Boundary layer receptivity to two-dimensional acoustic disturbances at different incidence angles and to vortical disturbances is investigated by solving the Navier-Stokes equations for Mach 6 flow over a 7deg half-angle sharp-tipped wedge and a cone. Higher order spatial and temporal schemes are employed to obtain the solution. The results show that the instability waves are generated in the leading edge region and that the boundary layer is much more receptive to slow acoustic waves as compared to the fast waves. It is found that the receptivity of the boundary layer on the windward side (with respect to the acoustic forcing) decreases when the incidence angle is increased from 0 to 30 degrees. However, the receptivity coefficient for the leeward side is found to vary relatively weakly with the incidence angle. The maximum receptivity is obtained when the wave incident angle is about 20 degrees. Vortical disturbances also generate unstable second modes, however the receptivity coefficients are smaller than that for the acoustic waves. Vortical disturbances first generate the fast acoustic modes and they switch to the slow mode near the continuous spectrum.
Thermocapillary Bubble Migration: Thermal Boundary Layers for Large Marangoni Numbers
NASA Technical Reports Server (NTRS)
Balasubramaniam, R.; Subramanian, R. S.
1996-01-01
The migration of an isolated gas bubble in an immiscible liquid possessing a temperature gradient is analyzed in the absence of gravity. The driving force for the bubble motion is the shear stress at the interface which is a consequence of the temperature dependence of the surface tension. The analysis is performed under conditions for which the Marangoni number is large, i.e. energy is transferred predominantly by convection. Velocity fields in the limit of both small and large Reynolds numbers are used. The thermal problem is treated by standard boundary layer theory. The outer temperature field is obtained in the vicinity of the bubble. A similarity solution is obtained for the inner temperature field. For both small and large Reynolds numbers, the asymptotic values of the scaled migration velocity of the bubble in the limit of large Marangoni numbers are calculated. The results show that the migration velocity has the same scaling for both low and large Reynolds numbers, but with a different coefficient. Higher order thermal boundary layers are analyzed for the large Reynolds number flow field and the higher order corrections to the migration velocity are obtained. Results are also presented for the momentum boundary layer and the thermal wake behind the bubble, for large Reynolds number conditions.
Minnowbrook II 1997 Workshop on Boundary Layer Transition in Turbomachines
NASA Technical Reports Server (NTRS)
LaGraff John E. (Editor); Ashpis, David E. (Editor)
1998-01-01
The volume contains materials presented at the Minnowbrook II - 1997 Workshop on Boundary Layer Transition in Turbomachines, held at Syracuse University Minnowbrook Conference Center, New York, on September 7-10, 1997. The workshop followed the informal format at the 1993 Minnowbrook I workshop, focusing on improving the understanding of late stage (final breakdown) boundary layer transition, with the engineering application of improving design codes for turbomachinery in mind. Among the physical mechanisms discussed were hydrodynamic instabilities, laminar to turbulent transition, bypass transition, turbulent spots, wake interaction with boundary layers, calmed regions, and separation, all in the context of flow in turbomachinery, particularly in compressors and high and low pressure turbines. Results from experiments, DNS, computation, modeling and theoretical analysis were presented. Abstracts and copies of viewgraphs, a specifically commissioned summation paper prepared after the workshop, and a transcript of the extensive working group reports and discussions are included in this volume. They provide recommendations for future research and clearly highlight the need for continued vigorous research in the technologically important area of transition in turbomachines.
Coupling of magnetopause-boundary layer to the polar ionosphere
Wei, C.Q.; Lee, L.C. )
1993-04-01
The authors develop a model which seeks to explain ultraviolet auroral images from the Viking satellite which show periodic bright regions which resemble [open quotes]beads[close quotes] or [open quotes]pearls[close quotes] aligned along the postnoon auroral oval. ULF geomagnetic pulsations observed in the cusp region are also addressed by this model. The model addresses plasma dynamics in the low-latitude boundary layer and interactions with the polar ionosphere by means of field-aligned current. The Kelvin-Helmholtz instability can develop in the presence of driven plasma flow, which can lead to the formation and growth of plasma vortices in the boundary layer. The finite conductivity of the earth ionosphere causes these vortices to decay. However regions of enhanced field-aligned power density in the postnoon auroral oval can be associated with field-aligned current filaments and boundary layer vortices. These structures may explain the observed bright spots. The authors also discuss the frequency spectrum and the polarization state of the pulsations.
HUD - PREDICTION OF BOUNDARY-LAYER DEVELOPMENT ON TWO-DIMENSIONAL OR AXISYMETRIC BODIES
NASA Technical Reports Server (NTRS)
Pinckney, S. Z.
1994-01-01
HUD is an integral code based on the Spaulding-Chi method for predicting boundary-layer development in laminar, transitional, and turbulent flow regions on two-dimensional or axisymetric bodies. This program was developed using integral-momentum, moment-of-momentum, and energy equations and has the capability of approximating non-equilibrium velocity profiles as well as the local surface friction in the presence of a pressure gradient. An approach was also developed for predicting heat transfer in a turbulent boundary layer in the presence of a high axial pressure gradient. Provisions are included for pressure gradients normal and lateral to the surface. The program is designed with particular emphasis on its applicability to supersonic combustion, thus, real gas flow effects were included. The resulting method permits estimation of cooling requirements for scramjet engines. Because of this capability, the HUD program has been incorporated into several scramjet cycle performance analysis codes including SCRAM (ARC-12338) and SRGULL (LEW-15093). HUD is written in machine independent FORTRAN 77 and should be portable to any computer with a valid FORTRAN compiler. On an IBM PC compatible under MS-DOS, HUD requires 145K RAM. The program is available on a 5.25 inch 360K MS-DOS diskette. HUD was developed in 1970 and last updated in 1991. IBM PC is a registered trademark of International Business Machines Corporation. MS-DOS is a registered trademark of Microsoft Corporation.
Mean profile of a high-Reynolds-number smooth-flat-plate turbulent boundary layer
NASA Astrophysics Data System (ADS)
Dowling, David R.; Oweis, Ghanem F.; Winkel, Eric S.; Cutbirth, James M.; Ceccio, Steven L.; Perlin, Marc
2010-11-01
Although smooth-flat-plate turbulent boundary layers (TBLs) have been studied for nearly a century, measurements at Reynolds numbers typical of marine & aerospace transportation systems are scarce. Experimental results at momentum-thickness Reynolds numbers (Re) up to 150,000 from the US Navy W.B. Morgan Large Cavitation Channel using a polished 12.9-m-long flat-plate test model at water flow speeds up to 20 m/s are presented. Mean velocity profiles were measured 10.7 m from the leading edge of the model over a wall-normal range from less than one wall unit to more than twice the nominal boundary layer thickness using particle-tracking and laser-Doppler velocimetry. Static pressure and average skin-friction were measured independently. A mild favorable pressure gradient led to a flow speed increase of 2.5% over the test surface. The measurements span a factor of three in Re and were fitted to within experimental uncertainty using one set of constants and modern empirical inner- and outer-profile forms based on traditional TBL asymptotics. The fitted profiles satisfy the von-Karman momentum integral to within 1%, and show distinct differences from equivalent zero pressure gradient results. [Supported by DARPA & ONR
Direct Numerical Simulations of High-Speed Turbulent Boundary Layers over Riblets
NASA Technical Reports Server (NTRS)
Duan, Lian; Choudhari, Meelan, M.
2014-01-01
Direct numerical simulations (DNS) of spatially developing turbulent boundary layers over riblets with a broad range of riblet spacings are conducted to investigate the effects of riblets on skin friction at high speeds. Zero-pressure gradient boundary layers under two flow conditions (Mach 2:5 with T(sub w)/T(sub r) = 1 and Mach 7:2 with T(sub w)/T(sub r) = 0:5) are considered. The DNS results show that the drag-reduction curve (delta C(sub f)/C(sub f) vs l(sup +)(sub g )) at both supersonic speeds follows the trend of low-speed data and consists of a `viscous' regime for small riblet size, a `breakdown' regime with optimal drag reduction, and a `drag-increasing' regime for larger riblet sizes. At l l(sup +)(sub g) approx. 10 (corresponding to s+ approx 20 for the current triangular riblets), drag reduction of approximately 7% is achieved at both Mach numbers, and con rms the observations of the few existing experiments under supersonic conditions. The Mach- number dependence of the drag-reduction curve occurs for riblet sizes that are larger than the optimal size, with smaller slopes of (delta C(sub f)/C(sub f) for larger freestream Mach numbers. The Reynolds analogy holds with 2(C(sub h)=C(sub f) approximately equal to that of at plates for both drag-reducing and drag-increasing configurations.
Self-similar turbulent boundary layer with imposed pressure gradient. Four flow regimes
Vigdorovich, I. I.
2014-11-15
Self-similar flows of an incompressible fluid in a turbulent boundary layer, when the free-stream velocity is a power function (with the exponent m) of the longitudinal coordinate, have been studied. It has been shown that there are four different self-similar flow regimes corresponding to four individual similarity parameters one of which is the known Clauser parameter and the three other parameters have been established for the first time. At adverse pressure gradient, when the exponent m lies in a certain range depending on Reynolds number, the problem has two solutions with different values of the boundary-layer thickness and skin friction; consequently, hysteresis in a pre-separation flow is possible. Separation occurs not at the minimal value of m that corresponds to the strongest adverse pressure gradient, but at m = ?0.216 ?0.4 Re{sub p}{sup ?1/3} + O(Re{sub p}{sup ?2/3}), where Re{sub p} is the Reynolds number based on longitudinal pressure gradient. The theoretical results are in good agreement with experimental data.
DNS of Laminar-Turbulent Transition in Swept-Wing Boundary Layers
NASA Technical Reports Server (NTRS)
Duan, L.; Choudhari, M.; Li, F.
2014-01-01
Direct numerical simulation (DNS) is performed to examine laminar to turbulent transition due to high-frequency secondary instability of stationary crossflow vortices in a subsonic swept-wing boundary layer for a realistic natural-laminar-flow airfoil configuration. The secondary instability is introduced via inflow forcing and the mode selected for forcing corresponds to the most amplified secondary instability mode that, in this case, derives a majority of its growth from energy production mechanisms associated with the wall-normal shear of the stationary basic state. An inlet boundary condition is carefully designed to allow for accurate injection of instability wave modes and minimize acoustic reflections at numerical boundaries. Nonlinear parabolized stability equation (PSE) predictions compare well with the DNS in terms of modal amplitudes and modal shape during the strongly nonlinear phase of the secondary instability mode. During the transition process, the skin friction coefficient rises rather rapidly and the wall-shear distribution shows a sawtooth pattern that is analogous to the previously documented surface flow visualizations of transition due to stationary crossflow instability. Fully turbulent features are observed in the downstream region of the flow.
A model of a turbulent boundary layer with a nonzero pressure gradient
Barenblatt, G. I.; Chorin, A. J.; Prostokishin, V. M.
2002-01-01
According to a model of the turbulent boundary layer that we propose, in the absence of external turbulence the intermediate region between the viscous sublayer and the external flow consists of two sharply separated self-similar structures. The velocity distribution in these structures is described by two different scaling laws. The mean velocity u in the region adjacent to the viscous sublayer is described by the previously obtained Reynolds-number-dependent scaling law ? = u/u* = A??, A = 1/\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} \\begin{equation*}\\sqrt{3}\\end{equation*}\\end{document} ln Re? + 5/2, ? = 3/2 In Re?,?? = u*y/?. (Here u* is the dynamic or friction velocity, y is the distance from the wall, ? the kinematic viscosity of the fluid, and the Reynolds number Re? is well defined by the data.) In the region adjacent to the external flow, the scaling law is different: ? = B??. The power ? for zero-pressure-gradient boundary layers was found by processing various experimental data and is close (with some scatter) to 0.2. We show here that for nonzero-pressure-gradient boundary layers, the power ? is larger than 0.2 in the case of an adverse pressure gradient and less than 0.2 for a favorable pressure gradient. Similarity analysis suggests that both the coefficient B and the power ? depend on Re? and on a new dimensionless parameter P proportional to the pressure gradient. Recent experimental data of Perry, Maruši?, and Jones were analyzed, and the results are in agreement with the model we propose. PMID:16578875
NASA Technical Reports Server (NTRS)
Celic, Alan; Zilliac, Gregory G.
1998-01-01
The fringe-imaging skin friction (FISF) technique, which was originally developed by D. J. Monson and G. G. Mateer at Ames Research Center and recently extended to 3-D flows, is the most accurate skin friction measurement technique currently available. The principle of this technique is that the skin friction at a point on an aerodynamic surface can be determined by measuring the time-rate-of-change of the thickness of an oil drop placed on the surface under the influence of the external air boundary layer. Lubrication theory is used to relate the oil-patch thickness variation to shear stress. The uncertainty of FISF measurements is estimated to be as low as 4 percent, yet little is known about the effects of surface tension and wall adhesion forces on the measured results. A modified version of the free-surface Navier-Stokes solver RIPPLE, developed at Los Alamos National Laboratories, was used to compute the time development of an oil drop on a surface under a simulated air boundary layer. RIPPLE uses the volume of fluid method to track the surface and the continuum surface force approach to model surface tension and wall adhesion effects. The development of an oil drop, over a time period of approximately 4 seconds, was studied. Under the influence of shear imposed by an air boundary layer, the computed profile of the drop rapidly changes from its initial circular-arc shape to a wedge-like shape. Comparison of the time-varying oil-thickness distributions computed using RIPPLE and also computed using a greatly simplified numerical model of an oil drop equation which does not include surface tension and wall adhesion effects) was used to evaluate the effects of surface tension on FISF measurement results. The effects of surface tension were found to be small but not necessarily negligible in some cases.
NASA Technical Reports Server (NTRS)
Westphal, Russell V.; Pauley, Wayne R.; Eaton, John K.
1987-01-01
An experimental study was conducted to examine the interaction between a single weak streamwise vortex and a two-dimensional turbulent boundary layer. Attention was focused on characterizing the effect of the boundary layer on the vortex, including the effects of a moderate adverse pressure gradient. Rapid growth of the vortex core was observed, and a flattening of the core shape occurred when the dimension of the core radius became comparable to the distance of the vortex center from the surface. Adverse pressure gradients caused an increase in the rate of core growth, and therefore, a stronger distortion of the core shape. Measurements of surface skin friction beneath the vortex and some of the Reynolds stresses are presented.
NASA Technical Reports Server (NTRS)
Paik, D. K.; Reshotko, E.
1986-01-01
Studies of flat plate boundary layer development were made in a low speed wind tunnel at turbulence levels from 2%to 7%. Only transitional and turbulent flows were observed in the range 280 Re sub theta 700. The mean turbulent velocity profiles display law-of-the-wall behavior but have negligible wake component. The u' disturbance profiles compare well with those of other experiments, the peak value of u'/u sub tau being about 2.5. The effect of free-stream turbulence level on turbulent skin friction can be nicely correlated with those of other investigations on a plot of u sub e/u sub tau versus Re sub theta. A discussion on the u' spectra for the transitional boundary-layers is presented.
Response of surface boundary layer parameters during the formation of thunderstorms over Cochin
NASA Astrophysics Data System (ADS)
Babu, C. A.; Jayakrishnan, P. R.
2014-12-01
In the present study we made a detailed analysis of the surface ABL parameters associated with three thunderstorms that occurred over Cochin during pre-monsoon season. The high-resolution sonic anemometer data can provide microscale evolution of the surface boundary layer processes. The parameters studied are momentum flux, sensible heat flux, Turbulent Kinetic Energy (TKE), friction velocity and variance of u, v, w, T. Momentum flux anomalously increases from 0.1 N m-2 to 1 N m-2 during the occurrence of thunderstorm. Correspondingly, sensible heat flux decreases anomalously to a value of -200 W m-2 from 10 W m-2. TKE increases abruptly to 3 m2 s-2 from 0.5 m2 s-2 during convective activity. Friction velocity also changes abruptly to 1 m s-1 from 0.1 m s-1. The thermodynamic parameters and stability indices were investigated prior to the occurrence of thunderstorms and found that the atmospheric characteristics were conducive for the formation of convective activity.
