Science.gov

Sample records for frictional contact interfaces

  1. Non-Amontons-Coulomb local friction law of randomly rough contact interfaces with rubber

    NASA Astrophysics Data System (ADS)

    Nguyen, Danh Toan; Wandersman, Elie; Prevost, Alexis; Le Chenadec, Yohan; Fretigny, Christian; Chateauminois, Antoine

    2013-12-01

    We report on measurements of the local friction law at a multi-contact interface formed between a smooth rubber and statistically rough glass lenses, under steady-state friction. Using contact imaging, surface displacements are measured, and inverted to extract both distributions of frictional shear stress and contact pressure with a spatial resolution of about 10\\ \\mu\\text{m} . For a glass surface whose topography is self-affine with a Gaussian height asperity distribution, the local frictional shear stress is found to vary sub-linearly with the local contact pressure over the whole investigated pressure range. Such sub-linear behavior is also evidenced for a surface with a non-Gaussian height asperity distribution, demonstrating that, for such multi-contact interfaces, Amontons-Coulomb's friction law does not prevail at the local scale.

  2. Estimation of real contact area during sliding friction from interface temperature

    NASA Astrophysics Data System (ADS)

    Chey, Sung Keun; Tian, Pengyi; Tian, Yu

    2016-06-01

    Frictional heat is one of the most important topics in tribological research. The real contact area of the frictional pair plays a significant role in accurately estimating the interface temperature, which is closely related to the frictional heat. However, conventional methods for measuring the contact area, such as constriction resistance measurements, are not suitable for dynamic frictional motion because of the electrical and thermal interferences at the contact region. In this study, a novel method is presented for estimating the real contact area during sliding friction. First, the average interface temperature was experimentally measured by the dynamic thermocouple method. Then assuming that the total frictional heat power is constant, the measured temperature was used as a constraint to determine the contact area in a finite element model, giving an estimation for the real contact area. The calculation results show that the real contact area increases with increasing normal load as predicted by contact theories, and decreases with increasing sliding speed, which could be attributable to the contact dynamics of asperities at the interface. Additionally, the limits of the proposed method is discussed.

  3. Analysis of composite material interface crack face contact and friction effects using a new node-pairs contact algorithm

    NASA Astrophysics Data System (ADS)

    Zhong, Zhi-Peng; He, Yu-Bo; Wan, Shui

    2014-06-01

    A new node-pairs contact algorithm is proposed to deal with a composite material or bi-material interface crack face contact and friction problem (e.g., resistant coating and thermal barrier coatings) subjected to complicated load conditions. To decrease the calculation scale and calculation errors, the local Lagrange multipliers are solved only on a pair of contact nodes using the Jacobi iteration method, and the constraint modification of the tangential multipliers are required. After the calculation of the present node-pairs Lagrange multiplier, it is turned to next contact node-pairs until all node-pairs have finished. Compared with an ordinary contact algorithm, the new local node-pairs contact algorithm is allowed a more precise element on the contact face without the stiffness matrix singularity. The stress intensity factors (SIFs) and the contact region of an infinite plate central crack are calculated and show good agreement with those in the literature. The contact zone near the crack tip as well as its influence on singularity of stress fields are studied. Furthermore, the frictional contacts are also considered and found to have a significant influence on the SIFs. The normalized mode-II stress intensity factors K̂II for the friction coefficient decrease by 16% when f changes from 1 to 0.

  4. Strength evolution of a reactive frictional interface is controlled by the dynamics of contacts and chemical effects

    NASA Astrophysics Data System (ADS)

    Renard, François; Beauprêtre, Sophie; Voisin, Christophe; Zigone, Dimitri; Candela, Thibault; Dysthe, Dag K.; Gratier, Jean-Pierre

    2012-08-01

    Assessing the healing rate of a fault is relevant to the knowledge of the seismic machinery. However, measuring fault healing at the depths where it occurs still remains inaccessible. We have designed an analog laboratory experiment of a simulated rough fault that undergoes healing and investigate the relative roles of interface chemical reactivity and sliding velocity on the healing rate. Slide-hold-slide experiments are conducted on a bare interface with various materials in contact (glass/glass, salt/glass, and salt/salt) with or without the presence of a reactive fluid and the slider-surface pull-off force is measured. Our results show that the interface strengthens with hold time, whatever the conditions of the experiments. In addition, we quantify the effect of chemical reactivity on the healing rate. Considering the glass/glass case as a reference, we show that the healing rate is increased by a factor of 2 for the salt/glass case; by a factor of 3 for the salt/salt case; and by about a factor of 20 when saturated brine is added on a salt/salt interface. We also measure that the sliding velocity affects the healing rate for salt/salt interfaces at room humidity. A careful optical monitoring of the interface allows a direct observation of the contact growth characteristics associated to each type of materials. Finally, the large differences of healing rate are interpreted through a mechanistic approach, where the various experimental conditions allow separating different healing mechanisms: increase of adhesion of the contacts by welding, contact growth due to creep or due to neck growth driven by surface tension.

  5. Tire/runway friction interface

    NASA Technical Reports Server (NTRS)

    Yager, Thomas J.

    1990-01-01

    An overview is given of NASA Langley's tire/runway pavement interface studies. The National Tire Modeling Program, evaluation of new tire and landing gear designs, tire wear and friction tests, and tire hydroplaning studies are examined. The Aircraft Landing Dynamics Facility is described along with some ground friction measuring vehicles. The major goals and scope of several joint FAA/NASA programs are identified together with current status and plans.

  6. Stability and transient dynamics of a propeller-shaft system as induced by nonlinear friction acting on bearing-shaft contact interface

    NASA Astrophysics Data System (ADS)

    Zhang, Zhenguo; Zhang, Zhiyi; Huang, Xiuchang; Hua, Hongxing

    2014-06-01

    This paper investigates the friction-induced instability and the resulting self-excited vibration of a propeller-shaft system supported by water-lubricated rubber bearing. The system under consideration is modeled with an analytical approach by involving the nonlinear interaction among torsional vibrations of the continuous shaft, tangential vibrations of the rubber bearing and the nonlinear friction acting on the bearing-shaft contact interface. A degenerative two-degree-of-freedom analytical model is also reasonably developed to characterize system dynamics. The stability and vibrational characteristics are then determined by the complex eigenvalues analysis together with the quantitative analysis based on the method of multiple scales. A parametric study is conducted to clarify the roles of friction parameters and different vibration modes on instabilities; both the graphic and analytical expressions of instability boundaries are obtained. To capture the nature of self-excited vibrations and validate the stability analysis, the nonlinear formulations are numerically solved to calculate the transient dynamics in time and frequency domains. Analytical and numerical results reveal that the nonlinear coupling significantly affects the system responses and the bearing vibration plays a dominant role in the dynamic behavior of the present system.

  7. Slippery but Tough: The Rapid Fracture of Lubricated Frictional Interfaces

    NASA Astrophysics Data System (ADS)

    Bayart, E.; Svetlizky, I.; Fineberg, J.

    2016-05-01

    We study the onset of friction for rough contacting blocks whose interface is coated with a thin lubrication layer. High speed measurements of the real contact area and stress fields near the interface reveal that propagating shear cracks mediate lubricated frictional motion. While lubricants reduce interface resistances, surprisingly they significantly increase the energy dissipated Γ during rupture. Moreover, lubricant viscosity affects the onset of friction but has no effect on Γ . Fracture mechanics provide a new way to view the otherwise hidden complex dynamics of the lubrication layer.

  8. Slippery but Tough: The Rapid Fracture of Lubricated Frictional Interfaces.

    PubMed

    Bayart, E; Svetlizky, I; Fineberg, J

    2016-05-13

    We study the onset of friction for rough contacting blocks whose interface is coated with a thin lubrication layer. High speed measurements of the real contact area and stress fields near the interface reveal that propagating shear cracks mediate lubricated frictional motion. While lubricants reduce interface resistances, surprisingly they significantly increase the energy dissipated Γ during rupture. Moreover, lubricant viscosity affects the onset of friction but has no effect on Γ. Fracture mechanics provide a new way to view the otherwise hidden complex dynamics of the lubrication layer. PMID:27232023

  9. Effect of fluorocarbon self-assembled monolayer films on sidewall adhesion and friction of surface micromachines with impacting and sliding contact interfaces

    SciTech Connect

    Xiang, H.; Komvopoulos, K.

    2013-06-14

    A self-assembled monolayer film consisting of fluoro-octyltrichlorosilane (FOTS) was vapor-phase deposited on Si(100) substrates and polycrystalline silicon (polysilicon) surface micromachines. The hydrophobic behavior and structural composition of the FOTS film deposited on Si(100) were investigated by goniometry and X-ray photoelectron spectroscopy, respectively. The effects of contact pressure, relative humidity, temperature, and impact/sliding cycles on the adhesive and friction behavior of uncoated and FOTS-coated polysilicon micromachines (referred to as the Si and FOTS/Si micromachines, respectively) were investigated under controlled loading and environmental conditions. FOTS/Si micromachines demonstrated much lower and stable adhesion than Si micromachines due to the highly hydrophobic and conformal FOTS film. Contrary to Si micromachines, sidewall adhesion of FOTS/Si micromachines demonstrated a weak dependence on relative humidity, temperature, and impact cycles. In addition, FOTS/Si micromachines showed low and stable adhesion and low static friction for significantly more sliding cycles than Si micromachines. The adhesive and static friction characteristics of Si and FOTS/Si micromachines are interpreted in the context of physicochemical surface changes, resulting in the increase of the real area of contact and a hydrophobic-to-hydrophilic transition of the surface chemical characteristics caused by nanoscale surface smoothening and the removal of the organic residue (Si micromachines) or the FOTS film (FOTS/Si micromachines) during repetitive impact and oscillatory sliding of the sidewall surfaces.

  10. Direct Measurement of Friction of a Fluctuating Contact Line

    NASA Astrophysics Data System (ADS)

    Guo, Shuo; Gao, Min; Xiong, Xiaomin; Wang, Yong Jian; Wang, Xiaoping; Sheng, Ping; Tong, Penger

    2013-07-01

    We report a direct measurement of the friction coefficient of a fluctuating (and slipping) contact line using a thin vertical glass fiber of diameter d with one end glued onto a cantilever beam and the other end touching a liquid-air interface. By measuring the broadening of the resonant peak of the cantilever system with varying liquid viscosity η, we find the friction coefficient of the contact line has a universal form, ξc≃0.8πdη, independent of the liquid-solid contact angle. The obtained scaling law is further supported by the numerical simulation based on the phase field model under the generalized Navier boundary conditions.

  11. Direct measurement of friction of a fluctuating contact line.

    PubMed

    Guo, Shuo; Gao, Min; Xiong, Xiaomin; Wang, Yong Jian; Wang, Xiaoping; Sheng, Ping; Tong, Penger

    2013-07-12

    We report a direct measurement of the friction coefficient of a fluctuating (and slipping) contact line using a thin vertical glass fiber of diameter d with one end glued onto a cantilever beam and the other end touching a liquid-air interface. By measuring the broadening of the resonant peak of the cantilever system with varying liquid viscosity η, we find the friction coefficient of the contact line has a universal form, ξ(c)≃0.8πdη, independent of the liquid-solid contact angle. The obtained scaling law is further supported by the numerical simulation based on the phase field model under the generalized Navier boundary conditions. PMID:23889421

  12. Direct measurement of friction of a fluctuating contact line

    NASA Astrophysics Data System (ADS)

    Guo, Shuo; Gao, Min; Xiong, Xiaomin; Wang, Yong Jian; Wang, Xiaoping; Sheng, Ping; Tong, Penger

    2013-03-01

    What happens at a moving contact line, where one fluid displaces another (immiscible) fluid over a solid surface, is a fundamental issue in fluid dynamics. In this presentation, we report a direct measurement of the friction coefficient in the immediate vicinity of a fluctuating contact line using a micron-sized vertical glass fiber with one end glued to an atomic force microscope (AFM) cantilever beam and the other end touching a liquid-air interface. By measuring the broadening of the resonance peak of the cantilever system with varying liquid viscosity η, we obtain the friction coefficient ξc associated with the contact line fluctuations on the glass fiber of diameter d and find it has the universal form, ξc = 0 . 8 πdη , independent of the contact angle. The result is further confirmed by using a soap film system whose bulk effect is negligibly small. This is the first time that the friction coefficient of a fluctuating contact line is measured. *Work supported by the Research Grants Council of Hong Kong SAR.

  13. Effect of time derivative of contact area on dynamic friction

    NASA Astrophysics Data System (ADS)

    Arakawa, Kazuo

    2014-06-01

    This study investigated dynamic friction during oblique impact of a golf ball by evaluating the ball's angular velocity, contact force, and the contact area between the ball and target. The effect of the contact area on the angular velocities was evaluated, and the results indicated that the contact area plays an important role in dynamic friction. In this study, the dynamic friction force F was given by F = μN + μη dA/dt, where μ is the coefficient of friction, N is the contact force, dA/dt is the time derivative of the contact area A, and η is a coefficient associated with the contact area.

  14. The Frictional Force with Respect to the Actual Contact Surface

    NASA Technical Reports Server (NTRS)

    Holm, Ragnar

    1944-01-01

    Hardy's statement that the frictional force is largely adhesion, and to a lesser extent, deformation energy is proved by a simple experiment. The actual contact surface of sliding contacts and hence the friction per unit of contact surface was determined in several cases. It was found for contacts in normal atmosphere to be about one-third t-one-half as high as the macroscopic tearing strength of the softest contact link, while contacts annealed in vacuum and then tested, disclosed frictional forces which are greater than the macroscopic strength.

  15. The friction behavior of semiconductors Si and GaAs in contact with pure metals

    NASA Technical Reports Server (NTRS)

    Mishina, H.

    1984-01-01

    The friction behavior of the semiconductors silicon and gallium arsenide in contact with pure metals was studied. Five transition and two nontransition metals, titanium, tantalum, nickel, palladium, platinum, copper, and silver, slid on a single crystal silicon (111) surface. Four metals, indium, nickel, copper and silver, slid on a single crystal gallium arsenide (100) surface. Experiments were conducted in room air and in a vacuum of 10 to the minus 7th power N/sq cm (10 to the minus 9th power torr). The results indicate that the sliding of silicon on the transition metals exhibits relatively higher friction than for the nontransition metals in contact with silicon. There is a clear correlation between friction and Schottky barrier height formed at the metal silicon interface for the transition metals. Transition metals with a higher barrier height on silicon had a lower friction. The same effect of barrier height was found for the friction of gallium arsenide in contact with metals.

  16. Contact Hysteresis and Friction of Alkanethiol SAMs on Au

    SciTech Connect

    Houston, J.E.; Kiely, J.D.

    1998-10-14

    Nanoindentation has been combhed with nanometer-scale friction measurements to identi~ dissipative mechanisms responsible for friction in hexadecanethiol self-assembled monolayer on Au. We have demonstrated that friction is primarily due to viscoelastic relaxations within the films, which give rise to contact hysteresis when deformation rates are within the ranges of 5 and 200 k. We observe that this contact hysteresis increases with exposure to air such that the friction coefficient increases from 0.004 to 0.075 when films are exposed to air for 40 days. Both hysteresis and friction increase with probe speed, and we present a model of friction that characterizes this speed dependence and which also predicts a linear dependence of friction on normal force in thin organic films. Finally, we identify several short-term wear regimes and identify that wear changes dramatically when fdms age.

  17. Dynamic evolution of interface roughness during friction and wear processes.

    PubMed

    Kubiak, K J; Bigerelle, M; Mathia, T G; Dubois, A; Dubar, L

    2014-01-01

    Dynamic evolution of surface roughness and influence of initial roughness (S(a) = 0.282-6.73 µm) during friction and wear processes has been analyzed experimentally. The mirror polished and rough surfaces (28 samples in total) have been prepared by surface polishing on Ti-6Al-4V and AISI 1045 samples. Friction and wear have been tested in classical sphere/plane configuration using linear reciprocating tribometer with very small displacement from 130 to 200 µm. After an initial period of rapid degradation, dynamic evolution of surface roughness converges to certain level specific to a given tribosystem. However, roughness at such dynamic interface is still increasing and analysis of initial roughness influence revealed that to certain extent, a rheology effect of interface can be observed and dynamic evolution of roughness will depend on initial condition and history of interface roughness evolution. Multiscale analysis shows that morphology created in wear process is composed from nano, micro, and macro scale roughness. Therefore, mechanical parts working under very severe contact conditions, like rotor/blade contact, screws, clutch, etc. with poor initial surface finishing are susceptible to have much shorter lifetime than a quality finished parts. PMID:23440686

  18. Atomistic effects on friction and contact area in single and multi asperity contacts

    NASA Astrophysics Data System (ADS)

    Luan, Binquan; Robbins, Mark

    2008-03-01

    Contact and friction are universal phenomena in our daily life. Theoretical studies of macroscopic contact and friction are usually based on continuum theories such as Hertz theory and Amontons's laws. Recent advances in nanotechnology have stimulated research into friction at the nanometer scale where new phenomena emerge. Contact and friction in single- and multi-asperity contacts with nanometer dimensions were studied using molecular dynamics simulations (MD) and a hybrid method. The hybrid method retains a full atomistic treatment near contacts and replaces more distant regions with a more efficient finite element description. Our results demonstrate that atomic-scale changes in surface structure produce huge changes in friction and contact area and substantial deviations from the predictions of continuum theories. Unanticipated surface plasticity is observed near peaks on crystalline surfaces. In the case of multiasperity amorphous systems, the rate of local plastic deformation near the surface is directly related to the frictional dissipation of energy.

  19. Instrument Measures Airflow Friction Without Contact

    NASA Technical Reports Server (NTRS)

    Monson, D. J.

    1983-01-01

    Dual beam laser interferometer determines airflow friction against body by measuring time-varying thickness of wind sheared oil film. Measurements yield skin friction between film and airstream. Errors from prerun oil flow, tunnel starting transients, and initial surface waves therefore eliminated.

  20. Friction drive of an SAW motor. Part IV: physics of contact.

    PubMed

    Shigematsu, Takashi; Kurosawa, Minoru Kuribayashi

    2008-10-01

    A procedure for modeling the frictional heating and electricity of a surface acoustic wave (SAW) motor is proposed. The frictional heat is developed during friction drive when sliding occurs at the frictional interface; the heat is conducted into the solids, resulting in an increase in temperature. The spatial distribution of the heat source was associated with the contact pressure distribution, and the heat conduction from the heat source was formulated. Owing to the piezoelectricity and pyroelectricity of the stator used in the present study, the elastic deformation and temperature increase produce the electric fields. The electric fields in the stator were determined with respect to each cause. Electric discontinuity at the boundary between the stator and the slider, moreover, produces electrostatic force, which was calculated using a Maxwell stress tensor. All the analyses revealed the underlying physical fields in addition to the mechanical fields of the SAW motor. By the use of those analytical methods, the frictional properties of the SAW motor were discussed. We pointed out that another physical phenomenoniquestcontact electrificationiquestcould arise at the contact interface. The electrostatic force due to contact electrification had sufficient strength to change the friction property, which corresponded to the variation of the friction coefficient from 0.1 to 1. PMID:18986875

  1. Dynamic instabilities of frictional sliding at a bimaterial interface

    NASA Astrophysics Data System (ADS)

    Brener, Efim A.; Weikamp, Marc; Spatschek, Robert; Bar-Sinai, Yohai; Bouchbinder, Eran

    2016-04-01

    Understanding the dynamic stability of bodies in frictional contact steadily sliding one over the other is of basic interest in various disciplines such as physics, solid mechanics, materials science and geophysics. Here we report on a two-dimensional linear stability analysis of a deformable solid of a finite height H, steadily sliding on top of a rigid solid within a generic rate-and-state friction type constitutive framework, fully accounting for elastodynamic effects. We derive the linear stability spectrum, quantifying the interplay between stabilization related to the frictional constitutive law and destabilization related both to the elastodynamic bi-material coupling between normal stress variations and interfacial slip, and to finite size effects. The stabilizing effects related to the frictional constitutive law include velocity-strengthening friction (i.e. an increase in frictional resistance with increasing slip velocity, both instantaneous and under steady-state conditions) and a regularized response to normal stress variations. We first consider the small wave-number k limit and demonstrate that homogeneous sliding in this case is universally unstable, independent of the details of the friction law. This universal instability is mediated by propagating waveguide-like modes, whose fastest growing mode is characterized by a wave-number satisfying kH ∼ O(1) and by a growth rate that scales with H-1. We then consider the limit kH → ∞ and derive the stability phase diagram in this case. We show that the dominant instability mode travels at nearly the dilatational wave-speed in the opposite direction to the sliding direction. In a certain parameter range this instability is manifested through unstable modes at all wave-numbers, yet the frictional response is shown to be mathematically well-posed. Instability modes which travel at nearly the shear wave-speed in the sliding direction also exist in some range of physical parameters. Previous results

  2. Effects of water-vapor on friction and deformation of polymeric magnetic media in contact with a ceramic oxide

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1984-01-01

    The effects of humidity (water-vapor) in nitrogen on the friction and deformation behavior of magnetic tape in contact with a Ni-Zn ferrite spherical pin were studied. The coefficient of friction is markedly dependent on the ambient relative humidity. In elastic contacts the coefficient of friction increased linearly with increasing humidity; it decreased linearly when humidity was lowered. This effect is the result of changes in the chemistry and interaction of tape materials such as degradation of the lubricant. In plastic contacts there was no effect of humidity on friction below 40 percent relative humidity. There is no effect on friction associated with the breakthrough of the adsorbed water-vapor film at the interface of the tape and Ni-Zn ferrite. The coefficient of friction, however, increased rapidly with increasing relative humidity above 40 percent in plastic contacts.

  3. Kalker's algorithm Fastsim solves tangential contact problems with slip-dependent friction and friction anisotropy

    NASA Astrophysics Data System (ADS)

    Piotrowski, J.

    2010-07-01

    This paper presents two extensions of Kalker's algorithm Fastsim of the simplified theory of rolling contact. The first extension is for solving tangential contact problems with the coefficient of friction depending on slip velocity. Two friction laws have been considered: with and without recuperation of the static friction. According to the tribological hypothesis for metallic bodies shear failure, the friction law without recuperation of static friction is more suitable for wheel and rail than the other one. Sample results present local quantities inside the contact area (division to slip and adhesion, traction) as well as global ones (creep forces as functions of creepages and rolling velocity). For the coefficient of friction diminishing with slip, the creep forces decay after reaching the maximum and they depend on the rolling velocity. The second extension is for solving tangential contact problems with friction anisotropy characterised by a convex set of the permissible tangential tractions. The effect of the anisotropy has been shown on examples of rolling without spin and in the presence of pure spin for the elliptical set. The friction anisotropy influences tangential tractions and creep forces. Sample results present local and global quantities. Both extensions have been described with the same language of formulation and they may be merged into one, joint algorithm.

  4. Spanning From Atoms to Micrometers in Simulations of Contact, Adhesion and Friction

    NASA Astrophysics Data System (ADS)

    Robbins, Mark

    Improved understanding of the forces between realistic solid surfaces is needed to optimize adhesion and friction. Modeling these forces is challenging because they arise from interactions between atoms separated by less than a nanometer, but the number and spatial distribution of these contacting atoms depends on surface roughness and deformation on micrometer and larger scales. There are also strong scale effects in the role of elastic deformations along the surface. The talk will first describe a seamless Greens function (GF) method that allows a full treatment of elastic deformations and atomic contact for micrometer scale surfaces and multibody potentials. Next applications of the method to calculations of the contact area, contact stiffness, adhesion and friction for a range of geometries and interactions will be described. The results can be captured with simple analytic expressions and explain why most contacting surfaces do not adhere. Theoretical and experimental studies of single nanometer-scale asperities show that the frictional shear stress depends strongly on whether surfaces are commensurate. A large constant stress is obtained for identical, aligned crystalline surfaces, but the stress averages to zero in the more common case of incommensurate surfaces. The resulting ultralow friction is called superlubricity and is found in experiments and simulations of small contacts. Our simulations reveal dramatic changes in this behavior because different parts of the surface are able to advance independently as the contact radius increases towards micrometer scales. The friction between identical surfaces drops with increasing radius and then saturates at a low value. The force between incommensurate surfaces saturates at a similar value that can be related to the Peierls stress for dislocation motion at the interface. Studies of multiasperity contacts also show that incoherent motion along the interface can lead to pronounced changes in the macroscopic

  5. Local friction at a sliding interface between an elastomer and a rigid spherical probe

    NASA Astrophysics Data System (ADS)

    Chateauminois, A.; Fretigny, C.

    2008-10-01

    This paper reports on spatially resolved measurements of the shear stress distribution at a frictional interface between a flat rubber substrate and a glass lens. Silicone rubber specimens marked close to their surface by a colored pattern have been prepared in order to measure the surface displacement field induced by the steady-state friction of the spherical probe. The deconvolution of this displacement field then provides the actual shear stress distribution at the contact interface. When a smooth glass lens is used, a nearly constant shear stress is achieved within the contact. On the other hand, a bell-shaped shear stress distribution is obtained with rough lenses. These first results suggest that simple notions of real contact area and constant interface shear stress cannot account for the observed changes in local friction when roughness is varied.

