THEORETICAL SKIN-FRICTION LAW IN A TURBULENT BOUNDARY LAYER A. CHESKIDOV
Cheskidov, Alexey
THEORETICAL SKIN-FRICTION LAW IN A TURBULENT BOUNDARY LAYER A. CHESKIDOV ABSTRACT. We study of the skin-friction coefficient in a wide range of Reynolds numbers based on momentum thickness, and deduce-stream turbulence intensity, while one-parameter family of solutions, obtained using our skin-friction coefficient
A note on boundary-layer friction in baroclinic cyclones
Boutle, I A; Belcher, S E; Plant, R S
2008-01-01
The interaction between extratropical cyclones and the underlying boundary layer has been a topic of recent discussion in papers by Adamson et. al. (2006) and Beare (2007). Their results emphasise different mechanisms through which the boundary layer dynamics may modify the growth of a baroclinic cyclone. By using different sea-surface temperature distributions and comparing the low-level winds, the differences are exposed and both of the proposed mechanisms appear to be acting within a single simulation.
NASA Technical Reports Server (NTRS)
Westphal, R. V.
1986-01-01
Research has been undertaken to experimentally study the alterations in turbulent boundary-layer properties due to turbulence manipulation using thin flat plates. Plate geometry and placement within the boundary layer were selected to coincide with recent studies. Direct, local measurements of skin friction and Reynolds stresses were made within the boundary layer downstream of the manipulator devices for cases with an approach momentum thickness Reynolds number of 3700. A strong tendency for recovery of the Reynolds stresses was observed, accompanied by local skin-friction reductions of up to 15 percent. The mean velocity profile in the manipulated flow displayed the same similarity shape in the logarithmic region as a natural boundary layer, but had an enhanced wake component. The results indicate that the plate wake plays an important role in the boundary layer response to this sort of manipulation.
Effect of boundary vibration on the frictional behavior of a dense sheared granular layer
B. Ferdowsi; M. Griffa; R. A. Guyer; P. A. Johnson; J. Carmeliet
2014-01-24
We report results of 3D Discrete Element Method (DEM) simulations aiming at investigating the role of the boundary vibration in inducing frictional weakening in sheared granular layers. We study the role of different vibration amplitudes applied at various shear stress levels, for a granular layer in the stick-slip regime and in the steady-sliding regime. Results are reported in terms of friction drops and kinetic energy release associated with frictional weakening events. We find that larger vibration amplitude induces larger frictional weakening events. The results show evidence of a threshold below which no induced frictional weakening takes place. Friction drop size is found to be dependent on the shear stress at the time of vibration. A significant increase in the ratio between the number of slipping contacts to the number of sticking contacts in the granular layer is observed for large vibration amplitudes. These vibration-induced contact rearrangements enhance particle mobilization and induces a friction drop and kinetic energy release. This observation provides some insight into the grain-scale mechanisms of frictional weakening by boundary vibration in a dense sheared granular layer. In addition to characterizing the basic physics of vibration induced shear weakening, we are attempting to understand how a fault fails in the earth under seismic wave forcing. This is the well know phenomenon of dynamic earthquake triggering. We believe that the granular physics are key to this understanding.
NASA Astrophysics Data System (ADS)
Pailhas, Guy; Barricau, P.; Touvet, Y.; Perret, L.
2009-08-01
The oil droplet interferometric technique has been used to investigate the skin friction distribution along a zero and adverse pressure gradient boundary layer developing in the Laboratoire de Mécanique de Lille wind tunnel. This experimental task was a part of the WALLTURB project, funded by the European Community, in order to bring significant progress in the understanding of near wall turbulence in boundary layers. Skin friction values close to 0.01 Pa have been measured with this optical method. A comparison with the results obtained with hot-wire anemometry and macro-PIV demonstrates the great potential of the oil droplet technique.
Effects of Riblets on Skin Friction in High-Speed Turbulent Boundary Layers
NASA Technical Reports Server (NTRS)
Duan, Lian; Choudhari, Meelan M.
2012-01-01
Direct numerical simulations of spatially developing turbulent boundary layers over riblets are conducted to examine the effects of riblets on skin friction at supersonic speeds. Zero-pressure gradient boundary layers with an adiabatic wall, a Mach number of M1 = 2.5, and a Reynolds number based on momentum thickness of Re = 1720 are considered. Simulations are conducted for boundary-layer flows over a clean surface and symmetric V- groove riblets with nominal spacings of 20 and 40 wall units. The DNS results confirm the few existing experimental observations and show that a drag reduction of approximately 7% is achieved for riblets with proper spacing. The influence of riblets on turbulence statistics is analyzed in detail with an emphasis on identifying the differences, if any, between the drag reduction mechanisms for incompressible and high-speed boundary layers.
NASA Technical Reports Server (NTRS)
Richmond, Robert Chafee (Inventor); Schramm, Jr., Harry F. (Inventor); Defalco, Francis G. (Inventor)
2013-01-01
A wear and/or friction reducing additive for a lubricating fluid in which the additive is a combination of a moderately hydrophilic single-phase compound and an anti-wear and/or anti-friction aqueous salt solution. The aqueous salt solution produces a coating on boundary layer surfaces. The lubricating fluid can be an emulsion-free hydrophobic oil, hydraulic fluid, antifreeze, or water. Preferably, the moderately hydrophilic single-phase compound is sulfonated castor oil and the aqueous salt solution additionally contains boric acid and zinc oxide. The emulsions produced by the aqueous salt solutions, the moderately hydrophilic single-phase compounds, or the combination thereof provide targeted boundary layer organizers that significantly enhance the anti-wear and/or anti-friction properties of the base lubricant by decreasing wear and/or friction of sliding and/or rolling surfaces at boundary layers.
A skin friction model for axisymmetric turbulent boundary layers along long thin circular cylinders
NASA Astrophysics Data System (ADS)
Jordan, Stephen A.
2013-07-01
Only a few engineering design models are presently available that adequately depict the axisymmetric skin friction (Cf) maturity along long thin turbulent cylinders. This deficit rests essentially on the experimental and numerical difficulties of measuring (or computing) the spatial evolution of the thin cylinder turbulence. Consequently, the present axisymmetric Cf models have questionable accuracy. Herein, we attempt to formulate a more robust Cf model that owns acceptable error. The formulation is founded on triple integration of the governing equation system that represents a thin cylinder turbulent boundary layer (TBL) at statistical steady-state in appropriate dimensionless units. The final model requires only the radius-based Reynolds number (Rea) and transverse curvature (?/a) as input parameters. We tuned the accompanying coefficients empirically via an expanded statistical database (over 60 data points) that house new Cf values from large-eddy simulations (LES). The LES computations employed a turbulence inflow generation procedure that permits spatial resolution of the TBL at low-high Reynolds numbers and transverse curvatures. Compared to the new skin friction database, the Cf model revealed averaged predictive errors under 5% with a 3.5% standard deviation. Apart from owning higher values than the flat plate TBL, the most distinguishing characteristic of the axisymmetric skin friction is its rising levels when the boundary layer thickness exceeds the cylinder radius. All Cf levels diminish with increasing Reynolds number. These unique features differentiate the axisymmetric TBL along thin cylinders as a separate canonical flow when compared to the turbulent wall shear-layers of channels, pipes, and planar-type geometries.
NASA Technical Reports Server (NTRS)
Richmond, Robert Chaffee (Inventor); Schramm, Jr., Harry F. (Inventor); Defalco, Francis G. (Inventor)
2015-01-01
Lubrication additives of the current invention require formation of emulsions in base lubricants, created with an aqueous salt solution plus a single-phase compound such that partitioning within the resulting emulsion provides thermodynamically targeted compounds for boundary layer organization thus establishing anti-friction and/or anti-wear. The single-phase compound is termed "boundary layer organizer", abbreviated BLO. These emulsion-contained compounds energetically favor association with tribologic surfaces in accord with the Second Law of Thermodynamics, and will organize boundary layers on those surfaces in ways specific to the chemistry of the salt and BLO additives. In this way friction modifications may be provided by BLOs targeted to boundary layers via emulsions within lubricating fluids, wherein those lubricating fluids may be water-based or oil-based.
Reducing skin friction by boundary layer combustion on a generic scramjet model
NASA Astrophysics Data System (ADS)
Trenker, M.; Mee, D. J.; Stalker, R. J.
Combustion of hydrogen in the boundary layer of a simplified scramjet model is investigated. The analytical model for combustion is introduced for a flat plate in a turbulent boundary layer. Investigations are carried out for a fixed scramjet geometry and Mach 10 at 36 km altitude. Fuel is injected in the combustor as well as into the boundary layers of the inlet and the combustor. The amount of fuel injected at each location is varied but the overall fuel flowrate is kept constant for an equivalence ratio of one. The results show an optimum ratio between the fuel injected into the boundary layers and the fuel in the combustor. The specific impulse of the scramjet model considered is increased by 12%.
Entrainment, Rayleigh Friction, and Boundary Layer Winds over the Tropical Pacific
BJORN STEVENS; JIANJUN DUAN; JAMES C. MCWILLIAMS; J. DAVID NEELIN
2001-01-01
Winds over the tropical Pacific are interpreted using mixed-layer theory. The theory — which posits that the surface winds can be derived in terms of a force balance between surface drag, pressure- gradients, Coriolis forces and the vertical mixing of momentum into the boundary layer (entrainment) — is very successful in predicting the seasonal climatology of the surface winds. The
NASA Technical Reports Server (NTRS)
Kim, K.-S.; Lee, Y.; Alvi, F. S.; Settles, G. S.; Horstman, C. C.
1990-01-01
A joint experimental and computational study of skin friction in weak-to-strong swept shock wave/turbulent boundary-layer interactions has been carried out. A planar shock wave is generated by a sharp fin at angles of attack alpha = 10 deg and 16 deg at M(infinity) = 3 and 16 and 20 deg at M(infinity) = 4. Measurements are made using the Laser Interferometer Skin Friction meter, which optically detects the rate of thinning of an oil film applied to the test surface. The results show a systematic rise in the peak c(f) at the rear part of the interaction, where the separated flow atttaches. For the stronget case studied, this peak is an order of magnitude higher than the incoming freestream c(f)level.
NASA Astrophysics Data System (ADS)
Rodríguez-López, Eduardo; Bruce, Paul J. K.; Buxton, Oliver R. H.
2015-04-01
The present paper describes a method to extrapolate the mean wall shear stress, , and the accurate relative position of a velocity probe with respect to the wall, , from an experimentally measured mean velocity profile in a turbulent boundary layer. Validation is made between experimental and direct numerical simulation data of turbulent boundary layer flows with independent measurement of the shear stress. The set of parameters which minimize the residual error with respect to the canonical description of the boundary layer profile is taken as the solution. Several methods are compared, testing different descriptions of the canonical mean velocity profile (with and without overshoot over the logarithmic law) and different definitions of the residual function of the optimization. The von Kármán constant is used as a parameter of the fitting process in order to avoid any hypothesis regarding its value that may be affected by different initial or boundary conditions of the flow. Results show that the best method provides an accuracy of for the estimation of the friction velocity and for the position of the wall. The robustness of the method is tested including unconverged near-wall measurements, pressure gradient, and reduced number of points; the importance of the location of the first point is also tested, and it is shown that the method presents a high robustness even in highly distorted flows, keeping the aforementioned accuracies if one acquires at least one data point in . The wake component and the thickness of the boundary layer are also simultaneously extrapolated from the mean velocity profile. This results in the first study, to the knowledge of the authors, where a five-parameter fitting is carried out without any assumption on the von Kármán constant and the limits of the logarithmic layer further from its existence.
NASA Technical Reports Server (NTRS)
Loitsianskii. L. G.
1956-01-01
The fundamental, practically the most important branch of the modern mechanics of a viscous fluid or a gas, is that branch which concerns itself with the study of the boundary layer. The presence of a boundary layer accounts for the origin of the resistance and lift force, the breakdown of the smooth flow about bodies, and other phenomena that are associated with the motion of a body in a real fluid. The concept of boundary layer was clearly formulated by the founder of aerodynamics, N. E. Joukowsky, in his well-known work "On the Form of Ships" published as early as 1890. In his book "Theoretical Foundations of Air Navigation," Joukowsky gave an account of the most important properties of the boundary layer and pointed out the part played by it in the production of the resistance of bodies to motion. The fundamental differential equations of the motion of a fluid in a laminar boundary layer were given by Prandtl in 1904; the first solutions of these equations date from 1907 to 1910. As regards the turbulent boundary layer, there does not exist even to this day any rigorous formulation of this problem because there is no closed system of equations for the turbulent motion of a fluid. Soviet scientists have done much toward developing a general theory of the boundary layer, and in that branch of the theory which is of greatest practical importance at the present time, namely the study of the boundary layer at large velocities of the body in a compressed gas, the efforts of the scientists of our country have borne fruit in the creation of a new theory which leaves far behind all that has been done previously in this direction. We shall herein enumerate the most important results by Soviet scientists in the development of the theory of the boundary layer.
NASA Astrophysics Data System (ADS)
Kornilov, V. I.; Litvinenko, Yu. A.; Pavlov, A. A.
2002-07-01
Experimental definition of the local and integral values of friction drag of an aircraft or its elements is one of the basic problems of applied aerodynamics. We also should note the undoubted significance of this value for the development of modern lifting profiles and other aircraft elements, the description of near-wall flows in a form of similarity laws and testing of the numerical techniques of computation of flow around such aircrafts. However, to define this value accurately, one should have a clear conception of the possibilities and efficiency of application of one or another technique for a special case of body flow around. Though any experimental work assumes application of a certain concrete technique, including one for skin friction finding, the available literature information is as a rule uncoordinated, i.e., this information reflects only the level of availability of the technique applied. For this reason the researches like devoted to the development of new techniques and investigation of the efficiency of the known ones under various experimental conditions, become very important. The simplified layout gives a pictorial view of the main techniques of skin friction measurement, existing at the present time. The present paper presents a comparative analysis of a number of direct and indirect measuring techniques when they are applied in a incompressible turbulent boundary layer of a flat plate under the conditions of formation of a unfavorable (positive) and favorable (negative) streamwise pressure gradients on the plate surface, and also in plate gradient-free flow around.
NASA Astrophysics Data System (ADS)
Aljallis, Elias; Sarshar, Mohammad Amin; Datla, Raju; Sikka, Vinod; Jones, Andrew; Choi, Chang-Hwan
2013-02-01
In this paper, we report the measurement of skin friction drag on superhydrophobic-coated flat plates in high Reynolds (Re) number boundary layer flows, using a high-speed towing tank system. Aluminum flat plates with a large area (4 feet × 2 feet, 3/8 in. thick) and sharpened leading/trailing edges (1 in. long) were prepared as a boundary layer flow model. Spray coating of hydrophobic nanoparticles was applied to make two different types of superhydrophobic coatings: one with low contact angle and high contact angle hysteresis, and the other with high contact angle and low contact angle hysteresis. Skin friction drag of the superhydrophobic plates was measured in the flow speed up to 30 ft/s to cover transition and turbulent flow regimes (105 < ReL < 107), and was compared to that of an uncoated bare aluminum plate. A significant drag reduction was observed on the superhydrophobic plate with high contact angle and low contact angle hysteresis up to ˜30% in transition regime (105 < ReL < 106), which is attributed to the shear-reducing air layer entrapped on the superhydrophobic surface. However, in fully turbulence regime (106 < ReL < 107), an increase of drag was observed, which is ascribed to the morphology of the surface air layer and its depletion by high shear flow. The texture of superhydrophobic coatings led to form a rugged morphology of the entrapped air layer, which would behave like microscale roughness to the liquid flow and offset the drag-reducing effects in the turbulent flow. Moreover, when the superhydrophobic coating became wet due to the removal of air by high shear at the boundary, it would amplify the surface roughness of solid wall and increase the drag in the turbulent flow. The results illustrate that drag reduction is not solely dependent on the superhydrophobicity of a surface (e.g., contact angle and air fraction), but the morphology and stability of the surface air layer are also critical for the effective drag reduction using superhydrophobic surfaces, especially in high Re number turbulent flow regimes.
Boundary-layer transition and global skin friction measurement with an oil-fringe imaging technique
NASA Technical Reports Server (NTRS)
Monson, Daryl J.; Mateer, George G.; Menter, Florian R.
1993-01-01
A new oil-fringe imaging fkin friction (FISF) technique to measure skin friction on wind tunnel models is presented. In the method used to demonstrate the technique, lines of oil are applied on surfaces that connect the intended sets of measurement points, and then a wind tunnel is run so that the oil thins and forms interference fringes that are spaced proportional to local skin friction. After a run the fringe spacings are imaged with a CCD-array digital camera and measured on a computer. Skin friction and transition measurements on a two-dimensional wing are presented and compared with computational predictions.
Boundary-layer transition and global skin friction measurement with an oil-fringe imaging technique
NASA Technical Reports Server (NTRS)
Monson, Daryl J.; Mateer, George G.; Menter, Florian R.
1993-01-01
A new oil-fringe imaging system skin friction (FISF) technique to measure skin friction on wind tunnel models is presented. In the method used to demonstrate the technique, lines of oil are applied on surfaces that connect the intended sets of measurement points, and then a wind tunnel is run so that the oil thins and forms interference fringes that are spaced in proportion to local skin friction. After a run the fringe spacings are imaged with a CCD-array digital camera and measured on a computer. Skin friction and transition measurements on a two-dimensional wing are presented and compared with computational predictions.
Boundary layers and resistance on liquid motion with only slight friction
NASA Technical Reports Server (NTRS)
1980-01-01
The laws of fluid motion are examined systematically for the case where friction is assumed to be very slight. Calculations are carried out with the appropriate differential equation and practical investigations are illustrated.
A skin friction correlation for rough turbulent boundary layers with pressure gradients
NASA Astrophysics Data System (ADS)
Abd Rabbo, M. F.; Zahran, M. S.; Mawlood, M. K.
This paper presents a computational scheme for flow over a rough surface subjected to a pressure gradient, with the wall function of the scheme modified to account for external pressure variation and surface roughness. It is shown that the flow characteristics predicted by this computational scheme agree well with available experimental data. By performing numerical experiments, an empirical relationship was deduced for predicting rough flow skin friction under pressure gradients. The relationship was tested against other experimental data and alternative empirical formulas, showing good agreement.
NASA Astrophysics Data System (ADS)
Ferrante, Antonino
Experimental evidence during the past three decades indicates that injection of gaseous microbubbles into a liquid turbulent boundary layer over a flat plate or over axisymmetrical bodies can reduce the skin-friction by as much as 80% from its value without bubble injection. However, the basic physical mechanisms responsible for that reduction are not yet fully understood. The present study is concerned with the direct numerical simulation (DNS) of the effects of dispersed gaseous bubbles on the dynamics of wall turbulence with the objective of explaining the physical mechanisms responsible for the reduction of skin-friction. First, the DNS of a single-phase spatially developing turbulent boundary layer over a flat plate was performed. A robust method for generating turbulent inflow conditions was developed. The method is a modification of that of Lund, Wu and Squires (1998). This modification is essential for sustaining the production rate of turbulence kinetic energy near the wall throughout the domain. The DNS is validated by comparing the results with the experimental data of DeGraaff & Eaton (2000) at Retheta = 1430. Then, the DNS of a bubble-laden wall bounded turbulent flow was performed using the Eulerian-Lagrangian approach for the two-way coupling case. In addition to the two-way coupling force, all terms of the Navier-Stokes equations of the carrier fluid include the instantaneous local volume fraction of the bubbles. The carrier fluid is laden with microbubbles for different values of the mean void fraction ranging from ?v = 0.001 to 0.02, while keeping the bubble diameter equal to 2.4 viscous length scales (or wall units). The DNS results show that the presence of bubbles creates a local positive divergence of the fluid velocity, ? · U > 0, generating a positive mean velocity normal to (and away from) the wall which, in turn, reduces the mean streamwise velocity and displaces the quasi-streamwise longitudinal vortical structures away from the wall. This displacement has two main effects: (1) it increases the spanwise gaps between the wall streaks associated with the sweep events and reduces the streamwise velocity in these streaks, thus reducing the skin-friction by up to 20% for ?v = 0.02, and (2) it moves the location of peak Reynolds stress production away from the wall to a zone of a smaller transverse gradient of the mean streamwise velocity (i.e. smaller mean shear), thus reducing the production rate of turbulence kinetic energy and enstrophy. Furthermore, for different orientation of the gravitational acceleration vector, buoyancy can enhance (reduce) the 'velocity divergence effect' by increasing (reducing) the local concentration of bubbles near the plate in the case of plate-on-top (plate-on-bottom), by pushing the bubbles towards (away from) the plate in agreement with the experimental results of Madavan et al. (1984, 1985).
Effect of Boundary Layer Thickness and Entropy Layer on Boundary Layer Combustion
R. M. Kirchhartz; D. J. Mee; R. J. Stalker
This project investigates the possibilities of scramjet combustor performance enhancement by reducing the skin friction through boundary layer combustion. Experiments were conducted in the T4 Stalker tube to investigate the influence of boundary layer thickness and entropy layers on the ignition of a hydrogen air mixture near the wall of a constant area duct. The hydrogen was injected tangentially from
NASA Technical Reports Server (NTRS)
Barr, P. K.
1980-01-01
An analysis is presented of the reliability of various generally accepted empirical expressions for the prediction of the skin-friction coefficient C/sub f/ of turbulent boundary layers at low Reynolds numbers in zero-pressure-gradient flows on a smooth flat plate. The skin-friction coefficients predicted from these expressions were compared to the skin-friction coefficients of experimental profiles that were determined from a graphical method formulated from the law of the wall. These expressions are found to predict values that are consistently different than those obtained from the graphical method over the range 600 Re/sub theta 2000. A curve-fitted empirical relationship was developed from the present data and yields a better estimated value of C/sub f/ in this range. The data, covering the range 200 Re/sub theta 7000, provide insight into the nature of transitional flows. They show that fully developed turbulent boundary layers occur at Reynolds numbers Re/sub theta/ down to 425. Below this level there appears to be a well-ordered evolutionary process from the laminar to the turbulent profiles. These profiles clearly display the development of the turbulent core region and the shrinking of the laminar sublayer with increasing values of Re/sub theta/.
NASA Astrophysics Data System (ADS)
Klein, E. C.; Flesch, L. M.; Holt, W. E.
2009-12-01
We present dynamic solutions for the seismogenic layer of the India-Eurasia collision zone. We exploit a forward dynamic modeling approach, where body force distributions, inferred lateral variations in linear effective viscosity, and known far-field velocity boundary conditions are defined. Body forces are the differences in gravity potential energy per unit area (GPE), which are calculated as the depth integral of vertical stress from the surface down to a common depth reference (20 km below sea level). In our models of the seismogenic layer, depth-integrated viscosities are proportional to the assumed long-term friction on faults and inversely proportional to the long-term strain rates. Lateral variations in linear effective viscosity of the modeled layer span over 5 orders of magnitude. The velocity boundary conditions are defined using long-term plate motion estimates. Self-consistent dynamic strain rate tensor solutions to the force-balance equations were solved and tested for best-fit match with kinematic strain rate and velocity fields of central and east Asia defined by a large set of Quaternary fault observations. We investigate models using a range of long-term fault friction coefficients from 0.02 - 1.0 under hydrostatic pore pressure conditions. Assessment of fitness of the dynamic solutions to deformation indicators is evaluated using four measures. The forward dynamic strain rate tensor styles are scored by misfit to the kinematic strain rate tensor styles inferred from Kostrov summation of Quaternary fault observations. The ratio of dynamic strain rates to kinematic model strain rates are compared. Dynamic model velocity fields are scored via reduced chi-square misfit with the long-term kinematic model velocity field defined by Quaternary fault observations. Dynamic model velocity fields are scored via reduced chi-square misfit with GPS velocity observations. Preliminary results indicate that models defined with low fault friction (0.05 < ? < 0.40) achieve a better fit to Quaternary deformation indicators than models with models with high fault friction coefficients. Such models indicate that deviatoric stresses associated with internal crustal buoyancies dominate over deviatoric stresses associated with velocity boundary conditions within the Tibetan Plateau. Conversely, deviatoric stresses associated with boundary conditions dominate over deviatoric stresses associated with internal crustal buoyancies within Tarim Basin and the Tien Shan.
Heat Transfer Through Turbulent Friction Layers
NASA Technical Reports Server (NTRS)
Reichardt, H.
1943-01-01
The "general Prandtl number" Pr(exp 1) - A(sub q)/A Pr, aside from the Reynolds number determines the ratio of turbulent to molecular heat transfer, and the temperature distribution in turbulent friction layers. A(sub q) = exchange coefficient for heat; A = exchange coefficient for momentum transfer. A formula is derived from the equation defining the general Prandtl number which describes the temperature as a function of the velocity. For fully developed thermal boundary layers all questions relating to heat transfer to and from incompressible fluids can be treated in a simple manner if the ratio of the turbulent shear stress to the total stress T(sub t)/T in the layers near the wall is known, and if the A(sub q)/A can be regarded as independent of the distance from the wall. The velocity distribution across a flat smooth channel and deep into the laminar sublayer was measured for isothermal flow to establish the shear stress ratio T(sub t)/T and to extend the universal wall friction law. The values of T(sub t)/T which resulted from these measurements can be approximately represented by a linear function of the velocity in the laminar-turbulent transition zone. The effect of the temperature relationship of the material values on the flow near the wall is briefly analyzed. It was found that the velocity at the laminar boundary (in contrast to the thickness of the laminar layer) is approximately independent of the temperature distribution. The temperature gradient at the wall and the distribution of temperature and heat flow in the turbulent friction layers were calculated on the basis of the data under two equations. The derived formulas and the figures reveal the effects of the Prandtl number, the Reynolds number, the exchange quantities and the temperature relationship of the material values.
NASA Astrophysics Data System (ADS)
Khomenko, Alexei V.; Lyashenko, I. A.
2012-10-01
A rheological model and a thermodynamic model are proposed for describing the melting of an ultrathin lubricant film between atomically flat solid surfaces. Hysteresis phenomena are considered, allowing for the stress and strain dependence of the lubricant shear modulus. The self-similar regime of lubricant melting is studied taking the additive noncorrelated noise of basic parameters into account. The regions of dry, sliding, and stick-slip friction are determined in the phase diagram. Shear stress time series are obtained by numerically analyzing the Langevin equation and are then subjected to multifractal fluctuation analysis. The dependence of the stationary friction force on the lubricant temperature and on the shear velocity of rubbing surfaces is investigated.
NASA Astrophysics Data System (ADS)
Mori, Kiyoto; Imanishi, Hiroki; Tsuji, Yoshiyuki; Hattori, Tomohiro; Matsubara, Masaharu; Mochizuki, Shinsuke; Inada, Masaru; Kasiwagi, Tadashi
2009-04-01
The total skin friction on a flat plate is directly measured by using a towing tank up to Reynolds number ReL sime 107 (or R? sime 104). Plates of 3.3 and 4.3 m in length are towed in still water, balancing the vertical weight by small flotation devices, and their drag force is measured by a highly sensitive load cell. We have developed a new technique to correct wave-making resistance, pressure resistance and drag on a turbulence simulator. When the measured total drag is converted into local drag, it is found that the local frictional resistance is about 6% smaller than that given by the Kármán-Schoenherr formula. But it is consistent with the values obtained by the floating element technique, oil film interferometry and asymptotic evaluations.
The Atmospheric Boundary Layer
ERIC Educational Resources Information Center
Tennekes, Hendrik
1974-01-01
Discusses some important parameters of the boundary layer and effects of turbulence on the circulation and energy dissipation of the atmosphere. Indicates that boundary-layer research plays an important role in long-term forecasting and the study of air-pollution meteorology. (CC)
B. Stefes; H.-H. Fernholz
2004-01-01
This experimental investigation deals with the influence of turbulence intensities Tu??13% and a ratio of integral length scale ?11 to boundary layer thickness ?99.5 smaller than two on an axisymmetric turbulent boundary layer with zero pressure gradient. The free-stream turbulence was generated by jets injected normal to the flow upstream of the test section. The boundary layer had a Reynolds
Boundary Layer Theory. Part 1; Laminar Flows
NASA Technical Reports Server (NTRS)
Schlichting, H.
1949-01-01
The purpose of this presentation is to give you a survey of a field of aerodynamics which has for a number of years been attracting an ever growing interest. The subject is the theory of flows with friction, and, within that field, particularly the theory of friction layers, or boundary layers. As you know, a great many considerations of aerodynamics are based on the so-called ideal fluid, that is, the frictionless incompressible fluid. By neglect of compressibility and friction the extensive mathematical theory of the ideal fluid (potential theory) has been made possible.
Friction microprobe investigation of particle layer effects on sliding friction
NASA Astrophysics Data System (ADS)
Blau, P. J.
Interfacial particles (third-bodies), resulting from wear or external contamination, can alter and even dominate the frictional behavior of solid-solid sliding in the absence of effective particle removal processes (e.g., lubricant flow). A unique friction microprobe, developed at Oak Ridge National Laboratory, was used to conduct fine-scale friction studies using 1.0 mm diameter stainless steel spheres sliding on several sizes of loose layers of fine aluminum oxide powders on both aluminum and alumina surfaces. Conventional pin-on-disk experiments were conducted to compare behavior with the friction microprobe results. The behavior of the relatively thick particle layers was found to be independent of the nature of underlying substrate, substantiating previous work by other investigators. The time-dependent behavior of friction, for a spherical macrocontact starting from rest, could generally be represented by a series of five rather distinct phases involving static compression, slider breakaway, transition to steady state, and dynamic layer instability. A friction model for the steady state condition, which incorporates lamellar powder layer behavior, is described.
Parabolic - hyperbolic boundary layer
Monica De Angelis
2012-07-09
A boundary value problem related to a parabolic higher order operator with a small parameter is analized. When the small parameter tends to zero, the reduced operator is hyperbolic. When t tends to infinity a parabolic hyperbolic boundary layer appears. In this paper a rigorous asymptotic approximation uniformly valid for all t is established.
Friction and noise-induced coherent structures in boundary lubrication
Tovstopyat-Nelip; Hentschel
2000-04-01
We examine the effect of stick-slip boundary conditions on the friction generated by a molecularly thin layer of a liquid lubricant separating two plates. For one-dimensional compressible flows, noise-induced coherent dissipative structures on a micron scale are generated due to cooperation between the external drive and the thermal noise. As a function of the thermal noise these structures show a peak in their amplitudes similar to stochastic resonance. At low velocities a reduction in friction with increasing thermal noise is observed. PMID:11088104
Friction layers and friction films on PMC brake pads
W. Österle; I. Urban
2004-01-01
A rather new tool, the focused ion beam (FIB) technique, was used to characterise superficial layers at micro-contact areas of a commercial brake pad. The friction material was a polymer matrix composite (PMC) with approximately 50% metal content (semi-metallic) and the counter part was a cast iron rotor. Though the contact areas were not visible as topographic features, they could
Investigation of lubricants under boundary friction
NASA Technical Reports Server (NTRS)
Heidebroek, E; Pietsch, E
1942-01-01
Numerous observations of such lubrication processes within range of boundary friction on journal bearings and gear tooth profiles have strengthened the supposition that it should be possible to study the attendant phenomena with engineering methods and equipment. These considerations formed the basis of the present studies, which have led to the discovery of relations governing the suitability of bearing surfaces and the concept of "lubricating quality."
MEASUREMENT OF WALL SHEAR STRESS IN TURBULENT BOUNDARY LAYERS USING AN OPTICAL INTERFEROMETRY METHOD
Marusic, Ivan
MEASUREMENT OF WALL SHEAR STRESS IN TURBULENT BOUNDARY LAYERS USING AN OPTICAL INTERFEROMETRY meter was built and was used to measure skin friction in a series of turbulent boundary layer ows scaling velocity for turbulent boundary layers. Unfortunately, direct measurement of skin friction
NASA Technical Reports Server (NTRS)
Adamson, T. C., Jr.; Liou, M. S.; Messiter, A. F.
1980-01-01
An asymptotic description is derived for the interaction between a shock wave and a turbulent boundary layer in transonic flow, for a particular limiting case. The dimensionless difference between the external flow velocity and critical sound speed is taken to be much smaller than one, but large in comparison with the dimensionless friction velocity. The basic results are derived for a flat plate, and corrections for longitudinal wall curvature and for flow in a circular pipe are also shown. Solutions are given for the wall pressure distribution and the shape of the shock wave. Solutions for the wall shear stress are obtained, and a criterion for incipient separation is derived. Simplified solutions for both the wall pressure and skin friction distributions in the interaction region are given. These results are presented in a form suitable for use in computer programs.
Diverging boundary layers with zero streamwise pressure gradient
NASA Technical Reports Server (NTRS)
Pauley, Wayne R.; Eaton, John K.; Cutler, Andrew D.
1989-01-01
The effects of spanwise divergence on the boundary layer forming between a pair of embedded streamwise vortices with the common flow between them directed toward the wall was studied. Measurements indicate that divergence controls the rate of development of the boundary layer and that large divergence significantly retards boundary layer growth and enhances skin friction. For strongly diverging boundary layers, divergence accounts for nearly all of the local skin friction. Even with divergence, however, the local similarity relationships for two-dimensional boundary layers are satisfactory. Although divergence modifies the mean development of the boundary layer, it does not significantly modify the turbulence structure. In the present experiments with a zero streamwise pressure gradient, it was found that spanwise divergence dit not significantly affect the Reynolds stress and the turbulent triple product distributions.
Boundary layer calculation for analysis and design
H. E. Weber
1977-01-01
A simple, semi-empirical method for calculating the laminar, transition, and turbulent boundary layer with arbitrary free stream pressure gradient is developed. Good correlation is obtained with data on general turbulent flows, two-dimensional diffuser flows, and the cylinder in cross-flow. Skin friction coefficient, momentum thickness Reynolds number, and free stream pressure gradient parameter correlation employs a simple lag theory. With the
Progress in modeling hypersonic turbulent boundary layers
NASA Technical Reports Server (NTRS)
Zeman, Otto
1993-01-01
A good knowledge of the turbulence structure, wall heat transfer, and friction in turbulent boundary layers (TBL) at high speeds is required for the design of hypersonic air breathing airplanes and reentry space vehicles. This work reports on recent progress in the modeling of high speed TBL flows. The specific research goal described here is the development of a second order closure model for zero pressure gradient TBL's for the range of Mach numbers up to hypersonic speeds with arbitrary wall cooling requirements.
Microbubble drag reduction in liquid turbulent boundary layers
Merkle, C.L.; Deutsch, S. [Pennsylvania State Univ., University Park, PA (United States)
1992-12-01
The interactions between a dense cloud of small bubbles and a liquid turbulent boundary layer are reviewed on the basis of available experimental observations to understand and quantify their capability for reducing skin friction. Gas bubbles are generally introduced into the boundary layer by injection through a porous surface or by electrolysis. After injection, the bubbles stay near the wall in boundary-layer-like fashion giving rise to strong gradients in both velocity and gas concentration. In general, the magnitude of the skin friction reduction increases as the volume of bubbles in the boundary layer is increased until a maximum skin friction reduction of typically 80-90% of the undisturbed skin friction level is reached. The volumetric gas flow required for this maximum is nominally equal to the volume flow of the liquid in the boundary layer. Bubble size estimates indicate that in most microbubble experiments the bubbles have been intermediate in size between the inner and outer scales of the undisturbed boundary layer. Additional studies with other nondimensional bubble sizes would be useful. However, the bubble size is most likely controlled by the injection process, and considerably different conditions would be required to change this ratio appreciably. The trajectories of the bubble clouds are primarily determined by the random effects of turbulence and bubble-bubble interactions. The effects of buoyancy represent a weaker effect. The trajectories are unlike the deterministic trajectory of an individual bubble in a time-averaged boundary layer. Bubbles are most effective in high speed boundary layers and, for the bubble sizes tested to date, produce an effect that persists for some on hundred boundary layer thicknesses. Modeling suggests that microbubbles reduce skin friction by increasing the turbulence Reynolds number in the buffer layer in a manner similar to polymers.
Skin friction topology in a region enclosed by penetrable boundary
NASA Astrophysics Data System (ADS)
Liu, Tianshu; Woodiga, Sudesh; Ma, Tian
2011-12-01
High-resolution skin friction fields in separated flows on a low-aspect-ratio rectangular wing are obtained by using quantitative global skin friction diagnostics based on surface luminescent oil visualizations. The topological features like the isolated singular points and the boundary switch points in regions enclosed by penetrable boundaries are identified. The conservation law given by the Poincare-Bendixson index formula for the numbers of the isolated singular points and the boundary switch points is used as a general approach to analyze the topological structure of a skin friction field in a singly connected region enclosed by a penetrable boundary in the separated flows.
NASA Astrophysics Data System (ADS)
Costigliola, V.
2010-09-01
It has long been known that specific atmospheric processes, such as weather and longer-term climatic fluctuations, affect human health. The biometeorological literature refers to this relationship as meteorotropism, defined as a change in an organism that is correlated with a change in atmospheric conditions. Plenty of (patho)physiological functions are affected by those conditions - like the respiratory diseases - and currently it is difficult to put any limits for pathologies developed in reply. Nowadays the importance of atmospheric boundary layer and health is increasingly recognised. A number of epidemiologic studies have reported associations between ambient concentrations of air pollution, specifically particulate pollution, and adverse health effects, even at the relatively low concentrations of pollution found. Since 1995 there have been over twenty-one studies from four continents that have explicitly examined the association between ambient air pollutant mixes and daily mortality. Statistically significant and positive associations have been reported in data from various locations around the world, all with varying air pollutant concentrations, weather conditions, population characteristics and public health policies. Particular role has been given to atmospheric boundary layer processes, the impact of which for specific patient-cohort is, however, not well understood till now. Assessing and monitoring air quality are thus fundamental to improve Europe's welfare. One of current projects run by the "European Medical Association" - PASODOBLE will develop and demonstrate user-driven downstream information services for the regional and local air quality sectors by combining space-based and in-situ data with models in 4 thematic service lines: - Health community support for hospitals, pharmacies, doctors and people at risk - Public information for regions, cities, tourist industry and sporting event organizers - Compliance monitoring support on particulate matter for regional environmental agencies - Local forecast model evaluation support for local authorities and city bodies. Giving value to the above listed aspects, PASODOBLE objectives are following: - Evolution of existing and development of new sustainable air quality services for Europe on regional and local scales - Development and testing of a generic service framework for coordinated input data acquisition and customizable user-friendly access to services - Utilization of multiple cycles of delivery, use and assessment versus requirements and market planning in cooperation with users - Promotion and harmonisation of best practise tools for air quality communities. Further European multidisciplinary projects should be created to better understand the most prevalent atmospheric factors to be impacted in predictive, preventive and personalised medicine considered as the central concept for future medicine.
THE MARTIAN ATMOSPHERIC BOUNDARY LAYER
Spiga, Aymeric
THE MARTIAN ATMOSPHERIC BOUNDARY LAYER A. Petrosyan,1 B. Galperin,2 S. E. Larsen,3 S. R. Lewis,4 A September 2011. [1] The planetary boundary layer (PBL) represents the part of the atmosphere the atmosphere and the surface. On Mars, this represents the lowest 10 km of the atmosphere during the daytime
Boundary-layer moisture regimes
NASA Technical Reports Server (NTRS)
Mahrt, L.
1991-01-01
Boundary-layer moisture fluctuations are estimated by analyzing HAPEX and FIFE data collected on 52 aircraft flight legs. Moisture fluctuations were given considerable attention in the HAPEX flights, which were 120 km long, and flew 150 m over one area of homogeneous terrain. The repetitions permit statistical consideration of motion characteristics on horizontal scales. Two prototypical boundary layer regimes are discovered: the entrainment-drying boundary layer, and the moistening boundary layer. The latter demonstrates positive moisture skewness close to the surface related to high surface evaporation. The former is characterized by boundary-layer instability, weak surface evaporation, and drier air aloft, leading to unexpected negative moisture skewness. It is noted that 10 km moisture variations with horizontal gradients are often found in narrow zones of horizontal convergence, called mesoscale moisture fronts. A negative moisture to temperature correlation, due to surface energy budget inhomogeneity, is shown to incur large mesoscale variations of relative humidity.
Flow unsteadiness effects on boundary layers
NASA Technical Reports Server (NTRS)
Murthy, Sreedhara V.
1989-01-01
The development of boundary layers at high subsonic speeds in the presence of either mass flux fluctuations or acoustic disturbances (the two most important parameters in the unsteadiness environment affecting the aerodynamics of a flight vehicle) was investigated. A high quality database for generating detailed information concerning free-stream flow unsteadiness effects on boundary layer growth and transition in high subsonic and transonic speeds is described. The database will be generated with a two-pronged approach: (1) from a detailed review of existing literature on research and wind tunnel calibration database, and (2) from detailed tests in the Boundary Layer Apparatus for Subsonic and Transonic flow Affected by Noise Environment (BLASTANE). Special instrumentation, including hot wire anemometry, the buried wire gage technique, and laser velocimetry were used to obtain skin friction and turbulent shear stress data along the entire boundary layer for various free stream noise levels, turbulence content, and pressure gradients. This database will be useful for improving the correction methodology of applying wind tunnel test data to flight predictions and will be helpful for making improvements in turbulence modeling laws.
Turbulent boundary layers developing over compliant surfaces
NASA Astrophysics Data System (ADS)
Lekoudis, S. G.; Sengupta, T.
1983-05-01
The problem of reducing drag due to skin friction remains of interest. This is the case because of the significant benefits that would result from an application of a drag reducing scheme on airplanes, ships or underwater vehicles. One of the techniques that have been proposed for such a scheme is wall compliance. Wall compliance could, in principle, work in two ways: either it could delay transition, or it could modify the inner part of a turbulent boundary layer so that reduced skin friction would result. The objective of this research program was to develop prediction techniques for high Reynolds number turbulent flows over compliant surfaces. This objective was pursued by evaluating the wall induced Reynolds stresses using solutions of the liner momentum equations.
Removing Boundary Layer by Suction
NASA Technical Reports Server (NTRS)
Ackeret, J
1927-01-01
Through the utilization of the "Magnus effect" on the Flettner rotor ship, the attention of the public has been directed to the underlying physical principle. It has been found that the Prandtl boundary-layer theory furnishes a satisfactory explanation of the observed phenomena. The present article deals with the prevention of this separation or detachment of the flow by drawing the boundary layer into the inside of a body through a slot or slots in its surface.
Velocity profiles for turbulent boundary layers under freestream turbulence
NASA Astrophysics Data System (ADS)
Hoffmann, J. A.; Mohammadi, K.
1991-09-01
Correlations for changes of skin friction coefficients and wake parameters, relative to the low freestream turbulence condition, are presented for the case of turbulent boundary layers under freestream turbulence with zero and adverse pressure gradients. The turbulent boundary layers were evaluated on a plate in a wind tunnel using a monoplane rod set turbulence generator; comparisons were also made using the data of several other investigators. The results, which define the velocity profiles within the boundary layers, were found to collapse for a large range of the pressure gradient parameter.
Air flow in the boundary layer near a plate
NASA Technical Reports Server (NTRS)
Dryden, Hugh L
1937-01-01
The published data on the distribution of speed near a thin flat plate with sharp leading edge placed parallel to the flow (skin friction plate) are reviewed and the results of some additional measurements are described. The purpose of the experiments was to study the basic phenomena of boundary-layer flow under simple conditions.
Aero-Optical Effects of Supersonic Boundary Layers Stanislav Gordeyev
Gordeyev, Stanislav
, Colorado 80840 DOI: 10.2514/1.J051266 Aero-optical measurements of a zero-pressure-gradient, supersonic. The streamwise correlation function for the supersonic boundary layer revealed the presence of a pseudoperiodic in Eq. (11) C = function, defined in Eq. (12) Cf = local skin friction Cw = constant, defined in Eq. (4a
Thermodynamics and kinetics of boundary friction
Lyashenko, I A; Metlov, L S
2010-01-01
A deterministic theory describing the behavior of an ultrathin lubricant film between two atomically-smooth solid surfaces is proposed. For the description of lubricant state the parameter of excess volume arising due to chaotization of solid medium structure in the course of melting is introduced. Thermodynamic and shear melting is described consistently. Dependences of friction force on temperature of lubricant, shear velocity of rubbing surfaces, and pressure upon surfaces are analyzed. Within the framework of a simple tribological model the stick-slip mode of friction, when the lubricant periodically melts and solidifies, is described. The obtained results are qualitatively compared with the experimental data.
Atmospheric Boundary Layer (ABL) Spring 2015
Collett Jr., Jeffrey L.
ATS 623 Atmospheric Boundary Layer (ABL) Spring 2015 Tues and Thurs 9 a.m. (2 contact hours per@atmos.colostate.edu) Course notes: Atmospheric Boundary Layer Notes (2015) by Richard H. Johnson (available online at http · Schlichting (1960) BoundaryLayer Theory · Sorbjan (1989) Structure of the Atmospheric Boundary Layer
Physics of magnetospheric boundary layers
NASA Technical Reports Server (NTRS)
Cairns, Iver H.
1995-01-01
This final report was concerned with the ideas that: (1) magnetospheric boundary layers link disparate regions of the magnetosphere-solar wind system together; and (2) global behavior of the magnetosphere can be understood only by understanding its internal linking mechanisms and those with the solar wind. The research project involved simultaneous research on the global-, meso-, and micro-scale physics of the magnetosphere and its boundary layers, which included the bow shock, the magnetosheath, the plasma sheet boundary layer, and the ionosphere. Analytic, numerical, and simulation projects were performed on these subjects, as well as comparisons of theoretical results with observational data. Other related activity included in the research included: (1) prediction of geomagnetic activity; (2) global MHD (magnetohydrodynamic) simulations; (3) Alfven resonance heating; and (4) Critical Ionization Velocity (CIV) effect. In the appendixes are list of personnel involved, list of papers published; and reprints or photocopies of papers produced for this report.
Boundary layer simulator (BLIMPJ) improvement
NASA Technical Reports Server (NTRS)
Praharaj, S. C.; Schmitz, C. P.
1987-01-01
Improvements were made to advance the current Boundary Layer Integral Matrix Procedure - Version J (BLIMPJ) containing previously modeled simplified calculation methods accounting for surface roughness, relaminarization, and thick boundary layer effects. These improvements have potential applications in the design of the future Orbit Transfer Vehicles (OTV) engines. The coded wall roughness module was validated successfully against measured data from the LeRC 60-15 degree half-angle conical nozzle. The relaminarization model was modified to include wall cooling and roughness based on a set of test data from the same nozzle. The model was compared against typical data sets for validation in different flow regimes. The thrust loss calculation for thick boundary layer effects was computerized where the iterations between TDK and BLIMPJ proceeded automatically until convergence was achieved. An example is given for a typical OTV nozzle with an area ratio 1293.
Frictional anisotropy under boundary lubrication: effect of surface texture.
Ajayi, O. O.; Erck, R. A.; Lorenzo-Martin, C.; Fenske, G. R.; Energy Systems
2009-06-15
The friction coefficient was measured under boundary lubrication with a ball-on-flat contact configuration in unidirectional sliding. The ball was smooth and hardened 52100 steel. Discs were made from case-carburized and hardened 4620, annealed 1080, and 1018 steels with directionally ground surfaces. A synthetic lubricant of stock polyalphaolefin was used for testing. During testing with each material, a frictional spike was observed whenever the ball slid parallel to the grinding ridge on the disc surface. The average friction coefficient for all tests was about 0.1, which is typical for the boundary lubrication regime. The magnitude of the frictional spikes, which reached as high as a friction coefficient of 0.25, and their persistence depended on the hardness of the disc surface. On the basis of elastohydrodynamic theory, coupled with the observation of severe plastic deformation on the ridges parallel to the sliding direction, the frictional spike could be due to localized plastic deformation on the disc surface at locations of minimal thickness for the lubricant fluid film. This hypothesis was further supported by lack of frictional spikes in tests using discs coated with a thin film of diamond-like carbon, in which plastic deformation is minimal.
Heat transfer to the transpired turbulent boundary layer.
NASA Technical Reports Server (NTRS)
Kays, W. M.
1972-01-01
This paper contains a summarization of five years work on an investigation on heat transfer to the transpired turbulent boundary layer. Experimental results are presented for friction coefficient and Stanton number over a wide range of blowing and suction for the case of constant free-stream velocity, holding certain blowing parameters constant. The problem of the accelerated turbulent boundary layer with transpiration is considered, experimental data are presented and discussed, and theoretical models for solution of the momentum equation under these conditions are presented. Data on turbulent Prandtl number are presented so that solutions to the energy equation may be obtained. Some examples of boundary layer heat transfer and friction coefficient predictions are presented using one of the models discussed, employing a finite difference solution method.
Physics of magnetospheric boundary layers
NASA Technical Reports Server (NTRS)
Cairns, I. H.
1993-01-01
The central ideas of this grant are that the magnetospheric boundary layers link disparate regions of the magnetosphere together, and the global behavior of the magnetosphere can be understood only by understanding the linking mechanisms. Accordingly the present grant includes simultaneous research on the global, meso-, and micro-scale physics of the magnetosphere and its boundary layers. These boundary layers include the bow shock, magnetosheath, the plasma sheet boundary layer, and the ionosphere. Analytic, numerical and simulation projects have been performed on these subjects, as well as comparison of theoretical results with observational data. Very good progress has been made, with four papers published or in press and two additional papers submitted for publication during the six month period 1 June - 30 November 1993. At least two projects are currently being written up. In addition, members of the group have given papers at scientific meetings. The further structure of this report is as follows: section two contains brief accounts of research completed during the last six months, while section three describes the research projects intended for the grant's final period.
Experimental study of a chemically reacting turbulent boundary layer
Ng, T.M.T.
1981-09-01
Effects of a strong stepwise temperature rise and exothermic chemical reaction on the turbulent boundary layer over a flat plate were studied. For the reacting flow, ethylene-air mixture with equivalent ratio of 0.35 was used. High-speed Schlieren photography was used for visualization of the boundary layer thermal structures. Mean and rms density distributions were obtained from Rayleigh scattering intensity measurements. Mean and rms velocity distribution and some important fluctuation correlations were derived from single-component laser Doppler velocimetry measurements. Strong wall-heating causes the expansion of the heat-affected region near the surface and pushes the rest of the boundary layer uwards. The boundary layer thickness, the displacement thickness, the momentum thickness, and the friction coefficient are increased by the wall-heating. The Reynolds stress is reduced due to the density decrease.
SODAR applications for estimating boundary layer parameters
NASA Astrophysics Data System (ADS)
Capanni, Annalisa; Gualtieri, Giovanni
1999-12-01
An application of Doppler SODAR technique has been made in order to evaluate the main atmospheric variables affecting the boundary layer structure in a plain terrain. Besides directly monitoring such meteorological variables as wind profiles, the application of a number of methods and algorithms enabled the estimation of features such as atmospheric turbulence, Monin-Obukhov length, friction velocity and PBL depth, which are all crucial for both straightforward meteorological applications and as an input to atmospheric pollutant dispersion models. Such a study has been developed within a SODAR measurement campaign carried out by the Laboratorio per la Meteorologia e la Modellistica Ambientale in cooperation with the research center of ENEL/CRAM during the 1997-98 wintertime in the industrial area of Campi Bisenzio (near Florence), Italy.
Jupiter's deep magnetotail boundary layer
NASA Astrophysics Data System (ADS)
Nicolaou, G.; McComas, D. J.; Bagenal, F.; Elliott, H. A.; Ebert, R. W.
2015-06-01
In 2007 the New Horizons (NH) spacecraft flew by Jupiter for a gravity assist en route to Pluto. After closest approach on day of year (DOY) 58, 2007, NH followed a tailward trajectory that provided a unique opportunity to explore the deep jovian magnetotail and the surrounding magnetosheath. After DOY 132, 16 magnetopause crossings were observed between 1654 and 2429 Jupiter radii (Rj) along the dusk flank tailward of the planet. In some cases the crossings were identified as rapid transitions from the magnetotail to the magnetosheath and vice versa. In other cases a boundary layer was observed just inside the magnetopause. Solar Wind Around Pluto (SWAP) is an instrument on board NH that obtained spectra of low energy ions during the flyby period. We use a forward model including the SWAP instrument response to derive plasma parameters (density, temperature and velocity) which best reproduce the observations. We also vary the plasma parameters in our model in order to fit the observations more accurately on occasions where the measurements exhibit significant variability. We compare the properties of the plasma in the boundary layer with those of the magnetosheath plasma derived in our earlier work. We attempt to estimate the magnetic field in the boundary layer assuming pressure balance between it and the magnetosheath. Finally, we investigate several possible scenarios to assess if magnetopause movement and structure could cause the variations seen in the data.
Tropical cyclone boundary layer shocks
Slocum, Christopher J; Taft, Richard K; Schubert, Wayne H
2014-01-01
This paper presents numerical solutions and idealized analytical solutions of axisymmetric, $f$-plane models of the tropical cyclone boundary layer. In the numerical model, the boundary layer radial and tangential flow is forced by a specified pressure field, which can also be interpreted as a specified gradient balanced tangential wind field $v_{\\rm gr}(r)$ or vorticity field $\\zeta_{\\rm gr}(r)$. When the specified $\\zeta_{\\rm gr}(r)$ field is changed from one that is radially concentrated in the inner core to one that is radially spread, the quasi-steady-state boundary layer flow transitions from a single eyewall shock-like structure to a double eyewall shock-like structure. To better understand these structures, analytical solutions are presented for two simplified versions of the model. In the simplified analytical models, which do not include horizontal diffusion, the $u(\\partial u/\\partial r)$ term in the radial equation of motion and the $u[f+(\\partial v/\\partial r)+(v/r)]$ term in the tangential equat...
Unsteady turbulent boundary layers in swimming rainbow trout.
Yanase, Kazutaka; Saarenrinne, Pentti
2015-05-01
The boundary layers of rainbow trout, Oncorhynchus mykiss, swimming at 1.02±0.09?L?s(-1) (mean±s.d., N=4), were measured by the particle image velocimetry (PIV) technique at a Reynolds number of 4×10(5). The boundary layer profile showed unsteadiness, oscillating above and beneath the classical logarithmic law of the wall with body motion. Across the entire surface regions that were measured, local Reynolds numbers based on momentum thickness, which is the distance that is perpendicular to the fish surface through which the boundary layer momentum flows at free-stream velocity, were greater than the critical value of 320 for the laminar-to-turbulent transition. The skin friction was dampened on the convex surface while the surface was moving towards a free-stream flow and increased on the concave surface while retreating. These observations contradict the result of a previous study using different species swimming by different methods. Boundary layer compression accompanied by an increase in local skin friction was not observed. Thus, the overall results may not support absolutely the Bone-Lighthill boundary layer thinning hypothesis that the undulatory motions of swimming fish cause a large increase in their friction drag because of the compression of the boundary layer. In some cases, marginal flow separation occurred on the convex surface in the relatively anterior surface region, but the separated flow reattached to the fish surface immediately downstream. Therefore, we believe that a severe impact due to induced drag components (i.e. pressure drag) on the swimming performance, an inevitable consequence of flow separation, was avoided. PMID:25750412
Velocities, turbulence, and skin friction in a deep-sea logarithmic layer
NASA Astrophysics Data System (ADS)
Gust, Giselher; Weatherly, Georges L.
1985-05-01
Speed, turbulence, skin friction, and drag measurements made with metal-clad hot wires, epoxy-coated hot films, and Savonius rotors are reported for a deep-sea boundary layer at a water depth of ˜5000 m. They include data from heights z < 30 cm, a region hitherto only investigated in detail by Chriss and Caldwell (1982) for a shelf site. A mean speed logarithmic layer was observed at 3 < z < 200 cm. The difference between the friction velocity u*log determined from the speed profiles and the skin friction u*skin measured by flush-mounted hot films was statistically significant at the 95% level in five out of eight analyzed burst intervals. This result suggests form-drag influence on the vertical mean flow profile. Although identified from the mean speed data as a hydrodynamically rough boundary layer, the turbulence and bottom stress intensities at the deep-sea site were found to be reduced by more than 40% compared to smooth-wall open-channel flow and planetary boundary layers. Applicability of the universal law of the wall has not been confirmed for this deep-sea boundary layer.
Compressible turbulent boundary layer interaction experiments
NASA Technical Reports Server (NTRS)
Settles, G. S.; Bogdonoff, S. M.
1981-01-01
Four phases of research results are reported: (1) experiments on the compressible turbulent boundary layer flow in a streamwise corner; (2) the two dimensional (2D) interaction of incident shock waves with a compressible turbulent boundary layer; (3) three dimensional (3D) shock/boundary layer interactions; and (4) cooperative experiments at Princeton and numerical computations at NASA-Ames.
Novel parameterisations in the boundary layer
Plant, Robert
Novel parameterisations in the boundary layer Bob Plant Department of Meteorology, University with the boundary layer: perspectives from ensemble forecasting Novel parameterisations in the boundary layer p.1 Mesoscale modelling if l and turbulence is sub-filter Terra incognita where l Wyngaard 2004 Novel
Outline of research on oscillating boundary layers
NASA Technical Reports Server (NTRS)
Cousteix, J.
1979-01-01
The state of the art in the field of unsteady boundary layers is outlined with emphasis on turbulent boundary layers. The unsteady flows considered are mainly periodic with the external velocity varying around a zero or nonzero mean time value. The principal results obtained on laminar boundary layers are also presented.
Study of boundary-layer transition using transonic-cone preston tube data
NASA Technical Reports Server (NTRS)
Reed, T. D.; Moretti, P. M.
1980-01-01
The laminar boundary layer on a 10 degree cone in a transonic wind tunnel was studied. The inviscid flow and boundary layer development were simulated by computer programs. The effects of pitch and yaw angles on the boundary layer were examined. Preston-tube data, taken on the boundary-layer-transition cone in the NASA Ames 11 ft transonic wind tunnel, were used to develope a correlation which relates the measurements to theoretical values of laminar skin friction. The recommended correlation is based on a compressible form of the classical law-of-the-wall. The computer codes successfully simulates the laminar boundary layer for near-zero pitch and yaw angles. However, in cases of significant pitch and/or yaw angles, the flow is three dimensional and the boundary layer computer code used here cannot provide a satisfactory model. The skin-friction correlation is thought to be valid for body geometries other than cones.