NASA Astrophysics Data System (ADS)
Fadin, V. V.
2013-09-01
Dependences of the electric conductivity of a contact and wear intensity of metal materials on the electric current density in sliding friction are obtained. It is established that alloying of the material basis leads to faster damage of the friction surface. The presence of about 40 ?t.% oxygen in the surface layer is detected by the Auger spectrometry method. It is demonstrated by the x-ray diffraction method that FeO formed in the surface layer leads to an increase in the electric conductivity of the contact.
Acoustic emissions from unsteady transitional boundary layer flow structures
NASA Astrophysics Data System (ADS)
Marboe, Richard Chostner
The acoustic radiation contribution of boundary layer flow structures has long been the subject of debate. The research described critically examines the popular approaches to modeling the radiation mechanisms and attempts to bring some degree of closure to the physical and practical significance of noise and pseudo-noise originating in the laminar-to-turbulent transition zone within a natural boundary layer. This includes improving models to include recent computational and experimental statistics, evaluation of model sensitivities to input parameters, and applicability to situations of engineering relevance. Prior efforts to model wall pressure fluctuation statistics resulting from boundary layer transition zone flow structures allow further development of direct radiation prediction codes. Several refinements were made to theoretical models for directly radiated noise based upon the Liepmann analogy for fluctuating displacement thickness including the incorporation of a semi- empirically derived space-time correlation function for the intermittency indicator. A similar two-fluids model uses a Lighthill acoustic analogy. Radiation by vortex structures and direct numerical simulation methods are reviewed to help define their useful role in predicting sound radiation from transition. The role of pressure gradient in axisymmetric body flows, flat plate flows, and over hydrofoils is investigated. A quiet airflow facility was developed to measure the direct acoustic radiation from a naturally transitioning boundary layer. Real-time acoustic intensity measurement instrumentation was developed if measurements of isolated spots in otherwise laminar flow had been necessary. This technique uses a hot film signal from the transition structure to obtain the coherent output intensity (COI). Model predictions are compared to the measured acoustic radiation from a naturally transitioning boundary layer. Radiated noise measurements isolating the direct transition zone radiation demonstrated similar dependence with axial location within the transition zone as previous wall pressure measurements. The measurements suggest that radiation from transition flow structures is multipolar and has low radiation efficiency. Transition noise per unit area is greater than TBL noise per unit area. Thus, the contribution to overall directly radiated flow noise from the transition zone in typical engineering applications is negligible compared to the radiation from the much larger area of fully turbulent flow.
Atmospheric Boundary Layer of a pasture site in Amazônia
NASA Astrophysics Data System (ADS)
Trindade de Araújo Tiburtino Neves, Theomar; Fisch, Gilberto; Raasch, Siegfried
2013-04-01
A great effort has been made by the community of micrometeorology and planetary boundary layer for a better description of the properties of the Atmospheric Boundary Layer (ABL), such as its height, thermodynamics characteristics and its time evolution. This work aims to give a review of the main characteristics of Atmospheric Boundary Layer over a pasture site in Amazonia. The measurements dataset was carried out from 3 different LBA field campaigns: RBLE 3 (during the dry season from 1993), RaCCI (during the dry-to-wet transition season from 2002) and WetAMC (during the wet season from 1999), collected with tethered balloon, radiosondes and eddy correlation method in a pasture site in the southwestern Amazonia. Different techniques and instruments were used to estimate the AB?s properties. During the daytime, it was possible to observe that there is an abrupt growth of the Convective Boundary Layer (CBL) between 08 and 11 LT, with a stationary pattern between 14 and 17 LT. The maximum heights at late afternoon were around 1600 m during the dry season, whilst the wet season it only reached 1000 m. This is due to the lower surface turbulent sensible heat flux as the soil is wetter and the partition of energy is completely different between wet to the dry season. For the transition period (RaCCI 2002), it was possible to analyze and compare several estimates from different instruments and methods. It showed that the parcel method overestimates the heights of all measurements (mainly at 14 LT) due to the high incidence of solar radiation and superadiabatic gradients. The profile and Richardson number methods gave results very similar to estimate the height of the CBL. The onset of the Nocturnal Boundary Layer (NBL) occurs before the sunset (18 LT) and its height is reasonable stable during the night (typical values around 180-250 m). An alternative method (Vmax) which used the height of the maximum windspeed derived from a SODAR instrument during RaCCI 2002 was proposed and it showed to be satisfactory comparing with the others methods. Besides that, it has the advantage to have measurements each 30 min.
NASA Astrophysics Data System (ADS)
Dekker, H.; de Leeuw, G.; van den Brink, A. Maassen
A nonlocal turbulence transport theory is presented by means of a novel analysis of the Reynolds stress, inter alia involving the construct of a sample path space and a stochastic hypothesis. An analytical sampling rate model (satisfying exchange) and a nonlinear scaling relation (mapping the path space onto the boundary layer) lead to an integro-differential equation for the mixing of scalar densities, which represents fully-developed boundary-layer turbulence as a nondiffusive (Kubo-Anderson or kangaroo) type stochastic process. The underlying near-wall behavior (i.e. for y +?0) of fluctuating velocities fully agrees with recent direct numerical simulations. The model involves a scaling exponent ?, with ??? in the diffusion limit. For the (partly analytical) solution for the mean velocity profile, excellent agreement with the experimental data yields ??0.58. The significance of ? as a turbulence Cantor set dimension (in the logarithmic profile region, i.e. for y +??) is discussed.
On laminar and turbulent friction
NASA Technical Reports Server (NTRS)
Von Karman, TH
1946-01-01
Report deals, first with the theory of the laminar friction flow, where the basic concepts of Prandtl's boundary layer theory are represented from mathematical and physical points of view, and a method is indicated by means of which even more complicated cases can be treated with simple mathematical means, at least approximately. An attempt is also made to secure a basis for the computation of the turbulent friction by means of formulas through which the empirical laws of the turbulent pipe resistance can be applied to other problems on friction drag. (author)
NASA Astrophysics Data System (ADS)
Derjaguin, B. V.
1992-05-01
This article, mentioning the influence of surface forces on the formation and the properties of diffuse adsorption layers on the boundary of solution-substrate, is mainly about the influence of surface forces on the structure and properties of boundary layers of the liquid. It deals with the phenomena of formation of homogeneous liquid crystalline layers of nonmesogenic liquids, boundary phases and the properties of boundary nonhomogeneous layers of water and alcohols. In the conclusion the data on surface forces are given with the radius of action up to 100 ?m, which are generated by leucocytes of blood plasma with the addition of a concentrated salt solution.
The Jovian boundary layer as formed by magnetic-anomaly effects
NASA Technical Reports Server (NTRS)
Dessler, A. J.
1979-01-01
A model is presented in which a plasma boundary layer of Jupiter is formed from plasma of internal origin. It is proposed that, unlike the Earth's boundary layer, which is thought to consist principally of solar wind plasma, Jupiter's boundary layer consists principally of sulphur and oxygen from the Io plasma torus, plus a small component of hydrogen from Jupiter's ionosphere. Fresh plasma is supplied to the boundary layer once each planetary rotation period by a convection pattern that rotates with Jupiter.
The simulation of coherent structures in a laminar boundary layer
NASA Technical Reports Server (NTRS)
Breuer, Kenny; Landahl, Marten T.; Spalart, Philippe R.
1987-01-01
Coherent structures in turbulent shear flows were studied extensively by several techniques, including the VITA technique which selects rapidly accelerating or decelerating regions in the flow. The evolution of a localized disturbance in a laminar boundary layer shows strong similarity to the evolution of coherent structures in a turbulent-wall bounded flow. Starting from a liftup-sweep motion, a strong shear layer develops which shares many of the features seen in conditionally-sampled turbulent velocity fields. The structure of the shear layer, Reynolds stress distribution, and wall pressure footprint are qualitatively the same, indicating that the dynamics responsible for the structure's evolution are simple mechanisms dependent only on the presence of a high mean shear and a wall and independent of the effects of local random fluctuations and outer flow effects. As the disturbance progressed, the development of streak-like-high- and low-speed regions associated with the three-dimensionality.
NASA Technical Reports Server (NTRS)
Spina, Eric F.
1995-01-01
The primary objective in the two research investigations performed under NASA Langley sponsorship (Turbulence measurements in hypersonic boundary layers using constant temperature anemometry and Reynolds stress measurements in hypersonic boundary layers) has been to increase the understanding of the physics of hypersonic turbulent boundary layers. The study began with an extension of constant-temperature thermal anemometry techniques to a Mach 11 helium flow, including careful examinations of hot-wire construction techniques, system response, and system calibration. This was followed by the application of these techniques to the exploration of a Mach 11 helium turbulent boundary layer (To approximately 290 K). The data that was acquired over the course of more than two years consists of instantaneous streamwise mass flux measurements at a frequency response of about 500 kHz. The data are of exceptional quality in both the time and frequency domain and possess a high degree of repeatability. The data analysis that has been performed to date has added significantly to the body of knowledge on hypersonic turbulence, and the data reduction is continuing. An attempt was then made to extend these thermal anemometry techniques to higher enthalpy flows, starting with a Mach 6 air flow with a stagnation temperature just above that needed to prevent liquefaction (To approximately 475 F). Conventional hot-wire anemometry proved to be inadequate for the selected high-temperature, high dynamic pressure flow, with frequent wire breakage and poor system frequency response. The use of hot-film anemometry has since been investigated for these higher-enthalpy, severe environment flows. The difficulty with using hot-film probes for dynamic (turbulence) measurements is associated with construction limitations and conduction of heat into the film substrate. Work continues under a NASA GSRP grant on the development of a hot film probe that overcomes these shortcomings for hypersonic flows. Each of the research tasks performed during the NASA Langley research grants is discussed separately below.
Atmospheric Environment 41 (2007) 82758287 Boundary layer photochemistry simulated with a two-stream
Menut, Laurent
2007-01-01
homogeneous concentrations in the planetary boundary layer (PBL). Ozone concentrations are also more Elsevier Ltd. All rights reserved. Keywords: Photochemical smog; Boundary layer; Mixing; Turbulence; OzoneAtmospheric Environment 41 (2007) 82758287 Boundary layer photochemistry simulated with a two
Boundary-Layer Meteorol DOI 10.1007/s10546-012-9768-8
Brandenburg, Axel
between the two principally different regimes: "strong turbulence" at Ri 1 typical of boundary-layer flows including turbulent fluxes. Keywords Boundary layers Â· Critical Richardson number Â· Eddy viscosityBoundary-Layer Meteorol DOI 10.1007/s10546-012-9768-8 ARTICLE A Hierarchy of Energy- and Flux
LMS/Leicester Workshop on Stability and Transition of Rotating Boundary-Layer Flows
profiles scale linearly with radius. The similarity variables are given by: U(z) = U*/(r**) V(z) = V*/(r) location. Â· The nonlinearity further destabilizes the boundary layer and leads to the onset of laminar-turbulentLMS/Leicester Workshop on Stability and Transition of Rotating Boundary-Layer Flows Boundary-Layer
A parametric study of adverse pressure gradient turbulent boundary layers J.P. Monty
Marusic, Ivan
A parametric study of adverse pressure gradient turbulent boundary layers J.P. Monty , Z. Harun, I Accepted 22 March 2011 Keywords: Adverse pressure gradient Boundary layer Wall-turbulence a b s t r a c t There are many open questions regarding the behaviour of turbulent boundary layers subjected to pressure
Direct Numerical Simulation of Supersonic Turbulent Boundary Layer over a Compression Ramp
MartÃn, Pino
Direct Numerical Simulation of Supersonic Turbulent Boundary Layer over a Compression Ramp M. Wu numerical simulation of shock wave and turbulent boundary layer interaction for a 24 deg compression ramp boundary layer, the mean wall-pressure distribution, the size of the separation bubble, and the velocity
Large-Eddy Simulations of Longitudinal Vortices Embedded in a Turbulent Boundary Layer
Mittal, Rajat
Large-Eddy Simulations of Longitudinal Vortices Embedded in a Turbulent Boundary Layer Donghyun You in a turbulent boundary layer upstream of the tip-leakage flow in a linear cascade. Early studies of longitudinal embedded in a two-dimensional turbulent boundary layer are performed to study the dynamics of the vortical
The continuous spectrum for a boundary layer in a streamwise pressure gradient
Spiteri, Raymond J.
The continuous spectrum for a boundary layer in a streamwise pressure gradient S. A. Maslowe spectrum are presented for boundary layers developing in the presence of a streamwise pressure gradient of the boundary layer can be much larger than it is for Blasius flow. This is particularly true when the pressure
Low heat conduction in white dwarf boundary layers?
F. K. Liu; F. Meyer; E. Meyer-Hofmeister; V. Burwitz
2008-03-13
X-ray spectra of dwarf novae in quiescence observed by Chandra and XMM-Newton provide new information on the boundary layers of their accreting white dwarfs. Comparison of observations and models allows us to extract estimates for the thermal conductivity in the accretion layer and reach conclusions on the relevant physical processes. We calculate the structure of the dense thermal boundary layer that forms under gravity and cooling at the white dwarf surface on accretion of gas from a hot tenuous ADAF-type coronal inflow. The distribution of density and temperature obtained allows us to calculate the strength and spectrum of the emitted X-ray radiation. They depend strongly on the values of thermal conductivity and mass accretion rate. We apply our model to the dwarf nova system VW Hyi and compare the spectra predicted for different values of the thermal conductivity with the observed spectrum. We find a significant deviation for all values of thermal conductivity that are a sizable fraction of the Spitzer conductivity. A good fit arises however for a conductivity of about 1% of the Spitzer value. This also seems to hold for other dwarf nova systems in quiescence. We compare this result with thermal conduction in other astrophysical situations. The highly reduced thermal conductivity in the boundary layer requires magnetic fields perpendicular to the temperature gradient. Locating their origin in the accretion of magnetic fields from the hot ADAF-type coronal flow we find that dynamical effects of these fields will lead to a spatially intermittent, localized accretion geometry at the white dwarf surface.
Orbiter Entry Aeroheating Working Group Viscous CFD Boundary Layer Transition Trailblazer Solutions
NASA Technical Reports Server (NTRS)
Wood, William A.; Erickson, David W.; Greene, Francis A.
2007-01-01
Boundary layer transition correlations for the Shuttle Orbiter have been previously developed utilizing a two-layer boundary layer prediction technique. The particular two-layer technique that was used is limited to Mach numbers less than 20. To allow assessments at Mach numbers greater than 20, it is proposed to use viscous CFD to the predict boundary layer properties. This report addresses if the existing Orbiter entry aeroheating viscous CFD solutions, which were originally intended to be used for heat transfer rate predictions, adequately resolve boundary layer edge properties and if the existing two-layer results could be leveraged to reduce the number of needed CFD solutions. The boundary layer edge parameters from viscous CFD solutions are extracted along the wind side centerline of the Space Shuttle Orbiter at reentry conditions, and are compared with results from the two-layer boundary layer prediction technique. The differences between the viscous CFD and two-layer prediction techniques vary between Mach 6 and 18 flight conditions and Mach 6 wind tunnel conditions, and there is not a straightforward scaling between the viscous CFD and two-layer values. Therefore: it is not possible to leverage the existing two-layer Orbiter flight boundary layer data set as a substitute for a viscous CFD data set; but viscous CFD solutions at the current grid resolution are sufficient to produce a boundary layer data set suitable for applying edge-based boundary layer transition correlations.