  6. Speed of fast and slow rupture fronts along frictional interfaces

    NASA Astrophysics Data System (ADS)

    Trømborg, Jørgen Kjoshagen; Sveinsson, Henrik Andersen; Thøgersen, Kjetil; Scheibert, Julien; Malthe-Sørenssen, Anders

    2015-07-01

    The transition from stick to slip at a dry frictional interface occurs through the breaking of microjunctions between the two contacting surfaces. Typically, interactions between junctions through the bulk lead to rupture fronts propagating from weak and/or highly stressed regions, whose junctions break first. Experiments find rupture fronts ranging from quasistatic fronts, via fronts much slower than elastic wave speeds, to fronts faster than the shear wave speed. The mechanisms behind and selection between these fronts are still imperfectly understood. Here we perform simulations in an elastic two-dimensional spring-block model where the frictional interaction between each interfacial block and the substrate arises from a set of junctions modeled explicitly. We find that material slip speed and rupture front speed are proportional across the full range of front speeds we observe. We revisit a mechanism for slow slip in the model and demonstrate that fast slip and fast fronts have a different, inertial origin. We highlight the long transients in front speed even along homogeneous interfaces, and we study how both the local shear to normal stress ratio and the local strength are involved in the selection of front type and front speed. Last, we introduce an experimentally accessible integrated measure of block slip history, the Gini coefficient, and demonstrate that in the model it is a good predictor of the history-dependent local static friction coefficient of the interface. These results will contribute both to building a physically based classification of the various types of fronts and to identifying the important mechanisms involved in the selection of their propagation speed.

  7. Molecular dynamics investigation of the effect of copper nanoparticle on the solid contact between friction surfaces

    NASA Astrophysics Data System (ADS)

    Hu, Chengzhi; Bai, Minli; Lv, Jizu; Liu, Hao; Li, Xiaojie

    2014-12-01

    This study investigated the effect of copper (Cu) nanoparticles on the solid contact between friction surfaces by applying a molecular dynamics method to reveal the mechanisms responsible for the favorable friction properties of nanoparticles. Two models were built, which were named model A (without Cu) and model B (with Cu), respectively. The differences in the mechanical properties between these two models were compared. The simulation results demonstrated that the improvement in friction properties by Cu nanoparticles was more obvious at low velocity than at high velocity. At low velocity, a Cu nano-film was formed on the friction surface, which accommodated the velocity gradient and plastic deformation. Due to the good lubrication effect of the nano-film, the plastic deformation, defect structures and friction force of model B were improved compared with model A. Under high velocity conditions, a transfer layer appeared adjacent to the interface in both models. Because of this, the friction forces of the two models decreased with increased velocity. The fluid mechanics theory was used to explain why the friction force in model B was lower than that in model A at high velocity. The effect of the load on friction properties was also analyzed and the results showed that the mechanisms of anti-wear and friction reduction by Cu nanoparticles under a low load were the same as those under a high load.

  8. Modeling of Instabilities and Self-organization at the Frictional Interface

    NASA Astrophysics Data System (ADS)

    Mortazavi, Vahid

    The field of friction-induced self-organization and its practical importance remains unknown territory to many tribologists. Friction is usually thought of as irreversible dissipation of energy and deterioration; however, under certain conditions, friction can lead to the formation of new structures at the interface, including in-situ tribofilms and various patterns at the interface. This thesis studies self-organization and instabilities at the frictional interface, including the instability due to the temperature-dependency of the coefficient of friction, the transient process of frictional running-in, frictional Turing systems, the stick-and-slip phenomenon, and, finally, contact angle (CA) hysteresis as an example of solid-liquid friction and dissipation. All these problems are chosen to bridge the gap between fundamental interest in understanding the conditions leading to self-organization and practical motivation. We study the relationship between friction-induced instabilities and friction-induced self-organization. Friction is usually thought of as a stabilizing factor; however, sometimes it leads to the instability of sliding, in particular when friction is coupled with another process. Instabilities constitute the main mechanism for pattern formation. At first, a stationary structure loses its stability; after that, vibrations with increasing amplitude occur, leading to a limit cycle corresponding to a periodic pattern. The self-organization is usually beneficial for friction and wear reduction because the tribological systems tend to enter a state with the lowest energy dissipation. The introductory chapter starts with basic definitions related to self-organization, instabilities and friction, literature review, and objectives. We discuss fundamental concepts that provide a methodological tool to investigate, understand and enhance beneficial processes in tribosystems which might lead to self-organization. These processes could result in the ability of a

  9. Numerical and experimental study of the nonlinear interaction between a shear wave and a frictional interface.

    PubMed

    Blanloeuil, Philippe; Croxford, Anthony J; Meziane, Anissa

    2014-04-01

    The nonlinear interaction of shear waves with a frictional interface are presented and modeled using simple Coulomb friction. Analytical and finite difference implementations are proposed with both in agreement and showing a unique trend in terms of the generated nonlinearity. A dimensionless parameter ξ is proposed to uniquely quantify the nonlinearity produced. The trends produced in the numerical study are then validated with good agreement experimentally. This is carried out loading an interface between two steel blocks and exciting this interface with different amplitude normal incidence shear waves. The experimental results are in good agreement with the numerical results, suggesting the simple friction model does a reasonable job of capturing the fundamental physics. The resulting approach offers a potential way to characterize a contacting interface; however, the difficulty in activating that interface may ultimately limit its applicability. PMID:25234971

  10. 3D BEM for orthotropic frictional contact of piezoelectric bodies

    NASA Astrophysics Data System (ADS)

    Rodríguez-Tembleque, Luis; Buroni, Federico C.; Sáez, Andrés

    2015-09-01

    A numerical methodology to model the three-dimensional frictional contact interaction of piezoelectric materials in presence of electric fields is presented in this work. The boundary element method (BEM) is used in order to compute the electro-elastic influence coefficients. The proposed BEM formulation employs an explicit approach for the evaluation of the corresponding fundamental solutions, which are valid for general anisotropic behaviour meanwhile mathematical degeneracies in the context of the Stroh formalism are allowed. The contact methodology is based on an augmented Lagrangian formulation and uses an iterative Uzawa scheme of resolution. An orthotropic frictional law is implemented in this work so anisotropy is present both in the bulk and in the surface. The methodology is validated by comparison with benchmark analytical solutions. Some additional examples are presented and discussed in detail, revealing the importance of considering orthotropic frictional contact conditions in the electro-elastic analysis of this kind of problems.

  11. Contact and friction of nanoasperities: effects of adsorbed monolayers.

    PubMed

    Cheng, Shengfeng; Luan, Binquan; Robbins, Mark O

    2010-01-01

    Molecular dynamics simulations are used to study contact between a rigid, nonadhesive, and spherical tip with radius of order 30 nm and a flat elastic substrate covered with a fluid monolayer of adsorbed chain molecules. Previous studies of bare surfaces showed that the atomic scale deviations from a sphere that are present on any tip constructed from discrete atoms lead to significant deviations from continuum theory and dramatic variability in friction forces. Introducing an adsorbed monolayer leads to larger deviations from continuum theory but decreases the variations between tips with different atomic structure. Although the film is fluid, it remains in the contact and behaves qualitatively like a thin elastic coating except for certain tips at high loads. Measures of the contact area based on the moments or outer limits of the pressure distribution and on counting contacting atoms are compared. The number of tip atoms making contact during a time interval Deltat grows as a power of Deltat when the film is present and as the logarithm of Deltat for bare surfaces. Friction is measured by displacing the tip at a constant velocity or pulling the tip with a spring. Both static and kinetic friction rise linearly with load at small loads. Transitions in the state of the film lead to nonlinear behavior at large loads. The friction is less clearly correlated with contact area than load. PMID:20365427

  12. Steady-state propagation speed of rupture fronts along one-dimensional frictional interfaces

    NASA Astrophysics Data System (ADS)

    Amundsen, David Skâlid; Trømborg, Jørgen Kjoshagen; Thøgersen, Kjetil; Katzav, Eytan; Malthe-Sørenssen, Anders; Scheibert, Julien

    2015-09-01

    The rupture of dry frictional interfaces occurs through the propagation of fronts breaking the contacts at the interface. Recent experiments have shown that the velocities of these rupture fronts range from quasistatic velocities proportional to the external loading rate to velocities larger than the shear wave speed. The way system parameters influence front speed is still poorly understood. Here we study steady-state rupture propagation in a one-dimensional (1D) spring-block model of an extended frictional interface for various friction laws. With the classical Amontons-Coulomb friction law, we derive a closed-form expression for the steady-state rupture velocity as a function of the interfacial shear stress just prior to rupture. We then consider an additional shear stiffness of the interface and show that the softer the interface, the slower the rupture fronts. We provide an approximate closed form expression for this effect. We finally show that adding a bulk viscosity on the relative motion of blocks accelerates steady-state rupture fronts and we give an approximate expression for this effect. We demonstrate that the 1D results are qualitatively valid in 2D. Our results provide insights into the qualitative role of various key parameters of a frictional interface on its rupture dynamics. They will be useful to better understand the many systems in which spring-block models have proved adequate, from friction to granular matter and earthquake dynamics.

  13. Non-contact friction for ion-surface interactions

    NASA Astrophysics Data System (ADS)

    Jentschura, Ulrich D.; Lach, Grzegorz

    2015-05-01

    Non-contact friction forces are exerted on physical systems through dissipative processes, when the two systems are not in physical contact with each other, or, in quantum mechanical terms, when the overlap of their wave functions is negligible. Non-contact friction is mediated by the exchange of virtual quanta, with the additional requirement that the scattering process needs to have an inelastic component. For finite-temperature ion-surface interactions, the friction is essentially caused by Ohmic resistance due to the motion of the image charge moving in a dielectric material. A conceivable experiment is difficult because the friction force needs to be isolated from the interaction with the image charge, which significantly distorts the ion's flight path. We propose an experimental setup which is designed to minimize the influence of the image charge interaction though a compensation mechanism, and evaluate the energy loss due to non-contact friction for helium ions (He+) interacting with gold, vanadium, titanium and graphite surfaces. Interactions with the infinite series of mirror charges in the plates are summed in terms of the logarithmic derivatives of the Gamma function, and of the Hurwitz zeta function.

  14. Implicit frictional-contact model for soft particle systems

    NASA Astrophysics Data System (ADS)

    Nezamabadi, Saeid; Radjai, Farhang; Averseng, Julien; Delenne, Jean-Yves

    2015-10-01

    We introduce a novel numerical approach for the simulation of soft particles interacting via frictional contacts. This approach is based on an implicit formulation of the Material Point Method, allowing for large particle deformations, combined with the Contact Dynamics method for the treatment of unilateral frictional contacts between particles. This approach is both precise due to the treatment of contacts with no regularization and artificial damping parameters, and robust due to implicit time integration of both bulk degrees of freedom and relative contact velocities at the nodes representing the contact points. By construction, our algorithm is capable of handling arbitrary particle shapes and deformations. We illustrate this approach by two simple 2D examples: a Hertz contact and a rolling particle on an inclined plane. We also investigate the compaction of a packing of circular particles up to a solid fraction well above the jamming limit of hard particles. We find that, for the same level of deformation, the solid fraction in a packing of frictional particles is above that of a packing of frictionless particles as a result of larger particle shape change.

  15. A constitutive law for finite element contact problems with unclassical friction

    NASA Technical Reports Server (NTRS)

    Plesha, M. E.; Steinetz, B. M.

    1986-01-01

    Techniques for modeling complex, unclassical contact-friction problems arising in solid and structural mechanics are discussed. A constitutive modeling concept is employed whereby analytic relations between increments of contact surface stress (i.e., traction) and contact surface deformation (i.e., relative displacement) are developed. Because of the incremental form of these relations, they are valid for arbitrary load-deformation histories. The motivation for the development of such a constitutive law is that more realistic friction idealizations can be implemented in finite element analysis software in a consistent, straightforward manner. Of particular interest is modeling of two-body (i.e., unlubricated) metal-metal, ceramic-ceramic, and metal-ceramic contact. Interfaces involving ceramics are of engineering importance and are being considered for advanced turbine engines in which higher temperature materials offer potential for higher engine fuel efficiency.

  16. Single-crystal-silicon-based microinstrument to study friction and wear at MEMS sidewall interfaces

    NASA Astrophysics Data System (ADS)

    Ansari, N.; Ashurst, W. R.

    2012-02-01

    Since the advent of microelectromechanical systems (MEMS) technology, friction and wear are considered as key factors that determine the lifetime and reliability of MEMS devices that contain contacting interfaces. However, to date, our knowledge of the mechanisms that govern friction and wear in MEMS is insufficient. Therefore, systematically investigating friction and wear at MEMS scale is critical for the commercial success of many potential MEMS devices. Specifically, since many emerging MEMS devices contain more sidewall interfaces, which are topographically and chemically different from in-plane interfaces, studying the friction and wear characteristics of MEMS sidewall surfaces is important. The microinstruments that have been used to date to investigate the friction and wear characteristics of MEMS sidewall surfaces possess several limitations induced either by their design or the structural film used to fabricate them. Therefore, in this paper, we report on a single-crystal-silicon-based microinstrument to study the frictional and wear behavior of MEMS sidewalls, which not only addresses some of the limitations of other microinstruments but is also easy to fabricate. The design, modeling and fabrication of the microinstrument are described in this paper. Additionally, the coefficients of static and dynamic friction of octadecyltrichlorosilane-coated sidewall surfaces as well as sidewall surfaces with only native oxide on them are also reported in this paper.

  17. Finite element modeling of frictionally restrained composite interfaces

    NASA Technical Reports Server (NTRS)

    Ballarini, Roberto; Ahmed, Shamim

    1989-01-01

    The use of special interface finite elements to model frictional restraint in composite interfaces is described. These elements simulate Coulomb friction at the interface, and are incorporated into a standard finite element analysis of a two-dimensional isolated fiber pullout test. Various interfacial characteristics, such as the distribution of stresses at the interface, the extent of slip and delamination, load diffusion from fiber to matrix, and the amount of fiber extraction or depression are studied for different friction coefficients. The results are compared to those obtained analytically using a singular integral equation approach, and those obtained by assuming a constant interface shear strength. The usefulness of these elements in micromechanical modeling of fiber-reinforced composite materials is highlighted.

  18. Scale dependence of interface dislocation storage governing the frictional sliding of single asperities

    NASA Astrophysics Data System (ADS)

    Gao, Zhiwen; Zhang, Wei; Gao, Yanfei

    2016-08-01

    Single-asperity friction tests have found a critical dependence of friction stress on the nanoscale contact size, as successfully explained by the nucleation of interface dislocations as opposed to concurrent sliding of all the interfacial atoms in contact. Modeling and simulation results, however, vary when the motion and interactions of multiple dislocations dominate at a larger scale regime. A Rice–Peierls framework is employed to investigate the multiplication and storage of interface dislocations, and the critical conditions for dislocation initiation and steady-state gliding are determined numerically. Our findings identify the key parameters that govern various friction mechanisms in the Hurtado–Kim and Deshpande–Needleman–van der Giessen models.

  19. Effect of barrier height on friction behavior of the semiconductors silicon and gallium arsenide in contact with pure metals

    NASA Technical Reports Server (NTRS)

    Mishina, H.; Buckley, D. H.

    1984-01-01

    Friction experiments were conducted for the semiconductors silicon and gallium arsenide in contact with pure metals. Polycrystalline titanium, tantalum, nickel, palladium, and platinum were made to contact a single crystal silicon (111) surface. Indium, nickel, copper, and silver were made to contact a single crystal gallium arsenide (100) surface. Sliding was conducted both in room air and in a vacuum of 10 to the minus 9th power torr. The friction of semiconductors in contact with metals depended on a Schottky barrier height formed at the metal semiconductor interface. Metals with a higher barrier height on semiconductors gave lower friction. The effect of the barrier height on friction behavior for argon sputtered cleaned surfaces in vacuum was more specific than that for the surfaces containing films in room air. With a silicon surface sliding on titanium, many silicon particles back transferred. In contrast, a large quantity of indium transferred to the gallium arsenide surface.

  20. Contact compliance effects in the frictional response of bioinspired fibrillar adhesives

    PubMed Central

    Piccardo, Marco; Chateauminois, Antoine; Fretigny, Christian; Pugno, Nicola M.; Sitti, Metin

    2013-01-01

    The shear failure and friction mechanisms of bioinspired adhesives consisting of elastomer arrays of microfibres terminated by mushroom-shaped tips are investigated in contact with a rigid lens. In order to reveal the interplay between the vertical and lateral loading directions, experiments are carried out using a custom friction set-up in which normal stiffness can be made either high or low when compared with the stiffness of the contact between the fibrillar adhesive and the lens. Using in situ contact imaging, the shear failure of the adhesive is found to involve two successive mechanisms: (i) cavitation and peeling at the contact interface between the mushroom-shaped fibre tip endings and the lens; and (ii) side re-adhesion of the fibre's stem to the lens. The extent of these mechanisms and their implications regarding static friction forces is found to depend on the crosstalk between the normal and lateral loading directions that can result in contact instabilities associated with fibre buckling. In addition, the effects of the viscoelastic behaviour of the polyurethane material on the rate dependence of the shear response of the adhesive are accounted for. PMID:23554349

  1. Friction and shear fracture of an adhesive contact under torsion

    NASA Astrophysics Data System (ADS)

    Chateauminois, Antoine; Fretigny, Christian; Olanier, Ludovic

    2010-02-01

    The shear failure or stiction of an adhesive contact between a poly(dimethylsiloxane) (PDMS) rubber and a glass lens has been investigated using a torsional contact configuration. As compared to linear sliding, torsion presents the advantage of inducing a shear failure under a pure mode III condition, while preserving the cylindrical symmetry of the contact. The surface of the transparent PDMS substrate was marked using a network of dots in order to monitor continuously the in-plane surface displacements during the stiction process. Using a previously developed inversion procedure (A. Chateauminois and C. Fretigny, Eur. Phys. J. E 27, 221 (2008)), the corresponding surface shear stress distributions were obtained from the displacement fields. Stiction was found to involve the progressive shrinkage of a central adhesive zone surrounded by an annular microslip region. Adhesion effects were especially evidenced from a stress overshoot at the boundary of the adhesive zone. The experimental data were analysis using an extension to torsional contact of the Maugis-Dugdale approach’s to adhesive contacts which takes into account frictional effects. This model allowed to extract an effective adhesion energy in the presence of friction, which dependence on kinetics effect is briefly discussed.

  2. Assessing the accuracy of different simplified frictional rolling contact algorithms

    NASA Astrophysics Data System (ADS)

    Vollebregt, E. A. H.; Iwnicki, S. D.; Xie, G.; Shackleton, P.

    2012-01-01

    This paper presents an approach for assessing the accuracy of different frictional rolling contact theories. The main characteristic of the approach is that it takes a statistically oriented view. This yields a better insight into the behaviour of the methods in diverse circumstances (varying contact patch ellipticities, mixed longitudinal, lateral and spin creepages) than is obtained when only a small number of (basic) circumstances are used in the comparison. The range of contact parameters that occur for realistic vehicles and tracks are assessed using simulations with the Vampire vehicle system dynamics (VSD) package. This shows that larger values for the spin creepage occur rather frequently. Based on this, our approach is applied to typical cases for which railway VSD packages are used. The results show that particularly the USETAB approach but also FASTSIM give considerably better results than the linear theory, Vermeulen-Johnson, Shen-Hedrick-Elkins and Polach methods, when compared with the 'complete theory' of the CONTACT program.

  3. Normal contact and friction of rubber with model randomly rough surfaces.

    PubMed

    Yashima, S; Romero, V; Wandersman, E; Frétigny, C; Chaudhury, M K; Chateauminois, A; Prevost, A M

    2015-02-01

    We report on normal contact and friction measurements of model multicontact interfaces formed between smooth surfaces and substrates textured with a statistical distribution of spherical micro-asperities. Contacts are either formed between a rigid textured lens and a smooth rubber, or a flat textured rubber and a smooth rigid lens. Measurements of the real area of contact A versus normal load P are performed by imaging the light transmitted at the microcontacts. For both interfaces, A(P) is found to be sub-linear with a power law behavior. Comparison with two multi-asperity contact models, which extend the Greenwood-Williamson (J. Greenwood and J. Williamson, Proc. Royal Soc. London Ser. A, 295, 300 (1966)) model by taking into account the elastic interaction between asperities at different length scales, is performed, and allows their validation for the first time. We find that long range elastic interactions arising from the curvature of the nominal surfaces are the main source of the non-linearity of A(P). At a shorter range, and except for very low pressures, the pressure dependence of both density and area of microcontacts remains well described by Greenwood-Williamson's model, which neglects any interaction between asperities. In addition, in steady sliding, friction measurements reveal that the mean shear stress at the scale of the asperities is systematically larger than that found for a macroscopic contact between a smooth lens and a rubber. This suggests that frictional stresses measured at macroscopic length scales may not be simply transposed to microscopic multicontact interfaces. PMID:25514137

  4. Polymer Chain Reinforcement across Narrow Interfaces: Entanglements Versus Chain Friction

    NASA Astrophysics Data System (ADS)

    Benkoski, Jason J.; Fredrickson, Glenn H.; Kramer, Edward J.

    2002-03-01

    It is widely believed that entangled chains that bridge a glassy polymer/polymer interface solely determine its fracture energy (G_c). However, experiments show that while Gc increases with interfacial width (w), Gc vs. w/d_t, where dt is the tube diameter of the melt, is not universal. For some polymer pairs Gc increases dramatically even when w << d_t, while for others Gc does not increase until w >= d_t. We demonstrate that the friction stress for polymer loop pull-out from the interface is given by f_monoρ_merw/2 where f_mono is the static friction coefficient per mer and ρ_mer is the mer number density. Unlike interfaces with short block copolymers, where the friction stress for block pull-out is limited by a maximum areal density of block copolymer, the polymer/polymer friction stress grows linearly with w. For interfaces as narrow as 3 nm, it can be large enough to induce crazing. A model that includes both loop pull-out and chain entanglement shows that modest changes in f_mono can account for the fact that Gc versus w/dt is non-universal. A high areal density of bridging, entangled chains is therefore sufficient, but not necessary, to reinforce polymer interfaces.

  5. Microscopic contact area and friction between medical textiles and skin.

    PubMed

    Derler, S; Rotaru, G-M; Ke, W; El Issawi-Frischknecht, L; Kellenberger, P; Scheel-Sailer, A; Rossi, R M

    2014-10-01

    The mechanical contact between medical textiles and skin is relevant in the health care for patients with vulnerable skin or chronic wounds. In order to gain new insights into the skin-textile contact on the microscopic level, the 3D surface topography of a normal and a new hospital bed sheet with a regular surface structure was measured using a digital microscope. The topographic data was analysed concerning material distribution and real contact area against smooth surfaces as a function of surface deformations. For contact conditions that are relevant for the skin of patients lying in a hospital bed it was found that the order of magnitude of the ratio of real and apparent contact area between textiles and skin or a mechanical skin model lies between 0.02 and 0.1 and that surface deformations, i.e. penetration of the textile surface asperities into skin or a mechanical skin model, range from 10 to 50µm. The performed analyses of textile 3D surface topographies and comparisons with previous friction measurement results provided information on the relationship between microscopic surface properties and macroscopic friction behaviour of medical textiles. In particular, the new bed sheet was found to be characterised by a trend towards a smaller microscopic contact area (up to a factor of two) and by a larger free interfacial volume (more than a factor of two) in addition to a 1.5 times lower shear strength when in contact with counter-surfaces. The applied methods can be useful to develop improved and skin-adapted materials and surfaces for medical applications. PMID:25047353

  6. Evidence for Contact Delocalization in Atomic Scale Friction

    NASA Astrophysics Data System (ADS)

    Abel, D. G.; Krylov, S. Yu.; Frenken, J. W. M.

    2007-10-01

    We analyze an advanced two-spring model with an ultralow effective tip mass to predict nontrivial and physically rich “fine structure” in the atomic stick-slip motion in friction force microscopy (FFM) experiments. We demonstrate that this fine structure is present in recent, puzzling experiments. This shows that the tip apex can be completely or partially delocalized, thus shedding new light on what is measured in FFM and, possibly, what can happen with the asperities that establish the contact between macroscopic sliding bodies.

  7. A computational study of brush seal contact loads with friction

    NASA Astrophysics Data System (ADS)

    Aksit, Mahmut Faruk

    The brush seal is emerging as a new technology to effectively control cooling and leakage flows in gas turbine engines. With their superior leakage performance, they show the potential to replace current labyrinth seals in gas turbine engines. Because the bristles slide against the rotor surface, wear at the contact becomes a major concern as it determines the life and efficiency of the seal. To optimize seal life and efficiency, an in-depth study of the factors causing the seal stiffness is needed, and a good choice of materials must be made. Although considerable research has been done on material selection and tribopairs, a brief survey reveals the lack of reliable analyses to evaluate contact loads, and to address heat transfer issues. As material pairs have been optimized for most cases, understanding and management of contact loads hold the key for further improvements in seal life. The complicated nature of bristle behavior under various combinations of pressure load and rotor interference requires computer analysis to study details that may not be available through analytical formulations. In an attempt to meet this need, this study presents a 3-D finite element model of a brush seal. The model consists of a representative bristle bundle with a backing plate and a rotor surface. Every bristle is defined by a number of 3-D quadratic beam elements. Bristles are fixed at the top nodes, while they are free to move in any direction at the tip touching the rotor surface. The model consists of 10 to 13 circumferential rows of bristles. The number of rows are based on the actual packing thickness of the seal modeled. Unlike previous analytical studies on brush seal contact loads, this work includes nonlinear frictional effects between the bristles. Frictional effects are known to drastically change the seal behavior, and are crucial in determining the contact forces. The model applies the available published experimental data to define the boundary conditions and

  8. Sliding Friction at a Rubber/Brush Interface

    NASA Astrophysics Data System (ADS)

    Bureau, Lionel

    2004-03-01

    The friction of poly(dimethylsiloxane) (PDMS) rubber networks sliding, at low velocity (3 nm.s-1friction force measurements. We study systematically the velocity dependence of the friction stress as a function of two molecular parameters which are the grafting density and the molecular weight of the tethered chains. We thus show that frictional dissipation is governed, at high grafting densities, by the rheology of a thin entangled layer confined outside the elastomer, whereas at low grafting density, where chains can be considered as independent, friction enhancement is due to pull-out of the chains ends which penetrate into the network during sliding. This latter result provides a strong evidence for friction controlled by arm retraction relaxation of the grafted chains, as proposed by Rubinstein et al. in a model of slippage at a network/brush interface.