Tribological Properties of Surface Layer with Boron in Friction Pairs
NASA Astrophysics Data System (ADS)
Lubas, Janusz
The aim of the present work is to determine the influence of technologically produced boron surface layers on the friction parameters in the sliding pairs under the conditions of mixed friction. The tribological evaluation included ion nitrided, pack borided, laser borided, quenched and tempered surface layers and TiB2 coating deposited on 38CrAlMo5-10, 46Cr2 and 30MnB4 steels. Modified surface layers of annular samples were matched under test conditions with counter-sample made from AlSn20 bearing alloy. Tested sliding pairs were lubricated with 15 W/40 Lotos mineral engine oil. The tribological tests were conducted on a T-05 block on ring tester. The applied steel surface layer modification with boron allows surface layers to be created with pre-determined tribological characteristics required for the elements of kinematic pairs operating in the conditions of sliding friction. Pack boronizing reduces the friction coefficient during the start-up of the frictional pair and the maximum start-up resistance level is similar to the levels of pairs with nitrided surface layers.
Nonequilibrium chemistry boundary layer integral matrix procedure
NASA Technical Reports Server (NTRS)
Tong, H.; Buckingham, A. C.; Morse, H. L.
1973-01-01
The development of an analytic procedure for the calculation of nonequilibrium boundary layer flows over surfaces of arbitrary catalycities is described. An existing equilibrium boundary layer integral matrix code was extended to include nonequilibrium chemistry while retaining all of the general boundary condition features built into the original code. For particular application to the pitch-plane of shuttle type vehicles, an approximate procedure was developed to estimate the nonequilibrium and nonisentropic state at the edge of the boundary layer.
Reynolds shear stress measurements in a separated boundary layer flow
David M. Driver
1991-01-01
Turbulence measurements were obtained for two cases of boundary layer flow with an adverse pressure gradient, one attached and the other separated. A three-component laser Doppler velocimeter system was used to measure three mean velocity components, all six Reynolds stress components, and all ten velocity triple product correlations. Independent measurements of skin-friction obtained with a laser oil-flow interferometer were used
Modelling the transitional boundary layer
NASA Technical Reports Server (NTRS)
Narasimha, R.
1990-01-01
Recent developments in the modelling of the transition zone in the boundary layer are reviewed (the zone being defined as extending from the station where intermittency begins to depart from zero to that where it is nearly unity). The value of using a new non-dimensional spot formation rate parameter, and the importance of allowing for so-called subtransitions within the transition zone, are both stressed. Models do reasonably well in constant pressure 2-dimensional flows, but in the presence of strong pressure gradients further improvements are needed. The linear combination approach works surprisingly well in most cases, but would not be so successful in situations where a purely laminar boundary layer would separate but a transitional one would not. Intermittency-weighted eddy viscosity methods do not predict peak surface parameters well without the introduction of an overshooting transition function whose connection with the spot theory of transition is obscure. Suggestions are made for further work that now appears necessary for developing improved models of the transition zone.
Friction of solid bodies with formation of a melt layer
A. A. Shugai
1999-01-01
Some laws governing friction of solid bodies with formation of a developed layer of melt are studied. In contrast to [1],\\u000a we study a case when a finite body moves along a melting substrate (half-plane) with the heat required for melting being liberated\\u000a by frictional heat release or from a heat flux from the body. To determine the outflow of
Turbulent oceanic western-boundary layers at low latitude
NASA Astrophysics Data System (ADS)
Quam Cyrille Akuetevi, Cataria; Wirth, Achim
2013-04-01
Low latitude oceanic western-boundary layers range within the most turbulent regions in the worlds ocean. The Somali current system with the Great Whirl and the Brazilian current system with its eddy shedding are the most prominent examples. Results from analytical calculations and integration of a one layer reduced-gravity fine resolution shallow water model is used to entangle this turbulent dynamics. Two types of wind-forcing are applied: a remote Trade wind forcing with maximum shear along the equator and a local Monsoon wind forcing with maximum shear in the vicinity of the boundary. For high values of the viscosity (> 1000m2s-1) the stationary solutions compare well to analytical predictions using Munk and inertial layer theory. When lowering the friction parameter time dependence results. The onset of instability is strongly influenced by inertial effects. The unstable boundary current proceeds as a succession of anti-cyclonic coherent eddies performing a chaotic dynamics in a turbulent flow. The dynamics is governed by the turbulent fluxes of mass and momentum. We determine these fluxes by analyzing the (potential) vorticity dynamics. We demonstrate that the boundary-layer can be separated in four sub-layers, which are (starting from the boundary): (1) the viscous sub-layer (2) the turbulent buffer-layer (3) the layer containing the coherent structures and (4) the extended boundary layer. The characteristics of each sub-layer and the corresponding turbulent fluxes are determined, as are the dependence on latitude and the type of forcing. A new pragmatic method of determining the eddy viscosity, based on Munk-layer theory, is proposed. Results are compared to observations and solutions of the multi-level primitive equation model (DRAKKAR).
Investigation and modeling of frictional boundary conditions in oblique cutting of aluminum alloys
NASA Astrophysics Data System (ADS)
Kilic, Dursun Sedat
Friction at the cutting tool interface has been studied for 60 years, yet an accurate model of friction is largely unavailable, especially in operations such as turning, where the interface is inaccessible due the continuous contact between chip and tool. A historical perspective of friction in turning is provided to better understand the purpose of this thesis. The contradictions arising from different frictional boundary condition assumptions in machining were analyzed. Experimental observations were substantiated in the light of the literature review. Friction conditions at the tool chip interface were found to be more complex than the simple models of seizure followed by sliding, which is accepted in most machining models. This thesis investigated the surface topology of cutting tools in conventional turning operation, which is one of the oldest and common machining processes. Two different aluminum alloys Al-2024 and Al-6061 were used in turning experiments with carbide tools to define the frictional conditions as these alloys exhibited a wide range of frictional contacts at different machining conditions. Experiments were conducted using carbide cutting tools at a range of speeds, feed rates, and depths of cut, which are commonly utilized in industrial applications. The analysis of tool chip interface at microscopic levels revealed further details of seizure and sliding zone formation. Newer techniques developed in microscopy and surface characterization were used to characterize the interface in a non-destructive manner. Scanning electron microscopy (SEM), surface profilometer and laser scanning confocal microscopy (LSCM) techniques helped us in the understanding of the frictional boundaries. Analysis of SEM images obtained by turning experiments revealed three distinct regions whose topology is closely related to turning parameters. These different zones were named as primary sticking zone, sliding zone and secondary sticking zone. Furthermore, with the assistance of a developed computer code, the real area of contact and each different contact area were determined numerically. Therefore, this study is the first attempt in literature both identifies the frictional contact areas and computes their exact numerical values. The SEM backscattering technique showed that the workpiece material behavior is different in the built up edge and sticking areas. This finding was especially used to identify the preliminary and secondary sticking areas. Thus, it has been showed first time that the deposited layers on frictional areas show different material characteristics. With the help of tool surface image analysis, area calculation algorithm, chemical composition identification, and earlier efforts cited in the literature, we proposed a stress-model which accurately predicted experimental normal and shear forces in oblique cutting of aluminum alloys for most tested conditions.
An experimental investigation of turbulent boundary layers along curved surfaces
NASA Technical Reports Server (NTRS)
So, R. M. C.; Mellor, G. L.
1972-01-01
A curved wall tunnel was designed, and an equilibrium turbulent boundary layer was set up on the straight section preceding the curved test section. Turbulent boundary layer flows with uniform and adverse pressure distributions along convex and concave walls were investigated. Hot-wire measurements along the convex surface indicated that turbulent mixing between fluid layers was very much reduced. However, the law of the wall held and the skin friction, thus determined, correlated well with other measurements. Hot-wire measurements along the concave test wall revealed a system of longitudinal vortices inside the boundary layer and confirmed that concave curvature enhances mixing. A self-consistent set of turbulent boundary layer equations for flows along curved surfaces was derived together with a modified eddy viscosity. Solution of these equations together with the modified eddy viscosity gave results that correlated well with the present data on flows along the convex surface with arbitrary pressure distribution. However, it could only be used to predict the mean characteristics of the flow along concave walls because of the existence of the system of longitudinal vortices inside the boundary layer.
Active Boundary Layer Trip for Supersonic Flows
NASA Astrophysics Data System (ADS)
Schloegel, F.; Panigua, G.; Tirtey, S.
2009-01-01
The last decade has been full of excitement and success for the hypersonic community thanks to various Scramjet ground tests and launches. These studies have shown promising potentials but the viability to perform commercial flights at Mach 8 is still to be demonstrated. An ideal Scramjet is one which is capable of self- starting over a wide range of angles of attack and Mach number. The Scramjet designer has to ensure that the boundary layer over the inlet ramp is fully turbulent where shocks impact, hence reducing the risks of chocked flow conditions. Most studies have issued the efficiency of roughness trip to trigger the boundary layer transition. At hypersonic speed, heat transfer and drag dramatically increase resulting in skin friction averaging at 40% of the overall drag. This study investigates the possibility of triggering transition using perpendicular air jets on a flat plate place in a hypersonic cross-flow. Experiments were conducted in the von Karman Institute hypersonic blow down wind tunnel H3. This facility is mounted with a Mach 6 contoured nozzles and provides flows with Reynolds number in the range of 10x106/m to 30x106/m. The model consist of a flat plate manufactured with a built -in settling chamber, equipped with a pressure tap and a thermocouple to monitor the jet conditions. A first flat plate was manufactured with a black-coated Plexiglas top, for surface heat transfer measurement using an infrared camera. On the second model, a Upilex sheet equipped with 32 thin film gages was glued, time dependent heat transfer measurements up to 60kHz. The jet injection conditions have been varied and a Mach number of 5.5 kept constant. The flow topology was investigated using fast schlieren techniques and oil flow, in order to gain a better understanding.
Boundary layer theory and subduction
Fowler, A.C. [Oxford Univ., Oxford (United Kingdom)
1993-12-01
Numerical models of thermally activated convective flow in Earth`s mantle do not resemble active plate tectonics because of their inability to model successfully the process of subduction, other than by the inclusion of artificial weak zones. Here we show, using a boundary layer argument, how the `rigid lid` style of convection favored by thermoviscous fluids leads to lithospheric stresses which may realistically exceed the yield stress and thus cause subduction ot occur through the visoc-plastic failure of lithospheric rock. An explicit criterion for the failure of the lid is given, which is sensitive to the internal viscosity eta(sub a) below the lid. For numbers appropriate to Earth`s mantle, this criterion is approximately eta(sub a) greater than 10(exp 21) Pa s.
Vortex boundary-layer interactions
NASA Technical Reports Server (NTRS)
Bradshaw, P.
1986-01-01
Parametric studies to identify a vortex generator were completed. Data acquisition in the first chosen configuration, in which a longitudinal vortex pair generated by an isolated delta wing starts to merge with a turbulent boundary layer on a flat plate fairly close to the leading edge is nearly completed. Work on a delta-wing/flat-plate combination, consisting of a flow visualization and hot wire measurements taken with a computer controlled traverse gear and data logging system were completed. Data taking and analysis have continued, and sample results for another cross stream plane are presented. Available data include all mean velocity components, second order mean products of turbulent fluctuations, and third order mean products. Implementation of a faster data logging system was accomplished.
Polymer Effects on Heat Transport in Laminar Boundary Layer Flow
Roberto Benzi; Emily S. C. Ching; Vivien W. S. Chu
2011-04-27
We consider a laminar Blasius boundary-layer flow above a slightly heated horizontal plate and study the effect of polymer additives on the heat transport. We show that the action of the polymers can be understood as a space-dependent effective viscosity that first increases from the zero-shear value then decreases exponentially back to the zero-shear value as one moves away from the boundary. We find that with such an effective viscosity, both the horizontal and vertical velocities near the plate are decreased thus leading to an increase in the friction drag and a decrease in the heat transport in the flow.
Turbulent boundary layers with secondary flow
NASA Technical Reports Server (NTRS)
Grushwitz, E.
1984-01-01
An experimental analysis of the boundary layer on a plane wall, along which the flow occurs, whose potential flow lines are curved in plane parallel to the wall is discussed. According to the equation frequently applied to boundary layers in a plane flow, which is usually obtained by using the pulse law, a generalization is derived which is valid for boundary layers with spatial flow. The wall shear stresses were calculated with this equation.
Goertler instability of compressible boundary layers
NASA Technical Reports Server (NTRS)
El-Hady, N. M.; Verma, A. K.
1984-01-01
The instability of the laminar compressible boundary-layer flows along concave surfaces is investigated. The linearized disturbance equations for the three-dimensional, counter-rotating, longitudinal-type vortices in two-dimensional boundary layers are presented in an orthogonal curvilinear system of coordinates. The basic approximation of the disturbance equations, which includes the effect of the growth of the boundary layer, is considered and solved numerically.
Structure of the low latitude boundary layer
NASA Technical Reports Server (NTRS)
Sckopke, N.; Paschmann, G.; Haerendel, G.; Sonnerup, B. U. O.; Bame, S. J.; Forbes, T. G.; Hones, E. W., Jr.; Russell, C. T.
1980-01-01
Observations at high temporal resolution of the frontside magnetopause and plasma boundary layer, made with the LASL/MPE fast plasma analyzer onboard the ISEE 1 and 2 spacecraft, revealed a complex quasiperiodic structure of some of the observed boundary layers. A cool tailward streaming boundary layer plasma was seen intermittently, with intervening periods of hot tenuous plasma which has properties similar to the magnetospheric population. While individual encounters with the boundary layer plasma last only a few minutes, the total observation time may extend over one hour or more.
Transitionally rough zero pressure gradient turbulent boundary layers
NASA Astrophysics Data System (ADS)
Brzek, Brian G.; Cal, Raúl Bayoán; Johansson, Gunnar; Castillo, Luciano
2008-01-01
Near-wall measurements are performed to study the effects of surface roughness and viscous shear stresses on the transitionally rough regime (5 < k + < 70) of a zero pressure gradient turbulent boundary layer. The x-dependence is known from the eleven consecutive measurements in the streamwise direction, which allows for the computation of the streamwise gradients in the boundary layer equations. Thus, the skin friction is computed from the integrated boundary layer equation with errors of 3 and 5% for smooth and rough, respectively. It is found that roughness destroys the viscous layer near the wall, thus, reducing the contribution of the viscous stress in the wall region. As a result, the contribution in the wall shear stress due to form drag increases, while the viscous stress decreases. This yields Reynolds number invariance in the skin friction as k + increases into the fully rough regime. Furthermore, the roughness at the wall reduces the high peak of the streamwise component of the Reynolds stress in the near-wall region. However, for the Reynolds wall-normal and shear stress components, its contribution is not significantly altered for sand grain roughness.
Stabilization of boundary layer streaks by plasma actuators
NASA Astrophysics Data System (ADS)
Riherd, Mark; Roy, Subrata
2014-03-01
A flow's transition from laminar to turbulent leads to increased levels of skin friction. In recent years, dielectric barrier discharge actuators have been shown to be able to delay the onset of turbulence in boundary layers. While the laminar to turbulent transition process can be initiated by several different instability mechanisms, so far, only stabilization of the Tollmien-Schlichting path to transition has received significant attention, leaving the stabilization of other transition paths using these actuators less explored. To fill that void, a bi-global stability analysis is used here to examine the stabilization of boundary layer streaks in a laminar boundary layer. These streaks, which are important to both transient and by-pass instability mechanisms, are damped by the addition of a flow-wise oriented plasma body force to the boundary layer. Depending on the magnitude of the plasma actuation, this damping can be up to 25% of the perturbation's kinetic energy. The damping mechanism appears to be due to highly localized effects in the immediate vicinity of the body force, and when examined using a linearized Reynolds-averaged Navier-Stokes energy balance, indicate negative production of the perturbation's kinetic energy. Parametric studies of the stabilization have also been performed, varying the magnitude of the plasma actuator's body force and the spanwise wavenumber of the actuation. Based on these parametric studies, the damping of the boundary layer streaks appears to be linear with respect to the total amount of body force applied to the flow.
Particle motion in atmospheric boundary layers of Mars and Earth
NASA Technical Reports Server (NTRS)
White, B. R.; Iversen, J. D.; Greeley, R.; Pollack, J. B.
1975-01-01
To study the eolian mechanics of saltating particles, both an experimental investigation of the flow field around a model crater in an atmospheric boundary layer wind tunnel and numerical solutions of the two- and three-dimensional equations of motion of a single particle under the influence of a turbulent boundary layer were conducted. Two-dimensional particle motion was calculated for flow near the surfaces of both Earth and Mars. For the case of Earth both a turbulent boundary layer with a viscous sublayer and one without were calculated. For the case of Mars it was only necessary to calculate turbulent boundary layer flow with a laminar sublayer because of the low values of friction Reynolds number; however, it was necessary to include the effects of slip flow on a particle caused by the rarefied Martian atmosphere. In the equations of motion the lift force functions were developed to act on a single particle only in the laminar sublayer or a corresponding small region of high shear near the surface for a fully turbulent boundary layer. The lift force functions were developed from the analytical work by Saffman concerning the lift force acting on a particle in simple shear flow.
Turbulent boundary-layer structure of flows over freshwater biofilms
NASA Astrophysics Data System (ADS)
Walker, J. M.; Sargison, J. E.; Henderson, A. D.
2013-12-01
The structure of the turbulent boundary-layer for flows over freshwater biofilms dominated by the diatom Tabellaria flocculosa was investigated. Biofilms were grown on large test plates under flow conditions in an Australian hydropower canal for periods up to 12 months. Velocity-profile measurements were obtained using LDV in a recirculating water tunnel for biofouled, smooth and artificially sandgrain roughened surfaces over a momentum thickness Reynolds number range of 3,000-8,000. Significant increases in skin friction coefficient of up to 160 % were measured over smooth-wall values. The effective roughnesses of the biofilms, k s, were significantly higher than their physical roughness measured using novel photogrammetry techniques and consisted of the physical roughness and a component due to the vibration of the biofilm mat. The biofilms displayed a k-type roughness function, and a logarithmic relationship was found between the roughness function and roughness Reynolds number based on the maximum peak-to-valley height of the biofilm, R t. The structure of the boundary layer adhered to Townsend's wall-similarity hypothesis even though the scale separation between the effective roughness height and the boundary-layer thickness was small. The biofouled velocity-defect profiles collapsed with smooth and sandgrain profiles in the outer region of the boundary layer. The Reynolds stresses and quadrant analysis also collapsed in the outer region of the boundary layer.
Boundary layers of the earth's outer magnetosphere
NASA Technical Reports Server (NTRS)
Eastman, T. E.; Frank, L. A.
1984-01-01
The magnetospheric boundary layer and the plasma-sheet boundary layer are the primary boundary layers of the earth's outer magnetosphere. Recent satellite observations indicate that they provide for more than 50 percent of the plasma and energy transport in the outer magnetosphere although they constitute less than 5 percent by volume. Relative to the energy density in the source regions, plasma in the magnetospheric boundary layer is predominantly deenergized whereas plasma in the plasma-sheet boundary layer has been accelerated. The reconnection hypothesis continues to provide a useful framework for comparing data sampled in the highly dynamic magnetospheric environment. Observations of 'flux transfer events' and other detailed features near the boundaries have been recently interpreted in terms of nonsteady-state reconnection. Alternative hypotheses are also being investigated. More work needs to be done, both in theory and observation, to determine whether reconnection actually occurs in the magnetosphere and, if so, whether it is important for overall magnetospheric dynamics.
Turbulent spots in a Stokes boundary layer
NASA Astrophysics Data System (ADS)
Mazzuoli, M.; Vittori, G.; Blondeaux, P.
2011-12-01
The turbulent spots which form in a boundary layer generated by the harmonic oscillations of an incompressible fluid are investigated by numerical means. In order to allow the formation of turbulent spots, the dimensions of the computational box have been increased with respect to previous numerical investigations (Costamagna et al. (2003)). The boundaries of the spots are identified and the speeds of the head, tail, leftmost and rightmost points, are computed. The computed speeds well compare with those measured in steady boundary layers.
LDV measurements of turbulent baroclinic boundary layers
Neuwald, P.; Reichenbach, H. [Fraunhofer-Institut fuer Kurzzeitdynamik - Ernst-Mach-Institut (EMI), Freiburg im Breisgau (Germany); Kuhl, A.L. [Lawrence Livermore National Lab., El Segundo, CA (United States)
1993-07-01
Described here are shock tube experiments of nonsteady, turbulent boundary layers with large density variations. A dense-gas layer was created by injecting Freon through the porous floor of the shock tube. As the shock front propagated along the layer, vorticity was created at the air-Freon interface by an inviscid, baroclinic mechanism. Shadow-schlieren photography was used to visualize the turbulent mixing in this baroclinic boundary layer. Laser-Doppler-Velocimetry (LDV) was used to measure the streamwise velocity histories at 14 heights. After transition, the boundary layer profiles may be approximated by a power-law function u {approximately} u{sup {alpha}} where {alpha} {approx_equal} 3/8. This value lies between the clean flat plate value ({alpha} = 1/7) and the dusty boundary layer value ({alpha} {approx_equal} 0.7), and is controlled by the gas density near the wall.
Bretherton, Chris
-layer momentum force balance between pressure gradients, Coriolis acceleration, linearized friction, and downward pressure gradients are linearly decomposed into boundary layer (defined as the region below 850 h-tropospheric pressure gradients and downward momentum mixing, whereas the distri- bution of convergence is primarily due
A Numerical Study of a Scaling Parameter for Turbulent Boundary Layer with Large Roughness
Erika Johnson; Chelakara Subramanian
2007-01-01
Several investigations have shown that when a turbulent boundary layer is subjected to large surface roughness (on the order of the inner layer thickness), the friction velocity, utau, is not a suitable scaling parameter for the mean and turbulent velocities. Experimental studies concerning large surface roughness have consistently shown a dramatic effect on the mean and turbulent velocities, with the
Huynh, Long Quang
1994-01-01
, the model demonstrated a relatively high degree of accuracy in predicting the measured mean-velocity of the boundary layer and the estimated skin-friction coefficients. A skinfriction coefficient correlation has also been determined. C, is shown to affect...
Computation of the shock-wave boundary layer interaction with flow separation
NASA Technical Reports Server (NTRS)
Ardonceau, P.; Alziary, T.; Aymer, D.
1980-01-01
The boundary layer concept is used to describe the flow near the wall. The external flow is approximated by a pressure displacement relationship (tangent wedge in linearized supersonic flow). The boundary layer equations are solved in finite difference form and the question of the presence and unicity of the solution is considered for the direct problem (assumed pressure) or converse problem (assumed displacement thickness, friction ratio). The coupling algorithm presented implicitly processes the downstream boundary condition necessary to correctly define the interacting boundary layer problem. The algorithm uses a Newton linearization technique to provide a fast convergence.
Planetary Boundary Layer Simulation Using TASS
NASA Technical Reports Server (NTRS)
Schowalter, David G.; DeCroix, David S.; Lin, Yuh-Lang; Arya, S. Pal; Kaplan, Michael
1996-01-01
Boundary conditions to an existing large-eddy simulation model have been changed in order to simulate turbulence in the atmospheric boundary layer. Several options are now available, including the use of a surface energy balance. In addition, we compare convective boundary layer simulations with the Wangara and Minnesota field experiments as well as with other model results. We find excellent agreement of modelled mean profiles of wind and temperature with observations and good agreement for velocity variances. Neutral boundary simulation results are compared with theory and with previously used models. Agreement with theory is reasonable, while agreement with previous models is excellent.
A drag reduction method for turbulent boundary layers
NASA Technical Reports Server (NTRS)
Gad-El-hak, Mohamed; Blackwelder, Ron F.
1987-01-01
A novel method to reduce skin friction drag in a turbulent boundary layer is presented. The technique combines the beneficial effects of a longitudinally ribbed surface and suction. The streamwise grooves act as a nucleation site causing a focusing of low-speed streaks over the peaks. Suction is then applied intermittently through longitudinal slots located at selected locations along those peaks to obliterate the low-speed regions and to prevent bursting. During the first phase of the present research, selective suction from a single streamwise slot was used to eliminate either a single burst-like event or a periodic train of artificially generated bursts in laminar and turbulent boundary layers. The experiments were conducted using a flat plate towed in an 18-m water channel. Flow visualization and hot-film probe measurements were used together with pattern recognition algorithms to demonstrate the feasibility of the drag-reducing method.
Falkner-Skan Boundary Layer Flow of a Sisko Fluid
NASA Astrophysics Data System (ADS)
Khan, Masood; Shahzad, Azeem
2012-09-01
In this paper, we investigate the steady boundary layer flow of a non-Newtonian fluid, represented by a Sisko fluid, over a wedge in a moving fluid. The equations of motion are derived for boundary layer flow of an incompressible Sisko fluid using appropriate similarity variables. The governing equations are reduced to a single third-order highly nonlinear ordinary differential equation in the dimensionless stream function, which is then solved analytically using the homotopy analysis method. Some important parameters have been discussed by this study, which include the power law index n, the material parameter A, the wedge shape factor b, and the skin friction coefficient Cf. A comprehensive study is made between the results of the Sisko and the power-law fluids.
Direct Numerical Simulation of a Quasilaminarized Boundary Layer
NASA Astrophysics Data System (ADS)
Castillo, Luciano; Guillermo Araya, Juan; Bayoan Cal, Raul
2010-11-01
Direct Numerical Simulations of spatially-evolving turbulent boundary layers with strong favorable pressure gradients are performed. The driven force behind this investigation is elucidate the mechanisms responsible for the quasi-laminarization of the boundary layer. Budgets of the turbulent kinetic energy and the shear Reynolds stresses provide insight into the terms responsible for this phenomenon. The results also confirm the similarity analysis framework as develop by Cal and CastilloootnotetextR. B. Cal and L. Castillo (2008), Phys. Fluids. vol 20, 105106, 2008. including the redistribution of the Reynolds stresses, a significant reduction in skin friction and a pressure parameter value which falls in the quasilaminar quadrant. The prescription of stronger favorable pressure gradients is mainly manifested by a significant decrease of the production of the shear Reynolds stresses and attenuation of the velocity-pressure gradient correlation term. The latter evidence confirms the important role of pressure fluctuations on the energy exchange and transport phenomena of flow parameters.
Calculation methods for compressible turbulent boundary layers
NASA Technical Reports Server (NTRS)
Bushnell, D. M.; Cary, A. M., Jr.; Harris, J. E.
1976-01-01
Calculation procedures for non-reacting compressible two- and three-dimensional turbulent boundary layers were reviewed. Integral, transformation and correlation methods, as well as finite difference solutions of the complete boundary layer equations summarized. Alternative numerical solution procedures were examined, and both mean field and mean turbulence field closure models were considered. Physics and related calculation problems peculiar to compressible turbulent boundary layers are described. A catalog of available solution procedures of the finite difference, finite element, and method of weighted residuals genre is included. Influence of compressibility, low Reynolds number, wall blowing, and pressure gradient upon mean field closure constants are reported.
Notes on an Internal Boundary-Layer Height Formula
NASA Astrophysics Data System (ADS)
Savelyev, Sergiya.; Taylor, Petera.
The derivation of the Panofsky-Dutton internal boundary-layer(IBL) height formula has been revisited. We propose that the upwindroughness length (rather than downwind) should be used in theformula and that a turbulent vertical velocity (w) ratherthan the surface friction velocity (u*) should be considered asthe appropriate scaling for the rate of propagation ofdisturbances into the turbulent flow. A published set ofwind-tunnel and atmospheric data for neutral stratification hasbeen used to investigate the influence of the magnitude ofroughness change on the IBL height.
Turbulent boundary-layer control with plasma spanwise travelling waves
NASA Astrophysics Data System (ADS)
Whalley, Richard D.; Choi, Kwing-So
2014-08-01
Arrays of dielectric-barrier-discharge plasma actuators have been designed to generate spanwise travelling waves in the turbulent boundary layer for possible skin-friction drag reductions. Particle image velocimetry was used to elucidate the modifications to turbulence structures created by the plasma spanwise travelling waves. It has been observed that the plasma spanwise travelling waves amalgamated streamwise vortices, lifting low-speed fluid from the near-wall region up and around the peripheries of their cores to form wide ribbons of low-speed streamwise velocity within the viscous sublayer.
Evaluation of analytical procedures for prediction of turbulent boundary layers on a porous wall
NASA Technical Reports Server (NTRS)
Towne, C. E.
1974-01-01
An analytical study has been made to determine how well current boundary layer prediction techniques work when there is mass transfer normal to the wall. The data that were considered in this investigation were for two-dimensional, incompressible, turbulent boundary layers with suction and blowing. Some of the bleed data were taken in an adverse pressure gradient. An integral prediction method was used three different porous wall skin friction relations, in addition to a solid-surface relation for the suction cases. A numerical prediction method was also used. Comparisons were made between theoretical and experimental skin friction coefficients, displacement and momentum thicknesses, and velocity profiles. The integral method with one of the porous wall skin friction laws gave very good agreement with data for most of the cases considered. The use of the solid-surface skin friction law caused the integral to overpredict the effectiveness of the bleed. The numerical techniques also worked well for most of the cases.
An Evaluation of Boundary Conditions for Modeling Urban Boundary Layers
Calhoun, R.J.; Chan, S.T.; Lee, R.L.
2000-05-18
Numerical modeling of the urban boundary layer is complicated by the need to describe airflow patterns outside of the computational domain. These patterns have an impact on how successfully the simulation is able to model the turbulence associated with the urban boundary layer. This talk presents experiments with the model boundary conditions for simulations that were done to support two Department of Energy observational programs involving the Salt Lake City basin. The Chemical/Biological Non-proliferation Program (CBNP) is concerned with the effects of buildings on influencing dispersion patterns in urban environments. The Vertical Transport and Mixing Program (VTMX) investigating mixing mechanisms in the stable boundary layer and how they are influenced by the channeling caused by drainage flows or by obstacles such as building complexes. Both of these programs are investigating the turbulent mixing caused by building complexes and other urban obstacles.
Effects of increased entrainment in turbulent boundary layers
NASA Astrophysics Data System (ADS)
Borrell, Guillem; Jimenez, Javier
2012-11-01
It has been reported that certain rough surfaces modify the outer region of turbulent boundary layers. One of the effects of surface roughness is additional friction that causes an accelerated entrainment rate, which is also known to modify the outer intermittent layers of external turbulent flows. One and two-points statistics are presented from a direct numerical simulation of a zero-pressure-gradient turbulent boundary layer in the range Re? = 1400 - 4500 , in which the spreading rate is increased by 70% by a smooth volumetric force restricted to the layer below y+ = 25 , and equivalent to a sand roughness of ks ~ 60 . The goal of this simulation is to separate the effects of surface geometry from those of entrainment. The velocity fluctuations, Reynolds stresses and spatial correlations C?? (x ;x' , y ;y' ,kz) , that are consistently different from those in smooth-wall boundary layers at similar Reynolds numbers, will be compared with experimental and numerical data sets available in the literature. Funded by ERC, PRACE, CICYT and Spanish Ministry of Science.
E. V. Shishov
1991-01-01
The results of experimental investigation of the structure, including correlations containing pressure fluctuations, and the processes of turbulent transfer of heat and momentum in strongly accelerated and retarded turbulent boundary layers are presented. Based on the analysis of the data obtained, a modified algebraic 'K-epsilon' model, capable of predicting local friction and heat transfer in boundary layers developing under strong
F-16XL ship #1 - CAWAP boundary layer rakes and hot film on left wing
NASA Technical Reports Server (NTRS)
1996-01-01
This photo shows the boundary layer hot film and the boundary layer rakes on the left wing of NASA's single-seat F-16XL (ship #1) used for the Cranked-Arrow Wing Aerodynamic Project (CAWAP) at Dryden Flight Research Center, Edwards, California. The modified airplane features a delta 'cranked-arrow' wing with strips of tubing along the leading edge to the trailing edge to sense static on the wing and obtain pressure distribution data. The right wing receives data on pressure distribution and the left wing has three types of instrumentation - preston tubes to measure local skin friction, boundary layer rakes to measure boundary layer profiles (the layer where the air interacts with the surfaces of a moving aircraft), and hot films to determine boundary layer transition locations. The first flight of CAWAP occurred on November 21, 1995, and the test program ended in April 1996.
Boundary layer flow visualization for flight testing
NASA Technical Reports Server (NTRS)
Obara, Clifford J.
1986-01-01
Flow visualization is used extensively in flight testing to determine aerodynamic characteristics such as surface flow direction and boundary layer state. Several visualization techniques are available to the aerodynamicist. Two of the most popular are oil flows and sublimating chemicals. Oil is used to visualize boundary layer transition, shock wave location, regions of separated flow, and surface flow direction. Boundary layer transition can also be visualized with sublimating chemicals. A summary of these two techniques is discussed, and the use of sublimating chemicals is examined in some detail. The different modes of boundary layer transition are characterized by different patterns in the sublimating chemical coating. The discussion includes interpretation of these chemical patterns and the temperature and velocity operating limitations of the chemical substances. Information for selection of appropriate chemicals for a desired set of flight conditions is provided.
Glimpses of a wave boundary layer
NASA Astrophysics Data System (ADS)
Trowbridge, J. H.; Agrawal, Y. C.
1995-10-01
Measurements obtained with a profiling laser-Doppler velocimeter reveal the vertical structure of velocity in a wave boundary layer over a sand beach during two periods of approximately stationary forcing, each with a duration of several hours. The measurements indicate clearly the reduction in variance and the increase in phase, relative to the overlying flow, that are expected in an oscillatory boundary layer. The measurements also indicate a distortion of the mean alongshore velocity within the wave boundary layer, which has previously been predicted theoretically and observed in laboratory experiments. The thickness and structure of the boundary layer are approximately consistent with computations based on an existing eddy viscosity model, and model-based best fit estimates of bottom roughness are approximately consistent with existing semiempirical descriptions of wave-formed sand ripples.
BUBBLE – an Urban Boundary Layer Meteorology Project
M. W. Rotach; R. Vogt; C. Bernhofer; E. Batchvarova; A. Christen; A. Clappier; B. Feddersen; S.-E. Gryning; G. Martucci; H. Mayer; V. Mitev; T. R. Oke; E. Parlow; H. Richner; M. Roth; Y.-A. Roulet; D. Ruffieux; J. A. Salmond; M. Schatzmann; J. A. Voogt
2005-01-01
Summary The Basel UrBan Boundary Layer Experiment (BUBBLE) was a year-long experimental effort to investigate in detail the boundary layer structure in the City of Basel, Switzerland. At several sites over different surface types (urban, sub-urban and rural reference) towers up to at least twice the main obstacle height provided turbulence observations at many levels. In addition, a Wind Profiler
Multi-layer prediction of mean velocity profiles in turbulent boundary layers
NASA Astrophysics Data System (ADS)
Chen, Xi; Hussain, Fazle; She, Zhen-Su
2012-11-01
A multi-layer prediction of the mean velocity profile (MVP) is developed for the zero pressure gradient (ZPG) turbulent boundary layer (TBL), in good agreement with empirical data over a wide range of the Reynolds number (Re). The theory builds on our model of the mixing length for channel and pipe flows, in which all of the physical parameters characterizing the viscous sublayer, buffer layer and bulk layer are held universal, as well as the Karman constant 0.45. The theory predicts a logarithmic law constant B of 6.5. The identified differences between the channel/pipe and TBL are the absence of a wall-confined central core layer and a fractional scaling of the total stress for the latter. Then, the theory yields an analytic expression for the wake function and friction coefficient in excellent agreement with measurements. In conclusion, a unified theory is presented for the MVPs of all canonical wall-bounded turbulent flows.
Characterization of internal boundary layer capacitors
Park, H. D.; Payne, D. A.
1980-05-01
Internal boundary layer capacitors were characterized by scanning transmission electron microscopy and by microscale electrical measurements. Data are given for the chemical and physical characteristics of the individual grains and boundaries, and their associated electric and dielectric properties. Segregated internal boundary layers were identified with resistivities of 10/sup 12/-10/sup 13/ ..cap omega..-cm. Bulk apparent dielectric constants were 10,000-60,000. A model is proposed to explain the dielectric behavior in terms of an equivalent n-c-i-c-n representation of ceramic microstructure, which is substantiated by capacitance-voltage analysis.
Some Basic Aspects of Magnetohydrodynamic Boundary-Layer Flows
NASA Technical Reports Server (NTRS)
Hess, Robert V.
1959-01-01
An appraisal is made of existing solutions of magnetohydrodynamic boundary-layer equations for stagnation flow and flat-plate flow, and some new solutions are given. Since an exact solution of the equations of magnetohydrodynamics requires complicated simultaneous treatment of the equations of fluid flow and of electromagnetism, certain simplifying assumptions are generally introduced. The full implications of these assumptions have not been brought out properly in several recent papers. It is shown in the present report that for the particular law of deformation which the magnetic lines are assumed to follow in these papers a magnet situated inside the missile nose would not be able to take up any drag forces; to do so it would have to be placed in the flow away from the nose. It is also shown that for the assumption that potential flow is maintained outside the boundary layer, the deformation of the magnetic lines is restricted to small values. The literature contains serious disagreements with regard to reductions in heat-transfer rates due to magnetic action at the nose of a missile, and these disagreements are shown to be mainly due to different interpretations of reentry conditions rather than more complicated effects. In the present paper the magnetohydrodynamic boundary-layer equation is also expressed in a simple form that is especially convenient for physical interpretation. This is done by adapting methods to magnetic forces which in the past have been used for forces due to gravitational or centrifugal action. The simplified approach is used to develop some new solutions of boundary-layer flow and to reinterpret certain solutions existing in the literature. An asymptotic boundary-layer solution representing a fixed velocity profile and shear is found. Special emphasis is put on estimating skin friction and heat-transfer rates.
Ground observations of magnetospheric boundary layer phenomena
McHenry, M.A.; Clauer, C.R. (Stanford Univ., CA (USA)); Friis-Christensen, E. (Danish Meteorological Inst., Copenhagen (Denmark)); Newell, P.T. (Johns Hopkins Univ., Laurel, MD (USA)); Kelly, J.D. (SRI International, Menlo Park, CA (USA))
1990-09-01
Several classes of traveling vortices in the dayside ionospheric convection have been detected and tracked using the Greenland magnetometer chain (Friis-Christensen et al., 1988, McHenry et al., 1989). One class observed during quiet times consists of a continuous series of vortices moving generally anti-sunward for several hours at a time. The vortices strength is seen to be approximately steady and neighboring vortices rotate in opposite directions. Sondrestrom radar observations show that the vortices are located at the ionospheric convection reversal boundary. Low altitude DMSP observations indicate the vortices are on field lines which map to the inner edge of the low latitude boundary layer. Because the vortices are conjugate to the boundary layer, repeat in a regular fashion and travel antisunward, the authors argue that this class of vortices is caused by the Kelvin-Helmholtz instability of the inner edge of the magnetospheric boundary layer.
NASA Technical Reports Server (NTRS)
Corke, T. C.; Guezennec, Y.; Nagib, H. M.
1981-01-01
The effects of placing a parallel-plate turbulence manipulator in a boundary layer are documented through flow visualization and hot wire measurements. The boundary layer manipulator was designed to manage the large scale structures of turbulence leading to a reduction in surface drag. The differences in the turbulent structure of the boundary layer are summarized to demonstrate differences in various flow properties. The manipulator inhibited the intermittent large scale structure of the turbulent boundary layer for at least 70 boundary layer thicknesses downstream. With the removal of the large scale, the streamwise turbulence intensity levels near the wall were reduced. The downstream distribution of the skin friction was also altered by the introduction of the manipulator.
NASA Technical Reports Server (NTRS)
Hoffmann, J. A.; Kassir, S. M.; Larwood, S. M.
1989-01-01
The influence of near isotropic free-stream turbulence on the shape factors and skin friction coefficients of turbulent boundary layers is presented for the cases of zero and mild adverse pressure gradients. With free-stream turbulence, improved fluid mixing occurs in boundary layers with adverse pressure gradients relative to the zero pressure gradient condition, with the same free-stream turbulence intensity and length scale. Stronger boundary layers with lower shape factors occur as a result of a lower ratio of the integral scale of turbulence to the boundary layer thickness, and to vortex stretching of the turbulent eddies in the free-stream, both of which act to improve the transmission of momentum from the free-stream to the boundary layers.
Dynamics of Thin Astrophysical Boundary Layers
NASA Astrophysics Data System (ADS)
Belyaev, Mikhail Alexander
We study the modal structure and angular momentum transport mechanisms of astrophysical boundary layers. We focus on the case where the accretion disk extends all the way to surface of the star and the boundary layer is thin in comparison with the stellar radius. Such a scenario is applicable, for example, to weakly magnetized neutron stars and white dwarfs, for which the strength of the magnetic field outside the star is too small to disrupt the disk and funnel matter to the poles. Within the boundary layer, material rotating at the Keplerian velocity within the disk slows down to the rotational velocity inside the star. This generates intense velocity gradients and makes the boundary layer susceptible to shear instabilities. By performing a linear stability analysis for the simplified case of a plane-parallel, compressible shear layer, we argue that astrophysical boundary layers are unstable to the sonic instability. This instability is part of a more general class of acoustic instabilities that includes the Papaloizou-Pringle instability. We confirm the predictions of our linear stability analysis by running a suite of simulations in 2D and 3D, with and without stratification, and with and without magnetic field. In our numerical experiments, we find that acoustic modes excited by the sonic instability persist even in the nonlinear regime. We explain the morphological properties and derive analytic formulas for the pattern speed of these acoustic modes. Our work has significant implications for semianalytic models describing the structure and spectral emission from boundary layers. Typically, these models adopt a local, effective viscosity prescription for the angular momentum transport. However, in our simulations we find that angular momentum transport in the boundary layer is facilitated by acoustic modes. In this scenario, accreting material inside the boundary layer loses angular momentum to sound waves that propagate into both the star and the disk. Since transport of angular momentum by waves is inherently nonlocal, our work invites the construction of new phenomenological models of the boundary layer in which angular momentum is transported by waves rather than by an anomalous viscosity.
Interfaces and internal layers in a turbulent boundary layer
NASA Astrophysics Data System (ADS)
Eisma, Jerke; Westerweel, Jerry; Ooms, Gijs; Elsinga, Gerrit E.
2015-05-01
New experimental research is presented on the characteristics of interfaces and internal shear layers that are present in a turbulent boundary layer (TBL). The turbulent/non-turbulent (T/NT) interface at the outer boundary of the TBL shows the presence of a finite jump in streamwise velocity and is characterised by a thin shear layer. It appears that similar layers of high shear occur also within the TBL which separate regions of almost uniform momentum. It turns out that they exhibit similar characteristics as the external T/NT interface. Furthermore, the spatial growth rate of the TBL, that is derived from theoretical analysis, can be correctly predicted from a momentum balance near the external T/NT interface. Similarly, the entrainment velocities for the average internal layers have been determined. Results indicate that internal layers move slower in the vicinity of the wall, whereas they move faster than the large scale boundary layer growth rate in the outer region of the TBL. It is believed that shear layers bound large scale flow regions of approximately uniform momentum. Hence, the entrainment velocities of these internal layers may be interpreted as growth rates of the large scale motions in a TBL.
High enthalpy hypersonic boundary layer flow
NASA Technical Reports Server (NTRS)
Yanow, G.
1972-01-01
A theoretical and experimental study of an ionizing laminar boundary layer formed by a very high enthalpy flow (in excess of 12 eV per atom or 7000 cal/gm) with allowance for the presence of helium driver gas is described. The theoretical investigation has shown that the use of variable transport properties and their respective derivatives is very important in the solution of equilibrium boundary layer equations of high enthalpy flow. The effect of low level helium contamination on the surface heat transfer rate is minimal. The variation of ionization is much smaller in a chemically frozen boundary layer solution than in an equilibrium boundary layer calculation and consequently, the variation of the transport properties in the case of the former was not essential in the integration. The experiments have been conducted in a free piston shock tunnel, and a detailed study of its nozzle operation, including the effects of low levels of helium driver gas contamination has been made. Neither the extreme solutions of an equilibrium nor of a frozen boundary layer will adequately predict surface heat transfer rate in very high enthalpy flows.
Boundary-Layer-Ingesting Inlet Flow Control
NASA Technical Reports Server (NTRS)
Owens, Lewis R.; Allan, Brian G.; Gorton, Susan A.
2008-01-01
An experimental study was conducted to provide the first demonstration of an active flow control system for a flush-mounted inlet with significant boundary-layer-ingestion in transonic flow conditions. The effectiveness of the flow control in reducing the circumferential distortion at the engine fan-face location was assessed using a 2.5%-scale model of a boundary-layer-ingesting offset diffusing inlet. The inlet was flush mounted to the tunnel wall and ingested a large boundary layer with a boundary-layer-to-inlet height ratio of 35%. Different jet distribution patterns and jet mass flow rates were used in the inlet to control distortion. A vane configuration was also tested. Finally a hybrid vane/jet configuration was tested leveraging strengths of both types of devices. Measurements were made of the onset boundary layer, the duct surface static pressures, and the mass flow rates through the duct and the flow control actuators. The distortion and pressure recovery were measured at the aerodynamic interface plane. The data show that control jets and vanes reduce circumferential distortion to acceptable levels. The point-design vane configuration produced higher distortion levels at off-design settings. The hybrid vane/jet flow control configuration reduced the off-design distortion levels to acceptable ones and used less than 0.5% of the inlet mass flow to supply the jets.
The kinematics of turbulent boundary layer structure
NASA Technical Reports Server (NTRS)
Robinson, Stephen Kern
1991-01-01
The long history of research into the internal structure of turbulent boundary layers has not provided a unified picture of the physics responsible for turbulence production and dissipation. The goals of the present research are to: (1) define the current state of boundary layer structure knowledge; and (2) utilize direct numerical simulation results to help close the unresolved issues identified in part A and to unify the fragmented knowledge of various coherent motions into a consistent kinematic model of boundary layer structure. The results of the current study show that all classes of coherent motion in the low Reynolds number turbulent boundary layer may be related to vortical structures, but that no single form of vortex is representative of the wide variety of vortical structures observed. In particular, ejection and sweep motions, as well as entrainment from the free-streem are shown to have strong spatial and temporal relationships with vortical structures. Disturbances of vortex size, location, and intensity show that quasi-streamwise vortices dominate the buffer region, while transverse vortices and vortical arches dominate the wake region. Both types of vortical structure are common in the log region. The interrelationships between the various structures and the population distributions of vortices are combined into a conceptual kinematic model for the boundary layer. Aspects of vortical structure dynamics are also postulated, based on time-sequence animations of the numerically simulated flow.
NASA Astrophysics Data System (ADS)
Lyashenko, I. A.
2013-07-01
The boundary friction regime appearing between two atomically smooth solid surfaces with an ultrathin lubricating layer between them is considered. The interrupted (stick-slip) regime of motion typical of the boundary lubrication is represented as a first-order phase transition between the structural states of the lubricant. The thermodynamic and shear melting is described. The universal dependence of the viscosity of high-molecular alkanes (lubricants) on the temperature and velocity gradient is taken into account. The dependence of the friction force on the lubricant temperature and the relative shear velocity of the interacting surfaces are analyzed. It is shown that the temperature dependence of the viscosity makes it possible to describe some experimentally observed effects. The possibility of prolonged damped oscillations after lubricant melting prior to the stabilization of the steady-state sliding mode is predicted. In the stick-slip regime in a wide range of parameters, a reversive motion is observed when the upper block moves in both directions after melting.
An Experimental Investigation of Turbulent Boundary Layer Relaminarization
NASA Astrophysics Data System (ADS)
Bourassa, Corey; Thomas, Flint O.; Nelson, Robert C.
1999-11-01
It has been speculated that turbulent boundary layer relaminarization may play a role in ``inverse Reynolds number effects" in high-lift systems for commercial aviation. Research currently being conducted at the Hessert Center for Aerospace Research at the University of Notre Dame is focused on experimentally assessing the influence of relaminarization in high-lift systems, as well as investigating their fundamental flow physics. To facilitate this research, a wind tunnel experiment was designed in which a turbulent boundary layer was developed in a nominally-zero pressure gradient environment and then subjected to large favorable pressure gradients. The favorable pressure gradient region was designed to achieve constant values of the relaminarization parameter K (Launder, B.E., ``Laminarization of the Turbulent Boundary Layer By Acceleration,'' MIT Gas Turbine Lab, Report # 77 1964) in the range of 1 × 10-6 < K < 5 × 10-6 , which can be controlled by adjusting the free stream velocity of the wind tunnel. Results to be reported include a complete survey of mean and turbulent flow quantities, skin friction measurements obtained via oil film interferometry, and turbulent bursting rates in the relaminarization region.
Marusic, Ivan
flow and in zero-pressure-gradient flat-plate turbulent boundary layers. The unique facilities available at the University of Melbourne enable us to obtain these two flows at matched friction Reynolds correlation coefficients and energy spectra of streamwise velocity fluctuations in the streamwise and spanwise
Calculation methods for compressible turbulent boundary layers, 1976
NASA Technical Reports Server (NTRS)
Bushnell, D. M.; Cary, A. M., Jr.; Harris, J. E.
1977-01-01
Equations and closure methods for compressible turbulent boundary layers are discussed. Flow phenomena peculiar to calculation of these boundary layers were considered, along with calculations of three dimensional compressible turbulent boundary layers. Procedures for ascertaining nonsimilar two and three dimensional compressible turbulent boundary layers were appended, including finite difference, finite element, and mass-weighted residual methods.
Reynolds shear stress measurements in a separated boundary layer flow
NASA Astrophysics Data System (ADS)
Driver, David M.
1991-06-01
Turbulence measurements were obtained for two cases of boundary layer flow with an adverse pressure gradient, one attached and the other separated. A three-component laser Doppler velocimeter system was used to measure three mean velocity components, all six Reynolds stress components, and all ten velocity triple product correlations. Independent measurements of skin-friction obtained with a laser oil-flow interferometer were used to examine the law of the wall in adverse pressure gradient flows where p(+) is less than 0.05. Strong similiarities were seen between the two adverse pressure gradient flows and free shear layer type flows. Eddy viscosities, dissipation rates, and pressure-strain rates were deduced from the data and compared to various turbulence modeling assumptions.
On the helicity estimation in the atmospheric boundary layer
NASA Astrophysics Data System (ADS)
Victorovna Vazaeva, Natalia; Feodosevich Kramar, Valeriy; Dmitrievich Kouznetsov, Rostislav; Sergeevich Lyulyukin, Vasily; Guramovich Chkhetiani, Otto
2015-04-01
Large-scale motions in the atmospheric boundary layer (ABL) are sustained by the cooperative effect of friction and Earth rotation. This flows have a non-zero helicity [1,2]. Consequently, turbulence in the ABL is also characterize by the non-zero helicity [3]. This property has been observed in the atmospheric experiments [4] and the DNS modeling [5]. The role of helicity in the atmospheric and ocean large-scale dynamics and its possible prognostics sense attracts permanent interest. The purpose of the present investigation is to determine the helicity in terms of experimental data and to check the possibility of the ABL helicity estimation. The integral helicity in the Ekman layer is given by 0 ? ? H = UG2 + VG2 [1], PIC
Reynolds shear stress measurements in a separated boundary layer flow
NASA Technical Reports Server (NTRS)
Driver, David M.
1991-01-01
Turbulence measurements were obtained for two cases of boundary layer flow with an adverse pressure gradient, one attached and the other separated. A three-component laser Doppler velocimeter system was used to measure three mean velocity components, all six Reynolds stress components, and all ten velocity triple product correlations. Independent measurements of skin-friction obtained with a laser oil-flow interferometer were used to examine the law of the wall in adverse pressure gradient flows where p(+) is less than 0.05. Strong similiarities were seen between the two adverse pressure gradient flows and free shear layer type flows. Eddy viscosities, dissipation rates, and pressure-strain rates were deduced from the data and compared to various turbulence modeling assumptions.
Stability of separating subsonic boundary layers
NASA Technical Reports Server (NTRS)
Masad, Jamal A.; Nayfeh, Ali H.
1994-01-01
The primary and subharmonic instabilities of separating compressible subsonic two-dimensional boundary layers in the presence of a two-dimensional roughness element on a flat plate are investigated. The roughness elements considered are humps and forward- and backward-facing steps. The use of cooling and suction to control these instabilities is studied. The similarities and differences between the instability characteristics of separating boundary layers and those of the boundary layer over a flat plate with a zero pressure gradient are pointed out and discussed. The theoretical results agree qualitatively and quantitatively with the experimental data of Dovgal and Kozlov. Cooling and suction decrease the growth rates of primary and subharmonic waves in the attached-flow regions but increase them in the separated-flow regions.
Boundary layer blockage in expansion tube nozzles
NASA Technical Reports Server (NTRS)
Sudnitsin, Olga; Morgan, Richard G.
1995-01-01
The results of a first order perfect gas correction for the effects of the boundary layer formation within expansion tubes with nozzles are presented. The analytical model developed to describe the boundary layer formation within the expansion tube and an expansion nozzle located at the end of the acceleration tube is based on the Karman integral equations. The results of this analytical model are compared with experimental data from an expansion diffuser. The model provides a useful tool for the preliminary design of nozzles for such facilities.
Curvature effects and turbulent boundary layers
NASA Technical Reports Server (NTRS)
Moffat, R. J.
1982-01-01
Results are examined from an experiment conducted to determine quantitatively the secondary factors which affect the response of a turbulent boundary layer to convex curvature and to examine the recovery process after curvature ended. The variation of Stanton number with streamwise distance and with enthalpy thickness Reynolds number for the baseline case is shown. The effect of delta sub .99/R on the velocity of the potential core would have if we extended to the wall with no viscous effects, of free stream acceleration, of an unheated starting length, and of boundary layer maturity are discussed. Mixing length and turbulent Prandtl number models are reviewed.
An interacting boundary layer model for cascades
NASA Technical Reports Server (NTRS)
Davis, R. T.; Rothmayer, A. P.
1983-01-01
A laminar, incompressible interacting boundary layer model is developed for two-dimensional cascades. In the limit of large cascade spacing these equations reduce to the interacting boundary layer equations for a single body immersed in an infinite stream. A fully implicit numerical method is used to solve the governing equations, and is found to be at least as efficient as the same technique applied to the single body problem. Solutions are then presented for a cascade of finite flat plates and a cascade of finite sine-waves, with cusped leading and trailing edges.
The structure of APG turbulent boundary layers
NASA Astrophysics Data System (ADS)
Gungor, Ayse G.; Maciel, Yvan; Simens, Mark P.; Soria, Julio
2013-11-01
A boundary layer under influence of a strong APG is studied using DNS. Transition to turbulence is triggered using a trip wire which is modelled using the immersed boundary method. The Reynolds number close to the exit of the numerical domain is Re? = 2175 and the shape-factor H = 2 . 5 . Two dimensional two-point spatial correlation functions are obtained in this region and close to the transition region. Cvu with a reference point close to the transition region shows a flow periodicity until Re? ~ 1600 . This periodicity is related to the shear layer instability of the separation bubble created as a result of the APG. The Cvv and Cww correlations obtained far from the transition region at Re? = 2175 and at y / ? = 0 . 4 coincide with results obtained for a ZPG boundary layer. Implying that the structure of the v , w fluctuations is the same as in ZPG. However, Cuu indicates that the structure of the u fluctuation in an APG boundary layer is almost twice as short as the ZPG structures. The APG structures are also less correlated with the flow at the wall. The near wall structure of strong APG flows is different from ZPG flows in that streaks are much shorter or absent. A boundary layer under influence of a strong APG is studied using DNS. Transition to turbulence is triggered using a trip wire which is modelled using the immersed boundary method. The Reynolds number close to the exit of the numerical domain is Re? = 2175 and the shape-factor H = 2 . 5 . Two dimensional two-point spatial correlation functions are obtained in this region and close to the transition region. Cvu with a reference point close to the transition region shows a flow periodicity until Re? ~ 1600 . This periodicity is related to the shear layer instability of the separation bubble created as a result of the APG. The Cvv and Cww correlations obtained far from the transition region at Re? = 2175 and at y / ? = 0 . 4 coincide with results obtained for a ZPG boundary layer. Implying that the structure of the v , w fluctuations is the same as in ZPG. However, Cuu indicates that the structure of the u fluctuation in an APG boundary layer is almost twice as short as the ZPG structures. The APG structures are also less correlated with the flow at the wall. The near wall structure of strong APG flows is different from ZPG flows in that streaks are much shorter or absent. Funded in part by ITU, NSERC of Canada, ARC Discovery Grant, and Multiflow program of the ERC.
Electric arc behavior in a boundary layer
NASA Astrophysics Data System (ADS)
Rosa, Richard; Farrar, Larry; Trudnowski, Dan
1988-10-01
The objective of this work is to understand how the size of an arc on the electrode of a magneto-hydrodynamic (MHD) generator or accelerator depends on operating parameters such as boundary-layer shape and current density. Arc size has an important bearing on device lifetime and performance. A boundary layer in an MHD device is a region of exceedingly steep gradients including, in particular, the gradient of electrical conductivity. A theory relating arc size to the characteristics of these gradients is developed and compared with behavior observed in various MHD devices, most recently that in the Component Development and Integration Facility in Butte, Montana.
Separation behavior of boundary layers on three-dimensional wings
NASA Technical Reports Server (NTRS)
Stock, H. W.
1981-01-01
An inverse boundary layer procedure for calculating separated, turbulent boundary layers at infinitely long, crabbing wing was developed. The procedure was developed for calculating three dimensional, incompressible turbulent boundary layers was expanded to adiabatic, compressible flows. Example calculations with transsonic wings were made including viscose effects. In this case an approximated calculation method described for areas of separated, turbulent boundary layers, permitting calculation of this displacement thickness. The laminar boundary layer development was calculated with inclined ellipsoids.
Turbulence models for compressible boundary layers
NASA Technical Reports Server (NTRS)
Huang, P. G.; Bradshaw, P.; Coakley, T. J.
1994-01-01
It is shown that to satisfy the general accepted compressible law of the wall derived from the Van Driest transformation, turbulence modeling coefficients must actually be functions of density gradients. The transformed velocity profiles obtained by using standard turbulence model constants have too small a value of the effective von Karman constant kappa in the log-law region (inner layer). Thus, if the model is otherwise accurate, the wake component is overpredicted and the predicted skin friction is lower than the expected value.