NASA Astrophysics Data System (ADS)
Cheng, Xue-Ling; Huang, Jian; Wu, Lin; Zeng, Qing-Cun
2015-06-01
An observational analysis of the structures and characteristics of a windy atmospheric boundary layer during a cold air outbreak in the South China Sea region is reported in this paper. It is found that the main structures and characteristics are the same as during strong wind episodes with cold air outbreaks on land. The high frequency turbulent fluctuations (period <1 min) are nearly random and isotropic with weak coherency, but the gusty wind disturbances (1 min
Discussion of boundary-layer characteristics near the casing of an axial-flow compressor
NASA Technical Reports Server (NTRS)
Mager, Artur; Mahoney, John J; Budinger, Ray E
1951-01-01
Boundary-layer velocity profiles on the casing of an axial-flow compressor behind the guide vanes and rotor were measured and resolved into two components: along the streamline of the flow and perpendicular to it. Boundary-layer thickness and the deflection of the boundary layer at the wall were the generalizing parameters. By use of these results and the momentum-integral equations, the characteristics of boundary on the walls of axial-flow compressor are qualitatively discussed. Important parameters concerning secondary flow in the boundary layer appear to be turning of the flow and the product of boundary-layer thickness and streamline curvature outside the boundary layer. Two types of separation are shown to be possible in three dimensional boundary layer.
Characteristics of convective boundary layer over the Arabian sea region
Parasnis, S.S.
1996-12-31
The Convective Boundary Layer (CBL) over the oceanic regions plays an important role in regulating the transport of energy and moisture upward into the atmosphere from the surface. CBL structure over the Arabian sea region has been explored using the aerological soundings at two ships viz. SHIRSHOV (12.5{degrees}N, 68{degrees}E ) and OKEAN (14.5{degrees} N, 66{degrees} E) during MONSOON-77. Conserved variable analysis of the mean data sets obtained during the period of 29 June - 16 July, 1977 revealed salient features of the CBL over these regions. The vertical gradients of saturation point parameters viz. virtual potential temperature ({Theta}{sub v}), equivalent potential temperature ({Theta}{sub e}), saturated equivalent potential temperature ({Theta}{sub es}), saturation pressure deficit (P*) and the mixing ratio (q) were used to characterize the different sublayers such as subcloud layer, cloud layer and inversion/stable layer. The mean cloud base was around 950 hPa and the subcloud layer has nearly constant {Theta}{sub v}. The moist layer was associated with unstable {Theta}{sub es} with nearly constant value of P* ({approximately} -40 hPa). This cloud layer was capped by the stable (over OKEAN). The {Theta}{sub e} minimum over OKEAN was observed at 650 hPa (50 hPa above the CBL top) indicating that at some time the convection had reached deeper levels. The {Theta}{sub e} -q diagrams showed a characteristic mixing line up through the cloud and stable layer to the top of CBL. The low level stability analysis using the {Theta}{sub e} and {Theta}{sub es} profiles indicated conditions favorable for shallow convection over OKEAN and for deep convection over SHIRSHOV. The above characteristic features could be attributed to the prevailing weather conditions at OKEAN and SHIRSHOV. The results are discussed.
Boundary layer receptivity to free-stream vorticity
NASA Astrophysics Data System (ADS)
Buter, T. A.; Reed, H. L.
1994-10-01
The receptivity to free-stream vorticity of the boundary layer over a flat plate with an elliptic leading edge is investigated numerically by solving the incompressible Navier-Stokes system in general curvilinear coordinates with the vorticity and streamfunction as dependent variables. A small-amplitude vortical disturbance is introduced at the upstream boundary and the governing equations solved time accurately to evaluate the spatial and temporal growth of the perturbations leading to instability waves [Tollmien-Schlichting (TS) waves] in the boundary layer. The effect of disturbance amplitude, orientation, and the effect of the leading edge and of surface curvature are investigated for the case of spanwise vorticity. Simulations reveal, for the conditions considered, a linear variation in the TS response with forcing amplitude for perturbations of free-stream velocity that are either symmetrical or asymmetrical with respect to the basic-state stagnation streamline. The presence near the leading edge of a large, oscillating component of velocity normal to the airfoil axis for the case of asymmetrical forcing results, for the same strength of input disturbance, in an increase in the TS response aft of the juncture and in the appearance of a superharmonic component of the disturbance motion near the tip of the nose. This superharmonic decays rapidly in the streamwise direction. In all cases considered, the first clear appearance of the TS mode occurs aft of the surface pressure-gradient maximum. Changes to the geometry that increase the maximum in steady surface pressure gradient are found to increase receptivity.
Three-dimensional boundary layer calculation by a characteristic method
NASA Technical Reports Server (NTRS)
Houdeville, R.
1992-01-01
A numerical method for solving the three-dimensional boundary layer equations for bodies of arbitrary shape is presented. In laminar flows, the application domain extends from incompressible to hypersonic flows with the assumption of chemical equilibrium. For turbulent boundary layers, the application domain is limited by the validity of the mixing length model used. In order to respect the hyperbolic nature of the equations reduced to first order partial derivative terms, the momentum equations are discretized along the local streamlines using of the osculator tangent plane at each node of the body fitted coordinate system. With this original approach, it is possible to overcome the use of the generalized coordinates, and therefore, it is not necessary to impose an extra hypothesis about the regularity of the mesh in which the boundary conditions are given. By doing so, it is possible to limit, and sometimes to suppress, the pre-treatment of the data coming from an inviscid calculation. Although the proposed scheme is only semi-implicit, the method remains numerically very efficient.
Friction modifier using adherent metallic multilayered or mixed element layer conversion coatings
NASA Technical Reports Server (NTRS)
Schramm, Harry F. (Inventor); Defalco, Frank G. (Inventor); Starks, Sr., Lloyd L. (Inventor)
2012-01-01
A process for creating conversion coatings and spin, drawing, and extrusion finishes for surfaces, wherein the conversion coatings and spin, drawing, and extrusion finishes contain potassium, phosphorus, nitrogen, silicon, and one or more non-alkaline metals. The process comprises forming a first aqueous solution of silicate, potassium hydroxide, and ammonium hydroxide; forming a second aqueous solution of water, phosphoric acid, ammonium hydroxide, an alkali metal hydroxide, and one or more non-alkaline metals, and then combining the first solution with the second solution to form a final solution. This final solution forms an anti-friction multi-layer conversion coating or a spin, drawing, and extrusion finish on a surface when applied to the surface, either directly or as an additive in lubricating fluids.
Nonlinear spatial evolution of inviscid instabilities on hypersonic boundary layers
NASA Technical Reports Server (NTRS)
Wundrow, David W.
1996-01-01
The spatial development of an initially linear vorticity-mode instability on a compressible flat-plate boundary layer is considered. The analysis is done in the framework of the hypersonic limit where the free-stream Mach number M approaches infinity. Nonlinearity is shown to become important locally, in a thin critical layer, when sigma, the deviation of the phase speed from unity, becomes o(M(exp -8/7)) and the magnitude of the pressure fluctuations becomes 0(sigma(exp 5/2)M(exp 2)). The unsteady flow outside the critical layer takes the form of a linear instability wave but with its amplitude completely determined by the nonlinear flow within the critical layer. The coupled set of equations which govern the critical-layer dynamics reflect a balance between spatial-evolution, (linear and nonlinear) convection and nonlinear vorticity-generation terms. The numerical solution to these equations shows that nonlinear effects produce a dramatic reduction in the instability-wave amplitude.
Thermographic analysis of turbulent non-isothermal water boundary layer
Znamenskaya, Irina A
2015-01-01
The paper is devoted to the investigation of the turbulent water boundary layer in the jet mixing flows using high-speed infrared (IR) thermography. Two turbulent mixing processes were studied: a submerged water jet impinging on a flat surface and two intersecting jets in a round disc-shaped vessel. An infrared camera (FLIR Systems SC7700) was focused on the window transparent for IR radiation; it provided high-speed recordings of heat fluxes from a thin water layer close to the window. Temperature versus time curves at different points of water boundary layer near the wall surface were acquired using the IR camera with the recording frequency of 100 Hz. The time of recording varied from 3 till 20 min. The power spectra for the temperature fluctuations at different points on the hot-cold water mixing zone were calculated using the Fast Fourier Transform algorithm. The obtained spectral behavior was compared to the Kolmogorov "-5/3 spectrum" (a direct energy cascade) and the dual-cascade scenario predicted for...
Fullerenes in the cretaceous-tertiary boundary layer
Heymann, D.; Chibante, L.P.F.; Smalley, R.E. ); Brooks, R.R. ); Wolbach, W.S. )
1994-07-29
High-pressure liquid chromatography with ultraviolet-visible spectral analysis of toluene extracts of samples from two Cretaceous-Tertiary (K-T) boundary sites in New Zealand has revealed the presence of C[sub 60] at concentrations of 0.1 to 0.2 parts per million of the associated soot. This technique verified also that fullerenes are produced in similar amounts in the soots of common flames under ambient atmospheric conditions. Therefore, the C[sub 60] in the K-T boundary layer may have originated in the extensive wildfires that were associated with the cataclysmic impact event that terminated the Mezozoic era about 65 million years ago.
Interaction of a Boundary Layer with a Turbulent Wake
NASA Technical Reports Server (NTRS)
Piomelli, Ugo
2004-01-01
The objective of this grant was to study the transition mechanisms on a flat-plate boundary layer interacting with the wake of a bluff body. This is a simplified configuration presented and designed to exemplify the phenomena that occur in multi-element airfoils, in which the wake of an upstream element impinges on a downstream one. Some experimental data is available for this configuration at various Reynolds numbers. The first task carried out was the implementation and validation of the immersed-boundary method. This was achieved by performing calculations of the flow over a cylinder at low and moderate Reynolds numbers. The low-Reynolds number results are discussed, which is enclosed as Appendix A. The high-Reynolds number results are presented in a paper in preparation for the Journal of Fluid Mechanics. We performed calculations of the wake-boundary-layer interaction at two Reynolds numbers, Re approximately equal to 385 and 1155. The first case is discussed and a comparison of the two calculations is reported. The simulations indicate that at the lower Reynolds number the boundary layer is buffeted by the unsteady Karman vortex street shed by the cylinder. This is shown: long streaky structures appear in the boundary layer in correspondence of the three-dimensionalities in the rollers. The fluctuations, however, cannot be self-sustained due to the low Reynolds-number, and the flow does not reach a turbulent state within the computational domain. In contrast, in the higher Reynolds-number case, boundary-layer fluctuations persist after the wake has decayed (due, in part, to the higher values of the local Reynolds number Re achieved in this case); some evidence could be observed that a self-sustaining turbulence generation cycle was beginning to be established. A third simulation was subsequently carried out at a higher Reynolds number, Re=3900. This calculation gave results similar to those of the Re=l155 case. Turbulence was established at fairly low Reynolds number, as a consequence of the high level of the free-stream perturbation. An instantaneous flow visualization for that case is shown. A detailed examination of flow statistics in the transitional and turbulent regions, including the evolution of the turbulent kinetic energy (TKE) budget and frequency spectra showed the formation and evolution of turbulent spots characteristic of the bypass transition mechanism. It was also observed that the turbulent eddies achieved an equilibrium, fully developed turbulent states first, as evidenced by the early agreement achieved by the terms in the TKE budget with those observed in turbulent flows. Once a turbulent Reynolds stress profile had been established, the velocity profile began to resemble a turbulent one, first in the inner region and later in the outer region of the wall layer. An extensive comparison of the three cases, including budgets, mean velocity and Reynolds stress profiles and flow visualization, is included. The results obtained are also presented.
Impact of the vertical mixing induced by low-level jets on boundary layer ozone concentration
Xue, Ming
Impact of the vertical mixing induced by low-level jets on boundary layer ozone concentration Xiao: Ozonesonde Low-level jet Atmospheric boundary layer Ozone WRF/Chem Residual layer a b s t r a c t After at multiple sites along the corridor. layer (RL) is leaky in the presence of a strong low
Free-stream disturbances, continuous eigenfunctions, boundary-layer instability and transition
NASA Technical Reports Server (NTRS)
Salwen, H.
1980-01-01
A rational foundation is provided for the application of the linear stability theory of parallel shear flows to transition prediction. An explicit method is given for carrying out the necessary calculations. The expansions are shown to be complete. Sample calculations show that a typical boundary layer is very sensitive to vorticity disturbance in the inner boundary layer near the critical layer. Vorticity disturbances three or four boundary layer thicknesses above the boundary are nearly uncoupled from the boundary layer, in that the amplitudes of the discrete Tollmein-Schlichting waves are an extremely small fraction of the amplitude of the disturbance.
NASA Technical Reports Server (NTRS)
Cebeci, T.; Carr, L. W.
1981-01-01
A procedure which solves the governing boundary layer equations within Keller's box method was developed for calculating unsteady laminar flows with flow reversal. This method is extended to turbulent boundary layers with flow reversal. Test cases are used to investigate the proposition that unsteady turbulent boundary layers also remain free of singularities. Turbulent flow calculations are performed. The governing equations for both models are solved. As in laminar flows, the unsteady turbulent boundary layers are free from singularities, but there is a clear indication of rapid thickening of the boundary layer with increasing flow reversal. Predictions of both turbulence models are the same for all practical purposes.
NASA Astrophysics Data System (ADS)
Liang, Yun; Zou, Zheng-Ping; Liu, Hou-Xing; Zhang, Wei-Hao
2015-04-01
Detailed experimental investigation was carried out to investigate the interaction of unsteady wakes with boundary layer in a high-lift low-pressure turbine. Extensive measurements about boundary layer character were conducted using hot-film and hot-wire methods. In-depth analysis of the effect of wake passing frequency on boundary layer transition was carried out. The strength of separation control and profile loss variation at two wake passing frequencies were also studied. The results show that wake-induced transition can be detected in the separating shear layer, and complex vortex structures are induced by the interaction between the negative jet of wake and separation bubble. The proportions of laminar, separation and turbulence friction loss in the total loss vary with wake passing frequency, which leads to the change in the total boundary layer loss. In particular, as the wake passing frequency changes, the laminar and turbulent friction loss show opposite trends, and this indicates that the best frequency can be achieved by balancing these two types of losses. For a given high-lift profile, an optimum wake passing frequency that will lead to the minimum loss exists.
Infrared Imaging of Boundary Layer Transition Flight Experiments
NASA Technical Reports Server (NTRS)
Berry, Scott A.; Horvath, Thomas J., Jr.; Schwartz, Richard; Ross, Martin; Anderson, Brian; Campbell, Charles H.
2008-01-01
The Hypersonic Thermodynamic Infrared Measurement (HYTHIRM) project is presently focused on near term support to the Shuttle program through the development of an infrared imaging capability of sufficient spatial and temporal resolution to augment existing on-board Orbiter instrumentation. Significant progress has been made with the identification and inventory of relevant existing optical imaging assets and the development, maturation, and validation of simulation and modeling tools for assessment and mission planning purposes, which were intended to lead to the best strategies and assets for successful acquisition of quantitative global surface temperature data on the Shuttle during entry. However, there are longer-term goals of providing global infrared imaging support to other flight projects as well. A status of HYTHIRM from the perspective of how two NASA-sponsored boundary layer transition flight experiments could benefit by infrared measurements is provided. Those two flight projects are the Hypersonic Boundary layer Transition (HyBoLT) flight experiment and the Shuttle Boundary Layer Transition Flight Experiment (BLT FE), which are both intended for reducing uncertainties associated with the extrapolation of wind tunnel derived transition correlations for flight application. Thus, the criticality of obtaining high quality flight data along with the impact it would provide to the Shuttle program damage assessment process are discussed. Two recent wind tunnel efforts that were intended as risk mitigation in terms of quantifying the transition process and resulting turbulent wedge locations are briefly reviewed. Progress is being made towards finalizing an imaging strategy in support of the Shuttle BLT FE, however there are no plans currently to image HyBoLT.
Planetary Boundary Layer Dynamics over Reno, Nevada in Summer
NASA Astrophysics Data System (ADS)
Liming, A.; Sumlin, B.; Loria Salazar, S. M.; Holmes, H.; Arnott, W. P.