  9. Thermal contact conductance of actuated interfaces

    NASA Astrophysics Data System (ADS)

    Song, Woo-Bin; Sutton, Michael S.; Talghader, Joseph J.

    2002-08-01

    The thermal contact conductance (TCC) of microactuated mechanical interfaces has been characterized using an electronic technique, where micromachined test structures were heated with a current and the TCC was inferred from the change in resistance. For every device tested, the TCC was higher in vacuum than in air. This is in stark contrast to the behavior of bulk interfaces, and several experiments suggest that it may be the result of a decreased solid-solid contact area in air caused by the pressure of the interstitial gas. The average effective TCC of a polysilicon/nitride interface brought together by electrostatic actuation varies about values of 6.0 x104 W/(K m2) in air and 9.5 x104 W/(K m2) under vacuum for applied pressures of 1 MPa. These values are significantly higher than commonly reported for nonmetallic materials and probably reflect the very smooth surfaces of deposited thin films.

  10. Numerical Analysis of Piezoelectric Active Repair in the Presence of Frictional Contact Conditions

    PubMed Central

    Alaimo, Andrea; Milazzo, Alberto; Orlando, Calogero; Messineo, Antonio

    2013-01-01

    The increasing development of smart materials, such as piezoelectric and shape memory alloys, has opened new opportunities for improving repair techniques. Particularly, active repairs, based on the converse piezoelectric effect, can increase the life of a structure by reducing the crack opening. A deep characterization of the electromechanical behavior of delaminated composite structures, actively repaired by piezoelectric patches, can be achieved by considering the adhesive layer between the host structure and the repair and by taking into account the frictional contact between the crack surfaces. In this paper, Boundary Element (BE) analyses performed on delaminated composite structures repaired by active piezoelectric patches are presented. A two-dimensional boundary integral formulation for piezoelectric solids based on the multi-domain technique to model the composite host damaged structures and the bonded piezoelectric patches is employed. An interface spring model is also implemented to take into account the finite stiffness of the bonding layers and to model the frictional contact between the delamination surfaces, by means of an iterative procedure. The effect of the adhesive between the plies of piezoelectric bimorph devices on the electromechanical response is first pointed out for both sensing and actuating behavior. Then, the effect of the frictional contact condition on the fracture mechanics behavior of actively repaired delaminated composite structures is investigated. PMID:23549364

  11. Local origin of global contact numbers in frictional ellipsoid packings.

    PubMed

    Schaller, Fabian M; Neudecker, Max; Saadatfar, Mohammad; Delaney, Gary W; Schröder-Turk, Gerd E; Schröter, Matthias

    2015-04-17

    In particulate soft matter systems the average number of contacts Z of a particle is an important predictor of the mechanical properties of the system. Using x-ray tomography, we analyze packings of frictional, oblate ellipsoids of various aspect ratios α, prepared at different global volume fractions ϕg. We find that Z is a monotonically increasing function of ϕg for all α. We demonstrate that this functional dependence can be explained by a local analysis where each particle is described by its local volume fraction ϕl computed from a Voronoi tessellation. Z can be expressed as an integral over all values of ϕl: Z(ϕg,α,X)=∫Zl(ϕl,α,X)P(ϕl|ϕg)dϕl. The local contact number function Zl(ϕl,α,X) describes the relevant physics in term of locally defined variables only, including possible higher order terms X. The conditional probability P(ϕl|ϕg) to find a specific value of ϕl given a global packing fraction ϕg is found to be independent of α and X. Our results demonstrate that for frictional particles a local approach is not only a theoretical requirement but also feasible. PMID:25933340

  12. Local Origin of Global Contact Numbers in Frictional Ellipsoid Packings

    NASA Astrophysics Data System (ADS)

    Schaller, Fabian M.; Neudecker, Max; Saadatfar, Mohammad; Delaney, Gary W.; Schröder-Turk, Gerd E.; Schröter, Matthias

    2015-04-01

    In particulate soft matter systems the average number of contacts Z of a particle is an important predictor of the mechanical properties of the system. Using x-ray tomography, we analyze packings of frictional, oblate ellipsoids of various aspect ratios α , prepared at different global volume fractions ϕg. We find that Z is a monotonically increasing function of ϕg for all α . We demonstrate that this functional dependence can be explained by a local analysis where each particle is described by its local volume fraction ϕl computed from a Voronoi tessellation. Z can be expressed as an integral over all values of ϕl: Z (ϕg,α ,X )=∫Zl(ϕl,α ,X )P (ϕl|ϕg)d ϕl . The local contact number function Zl(ϕl,α ,X ) describes the relevant physics in term of locally defined variables only, including possible higher order terms X . The conditional probability P (ϕl|ϕg) to find a specific value of ϕl given a global packing fraction ϕg is found to be independent of α and X . Our results demonstrate that for frictional particles a local approach is not only a theoretical requirement but also feasible.

  13. Laboratory-developed contact models controlling instability on frictional faults

    NASA Astrophysics Data System (ADS)

    Selvadurai, Paul A.; Glaser, Steven D.

    2015-06-01

    Laboratory experiments were performed on a polymethyl methacrylate (PMMA)-PMMA frictional interface in a direct shear apparatus in order to gain understanding of fault dynamics leading to gross rupture. Actual asperity sizes and locations along the interface were characterized using a pressure-sensitive film. Slow aseismic slip accumulated nonuniformly along the fault and showed dependency on the applied normal force—increased normal force resulted in higher slip gradients. The slow slip front propagated from the trailing (pushed) edge into a region of more densely distributed asperities at rates between 1 and 9.5 mm/s. Foreshocks were detected and displayed impulsive signals with source radii ranging between 0.21 and 1.09 mm; measurements made using the pressure-sensitive film were between 0.05 and 1.2 mm. The spatiotemporal clustering of foreshocks and their relation to the elastodynamic energy released was dependent on the normal force. In the region where foreshocks occurred, qualitative optical measurements of the asperities along the interface were used to visualize dynamic changes occurring during the slow slip phase. To better understand the nucleation process, a quasi-static asperity finite element (FE) model was developed and focused in the region where foreshocks clustered. The FE model consisted of 172 asperities, located and sized based on pressure-sensitive film measurements. The numerical model provides a plausible explanation as to why foreshocks cluster in space and observed a normal force dependency and lend credence to Ohnaka's nucleation model.

  14. Scale-Dependent Friction and Damage Interface law: implications for effective earthquake rupture dynamics and radiation

    NASA Astrophysics Data System (ADS)

    Festa, Gaetano; Vilotte, Jean-Pierre; Raous, Michel; Henninger, Carole

    2010-05-01

    , using high-order Spectral Element Methods and non-smooth contact mechanics. In particular, we investigate the implications of this new interface law in terms of the rupture propagation and arrest. Special attention is focused on radiation and supershear transition. Comparison with the classical slip weakening friction law is provided. Finally, first results toward a dynamic consistent homogeneization of damaged fault zones will be discussed. Raous, M., Cangémi, L. and Cocou, M. (1999). A consistent model coupling adhesion, friction and unilateral contact', Computer Methods in Applied Mechanics and Engineering, Vol. 177, pp.383-399.

  15. Stick-slip at soft adhesive interfaces mediated by slow frictional waves.

    PubMed

    Viswanathan, Koushik; Sundaram, Narayan K; Chandrasekar, Srinivasan

    2016-06-28

    Stick-slip is a friction instability that governs diverse phenomena from squealing automobile brakes to earthquakes. At soft adhesive interfaces, this instability has long been attributed to Schallamach waves, which are a type of slow frictional wave. We use a contact configuration capable of isolating single wave events, coupled with high speed in situ imaging, to demonstrate the existence of two new stick-slip modes. It is shown that these modes also correspond to the passage of slow waves-separation pulse and slip pulse-with distinct nucleation and propagation characteristics. The slip pulse, characterized by a sharp stress front, propagates in the same direction as the Schallamach wave. In contrast, the separation pulse, involving local interface detachment and resembling a tensile neck, travels in exactly the opposite direction. A change in the stick-slip mode from the separation to the slip pulse is effected simply by increasing the normal force. Taken together, the three waves constitute all possible stick-slip modes in low-velocity sliding. The detailed observations enable us to present a phase diagram delineating the domains of occurrence of these waves. We suggest a direct analogy between the observed slow frictional waves and well known muscular locomotory waves in soft bodied organisms. Our work answers basic questions about adhesive mechanisms of frictional instabilities in natural and engineered systems, with broader implications for slow surface wave phenomena. PMID:27118236

  16. Nanoscale incipient asperity sliding and interface micro-slip assessed by the measurment of tangential contact stiffness

    SciTech Connect

    Gao, Yanfei; Lucas, Barry N.; Hay, Jack C.; Oliver, Warren C.; Pharr, George Mathews

    2006-01-01

    Experiments with a multidimensional nano-contact system have shown that, prior to kinetic frictional sliding, there is a significant reduction of the tangential contact stiffness relative to the elastic prediction. The reduction occurs at contact sizes below about 50-200 nm for aluminum single crystals and several other materials. Using a cohesive interface model, we find that this reduction corresponds to a transition from a small-scale-slip to large-scale-slip condition of the interface.

  17. Dynamics of Slip Fronts at Frictional Interfaces: Analysis of Slip Precursors

    NASA Astrophysics Data System (ADS)

    Radiguet, M.; Kammer, D. S.; Molinari, J.

    2012-12-01

    The transition from sticking to sliding of frictional interfaces is a phenomenon of importance for many physical systems in nature as well as in engineering. This transition is marked by the occurrence of local slip events, often called precursors, which appear before the global sliding is observed. Such precursors to global sliding may occur on segments of geophysical faults subject to non uniform shear loading, for example a fault segment located between a locked and steadily slipping region. Sequences of small earthquakes (foreshocks) of identical seismic characteristics have been observed preceding large earthquakes in several regions. The links between the occurrence of these foreshocks and the nucleation process of large earthquakes remains elusive, but has large implications for earthquake prediction and risk assessment. These precursors have been studied experimentally by Rubinstein et al. [2007]. However, the experimental study of interfaces is challenging due to difficulties to access information at the interface. Therefore, numerical simulations are needed in order to give additional information for accurate analysis. First attempts have been undertaken using simple spring-block systems [Maegawa et al. 2010, Tromborg et al. 2011]. In this study however, we use the finite-element method, which allows us to represent accurately the continuum character of the system, and to investigate the onset and evolution of sliding at a frictional interface. The studied setup is similar to the experimental setup used by Ben-David et al. [2010]. It consists of a block of viscoelastic material in contact with a rigid body. A velocity-weakening friction law controls the friction at the interface. Special care is taken to apply appropriate regularization and viscosity in the simulation. We apply a shear load to the block, either on the top surface of the block or on one side. In both cases, the resulting shear tractions at the interface are non-uniform. The stress

  18. Segment-to-segment contact elements for modelling joint interfaces in finite element analysis

    NASA Astrophysics Data System (ADS)

    Mayer, M. H.; Gaul, L.

    2007-02-01

    This paper presents an efficient approach to model contact interfaces of joints in finite element analysis (FEA) with segment-to-segment contact elements like thin layer or zero thickness elements. These elements originate from geomechanics and have been applied recently in modal analysis as an efficient way to define the contact stiffness of fixed joints for model updating. A big advantage of these elements is that no global contact search algorithm is employed as used in master-slave contacts. Contact search algorithms are not necessary for modelling contact interfaces of fixed joints since the interfaces are always in contact and restricted to small relative movements, which saves much computing time. We first give an introduction into the theory of segment-to-segment contact elements leading to zero thickness and thin layer elements. As a new application of zero thickness elements, we demonstrate the implementation of a structural contact damping model, derived from a Masing model, as non-linear constitutive laws for the contact element. This damping model takes into account the non-linear influence of frictional microslip in the contact interface of fixed joints. With this model we simulate the non-linear response of a bolted structure. This approach constitutes a new way to simulate multi-degree-of-freedom systems with structural joints and predict modal damping properties.

  19. Water-vapor effects on friction of magnetic tape in contact with nickel-zinc ferrite

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1984-01-01

    The effects of humidity of moist nitrogen on the friction and deformation behavior of magnetic tape in contact with a nickel-zinc ferrite spherical pin were studied. The results indicate that the coefficient of friction is markedly dependent on the ambient relative humidity. Although the coefficient of friction remains low below 40-percent relative humidity, it increases rapidly with increasing relative humidity above 40 percent. The general ambient environment of the tape does not have any effect on the friction behavior if the area where the tape is in sliding contact with the ferrite pin is flooded with controlled nitrogen. The response time for the friction of the tape to humidity changes is about 10 sec. The effect of friction as a function of relative humidity on dehumidifying is very similar to that on humidifying. A surface softening of the tape due to water vapor increases the friction of the tape.

  20. Pressurized bellows flat contact heat exchanger interface

    NASA Astrophysics Data System (ADS)

    Voss, Fred E.; Howell, Harold R.; Winkler, Roger V.

    1990-03-01

    Disclosed is an interdigitated plate-type heat exchanger interface. The interface includes a modular interconnect to thermally connect a pair or pairs of plate-type heat exchangers to a second single or multiple plate-type heat exchanger. The modular interconnect comprises a series of parallel, plate-type heat exchangers arranged in pairs to form a slot therebetween. The plate-type heat exchangers of the second heat exchanger insert into the slots of the modular interconnect. Bellows are provided between the pairs of fins of the modular interconnect so that when the bellows are pressurized, they drive the plate-type heat exchangers of the modular interconnect toward one another, thus closing upon the second heat exchanger plates. Each end of the bellows has a part thereof a thin, membrane diaphragm which readily conforms to the contours of the heat exchanger plates of the modular interconnect when the bellows is pressurized. This ensures an even distribution of pressure on the heat exchangers of the modular interconnect thus creating substantially planar contact between the two heat exchangers. The effect of the interface of the present invention is to provide a dry connection between two heat exchangers whereby the rate of heat transfer can be varied by varying the pressure within the bellows.

  1. Pressurized bellows flat contact heat exchanger interface

    NASA Technical Reports Server (NTRS)

    Voss, Fred E. (Inventor); Howell, Harold R. (Inventor); Winkler, Roger V. (Inventor)

    1990-01-01

    Disclosed is an interdigitated plate-type heat exchanger interface. The interface includes a modular interconnect to thermally connect a pair or pairs of plate-type heat exchangers to a second single or multiple plate-type heat exchanger. The modular interconnect comprises a series of parallel, plate-type heat exchangers arranged in pairs to form a slot therebetween. The plate-type heat exchangers of the second heat exchanger insert into the slots of the modular interconnect. Bellows are provided between the pairs of fins of the modular interconnect so that when the bellows are pressurized, they drive the plate-type heat exchangers of the modular interconnect toward one another, thus closing upon the second heat exchanger plates. Each end of the bellows has a part thereof a thin, membrane diaphragm which readily conforms to the contours of the heat exchanger plates of the modular interconnect when the bellows is pressurized. This ensures an even distribution of pressure on the heat exchangers of the modular interconnect thus creating substantially planar contact between the two heat exchangers. The effect of the interface of the present invention is to provide a dry connection between two heat exchangers whereby the rate of heat transfer can be varied by varying the pressure within the bellows.

  2. Direct observation of frictional contacts: New insights for state-dependent properties

    USGS Publications Warehouse

    Dieterich, J.H.; Kilgore, B.D.

    1994-01-01

    Rocks and many other materials display a rather complicated, but characteristic, dependence of friction on sliding history. These effects are well-described by empirical rate- and state-dependent constitutive formulations which have been utilized for analysis of fault slip and earthquake processes. We present a procedure for direct quantitative microscopic observation of frictional contacts during slip. The observations reveal that frictional state dependence represents an increase of contact area with contact age. Transient changes of sliding resistance correlate with changes in contact area and arise from shifts of contact population age. Displacement-dependent replacement of contact populations is shown to cause the diagnostic evolution of friction over a characteristic sliding distance that occurs whenever slip begins or sliding conditions change. ?? 1994 Birkha??user Verlag.

  3. The metal to metal interface and its effect on adhesion and friction

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1976-01-01

    The paper considers the interface between two bulk metals and the effect of this interface on adhesive bonding, resistance to tangential displacements, friction and the interfacial transport from one surface to another. Using Auger emission spectroscopy, field ion microscopy, and low energy electron diffraction techniques, the influence of surface orientation, lattice registry, crystal lattice structure and defects, metal surface chemistry and alloying on the characteristics of the interface was studied for noble, platinum, transition, and Group 4B metals. With dissimilar metals in contact, epitaxial transfer of the cohesively weaker to the cohesively stronger metal has been observed. Surface chemical activity of the noble and platinum metals is shown to affect interfacial behavior as does a valence bonding in the transition metals, and the degree of metallic nature in the Group 4B elements. Alloying elements, e.g., Si and Fe, can alter interfacial behavior by segregation to the surface of metals or by altering bulk properties such as crystal transformation kinetics.

  4. Transition from stick to slip in Hertzian contact with ``Griffith'' friction: The Cattaneo-Mindlin problem revisited

    NASA Astrophysics Data System (ADS)

    Ciavarella, M.

    2015-11-01

    Classically, the transition from stick to slip is modelled with Amonton-Coulomb law, leading to the Cattaneo-Mindlin problem, which is amenable to quite general solutions using the idea of superposing normal contact pressure distributions - in particular superposing the full sliding component of shear with a corrective distribution in the stick region. However, faults model in geophysics and recent high-speed measurements of the real contact area and the strain fields in dry (nominally flat) rough interfaces at macroscopic but laboratory scale, all suggest that the transition from 'static' to 'dynamic' friction can be described, rather than by Coulomb law, by classical fracture mechanics singular solutions of shear cracks. Here, we introduce an 'adhesive' model for friction in a Hertzian spherical contact, maintaining the Hertzian solution for the normal pressures, but where the inception of slip is given by a Griffith condition. In the slip region, the standard Coulomb law continues to hold. This leads to a very simple solution for the Cattaneo-Mindlin problem, in which the "corrective" solution in the stick area is in fact similar to the mode II equivalent of a JKR singular solution for adhesive contact. The model departs from the standard Cattaneo-Mindlin solution, showing an increased size of the stick zone relative to the contact area, and a sudden transition to slip when the stick region reaches a critical size (the equivalent of the pull-off contact size of the JKR solution). The apparent static friction coefficient before sliding can be much higher than the sliding friction coefficient and, for a given friction fracture "energy", the process results in size and normal load dependence of the apparent static friction coefficient. Some qualitative agreement with Fineberg's group experiments for friction exists, namely the stick-slip boundary quasi-static prediction may correspond to the arrest of their slip "precursors", and the rapid collapse to global

  5. X-ray photoelectron spectroscopy and friction studies of nickel-zinc and manganese-zinc ferrites in contact with metals

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1983-01-01

    X-ray photoelectron spectroscopy analysis and sliding friction experiments were conducted with hot-pressed, polycrystalline Ni-Zn and Mn-Zn ferrites in sliding contact with various transition metals at room temperature in a vacuum of 30 nPa. The results indicate that the coefficients of friction for Ni-Zn and Mn-Zn ferrites in contact with metals are related to the relative chemical activity in these metals: the more active the metal, the higher is the coefficient of friction. The coefficients of friction for the ferrites correlate with the free energy of formation of the lowest metal oxide. The interfacial bond can be regarded as a chemical bond between the metal atoms and the oxygen anions in the ferrite surfaces. The adsorption of oxygen on clean metal and ferrite surfaces increases the coefficients of friction for the Ni-Zn and Mn-Zn ferrite-metal interfaces.

  6. Reduced contact resistance in top-contact organic field-effect transistors by interface contact doping

    NASA Astrophysics Data System (ADS)

    Hou, Ji-Ling; Kasemann, Daniel; Widmer, Johannes; Günther, Alrun A.; Lüssem, Björn; Leo, Karl

    2016-03-01

    Emerging organic integrated electronics require capability of high speed and the compatibility with high-resolution structuring processes such as photolithography. When downscaling the channel length, the contact resistance is known to limit the performance of the short channel devices. In this report, orthogonal photolithography is used for the patterning of the source/drain electrodes of the organic field-effect transistors (OFETs) as well as the interface dopant insertion layers for further modifications of the contact resistance. Bottom-gate top-contact pentacene OFETs with different thicknesses of the p-dopant 2,2'-(perfluoronaphthalene-2,6-diylidene)dimalononitrile under the Au electrodes show a significant decrease in threshold voltage from -2.2 V to -0.8 V and in contact resistance from 55 k Ω cm to 10 k Ω cm by adding a 1 nm thin dopant interlayer. The influence of doping on charge carrier injection is directly visible in the temperature-dependent output characteristics and a charge-transfer activation energy of ˜20 meV is obtained. Our results provide a systematic study of interface contact doping and also show the connection between interface contact doping and improved charge carrier injection by the activation of charge transfer process.

  7. Friction behavior of glass and metals in contact with glass in various environments

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1973-01-01

    Sliding friction experiments have been conducted for heat-resistant glass and metals in contact with glass. These experiments were conducted in various environments including vacuum, moist air, dry air, octane, and stearic acid in hexadecane. Glass exhibited a higher friction force in moist air than it did in vacuum when in sliding contact with itself. The metals, aluminum, iron, and gold, all exhibited the same friction coefficient when sliding on glass in vacuum as glass sliding on glass. Gold-to-glass contacts were extremely sensitive to the environment despite the relative chemical inertness of gold.

  8. Effect of capillary-condensed water on the dynamic friction force at nanoasperity contacts

    NASA Astrophysics Data System (ADS)

    Sirghi, L.

    2003-05-01

    A single nanoasperity contact in ambient air is usually wetted by capillary condensation of water vapor and is surrounded by a water meniscus. This phenomenon strongly affects the contact friction, not only by the effect of meniscus loading force (superficial tension and capillary forces), but also by a friction force that accounts for the energy loss in the meniscus movement along with the sliding contact. Occurrence of the water-meniscus-generated friction is experimentally proved by atomic force microscopy measurements of the tip-sample friction force at minimum possible external load (before pull-off). A qualitative explanation for the observed dependence of the friction force on air humidity and solid surface wettability is proposed.

  9. Frictional properties of two alkanethiol self assembled monolayers in sliding contact: Odd-even effects

    NASA Astrophysics Data System (ADS)

    Ramin, Leyla; Jabbarzadeh, Ahmad

    2012-11-01

    Using molecular dynamics simulation, we have investigated the structural effects on the frictional properties of self assembled monolayers (SAM) of n-alkanethiols [CH3(CH2)n-1SH, n = 12-15] in SAM-SAM contacts attached on Au (111) substrates. We have observed an odd-even effect where friction coefficient for SAM-SAM contacts with n = odd showed consistently higher values than those with n = even. This odd-even effect is independent of the sliding velocity and the relative tilt directions of the SAMs, and persists over a much higher pressure range than that reported before for SAM-Au contacts [L. Ramin and A. Jabbarzadeh, Langmuir 28, 4102-4112 (2012), 10.1021/la204701z]. For odd systems higher gauche defects were shown to be the possible source of high friction coefficient. Under the same load and shear rates (comparable sliding velocities), SAM-SAM contacts show mostly higher friction compared to SAM-Au contacts. For SAM-SAM contacts, a more significant increase of friction occurs at higher shear rates due to a shift in the tilt orientation angle. We show SAM-SAM contacts with misaligned relative tilt orientation angle (˜45°-90°) have considerably lower friction compared with those whose tilt orientation angles are almost aligned in the opposite directions and parallel to the shear.

  10. Modeling of contact mechanics and friction limit surfaces for soft fingers in robotics, with experimental results

    SciTech Connect

    Xydas, N.; Kao, I.

    1999-09-01

    A new theory in contact mechanics for modeling of soft fingers is proposed to define the relationship between the normal force and the radius of contact for soft fingers by considering general soft-finger materials, including linearly and nonlinearly elastic materials. The results show that the radius of contact is proportional to the normal force raised to the power of {gamma}, which ranges from 0 to 1/3. This new theory subsumes the Hertzian contact model for linear elastic materials, where {gamma} = 1/3. Experiments are conducted to validate the theory using artificial soft fingers made of various materials such as rubber and silicone. Results for human fingers are also compared. This theory provides a basis for numerically constructing friction limit surfaces. The numerical friction limit surface can be approximated by an ellipse, with the major and minor axes as the maximum friction force and the maximum moment with respect to the normal axis of contact, respectively. Combining the results of the contact-mechanics model with the contact-pressure distribution, the normalized friction limit surface can be derived for anthropomorphic soft fingers. The results of the contact-mechanics model and the pressure distribution for soft fingers facilitate the construction of numerical friction limit surfaces, and will enable us to analyze and simulate contact behaviors of grasping and manipulation in robotics.