NASA Technical Reports Server (NTRS)
Hoffmann, Jon A.
1988-01-01
The influence of near isotropic free-stream turbulence on the shape factors and skin friction coefficients of turbulent bounday layers is presented for the cases of zero and mild adverse pressure gradients. With free-stream turbulence, improved fluid mixing occurs in boundary layers with adverse pressure gradients relative to the zero pressure gradient condition, with the same free-stream turbulence intensity and length scale. Stronger boundary layers with lower shape factors occur as a result of a lower ratio of the integral scale of turbulence to the boundary layer thickness, and to vortex stretching of the turbulent eddies in the free stream, both of which act to improve the transmission of momentum from the free stream to the boundary layers.
INDIVIDUAL TURBULENT CELL INTERACTION: BASIS FOR BOUNDARY LAYER ESTABLISHMENT
Boundary layers are important in determining the forces on objects in flowing fluids, mixing characteristics, and other phenomena. For example, benthic boundary layers are frequently active resuspension layers that determine bottom turbidity and transniissivity. Traditionally, bo...
Planetary Boundary Layer from AERI and MPL
Sawyer, Virginia
The distribution and transport of aerosol emitted to the lower troposphere is governed by the height of the planetary boundary layer (PBL), which limits the dilution of pollutants and influences boundary-layer convection. Because radiative heating and cooling of the surface strongly affect the PBL top height, it follows diurnal and seasonal cycles and may vary by hundreds of meters over a 24-hour period. The cap the PBL imposes on low-level aerosol transport makes aerosol concentration an effective proxy for PBL height: the top of the PBL is marked by a rapid transition from polluted, well-mixed boundary-layer air to the cleaner, more stratified free troposphere. Micropulse lidar (MPL) can provide much higher temporal resolution than radiosonde and better vertical resolution than infrared spectrometer (AERI), but PBL heights from all three instruments at the ARM SGP site are compared to one another for validation. If there is agreement among them, the higher-resolution remote sensing-derived PBL heights can accurately fill in the gaps left by the low frequency of radiosonde launches, and thus improve model parameterizations and our understanding of boundary-layer processes.
Numerical Experiments in Supersonic Boundary Layer Stability
Erlebacher, Gordon
Numerical Experiments in Supersonic Boundary Layer Stability Gordon Erlebacher Computational of supersonic flows over a flat plate. Sev eral direct simulations carried out in this study sug gest advances in supersonic and hypersonic aerospace technology have led to a renewed interest in the stability
Orbiter Boundary Layer Transition Prediction Tool Enhancements
NASA Technical Reports Server (NTRS)
Berry, Scott A.; King, Rudolph A.; Kegerise, Michael A.; Wood, William A.; McGinley, Catherine B.; Berger, Karen T.; Anderson, Brian P.
2010-01-01
Updates to an analytic tool developed for Shuttle support to predict the onset of boundary layer transition resulting from thermal protection system damage or repair are presented. The boundary layer transition tool is part of a suite of tools that analyze the local aerothermodynamic environment to enable informed disposition of damage for making recommendations to fly as is or to repair. Using mission specific trajectory information and details of each d agmea site or repair, the expected time (and thus Mach number) of transition onset is predicted to help define proper environments for use in subsequent thermal and stress analysis of the thermal protection system and structure. The boundary layer transition criteria utilized within the tool were updated based on new local boundary layer properties obtained from high fidelity computational solutions. Also, new ground-based measurements were obtained to allow for a wider parametric variation with both protuberances and cavities and then the resulting correlations were calibrated against updated flight data. The end result is to provide correlations that allow increased confidence with the resulting transition predictions. Recently, a new approach was adopted to remove conservatism in terms of sustained turbulence along the wing leading edge. Finally, some of the newer flight data are also discussed in terms of how these results reflect back on the updated correlations.
Boundary Layer Transition on X-43A
NASA Technical Reports Server (NTRS)
Berry, Scott; Daryabeigi, Kamran; Wurster, Kathryn; Bittner, Robert
2008-01-01
The successful Mach 7 and 10 flights of the first fully integrated scramjet propulsion systems by the Hyper-X (X-43A) program have provided the means with which to verify the original design methodologies and assumptions. As part of Hyper-X s propulsion-airframe integration, the forebody was designed to include a spanwise array of vortex generators to promote boundary layer transition ahead of the engine. Turbulence at the inlet is thought to provide the most reliable engine design and allows direct scaling of flight results to groundbased data. Pre-flight estimations of boundary layer transition, for both Mach 7 and 10 flight conditions, suggested that forebody boundary layer trips were required to ensure fully turbulent conditions upstream of the inlet. This paper presents the results of an analysis of the thermocouple measurements used to infer the dynamics of the transition process during the trajectories for both flights, on both the lower surface (to assess trip performance) and the upper surface (to assess natural transition). The approach used in the analysis of the thermocouple data is outlined, along with a discussion of the calculated local flow properties that correspond to the transition events as identified in the flight data. The present analysis has confirmed that the boundary layer trips performed as expected for both flights, providing turbulent flow ahead of the inlet during critical portions of the trajectory, while the upper surface was laminar as predicted by the pre-flight analysis.
Thick diffusion limit boundary layer test problems
Bailey, T. S. [Lawrence Livermore National Laboratory, 7000 East Avenue, L-095, Livermore, CA 94551 (United States); Warsa, J. S.; Chang, J. H. [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87544 (United States); Adams, M. L. [Texas A and M University, Department of Nuclear Engineering, College Station, TX 77843-3133 (United States)
2013-07-01
We develop two simple test problems that quantify the behavior of computational transport solutions in the presence of boundary layers that are not resolved by the spatial grid. In particular we study the quantitative effects of 'contamination' terms that, according to previous asymptotic analyses, may have a detrimental effect on the solutions obtained by both discontinuous finite element (DFEM) and characteristic-method (CM) spatial discretizations, at least for boundary layers caused by azimuthally asymmetric incident intensities. Few numerical results have illustrated the effects of this contamination, and none have quantified it to our knowledge. Our test problems use leading-order analytic solutions that should be equal to zero in the problem interior, which means the observed interior solution is the error introduced by the contamination terms. Results from DFEM solutions demonstrate that the contamination terms can cause error propagation into the problem interior for both orthogonal and non-orthogonal grids, and that this error is much worse for non-orthogonal grids. This behavior is consistent with the predictions of previous analyses. We conclude that these boundary layer test problems and their variants are useful tools for the study of errors that are introduced by unresolved boundary layers in diffusive transport problems. (authors)
Optimal Disturbances in Compressible Boundary Layers
Zuccher, Simone
& Anatoli Tumin University of Arizona, Tucson, AZ, 85721, USA Eli Reshotko Case Western Reserve University transition mechanism Tollmien-Schlicting (TS) waves first experimentally detected by Schubauer and Skramstad in Compressible Boundary Layers Complete Energy Norm Analysis, Paper AIAA-2005-5314 p. #12;Are TS waves
Boundary layer control device for duct silencers
NASA Technical Reports Server (NTRS)
Schmitz, Fredric H. (inventor); Soderman, Paul T. (inventor)
1993-01-01
A boundary layer control device includes a porous cover plate, an acoustic absorber disposed under the porous cover plate, and a porous flow resistive membrane interposed between the porous cover plate and the acoustic absorber. The porous flow resistive membrane has a flow resistance low enough to permit sound to enter the acoustic absorber and high enough to damp unsteady flow oscillations.
Planetary Boundary Layer from AERI and MPL
Sawyer, Virginia
2014-02-13
The distribution and transport of aerosol emitted to the lower troposphere is governed by the height of the planetary boundary layer (PBL), which limits the dilution of pollutants and influences boundary-layer convection. Because radiative heating and cooling of the surface strongly affect the PBL top height, it follows diurnal and seasonal cycles and may vary by hundreds of meters over a 24-hour period. The cap the PBL imposes on low-level aerosol transport makes aerosol concentration an effective proxy for PBL height: the top of the PBL is marked by a rapid transition from polluted, well-mixed boundary-layer air to the cleaner, more stratified free troposphere. Micropulse lidar (MPL) can provide much higher temporal resolution than radiosonde and better vertical resolution than infrared spectrometer (AERI), but PBL heights from all three instruments at the ARM SGP site are compared to one another for validation. If there is agreement among them, the higher-resolution remote sensing-derived PBL heights can accurately fill in the gaps left by the low frequency of radiosonde launches, and thus improve model parameterizations and our understanding of boundary-layer processes.
TURBULENCE IN SUPERSONIC AND HYPERSONIC BOUNDARY LAYERS
Martín, Pino
TURBULENCE IN SUPERSONIC AND HYPERSONIC BOUNDARY LAYERS Alexander J. Smits and M. Pino Martin in supersonic and hypersonic flow where the effects of compressibility have a direct influence on the turbulence. Experimental and DNS results are presented and compared. Key words: Turbulence, supersonic, hypersonic, shocks
Boundary layer transition flight test observations
A. M. Berkowitz; C. L. Kyriss; A. Martellucci
1977-01-01
A historical review regarding the evolution of flight test boundary layer transition correlations in connection with the development of operational ballistic reentry vehicles in the U.S. is presented, taking into account the time periods from 1956 to 1961, from 1961 to 1971, and from 1971 to the present time. Questions of transition data evaluation are discussed, taking into account transition
Numerical methods for hypersonic boundary layer stability
NASA Technical Reports Server (NTRS)
Malik, M. R.
1990-01-01
Four different schemes for solving compressible boundary layer stability equations are developed and compared, considering both the temporal and spatial stability for a global eigenvalue spectrum and a local eigenvalue search. The discretizations considered encompass: (1) a second-order-staggered finite-difference scheme; (2) a fourth-order accurate, two-point compact scheme; (3) a single-domain Chebychev spectral collocation scheme; and (4) a multidomain spectral collocation scheme. As Mach number increases, the performance of the single-domain collocation scheme deteriorates due to the outward movement of the critical layer; a multidomain spectral method is accordingly designed to furnish superior resolution of the critical layer.
Boundary layer emission in luminous LMXBs
NASA Astrophysics Data System (ADS)
Gilfanov, M.; Revnivtsev, M.
2005-11-01
We show that aperiodic and quasiperiodic variability of bright LMXBs - atoll and Z-sources - on ˜ sec-msec time scales is caused primarily by variations of the luminosity of the boundary layer. The emission of the accretion disk is less variable on these time scales and its power density spectrum follows P_disk(f)? f-1 law, contributing to observed flux variation at low frequencies and low energies only. The kHz QPOs have the same origin as variability at lower frequencies, i.e. independent of the nature of the "clock", the actual luminosity modulation takes place on the neutron star surface. The boundary layer spectrum remains nearly constant in the course of the luminosity variations and is represented to certain accuracy by the Fourier frequency resolved spectrum. In the investigated range of \\dot{M}˜ (0.1-1) \\dot{M}_Edd it depends weakly on the global mass accretion rate and in the limit \\dot{M}˜ \\dot{M}_Edd is close to Wien spectrum with kT˜ 2.4 keV. Its independence on the global value of \\dot{M} lends support to the theoretical suggestion by \\citet{inogamov99} that the boundary layer is radiation pressure supported. \\ Based on the knowledge of the boundary layer spectrum we attempt to relate the motion along the Z-track to changes of physically meaningful parameters. Our results suggest that the contribution of the boundary layer to the observed emission decreases along the Z-track from conventional ˜ 50% on the horizontal branch to a rather small number on the normal branch. This decrease can be caused, for example, by obscuration of the boundary layer by the geometrically thickened accretion disk at \\dot{M}˜\\dot{M}_Edd. Alternatively, this can indicate significant change of the structure of the accretion flow at \\dot{M}˜\\dot{M}_Edd and disappearance of the boundary layer as a distinct region of the significant energy release associated with the neutron star surface.
Roughness Induced transition in supersonic boundary layers
NASA Astrophysics Data System (ADS)
Muppidi, Suman; Mahesh, Krishnan
2011-11-01
Laminar-to-turbulent transition at high speeds can significantly alter aerodynamic drag and heat transfer. The present study uses Direct Numerical Simulations to study transition of a Mach 2.9 boundary layer due to distributed surface roughness. Roughness causes the near-wall fluid to slow down and generates a strong shear layer over the roughness elements. Roughness surface also exerts an upward impulse on the fluid, generating counter-rotating pairs of streamwise vortices underneath the shear layer. As they move downstream, these vortices rise toward the shear layer, and their mutual interaction results in the break down of the shear layer, followed closely by transition to turbulence. The mean flow in the turbulent region shows a good agreement with available data for fully turbulent boundary layers. Simulations under varying conditions show that where the shear layer is not as strong, and the streamwise vortices are not as coherent, the flow remains laminar. This work is supported by NASA under the hypersonics NRA program grant NNX08AB33A.
NASA Technical Reports Server (NTRS)
Schlichting, H.
1949-01-01
Various ways were tried recently to decrease the friction drag of a body in a flow; they all employ influencing the boundary layer. One of them consists in keeping the boundary layer Laminar by suction; promising tests have been carried out. Since for large Reynolds numbers the friction drag of the laminar boundary layer is much lower than that of the turbulent boundary layer, a considerable saving in drag results from keeping the boundary layer laminar, even with the blower power required for suction taken into account. The boundary layer is kept laminar by suction in two ways: first, by reduction of the thickness of the boundary layer and second, by the fact that the suction changes the form of the velocity distribution so that it becomes more stable, in a manner similar to the change by a pressure drop. There by the critical Reynolds number of the boundary layer (USigma*/V) (sub crit) becomes considerably higher than for the case without suction. This latter circumstance takes full effect only if continuous suction is applied which one might visualize realized through a porous wall. Thus the suction quantities required for keeping the boundary layer laminar become so small that the suction must be regarded as a very promising auxiliary means for drag reduction.
Turbulent Boundary Layer Facility to Investigate Superhydrophobic Drag Reduction
NASA Astrophysics Data System (ADS)
Gose, James W.; Perlin, Marc; Ceccio, Steven L.
2013-11-01
Recent developments in superhydrophobic surfaces have led to potential economic and environmental benefits, perhaps most notably in skin-friction drag reduction. A team from the University of Michigan has developed a recirculating turbulent boundary layer facility to investigate the reduction of drag along engineered superhydrophobic surfaces (SHS). The facility can accommodate both small and large SHS samples in a test section 7 mm (depth)×100 mm (span)×1000 mm (length). Coupled with an 11.2 kilowatt pump and a 30:1 contraction the facility is capable of producing an average flow velocity of 25 m/s, yielding a Reynolds number of 84,000. Flexure-mounted test samples subjected to shear deflect to a max of 50 microns; movements are measured using a digital microscope composed of a high-resolution camera and a water immersion objective. The setup yields an optical resolution of about one micron whereas sub-micron resolution is achieved by implementing an FFT of two Ronchi rulings. Additional drag measurement methods include pressure drop across the test specimen and PIV measured boundary layers. Additional SHS investigations include the implementation of active gas replenishment, providing an opportunity to replace gas-pockets that would otherwise be disrupted in traditional passive SHS surfaces due to high shear stress and turbulent pressure fluctuations. Recent developments in superhydrophobic surfaces have led to potential economic and environmental benefits, perhaps most notably in skin-friction drag reduction. A team from the University of Michigan has developed a recirculating turbulent boundary layer facility to investigate the reduction of drag along engineered superhydrophobic surfaces (SHS). The facility can accommodate both small and large SHS samples in a test section 7 mm (depth)×100 mm (span)×1000 mm (length). Coupled with an 11.2 kilowatt pump and a 30:1 contraction the facility is capable of producing an average flow velocity of 25 m/s, yielding a Reynolds number of 84,000. Flexure-mounted test samples subjected to shear deflect to a max of 50 microns; movements are measured using a digital microscope composed of a high-resolution camera and a water immersion objective. The setup yields an optical resolution of about one micron whereas sub-micron resolution is achieved by implementing an FFT of two Ronchi rulings. Additional drag measurement methods include pressure drop across the test specimen and PIV measured boundary layers. Additional SHS investigations include the implementation of active gas replenishment, providing an opportunity to replace gas-pockets that would otherwise be disrupted in traditional passive SHS surfaces due to high shear stress and turbulent pressure fluctuations. The authors recognize the support of ONR.
Vanishing stick-slip friction in few-layer graphenes: the thickness effect.
Xu, Liang; Ma, Tian-Bao; Hu, Yuan-Zhong; Wang, Hui
2011-07-15
We report the thickness dependence of intrinsic friction in few-layer graphenes, adopting molecular dynamics simulations. The friction force drops dramatically with decreasing number of layers and finally approaches zero with two or three layers. The results, which are robust over a wide range of temperature, shear velocity, and pressure are quantitatively explained by a theoretical model with regard to lateral stiffness, slip length, and maximum lateral force, which could provide a new conceptual framework for understanding stick-slip friction. The results reveal the crucial role of the dimensional effect in nanoscale friction, and could be helpful in the design of graphene-based nanodevices. PMID:21646695
Interaction between soil hydrology and boundary-layer development
H.-L. Pan; L. Mahrt
1987-01-01
A two-layer model of soil hydrology and thermodynamics is combined with a one-dimensional model of the planetary boundary layer to study various interactions between evolution of the boundary layer and soil moisture transport. Boundary-layer moistening through surface evaporation reduces the potential and actual surface evaporation as well as the boundary-layer growth. With more advanced stages of soil drying, the restricted
Enthalpy effects on hypervelocity boundary layers
NASA Astrophysics Data System (ADS)
Adam, Philippe H.
More than 50 shots with air and 35 shots with carbon dioxide were carried out in the T5 shock tunnel at GALCIT to study enthalpy effects on hypervelocity boundary layers. The model tested was a 5° half-angle cone measuring approximately 1 meter in length. It was instrumented with 51 chromel-constantan coaxial thermocouples and the surface heat transfer rate was computed to deduce the state of the boundary layer and, when applicable, the transition location. Transitional boundary layers obtained confirm the stabilizing effect of enthalpy. As the reservoir enthalpy is increased, the transition Reynolds number evaluated at the reference conditions increases as well. The stabilizing effect is more rapid in gases with lower dissociation energy and it seems to level off when no further dissociation can be achieved. These effects do not appear when the transition location is normalized with the edge conditions. Further normalizing the reservoir enthalpy with the edge enthalpy appears to collapse the data for all gases onto a single curve. A similar collapse is obtained when normalizing both the transition location and the reservoir enthalpy with maximum temperature conditions obtained with BLIMPK, a nonequilibrium boundary layer code. The observation that the reference conditions seem more appropriate to normalize high enthalpy transition data was taken a step further by comparing the tunnel data with results from a reentry experiment. When the edge conditions are used, the tunnel data are around an order of magnitude below the flight data. This is commonly attributed to the fact that disturbance levels in tunnels are high, causing the boundary layer to transition prematurely. However, when the conditions at the reference temperature are used instead, the data come within striking distance of one another although the trend with enthalpy seems to be a destabilizing one for the flight data. This difference could be due to the cone bending and blunting observed during the reentry. Experimental laminar heat transfer levels were compared to numerical results obtained with BLIMPK. Results for air indicate that the reactions are probably in nonequilibrium and that the wall is catalytic. The catalycity is seen to yield higher surface heat transfer rates than the noncatalytic and frozen chemistry models. The results for carbon dioxide, however, are inconclusive. This is, perhaps, because of inadequate modeling of the actual reactions. Experimentally, an anomalous yet repeatable, rise in the laminar heat transfer level can be seen at medium enthalpies in carbon dioxide boundary layers.
Enthalpy effects on hypervelocity boundary layers
NASA Astrophysics Data System (ADS)
Adam, Philippe H.
Shots with air and carbon dioxide were carried out in the T5 shock tunnel at GALCIT to study enthalpy effects on hypervelocity boundary layers. The model tested was a 1-meter long, 5-deg half-angle cone. It was instrumented with 51 chromel-constantan coaxial thermocouples and the surface heat transfer rate was computed to deduce the state of the boundary layer. Transitional boundary layers obtained confirm the stabilizing effect of enthalpy. As the reservoir enthalpy is increased, the transition Reynolds number evaluated at the reference conditions increases. This stabilizing effect is more rapid in gases with lower dissociation energy and it seems to level off when no further dissociation can be achieved. Normalizing the reservoir enthalpy with the edge enthalpy appears to collapse the data for all gases onto a single curve. A similar collapse is obtained when normalizing both the transition location and the reservoir enthalpy with the maximum temperature conditions obtained with BLIMPK, a nonequilibrium boundary layer code. The observation that reference conditions are more appropriate to normalize high enthalpy transition data was taken a step further by comparing the tunnel data with results from a reentry experiment. When the edge conditions are used, the tunnel and flight data are around an order of magnitude apart. This is commonly attributed to high disturbance levels in tunnels that cause the boundary layer to transition early. However, when the reference conditions are used instead, the tunnel and flight data come within striking distance of one another although the trends with enthalpy are reversed. This difference could be due to the cone bending and nose blunting. Experimental laminar heat transfer levels were compared to numerical results obtained with BLIMPK. Results for air indicate that the reactions are probably in nonequilibrium and that the wall is catalytic. The catalycity is seen to yield higher surface heat transfer rates than the noncatalytic and frozen chemistry models. The results for carbon dioxide, however, are inconclusive. This is, perhaps, because of inadequate modeling of the reactions. Experimentally, an anomalous yet repeatable, rise in the laminar heat transfer level can be seen at medium enthalpies in carbon dioxide boundary layers.
Convex curvature effects on the heated turbulent boundary layer
NASA Technical Reports Server (NTRS)
Simon, T. W.; Moffat, R. J.
1982-01-01
A convexly curved and isothermally heated wall with a 45-cm radius of curvature is subjected to turbulent boundary layer flow measurements in order to determine wall heat transfer rates and mean velocity and temperature profiles. Significant curvature effects are noted, with Stanton number and skin friction coefficient reductions of 35-40 percent by comparison with flat plate values for the same momentum or enthalpy thickness Reynolds numbers. Profiles of mean velocity and temperature show a more rapid growth of the wake regions, and a shortening of the log-linear region, as a result of curvature. Turbulent Prandtl numbers deduced from the mean temperature profiles under the assumption of a wall thermal law were found to be increased by 40-50 percent by this strong convex curvature.
A comparison of opposition control in turbulent boundary layer and turbulent channel flow
NASA Astrophysics Data System (ADS)
Stroh, A.; Frohnapfel, B.; Schlatter, P.; Hasegawa, Y.
2015-07-01
A comparison between classical opposition control applied in the configuration of a fully developed turbulent channel flow and applied locally in a spatially developing turbulent boundary layer is presented. It is found that the control scheme yields similar drag reduction rates if compared at the same friction Reynolds numbers. However, a detailed analysis of the dynamical contributions to the skin friction coefficient reveals significant differences in the mechanism behind the drag reduction. While drag reduction in turbulent channel flow is entirely based on the attenuation of the Reynolds shear stress, the modification of the spatial flow development is essential for the turbulent boundary layer in terms of achievable drag reduction. It is shown that drag reduction due to this spatial development contribution becomes more pronounced with increasing Reynolds number (up to Re? = 660, based on friction velocity and boundary layer thickness) and even exceeds drag reduction due to attenuation of the Reynolds shear stress. In terms of an overall energy balance, it is found that opposition control is less efficient in the turbulent boundary layer due to the inherently larger fluctuation intensities in the near wall region.
Modification of boundary lubrication by oil-soluble friction modifier Yingxi Zhua
Granick, Steve
Modification of boundary lubrication by oil-soluble friction modifier additives Yingxi Zhua in lubricants of the type used at the wet clutch interface in automatic transmissions has been studied using in the boundary lubrication regime and compared to a fully-formulated automatic transmission fluid (ATF). 1
Numerical simulation of boundary-layer transition
NASA Technical Reports Server (NTRS)
Spalart, P. R.
1984-01-01
The transition to turbulence in boundary layers was investigated by direct numerical solution of the nonlinear, three-dimensional, incompressible Navier-Stokes equations in the half-infinite domain over a flat plate. Periodicity was imposed in the streamwise and spanwise directions. A body force was applied to approximate the effect of a nonparallel mean flow. The numerical method was spectra, based on Fourier series and Jacobi polynomials, and used divergence-free basis functions. Extremely rapid convergence was obtained when solving the linear Orr-Sommerfeld equation. The early nonlinear and three-dimensional stages of transition, in a boundary layer disturbed by a vibrating ribbon, were successfully simulated. Excellent qualitative agreement was observed with either experiments or weakly nonlinear theories. In particular, the breakdown pattern was staggered or nonstaggered depending on the disturbance amplitude.
Boundary layer transition detection by luminescence imaging
NASA Technical Reports Server (NTRS)
Mclachlan, B. G.; Bell, J. H.; Gallery, J.; Gouterman, M.; Callis, J.
1993-01-01
In recent experiments we have demonstrated the feasibility of a new approach to boundary layer transition detection. This new approach employs the temperature dependence of certain photoluminescent materials in the form of a surface coating or 'paint' to detect the change in heat transfer characteristics that accompany boundary layer transition. The feasibility experiments were conducted for low subsonic to transonic Mach numbers on two-dimensional airfoil and flat plate configurations. Paint derived transition locations were determined and compared to those obtained from Preston pressure probe measurements. Artificial heating of the models was used to obtain transition temperature signatures suitable for the instrumentation available to us. Initial estimates show, however, that passive kinetic heating at high Mach numbers is a promising alternative.
BOREAS AFM-6 Boundary Layer Height Data
NASA Technical Reports Server (NTRS)
Wilczak, James; Hall, Forrest G. (Editor); Newcomer, Jeffrey A. (Editor); Smith, David E. (Technical Monitor)
2000-01-01
The Boreal Ecosystem-Atmosphere Study (BOREAS) Airborne Fluxes and Meteorology (AFM)-6 team from National Oceanic and Atmospheric Adminsitration/Environment Technology Laboratory (NOAA/ETL) operated a 915-MHz wind/Radio Acoustic Sounding System (RASS) profiler system in the Southern Study Area (SSA) near the Old Jack Pine (OJP) site. This data set provides boundary layer height information over the site. The data were collected from 21 May 1994 to 20 Sep 1994 and are stored in tabular ASCII files. The boundary layer height data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884).
Stability of boundary layers along curved surfaces
NASA Astrophysics Data System (ADS)
Le Cunff, Cedric
The stability of a boundary layer along a curved wall was first studied by Gortler (27) in 1940. Further investigations have been conducted since 1980. An important contribution was made by Hall (29), when he first proposed a more rigorous approach to this problem. Gortler had used a simple approximation which allowed him to reduce the problem to a set of ordinary differential equations. However such an assumption ignored the growth of the boundary layer, which Hall showed could not be neglected. Hall then rederived the formulation to obtain a set of partial differential equations. We solved the system of equations, including the nonlinear terms, with a method proposed by Herbert (3), called the Parabolic Stability Equations (PSE). The flow is divided into a basic profile, which satisfies the Prandtl boundary layer equations, and a perturbation. We compared our results for the Blasius profile with those of Bottaro, Klinnmann, and Zebib (8) and found excellent agreement between our calculations and their finite- volume simulations. We then applied our code to the wall jet profile. We were able to capture the growth of steady vortices, located in the inner region of the jet for a concave wall, and the outer region for a convex wall, as predicted by Florian's (20) linear inviscid argument. Our calculations were in good agreement with Matsson's (49) experimental results. We also studied the influence of crossflow on a boundary layer. Crossflow might lead to streamwise vortices along a flat plate, and contrary to Gortler vortices, crossflow vortices are co-rotating instead of counter-rotating. We investigated the interactions between these two types of vortices and compared the results with experimental measurements obtained by Bippes (4). The final part of the thesis is the simulation of the secondary time-dependent instability originating from the shear profiles created by the primary streamwise vortices. The onset of the instability is studied by marching both in space and time. If no forcing is prescribed the time-dependent code predicts a steady solution. Time-dependent boundary conditions are then applied by solving the linear stability problem at some streamwise location to obtain the most dangerous streamwise perturbation velocity and the corresponding frequency. We found that the varicose mode is more amplified in the streamwise direction than the sinuous mode. Similarly, if both modes are included in the initial conditions, the varicose mode is still dominant. Furthermore, as the flow evolves downstream, the unsteady behavior exhibits a more complex time-dependence, which was also observed in the experiments of Swearingen and Blackwealder (66). In our computations, higher harmonics are observed near the wall and propagate into the boundary layer.
NASA Technical Reports Server (NTRS)
Evans, R. M.
1975-01-01
Accurate predictions of the thrust loss due to boundary layer effects and of the wall heat flux are very important to the design and performance evaluation of rocket nozzles. A method used in analytical procedures for liquid fuel rocket engine performance prediction and evaluation is presented. A computer program is examined that is a fast and accurate procedure for solving the set of boundary layer equation (momentum, energy, and species) for laminar or turbulent, chemically reacting flows with a wide variety of boundary conditions. Results of comparison of the various turbulent models are presented. A summary of the modifications and additions to the program is examined.
The boundary layer on compressor cascade blades
NASA Technical Reports Server (NTRS)
Deutsch, S.
1981-01-01
Some redesign of the cascade facility was necessary in order to incoporate the requirements of the LDA system into the design. Of particular importance was the intended use of a combination of suction upstream of the blade pack with diverging pack walls, as opposed to blade pack suction alone, for spanwise dimensionality control. An ARL blade was used to redo some tests using this arrangement. Preliminary testing and boundary layer measurements began on the double circular arc blades.
Reduction of turbulent drag: Boundary layer manipulators
NASA Astrophysics Data System (ADS)
Coustols, E.
1989-03-01
The drag reduction on airbus profiles is investigated. External and internal boundary layer manipulators are applied. The wind tunnel wall geometry and the model surface geometry are modified, carving riblets in the sense of the main flow. The change induced in the flow are studied using hotwire anemometry and spectral analysis. Direct drag measurements on Airbus profiles indicate a drag reduction of 3.5 percent. Experiments using cylindrical bodies in transonic flow show a drag reduction of 8 percent.
Boundary Layer Control for Hypersonic Airbreathing Vehicles
NASA Technical Reports Server (NTRS)
Berry, Scott A.; Nowak, Robert J.; Horvath, Thomas J.
2004-01-01
Active and passive methods for tripping hypersonic boundary layers have been examined in NASA Langley Research Center wind tunnels using a Hyper-X model. This investigation assessed several concepts for forcing transition, including passive discrete roughness elements and active mass addition (or blowing), in the 20-Inch Mach 6 Air and the 31-Inch Mach 10 Air Tunnels. Heat transfer distributions obtained via phosphor thermography, shock system details, and surface streamline patterns were measured on a 0.333-scale model of the Hyper-X forebody. The comparisons between the active and passive methods for boundary layer control were conducted at test conditions that nearly match the Hyper-X nominal Mach 7 flight test-point of an angle-of-attack of 2-deg and length Reynolds number of 5.6 million. For passive roughness, the primary parametric variation was a range of trip heights within the calculated boundary layer thickness for several trip concepts. The passive roughness study resulted in a swept ramp configuration, scaled to be roughly 0.6 of the calculated boundary layer thickness, being selected for the Mach 7 flight vehicle. For the active blowing study, the manifold pressure was systematically varied (while monitoring the mass flow) for each configuration to determine the jet penetration height, with schlieren, and transition movement, with the phosphor system, for comparison to the passive results. All the blowing concepts tested, which included various rows of sonic orifices (holes), two- and three-dimensional slots, and random porosity, provided transition onset near the trip location with manifold stagnation pressures on the order of 40 times the model surface static pressure, which is adequate to ensure sonic jets. The present results indicate that the jet penetration height for blowing was roughly half the height required with passive roughness elements for an equivalent amount of transition movement.
Boundary Layer Transition Results From STS-114
NASA Technical Reports Server (NTRS)
Berry, Scott A.; Horvath, Thomas J.; Cassady, Amy M.; Kirk, Benjamin S.; Wang, K. C.; Hyatt, Andrew J.
2006-01-01
The tool for predicting the onset of boundary layer transition from damage to and/or repair of the thermal protection system developed in support of Shuttle Return to Flight is compared to the STS-114 flight results. The Boundary Layer Transition (BLT) Tool is part of a suite of tools that analyze the aerothermodynamic environment of the local thermal protection system to allow informed disposition of damage for making recommendations to fly as is or to repair. Using mission specific trajectory information and details of each damage site or repair, the expected time of transition onset is predicted to help determine the proper aerothermodynamic environment to use in the subsequent thermal and stress analysis of the local structure. The boundary layer transition criteria utilized for the tool was developed from ground-based measurements to account for the effect of both protuberances and cavities and has been calibrated against flight data. Computed local boundary layer edge conditions provided the means to correlate the experimental results and then to extrapolate to flight. During STS-114, the BLT Tool was utilized and was part of the decision making process to perform an extravehicular activity to remove the large gap fillers. The role of the BLT Tool during this mission, along with the supporting information that was acquired for the on-orbit analysis, is reviewed. Once the large gap fillers were removed, all remaining damage sites were cleared for reentry as is. Post-flight analysis of the transition onset time revealed excellent agreement with BLT Tool predictions.
Calculation of a separated turbulent boundary layer
NASA Technical Reports Server (NTRS)
Baldwin, B.; Hung, C. M.
1976-01-01
The properties of a Navier-Stokes solution of a shock-separated turbulent flow over a flat wall are investigated. Refinements of an algebraic relaxation turbulence model previously shown to be of value for the simulation of separated flows are presented. A simplified analysis applicable near an adiabatic wall is developed and used to help verify the accuracy of the numerical solution. Features of the time-dependent response of a turbulent boundary layer to shock impingement are presented.
X-33 HYPERSONIC BOUNDARY LAYER TRANSITION
Scott A. Berry; Thomas J. Horvath; Brian R. Hollis; Richard A. Thompson; H. Harris Hamilton
1999-01-01
Boundary layer and aeroheating characteristics of several X-33 configurations have been experimentally examinedin the Langley 20-Inch Mach 6 Air Tunnel. Global surface heat transfer distributions, surface streamlinepatterns, and shock shapes were measured on 0.013-scale models at Mach 6 in air. Parametric variations includeangles-of-attack of 20-deg, 30-deg, and 40-deg; Reynolds numbers based on model length of 0.9 to 6.6 million; andbody-flap
Entropy production in relativistic jet boundary layers
NASA Astrophysics Data System (ADS)
Kohler, Susanna; Begelman, Mitchell C.
2015-01-01
Hot relativistic jets, passing through a background medium with a pressure gradient p ? r-? where 2 < ? ? 8/3, develop a shocked boundary layer containing a significant fraction of the jet power. In previous work, we developed a self-similar description of the boundary layer assuming isentropic flow, but we found that such models respect global energy conservation only for the special case ? = 8/3. Here, we demonstrate that models with ? < 8/3 can be made self-consistent if we relax the assumption of constant specific entropy. Instead, the entropy must increase with increasing r along the boundary layer, presumably due to multiple shocks driven into the flow as it gradually collimates. The increase in specific entropy slows the acceleration rate of the flow and provides a source of internal energy that could be channelled into radiation. We suggest that this process may be important for determining the radiative characteristics of tidal disruption events and gamma-ray bursts from collapsars.
The Role of Boundary Layer Processes in Limiting PV Homogenization
Zhang, Yang
A ?-plane multilevel quasigeostrophic channel model with interactive static stability and a simplified parameterization of atmospheric boundary layer physics is used to study the role of different boundary layer processes ...
Typhoon kinematic and thermodynamic boundary layer structure from dropsonde composites
NASA Astrophysics Data System (ADS)
Ming, Jie; Zhang, Jun A.; Rogers, Robert F.
2015-04-01
The data from 438 Global Positioning System dropsondes in six typhoons are analyzed to investigate the mean atmospheric boundary layer structure in a composite framework. Following a recent study on boundary layer height in Atlantic hurricanes, we aim to quantify characteristics of boundary layer height scales in Western Pacific typhoons including the inflow layer depth (hinflow), height of the maximum tangential wind speed (hvtmax), and thermodynamic mixed layer depth. In addition, the kinematic and thermodynamic boundary layer structures are compared between the dropsonde composites using data in typhoons and hurricanes. Our results show that similar to the hurricane composite, there is a separation between the kinematic and thermodynamic boundary layer heights in typhoons, with the thermodynamic boundary layer depth being much smaller than hinflow and hvtmax in the typhoon boundary layer. All three boundary layer height scales tend to decrease toward the storm center. Our results confirm that the conceptual model of Zhang et al. (2011a) for boundary layer height variation is applicable to typhoon conditions. The kinematic boundary layer structure is generally similar between the typhoon and hurricane composites, but the typhoon composite shows a deeper inflow layer outside the eyewall than the hurricane composite. The thermodynamic structure of the typhoon boundary layer composite is warmer and moister outside the radius of maximum wind speed than the hurricane composite. This difference is attributed to different environmental conditions associated with typhoons compared to the hurricanes studied here.
NASA Astrophysics Data System (ADS)
Shishov, E. V.
1991-07-01
The results of experimental investigation of the structure, including correlations containing pressure fluctuations, and the processes of turbulent transfer of heat and momentum in strongly accelerated and retarded turbulent boundary layers are presented. Based on the analysis of the data obtained, a modified algebraic 'K-epsilon' model, capable of predicting local friction and heat transfer in boundary layers developing under strong positive and negative pressure gradients, is proposed.
Outer Layer Turbulence Similarity for Rough Wall Boundary Layers
NASA Astrophysics Data System (ADS)
Flack, Karen
2005-11-01
The outer layer similarity hypothesis of Townsend states that the turbulence beyond a few roughness heights from the wall is independent of the surface condition. In order to explore a limiting roughness height for boundary layer similarity, an experimental investigation was carried out on six rough surfaces representing two types of three dimensional roughness (sandpaper and woven mesh) in which the boundary layer thickness to roughness height varied from 16 to 110. The measurements were conducted in a closed return water tunnel, over a momentum thickness Reynolds number range of 6,100 to 13,000, using a two-component, laser Doppler velocimeter (LDV). The Reynolds stresses, and higher-order moments, as well as quadrant analysis of the rough surfaces show collapse with smooth wall results outside of a roughness sublayer. These results indicate that turbulence similarity in the outer layer may be more robust than previously thought and changes to the turbulent structure appear to be confined to a roughness sublayer, even for very large roughness.
Polymer friction-transfer layers and their use as orienting substrates
Motamedi, F.; Ihn, K.J.; Fenwick, D.; Wittmann, J.C.; Smith, P.
1993-12-31
A variety of polymers were investigated as candidates for the formation of oriented layers by friction transfer. Only polyethylene, the liquid-crystalline Vectra{reg_sign} and fluorinated ethylene-propylene copolymer were found to yield oriented transfer layers in addition to the previously described PTFE layers. These layers, in turn, were found to induce the oriented growth of a variety of species deposited onto them from the melt, solution or vapor phase. Comparison of these orientation-inducing friction-transfer layers, however, showed the poly(tetrafluoroethylene) [PTFE] layer to be superior.
Stick-Slip Friction and Energy Dissipation in Boundary Lubrication
NASA Astrophysics Data System (ADS)
Lei, Yajie; Leng, Yongsheng
2011-09-01
Shearing of a simple nonpolar film, right after the liquid-to-solid phase transition under nanometer confinement, is studied by using a liquid-vapor molecular dynamics simulation method. We find that, in contrast with the shear melting and recrystallization behavior of the solidlike phase during the stick-slip motion, interlayer slips within the film and wall slips at the wall-film interface are often observed. The ordered solidified film is well maintained during the slip. Through the time variations of the frictional force and potential energy change within the film, we find that both the friction dissipation during the slip and the potential energy decay after the slip in the solidified film take a fairly large portion of the total energy dissipation.
Boundary-Layer-Ingesting Inlet Flow Control
NASA Technical Reports Server (NTRS)
Owens, Lewis R.; Allan, Brian G.; Gorton, Susan A.
2006-01-01
This paper gives an overview of a research study conducted in support of the small-scale demonstration of an active flow control system for a boundary-layer-ingesting (BLI) inlet. The effectiveness of active flow control in reducing engine inlet circumferential distortion was assessed using a 2.5% scale model of a 35% boundary-layer-ingesting flush-mounted, offset, diffusing inlet. This experiment was conducted in the NASA Langley 0.3-meter Transonic Cryogenic Tunnel at flight Mach numbers with a model inlet specifically designed for this type of testing. High mass flow actuators controlled the flow through distributed control jets providing the active flow control. A vortex generator point design configuration was also tested for comparison purposes and to provide a means to examine a hybrid vortex generator and control jets configuration. Measurements were made of the onset boundary layer, the duct surface static pressures, and the mass flow through the duct and the actuators. The distortion and pressure recovery were determined by 40 total pressure measurements on 8 rake arms each separated by 45 degrees and were located at the aerodynamic interface plane. The test matrix was limited to a maximum free-stream Mach number of 0.85 with scaled mass flows through the inlet for that condition. The data show that the flow control jets alone can reduce circumferential distortion (DPCP(sub avg)) from 0.055 to about 0.015 using about 2.5% of inlet mass flow. The vortex generators also reduced the circumferential distortion from 0.055 to 0.010 near the inlet mass flow design point. Lower inlet mass flow settings with the vortex generator configuration produced higher distortion levels that were reduced to acceptable levels using a hybrid vortex generator/control jets configuration that required less than 1% of the inlet mass flow.
Boundary-Layer-Ingesting Inlet Flow Control
NASA Technical Reports Server (NTRS)
Owens, Lewis R.; Allan, Brian G.; Gorton, Susan A.
2006-01-01
This paper gives an overview of a research study conducted in support of the small-scale demonstration of an active flow control system for a boundary-layer-ingesting (BLI) inlet. The effectiveness of active flow control in reducing engine inlet circumferential distortion was assessed using a 2.5% scale model of a 35% boundary-layer-ingesting flush-mounted, offset, diffusing inlet. This experiment was conducted in the NASA Langley 0.3-meter Transonic Cryogenic Tunnel at flight Mach numbers with a model inlet specifically designed for this type of testing. High mass flow actuators controlled the flow through distributed control jets providing the active flow control. A vortex generator point design configuration was also tested for comparison purposes and to provide a means to examine a hybrid vortex generator and control jets configuration. Measurements were made of the onset boundary layer, the duct surface static pressures, and the mass flow through the duct and the actuators. The distortion and pressure recovery were determined by 40 total pressure measurements on 8 rake arms each separated by 45 degrees and were located at the aerodynamic interface plane. The test matrix was limited to a maximum free-stream Mach number of 0.85 with scaled mass flows through the inlet for that condition. The data show that the flow control jets alone can reduce circumferential distortion (DPCPavg) from 0.055 to about 0.015 using about 2.5% of inlet mass flow. The vortex generators also reduced the circumferential distortion from 0.055 to 0.010 near the inlet mass flow design point. Lower inlet mass flow settings with the vortex generator configuration produced higher distortion levels that were reduced to acceptable levels using a hybrid vortex generator/control jets configuration that required less than 1% of the inlet mass flow.
NASA Astrophysics Data System (ADS)
Gasser, D.; Thomann, H.; Dengel, P.
1993-06-01
Three indirect methods of measuring skin friction (Preston tube, sublayer fence, and wall pulsed wire) were compared with a direct method (floating-element balance) in a boundary layer with a strong adverse pressure gradient. In one case skin-friction measurements were performed in a boundary layer with separation and reattachment. Agreement between the three methods and the balance was satisfactory, with differences between the indirect methods and the balance reading high in regions with a strong decrease of tau(w) and low where tau(w) increased in streamwise direction. There existed a tendency of the differences to increase with increasing h(+), but no general correlation with h(+) could be found.
A modified law-of-the-wall applied to oceanic bottom boundary layers
A. Perlin; J. N. Moum; J. M. Klymak; M. D. Levine; T. Boyd; P. M. Kosro
2005-01-01
Near the bottom, the velocity profile in the bottom boundary layer over the continental shelf exhibits a characteristic law-of-the-wall that is consistent with local estimates of friction velocity from near-bottom turbulence measurements. Farther from the bottom, the velocity profile exhibits a deviation from the law-of-the-wall. Here the velocity gradient continues to decrease with height but at a rate greater than
A modified law-of-the-wall applied to oceanic bottom boundary layers
A. Perlin; J. N. Moum; J. M. Klymak; M. D. Levine; T. Boyd; P. M. Kosro
2005-01-01
(1) Near the bottom, the velocity profile in the bottom boundary layer over the continental shelf exhibits a characteristic law-of-the-wall that is consistent with local estimates of friction velocity from near-bottom turbulence measurements. Farther from the bottom, the velocity profile exhibits a deviation from the law-of-the-wall. Here the velocity gradient continues to decrease with height but at a rate greater
Investigations of Compression Shocks and Boundary Layers in Gases Moving at High Speed
NASA Technical Reports Server (NTRS)
Ackeret, J.; Feldmann, F.; Rott, N.
1947-01-01
The mutual influences of compression shocks and friction boundary layers were investigated by means of high speed wind tunnels.Schlieren optics provided a clear picture of the flow phenomena and were used for determining the location of the compression shocks, measurement of shock angles, and also for Mach angles. Pressure measurement and humidity measurements were also taken into consideration.Results along with a mathematical model are described.
Boundary Layer Transition Flight Experiment Overview
NASA Technical Reports Server (NTRS)
Berger, Karen T.; Anderson, Brian P.; Campbell, Charles H.; Garske, Michael T.; Saucedo, Luis A.; Kinder, Gerald R.; Micklos, Ann M.
2011-01-01
In support of the Boundary Layer Transition Flight Experiment (BLT FE) Project, a manufactured protuberance tile was installed on the port wing of Space Shuttle Orbiter Discovery for STS-119, STS-128, STS-131 and STS-133 as well as Space Shuttle Endeavour for STS-134. Additional instrumentation was installed in order to obtain more spatially resolved measurements downstream of the protuberance. This paper provides an overview of the BLT FE Project with emphasis on the STS-131 and STS-133 results. A high-level overview of the in-situ flight data is presented, along with a summary of the comparisons between pre- and post-flight analysis predictions and flight data. Comparisons show that empirically correlated predictions for boundary layer transition onset time closely match the flight data, while predicted surface temperatures were significantly higher than observed flight temperatures. A thermocouple anomaly observed on a number of the missions is discussed as are a number of the mitigation actions that will be taken on the final flight, STS-134, including potential alterations of the flight trajectory and changes to the flight instrumentation.
Quantum friction on monoatomic layers and its classical analog
NASA Astrophysics Data System (ADS)
Maslovski, Stanislav I.; Silveirinha, Mário G.
2013-07-01
We consider the effect of quantum friction at zero absolute temperature resulting from polaritonic interactions in closely positioned two-dimensional arrays of polarizable atoms (e.g., graphene sheets) or thin dielectric sheets modeled as such arrays. The arrays move one with respect to another with a nonrelativistic velocity v?c. We confirm that quantum friction is inevitably related to material dispersion, and that such friction vanishes in nondispersive media. In addition, we consider a classical analog of the quantum friction which allows us to establish a link between the phenomena of quantum friction and classical parametric generation. In particular, we demonstrate how the quasiparticle generation rate typically obtained from the quantum Fermi golden rule can be calculated classically.
A study of the effects of Lebu devices on turbulent boundary layer drag
NASA Technical Reports Server (NTRS)
Falco, R. E.
1983-01-01
Initial measurements of the changes in local skin friction, velocity profile shape, and turbulence structure which result from the placement of tandem plates parallel to the wall in the outer region of thick turbulent boundary layers were made. Using a tunnel with a .75 m x 1.2 m x 7.3 m test section, which diverged so as to keep the pressure gradient less than 2x1000/ft, on the test wall, a skin friction reduction of approximately 30% was measured at xi/h = 62. This relaxed to a reduction of approximately 16% at xi/h = 124 for h/delta M = .6. The c sub f measurements for both the normal and modified boundary layers were obtained by measuring the slope of the velocity profile within the linear sublayer. Visual results indicated a continued presence of strong large eddy structure downstream of the devices. Local skin friction reduction of 12% at xi/h = 62 was also obtained with the manipulators above the boundary layer at y/delta m = 1.1.
Flow Visualization in Supersonic Turbulent Boundary Layers.
NASA Astrophysics Data System (ADS)
Smith, Michael Wayne
This thesis is a collection of novel flow visualizations of two different flat-plate, zero pressure gradient, supersonic, turbulent boundary layers (M = 2.8, Re _theta ~ 82,000, and M = 2.5, Re_ theta ~ 25,000, respectively). The physics of supersonic shear flows has recently drawn increasing attention with the renewed interest in flight at super and hypersonic speeds. This work was driven by the belief that the study of organized, Reynolds -stress producing turbulence structures will lead to improved techniques for the modelling and control of high-speed boundary layers. Although flow-visualization is often thought of as a tool for providing qualitative information about complex flow fields, in this thesis an emphasis is placed on deriving quantitative results from image data whenever possible. Three visualization techniques were applied--'selective cut-off' schlieren, droplet seeding, and Rayleigh scattering. Two experiments employed 'selective cut-off' schlieren. In the first, high-speed movies (40,000 fps) were made of strong density gradient fronts leaning downstream at between 30^circ and 60^ circ and travelling at about 0.9U _infty. In the second experiment, the same fronts were detected with hot-wires and imaged in real time, thus allowing the examination of the density gradient fronts and their associated single-point mass -flux signals. Two experiments employed droplet seeding. In both experiments, the boundary layer was seeded by injecting a stream of acetone through a single point in the wall. The acetone is atomized by the high shear at the wall into a 'fog' of tiny (~3.5mu m) droplets. In the first droplet experiment, the fog was illuminated with copper-vapor laser sheets of various orientations. The copper vapor laser pulses 'froze' the fog motion, revealing a variety of organized turbulence structures, some with characteristic downstream inclinations, others with large-scale roll-up on the scale of delta. In the second droplet experiment, high-speed movies were made of the fog under general illumination, thus providing information about the streamwise evolution of the structures seen in the planar stills. Rayleigh scattering from a laser sheet was used to create instantaneous density cross-sections in the M = 2.5 boundary layer. The Rayleigh scattering experiment represents the first measurement of the instantaneous 2-D field of an intrinsic fluid property in any boundary layer. Imaged by an intensified UV camera, scattering from the Argon-Fluoride laser (193 nm) revealed density structures with sharp interfaces between high and low-density fluid. These pictures were also used to generated quantitative turbulence information. Density pdf profiles, intermittency values, density correlations, and structure shape data were derived with standard digital image-processing techniques.
Boundary layer flow and heat transfer past a moving plate with suction and injection
NASA Astrophysics Data System (ADS)
Ishak, Anuar; Nazar, Roslinda; Pop, Ioan
2014-06-01
The behavior of an incompressible steady boundary layer flow past a permeable semi-infinite flat plate moving in a free stream is discussed in this paper. In addition to the mass transfer from the plate (suction or injection), the viscous dissipation term is also included into the energy equation. The solutions of the transformed ordinary differential equations are obtained numerically using an implicit finite-difference method. The numerical results are given for the velocity and temperature profiles as well as for the skin friction coefficient and the local Nusselt number for various values of the suction/injection parameter ?, ratio of the wall velocity to the free stream velocity parameter ?, Prandtl number Pr and Eckert number Ec. It is found that suction increases the heat transfer by decreasing the thermal boundary layer thickness and the reverse happens for injection. Furthermore, it is also found that the boundary layer equations have non-unique (dual) solutions in some cases.
Turbulent boundary layer over solid and porous surfaces with small roughness
NASA Technical Reports Server (NTRS)
Kong, F. Y.; Schetz, J. A.; Collier, F.
1982-01-01
Skin friction and profiles of mean velocity, axial and normal turbulence intensity, and Reynolds stress in the untripped boundary layer were measured directly on a large diameter, axisymmetric body with: (1) a smooth, solid surface; (2) a sandpaper-roughened, solid surface; (3) a sintered metal, porous surface; (4) a smooth, perforated titanium surface; (5) a rough solid surface made of fine, diffusion bonded screening, and (6) a rough, porous surface of the same screening. Results obtained for each of these surfaces are discussed. It is shown that a rough, porous wall simply does not influence the boundary layer in the same way as a rough solid wall. Therefore, turbulent transport models for boundary layers over porous surfaces either with or without injection or suction, must include both surface roughness and porosity effects.
Investigation of turbulent boundary layer structures using Tomographic PIV
NASA Astrophysics Data System (ADS)
Saikrishnan, Neelakantan; Longmire, Ellen; Wieneke, Bernd
2008-11-01
Tomographic particle image velocimetry (TPIV) data were acquired in the logarithmic region of a zero pressure gradient turbulent boundary layer flow at friction Reynolds number Re? = 1160. Experiments were conducted in a suction type wind tunnel seeded with olive oil particles of diameter ˜ 1?m. The volume of interest was illuminated by two Nd:YAG laser beams expanded with appropriate optics into sheets of 8mm thickness in the wall-normal direction (z). Images were acquired by four 2k x 2k pixel cameras, and correlation of reconstructed fields provided the full velocity gradient tensor in a volume of 0.7? x 0.7? x 0.07?, which resolved the region z^+ = 70-150 in the log layer. Various vortex identification techniques, such as Galilean decomposition and iso-surfaces of two- and three-dimensional swirl, were utilized to visualize and analyze the eddy structures present in instantaneous fields. The results of the present study will be compared to results from earlier experimental studies that relied on planar PIV data only to identify vortices and vortex packets as well as from a direct numerical simulation of fully developed channel flow at comparable Re?.
Assessment of Turbulent Shock-Boundary Layer Interaction Computations Using the OVERFLOW Code
NASA Technical Reports Server (NTRS)
Oliver, A. B.; Lillard, R. P.; Schwing, A. M.; Blaisdell, G> A.; Lyrintzis, A. S.
2007-01-01
The performance of two popular turbulence models, the Spalart-Allmaras model and Menter s SST model, and one relatively new model, Olsen & Coakley s Lag model, are evaluated using the OVERFLOWcode. Turbulent shock-boundary layer interaction predictions are evaluated with three different experimental datasets: a series of 2D compression ramps at Mach 2.87, a series of 2D compression ramps at Mach 2.94, and an axisymmetric coneflare at Mach 11. The experimental datasets include flows with no separation, moderate separation, and significant separation, and use several different experimental measurement techniques (including laser doppler velocimetry (LDV), pitot-probe measurement, inclined hot-wire probe measurement, preston tube skin friction measurement, and surface pressure measurement). Additionally, the OVERFLOW solutions are compared to the solutions of a second CFD code, DPLR. The predictions for weak shock-boundary layer interactions are in reasonable agreement with the experimental data. For strong shock-boundary layer interactions, all of the turbulence models overpredict the separation size and fail to predict the correct skin friction recovery distribution. In most cases, surface pressure predictions show too much upstream influence, however including the tunnel side-wall boundary layers in the computation improves the separation predictions.
Prediction of mean flow data for adiabatic 2-D compressible turbulent boundary layers
NASA Astrophysics Data System (ADS)
Motallebi, Fariborz
1995-02-01
This report presents a method for the prediction of mean flow data (i.e. , skin friction, velocity profile, and shape parameter) for adiabatic two-dimensional compressible turbulent boundary layers at zero pressure gradient. The transformed law of the wall, law of the wake, the van Driest model for the complete inner region, and a correlation between the Reynolds number based on the boundary layer integral length scale (Re(sub Delta*)) and the Reynolds number based on the boundary layer momentum thickness (Re(sub theta)) were used to predict the mean flow quantities. The results for skin friction coefficient show good agreement with a number of existing theories including those of van Driest and Huang et al. Comparison with a large number of experimental data suggests that at least for transonic and supersonic flows, the velocity profile as described by van Driest and Coles is Reynolds number dependent and should not be presumed universal. Extra information or perhaps a better physical approach to the formulation of the mean structure of compressible turbulent boundary layers, even in zero pressure gradient and adiabatic condition, is required in order to achieve complete (physical and mathematical) convergence when it is applied in any prediction methods.
Technology Transfer Automated Retrieval System (TEKTRAN)
The frictional behaviors of soybean oil and heat modified soybean oils with different Gardner scale viscosities as additives in hexadecane have been examined in a boundary lubrication test regime (steel contacts) using Langmuir adsorption model. The free energy of adsorption (delta-Gads) of various...
Thermomechanical model with adaptive boundary conditions for friction stir welding of Al 6061
Vijay Soundararajan; Srdja Zekovic; Radovan Kovacevic
2005-01-01
Thermo-mechanical simulation of friction stir welding can predict the transient temperature field, active stresses developed, forces in all the three dimensions and may be extended to determine the residual stress. The thermal stresses constitute a major portion of the total stress developed during the process. Boundary conditions in the thermal modeling of process play a vital role in the final
SUPERSONIC SHEAR INSTABILITIES IN ASTROPHYSICAL BOUNDARY LAYERS
Belyaev, Mikhail A.; Rafikov, Roman R., E-mail: rrr@astro.princeton.edu [Department of Astrophysical Sciences, Princeton University, Ivy Lane, Princeton, NJ 08540 (United States)
2012-06-20
Disk accretion onto weakly magnetized astrophysical objects often proceeds via a boundary layer (BL) that forms near the object's surface, in which the rotation speed of the accreted gas changes rapidly. Here, we study the initial stages of formation for such a BL around a white dwarf or a young star by examining the hydrodynamical shear instabilities that may initiate mixing and momentum transport between the two fluids of different densities moving supersonically with respect to each other. We find that an initially laminar BL is unstable to two different kinds of instabilities. One is an instability of a supersonic vortex sheet (implying a discontinuous initial profile of the angular speed of the gas) in the presence of gravity, which we find to have a growth rate of order (but less than) the orbital frequency. The other is a sonic instability of a finite width, supersonic shear layer, which is similar to the Papaloizou-Pringle instability. It has a growth rate proportional to the shear inside the transition layer, which is of order the orbital frequency times the ratio of stellar radius to the BL thickness. For a BL that is thin compared to the radius of the star, the shear rate is much larger than the orbital frequency. Thus, we conclude that sonic instabilities play a dominant role in the initial stages of nonmagnetic BL formation and give rise to very fast mixing between disk gas and stellar fluid in the supersonic regime.