2014-12-01
Quantifying the height of the planetary boundary layer (PBL) is important to understand the transport behavior, mixing, and surface concentrations of air pollutants. In Reno, NV, located in complex, mountainous terrain with high desert climate, the daytime boundary layer can rise to an estimated 3km or more on a summer day due to surface heating and convection. The nocturnal boundary layer, conversely, tends to be much lower and highly stable due to radiative cooling from the surface at night and downslope flow of cool air from nearby mountains. With limited availability of radiosonde data, current estimates of the PBL height at any given time or location are potentially over or underestimated. To better quantify the height and characterize the PBL physics, we developed portable, lightweight sensors that measure CO2 concentrations, temperature, pressure, and humidity every 5 seconds. Four of these sensors are used on a tethered balloon system to monitor CO2 concentrations from the surface up to 300m. We will combine this data with Radio Acoustic Sounding System (RASS) data that measures vertical profiles of wind speed, temperature, and humidity from 40m to 400m. This experiment will characterize the diurnal evolution of CO2 concentrations at multiple heights in the PBL, provide insight into PBL physics during stability transition periods at sunrise and sunset, and estimate the nighttime PBL depth during August in Reno. Further, we expect to gain a better understanding of the impact of mixing volume changes (i.e., PBL height) on air quality and pollution concentrations in Reno. The custom portable sensor design will also be presented. It is expected that these instruments can be used for indoor or outdoor air quality studies, where lightness, small size, and battery operation can be of benefit.
Andrews, D.J.
1985-01-01
A numerical boundary integral method, relating slip and traction on a plane in an elastic medium by convolution with a discretized Green function, can be linked to a slip-dependent friction law on the fault plane. Such a method is developed here in two-dimensional plane-strain geometry. Spontaneous plane-strain shear ruptures can make a transition from sub-Rayleigh to near-P propagation velocity. Results from the boundary integral method agree with earlier results from a finite difference method on the location of this transition in parameter space. The methods differ in their prediction of rupture velocity following the transition. The trailing edge of the cohesive zone propagates at the P-wave velocity after the transition in the boundary integral calculations. Refs.
Transition in Hypersonic Boundary Layers: Role of Dilatational Waves
Zhu, Yiding; Yuan, Huijing; Wu, Jiezhi; Chen, Shiyi; Lee, Cunbiao; Gad-el-Hak, Mohamed
2015-01-01
Transition and turbulence production in a hypersonic boundary layer is investigated in a Mach 6 quiet wind tunnel using Rayleigh-scattering visualization, fast-response pressure measurements, and particle image velocimetry. It is found that the second instability acoustic mode is the key modulator of the transition process. The second mode experiences a rapid growth and a very fast annihilation due to the effect of bulk viscosity. The second mode interacts strongly with the first vorticity mode to directly promote a fast growth of the latter and leads to immediate transition to turbulence.
Some theoretical aspects of boundary layer stability theory
NASA Technical Reports Server (NTRS)
Hall, Philip
1990-01-01
Increased understanding in recent years of boundary layer transition has been made possible by the development of strongly nonlinear stability theories. After some twenty or so years when nonlinear stability theory was restricted to the application of the Stuart-Watson method (or less formal amplitude expansion procedures), there now exist strongly nonlinear theories which can describe processes which have an 0(1) effect on the basic state. These strongly nonlinear theories and their possible role in pushing theoretical understanding of transition ever further into the nonlinear regime are discussed.
A numerical model for dispersion in a convective boundary layer
Ahmed, N.U.; Chai, S.K.; Telford, J.W. )
1993-11-15
A numerical model based on the convective plumes observed in the convecting planetary boundary layer has been developed for material dispersion from both elevated and ground source releases. Mechanistic formulation, rather than parameterization, or statistical behavior of PBL phenomenon, has been used as a basis. This model uses two universal constants, the turbulent entrainment constant, a, and decay constant, A. The model results have physical significance with regard to the observed plume behavior in a convective field. An observed case of diffusion has been simulated. The model results are in reasonable agreement with the observation without introducing any adjustable parameters to improve the fit. 37 refs., 16 figs., 1 tab.
A numerical model for dipsersion in a convective boundary layer
Ahmed, N.U.; Chai, S.K.; Telford, J.W.
1993-11-01
A numerical model based on the convective plumes observed in the convecting planetary boundary layers (PBL) has been developed for material dispersion from both elevated and ground source releases. Mechanistic formulation, rather than parameterization, or statistical behavior of PBL phenomenon, has been use as basis. This model uses two universal constants, the turbulent entrainment constant, a, and decay constant, A. The model results have physical significance with regard to the observed plume behavior in a convective field. An observed case of diffusion has been simulated. The model results are in reasonable agreement with the observation without introducing any adjustable parameters to improve fit.
Streaming effect of wall oscillation to boundary layer separation
NASA Technical Reports Server (NTRS)
Wu, X. H.; Wu, J. Z.; Wu, J. M.
1991-01-01
This paper presents a preliminary theoretical result on the time averaged streaming effect of local forcing excitation to the boundary layer separation from smooth surface. The problem is formulated as a periodic disturbance to a basic steady breakaway separating flow, for which the data are taken from a numerical triple-deck solution. The ratio of Strouhal number St and Reynolds number Re plays an important role, both being assumed sufficiently high. The analytical and numerical results show that this streaming effect is quite strong at proper values of St/Re exp 1/4, which may delay or even suppress the separation.
Regional scale evaporation and the atmospheric boundary layer
NASA Technical Reports Server (NTRS)
Parlange, Marc B.; Eichinger, William E.; Albertson, John D.
1995-01-01
In this review we briefly summarize some current models of evaporation and the atmospheric boundary layer (ABL) and discuss new experimental and computational oppurtunities that may aid our understanding of evaporation at these larger scales. In particular, consideration is given to remote sensing of the atmosphere, computational fluid dynamics and the role numerical models can play in understanding land-atmosphere interactions. These powerful modeling and measurement tools are allowing us to visualize and study spatial and temporal scales previously untouched, thereby increasing the oppurtunities to improve our understanding of land-atmosphere interaction.
Total temperature-velocity relation in turbulent compressible boundary layers
NASA Astrophysics Data System (ADS)
Laderman, A. J.
1981-12-01
It is noted that Whitfield and High (1977) introduced an approximate model for the turbulent shear stress distribution into the energy-momentum equation and derived an analytical solution which provides reasonable agreement with experimental observations. In studies by Laderman (1978, 1980) of the effects on an adverse present gradient on a supersonic turbulent boundary layer, it was found that the T bar vs U bar relation is insensitive to the pressure gradient although the shear stress distribution is apparently strongly dependent on beta sub k0. The implications of the Whitfield and High solution are therefore considered to merit further examination.
Wake characteristics of buildings in disturbed boundary layers
NASA Technical Reports Server (NTRS)
Logan, E., Jr.; Chang, J.
1980-01-01
Measurements relevant to the effect of buildings on the low level atmospheric boundary layer are presented. Field measurements of velocity and turbulence in the wake of a block building 3.2 m high and 26.8 m long are presented which show an apparent increase in momentum flow above the upwind value. Velocity-deficit and turbulence-excess decay characteristics of the disturbed or nonequilibrium layer are correlated with power law exponents and apparent roughness length at various distances downstream of the disturbance. Model wake profiles from the simulated building are compared at various stations for equilibrium and nonequilibrium upstream profiles. Empirical correlations relating building wake profiles to upstream nonequilibrium parameters are presented. The relationship of the data to the smooth-rough transition is discussed, and a flow model is presented.
Aerodynamic Models for Hurricanes III. Modeling hurricane boundary layer
Leonov, Arkady I
2008-01-01
The third paper of the series (see previous ones in Refs.[1-2]) discusses basic physicalprocesses in the (quasi-) steady hurricane boundary layer (HBL), develops an approximate airflow model, establishes the HBL structure, and presents integral balance relations for dynamic and thermodynamic variables in HBL. Models of evaporation and condensation are developed, where the condensation is treated similarly to the slow combustion theory. A turbulent approximation for the lower sub-layer of HBL is applied to the sea-air interaction to establish the observed increase in angular momentum in the outer region of HBL.A closed set of balance relations has been obtained. Simple analytical solution of the set yields expressions for the basic dynamic variables - maximal tangential and radial velocities in hurricane, maximal vertical speed in eye wall, the affinity speed of hurricane travel, and the maximal temperature increase after condensation. Estimated values of the variables seem to be realistic. An attempt is also ...
Nanodiamonds in the Younger Dryas boundary sediment layer.
Kennett, D J; Kennett, J P; West, A; Mercer, C; Hee, S S Que; Bement, L; Bunch, T E; Sellers, M; Wolbach, W S
2009-01-01
We report abundant nanodiamonds in sediments dating to 12.9 +/- 0.1 thousand calendar years before the present at multiple locations across North America. Selected area electron diffraction patterns reveal two diamond allotropes in this boundary layer but not above or below that interval. Cubic diamonds form under high temperature-pressure regimes, and n-diamonds also require extraordinary conditions, well outside the range of Earth's typical surficial processes but common to cosmic impacts. N-diamond concentrations range from approximately 10 to 3700 parts per billion by weight, comparable to amounts found in known impact layers. These diamonds provide strong evidence for Earth's collision with a rare swarm of carbonaceous chondrites or comets at the onset of the Younger Dryas cool interval, producing multiple airbursts and possible surface impacts, with severe repercussions for plants, animals, and humans in North America. PMID:19119227
Prandtl boundary layers for the Phan-Thien Tanner and Giesekus fluid
NASA Astrophysics Data System (ADS)
Renardy, Michael
2015-06-01
The Prandtl equations, arising naturally in the description of high Reynolds number boundary layers, have turned out to be quite difficult from the point of view of mathematical analysis. Recent work by the author has shown that the analogous problem for the upper-convected Maxwell fluid is actually better behaved, and the well-posedness of the boundary layer equations has been established. In this paper, boundary layers for the Phan-Thien-Tanner and Giesekus fluid are considered. It turns out that there are two fundamentally different types of boundary layers, which we shall call elastic and viscometric boundary layers. The elastic boundary layers will be analyzed in an analogous fashion as those for the upper-convected Maxwell fluid. On the other hand, for viscometric boundary layers, which occur only for the PTT fluid, the equations are equivalent to those for a power law fluid.
Unsteady transonic viscous-inviscid interaction using Euler and boundary-layer equations
NASA Technical Reports Server (NTRS)
Pirzadeh, Shahyar; Whitfield, Dave
1989-01-01
The Euler code is used extensively for computation of transonic unsteady aerodynamics. The boundary layer code solves the 3-D, compressible, unsteady, mean flow kinetic energy integral boundary layer equations in the direct mode. Inviscid-viscous coupling is handled using porosity boundary conditions. Some of the advantages and disadvantages of using the Euler and boundary layer equations for investigating unsteady viscous-inviscid interaction is examined.
Surface boundary layer turbulence in the Southern ocean
NASA Astrophysics Data System (ADS)
Merrifield, Sophia; St. Laurent, Louis; Owens, Breck; Naveira Garabato, Alberto
2015-04-01
Due to the remote location and harsh conditions, few direct measurements of turbulence have been collected in the Southern Ocean. This region experiences some of the strongest wind forcing of the global ocean, leading to large inertial energy input. While mixed layers are known to have a strong seasonality and reach 500m depth, the depth structure of near-surface turbulent dissipation and diffusivity have not been examined using direct measurements. We present data collected during the Diapycnal and Isopycnal Mixing Experiment in the Southern Ocean (DIMES) field program. In a range of wind conditions, the wave affected surface layer (WASL), where surface wave physics are actively forcing turbulence, is contained to the upper 15-20m. The lag-correlation between wind stress and turbulence shows a strong relationship up to 6 hours (˜1/2 inertial period), with the winds leading the oceanic turbulent response, in the depth range between 20-50m. We find the following characterize the data: i) Profiles that have a well-defined hydrographic mixed layer show that dissipation decays in the mixed layer inversely with depth, ii) WASLs are typically 15 meters deep and 30% of mixed layer depth, iii) Subject to strong winds, the value of dissipation as a function of depth is significantly lower than predicted by theory. Many dynamical processes are known to be missing from upper-ocean parameterizations of mixing in global models. These include surface-wave driven processes such as Langmuir turbulence, submesocale frontal processes, and nonlocal representations of mixing. Using velocity, hydrographic, and turbulence measurements, the existence of coherent structures in the boundary layer are investigated.
Current state and prospects of researches on the control of turbulent boundary layer by air blowing
NASA Astrophysics Data System (ADS)
Kornilov, V. I.
2015-07-01
The paper presents the analytical review of the current state of the investigations and development trends on the problem of turbulent friction and aerodynamic drag reduction in simple model configurations, which is among key ones in modern aeromechanics. Under consideration is the modern fast progressing method of the turbulent flow control by air- and other gases (micro)blowing through a permeable surface, which is utilized in incompressible and compressible turbulent boundary layers. Several computational results to understand the essential flow physics are also included. The problem of simulation of the flow over a perforated wall where some ambiguities, in particular, at the permeable/impermeable boundary being still remained is discussed. Special attention is paid to the analysis of most important experimental and numerical results obtained with the air blowing through a finely-perforated surface, analysis of the physical peculiarities and regularities of the flow with the blowing, probability to describe the properties of such a flow within simple approach frameworks, evaluation of the efficiency of this control method, as well as the trends and opportunities of this method progress in view of state-of-the-art achievements. Although this technology has a penalty for developing the effective turbulent-flow control method, some modifications of the air blowing are an attractive alternative for real applications.
Modulation mechanisms of marine atmospheric boundary layer at the Brazil-Malvinas Confluence region
NASA Astrophysics Data System (ADS)
Camargo, Ricardo; Todesco, Enzo; Pezzi, Luciano Ponzi; Souza, Ronald Buss
2013-06-01
The influence of the Brazil-Malvinas Confluence (BMC) region on the marine atmospheric boundary layer (MABL) is investigated through in situ data analysis of five different cruises (2004 to 2008) and numerical experiments with a regional atmospheric model. Two different groups of numerical experiments were performed in order to evaluate the relevance of static stability and hydrostatic balance physical mechanisms for the MABL instability. The first group used monthly climatological sea surface temperature (SST) as bottom boundary condition while the second used daily updated Advanced Microwave Scanning Radiometer-EOS SST data together with radiosondes and surface data assimilation. A reasonable agreement between numerical results and QuikSCAT wind data was observed through correlation coefficients and mean square error values. In terms of the horizontal structure of the MABL, stronger winds were found over the warm side of the BMC region as well as over the thermal front itself, which supports the coexistence of both modulation mechanisms. The analyzed patterns of surface atmospheric thermal advection showed a clear interaction between the synoptic and regional scales. The signature of the oceanic thermal front (almost meridionally oriented) on the air temperature at 2 m makes the temperature advection strongly determined by the zonal component of the wind. The analysis of momentum budget terms did not show a clear and reasonable explanation of the existence or predominance of the modulation mechanisms, and it also suggested the relevance of other effects, such as the idea based on unbalanced Coriolis force and turbulence/friction effects.
Carbon transport in the bottom boundary layer. Final report
Lohrenz, S.E.; Asper, V.L.
1997-09-01
The authors objective was to characterize distributions of chloropigment fluorescence in relation to physical processes in the benthic boundary layer in support of the Department of Energy (DOE) Ocean Margins Program`s (OMP) goal of quantifying carbon transport across the continental shelf. Their approach involved participation in the Ocean Margins Program (OMP) field experiment on the continental shelf off Cape Hatteras by conducting multi-sensor fluorescence measurements of photosynthetic pigments. Specific tasks included (1) pre- and post-deployment calibration of multiple fluorescence sensors in conjunction with Woods Hole personnel; (2) collection and analysis of photosynthetic pigment concentrations and total particulate carbon in water column samples to aid in interpretation of the fluorescence time-series during the field experiment; (3) collaboration in the analysis and interpretation of 1994 and 1996 time-series data in support of efforts to quantify pigment and particulate organic carbon transport on the continental shelf off Cape Hatteras. This third component included analysis of data obtained with a multi-sensor fiber-optic fluorometer in the benthic boundary layer of the inner shelf off Cape Hatteras during summer 1994.
Boundary layer structure over areas of heterogeneous heat fluxes
Doran, J.C.; Barnes, F.J.; Coulter, R.L.; Crawford, T.L.