  11. Power optimization of ultrasonic friction-modulation tactile interfaces.

    PubMed

    Wiertlewski, Michael; Colgate, J Edward

    2015-01-01

    Ultrasonic friction-modulation devices provide rich tactile sensation on flat surfaces and have the potential to restore tangibility to touchscreens. To date, their adoption into consumer electronics has been in part limited by relatively high power consumption, incompatible with the requirements of battery-powered devices. This paper introduces a method that optimizes the energy efficiency and performance of this class of devices. It considers optimal energy transfer to the impedance provided by the finger interacting with the surface. Constitutive equations are determined from the mode shape of the interface and the piezoelectric coupling of the actuator. The optimization procedure employs a lumped parameter model to simplify the treatment of the problem. Examples and an experimental study show the evolution of the optimal design as a function of the impedance of the finger. PMID:25314710

  12. Coulomb frictional contact by explicit projection in the cone for finite displacement quasi-static problems

    NASA Astrophysics Data System (ADS)

    Areias, P.; Rabczuk, T.; de Melo, F. J. M. Queirós; de Sá, J. César

    2015-01-01

    We propose, in this paper, a distinct perspective on the solution of the Coulomb frictional contact problem. By combining the prediction/correction method for the contact force vector with the correction step being a cone projection and writing the friction cone surface in the quadratic form, we directly calculate the contact force. The distance along the friction cone normal is determined by solving a nonlinear problem in closed form. Numerical advantages of this projection are apparent for large values of friction coefficient. Six problems previously indicated as difficult to solve by the node-to-segment discretization and the operator split algorithm are here solved with the new projection algorithm. Discretization follows node-to segment and node-to-face derivations with gap vector defined in a global frame (without tangential and normal decomposition). In addition, we provide source codes for the 2D and 3D contact cases.

  13. Anisotropic friction and wear of single-crystal manganese-zinc ferrite in contact with itself

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1978-01-01

    Sliding friction experiments were conducted with manganese-zinc ferrite (100), (110), (111), and (211) planes in contact with themselves. Mating the highest-atomic-density directions, (110), of matched crystallographic planes resulted in the lowest coefficients of friction. Mating matched (same) high-atomic-density planes and matched (same)crystallographic directions resulted in low coefficients of friction. Mating dissimilar crystallographic planes, however, did not give significantly different friction results from those with matched planes. Sliding caused cracking and the formation of hexagonal- and rectangular-platelet wear debris on ferrite surfaces, primarily from cleavage of the (110) planes.

  14. Friction and wear behavior of single-crystal silicon carbide in contact with titanium

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1977-01-01

    Sliding friction experiments were conducted with single crystal silicon carbide in sliding contact with titanium. Results indicate that the friction coefficient is greater in vacuum than in argon and that this is due to the greater adhesion or adhesive transfer in vacuum. Thin films of silicon carbide transferred to titanium also adhered to silicon carbide both in argon at atmospheric pressure and in high vacuum. Cohesive bonds fractured on both the silicon carbide and titanium surfaces. The wear debris of silicon carbide created by fracture plowed the silicon carbide surface in a plastic manner. The friction characteristics of titanium in contact with silicon carbide were sensitive to the surface roughness of silicon carbide, and the friction coefficients were higher for a rough surface of silicon carbide than for a smooth one. The difference in friction results was due to plastic deformation (plowing of titanium).

  15. Dust Emission Induced By Friction Modifications At Tool Chip Interface In Dry Machining In MMCp

    NASA Astrophysics Data System (ADS)

    Kremer, Arnaud; El Mansori, Mohamed

    2011-01-01

    This paper investigates the relationship between dust emission and tribological conditions at the tool-chip interface when machining Metal Matrix composite reinforced with particles (MMCp) in dry mode. Machining generates aerosols that can easily be inhaled by workers. Aerosols may be composed of oil mist, tool material or alloying elements of workpiece material. Bar turning tests were conducted on a 2009 aluminum alloy reinforced with different level of Silicon Carbide particles (15, 25 and 35% of SiCp). Variety of PCD tools and nanostructured diamond coatings were used to analyze their performances on air pollution. A spectrometer was used to detect airborne aerosol particles in the size range between 0.3μm to 20 μm and to sort them in 15 size channels in real time. It was used to compare the effects of test parameters on dust emission. Observations of tool face and chip morphology reveal the importance of friction phenomena. It was demonstrated that level of friction modifies chip curvature and dust emission. The increase of level of reinforcement increase the chip segmentation and decrease the contact length and friction area. A "running in" phenomenon with important dust emission appeared with PCD tool due to the tool rake face flatness. In addition dust generation is more sensitive to edge integrity than power consumption.

  16. Adhesion and friction of single-crystal diamond in contact with transition metals

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1980-01-01

    An investigation was conducted to examine the adhesion and friction of single-crystal diamond in contact with various transition metals and the nature of metal transfer to diamond. Sliding friction experiments were conducted with diamond in sliding contact with the metals yttrium, titanium, zirconium, vanadium, iron, cobalt, nickel, tungsten, platinum, rhenium and rhodium. All experiments were conducted with loads of 0.05 to 0.3 N, at a sliding velocity of 0.003 m per minute, in a vacuum of 10 to the -8th Pa, at room temperature, and on the (111) plane of diamond with sliding in the 110 line type direction. The results of the investigation indicate that the coefficient of friction for diamond in contact with various metals is related to the relative chemical activity of the metals in high vacuum. The more active the metal, the higher the coefficient of friction. All the metals examined transferred to the surface of diamond in sliding.

  17. Ruptures along a frictional interface are described by Fracture Mechanics: Experiments in a "Laboratory Earthquake" along both dry and lubricated interfaces

    NASA Astrophysics Data System (ADS)

    Fineberg, J.; Svetlizky, I.; Bayart Schweizer, E.

    2014-12-01

    A dry frictional interface is composed of an ensemble of discrete contacts whose real contact area is orders of magnitude smaller than the nominal one. Slip is initiated when contacts are broken via propagating ruptures. Characterization of the dynamic fields that drive these ruptures and how they couple to the dissipative mechanisms on the interface are critical to our fundamental understanding of both frictional motion and earthquake dynamics. We experimentally investigate ruptures along rough spatially extended interfaces bounded by the same type of material. We perform simultaneous high-speed measurements (at μsec time scale) of the real contact area and the strain fields in the region surrounding propagating rupture tips. These measurements enable us to uncover the breakdown process near the tip of the slipping zone for rapidly propagating ruptures ranging from slow rupture fronts (~0.01CR) to nearly the Rayleigh wave speed, CR~1255m/s. These rupture fronts are quantitatively described by classical singular solutions for rapid shear cracks. These singular solutions, originally derived to describe brittle fracture, are in excellent agreement with the experiments for slow propagation, whereas some significant discrepancies arise as the rupture velocity approaches CR. The energy dissipated by the fracture of the contacts (fracture energy) is nearly constant throughout the entire rupture velocity range, while the size of the dissipative zone undergoes a 'Lorentz-like' contraction as the rupture velocity approaches CR. We then turn to both fully lubricated and partially lubricated interfaces and compare the dynamic strain fields measured to those of dry interfaces. The results of these studies are surprising. We will show that: Rapid rupture fronts still propagate in the stick-slip regime Although decreasing the overall friction coefficient along the interface, the addition of a lubricant significantly increases the fracture energy at the rupture tip In the fully

  18. Thermal contact resistance across a copper-silicon interface

    SciTech Connect

    Khounsary, A.M.; Chojnowski, D.; Assoufid, L.; Worek, W.M.

    1997-10-01

    The issue of thermal contact resistance across metallic interfaces has been investigated for many situations over the past several decades. The application in the present case is contact cooling of high heat load optical substrates. High heat load x-ray mirrors and other optical components used at the Advanced Photon Source (APS) are either internally cooled or contact cooled. In the internally cooled mirrors, a coolant flows through passages configured in the optical substrate. In the contact-cooled case, cooling is provided by placing cooling plates in contact with the mirror to extract the heat. Here, an experimental setup to measure the thermal contact conductance across a silicon-copper (Si-Cu) interface is described, and the results obtained are presented. The resulting thermal contact resistance data are used in estimating the thermo-mechanical and optical performance of optical substrates cooled by interfaced copper cooling blocks. Several factors influence the heat transfer across solid interfaces. These include the material properties, interface pressure, flatness and roughness of the contacting surfaces, temperature, and interstitial material, if any. Results presented show the variation of thermal contact conductance as a function of applied interface pressure for a Cu-Si interface. Various interstitial materials investigated include indium foil, silver foil and a liquid eutectic (Ga-In-Sn). As expected, thermal contact resistance decreases as interface pressure increases, except in the case of the eutectic, in which it was nearly constant. The softer the interstitial material, the lower the thermal contact resistance. Liquid metal provides the lowest thermal contact resistance across the Cu-Si interface, followed by the indium foil, and then the silver foil.

  19. Tribological evaluation of piston skirt/cylinder liner contact interfaces under boundary lubrication conditions.

    SciTech Connect

    Demas, N. G.; Erck, R. A.; Fenske, G. R.; Energy Systems

    2010-03-01

    The friction and wear between the piston and cylinder liner significantly affects the performance of internal combustion engines. In this paper, segments from a commercial piston/cylinder system were tribologically tested using reciprocating motion. The tribological contact consisted of aluminium alloy piston segments, either uncoated, coated with a graphite/resin coating, or an amorphous hydrogenated carbon (a-C : H) coating, in contact with gray cast iron liner segments. Tests were conducted in commercial synthetic motor oils and base stocks at temperatures up to 120 C with a 2 cm stroke length at reciprocating speeds up to 0.15 m s{sup -1}. The friction dependence of these piston skirt and cylinder liner materials was studied as a function of load, sliding speed and temperature. Specifically, an increase in the sliding speed led to a decrease in the friction coefficient below approximately 70 C, while above this temperature, an increase in sliding speed led to an increase in the friction coefficient. The presence of a coating played an important role. It was found that the graphite/resin coating wore quickly, preventing the formation of a beneficial tribochemical film, while the a-C : H coating exhibited a low friction coefficient and provided significant improvement over the uncoated samples. The effect of additives in the oils was also studied. The tribological behaviour of the interface was explained based on viscosity effects and subsequent changes in the lubrication regime, formation of chemical and tribochemical films.

  20. Solute Transport Across a Contact Interface in Deformable Porous Media

    PubMed Central

    Ateshian, Gerard A.; Maas, Steve; Weiss, Jeffrey A.

    2012-01-01

    A finite element formulation of neutral solute transport across a contact interface between deformable porous media is implemented and validated against analytical solutions. By reducing the integral statements of external virtual work on the two contacting surfaces into a single contact integral, the algorithm automatically enforces continuity of solute molar flux across the contact interface, whereas continuity of the effective solute concentration (a measure of the solute mechano-chemical potential) is achieved using a penalty method. This novel formulation facilitates the analysis of problems in biomechanics where the transport of metabolites across contact interfaces of deformable tissues may be of interest. This contact algorithm is the first to address solute transport across deformable interfaces, and is made available in the public domain, open-source finite element code FEBio (http://mrl.sci.utah.edu/software). PMID:22281406

  1. Solute transport across a contact interface in deformable porous media.

    PubMed

    Ateshian, Gerard A; Maas, Steve; Weiss, Jeffrey A

    2012-04-01

    A finite element formulation of neutral solute transport across a contact interface between deformable porous media is implemented and validated against analytical solutions. By reducing the integral statements of external virtual work on the two contacting surfaces into a single contact integral, the algorithm automatically enforces continuity of solute molar flux across the contact interface, whereas continuity of the effective solute concentration (a measure of the solute mechano-chemical potential) is achieved using a penalty method. This novel formulation facilitates the analysis of problems in biomechanics where the transport of metabolites across contact interfaces of deformable tissues may be of interest. This contact algorithm is the first to address solute transport across deformable interfaces, and is made available in the public domain, open-source finite element code FEBio (http://www.febio.org). PMID:22281406

  2. Characterization of friction at three contact pairs by photoelastic isotropic point (IP)

    NASA Astrophysics Data System (ADS)

    Surendra, K. V. N.; Simha, K. R. Y.

    2015-03-01

    Friction coefficient between a circular-disk periphery and V-block surface was determined by introducing the concept of isotropic point (IP) in isochromatic field of the disk under three-point symmetric loading. IP position on the symmetry axis depends on active coefficient of friction during experiment. We extend this work to asymmetric loading of circular disk in which case two frictional contact pairs out of three loading contacts, independently control the unconstrained IP location. Photoelastic experiment is conducted on particular case of asymmetric three-point loading of circular disk. Basics of digital image processing are used to extract few essential parameters from experimental image, particularly IP location. Analytical solution by Flamant for half plane with a concentrated load, is utilized to derive stress components for required loading configurations of the disk. IP is observed, in analytical simulations of three-point asymmetric normal loading, to move from vertical axis to the boundary along an ellipse-like curve. When friction is included in the analysis, IP approaches the center with increase in loading friction and it goes away with increase in support friction. With all these insights, using experimental IP information, friction angles at three contact pairs of circular disk under asymmetric loading, are determined.

  3. Effective two-dimensional frictional contact model for arbitrary curved geometry

    NASA Astrophysics Data System (ADS)

    Saleeb, A. F.; Chen, K.; Chang, Y. P.

    1994-04-01

    A finite element model is developed on the basis of a variational formulation of the perturbed Lagrange type and the classical Coulomb law of friction, for the analysis of frictional contact problems in two dimensions. The model accounts for all geometric/ kinematic non-linearities associated with large sliding motions as well as arbitrary contact-surface curvatures. Explicit forms for the contact force and tangent stiffness operators and a penalty-type format is utilized in the implementation. An extensive number of numerical simulations are used to demonstrate the effectiveness and practical usefulness of the model.

  4. Thermal contact resistance across a copper-silicon interface.

    SciTech Connect

    Khounsary, A.; Chojnowski, D.; Assoufid, L.; Worek, W.M.

    1997-10-27

    An experimental setup to measure the thermal contact conductance across a silicon-copper (Si-Cu) interface is described, and the results obtained are presented. The resulting thermal contact resistance data are used in estimating the thermo-mechanical and optical performance of optical substrates cooled by interfaced copper cooling blocks. Several factors influence the heat transfer across solid interfaces. These include the material properties, interface pressure, flatness and roughness of the contacting surfaces, temperature, and interstitial material, if any. Results presented show the variation of thermal contact conductance as a function of applied interface pressure for a Cu-Si interface. Various interstitial materials investigated include iridium foil, silver foil and a liquid eutectic (Ga-In-Sn). As expected, thermal contact resistance decreases as interface pressure increases, except in the case of the eutectic, in which it was nearly constant. The softer the interstitial material, the lower the thermal contact resistance, Liquid metal provides the lowest thermal contact resistance across the Cu-Si interface, followed by the iridium foil, and then the silver foil.

  5. Thermal contact resistance across a copper-silicon interface

    NASA Astrophysics Data System (ADS)

    Khounsary, Ali M.; Chojnowski, David; Assoufid, Lahsen; Worek, William M.

    1997-12-01

    An experimental setup to measure the thermal contact conductance across a silicon-copper (Si-Cu) interface is described, and the results obtained are presented. The resulting thermal contact resistance data are used in estimating the thermo-mechanical and optical performance of optical substrates cooled by interfaced copper cooling blocks. Several factors influence the heat transfer across solid interfaces. These include the material properties, interface pressure, flatness and roughness of the contacting surfaces, temperature, and interstitial material, if any. Results presented show the variation of thermal contact conductance as a function of applied interface pressure for a Cu-Si interface. Various interstitial materials investigated include indium foil, silver foil and a liquid eutectic (Ga-In-Sn). As expected, thermal contact resistance decreases as interface pressure increases, except in the case of the eutectic, in which it was nearly constant. The softer the interstitial material, the lower the thermal contact resistance. Liquid metal provides the lowest thermal contact resistance across the Cu-Si interface, followed by the indium foil, and then the silver foil.

  6. Novel monitoring techniques for characterizing frictional interfaces in the laboratory.

    PubMed

    Selvadurai, Paul A; Glaser, Steven D

    2015-01-01

    A pressure-sensitive film was used to characterize the asperity contacts along a polymethyl methacrylate (PMMA) interface in the laboratory. The film has structural health monitoring (SHM) applications for flanges and other precision fittings and train rail condition monitoring. To calibrate the film, simple spherical indentation tests were performed and validated against a finite element model (FEM) to compare normal stress profiles. Experimental measurements of the normal stress profiles were within -7.7% to 6.6% of the numerical calculations between 12 and 50 MPa asperity normal stress. The film also possessed the capability of quantifying surface roughness, an important parameter when examining wear and attrition in SHM applications. A high definition video camera supplied data for photometric analysis (i.e., the measure of visible light) of asperities along the PMMA-PMMA interface in a direct shear configuration, taking advantage of the transparent nature of the sample material. Normal stress over individual asperities, calculated with the pressure-sensitive film, was compared to the light intensity transmitted through the interface. We found that the luminous intensity transmitted through individual asperities linearly increased 0.05643 ± 0.0012 candelas for an increase of 1 MPa in normal stress between normal stresses ranging from 23 to 33 MPa. PMID:25923930

  7. Novel Monitoring Techniques for Characterizing Frictional Interfaces in the Laboratory

    PubMed Central

    Selvadurai, Paul A.; Glaser, Steven D.

    2015-01-01

    A pressure-sensitive film was used to characterize the asperity contacts along a polymethyl methacrylate (PMMA) interface in the laboratory. The film has structural health monitoring (SHM) applications for flanges and other precision fittings and train rail condition monitoring. To calibrate the film, simple spherical indentation tests were performed and validated against a finite element model (FEM) to compare normal stress profiles. Experimental measurements of the normal stress profiles were within −7.7% to 6.6% of the numerical calculations between 12 and 50 MPa asperity normal stress. The film also possessed the capability of quantifying surface roughness, an important parameter when examining wear and attrition in SHM applications. A high definition video camera supplied data for photometric analysis (i.e., the measure of visible light) of asperities along the PMMA-PMMA interface in a direct shear configuration, taking advantage of the transparent nature of the sample material. Normal stress over individual asperities, calculated with the pressure-sensitive film, was compared to the light intensity transmitted through the interface. We found that the luminous intensity transmitted through individual asperities linearly increased 0.05643 ± 0.0012 candelas for an increase of 1 MPa in normal stress between normal stresses ranging from 23 to 33 MPa. PMID:25923930

  8. On the 3D normal tire/off-road vibro-contact problem with friction

    NASA Astrophysics Data System (ADS)

    Munteanu, Ligia; Chiroiu, Veturia; Brişan, Cornel; Dumitriu, Dan; Sireteanu, Tudor; Petre, Simona

    2015-03-01

    In this paper, a virtual experiment concerning driving on off-roads is investigated via 3D normal vibro-contact problem with friction. The dynamic road concept is introduced in order to characterize a particular stretch of road by total longitudinal, lateral, and normal forces and their geometric distributions in the contact patches. The off-road profiles are built by image sonification technique. The cross-sectional curves of off-roads before and after deformation, the contact between the tire and the road, the distribution of contact and friction forces in the contact domain, the natural frequencies and modes when the tire is in ground contact, are estimated. The approach is exercised on two particular problems and results compare favorably to existing analytical and numerical solutions. The feasibility of image sonification technique is useful to build a low-cost virtual reality environment with an increased degree of realism for driving simulators and higher user flexibility.

  9. The adhesion, friction, and wear of binary alloys in contact with single-crystal silicon carbide

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1980-01-01

    Sliding friction experiments were conducted with various iron-base alloys (alloying elements were Ti, Cr, Ni, Rh, and W) in contact with a single-crystal silicon carbide (0001) surface in vacuum. Results indicate atomic size misfit and concentration of alloying elements play a dominant role in controlling adhesion, friction, and wear properties of iron-base binary alloys. The controlling mechanism of the alloy properties is an intrinsic effect involving the resistance to shear fracture of cohesive bonding in the alloy. The coefficient of friction generally increases with an increase in solute concentration. The coefficient of friction increases as the solute-to-iron atomic radius ratio increases or decreases from unity. Alloys having higher solute concentration produce more transfer to silicon carbide than do alloys having low solute concentrations. The chemical activity of the alloying element is also an important parameter in controlling adhesion and friction of alloys.

  10. Adhesion and friction of iron-base binary alloys in contact with silicon carbide in vacuum

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1980-01-01

    Single pass sliding friction experiments were conducted with various iron base binary alloys (alloying elements were Ti, Cr, Mn, Ni, Rh, and W) in contact with a single crystal silicon carbide /0001/ surface in vacuum. Results indicate that atomic size and concentration of alloying elements play an important role in controlling adhesion and friction properties of iron base binary alloys. The coefficient of friction generally increases with an increase in solute concentration. The coefficient of friction increases linearly as the solute to iron atomic radius ratio increases or decreases from unity. The chemical activity of the alloying elements was also an important parameter in controlling adhesion and friction of alloys, as these latter properties are highly dependent upon the d bond character of the elements.

  11. Adhesion, friction, and wear of binary alloys in contact with single-crystal silicon carbide

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1980-01-01

    Sliding friction experiments, conducted with various iron base alloys (alloying elements are Ti, Cr, Mn, Ni, Rh and W) in contact with a single crystal silicon carbide /0001/ surface in vacuum are discussed. Results indicate atomic size misfit and concentration of alloying elements play a dominant role in controlling adhesion, friction, and wear properties of iron-base binary alloys. The controlling mechanism of the alloy properties is as an intrinsic effect involving the resistance to shear fracture of cohesive bonding in the alloy. The coefficient of friction generally increases with an increase in solute concentration. The coefficient of friction increases as the solute-to-iron atomic radius ratio increases or decreases from unity. Alloys having higher solute concentration produce more transfer to silicon carbide than do alloys having low solute concentrations. The chemical activity of the alloying element is also an important parameter in controlling adhesion and friction of alloys.

  12. Friction and wear characteristics of iron-chromium alloys in contact with themselves and silicon carbide

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1979-01-01

    Sliding friction experiments were conducted with various iron-chromium alloys in contact with (1) themselves, (2) single crystal silicon carbide disks, and (3) single crystal abrasive grit of silicon carbide. Results indicate the coefficients of friction for the alloys sliding against themselves are between those for pure iron and pure chromium, and are only slightly different with 1, 5, 9, 14, and 19 weight percent chromium in iron. The wear is due, primarily, to shearing, or tearing fracture, of the cohesive bonds in the bulk metal and plowing of the bulk by lumps of wear debris. There are only slight differences in the coefficients of friction for the various alloys when sliding on silicon carbide. The coefficient of friction for the alloys are higher than those for pure iron and pure chromium. Alloy hardening observed in the alloys plays a dominant role in controlling the abrasive friction and wear behavior of the alloys.

  13. Adhesion and friction of iron and gold in contact with elemental semiconductors

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.; Brainard, W. A.

    1977-01-01

    Adhesion and friction experiments were conducted with single crystals of iron and gold in contact with single crystals of germanium and silicon. Surfaces were examined in the sputter cleaned state and in the presence of oxygen and a lubricant. All experiments were conducted at room temperature with loads of 1 to 50 grams, and sliding friction was at a sliding velocity of 0.7 mm/min. Results indicate that the friction nature of metals in contact with semiconductors is sensitive to orientation, that strong adhesion of metals to both germanium and silicon occurs, and that friction is lower with silicon than with germanium for the same orientation. Surface effects are highly sensitive to environment. Silicon, for example, behaves in an entirely brittle manner in the clean state, but in the presence of a lubricant the surface deforms plastically.

  14. Friction of different monolayer lubricants in MEMs interfaces.

    SciTech Connect

    Carpick, Robert W. (University of Wisconsin, Madison, WI); Street, Mark D.; Ashurst, William Robert; Corwin, Alex David

    2006-01-01

    This report details results from our last year of work (FY2005) on friction in MEMS as funded by the Campaign 6 program for the Microscale Friction project. We have applied different monolayers to a sensitive MEMS friction tester called the nanotractor. The nanotractor is also a useful actuator that can travel {+-}100 {micro}m in 40 nm steps, and is being considered for several MEMS applications. With this tester, we can find static and dynamic coefficients of friction. We can also quantify deviations from Amontons' and Coulomb's friction laws. Because of the huge surface-to-volume ratio at the microscale, surface properties such as adhesion and friction can dominate device performance, and therefore such deviations are important to quantify and understand. We find that static and dynamic friction depend on the monolayer lubricant applied. The friction data can be modeled with a non-zero adhesion force, which represents a deviation from Amontons' Law. Further, we show preliminary data indicating that the adhesion force depends not only on the monolayer, but also on the normal load applied. Finally, we also observe slip deflections before the transition from static to dynamic friction, and find that they depend on the monolayer.

  15. Friction behavior of silicon in contact with titanium, nickel, silver and copper

    NASA Technical Reports Server (NTRS)

    Mishina, H.; Buckley, D. H.

    1984-01-01

    Sliding friction experiments are conducted with the semiconductor silicon in contact with the metals titanium, nickel, copper, and silver. Sliding is on the (111) plane of single-crystal silicon in the 112 crystallographic direction both in dry and lubricated (mineral oil) sliding. The friction coefficient in dry sliding is controlled by adhesion and the surface chemical activity of the metal. The more active the metal the stronger the adhesion and the higher the friction. In lubricated sliding the lubricant absorbs to the surfaces and reduces the importance of metal chemical effects. In lubricated sliding, silicon ceases to behave in a brittle manner and undergoes plastic deformation under load.

  16. Friction and friction-generated temperature at a polymer-metal interface

    NASA Technical Reports Server (NTRS)

    Price, H. L.; Burks, H. D.

    1974-01-01

    Results of friction and thermal tests of molded polyimide and pyrrone polymers are presented. The coefficient of sliding friction up to surface velocities of 2 m/sec and the coefficient of thermal expansion from 300 to 500 K were measured. An apparatus was constructed to measure simultaneously the coefficient of sliding friction and the friction-generated temperature. Measurements were made at a nominal pressure-velocity product of 0.25 MN/msec and at temperatures between 300 and 500 K.

  17. Thermal Performance Evaluation of Friction Stir Welded and Bolted Cold Plates with Al/Cu Interface

    NASA Astrophysics Data System (ADS)

    Lakshminarayanan, A. K.; Suresh, M.; Sibi Varshan, M.