Boundary layer roll circulations during FIRE
NASA Technical Reports Server (NTRS)
Shirer, Hampton N.; Haack, Tracy
1990-01-01
The probable mechanism underlying the development of boundary layer roll circulations are studied using wind and temperature profiles measured by the National Center for Atmospheric Research (NCAR) Electra during the stratocumulus phase of the First ISCCP Regional Experiment (FIRE). The expected, or preferred, roll orientations, horizontal wavelengths, and propagation periods are determined by finding the minimum values of the dynamic and thermodynamic forcing parameters, which here are the eddy Reynolds number (Re) and moist Rayleigh number (Ra sub m). These minimum values depend on the height z sub T of the capping temperature inversion and on the values of the Fourier coefficients of the background height-dependent vector wind profile. As input to our nonlinear spectral model, descent and ascent runs by the Electra provide for initial estimates of the inversion height and the wind profiles. In the first phase of the investigation presented here, a mechanism is said to be a probable contributor to the development of roll circulations within the stratocumulus-topped boundary layer if the modeled roll orientation and wavelengths agree with their observed values. Preliminary results using the 14-coefficient model of Haack-Hirschberg (1988) are discussed for the 7 July 1987 Electra Mission 188-A (Flight 5). This mission was flown across a sharp cloud boundary that was within a LANDSAT/SPOT scene. The stratocumulus deck was relatively solid in the eastern part of the scene, while there was a rapid decrease in cloud cover to scattered cumulus clouds aligned in streets to the west. These cloud streets were oriented nearly parallel to the mean wind direction in the layer, which was approximately 340 degrees. The hypothesis that roll circulations occurred in both the relatively clear and the cloudy regions is investigated using as model input a descent profile obtained in the relatively clear air and an ascent profile obtained in the cloudy air. Initial results for the clear air case are that the pure inflection point mode is not possible and the pure thermal mode was oriented 35 degrees to the right of the mean wind direction. The origin of this unacceptably large discrepancy between the observed and modeled results will be investigated further and the conclusions reported at the next FIRE workshop.
Mixed convection boundary layer flow over a horizontal elliptic cylinder with constant heat flux
NASA Astrophysics Data System (ADS)
Javed, Tariq; Ahmad, Hussain; Ghaffari, Abuzar
2015-09-01
Mixed convection boundary layer flow of a viscous fluid over a horizontal elliptic cylinder with a constant heat flux is investigated numerically. The governing partial differential equations are transformed to non-dimensional form and then are solved by an efficient implicit finite different scheme known as Keller-box method. The solutions are expressed in the form of skin friction and Nusselt number, which are plotted against the eccentric angle. The effect of pertinent parameters such as mixed convection parameter, aspect ratio (ratio of lengths of minor axis to major axis), and Prandtl number on skin friction and Nusselt number are illustrated through graphs for both blunt and slender orientations. The increase in the value of mixed convection parameter results in increase in skin friction coefficient and Nusselt number for blunt as well as slender orientations.
Model of Trace Gas Flux in Boundary Layer
I. I. Vasenev; I. S. Nurgaliev
2013-03-04
Mathematical model of the turbulent flux in the three-layer boundary system is presented. Turbulence is described as a presence of the nonzero vorticity. Generalized advection-diffusion-reaction equation is derived for arbitrary number components in the flux. The fluxes in the layers are objects for matching requirements on the boundaries between the layers.
Ozone Chemistry in the High-Latitude Boundary Layer
Toohey, Darin W.
Ozone Chemistry in the High-Latitude Boundary Layer Linnea Avallone Department of Atmospheric layer ozone loss phenomenon · In situ observations of BrO at Arctic sites · Preliminary results from of boundary layer ozone loss #12;· Tropospheric Ozone has significant climate forcing at poles · ODEs affect
WAVE TRANSMISSION THROUGH RANDOM LAYERING WITH PRESSURE RELEASE BOUNDARY CONDITIONS
Garnier, Josselin
conditions in which the boundaries are transparent. In this paper we show that the boundary conditions playWAVE TRANSMISSION THROUGH RANDOM LAYERING WITH PRESSURE RELEASE BOUNDARY CONDITIONS JOSSELIN. The problem is analyzed in a regime of separation of scales and with pressure release boundary conditions
Direct numerical simulation of a high-entrainment turbulent boundary layer
NASA Astrophysics Data System (ADS)
Borrell, Guillem; Gungor, Ayse G.; Jimenez, Javier
2011-11-01
It has been reported that certain rough surfaces modify the outer region of turbulent boundary layers, but not those of channels or pipes. Besides their surface geometries, all those experiments share relatively large spreading and entrainment rates, which is known to modify the outer intermittent layers of external turbulent flows, but is absent from channels. To separate the effect of surface geometry from that of entrainment, we present a direct simulation of a zero-pressure-gradient turbulent boundary layer, at Re? = 1400 - 4500 , in which the friction coefficient is augmented by a smooth volumetric force, restricted to the viscous layer below y+ = 25 , and proportional to the streamwise component of the velocity. The spreading rate increases by 70%, equivalent to a sand roughnes ks+ ~ 60 . The resulting changes in the velocity and pressure fluctuations, and in the velocity correlation lengths, are compared with those of rough-wall experiments. Funded by CICYT and PRACE.
F-16XL ship #1 - CAWAP boundary layer rakes and hot film on left wing
NASA Technical Reports Server (NTRS)
1996-01-01
This photo shows the boundary layer hot film and the boundary layer rakes on the left wing of NASA's single-seat F-16XL (ship #1) used for the Cranked-Arrow Wing Aerodynamic Project (CAWAP) at Dryden Flight Research Center, Edwards, California. The modified airplane features a delta 'cranked-arrow' wing with strips of tubing along the leading edge to the trailing edge to sense static on the wing and obtain pressure distribution data. The right wing receives data on pressure distribution and the left wing has three types of instrumentation - preston tubes to measure local skin friction, boundary layer rakes to measure boundary layer profiles (the layer where the air interacts with the surfaces of a moving aircraft), and hot films to determine boundary layer transition locations. The program also gathered aero data on two wing planforms for NASA's High Speed Research Program. The first flight of CAWAP occurred on November 21, 1995, and the test program ended in April 1996.
Chemistry of a polluted cloudy boundary layer
NASA Technical Reports Server (NTRS)
Jacob, Daniel J.; Gottlieb, Elaine W.; Prather, Michael J.
1989-01-01
A one-dimensional photochemical model for cloud-topped boundary layers has been developed to include descriptions of gas- and aqueous-phase chemistry and the radiation field in and below the cloud. The model is applied to the accumulation of pollutants during a wintertime episode with low stratus over Bakersfield, CA. The mechanisms of sulfate production and the balance between the concentrations of acids and bases are examined. It is shown that most of the sulfate production may be explained by the Fe(III)-catalyzed autoxidation of S(IV). Another source of sulfate is the oxidation of SO2 by OH in both the gas and the aqueous phase. It is shown that the sulfate production in the model is controlled by the availability of NH3. It is suggested that this explains the balance observed between total concentration of acids and bases.
Nonstationary atmospheric boundary layer turbulence simulation
NASA Technical Reports Server (NTRS)
Fichtl, G. H.; Perlmutter, M.
1974-01-01
Report on a new and general technique for simulating atmospheric turbulence-like random processes which are statistically homogeneous along the horizontal and nonhomogeneous along the vertical. This technique is general in the sense that it can be used for a broad class of similar problems. Like the other presently available schemes, the techniques presented are based on the Dryden hypothesis and Taylor's frozen eddy hypothesis; however, they go a step further by utilizing certain self-similarity properties of the Dryden spectral density function which permits the development of height invariant filters. These filters are in turn used to generate vertically homogeneous (statistically) random processes from which turbulence at any specified level in the boundary layer can be simulated, thus facilitating the simulation of a nonstationary turbulence process along the flight path of an aircraft during take-off or landing.
The boundary layer on compressor cascade blades
NASA Technical Reports Server (NTRS)
Deutsch, S.; Zierke, W. C.
1984-01-01
The flow field about an airfoil in a cascade at chord Reynolds number (R sub C) near 50,000. The program is experimental and combines laser Doppler anemometry (LDA) with flow visualization techniques in order to obtain detailed flow data (e.g., boundary layer profiles, points of separation and the transition zone) on a cascade of highly-loaded compressor blades. The information provided is to serve as benchmark data for the evaluation of current and future compressor cascade predictive models, in this way aiding in the compressor design process. The completed pressure surface mean velocity profiles, as well as two detailed near wake velocity profiles, all at a single incidence angle are provided.
Modelling of the Evolving Stable Boundary Layer
NASA Astrophysics Data System (ADS)
Sorbjan, Zbigniew
2014-06-01
A single-column model of the evolving stable boundary layer (SBL) is tested for self-similar properties of the flow and effects of ambient forcing. The turbulence closure of the model is diagnostic, based on the K-theory approach, with a semi-empirical form of the mixing length, and empirical stability functions of the Richardson number. The model results, expressed in terms of local similarity scales, are universal functions, satisfied in the entire SBL. Based on similarity expression, a realizability condition is derived for the minimum allowable turbulent heat flux in the SBL. Numerical experiments show that the development of "horse-shoe" shaped, fixed-elevation hodographs in the interior of the SBL around sunrise is controlled by effects imposed by surface thermal forcing.
Slip Effects on Boundary Layer Flow and Heat Transfer Along a Stretching Cylinder
NASA Astrophysics Data System (ADS)
Mukhopadhyay, S.; Gorla, R. S. R.
2013-06-01
An axi-symmetric laminar boundary layer flow of a viscous incompressible fluid and heat transfer towards a stretching cylinder is presented. Velocity slip is considered instead of the no-slip condition at the boundary. Similarity transformations are used to convert the partial differential equations corresponding to the momentum and heat equations into non-linear ordinary differential equations. Numerical solutions of these equations are obtained by the shooting method. It is found that the velocity decreases with increasing the slip parameter. The skin friction as well as the heat transfer rate at the surface is larger for a cylinder compared to those for a flat plate.
Acoustics of laminar boundary layers breakdown
NASA Technical Reports Server (NTRS)
Wang, Meng
1994-01-01
Boundary layer flow transition has long been suggested as a potential noise source in both marine (sonar-dome self noise) and aeronautical (aircraft cabin noise) applications, owing to the highly transient nature of process. The design of effective noise control strategies relies upon a clear understanding of the source mechanisms associated with the unsteady flow dynamics during transition. Due to formidable mathematical difficulties, theoretical predictions either are limited to early linear and weakly nonlinear stages of transition, or employ acoustic analogy theories based on approximate source field data, often in the form of empirical correlation. In the present work, an approach which combines direct numerical simulation of the source field with the Lighthill acoustic analogy is utilized. This approach takes advantage of the recent advancement in computational capabilities to obtain detailed information about the flow-induced acoustic sources. The transitional boundary layer flow is computed by solving the incompressible Navier-Stokes equations without model assumptions, thus allowing a direct evaluation of the pseudosound as well as source functions, including the Lighthill stress tensor and the wall shear stress. The latter are used for calculating the radiated pressure field based on the Curle-Powell solution of the Lighthill equation. This procedure allows a quantitative assessment of noise source mechanisms and the associated radiation characteristics during transition from primary instability up to the laminar breakdown stage. In particular, one is interested in comparing the roles played by the fluctuating volume Reynolds stress and the wall-shear-stresses, and in identifying specific flow processes and structures that are effective noise generators.
Halogen chemistry in the marine boundary layer
NASA Astrophysics Data System (ADS)
Plane, J. M. C.; Gomez Martin, J. C.; Kumar, R.; Mahajan, A. S.; Oetjen, H.; Saunders, R. W.
2009-04-01
Important atmospheric sources of iodine include the air-sea exchange of biogenic iodocarbons, and the emission of I2 from macro-algae. The major source of bromine is the release of bromide ions from sea-salt aerosol. The subsequent atmospheric chemistry of these halogens (1), changes the oxidizing capacity of the marine boundary layer by destroying ozone and changing the hydroxyl radical concentration; (2), reacts efficiently with dimethyl sulphide and mercury (in the polar regions); and (3), leads to the formation of ultra-fine particles which may contribute to cloud condensation nuclei (CCN) and hence affect climate. This paper will report observations of IO, BrO, OIO and I2 made by the technique of differential optical absorption spectroscopy, in several contrasting marine environments: the equatorial mid-Atlantic (Cape Verde); mid-latitude clean coastal (Mace Head, Ireland); polluted coastal (Roscoff, France); and the polar marine boundary layer (Hudson Bay, Canada). Both IO and BrO are observed in all these locations at significant concentrations (> 1 pptv), and so have a major impact on (1) and (2) above. To complement the field campaigns we have also carried out wide-ranging laboratory investigation. A new study of OIO photochemistry shows that absorption in the visible bands between 490 and 630 nm leads to I atom production with a quantum yield of unity, which now means that iodine is a particularly powerful ozone-depleting agent. We have also studied the formation and growth kinetics of iodine oxide nano-particles, and their uptake of water, sulphuric acid and di-carboxylic organic acids, in order to model their growth to a size where they can act as CCN. Their ice-nucleating properties will also be reported.
NASA Astrophysics Data System (ADS)
Jang, Jinho; Choi, Soon Ho; Ahn, Sung-Mok; Kim, Booki; Seo, Jong Soo
2014-06-01
In an effort to cope with recent high oil price and global warming, developments of air lubricated ships have been pursued to reduce greenhouse gas emissions and to save fuel costs by reducing the frictional resistance. In this study, reduction in the frictional resistance by air lubrication with air layers generated on the lower surface of a flat plate was investigated experimentally in the large water tunnel of SSMB. The generated air layers were observed, and changes in the local frictional drag were measured at various flow rates of injected air. The results indicated that air lubrication with air layers might be useful in reducing the frictional resistance at specific conditions of air injection. Accordingly, resistance and self-propulsion tests for a 66K DWT bulk carrier were carried out in the towing tank of SSMB to estimate the expected net power savings.
Friction-term response to boundary-condition type in flow models
Schaffranek, R.W.; Lai, C.
1996-01-01
The friction-slope term in the unsteady open-channel flow equations is examined using two numerical models based on different formulations of the governing equations and employing different solution methods. The purposes of the study are to analyze, evaluate, and demonstrate the behavior of the term in a set of controlled numerical experiments using varied types and combinations of boundary conditions. Results of numerical experiments illustrate that a given model can respond inconsistently for the identical resistance-coefficient value under different types and combinations of boundary conditions. Findings also demonstrate that two models employing different dependent variables and solution methods can respond similarly for the identical resistance-coefficient value under similar types and combinations of boundary conditions. Discussion of qualitative considerations and quantitative experimental results provides insight into the proper treatment, evaluation, and significance of the friction-slope term, thereby offering practical guidelines for model implementation and calibration.
Boundary Layer Transition Flight Experiment Implementation on OV-103
NASA Technical Reports Server (NTRS)
Spanos, Theodoros A.
2009-01-01
This slide presentation reviews the boundary layer transition experiment flown on Discovery. The purpose of the boundary layer transition flight experiment was to obtain hypersonic aero-thermodynamic data for the purpose of better understanding the flow transition from a laminar to turbulent boundary layer using a known height protuberance. The preparation of the shuttle is described, with the various groups responsibilities outlined. Views of the shuttle in flight with the experimental results are shown.
Quadrature formulas for functions with a boundary-layer component
NASA Astrophysics Data System (ADS)
Zadorin, A. I.; Zadorin, N. A.
2011-11-01
Quadrature formulas for one-variable functions with a boundary-layer component are constructed and studied. It is assumed that the integrand can be represented as the sum of a regular and a boundary-layer component, the latter having high gradients that reduce the accuracy of classical quadrature formulas, such as the trapezoidal and Simpson rules. The formulas are modified so that their error is independent of the gradients of the boundary-layer component. Results of numerical experiments are presented.
NASA Astrophysics Data System (ADS)
Stelmakh, Alexander U.; Pilgun, Yuriy V.; Kolenov, Sergiy O.; Kushchev, Alexey V.
2014-05-01
The evolution of a friction surface geometry with initially directed microscale grooves on a nanoscale polished surface in ring-on-block sliding contact is studied experimentally. Reduced wear and friction is observed when the orientation of grooves coincides with the direction of sliding. A new compressive-vacuum hypothesis of friction force nature under a condition of boundary lubrication is proposed, which successfully explains the observed phenomena. Grooves supply lubricant into the contact zone and facilitate its devacuumization, which lead to substantial reduction of surface wear. The obtained results enable developing optimized roughness profiles of friction surfaces to create high-performance durable friction units.
Transition Zone as a Boundary Layer
NASA Astrophysics Data System (ADS)
Dziewonski, A. M.; Lekic, V.; Kustowski, B.; Romanowicz, B. A.
2006-12-01
Three dimensional Earth models (Ritsema et al., 2004; Panning and Romanowicz, 2006; Kustowski et al., 2006) derived using data that have good control on the structure in the transition zone (body-wave waveforms or overtone measurements) all show a discontinuous or very rapid change in the spectrum of lateral heterogeneity at the boundary between the upper and lower mantle. This was first pointed out by Woodward et al. (1994) and discussed in detail by Gu et al. (2001). All models have a strong chemical/thermal/mechanical boundary layer beginning just under the Moho and extending to 200-250 km; this heterogeneity is dominated by degrees five and six caused by the distribution of cratons and mid-oceanic ridges. The power spectrum decreases rapidly below that depth, but then begins to increase at about 400 km. It is dominated by degree two down to the 660 km discontinuity. There, it changes from very red to white at the top of the lower mantle. This is a planetary scale phenomenon that which must affect the flow of material and mixing in the mantle. Similar spectra have been generated in mantle convection models that considered the effect of an endothermic phase change (Tackley et al., 1994). The existence of this boundary layer is supported by the pattern of large scale positive velocity anomalies in the transition zone in places where subduction occurs (thus indicating ponding of slabs), large-wavelength variations in the topography of the 660 km discontinuity, variations in thickness of the transition zone and deep earthquakes outside the main Wadati-Benioff zones as well as changes in their mechanisms. During the last decade, the debate on the scale of mantle convection was strongly affected by images of slabs appearing to penetrate into the lower mantle. Relatively detailed mapping of velocity anomalies in the vicinity of slabs is feasible, because of illumination of these regions by earthquakes; these models do not tell much aboutt velocity anomalies in other places. However, the power spectra estimates are global and tell us about the behavior of the mantle as the whole. The reported pattern of the power spectra does not exclude an exchange of material between the upper and lower mantle; there may be local penetration of subducted material or there may be episodic events such as "avalanches". However, successful models of mantle convection should be able to explain the change in the spectra of lateral heterogeneity such as revealed by global tomographic models, obtained with the requisite data sets.
NASA Astrophysics Data System (ADS)
Liu, Wenjun; Chen, Kewang
2015-08-01
In this paper, we study the existence and general energy decay rate of global solutions for nondissipative distributed systems with boundary frictional and memory dampings and acoustic boundary conditions. For the existence of solutions, we prove the global existence of weak solution by using Faedo-Galerkin's method and compactness arguments. For the energy decay rate, we first consider the general nonlinear case of h satisfying a smallness condition and prove the general energy decay rate by using perturbed modified energy method. Then, we consider the linear case of h: and prove the general decay estimates of equivalent energy.
Improved Boundary Layer Depth Retrievals from MPLNET
NASA Technical Reports Server (NTRS)
Lewis, Jasper R.; Welton, Ellsworth J.; Molod, Andrea M.; Joseph, Everette
2013-01-01
Continuous lidar observations of the planetary boundary layer (PBL) depth have been made at the Micropulse Lidar Network (MPLNET) site in Greenbelt, MD since April 2001. However, because of issues with the operational PBL depth algorithm, the data is not reliable for determining seasonal and diurnal trends. Therefore, an improved PBL depth algorithm has been developed which uses a combination of the wavelet technique and image processing. The new algorithm is less susceptible to contamination by clouds and residual layers, and in general, produces lower PBL depths. A 2010 comparison shows the operational algorithm overestimates the daily mean PBL depth when compared to the improved algorithm (1.85 and 1.07 km, respectively). The improved MPLNET PBL depths are validated using radiosonde comparisons which suggests the algorithm performs well to determine the depth of a fully developed PBL. A comparison with the Goddard Earth Observing System-version 5 (GEOS-5) model suggests that the model may underestimate the maximum daytime PBL depth by 410 m during the spring and summer. The best agreement between MPLNET and GEOS-5 occurred during the fall and they diered the most in the winter.
VARIATIONS IN MARINE BOUNDARY LAYER CLOUD PROPERTIES FROM MODIS OBSERVATIONS
VARIATIONS IN MARINE BOUNDARY LAYER CLOUD PROPERTIES FROM MODIS OBSERVATIONS Michael Jensenl-termmicrophysicaland macroscalecharacteristics usingobservationsfrom the Moderate ResolutionImagingSpectroradiometer (MODIS) instrumentaboard
The effect of an aircraft's boundary layer on propeller noise
NASA Astrophysics Data System (ADS)
Belyaev, I. V.
2012-07-01
This study concerns the influence of the boundary layer at an aircraft's fuselage, simulated by an infinite hard cylinder, on propeller noise in the acoustic far field. Also studied is the effect of the boundary layer on noise as a function of the thickness and profile of the mean velocity of the boundary layer, the Mach number of the incident flow, and the rotation speed of the propeller. It is shown that the boundary layer at the fuselage can substantially modify propeller noise in the far field and should therefore be taken into account in calculating community noise.
Mixing length in low Reynolds number compressible turbulent boundary layers
NASA Technical Reports Server (NTRS)
Bushnell, D. M.; Cary, A. M., Jr.; Holley, B. B.
1975-01-01
The paper studies the effect of low Reynolds number in high-speed turbulent boundary layers on variations of mixing length. Boundary layers downstream of natural transition on plates, cones and cylinders, and boundary layers on nozzle walls without laminarization-retransition are considered. The problem of whether low Reynolds number amplification of shear stress is a result of transitional flow structure is considered. It is concluded that a knowledge of low Reynolds number boundary layer transition may be relevant to the design of high-speed vehicles.
Asymptotic defect boundary layer theory applied to thermochemical non-equilibrium hypersonic flows
NASA Astrophysics Data System (ADS)
Séror, S.; Zeitoun, D. E.; Brazier, J.-Ph.; Schall, E.
1997-05-01
Viscous flow computations are required to predict the heat flux or the viscous drag on an hypersonic re-entry vehicle. When real gas effects are included, Navier Stokes computations are very expensive, whereas the use of standard boundary layer approximations does not correctly account for the ‘entropy layer swallowing’ phenomenon. The purpose of this paper is to present an extension of a new boundary layer theory, called the ‘defect approach’, to two-dimensional hypersonic flows including chemical and vibrational non-equilibrium phenomena. This method ensures a smooth matching of the boundary layer with the inviscid solution in hypersonic flows with strong entropy gradients. A new set of first-order boundary layer equations has been derived, using a defect formulation in the viscous region together with a matched asymptotic expansions technique. These equations and the associated transport coefficient models as well as thermochemical models have been implemented. The prediction of the flow field around the blunt-cone wind tunnel model ELECTRE with non-equilibrium free-stream conditions has been done by solving first the inviscid flow equations and then the first-order defect boundary layer equations. The numerical simulations of the boundary layer flow were performed with catalytic and non-catalytic conditions for the chemistry and the vibrational mode. The comparison with Navier Stokes computations shows good agreement. The wall heat flux predictions are compared to experimental measurements carried out during the MSTP campaign in the ONERA F4 wind tunnel facility. The defect approach improves the skin friction prediction in comparison with a classical boundary layer computation.
H. H. Fernholz; D. Warnack
1998-01-01
The effects of a favourable pressure gradient (K[less-than-or-eq, slant]4×10[minus sign]6) and of the Reynolds number (862[less-than-or-eq, slant]Re[delta]2[less-than-or-eq, slant]5800) on the mean and fluctuating quantities of four turbulent boundary layers were studied experimentally and are presented in this paper and a companion paper (Part 2). The measurements consist of extensive hot-wire and skin-friction data. The former comprise mean and fluctuating velocities,
Study of boundary-layer transition using transonic cone Preston tube data
NASA Technical Reports Server (NTRS)
Reed, T. D.; Abu-Mostafa, A.
1982-01-01
Laminar layer Preston tube data on a sharp nose, ten degree cone obtained in the Ames 11 ft TWT and in flight tests are analyzed. During analyses of the laminar-boundary layer data, errors were discovered in both the wind tunnel and the flight data. A correction procedure for errors in the flight data is recommended which forces the flight data to exhibit some of the orderly characteristics of the wind tunnel data. From corrected wind tunnel data, a correlation is developed between Preston tube pressures and the corresponding values of theoretical laminar skin friction. Because of the uncertainty in correcting the flight data, a correlation for the unmodified data is developed, and, in addition, three other correlations are developed based on different correction procedures. Each of these correlations are used in conjunction with the wind tunnel correlation to define effective freestream unit Reynolds numbers for the 11 ft TWT over a Mach number range of 0.30 to 0.95. The maximum effective Reynolds numbers are approximately 6.5% higher than the normal values. These maximum values occur between freestream Mach numbers of 0.60 and 0.80. Smaller values are found outside this Mach number range. These results indicate wind tunnel noise affects the average laminar skin friction much less than it affects boundary layer transition. Data on the onset, extent, and end of boundary layer transition are summarized. Application of a procedure for studying the relative effects of varying nose radius on a ten degree cone at supercritical speeds indicates that increasing nose radius promotes boundary layer transition and separation of laminar boundary layers.
NASA Astrophysics Data System (ADS)
Nowotarski, Christopher J.
Nearly all previous numerical simulations of supercell thunderstorms have neglected surface uxes of heat, moisture, and momentum as well as horizontal inhomogeneities in the near-storm environment from resulting dry boundary layer convection. This investigation uses coupled radiation and land-surface schemes within an idealized cloud model to identify the effects of organized boundary layer convection in the form of horizontal convective rolls (HCRs) on the strength, structure, and evolution of simulated supercell thunderstorms. The in uence of HCRs and the importance of their orientation relative to storm motion is tested by comparing simulations with a convective boundary layer (CBL) against those with a horizontally homogeneous base state having the same mean environment. The impact of anvil shading on the CBL is tested by comparing simulations with and without the effects of clouds in the radiative transfer scheme. The results of these simulations indicate that HCRs provide a potentially important source of environmental vertical vorticity in the sheared, near-storm boundary layer. These vorticity perturbations are amplified both beneath the main supercell updraft and along the trailing out ow boundary, leading to the formation of occasionally intense misovortices. HCRs perpendicular to storm motion are found to have a detrimental effect on the strength and persistence of the lowlevel mesocyclone, particularly during its initial development. Though the mean environment is less supportive of low-level rotation with a wind profile conducive to HCRs oriented parallel to storm motion, such HCRs are found to often enhance the low-level mesocyclone circulation. When anvil shading is included, stabilization results in generally weaker low-level mesocyclone circulation, regardless of HCR orientation. Moreover, HCRs diminish in the near-storm environment such that the effects of HCRs on the supercell are mitigated. HCRs are also shown to be a necessary condition for the formation of so-called "feeder clouds" and anking line convection in these simulations. These findings suggest potentially important rami fications regarding both non-mesocyclone and mesocyclone tornadoes in supercell thunderstorms in an environment with active boundary layer convection.
Dynamical Simulation of Cloudy Boundary Layer Flow during Cold Air Outbreaks.
NASA Astrophysics Data System (ADS)
Yuen, Chiu-Wai
A two-dimensional primitive equation planetary boundary layer model has been constructed and applied to simulate downwind evolution of coupled dynamical, thermodynamical and cloud properties in the planetary boundary layer (PBL) developed during cold air outbreaks over warm ocean. A layered parametric approach is adopted to model the inversion -capped convective boundary layer filled with shallow cumuli, or topped by stratocumulus or cloud free air. Turbulent and convective cloud fluxes are determined from modifications and generalizations of recent published parameterization schemes. A one-dimensional version of the model is first applied to a local simulation of trade wind flow. Vertical distributions of momentum flux and wind in the cumulus -filled baroclinic PBL are realistically simulated compared to observations, confirming the validity of the momentum flux parameterization scheme assembled in this research. A steady-state linear analysis for a cloud-free mixed layer flowing from land over a warm ocean clarifies the basic dynamical and thermodynamical adjustments to differential friction and heating. Downwind warming and deepening of PBL produces counteracting pressure gradient forces, while heating-induced subsidence occurs only in places where boundary layer baroclinity is strong. Comparative numerical experiments for moderate intensity air-sea interaction illustrate the importance of nonprecipitating cumulus convection and large scale environmental conditions. Such factors as baroclinity, static stability, moisture content, upwind inversion strength and height exert strong controls on the downwind evolution of PBL and clouds. Boundary layer flow is influenced by the basic geostrophic wind distribution and the PBL depth is also sensitive to large scale vertical velocity. The response of an advective boundary layer to stronger wind is different from that of a horizontally homogeneous boundary layer. In a simulation of an intense air mass transformation situation observed over The East China Sea, downwind variation of dynamical and thermodynamical boundary layer properties and cloud distribution are well reproduced. The steep sea surface temperature gradient produces strong boundary layer baroclinity and a strong divergent boundary layer flow. The simulated large cross-isobar angle in association with intense cold air advection and vigorous momentum mixing is in favorable agreement with both observation and theory.
Drag of a turbulent boundary layer with transverse 2D circular rods on the wall
NASA Astrophysics Data System (ADS)
Kamruzzaman, Md; Djenidi, L.; Antonia, R. A.; Talluru, K. M.
2015-06-01
In this paper, we present the results of a turbulent boundary layer developing over a rod-roughened wall with a spacing of ( is the spacing between two adjacent roughness elements, and is the rod diameter). Static pressure measurements are taken around a single roughness element to accurately determine the friction velocity, and the error in the origin, , which are the two prominent issues that surround rough-wall boundary layers. In addition, velocity measurements are taken at several streamwise locations using hot-wire anemometry to obtain from the momentum integral equation. Results showed that both methods give consistent values for , indicating that the contribution of the viscous drag over this rough wall is negligible. This supports the results of Perry et al. (J Fluid Mech 177:437-466, 1969) and Antonia and Luxton (J Fluid Mech 48(04):721-761, 1971) in a boundary layer and of Leonardi et al. (2003) in a channel flow but does not agree with those of Furuya et al. (J Fluids Eng 98(4):635-643, 1976). The results show that both and can be unambiguously measured on this particular rough wall. This paves the way for a proper comparison between the boundary layer developing over this wall and the smooth-wall turbulent boundary layer.
Simulation of flat-plate turbulent boundary layers in cryogenic tunnels
NASA Technical Reports Server (NTRS)
Adcock, J.
1980-01-01
The magnitudes of real-gas effects on flat-plate turbulent boundary layer simulations in a cryogenic nitrogen wind tunnel are investigated in order to determine the validity of the method used by Inger (1979) to estimate real-gas effects. Boundary layer solutions for real gases, ideal gases with a specific heat ratio of 1.6 and ideal diatomic gases (specific heat ratio 1.4) were obtained for the worst case conditions of maximum stagnation pressure (9 atm), minimum stagnation temperature (120 K) and Mach number of 1.2. Calculated boundary layer parameters such as friction coefficient and displacement thickness are shown to agree closely for the real gas and the ideal diatomic gas (specific heat ratio 1.4), while the ideal gas solution used by Inger is shown to differ from the real-gas values considerably. Results indicate that real-gas effects on a flat-plate turbulent boundary layer simulation in a cryogenic nitrogen tunnel are insignificant, and suggest the unlikelihood of the large real-gas effects reported by Inger for turbulent boundary layer shock interactions.
NASA Technical Reports Server (NTRS)
Anand, A.; Gorton, C.; Lakshminarayana, B.; Yamaoka, H.
1973-01-01
A study of the boundary layer and turbulence characteristics inside the passages of an axial flow inducer is reported. The first part deals with the analytical and experimental investigation of the boundary layer characteristics in a four bladed flat plate inducer passage operated with no throttle. An approximate analysis for the prediction of radial and chordwise velocity profiles across the passage is carried out. The momentum integral technique is used to predict the gross properties of the boundary layer. Equations are given for the exact analysis of the turbulent boundary layer characteristics using the turbulent field method. Detailed measurement of boundary layer profiles, limiting streamline angle and skin friction stress on the rotating blade is also reported. Part two of this report deals with the prediction of the flow as well as blade static pressure measurements in a three bladed inducer with cambered blades operated at a flow coefficient of 0.065. In addition, the mean velocity and turbulence measurements carried out inside the passage using a rotating triaxial probe is reported.
Remarks on the Definition and Estimation of Friction Velocity
Rudolf O. Weber
1999-01-01
One of the mainscaling parameters in similarity theory of the atmospheric boundary layer is friction velocity. Unfortunately, several definitions of friction velocity exist in the literature. Some authors use the component of the horizontal Reynolds stress vector in the direction of the mean wind vector to define friction velocity. Others define the friction velocity by means of the absolute value
Green House Gases Flux Model in Boundary Layer
NASA Astrophysics Data System (ADS)
Nurgaliev, Ildus
Analytical dynamic model of the turbulent flux in the three-layer boundary system is presented. Turbulence is described as a presence of the non-zero vorticity. The generalized advection-diffusion-reaction equation is derived for an arbitrary number of components in the flux. The fluxes in the layers are objects for matching requirements on the boundaries between the layers. Different types of transport mechanisms are dominant on the different levels of the layers.
Navier-Stokes equations in 3D thin domains with Navier friction boundary condition
NASA Astrophysics Data System (ADS)
Hu, Changbing
In this article we study the 3D Navier-Stokes equations with Navier friction boundary condition in thin domains. We prove the global existence of strong solutions to the 3D Navier-Stokes equations when the initial data and external forces are in large sets as the thickness of the domain is small. We generalize the techniques developed to study the 3D Navier-Stokes equations in thin domains, see [G. Raugel, G. Sell, Navier-Stokes equations on thin 3D domains I: Global attractors and global regularity of solutions, J. Amer. Math. Soc. 6 (1993) 503-568; G. Raugel, G. Sell, Navier-Stokes equations on thin 3D domains II: Global regularity of spatially periodic conditions, in: Nonlinear Partial Differential Equations and Their Application, College de France Seminar, vol. XI, Longman, Harlow, 1994, pp. 205-247; R. Temam, M. Ziane, Navier-Stokes equations in three-dimensional thin domains with various boundary conditions, Adv. Differential Equations 1 (1996) 499-546; R. Temam, M. Ziane, Navier-Stokes equations in thin spherical shells, in: Optimization Methods in Partial Differential Equations, in: Contemp. Math., vol. 209, Amer. Math. Soc., Providence, RI, 1996, pp. 281-314], to the Navier friction boundary condition by introducing a new average operator M in the thin direction according to the spectral decomposition of the Stokes operator A. Our analysis hinges on the refined investigation of the eigenvalue problem corresponding to the Stokes operator A with Navier friction boundary condition.
Three-dimensional boundary layer stability and transition
NASA Technical Reports Server (NTRS)
Malik, M. R.; Li, F.
1992-01-01
Nonparallel and nonlinear stability of a three-dimensional boundary layer, subject to crossflow instability, is investigated using parabolized stability equations (PSEs). Both traveling and stationary disturbances are considered and nonparallel effect on crossflow instability is found to be destabilizing. Our linear PSE results for stationary disturbances agree well with the results from direct solution of Navier-Stokes equations obtained by Spalart (1989). Nonlinear calculations have been carried out for stationary vortices and the computed wall vorticity pattern results in streamwise streaks which resemble remarkably well with the surface oil-flow visualizations in swept-wing experiments. Other features of the stationary vortex development (half-mushroom structure, inflected velocity profiles, vortex doubling, etc.) are also captured in our nonlinear calculations. Nonlinear interaction of the stationary amplitude of the stationary vortex is large as compared to the traveling mode, and the stationary vortex dominates most of the downstream development. When the two modes have the same initial amplitude, the traveling mode dominates the downstream development owing to its higher growth rate, and there is a tendency for the stationary mode to be suppressed. The effect of nonlinear wave development on the skin-friction coefficient is also computed.
Simulation of Turbulent Boundary Layer Flow with Large Roughness
NASA Astrophysics Data System (ADS)
Johnson, Erika; Subramanian, Chelakara
2006-11-01
Several studies indicate that in situations where surface roughness is very strong, the friction velocity scaling for the mean and turbulent velocities are not satisfactory. Subramanian et al showed a dramatic effect of a strong irregular roughened surface on the turbulent properties. The log-law relation in the overlap region was distorted. A significant pressure gradient normal to the surface was observed with a concomitant increase in normal turbulent stress, v^'2 . The pressure gradient velocity scale, uP, was suggested as a better alternative for capturing the effects of this roughness induced pressure gradient. Here, we performed a numerical simulation of a roughened boundary layer to gain more insight on the correlation between the wall normal pressure gradient and normal turbulent stress, v^'2 and further validate this new pressure gradient velocity scale, uP for different types of roughness. A two-dimensional flat plate computational model with strong regular (k-type) roughness, was constructed in GAMBIT and a CFD analysis performed using FLUENT, version 6.2. The roughness elements cause the pressure near the wall to increase suddenly at the first element and then decrease gradually similar to experiments. The variation of this normal pressure gradient is well correlated with the normal turbulent stress v^'2 variation. Application of the uP as scaling parameter for other non-equilibrium flows such as with suction and blowing is also investigated.
Influence of transverse surface waves on turbulent boundary layers
NASA Technical Reports Server (NTRS)
Balasubramanian, R.; Ash, R. L.; Cary, A. M., Jr.; Bushnell, D. M.
1977-01-01
Wavy wall experiments using solid waves and progressive waves have been reported. For this paper, the major effects of waviness of the wall on the flow are identified as due to oscillatory curvature (convex-concavity) and oscillatory acceleration/deceleration of the flow, which imposes a highly nonequilibrium influence upon the turbulence structure. The theoretical analysis in this presentation takes into account proper turbulence modeling (including the nonequilibrium effects) for the wavy wall problem. The analysis proceeds in three stages: (1) inviscid solution for induced pressure due to the physical wall, (2) solution of a turbulent boundary layer with pressure gradients and curvature effects in the modeling from which the profile correction is computed, and (3) induced pressure computations for the corrected profile. The phase shift of pressure perturbations with respect to the physical wall can be predicted, and pressure drag and skin friction drag can be estimated, with nonlinear viscous effects included. Comparison of the theoretical estimates with experimental data are also presented.
A New View on Origin, Role and Manipulation of Large Scales in Turbulent Boundary Layers
NASA Technical Reports Server (NTRS)
Corke, T. C.; Nagib, H. M.; Guezennec, Y. G.
1982-01-01
The potential of passive 'manipulators' for altering the large scale turbulent structures in boundary layers was investigated. Utilizing smoke wire visualization and multisensor probes, the experiment verified that the outer scales could be suppressed by simple arrangements of parallel plates. As a result of suppressing the outer scales in turbulent layers, a decrease in the streamwise growth of the boundary layer thickness was achieved and was coupled with a 30 percent decrease in the local wall friction coefficient. After accounting for the drag on the manipulator plates, the net drag reduction reached a value of 20 percent within 55 boundary layer thicknesses downstream of the device. No evidence for the reoccurrence of the outer scales was present at this streamwise distance thereby suggesting that further reductions in the net drag are attainable. The frequency of occurrence of the wall events is simultaneously dependent on the two parameters, Re2 delta sub 2 and Re sub x. As a result of being able to independently control the inner and outer boundary layer characteristics with these manipulators, a different view of these layers emerged.
Boundary layer features observed during NAME 2004
NASA Astrophysics Data System (ADS)
Stuckmeyer, Elizabeth A.
2011-12-01
S-Pol radar data from the North American Monsoon Experiment (NAME) are examined to investigate the characteristics of sea breezes that occurred during the North American Monsoon in the late summer of 2004, as well as their role in modulating monsoon convection. Zero degree plan position indicated (PPI) scans were examined to determine the presence of a sea breeze fine line in the S-Pol radar data. Sea breeze fine lines were typically observed over land very near the coast of the Gulf of California (GoC), and usually moved onshore around 1700--1800 UTC (11:00 AM--12:00 PM local time), and then continued to move slowly inland on the coastal plain. The sea breezes typically moved on land and dissipated before any significant interactions with Sierra Madre Occidental (SMO) convection could occur. Fine lines varied in reflectivity strength, but were typically around 10 to 20 dBZ. Surface winds from the Estacion Obispo (ETO) supersite were analyzed to confirm the presence of a shift in wind direction on days in which a fine line had been identified. Typically winds changed from light and variable to consistently out of the west or southwest. Vertical plots of S-Pol reflectivity were created to examine sea breeze structure in the vertical, but these were not found to be useful as the sea breeze signature was nearly impossible to distinguish from other boundary layer features. Horizontal structure was further investigated using wind profiler relative reflectivity, vertical velocity, and horizontal winds from the profiler located at ETO. Relative reflectivity and vertical velocity fields revealed a complex boundary layer structure on some days of repeating updrafts and downdrafts. Further examination of S-Pol PPI data revealed that these vertical motions are likely due to the presence of horizontal convective rolls. Profiler horizontal winds revealed that the depth and vertical structure of the sea breezes varied significantly from day to day, but that the height of the sea breeze is around 1 km above the ground. Sea breezes observed during NAME almost never initiated convection on their own. It is hypothesized that a weak thermal contrast between the GoC and the land leads to comparatively weak sea breezes, which don't have enough lift to trigger convection.
Control of the Transitional Boundary Layer
NASA Astrophysics Data System (ADS)
Belson, Brandt A.
This work makes advances in the delay of boundary layer transition from laminar to turbulent flow via feedback control. The applications include the reduction of drag over streamline bodies (e.g., airplane wings) and the decrease of mixing and heat transfer (e.g., over turbine blades in jet engines). A difficulty in many fields is designing feedback controllers for high-dimensional systems, be they experiments or high-fidelity simulations, because the required time and resources are too large. A cheaper alternative is to approximate the high-dimensional system with a reduced-order model and design a controller for the model. We implement several model reduction algorithms in "modred", an open source and publicly available library that is applicable to a wide range of problems. We use this library to study the role of sensors and actuators in feedback control of transition in the 2D boundary layer. Previous work uses a feedforward configuration in which the sensor is upstream of the actuator, but we show that the actuator-sensor pair is unsuitable for feedback control due to an inability to sense the exponentially-growing Tollmien-Schlichting waves. A new actuator-sensor pair is chosen that more directly affects and measures the TS waves, and as a result it is effective in a feedback configuration. Lastly, the feedback controller is shown to outperform feedforward controllers in the presence of unmodeled disturbances. Next, we focus on a specific type of actuator, the single dielectric barrier discharge (SDBD) plasma actuator. An array of these plasma actuators is oriented to produce stream-wise vorticity and thus directly cancel the structures with the largest transient growth (so-called stream-wise streaks). We design a feedback controller using only experimental data by first developing an empirical input-output quasi-steady model. Then, we design feedback controllers for the model such that the controllers perform well when applied to the experiment. Lastly, we also simulate the plasma actuators and determine a suitable numerical model for the forces they create by comparing with experimental results. This physical force model is essential to future numerical studies on delaying bypass transition via feedback control and plasma actuation.
Force microscopy of layering and friction in an ionic liquid Judith Hotha,b
Mueser, Martin
Force microscopy of layering and friction in an ionic liquid Judith Hotha,b , Florian Hausena,1 of atomic force microscopy (AFM) under electrochemical control. Up to twelve layers of ion pairs can be detected through force measurements while approaching the tip of the AFM to the surface. The particular
1. Turbulence scales in the atmospheric surface layer Friction velocity, u = 2/1
Fedorovich, Evgeni
7 1. Turbulence scales in the atmospheric surface layer Friction velocity, u = 2/1 )''( wu- , where as turbulence velocity scale in the atmospheric surface layer (ASL) under the usual ASL assumption that wind 'u and 'w are, respectively, turbulent fluctuations of the horizontal and vertical velocities
Cavitation erosion of NiAl-bronze layers generated by friction surfacing
Stefanie Hanke; Alfons Fischer; Matthias Beyer; Jorge dos Santos
2011-01-01
Friction surfacing is a solid-state process, which allows deposition welding at temperatures below the melting range. For this investigation coating layers of NiAl-bronze were deposited by friction surfacing on self-mating substrates, followed by microstructural characterisation. Further, cavitation tests were performed in order to investigate wear resistance. Cavitation erosion mechanisms were analysed by means of optical and electron microscopy. All coatings
Effect of externally generated turbulence on wave boundary layer
Jørgen Fredsøe; B. Mutlu Sumer; Andrzej Kozakiewicz; Lloyd H. C Chua; Rolf Deigaard
2003-01-01
This experimental study deals with the effect of externally generated turbulence on the oscillatory boundary layer to simulate the turbulence in the wave boundary layer (WBL) under broken waves in the swash zone. The subject has been investigated experimentally in a U-shaped, oscillating water tunnel with a smooth bottom. Turbulence was generated ‘externally’ as the flow in the oscillator was
Direct Numerical Simulation of a Quasilaminarized Boundary Layer
Luciano Castillo; Juan Guillermo Araya; Raul Bayoan Cal
2010-01-01
Direct Numerical Simulations of spatially-evolving turbulent boundary layers with strong favorable pressure gradients are performed. The driven force behind this investigation is elucidate the mechanisms responsible for the quasi-laminarization of the boundary layer. Budgets of the turbulent kinetic energy and the shear Reynolds stresses provide insight into the terms responsible for this phenomenon. The results also confirm the similarity analysis
Effects of simulated combustor turbulence on boundary layer heat transfer
NASA Technical Reports Server (NTRS)
Ames, F. E.; Moffat, R. J.
1990-01-01
A simulated combustor flow field has been generated in order to study the effects of high intensity large scale turbulence on boundary layer heat transfer. Turbulence intensities of up to 19 percent and integral lengths scales of 4 to 6 centimeters have been generated. Heat transfer has been augmented by up to 28 percent for the flat plate constant velocity turbulent boundary layer.
Turbulence Structure and Wall Signature in Hypersonic Turbulent Boundary Layer
Martín, Pino
Turbulence Structure and Wall Signature in Hypersonic Turbulent Boundary Layer Yin-Chiu Kan , Clara and hypersonic turbulent boundary layer datasets from direct numerical simulation (DNS). Contour plots and Marusic5 and Mathis, Hutchins and Marusic16 ). In contrast to supersonic and hypersonic flow regimes
The Boundary Layer Height in Air Stress Measurement
F. D. CARSEY
The height of the boundary layer, Z,, as derived from acoustic radar soundings is used to examine wind profiles from pilot balloon tracking. The result is a tentative empirical stress law, seasonal variation of stress andZf, and an apparent boundary layer baroclinity which is not reflected in wind shear above Z,. The stress law is T = VzpfZfi sin a,
An electrostatically actuated valve for turbulent boundary layer control
J. R. Frutos; D. Vernier; F. Bastien; M. de Labachelerie; Y. Bailly
2005-01-01
A large displacement electrostatic valve has been designed and realized for a realistic turbulent boundary layer control. This actuator consists of a pair of rigid electrodes and a flexible film having a S-shape providing local high electrostatic forces required for controling rather large pressure differences. The aim is the reattachment of the boundary layer near an aircraft flap trailing edge
A boundary layer model for magnetospheric substorms
NASA Technical Reports Server (NTRS)
Rostoker, Gordon; Eastman, Tim
1987-01-01
An alternative framework for understanding magnetospheric substorm activity is presented. It is argued that observations of magnetic field and plasma flow variations in the magnetotail can be explained in terms of the passage of the plasma sheet boundary layer over the satellite detecting the tail signatures. It is shown that field-aligned currents and particle acceleration processes on magnetic field lines threading the ionospheric Harang discontinuity lead to the distinctive particle and field signatures observed in the magnetotail during substorms. It is demonstrated that edge effects of field-aligned currents associated with the westward traveling surge can lead to the negative B(z) perturbations observed in the tail that are presently attributed to observations made on the anti-earthward side of a near-earth neutral line. Finally, it is shown that the model can provide a physical explanation of both the driven system and the loading-unloading system whose combined effects provide the observed substorm perturbation pattern in the magnetosphere and ionosphere.
Effect of sound on boundary layer stability
NASA Technical Reports Server (NTRS)
Saric, William S.; Spencer, Shelly Anne
1993-01-01
Experiments are conducted in the Arizona State University Unsteady Wind Tunnel with a zero-pressure-gradient flat-plate model that has a 67:1 elliptical leading edge. Boundary-layer measurements are made of the streamwise fluctuating-velocity component in order to identify the amplified T-S waves that are forced by downstream-traveling sound waves. Measurements are taken with circular 3-D roughness elements placed at the Branch 1 neutral stability point for the frequency under consideration, and then with the roughness element downstream of Branch 1. These roughness elements have a principal chord dimension equal to 2 lambda(sub TS)/pi of the T-S waves under study and are 'stacked' in order to resemble a Gaussian height distribution. Measurements taken just downstream of the roughness (with leading-edge T-S waves, surface roughness T-S waves, instrumentation sting vibrations, and the Stokes wave subtracted) show the generation of 3-D T-S waves, but not in the characteristic heart-shaped disturbance field predicted by 3-D asymptotic theory. Maximum disturbance amplitudes are found on the roughness centerline. However, some near-field characteristics predicted by numerical modeling are observed.
Effect of sound on boundary layer stability
NASA Technical Reports Server (NTRS)
Saric, William S. (Principal Investigator); Spencer, Shelly Anne
1993-01-01
Experiments are conducted in the Arizona State University Unsteady Wind Tunnel with a zero-pressure-gradient flat-plate model that has a 67:1 elliptical leading edge. Boundary-layer measurements are made of the streamwise fluctuating-velocity component in order to identify the amplified T-S waves that are forced by downstream-travelling, sound waves. Measurements are taken with circular 3-D roughness elements placed at the Branch 1 neutral stability point for the frequency under consideration, and then with the roughness element downstream of Branch 1. These roughness elements have a principal chord dimension equal to 2(lambda)(sub TS)/pi, of the T-S waves under study and are 'stacked' in order to resemble a Gaussian height distribution. Measurements taken just downstream of the roughness (with leading-edge T-S waves, surface roughness T-S waves, instrumentation sting vibrations and the Stokes wave subtracted) show the generation of 3-D-T-S waves, but not in the characteristic heart-shaped disturbance field predicted by 3-D asymptotic theory. Maximum disturbance amplitudes are found on the roughness centerline. However, some near-field characteristics predicted by numerical modelling are observed.
A Alternative Approach to Boundary Layer Disturbances
NASA Astrophysics Data System (ADS)
Easthope, Paul Fripp
Nearly all investigations into three-dimensional boundary layer disturbances on a flat plate have utilized normal modes, or have been strictly experimental. The present work takes a different approach, being analytical in nature, but involving no assumptions of separability, as required by normal modes. It is a linearized, viscous, and initial-value problem, making only the assumptions that the basic flow should be parallel and piece-wise linear in form, and that the perturbed velocity components be Fourier-decomposable in x and z (the stream-wise and transverse directions). The vertical velocity in wave space can be found analytically, and inverted numerically. As an initial condition, a sharply-peaked Gaussian in three dimensions is allowed to perturb the flow, and the resulting disturbance is followed in time, for various locations vertically above the plate. Of particular interest is the small time behavior, which is presented both analytically and numerically, and has implications for large amplitude, localized disturbances over a short time scale. Comparisons are made with experiments, and also with normal mode analyses. While not reproducing every aspect of the physical results, the general conclusions from the present approach are encouraging.
Fluctuating Vorticity in Turbulent Boundary Layers
NASA Astrophysics Data System (ADS)
Panton, Ron
2012-11-01
Profiles of fluctuating vorticity from the channel flow DNS (Del Alamo, et al. (P of F 15, L-41; JFM, 500, p135, P of F, 18) are correlated in Panton (Phys. Fluids, 21, 2009). In the inner region, a two-term expansion represents the vorticity profiles; < ?? > # = < ?? > 0#+< ?? > 1+u?/U0. The scaling < ?? > 0#= < ?? > 0/(u?3U0 / ?2) for inactive motions applies only to the streamwise and spanwise components. This term is zero for the normal vorticity component. The scrubbing of the inactive motions over the wall generates vorticity, which is a maximum at the wall, and diffuses to about y+ = 50 before it decays. The fluctuating wall shear stress is due entirely to this motion, and the stress ratio (rms/mean) depends on Re. The second scaling < ?? > 1+= < ?? > 1/(u?4/?2) , the same scaling as the Reynolds shear stress, is active motions. These motions are zero at the wall, peak about y+ = 13-20, and fall to zero about y+ = 400. The outer region is correlated by a third scaling using the Kolmogorov time scale; < ?? > /(u?3/ ? ?). Matching between the inner and outer regions has an overlap law (common part) of ~ C /y+ or ~ C/ Y for all components. In this paper DNS boundary layer data of Schlatter et al. (Phys. Fluids, 21, 2009) is correlated in the manner previously used for channel flows.
Helical circulations in the typhoon boundary layer
NASA Astrophysics Data System (ADS)
Ellis, Ryan; Businger, Steven
2010-03-01
Low-level wind data from the WSR-88D in Guam obtained in Typhoon Dale (1996) and Typhoon Keith (1997) are analyzed for coherent structures. Consistent with the results of previous studies of Atlantic hurricanes, velocity anomalies associated with coherent structures were found in the boundary layer of both storms. A total of 99 cases of coherent structures, also known as roll vortices, were documented during a 6 h evaluation period for each storm. Storm-relative roll location, roll vorticity, asymmetries in the upward and downward momentum fluxes, and signatures of circulations transverse to the mean flow associated with roll circulations were explored. The effects of terrain and convective precipitation systems, such as rainbands, on the occurrence of rolls were investigated. The results support and extend prior findings of roll observations, and can be used to help validate theoretical and numerical models of coherent structures within tropical cyclones. Moreover, the wind variations documented in this study may have application for wave runup and wind damage potential in tropical cyclones.
Interaction between surface and atmosphere in a convective boundary layer
NASA Astrophysics Data System (ADS)
Garai, Anirban
Solar heating of the surface causes the near surface air to warm up and with sufficient buoyancy it ascends through the atmosphere as surface-layer plumes and thermals. The cold fluid from the upper part of the boundary layer descends as downdrafts. The downdrafts and thermals form streamwise roll vortices. All these turbulent coherent structures are important because they contribute most of the momentum and heat transport. While these structures have been studied in depth, their imprint on the surface through energy budget in a convective atmospheric boundary layer has received little attention. The main objective of the present study is to examine the turbulence-induced surface temperature fluctuations for different surface properties and stratification. Experiments were performed to measure atmospheric turbulence using sonic anemometers, fine wire thermocouples and LIDAR; and surface temperature using an infra-red camera over grass and artificial turf fields. The surface temperature fluctuations were found to be highly correlated to the turbulent coherent structures and follow the processes postulated in the surface renewal theory. The spatio-temporal scales and advection speed of the surface temperature fluctuation were found to match with those of turbulent coherent structures. A parametric direct numerical simulation (DNS) study was then performed by solving the solid-fluid heat transport mechanism numerically for varying solid thermal properties, solid thickness and strength of stratification. Even though there were large differences in the friction Reynolds and Richardson numbers between the experiments and numerical simulations, similar turbulent characteristics were observed. The ejection (sweep) events tend to be aligned with the streamwise direction to form roll vortices with unstable stratification. The solid-fluid interfacial temperature fluctuations increase with the decreases in solid thermal inertia; and with the increase in solid thickness to attain a constant value for a sufficiently thick solid. The temperature fluctuation changes from a Gaussian distribution near the wall to a positively skewed distribution away from the wall. The turbulent temperature fluctuations influence the solid interfacial temperature by thermal conduction only. These studies provided unique insights into the solid-fluid coupled heat transport in low and high Reynolds number flows. This turbulence induced surface temperature fluctuation can influence the performances of several satellite remote sensing models.
On optical imaging through aircraft turbulent boundary layers
NASA Technical Reports Server (NTRS)
Sutton, G. W.
1980-01-01
Optical resolution quality as affected by aircraft turbulent boundary layers is analyzed. Wind-tunnel data was analyzed to obtained the variation of boundary layer turbulence scale length and mass density rms fluctuations with Mach number. The data gave good agreement with a mass density fluctuation turbulence spectrum that is either isotropic of orthogonally anisotropic. The data did not match an isotropic turbulence velocity spectrum which causes an anisotropic non-orthogonal mass density fluctuation spectrum. The results indicate that the average mass density rms fluctuation is about 10% of the maximum mass density across the boundary layer and that the transverse turbulence scale size is about 10% of the boundary layer thickness. The results indicate that the effect of the turbulent boundary layer is large angle scattering which decreases contrast but not resolution. Using extinction as a criteria the range of acceptable aircraft operating conditions are given.
Destiny of earthward streaming plasma in the plasmasheet boundary layer
NASA Technical Reports Server (NTRS)
Green, J. L.; Horwitz, J. L.
1986-01-01
The dynamics of the earth's magnetotail have been investigated, and it has become clear that the plasmasheet boundary layer field lines map into the Region I Field-Aligned Currents (FAC) of the auroral zone. It is pointed out that the role of earthward streaming ions in the plasmasheet boundary layer may be of fundamental importance in the understanding of magnetotail dynamics, auroral zone physics, and especially for ionospheric-magnetospheric interactions. The present paper has the objective to evaluate propagation characteristics for the earthward streaming ions observed in the plasmasheet boundary layer. An investigation is conducted of the propagation characteristics of protons in the plasmasheet boundary layer using independent single particle dynamics, and conclusions are discussed. The density of earthward streaming ions found in the plasmasheet boundary layer should include the ring current as well as the auroral zone precipitaiton and inner plasmasheet regions of the magnetosphere.
Exit of boundary layer plasma from the distant magnetotail
Heikkila, W.J.
1983-03-01
It is pointed out that the boundary layer plasma must somehow leave the magnetospheric system. We propose that the boundary layers on the dawn and dusk flanks are continued into the far magnetotail, still on closed magnetic field lines. Within the combined layer there would be a dusk to dawn electric field for antisunward convection (as is the case for the boundary layers on the dawn and dusk flanks nearer to the earth). It is suggested that the boundary layer flow is so massive that the flow itself can generate the right electric field for continued flow. Most of the plasma in the mantle over the polar caps would also be convected out in a similar manner, rather feeding the plasma sheet. There would be a stagnation point inside the magnetotail, with any boundary or mantle plasma diffusing earthward of this point becoming the plasma sheet. It is deduced that no steady state solution is possible.