1993-01-01
In general circulation models (GCMs), some properties of a grid element are necessarily considered homogeneous. That is, for each grid volume there is associated a particular combination of boundary layer depth, vertical profiles of wind and temperature, surface fluxes of sensible and latent heat, etc. In reality, all of these quantities may exhibit significant spatial variations the grid area, and the larger the area the greater the likely variations. In balancing the benefits of higher resolution against increased computational time and expense, it is useful to consider what the consequences of such subgrid-scale variability may be. Moreover, in interpreting the results of a simulation, one must be able to define an appropriate average value over a grid. There are two aspects of this latter problem: (1) in observations, how does one take a set of discrete or volume-averaged measurements and relate these to properties of the entire domain, and (2) in computations, how can subgrid-scale features be accounted for in the model parameterizations? To address these and related issues, two field campaigns were carried out near Boardman, Oregon, in June 1991 and 1992. These campaigns were designed to measure the surface fluxes of latent and sensible heat over adjacent areas with strongly contrasting surface types and to measure the response of the boundary layer to those fluxes. This paper discusses some initial findings from those campaigns.
Boundary layer structure over areas of heterogeneous heat fluxes
Doran, J.C. ); Barnes, F.J. ); Coulter, R.L. ); Crawford, T.L. . Air Resources Lab. Atmospheric Turbulence and Diffusion Div.)
1993-01-01
In general circulation models (GCMs), some properties of a grid element are necessarily considered homogeneous. That is, for each grid volume there is associated a particular combination of boundary layer depth, vertical profiles of wind and temperature, surface fluxes of sensible and latent heat, etc. In reality, all of these quantities may exhibit significant spatial variations the grid area, and the larger the area the greater the likely variations. In balancing the benefits of higher resolution against increased computational time and expense, it is useful to consider what the consequences of such subgrid-scale variability may be. Moreover, in interpreting the results of a simulation, one must be able to define an appropriate average value over a grid. There are two aspects of this latter problem: (1) in observations, how does one take a set of discrete or volume-averaged measurements and relate these to properties of the entire domain, and (2) in computations, how can subgrid-scale features be accounted for in the model parameterizations To address these and related issues, two field campaigns were carried out near Boardman, Oregon, in June 1991 and 1992. These campaigns were designed to measure the surface fluxes of latent and sensible heat over adjacent areas with strongly contrasting surface types and to measure the response of the boundary layer to those fluxes. This paper discusses some initial findings from those campaigns.
Boundary layer structure over areas of heterogeneous heat fluxes
Doran, J.C.; Barnes, F.J.; Coulter, R.L.; Crawford, T.L.
1993-04-01
In general circulation models (GCMs), some properties of a grid element are necessarily considered homogeneous. That is, for each grid volume there is associated a particular combination of boundary layer depth, vertical profiles of wind and temperature, surface fluxes of sensible and latent heat, etc. In reality, all of these quantities may exhibit significant spatial variations within the grid area, and the larger the area the greater the likely variations. In balancing the benefits of higher resolution against increased computational time and expense, it is useful to consider what the consequences of such subgrid-scale variability may be. Moveover, in interpreting the results of a simulation, one must be able to define an appropriate average value over a grid. There are two aspects of this latter problem: (1) in observations, how does one take a set of discrete or volume-averaged measurements and relate these to properties of the entire domain, and (2) in computations, how can subgrid-scale features be accounted for in the model parameterizations? To address these and related issues, two field campaigns were carried out near Boardman, Oregon, in June 1991 and 1992. These campaigns were designed to measure the surface fluxes of latent and sensible heat over adjacent areas with strongly contrasting surface types and to measure the response of the boundary layer to those fluxes. This paper discuses some initial findings from those campaigns.
Boundary layer structure over areas of heterogeneous heat fluxes
Doran, J.C. ); Barnes, F.J. ); Coulter, R.L. ); Crawford, T.L. . Air Resources Lab. Atmospheric Turbulence and Diffusion Div.)
1993-01-01
In general circulation models (GCMs), some properties of a grid element are necessarily considered homogeneous. That is, for each grid volume there is associated a particular combination of boundary layer depth, vertical profiles of wind and temperature, surface fluxes of sensible and latent heat, etc. In reality, all of these quantities may exhibit significant spatial variations within the grid area, and the larger the area the greater the likely variations. In balancing the benefits of higher resolution against increased computational time and expense, it is useful to consider what the consequences of such subgrid-scale variability may be. Moveover, in interpreting the results of a simulation, one must be able to define an appropriate average value over a grid. There are two aspects of this latter problem: (1) in observations, how does one take a set of discrete or volume-averaged measurements and relate these to properties of the entire domain, and (2) in computations, how can subgrid-scale features be accounted for in the model parameterizations To address these and related issues, two field campaigns were carried out near Boardman, Oregon, in June 1991 and 1992. These campaigns were designed to measure the surface fluxes of latent and sensible heat over adjacent areas with strongly contrasting surface types and to measure the response of the boundary layer to those fluxes. This paper discuses some initial findings from those campaigns.
Turbulent Boundary Layer Separation at High Reynolds Numbers
NASA Astrophysics Data System (ADS)
Bourgoyne, Dwayne; Ceccio, Steven; Dowling, David
1999-11-01
One of the main hydroacoustic noise sources from fully submerged lifting surfaces is the unsteady separated turbulent flow near the surface's trailing edge that produces pressure fluctuations on the surface and oscillatory flow behavior in the near wake. However, the turbulent flow characteristics near boundary layer separation are largely undocumented at the high Reynolds numbers typical of many hydrodynamic applications. This talk describes a new experimental effort to identify and measure the dominant flow features near the trailing edge of a hydrofoil at chord-based Reynolds numbers up to 40 million. The experiments are conducted at the US Navy's Large Cavitation Channel with a two-dimensional test-section-spanning hydrofoil (2.1 m chord, 3.0 m span) at flow speeds from 1 to 18 m/s. The foil section is a modified NACA 66 with a flat pressure side. At a zero angle of attack, the lift load on the foil approaches 700 kN. The results presented here cover the first phase of experiments and emphasize LDV surveys of the separating boundary layer flow on the suction side of the hydrofoil at Reynolds numbers between 2 and 40 million. Additional experimental results covering foil flutter, wake shedding frequencies, and hydroacoustic measurements may also be presented. [Sponsored by the Office of Naval Research, Code 333.
Experimental investigation of boundary-layer flashback in swirl flames
NASA Astrophysics Data System (ADS)
Ebi, Dominik; Clemens, Noel
2013-11-01
Swirling flows are widely employed for flame stabilization purposes in gas turbine combustors. However, flames in swirling flows are more prone to flashback, a potentially catastrophic phenomenon leading to thermal damage of the burner. The physical mechanism driving flashback in a swirling flow is not yet fully understood. The mechanism is particularly complex if the upstream flame propagation interacts with a boundary layer. In a previous study we showed that the flame/boundary-layer interaction is important for burners, which include an axial swirler and a central body attached to the swirler hub. We are investigating the mechanism of flashback in atmospheric pressure lean-premixed methane/hydrogen-air flames inside the mixing tube of our confined model swirl combustor. Flashback occurs at an equivalence ratio of approximately 0.7. The effect of hydrogen is investigated by testing different methane-to-hydrogen ratios. The duration of a single flashback event is on the order of 100 ms, requiring high-speed diagnostic techniques. We are applying simultaneous stereoscopic PIV, flame front detection based on Mie scattering, and chemiluminescence imaging to investigate the flame/flow interaction during flashback events.
Flowfield Measurements Inside a Boundary-Layer Bleed Slot
NASA Technical Reports Server (NTRS)
Davis, D. O.; Willis, B. P.; Hingst, W. R.
1996-01-01
An experimental investigation was conducted to determine the flowfield inside a bleed slot used to control an oblique shock-wave and turbulent boundary-layer interaction. The slot was oriented normal to the primary flow direction and had a width of 1.0 cm (primary flow direction) and a length of 2.54 cm and spanned 16.5 cm. The approach boundary layer upstream of the interaction was nominally 3.0 cm thick. Two operating conditions were studied: M = 1.98 with a shock generator deflection angle of 6 deg and M = 2.46 with a shock generator deflection angle of 8 deg. Measurements include surface and flowfield static pressure, pitot pressure, and total mass flow through the slot. The results show that despite an initially two-dimensional interaction for the zero-bleed-flow case, the slot does not remove mass uniformly in the spanwise direction. Inside the slot, the flow is characterized bv two separation regions, which significantly reduce the effective flow area. The upper separation region acts as an aerodynamic throat, resulting in supersonic flow through much of the slot.
Transition in a Supersonic Boundary Layer due to Acoustic Disturbances
NASA Technical Reports Server (NTRS)
Balakumar, Ponnampalam
2004-01-01
The boundary layer receptivity process due to the interaction of three-dimensional slow and fast acoustic disturbances with a blunted flat plate is numerically investigated at a free stream Mach number of 3.5 and at a high Reynolds number of 106/inch. The computations are performed with and without two-dimensional isolated roughness element located near the leading edge. Both the steady and unsteady solutions are obtained by solving the full Navier-Stokes equations using the 5th-order accurate weighted essentially non-oscillatory (WENO) scheme for space discretization and using third-order total-variation-diminishing (TVD) Runge-Kutta scheme for time integration. The simulations showed that the linear instability waves are generated very close to the leading edge. The wavelength of the disturbances inside the boundary layer first increases gradually and becomes longer than the wavelength for the instability waves within a short distance from the leading edge. The wavelength then decreases gradually and merges with the wavelength for the Tollmien_Schlichting wave. The initial amplitudes of the instability waves near the neutral points, the receptivity coefficients, are about 1.20 and 0.07 times the amplitude of the free-stream disturbances for the slow and the fast waves respectively. It was also revealed that small isolated roughness element does not enhance the receptivity process for the given nose bluntness.
Transition in a Supersonic Boundary Layer Due to Acoustic Disturbances
NASA Technical Reports Server (NTRS)
Balakumar, P.
2005-01-01
The boundary layer receptivity process due to the interaction of three-dimensional slow and fast acoustic disturbances with a blunted flat plate is numerically investigated at a free stream Mach number of 3.5 and at a high Reynolds number of 10(exp 6)/inch. The computations are performed with and without two-dimensional isolated roughness element located near the leading edge. Both the steady and unsteady solutions are obtained by solving the full Navier-Stokes equations using the fifth-order accurate weighted essentially non-oscillatory (WENO) scheme for space discretization and using third-order total-variation-diminishing (TVD) Runge-Kutta scheme for time integration. The simulations showed that the linear instability waves are generated very close to the leading edge. The wavelength of the disturbances inside the boundary layer first increases gradually and becomes longer than the wavelength for the instability waves within a short distance from the leading edge. The wavelength then decreases gradually and merges with the wavelength for the Tollmien-Schlichting wave. The initial amplitudes of the instability waves near the neutral points, the receptivity coefficients, are about 1.20 and 0.07 times the amplitude of the free-stream disturbances for the slow and the fast waves respectively. It was also revealed that small isolated roughness element does not enhance the receptivity process for the given nose bluntness.
Acoustic sounding study of the atmospheric boundary layer in Moscow
Pekour, M.S.
1996-12-31
Since 1989, the Institute of Atmospheric Physics (IAP) carries out long term acoustic sounding investigation to the atmospheric boundary layer (ABL) over Moscow. This paper presents a review of the main results of this study. Three-year long continues acoustic sounder (SODAR) measurements at one point has provided data for estimation of thermal stratification and mixing height statistics. The horizontal variability of the ABL structure has been estimated on the basis of 4 one-month campaigns of simultaneous SODAR measurements at 3 sites (the first in the center of Moscow, the second - 7 km from the center and the third - 45 km west at rural locality). The wind field measurements over the center of Moscow have been performed during 3 of the above mentioned campaigns with the help of tree-axis Doppler acoustic sounder. The experience in investigation with the acoustic sounders in Moscow, that was gained in the IAP, reveals very high potentials of the remote acoustic technique to ecological study of the urban boundary layer.
The turning of the wind in the atmospheric boundary layer
NASA Astrophysics Data System (ADS)
Peña, Alfredo; Gryning, Sven-Erik; Floors, Rogier
2014-06-01
Here we use accurate observations of the wind speed vector to analyze the behavior with height of the wind direction. The observations are a combination of tall meteorological mast and long-range wind lidar measurements covering the entire atmospheric boundary layer. The observations were performed at the Høvsøre site in Denmark, which is a flat farmland area with a nearly homogeneous easterly upstream sector. Therefore, within that sector, the turning of the wind is caused by a combination of atmospheric stability, Coriolis, roughness, horizontal pressure gradient and baroclinity effects. Atmospheric stability was measured using sonic anemometers placed at different heights on the mast. Horizontal pressure gradients and baroclinity are derived from outputs of a numerical weather prediction model and are used to estimate the geostrophic wind. It is found, for these specific and relatively short periods of analysis, that under both barotropic and baroclinic conditions, the model predicts the gradient and geostrophic wind well, explaining for a particular case an 'unusual' backing of the wind. The observed conditions at the surface, on the other hand, explain the differences in wind veering. The simulated winds underpredict the turning of the wind and the boundary-layer winds in general.
Space Shuttle Boundary Layer Transition Flight Experiment Ground Testing Overview
NASA Technical Reports Server (NTRS)
Berger, Karen T.; Anderson, Brian P.; Campbell, Charles H.
2014-01-01
In support of the Boundary Layer Transition (BLT) Flight Experiment (FE) Project in which a manufactured protuberance tile was installed on the port wing of Space Shuttle Orbiter Discovery for STS-119, STS- 128, STS-131 and STS-133 as well as Space Shuttle Orbiter Endeavour for STS-134, a significant ground test campaign was completed. The primary goals of the test campaign were to provide ground test data to support the planning and safety certification efforts required to fly the flight experiment as well as validation for the collected flight data. These test included Arcjet testing of the tile protuberance, aerothermal testing to determine the boundary layer transition behavior and resultant surface heating and planar laser induced fluorescence (PLIF) testing in order to gain a better understanding of the flow field characteristics associated with the flight experiment. This paper provides an overview of the BLT FE Project ground testing. High-level overviews of the facilities, models, test techniques and data are presented, along with a summary of the insights gained from each test.
Scaling of pressure spectrum in turbulent boundary layers
NASA Astrophysics Data System (ADS)
Patwardhan, Saurabh S.; Ramesh, O. N.
2014-04-01
Scaling of pressure spectrum in zero-pressure-gradient turbulent boundary layers is discussed. Spatial DNS data of boundary layer at one time instant (Re? = 4500) are used for the analysis. It is observed that in the outer regions the pressure spectra tends towards the -7/3 law predicted by Kolmogorov's theory of small-scale turbulence. The slope in the pressure spectra varies from -1 close to the wall to a value close to -7/3 in the outer region. The streamwise velocity spectra also show a -5/3 trend in the outer region of the flow. The exercise carried out to study the amplitude modulation effect of the large scales on the smaller ones in the near-wall region reveals a strong modulation effect for the streamwise velocity, but not for the pressure fluctuations. The skewness of the pressure follows the same trend as the amplitude modulation coefficient, as is the case for the velocity. In the inner region, pressure spectra were seen to collapse better when normalized with the local Reynolds stress than when scaled with the local turbulent kinetic energy
Phase-averaged measurements of perturbations introduced into boundary layers
NASA Technical Reports Server (NTRS)
Watmuff, Jonathan H.
1991-01-01
Large-scale structures in turbulent and transitional wall-bounded flows make a significant contribution to the Reynolds stress and turbulent energy. The behavior of these structures is examined. Small perturbations are introduced into a laminar and a turbulent boundary layer to trigger the formation of large-scale features. Both flows use the same inlet unit Reynolds number, and they experience the same pressure gradient history, i.e. a favorable pressure gradient (FPG) followed by an adverse pressure gradient (APG). The perturbation consists of a small short duration flow repetitively introduced through a hole in the wall located at the C(sub p) minimum. Hot-wire data are averaged on the basis of the phase of the disturbance, and automation of the experiment was used to obtain measurements on large spatially dense grids. In the turbulent boundary, the perturbation evolves into a vortex loop which retains its identity for a considerable streamwise distance. In the laminar layer, the perturbation decays to a very small magnitude before growing rapidly and triggering the transition process in the APG. The 'time-like' animations of the phase-averaged data are used to gain insight into the naturally occurring physical mechanisms in each flow.