    2015-05-01

    An attempt is made to design and fabricate a cold plate with aluminum-copper dissimilar interface joined by friction stir welding. Optimum welding conditions for obtaining sound-quality corner and T joints with an aluminum-copper interface were established. Welded cross sections of the friction stir welded cold plate were analyzed to understand the bonding characteristics. Computational fluid dynamics (CFD) was used to evaluate the fluid-flow characteristics and thermal resistance of friction stir welded cold plate and the resulted are compared with the conventional bolted cold plate configuration. For CFD modeling of a cold plate with a dissimilar interface, a new methodology is proposed. From the CFD analysis and experimental results, it is observed that friction stir welded cold plate offered better thermal performance compared to the bolted cold plate and it is due to the metallurgical bonding at the aluminum-copper interface with the dispersion of copper particles.

  18. A 3D Frictional Segment-to-Segment Contact Method for Large Deformations and Quadratic Elements

    SciTech Connect

    Puso, M; Laursen, T; Solberg, J

    2004-04-01

    Node-on-segment contact is the most common form of contact used today but has many deficiencies ranging from potential locking to non-smooth behavior with large sliding. Furthermore, node-on-segment approaches are not at all applicable to higher order discretizations (e.g. quadratic elements). In a previous work, [3, 4] we developed a segment-to-segment contact approach for eight node hexahedral elements based on the mortar method that was applicable to large deformation mechanics. The approach proved extremely robust since it eliminated the over-constraint that caused 'locking' and provided smooth force variations in large sliding. Here, we extend this previous approach to treat frictional contact problems. In addition, the method is extended to 3D quadratic tetrahedrals and hexahedrals. The proposed approach is then applied to several challenging frictional contact problems that demonstrate its effectiveness.

  19. A Mortar Segment-to-Segment Frictional Contact Method for Large Deformations

    SciTech Connect

    Puso, M; Laursen, T

    2003-10-29

    Contact modeling is still one of the most difficult aspects of nonlinear implicit structural analysis. Most 3D contact algorithms employed today use node-on-segment approaches for contacting dissimilar meshes. Two pass node-on-segment contact approaches have the well known deficiency of locking due to over constraint. Furthermore, node-on-segment approaches suffer when individual nodes slide out of contact at contact surface boundaries or when contacting nodes slide from facet to facet. This causes jumps in the contact forces due to the discrete nature of the constraint enforcement and difficulties in convergence for implicit solution techniques. In a previous work, we developed a segment-to-segment contact approach based on the mortar method that was applicable to large deformation mechanics. The approach proved extremely robust since it eliminated the overconstraint which caused ''locking'' and provided smooth force variations in large sliding. Here, we extend this previous approach in to treat frictional contact problems. The proposed approach is then applied to several challenging frictional contact problems which demonstrate its effectiveness.

  20. Temperature dependence of contact resistance at metal/MWNT interface

    NASA Astrophysics Data System (ADS)

    Lee, Sang-Eui; Moon, Kyoung-Seok; Sohn, Yoonchul

    2016-07-01

    Although contact resistance of carbon nanotube (CNT) is one of the most important factors for practical application of electronic devices, a study regarding temperature dependence on contact resistance of CNTs with metal electrodes has not been found. Here, we report an investigation of contact resistance at multiwalled nanotube (MWNT)/Ag interface as a function of temperature, using MWNT/polydimethylsiloxane (PDMS) composite. Electrical resistance of MWNT/PDMS composite revealed negative temperature coefficient (NTC). Excluding the contact resistance with Ag electrode, the NTC effect became less pronounced, showing lower intrinsic resistivity with the activation energy of 0.019 eV. Activation energy of the contact resistance of MWNT/Ag interface was determined to be 0.04 eV, two times larger than that of MWNT-MWNT network. The increase in the thermal fluctuation assisted electron tunneling is attributed to conductivity enhancement at both MWNT/MWNT and MWNT/Ag interfaces with increasing temperature.

  1. Adhesion and friction of transition metals in contact with nonmetallic hard materials

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1981-01-01

    Sliding friction experiments were conducted with the metals yttrium, titanium, tantalum, zirconium, vanadium, neodymium, iron, cobalt, nickel, tungsten, platinum, rhenium, ruthenium, and rhodium in sliding contact with single crystal diamond, silicon carbide, pyrolytic boron nitride, and ferrite. Auger electron spectroscopy analysis was conducted with the metals and nonmetals to determine the surface chemistry and the degree of surface cleanliness. The results of the investigation indicate the adhesion and friction of the transition metals in contact with diamond, silicon carbide, boron nitride, and ferrite are related to the relative chemical activity of the metals. The more chemically active the metal, the higher the coefficient of friction and the greater amount of transfer to the nonmetals.

  2. Intelligent tires for identifying coefficient of friction of tire/road contact surfaces

    NASA Astrophysics Data System (ADS)

    Matsuzaki, Ryosuke; Kamai, Kazuto; Seki, Ryosuke

    2015-03-01

    Intelligent tires equipped with sensors as well as the monitoring of the tire/road contact conditions are in demand for improving vehicle control and safety. With the aim of identifying the coefficient of friction of tire/road contact surfaces during driving, including during cornering, we develop an identification scheme for the coefficient of friction that involves estimation of the slip angle and applied force by using a single lightweight three-axis accelerometer attached on the inner surface of the tire. To validate the developed scheme, we conduct tire-rolling tests using an accelerometer-equipped tire with various slip angles on various types of road surfaces, including dry and wet surfaces. The results of these tests confirm that the estimated slip angle and applied force are reasonable. Furthermore, the identified coefficient of friction by the developed scheme agreed with that measured by standardized tests.

  3. Contact force measurements at the head/disk interface for contact recording heads in magnetic recording

    NASA Astrophysics Data System (ADS)

    Ganapathi, S. K.; Donovan, Mark; Hsia, Yiao-Tee

    1996-01-01

    As the spacing between the magnetic transducer and media decreases in hard disk drives, one approaches the regime of constant contact between the head and disk. In this regime, conventional measures of the head/disk interface such as 'takeoff velocity' and 'fly height' become less important. Instead, the 'contact force' between the head and the disk is a more relevant parameter to evaluate the performance and reliability of the interface. In this paper, a new contact force measurement technique that uses the acoustic emission (AE) from the interface is introduced. The contact force is modeled as a series of continuous collisions that cause the slider to vibrate at its resonant frequencies. These vibrations generate an AE signal, the magnitude of which is proportional to the contact force. The Read-Rite tripad slider, which is a contact recording head, is used for the measurements. Some intuitive expectations from contact force measurements are presented as validation of the technique. Specifically, it is shown that contact force decreases with increasing disk velocity, that the contact force varies inversely with the flying height measured on a glass disk, and that the contact force decreases with burnishing of the interface.

  4. Unilateral contact induced blade/casing vibratory interactions in impellers: Analysis for flexible casings with friction and abradable coating

    NASA Astrophysics Data System (ADS)

    Batailly, Alain; Legrand, Mathias

    2015-07-01

    This contribution addresses the vibratory analysis of unilateral contact induced structural interactions between a bladed impeller and its surrounding flexible casing. It extends the numerical developments exposed in a previous paper to flexible casings. The casing finite element model and the construction of the associated reduced-order model for efficient computations are first exposed in detail along with an extensive presentation of the smoothing strategy implemented on the contact interface. The proposed algorithms embedding unilateral contact conditions together with abradable coating removal are subsequently introduced and validated through a systematic analysis of (1) the nonlinear procedure for the computation of impeller/casing distances, (2) the treatment of three-dimensional friction and contact forces, (3) the correction of the displacements when unilateral contact or abradable removal arises, and (4) the possible hybrid contact scenarii involving localized total removal of the abradable coating. Finally, two illustrative case studies show that the linear interaction condition, commonly considered for the safe design of impellers and casings in turbomachinery, may be advantageously combined with the presented numerical strategy in order to assess the actual importance of predicted critical speeds.

  5. An alternative formulation for quasi-static frictional and cohesive contact problems

    NASA Astrophysics Data System (ADS)

    Areias, P.; Pinto da Costa, A.; Rabczuk, T.; Queirós de Melo, F. J. M.; Dias-da-Costa, D.; Bezzeghoud, Mourad

    2014-04-01

    It is known by Engineering practitioners that quasi-static contact problems with friction and cohesive laws often present convergence difficulties in Newton iteration. These are commonly attributed to the non-smoothness of the equilibrium system. However, non-uniqueness of solutions is often an obstacle for convergence. We discuss these conditions in detail and present a general algorithm for 3D which is shown to have quadratic convergence in the Newton-Raphson iteration even for parts of the domain where multiple solutions exist. Chen-Mangasarian replacement functions remove the non-smoothness corresponding to both the stick-slip and normal complementarity conditions. Contrasting with Augmented Lagrangian methods, second-order updating is performed for all degrees-of-freedom. Stick condition is automatically selected by the algorithm for regions with multiple solutions. The resulting Jacobian determinant is independent of the friction coefficient, at the expense of an increased number of nodal degrees-of-freedom. Aspects such as a dedicated pivoting for constrained problems are also of crucial importance for a successful solution finding. The resulting 3D mixed formulation, with 7 degrees-of-freedom in each node (displacement components, friction multiplier, friction force components and normal force) is tested with representative numerical examples (both contact with friction and cohesive force), which show remarkable robustness and generality.

  6. Friction and morphology of magnetic tapes in sliding contact with nickel-zinc ferrite

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.; Bhushan, B.

    1984-01-01

    Friction and morphological studies were conducted with magnetic tapes containing a Ni-Zn ferrite hemispherical pin in laboratory air at a relative humidity of 40 percent and at 23 C. The results indicate that the binder plays a significant role in the friction properties, morphology, and microstructure of the tape. Comparisons were made with four binders: nitrocellulose; poly (vinyledene) chloride; cellulose acetate; and hydroxyl-terminated, low molecular weight polyester added to the base polymer, polyester-polyurethane. The coefficient of friction was lowest for the tape with the nitrocellulose binder and increased in the order hydroxylterminated, low molecular weight polyester resin; poly (vinyledene) chloride; and cellulose acetate. The degree of enclosure of the oxide particles by the binder was highest for hydroxyl-terminated, low molecular weight polyester and decreased in the order cellulose acetate, poly (vinyledene) chloride, and nitrocellulose. The nature of deformation of the tape was a factor in controlling friction. The coefficient of friction under elastic contact conditions was considerably lower than under conditions that produced plastic contacts.

  7. Femtosecond laser full and partial texturing of steel surfaces to reduce friction in lubricated contact

    NASA Astrophysics Data System (ADS)

    Ancona, Antonio; Carbone, Giuseppe; De Filippis, Michele; Volpe, Annalisa; Lugarà, Pietro Mario

    2014-12-01

    Minimizing mechanical losses and friction in vehicle engines would have a great impact on reducing fuel consumption and exhaust emissions, to the benefit of environmental protection. With this scope, laser surface texturing (LST) with femtosecond pulses is an emerging technology, which consists of creating, by laser ablation, an array of high-density microdimples on the surface of a mechanical device. The microtexture decreases the effective contact area and, in case of lubricated contact, acts as oil reservoir and trap for wear debris, leading to an overall friction reduction. Depending on the lubrication regime and on the texture geometry, several mechanisms may concur to modify friction such as the local reduction of the shear stress, the generation of a hydrodynamic lift between the surfaces or the formation of eddy-like flows at the bottom of the dimple cavities. All these effects have been investigated by fabricating and characterizing several LST surfaces by femtosecond laser ablation with different features: partial/full texture, circular/elliptical dimples, variable diameters, and depths but equivalent areal density. More than 85% of friction reduction has been obtained from the circular dimple geometry, but the elliptical texture allows adjusting the friction coefficient by changing its orientation with respect to the sliding direction.

  8. Boundary lubrication of heterogeneous surfaces and the onset of cavitation in frictional contacts.

    PubMed

    Savio, Daniele; Pastewka, Lars; Gumbsch, Peter

    2016-03-01

    Surfaces can be slippery or sticky depending on surface chemistry and roughness. We demonstrate in atomistic simulations that regular and random slip patterns on a surface lead to pressure excursions within a lubricated contact that increase quadratically with decreasing contact separation. This is captured well by a simple hydrodynamic model including wall slip. We predict with this model that pressure changes for larger length scales and realistic frictional conditions can easily reach cavitation thresholds and significantly change the load-bearing capacity of a contact. Cavitation may therefore be the norm, not the exception, under boundary lubrication conditions. PMID:27051871

  9. Boundary lubrication of heterogeneous surfaces and the onset of cavitation in frictional contacts

    PubMed Central

    Savio, Daniele; Pastewka, Lars; Gumbsch, Peter

    2016-01-01

    Surfaces can be slippery or sticky depending on surface chemistry and roughness. We demonstrate in atomistic simulations that regular and random slip patterns on a surface lead to pressure excursions within a lubricated contact that increase quadratically with decreasing contact separation. This is captured well by a simple hydrodynamic model including wall slip. We predict with this model that pressure changes for larger length scales and realistic frictional conditions can easily reach cavitation thresholds and significantly change the load-bearing capacity of a contact. Cavitation may therefore be the norm, not the exception, under boundary lubrication conditions. PMID:27051871

  10. The friction and wear of ceramic/ceramic and ceramic/metal combinations in sliding contact

    NASA Technical Reports Server (NTRS)

    Sliney, Harold E.; Dellacorte, Christopher

    1994-01-01

    The tribological characteristics of ceramics sliding on ceramics are compared to those of ceramics sliding on a nickel-based turbine alloy. The friction and wear of oxide ceramics and silicon-based ceramics in air at temperatures from room ambient to 900 C (in a few cases to 1200 C) were measured for a hemispherically-tipped pin on a flat sliding contact geometry. In general, especially at high temperature, friction and wear were lower for ceramic/metal combinations than for ceramic/ceramic combinations. The better tribological performance for ceramic/metal combinations is attributed primarily to the lubricious nature of the oxidized surface of the metal.

  11. The friction and wear of ceramic/ceramic and ceramic/metal combinations in sliding contact

    NASA Technical Reports Server (NTRS)

    Sliney, Harold E.; Dellacorte, Christopher

    1993-01-01

    The tribological characteristics of ceramics sliding on ceramics are compared to those of ceramics sliding on a nickel based turbine alloy. The friction and wear of oxide ceramics and silicon-based ceramics in air at temperatures from room ambient to 900 C (in a few cases to 1200 C) were measured for a hemispherically-tipped pin on a flat sliding contact geometry. In general, especially at high temperature, friction and wear were lower for ceramic/metal combinations than for ceramic/ceramic combinations. The better tribological performance for ceramic/metal combinations is attributed primarily to the lubricious nature of the oxidized surface of the metal.

  12. Computational Methods for Frictional Contact With Applications to the Space Shuttle Orbiter Nose-Gear Tire

    NASA Technical Reports Server (NTRS)

    Tanner, John A.

    1996-01-01

    A computational procedure is presented for the solution of frictional contact problems for aircraft tires. A Space Shuttle nose-gear tire is modeled using a two-dimensional laminated anisotropic shell theory which includes the effects of variations in material and geometric parameters, transverse-shear deformation, and geometric nonlinearities. Contact conditions are incorporated into the formulation by using a perturbed Lagrangian approach with the fundamental unknowns consisting of the stress resultants, the generalized displacements, and the Lagrange multipliers associated with both contact and friction conditions. The contact-friction algorithm is based on a modified Coulomb friction law. A modified two-field, mixed-variational principle is used to obtain elemental arrays. This modification consists of augmenting the functional of that principle by two terms: the Lagrange multiplier vector associated with normal and tangential node contact-load intensities and a regularization term that is quadratic in the Lagrange multiplier vector. These capabilities and computational features are incorporated into an in-house computer code. Experimental measurements were taken to define the response of the Space Shuttle nose-gear tire to inflation-pressure loads and to inflation-pressure loads combined with normal static loads against a rigid flat plate. These experimental results describe the meridional growth of the tire cross section caused by inflation loading, the static load-deflection characteristics of the tire, the geometry of the tire footprint under static loading conditions, and the normal and tangential load-intensity distributions in the tire footprint for the various static vertical loading conditions. Numerical results were obtained for the Space Shuttle nose-gear tire subjected to inflation pressure loads and combined inflation pressure and contact loads against a rigid flat plate. The experimental measurements and the numerical results are compared.

  13. Diffuse interface simulation of ternary fluids in contact with solid

    NASA Astrophysics Data System (ADS)

    Zhang, Chun-Yu; Ding, Hang; Gao, Peng; Wu, Yan-Ling

    2016-03-01

    In this article we developed a geometrical wetting condition for diffuse-interface simulation of ternary fluid flows with moving contact lines. The wettability of the substrate in the presence of ternary fluid flows is represented by multiple contact angles, corresponding to the different material properties between the respective fluid and the substrate. Displacement of ternary fluid flows on the substrate leads to the occurrence of moving contact point, at which three moving contact lines meet. We proposed a weighted contact angle model, to replace the jump in contact angle at the contact point by a relatively smooth transition of contact angle over a region of 'diffuse contact point' of finite size. Based on this model, we extended the geometrical formulation of wetting condition for two-phase flows with moving contact lines to ternary flows with moving contact lines. Combining this wetting condition, a Navier-Stokes solver and a ternary-fluid model, we simulated two-dimensional spreading of a compound droplet on a substrate, and validated the numerical results of the drop shape at equilibrium by comparing against the analytical solution. We also checked the convergence rate of the simulation by investigating the axisymmetric drop spreading in a capillary tube. Finally, we applied the model to a variety of applications of practical importance, including impact of a circular cylinder into a pool of two layers of different fluids and sliding of a three-dimensional compound droplet in shear flows.

  14. Contact damage failure analyses of fretting wear behavior of the metal stem titanium alloy-bone cement interface.

    PubMed

    Zhang, Lanfeng; Ge, Shirong; Liu, Hongtao; Wang, Qingliang; Wang, Liping; Xian, Cory J

    2015-11-01

    Although cemented titanium alloy is not favored currently in the Western world for its poor clinical and radiography outcomes, its lower modulus of elasticity and good biocompatibility are instrumental for its ability supporting and transforming physical load, and it is more suitable for usage in Chinese and Japanese populations due to their lower body weights and unique femoral characteristics. Through various friction tests of different cycles, loads and conditions and by examining fretting hysteresis loops, fatigue process curves and wear surfaces, the current study investigated fretting wear characteristics and wear mechanism of titanium alloy stem-bone cement interface. It was found that the combination of loads and displacement affected the wear quantity. Friction coefficient, which was in an inverse relationship to load under the same amplitude, was proportional to amplitudes under the same load. Additionally, calf serum was found to both lubricate and erode the wear interface. Moreover, cement fatigue contact areas appeared black/oxidative in dry and gruel in 25% calf serum. Fatigue scratches were detected within contact areas, and wear scars were found on cement and titanium surfaces, which were concave-shaped and ring concave/ convex-shaped, respectively. The coupling of thermoplastic effect and minimal torque damage has been proposed to be the major reason of contact damage. These data will be important for further studies analyzing metal-cement interface failure performance and solving interface friction and wear debris production issues. PMID:26241891

  15. MoS2-Titanium Contact Interface Reactions.

    PubMed

    McDonnell, Stephen; Smyth, Christopher; Hinkle, Christopher L; Wallace, Robert M

    2016-03-01

    The formation of the Ti-MoS2 interface, which is heavily utilized in nanoelectronic device research, is studied by X-ray photoelectron spectroscopy. It is found that, if deposition under high vacuum (∼1 × 10(-6) mbar) as opposed to ultrahigh vacuum (∼1 × 10(-9) mbar) conditions are used, TiO2 forms at the interface rather than Ti. The high vacuum deposition results in an interface free of any detectable reaction between the semiconductor and the deposited contact. In contrast, when metallic titanium is successfully deposited by carrying out depositions in ultrahigh vacuum, the titanium reacts with MoS2 forming Ti(x)S(y) and metallic Mo at the interface. These results have far reaching implications as many prior studies assuming Ti contacts may have actually used TiO2 due to the nature of the deposition tools used. PMID:26967016

  16. Friction, wear and noise of slip ring and brush contacts for synchronous satellite use.

    NASA Technical Reports Server (NTRS)

    Lewis, N. E.; Cole, S. R.; Glossbrenner, E. W.; Vest, C. E.

    1972-01-01

    A program is being conducted for testing of slip rings for synchronous orbit application. Instrumentation systems necessary for monitoring electrical noise, friction, and brush wear at atmospheric pressure and at less than 50 ntorr have been developed. A multiplex scheme necessary for the simultaneous recording of brush displacement, friction, and electrical noise has also been developed. Composite brushes consisting of silver-molybdenum disulfide-graphite and silver-niobium diselenide-graphite have been employed on rings of coin silver and rhodium plate. Four contact combinations have been tested during an ambient condition run-in at 150 rpm and a humidity sequence at 0.1 rpm. The first six months of the two year vacuum test at 0.1 rpm have been completed. Electrical noise, friction and brush wear data recorded during these periods have been analyzed.

  17. Friction and wear behavior of single-crystal silicon carbide in sliding contact with various metals

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1978-01-01

    Sliding friction experiments were conducted with single-crystal silicon carbide in contact with various metals. Results indicate the coefficient of friction is related to the relative chemical activity of the metals. The more active the metal, the higher the coefficient of friction. All the metals examined transferred to silicon carbide. The chemical activity of the metal and its shear modulus may play important roles in metal transfer, the form of the wear debris and the surface roughness of the metal wear scar. The more active the metal, and the less resistance to shear, the greater the transfer to silicon carbide and the rougher the wear scar on the surface of the metal. Hexagon shaped cracking and fracturing formed by cleavage of both prismatic and basal planes is observed on the silicon carbide surface.

  18. Influence of surface roughness and contact load on friction coefficient and scratch behavior of thermoplastic olefins

    NASA Astrophysics Data System (ADS)

    Jiang, Han; Browning, Robert; Fincher, Jason; Gasbarro, Anthony; Jones, Scooter; Sue, Hung-Jue

    2008-05-01

    To study the effects of surface roughness and contact load on the friction behavior and scratch resistance of polymers, a set of model thermoplastic olefins (TPO) systems with various surface roughness ( Ra) levels were prepared and evaluated. It is found that a higher Ra corresponds to a lower surface friction coefficient ( μs). At each level of Ra, μs gets larger as contact load increases, with a greater increase in μs as Ra level increases. It is also observed that with increasing contact load and increasing Ra, the μs tend to level off. In evaluating TPO scratch resistance, a lower μs would delay the onset of ductile drawing-induced fish-scale surface deformation feature, thereby raising the load required to cause scratch visibility. However, as the contact load is further increased, the μs evolves to become scratch coefficient of friction (SCOF) as significant sub-surface deformation and tip penetration occur and material displacement begins, i.e., ploughing. No dependence of Ra and μs on the critical load for the onset of ploughing is observed. In this work, the distinction between μs and SCOF will be illustrated. Approaches for improving scratch resistance of polymers via control of Ra are also discussed.

  19. An analytical elastic plastic contact model with strain hardening and frictional effects for normal and oblique impacts

    DOE PAGESBeta

    Brake, M. R. W.

    2015-02-17

    Impact between metallic surfaces is a phenomenon that is ubiquitous in the design and analysis of mechanical systems. We found that to model this phenomenon, a new formulation for frictional elastic–plastic contact between two surfaces is developed. The formulation is developed to consider both frictional, oblique contact (of which normal, frictionless contact is a limiting case) and strain hardening effects. The constitutive model for normal contact is developed as two contiguous loading domains: the elastic regime and a transitionary region in which the plastic response of the materials develops and the elastic response abates. For unloading, the constitutive model ismore » based on an elastic process. Moreover, the normal contact model is assumed to only couple one-way with the frictional/tangential contact model, which results in the normal contact model being independent of the frictional effects. Frictional, tangential contact is modeled using a microslip model that is developed to consider the pressure distribution that develops from the elastic–plastic normal contact. This model is validated through comparisons with experimental results reported in the literature, and is demonstrated to be significantly more accurate than 10 other normal contact models and three other tangential contact models found in the literature.« less

  20. An analytical elastic plastic contact model with strain hardening and frictional effects for normal and oblique impacts

    SciTech Connect

    Brake, M. R. W.

    2015-02-17

    Impact between metallic surfaces is a phenomenon that is ubiquitous in the design and analysis of mechanical systems. We found that to model this phenomenon, a new formulation for frictional elastic–plastic contact between two surfaces is developed. The formulation is developed to consider both frictional, oblique contact (of which normal, frictionless contact is a limiting case) and strain hardening effects. The constitutive model for normal contact is developed as two contiguous loading domains: the elastic regime and a transitionary region in which the plastic response of the materials develops and the elastic response abates. For unloading, the constitutive model is based on an elastic process. Moreover, the normal contact model is assumed to only couple one-way with the frictional/tangential contact model, which results in the normal contact model being independent of the frictional effects. Frictional, tangential contact is modeled using a microslip model that is developed to consider the pressure distribution that develops from the elastic–plastic normal contact. This model is validated through comparisons with experimental results reported in the literature, and is demonstrated to be significantly more accurate than 10 other normal contact models and three other tangential contact models found in the literature.