Boundary Layer Perturbations Generated from small Oscillating Bumps
NASA Astrophysics Data System (ADS)
Gaster, Michael
1997-11-01
Perturbations may be generated in a laminar boundary layer by various types of surface disturbance. Here we discuss the perturbations generted by the motion of a small piston mounted in the surface of a flat plate. Theoretical predictions of the flow field resulting from the periodic motion of the piston are made using the approximation that the steady base boundary layer is closely parallel and that the disturbance is sufficently small to warrant linearisation. These solutions are compared with measurements taken with a hot-wire anemometer of appropriate boundary layer experiments involving excitation by a piston of 2mm dia oscillating with amplitudes of 50 microns in a laminar boundary layer with a displacement thickness of 1mm. The Reynolds number of the boundary layer is roughly 1000 based on displacement thickness.
Dusty boundary layer in a surface-burst explosion
Kuhl, A.L.; Ferguson, R.E.; Chien, K.Y.; Collins, J.P.
1993-08-01
Dusty boundary layers are an inherent feature of explosions over ground surfaces. Detailed knowledge of dusty boundary layer characteristics is needed in explosion safety analysis (e.g., to calculate the drag loads on structures). Also, to predicct the amount of dust in the rising fireball of an explsion, one must know the dusty boundary layer swept up during the positive and negative phases of the blast wave and how much of this boundary layer dust is entrained into the stem of the dust cloud. This paper describes the results of numerical simulations of the dusty boundary layer created by a surface burst explosion. The evolution of the flow was calculated by a high-order Godunov code that solves the nonsteady conservation laws.
NASA Technical Reports Server (NTRS)
Houdeville, R.; Cousteix, J.
1979-01-01
The development of a turbulent unsteady boundary layer with a mean pressure gradient strong enough to induce separation, in order to complete the extend results obtained for the flat plate configuration is presented. The longitudinal component of the velocity is measured using constant temperature hot wire anemometer. The region where negative velocities exist is investigated with a laser Doppler velocimeter system with BRAGG cells. The boundary layer responds by forced pulsation to the perturbation of potential flow. The unsteady effects observed are very important. The average location of the zero skin friction point moves periodically at the perturbation frequency. Average velocity profiles from different instants in the cycle are compared. The existence of a logarithmic region enables a simple calculation of the maximum phase shift of the velocity in the boundary layer. An attempt of calculation by an integral method of boundary layer development is presented, up to the point where reverse flow starts appearing.
Direct numerical simulation of turbulent boundary layer separation under unsteady pressure gradients
NASA Astrophysics Data System (ADS)
Bromby, William; You, Donghyun
2012-11-01
Direct numerical simulations of attached, separated, and unsteady separated turbulent boundary layers are performed. Blowing-suction velocity distributions are imposed along the upper boundary to introduce adverse pressure gradients to the turbulent boundary layer. A time varying adverse pressure gradient induces unsteady separation of the turbulent boundary layer. Comparing unsteady and steady separated cases demonstrates significant differences in distributions of the average velocity, vorticity, and kinetic energy budget despite similar average wall pressure and skin friction distributions. The behavior of the unsteady separated turbulent boundary layer is described using instantaneous flow visualization, frequency of flow reversal, turbulent kinetic energy budget, vorticity distributions, Reynolds stress events, and auto-correlation of velocity fluctuation in time and space. Complex flow phenomena such as division of the recirculation zone during separation bubble collapse, motion of vortical structures into and over the bubble, and characteristics of detachment point and reattachment point variation in stream and span are revealed. Supported by the Army Research Office Grant W911NF1010348.
NASA Astrophysics Data System (ADS)
Xia, Qian-Jin; Huang, Wei-Xi; Xu, Chun-Xiao; Cui, Gui-Xiang
2015-04-01
Opposition control of spatially developing turbulent boundary layers for skin friction drag reduction is studied by direct numerical simulations. The boundary layer extends 800?0 in the streamwise (x) direction, with ?0 denoting the momentum thickness at the flow inlet. The Reynolds number, based on the external flow velocity and the momentum thickness, ranges from 300 to 860. Opposition control applied in different streamwise ranges, i.e. 200\\lt x/{{? }0}\\lt 350 and 200\\lt x/{{? }0}\\lt 550, as well as the uncontrolled case, are simulated. Statistical results and instantaneous flow fields are presented, with special attention paid to the spatial evolution properties of the boundary layer flow with control and the underlying mechanism. It is observed that a long spatial transient region after the control start and a long recovery region after the control end are present in the streamwise direction. A maximum drag reduction rate of about 22% is obtained as the transient region is passed, and an overshoot in the local skin friction coefficient (Cf) occurs in the recovery region. A new identity is derived for dynamical decomposition of Cf. Reduction of Cf by opposition control and overshoot of Cf in the recovery region are explained by quantifying the contributions from the viscous shear stress term, the Reynolds shear stress term, the mean convection term and other terms.
Laboratory-observed frictional slip instabilities in samples of the Tohoku plate boundary megathrust
NASA Astrophysics Data System (ADS)
Ikari, M.; Ito, Y.; Ujiie, K.; Kopf, A.
2014-12-01
The plate boundary megathrust at the Japan Trench is remarkable due to its capability for a wide range of fault slip styles. In addition to the extraordinarily large amount of coseismic slip (several 10's of meters) that reached the seafloor during the 2011 Tohoku-Oki earthquake, the the Japan Trench is also known host slow earthquakes. The location of these slow earthquakes coincide with the rupture area of the 2011 Tohoku earthquake; one was observed to occur in the month before the 2011 earthquake and was likely ongoing during the earthquake. This shows that the frictional behavior of the Japan Trench megathrust is complex and thus failure can occur in a variety of styles. Samples of the plate boundary fault zone in the Tohoku region were recovered ~7 km from the Japan Trench axis, within the region of largest coseismic slip during the Tohoku earthquakes, during Integrated Ocean Drilling Program Expedition 343, the Japan Trench Fast Drilling Project (JFAST). We used these samples in laboratory friction experiments in order to examine the slip behavior of the shallow Tohoku megathrust. In our tests, we sheared the samples at 10 ?m/s to establish a steady shear geometry and friction level and subsequently decrease the slip velocity to 2.7 nm/s, equal to the convergence rate between the Pacific and North American plates (85 mm/yr) and thus simulating realistically slow fault slip rates. Regular stick-slip behavior was observed soon after the velocity decrease but ceases as friction evolves to a new residual level. Shearing then mostly proceeds as stable creep, however infrequent friction perturbations are observed which occur two to three times over several mm. Unlike normal stick-slip behavior, we observe stress increases before the stress drop so that the friction level before and after the event are similar. The stress drop is ~0.015 in friction (~100 kPa) and occurs over several hours; therefore we interpret these events to be laboratory-generated slow earthquakes. No slip instabilities were observed in friction experiments conducted at higher slip rates using the same sample, suggesting that such behavior is a consequence of plate-rate slip velocities. Our results demonstrate that the shallow Tohoku megathrust is capable of generating slow slip instabilities as well as creep at tectonic convergence rates.
F-16XL ship #1 - CAWAP boundary layer hot film, left wing
NASA Technical Reports Server (NTRS)
1996-01-01
This photo shows the boundary layer hot film on the left wing of NASA's single-seat F-16XL (ship #1) used for the Cranked-Arrow Wing Aerodynamic Project (CAWAP) at Dryden Flight Research Center, Edwards, California. Hot film is used to measure temperature changes on a surface. The modified airplane features a delta 'cranked-arrow' wing with strips of tubing along the leading edge to the trailing edge to sense static on the wing and obtain pressure distribution data. The right wing receives data on pressure distribution and the left wing has three types of instrumentation - preston tubes to measure local skin friction, boundary layer rakes to measure boundary layer profiles (the layer where the air interacts with the surfaces of a moving aircraft), and hot films to determine boundary layer transition locations. The program also gathered aero data on two wing planforms for NASA's High Speed Research Program. The first flight of CAWAP occurred on November 21, 1995, and the test program ended in April 1996.
NASA Technical Reports Server (NTRS)
Chakroun, Walid M.; Taylor, Robert P.
1996-01-01
The objective of this research was to experimentally investigate the combined effects of freestream acceleration and surface roughness on heat transfer and fluid flow in the turbulent boundary layer. The experiments included a variety of flow conditions ranging from aerodynamically smooth to transitionally rough to fully rough boundary layers with accelerations ranging from moderate to moderately strong. The test surfaces used were a smooth-wall test surface and two rough-wall surfaces which were roughened with 1.27 mm diameter hemispheres spaced 2 and 4 base diameters apart in a staggered array. The measurements consisted of Stanton number distributions, mean temperature profiles, skin friction distributions, mean velocity profiles, turbulence intensity profiles, and Reynolds stress profiles. The Stanton numbers for the rough-wall experiments increased with acceleration. For aerodynamically smooth and transitionally rough boundary layers, the effect of roughness is not seen immediately at the beginning of the accelerated region as it is for fully rough boundary layers; however, as the boundery layer thins under acceleration, the surface becomes relatively rougher resulting in a sharp increase in Stanton number.
Niu, Fenglin
The role of chemical boundary layers in regulating the thickness of continental and oceanic thermal boundary layers Cin-Ty Aeolus Lee*, Adrian Lenardic, Catherine M. Cooper, Fenglin Niu, Alan Levander Department of Earth Science, MS-126, Rice University, 6100 Main St., Houston, TX 77005, United States
Frictional sliding in layered rock: laboratory-scale experiments
Buescher, B.J.; Perry, K.E. Jr.; Epstein, J.S.
1996-09-01
The work is part of the rock mechanics effort for the Yucca Mountain Site Characterization Program. The laboratory-scale experiments are intended to provide high quality data on the mechanical behavior of jointed structures that can be used to validate complex numerical models for rock-mass behavior. Frictional sliding between simulated rock joints was studied using phase shifting moire interferometry. A model, constructed from stacks of machined and sandblasted granite plates, contained a central hole bore normal to the place so that frictional slip would be induced between the plates near the hole under compressive loading. Results show a clear evolution of slip with increasing load. Since the rock was not cycled through loading- unloading, the quantitative differences between the three data sets are probably due to a ``wearing-in`` effect. The highly variable spatial frequency of the data is probably due to the large grain size of the granite and the stochastic frictional processes. An unusual feature of the evolution of slip with increasing load is that as the load gets larger, some plates seem to return to a null position. Figs, 6 refs.
Symmetries in Turbulent Boundary Layer Flows
NASA Technical Reports Server (NTRS)
Oberlack, M.
1996-01-01
The objective is the development of a new theory which enables the algorithmic computation of all self-similar mean velocity profiles. The theory is based on Liegroup analysis and unifies a large set of self-similar solutions for the mean velocity of stationary parallel turbulent shear flows. The results include the logarithmic law of the wall, an algebraic law, the viscous sublayer, the linear region in the middle of a Couette flow and in the middle of a rotating channel flow, and a new exponential mean velocity profile not previously reported. Experimental results taken in the outer parts of a high Reynolds number flat-plate boundary layer, strongly support the exponential profile. From experimental as well as from DNS data of a turbulent channel flow the algebraic scaling law could be confirmed in both the center region and in the near wall region. In the case of the logarithmic law of the wall, the scaling with the wall distance arises as a result of the analysis and has not been assumed in the derivation. The crucial part of the derivation of all the different mean velocity profiles is to consider the invariance of the equation for the velocity fluctuations at the same time as the invariance of the equation for the velocity product equations. The latter is the dyad product of the velocity fluctuations with the equation for the velocity fluctuations. It has been proven that all the invariant solutions are also consistent with similarity of all velocity moment equations up to any arbitrary order.
Boundary Layer Rolls Observed Above and Below a Jet in a Marine Boundary Layer
NASA Astrophysics Data System (ADS)
Foster, R. C.; Emmitt, G. D.; Godwin, K.; Greco, S.
2013-12-01
We have flown a coherent Doppler wind lidar (DWL) on the Cirpas Twin Otter off the California coast near Monterey since 2003. One scientific purpose of these flights is to understand the relationship between the turbulent fluxes measured on the aircraft or on other platforms and the observed structure of the marine boundary layer (MBL). Two common features are found in the MBL flow: (1) a strong jet at approximately 200 m above the sea surface; and (2) organized large eddies (OLE) in the form of roll vortices that are approximately aligned along the mean wind direction. On two flights (April 13, 2007 and September 30, 2012), the DWL data indicated that roll OLE existed simultaneously both above and below the jet. The DWL winds suggest that the OLE in these layers are sometimes independent and sometimes connected. Standard flux data are obtained on the Twin Otter at flight level, which is nominally 300 m. The 10 Hz wind and temperature data exhibit variability at spatial scales corresponding to the OLE wavelength. We have constructed a nonlinear theoretical model that includes triad wave-wave interactions to test the hypothesis that rolls could form both above and below the jet. This model shows that this is possible and that the rolls in the two layers could have unique characteristics compared to standard boundary layer rolls. The model further shows that the rolls above and below the jet are due to separate instabilities that interact. This is consistent with the observations of both connected and independent OLE above and below the jet. Contrast-enhanced DWL line-of-sight winds. Jet maximum 200 m below aircraft. Typical resonant triad solution for rolls above and below a PBL jet.
NSDL National Science Digital Library
The representation demonstrates, through an animated, narrated slide-show, how frictional forces, including air resistance, can affect the motion of an object. This resource also includes an interactive test and review of the material. One is also able to download "myskoool" which allows allows one to download lessons to run offline and use anytime.
Spatial Linear Instability of Confluent Wake/Boundary Layers
NASA Technical Reports Server (NTRS)
Liou, William W.; Liu, Feng-Jun; Rumsey, C. L. (Technical Monitor)
2001-01-01
The spatial linear instability of incompressible confluent wake/boundary layers is analyzed. The flow model adopted is a superposition of the Blasius boundary layer and a wake located above the boundary layer. The Orr-Sommerfeld equation is solved using a global numerical method for the resulting eigenvalue problem. The numerical procedure is validated by comparing the present solutions for the instability of the Blasius boundary layer and for the instability of a wake with published results. For the confluent wake/boundary layers, modes associated with the boundary layer and the wake, respectively, are identified. The boundary layer mode is found amplified as the wake approaches the wall. On the other hand, the modes associated with the wake, including a symmetric mode and an antisymmetric mode, are stabilized by the reduced distance between the wall and the wake. An unstable mode switching at low frequency is observed where the antisymmetric mode becomes more unstable than the symmetric mode when the wake velocity defect is high.
Bristled shark skin: a microgeometry for boundary layer control?
Lang, A W; Motta, P; Hidalgo, P; Westcott, M
2008-12-01
There exists evidence that some fast-swimming shark species may have the ability to bristle their scales during fast swimming. Experimental work using a water tunnel facility has been performed to investigate the flow field over and within a bristled shark skin model submerged within a boundary layer to deduce the possible boundary layer control mechanisms being used by these fast-swimming sharks. Fluorescent dye flow visualization provides evidence of the formation of embedded cavity vortices within the scales. Digital particle image velocimetry (DPIV) data, used to evaluate the cavity vortex formation and boundary layer characteristics close to the surface, indicate increased momentum in the slip layer forming above the scales. This increase in flow velocity close to the shark's skin is indicative of boundary layer control mechanisms leading to separation control and possibly transition delay for the bristled shark skin microgeometry. PMID:18838758
NASA Technical Reports Server (NTRS)
Eastman, Timothy E.
1995-01-01
Evidence for the probable existence of magnetospheric boundary layers was first presented by Hones, et al. (1972), based on VELA satellite plasma observations (no magnetic field measurements were obtained). This magnetotail boundary layer is now known to be the tailward extension of the high-latitude boundary layer or plasma mantle (first uniquely identified using HEOS 2 plasma and field observations by Rosenbauer et al., 1975) and the low-latitude boundary layer (first uniquely identified using IMP 6 plasma and field observations by Eastman et al., 1976). The magnetospheric boundary layer is the region of magnetosheath-like plasma located Earthward of, but generally contiguous with the magnetopause. This boundary layer is typically identified by comparing low-energy (less than 10 keV) ion spectra across the magnetopause. Low-energy electron measurements are also useful for identifying the boundary layer because the shocked solar wind or magnetosheath has a characteristic spectral signature for electrons as well. However, there are magnetopause crossings where low-energy electrons might suggest a depletion layer outside the magnetopause even though the traditional field-rotation signature indicates that this same region is a boundary layer Earthward of the current layer. Our analyses avoided crossings which exhibit such ambiguities. Pristine magnetopause crossings are magnetopause crossings for which the current layer is well defined and for which there is no adjoining magnetospheric boundary layer as defined above. Although most magnetopause models to date apply to such crossings, few comparisons between such theory and observations of pristine magnetopause crossings have been made because most crossings have an associated magnetospheric boundary layer which significantly affects the applicable boundary conditions for the magnetopause current layer. Furthermore, almost no observational studies of magnetopause microstructure have been done even though key theoretical issues have been discussed for over two decades. This is because plasma instruments deployed prior to the ISEE and AMPTE missions did not have the required time resolution and most ISEE investigations to-date have focused on tests of MHD plasma models, especially reconnection. More recently, many phenomenological and theoretical models have been developed to explain the existence and characteristics of the magnetospheric boundary layers with only limited success to date. The cases with no boundary layer treated in this study provide a contrary set of conditions to those observed with a boundary layer. For the measured parameters of such cases, a successful boundary layer model should predict no plasma penetration across the magnetopause. Thus, this research project provides the first direct observational tests of magnetopause models using pristine magnetopause crossings and provides important new results on magnetopause microstructure and associated kinetic processes.
Turbulent boundary layer over solid and porous surfaces with small roughness
NASA Technical Reports Server (NTRS)
Kong, F. Y.; Schetz, J. A.
1981-01-01
The turbulent boundary layer over a smooth, solid wall is examined along with a sandpaper-roughened, solid wall, and a porous wall. Suitable results are obtained with the smooth, solid wall for the Law of the Wall, the Defect Law, and the axial and turbulence intensities. The logarithmic portion of the Wall Law is shifted in the sandpaper-roughened, solid wall and an increase in the normal turbulence intensity and Reynolds stress is observed. An increase in the local skin friction values and all the turbulence values is found with the porous wall. The influence of a slightly rough, porous wall of sintered metal on the boundary layer is compared with a solid sandpaper-roughened wall in the same nominal K(+) range.
Experimental study of boundary layer transition on a heated flat plate
NASA Technical Reports Server (NTRS)
Sohn, K. H.; Reshotko, E.; Zaman, K. B. M. Q.
1991-01-01
A detailed investigation to the document momentum and thermal development of boundary layers undergoing natural transition on a heated flat plate was performed. Experimental results of both overall and conditionally sampled characteristics of laminar, transitional, and low Reynolds number turbulent boundary layers are presented. Measurements were done in a low-speed, closed-loop wind tunnel with a freestream velocity of 100 ft/s and zero pressure gradient over a range of freestream turbulence intensities from 0.4 to 6 percent. The distributions of skin friction, heat transfer rate, and Reynolds shear stress were all consistent with previously published data. Reynolds analogy factors for momentum thickness Reynolds number, Re(sub theta) less than 2300 were found to be well predicted by laminar and turbulent correlations which accounted for an unheated starting length and uniform heat flux. A small dependence of turbulence results on the freestream turbulence intensity was observed.
Experimental study of boundary layer transition on a heated flat plate
NASA Astrophysics Data System (ADS)
Sohn, K. H.; Reshotko, E.; Zaman, K. B. M. Q.
A detailed investigation to the document momentum and thermal development of boundary layers undergoing natural transition on a heated flat plate was performed. Experimental results of both overall and conditionally sampled characteristics of laminar, transitional, and low Reynolds number turbulent boundary layers are presented. Measurements were done in a low-speed, closed-loop wind tunnel with a freestream velocity of 100 ft/s and zero pressure gradient over a range of freestream turbulence intensities from 0.4 to 6 percent. The distributions of skin friction, heat transfer rate, and Reynolds shear stress were all consistent with previously published data. Reynolds analogy factors for momentum thickness Reynolds number, Re(sub theta) less than 2300 were found to be well predicted by laminar and turbulent correlations which accounted for an unheated starting length and uniform heat flux. A small dependence of turbulence results on the freestream turbulence intensity was observed.
Wall cooling effects on hypersonic transitional/turbulent boundary layers at high Reynolds numbers
NASA Technical Reports Server (NTRS)
Watson, R. D.
1977-01-01
The characteristics of a thick hypersonic boundary layer turbulent for a length of 175 cm on a 4 deg sharp wedge were measured. The resulting boundary layer was free from transverse curvature effects and only mildly affected by upstream history effects caused by pressure and wall temperature gradients. Heat-transfer distributions were used to locate regions of laminar, transitional, and turbulent flow at an edge unit Reynolds number of 470,000 cm at wall-to-total temperature ratios from about 0.3 to 1. Wall cooling had little effect on the location of the transition region. Pitot and total temperature profiles and skin-friction measurements were obtained at several locations along the model longitudinal centerline. Mixing length and turbulent Prandtl number distributions were derived from the fully turbulent mean profiles.
Investigation of blown boundary layers with an improved wall jet system
NASA Technical Reports Server (NTRS)
Saripalli, K. R.; Simpson, R. L.
1980-01-01
Measurements were made in a two dimensional incompressible wall jet submerged under a thick upstream boundary layer with a zero pressure gradient and an adverse pressure gradient. The measurements included mean velocity and Reynolds stresses profiles, skin friction, and turbulence spectra. The measurements were confined to practical ratios (less than 2) of the jet velocity to the free stream velocity. The wall jet used in the experiments had an asymmetric velocity profile with a relatively higher concentration of momentum away from the wall. An asymmetric jet velocity profile has distinct advantages over a uniform jet velocity profile, especially in the control of separation. Predictions were made using Irwin's (1974) method for blown boundary layers. The predictions clearly show the difference in flow development between an asymmetric jet velocity profile and a uniform jet velocity profile.
NASA Astrophysics Data System (ADS)
Bur, Reynald
1993-05-01
The techniques for controlling shock wave/turbulent boundary layer interaction are reviewed. A passive control device makes it possible to improve the performance of airfoils at transonic velocities. An interaction subjected to passive control was performed in a transonic channel. The flow is described by means of Schlieren visualization, measurements of pressure on the walls of the duct and two dimensional laser velocimetry. A momentum balance carried out in the control region made it possible to infer configurations for which the friction drag is reduced by comparison with the reference case without control. The theoretical study is based on a boundary layer type approach using the first order Prandtl equations. Experimental results obtained for the reference case and a case with control are compared.
NASA Astrophysics Data System (ADS)
Sakuma, Hiroshi; Suehara, Shigeru
2015-04-01
The frictional strength of layered minerals is an important component of fault slip physics. A low-friction coefficient of these minerals has been attributed to the interlayer bonding energy (ILBE) of their weak interlayer bonding. The ILBE used for discussing the friction coefficient is based on a simple electrostatic calculation; however, the values should be revisited by precise calculations based on quantum mechanics. In this study, the ILBEs of layered minerals were calculated by using the density functional theory (DFT) method with van der Waals correction. The ILBEs calculated by the simple electrostatic method for hydrogen-bonding minerals such as kaolinite, lizardite, gibbsite, and brucite strongly overestimated the reliable energies calculated by the DFT method. This result should be ascribed to the inaccurate approximation of the point charges at the basal plane. A linear relationship between the experimentally measured friction coefficients of layered minerals and the ILBEs determined by the simple method was not confirmed by using the reliable ILBEs calculated by our DFT method. The results, however, do not remove the possibility of a relationship between interlayer bonding energy and the friction coefficient because the latter, used for comparing the former, was obtained through experiments conducted under various conditions.
Further Improvements to Nozzle Boundary Layer Calculations in BLIMPJ
NASA Technical Reports Server (NTRS)
Praharaj, S. C.; Gross, Klaus W.
1989-01-01
Further improvements made to advance the current Boundary Layer Integral Matrix Procedure - Version J (BLIMPJ) containing previously modeled simplified calculation methods by accounting for condensed phase, thick boundary layer and free stream turbulence effects are discussed. The condensed phase effects were included through species composition effect considered via input to the code and through particle damping effect considered via a turbulence model. The thrust loss calculation procedure for thick boundary layer effects was improved and the optimization of net thrust with respect to nozzle length was performed. The effects of free stream turbulence were approximately modeled in the turbulence model.
On the universality of inertial energy in the log layer of turbulent boundary layer and pipe flows
NASA Astrophysics Data System (ADS)
Chung, D.; Marusic, I.; Monty, J. P.; Vallikivi, M.; Smits, A. J.
2015-07-01
Recent experiments in high Reynolds number pipe flow have shown the apparent obfuscation of the behaviour in spectra of streamwise velocity fluctuations (Rosenberg et al. in J Fluid Mech 731:46-63, 2013). These data are further analysed here from the perspective of the behaviour in second-order structure functions, which have been suggested as a more robust diagnostic to assess scaling behaviour. A detailed comparison between pipe flows and boundary layers at friction Reynolds numbers of 5000-20,000 reveals subtle differences. In particular, the slope of the pipe flow structure function decreases with increasing wall distance, departing from the expected slope in a manner that is different to boundary layers. Here, , the slope of the log law in the streamwise turbulence intensity profile at high Reynolds numbers. Nevertheless, the structure functions for both flows recover the slope in the log layer sufficiently close to the wall, provided the Reynolds number is also high enough to remain in the log layer. This universality is further confirmed in very high Reynolds number data from measurements in the neutrally stratified atmospheric surface layer. A simple model that accounts for the `crowding' effect near the pipe axis is proposed in order to interpret the aforementioned differences.
Planetary boundary layer feedbacks in climate system
NASA Astrophysics Data System (ADS)
Zilitinkevich, S.; Esau, I.
2009-09-01
A remarkable feature of the ongoing global warming is the asymmetry in trends of the daily minima, ?min, and maxima, ?max, of the surface air temperature (SAT): ?min increases faster than ?max, so that the daily temperature range (DTR), ?max-?min, basically decreases. The state of the art general circulation and climate models (GCMs) do not reproduce it and predict approximately the same change rates for ?min and ?max. We propose that the difference in trends of ?min and ?max is caused by the strong stability dependence of the height, h, of the planetary boundary layer (PBL). Indeed, the daytime warming is associated with deep convective (C) PBLs (with the heights hC ~ 103m), in contrast to the nocturnal and/or wintertime cooling associated with shallower mid-latitudinal nocturnal stable (NS) PBLs (with hNS ~ 200m) and even shallower high-latitudinal long-lived stable (LS) PBLs (with hLS ~ 30-50m) developing during longer than night periods of the persistent surface cooling. As a result, one and the same increment, ?Q0, in the surface heat flux leads to only minor increment in ?max in deep C PBLs, but essential increments in ?min in shallow NS and especially NS PBLs. The latter type of the PBL has been discovered only recently and is not yet accounted for in modern GCMs. In the present paper, we derive theoretical estimates of the variations, ??min and ??max, in the SAT minima and maxima associated with the stable and convective PBLs, respectively, and by this means explain the observed asymmetry in the growth rates of ?min and ?max. To characterise the role of PBLs in the climate system, we introduce the concepts of local and general PBL feedbacks. Besides the strengths of feedbacks, we propose to take into account the reaction times of different mechanisms. The proposed concepts could be applied to different climate-change problems from global (as in this paper) to local, in particular, to those caused by the land-use modification.
Laminar-turbulent separatrix in a boundary layer flow
NASA Astrophysics Data System (ADS)
Biau, Damien
2012-03-01
The transitional boundary layer flow over a flat plate is investigated. The boundary layer flow is known to develop unstable Tollmien-Schlichting waves above a critical value of the Reynolds number. However, it is also known that this transition can be observed for sub-critical Reynolds numbers. In that case, the basin of attraction of the laminar state coexists with the sustained turbulence. In this article, the trajectory on the separatrix between these two states is simulated. The state on the separatrix is independent from the initial condition and is dynamically connected to both the laminar flow and the turbulence. Such an edge state provides information regarding the basic features of the transitional flow. The solution takes the form of a low speed streak, flanked by two quasi-streamwise sinuous vortices. The shape of the streaks is close to that simulated with the linear optimal perturbation method. This solution is compared to existing results concerning streak breakdown. The simulations are realized in a temporal framework for a local boundary layer, with periodic boundary conditions in the streamwise direction. A dedicated model, based on a scale separation, is presented. The mean flow is a solution of the Prandtl boundary layer equations while the superposed small-scale fluctuations are a solution of the periodic Navier-Stokes equations. The model is validated with turbulent flow simulations and satisfactorily reproduces the physical characteristics of a boundary layer flow, especially in the outer region, where external fluid is entrained toward the boundary layer.
NASA Astrophysics Data System (ADS)
Ünal, U?ur Oral; Ünal, Burcu; Atlar, Mehmet
2012-06-01
Whilst recent developments of nanotechnology are being exploited by chemists and marine biologists to understand how the completely environmentally friendly foul release coatings can control marine biofouling and how they can be developed further, the understanding of the hydrodynamic performances of these new generation coatings is being overlooked. This paper aims to investigate the relative boundary layer, roughness and drag characteristics of some novel nanostructured coatings, which were developed through a multi-European and multi-disciplined collaborative research project AMBIO (2010), within the framework of turbulent flows over rough surfaces. Zero-pressure-gradient, turbulent boundary layer flow measurements were conducted over flat surfaces coated with several newly developed nanostructured antifouling paints, along with some classic reference surfaces and a state-of-the-art commercial coating, in the Emerson Cavitation Tunnel (ECT) of Newcastle University. A large flat plane test bed that included interchangeable flat test sections was used for the experiments. The boundary layer data were collected with the aid of a two-dimensional DANTEC Laser Doppler Velocimetry (LDV) system. These measurements provided the main hydrodynamic properties of the newly developed nanostructured coatings including local skin friction coefficients, roughness functions and Reynolds stresses. The tests and subsequent analysis indicated the exceptionally good frictional properties of all coatings tested, in particular, the drag benefit of some new nanostructured coatings in the Reynolds number range investigated. The rapidly decreasing roughness function trends of AKZO19 and AKZO20 as the ks^{ + } increases were remarkable along with the dissimilar roughness function character of all tested coatings to the well-known correlation curves warranting further research at higher Reynolds numbers. The wall similarity concept for the Reynolds stresses was only validated for the transitionally rough surfaces from (y + \\varepsilon)^{ + } ? 100 up to the end of the boundary layer.
A boundary-layer model for Mars - Comparison with Viking lander and entry data
NASA Astrophysics Data System (ADS)
Haberle, R. M.; Houben, H. C.; Hertenstein, R.; Herdtle, T.
1993-06-01
A 1D boundary-layer model of Mars based on a momentum equation that describes friction, pressure gradient, and Coriolis forces is presented. Frictional forces and convective heating are computed using the level-2 turbulence closure theory of Mellor and Yamada (1974). The model takes into account the radiative effects of CO2 gas and suspended dust particles. Both radiation and convection depend on surface temperatures which are computed from a surface heat budget. Model predictions are compared with available observations from Viking landers. It is concluded that, in general, the model reproduces the basic features of the temperature data. The agreement is particularly good at entry time for the V L-2 site, where the model and observations are within several degrees at all levels for which data are available.
An experimental investigation of turbulent boundary layers at high Mach number and Reynolds numbers
NASA Technical Reports Server (NTRS)
Holden, M. S.
1972-01-01
Skin friction, heat transfer and pressure measurements were obtained in laminar, transitional and turbulent boundary layers on flat plates at Mach numbers from 7 to 13 at wall-to-free stream stagnation temperature ratios from 0.1 to 0.3. Measurements in laminar flows were in excellent agreement with the theory of Cheng. Correlations of the transition measurements with measurements on flight vehicles and in ballistic ranges show good agreement. Our transition measurements do not correlate well with those of Pate and Schueler. Comparisons have been made between the skin friction and heat transfer measurements and the theories of Van Driest, Eckert and Spalding and Chi. These comparisons reveal in general that at the high end of our Mach number range (10-13) the theory of Van Driest is in best agreement with the data, whereas at lower Mach numbers (6.5-10) the Spalding Chi theory is in better agreement with the measurements.
A boundary-layer model for Mars - Comparison with Viking lander and entry data
NASA Technical Reports Server (NTRS)
Haberle, Robert M.; Houben, Howard C.; Hertenstein, Rolf; Herdtle, Tomas
1993-01-01
A 1D boundary-layer model of Mars based on a momentum equation that describes friction, pressure gradient, and Coriolis forces is presented. Frictional forces and convective heating are computed using the level-2 turbulence closure theory of Mellor and Yamada (1974). The model takes into account the radiative effects of CO2 gas and suspended dust particles. Both radiation and convection depend on surface temperatures which are computed from a surface heat budget. Model predictions are compared with available observations from Viking landers. It is concluded that, in general, the model reproduces the basic features of the temperature data. The agreement is particularly good at entry time for the V L-2 site, where the model and observations are within several degrees at all levels for which data are available.
Turbulence model investigations on the boundary layer flow with adverse pressure gradients
NASA Astrophysics Data System (ADS)
Yong, Zhao; Zhi, Zong; Li, Zou; Tianlin, Wang
2015-06-01
In this paper, a numerical study of flow in the turbulence boundary layer with adverse and pressure gradients (APGs) is conducted by using Reynolds-averaged Navier-Stokes (RANS) equations. This research chooses six typical turbulence models, which are critical to the computing precision, and to evaluating the issue of APGs. Local frictional resistance coefficient is compared between numerical and experimental results. The same comparisons of dimensionless averaged velocity profiles are also performed. It is found that results generated by Wilcox (2006) k- w are most close to the experimental data. Meanwhile, turbulent quantities such as turbulent kinetic energy and Reynolds-stress are also studied.
On the vertical lifting of dust in a convective unstable atmospheric boundary layer
NASA Astrophysics Data System (ADS)
Kurgansky, M. V.
2014-07-01
A model for the density Q of vertical mass flux of sand (dust) in the convective atmospheric boundary layer as a function of the number density N of convective elements (including vortices), friction velocity u *, and vertical (turbulent) buoyancy flux B is proposed. It is shown that the flux Q is proportional to the product of the square root of B and the sixth power of u *. This finding is consistent with empirical dependences Q( u *) reported in the literature. We discuss two methods for experimentally determining density N when the lifting of dust occurs, mainly due to (terrestrial and Martian) dust devils.
B. D. Ganapol
2010-06-19
A new highly accurate algorithm for the solution of the Falkner-Skan equation of boundary layer theory is presented. The algorithm, based on a Maclaurin series representation, finds its coefficients from recurrence. In addition, Wynn-epsilon convergence acceleration and continuous analytical continuation enable an accurate evaluation. The most accurate skin friction coefficients (shooting angle) to date are presented along with comparisons to past and present values found in the literature. The algorithm, coded in FORTRAN, uses neither enhanced precision arithmetic beyond quadruple precision nor computer algebra to achieve results in a timely fashion. Key Words: Falkner-Skan flow; Blasius flow; Wynn-epsilon acceleration; Romberg acceleration; Continuous analytical continuation
NASA Technical Reports Server (NTRS)
Stallings, R. L., Jr.; Lamb, M.
1980-01-01
The wind tunnel tests were conducted both with and without boundary layer trips at Mach 3 and nominal free stream Reynolds numbers per meter ranging from 3.3 x 10 the 6th power. Instrumentation consisted of pressure orifices, thermocouples, a boundary layer pitot pressure rake, and a floating element skin friction balance. Measurements from both wind tunnel and flight were compared with existing engineering prediction methods.
NASA Technical Reports Server (NTRS)
Anderson, P. S.; Kays, W. M.; Moffat, R. J.
1972-01-01
An experimental investigation of transpired turbulent boundary layers in zero and adverse pressure gradients has been carried out. Profiles of: (1) the mean velocity, (2) the three intensities of the turbulent fluctuations, and (3) the Reynolds stress were obtained by hot-wire anemometry. The friction coefficients were measured by using an integrated form of the boundary layer equation to extrapolate the measured shear stress profiles to the wall.
The friction factor of two-dimensional rough-boundary turbulent soap film flows
Nicholas Guttenberg; Nigel Goldenfeld
2009-03-25
We use momentum transfer arguments to predict the friction factor $f$ in two-dimensional turbulent soap-film flows with rough boundaries (an analogue of three-dimensional pipe flow) as a function of Reynolds number Re and roughness $r$, considering separately the inverse energy cascade and the forward enstrophy cascade. At intermediate Re, we predict a Blasius-like friction factor scaling of $f\\propto\\textrm{Re}^{-1/2}$ in flows dominated by the enstrophy cascade, distinct from the energy cascade scaling of $\\textrm{Re}^{-1/4}$. For large Re, $f \\sim r$ in the enstrophy-dominated case. We use conformal map techniques to perform direct numerical simulations that are in satisfactory agreement with theory, and exhibit data collapse scaling of roughness-induced criticality, previously shown to arise in the 3D pipe data of Nikuradse.
NASA Astrophysics Data System (ADS)
Vincenti, P.; Klewicki, J.; Morrill-Winter, C.; White, C. M.; Wosnik, M.
2013-12-01
Well-resolved measurements of the streamwise velocity in zero pressure gradient turbulent boundary layers are presented for friction Reynolds numbers up to 19,670. Distinct from most studies, the present boundary layers undergo nearly a decade increase in Reynolds number solely owing to streamwise development. The profiles of the mean and variance of the streamwise velocity exhibit logarithmic behavior in accord with other recently reported findings at high Reynolds number. The inner and mid-layer peaks of the variance profile are evidenced to increase at different rates with increasing Reynolds number. A number of statistical features are shown to correlate with the position where the viscous force in the mean momentum equation loses leading order importance, or similarly, where the mean effect of turbulent inertia changes sign from positive to negative. The near-wall peak region in the 2-D spectrogram of the fluctuations is captured down to wall-normal positions near the edge of the viscous sublayer at all Reynolds numbers. The spatial extent of this near-wall peak region is approximately invariant under inner normalization, while its large wavelength portion is seen to increase in scale in accord with the position of the mid-layer peak, which resides at a streamwise wavelength that scales with the boundary layer thickness.
Pollutant Plume Dispersion in the Atmospheric Boundary Layer over Idealized Urban Roughness
NASA Astrophysics Data System (ADS)
Wong, Colman C. C.; Liu, Chun-Ho
2013-05-01
The Gaussian model of plume dispersion is commonly used for pollutant concentration estimates. However, its major parameters, dispersion coefficients, barely account for terrain configuration and surface roughness. Large-scale roughness elements (e.g. buildings in urban areas) can substantially modify the ground features together with the pollutant transport in the atmospheric boundary layer over urban roughness (also known as the urban boundary layer, UBL). This study is thus conceived to investigate how urban roughness affects the flow structure and vertical dispersion coefficient in the UBL. Large-eddy simulation (LES) is carried out to examine the plume dispersion from a ground-level pollutant (area) source over idealized street canyons for cross flows in neutral stratification. A range of building-height-to-street-width (aspect) ratios, covering the regimes of skimming flow, wake interference, and isolated roughness, is employed to control the surface roughness. Apart from the widely used aerodynamic resistance or roughness function, the friction factor is another suitable parameter that measures the drag imposed by urban roughness quantitatively. Previous results from laboratory experiments and mathematical modelling also support the aforementioned approach for both two- and three-dimensional roughness elements. Comparing the UBL plume behaviour, the LES results show that the pollutant dispersion strongly depends on the friction factor. Empirical studies reveal that the vertical dispersion coefficient increases with increasing friction factor in the skimming flow regime (lower resistance) but is more uniform in the regimes of wake interference and isolated roughness (higher resistance). Hence, it is proposed that the friction factor and flow regimes could be adopted concurrently for pollutant concentration estimate in the UBL over urban street canyons of different roughness.
Lecture Series "Boundary Layer Theory". Part I - Laminar Flows. Part 1; Laminar Flows
NASA Technical Reports Server (NTRS)
Schlichting, H.
1949-01-01
In the lecture series starting today author want to give a survey of a field of aerodynamics which has for a number of years been attracting an ever growing interest. The subject is the theory of flows with friction, and, within that field, particularly the theory of friction layers, or boundary layers. A great many considerations of aerodynamics are based on the ideal fluid, that is the frictionless incompressibility and fluid. By neglect of compressibility and friction the extensive mathematical theory of the ideal fluid, (potential theory) has been made possible. Actual liquids and gases satisfy the condition of incomressibility rather well if the velocities are not extremely high or, more accurately, if they are small in comparison with sonic velocity. For air, for instance, the change in volume due to compressibility amounts to about 1 percent for a velocity of 60 meters per second. The hypothesis of absence of friction is not satisfied by any actual fluid; however, it is true that most technically important fluids, for instance air and water, have a very small friction coefficient and therefore behave in many cases almost like the ideal frictionless fluid. Many flow phenomena, in particular most cases of lift, can be treated satisfactorily, - that is, the calculations are in good agreement with the test results, -under the assumption of frictionless fluid. However, the calculations with frictionless flow show a very serious deficiency; namely, the fact, known as d'Alembert's paradox, that in frictionless flow each body has zero drag whereas in actual flow each body experiences a drag of greater or smaller magnitude. For a long time the theory has been unable to bridge this gap between the theory of frictionless flow and the experimental findings about actual flow. The cause of this fundamental discrepancy is the viscosity which is neglected in the theory of ideal fluid; however, in spite of its extraordinary smallness it is decisive for the course of the flow phenomena.
Interacting turbulent boundary layer over a wavy wall
NASA Technical Reports Server (NTRS)
Polak, A.; Werle, M. J.
1977-01-01
The two dimensional supersonic flow of a thick turbulent boundary layer over a train of relatively small wave-like protuberances is considered. The flow conditions and the geometry are such that there exists a strong interaction between the viscous and inviscid flow. The problem cannot be solved without inclusion of interaction effects due to the occurrence of the separation singularity in classical boundary layer methods. The interacting boundary layer equations are solved numerically using a time-like relaxation method with turbulence effects represented by the inclusion of the eddy viscosity model. Results are presented for flow over a train of up to six waves for Mach numbers of 10 and 32 million/meter, and wall temperature rations (T sub w/T sub 0) of 0.4 and 0.8. Limited comparisons with independent experimental and analytical results are also given. Detailed results on the influence of small protuberances on surface heating by boundary layers are presented.
Boundary layer analysis of a Centaur standard shroud
NASA Technical Reports Server (NTRS)
Hingst, W. R.; Towne, C. E.
1978-01-01
An analytical boundary layer investigation was carried out in conjunction with an experimental wind tunnel test to determine the discharge characteristics of the Centaur shroud ascent vent system on the Titan/Centaur launch vehicle. This involved estimating the effect of the local boundary layers on the vent discharge for vehicle Mach numbers ranging from 0.8 to 1.56. The growth of the boundary layer along the vehicle was influenced by the interaction with flanges protruding into the flow and by the longitudinal corrugations in the vehicle surface. The effects of the flange and corrugations were treated by approximate techniques. In addition, boundary layer calculations were made for a 3 percent model of the launch vehicle compared with experimental results.
On the Stability of Boundary Layers of Incompressible Euler Equations
NASA Astrophysics Data System (ADS)
Grenier, E.
2000-06-01
In this paper we investigate the stability and instability of boundary layers of incompressible Euler equations. Copyright 2000 Academic Press. Dans cet article on étudie la stabilité et l'instabilité de couches limites des équations d'Euler.
Viscous boundary layers in rotating fluids driven by periodic flows
NASA Technical Reports Server (NTRS)
Bergstrom, R. W.; Cogley, A. C.
1976-01-01
The paper analyzes the boundary layers formed in a rotating fluid by an oscillating flow over an infinite half plate, with particular attention paid to the effects of unsteadiness, the critical latitude effect and the structure of the solution to the boundary layer equations at resonance. The Navier-Stokes boundary layer equations are obtained through an asymptotic expansion with the incorporation of the Rossby and Ekman numbers and are analyzed as the sum of a nonlinear steady solution and a linearized unsteady solution. The solution is predominantly composed of two inertial wave vector components, one circularly polarized to the left and the other circularly polarized to the right. The problem considered here has relevance in oceanography and meteorology, with special reference to the unsteady atmospheric boundary layer.
Control and Identification of Turbulent Boundary Layer Separation
NASA Technical Reports Server (NTRS)
Seifert, Avi; Pack-Melton, La Tunia
2004-01-01
Effective delay of turbulent boundary layer separation could be achieved via closed-loop control. Constructing such a system requires that sensor data be processed, real-time, and fed into the controller to determine the output. Current methods for detection of turbulent boundary layer separation are lacking the capability of localized, fast and reliable identification of the boundary layer state. A method is proposed for short-time FFT processing of time series, measured by hot-film sensors, with the purpose of identifying the alternation of the balance between small and large scales as the boundary layer separates, favoring the large scales. The method has been validated by comparison to other criteria of separation detection and over a range of baseline and controlled flow conditions on a simplified high-lift system, incorporating active flow control.
Analysis of civil aircraft propulsors with boundary layer ingestion
Hall, David Kenneth
2015-01-01
This thesis describes (i) guidelines for propulsor sizing, and (ii) strategies for fan turbomachinery conceptual design, for a boundary layer ingesting (BLI) propulsion system for advanced civil transport aircraft. For the ...
Distributed Roughness Receptivity in a Flat Plate Boundary Layer
Kuester, Matthew Scott
2014-04-18
Surface roughness can affect boundary layer transition by acting as a receptivity mechanism for transient growth. Several experiments have investigated transient growth created by discrete roughness elements; however, very ...
Boundary-layer transition effects on airplane stability and control
NASA Technical Reports Server (NTRS)
Van Dam, C. P.; Holmes, B. J.
1986-01-01
Surface contamination of laminar-flow airfoils can significantly modify the location of transition from laminar-to-turbulent boundary-layer flow. The contamination can be the result of insect debris, environmental effects such as ice crystals and moisture due to mist or rain, surface damage, or other contamination adhering to the surface. Location and mode of transition have a dominant effect on the lift-and-drag characteristics of a lifting surface. The influences of laminar boundary-layer flow behavior on airplane stability and control are examined through theoretical results and experimental (wind-tunnel and free-flight) data. For certain airfoils with a relatively steep pressure recovery it is shown that loss of laminar flow near the leading edge can result in premature separation of the turbulent boundary layer and, consequently, in loss of lift and control effectiveness. Aerodynamic modifications which minimize boundary-layer transition effects on airplane stability and control are also discussed.
Constant-temperature anemometry measurements in hypersonic boundary layers
NASA Technical Reports Server (NTRS)
Spina, Eric F.
1991-01-01
One of the major unresolved issues in fluid dynamics is the nature of apparent stresses, called Reynolds stresses, which occur in turbulent boundary layers. In hypersonic boundary layers, the flow physics is further complicated by the large temperature and density fluctuations and the concomitant contamination of the Reynold stresses by fictitious terms. Because of the severe flow environment and the extraordinary demands on sensors and instruments, the turbulence characteristics of hypersonic boundary layers were studied in only a cursory fashion. The plans for supersonic (HSCT) and hypersonic (NASP) vehicles made supersonic flow physics one of the critical pacing technologies in aerospace science. In particular, experimental data are needed to verify candidate computer models and to reach an important understanding of the turbulence physics. The presented research is the start of a substantial effort to refine existing instrumentation and develop experimental techniques to measure the various component of the Reynolds stress in hypersonic boundary layers.
Reynolds Stress Budgets in Couette and Boundary Layer Flows
Jukka Komminaho; Martin Skote
2002-01-01
Reynolds stress budgets for both Couette and boundary layer flows are evaluated and presented. Data are taken from direct\\u000a numerical simulations of rotating and non-rotating plane turbulent Couette flow and turbulent boundary layer with and without\\u000a adverse pressure gradient. Comparison of the total shear stress for the two types of flows suggests that the Couette case\\u000a may be regarded as
Wall pressure spectra calculations for equilibrium boundary layers
NASA Technical Reports Server (NTRS)
Panton, R. L.; Linebarger, J. H.
1974-01-01
Calculation of the flow direction wave-number spectrum of pressure fluctuations on the wall under a turbulent boundary layer. Particular attention is paid to finding the spectral density of the wall pressure fluctuations as a function of the streamwise wave number. For this purpose a five-dimensional integration is employed in which the equilibrium boundary layers are assumed to have velocity profiles given by the law of the wall plus Cole's wake function.
Distributed boundary layer suction utilizing wing tip effects
Edwards, Jay Thomas
1962-01-01
DISTRIBUTED BOUNDARY LAYER SUCTION UTILIZING WING TIP EFFECTS A Thesis By JAY THOMAS EDWARDS Submitted to the Graduate School of the Agricultural and Mechanical College of Texas in partial fulfillment of the requirements for the degree... of MASTER OF SCIENCE May 1962 Maj or Subj ect: Aeronautical Engineering DISTRIBUTED BOUNDARY LAYER SUCTION UTILIZING WING TIP EfFECTS A Thesis By JAY THOMAS EDWARDS Approved as to style and content by: Chairman of Committee Head of Department May...
Roughness-induced transition of compressible laminar boundary layers
NASA Astrophysics Data System (ADS)
Redford, J. A.; Sandham, N. D.; Roberts, G. T.
Direct numerical simulation is used to study flow over a roughness element in a flat plate boundary layer at high speed. The roughness element is modeled as a continuous bump with a height that is approximately half the boundary-layer thickness. Simulations with a variety of Mach numbers and wall temperatures have been run over a range of Reynolds numbers, and the results are used to establish a criterion for turbulent breakdown.
Tropical boundary layer equilibrium in the last ice age
NASA Technical Reports Server (NTRS)
Betts, Alan K.; Ridgway, W.
1992-01-01
A radiative-convective boundary layer model is used to assess the effect of changing sea surface temperature, pressure, wind speed, and the energy export from the tropics on the boundary layer equilibrium equivalent potential temperature. It remains difficult to reconcile the observations that during the last glacial maximum (18,000 yr BP) the snowline on the tropical mountains fell 950 m, while the tropical sea surface temperatures fell only 1-2 K.
Prehistory of Instability in a Hypersonic Boundary Layer
Alexander V. Fedorov; Andrew P. Khokhlov
2001-01-01
. The initial phase of hypersonic boundary-layer transition comprising excitation of boundary-layer modes and their downstream\\u000a evolution from receptivity regions to the unstable region (instability prehistory problem) is considered. The disturbance\\u000a spectrum reveals the following features: (1) the first and second modes are synchronized with acoustic waves near the leading\\u000a edge; (2) further downstream, the first mode is synchronized with
Acoustic sources in the low Mach number turbulent boundary layer
NASA Technical Reports Server (NTRS)
Hardin, Jay C.
1991-01-01
The sources of sound production in a low Mach number turbulent boundary layer are examined. The sources are shown to be quadrupole in nature and to result from supersonically convecting wave-number components of the fluctuating Reynolds' normal stresses. The primary Tollmien-Schlichting instability of the boundary layer is found to radiate no sound. Analysis of various vortical phenomena suggests that the primary source is the process of formation of horseshoe vortices, with viscous sublayer bursts a possible secondary source.
Benthic boundary layer processes in coastal environments: An introduction
M. D. Richardson; W. R. Bryant
1996-01-01
This special issue ofGeo-Marine Letters “Benthic Boundary Layer Processes in Coastal Environments” includes 20 papers devoted to results of recent near-shore experiments supported by the Coastal Benthic Boundary Layer (CBBL) program. Experiments were conducted in gas-rich muddy sediments of Eckernförde Bay of the Baltic Sea and on relict sandy sediments of the West Florida Sand Sheet. In this introductory paper
Benthic boundary layer processes in the Lower Florida Keys
D. L. Lavoie; M. D. Richardson; C. Holmes
1997-01-01
This special issue of Geo-Marine Letters, “Benthic Boundary Layer Processes in the Lower Florida Keys,” includes 12 papers that present preliminary results from the\\u000a Key West Campaign. The Dry Tortugas and Marquesas Keys test sites were selected by a group of 115 scientists and technicians\\u000a to study benthic boundary layer processes in a carbonate environment controlled by bioturbation and biogeochemical
Finite difference solutions of boundary-layer type equations
P. M. Beckett
1983-01-01
An improved algorithm is presented for solving boundary-layer type equations. The Falkner-Skan equation is used to illustrate the benefit of formulating an integro- differential equation to avoid imposing finite difference approximations for the boundary conditions. The method is rapidly convergent, stable and can find solutions to which other methods do not converge.
Dense gas boundary layer experiments: Visualization, pressure measurements, concentration evaluation
Reichenbach, H.; Neuwald, P.; Kuhl, A.L.
1992-11-01
This technical report describes methods that were applied to investigate turbulent boundary layers generated by inviscid, baroclinic effects. The Cranz-Schardin 24-sparks camera was used to visualize the interactions of a planar shock wave with a Freon R12-layer. The shock propagates more slowly in the Freon layer than in air because of its smaller sound speed. This causes the shock front to be curved and to be reflected between the wall and the layer interface. As a consequence of the reflection process, a series of compression and expansion waves radiate from the layer. Large fluctuations in the streamwise velocity and in pressure develop for about 1 ms. These waves strongly perturb the interface shear layer, which rapidly transitions to a turbulent boundary flow. Pressure measurements showed that the fluctuations in the Freon layer reach a peak pressure 4 times higher than in the turbulent boundary flow. To characterize the preshock Freon boundary layer, concentration measurements were performed with a differential interferometry technique. The refraction index of Freon R12 is so high that Mach-Zehnder interferometry was not successful in these experiments. The evaluation of the concentration profile is described here in detail. Method and results of corresponding LDV measurements under the same conditions are presented in a different report, EMI Report T 9/92. The authors plan to continue the dense gas layer investigations with the gas combination helium/Freon.
Application of a Reynolds stress model to separating boundary layers
NASA Technical Reports Server (NTRS)
Ko, Sung HO
1993-01-01
Separating turbulent boundary layers occur in many practical engineering applications. Nonetheless, the physics of separation/reattachment of flows is poorly understood. During the past decade, various turbulence models were proposed and their ability to successfully predict some types of flows was shown. However. prediction of separating/reattaching flows is still a formidable task for model developers. The present study is concerned with the process of separation from a smooth surface. Features of turbulent separating boundary layers that are relevant to modeling include the following: the occurrence of zero wall shear stress, which causes breakdown of the boundary layer approximation; the law of the wall not being satisfied in the mean back flow region; high turbulence levels in the separated region; a significant low-frequency motion in the separation bubble; and the turbulence structure of the separated shear layer being quite different from that of either the mixing layers or the boundary layers. These special characteristics of separating boundary layers make it difficult for simple turbulence models to correctly predict their behavior.
NASA Technical Reports Server (NTRS)
Oliver, A. B.; Lillard, R. P.; Blaisdell, G. A.; Lyrintizis, A. S.
2006-01-01
The capability of the OVERFLOW code to accurately compute high-speed turbulent boundary layers and turbulent shock-boundary layer interactions is being evaluated. Configurations being investigated include a Mach 2.87 flat plate to compare experimental velocity profiles and boundary layer growth, a Mach 6 flat plate to compare experimental surface heat transfer,a direct numerical simulation (DNS) at Mach 2.25 for turbulent quantities, and several Mach 3 compression ramps to compare computations of shock-boundary layer interactions to experimental laser doppler velocimetry (LDV) data and hot-wire data. The present paper describes outlines the study and presents preliminary results for two of the flat plate cases and two small-angle compression corner test cases.
Dayside boundary layer under northward IMF: A Cluster perspective
NASA Astrophysics Data System (ADS)
Zhang, H.; Fritz, T.; Zong, Q.; Daly, P.
2004-12-01
It has been proposed that the Low Latitude Boundary Layer (LLBL) was formed by high-latitude reconnection when the IMF is northward. To study the relationship between the low-latitude boundary layer and high-latitude boundary layer under northward IMF condition, we present statistical results based on 3 years of data obtained by Cluster when these spacecraft were in the vicinity of the dayside magnetopause during northward IMF. In total 341 cases of Cluster crossing of Low Latitude Boundary Layer (LLBL) and High Latitude Boundary Layer (HLBL) (according to the definition by Phan et al [1996a,b]) have been analyzed in detail in order to study the relation between the LLBL and the HLBL. The plasma density, temperature, velocity, energetic particle flux and magnetic field geometry change across the magnetopause under northward IMF were analyzed by a superposed epoch analysis. It has been suggested [Zong et al, 2004] that the solar wind plasma density decreases in the magnetospheric boundary region in an exponential mannerwith an e-folding distance of 1000 km during northward IMF in a case study. In this statistical study, we explore further the relation between the distance to magnetopause and the penetration of solar wind plasma inside the magnetopause. Phan, T. D., and G. Paschmann, Low-latitude dayside magnetopause and boundary layer for high magnetic sheath: 1. Structure and motion, J. Geophys. Res.,101, 7801-7815, 1996 Phan, T. D., G. Paschmann, and B. U. O. Sonnerup, Low-latitude dayside magnetopause and boundary layer for high magnetic sheath: 2. Occurrence of magnetic reconnection, J. Geophys. Res.,101, 7817-7828, 1996 Zong, Q.-G., T. A. Fritz, H. Spence, K. Oksavik, Z.-Y. Pu, A. Korth, and P. W. Daly, Energetic particle sounding of the magnetopause: A contribution by Cluster/RAPID, J. Geophys. Res.,109, A04207, 2004
NASA Technical Reports Server (NTRS)
Rumsey, C. L.
2009-01-01
The ability of kappa-omega models to predict compressible turbulent skin friction in hypersonic boundary layers is investigated. Although uncorrected two-equation models can agree well with correlations for hot-wall cases, they tend to perform progressively worse - particularly for cold walls - as the Mach number is increased in the hypersonic regime. Simple algebraic models such as Baldwin-Lomax perform better compared to experiments and correlations in these circumstances. Many of the compressibility corrections described in the literature are summarized here. These include corrections that have only a small influence for kappa-omega models, or that apply only in specific circumstances. The most widely-used general corrections were designed for use with jet or mixing-layer free shear flows. A less well-known dilatation-dissipation correction intended for boundary layer flows is also tested, and is shown to agree reasonably well with the Baldwin-Lomax model at cold-wall conditions. It exhibits a less dramatic influence than the free shear type of correction. There is clearly a need for improved understanding and better overall physical modeling for turbulence models applied to hypersonic boundary layer flows.