Generation of 'artificial' bursts in a turbulent boundary layer
NASA Technical Reports Server (NTRS)
Gad-El-hak, M.; Hussain, A. K. M. F.
1986-01-01
In an effort to better understand the physics and structure of coherent events in a turbulent boundary layer, an attempt is made to produce 'artificial' bursts. These are generated in a unique turbulent boundary layer, developed on a flat plate towed in an 18-m water channel, and thus with negligible freestream turbulence. The burst-like events are produced by either withdrawing near-water fluid from two minute holes separated in the spanwise direction, or by pitching a miniature delta wing that is flush-mounted to the wall. Either of these two actions generates a hairpin-like vortex and low-speed streak that resemble naturally occurring structures. The resulting sequence of events that occur at a given location can be controlled at will, thus allowing detailed examination via phase-locked measurements and flow visualization. In this paper, the artificial bursts are compared with natural, random bursts, using flow visualization and hot-film signals. Detailed quantitative data on topographical details and dynamical significance of the bursting structure will be addressed in a forthcoming article.
Analytical Studies of Boundary Layer Generated Aircraft Interior Noise
NASA Technical Reports Server (NTRS)
Howe, M. S.; Shah, P. L.
1997-01-01
An analysis is made of the "interior noise" produced by high, subsonic turbulent flow over a thin elastic plate partitioned into "panels" by straight edges transverse to the mean flow direction. This configuration models a section of an aircraft fuselage that may be regarded as locally flat. The analytical problem can be solved in closed form to represent the acoustic radiation in terms of prescribed turbulent boundary layer pressure fluctuations. Two cases are considered: (i) the production of sound at an isolated panel edge (i.e., in the approximation in which the correlation between sound and vibrations generated at neighboring edges is neglected), and (ii) the sound generated by a periodic arrangement of identical panels. The latter problem is amenable to exact analytical treatment provided the panel edge conditions are the same for all panels. Detailed predictions of the interior noise depend on a knowledge of the turbulent boundary layer wall pressure spectrum, and are given here in terms of an empirical spectrum proposed by Laganelli and Wolfe. It is expected that these analytical representations of the sound generated by simplified models of fluid-structure interactions can used to validate more general numerical schemes.
Boundary-Layer-Transition Measurements in Full-Scale Flight
NASA Technical Reports Server (NTRS)
Banner, Richard D.; McTigue, John G.; Petty, Gilbert, Jr.
1958-01-01
Chemical sublimation has been employed for boundary-layer-flow visualization on the wings of a supersonic fighter airplane in level flight at speeds near a Mach number of 2.0. The tests have shown that laminar flow can be obtained over extensive areas of the wing with practical wing-surface conditions. In addition to the flow visualization tests, a method of continuously monitoring the conditions of the boundary layer has been applied to flight testing, using heated temperature resistance gages installed in a Fiberglas "glove" installation on one wing. Tests were conducted at speeds from a Mach number of 1.2 to a Mach number of 2.0, at altitudes from 35,000 feet to 56,000 feet. Data obtained at all angles of attack, from near 0 deg to near 10 deg, have shown that the maximum transition Reynolds number on the upper surface of the wing varies from about 2.5 x 10(exp 6) at a Mach number of 1.2 to about 4 x 10(exp 6) at a Mach number of 2.0. On the lower surface, the maximum transition Reynolds number varies from about 2 x 10(exp 6) at a Mach number of 1.2 to about 8 x 10(exp 6) at a Mach number of 2.0.
MAGIC Assessment of a Stochastic Edmf Boundary Layer Parameterization
NASA Astrophysics Data System (ADS)
Kalmus, P.; Suselj, K.; Lebsock, M. D.; Teixeira, J.
2014-12-01
The northeast Pacific is representative of subtropical ocean basins with high-albedo regions of persistent stratocumulus clouds that transition to low-albedo regions of shallow convection. The accurate modeling of this system is a longstanding and critical problem in climate science. We use data from the recent ship-based Marine ARM GPCI Investigation of Clouds (MAGIC) campaign in the northeast Pacific to evaluate the skill of a unified stochastic Eddy-Diffusivity/Mass Flux (EDMF) boundary layer model. The MAGIC campaign data provides a nearly ideal validation framework, as it samples marine stratocumulus and cumulus regimes and the transition between them. We classify MAGIC scenes by cloud type, and produce probability distributions for the key EDMF forcing/initialization and output variables by cloud type. We initialize the EDMF model with the MAGIC input distributions and compare the output to the MAGIC data. Through this assessment we demonstrate improvements in the unified model's ability to handle a variety of boundary layer regimes.
The Parametrisation of The Stable Atmospheric Boundary Layer
NASA Astrophysics Data System (ADS)
Sodemann, H.; Foken, T.
The stratification of the atmospheric boundary layer strongly influences fluxes of mass and energy between earth surface and atmosphere. Modelling these fluxes, e.g. in Gen- eral Circulation Models, is performed using parametrisations based on a range of sim- plifying assumptions. For neutral and unstable stratification, these parametrisations perform reasonably well. Under stable stratification however, the current parametri- sations lack theoretical consistency and contradict evidence from new experimental findings (Zilitinkevich et al. 2001). This poster presents an approach aiming to iden- tify the influences of different turbulence regimes and other parameters on mass and energy fluxes in the stably stratified boundary layer, using data from the 1994 FIN- TUREX experiment in Antarctica. Quantifying the different influencing parameters leads towards deriving a new parametrisation scheme for turbulent mass and energy exchange under stable conditions. The results yield the potential for improving a range of modelling applications, such as footprint models or flux modelling. Zilitinkevich, S., Perov, V. and King, J., 2001, Near-Surface Turbulent Fluxes in the Stable Stratification: Calculation Techniques for use in General Circulation Models, Quarterly Journal of the Royal Meteorological Society, submitted.
Low Cost Geothermal Separators BLISS Boundary Layer Inline Separator Scrubber
Jung, Douglas; Wai, King
2000-05-26
A new compact, low cost, and high performance separator is being developed to help reduce the installed and O and M cost of geothermal power generation. This device has been given the acronym ''BLISS'' that stands for ''Boundary Layer Inline Separator Scrubber''. The device is the first of a series of separators, and in the case of injectates, scrubbers to address the cost-reduction needs of the industry. The BLISS is a multi-positional centrifugal separator primarily designed to be simply installed between pipe supports, in a horizontal position. This lower profile reduces the height safety concern for workers, and significantly reduces the total installation cost. The vessel can demand as little as one-quarter (25%) the amount of steel traditionally required to fabricate many large vertical separators. The compact nature and high separating efficiency of this device are directly attributable to a high centrifugal force coupled with boundary layer control. The pseudo isokinetic flow design imparts a self-cleaning and scale resistant feature. This polishing separator is designed to remove moderate amounts of liquid and entrained solids.
Aeromechanics Analysis of a Boundary Layer Ingesting Fan
NASA Technical Reports Server (NTRS)
Bakhle, Milind A.; Reddy, T. S. R.; Herrick, Gregory P.; Shabbir, Aamir; Florea, Razvan V.
2013-01-01
Boundary layer ingesting propulsion systems have the potential to significantly reduce fuel burn but these systems must overcome the challe nges related to aeromechanics-fan flutter stability and forced response dynamic stresses. High-fidelity computational analysis of the fan a eromechanics is integral to the ongoing effort to design a boundary layer ingesting inlet and fan for fabrication and wind-tunnel test. A t hree-dimensional, time-accurate, Reynolds-averaged Navier Stokes computational fluid dynamics code is used to study aerothermodynamic and a eromechanical behavior of the fan in response to both clean and distorted inflows. The computational aeromechanics analyses performed in th is study show an intermediate design iteration of the fan to be flutter-free at the design conditions analyzed with both clean and distorte d in-flows. Dynamic stresses from forced response have been calculated for the design rotational speed. Additional work is ongoing to expan d the analyses to off-design conditions, and for on-resonance conditions.
A Study of the Frictional Layer of TiAl-12Ag-5TiB2 Composite During Dry Sliding Wear
NASA Astrophysics Data System (ADS)
Xu, Zengshi; Yao, Jie; Shi, Xiaoliang; Zhai, Wenzheng; Ibrahim, Ahmed Mohamed Mahmoud; Xiao, Yecheng; Chen, Long; Zhu, Qingshuai; Zhang, Ao
2015-08-01
Many studies have shown that the excellent tribological properties of materials are primarily attributed to the formation of expected frictional layer on the worn surface. This article is dedicated to explore the possible formation and acting mechanism of frictional layer of TiAl-12Ag-5TiB2 composite. At normal load of 12 N, a frictional layer that consists of wear-induced layer and plastic deformation layer is observed. The soft wear-induced layer supported by the harder plastic deformation layer leads to the low friction coefficient and high wear resistance. The harder plastic deformation layer is induced by repetitive tribo-contact and considerable plastic deformation. Its high hardness improves the wear resistance of composite, and fine-grained structure promotes the diffusion of lubricating phase during dry friction process. The soft wear-induced layer can be divided into tribofilm and mechanically mixed layer. The mechanically mixed layer that consists of Ag and Ti-Al Oxides can continuously be provided to the worn surface to form a tribofilm with low shearing stress junctions, lowering the friction coefficient.
NASA Technical Reports Server (NTRS)
Fichtl, G. H.
1973-01-01
The realistic simulation of flow in the atmospheric boundary layers at heights greater than two kilometers is discussed. Information concerning horizontally homogeneous and statistically stationary atmospheric boundary layer flows is presented. The problems related to the incorporation of the information into atmospheric wind simulation programs are analyzed. The information which the meteorologist must acquire in order to provide a basis for improving the simulation of atmospheric boundary flows is explained.
NASA Astrophysics Data System (ADS)
Dimitropoulos, Costas D.; Dubief, Yves; Shaqfeh, Eric S. G.; Moin, Parviz
2006-11-01
Skin-friction drag reduction in turbulent boundary layer flow of inhomogeneous polymer solutions is investigated using direct numerical simulations. A continuum constitutive model (FENE-P) accounting for the effects of polymer microstructure and concentration is used to describe the effect of viscoelasticity. The evolution of wall friction along the streamwise direction is a function of the dynamics of the polymer distribution in the boundary layer. It is observed that polymer transport decreases drag reduction downstream compared to the homogeneous case. The fluctuations of polymer concentration are anti-correlated with those of the streamwise velocity. Concentration is largest in the low-speed streaks. The physical process creating this effect is primarily that of dilution of the high-speed streaks, where due to the local turbulence structure the dispersion of polymer is strongest. Thus, the polymer-induced drag reduction phenomenon is sustained primarily in the vicinity of the low-speed streaks where the injected polymer additive is most effective.
Thermoacoustic boundary layers near the liquid-vapor critical point.
Gillis, K A; Shinder, I I; Moldover, M R
2004-08-01
We measure and calculate the sound attenuation within thermoacoustic boundary layers between solid surfaces and xenon at its critical density rhoc as the reduced temperature tau identical with (T- Tc)/Tc approaches zero. (Tc is the critical temperature.) Using the known thermophysical properties of xenon, we predict that the attenuation at the boundary first increases approximately as tau(-0.6) and then saturates when the effusivity of the xenon exceeds that of the solid. [The effusivity is epsilon identical with (rhoCPlambdaT)(1/2), where CP is the isobaric specific heat and lambdaT is the thermal conductivity.] The model correctly predicts (+/-1.0%) the quality factors Q of resonances measured in a stainless steel resonator (epsilon(ss) =6400 kg K(-1) s(-5/2)); it also predicts the observed increase of the Q, by up to a factor of 8, when the resonator is coated with a polymer (epsilon(pr) =370 kg K(-1) s(-5/2)). The test data span the frequency range 0.1
A stable boundary layer perspective on global temperature trends
NASA Astrophysics Data System (ADS)
McNider, R. T.; Christy, J. R.; Biazar, A.
2010-08-01
One of the most significant signals in the thermometer-observed temperature record since 1900 is the decrease in the diurnal temperature range over land, largely due to warming of the minimum temperatures. While some data sets have indicated this asymmetrical warming has been reduced since 1979, regional analyses (e.g. East Africa) indicate that the nocturnal warming continues at a pace greater than daytime temperatures. The cause for this night time warming in the observed temperatures has been attributed to a variety of causes. Climate models have in general not replicated the change in diurnal temperature range well. Here we would like to try to distinguish between warming in the nocturnal boundary layer due to a redistribution of heat and warming due to the accumulation of heat. The temperature at night at shelter height is a result of competition between thermal stability and mechanical shear. If stability wins then turbulence is suppressed and the cooling surface becomes cut-off from the warmer air aloft, which leads to sharp decay in surface air temperature. If shear wins, then turbulence is maintained and warmer air from aloft is continually mixed to the surface, which leads to significantly lower cooling rates and warmer temperatures. This warming occurs due to a redistribution of heat. As will be shown by techniques of nonlinear analysis the winner of the stability and shear contest can be very sensitive to changes in greenhouse gas forcing, surface roughness, cloudiness, and surface heat capacity (including soil moisture). Further, the minimum temperatures measured in the nocturnal boundary layer represent only a very shallow layer of the atmosphere which is usually only a few hundred meters thick. It is likely that the observed warming in minimum temperature, whether caused by additional greenhouse forcing or land use changes or other land surface dynamics, is reflecting a redistribution of heat by turbulence-not an accumulation of heat. Because minimum temperatures in the stable boundary layer are not very robust measures of the heat content in the deep atmosphere and climate models do not predict minimum temperatures well, minimum temperatures should not be used as a surrogate for measures of deep atmosphere global warming.
Cloud Shading Effects on Characteristic Boundary-Layer Length Scales
NASA Astrophysics Data System (ADS)
Horn, G. L.; Ouwersloot, H. G.; Vilà-Guerau de Arellano, J.; Sikma, M.
2015-11-01
We studied the effects of shading by shallow cumulus (shallow Cu) and the subsequent effect of inducing heterogeneous conditions at the surface on boundary-layer characteristics. We placed special emphasis on quantifying the changes in the characteristic length and time scales associated with thermals, shallow Cu and induced thermal circulation structures. A series of systematic numerical experiments, inspired by Amazonian thermodynamic conditions, was performed using a large-eddy simulation model coupled to a land-surface model. We used four different experiments to disentangle the effects of shallow Cu on the surface and the response of clouds to these surface changes. The experiments include a `clear case', `transparent clouds', `shading clouds' and a case with a prescribed uniform domain and reduced surface heat flux. We also performed a sensitivity study on the effect of introducing a weak background flow. Length and time scales were calculated using autocorrelation and two-dimensional spectral analysis, and we found that shading controlled by shallow Cu locally lowers surface temperatures and consequently reduces the sensible and latent heat fluxes, thus inducing spatial and temporal variability in these fluxes. The length scale of this surface heterogeneity is not sufficiently large to generate circulations that are superimposed on the boundary-layer scale, but the heterogeneity does disturb boundary-layer dynamics and generates a flow opposite to the normal thermal circulation. Besides this effect, shallow Cu shading reduces turbulent kinetic energy and lowers the convective velocity scale, thus reducing the mass flux. This hampers the thermal lifetime, resulting in a decrease in the shallow Cu residence time (from 11 to 7 min). This reduction in lifetime, combined with a decrease in mass flux, leads to smaller clouds. This is partially compensated for by a decrease in thermal cell size due to a reduction in turbulent kinetic energy. As a result, inter-cloud distance is reduced, leading to a larger population of smaller clouds, while maintaining cloud cover similar to the non-shading clouds experiment. Introducing a 1 m s^{-1} background wind speed increases the thermal size in the sub-cloud layer, but the diagnosed surface-cloud coupling, quantified by characteristic time and length scales, remains.