  1. Surface contact and design of fibrillar ‘friction pads’ in stick insects (Carausius morosus): mechanisms for large friction coefficients and negligible adhesion

    PubMed Central

    Labonte, David; Williams, John A.; Federle, Walter

    2014-01-01

    Many stick insects and mantophasmids possess tarsal ‘heel pads’ (euplantulae) covered by arrays of conical, micrometre-sized hairs (acanthae). These pads are used mainly under compression; they respond to load with increasing shear resistance, and show negligible adhesion. Reflected-light microscopy in stick insects (Carausius morosus) revealed that the contact area of ‘heel pads’ changes with normal load on three hierarchical levels. First, loading brought larger areas of the convex pads into contact. Second, loading increased the density of acanthae in contact. Third, higher loads changed the shape of individual hair contacts gradually from circular (tip contact) to elongated (side contact). The resulting increase in real contact area can explain the load dependence of friction, indicating a constant shear stress between acanthae and substrate. As the euplantula contact area is negligible for small loads (similar to hard materials), but increases sharply with load (resembling soft materials), these pads show high friction coefficients despite little adhesion. This property appears essential for the pads’ use in locomotion. Several morphological characteristics of hairy friction pads are in apparent contrast to hairy pads used for adhesion, highlighting key adaptations for both pad types. Our results are relevant for the design of fibrillar structures with high friction coefficients but small adhesion. PMID:24554580

  2. Survival of Heterogeneous Stress Distributions Created by Precursory Slip at Frictional Interfaces

    NASA Astrophysics Data System (ADS)

    Radiguet, Mathilde; Kammer, David S.; Gillet, Philippe; Molinari, Jean-François

    2013-10-01

    We study the dynamics of successive slip events at a frictional interface with finite-element simulations. Because of the viscous properties of the material, the stress concentrations created by the arrest of precursory slip are not erased by the propagation of the following rupture but reappear with the relaxation of the material. We show that the amplitude of the stress concentrations follows an exponential decay, which is controlled by the bulk material properties. These results highlight the importance of viscosity in the heterogeneous stress state of a frictional interface and reveal the “memory effect” that affects successive ruptures.

  3. Effects of Transitional Buffering Interface coatings on thermal contact conductance

    NASA Astrophysics Data System (ADS)

    Chung, K. C.; Sheffield, J. W.; Sauer, H. J., Jr.; O'Keefe, T. J.; Zhang, J.

    1991-06-01

    Enhancing thermal contact conductance by a reliable and durable coating technique, Transitional Buffering Interface (TBI), has been investigated. A phase mixed coatings, Cu/C, and pure copper coatings on both primary surfaces of specimens were evaluated using four different surface roughnesses. All the samples are being tested at the following contact pressure sequence 125, 250, 375, 500, 375, 250 and 125 kPa. The test results of thermal contact conductance are presented in terms of coating thickness, surface texture and properties of coating materials. Vickers microhardness correlations are also presented for phase mixture copper and carbon and pure copper coatings. Using the experimental data, dimensionless expressions were developed that related the contact conductance of phase mixture copper-carbon and pure copper coatings to the coating thickness, the surface roughness, the contact pressure and the properties of aluminum substrate. The adhesive test indicated good durability of TBI coating surfaces.

  4. Contact Interface Verification for DYNA3D Scenario 1: Basic Contact

    SciTech Connect

    McMichael, L D

    2006-05-10

    A suite of test problems has been developed to examine contact behavior within the nonlinear, three-dimensional, explicit finite element analysis (FEA) code DYNA3D (Lin, 2005). The test problems address the basic functionality of the contact algorithms, including the behavior of various kinematic, penalty, and Lagrangian enforcement formulations. The results from the DYNA3D analyses are compared to closed form solutions to verify the contact behavior. This work was performed as part of the Verification and Validation efforts of LLNL W Program within the NNSA's Advanced Simulation and Computing (ASC) Program. DYNA3D models the transient dynamic response of solids and structures including the interactions between disjoint bodies (parts). A wide variety of contact surfaces are available to represent the diverse interactions possible during an analysis, including relative motion (sliding), separation and gap closure (voids), and fixed relative position (tied). The problem geometry may be defined using a combination of element formulations, including one-dimensional beam and truss elements, two-dimensional shell elements, and three-dimensional solid elements. Consequently, it is necessary to consider various element interactions for each contact algorithm being verified. Most of the contact algorithms currently available in DYNA3D are examined; the exceptions are the Type 4--Single Surface Contact and Type 11--SAND algorithms. It is likely that these algorithms will be removed since their functionality is embodied in other, more robust, contact algorithms. The automatic contact algorithm is evaluated using the Type 12 interface. Two other variations of automatic contact, Type 13 and Type 14, offer additional means to adapt the interface domain, but share the same search and restoration algorithms as Type 12. The contact algorithms are summarized in Table 1. This report and associated test problems examine the scenario where one contact surface exists between two

  5. Friction behavior of a multi-interface system and improved performance by AlMgB14–TiB2–C and diamond-like-carbon coatings

    DOE PAGESBeta

    Qu, Jun; Blau, Peter J.; Higdon, Clifton; Cook, Bruce A.

    2016-03-29

    We investigated friction behavior of a bearing system with two interfaces involved: a roller component experiencing rolling–sliding interaction against twin cylinders under point contacts while simultaneously undergoing pure sliding interaction against a socket under a conformal contact. Lubrication modeling predicted a strong correlation between the roller's rolling condition and the system's friction behavior. Experimental observations first validated the analytical predictions using steel and iron components. Diamond-like-carbon (DLC) coating and AlMgB14–TiB2 coating with a carbon topcoat (BAMC) were then applied to the roller and twin cylinders, respectively. In conclusion, testing and analysis results suggest that the coatings effectively decreased the slipmore » ratio for the roller–cylinder contact and the sliding friction at both bearing interfaces and, as a result, significantly reduced the system frictional torque.« less

  6. Bearing material. [composite material with low friction surface for rolling or sliding contact

    NASA Technical Reports Server (NTRS)

    Sliney, H. E. (Inventor)

    1976-01-01

    A composite material is described which will provide low friction surfaces for materials in rolling or sliding contact and is self-lubricating and oxidation resistant up to and in excess of about 930 C. The composite is comprised of a metal component which lends strength and elasticity to the structure, a fluoride salt component which provides lubrication and, lastly, a glass component which not only provides oxidation protection to the metal but may also enhance the lubrication qualities of the composite.

  7. Friction and stem stiffness affect dynamic interface motion in total hip replacement.

    PubMed

    Kuiper, J H; Huiskes, R

    1996-01-01

    Large cyclic movements between the femoral stem and bone during the first weeks after total hip arthroplasty may hamper bone ingrowth and adversely affect the eventual success of the arthroplasty. Little is known, however, about the magnitude of the motions and its relationship to design and surgical factors. A two-dimensional finite element model of a cementless prosthesis inserted into the proximal femur was constructed to study the effects of two mechanical variables--the stiffness of the implant and the coefficient of friction between bone and implant--on the magnitude of the motions. We investigated the influences of these variables on the subsidence of the prosthesis, the magnitudes of the cyclic motions, and the level of the interface stresses. The presence of friction reduced cyclic motions by about 85% compared with a frictionless interface. Once friction was assumed, varying the coefficient of friction had little effect. The effect of friction on the interface stress state and gross subsidence of the prosthesis was not as great as on cyclic motion. Implant stiffness also affected the magnitudes and distributions of the cyclic motions along the interface. A flexible stem generated motions about three to four times larger proximally than those of a stiff stem, which generated larger motions distally. The influence of stem stiffness on interface stresses and prosthetic subsidence was less than on cyclic motion. The location of the peak shear stresses at the interface around a bonded prosthesis corresponded to the location where cyclic interface motion was maximal for an unbonded prosthesis. However, no direct relationship was found between the magnitudes of peak stresses and the amplitudes of cyclic motions. PMID:8618164

  8. FASTSIM2: a second-order accurate frictional rolling contact algorithm

    NASA Astrophysics Data System (ADS)

    Vollebregt, E. A. H.; Wilders, P.

    2011-01-01

    In this paper we consider the frictional (tangential) steady rolling contact problem. We confine ourselves to the simplified theory, instead of using full elastostatic theory, in order to be able to compute results fast, as needed for on-line application in vehicle system dynamics simulation packages. The FASTSIM algorithm is the leading technology in this field and is employed in all dominant railway vehicle system dynamics packages (VSD) in the world. The main contribution of this paper is a new version "FASTSIM2" of the FASTSIM algorithm, which is second-order accurate. This is relevant for VSD, because with the new algorithm 16 times less grid points are required for sufficiently accurate computations of the contact forces. The approach is based on new insights in the characteristics of the rolling contact problem when using the simplified theory, and on taking precise care of the contact conditions in the numerical integration scheme employed.

  9. Influence of the Tool Shoulder Contact Conditions on the Material Flow During Friction Stir Welding

    NASA Astrophysics Data System (ADS)

    Doude, Haley R.; Schneider, Judy A.; Nunes, Arthur C.

    2014-09-01

    Friction stir welding (FSWing) is a solid-state joining process of special interest in joining alloys that are traditionally difficult to fusion weld. In order to optimize the process, various numeric modeling approaches have been pursued. Of importance to furthering modeling efforts is a better understanding of the contact conditions between the workpiece and the weld tool. Both theoretical and experimental studies indicate the contact conditions between the workpiece and weld tool are unknown, possibly varying during the FSW process. To provide insight into the contact conditions, this study characterizes the material flow in the FSW nugget by embedding a lead (Pb) wire that melted at the FSWing temperature of aluminum alloy 2195. The Pb trace provided evidence of changes in material flow characteristics which were attributed to changes in the contact conditions between the weld tool and workpiece, as driven by temperature, as the tool travels the length of a weld seam.

  10. Poly(ethylene oxide) Mushrooms Adsorbed at Silica-Ionic Liquid Interfaces Reduce Friction.

    PubMed

    Sweeney, James; Webber, Grant B; Atkin, Rob

    2016-03-01

    The adsorbed layer conformation and lubricity of 35, 100, and 300 kDa PEO adsorbed to ionic liquid (IL)-silica interfaces from 0.01 wt % solutions have been investigated using colloid probe atomic force microscopy. The ILs used were propylammonium nitrate (PAN) and 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM][BF4]), which are protic and aprotic ILs, respectively. Normal force curves reveal steric interactions consistent with adsorbed polymer layers which are best fit using the mushroom model. Friction measurements show that the adsorbed polymer layer markedly reduces friction compared to surfaces sliding in the pure ILs and that lubricity increases with polymer length. When polymer is adsorbed to the sliding surfaces, friction is controlled by the creation and disruption of intermolecular interactions between entangled chains and the dragging of polymer chains through the interpenetration region. These experiments show that added polymer can reduce friction while maintaining the useful properties of ILs as lubricants. PMID:26844589

  11. Slipping and friction at the interface between two-dimensional materials

    NASA Astrophysics Data System (ADS)

    Sreenivas, Vijayashree Parsi; Nicholl, Ryan; Bolotin, Kirill

    Friction at the macroscopic scale is primarily due to the surface roughness while at the atomic scale it is governed by commensurability and environmental conditions. Here, we investigate slipping and friction at the interface between two dissimilar two-dimensional materials, such as graphene and monolayer molybdenum disulfide. Such a system provides a powerful platform to study frictional forces at the atomic scale as chemical nature of the interface and commensurability between the layers can be varied with ease. To carry out such a study, a monolayer of e.g. graphene is exfoliated onto a flexible substrate material - polypropylene - and clamped down by evaporating titanium to avoid slippage. A monolayer of e.g. MoS2 is then transferred on top of graphene and the entire stack is strained using a four point bending apparatus. By measuring strain vs. bending via Raman spectroscopy, we detect slippage at graphene/MoS2 interface and characterize frictional forces as a function of interface parameters.

  12. Contact Force Compensated Thermal Stimulators for Holistic Haptic Interfaces.

    PubMed

    Sim, Jai Kyoung; Cho, Young-Ho

    2016-05-01

    We present a contact force compensated thermal stimulator that can provide a consistent tempera- ture sensation on the human skin independent of the contact force between the thermal stimulator and the skin. Previous passive thermal stimulators were not capable of providing a consistent tem- perature on the human skin even when using identical heat source voltage due to an inconsistency of the heat conduction, which changes due to the force-dependent thermal contact resistance. We propose a force-based feedback method that monitors the contact force and controls the heat source voltage according to this contact force, thus providing consistent temperature on the skin. We composed a heat circuit model equivalent to the skin heat-transfer rate as it is changed by the contact forces; we obtained the optimal voltage condition for the constant skin heat-transfer rate independent of the contact force using a numerical estimation simulation tool. Then, in the experiment, we heated real human skin at the obtained heat source voltage condition, and investigated the skin heat transfer-rate by measuring the skin temperature at various times at different levels of contact force. In the numerical estimation results, the skin heat-transfer rate for the contact forces showed a linear profile in the contact force range of 1-3 N; from this profile we obtained the voltage equation for heat source control. In the experimental study, we adjusted the heat source voltage according to the contact force based on the obtained equation. As a result, without the heat source voltage control for the contact forces, the coefficients of variation (CV) of the skin heat-transfer rate in the contact force range of 1-3 N was found to be 11.9%. On the other hand, with the heat source voltage control for the contact forces, the CV of the skin heat-transfer rate in the contact force range of 1-3 N was found to be barely 2.0%, which indicate an 83.2% improvement in consistency compared to the skin heat

  13. Contact Interface Verification for DYNA3D Scenario 2: Multi-Surface Contact

    SciTech Connect

    McMichael, L D

    2006-05-10

    A suite of test problems has been developed to examine contact behavior within the nonlinear, three-dimensional, explicit finite element analysis (FEA) code DYNA3D (Lin, 2005). The test problems use multiple interfaces and a combination of enforcement methods to assess the basic functionality of the contact algorithms. The results from the DYNA3D analyses are compared to closed form solutions to verify the contact behavior. This work was performed as part of the Verification and Validation efforts of LLNL W Program within the NNSA's Advanced Simulation and Computing (ASC) Program. DYNA3D models the transient dynamic response of solids and structures including the interactions between disjoint bodies (parts). A wide variety of contact surfaces are available to represent the diverse interactions possible during an analysis, including relative motion (sliding), separation and gap closure (voids), and fixed relative position (tied). The problem geometry may be defined using a combination of element formulations, including one-dimensional beam and truss elements, two-dimensional shell elements, and three-dimensional solid elements. Consequently, it is necessary to consider various element interactions during contact. This report and associated test problems examine the scenario where multiple bodies interact with each other via multiple interfaces. The test problems focus on whether any ordering issues exist in the contact logic by using a combination of interface types, contact enforcement options (i.e., penalty, Lagrange, and kinematic), and element interactions within each problem. The influence of rigid materials on interface behavior is also examined. The companion report (McMichael, 2006) and associated test problems address the basic contact scenario where one contact surface exists between two disjoint bodies. The test problems are analyzed using version 5.2 (compiled on 12/22/2005) of DYNA3D. The analytical results are used to form baseline solutions for

  14. Friction and wear of iron-base binary alloys in sliding contact with silicon carbide in vacuum

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1980-01-01

    Multipass sliding friction experiments were conducted with various iron base binary alloys in contact with a single crystal silicon carbide surface in vacuum. Results indicate that the atomic size and concentration of alloy elements play important roles in controlling the transfer and friction properties of iron base binary alloys. Alloys having high solute concentration produce more transfer than do alloys having low solute concentration. The coefficient of friction during multipass sliding generally increases with an increase in the concentration of alloying element. The change of friction with succeeding passes after the initial pass also increases as the solute to iron, atomic radius ratio increases or decreases from unity.

  15. A damage mechanics based general purpose interface/contact element

    NASA Astrophysics Data System (ADS)

    Yan, Chengyong

    Most of the microelectronics packaging structures consist of layered substrates connected with bonding materials, such as solder or epoxy. Predicting the thermomechanical behavior of these multilayered structures is a challenging task in electronic packaging engineering. In a layered structure the most complex part is always the interfaces between the strates. Simulating the thermo-mechanical behavior of such interfaces, is the main theme of this dissertation. The most commonly used solder material, Pb-Sn alloy, has a very low melting temperature 180sp°C, so that the material demonstrates a highly viscous behavior. And, creep usually dominates the failure mechanism. Hence, the theory of viscoplasticity is adapted to describe the constitutive behavior. In a multilayered assembly each layer has a different coefficient of thermal expansion. Under thermal cycling, due to heat dissipated from circuits, interfaces and interconnects experience low cycle fatigue. Presently, the state-of-the art damage mechanics model used for fatigue life predictions is based on Kachanov (1986) continuum damage model. This model uses plastic strain as a damage criterion. Since plastic strain is a stress path dependent value, the criterion does not yield unique damage values for the same state of stress. In this dissertation a new damage evolution equation based on the second law of thermodynamic is proposed. The new criterion is based on the entropy of the system and it yields unique damage values for all stress paths to the final state of stress. In the electronics industry, there is a strong desire to develop fatigue free interconnections. The proposed interface/contact element can also simulate the behavior of the fatigue free Z-direction thin film interconnections as well as traditional layered interconnects. The proposed interface element can simulate behavior of a bonded interface or unbonded sliding interface, also called contact element. The proposed element was verified against

  16. Correlation between contact surface and friction during the optical glass polishing

    NASA Astrophysics Data System (ADS)

    Belkhir, N.; Aliouane, T.; Bouzid, D.

    2014-01-01

    This study aims to determine the correlation between the contact surface, the polishing pressure and the friction coefficient during the optical glass polishing. For this purpose, BK7 optical glass samples were polished and the mentioned parameters were measured to find a correlation between them. Several methods of characterization have been used; the mechanical profilometer, the AFM, and in addition setups for measuring forces and the contact surface have been developed and adapted to the polishing machine. The found results have shown the existence of a close relationship between the three parameters and the influence of each other. This have allowed to deduce that during the polishing process it is very important to control the contact pressure and the polisher form according to the pressure distribution in order to guarantee a very high quality of the polished surface.

  17. Dust Emission Induced By Friction Modifications At Tool Chip Interface In Dry Machining In MMC{sub p}

    SciTech Connect

    Kremer, Arnaud; El Mansori, Mohamed

    2011-01-17

    This paper investigates the relationship between dust emission and tribological conditions at the tool-chip interface when machining Metal Matrix composite reinforced with particles (MMCp) in dry mode. Machining generates aerosols that can easily be inhaled by workers. Aerosols may be composed of oil mist, tool material or alloying elements of workpiece material. Bar turning tests were conducted on a 2009 aluminum alloy reinforced with different level of Silicon Carbide particles (15, 25 and 35% of SiCp). Variety of PCD tools and nanostructured diamond coatings were used to analyze their performances on air pollution. A spectrometer was used to detect airborne aerosol particles in the size range between 0.3{mu}m to 20 {mu}m and to sort them in 15 size channels in real time. It was used to compare the effects of test parameters on dust emission. Observations of tool face and chip morphology reveal the importance of friction phenomena. It was demonstrated that level of friction modifies chip curvature and dust emission. The increase of level of reinforcement increase the chip segmentation and decrease the contact length and friction area. A ''running in'' phenomenon with important dust emission appeared with PCD tool due to the tool rake face flatness. In addition dust generation is more sensitive to edge integrity than power consumption.

  18. The metal to metal interface and its effect on adhesion and friction

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1976-01-01

    The nature of the interface, adhesion and friction properties of noble metals, platinum metals, Group IV (B) metals and transition metals were considered. The surface chemical activity of the noble and platinum metals is shown to effect metal to metal interfaces as does a valance bonding in the transition metals. With the Group IV (B) metals the degree of metallic nature of the elements is shown to effect interfacial behavior. The effect of surface segregation of alloy constituents such as silicon in iron and its influence on the metal to metal interface is discussed. In addition the effect of alloy constituents on changes in bulk properties such as transformations in tin are shown to effect interfacial adhesion and friction behavior.

  19. Modeling the Electrical Contact Resistance at Steel-Carbon Interfaces

    NASA Astrophysics Data System (ADS)

    Brimmo, Ayoola T.; Hassan, Mohamed I.

    2016-01-01

    In the aluminum smelting industry, electrical contact resistance at the stub-carbon (steel-carbon) interface has been recurrently reported to be of magnitudes that legitimately necessitate concern. Mitigating this via finite element modeling has been the focus of a number of investigations, with the pressure- and temperature-dependent contact resistance relation frequently cited as a factor that limits the accuracy of such models. In this study, pressure- and temperature-dependent relations are derived from the most extensively cited works that have experimentally characterized the electrical contact resistance at these contacts. These relations are applied in a validated thermo-electro-mechanical finite element model used to estimate the voltage drop across a steel-carbon laboratory setup. By comparing the models' estimate of the contact electrical resistance with experimental measurements, we deduce the applicability of the different relations over a range of temperatures. The ultimate goal of this study is to apply mathematical modeling in providing pressure- and temperature-dependent relations that best describe the steel-carbon electrical contact resistance and identify the best fit relation at specific thermodynamic conditions.

  20. Comninou contact zones for a crack parallel to an interface

    SciTech Connect

    Joseph, P.F.; Gadi, K.S.; Erdogen, F.

    1995-12-31

    One of the interesting features in studying the state of stress in elastic solids near singular points, is the so called complex singularity that gives rise to an apparent local oscillatory behavior in the stress and displacement fields. The region in which this occurs is very small, much smaller than any plastic zone would be, and therefore the oscillations can be ignored in practical applications. Nevertheless, it is a matter of interesting theoretical investigation. The Comninou model of a small contact zone near the crack tip appears to correct for this anomaly within the framework of the linear theory. This model seems to make sense out of a {open_quotes}solution{close_quotes} that violates the boundary conditions. Erdogan and Joseph, showed (to themselves anyway) that the Comninou model actually has a physical basis. They considered a crack parallel to an interface where the order of the singularity is always real. With great care in solving the singular integral equations, it was shown that as the crack approaches the interface, a pinching effect is observed at the crack tip. This pinching effect proves that in the limit as the crack approaches the interface, the correct way to handle the problem is to consider crack surface contact. In this way, the issue of {open_quotes}oscillations{close_quotes} is never encountered for the interface crack problem. In the present study, the value of h/a that corresponds to crack closure (zero value of the stress intensity factor) will be determined for a given material pair for tensile loading. An asymptotic numerical method for the solution of singular integral equations making use of is used to obtain this result. Results for the crack opening displacement near the tip of the crack and the behavior of the stress intensity factor for cracks very close to the interface are presented. Among other interesting issues to be discussed, this solution shows that the semi-infinite crack parallel to an interface is closed.

  1. Friction

    NASA Astrophysics Data System (ADS)

    Matsuo, Yoshihiro; Clarke, Daryl D.; Ozeki, Shinichi

    Friction materials such as disk pads, brake linings, and clutch facings are widely used for automotive applications. Friction materials function during braking due to frictional resistance that transforms kinetic energy into thermal energy. There has been a rudimentary evolution, from materials like leather or wood to asbestos fabric or asbestos fabric saturated with various resins such as asphalt or resin combined with pitch. These efforts were further developed by the use of woven asbestos material saturated by either rubber solution or liquid resin binder and functioned as an internal expanding brake, similar to brake lining system. The role of asbestos continued through the use of chopped asbestos saturated by rubber, but none was entirely successful due to the poor rubber heat resistance required for increased speeds and heavy gearing demands of the automobile industry. The use of phenolic resins as binder for asbestos friction materials provided the necessary thermal resistance and performance characteristics. Thus, the utility of asbestos as the main friction component, for over 100 years, has been significantly reduced in friction materials due to asbestos identity as a carcinogen. Steel and other fibrous components have displaced asbestos in disk pads. Currently, non-asbestos organics are the predominate friction material. Phenolic resins continue to be the preferred binder, and increased amounts are necessary to meet the requirements of highly functional asbestos-free disk pads for the automotive industry. With annual automobile production exceeding 70 million vehicles and additional automobile production occurring in developing countries worldwide and increasing yearly, the amount of phenolic resin for friction material is also increasing (Fig. 14.1). Fig. 14.1 Worldwide commercial vehicle production From flash heating to frictional melting: capturing the incipient microstructural development of experimental fault interfaces

    NASA Astrophysics Data System (ADS)

    Hayward, Kathryn; Cox, Stephen; Slagmolen, Bram; Forsyth, Perry; Shaddock, Daniel; Hawkins, Rhys; Fitz Gerald, John

    2016-04-01

    The propagation of seismic slip is often attributed to the activation of weakening mechanisms at high slip velocities, resulting from complex thermo-mechanical changes to asperities at the slip interface. Despite considerable experimental effort being directed towards understanding high-velocity fault behaviour, the mechanisms that drive the onset of instability and formative stages of weakening remain an area of considerable uncertainty. Here we present new evidence for the very rapid onset of microstructural changes on experimental faults surfaces that have been sheared over a range of slip velocities and under stress conditions comparable to upper- to mid-crustal conditions (σn = 92-320MPa). Experiments have been undertaken using pre-ground fault surfaces of Fontainebleau sandstone in a classic triaxial configuration. The traditional high-precision mechanical data of the gas-medium apparatus has been supplemented by the installation of a custom built interferometric sensor that provides microsecond resolution of displacement during stick-slip events. Deformed samples have been analysed using multiple techniques, including FE-SEM and FIB-TEM, that provide insights into physical and structural changes to asperity contacts over a range of scales. Significant findings include recognition of textures that capture the transition from mechanical amorphisation, to flash heating and the early stages of frictional melting. Our results include the formation of a partially amorphous nano-gouge layer during aseismic sliding, the development of amorphous zones at asperity tips and the generation of frictional melt during stick-slip. While the average fault temperature is estimated to remain well below the quartz solidus (~1700°C), we show that extreme localised heating occurs during all stick-slip events, with a clear correlation between slip velocity and the morphology of the amorphous material produced. These microstructural changes occur over slip distances that are

  2. Static and kinetic friction force and surface roughness of different archwire-bracket sliding contacts.

    PubMed

    Carrion-Vilches, Francisco J; Bermudez, María-Dolores; Fructuoso, Paula

    2015-01-01

    The aim of this study was to determine the static and kinetic friction forces of the contact bracket-archwire with different dental material compositions in order to select those materials with lower resistance to sliding. We carried out sliding friction tests by means of a universal testing machine following an experimental procedure as described in ASTM D1894 standard. We determined the static and kinetic friction forces under dry and lubricating conditions using an artificial saliva solution at 36.5ºC. The bracket-archwire pairs studied were: stainless steel-stainless steel; stainless steel-glass fiber composite; stainless steel-Nitinol 60; sapphire-stainless steel; sapphire-glass fiber composite; and sapphire-Nitinol 60. The best performance is obtained for Nitinol 60 archwire sliding against a stainless steel bracket, both under dry and lubricated conditions. These results are in agreement with the low surface roughness of Nitinol 60 with respect to the glass fiber composite archwire. The results described here contribute to establishing selection criteria for materials for dental archwire-brackets. PMID:26438988

  3. Experimental Study Of Thermal Sliding Contact With Friction : Application To High Speed Machining Of Metallic Materials

    NASA Astrophysics Data System (ADS)

    Guillot, E.; Bourouga, B.; Garnier, B.; Dubar, L.