Low heat conduction in white dwarf boundary layers?
F. K. Liu; F. Meyer; E. Meyer-Hofmeister; V. Burwitz
2008-01-01
Context: X-ray spectra of dwarf novae in quiescence observed by Chandra and XMM-Newton provide new information on the boundary layers of their accreting white dwarfs. Aims: Comparison of observations and models allows us to extract estimates for the thermal conductivity in the accretion layer and reach conclusions on the relevant physical processes. Methods: We calculate the structure of the dense
ON AERODYNAMIC AND BOUNDARY LAYER RESISTANCES WITHIN DRY DEPOSITION MODELS
There have been many empirical parameterizations for the aerodynamic and boundary layer resistances proposed in the literature, e.g. those of the Meyers Multi-Layer Deposition Model (MLM) used with the nation-wide dry deposition network. Many include arbitrary constants or par...
Temperature Fluctuation Scaling in Reacting Boundary Layers M. Pino Martin
Martín, Pino
. Temperature fluctuations increase the reaction rates. Endothermic reactions reduce the magnitudeTemperature Fluctuation Scaling in Reacting Boundary Layers M. Pino Mart´in CTR/NASA Ames, Moffett layer is used to study the turbulence-chemistry interaction and the scaling of the temperature
Stabilization of Hypersonic Boundary Layers by Porous Coatings
Alexander V. Fedorov; Norman D. Malmuth; Adam Rasheed; Hans G. Hornung
2001-01-01
A second-mode stability analysis has been performed for a hypersonic boundary layer on a wall covered by a porous coating with equally spaced cylindrical blind microholes. Massive reduction of the second mode amplié - cation is found to be due to the disturbance energy absorption by the porous layer. This stabilization effect was demonstrated by experiments recently conducted on a
NASA Technical Reports Server (NTRS)
Boyle, R. J.; Haas, J. E.; Katsanis, T.
1984-01-01
A method for calculating turbine stage performance is described. The usefulness of the method is demonstrated by comparing measured and predicted efficiencies for nine different stages. Comparisons are made over a range of turbine pressure ratios and rotor speeds. A quasi-3D flow analysis is used to account for complex passage geometries. Boundary layer analyses are done to account for losses due to friction. Empirical loss models are used to account for incidence, secondary flow, disc windage, and clearance losses.
Adam Lavely; Michael Kinzel; Ganesh Vijayakumar; James Brasseur; Eric Paterson; Jules Lindau
2010-01-01
Computational fluid dynamics (CFD) simulations are prone to inaccuracies associated with incorrectly formulated physical models. Common in CFD is the spurious treatment as locally laminar flow regions as turbulent, resulting in incorrect turbulent-boundary-layer profiles, separated-flow behavior, and local skin-friction coefficients. The combined effects impacts global measures like drag, lift coefficient, and wake intensity. Recently, Menter & Langtry (AIAA 47 2009)
Antonino Ferrante; Said Elghobashi
2004-01-01
The objective of this paper is to explain, in as much detail as possible, the physical mechanisms responsible for the reduction of skin friction in a microbubble-laden spatially developing turbulent boundary layer over a flat plate, for Re_{theta} = 1430. Our DNS results with microbubble volume fraction ranging from phi_v = 0.001 to 0.02 show that the presence of bubbles
Fabrication of TI/SIC Surface Nano-Composite Layer by Friction Stir Processing
NASA Astrophysics Data System (ADS)
Shamsipur, Ali; Kashani-Bozorg, Seyed Farshid; Zareie-Hanzaki, Abbas
In the present investigation, novel Ti/SiC surface nano-composite layer was successfully fabricated by dispersing nano-sized SiC particles into commercially pure titanium plates employing friction stir processing technique. The process parameters such as tool rotation and advancing speeds were adjusted to produce defect-free surface composite layer, however, uniform distribution of the nano-size SiC particles in a matrix of titanium was achieved after the second pass. The micro hardness value of the Ti/SiC nano-composite surface layer was found to be 534 HV; this is 3.3 times higher than that of the commercially pure titanium substrate. No reaction was detected between SiC powders and the titanium matrix after friction stir processing.
NASA Technical Reports Server (NTRS)
Sohn, Ki-Hyeon; Reshotko, Eli
1991-01-01
A detailed investigation to document momentum and thermal development of boundary layers undergoing natural transition on a heated flat plate was performed. Experimental results of both overall and conditionally sampled characteristics of laminar, transitional, and low Reynolds number turbulent boundary layers are presented. Measurements were acquired in a low-speed, closed-loop wind tunnel with a freestream velocity of 100 ft/s and zero pressure gradient over a range of freestream turbulence intensities (TI) from 0.4 to 6 percent. The distributions of skin friction, heat transfer rate and Reynolds shear stress were all consistent with previously published data. Reynolds analogy factors for R(sub theta) is less than 2300 were found to be well predicted by laminar and turbulent correlations which accounted for an unheated starting length. The measured laminar value of Reynolds analogy factor was as much as 53 percent higher than the Pr(sup -2/3). A small dependence of turbulent results on TI was observed. Conditional sampling performed in the transitional boundary layer indicated the existence of a near-wall drop in intermittency, pronounced at certain low intermittencies, which is consistent with the cross-sectional shape of turbulent spots observed by others. Non-turbulent intervals were observed to possess large magnitudes of near-wall unsteadiness and turbulent intervals had peak values as much as 50 percent higher than were measured at fully turbulent stations. Non-turbulent and turbulent profiles in transitional boundary layers cannot be simply treated as Blasius and fully turbulent profiles, respectively. The boundary layer spectra indicate predicted selective amplification of T-S waves for TI is approximately 0.4 percent. However, for TI is approximately 0.8 and 1.1 percent, T-S waves are localized very near the wall and do not play a dominant role in transition process.
NASA Astrophysics Data System (ADS)
Sohn, Ki-Hyeon; Reshotko, Eli
1991-02-01
A detailed investigation to document momentum and thermal development of boundary layers undergoing natural transition on a heated flat plate was performed. Experimental results of both overall and conditionally sampled characteristics of laminar, transitional, and low Reynolds number turbulent boundary layers are presented. Measurements were acquired in a low-speed, closed-loop wind tunnel with a freestream velocity of 100 ft/s and zero pressure gradient over a range of freestream turbulence intensities (TI) from 0.4 to 6 percent. The distributions of skin friction, heat transfer rate and Reynolds shear stress were all consistent with previously published data. Reynolds analogy factors for R(sub theta) is less than 2300 were found to be well predicted by laminar and turbulent correlations which accounted for an unheated starting length. The measured laminar value of Reynolds analogy factor was as much as 53 percent higher than the Pr(sup -2/3). A small dependence of turbulent results on TI was observed. Conditional sampling performed in the transitional boundary layer indicated the existence of a near-wall drop in intermittency, pronounced at certain low intermittencies, which is consistent with the cross-sectional shape of turbulent spots observed by others. Non-turbulent intervals were observed to possess large magnitudes of near-wall unsteadiness and turbulent intervals had peak values as much as 50 percent higher than were measured at fully turbulent stations. Non-turbulent and turbulent profiles in transitional boundary layers cannot be simply treated as Blasius and fully turbulent profiles, respectively. The boundary layer spectra indicate predicted selective amplification of T-S waves for TI is approximately 0.4 percent. However, for TI is approximately 0.8 and 1.1 percent, T-S waves are localized very near the wall and do not play a dominant role in transition process.
A numerical investigation of boundary layer quasi-equilibrium
NASA Astrophysics Data System (ADS)
Thayer-Calder, K.; Randall, David
2015-01-01
Despite the large energy input from surface evaporation, the moist static energy (MSE) of the tropical boundary layer remains relatively constant on large spatial and temporal scales due to lifting of vapor by cloudy updrafts and the addition of dry air from the layers above. Arakawa and Schubert (1974) suggested that drying is due mainly to clear-air turbulent entrainment between cloudy updrafts, while Raymond (1995) described drying due mainly to convective downdrafts. We used cloud-resolving numerical simulations to investigate the transport of MSE into the boundary layer and found turbulent entrainment between clouds to be the dominant process.
Large-eddy and direct simulations of accelerating boundary layers
NASA Astrophysics Data System (ADS)
Yuan, Junlin; Grazioso, Valerio; Piomelli, Ugo
2010-11-01
Turbulent boundary layers subject to a favorable pressure gradient (which induces freestream acceleration) are found in many engineering applications, such as airfoils or curved ducts. If the acceleration is sufficiently large, turbulence production decreases, and the flow reverts to a laminar or quasi-laminar state. Once the cause of relaminarization is removed, the flow re-transitions to turbulence in a process that may depend critically on the residual levels of turbulent fluctuation during the relaminarization. We performed direct and large-eddy simulations (DNS and LES) of accelerating boundary layers, on smooth and rough flat plates. The DNS allows to study both the relaminarization and re-transition without requiring any turbulence model that may alter the physics. It also validates the LES, which can be extended to higher Reynolds numbers. The roughness is included using an Immersed Boundary Method. The entrainment of the irrotational freestream fluid into the boundary layer plays a critical role in the formation of a well-mixed outer layer and the stabilization of the inner layer. The wall-normal and shear components of the Reynolds stress decay more rapidly than the streamwise one, leading to a state of inactive turbulence that is advected from the upstream boundary layer into the relaminarization region. Roughness effects are limited to the near wall, but are nonetheless visible.
NASA Astrophysics Data System (ADS)
Gupta, S.; Heintzman, E.; Jasinski, J.
2014-09-01
We report on the surface properties (friction and work function) of micromechanically cleaved graphene layers placed on thermally gown thick insulating (˜295 nm of SiO2) films on commercial Si (001) substrates. By employing atomic force microscopy (AFM) and scanning electron microscopy with varying primary-electron acceleration voltage ( V acc) in secondary electron imaging (SEI) mode, we determined the coefficient of friction ( ?) and electronic work function ( ?), respectively, as functions of the number of graphene layers ( n). The friction coefficient was deduced from line scans of friction maps obtained simultaneously while measuring AFM topography. The findings show that supported mono-, bi-, and trilayer graphene all yield similar results (˜0.03), in contrast to multilayer (˜0.027) and thicker graphite (˜0.015) flakes. From the SEI contrast variation, we obtained a reproducible discrete distribution of SE intensity stemming from atomically thick graphene layers on a thick insulating substrate. We were able to determine the number of graphene layers (i.e., n) from the SE intensity contrast or the SE intensity itself. Moreover, we found a distinct linear relationship between the relative SE intensity from the graphene layers and their number, provided a relatively lower V acc was used. The different contrast in SEI micrographs at lower V acc is attributed to the fact that the generation of secondary electrons emitted from the graphene was affected by the different work functions corresponding to different n values (or thickness contrast, C). This simple and facile method is superior to the conventional optical method in its capability to characterize graphene over sub-1- ?m2 areas on various insulating substrates. These results are supplemented by optical microscopy, high-resolution transmission electron microscopy, and Raman spectroscopy and Raman mapping that yield the structural quality (or disorder) of the graphene layers, albeit semiquantitatively.
Boundary-layer control by electric fields A feasibility study
Mendes, R V
1998-01-01
A problem of great concern in aviation and submarine propulsion is the control of the boundary layer and, in particular, the methods to extend the laminar region as a means to decrease noise and fuel consumption. In this paper we study the flow of air along an airfoil when a layer of ionized gas and a longitudinal electric field are created in the boundary layer region. By deriving scaling solutions and more accurate numerical solutions we discuss the possibility of achieving significant boundary layer control for realistic physical parameters. Practical design formulas and criteria are obtained. We also discuss the perspectives for active control of the laminar-to-turbulent transition fluctuations by electromagnetic field modulation.
NASA Astrophysics Data System (ADS)
Ikari, M.; Trütner, S.; Toy, V. G.; Carpenter, B. M.; Kopf, A.
2014-12-01
The Alpine Fault is a major plate-boundary fault zone that poses a significant seismic hazard in southern New Zealand, with the next major earthquake expected to be imminent. Core samples from the Alpine Fault were recovered from two Deep Fault Drilling Project pilot boreholes that penetrated the principal slip zone (PSZ). We show here that at room temperature and low effective stress (30 MPa), materials from within and very near the PSZ are weaker than the surrounding cataclasites (? = 0.45), exhibit velocity-strengthening friction, and also tend to restrengthen (heal) rapidly. Under conditions appropriate for several kilometers depth on the Alpine Fault (100 MPa, 160 °C, fluid-saturated), a cataclasite/gouge sample located very near to the PSZ exhibits ? = 0.67, which is high compared to measurements performed at lower pressures and temperatures for the Alpine Fault and other major fault zones sampled by scientific drilling. Every major lithological unit tested under elevated P-T conditions exhibits both positive and negative values of friction velocity-dependence suggesting that they are all capable of earthquake nucleation. Using representative values of the friction velocity-dependent parameter a-b, the critical slip distance Dc, and previously documented elastic properties of the wall rock, estimated critical nucleation patch lengths may be as low as ~3 m. This small value is consistent with a seismic moment Mo = ~4x1010 or a Mw = ~1, which suggests that events of this size or larger are expected to occur as normal earthquakes and that slow or transient slip events are unlikely in the approximate depth range of 3-7 km. In conjunction with previous geodetic and seismologic observations, our results indicate that the Alpine Fault has a high potential for frictional instability throughout the brittle crust, in contrast with other major fault zones on which the uppermost portion is relatively stable.
NASA Technical Reports Server (NTRS)
Vanness, W.
1978-01-01
A summary report of boundary layer studies is presented. Preliminary results of experimental measurements show that: (1) A very thin layer (approximately 0.4 mm) of the boundary layer seems to be accelerated; (2) the static pressure of the outer flow does not remain exactly constant through the boundary layer; and (3) an oncoming boundary layer which is already turbulent at the suction point can again become laminar behind this point without being completely sucked off.
NASA Astrophysics Data System (ADS)
Araya, Guillermo; Castillo, Luciano
2013-09-01
An innovative method for prescribing turbulent thermal inflow information in spatially developing boundary layers under streamwise pressure gradients is introduced for attached flows. The approach is tested and validated in a suite of Direct Numerical Simulations (DNS) of thermal boundary layers for zero (ZPG) and adverse (APG) pressure gradients with momentum thickness Reynolds numbers (Re?) up to 3000. The turbulent thermal data are generated based on the dynamic multi-scale approach proposed by Araya et al. ["A dynamic multi-scale approach for turbulent inflow boundary conditions in spatially evolving flows," J. Fluid Mech. 670, 581-605 (2011)], which is extended to include thermal field simulations in the present article. The approach is based on the original rescaling-recycling method developed by Lund, Wu, and Squires ["Generation of turbulent inflow data for spatially developing boundary layer simulations," J. Comput. Phys. 140, 233-258 (1998)] for ZPG flows. Isothermal walls are considered for the thermal field and the molecular Prandtl number is 0.71. In addition, only inlet momentum/thermal boundary layer thicknesses must be prescribed while other flow parameters such as the inlet friction velocity, u?, and friction temperature, ??, are computed dynamically based on the flow solution obtained downstream by means of a test plane. This plane is located between the inlet and recycle stations. Based on the unique and extensive DNS results of heat transfer obtained in this investigation, the effects of Reynolds numbers and adverse pressure gradients on the flow and thermal parameters are also explored and visualized. The principal outcome of adverse pressure gradient on the flow parameters has been determined as a secondary peak, particularly on the streamwise velocity fluctuations in the outer region, which shows clear evidence of energy production in the outer flow and not only in the buffer layer as traditionally known. Nevertheless, this peak is not so obvious on the thermal fluctuations but it is hypothesized that the reason is mainly attributed to the absence of a freestream thermal gradient, as imposed in the velocity field. Furthermore, the high-speed streaks in the buffer layer are observed to be notably shorter and wider in a Strong APG than in the ZPG case. Finally, a significant decrease of the turbulent Prandtl number is attributed to the presence of a Strong APG.
Turbulence Measurements with Hot Wires in High Reynolds Number Boundary Layers
NASA Astrophysics Data System (ADS)
Fransson, J. H. M.; Hutchins, N.; Oerlue, R.; Chong, M.
2009-11-01
During the last decade there has been a renewed interest in the scaling of turbulent boundary layers, especially with regard to the mean and fluctuation velocity distributions. Recently the ICET team carried out velocity measurements in three different wind tunnels (at KTH, Univ. Melbourne and IIT) for overlapping Reynolds numbers in the range 11,000
Turbulent boundary layer to single-stream shear layer: the transition region
NASA Astrophysics Data System (ADS)
Morris, Scott C.; Foss, John F.
2003-11-01
This communication presents the results and conclusions of an experimental study of the near-separation region of a single-stream shear layer. The momentum thickness at separation (x {=} 0) was theta_0 {=} 9.6 mm, with Reynolds number shape Re_theta {=} 4650. Boundary layer separation was caused by a sharp 90(°) edge. Detailed single- and multi-point measurements of the velocity field were acquired at the streamwise locations 0 {<} x/theta_0 {<} 100. This represents the transition region between two of the canonical turbulent shear flows: the zero-pressure-gradient turbulent boundary layer and the single-stream shear layer. From the viewpoint of a separating boundary layer, the results describe how the turbulent flow reacts to a sudden change in wall boundary conditions. From the viewpoint of the developed shear layer, the results describe the transition to the self-similar region. The data acquired suggest that the initial shear layer instability occurs in the region very near separation (x {?} theta_0), and that it involves only the vorticity filaments which originate in the near-wall region of the upstream boundary layer. This ‘near-wall region’ roughly defines the origin of a narrow wedge-shaped domain that was identified from the velocity statistics. This domain is termed the ‘sub-shear layer’. The statistics of the velocity field in the region bounded by the sub-shear layer and the free-stream flow were found to represent the normative continuation of the upstream boundary layer. The sub-shear layer has been found to exhibit many of the standard features observed in fully developed shear layers. For example, velocity measurements on the entrainment side of the shear layer indicate that large-scale motions with spanwise coherence were observed. The streamwise dependence of the dominant frequency, convection velocity, and spanwise velocity correlation have been documented in order to characterize the sub-shear layer phenomenon.
The Boundary Layer Late Afternoon and Sunset Turbulence Project
NASA Astrophysics Data System (ADS)
Lothon, Marie; Lohou, Fabienne; Darbieu, Clara; Couvreux, Fleur; Pino, David; Blay, Estel; Vila-Guerau de Arellano, Jordi; Pietersen, Henk; Hartogensis, Oscar; Pardyjak, Eric; Alexander, Daniel; Reuder, Joachim; Baaserud, Line; Nilsson, Erik; Jimenez, Maria Antonia; Faloona, Ian; Sastre-Marugan, Mariano; Angevine, Wayne M.; Canut, Guylaine; Bazile, Eric
2014-05-01
The BLLAST (Boundary Layer Late Afternoon and Sunset Turbulence) project aims at better understanding the turbulence processes which occur during the transition from a well-mixed convective boundary layer to a residual layer overlying a stabilized nocturnal layer. This phase of the diurnal cycle is challenging from both modeling and observational perspectives: it is transitory, most of the forcings are small or null during the transition and the turbulence regime changes from the fully convective regime of turbulence, close to homogeneous and isotropic, toward more heterogeneous and intermittent turbulence during its decay. Those issues motivated a field campaign that was conducted from 14 June to 8 July 2011 in southern France in complex terrain and consisted of a range of integrated instrument platforms including: full-size aircraft, Remotely Piloted Airplane Systems (RPAS), remote sensing instruments, radiosoundings, tethered balloons, surface flux stations, and various meteorological towers deployed over different surface covers. The boundary layer, from the earth's surface to free troposphere was densely probed during the entire day, with a focus and intense observations from midday until sunset. The field dataset now forms the base of a set of studies utilizing the observations and several types of models including: Large Eddy Simulation, Mesoscale models, forecast models. The presentation will expose an overview of this experiment and of the current observational and modeling studies, with the focus on: the turbulence decay process within the entire boundary layer from surface to the top, the mesoscale forcings of importance during BLLAST, the ability of the forecast models to represent the diurnal cycle, the relevance of the Monin Obukhov similarity theory, and shallow drainage flows. Reference: Lothon M. et al., 2012. The Boundary-Layer Late Afternoon and Sunset Turbulence field experiment, Proc. of the 20th Symposium on Boundary-Layers and Turbulence, 7-13 July, Boston, MA, USA.
NASA Astrophysics Data System (ADS)
Gibbs, Jeremy A.; Fedorovich, Evgeni; Shapiro, Alan
2015-02-01
Two formulations of the surface thermal boundary condition commonly employed in numerical modelling of atmospheric stably stratified surface-layer flows are evaluated using analytical considerations and observational data from the Cabauw site in the Netherlands. The first condition is stated in terms of the surface heat flux and the second is stated in terms of the vertical potential temperature difference. The similarity relationships used to relate the flux and the difference are based on conventional log-linear expressions for vertical profiles of wind velocity and potential temperature. The heat-flux formulation results in two physically meaningful values for the friction velocity with no obvious criteria available to choose between solutions. Both solutions can be obtained numerically, which casts doubt on discarding one of the solutions as was previously suggested based on stability arguments. This solution ambiguity problem is identified as the key issue of the heat-flux condition formulation. In addition, the agreement between the temperature difference evaluated from similarity solutions and their measurement-derived counterparts from the Cabauw dataset appears to be very poor. Extra caution should be paid to the iterative procedures used in the model algorithms realizing the heat-flux condition as they could often provide only partial solutions for the friction velocity and associated temperature difference. Using temperature difference as the lower boundary condition bypasses the ambiguity problem and provides physically meaningful values of heat flux for a broader range of stability condition in terms of the flux Richardson number. However, the agreement between solutions and observations of the heat flux is again rather poor. In general, there is a great need for practicable similarity relationships capable of treating the vertical turbulent transport of momentum and heat under conditions of strong stratification in the surface layer.
Use of Boundary Layer Transition Detection to Validate Full-Scale Flight Performance Predictions
NASA Technical Reports Server (NTRS)
Hamner, Marvine; Owens, L. R., Jr.; Wahls, R. A.; Yeh, David
1999-01-01
Full-scale flight performance predictions can be made using CFD or a combination of CFD and analytical skin-friction predictions. However, no matter what method is used to obtain full-scale flight performance predictions knowledge of the boundary layer state is critical. The implementation of CFD codes solving the Navier-Stokes equations to obtain these predictions is still a time consuming, expensive process. In addition, to ultimately obtain accurate performance predictions the transition location must be fixed in the CFD model. An example, using the M2.4-7A geometry, of the change in Navier-Stokes solution with changes in transition and in turbulence model will be shown. Oil flow visualization using the M2.4-7A 4.0% scale model in the 14'x22' wind tunnel shows that fixing transition at 10% x/c in the CFD model best captures the flow physics of the wing flow field. A less costly method of obtaining full-scale performance predictions is the use of non-linear Euler codes or linear CFD codes, such as panel methods, combined with analytical skin-friction predictions. Again, knowledge of the boundary layer state is critical to the accurate determination of full-scale flight performance. Boundary layer transition detection has been performed at 0.3 and 0.9 Mach numbers over an extensive Reynolds number range using the 2.2% scale Reference H model in the NTF. A temperature sensitive paint system was used to determine the boundary layer state for these conditions. Data was obtained for three configurations: the baseline, undeflected flaps configuration; the transonic cruise configuration; and, the high-lift configuration. It was determined that at low Reynolds number conditions, in the 8 to 10 million Reynolds number range, the baseline configuration has extensive regions of laminar flow, in fact significantly more than analytical skin-friction methods predict. This configuration is fully turbulent at about 30 million Reynolds number for both 0.3 and 0.9, Mach numbers. Both the transonic cruise and the high-lift configurations were fully turbulent aft of the leading-edge flap hingeline at all Reynolds numbers.
NASA Astrophysics Data System (ADS)
Fernholz, H. H.; Warnack, D.
1998-03-01
The effects of a favourable pressure gradient (K[less-than-or-eq, slant]4×10[minus sign]6) and of the Reynolds number (862[less-than-or-eq, slant]Re[delta]2[less-than-or-eq, slant]5800) on the mean and fluctuating quantities of four turbulent boundary layers were studied experimentally and are presented in this paper and a companion paper (Part 2). The measurements consist of extensive hot-wire and skin-friction data. The former comprise mean and fluctuating velocities, their correlations and spectra, the latter wall-shear stress measurements obtained by four different techniques which allow testing of calibrations in both laminar-like and turbulent flows for the first time. The measurements provide complete data sets, obtained in an axisymmetric test section, which can serve as test cases as specified by the 1981 Stanford conference.
Bending Boundary Layers in Laminated-Composite Circular Cylindrical Shells
NASA Technical Reports Server (NTRS)
Nemeth, Michael P.; Smeltzer, Stanley S., III
2000-01-01
A study of the attenuation of bending boundary layers in balanced and unbalanced, symmetrically and unsymmetrically laminated cylindrical shells is presented for nine contemporary material systems. The analysis is based on the linear Sanders-Koiter shell equations and specializations to the Love-Kirchhoff shell equations and Donnell's equations are included. Two nondimensional parameters are identified that characterize the effects of laminate orthotropy and anisotropy on the bending boundary-layer decay length in a very general manner. A substantial number of structural design technology results are presented for a wide range of laminated-composite cylinders. For all laminates considered, the results show that the differences between results obtained with the Sanders-Koiter shell equations, the Love-Kirchhoff shell equations, and Donnell's equations are negligible. The results also show that the effect of anisotropy in the form of coupling between pure bending and twisting has a negligible effect on the size of the bending boundary-layer decay length of the balanced, symmetrically laminated cylinders considered. Moreover, the results show that coupling between the various types of shell anisotropies has a negligible effect on the calculation of the bending boundary-layer decay length in most cases. The results also show that, in some cases, neglecting the shell anisotropy results in underestimating the bending boundary-layer decay length and, in other cases, results in an overestimation.
Bending Boundary Layers in Laminated-Composite Circular Cylindrical Shells
NASA Technical Reports Server (NTRS)
Nemeth, Michael P.; Smeltzer, Stanley S., III
2000-01-01
An analytical, parametric study of the attenuation of bending boundary layers or edge effects in balanced and unbalanced, symmetrically and unsymmetrically laminated thin cylindrical shells is presented for nine contemporary material systems. The analysis is based on the linear Sanders-Koiter shell equations and specializations to the Love-Kirchhoff shell equations and Donnell's equations are included. Two nondimensional parameters are identified that characterize and quantify the effects of laminate orthotropy and laminate anisotropy on the bending boundary-layer decay length in a very general and encompassing manner. A substantial number of structural design technology results are presented for a wide range of laminated-composite cylinders. For all the laminate constructions considered, the results show that the differences between results that were obtained with the Sanders-Koiter shell equations, the Love-Kirchhoff shell equations, and Donnell's equations are negligible. The results also show that the effect of anisotropy in the form of coupling between pure bending and twisting has a negligible effect on the size of the bending boundary-layer decay length of the balanced, symmetrically laminated cylinders considered. Moreover, the results show that coupling between the various types of shell anisotropies has a negligible effect on the calculation of the bending boundary-layer decay length in most cases. The results also show that in some cases neglecting the shell anisotropy results in underestimating the bending boundary-layer decay length and in other cases it results in an overestimation.
A simplified Reynolds stress model for unsteady turbulent boundary layers
NASA Technical Reports Server (NTRS)
Fan, Sixin; Lakshminarayana, Budugur
1993-01-01
A simplified Reynolds stress model has been developed for the prediction of unsteady turbulent boundary layers. By assuming that the net transport of Reynolds stresses is locally proportional to the net transport of the turbulent kinetic energy, the time dependent full Reynolds stress model is reduced to a set of ordinary differential equations. These equations contain only time derivatives and can be readily integrated in a time dependent boundary layer or Navier-Stokes code. The turbulent kinetic energy and dissipation rate needed for the model are obtained by solving the k-epsilon equations. This simplified Reynolds stress turbulence model (SRSM) does not use the eddy viscosity assumption, which may not be valid for unsteady turbulent flows. The anisotropy of both the steady and the unsteady turbulent normal stresses can be captured by the SRSM model. Through proper damping of the shear stresses, the present model can be used in the near wall region of turbulent boundary layers. This model has been validated against data for steady and unsteady turbulent boundary layers, including periodic turbulent boundary layers subjected to a mean adverse pressure gradient. For the cases tested, the predicted unsteady velocity and turbulent stress components agree well with the experimental data. Comparison between the predictions from the SRSM model and a k-epsilon model is also presented.
Coherent streaky structures and optimal perturbations of turbulent boundary layers
NASA Astrophysics Data System (ADS)
Cossu, C.; Pujals, G.; Depardon, S.
The presence of persistent streaky structures is a well established robust feature of turbulent shear flows . A large amount of research has been dedicated to the understanding of the mechanisms by which streaks are generated and of their relevance on the turbulent dynamics. In the near wall region of the boundary layer these streaks, with characteristic mean spacing of about one hundred wall units, are thought to play an essential role in a turbulent self sustained mechanism. The `lift-up' effect by which low energy streamwise vortices can induce large energy streaks is an important process embedded in this self sustained mechanism. Recent studies have also demonstrated that the well controlled optimal transient growth of artificially forced streaks can be efficiently used to manipulate at leading order laminar shear flows. Such a paradigm has been successfully applied to stabilize Tollmien-Schlichting waves in a laminar boundary layer [1] and to effectively delay transition to turbulence [4]. In these investigations, roughness elements were used to create nearly optimal vortices in the upstream part of the boundary layer that induced well controlled streamwise streaks downstream. A still not addressed extension of such a kind of approach would consist in the manipulation of turbulent boundary layers with optimal or nearly optimal vortices and streaks, the first step in this direction being to compute the optimal perturbations of the turbulent boundary layer.
Coherent streaky structures and optimal perturbations of turbulent boundary layers
NASA Astrophysics Data System (ADS)
Cossu, C.; Pujals, G.; Depardon, S.
The presence of persistent streaky structures is a well established robust feature of turbulent shear flows . A large amount of research has been dedicated to the understanding of the mechanisms by which streaks are generated and of their relevance on the turbulent dynamics. In the near wall region of the boundary layer these streaks, with characteristic mean spacing of about one hundred wall units, are thought to play an essential role in a turbulent self sustained mechanism. The 'lift-up' effect by which low energy streamwise vortices can induce large energy streaks is an important process embedded in this self sustained mechanism. Recent studies have also demonstrated that the well controlled optimal transient growth of artificially forced streaks can be efficiently used to manipulate at leading order laminar shear flows. Such a paradigm has been successfully applied to stabilize Tollmien-Schlichting waves in a laminar boundary layer [1] and to effectively delay transition to turbulence [4]. In these investigations, roughness elements were used to create nearly optimal vortices in the upstream part of the boundary layer that induced well controlled streamwise streaks downstream. A still not addressed extension of such a kind of approach would consist in the manipulation of turbulent boundary layers with optimal or nearly optimal vortices and streaks, the first step in this direction being to compute the optimal perturbations of the turbulent boundary layer.
NASA Astrophysics Data System (ADS)
Santoso, Edi; Stull, Roland
2001-06-01
In the middle of the convective boundary layer, also known as the mixed layer, is a relatively thick region where wind speed and potential temperature are nearly uniform with height. Below this uniform layer (UL), wind speed decreases to zero at the ground, and potential temperature increases to the surface skin value. This whole region below the UL is called the radix layer (RxL), and is of order hundreds of meters thick. Within the bottom of the RxL lies the classical surface layer (order of tens of meters thick) that obeys traditional Monin-Obukhov similarity theory.The RxL depth is shown to depend on friction velocity, Deardorff velocity, and boundary layer depth. The wind RxL is usually thicker than the temperature RxL. Using RxL depth, UL wind speed, and UL potential temperature as length, velocity, and temperature scales, respectively, one can form dimensionless heights, velocities, and temperatures. When observations obtained within the RxL are plotted in this dimensionless framework, the data collapse into similarity curves. This data collapse is tightly packed for data collected over single-location homogeneous surfaces, and shows more scatter for data collected along 72-km flight tracks over heterogeneous surfaces. Empirical profile equations are proposed to describe this RxL similarity. When these profile equations are combined with the flux equations from convective transport theory, the results are new flux-profile equations for a deep region within the bottom of the convective boundary layer.These RxL profile similarity equations are calibrated using data from four sites with different roughnesses: Minnesota, BLX96-Lamont, BLX96-Meeker, and BLX96-Winfield. The empirical parameters are found to be invariant from site to site, except for the profile shape parameter for wind speed. This parameter is found to depend on standard deviation of terrain elevation, rather than on the aerodynamic roughness length. The resulting parameter values are compared with independent data from a forested fifth site, Koorin, and it is found that displacement height must be subtracted from all the heights in the RxL profile equations. The resulting profile equations could be useful for calculating wind loading on bridges, wind turbine power estimation, air pollutant transport, or other applications where wind speeds or temperatures are needed over the bottom hundreds of meters of the convective boundary layer.
The upper-branch stability of compressible boundary layer flows
NASA Technical Reports Server (NTRS)
Gajjar, J. S. B.; Cole, J. W.
1989-01-01
The upper-branch linear and nonlinear stability of compressible boundary layer flows is studied using the approach of Smith and Bodonyi (1982) for a similar incompressible problem. Both pressure gradient boundary layers and Blasius flow are considered with and without heat transfer, and the neutral eigenrelations incorporating compressibility effects are obtained explicitly. The compressible nonlinear viscous critical layer equations are derived and solved numerically and the results indicate some solutions with positive phase shift across the critical layer. Various limiting cases are investigated including the case of much larger disturbance amplitudes and this indicates the structure for the strongly nonlinear critical layer of the Benney-Bergeon (1969) type. It is also shown how a match with the inviscid neutral inflexional modes arising from the generalized inflexion point criterion, is achieved.
Dupont, Pierre
-1914. 1910 Friction Modeling and Control in Boundary Lubrication Pierre E. Dupont and Eric P. Dunlap and lubricated line contacts of hardened tool steel are described and a state variable friction model possessing and on the lubricant between them. In general, the friction-velocity curves for hard ma- terials separated by liquid
Anisotropic Mesh Adaptivity for Turbulent Flows with Boundary Layers
NASA Astrophysics Data System (ADS)
Chitale, Kedar C.
Turbulent flows are found everywhere in nature and are studied, analyzed and simulated using various experimental and numerical tools. For computational analysis, a variety of turbulence models are available and the accuracy of these models in capturing the phenomenon depends largely on the mesh spacings, especially near the walls, in the boundary layer region. Special semi-structured meshes called "mesh boundary layers" are widely used in the CFD community in simulations of turbulent flows, because of their graded and orthogonal layered structure. They provide an efficient way to achieve very fine and highly anisotropic mesh spacings without introducing poorly shaped elements. Since usually the required mesh spacings to accurately resolve the flow are not known a priori to the simulations, an adaptive approach based on a posteriori error indicators is used to achieve an appropriate mesh. In this study, we apply the adaptive meshing techniques to turbulent flows with a focus on boundary layers. We construct a framework to calculate the critical wall normal mesh spacings inside the boundary layers based on the flow physics and the knowledge of the turbulence model. This approach is combined with numerical error indicators to adapt the entire flow region. We illustrate the effectiveness of this hybrid approach by applying it to three aerodynamic flows and studying their superior performance in capturing the flow structures in detail. We also demonstrate the capabilities of the current developments in parallel boundary layer mesh adaptation by applying them to two internal flow problems. We also study the application of adaptive boundary layer meshes to complex geometries like multi element wings. We highlight the advantage of using such techniques for superior wake and tip region resolution by showcasing flow results. We also outline the future direction for the adaptive meshing techniques to be useful to the large scale flow computations.
The boundary layer on a sharp cone in high-enthalpy flow
NASA Astrophysics Data System (ADS)
Germain, Patrick
An exploratory study of the laminar, transitional and turbulent boundary layer on a 5 deg. half-angle cone in hypervelocity flow was conducted in the high-enthalpy shock tunnel T5 by measurement of the heat flux distribution and by qualitative flow visualization. A novel flow visualization technique using sodium seeding to increase the sensitivity of conventional interferometric techniques by resonant enhancement of the refractivity of the medium was developed to study the boundary layer structure. The experiments were designed to cover a large range of specific reservoir enthalpy, ranging from the perfect-gas regime to the range where significant oxygen and some nitrogen dissociation and recombination effects may be expected in the boundary layer. The presence of atomic species is due to the combined effect of nozzle freezing and frictional heating in the boundary layer. In the laminar regime and in the latter range, the following effects were found to be present: At the same nominal conditions, heat flux levels are higher in air than in nitrogen because of a larger heat release from oxygen recombination at the wall. By varying the reservoir specific enthalpy in air and nitrogen, and from measurements in carbon dioxide, it was found that real-gas effects stabilize the boundary layer. If the transition Reynolds number is renormalized by evaluating it at the reference temperature, the data for a given gas becomes correlated in a plot against reservoir enthalpy. Increasing enthalpy stabilizes the flow. The stabilizing effect is stronger with gases whose lowest activation energy is low. This behavior is opposite to the prediction made by the linear stability theory regarding the second linear mode of instability. The linear stability theory predicts, however, that real-gas effects stabilize the Tollmien-Schlichting mode. Flow visualization results suggest that the dominant instability mode in the present experiments was the Tollmien-Schlichting mode. Finally, the flow visualization pictures show structures that are not qualitatively different from those of an incompressible turbulent boundary layer, but they do not indicate if real-gas effects change significantly the structure of the turbulent boundary layer. The heat transfer measurements compare well with semi-empirical predictions.
The boundary layer on a sharp cone in high-enthalphy
NASA Astrophysics Data System (ADS)
Germain, Patrick
An exploratory study of the laminar, transitional and turbulent boundary layer on a 5 deg. half-angle cone in hypervelocity flow was conducted in the high-enthalpy shock tunnel T5 by measurement of the heat flux distribution and by qualitative flow visualization. A novel flow visualization technique using sodium seeding to increase the sensitivity of conventional interferometric techniques by resonant enhancement of the refractivity of the medium was developed to study the boundary layer structure. The experiments were designed to cover a large range of specific reservoir enthalpy, ranging from the perfect-gas regime to the range where significant oxygen and some nitrogen dissociation and recombination effects may be expected in the boundary layer. The presence of atomic species is due to the combined effect of nozzle freezing and frictional heating in the boundary layer. In the laminar regime and in the latter range, the following effects were found to be present: At the same nominal conditions, heat flux levels are higher in air than in nitrogen because of a larger heat release from oxygen recombination at the wall. By varying the reservoir specific enthalpy in air and nitrogen, and from measurements in carbon dioxide, it was found that real-gas effects stabilize the boundary layer. If the transition Reynolds number is renormalized by evaluating it at the reference temperature, the data for a given gas becomes correlated in a plot against reservoir enthalpy. Increasing enthalpy stabilizes the flow. The stabilizing effect is stronger with gases whose lowest activation energy is low. This behavior is opposite to the prediction made by the linear stability theory regarding the second linear mode of instability. The linear stability theory predicts, however, that real-gas effects stabilize the mode. Flow visualization results suggest that the dominant instability mode in the present experiments was the Tollmien-Schlichting mode. Finally, the flow visualization pictures show structures that are not qualitatively different from those of an incompressible turbulent boundary layer, but they do not indicate if real-gas effects change significantly the structure of the turbulent boundary layer. The heat transfer measurements compare well with semi-empirical predictions.
The Boundary Layer on a Sharp Cone in High-Enthalphy Flow
NASA Astrophysics Data System (ADS)
Germain, Patrick
1994-01-01
An exploratory study of the laminar, transitional and turbulent boundary layer on a 5 deg. half-angle cone in hypervelocity flow was conducted in the high-enthalpy shock tunnel T5 by measurement of the heat flux distribution and by qualitative flow visualization. A novel flow visualization technique using sodium seeding to increase the sensitivity of conventional interferometric techniques by resonant enhancement of the refractivity of the medium was developed to study the boundary layer structure. The experiments were designed to cover a large range of specific reservoir enthalpy, ranging from the perfect-gas regime to the range where significant oxygen and some nitrogen dissociation and recombination effects may be expected in the boundary layer. The presence of atomic species is due to the combined effect of nozzle freezing and frictional heating in the boundary layer. In the laminar regime and in the latter range, the following effects were found to be present: At the same nominal conditions, heat flux levels are higher in air than in nitrogen because of a larger heat release from oxygen recombination at the wall. By varying the reservoir specific enthalpy in air and nitrogen, and from measurements in carbon dioxide, it was found that real -gas effects stabilize the boundary layer. If the transition Reynolds number is renormalized by evaluating it at the reference temperature, the data for a given gas becomes correlated in a plot against reservoir enthalpy. Increasing enthalpy stabilizes the flow. The stabilizing effect is stronger with gases whose lowest activation energy is low. This behavior is opposite to the prediction made by the linear stability theory regarding the second linear mode of instability. The linear stability theory predicts, however, that real-gas effects stabilize the Tollmien-Schlichting mode. Flow visualization results suggest that the dominant instability mode in the present experiments was the Tollmien-Schlichting mode. Finally, the flow visualization pictures show structures that are not qualitatively different from those of an incompressible turbulent boundary layer, but they do not indicate if real -gas effects change significantly the structure of the turbulent boundary layer. The heat transfer measurements compare well with semi-empirical predictions.
Large-eddy simulation of the zero pressure gradient, turbulent boundary layer
NASA Astrophysics Data System (ADS)
Inoue, Michio; Pullin, D. I.
2010-11-01
Large-eddy simulations (LES) of the zero-pressure gradient, smooth-wall, flat-plate turbulent boundary layer are presented. The LES combines the stretched-vortex, subgrid-scale (SGS) model with a tailored, near-wall model designed to incorporate anisotropic vorticity scales in the presence of the wall. Specifically, an approximate analytic integration of the stream-wise momentum equation across the near-wall layer, with inner-scaling used to reduce inertial terms, leads to a hyperbolic partial differential equation for the wall shear stress. This is coupled to an SGS model of streamwise, attached vortices in the presence of the wall, constructed to capture the principal dynamical behavior of longitudinal vortices in wall-normal transport of streamwise momentum. The result is an effective slip-velocity boundary condition for the LES at a raised "virtual wall" together with a dynamical calculation of the K'arm'an constant. Presently we demonstrate LES of the spatially developing, turbulent boundary layer at Reynolds numbers Re? based on the free-stream velocity and the momentum thickness in the range Re?= 10^3 -10^12. At large Re?, the calculated skin-friction coefficient agrees well with the Coles-Fernholz relation.
Boundary Layer Regimes Conducive to Formation of Dust Devils on Mars
NASA Astrophysics Data System (ADS)
Williams, B.; Nair, U. S.
2014-12-01
Dust devils on Mars contribute to maintenance of background atmospheric aerosol loading and thus dust radiative forcing, which is an important modulator of Martian climate. Dust devils also cause surface erosion and change in surface albedo which impacts radiative energy budget. Thus there is a need for parameterizing dust devil impacts in Martian climate models. In this context it is important to understand environmental conditions that are favorable for formation of dust devils on Mars and associated implications for diurnal, seasonal, and geographical variation of dust devil occurrence. On earth, prior studies show that thresholds of ratio of convective and friction scale velocities may be used to identify boundary layer regimes that are conducive to formation of dust devils. On earth, a w*/u* ratio in excess of 5 is found to be conducive for formation of dust devils. In this study, meteorological observations collected during the Viking Lander mission are used to constrain Martian boundary layer model simulations, which is then used to estimate w*/u* ratio. The w*/u* ratio is computed for several case days during which dust devil occurrence was detected. A majority of dust devils occurred in convective boundary layer regimes characterized by w*/u* ratios exceeding 10. The above described analysis is being extended to other mars mission landing sites and results from the extended analysis will also be presented.
Low-Reynolds-number k-epsilon model for unsteady turbulent boundary-layer flows
NASA Technical Reports Server (NTRS)
Fan, Sixin; Lakshminarayana, Budugur; Barnett, Mark
1993-01-01
An assessment of the near-wall and low-Reynolds-number functions used in low-Reynolds-number k-epsilon models suggests that they are not suitable for the near-wall region of unsteady turbulent boundary layers, where the flow is characterized by rapid changes in phase. An improved low-Reynolds-number k-epsilon model is developed in this paper. The near-wall and low-Reynolds-number functions in this model are formulated as functions of the local turbulent Reynolds numbers instead of the inner variable y(+). The present model also has the correct asymptotic behavior in the near-wall region. The turbulence model has been incorporated in an unsteady boundary-layer code and validated for unsteady turbulent boundary layers with and without adverse pressure gradients. The predictions agree well with the experimental data and the theoretical analysis. For the cases tested, the present model correctly predicts the unsteady near-wall flow and the unsteady shin friction at various frequencies.
Feasibility of generating an artificial burst in a turbulent boundary layer, phase 2
NASA Technical Reports Server (NTRS)
Gad-El-hak, Mohamed
1989-01-01
Various drag accounts for about half of the total drag on commercial aircraft at subsonic cruise conditions. Two avenues are available to achieve drag reduction: either laminar flow control or turbulence manipulation. The present research deals with the latter approach. The primary objective of Phase 2 research was to investigate experimentally the feasibility of substantially reducing the skin-friction drag in a turbulent boundary layer. The method combines the beneficial effects of suction and a longitudinally ribbed surface. At a sufficiently large spanwise separation, the streamwise grooves act as a nucleation site causing a focusing of low-speed streaks over the peaks. Suction is then applied intermittently through longitudinal slots located at selected locations along those peaks to obliterate the low-speed regions and to prevent bursting. Phase 2 research was divided into two tasks. In the first, selective suction from a single streamwise slot was used to eliminate either a single burst-like event or a periodic train of artificially generated bursts in laminar and turbulent boundary layers that develop on a flat plate towed in a water channel. The results indicate that equivalent values of the suction coefficient as low as 0.0006 were sufficient to eliminate the artificially generated bursts in a laminar boundary layer.
Characteristics of the winter boundary layer over the African Plateau: 26 ° S
NASA Astrophysics Data System (ADS)
Jury, Mark R.; Tosen, Greg R.
1989-10-01
Characteristics of the winter boundary layer over the (elevation 1600 m) in the vicinity of Johannesburg, 26 ° S, 29 ° E, are described in relation to air pollution potential by means of doppler sounder observations and background climatological data. Regional mean winds for the 800 h Pa level show that the winter boundary layer is dominated by a cell of high pressure over the Limpopo River Valley to the northeast of Johannesburg. To the south of Johannesburg, westerly circumpolar flow is prevalent and encroaches onto the plateau during the passage of frontal perturbations. Doppler sounder wind and turbulence profiles, averaged for the months of August 1984 and June 1985, are presented to establish a boundary-layer climatology. Diurnally averaged doppler sounder profiles for both months revealed a very consistent convective/day — stable/night cycle in the very dry winter conditions. A sharp radiation inversion formed just after sunset up to the 150 200 m level and grew in depth to reach 300 m on average near sunrise. The inversion caused a reduction in frictional drag and the formation of nocturnal low level jet during westerly encroachment. A case study is evaluated to determine the detailed structure of the low level jet near Johannesburg. The thermal wind plays a role in the nocturnal acceleration; mechanisms for its development and maintenance are explored. Additional work is presented on the synoptic cycle and its influence on air pollution dispersion over the African Plateau.
Hot-Film and Hot-Wire Anemometry for a Boundary Layer Active Flow Control Test
NASA Technical Reports Server (NTRS)
Lenahan, Keven C.; Schatzman, David M.; Wilson, Jacob Samuel
2013-01-01
Unsteady active flow control (AFC) has been used experimentally for many years to minimize bluff-body drag. This technology could significantly improve performance of rotorcraft by cleaning up flow separation. It is important, then, that new actuator technologies be studied for application to future vehicles. A boundary layer wind tunnel was constructed with a 1ft-x-3ft test section and unsteady measurement instrumentation to study how AFC manipulates the boundary layer to overcome adverse pressure gradients and flow separation. This unsteady flow control research requires unsteady measurement methods. In order to measure the boundary layer characteristics, both hot-wire and hot-film Constant Temperature Anemometry is used. A hot-wire probe is mounted in the flow to measure velocity while a hot-film array lays on the test surface to measure skin friction. Hot-film sensors are connected to an anemometer, a Wheatstone bridge circuit with an output that corresponds to the dynamic flow response. From this output, the time varying flow field, turbulence, and flow reversal can be characterized. Tuning the anemometers requires a fan test on the hot-film sensors to adjust each output. This is a delicate process as several variables drastically affect the data, including control resistance, signal input, trim, and gain settings.
NASA Astrophysics Data System (ADS)
Bur, Reynald
1991-05-01
Different techniques used to control the interaction between a shock wave and a turbulent boundary layer show that passive control tends to improve profile performance at transonic velocities. An analysis of an interaction subjected to passive control was performed in a transonic channel, taking into account the following parameters: shock location with respect to the cavity, porosity, hole diameter of the perforated plate, and cavity depth. The flow was qualified by means of schlieren visualizations, wall pressure measurements, and probing with a two dimensional laser velocimetry system. A momentum balance realized in the control region was allowed to select configurations where frictional drag was reduced compared to the reference case without control. The theoretical study is based on a boundary layer type approach using the first order Prandtl equations. The turbulent field was computed considering equilibrium and nonequilibrium models. Passive control influences take place both in the mean field through the existence of transpiration velocity giving a boundary layer condition not equal to zero at the porous wall and in the turbulent field. This effect is represented by introduction of a modified Van Driest damping function. Solutions to these modifications are proposed. A comparison with experimental results, gives information about the validity of turbulence models and modifications which consider an effect of control.
NASA Astrophysics Data System (ADS)
Korshunov, L. G.; Pushin, V. G.; Chernenko, N. L.
2011-09-01
The effect of frictional heating (whose intensity was varied at the expense of changes in the sliding velocity from 0.35 to 9.00 m/s) on the rate of wear, friction coefficient, friction thermopower, structure, and microhardness of the Ti49.4Ni50.6 alloy in a microcrystalline (MC) state with grains 20-30 ?m in size and in a submicrocrystalline (SMC) state with grains 300 nm in size has been investigated. The tribological tests were conducted under the conditions of dry sliding friction in air using the finger-disk (made of steel Kh12M, hardness HRC = 63) scheme at a normal load of 98 N. Due to the frictional heating, the temperature in the surface layer 0.5 mm thick of the samples changed from 150-200 (at a sliding velocity of 0.35 m/s) to 1100°C (at a velocity of 9 m/s). The alloy structure has been studied with the help of metallographic and electronmicroscopic (scanning and transmission microscopy) methods. It has been shown that the rate of wear of the titanium nickelide in the MC and SMC structural states is more than an order of magnitude lower than in the 12Kh18N9 steel and several times less than in the 40Kh13 steel. The fracture of the friction surface of the titanium nickelide occurs predominantly by the fatigue or oxidation-fatigue mechanisms, which are characterized by a relatively low wear rate, whereas the 40Kh13 and 12Kh18N9 steels show a tendency to intense thermal adhesive wear (seizure) at velocities higher than 0.35 m/s. It has been shown by the electron-microscopic investigation that nanocrystalline structures consisting of crystals of the B2 phase, oxides of the TiO2 type, and some amount of martensite B19' are formed in the process of friction in the surface layer of the titanium nickelide. It has been concluded that an enhanced wear resistance of the titanium nickelide is caused by the high heat resistance (strength) and high fracture toughness of the nanocrystalline B2 phase and by the presence of high-strength thermostable oxides of the TiO2 type formed upon friction.
Effects of adverse pressure gradient on heat transfer mechanism in thermal boundary layer
T. Houra; Y. Nagano
2006-01-01
Characteristics of turbulent boundary layer flows with adverse pressure gradients (APG) differ significantly from those of canonical boundary layers. We have experimentally investigated the effects of APG on the heat transfer mechanism in a turbulent boundary layer developing on a uniformly heated plate. It is found that in the APG boundary layer the Stanton number follows the correlation curve for
Bozorg, S. F. K.; Zarghani, A. S.; Zarei-Hanzaki, A.
2010-03-11
Al/Al{sub 2}O{sub 3} nano-composite surface layer was fabricated via friction stir processing technique. Commercial AA6082 aluminium alloy extruded bar and nanometric Al{sub 2}O{sub 3} powder were subjected to friction stir processing at a substrate travel speed of 80 mm/min and a tool rotation speed of 1000 rpm using a hardened H-13 tool steel. The grain structure and reinforcement particles were investigated by using optical and scanning electron microscopy. Results show that Al{sub 2}O{sub 3} particles can be more uniformly dispread in aluminium substrate by increasing the number of processing passes. Also, hardness enhancement of the nano-composite surface layer was found. This is attributed to uniform dispersion of Al{sub 2}O{sub 3} particles.
NASA Astrophysics Data System (ADS)
Uchiyama, Tomoaki; Kumei, Hideyuki; Yoshida, Toshihiko; Ishihara, Kazuhiko
2014-12-01
Membrane electrode assemblies (MEAs) composed of a Nafion membrane and heat-transferred catalyst layers (CLs) were employed in this study. The deformation of MEAs between micro porous layers (MPLs)/gas diffusion layers (GDLs) was investigated in response to humidity cycles. The MEA deformed into wrinkle shapes at lower contact pressures and exhibited bulge deformation at higher contact pressures. Wrinkles were generated by large in-plane swelling after buckling when swelling could not be restricted by the friction force from MPLs. Next, the static friction coefficient between the MEA and MPL was measured, and a friction mechanism was investigated. The static friction coefficient was 0.43 at the contact pressure of 0.22 MPa between the MEA and MPL and increased with the increase in the contact pressure. The surface observation of the MPL after the friction test indicated that a static friction was generated by the contact of the convex MPL and flat CL surface. The static friction force and swelling force were calculated to investigate the effect of the static friction force on the MEA deformation. The static friction force, which was more than 12% of the swelling force, could prevent wrinkles in 33 ?m thick MEA.
Heat transfer and fluid mechanics measurements in transitional boundary layer flows
NASA Technical Reports Server (NTRS)
Wang, T.; Simon, T. W.; Buddhavarapu, J.
1985-01-01
Experimental results are presented to document hydrodynamic and thermal development of flat-plate boundary layers undergoing natural transition. Local heat transfer coefficients, skin friction coefficients and profiles of velocity, temperature and Reynolds normal and shear stresses are presented. A case with no transition and transitional cases with 0.68 percent and 2.0 percent free-stream disturbance intensities were investigated. The locations of transition are consistent with earlier data. A late-laminar state with significant levels of turbulence is documented. In late-transitional and early-turbulent flows, turbulent Prandtl number and conduction layer thickness values exceed, and the Reynolds analogy factor is less than, values previously measured in fully turbulent flows.
The analysis of a nonsimilar laminar boundary layer
NASA Technical Reports Server (NTRS)
Stalmach, D. D.; Bertin, J. J.
1978-01-01
A computer code is described which yields accurate solutions for a broad range of laminar, nonsimilar boundary layers, providing the inviscid flow field is known. The boundary layer may be subject to mass injection for perfect-gas, nonreacting flows. If no mass injection is present, the code can be used with either perfect-gas or real-gas thermodynamic models. Solutions, ranging from two-dimensional similarity solutions to solutions for the boundary layer on the Space Shuttle Orbiter during reentry conditions, have been obtained with the code. Comparisons of these solutions, and others, with solutions presented in the literature; and with solutions obtained from other codes, demonstrate the accuracy of the present code.
A compilation of unsteady turbulent boundary-layer experimental data
NASA Technical Reports Server (NTRS)
Carr, L. W.
1981-01-01
An extensive literature search was conducted and those experiments related to unsteady boundary layer behavior were cataloged. In addition, an international survey of industrial, university, and governmental research laboratories was made in which new and ongoing experimental programs associated with unsteady turbulent boundary layer research were identified. Pertinent references were reviewed and classified based on the technical emphasis of the various experiments. Experiments that include instantaneous or ensemble averaged profiles of boundary layer variables are stressed. The experimental apparatus and flow conditions are described and summaries of acquired data and significant conclusions are summarized. Measurements obtained from the experiments which exist in digital form were stored on magnetic tape. Instructions are given for accessing these data sets for further analysis.
Atmospheric boundary layer processes during a total solar eclipse
SethuRaman, S.; Prabhu, A.; Narahari Rao, K.; Narasimha, R.
1980-01-01
The total solar eclipse that occurred over the southern part of India on February 16, 1980, gave a unique opportunity to study the earth's atmospheric boundary layer. The meteorological experiments during the 1980 solar eclipse were conducted at Raichur, India (16/sup 0/12'N, 77/sup 0/21'E) located in the state of Karnataka, approximately 400-m above sea level. The main objective was to determine the changes in the earth's atmosphere during and immediately after the eclipse. The goal was to study the changes in the momentum and heat fluxes in the boundary layer due to the eclipse. Measurements were made for 2 days prior to and 1 day after the day of the eclipse to determine background characteristics of the boundary layer which might be site-dependent.
Low-frequency pressure fluctuations in axisymmetric turbulent boundary layers
NASA Technical Reports Server (NTRS)
Panton, R. L.; Goldman, A. L.; Lowery, R. L.; Reischman, M. M.
1980-01-01
Measurements were made of wall pressure fluctuations under a turbulent boundary layer on the fuselage of a sailplane. Experiments with the sailplane offered a noise-free flow with a low free-stream turbulence level. In this environment the wall-pressure spectrum of a turbulent boundary layer with natural transition was found to drop off at low frequencies. Correlations between several wall-mounted microphones revealed that the large-scale motions contribute about 35% to the mean square pressure. Velocity fluctuations at several positions within and outside the boundary layer were measured and correlated with the wall pressure. It seems that the irrotational motions in the turbulent region are primarily responsible for the large-scale wall-pressure fluctuations. A time-lagged conditional correlation of the pressure was introduced to gain further insight into the pressure-producing motions.
Influence of surface compliance on boundary layer noise
NASA Astrophysics Data System (ADS)
Howe, M. S.