NASA Astrophysics Data System (ADS)
Yilbas, Bekir Sami; Kumar, Aditya; Bhushan, Bharat
2014-01-01
Single- and two-layer coatings were deposited onto carbon steel using a high-velocity oxy-fuel deposition gun. The two-layer coating consisted of a top layer of tungsten carbide cobalt/nickel alloy blend that provides wear resistance and a bottom layer of iron/molybdenum blend that provides corrosion resistance. The morphological changes in the single- and two-layer coatings were examined using scanning electron microscopy. The residual stresses formed on the surface of various coatings were determined from x-ray diffraction data. Nanomechanical properties were measured using the nanoindentation technique. Microhardness and fracture toughness were measured incorporating the microindentation tests. Macrowear and macrofriction characteristics were measured using the pin-on-disk testing apparatus. The goal of this study was to ensure that the mechanical properties, friction, and wear resistance of the two-layer coating are similar to that of the single-layer coating.
NASA Technical Reports Server (NTRS)
Ferguson, D. R.
1972-01-01
The streamtube curvature program (STC) has been developed to predict the inviscid flow field and the pressure distribution about nacelles at transonic speeds. The effects of boundary layer are to displace the inviscid flow and effectively change the body shape. Thus, the body shape must be corrected by the displacement thickness in order to calculate the correct pressure distribution. This report describes the coupling of the Stratford and Beavers boundary layer solution with the inviscid STC analysis so that all nacelle pressure forces, friction drag, and incipient separation may be predicted. The usage of the coupled STC-SAB computer program is outlined and the program input and output are defined. Included in this manual are descriptions of the principal boundary layer tables and other revisions to the STC program. The use of the viscous option is controlled by the engineer during program input definition.
The Physics of Turbulence in the Boundary Layer
NASA Technical Reports Server (NTRS)
Kline, Stephen; Cantwell, Brian
1995-01-01
The geometry of the velocity field in a numerically simulated incompressible turbulent boundary layer over a flat plate at Re theta=670 has been studied using the invariants of the velocity gradient tensor. These invariants are computed at every grid point in the flow and used to form the discriminant. Of primary interest are those regions in the flow where the discriminant is positive; regions where, according to the characteristic equation, the eigenvalues of the velocity gradient tensor are complex. An observer moving with a frame of reference which is attached to a fluid particle lying within such a region would see a local flow pattern of the type stable-focus-stretching or unstable-focus-compressing. When the flow is visualized this way, continuous, connected, large-scale structures are revealed that extend from the point just below the buffer layer out to the beginning of the wake region. These structures are aligned with the mean shear close to the wall and arch in the cross-stream direction away from the wall. In some cases the structures observed are very similar to to the hairpin eddy vision of boundary layer structure proposed by Theodorsen. That the structure of the flow is revealed more effectively by the discriminant rather than by the vorticity is important and adds support to recent observations of the discriminant in a channel flow simulation. Of particular importance is the fact that the procedure does not require the use of an arbitrary threshold in the discriminant. Further analysis using computer flow visualization shows a high degree of spatial correlation between regions of positive discriminant, extreme negative pressure fluctuations and large instantaneous values of Reynolds shear stress.
Seasonal Characteristics of Planetary Boundary Layer in Qatar.
NASA Astrophysics Data System (ADS)
Ackermann, Luis; Ayoub, Mohammed A.; Astudillo, Daniel P.; Bachour, Dunia A.
2015-04-01
Understanding the mechanisms driving the Planetary Boundary Layer (PBL) development as well as its seasonal characteristics is essential for predicting meteorological and air quality phenomena. Using data from the vertical backscatter profile of the atmosphere above Qatar from a ceilometer, coupled with a novel Layer Identification Algorithm (LIA) developed by QEERI, a continuous time series of the PBL has been attained. This data has been carefully validated against in-situ measurements via coinciding radiosonde launches. These launches were performed weekly at 13:00 local time during 2014; with occasional launches at 07:00. The detected PBL depth from the sondes show good correlation with LIA. This algorithm uses image recognition methods to identify boundary layers not only by their vertical characteristics; but also by their temporal and spatial signatures. This algorithm was written in Python and is designed to process the ceilometer's output data in real time or as a post-process. The behavior of the PBL depth diurnal variation in Qatar was observed to vary in correlation with the change in seasons. During the winter months the mean PBL depth was higher compared to the summer months; in addition, the diurnal amplitude was higher during winter. Apart from seasonal variations in the PBL depth behavior, short term fluctuations in the daily signature of the PBL structure were observed; with some days exhibiting a well-developed PBL followed by a day with no significant PBL variation. This behavior of the summer PBL (lower daily mean depth and lower diurnal amplitude relative to winter) was explained after looking at diurnal humidity and temperature variations. During these months, the intense temperature and humidity enhances the energy flux towards latent heat, actually diminishing the effect of the high insolation towards the development of the PBL. Lower mean PBL depths during the months of higher photochemical activity affect surface concentrations of secondary pollutants and particle matter.
Interface Modes and Their Instabilities in Accretion Disc Boundary Layers
David Tsang; Dong Lai
2008-12-20
We study global non-axisymmetric oscillation modes trapped near the inner boundary of an accretion disc. Observations indicate that some of the quasi-periodic oscillations (QPOs) observed in the luminosities of accreting compact objects (neutron stars, black holes and white dwarfs) are produced in the inner-most regions of accretion discs or boundary layers. Two simple models are considered in this paper: The magnetosphere-disc model consists of a thin Keplerian disc in contact with a uniformly rotating magnetosphere with and low plasma density, while the star-disc model involves a Keplerian disc terminated at the stellar atomosphere with high density and small density scale height. We find that the interface modes at the magnetosphere-disc boundary are generally unstable due to Rayleigh-Taylor and/or Kelvin-Helmholtz instabilities. However, differential rotation of the disc tends to suppress Rayleigh-Taylor instability and a sufficiently high disc sound speed (or temperature) is needed to overcome this suppression and to attain net mode growth. On the other hand, Kelvin-Helmholtz instability may be active at low disc sound speeds. We also find that the interface modes trapped at the boundary between a thin disc and an unmagnetized star do not suffer Rayleigh-Taylor or Kelvin-Helmholtz instability, but can become unstable due to wave leakage to large disc radii and, for sufficiently steep disc density distributions, due to wave absorption at the corotation resonance in the disc. The non-axisymmetric interface modes studied in this paper may be relevant to the high-frequency QPOs observed in some X-ray binaries and in cataclysmic variables.
Lien, Ren-Chieh
Turbulence Spectra and Local Similarity Scaling in a Strongly Stratified Oceanic Bottom Boundary, there is no effective way to separate internal waves and turbulence in the stratified boundary layer. We propose that the energy containing eddies in the stratified boundary layer have a scale close to the Ozmidov scale, 1/2 N
AN ODE FOR BOUNDARY LAYER SEPARATION ON A SPHERE AND A HYPERBOLIC SPACE
Ikegami, Takashi
point) of u. Theorem 1.1. [8] Let K be a compact domain in R2 with Cr+1 boundary, K, for r 2. Let p0 KAN ODE FOR BOUNDARY LAYER SEPARATION ON A SPHERE AND A HYPERBOLIC SPACE CHI HIN CHAN, MAGDALENA and times for the boundary layer separation of incompressible fluid flows. The equation gave a necessary
On the computation of planetary boundary-layer height using the bulk Richardson number method
NASA Astrophysics Data System (ADS)
Zhang, Y.; Gao, Z.; Li, D.; Li, Y.; Zhang, N.; Zhao, X.; Chen, J.
2014-11-01
Experimental data from four field campaigns are used to explore the variability of the bulk Richardson number of the entire planetary boundary layer (PBL), Ribc, which is a key parameter for calculating the PBL height (PBLH) in numerical weather and climate models with the bulk Richardson number method. First, the PBLHs of three different thermally stratified boundary layers (i.e., strongly stable boundary layers, weakly stable boundary layers, and unstable boundary layers) from the four field campaigns are determined using the turbulence method, the potential temperature gradient method, the low-level jet method, and the modified parcel method. Then for each type of boundary layer, an optimal Ribc is obtained through linear fitting and statistical error minimization methods so that the bulk Richardson method with this optimal Ribc yields similar estimates of PBLHs as the methods mentioned above. We find that the optimal Ribc increases as the PBL becomes more unstable: 0.24 for strongly stable boundary layers, 0.31 for weakly stable boundary layers, and 0.39 for unstable boundary layers. Compared with previous schemes that use a single value of Ribc in calculating the PBLH for all types of boundary layers, the new values of Ribc proposed by this study yield more accurate estimates of PBLHs.
Thermal Boundary Layer Dynamics in Multiple Droplet Impingement
NASA Astrophysics Data System (ADS)
Trujillo, Mario F.; Lewis, Steven; Gehring, Eelco
2010-11-01
The impingement of a stream of HFE-7100 droplets striking a pre-wetted and heated surface is studied for droplet Weber and Reynolds numbers ranging from 285 to 427 and 1250 to 4850, respectively, and for a film depth to droplet diameter ratio varying from 0.4 to 1.5. After a short period, a quasi-steady state is achieved; in which the liquid crown formed during continuous droplet impact remains nearly stationary. Temporal averages of the velocity, temperature, and liquid fraction fields suggest that the boundary layer can be categorized as consisting of a stagnation point flow region, a linear growth section, and a jump region, similar to a hydraulic jump, near the liquid crown. Results of the average radial temperatures are compared to experiments for various heat fluxes yielding good agreement. Additionally, it is shown that a sub-layer is present in all cases considered, which is categorized by low values of the local Peclet and Reynolds numbers. The heat transfer mode in this sub-layer domain is governed to a great degree by conduction, and experiences a delayed cooling effect.
Quereda, J.; Castellanos-Gomez, A.; Agraït, N.; Rubio-Bollinger, G.
2014-08-04
We experimentally study the surface roughness and the lateral friction force in single-layer MoS{sub 2} crystals deposited on different substrates: SiO{sub 2}, mica, and hexagonal boron nitride (h-BN). Roughness and sliding friction measurements are performed by atomic force microscopy. We find a strong dependence of the MoS{sub 2} roughness on the underlying substrate material, being h-BN the substrate which better preserves the flatness of the MoS{sub 2} crystal. The lateral friction also lowers as the roughness decreases, and attains its lowest value for MoS{sub 2} flakes on h-BN substrates. However, it is still higher than for the surface of a bulk MoS{sub 2} crystal, which we attribute to the deformation of the flake due to competing tip-to-flake and flake-to-substrate interactions.
NASA Astrophysics Data System (ADS)
Vijgen, Paul M. H. W.
1990-11-01
Analyses of previous boundary-layer transition experiments over axisymmetric bodies indicates a potential for achieving substantial amounts of laminar flow over such shapes. Achievement of natural laminar flow over portions of nonlifting aircraft geometries, such as fuselage to forebodies, tip tanks or engine nacelles, could significantly contribute to the reduction of total aircraft viscous drag. A modern surface-panel method, a streamwise boundary-layer analysis method, and streamwise linear stability theory (E(sup n)-method) are used to correlate several previous transition measurements along axisymmetric geometries to study the transition characteristics of a nonaxisymmetric body geometry, a flight investigation was conducted to measure the transition location and analyze the mode of transition over the nonaxisymmetric forebody of an existing light twin-engine propeller-driven airplane. A summary of the inviscid flow field over the forebody of the aircraft at various body angles is presented, indicating the relatively small magnitude of inviscid crossflow along the forebody at typical cruising attitudes. The transition instrumentation installed in the airplane fuselage is described, together with relative surface-waviness measurements along the forebody. The macroscopic location of the transitional front, obtained from arrayed hot-film sensors, is presented for a matrix of flight conditions with various unit-Reynolds numbers, angles of attack and sideslip, and engine power settings.
Large eddy simultations of the atmospheric boundary layer east of the Colorado Rockies
Costigan, K.R.; Cotton, W.R.
1992-10-22
Large eddy simulation, LES, has often been carried out for the idealized situation of a simple convective boundary layer. Studies of dual Doppler radar and aircraft data from the Phoenix II experiment indicate that the boundary layer of the Colorado High Plains is not a purely convective boundary layer and it is influenced by the mountains to the west. The purpose of this study is to investigate the atmospheric boundary layer on one particular day on the Colorado High Plains. This research applies a LES nested within larger grids, which contain realistic topography and can simulate the larger-scale circulations initiated by the presence of the mountain barrier. How and to what extent the atmospheric boundary layer of the Colorado High Plains is influenced by larger scale circulations and other phenomena associated with the mountain barrier to the west is investigated. The nested grid LES reproduces the characteristics of the atmosphere for the case study day reasonably well. The mountains influence the atmospheric boundary layer over the plains to the east in several ways. The mountains contribute to the vertical shear of the horizontal winds through the thermally-induced mountain-plains circulation. As a consequence of the wind shear, the boundary layer that develops over the mountains is advected eastward over the top of the plains boundary layer, which is developing separately. This layer is marked by a mixture of gravity waves and turbulence and is atypical of a purely convective boundary layer. Just below this layer, the capping inversion of the plains boundary layer is weak and poorly defined compared to the inversions capping purely convective boundary layers. Gravity waves, triggered by the obstacle of the Rocky Mountains and by convection in the mountain boundary layer, also influence the atmosphere above the Colorado High Plains. These influences are found to have significant effects on the turbulence statistics and the energy spectra.
Methods for determining the height of the atmospheric boundary layer
Nasstrom, J S; Sugiyama, G
1999-02-01
The Atmospheric Release Advisory Capability (ARAC) is an operational emergency response program which provides real-time dose assessments of airborne pollutant releases. This report reviews methodologies for determining the height of the atmospheric boundary layer (ABL), which were investigated for use in the next generation of ARAC diagnostic and dispersion models. The ABL height, h_{ABL}, is an essential parameter in atmospheric dispersion modeling, controlling the extent of the vertical mixing of pollutants near the surface. Although eventually instrumentation (radiosonde, lidar, sodar, etc.) may provide accurate means for determining h_{ABL}, at present the availability of such data is too limited to provide a general capability for ARAC. The current operational ARAC diagnostic models use a fixed value of h_{ABL} for any given time. ARAC? s new models support a horizontally-varying atmospheric boundary layer height, which is used to generate meteorological (mean wind, temperature, etc.) and turbulence fields. The purpose of the present work is to develop methods to derive the ABL height for all atmospheric stability regimes. One of our key requirements is to provide approaches which are applicable to routinely available data, which may be of limited temporal and spatial resolution. The final objective is to generate a consistent set of meteorological and turbulence or eddy diffusivity fields to drive the new ARAC dispersion model. A number of alternative definitions of the atmospheric boundary layer exist, leading to different approaches to deriving h_{ABL}. The definitions are based on either the turbulence characteristics of the atmosphere or the vertical structure of one or more meteorological variables. Most diagnostic analyses determine h_{ABL} from profiles of temperature or occasionally wind. A class of methods of considerable current interest are based on Richardson number criteria. Prognostic methods calculate the time evolution of the top of the ABL from a rate equation. A number of commonly used methods of both types are reviewed along with considerations on their applicability to various types of meteorological data and atmospheric conditions.
Effect of Strong External Turbulence on a Wall Jet Boundary Layer
Hunt, Julian
Effect of Strong External Turbulence on a Wall Jet Boundary Layer Y. S. Tsai & J. C. R. Hunt & F. T turbulence and the flow inside the boundary layer, resulting in the modifications of the velocity profile the length scale of the external turbulence is relatively large compared with the shear layer thickness [7
Jeong, J.Y.; Ryou, H.S.
1997-03-01
Heat transfer characteristics and flow structure in turbulent flows through a flat plate three-dimensional turbulent boundary layer containing built-in vortex generators have been analyzed by means of the space marching Crank-Nicolson finite difference method. The method solves the slender flow approximation of the steady three-dimensional Navier-Stokes and energy equations. This study used the eddy diffusivity model and standard {kappa}-{epsilon} model to predict heat transfer and flow field in the turbulent flow with imbedded longitudinal vortex. The results show boundary layer distortion due to vortices, such as strong spanwise flow divergence and boundary layer thinning. The heat transfer and skin friction show relatively good results in comparison with experimental data. The vortex core moves slightly away from the wall and grows slowly; consequently, the vortex influences the flow over a very long distance downstream. The enhancement of the heat transfer in the vicinity of the wall is due to the increasing spanwise separation of the vortices as they develop in the streamwise direction.