    2007-04-01

    In High Speed Machining (HSM), thermomechanical events at the tool-workpiece interface are strongly coupled. They are characterized by extreme conditions of stress and strain as well as heating and heat gradients that it is advisable to control well for a good resolution of the thermomechanical problem. We present a first experimental approach based on friction tests. The conditions are similar to the ones occurring in the orthogonal cutting in terms of pressure at the nose and of the chip sliding velocity. The workpiece pressed on the tool is suddenly moved according to a selected speed and pressure. Experiments are carried out with XC38 metallic sample at the temperature of 900 K and a sliding velocity of 0,2 m/s. The thermal conditions at the workpiece-tool interface are estimated by means of temperature recordings and an inverse heat conduction method. Finally, the estimated heat flux is compared to the one obtained by mechanical way which considers the measured friction coefficient. This comparison is satisfactory.

  4. The effect of friction and impact angle on the spermatozoa-oocyte local contact dynamics.

    PubMed

    Hedrih, Andjelka; Banić, Milan

    2016-03-21

    Although a large proportion of biomolecules involved in spermatozoa-oocyte interaction has been discovered so far, many details of fertilization mechanism remain unknown. Both biochemical and biomechanical components exist in the fertilization process. Mammalian sperm evolved a ZP (zona pelucida) thrust reduction penetration strategy probably in response to the ZP resilient elasticity. Using a biomechanical approach and FEM analysis, local contact stress, ZP deformations during impact and attempt of sperm head penetration relative to different sperm impact angles (SIA) were studied. The sperm-oocyte contact was defined as non-linear frictional contact. A transient structural analysis at 37°C revealed that, from the mechanical standpoint there are SIA that are more favorable for possible ZP penetration due to larger equivalent stress of ZP. An "slip-stick" resembling effect was identified for almost all examined SIA. The sperm head-ZP contact area increases as SIA decreases. Favorable ZP-stress state for sperm penetration regarding SIA are discussed. PMID:26780648

  5. Relationship between the ideal tensile strength and the friction properties of metals in contact with nonmetals and themselves

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1981-01-01

    The adhesion and friction properties of metals in contact with diamond, boron nitride, silicon carbide, manganese-zinc ferrite, and the metals themselves in vacuum was investigated. An estimate of the ideal uniaxial tensile was obtained in terms of the equilibrium surface energy, interplanar spacing of the planes perpendicular to the tensile axis, and the Young's modulus of elasticity. The coefficient of friction for metals was found to be related to the ideal tensile strength of metals. The higher the strength of the metal, the lower the coefficient of friction.

  6. Simultaneous measurement of real contact area and fault normal stiffness during frictional sliding

    NASA Astrophysics Data System (ADS)

    Beeler, N. M.; Nagata, K.; Kilgore, B. D.; Nakatani, M.

    2010-12-01

    The tectonic stresses that lead to earthquake slip are concentrated in small regions of solid contact between asperities or gouge particles within the fault. Fault strength is proportional to the contact area within the shearing portion of the fault zone and many fault properties of interest to earthquake hazard research, e.g., occurrence time, recurrence interval, precursory slip, triggered earthquake slip, are controlled by processes acting at the highly stressed contact regions. Unfortunately the contact-scale physical processes controlling earthquake occurrence cannot be easily observed or measured directly. In this pilot study we simultaneously directly measure contact area using transmitted light intensity (LI) [Dieterich and Kilgore, 1994; 1996] and continuously monitor the normal stiffness of the fault using acoustic wave transmission (AT) [Nagata et al., 2008]. The objective of our study is to determine relations amongst contacting area, stiffness, strength, normal stress, shear displacement, and time of contact during sliding. Interface stiffness is monitored using acoustic compressive waves transmitted across the fault. Because the fault is more compliant in compression than the surrounding rock, the fault has an elastic wave transmission coefficient that depends on the fault normal stiffness. Contact area is measured by LI: regions in contact transmit light efficiently while light is scattered elsewhere; therefore transmitted light intensity is presumed proportional to contact area. LI and AT are expected to be correlated; e.g., an elastic contact model suggests that stiffness goes as the square root of contact area. We observe LI and AT for sliding at slip speeds between 0.01 and 10 microns/s and normal stresses between 1 and 2.5 MPa while conducting standard velocity-step, normal stress-step and slide-hold-slide tests. AT and LI correlate during all tests, at all conditions. If the physical relationship, or even an empirical calibration between AT and

  7. Friction in unconforming grain contacts as a mechanism for tensorial stress strain hysteresis

    NASA Astrophysics Data System (ADS)

    Aleshin, V.; Van Den Abeele, K.

    2007-04-01

    Materials composed of consolidated grains and/or containing internal contacts are widespread in everyday life (e.g. rocks, geomaterials, concretes, slates, ceramics, composites, etc.). For any simulation of the elastic behavior of this class of solids, be it in seismology, in NDT, or in the modeling of building constructions, the stress-strain constitutive equations are indispensable. Since the most common loading patterns in nature considerably deviate from simple uniaxial compression, the problem of tensorial stress-strain representation arises. In simple loading cases it may be sufficient to use a phenomenological constitutive model. However, in a more general case, phenomenological approaches encounter serious difficulties due to the high number of unknown parameters and the complexity of the model itself. Simplification of the phenomenology can help only partly, since it may require artificial assumptions. For instance, is it enough just to link the volumetric stress to the volumetric strain, or do we have to include shear components as well, and if yes, in what form? We therefore propose a physical tensorial stress-strain model, based on the consideration of plane cracks with friction. To do this, we combine known relations for normal displacements of crack faces given by contact mechanics, the classical Amonton's law of dry friction for lateral displacements, and the equations of elasticity theory for a collection of non-interacting cracks with given orientation. The major advantages of this model consist in the full tensorial representation, the realistic stress-strain curves for uniaxial stress compression and quantitative comparison with experimental data, and a profound account for hysteretic memory effects.

  8. Estimation of coefficient of friction for a mechanical system with combined rolling-sliding contact using vibration measurements

    NASA Astrophysics Data System (ADS)

    Sundar, Sriram; Dreyer, Jason T.; Singh, Rajendra

    2015-06-01

    A new dynamic experiment is proposed to estimate the coefficient of friction for a mechanical system with a combined rolling-sliding contact under a mixed lubrication regime. The experiment is designed and instrumented based on an analogous contact mechanics model, taking into consideration the constraints to ensure no impact and no sliding velocity reversal. The system consists of a cam (rotating with a constant speed) having a point contact with a follower that oscillates about a frictionless pivot, while maintaining contact with the cam with the help of a well-designed translational spring. The viscous damping elements for contact are identified for two different lubricants from an impulse test using the half-power bandwidth method. Dynamic responses (with the cam providing an input to the system) are measured in terms of the follower acceleration and the reaction forces at the follower pivot. A frequency domain based signal processing technique is proposed to estimate the coefficient of friction using the complex-valued Fourier amplitudes of the measured forces and acceleration. The coefficient of friction is estimated for the mechanical system with different surface roughnesses using two lubricants; these are also compared with similar values for both dry and lubricated cases as reported in the literature. An empirical relationship for the coefficient of friction is suggested based on a prior model under a mixed lubrication regime. Possible sources of errors in the estimation procedure are identified and quantified.

  9. A two-sided interface model for dissipation in structural systems with frictional joints

    NASA Astrophysics Data System (ADS)

    Miller, Jason D.; Dane Quinn, D.

    2009-03-01

    Modeling mechanical joints in an accurate and computationally efficient manner is of great importance in the analysis of structural systems, which can be composed of a large number of connected components. This work presents an interface model that can be decomposed into a series-series Iwan model together with an elastic chain, subject to interfacial shear loads. A reduced-order formulation of the resulting model is developed that significantly reduces the computational requirements for the simulation of frictional damping. Results are presented as the interface is subject to harmonic loading of varying amplitude. The models presented are able to qualitatively reproduce experimentally observed dissipation scalings. Finally, the interface models are embedded within a larger structural system to illustrate there effectiveness in capturing the structural damping induced by mechanical joints.

  10. Surface chemistry, friction and wear of Ni-Zn and Mn-Zn ferrites in contact with metals

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1982-01-01

    X-ray photoelectron and Auger electron spectroscopy analysis were used in sliding friction experiments. These experiments were conducted with hot-pressed polycrystalline Ni-Zn and Mn-Zn ferrites, and single-crystal Mn-Zn ferrite in contact with various transition metals at room temperature in both vacuum and argon. The results indicate that Ni2O3 and Fe3O4 were present on the Ni-Zn ferrite surface in addition to the nominal bulk constituents, while MnO2 and Fe3O4 were present on the Mn-Zn ferrite surface in addition to the nominal bulk constituents. The coefficients of friction for the ferrites in contact with metals were related to the relative chemical activity of these metals. The more active the metal, the higher is the coefficient of friction. The coefficients of friction for the ferrites were correlated with the free energy of formation of the lowest metal oxide. The interfacial bond can be regarded as a chemical bond between the metal atoms and the oxygen anions in the ferrite surfaces. The adsorption of oxygen on clean metal and ferrite does strengthen the metal-ferrite contact and increase the friction. The ferrites exhibit local cracking and fracture with sliding under adhesive conditions. All the metals transferred to he surfaces of the ferrites in sliding.

  11. Friction and wear of single-crystal and polycrystalline maganese-zinc ferrite in contact with various metals

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1977-01-01

    Sliding friction experiments were conducted with single-crystal (SCF) and hot-pressed polycrystalline (HPF) manganese-zinc ferrite in contact with various metals. Results indicate that the coefficients of friction for SCF and HPF are related to the relative chemical activity of those metals in high vacuum. The more active the metal, the higher the coefficient of friction. The coefficients of friction for both SCF and HPF were the same and much higher in vacuum than in argon at atmospheric pressure. All the metals tested transferred to the surface of both SCF and HPF in sliding. Both SCF and HPF exhibited cracking and fracture with sliding. Cracking in SCF is dependent on crystallographic characteristics. In HPF, cracking depends on the orientation of the individual crystallites.

  12. On the role of scales in contact mechanics and friction between elastomers and randomly rough self-affine surfaces

    PubMed Central

    Popov, Valentin L.; Dimaki, Andrey; Psakhie, Sergey; Popov, Mikhail

    2015-01-01

    The paper is devoted to a qualitative analysis of friction of elastomers from the point of view of scales contributing to the force of friction. We argue that – contrary to widespread opinion – friction between a randomly rough self-affine fractal surface and an elastomer is not a multiscale phenomenon, but is governed mostly by the interplay of only two scales – as a rule the largest and the smallest scales of roughness of the contacting bodies. The hypothesis of two-scale character of elastomer friction is illustrated by computer simulations in the framework of the paradigm of Greenwood, Tabor and Grosch using a simplified one-dimensional model. PMID:26057466

  13. Intelligent tires for identifying coefficient of friction of tire/road contact surfaces using three-axis accelerometer

    NASA Astrophysics Data System (ADS)

    Matsuzaki, Ryosuke; Kamai, Kazuto; Seki, Ryosuke

    2015-02-01

    Intelligent tires equipped with sensors as well as the monitoring of the tire/road contact conditions are in demand for improving vehicle control and safety. With the aim of identifying the coefficient of friction of tire/road contact surfaces during driving, including during cornering, we develop an identification scheme for the coefficient of friction that involves estimation of the slip angle and applied force by using a single lightweight three-axis accelerometer attached on the inner surface of the tire. To validate the developed scheme, we conduct tire-rolling tests using an accelerometer-equipped tire with various slip angles on various types of road surfaces, including dry and wet surfaces. The results of these tests confirm that the estimated slip angle and applied force are reasonable. Furthermore, the identified coefficient of friction by the developed scheme agreed with that measured by standardized tests.

  14. Analysis of cementless implants using interface nonlinear friction--experimental and finite element studies.

    PubMed

    Dammak, M; Shirazi-Adl, A; Zukor, D J

    1997-02-01

    Measured interface nonlinear friction properties are used to develop models to study the short-term fixation response of smooth- and porous-surfaced posts, bone screws, and plates fixed with and without posts/screws. Experimental studies are carried out to validate the model predictions and identify the relative role of posts and screws in fixation of a plate on a polyurethane block under symmetric/eccentric axial compression loads. The idealized Coulomb's friction is also used for the sake of comparison. The incorporation of measured nonlinear, rather than the idealized Coulomb, friction is essential to compute realistic results. For plate fixation, the experimental and finite element results show that the screw fixation yields the stiffest response followed by the smooth- and then porous-coated post fixation. For example, under 1000 N eccentric axial compression, the edge of the plate opposite the loaded edge is measured to lift by 1147 +/- 72, 244 +/- 38, or 112 +/- 28 microns, respectively, for the cases with no fixation, with smooth-surfaced posts, or with screws. The corresponding models predict, respectively, values of 1538, 347, or 259 microns and also 556 microns for the plate fixed with porous coated posts. The satisfactory agreement between numerical and experimental results confirms the importance of proper interface modelling for the analysis of posts, screws, and complex fixation systems. This becomes further evident when considering cementless implants in which the bone-implant interface exhibits relatively large displacements as the maximum resistance force is reached. The developed models can be used to investigate the post-operative short-term stability of various cementless implant designs. PMID:9001932

  15. A comparison of Coulomb and pseudo-Coulomb friction implementations: Application to the table contact phase of gymnastics vaulting.

    PubMed

    Jackson, M I; Hiley, M J; Yeadon, M R

    2011-10-13

    In the table contact phase of gymnastics vaulting both dynamic and static friction act. The purpose of this study was to develop a method of simulating Coulomb friction that incorporated both dynamic and static phases and to compare the results with those obtained using a pseudo-Coulomb implementation of friction when applied to the table contact phase of gymnastics vaulting. Kinematic data were obtained from an elite level gymnast performing handspring straight somersault vaults using a Vicon optoelectronic motion capture system. An angle-driven computer model of vaulting that simulated the interaction between a seven segment gymnast and a single segment vaulting table during the table contact phase of the vault was developed. Both dynamic and static friction were incorporated within the model by switching between two implementations of the tangential frictional force. Two vaulting trials were used to determine the model parameters using a genetic algorithm to match simulations to recorded performances. A third independent trial was used to evaluate the model and close agreement was found between the simulation and the recorded performance with an overall difference of 13.5%. The two-state simulation model was found to be capable of replicating performance at take-off and also of replicating key contact phase features such as the normal and tangential motion of the hands. The results of the two-state model were compared to those using a pseudo-Coulomb friction implementation within the simulation model. The two-state model achieved similar overall results to those of the pseudo-Coulomb model but obtained solutions more rapidly. PMID:21889150

  16. In vitro investigation of friction at the interface between bone and a surgical instrument.

    PubMed

    Parekh, Jugal; Shepherd, Duncan E T; Hukins, David W L; Hingley, Carl; Maffulli, Nicola

    2013-06-01

    This study investigated the friction between surgical instruments and bone to aid improvements to instrument design. The bases of orthopaedic surgical instruments are usually made of metal, especially stainless steel. Silicone elastomer was chosen as an alternate biocompatible material, which would be compliant on the bone surface when used as the base of an instrument. The coefficient of static friction was calculated at the bone/material interface in the presence of a synthetic solution that had a comparable viscosity to that of blood, to assess the friction provided by each base material. Three types of silicone elastomers with different hardnesses (Shore A hardness 23, 50 and 77) and three distinct stainless steel surfaces (obtained by spark erosion, sand blasting and surface grinding) were used to assess the friction provided by the materials on slippery bone. The bone specimens were taken from the flattest region of the femoral shaft of a bovine femur; the outer surfaces of the specimens were kept intact. In general, the stainless steel surfaces exhibited higher values of coefficient of static friction, compared to the silicone elastomer samples. The stainless steel surface finished by spark erosion (surface roughness Ra  = 8.9 ± 1.6 µm) had the highest coefficient value of 0.74 ± 0.04. The coefficient values for the silicone elastomer sample with the highest hardness (Dow Corning Silastic Q7-4780, Shore A hardness 77) was not significantly different to values provided by the stainless steel surface finished by sand blasting (surface roughness Ra  = 2.2 ± 0.1 µm) or surface grinding (surface roughness Ra  = 0.1 ± 0.0 µm). Based on the results of this study, it is concluded that silicone could be a potentially useful material for the design of bases of orthopaedic instruments that interface with bone. PMID:23636757

  17. Effect of normal load and roughness on the nanoscale friction coefficient in the elastic and plastic contact regime.

    PubMed

    Kumar, Aditya; Staedler, Thorsten; Jiang, Xin

    2013-01-01

    The influence of applied normal load and roughness on the tribological behavior between the indenter and sample surface during nanoindentation-based scratching has been experimentally investigated by using different surfaces (fused silica and diamond-like carbon) featuring various degrees of roughness. At a sufficiently low applied normal load, wherein the contact is elastic, the friction coefficient is constant. However, at increased normal loads the contact involves plastic deformation and the friction coefficient increases with increasing normal load. The critical load range for a transition from predominantly elastic to plastic contact, between the indenter and sample surface, increases with increasing size of indenter and decreases with roughness. Distinct differences between the present experimental results and the existing theoretical models/predictions are discussed. PMID:23400754

  18. Combined friction force microscopy and quantum chemical investigation of the tribotronic response at the propylammonium nitrate-graphite interface.

    PubMed

    Li, H; Atkin, R; Page, A J

    2015-06-28

    The energetic origins of the variation in friction with potential at the propylammonium nitrate-graphite interface are revealed using friction force microscopy (FFM) in combination with quantum chemical simulations. For boundary layer lubrication, as the FFM tip slides energy is dissipated via (1) boundary layer ions and (2) expulsion of near-surface ion layers from the space between the surface and advancing tip. Simulations reveal how changing the surface potential changes the ion composition of the boundary and near surface layer, which controls energy dissipation through both pathways, and thus the friction. PMID:26027558

  19. Micromechanical modeling of the cement-bone interface: the effect of friction, morphology and material properties on the micromechanical response

    PubMed Central

    Janssen, Dennis; Mann, Kenneth A.; Verdonschot, Nico

    2008-01-01

    In order to gain insight into the micro-mechanical behavior of the cement-bone interface, the effect of parametric variations of frictional, morphological and material properties on the mechanical response of the cement-bone interface were analyzed using a finite element approach. Finite element models of a cement-bone interface specimen were created from micro-computed tomography data of a physical specimen that was sectioned from an in vitro cemented total hip arthroplasty. In five models the friction coefficient was varied (μ= 0.0; 0.3; 0.7; 1.0 and 3.0), while in one model an ideally bonded interface was assumed. In two models cement interface gaps and an optimal cement penetration were simulated. Finally, the effect of bone cement stiffness variations was simulated (2.0 and 2.5 GPa, relative to the default 3.0 GPa). All models were loaded for a cycle of fully reversible tension-compression. From the simulated stress-displacement curves the interface deformation, stiffness and hysteresis were calculated. The results indicate that in the current model the mechanical properties of the cement-bone interface were caused by frictional phenomena at the shape-closed interlock rather than by adhesive properties of the cement. Our findings furthermore show that in our model maximizing cement penetration improved the micromechanical response of the cement-bone interface stiffness, while interface gaps had a detrimental effect. Relative to the frictional and morphological variations, variations in the cement stiffness had only a modest effect on the micromechanical behavior of the cement-bone interface. The current study provides information that may help to better understand the load transfer mechanisms taking place at the cement-bone interface. PMID:18848699

  1. Simulations of solid-liquid friction at ice-Ih/water interfaces

    NASA Astrophysics Data System (ADS)

    Louden, Patrick B.; Gezelter, J. Daniel

    2013-11-01

    We have investigated the structural and dynamic properties of the basal and prismatic facets of the ice Ih/water interface when the solid phase is drawn through the liquid (i.e., sheared relative to the fluid phase). To impose the shear, we utilized a velocity-shearing and scaling approach to reverse non-equilibrium molecular dynamics. This method can create simultaneous temperature and velocity gradients and allow the measurement of transport properties at interfaces. The interfacial width was found to be independent of the relative velocity of the ice and liquid layers over a wide range of shear rates. Decays of molecular orientational time correlation functions gave similar estimates for the width of the interfaces, although the short- and longer-time decay components behave differently closer to the interface. Although both facets of ice are in "stick" boundary conditions in liquid water, the solid-liquid friction coefficients were found to be significantly different for the basal and prismatic facets of ice.

  2. Friction and metal transfer for single-crystal silicon carbide in contact with various metals in vacuum

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1978-01-01

    Sliding friction experiments were conducted with single-crystal silicon carbide in contact with transition metals (tungsten, iron, rhodium, nickel, titanium, and cobalt), copper, and aluminum. Results indicate the coefficient of friction for a silicon carbide-metal system is related to the d bond character and relative chemical activity of the metal. The more active the metal, the higher the coefficient of friction. All the metals examined transferred to the surface of silicon carbide in sliding. The chemical activity of metal to silicon and carbon and shear modulus of the metal may play important roles in metal transfer and the form of the wear debris. The less active and greater resistance to shear the metal has, with the exception of rhodium and tungsten, the less transfer to silicon carbide.

  3. Adaptive contact elements for three-dimensional fluid-structure interfaces

    SciTech Connect

    Kulak, R.F.

    1985-01-01

    A finite element method is developed for treating the mechanics of contact between two deformable bodies which occurs, for example, at fluid-structure interfaces. The method uses a family of adaptive contact elements, which are based upon the penalty method, to handle all of the possible contact configurations that can occur between the discretized contacting bodies. The contact element's nodal connectivity is allowed to change during the computations in order to accommodate finite sliding. The infusion of these elements in the interface results in satisfying the force equilibrium condition during contact. The methodology has been implemented into the NEPTUNE code. Results are presented for an illustrative problem.

  4. Study the friction behaviour of poly[2-(dimethylamino)ethyl methacrylate] brush with AFM probes in contact mechanics

    NASA Astrophysics Data System (ADS)

    Raftari, Maryam; Zhang, Zhenyu; Leggett, Graham J.; Geoghegan, Mark

    2011-10-01

    We have studied the frictional behaviour of grafted poly[2-(dimethylamino)ethyl methacrylate] (PDMAEMA) films using friction force microscopy (FFM). The films were prepared on native oxide-terminated silicon substrates using the technique of atom transfer radical polymerization (ATRP). We show that single asperity contact mechanics (Johnson-Kendall-Roberts(JKR) and Derjaguin-Muller-Toporov(DMT)) as well as a linear (Amontons) relation between applied load and frictional load depending on the pH of the FFM probe. Measurements were made using functionalized and unfunctionalized silicon nitride triangular probes. Functionalized probes included gold-coated probes, and ones coated with a self-assembled monolayer of dodecanethiol (DDT). The frictional behaviour between PDMAEMA and all tips immersed in pH from 3 to 11 are corresponded to the DMT or JKR model and are linear in pH=1, 2, and 12. These results show that contact mechanics of polyelectrolytes in water is complex and strongly dependent on the environmental pH.

  5. Thermal contact conductance between solid interfaces under low temperature and vacuum

    NASA Astrophysics Data System (ADS)

    Xiao, Youming; Sun, Heng; Xu, Lie; Feng, Haidong; Zhu, Hongmei

    2004-09-01

    In this article, an experimental device used for thermal contact conductance tests under low temperature and vacuum was demonstrated in detail, which may be used to simulate the real environment of some solid materials, such as stainless steel, or aluminum in a space satellite. Thermal contact conductance experiments of stainless steel, of aluminum, and between stainless steel and aluminum were made for 0.02 Pa and 100-330 K. The relationships of thermal contact conductance to the contact loading pressure and to the temperature were measured. It is demonstrated that the thermal contact conductance between stainless steel, aluminum, between stainless steel, and aluminum contacts rises with the temperature increase of the contact interface, as well as the loading pressure increase of the contact interface. The thermal contact conductance of aluminum is larger than that of stainless steel for the same temperature and same loading pressure of the contact interface. The thermal contact conductance between stainless steel and aluminum is close to that between aluminum contacts at the same temperature and same loading pressure of the contact interface.

  6. Frictional sliding at a compressed polycrystalline 50 nm grain size Al-Al interface

    NASA Astrophysics Data System (ADS)

    Hammerberg, J. E.; Ravelo, R. J.; Germann, T. C.

    2015-03-01

    We present the results of large-scale NEMD simulations for a polycrystalline Al-Al interface sliding at a relative velocity of 60 m/s and a pressure of 15 GPa with a boundary temperature of 300K. The sample consisted of annealed grains, 125 grains on either side of the initial sliding interface, with dimensions of 2x(236) nm in the normal direction and 236 nm in the periodic sliding and transverse directions. Simulation times were of order 20 ns and the sample had 1.8B atoms interacting with an Al-EAM potential. The initial grain structure evolves to a complex dynamic steady state grain morphology that is very different from the initial grain structure and is characterized by large plastic strains and strain rates in a deformation region of thickness 150 nm at the interface in the normal direction. The steady state shows a sequence of grain growth and refinement and a highly strained graded microstructure. This behavior is similar to that seen in simulations for 13 and 20 nm grains and a mesoscale model that takes into account the large plastic strains and strain rates, and the size of the deformation region is able to reproduce the values of the frictional force per unit area. This work was performed under the auspices of the U.S. Dept. of Energy under Contract DE-AC52-06NA25396. The support of the LANL ASC-PEM program is gratefully acknowledged.