1983-04-01
The theory of aerodynamic sound in the form developed by Williams and Hawkings (1969) is applied to investigate the production of sound by turbulent boundary layer flow over a thin, flexible plate. Conventional theories of boundary layer noise attribute the radiation to the boundary layer quadrupoles and their (passive) images in the plate, and neglect the interaction of turbulence with the finite amplitude motion of the plate caused by the wall pressure fluctuations. This interaction generates sound whose intensity is characteristic of aerodynamic sources of dipole type. In (underwater) situations involving the high fluid loading of steel plates, it is shown that the intensity of the dipole noise is generally comparable to that produced by the quadrupoles. The dipoles dominate the radiation from more compliant surfaces, of the type commonly used in experiments on compliant wall drag reduction, and it is suggested that the injudicious deployment of compliant wall coatings may result in the production of unacceptably high levels of aerodynamic noise.
Numerical Simulations of Wake/Boundary Layer Interactions
NASA Technical Reports Server (NTRS)
Piomelli, Ugo; Choudhari, Meelan M.; Ovchinnikov, Victor; Balaras, Elias
2003-01-01
Direct and large-eddy simulations of the interaction between the wake of a circular cylinder and a flat-plate boundary layer are conducted. Two Reynolds numbers are examined. The simulations indicate that at the lower Reynolds number the boundary layer is buffeted by the unsteady Karman vortex street shed by the cylinder. The fluctuations, however, cannot be self-sustained due to the low Reynolds-number, and the flow does not reach a turbulent state within the computational domain. In contrast, in the higher Reynolds-number case, boundary-layer fluctuations persist after the wake has decayed (due, in part, to the higher values of the local Reynolds number Re(sub theta) achieved in this case); some evidence could be observed that a self-sustaining turbulence generation cycle was beginning to be established.
DNS of Turbulent Boundary Layers under Highenthalpy Conditions
NASA Astrophysics Data System (ADS)
Duan, Lian; Martín, Pino
2010-11-01
To study real-gas effects and turbulence-chemistry interaction, direct numerical simulations (DNS) of hypersonic boundary layers are conducted under typical hypersonic conditions. We consider the boundary layer on a lifting-body consisting of a flat plate at an angle of attack, which flies at altitude 30km with a Mach number 21. Two different inclined angles, 35^o and 8^o, are considered,representing blunt and slender bodies. Both noncatalytic and supercatalytic wall conditions are considered. The DNS data are studied to assess the validity of Morkovin's hypothesis, the strong Reynolds analogy, as well as the behaviors of turbulence structures under high-enthalpy conditions.Relative to low-enthalpy conditions [1], significant differences in typical scalings are observed. [4pt] [1] L. Duan and I. Beekman and M. P. Mart'in, Direct numerical simulation of hypersonic turbulent boundary layers. Part 2: Effect of temperature, J. Fluid Mech. 655 (2010), 419-445.
Roughness Induced Transition in a Supersonic Boundary Layer
NASA Technical Reports Server (NTRS)
Balakumar, Ponnampalam; Kergerise, Michael A.
2013-01-01
Direct numerical simulation is used to investigate the transition induced by threedimensional isolated roughness elements in a supersonic boundary layer at a free stream Mach number of 3.5. Simulations are performed for two different configurations: one is a square planform roughness and the other is a diamond planform roughness. The mean-flow calculations show that the roughness induces counter rotating streamwise vortices downstream of the roughness. These vortices persist for a long distance downstream and lift the low momentum fluid from the near wall region and place it near the outer part of the boundary layer. This forms highly inflectional boundary layer profiles. These observations agree with recent experimental observations. The receptivity calculations showed that the amplitudes of the mass-flux fluctuations near the neutral point for the diamond shape roughness are the same as the amplitude of the acoustic disturbances. They are three times smaller for the square shape roughness.
Vortex Generators to Control Boundary Layer Interactions
NASA Technical Reports Server (NTRS)
Babinsky, Holger (Inventor); Loth, Eric (Inventor); Lee, Sang (Inventor)
2014-01-01
Devices for generating streamwise vorticity in a boundary includes various forms of vortex generators. One form of a split-ramp vortex generator includes a first ramp element and a second ramp element with front ends and back ends, ramp surfaces extending between the front ends and the back ends, and vertical surfaces extending between the front ends and the back ends adjacent the ramp surfaces. A flow channel is between the first ramp element and the second ramp element. The back ends of the ramp elements have a height greater than a height of the front ends, and the front ends of the ramp elements have a width greater than a width of the back ends.
New concepts on the interfacial friction behavior between flat steel ribbon layers
Zheng, J.; Zhu, G. [Zhejiang Univ., Hangzhou (China). Institute of Chemical Machinery and Equipment
1995-11-01
Flat steel ribbon wound pressure vessels are widely used in chemical, petrochemical, and other industries. However, no satisfactory theoretical formulae are available to estimate the additional strengthening induced by the friction between the layers. Effective normal stress in the ribbon wide direction and shear stress are new concepts for describing such strengthening effect. These concepts are analyzed further to obtain expressions for both axial and circumferential bursting pressure, and stresses of the vessel. Comparison with one set of experimental results shows excellent agreement.
Disturbances to Air-Layer Skin-Friction Drag Reduction at High Reynolds Numbers
NASA Astrophysics Data System (ADS)
Dowling, David; Elbing, Brian; Makiharju, Simo; Wiggins, Andrew; Perlin, Marc; Ceccio, Steven
2009-11-01
Skin friction drag on a flat surface may be reduced by more than 80% when a layer of air separates the surface from a flowing liquid compared to when such an air layer is absent. Past large-scale experiments utilizing the US Navy's Large Cavitation Channel and a flat-plate test model 3 m wide and 12.9 m long have demonstrated air layer drag reduction (ALDR) on both smooth and rough surfaces at water flow speeds sufficient to reach downstream-distance-based Reynolds numbers exceeding 100 million. For these experiments, the incoming flow conditions, surface orientation, air injection geometry, and buoyancy forces all favored air layer formation. The results presented here extend this prior work to include the effects that vortex generators and free stream flow unsteadiness have on ALDR to assess its robustness for application to ocean-going ships. Measurements include skin friction, static pressure, airflow rate, video of the flow field downstream of the injector, and profiles of the flowing air-water mixture when the injected air forms bubbles, when it is in transition to an air layer, and when the air layer is fully formed. From these, and the prior measurements, ALDR's viability for full-scale applications is assessed.
Blowing-up coordinates for a similarity boundary layer equation
BERNARD BRIGHI; TEWFIK SARI
2005-01-01
We introduce blowing-up coordinates to study the autonomous third order nonlinear dierential equation : f000 + m+1 2 ff 00 mf02 = 0 on (0,1), subject to the boundary conditions f(0) = a 2 R, f0(0) = 1 and f0(t) ! 0 as t ! 1. This problem arises when looking for similarity solutions to problems of boundary-layer theory in
Entrainment results from the Flatland boundary layer experiments
NASA Astrophysics Data System (ADS)
Angevine, Wayne M.; Grimsdell, Alison W.; McKeen, Stuart A.; Warnock, J. M.
1998-06-01
A primary objective of the 1995 and 1996 Flatland boundary layer experiments, known as Flatland95 and Flatland96, was to measure and characterize entrainment at the top of the convective boundary layer. The experiments took place in the area near the Flatland Atmospheric Observatory near Champaign-Urbana, Illinois, in August-September 1995 and June-August 1996. The site is interesting because it is extraordinarily flat, has uniform land use, and is situated in a prime agricultural area. Measurements in the entrainment zone are difficult to make due to the time and space scales involved. We will present entrainment estimates derived from budget calculations with data from UHF wind profiling radars and from radiosondes. The results demonstrate that the remote sensing instruments produce results comparable to radiosondes and have significant advantages for boundary layer studies. Surface flux measurements are also used in the calculations. Direct heating by shortwave radiation absorbed by aerosols in the boundary layer is found to be an important component of the boundary layer heat budgets. The entrainment virtual temperature flux and the ratio of entrainment to surface flux found from the budget calculations are somewhat larger than expected. Advection of warm air, which is not accounted for in the budget calculations, is probably a factor in some periods but may not be significant in the full data set. For the full data set, the mean entrainment velocity found from the heat budget is 0.03±0.01 m s-1, slightly less than the mean rate of change of the boundary layer height. The mean entrainment ratio AR is 0.51±0.12 and the median is 0.43, comparable to results from some other studies in comparable conditions.
Hypersonic turbulent wall boundary layer computations
NASA Technical Reports Server (NTRS)
Kim, S. C.; Harloff, G. J.
1988-01-01
The Baldwin-Lomax algebraic turbulence model was modified for hypersonic flow conditions. Two coefficients in the outer layer eddy viscosity model were determined as functions of Mach number and temperature ratio. By matching the solutions from the Baldwin-Lomax model to those from the Cebeci-Smith model for a flat plate at hypersonic speed, the new values of the coefficient were obtained. The results show that the values of C sub cp and C sub kleb are functions of both Mach number and wall temperature ratio. The C sub cp and C sub kleb variations with Mach number and wall temperature were used for the calculations of both a 4 deg wedge flow at Mach 18 and an axisymmetric Mach 20 nozzle flow. The Navier-Stokes equations with thin layer approximation were solved for the above hypersonic flow conditions and the results were compared with existing experimental data. The agreement between the numerical solutions and the existing experimental data were good. The modified Baldwin-Lomax model thus is useful in the computations of hypersonic flows.
Hypersonic turbulent wall boundary layer computations
NASA Technical Reports Server (NTRS)
Kim, S. C.; Harloff, G. J.
1988-01-01
The Baldwin-Lomax (1978) algebraic turbulence model was modified for hypersonic flow conditions. Two coefficients in the outer-layer eddy-viscosity model were determined as functions of Mach number and temperature ratio. By matching the solutions from the Baldwin-Lomax model to those from the Cebeci-Smith (1974) model for a flat plate at hypersonic speed, the new values of the coefficients were obtained. The results show that the values of C(cp) and C(kleb) are functions of both Mach number and wall temperature ratio. The C(cp) and C(kleb) variations with Mach number and wall temperature were used for the calculations of both a 4-deg wedge flow at Mach 18 and an axisymmetric Mach 20 nozzle flow. The Navier-Stokes equations with thin-layer approximation were solved for the above hypersonic flow conditions and the results were compared with existing experimental data. The agreement between the numerical solutions and the existing experimental data were good. The modified Baldwin-Lomax model thus is useful in the computations of hypersonic flows.
Numerical Study of Boundary-Layer in Aerodynamics
NASA Technical Reports Server (NTRS)
Shih, Tom I-P.
1997-01-01
The accomplishments made in the following three tasks are described: (1) The first task was to study shock-wave boundary-layer interactions with bleed - this study is relevant to boundary-layer control in external and mixed-compression inlets of supersonic aircraft; (2) The second task was to test RAAKE, a code developed for computing turbulence quantities; and (3) The third task was to compute flow around the Ames ER-2 aircraft that has been retrofitted with containers over its wings and fuselage. The appendices include two reports submitted to AIAA for publication.
Simulation of glancing shock wave and boundary layer interaction
NASA Technical Reports Server (NTRS)
Hung, Ching-Mao
1989-01-01
Shock waves generated by sharp fins, glancing across a laminar boundary layer growing over a flat plate, are simulated numerically. Several basic issues concerning the resultant three-dimensional flow separation are studied. Using the same number of grid points, different grid spacings are employed to investigate the effects of grid resolution on the origin of the line of separation. Various shock strengths (generated by different fin angles) are used to study the so-called separated and unseparated boundary layer and to establish the existence or absence of the secondary separation. The usual interpretations of the flow field from previous studies and new interpretations arising from the present simulation are discussed.
Passive control plate for shock-boundary layer interactions
NASA Technical Reports Server (NTRS)
Goodman, Wesley L.; Morrisette, E. Leon
1988-01-01
Computational and experimental results are presented for a passive method capable of reducing or completely eliminating the separation region in shock-boundary layer interactions of the type that can result in severe performance degradation due to flow separation in supersonic and hypersonic inlets. The method involves the placement of an embedded plate in the outer portion of the boundary layer, parallel to the wall, so that the incident shock will impinge upon, and be reflected from, its surface. This will lower the pressure gradient in the low-momentum, near-wall region. A porous control plate's effect has also been investigated.
Plasma behavior in the boundary layer near a railgun surface
Kang, S.W.; McCallen, R. )
1989-01-01
Viscous flow and thermal characteristics are theoretically analyzed for the plasma behind a moving projectile inside a railgun. When only convective effects are included in the turbulent boundary layer analysis, the results suggest a temperature maximum in the wall region for very high velocity flows. The case of radiative as well as convective transport has also been investigated for an optically thick boundary layer flow by application of an approximate method. Results show a sizable effect of radiation on the flow characteristics, especially on the heat transfer rate to the railgun surface.
Plasma behavior in the boundary layer near a railgun surface
Kang, Sang-Wook; McCallen, R.E.
1988-03-01
Viscous flow and thermal characteristics are theoretically analyzed for the plasma behind a moving projectile inside a railgun. When only convective effects are included in the turbulent boundary layer analysis, the results suggest a temperature maximum in the wall region for very high velocity flows. The case of radiative as well as convective transport has also been investigated for an optically-thick boundary layer flow by application of an approximate method. Results show a sizable effect of radiation on the flow characteristics, especially on the heat-transfer rate to the railgun surface. 7 refs., 2 figs.
An Innovative Flow-Measuring Device: Thermocouple Boundary Layer Rake
NASA Technical Reports Server (NTRS)
Hwang, Danny P.; Fralick, Gustave C.; Martin, Lisa C.; Wrbanek, John D.; Blaha, Charles A.
2001-01-01
An innovative flow-measuring device, a thermocouple boundary layer rake, was developed. The sensor detects the flow by using a thin-film thermocouple (TC) array to measure the temperature difference across a heater strip. The heater and TC arrays are microfabricated on a constant-thickness quartz strut with low heat conductivity. The device can measure the velocity profile well into the boundary layer, about 65 gm from the surface, which is almost four times closer to the surface than has been possible with the previously used total pressure tube.
Analytical Model of the Time Developing Turbulent Boundary Layer
Victor S. L'vov; Anna Pomyalov; Antonino Ferrante; Said Elghobashi
2007-06-04
We present an analytical model for the time-developing turbulent boundary layer (TD-TBL) over a flat plate. The model provides explicit formulae for the temporal behavior of the wall-shear stress and both the temporal and spatial distributions of the mean streamwise velocity, the turbulence kinetic energy and Reynolds shear stress. The resulting profiles are in good agreement with the DNS results of spatially-developing turbulent boundary layers at momentum thickness Reynolds number equal to 1430 and 2900. Our analytical model is, to the best of our knowledge, the first of its kind for TD-TBL.
Characteristics of turbulence in boundary layer with zero pressure gradient
NASA Technical Reports Server (NTRS)
Klebanoff, P S
1955-01-01
The results of an experimental investigation of a turbulent boundary layer with zero pressure gradient are presented. Measurements with the hot-wire anemometer were made of turbulent energy and turbulent shear stress, probability density and flattening factor of u-fluctuation (fluctuation in x-direction), spectra of turbulent energy and shear stress, and turbulent dissipation. The importance of the region near the wall and the inadequacy of the concept of local isotropy are demonstrated. Attention is given to the energy balance and the intermittent character of the outer region of the boundary layer. Also several interesting features of the spectral distribution of the turbulent motions are discussed.
A model of wind shear and turbulence in the surface boundary layer
NASA Technical Reports Server (NTRS)
Luers, J. K.
1973-01-01
A model of wind and turbulence has been described for the surface boundary layer. The wind structure in the surface layer is considered to be a function of the surface parameters, stability, and height. The surface parameters considered are: (1) the surface roughness length; (2) the surface friction velocity; and (3) the zero plane displacement height. The stability parameter, Z/L, where L is the Monin-Obukov stability length, describes the thermal effect on the wind profile. The logarithmic wind profile is used to describe the mean wind field in the neutral boundary layer, and a logarithmic profile with a stability defect is used to describe the stable and unstable atmospheric conditions. For the very stable conditions, the logarithmic wind law does not hold. Under this condition, the layers of the atmosphere become disconnected and large scale frontal motions are the predominate factor in defining the wind profile. Figures are presented which represent some typical wind profiles in the very stable condition.
Air Flow in the Boundary Layer of an Elliptic Cylinder
NASA Technical Reports Server (NTRS)
Schubauer, G B
1939-01-01
The boundary layer of an elliptic cylinder of major and minor axis 11.78 and 3.98 inches, respectively, was investigated in air stream in which the turbulence could be varied. Conditions were arranged so that the flow was two-dimensional with the major axis of the ellipse parallel to the undisturbed stream. Speed distributions across the boundary layer were determined with a hot-wire anemometer at a number of positions about the surface for the lowest and highest intensities of turbulence, with the air speed in both cases sufficiently high to produce a turbulent boundary layer over the downstream part of the surface. The magnitude and the frequency of the speed fluctuations in the boundary layer were also measured by the use of the conventional type of hot-wire turbulence apparatus. Stream turbulence was found to affect both the nature of transition from laminar to turbulent flow in the layer and the position on the surface at which transition occurred. Transition was then investigated in detail with stream turbulence of several different scales and intensities.
Observational Effects of Anomalous Boundary Layers in Relativistic Jets
NASA Astrophysics Data System (ADS)
Aloy, M. A.; Mimica, P.
2008-07-01
Recent theoretical work has pointed out that the transition layer between a jet and the medium surrounding it may be more complex than previously thought. Under physically realizable conditions, the transverse profile of the Lorentz factor in the boundary layer can be nonmonotonic, displaying the absolute maximum where the flow is faster than at the jet spine, followed by a steep falloff. Likewise, the rest-mass density reaches an absolute minimum (coincident with the maximum in Lorentz factor) and then grows until it reaches the external medium value. Such behavior is in contrast to the standard monotonic decline of the Lorentz factor (from a maximum value at the jet central spine) and the corresponding increase of the rest-mass density (from the minimum reached at the jet core). We study the emission properties of the aforementioned anomalous shear layer structures in kiloparsec-scale jets, aiming to show observable differences with respect to conventional monotonic and smooth boundary layers.
A model of the wall boundary layer for ducted propellers
NASA Technical Reports Server (NTRS)
Eversman, Walter; Moehring, Willi
1987-01-01
The objective of the present study is to include a representation of a wall boundary layer in an existing finite element model of the propeller in the wind tunnel environment. The major consideration is that the new formulation should introduce only modest alterations in the numerical model and should still be capable of producing economical predictions of the radiated acoustic field. This is accomplished by using a stepped approximation in which the velocity profile is piecewise constant in layers. In the limit of infinitesimally thin layers, the velocity profile of the stepped approximation coincides with that of the continuous profile. The approach described here could also be useful in modeling the boundary layer in other duct applications, particularly in the computation of the radiated acoustic field for sources contained in a duct.
Adda-Bedia, Mokhtar
MEMS-based contact stress field measurements at a rough elastomeric layer: local test of Amontons/Universit´e Paris 6, Paris, France Abstract. We present the results of recent friction experiments in which a MEMS
Magnetic field maxima in the low latitude boundary layer
Sonnerup, B. (Dartmouth College, Hannover, NH (United States)); Paschmann, G.; Phan, T.D. (Max-Planck-Institut fuer Extraterrestrische Physik, Garching (Germany)); Luehr, H. (Technische Universitaet, Braunschweig (Germany))
1992-09-04
The magnetic field often exhibits a maximum in the Earth's low-latitude boundary layer. The authors show examples of this behavior, using data from the AMPTE/IRM spacecraft, and argue that two fundamentally distinct causes exist for the excess field: (1) a depression, within the layer, of the population of medium-energy ions of magnetospheric origin; (2) field curvature effects associated with undulations of the magnetopause itself.
A new absorbing layer boundary condition for the wave equation
Vay, J.L.
2000-09-11
A new absorbing boundary condition using an absorbing layer is presented for application to finite-difference time-domain (FDTD) calculation of the wave equation. This algorithm is by construction a hybrid between the Berenger perfectly matched layer (PML) algorithm and the one-way Sommerfeld algorithm. The new prescription contains both of these earlier ones as particular cases, and retains benefits from both. Numerical results indicate that the new algorithm provides absorbing rates superior to those of the PML algorithm.
Physical description of boundary-layer transition: Experimental evidence
NASA Technical Reports Server (NTRS)
Saric, William S.
1994-01-01
The problems of understanding the origins of turbulent flow and transition to turbulent flow are the most important unsolved problems of fluid mechanics and aerodynamics. It is well known that the stability, transition, and turbulent characteristics of bounded shear layers are fundamentally different from those of free shear layers. Likewise, the stability, transition, and turbulent characteristics of open systems are fundamentally different from those of closed systems. Because of the influence of indigenous disturbances, surface geometry and roughness, sound, heat transfer, and ablation, it is not possible to develop general prediction schemes for transition location and the nature of turbulent structures in boundary-layer flows. At the present time no mathematical model exists that can predict the transition Reynolds number on a flat plate. The recent progress in this area is encouraging, in that a number of distinct transition mechanisms have been found experimentally. The theoretical work finds them to be amplitude and Reynolds-number dependent. The theory remains rather incomplete with regard to predicting transition. Amplitude and spectral characteristics of the disturbances inside the laminar viscous layer strongly influence which type of transition occurs. The major need in this area is to understand how freestream disturbances are entrained into the boundary layer, i.e., to answer the question of receptivity. We refer receptivity to the mechanism(s) that cause freestream disturbances to enter the boundary layer and create the initial amplitudes for unstable waves.
Wet but not slippery: boundary friction in tree frog adhesive toe pads
Federle, W; Barnes, W.J.P; Baumgartner, W; Drechsler, P; Smith, J.M
2006-01-01
Tree frogs are remarkable for their capacity to cling to smooth surfaces using large toe pads. The adhesive skin of tree frog toe pads is characterized by peg-studded hexagonal cells separated by deep channels into which mucus glands open. The pads are completely wetted with watery mucus, which led previous authors to suggest that attachment is solely due to capillary and viscous forces generated by the fluid-filled joint between the pad and the substrate. Here, we present evidence from single-toe force measurements, laser tweezer microrheometry of pad mucus and interference reflection microscopy of the contact zone in Litoria caerulea, that tree frog attachment forces are significantly enhanced by close contacts and boundary friction between the pad epidermis and the substrate, facilitated by the highly regular pad microstructure. PMID:16971337
Asymmetric turbulent boundary layers along long thin circular cylinders at low-Re
NASA Astrophysics Data System (ADS)
Jordan, Stephen A.
2015-09-01
Notable deviations of the asymmetric turbulent boundary layer (TBL) statistics from their axisymmetric counterpart along long thin circular cylinders are vitally important to the naval and oceanographic jurisdictions. Although the available experimental evidence backs their concern, the realm of parametric variability (both geometric and kinematic) is extremely limited to draw solid conclusions. We know that only small misalignments which quantify less than one degree of incidence between the freestream and the straight cylinder axis can substantially alter the boundary layer thicknesses, mean axial velocity, and Reynolds stresses. But the statistical database is plainly inadequate to justify modifying the design tools that were founded solely for axisymmetric flow conditions. Herein, we begin rectifying this drawback by numerical means. The investigation centers on low turbulent Reynolds numbers (500 ? Rea ? 2500) and small angles-of-incidence (0° < ? < 9°) to validate and complement the lions-share of the present database (Rea = aUo/?, where a, Uo, and ? are the cylinder radius, freestream velocity, and kinematic viscosity, respectively). In particular, we numerically resolved the statistical responses of the TBL, mean axial velocity, Reynolds stresses, and skin friction under angles-of-incidence up to the earliest signs of Strouhal-type shedding. Clearly, the first prominent response was the thinning and thickening of the TBL along the respective windward and leeward sides to only a minor misalignment. Tilting the straight cylinder to slightly higher yaw angles transformed the TBL to a transitional boundary layer along the windward side for all simulated Reynolds numbers. For yaw angles ? > 2°, all turbulent statistics of the asymmetric boundary layer were measurably dissimilar to those of the axisymmetric state.
Simulating Dispersion in the Evening-Transition Boundary Layer
NASA Astrophysics Data System (ADS)
Taylor, Alexander C.; Beare, Robert J.; Thomson, David J.
2014-12-01
We investigate dispersion in the evening-transition boundary layer using large-eddy simulation (LES). In the LES, a particle model traces pollutant paths using a combination of the resolved flow velocities and a random displacement model to represent subgrid-scale motions. The LES is forced with both a sudden switch-off of the surface heat flux and also a more gradual observed evolution. The LES shows `lofting' of plumes from near-surface releases in the pre-transition convective boundary layer; it also shows the subsequent `trapping' of releases in the post-transition near-surface stable boundary layer and residual layer above. Given the paucity of observations for pollution dispersion in evening transitions, the LES proves a useful reference. We then use the LES to test and improve a one-dimensional Lagrangian Stochastic Model (LSM) such as is often used in practical dispersion studies. The LSM used here includes both time-varying and skewed turbulence statistics. It is forced with the vertical velocity variance, skewness and dissipation from the LES for particle releases at various heights and times in the evening transition. The LSM plume spreads are significantly larger than those from the LES in the post-transition stable boundary-layer trapping regime. The forcing from the LES was thus insufficient to constrain the plume evolution, and inclusion of the significant stratification effects was required. In the so-called modified LSM, a correction to the vertical velocity variance was included to represent the effect of stable stratification and the consequent presence of wave-like motions. The modified LSM shows improved trapping of particles in the post-transition stable boundary layer.
NASA Technical Reports Server (NTRS)
Omori, S.
1973-01-01
The turbulent kinetic energy equation is coupled with boundary layer equations to solve the characteristics of compressible turbulent boundary layers with mass injection and combustion. The Reynolds stress is related to the turbulent kinetic energy using the Prandtl-Wieghardt formulation. When a lean mixture of hydrogen and nitrogen is injected through a porous plate into the subsonic turbulent boundary layer of air flow and ignited by external means, the turbulent kinetic energy increases twice as much as that of noncombusting flow with the same mass injection rate of nitrogen. The magnitudes of eddy viscosity between combusting and noncombusting flows with injection, however, are almost the same due to temperature effects, while the distributions are different. The velocity profiles are significantly affected by combustion; that is, combustion alters the velocity profile as if the mass injection rate is increased, reducing the skin-friction as a result of a smaller velocity gradient at the wall. If pure hydrogen as a transpiration coolant is injected into a rocket nozzle boundary layer flow of combustion products, the temperature drops significantly across the boundary layer due to the high heat capacity of hydrogen. At a certain distance from the wall, hydrogen reacts with the combustion products, liberating an extensive amount of heat. The resulting large increase in temperature reduces the eddy viscosity in this region.
Chow, Fotini Katopodes
Immersed Boundary Methods for High-Resolution Simulation of Atmospheric Boundary-Layer Flow Over. Lundquist Spring 2010 #12;Immersed Boundary Methods for High-Resolution Simulation of Atmospheric Boundary as an immersed boundary method (IBM), alleviates coordinate transformation errors and eliminates restrictions
Accurate velocity measurements of boundary-layer flows using Doppler optical coherence tomography
NASA Astrophysics Data System (ADS)
Haavisto, Sanna; Salmela, Juha; Koponen, Antti
2015-05-01
Pulsed ultrasound Doppler velocimetry and nuclear magnetic resonance imaging are popular non-invasive measurement methods for flows of opaque fluids. The spatial and temporal resolution of these methods, however, is quite limited, and they lack accuracy, especially close to solid boundaries. In this paper, we show that solution to these problems is achieved by using Doppler optical coherence tomography (DOCT). DOCT provides simultaneous information about the fluid structure and velocity with very high spatial and temporal resolution. For benchmarking of the method we use water as the reference fluid. We show how DOCT gives a very good agreement with theory for the velocity profile, skin friction and viscosity directly from the measurement signal. The velocity profile extends from the turbulent region to viscous sublayer, and viscosity of the fluid can be calculated also from a turbulent flow with a good accuracy. Overall, DOCT is seen to be very well suited for providing new insight into boundary-layer flows, rheology and skin friction.
Hussanan, Abid; Zuki Salleh, Mohd; Tahar, Razman Mat; Khan, Ilyas
2014-01-01
In this paper, the heat transfer effect on the unsteady boundary layer flow of a Casson fluid past an infinite oscillating vertical plate with Newtonian heating is investigated. The governing equations are transformed to a systems of linear partial differential equations using appropriate non-dimensional variables. The resulting equations are solved analytically by using the Laplace transform method and the expressions for velocity and temperature are obtained. They satisfy all imposed initial and boundary conditions and reduce to some well-known solutions for Newtonian fluids. Numerical results for velocity, temperature, skin friction and Nusselt number are shown in various graphs and discussed for embedded flow parameters. It is found that velocity decreases as Casson parameters increases and thermal boundary layer thickness increases with increasing Newtonian heating parameter. PMID:25302782
Hussanan, Abid; Zuki Salleh, Mohd; Tahar, Razman Mat; Khan, Ilyas
2014-01-01
In this paper, the heat transfer effect on the unsteady boundary layer flow of a Casson fluid past an infinite oscillating vertical plate with Newtonian heating is investigated. The governing equations are transformed to a systems of linear partial differential equations using appropriate non-dimensional variables. The resulting equations are solved analytically by using the Laplace transform method and the expressions for velocity and temperature are obtained. They satisfy all imposed initial and boundary conditions and reduce to some well-known solutions for Newtonian fluids. Numerical results for velocity, temperature, skin friction and Nusselt number are shown in various graphs and discussed for embedded flow parameters. It is found that velocity decreases as Casson parameters increases and thermal boundary layer thickness increases with increasing Newtonian heating parameter. PMID:25302782
Investigations on entropy layer along hypersonic hyperboloids using a defect boundary layer
NASA Technical Reports Server (NTRS)
Brazier, J. P.; Aupoix, B.; Cousteix, J.
1992-01-01
A defect approach coupled with matched asymptotic expansions is used to derive a new set of boundary layer equations. This method ensures a smooth matching of the boundary layer with the inviscid solution. These equations are solved to calculate boundary layers over hypersonic blunt bodies involving the entropy gradient effect. Systematic comparisons are made for both axisymmetric and plane flows in several cases with different Mach and Reynolds numbers. After a brief survey of the entropy layer characteristics, the defect boundary layer results are compared with standard boundary layer and full Navier-Stokes solutions. The entropy gradient effects are found to be more important in the axisymmetric case than in the plane one. The wall temperature has a great influence on the results through the displacement effect. Good predictions can be obtained with the defect approach over a cold wall in the nose region, with a first order solution. However, the defect approach gives less accurate results far from the nose on axisymmetric bodies because of the thinning of the entropy layer.
A high-resolution code for turbulent boundary layers
NASA Astrophysics Data System (ADS)
Simens, Mark P.; Jiménez, Javier; Hoyas, Sergio; Mizuno, Yoshinori
2009-06-01
A new high-resolution code for the direct simulation of incompressible boundary layers over a flat plate is described. It can accommodate a wide range of pressure gradients, and general time-dependent boundary conditions such as incoming wakes or wall forcing. The consistency orders of the advective and pressure-correction steps are different, but it is shown that the overall resolution is controlled by the higher-order advection step. The formulation of boundary conditions to ensure global mass conservation in the presence of arbitrary forcing is carefully analyzed. Two validation boundary layers with and without a strong adverse pressure gradient are presented, with maximum Reynolds numbers Re??2000. They agree well with the available experiments. Turbulent inflow conditions for the zero-pressure case are implemented by a recycling method, and it is shown that at least the initial 300 momentum thicknesses have to be discarded before the effect of the artificial inflow is forgotten. It is argued that this is not a defect of the method used to generate the inflow, but a property of the boundary layer.
Spatial structures and scaling in the Convective Boundary Layer
NASA Astrophysics Data System (ADS)
Badas, M. G.; Querzoli, G.
2011-04-01
We performed an investigation on spatial features of the Convective Boundary Layer (CBL) of the atmosphere, which was simulated in a laboratory model and analyzed by means of image analysis techniques. This flow is dominated by large, anisotropic vortical structures, whose spatial organization affects the scalar transport and therefore the fluxes across the boundary layer. With the aim of investigating the spatial structure and scaling in the Convective Boundary Layer, two-dimensional velocity fields were measured, on a vertical plane, by means of a pyramidal Lucas-Kanade algorithm. The coherent structures characterizing the turbulent convection were educed by analyzing the Finite-Time Lyapunov Exponent fields, which also revealed interesting phenomenological features linked to the mixing processes occurring in the Convective Boundary Layer. Both velocity and vorticity fields were analyzed in a scale-invariance framework. Data analysis showed that normalized probability distribution functions for velocity differences are dependent on the scale and tend to become Gaussian for large separations. Extended Self Similarity holds true for velocity structure functions computed within the mixing layer, and their scaling exponents are interpreted well in the phenomenological framework of the Hierarchical Structure Model. Specifically, ? parameter, which is related to the similarity between weak and strong vortices, reveals a higher degree of intermittency for the vertical velocity component with respect to the horizontal one. On the other hand, the analysis of circulation structure functions shows that scaling exponents are fairly constant in the lowest part of the mixed layer, and their values are in agreement with those reported in Benzi et al. (Phys Rev E 55:3739-3742, 1997) for shear turbulence. Moreover, the relationship between circulation and velocity scaling exponents is analyzed, and it is found to be linear in the bottom part of the mixing layer. The investigation of the CBL spatial features, which has seldom been studied experimentally, has important implications for the comprehension of the mixing dynamics, as well as in turbulence closure models.
On the Effects of Surface Roughness on Boundary Layer Transition
NASA Technical Reports Server (NTRS)
Choudhari, Meelan M.; Li, Fei; Chang, Chau-Lyan; Edwards, Jack
2009-01-01
Surface roughness can influence laminar-turbulent transition in many different ways. This paper outlines selected analyses performed at the NASA Langley Research Center, ranging in speed from subsonic to hypersonic Mach numbers and highlighting the beneficial as well as adverse roles of the surface roughness in technological applications. The first theme pertains to boundary-layer tripping on the forebody of a hypersonic airbreathing configuration via a spanwise periodic array of trip elements, with the goal of understanding the physical mechanisms underlying roughness-induced transition in a high-speed boundary layer. The effect of an isolated, finite amplitude roughness element on a supersonic boundary layer is considered next. The other set of flow configurations examined herein corresponds to roughness based laminar flow control in subsonic and supersonic swept wing boundary layers. A common theme to all of the above configurations is the need to apply higher fidelity, physics based techniques to develop reliable predictions of roughness effects on laminar-turbulent transition.
Kinetic Boundary Layers and FluidKinetic Coupling in Semiconductors
Schmeiser, Christian
Kinetic Boundary Layers and FluidÂKinetic Coupling in Semiconductors Pierre Degond 1 and Christian Schmeiser 2 Abstract. The semiconductor Boltzmann equation with elastic collisions as the dominating decomposition approach are presented. Key words: Semiconductor Boltzmann equation, spherical harmonics ex
Turbulent Coherent Structures in a Thermally Stable Boundary Layer
NASA Astrophysics Data System (ADS)
Williams, Owen; Bailey, Sean; Smits, Alexander
2009-11-01
An experiment was conducted to examine the effect of thermal stability on turbulent coherent structures occurring in a flat plate boundary layer. The objective is to further characterize the turbulence in thermally stable atmospheric boundary layers, commonly found in the arctic regions, focusing on Reynolds number independent effects. This experiment was conducted in a 16 foot long, 4'x2' cross-section, open-return wind tunnel by replacing the upper surface with a heated half inch aluminum plate. The plate was maintained at an isothermal condition, the boundary layer along this surface was tripped and the tunnel run at the lowest speed possible, in order to maintain both a fully turbulent boundary layer and a large Richardson number. A wide range of stabilities were investigated, with Richardson numbers ranging from 0 to 0.5, covering both the weakly and strongly stable regimes. Using thermocouple temperature measurements and time resolved particle image velocimetry; an attempt was made to identify changes in coherent turbulent motions corresponding to changing flow stability. Additionally, an attempt was made to identify significant features of the turbulence that could be used to identify clearly delineating features of the weakly stable and strongly stable flow regimes.
Second Mode Interactions in Supersonic Boundary Layers Gordon Erlebacher
Erlebacher, Gordon
Second Mode Interactions in Supersonic Boundary Layers Gordon Erlebacher NASA Langley Research of the linear stability characteristics of compressible shear flows at both subsonic and supersonic Mach numbers in the supersonic regime. The full compressible NavierStokes equations are therefore numerically solved within
ATMOSPHERIC DISPERSION IN THE ARCTIC: WINTERTIME BOUNDARY-LAYER MEASUREMENTS
The wintertime arctic atmospheric boundary layer was investigated with micro-meteorological and SF6 tracer measurements collected in Prudhoe Bay, AK. he flat, snow-covered tundra surface at this site generates a very small (0.03 cm) surface roughness. he relatively warm maritime ...
Stability of hypersonic boundary-layer flows with chemistry
NASA Technical Reports Server (NTRS)
Reed, Helen L.; Stuckert, Gregory K.; Haynes, Timothy S.
1993-01-01
The effects of nonequilibrium chemistry and three dimensionality on the stability characteristics of hypersonic flows are discussed. In two-dimensional (2-D) and axisymmetric flows, the inclusion of chemistry causes a shift of the second mode of Mack to lower frequencies. This is found to be due to the increase in size of the region of relative supersonic flow because of the lower speeds of sound in the relatively cooler boundary layers. Although this shift in frequency is present in both the equilibrium and nonequilibrium air results, the equilibrium approximation predicts modes which are not observed in the nonequilibrium calculations (for the flight conditions considered). These modes are superpositions of incoming and outgoing unstable disturbances which travel supersonically relative to the boundary-layer edge velocity. Such solutions are possible because of the finite shock stand-off distance. Their corresponding wall-normal profiles exhibit an oscillatory behavior in the inviscid region between the boundary-layer edge and the bow shock. For the examination of three-dimensional (3-D) effects, a rotating cone is used as a model of a swept wing. An increase of stagnation temperature is found to be only slightly stabilizing. The correlation of transition location (N = 9) with parameters describing the crossflow profile is discussed. Transition location does not correlate with the traditional crossflow Reynolds number. A new parameter that appears to correlate for boundary-layer flow was found. A verification with experiments on a yawed cone is provided.
Stratified Flow over Topography: Wave Generation and Boundary Layer Separation
Sutherland, Bruce
Stratified Flow over Topography: Wave Generation and Boundary Layer Separation B. R. Sutherland topography. We have chosen to use periodic, finiteamplitude hills which are representative of the Earth upon internal waves generated by flow over rough topography. 1 Introduction Internal waves propagate
Stratified Flow over Topography: Wave Generation and Boundary Layer Separation
Sutherland, Bruce
Stratified Flow over Topography: Wave Generation and Boundary Layer Separation B. R. Sutherland topography. We have chosen to use periodic, finite-amplitude hills which are representative of the Earth upon internal waves generated by flow over rough topography. 1 Introduction Internal waves propagate
TURBULENCE PARAMETERS IMPACTING DISPERSION IN AN URBAN CONVECTIVE BOUNDARY LAYER
Turbulence measurements of the three dimensional wind components were collected by an instrumented research aircraft on 7 days in August 1976. These aircraft flights were conducted as part of the Regional Air Pollution Study (RAPS) urban boundary layer field program in St. Louis,...
Passive hypervelocity boundary layer control using an ultrasonically absorptive surface
NASA Astrophysics Data System (ADS)
Rasheed, Adam
A series of exploratory boundary layer transition experiments was performed on a sharp 5.06 degree half-angle round cone at zero angle-of-attack in the T5 Hypervelocity Shock Tunnel in order to test a novel hypersonic boundary layer control scheme. Recently performed linear stability analyses suggested that transition could be delayed in hypersonic boundary layers by using an ultrasonically absorptive surface that would damp the second mode (Mack mode). The cone used in the experiments was constructed with a smooth surface on half the cone (to serve as a control) and an acoustically absorptive porous surface on the other half. It was instrumented with flush-mounted thermocouples to detect the transition location. Test gases investigated included nitrogen and carbon dioxide at Mach 5 with specific reservoir enthalpy ranging from 1.3 MJ/kg to 13.0 MJ/kg and reservoir pressure ranging from 9.0 MPa to 50.0 MPa. Detailed comparisons were performed to insure that previous results obtained in similar boundary layer transition experiments (on a regular smooth surface) were reproduced and the results were extended to examine the effects of the porous surface. These experiments indicated that the porous surface was highly effective in delaying transition provided that the hole size was significantly smaller than the viscous length scale.
Hypersonic boundary layer instabilities affected by various porous surfaces
NASA Astrophysics Data System (ADS)
Wang, Xiaowen; Zhong, Xiaolin
2010-11-01
Hypersonic boundary layer instabilities of a Mach 5.92 flow over a flat plate affected by various porous surfaces are studied by numerical simulations. Steady base flow is obtained by solving compressible Navier-Stokes equations with a fifth-order shock-fitting method and a second-order TVD scheme. Stability simulations consist of two steps: (1) disturbances corresponding to a single boundary layer wave (mode F or mode S) are superimposed at a cross-section of the boundary layer near the leading edge to show spatial development of the wave; (2) porous coatings are used downstream of the superimposed wave to investigate its effect on boundary-layer instabilities. The results show that porous coating only has local effects on the instabilities of mode S and mode F. In porous region, Mack's first mode is destabilized whereas Mack's second mode and Mode F are stabilized. For felt-metal porous coating, destabilization of Mack's first mode is so significant that disturbances are slightly destabilized when porous coating are put on the whole flat plate. At approximately the same porosity, regular structure porous coating is weaker in first mode destabilization and second mode stabilization than felt-metal porous coating.
Passive hypervelocity boundary layer control using an acoustically absortive surface
NASA Astrophysics Data System (ADS)
Rasheed, Adam
A series of exploratory boundary layer transition experiments was performed on a sharp 5.06 degree half-angle round cone at zero angle-of-attack in the T5 Hypervelocity Shock Tunnel in order to test a novel hypersonic boundary layer control scheme. Recently performed linear stability analyses suggested that transition could be delayed in hypersonic boundary layers by using an ultrasonically absorptive surface that would damp the second mode (Mack mode). The cone used in the experiments was constructed with a smooth surface on half the cone (to serve as a control) and an acoustically absorptive porous surface on the other half. It was instrumented with flush-mounted thermocouples to detect the transition location. Test gases investigated included nitrogen and carbon dioxide at M = 5 with specific reservoir enthalpy ranging from 1.3 MJ/kg to 13.0 MJ/kg and reservoir pressure ranging from 9.0 MPa to 50.0 MPa. Detailed comparisons were performed to insure that previous results obtained in similar boundary layer transition experiments (on a regular smooth surface) were reproduced and the results were extended to examine the effects of the porous surface. These experiments indicated that the porous surface was highly effective in delaying transition provided that the hole size was significantly smaller than the viscous length scale.
Control plate for shock-boundary layer interaction
NASA Technical Reports Server (NTRS)
Goodman, W. L.; Morrisette, E. L.; Hussaini, M. Y.; Bushnell, D. M.
1985-01-01
Paper describes tests and computations for a relatively unique technique to greatly reduce/eliminate the separation region for shock-boundary layer interactions. A number of studies have shown that the usual effects of such interactions include increased local heating and wall pressures, thickening of the boundary layer and a decrease in the momentum of the flow and, for stronger waves, flow separation. This flow situation is particularly prevalent in supersonic and hypersonic inlets where severe performance degradation can occur due to flow separation. High performance engine design generally requires a uniform entering flow field with little stagnation pressure loss. Previous approaches to the problem involved primarily active devices (e.g., suction or blowing); the present paper considers a passive device. The boundary layer separation control technique considered herein involves the placement of an embedded plate in the outer portion of the boundary layer and parallel to the wall. This control plate is situated such that the incident shock impinges upon and reflects from its surface, thus greatly lessening the pressure gradient in the low momentum near wall region.
FINITE-DIFFERENCE SOLUTION OF BOUNDARY-LAYER EQUATIONS
S. K. Dey
1980-01-01
In this article nonlinear third-order ordinary differential equations representing boundary-layer flows are reduced to integrodifferential equations, approximated by finite differences, and solved by a perturbed iterative scheme (PIS). PIS has a quadratic rate of convergence and is generally independent of initial guesses for the root.
Finite-difference solution of boundary-layer equations
S. K. Dey
1980-01-01
In this article nonlinear third-order ordinary differential equations representing boundary-layer flows are reduced to integrodifferential equations, approximated by finite differences, and solved by a perturbed iterative scheme (PIS). PIS has a quadratic rate of convergence and is generally independent of initial guesses for the root.
Iodine Species in the Marine Boundary Layer: a model study
J. Moldanova; R. Sander
2003-01-01
Multiphase chemical reactions of iodine species in marine boundary layer (MBL) were simulated using the box Model Of Chemistry Considering Aerosols (MOCCA). The chemical mechanism considers reactions both in the gas phase and in deliquesced sea-salt and sulfate aerosols. Photochemical reaction rates vary as a function of solar declination. In addition to the standard tropospheric HOx, CH4, and NOx chemistry,
Turbulent dispersion in the Atmospheric Convective Boundary Layer
A. Dosio
2005-01-01
The dispersion of a plume in the Atmospheric Boundary Layer is a very complex phenomenon that includes the transport, the mixing and the chemical transformations of the plume material. When a plume is dispersed in the ABL, its shape, evolution, and internal structure are determined by the interaction between the plume and the turbulent eddies that characterize the atmospheric motion.
Numerical Calculations of Shock-Wave/Boundary-Layer Flow Interactions
NASA Technical Reports Server (NTRS)
Huang, P. G.; Liou, W. W.
1994-01-01
The paper presents results of calculations for 2-D supersonic turbulent compression corner flows. The results seem to indicate that the newer, improved kappa-epsilon models offer limited advantages over the standard kappa-epsilon model in predicting the shock-wave/boundary-layer flows in the 2-D compression corner over a wide range of corner angles and flow conditions.
Explicit analytic solution for similarity boundary layer equations
Shi-Jun Liao; Ioan Pop
2004-01-01
In this paper the homotopy analysis method for strongly non-linear problems is employed to give two kinds of explicit analytic solutions of similarity boundary-layer equations. The analytic solutions are explicitly expressed by recurrence formulas for constant coefficients and can give accurate results in the whole regions of physical parameters.
Precipitation from convective boundary layers in arctic air masses
Haraldur Ólafsson; Hans Økland
1994-01-01
Cold air mass formed over the ice-covered polar area during the winter season often moves southward over the Norwegian Sea. The heat flux from the water produces a CBL (convective boundary layer) with increasing thickness and temperature in the downstream direction. Usually, snow showers are observed over the sea and at the coast of Norway. The object of this investigation
Propagation of propeller tone noise through a fuselage boundary layer
NASA Technical Reports Server (NTRS)
Hanson, D. B.; Magliozzi, B.
1984-01-01
In earlier experimental and analytical studies, it was found that the boundary layer on an aircraft could provide significant shielding from propeller noise at typical transport airplane cruise Mach numbers. In this paper a new three-dimensional theory is described that treats the combined effects of refraction and scattering by the fuselage and boundary layer. The complete wave field is solved by matching analytical expressions for the incident and scattered waves in the outer flow to a numerical solution in the boundary layer flow. The model for the incident waves is a near-field frequency-domain propeller source theory developed previously for free field studies. Calculations for an advanced turboprop (Prop-Fan) model flight test at 0.8 Mach number show a much smaller than expected pressure amplification at the noise directivity peak, strong boundary layer shielding in the forward quadrant, and shadowing around the fuselage. Results are presented showing the difference between fuselage surface and free-space noise predictions as a function of frequency and Mach number. Comparison of calculated and measured effects obtained in a Prop-Fan model flight test show good agreement, particularly near and aft of the plane of rotation at high cruise Mach number.
Stability of the Bdewadt boundary layer Sharon Stephen
Stability of the Bödewadt boundary layer Sharon Stephen School of Mathematics The University of Birmingham s.o.stephen@bham.ac.uk May 2009 S. O. Stephen (University of Birmingham) Stability of Bödewadt Basic flow Numerical results 4 Asymptotic results GSW modes Travelling modes 5 Future work S. O. Stephen
CFD simulation of the atmospheric boundary layer: wall function problems
Bert Blocken; Ted Stathopoulos; Jan Carmeliet
2007-01-01
Accurate Computational Fluid Dynamics (CFD) simulations of atmospheric boundary layer (ABL) flow are essential for a wide variety of atmospheric studies including pollutant dispersion and deposition. The accuracy of such simulations can be seriously compromised when wall-function roughness modifications based on experimental data for sand-grain roughened pipes and channels are applied at the bottom of the computational domain. This type
Large-Scale Streamwise Turbulent Structures in Hypersonic Boundary Layers
English, Benjamin L.
2013-04-22
Velocimetry in a M = 4.9 blow-down wind tunnel accompanied by a series of data analysis in order to identify the existence of streamwise-elongated large-scale turbulence structures in a hypersonic boundary layer. Furthermore, this study identified physical...
Turbulence Structure and Wall Signature in Hypersonic Boundary Layer
Martín, Pino
Turbulence Structure and Wall Signature in Hypersonic Boundary Layer Yin-Chiu Kan , Beekman Izaak and low- speed features, found in subsonic experiments, are present in our supersonic and hypersonic and hypersonic regimes due to the lack of detailed flow field data, and the studies have been mostly restricted
Kahuku kite wind study. I. Kahuka beach boundary layer
P. A. Daniels; N. E. Oshiro
1982-01-01
In the coastal plain of Kahuku, Oahu, during August 1980 and February to April 1981, the boundary layer and the mechanism that creates it were investigated. Four sets of two automatically-recording tethered aerodynamically lifting anemometer (TALA) kites flying continuously at 100 and 300 ft, and conventional 30 ft instruments were used concurrently at four sites along a transect parallel to
ON HYDROMAGNETIC STRESSES IN ACCRETION DISK BOUNDARY LAYERS
Pessah, Martin E.; Chan, Chi-kwan E-mail: ckch@nordita.org
2012-05-20
Detailed calculations of the physical structure of accretion disk boundary layers, and thus their inferred observational properties, rely on the assumption that angular momentum transport is opposite to the radial angular frequency gradient of the disk. The standard model for turbulent shear viscosity satisfies this assumption by construction. However, this behavior is not supported by numerical simulations of turbulent magnetohydrodynamic (MHD) accretion disks, which show that angular momentum transport driven by the magnetorotational instability (MRI) is inefficient in disk regions where, as expected in boundary layers, the angular frequency increases with radius. In order to shed light on physically viable mechanisms for angular momentum transport in this inner disk region, we examine the generation of hydromagnetic stresses and energy density in differentially rotating backgrounds with angular frequencies that increase outward in the shearing-sheet framework. We isolate the modes that are unrelated to the standard MRI and provide analytic solutions for the long-term evolution of the resulting shearing MHD waves. We show that, although the energy density of these waves can be amplified significantly, their associated stresses oscillate around zero, rendering them an inefficient mechanism to transport significant angular momentum (inward). These findings are consistent with the results obtained in numerical simulations of MHD accretion disk boundary layers and challenge the standard assumption of efficient angular momentum transport in the inner disk regions. This suggests that the detailed structure of turbulent MHD accretion disk boundary layers could differ appreciably from those derived within the standard framework of turbulent shear viscosity.
Stability of Supersonic Boundary Layers Over Blunt Wedges
NASA Technical Reports Server (NTRS)
Balakumar, Ponnampalam
2006-01-01
Receptivity and stability of supersonic boundary layers over blunt flat plates and wedges are numerically investigated at a free stream Mach number of 3.5 and at a high Reynolds number of 10(exp 6)/inch. Both the steady and unsteady solutions are obtained by solving the full Navier-Stokes equations using the 5th-order accurate weighted essentially non-oscillatory (WENO) scheme for space discretization and using third-order total-variation-diminishing (TVD) Runge-Kutta scheme for time integration. Computations are performed for a flat plate with leading edge thicknesses of 0.0001, 0.001, 0.005 and 0.01 inches that give Reynolds numbers based on the leading edge thickness ranging from 1000 to 10000. Calculations are also performed for a wedge of 10 degrees half angle with different leading edge radii 0.001 and 0.01 inches. The linear stability results showed that the bluntness has a strong stabilizing effect on the stability of two-dimensional boundary layers. The transition Reynolds number for a flat plate with a leading edge thickness of 0.01 inches is about 3.5 times larger than it is for the Blasius boundary layer. It was also revealed that boundary layers on blunt wedges are far more stable than on blunt flat plates.
Iodine monoxide in the Western Pacific marine boundary layer
NASA Astrophysics Data System (ADS)
Großmann, K.; Frieß, U.; Peters, E.; Wittrock, F.; Lampel, J.; Yilmaz, S.; Tschritter, J.; Sommariva, R.; von Glasow, R.; Quack, B.; Krüger, K.; Pfeilsticker, K.; Platt, U.
2013-03-01
A latitudinal cross-section and vertical profiles of iodine monoxide (IO) are reported from the marine boundary layer of the Western Pacific. The measurements were taken using Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) during the TransBrom cruise of the German research vessel Sonne, which led from Tomakomai, Japan (42° N, 141° E) through the Western Pacific to Townsville, Australia (19° S, 146° E) in October 2009. In the marine boundary layer within the tropics (between 20° N and 5° S), IO mixing ratios ranged between 1 and 2.2 ppt, whereas in the subtropics and at mid-latitudes typical IO mixing ratios were around 1 ppt in the daytime. The profile retrieval reveals that the bulk of the IO was located in the lower part of the marine boundary layer. Photochemical simulations indicate that the organic iodine precursors observed during the cruise (CH3I, CH2I2, CH2ClI, CH2BrI) are not sufficient to explain the measured IO mixing ratios. Reasonable agreement between measured and modelled IO can only be achieved if an additional sea-air flux of inorganic iodine (e.g., I2) is assumed in the model. Our observations add further evidence to previous studies that reactive iodine is an important oxidant in the marine boundary layer.
Iodine monoxide in the Western Pacific marine boundary layer
NASA Astrophysics Data System (ADS)
Großmann, K.; Frieß, U.; Peters, E.; Wittrock, F.; Lampel, J.; Yilmaz, S.; Tschritter, J.; Sommariva, R.; von Glasow, R.; Quack, B.; Krüger, K.; Pfeilsticker, K.; Platt, U.
2012-10-01
A latitudinal cross-section and vertical profiles of iodine monoxide (IO) are reported from the marine boundary layer of the Western Pacific. The measurements were taken using Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) during the TransBrom cruise of the German research vessel Sonne, which led from Tomakomai, Japan (42° N, 141° E) through the Western Pacific to Townsville, Australia (19° S, 146° E) in October 2009. In the marine boundary layer within the tropics (between 20° N and 5° S), IO mixing ratios ranged between 1 and 2.2 ppt, whereas in the subtropics and at mid-latitudes typical IO mixing ratios were around 1 ppt in the daytime. The profile retrieval reveals that the bulk of the IO was located in the lower part of the marine boundary layer. Photochemical simulations indicate that the organic iodine precursors observed during the cruise (CH3I, CH2I2, CH2ClI, CH2BrI) are not sufficient to explain the measured IO mixing ratios. Reasonable agreement between measured and modelled IO can only be achieved, if an additional sea-air flux of inorganic iodine (e.g. I2) is assumed in the model. Our observations add further evidence to previous studies that reactive iodine is an important oxidant in the marine boundary layer.
Experimental study of a supersonic turbulent boundary layer using PIV
NASA Astrophysics Data System (ADS)
He, Lin; Yi, ShiHe; Zhao, YuXin; Tian, LiFeng; Chen, Zhi
2011-09-01
Particle image velocimetry was applied to the study of the statistical properties and the coherent structures of a flat plate turbulent boundary layer at Mach 3. The nanoparticles with a good flow-following capability in supersonic flows were adopted as the tracer particles in the present experiments. The results show that the Van Driest transformed mean velocity profile satisfies the incompressible scalings and reveals a log-law region that extends to y/?=0.4, which is further away from the wall than that in incompressible boundary layers. The Reynolds stress profiles exhibit a plateau-like region in the log-law region. The hairpin vortices in the streamwise-wall-normal plane are identified using different velocity decompositions, which are similar to the results of the flow visualization via NPLS technique. And multiple hairpin vortices are found moving at nearly the same velocity in different regions of the boundary layer. In the streamwise-spanwise plane, elongated streaky structures are observed in the log-law region, and disappear in the outer region of the boundary layer, which is contrary to the flow visualization results.
On the theory of the turbulent boundary layer
NASA Technical Reports Server (NTRS)
Rotta, J
1953-01-01
As a rule, a division of the turbulent boundary layer is admissible: a division into a part near the wall, where the flow is governed only by the wall effects, and into an outer part, where the wall roughness and the viscosity of the flow medium affects only the wall shearing stress occurring as boundary condition but does not exert any other influence on the flow. Both parts may be investigated to a large extent independently. Under certain presuppositions there result for the outer part "similar" solutions. The theoretical considerations give a cue how to set up, by appropriate experiments and their evaluation, generally valid connections which are required for the approximate calculation of the turbulent boundary layer according to the momentum and energy theorem.
Rough-wall turbulent boundary layers in the transition regime
NASA Technical Reports Server (NTRS)
Bandyopadhyay, Promode R.
1987-01-01
An experimental investigation of turbulent boundary layers over two-dimensional spanwise groove and three-dimensional sandgrain roughnesses in the transition regime between hydraulically smooth and fully rough conditions is presented. It is found that a self-preserving state can be reached in boundary layers developing over both d-type groove and sandgrain roughnesses, and that the drag of a k-type rough wall can be reduced by lowering the spanwise aspect ratio of the roughness elements. The two roughness Reynolds numbers defining the boundaries of the transition regime of the k-type roughnesses are shown to decrease with increasing roughness-element spanwise aspect ratio, and the upper critical transition Reynolds number is shown to determine the roughness behavior in both the transition and fully rough regime.
On Supersonic-Inlet Boundary-Layer Bleed Flow
NASA Technical Reports Server (NTRS)
Harloff, Gary J.; Smith, Gregory E.
1995-01-01
Boundary-layer bleed in supersonic inlets is typically used to avoid separation from adverse shock-wave/boundary-layer interactions and subsequent total pressure losses in the subsonic diffuser and to improve normal shock stability. Methodologies used to determine bleed requirements are reviewed. Empirical sonic flow coefficients are currently used to determine the bleed hole pattern. These coefficients depend on local Mach number, pressure ratio, hole geometry, etc. A new analytical bleed method is presented to compute sonic flow coefficients for holes and narrow slots and predictions are compared with published data to illustrate the accuracy of the model. The model can be used by inlet designers and as a bleed boundary condition for computational fluid dynamic studies.