Free-stream turbulence and concave curvature effects on heated, transitional boundary layers
NASA Technical Reports Server (NTRS)
Kim, J.; Simon, T. W.
1991-01-01
An experimental investigation of the transition process on flat-plate and concave curved-wall boundary layers for various free-stream turbulence levels was performed. Results show that for transition of a flat-plate, the two forms of boundary layer behavior, identified as laminar-like and turbulent-like, cannot be thought of as separate Blasius and fully-turbulent profiles, respectively. Thus, simple transition models in which the desired quantity is assumed to be an average, weighted on intermittency, of the theoretical laminar and fully turbulent values is not expected to be successful. Deviation of the flow identified as laminar-like from theoretical laminar behavior is shown to be due to recovery after the passage of a turbulent spot, while deviation of the flow identified as turbulent-like from the full-turbulent values is thought to be due to incomplete establishment of the fully-turbulent power spectral distribution. Turbulent Prandtl numbers for the transitional flow, computed from measured shear stress, turbulent heat flux and mean velocity and temperature profiles, were less than unity. For the curved-wall case with low free-stream turbulence intensity, the existence of Gortler vortices on the concave wall within both laminar and turbulent flows was established using liquid crystal visualization and spanwise velocity and temperature traverses. Transition was found to occur via a vortex breakdown mode. The vortex wavelength was quite irregular in both the laminar and turbulent flows, but the vortices were stable in time and space. The upwash was found to be more unstable, with higher levels of u' and u'v', and lower skin friction coefficients and shape factors. Turbulent Prandtl numbers, measured using a triple-wire probe, were found to be near unity for all post-transitional profiles, indicating no gross violation of Reynolds analogy. No evidence of streamwise vortices was seen in the high turbulence intensity case.
Direct Numerical Simulation of Transition in a Swept-Wing Boundary Layer
NASA Technical Reports Server (NTRS)
Duan, Lian; Choudhari, Meelan M.; Li, Fei
2013-01-01
Direct numerical simulation (DNS) is performed to examine laminar to turbulent transition due to high-frequency secondary instability of stationary crossflow vortices in a subsonic swept-wing boundary layer for a realistic natural-laminar-flow airfoil configuration. The secondary instability is introduced via inflow forcing derived from a two-dimensional, partial-differential-equation based eigenvalue computation; and the mode selected for forcing corresponds to the most amplified secondary instability mode which, in this case, derives a majority of its growth from energy production mechanisms associated with the wall-normal shear of the stationary basic state. Both the growth of the secondary instability wave and the resulting onset of laminar-turbulent transition are captured within the DNS computations. The growth of the secondary instability wave in the DNS solution compares well with linear secondary instability theory when the amplitude is small; the linear growth is followed by a region of reduced growth resulting from nonlinear effects before an explosive onset of laminar breakdown to turbulence. The peak fluctuations are concentrated near the boundary layer edge during the initial stage of transition, but rapidly propagates towards the surface during the process of laminar breakdown. Both time-averaged statistics and flow visualization based on the DNS reveal a sawtooth transition pattern that is analogous to previously documented surface flow visualizations of transition due to stationary crossflow instability. The memory of the stationary crossflow vortex is found to persist through the transition zone and well beyond the location of the maximum skin friction.
NASA Astrophysics Data System (ADS)
Schäfer, K.; Grant, R. H.; Emeis, S.; Raabe, A.; von der Heide, C.; Schmid, H. P.
2012-07-01
Measurements of land-surface emission rates of greenhouse and other gases at large spatial scales (10 000 m2) are needed to assess the spatial distribution of emissions. This can be readily done using spatial-integrating micro-meteorological methods like flux-gradient methods which were evaluated for determining land-surface emission rates of trace gases under stable boundary layers. Non-intrusive path-integrating measurements are utilized. Successful application of a flux-gradient method requires confidence in the gradients of trace gas concentration and wind, and in the applicability of boundary-layer turbulence theory; consequently the procedures to qualify measurements that can be used to determine the flux is critical. While there is relatively high confidence in flux measurements made under unstable atmospheres with mean winds greater than 1 m s-1, there is greater uncertainty in flux measurements made under free convective or stable conditions. The study of N2O emissions of flat grassland and NH3 emissions from a cattle lagoon involves quality-assured determinations of fluxes under low wind, stable or night-time atmospheric conditions when the continuous "steady-state" turbulence of the surface boundary layer breaks down and the layer has intermittent turbulence. Results indicate that following the Monin-Obukhov similarity theory (MOST) flux-gradient methods that assume a log-linear profile of the wind speed and concentration gradient incorrectly determine vertical profiles and thus flux in the stable boundary layer. An alternative approach is considered on the basis of turbulent diffusivity, i.e. the measured friction velocity as well as height gradients of horizontal wind speeds and concentrations without MOST correction for stability. It is shown that this is the most accurate of the flux-gradient methods under stable conditions.
Heat transport by laminar boundary layer flow with polymers
Roberto Benzi; Emily S. C. Ching.; Vivien W. S. Chu
2011-04-23
Motivated by recent experimental observations, we consider a steady-state Prandtl-Blasius boundary layer flow with polymers above a slightly heated horizontal plate and study how the heat transport might be affected by the polymers. We discuss how a set of equations can be derived for the problem and how these equations can be solved numerically by an iterative scheme. By carrying out such a scheme, we find that the effect of the polymers is equivalent to producing a space-dependent effective viscosity that first increases from the zero-shear value at the plate then decreases rapidly back to the zero-shear value far from the plate. We further show that such an effective viscosity leads to an enhancement in the drag, which in turn leads to a reduction in heat transport.
Turbulent thermal boundary layer on a permeable flat plate
Vigdorovich, I. I.
2007-06-15
Scaling laws are established for the profiles of temperature, turbulent heat flux, rms temperature fluctuation, and wall heat transfer in the turbulent boundary layer on a flat plate with transpiration. In the case of blowing, the temperature distribution represented in scaling variables outside the viscous sublayer has a universal form known from experimental data for flows over impermeable flat plates. In the case of suction, the temperature distribution is described by a one-parameter family of curves. A universal law of heat transfer having the form of a generalized Reynolds analogy provides a basis for representation of the heat flux distributions corresponding to different Reynolds numbers and transpiration velocities in terms of a function of one variable. The results are obtained without invoking any special closure hypotheses.
Combined core/boundary layer transport simulations in tokamaks
Prinja, A.K.; Schafer, R.F. Jr.; Conn, R.W.; Howe, H.C.
1986-04-01
Significant new numerical results are presented from self-consistent core and boundary or scrape-off layer plasma simulations with 3-D neutral transport calculations. For a symmetric belt limiter it is shown that, for plasma conditions considered here, the pump limiter collection efficiency increases from 11% to 18% of the core efflux as a result of local reionization of blade deflected neutrals. This hitherto unobserved effect causes a significant amplification of upstream ion flux entering the pump limiter. Results from coupling of an earlier developed two-zone edge plasma model ODESSA to the PROCTR core plasma simulation code indicates that intense recycling divertor operation may not be possible because of stagnation of upstream flow velocity. This results in a self-consistent reduction of density gradient in an intermediate region between the central plasma and separatrix, and a concomitant reduction of core-efflux. There is also evidence of increased recycling at the first wall.
Numerical Simulations of the Boundary Layer Transition Flight Experiment
NASA Technical Reports Server (NTRS)
Tang, Chun Y.; Trumble, Kerry A.; Campbell, Charles H.; Lessard, Victor R.; Wood, William A.
2010-01-01
Computational Fluid Dynamics (CFD) simulations were used to study the possible effects that the Boundary Layer Transition (BLT) Flight Experiments may have on the heating environment of the Space Shuttle during its entry to Earth. To investigate this issue, hypersonic calculations using the Data-Parallel Line Relaxation (DPLR) and Langley Aerothermodynamic Upwind Relaxation (LAURA) CFD codes were computed for a 0.75 tall protuberance at flight conditions of Mach 15 and 18. These initial results showed high surface heating on the BLT trip and the areas surrounding the protuberance. Since the predicted peak heating rates would exceed the thermal limits of the materials selected to construct the BLT trip, many changes to the geometry were attempted in order to reduce the surface heat flux. The following paper describes the various geometry revisions and the resulting heating environments predicted by the CFD codes.
Hypersonic Boundary-Layer Trip Development for Hyper-X
NASA Technical Reports Server (NTRS)
Berry, Scott A.; Auslender, Aaron H.; Dilley, Authur D.; Calleja, John F.
2000-01-01
Boundary layer trip devices for the Hper-X forebody have been experimentally examined in several wind tunnels. Five different trip configurations were compared in three hypersonic facilities, the LaRC 20-Inch Mach 6 Air Tunnel, the LaRC 31 -Inch Mach 10 Air Tunnel, and in the HYPULSE Reflected Shock Tunnel at GASL. Heat transfer distributions, utilizing the phosphor thermography and thin-film techniques, shock system details, and surface streamline patterns were measured on a 0.333-scale model of the Hyper-X forebody. Parametric variations include angles-of-attack of 0-deg, 2-deg, and 4-deg; Reynolds numbers based on model length of 1.2 to 15.4 million: and inlet cowl door simulated in both open and closed positions. Comparisons of transition due to discrete roughness elements have led to the selection of a trip configuration for the Hyper-X Mach 7 flight vehicle.
An algorithm for the automatic control of boundary layer flow
NASA Astrophysics Data System (ADS)
Nelson, P. A.; Rioual, J.-L.
1994-05-01
Interest has recently been renewed in the use of distributed suction for the production of laminar flow over substantial areas of the surface of aircraft wings and engine nacelles. Suction may be most efficiently applied by using a number of independently controllable panels through which fluid is withdrawn. It becomes necessary to determine the distribution of suction flowrates that results in a given streamwise location of boundary layer transition with minimum power consumed in providing suction. This problem is formulated here in terms of nonlinearly constrained optimization. An algorithm is presented which has proved successful in both experimental and numerical studies in determining the optimal suction distribution. Of particular concern in this work is the stability of the basic algorithm and the limits to its rate of convergence to the optimal solution.
Radiative transfer in a polluted urban planetary boundary layer
NASA Technical Reports Server (NTRS)
Viskanta, R.; Johnson, R. O.; Bergstrom, R. W.
1977-01-01
Radiative transfer in a polluted urban atmosphere is studied using a dynamic model. The diurnal nature of radiative transfer for summer conditions is simulated for an urban area 40 km in extent and the effects of various parameters arising in the problem are investigated. The results of numerical computations show that air pollution has the potential of playing a major role in the radiative regime of the urban area. Absorption of solar energy by aerosols in realistic models of urban atmosphere are of the same order of magnitude as that due to water vapor. The predicted effect of the air pollution aerosol in the city is to warm the earth-atmosphere system, and the net effect of gaseous pollutant is to warm the surface and cool the planetary boundary layer, particularly near the top.
One-dimensional theory of the wave boundary layer
NASA Astrophysics Data System (ADS)
Chalikov, D. V.; Belevich, M. Yu.
1993-02-01
Results obtained in a 2-D modeling of the statistical structure of the wave boundary layer (WBL) are used for elaboration of the general approach to 1-D modeling taking into account the spectral properties of wave drag for an arbitrary wave field. In the case of the wave field described by the JONSWAP spectrum, the momentum and energy spectral density exchange, vertical profiles of the wave-induced momentum flux and dependence of total roughness parameter and drag coefficient on peak frequency are given. The reasons that the total roughness parameter increases with decreasing fetch are explained. The role of wind waves as an active element of the ocean-atmosphere dynamic system is also discussed.
Modelling Unsteady Wall Pressures Beneath Turbulent Boundary Layers
NASA Technical Reports Server (NTRS)
Ahn, B-K.; Graham, W. R.; Rizzi, S. A.
2004-01-01
As a structural entity of turbulence, hairpin vortices are believed to play a major role in developing and sustaining the turbulence process in the near wall region of turbulent boundary layers and may be regarded as the simplest conceptual model that can account for the essential features of the wall pressure fluctuations. In this work we focus on fully developed typical hairpin vortices and estimate the associated surface pressure distributions and their corresponding spectra. On the basis of the attached eddy model, we develop a representation of the overall surface pressure spectra in terms of the eddy size distribution. Instantaneous wavenumber spectra and spatial correlations are readily derivable from this representation. The model is validated by comparison of predicted wavenumber spectra and cross-correlations with existing emperical models and experimental data.
Effect of crossflow on Goertler instability in incompressible boundary layers
NASA Technical Reports Server (NTRS)
Zurigat, Y. H.; Malik, M. R.
1994-01-01
Linear stability theory is used to study the effect of crossflow on Goertler instability in incompressible boundary layers. The results cover a wide range of sweep angle, pressure gradient, and wall curvature parameters. It is shown that the crossflow stabilizes Goertler disturbances by reducing the maximum growth rate and shrinking the unstable band of spanwise wave numbers. On the other hand, the effect of concave wall curvature on crossflow instability is destabilizing. Calculations show that the changeover from Goertler to crossflow instabilities is a function of Goertler number, pressure gradient, and sweep angle. The results demonstrate that Goertler instability may still be relevant in the transition process on swept wings even at large angles of sweep if the pressure gradient is sufficiently small. The influence of pressure gradient and sweep can be combined by defining a crossflow Reynolds number. Thus, the changeover from Goertler to crossflow instability takes place at some critical crossflow Reynolds number whose value increases with Goertler number.
Control of Unstable Waves in Three Dimensional Boundary Layers
NASA Technical Reports Server (NTRS)
Saric, William S.
1996-01-01
Stability experiments are conducted in the Arizona State University Unsteady Wind Tunnel on a 45 deg. swept airfoil. The pressure gradient is designed to provide purely crossflow-dominated transition; that is, the boundary layer is subcritical to Tollmien- Schlichting (T-S) disturbances. The airfoil surface is hand polished to a 0.25 micron rms finish. Under these conditions, stationary crossflow disturbances grow to nonuniform amplitude due to submicron surface irregularities near the leading edge. Spectral de-compositions isolate single-mode growth rates for the fundamental and harmonic disturbances. The measurements show early nonlinear growth causing amplitude saturation well before transition. Comparisons with nonlinear PSE calculations show excellent agreement in both the amplitude saturation and the disturbance mode shape.
Small particle transport across turbulent nonisothermal boundary layers
NASA Technical Reports Server (NTRS)
Rosner, D. E.; Fernandez De La Mora, J.
1982-01-01
The interaction between turbulent diffusion, Brownian diffusion, and particle thermophoresis in the limit of vanishing particle inertial effects is quantitatively modeled for applications in gas turbines. The model is initiated with consideration of the particle phase mass conservation equation for a two-dimensional boundary layer, including the thermophoretic flux term directed toward the cold wall. A formalism of a turbulent flow near a flat plate in a heat transfer problem is adopted, and variable property effects are neglected. Attention is given to the limit of very large Schmidt numbers and the particle concentration depletion outside of the Brownian sublayer. It is concluded that, in the parameter range of interest, thermophoresis augments the high Schmidt number mass-transfer coefficient by a factor equal to the product of the outer sink and the thermophoretic suction.
Aeroelectric structures and turbulence in the atmospheric boundary layer
NASA Astrophysics Data System (ADS)
Anisimov, S. V.; Mareev, E. A.; Shikhova, N. M.; Shatalina, M. V.; Galichenko, S. V.; Zilitinkevich, S. S.
2013-10-01
Complex electrical measurements with the use of sodar data show that electric field pulsation analysis is useful for electrodynamics/turbulence monitoring under different conditions. In particular, the number of aeroelectric structures (AES) generated per hour is a convenient measure of the turbulence intensity. During convectively unstable periods, as many as 5-10 AES form per hour. Under stable conditions, AES occasionally form as well, indicating the appearance of occasional mixing events reflected in the electric field perturbations. AES magnitudes under stable conditions are relatively small, except in special cases such as high humidity and fog. The analysis of electric field (EF) spectra gives additional useful information on the parameters of the atmospheric boundary layer and its turbulence. A rather sharp change in the spectrum slope takes place in the vicinity of 0.02 Hz under stable conditions. The characteristic slope of the spectrum and its change are reproduced in a simple model of EF formation.