Linear and nonlinear stability of the Blasius boundary layer
NASA Technical Reports Server (NTRS)
Bertolotti, F. P.; Herbert, TH.; Spalart, P. R.
1992-01-01
Two new techniques for the study of the linear and nonlinear instability in growing boundary layers are presented. The first technique employs partial differential equations of parabolic type exploiting the slow change of the mean flow, disturbance velocity profiles, wavelengths, and growth rates in the streamwise direction. The second technique solves the Navier-Stokes equation for spatially evolving disturbances using buffer zones adjacent to the inflow and outflow boundaries. Results of both techniques are in excellent agreement. The linear and nonlinear development of Tollmien-Schlichting (TS) waves in the Blasius boundary layer is investigated with both techniques and with a local procedure based on a system of ordinary differential equations. The results are compared with previous work and the effects of non-parallelism and nonlinearity are clarified. The effect of nonparallelism is confirmed to be weak and, consequently, not responsible for the discrepancies between measurements and theoretical results for parallel flow.
Carrillo, Jan-Michael; Brown, W Michael; Dobrynin, Andrey
2012-01-01
We study friction between charged and neutral brush layers of bottle-brush macromolecules using molecular dynamics simulations. In our simulations the solvent molecules were treated explicitly. The deformation of the bottle-brush macromolecules under the shear were studied as a function of the substrate separation and shear stress. For charged bottle-brush layers we study effect of the added salt on the brush lubricating properties to elucidate factors responsible for energy dissipation in charged and neutral brush systems. Our simulations have shown that for both charged and neutral brush systems the main deformation mode of the bottle-brush macromolecule is associated with the backbone deformation. This deformation mode manifests itself in the backbone deformation ratio, , and shear viscosity, , to be universal functions of the Weissenberg number W. The value of the friction coefficient, , and viscosity, , are larger for the charged bottle-brush coatings in comparison with those for neutral brushes at the same separation distance, D, between substrates. The additional energy dissipation generated by brush sliding in charged bottle-brush systems is due to electrostatic coupling between bottle-brush and counterion motion. This coupling weakens as salt concentration, cs, increases resulting in values of the viscosity, , and friction coefficient, , approaching corresponding values obtained for neutral brush systems.
NASA Technical Reports Server (NTRS)
Tetervin, Neal; Lin, Chia Chiao
1951-01-01
A general integral form of the boundary-layer equation, valid for either laminar or turbulent incompressible boundary-layer flow, is derived. By using the experimental finding that all velocity profiles of the turbulent boundary layer form essentially a single-parameter family, the general equation is changed to an equation for the space rate of change of the velocity-profile shape parameter. The lack of precise knowledge concerning the surface shear and the distribution of the shearing stress across turbulent boundary layers prevented the attainment of a reliable method for calculating the behavior of turbulent boundary layers.
Provenance of the K/T boundary layers
NASA Technical Reports Server (NTRS)
Hildebrand, A. R.; Boynton, W. V.
1988-01-01
An array of chemical, physical and isotopic evidence indicates that an impact into oceanic crust terminated the Cretaceous Period. Approximately 1500 cu km of debris, dispersed by the impact fireball, fell out globally in marine and nonmarine environments producing a 2 to 4 mm thick layer (fireball layer). In North American locales, the fireball layer overlies a 15 to 25 mm thick layer of similar but distinct composition. This 15 to 25 mm layer (ejecta layer) may represent approximately 1000 cu km of lower energy ejecta from a nearby impact site. Isotopic and chemical evidence supports a mantle provenance for the bulk of the layers. The extraordinary REE pattern of the boundary clays was modelled as a mixture of oceanic crust, mantle, and approximately 10 percent continental material. The results are presented. If the siderophiles of the ejecta layer were derived solely from the mantle, a test may be available to see if the siderophile element anomaly of the fireball layer had an extraterrestrial origin. Radiogenic Os-187 is depleted in the mantle relative to an undifferentiated chondritic source. Os-187/Os-186 ratios of 1.049 and 1.108 were calculated for the ejecta and fireball layers, respectively.
Calculation of turbulent boundary layers with tangential slot injection
NASA Technical Reports Server (NTRS)
Cary, A. M., Jr.; Bushnell, D. M.; Hefner, J. N.
1977-01-01
Paper describes a numerical calculation scheme for tangential slot injection (wall-wake) flows; application of the scheme over a wide range of flow conditions indicates increased accuracy compared to previous work. Predictions from the numerical code were in good agreement with experiment (velocity profile, skin-friction, and effectiveness data) for low- and high-speed flows. To achieve improved accuracy, modifications in the turbulence modeling, compared to previous research, were necessary for the imbedded shear layer region in the near field and for the wall region near shear layer impingement. Anomalous behavior was noted for far field experimental velocity profiles in low-speed flow when the slot-to-free stream velocity ratio was near one
Cycle II.5 aircraft aero-optical turbulent boundary-layer\\/shear-layer measurements
K. Gilbert
1980-01-01
The aero-optical effects associated with propagating a laser beam through aircraft turbulent boundary layers and shear layers were examined. Observed laser optical performance levels were compared with those inferred from aerodynamic measurements of unsteady densities and correlation lengths within these random flows. Optical instrumentation included a fast shearing interferometer (FSI). A 9 cm diameter collimated helium neon laser beam made
Time-resolved PIV of a turbulent boundary layer over a spanwise-oscillating surface
NASA Astrophysics Data System (ADS)
Gouder, Kevin; Morrison, Jonathan
2012-11-01
This work reports measurements of a turbulent boundary layer at Re? ~ 2500, over a resonant spanwise-oscillating surface driven by a linear electromagnetic motor. Time-resolved PIV measurements of velocity are presented and supplemented by hot-wire measurements of velocity and direct drag measurements of friction drag using a drag balance. A maximum of 16% surface friction reduction, as calculated by the diminution of the wall-normal streamwise velocity gradient was obtained. The PIV laser beam was parallel to the plane of the oscillating surface at a height of y+ ~ 15, hence, top-down views of the near-wall turbulence activity and the effect of the surface oscillation on its evolution were obtained. It has been shown that the imposition of a spanwise Stokes-like layer at a non-dimensional period of T+ =Tu?2 / ? ~ 100 at peak-peak oscillation amplitudes equal to or larger than the mean streak spacing enabled the direct manipulation of the quasi-streamwise near-wall structures and caused fundamental changes in their evolution leading to reductions, for example, in the near-wall values of the mean-square of the streamwise fluctuating velocity component. This work was supported by Qinetiq, Airbus and EPSRC.
Convective Cold Pool Structure and Boundary Layer Recovery in DYNAMO
NASA Astrophysics Data System (ADS)
Savarin, A.; Chen, S. S.; Kerns, B. W.; Lee, C.; Jorgensen, D. P.
2012-12-01
One of the key factors controlling convective cloud systems in the Madden-Julian Oscillation (MJO) over the tropical Indian Ocean is the property of the atmospheric boundary layer. Convective downdrafts and precipitation from the cloud systems produce cold pools in the boundary layer, which can inhibit subsequent development of convection. The recovery time is the time it takes for the boundary layer to return to pre convective conditions. It may affect the variability of the convection on various time scales during the initiation of MJO. This study examines the convective cold pool structure and boundary layer recovery using the NOAA WP-3D aircraft observations, include the flight-level, Doppler radar, and GPS dropsonde data, collected during the Dynamics of MJO (DYNAMO) field campaign from November-December 2011. The depth and strength of convective cold pools are defined by the negative buoyancy, which can be computed from the dropsonde data. Convective downdraft can be affected by environmental water vapor due to entrainment. Mid-level dry air observed during the convectively suppressed phase of MJO seems to enhance convective downdraft, making the cold pools stronger and deeper. Recovery of the cold pools in the boundary layer is determined by the strength and depth of the cold pools and also the air-sea heat and moisture fluxes. Given that the water vapor and surface winds are distinct for the convectively active and suppressed phases of MJO over the Indian Ocean, the aircraft data are stratified by the two different large-scale regimes of MJO. Preliminary results show that the strength and depth of the cold pools are inversely correlated with the surrounding mid-level moisture. During the convectively suppressed phase, the recovery time is ~5-20 hours in relative weak wind condition with small air-sea fluxes. The recovery time is generally less than 6 hours during the active phase of MJO with moist mid-levels and stronger surface wind and air-sea fluxes.
On buffer layers as non-reflecting computational boundaries
NASA Technical Reports Server (NTRS)
Hayder, M. Ehtesham; Turkel, Eli L.
1996-01-01
We examine an absorbing buffer layer technique for use as a non-reflecting boundary condition in the numerical simulation of flows. One such formulation was by Ta'asan and Nark for the linearized Euler equations. They modified the flow inside the buffer zone to artificially make it supersonic in the layer. We examine how this approach can be extended to the nonlinear Euler equations. We consider both a conservative and a non-conservative form modifying the governing equations in the buffer layer. We compare this with the case that the governing equations in the layer are the same as in the interior domain. We test the effectiveness of these buffer layers by a simulation of an excited axisymmetric jet based on a nonlinear compressible Navier-Stokes equations.
Turbulent boundary layer on a convex, curved surface
NASA Technical Reports Server (NTRS)
Gillis, J. C.; Johnston, J. P.; Kays, W. M.; Moffat, R. J.
1980-01-01
The effects of strong convex curvature on boundary layer turbulence were investigated. The data gathered on the behavior of Reynolds stress suggested the formulation of a simple turbulence model. Three sets of data were taken on two separate facilities. Both rigs had flow from a flat surface, over a convex surface with 90 deg of turning, and then onto a flat recovery surface. The geometry was adjusted so that, for both rigs, the pressure gradient along the test surface was zero - thus avoiding any effects of streamwise acceleration on the wall layers. Results show that after a sudden introduction of curvature, the shear stress in the outer part of the boundary layer is sharply diminished and is even slightly negative near the edge. The wall shear also drops off quickly downstream. In contrast, when the surface suddenly becomes flat again, the wall shear and shear stress profiles recover very slowly towards flat wall conditions.
Hypersonic Turbulent Boundary-Layer and Free Sheer Database Datasets
NASA Technical Reports Server (NTRS)
Settles, Gary S.; Dodson, Lori J.
1993-01-01
A critical assessment and compilation of data are presented on attached hypersonic turbulent boundary layers in pressure gradients and compressible turbulent mixing layers. Extensive searches were conducted to identify candidate experiments, which were subjected to a rigorous set of acceptance criteria. Accepted datasets are both tabulated and provided in machine-readable form. The purpose of this database effort is to make existing high quality data available in detailed form for the turbulence-modeling and computational fluid dynamics communities. While significant recent data were found on the subject of compressible turbulent mixing, the available boundary-layer/pressure-gradient experiments are all older ones of which no acceptable data were found at hypersonic Mach numbers.
Role of interfacial friction for flow instabilities in a thin polar ordered active fluid layer
Niladri Sarkar; Abhik Basu
2015-07-14
We construct a generic coarse-grained dynamics of a thin inflexible planar layer of polar-ordered suspension of active particles, that is frictionally coupled to an embedding isotropic passive fluid medium with a friction coefficient $\\Gamma$. Being controlled by $\\Gamma$, our model provides a unified framework to describe the long wavelength behaviour of a variety of thin polar-ordered systems, ranging from {\\em wet} to {\\em dry} active matters and free standing active films. Investigations of the linear instabilities around a chosen orientationally ordered uniform reference state reveal generic moving and static instabilities in the system, that can depend sensitively on $\\Gamma$. Based on our results, we discuss estimation of bounds on $\\Gamma$ in experimentally accessible systems.
Shock-boundary layer interaction and transonic flutter
NASA Astrophysics Data System (ADS)
Tumkur Karnick, Pradeepa; Venkatraman, Kartik
2012-11-01
The transonic flutter dip of an aeroelastic system is primarily caused by compressibility of the flowing fluid. Viscous effects are not dominant in the pre-transonic dip region. In fact, an Euler solver can predict this flutter boundary with considerable accuracy. However with an increase in Mach number the shock moves towards the trailing edge causing shock induced separation. This shock-boundary layer interaction changes the flutter boundary in the transonic and post-transonic dip region significantly. We discuss the effect of viscosity in changing the flutter boundary in the post-transonic dip region using a RANS solver coupled to a two-degree of freedom model of the structural dynamics of a wing.
A Numerical Study of a Scaling Parameter for Turbulent Boundary Layer with Large Roughness
NASA Astrophysics Data System (ADS)
Johnson, Erika; Subramanian, Chelakara
2007-11-01
Several investigations have shown that when a turbulent boundary layer is subjected to large surface roughness (on the order of the inner layer thickness), the friction velocity, u?, is not a suitable scaling parameter for the mean and turbulent velocities. Experimental studies concerning large surface roughness have consistently shown a dramatic effect on the mean and turbulent velocities, with the effect being particularly strong on the wall normal velocity fluctuation, v'^2 . Additionally, Lebrun (2004) showed a concomitant pressure gradient normal to the rough surface, even when no external pressure gradient exists. In this investigation, we perform a numerical simulation of a boundary layer over a surface with large roughness (k/? = 0.07 - 0.3) to gain more insight on the correlation between the wall normal pressure gradient and the wall normal velocity fluctuation, v'^2 . Four different size regular roughness elements are considered and the pressure gradient velocity scale, uP, is applied to each case. It is believed that the pressure gradient velocity scale, uP, is a better alternative for capturing the effects of the roughness induced pressure gradient. While a perfect similarity is not achieved, the results scaled by uP are encouraging.
Direct Numerical Simulation of Late Stages of Transition in a Flat Plate Boundary Layer
NASA Astrophysics Data System (ADS)
Choi, M.-R.; Choi, H.; Kang, S.-H.
1997-11-01
Late stage transition in a flat plate boundary layer is investigated using the direct numerical simulation technique. Inflow disturbance is generated by blowing and suction on the wall (Rist and Fasel, 1995, JFM), which models the effect of the vibrating ribbon used by Kachanov et al. (1985, in Laminar--Turbulent Transition). The computation domain size used covers 115,000 <= Rex <= 340,000 with the resolution of 1537×99×128 grid points. The mean flow quantities such as the skin friction, shape factor and velocity profile show the characteristics of the transition to turbulence. The roll-up of the high shear layer into a new vortex around the lambda vortex is observed and examined in details. As vortical structures associated with this process evolve downstream, spikes and saw tooth-like jumps in velocity signals appear across the boundary layer. The wavenumber-frequency spectral characteristics of the velocities after the second spike stage is being investigated and will be presented. ^* Supported by UARC-SNU Contract No. 42.
Linear Stabilty of a Laminar Boundary Layer with Shock Boundary Layer Interaction at Ma=4.8
NASA Astrophysics Data System (ADS)
Pagella, Alessandro; Rist, Ulrich; Wagner, Siegfried
2001-11-01
The stability behavior of a laminar boundary layer at Ma=4.8 with shock boundary layer interaction and small amplitude disturbances is investigated by linear stability theory for compressible flows (Mack 1969) and direct numerical simulation. The effect of the shock strength is assessed. The numerical scheme is based on the unsteady, compressible, three-dimensional Navier-Stokes equations. In streamwise direction, high order split type compact finite differences are used, while in wall normal direction central differences for viscous and alternating one-sided finite differences for convective terms, in spanwise direction, a spectral Fourier Series expansion are applied. Numerical oscillations, caused by high gradients of the flow variables at the shock, are damped by an implicit filter of high order in streamwise direction. For the results obtained by the simulation without impinging shock wave, non-parallel effects could be identified and quantified. Taking these non-parallel effects into account, linear stability theory could represent stability behavior of wall distant disturbance amplitude maxima with small obliqueness angles of the disturbances for the investigated cases with shock. The impinging shock wave locally influences stability behavior of the boundary layer, which is dependent on its shock-strength, applied disturbance frequency and disturbance propagation angle. A separation bubble locally displaces the boundary layer in wall normal direction. Hence, viscous instability becomes weaker and the inviscid instability picks up.
Diverging solutions of the boundary-layer equations near a plane of symmetry
NASA Astrophysics Data System (ADS)
Thomann, Hans
1994-09-01
Experiments with converging and diverging turbulent boundary layers near a plane of symmetry are described by Pompeo et al. The test section used to generate the boundary layers on the plane y = 0 is shown. The experiments were compared with computations based on a finite-difference boundary-layer code by Bettelini. The prediction of the diverging flow agreed fairly well with the measurements and posed no special problems. The prediction of the converging flow, on the other hand, was very difficult. The results were very sensitive to the choice of parameters, and diverging solutions were observed for some combinations of parameters. It is the purpose of the present paper to investigate this tendency with different methods. Cases 1 and 2 are based on integral methods for laminar flow as described by Eichelbrenner. In case 1 the crossflow satisfies only the corresponding boundary condition at the wall which leads to a simple equation for the growth of the boundary-layer thickness. In case 2 the crossflow momentum equation is also taken into account, and case 3 uses Bettelini's code. All three methods show that there exists a critical crossflow intensity beyond which the boundary-layer thickness delta(x) diverges at some x(sub s) in the test section, and the same holds true also for turbulent flow. The results of case 1 and case 2 show that the skin friction vanishes at x(sub s). This divergence can, therefore, be called separation. However, it is a very peculiar case as no pressure gradient exists that could decelerate the x component of the flow. A similar situation exists in the plane of symmetry of a cone at angle of attack. Moore observed that the diverging flow on the windward side of cone posed no problems whereas the converging flow on the leeward side became undetermined before separation of the crossflow took place. Boericke observed similar problems when using a finite-difference code. The flow on the leeward side of a blunted cone, as investigated by Der, is very similar to the present case. `Separation' is observed in both cases in spite of a vanishing axial pressure gradient.
Dynamical Simulation of Cloudy Boundary Layer Flow during Cold Air Outbreaks
Chiu-Wai Yuen
1983-01-01
A two-dimensional primitive equation planetary boundary layer model has been constructed and applied to simulate downwind evolution of coupled dynamical, thermodynamical and cloud properties in the planetary boundary layer (PBL) developed during cold air outbreaks over warm ocean. A layered parametric approach is adopted to model the inversion -capped convective boundary layer filled with shallow cumuli, or topped by stratocumulus
NASA Technical Reports Server (NTRS)
Ashby, G. C., Jr.; Harris, J. E.
1974-01-01
Wave and skin-friction drag have been numerically calculated for a series of power-law bodies at a Mach number of 6 and Reynolds numbers, based on body length, from 1.5 million to 9.5 million. Pressure distributions were computed on the nose by the inverse method and on the body by the method of characteristics. These pressure distributions and the measured locations of boundary-layer transition were used in a nonsimilar-boundary-layer program to determine viscous effects. A coupled iterative approach between the boundary-layer and pressure-distribution programs was used to account for boundary-layer displacement-thickness effects. The calculated-drag coefficients compared well with previously obtained experimental data.
Turbulent Boundary Layers in Absence of Mean Shear
NASA Astrophysics Data System (ADS)
Johnson, Blair; Cowen, Edwin
2013-11-01
Environmental flows are often observed in which turbulence levels significantly exceed what would be expected from mean boundary shear (e.g. breaking surface waves). This enhanced turbulence produces sediment resuspension and boundary layers that differ greatly from classic turbulent boundary layer characterizations. To identify the contribution of turbulence to such sediment resuspension, experiments are conducted in a facility designed to generate homogeneous isotropic turbulence in absence of mean shear via a Randomly Actuated Synthetic Jet Array (RASJA). Using particle image velocimetry (PIV), boundary layers above both a solid glass bed and a narrowly graded sediment bed are characterized by their mean flows, turbulent kinetic energy, dissipation, spectra, and Reynolds stress. Furthermore, a surprising observation includes the formation of ripple patterns when the turbulence decays above the sediment bed. We hypothesize that the ripples scale with the integral length scale of the turbulence. By varying the percentage of active jets and the relative on- and off-times of jets in the RASJA, our investigations consider the impact of altering the integral length scale of the facility on the resulting turbulent structures and sediment motions observed.
BLSTA: A boundary layer code for stability analysis
NASA Technical Reports Server (NTRS)
Wie, Yong-Sun
1992-01-01
A computer program is developed to solve the compressible, laminar boundary-layer equations for two-dimensional flow, axisymmetric flow, and quasi-three-dimensional flows including the flow along the plane of symmetry, flow along the leading-edge attachment line, and swept-wing flows with a conical flow approximation. The finite-difference numerical procedure used to solve the governing equations is second-order accurate. The flow over a wide range of speed, from subsonic to hypersonic speed with perfect gas assumption, can be calculated. Various wall boundary conditions, such as wall suction or blowing and hot or cold walls, can be applied. The results indicate that this boundary-layer code gives velocity and temperature profiles which are accurate, smooth, and continuous through the first and second normal derivatives. The code presented herein can be coupled with a stability analysis code and used to predict the onset of the boundary-layer transition which enables the assessment of the laminar flow control techniques. A user's manual is also included.
NASA Astrophysics Data System (ADS)
Jalil, Mudassar; Asghar, Saleem; Mushtaq, Muhammad
2013-05-01
This article discusses analytical solutions for a nonlinear problem arising in the boundary layer flow of power-law fluid over a power-law stretching surface. Using perturbation method analytical solution is presented for linear stretching surface. This solution covers large range of shear thinning and shear thickening fluids and matches excellently with the numerical solution. Furthermore, some new exact solutions are found for particular combination of m (power-law stretching index) and n (power-law fluid index). This leads to generalize the case of linear stretching to nonlinear stretching surface. The effects of fluid index n on the boundary layer thickness and the skin friction for nonlinear stretching surface is analyzed and discussed. It is observed that the boundary layer thickness and the skin friction coefficient increase as non-linear parameter n decreases. This study gives a new dimension to obtain analytical solutions asymptotically for highly nonlinear problems which to the best of our knowledge has not been examined so far.
NASA Astrophysics Data System (ADS)
Talianu, C.; Nicolae, D.; Carstea, E.; Belegante, L.
2012-04-01
Planetary boundary layer (PBL) is the lowest part of the troposphere that is directly influenced by friction and solar heating from earth's surface. Accurate determination of the boundary layer heights is critical in understanding the regional air quality. Lidar systems have been widely used to examine the structure and variability of the boundary layer (BL) heights (Brook et al 2000, Talianu et al 2006, Madonna et al, 2011). This paper aims to develop a method of assessing the PBL heights using Raman multi-wavelengths lidar - RALI measurements. RALI system has three elastic (1064nm, 532nm, 355nm) and two Raman (607nm, 387nm) channels. This method is based on the vertical gradient accurate calculation of the ratio between signal collected from elastic and inelastic channels. From 500m up to 10 km this will give information about vertical distributions of aerosols layers. We have chosen to use as method for validation the one described by Stull (Stull 1988) based on virtual potential temperature. The vertical gradient of the virtual potential temperature gives also information about the stability of stratification. Temperature, pressure and humidity profiles provided by the microwave radiometer (collocated with the lidar system) have been used to determine virtual potential temperature profiles. The PBL heights calculated from virtual potential temperature have been compared with PBL heights determinate from lidar data collected before and after sunset measurements, in Magurele (Longitude: 26.029 E, Latitude: 44.348 N, a.s.l: 93m), near Bucharest, June to August 2011. Results from lidar data showed the breakdown of the boundary layer after sunset and is visible on almost every day of measurements. The height of the boundary layer has been determined and lies between 700 and 800 meters during 2011 summer time. These results have been similar with the outputs of the virtual potential temperature method and a good correlation of the two methods has been found. Therefore we validated the method based on Raman multi-wavelength lidar measurements to calculate PBL heights as a reliable and useful tool.
Control of a shock wave-boundary layer interaction using localized arc filament plasma actuators
NASA Astrophysics Data System (ADS)
Webb, Nathan Joseph
Supersonic flight is currently possible, but expensive. Inexpensive supersonic travel will require increased efficiency of high-speed air entrainment, an integral part of air-breathing propulsion systems. Although mixed compression inlet geometry can significantly improve entrainment efficiency, numerous Shock Wave-Boundary Layer Interactions (SWBLIs) are generated in this configuration. The boundary layer must therefore develop through multiple regions of adverse pressure gradient, causing it to thicken, and, in severe cases, separate. The associated increase in unsteadiness can have adverse effects on downstream engine hardware. The most severe consequence of these interactions is the increased aerodynamic blockage generated by the thickened boundary layer. If the increase is sufficient, it can choke the flow, causing inlet unstart, and resulting in a loss of thrust and high transient forces on the engine, airframe, and aircraft occupants. The potentially severe consequences associated with SWBLIs require flow control to ensure proper operation. Traditionally, boundary layer bleed has been used to control the interaction. Although this method is effective, it has inherent efficiency penalties. Localized Arc Filament Plasma Actuators (LAFPAs) are designed to generate perturbations for flow control. Natural flow instabilities act to amplify certain perturbations, allowing the LAFPAs to control the flow with minimal power input. LAFPAs also have the flexibility to maintain control over a variety of operating conditions. This work seeks to examine the effectiveness of LAFPAs as a separation control method for an oblique, impinging SWBLI. The low frequency unsteadiness in the reflected shock was thought to be the natural manifestation of a Kelvin-Helmholtz instability in the shear layer above the separation region. The LAFPAs were therefore placed upstream of the interaction to allow their perturbations to convect to the receptivity region (near the shear layer origin/separation line). Streamwise PIV measurements did not show that the boundary layer or separation region were energized by the actuation. The primary effect of the LAFPAs was the displacement of the reflected shock upstream. Jaunet et al. (2012) observed a similar shift in the reflected shock when they heated the wall beneath the boundary layer. A significantly greater power deposition was used in that work, and significantly larger shock displacements were observed. Although the LAFPAs output significantly less power (albeit in an unsteady, highly localized fashion), a parametric sweep strongly pointed to heating as the primary control mechanism. Further investigation and analysis showed that the near-wall heating of the flow by the plasma was the primary control mechanism of the LAFPAs, despite the small power input. The reflected shock was displaced by an increase in the separation region size, which was caused by the degradation of the upstream boundary layer. The LAFPAs degrade the upstream boundary layer through a variety of heating associated mechanisms: 1) Decreasing the density increases the mass flow deficit, 2) The altered skin-friction coefficient acts to retard the flow and make the velocity profile less full, and 3) The heating moves the sonic line further from the wall. Other mechanisms may also play a role.
Investigation of the Interaction of External Disturbances with Roughened Flat Plate Boundary Layer
NASA Technical Reports Server (NTRS)
Davis, Sanford S.; Dietz, A. J.
1996-01-01
The interaction of an external disturbance with a laminar boundary layer over a flat plate with distributed roughness is investigated using combined experimental and numerical methods. The experiment is modeled with an unsteady boundary layer code using second order backward differencing. The simulation includes the second order scattering from roughness elements at and near the first streamwise station of predicted boundary layer instability. A comparison of experimental measurements of the boundary layer perturbation due to the wake from a vibrating ribbon with the computed first order forced boundary layer perturbation showed excellent agreement. Second order roughness induced eigenfunctions from boundary layer theory are examined and compared with other forms of excitation
Turbulence spectra of the FIRE stratocumulus-topped boundary layers
NASA Technical Reports Server (NTRS)
Young, G. S.; Nucciarone, J. J.; Albrecht, Bruce A.
1990-01-01
There are at least four physical phenomena which contribute to the FIRE boundary layer turbulence spectra: boundary layer spanning eddies resulting from buoyant and mechanical production of turbulent kinetic energy (the microscale subrange); inertial subrange turbulence which cascades this energy to smaller scales; quasi-two dimensional mesoscale variations; and gravity waves. The relative contributions of these four phenomena to the spectra depend on the altitude of observation and variable involved (vertical velocity, temperature and moisture spectra are discussed). The physical origins of these variations in relative contribution are discussed. As expected from the theory (Kaimal et al., 1976), mixed layer scaling of the spectra (i.e., nondimensionalizing wavelength by Z(sub i) and spectral density by Z(sub i) and the dissipation rates) is successful for the microscale subrange and inertial subrange but not for the mesoscale subrange. The most striking feature of the normalized vertical velocity spectra is the lack of any significant mesoscale contribution. The spectral peak results from buoyant and mechanical production on scales similar to the boundary layer depth. The decrease in spectral density at larger scales results from the suppression of vertical velocity perturbations with large horizontal scales by the shallowness of the atmosphere. The spectral density also decreases towards smaller scales following the well known inertial subrange slope. There is a significant variation in the shape of the normalized spectra with height.
Edge Plasma Boundary Layer Generated By Kink Modes in Tokamaks
L.E. Zakharov
2010-11-22
This paper describes the structure of the electric current generated by external kink modes at the plasma edge using the ideally conducting plasma model. It is found that the edge current layer is created by both wall touching and free boundary kink modes. Near marginal stability, the total edge current has a universal expression as a result of partial compensation of the ?-functional surface current by the bulk current at the edge. The resolution of an apparent paradox with the pressure balance across the plasma boundary in the presence of the surface currents is provided.
Numerical Simulation of a Spatially Evolving Supersonic Turbulent Boundary Layer
NASA Technical Reports Server (NTRS)
Gatski, T. B.; Erlebacher, G.
2002-01-01
The results from direct numerical simulations of a spatially evolving, supersonic, flat-plate turbulent boundary-layer flow, with free-stream Mach number of 2.25 are presented. The simulated flow field extends from a transition region, initiated by wall suction and blowing near the inflow boundary, into the fully turbulent regime. Distributions of mean and turbulent flow quantities are obtained and an analysis of these quantities is performed at a downstream station corresponding to Re(sub x)= 5.548 x10(exp 6) based on distance from the leading edge.
Boundary-Layer Flow of Walters' B Fluid with Newtonian Heating
NASA Astrophysics Data System (ADS)
Hayat, Tasawar; Shafiq, Anum; Mustafa, Meraj; Alsaedi, Ahmed
2015-05-01
This work studies the flow of Walters-B fluid over a stretching surface with Newtonian heating. The governing partial differential equations are first simplified through boundary layer approximations and then reduced into ordinary differential equations by using the appropriate substitutions. The resulting problems have been solved for the series solutions by a homotopic approach. Convergence analysis is performed and appropriate values are determined by plotting the so-called ?-curves. Graphical results for the dimensionless velocity and temperature are presented and discussed for various physical parameters. In addition, the expressions of skin friction coefficient and the local Nusselt number are presented. The dimensionless expressions of wall shear stress and wall mass flux are analysed graphically and numerically.
Hypersonic Nozzle/Afterbody Experiment: Flow Visualization and Boundary Layer Experiments
NASA Technical Reports Server (NTRS)
Keener, Earl R.; Spaid, Frank W.; Arnold, James O. (Technical Monitor)
1994-01-01
This study was conducted to experimentally characterize the flow field created by the interaction of a single-expansion-ramp-nozzle (SERN) flow with a hypersonic external stream Data were obtained from a generic nozzle/afterbody model in the 3.5-Foot Hypersonic Wind Tunnel of the NASA Ames Research Center in a cooperative experimental program involving Ames and the McDonnell Douglas Aerospace. The model design and test planning were performed in close cooperation with members of the Ames computational fluid dynamics (CFD) team for the National Aero-Space Plane (NASP) program. This paper presents experimental results consisting of oil-flow and shadowgraph flow-visualization photographs, afterbody surface-pressure distributions, boundary-layer rake measurements, and Preston-tube skin-friction measurements.
Simulation and optimal control of wind-farm boundary layers
NASA Astrophysics Data System (ADS)
Meyers, Johan; Goit, Jay
2014-05-01
In large wind farms, the effect of turbine wakes, and their interaction leads to a reduction in farm efficiency, with power generated by turbines in a farm being lower than that of a lone-standing turbine by up to 50%. In very large wind farms or `deep arrays', this efficiency loss is related to interaction of the wind farms with the planetary boundary layer, leading to lower wind speeds at turbine level. Moreover, for these cases it has been demonstrated both in simulations and wind-tunnel experiments that the wind-farm energy extraction is dominated by the vertical turbulent transport of kinetic energy from higher regions in the boundary layer towards the turbine level. In the current study, we investigate the use of optimal control techniques combined with Large-Eddy Simulations (LES) of wind-farm boundary layer interaction for the increase of total energy extraction in very large `infinite' wind farms. We consider the individual wind turbines as flow actuators, whose energy extraction can be dynamically regulated in time so as to optimally influence the turbulent flow field, maximizing the wind farm power. For the simulation of wind-farm boundary layers we use large-eddy simulations in combination with actuator-disk and actuator-line representations of wind turbines. Simulations are performed in our in-house pseudo-spectral code SP-Wind that combines Fourier-spectral discretization in horizontal directions with a fourth-order finite-volume approach in the vertical direction. For the optimal control study, we consider the dynamic control of turbine-thrust coefficients in an actuator-disk model. They represent the effect of turbine blades that can actively pitch in time, changing the lift- and drag coefficients of the turbine blades. Optimal model-predictive control (or optimal receding horizon control) is used, where the model simply consists of the full LES equations, and the time horizon is approximately 280 seconds. The optimization is performed using a nonlinear conjugate gradient method, and the gradients are calculated by solving the adjoint LES equations. We find that the extracted farm power increases by approximately 20% when using optimal model-predictive control. However, the increased power output is also responsible for an increase in turbulent dissipation, and a deceleration of the boundary layer. Further investigating the energy balances in the boundary layer, it is observed that this deceleration is mainly occurring in the outer layer as a result of higher turbulent energy fluxes towards the turbines. In a second optimization case, we penalize boundary-layer deceleration, and find an increase of energy extraction of approximately 10%. In this case, increased energy extraction is balanced by a reduction in of turbulent dissipation in the boundary layer. J.M. acknowledges support from the European Research Council (FP7-Ideas, grant no. 306471). Simulations were performed on the computing infrastructure of the VSC Flemish Supercomputer Center, funded by the Hercules Foundation and the Flemish Government.
Skin-Friction Measurements in Incompressible Flow
NASA Technical Reports Server (NTRS)
Smith, Donald W.; Walker, John H.
1959-01-01
Experiments have been conducted to measure the local surface-shear stress and the average skin-friction coefficient in Incompressible flow for a turbulent boundary layer on a smooth flat plate having zero pressure gradient. Data were obtained for a range of Reynolds numbers from 1 million to 45 million. The local surface-shear stress was measured by a floating-element skin-friction balance and also by a calibrated total head tube located on the surface of the test wall. The average skin-friction coefficient was obtained from boundary-layer velocity profiles.
Boundary layer ozone - An airborne survey above the Amazon Basin
NASA Technical Reports Server (NTRS)
Gregory, Gerald L.; Browell, Edward V.; Warren, Linda S.
1988-01-01
Ozone data obtained over the forest canopy of the Amazon Basin during July and August 1985 in the course of NASA's Amazon Boundary Layer Experiment 2A are discussed, and ozone profiles obtained during flights from Belem to Tabatinga, Brazil, are analyzed to determine any cross-basin effects. The analyses of ozone data indicate that the mixed layer of the Amazon Basin, for the conditions of undisturbed meteorology and in the absence of biomass burning, is a significant sink for tropospheric ozone. As the coast is approached, marine influences are noted at about 300 km inland, and a transition from a forest-controlled mixed layer to a marine-controlled mixed layer is noted.
A Thermal Plume Model for the Martian Convective Boundary Layer
Colaïtis, Arnaud; Hourdin, Frédéric; Rio, Catherine; Forget, François; Millour, Ehouarn
2013-01-01
The Martian Planetary Boundary Layer [PBL] is a crucial component of the Martian climate system. Global Climate Models [GCMs] and Mesoscale Models [MMs] lack the resolution to predict PBL mixing which is therefore parameterized. Here we propose to adapt the "thermal plume" model, recently developed for Earth climate modeling, to Martian GCMs, MMs, and single-column models. The aim of this physically-based parameterization is to represent the effect of organized turbulent structures (updrafts and downdrafts) on the daytime PBL transport, as it is resolved in Large-Eddy Simulations [LESs]. We find that the terrestrial thermal plume model needs to be modified to satisfyingly account for deep turbulent plumes found in the Martian convective PBL. Our Martian thermal plume model qualitatively and quantitatively reproduces the thermal structure of the daytime PBL on Mars: superadiabatic near-surface layer, mixing layer, and overshoot region at PBL top. This model is coupled to surface layer parameterizations taking ...
Estimating the turbulence characteristics in the bottom boundary layer of Monterey Canyon
NASA Astrophysics Data System (ADS)
Yang, Jingling; Li, Peiliang; Liu, Cong
2015-04-01
From April 24 to October 25, 2011, an Acoustic Doppler Velocimeter (ADV) continually running for 185 d was mounted on the smooth ridge at the edge of Monterey Canyon to observe turbulence in the bottom boundary layer. The ADV was set at 1.4 m above the bed bottom, continuously run for 1 min with a 2-minute interval with sampling frequency 64 Hz. The long-time continual observation is significant to reveal variations of turbulent characteristics and show some differences from the classic traditional turbulent theory. Eliminating the noise by the `Phase-Space Thresholding Method', rotating the coordinate and low-pass filtering the velocity were applied for data processing. This paper was mainly to estimate the turbulent kinetic energy dissipation rate by the inertial dissipation method, friction velocity, drag coefficient and significant periods of the turbulent characteristics with the ADV data. The results show that there is a strong, rotating bottom flow up to 0.398 m s-1 with predominantly semidiurnal period and less significantly diurnal and semilunar period. The turbulent kinetic energy dissipation rate ranges from 1.09×10-8 W kg-1 to 6.62×10-5 W kg-1, which can vary with 2 or 3 orders of magnitude in one day. The daily averaged variations of friction velocity and drag coefficient are 6.50×10-3-2.32×10-2 m s-1 and 6.30×10-3-4.36×10-2, respectively. All the characteristics have a remarkable semidiurnal period. In the bottom boundary layer with a rotating tide, the parameterized coefficients to describe ?- u* and ?- E t relationships are much smaller than the traditional value.
Bandgap tunability at single-layer molybdenum disulphide grain boundaries.
Huang, Yu Li; Chen, Yifeng; Zhang, Wenjing; Quek, Su Ying; Chen, Chang-Hsiao; Li, Lain-Jong; Hsu, Wei-Ting; Chang, Wen-Hao; Zheng, Yu Jie; Chen, Wei; Wee, Andrew T S
2015-01-01
Two-dimensional transition metal dichalcogenides have emerged as a new class of semiconductor materials with novel electronic and optical properties of interest to future nanoelectronics technology. Single-layer molybdenum disulphide, which represents a prototype two-dimensional transition metal dichalcogenide, has an electronic bandgap that increases with decreasing layer thickness. Using high-resolution scanning tunnelling microscopy and spectroscopy, we measure the apparent quasiparticle energy gap to be 2.40 ± 0.05 eV for single-layer, 2.10 ± 0.05 eV for bilayer and 1.75 ± 0.05 eV for trilayer molybdenum disulphide, which were directly grown on a graphite substrate by chemical vapour deposition method. More interestingly, we report an unexpected bandgap tunability (as large as 0.85 ± 0.05 eV) with distance from the grain boundary in single-layer molybdenum disulphide, which also depends on the grain misorientation angle. This work opens up new possibilities for flexible electronic and optoelectronic devices with tunable bandgaps that utilize both the control of two-dimensional layer thickness and the grain boundary engineering. PMID:25687991
Bandgap tunability at single-layer molybdenum disulphide grain boundaries
NASA Astrophysics Data System (ADS)
Huang, Yu Li; Chen, Yifeng; Zhang, Wenjing; Quek, Su Ying; Chen, Chang-Hsiao; Li, Lain-Jong; Hsu, Wei-Ting; Chang, Wen-Hao; Zheng, Yu Jie; Chen, Wei; Wee, Andrew T. S.
2015-02-01
Two-dimensional transition metal dichalcogenides have emerged as a new class of semiconductor materials with novel electronic and optical properties of interest to future nanoelectronics technology. Single-layer molybdenum disulphide, which represents a prototype two-dimensional transition metal dichalcogenide, has an electronic bandgap that increases with decreasing layer thickness. Using high-resolution scanning tunnelling microscopy and spectroscopy, we measure the apparent quasiparticle energy gap to be 2.40±0.05?eV for single-layer, 2.10±0.05?eV for bilayer and 1.75±0.05?eV for trilayer molybdenum disulphide, which were directly grown on a graphite substrate by chemical vapour deposition method. More interestingly, we report an unexpected bandgap tunability (as large as 0.85±0.05?eV) with distance from the grain boundary in single-layer molybdenum disulphide, which also depends on the grain misorientation angle. This work opens up new possibilities for flexible electronic and optoelectronic devices with tunable bandgaps that utilize both the control of two-dimensional layer thickness and the grain boundary engineering.
Spatial simulation of boundary layer instability - Effects of surface roughness
NASA Technical Reports Server (NTRS)
Danabasoglu, G.; Bringen, S.; Streett, C. L.
1993-01-01
The effects of an isolated, two-dimensional roughness element on the spatial development of instability waves in boundary layers are investigated by numerically integrating the two-dimensional, time-dependent, incompressible Navier-Stokes equations, using a finite difference/Chebyshev discretization. It is shown that (high) inviscid frequencies have higher growth rates than Tollmien-Schlichting frequencies, indicating that disturbances growing in the separation zone are controlled by the inviscid instability of the shear layer at the edge of the separation zone.
Nonlinear interaction of two waves in boundary-layer flows
NASA Technical Reports Server (NTRS)
Nayfeh, A. H.; Bozatli, A. N.
1980-01-01
First-order nonlinear interactions of Tollmien-Schlichting waves of different frequencies and initial amplitudes in boundary-layer flows are analyzed using the method of multiple scales. Numerical results for flow past a flat plate show that the spatial detuning wipes out resonant interactions unless the initial amplitudes are very large. Thus, a wave having a moderate amplitude has little influence on its subharmonic although it has a strong influence on its second harmonic. Moreover, two waves having moderate amplitudes have a strong influence on their difference frequency. The results show that the difference frequency can be very unstable when generated by the nonlinear interaction, even though it may be stable when introduced by itself in the boundary layer.
Characteristics of Mach 10 transitional and turbulent boundary layers
NASA Technical Reports Server (NTRS)
Watson, R. D.
1978-01-01
Measurements of the mean flow properties of transitional and turbulent boundary layers in helium on 4 deg and 5 deg wedges were made for flows with edge Mach numbers from 9.5 to 11.3, ratios of wall temperature to total temperature of 0.4 to 0.95, and maximum length Reynolds numbers of one hundred million. The data include pitot and total temperature surveys and measurements of heat transfer and surface shear. In addition, with the assumption of local similarity, turbulence quantities such as the mixing length were derived from the mean flow profiles. Low Reynolds number and precursor transition effects were significant factors at these test conditions and were included in finite difference boundary layer predictions.
Excitation of Crossflow Instabilities in a Swept Wing Boundary Layer
NASA Technical Reports Server (NTRS)
Carpenter, Mark H.; Choudhari, Meelan; Li, Fei; Streett, Craig L.; Chang, Chau-Lyan
2010-01-01
The problem of crossflow receptivity is considered in the context of a canonical 3D boundary layer (viz., the swept Hiemenz boundary layer) and a swept airfoil used recently in the SWIFT flight experiment performed at Texas A&M University. First, Hiemenz flow is used to analyze localized receptivity due to a spanwise periodic array of small amplitude roughness elements, with the goal of quantifying the effects of array size and location. Excitation of crossflow modes via nonlocalized but deterministic distribution of surface nonuniformity is also considered and contrasted with roughness induced acoustic excitation of Tollmien-Schlichting waves. Finally, roughness measurements on the SWIFT model are used to model the effects of random, spatially distributed roughness of sufficiently small amplitude with the eventual goal of enabling predictions of initial crossflow disturbance amplitudes as functions of surface roughness parameters.
Numerical Simulations of the Urban-Type Boundary Layer Experiment
NASA Astrophysics Data System (ADS)
Kandala, Sriharsha; Rempfer, Dietmar; Bruno, Monnier; Wark, Candace
2012-11-01
Due to their small size, limited power and relatively low speeds compared to the magnitude of typical velocity fluctuations in the atmospheric boundary layer, MAVs are highly susceptible to gusts encountered in complex urban environments. As such, an understanding of the spatial and temporal characteristics of these flow fields can play an important role in the design of these MAVs. In this talk, we present the results of numerical simulation of an urban-type boundary layer described in the talk by Monnier, Wark et al. Specsolve, a parallel spectral element solver, is used for these simulations. POD is used to generate a low dimensional representation of the velocity field from the simulation data. Gust statistics and various structures relevant to MAV navigation are presented. These results are compared with SPIV data from the experiment. This work was supported by AFOSR FA9550-11-1-0056.
Receptivity of Hypersonic Boundary Layer to Wall Disturbances
NASA Astrophysics Data System (ADS)
Fedorov, A. V.; Khokhlov, A. P.
Theoretical analysis of hypersonic boundary-layer receptivity to wall disturbances is conducted using a combination of asymptotic and numerical methods. Excitation of the second mode by distributed and local forcing on a flat-plate surface is studied under adiabatic and cooled wall conditions. Analysis addresses receptivity to wall vibrations, periodic suction/blowing, and temperature disturbances. A strong excitation occurs in local regions where forcing is in resonance with normal waves. It is shown that the receptivity function tends to infinity as the resonance point tends to the branch point of the discrete spectrum that is typical for boundary layers on cool surfaces. Asymptotic analysis resolves this singularity and provides the receptivity coefficient in the branch-point vicinity. Numerical results indicate extremely high receptivity to vibrations and suction/blowing in the vicinity of the branch point located near the lower neutral branch of the Mack second mode.
Optimal disturbances in boundary layers subject to streamwise pressure gradient
NASA Technical Reports Server (NTRS)
Ashpis, David E.; Tumin, Anatoli
2003-01-01
An analysis of the optimal non-modal growth of perturbations in a boundary layer in the presence of a streamwise pressure gradient is presented. The analysis is based on PSE equations for an incompressible fluid. Examples with Falkner-Scan profiles indicate that a favorable pressure gradient decreases the non-modal growth, while an unfavorable pressure gradient leads to an increase of the amplification. It is suggested that the transient growth mechanism be utilized to choose optimal parameters of tripping elements on a low-pressure turbine (LPT) airfoil. As an example, a boundary layer flow with a streamwise pressure gradient corresponding to the pressure distribution over a LPT airfoil is considered. It is shown that there is an optimal spacing of the tripping elements and that the transient growth effect depends on the starting point.
Possibilities for drag reduction by boundary layer control
NASA Technical Reports Server (NTRS)
Naiman, I.
1946-01-01
The mechanics of laminar boundary layer transition are reviewed. Drag possibilities for boundary layer control are analyzed using assumed conditions of transition Reynolds number, inlet loss, number of slots, blower efficiency, and duct losses. Although the results of such analysis are highly favorable, those obtained by experimental investigations yield conflicting results, showing only small gains, and sometimes losses. Reduction of this data indicates that there is a lower limit to the quantity of air which must be removed at the slot in order to stabilize the laminar flow. The removal of insufficient air permits transition to occur while the removal of excessive amounts of air results in high power costs, with a net drag increases. With the estimated value of flow coefficient and duct losses equal to half the dynamic pressure, drag reductions of 50% may be obtained; with twice this flow coefficient, the drag saving is reduced to 25%.
Atmospheric surface and boundary layers of the Amazon Basin
NASA Technical Reports Server (NTRS)
Garstang, Michael
1987-01-01
Three phases of work were performed: design of and preparation for the Amazon Boundary Layer Experiment (ABLE 2-A); execution of the ABLE 2-A field program; and analysis of the ABLE 2-A data. Three areas of experiment design were dealt with: surface based meteorological measurements; aircraft missions; and project meteorological support. The primary goal was to obtain a good description of the structure of the atmosphere immediately above the rain forest canopy (top of canopy to a few thousand meters), to describe this region during the growing daytime phase of the boundary layer; and to examine the nighttime stratified state. A secondary objective was to examine the role that deep convective storms play in the vertical transport of heat, water vapor, and other trace gases. While significant progress was made, much of the analysis remains to be done.
Boundary layer integral matrix procedure code modifications and verifications
NASA Technical Reports Server (NTRS)
Evans, R. M.; Morse, H. L.
1974-01-01
A summary of modifications to Aerotherm's Boundary Layer Integral Matrix Procedure (BLIMP) code is presented. These modifications represent a preliminary effort to make BLIMP compatible with other JANNAF codes and to adjust the code for specific application to rocket nozzle flows. Results of the initial verification of the code for prediction of rocket nozzle type flows are discussed. For those cases in which measured free stream flow conditions were used as input to the code, the boundary layer predictions and measurements are in excellent agreement. In two cases, with free stream flow conditions calculated by another JANNAF code (TDK) for use as input to BLIMP, the predictions and the data were in fair agreement for one case and in poor agreement for the other case. The poor agreement is believed to result from failure of the turbulent model in BLIMP to account for laminarization of a turbulent flow. Recommendations for further code modifications and improvements are also presented.
Numerical simulation of a three-dimensional turbulent boundary layer
NASA Technical Reports Server (NTRS)
Moin, P.; Shih, T.-H.; Driver, D.; Mansour, N. N.
1989-01-01
The effects of transverse strain on an initially two-dimensional turbulent boundary layer are studied in a direct numerical simulation of a planar channel flow with impulsively started transverse pressure gradient. Consistent with experiments in three-dimensional boundary layers, the simulation shows a drop in the Reynolds shear stress with increasing transverse strain. Also, the directions of the Reynolds shear stress vector and the mean velocity gradient vector were found to differ. In addition, the simulation shows a drop in the turbulent kinetic energy. The terms in the budget of the Reynolds stress were computed. In general, the individual terms do not show a significant change. However, an increase in dissipation rate rather than reduction in total production appears to be responsible for the drop in turbulent kinetic energy.
Investigation of Turbulent Boundary-Layer Separation Using Laser Velocimetry
NASA Technical Reports Server (NTRS)
Modarress, D.; Johnson, D. A.
1979-01-01
Boundary-layer measurements realized by laser velocimetry are presented for a Much 2.9, two-dimensional, shock-wave/turbulent boundary-layer interaction containing an extensive region of separated flow. Mean velocity and turbulent intensity profiles were obtained from upstream of the interaction zone to downstream of the mean reattachment point. The superiority of the laser velocimeter technique over pressure sensors in turbulent separated flows is demonstrated by a comparison of the laser velocimeter data with results obtained from local pilot and static pressure measurements for the same flow conditions. The locations of the mean separation and reattachment points as deduced from the mean velocity measurements are compared to oil-now visualization results. Representative velocity probability density functions obtained in the separated now region are also presented. Critical to the success of this investigation were: the use of Bragg cell frequency shifting and artificial seeding of the now with submicron light-scattering particles.
The boundary layer over turbine blade models with realistic rough surfaces
NASA Astrophysics Data System (ADS)
McIlroy, Hugh M., Jr.
The impact of turbine blade surface roughness on aerodynamic performance and heat loads is well known. Over time, as the turbine blades are exposed to heat loads, the external surfaces of the blades become rough. Also, for film-cooled blades, surface degradation can have a significant impact on film-cooling effectiveness. Many studies have been conducted on the effects of surface degradation/roughness on engine performance but most investigations have modeled the rough surfaces with uniform or two-dimensional roughness patterns. The objective of the present investigation is to conduct measurements that will reveal the influence of realistic surface roughness on the near-wall behavior of the boundary layer. Measurements have been conducted at the Matched-Index-of-Refraction (MIR) Facility at the Idaho National Engineering and Environmental Laboratory with a laser Doppler velocimeter. A flat plate model of a turbine blade has been developed that produces a transitional boundary layer, elevated freestream turbulence and an accelerating freestream in order to simulate conditions on the suction side of a high-pressure turbine blade. Boundary layer measurements have been completed over a smooth plate model and over a model with a strip of realistic rough surface. The realistic rough surface was developed by scaling actual turbine blade surface data that was provided by U.S. Air Force Research Laboratory. The results indicate that bypass transition occurred very early in the flow over the model and that the boundary layer remained unstable throughout the entire length of the test plate; the boundary layer thickness and momentum thickness Reynolds numbers increased over the rough patch; and the shape factor increased over the rough patch but then decreased downstream of the patch relative to the smooth plate case; in the rough patch case the flow experienced two transition reversals with laminar-like behavior achieved by the end of the test plate; streamwise turbulence intensity and normal turbulence intensity increased downstream of the rough patch and the skin friction coefficient varied dramatically over the rough patch, at some points more than double the local smooth plate value; and the rough patch caused the Reynolds stresses to increase in the region close the plate surface.
NASA Technical Reports Server (NTRS)
Boccio, J.; Economos, C.
1972-01-01
An analysis of the incompressible turbulent boundary layer, developing under the combined effects of mass transfer and pressure gradient, is presented in this paper. A strip-integral method is employed whereby two of the three governing equations are obtained by integrating the combined momentum and continuity equation to 50 percent and 100 percent, respectively, of the boundary-layer height. The latter equation is the usual momentum-integral equation; the former equation requires specification of shear. Accordingly, Clauser's equilibrium eddy-viscosity law is assumed valid at this point. The third and final equation is obtained by specifying that Stevenson's velocity profiles apply throughout the domain of interest, from which a skin-friction law can be derived. Comparisons of the numerical results with the experiments of McQuaid, which include combined effects of variable pressure gradient and mass transfer, show good agreement.
Numerical solution of the resistive magnetohydrodynamic boundary-layer equations
Glasser, A.H.; Jardin, S.C.; Tesauro, G.
1983-10-01
Three different techniques are presented for numerical solution of the equations governing the boundary layer of resistive magnetohydrodynamic tearing and interchange instabilities in toroidal geometry. Excellent agreement among these methods and with analytical results provides confidence in the correctness of the results. Solutions obtained in regimes where analytical medthods fail indicate a new scaling for the tearing mode as well as the existence of a new regime of stability.
Linear stability theory and three-dimensional boundary layer transition
NASA Technical Reports Server (NTRS)
Spall, Robert E.; Malik, Mujeeb R.
1992-01-01
The viewgraphs and discussion of linear stability theory and three dimensional boundary layer transition are provided. The ability to predict, using analytical tools, the location of boundary layer transition over aircraft-type configurations is of great importance to designers interested in laminar flow control (LFC). The e(sup N) method has proven to be fairly effective in predicting, in a consistent manner, the location of the onset of transition for simple geometries in low disturbance environments. This method provides a correlation between the most amplified single normal mode and the experimental location of the onset of transition. Studies indicate that values of N between 8 and 10 correlate well with the onset of transition. For most previous calculations, the mean flows were restricted to two-dimensional or axisymmetric cases, or have employed simple three-dimensional mean flows (e.g., rotating disk, infinite swept wing, or tapered swept wing with straight isobars). Unfortunately, for flows over general wing configurations, and for nearly all flows over fuselage-type bodies at incidence, the analysis of fully three-dimensional flow fields is required. Results obtained for the linear stability of fully three-dimensional boundary layers formed over both wing and fuselage-type geometries, and for both high and low speed flows are discussed. When possible, transition estimates form the e(sup N) method are compared to experimentally determined locations. The stability calculations are made using a modified version of the linear stability code COSAL. Mean flows were computed using both Navier Stokes and boundary-layer codes.
LASTRAC.3d: Transition Prediction in 3D Boundary Layers
NASA Technical Reports Server (NTRS)
Chang, Chau-Lyan
2004-01-01
Langley Stability and Transition Analysis Code (LASTRAC) is a general-purpose, physics-based transition prediction code released by NASA for laminar flow control studies and transition research. This paper describes the LASTRAC extension to general three-dimensional (3D) boundary layers such as finite swept wings, cones, or bodies at an angle of attack. The stability problem is formulated by using a body-fitted nonorthogonal curvilinear coordinate system constructed on the body surface. The nonorthogonal coordinate system offers a variety of marching paths and spanwise waveforms. In the extreme case of an infinite swept wing boundary layer, marching with a nonorthogonal coordinate produces identical solutions to those obtained with an orthogonal coordinate system using the earlier release of LASTRAC. Several methods to formulate the 3D parabolized stability equations (PSE) are discussed. A surface-marching procedure akin to that for 3D boundary layer equations may be used to solve the 3D parabolized disturbance equations. On the other hand, the local line-marching PSE method, formulated as an easy extension from its 2D counterpart and capable of handling the spanwise mean flow and disturbance variation, offers an alternative. A linear stability theory or parabolized stability equations based N-factor analysis carried out along the streamline direction with a fixed wavelength and downstream-varying spanwise direction constitutes an efficient engineering approach to study instability wave evolution in a 3D boundary layer. The surface-marching PSE method enables a consistent treatment of the disturbance evolution along both streamwise and spanwise directions but requires more stringent initial conditions. Both PSE methods and the traditional LST approach are implemented in the LASTRAC.3d code. Several test cases for tapered or finite swept wings and cones at an angle of attack are discussed.
SCALING OF THE ANOMALOUS BOOST IN RELATIVISTIC JET BOUNDARY LAYER
Zenitani, Seiji; Hesse, Michael; Klimas, Alex, E-mail: Seiji.Zenitani-1@nasa.go [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)
2010-04-01
We investigate the one-dimensional interaction of a relativistic jet and an external medium. Relativistic magnetohydrodynamic simulations show an anomalous boost of the jet fluid in the boundary layer, as previously reported. We describe the boost mechanism using an ideal relativistic fluid and magnetohydrodynamic theory. The kinetic model is also examined for further understanding. Simple scaling laws for the maximum Lorentz factor are derived, and verified by the simulations.
Numerical simulation of boundary-layer disturbance evolution.
Davies, Christopher
2005-05-15
The use of numerical simulations to study the development of boundary-layer disturbances is illustrated for a number of different incompressible flow configurations. These include cases where the disturbances are generated by, or interact with, flow-control devices in the form of compliant panels, suction slots and microelectromechanical systems actuators. The velocity-vorticity system of governing equations used for the simulations is reviewed, along with the numerical discretization. PMID:16105772
Flow structures in zero pressure-gradient turbulent boundary layers
Arne V. Johansson
To be submitted An experimental investigation on flow structures was performed in a high Rey- nolds number zero pressure-gradient turbulent boundary layer. Results are presented for the fluctuating wall-shear stress obtained simultaneously at two spanwise positions using a micro-machined hot-film sensor. Two-point correla- tions are presented and the mean streak spacing is evaluated from the two-point correlation of high-pass filtered