  7. Onset of frictional sliding of rubber–glass contact under dry and lubricated conditions

    PubMed Central

    Tuononen, Ari J.

    2016-01-01

    Rubber friction is critical in many applications ranging from automotive tyres to cylinder seals. The process where a static rubber sample transitions to frictional sliding is particularly poorly understood. The experimental and simulation results in this paper show a completely different detachment process from the static situation to sliding motion under dry and lubricated conditions. The results underline the contribution of the rubber bulk properties to the static friction force. In fact, simple Amontons’ law is sufficient as a local friction law to produce the correct detachment pattern when the rubber material and loading conditions are modelled properly. Simulations show that micro-sliding due to vertical loading can release initial shear stresses and lead to a high static/dynamic friction coefficient ratio, as observed in the measurements. PMID:27291939

  8. Onset of frictional sliding of rubber–glass contact under dry and lubricated conditions

    NASA Astrophysics Data System (ADS)

    Tuononen, Ari J.

    2016-06-01

    Rubber friction is critical in many applications ranging from automotive tyres to cylinder seals. The process where a static rubber sample transitions to frictional sliding is particularly poorly understood. The experimental and simulation results in this paper show a completely different detachment process from the static situation to sliding motion under dry and lubricated conditions. The results underline the contribution of the rubber bulk properties to the static friction force. In fact, simple Amontons’ law is sufficient as a local friction law to produce the correct detachment pattern when the rubber material and loading conditions are modelled properly. Simulations show that micro-sliding due to vertical loading can release initial shear stresses and lead to a high static/dynamic friction coefficient ratio, as observed in the measurements.

  9. Onset of frictional sliding of rubber-glass contact under dry and lubricated conditions.

    PubMed

    Tuononen, Ari J

    2016-01-01

    Rubber friction is critical in many applications ranging from automotive tyres to cylinder seals. The process where a static rubber sample transitions to frictional sliding is particularly poorly understood. The experimental and simulation results in this paper show a completely different detachment process from the static situation to sliding motion under dry and lubricated conditions. The results underline the contribution of the rubber bulk properties to the static friction force. In fact, simple Amontons' law is sufficient as a local friction law to produce the correct detachment pattern when the rubber material and loading conditions are modelled properly. Simulations show that micro-sliding due to vertical loading can release initial shear stresses and lead to a high static/dynamic friction coefficient ratio, as observed in the measurements. PMID:27291939

  10. Head-disk interface nanotribology for Tbit/inch2 recording densities: near-contact and contact recording

    NASA Astrophysics Data System (ADS)

    Vakis, Antonis I.; Polycarpou, Andreas A.

    2010-06-01

    In the effort to achieve Tbit/inch2 recording densities, thermal fly-height control (TFC) nanotechnology was developed to effectively reduce the clearance (which is of the order of a few nanometres) at the head-disk interface (HDI) of hard-disk drives. In this work, we present a model of the HDI that can predict the dynamic flying and nanotribological contacting behaviour, allowing for accurate predictions and characterization of the operating regime as a function of TFC actuation. A geometric model for TFC is presented and an improved definition of contact at the interface is developed in the presence of nanoscale topographical roughness and dynamic microwaviness. A new methodology is proposed for the calculation of the nominal area of contact, which affects both near- and at-contact behaviour, while the stiffening of the air bearing force with TFC actuation is also accounted for. Slider behaviour is analysed by quantifying the approach, jump-to-contact, lubricant and solid contact regimes of operation and identifying the critical and optimum TFC actuations. The feasibility of near-contact, light molecularly thin lubricant contact versus solid contact recording is explored under the effect of the interfacial forces and stresses present at the HDI. The clearance and the state of vibrations are analysed and design guidelines are proposed for improved performance.

  11. Overall contact conductance of a prototype Parallel Fin Thermal Interface

    NASA Technical Reports Server (NTRS)

    Stobb, C. A.; Limardo, Jose G.

    1992-01-01

    The Parallel Fin Thermal Interface has been developed and tested as an orbital replaceable interface. The interface consists of two identical plates with pairs of opposing parallel straight fins. Each pair of fins is sandwiched between two insert plates pressed against the fins with enough force for good heat transfer through the interface. Two prototype parallel fin interfaces were built (Model 140 and 380) with different fin and insert plate dimensions. Samples of the interfacing surfaces were found to have roughness values ranging from 22 to 35 microinches. Overall interface conductance (Hc) values of 46.7 to 74.2 Btu/hr sq ft-F were obtained for the 140 model in vacuum with an interface pressure from 18.8 to 37.5 psi, respectively. The Model 380 exhibited Hc values from 31.2 to 46.8 Btu/hr sq ft-F in vacuum, with respective interface pressures of 14.2 and 22.0 psi. Several correlations were found to agree with test data to within 20 percent.

  12. Optical modeling of a-Si:H solar cells with rough interfaces: Effect of back contact and interface roughness

    NASA Astrophysics Data System (ADS)

    Zeman, M.; van Swaaij, R. A. C. M. M.; Metselaar, J. W.; Schropp, R. E. I.

    2000-12-01

    An approach to study the optical behavior of hydrogenated amorphous silicon solar cells with rough interfaces using computer modeling is presented. In this approach the descriptive haze parameters of a light scattering interface are related to the root mean square roughness of the interface. Using this approach we investigated the effect of front window contact roughness and back contact material on the optical properties of a single junction a-Si:H superstrate solar cell. The simulation results for a-Si:H solar cells with SnO2:F as a front contact and ideal Ag, ZnO/Ag, and Al/Ag as a back contact are shown. For cells with an absorber layer thickness of 150-600 nm the simulations demonstrate that the gain in photogenerated current density due to the use of a textured superstrate is around 2.3 mA cm-2 in comparison to solar cells with flat interfaces. The effect of the front and back contact roughness on the external quantum efficiency (QE) of the solar cell for different parts of the light spectrum was determined. The choice of the back contact strongly influences the QE and the absorption in the nonactive layers for the wavelengths above 650 nm. A practical Ag back contact can be successfully simulated by introducing a thin buffer layer between the n-type a-Si:H and Ag back contact, which has optical properties similar to Al, indicating that the actual reflection at the n-type a-Si:H/Ag interface is smaller than what is expected from the respective bulk optical parameters. In comparison to the practical Ag contact the QE of the cell can be strongly improved by using a ZnO layer at the Ag back contact or an ideal Ag contact. The photogenerated current densities for a solar cell with a 450 nm thick intrinsic a-Si:H layer with ZnO/Ag and ideal Ag are 16.7 and 17.3 mA cm-2, respectively, compared to 14.4 mA cm-2 for the practical Ag back contact. The effect of increasing the roughness of the contact interfaces was investigated for both superstrate and substrate types

  13. Evaluation of Contact Friction in Fracture of Rotationally Bent Nitinol Endodontic Files

    NASA Astrophysics Data System (ADS)

    Haimed, Tariq Abu

    2011-12-01

    The high flexibility of rotary Nitinol (Ni-Ti) files has helped clinicians perform root canal treatments with fewer technical errors than seen with stainless steel files. However, intracanal file fracture can occur, compromising the outcome of the treatment. Ni-Ti file fracture incidence is roughly around 4% amongst specialists and higher amongst general practitioners. Therefore, eliminating or reducing this problem should improve patient care. The aim of this project was to isolate and examine the role of friction between files and the canal walls of the glass tube model, and bending-related maximum strain amplitudes, on Ni-Ti file lifetimes-tofracture in the presence of different irrigant solutions and file coatings. A specifically designed device was used to test over 300 electropolished EndoSequenceRTM Ni-Ti files for number of cycles to failure (NCF) in smooth, bent glass tube models at 45 and 60 degrees during dry, coated and liquid-lubricated rotation at 600rpm. Fractured files were examined under Scanning Electron Microscopy (SEM) afterwards. Four different file sizes 25.04, 25.06, 35.04, 35.06 (diameter in mm/taper %) and six surface modification conditions were used independently. These conditions included, three solutions; (1) a surfactant-based solution, Surface-Active-Displacement-Solution (SADS), (2) a mouth wash proven to remove biofilms, Delmopinol 1%(DEL), and (3) Bleach 6% (vol.%), the most common antibacterial endodontic irrigant solution. The conditions also included two low-friction silane-based coating groups, 3-Hepta-fluoroisopropyl-propoxymethyl-dichlorosilane (3-HEPT) and Octadecyltrichlorosilane (ODS), in addition to an as-received file control group (Dry). The coefficient of friction (CF) between the file and the canal walls for each condition was measured as well as the surface tension of the irrigant solutions and the critical surface tension of the coated and uncoated files by contact angle measurements. The radius of curvature and

  14. Effect of oxygen, methyl mercaptan, and methyl chloride on friction behavior of copper-iron contacts

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1978-01-01

    Sliding friction experiments were conducted with an iron rider on a copper disk and a copper rider on an iron disk. The sputter cleaned iron and copper disk surfaces were saturated with oxygen, methyl mercaptan, and methyl chloride at atmospheric pressure. Auger emission spectroscopy was used to monitor the surfaces. Lower friction was obtained in all experiments with the copper rider sliding on the iron disk than when the couple was reversed. For both iron and copper disks, methyl mercaptan gave the best surface coverage and was most effective in reducing friction. For both iron and copper disks, methyl chloride was the least effective in reducing friction. With sliding, copper transferred to iron and iron to copper.

  15. Slow slip and the transition from fast to slow fronts in the rupture of frictional interfaces

    PubMed Central

    Trømborg, Jørgen Kjoshagen; Sveinsson, Henrik Andersen; Scheibert, Julien; Thøgersen, Kjetil; Amundsen, David Skålid; Malthe-Sørenssen, Anders

    2014-01-01

    The failure of the population of microjunctions forming the frictional interface between two solids is central to fields ranging from biomechanics to seismology. This failure is mediated by the propagation along the interface of various types of rupture fronts, covering a wide range of velocities. Among them are the so-called slow fronts, which are recently discovered fronts much slower than the materials’ sound speeds. Despite intense modeling activity, the mechanisms underlying slow fronts remain elusive. Here, we introduce a multiscale model capable of reproducing both the transition from fast to slow fronts in a single rupture event and the short-time slip dynamics observed in recent experiments. We identify slow slip immediately following the arrest of a fast front as a phenomenon sufficient for the front to propagate further at a much slower pace. Whether slow fronts are actually observed is controlled both by the interfacial stresses and by the width of the local distribution of forces among microjunctions. Our results show that slow fronts are qualitatively different from faster fronts. Because the transition from fast to slow fronts is potentially as generic as slow slip, we anticipate that it might occur in the wide range of systems in which slow slip has been reported, including seismic faults. PMID:24889640

  16. Slow slip and the transition from fast to slow fronts in the rupture of frictional interfaces.

    PubMed

    Trømborg, Jørgen Kjoshagen; Sveinsson, Henrik Andersen; Scheibert, Julien; Thøgersen, Kjetil; Amundsen, David Skålid; Malthe-Sørenssen, Anders

    2014-06-17

    The failure of the population of microjunctions forming the frictional interface between two solids is central to fields ranging from biomechanics to seismology. This failure is mediated by the propagation along the interface of various types of rupture fronts, covering a wide range of velocities. Among them are the so-called slow fronts, which are recently discovered fronts much slower than the materials' sound speeds. Despite intense modeling activity, the mechanisms underlying slow fronts remain elusive. Here, we introduce a multiscale model capable of reproducing both the transition from fast to slow fronts in a single rupture event and the short-time slip dynamics observed in recent experiments. We identify slow slip immediately following the arrest of a fast front as a phenomenon sufficient for the front to propagate further at a much slower pace. Whether slow fronts are actually observed is controlled both by the interfacial stresses and by the width of the local distribution of forces among microjunctions. Our results show that slow fronts are qualitatively different from faster fronts. Because the transition from fast to slow fronts is potentially as generic as slow slip, we anticipate that it might occur in the wide range of systems in which slow slip has been reported, including seismic faults. PMID:24889640

  17. Investigation of Wear and Friction Properties Under Sliding Conditions of Some Materials Suitable for Cages of Rolling-Contact Bearings

    NASA Technical Reports Server (NTRS)

    Johnson, Robert L; Swikert, Max A; Bisson, Edmond E

    1952-01-01

    An investigation of wear and friction properties of a number of materials sliding against SAE 52100 steel was conducted. These materials included brass, bronze, beryllium copper, monel, nichrome v, 24s-t aluminum, nodular iron, and gray cast iron. The metals investigated may be useful as possible cage (separator or retainer) materials for rolling-contact bearings of high-speed turbine engines. The ability of materials to form surface films that prevent welding is a most important factor in both dry friction and boundary lubrication. On the basis of wear and resistance to welding only, the cast irons were the most promising materials investigated; they showed the least wear and the least tendency to surface failure when run dry, and when boundary lubricated they showed the highest load capacity. On the basis of mechanical properties, nodular iron is superior to gray cast iron. Bronze had the lowest friction coefficient under dry sliding conditions. The results with brass, beryllium copper, and aluminum were poor and these materials do not appear, with regard to friction and wear, to be suitable for cages.

  18. Determination of oral mucosal Poisson's ratio and coefficient of friction from in-vivo contact pressure measurements.

    PubMed

    Chen, Junning; Suenaga, Hanako; Hogg, Michael; Li, Wei; Swain, Michael; Li, Qing

    2016-01-01

    Despite their considerable importance to biomechanics, there are no existing methods available to directly measure apparent Poisson's ratio and friction coefficient of oral mucosa. This study aimed to develop an inverse procedure to determine these two biomechanical parameters by utilizing in vivo experiment of contact pressure between partial denture and beneath mucosa through nonlinear finite element (FE) analysis and surrogate response surface (RS) modelling technique. First, the in vivo denture-mucosa contact pressure was measured by a tactile electronic sensing sheet. Second, a 3D FE model was constructed based on the patient CT images. Third, a range of apparent Poisson's ratios and the coefficients of friction from literature was considered as the design variables in a series of FE runs for constructing a RS surrogate model. Finally, the discrepancy between computed in silico and measured in vivo results was minimized to identify the best matching Poisson's ratio and coefficient of friction. The established non-invasive methodology was demonstrated effective to identify such biomechanical parameters of oral mucosa and can be potentially used for determining the biomaterial properties of other soft biological tissues. PMID:26024011

  19. Numerical analysis of effects of mold features and contact friction on cavity filling in the nanoimprinting process

    NASA Astrophysics Data System (ADS)

    Hocheng, H.; Nien, C. C.

    2006-01-01

    Nanoimprinting has been recognized as a highly potential method of volume production for nanoscale devices. In the nanoimprinting process, the filling process of the mold cavity plays a key role in determining the productivity of the nanoimprinting process and the quality of the final imprint product. A defective filling of the mold affects the uniformity, precision, and throughput of the imprint. The mold filling is subjected to the applied imprinting pressure and temperature, repetitive mold use, mold sticking, or factors regarding mold features. It involves physical contact between the mold and the polymer layer on the substrate surface; thus, how the polymer fills up the cavity is of major interest and is vital in pattern transfer. The proposed study employs a finite element model for the single mold cavity to simulate the nanoimprint process. The mold is assumed to be a linear elastic body and the polymer preheated above its glass transition temperature is considered to be nonlinear elastic, described by the Mooney-Rivlin model. The numerical model is able to predict the mold filling at any nanoimprint stage and the mold cavity with various aspect ratios. To study the effects of pattern density and contact friction existing between the mold and polymer during the mold filling of the nanoimprinting process, an imprint mold with mixed pattern density is simulated and a sensitivity analysis of a contact friction coefficient on the mold filling is performed. Both the cavity feature and pattern density have significant effects on mold filling of the nanoimprinting process, while the contact friction coefficient has a mild effect. The obtained results support the development of a process recipe and automatic large-scale industrial production for nanoimprinting.

  20. Friction, wear, and noise of slip ring and brush contacts for synchronous satellite use.

    NASA Technical Reports Server (NTRS)

    Lewis, N. E.; Cole, S. R.; Glossbrenner, E. W.; Vest, C. E.

    1973-01-01

    A program is being conducted for testing of slip rings for synchronous orbit application. Instrumentation systems necessary for monitoring electrical noise, friction, and brush wear at atmospheric pressure and at less than 50 nanotorr have been developed. A multiplex scheme necessary for the simultaneous recording of brush displacement, friction, and electrical noise has also been developed. Composite brushes consisting of silver-molybdenum disulfide-graphite and silver-niobium diselenide-graphite have been employed on rings of coin silver and rhodium plate. Brush property measurements made included measurement of density, electrical resistivity, shear strength, and microstructure.

  1. The friction and wear of metals and binary alloys in contact with an abrasive grit of single-crystal silicon carbide

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1979-01-01

    Sliding friction experiments were conducted with various metals and iron-base binary alloys (alloying elements Ti, Cr, Mn, Ni, Rh and W) in contact with single crystal silicon carbide riders. Results indicate that the friction force in the plowing of metal and the groove height (corresponding to the wear volume of the groove) decrease linearly as the shear strength of the bulk metal increases. The coefficient of friction and groove height generally decrease, and the contact pressure increases with an increase in solute content of binary alloys. There appears to be very good correlation of the solute to iron atomic ratio with the decreasing rate of change of coefficient of friction, the decreasing rate of change of groove height and the increasing rate of change of contact pressure with increasing solute content. These rates of change increase as the solute to iron atomic radius ratio increases or decreases from unity.

  2. Sugary interfaces mitigate contact damage where stiff meets soft

    PubMed Central

    Yoo, Hee Young; Iordachescu, Mihaela; Huang, Jun; Hennebert, Elise; Kim, Sangsik; Rho, Sangchul; Foo, Mathias; Flammang, Patrick; Zeng, Hongbo; Hwang, Daehee; Waite, J. Herbert; Hwang, Dong Soo

    2016-01-01

    The byssal threads of the fan shell Atrina pectinata are non-living functional materials intimately associated with living tissue, which provide an intriguing paradigm of bionic interface for robust load-bearing device. An interfacial load-bearing protein (A. pectinata foot protein-1, apfp-1) with L-3,4-dihydroxyphenylalanine (DOPA)-containing and mannose-binding domains has been characterized from Atrina's foot. apfp-1 was localized at the interface between stiff byssus and the soft tissue by immunochemical staining and confocal Raman imaging, implying that apfp-1 is an interfacial linker between the byssus and soft tissue, that is, the DOPA-containing domain interacts with itself and other byssal proteins via Fe3+–DOPA complexes, and the mannose-binding domain interacts with the soft tissue and cell membranes. Both DOPA- and sugar-mediated bindings are reversible and robust under wet conditions. This work shows the combination of DOPA and sugar chemistry at asymmetric interfaces is unprecedented and highly relevant to bionic interface design for tissue engineering and bionic devices. PMID:27305949

  3. Sugary interfaces mitigate contact damage where stiff meets soft

    NASA Astrophysics Data System (ADS)

    Yoo, Hee Young; Iordachescu, Mihaela; Huang, Jun; Hennebert, Elise; Kim, Sangsik; Rho, Sangchul; Foo, Mathias; Flammang, Patrick; Zeng, Hongbo; Hwang, Daehee; Waite, J. Herbert; Hwang, Dong Soo

    2016-06-01

    The byssal threads of the fan shell Atrina pectinata are non-living functional materials intimately associated with living tissue, which provide an intriguing paradigm of bionic interface for robust load-bearing device. An interfacial load-bearing protein (A. pectinata foot protein-1, apfp-1) with L-3,4-dihydroxyphenylalanine (DOPA)-containing and mannose-binding domains has been characterized from Atrina's foot. apfp-1 was localized at the interface between stiff byssus and the soft tissue by immunochemical staining and confocal Raman imaging, implying that apfp-1 is an interfacial linker between the byssus and soft tissue, that is, the DOPA-containing domain interacts with itself and other byssal proteins via Fe3+-DOPA complexes, and the mannose-binding domain interacts with the soft tissue and cell membranes. Both DOPA- and sugar-mediated bindings are reversible and robust under wet conditions. This work shows the combination of DOPA and sugar chemistry at asymmetric interfaces is unprecedented and highly relevant to bionic interface design for tissue engineering and bionic devices.

  4. Sugary interfaces mitigate contact damage where stiff meets soft.

    PubMed

    Yoo, Hee Young; Iordachescu, Mihaela; Huang, Jun; Hennebert, Elise; Kim, Sangsik; Rho, Sangchul; Foo, Mathias; Flammang, Patrick; Zeng, Hongbo; Hwang, Daehee; Waite, J Herbert; Hwang, Dong Soo

    2016-01-01

    The byssal threads of the fan shell Atrina pectinata are non-living functional materials intimately associated with living tissue, which provide an intriguing paradigm of bionic interface for robust load-bearing device. An interfacial load-bearing protein (A. pectinata foot protein-1, apfp-1) with L-3,4-dihydroxyphenylalanine (DOPA)-containing and mannose-binding domains has been characterized from Atrina's foot. apfp-1 was localized at the interface between stiff byssus and the soft tissue by immunochemical staining and confocal Raman imaging, implying that apfp-1 is an interfacial linker between the byssus and soft tissue, that is, the DOPA-containing domain interacts with itself and other byssal proteins via Fe3(+)-DOPA complexes, and the mannose-binding domain interacts with the soft tissue and cell membranes. Both DOPA- and sugar-mediated bindings are reversible and robust under wet conditions. This work shows the combination of DOPA and sugar chemistry at asymmetric interfaces is unprecedented and highly relevant to bionic interface design for tissue engineering and bionic devices. PMID:27305949

  5. Adhesive Wear and Frictional Behavior of Multilayered Polyester Composite Based on Betelnut Fiber Mats Under Wet Contact Conditions

    NASA Astrophysics Data System (ADS)

    Yousif, B. F.; Devadas, Alvin; Yusaf, Talal F.

    In the current study, a multilayered polyester composite based on betelnut fiber mats is fabricated. The adhesive wear and frictional performance of the composite was studied against a smooth stainless steel at different sliding distances (0-6.72 km) and applied loads (20-200 N) at 2.8 m/s sliding velocity. Variations in specific wear rate and friction coefficient were evaluated at two different orientations of fiber mat; namely parallel (P-O) and normal (N-O). Results obtained were presented against sliding distance. The worn surfaces of the composite were studied using an optical microscope. The effect of the composite sliding on the stainless steel counterface roughness was investigated. The results revealed that the wear performance of betelnut fiber reinforced polyester (BFRP) composite under wet contact condition was highly dependent on test parameters and fiber mat orientation. The specific wear rate performance for each orientation showed an inverse relationship to sliding distance. BFRP composite in N-O exhibited better wear performance compared with P-O. However, the friction coefficient in N-O was higher than that in P-O at lower range of applied load. The predominant wear mechanism was debonding of fiber with no pullout or ploughing. Moreover, at higher applied loads, micro- and macrocracking and fracture were observed in the resinous region.

  6. Lifetime limitations of ohmic, contacting RF MEMS switches with Au, Pt and Ir contact materials due to accumulation of ‘friction polymer’ on the contacts

    NASA Astrophysics Data System (ADS)

    Czaplewski, David A.; Nordquist, Christopher D.; Dyck, Christopher W.; Patrizi, Gary A.; Kraus, Garth M.; Cowan, William D.

    2012-10-01

    We present lifetime limitations and failure analysis of many packaged RF MEMS ohmic contacting switches with Au-Au, Au-Ir, and Au-Pt contact materials operating with 100 µN of contact force per contact in hermetically sealed glass wall packages. All metals were tested using the same switch design in a controlled environment to provide a comparison between the performance of the different materials and their corresponding failure mechanisms. The switch lifetimes of the different contact materials varied from several hundred cycles to 200 million cycles with different mechanisms causing failures for different contact materials. Switches with Au-Au contacts failed due to adhesion when thoroughly cleaned while switches with dissimilar metal contacts (Au-Ir and Au-Pt) operated without adhesion failures but failed due to carbon accumulation on the contacts even in a clean, packaged environment as a result of the catalytic behavior of the contact materials. Switch lifetimes correlated inversely with catalytic behavior of the contact metals. The data suggests the path to increase switch lifetime is to use favorable catalytic materials as contacts, design switches with higher contact forces to break through any residual contamination, and use cleaner, probably smaller, packages.

  7. Role of bulk and of interface contacts in the behavior of lattice model dimeric proteins.

    PubMed

    Tiana, G; Provasi, D; Broglia, R A

    2003-05-01

    Some dimeric proteins first fold and then dimerize (three-state dimers) while others first dimerize and then fold (two-state dimers). Within the framework of a minimal lattice model, we can distinguish between sequences following one or the other mechanism on the basis of the distribution of the ground state energy between bulk and interface contacts. The topology of contacts is very different for the bulk than for the interface: while the bulk displays a rich network of interactions, the dimer interface is built up of a set of essentially independent contacts. Consequently, the two sets of interactions play very different roles both, in the folding and in the evolutionary history of the protein. Three-state dimers, where a large fraction of energy is concentrated in few contacts buried in the bulk, and where the relative contact energy of interface contacts is considerably smaller than that associated with bulk contacts, fold according to a hierarchical pathway controlled by local elementary structures, as also happens in the folding of single-domain monomeric proteins. On the other hand, two-state dimers display a relative contact energy of interface contacts, which is larger than the corresponding quantity associated with the bulk. In this case, the assembly of the interface stabilizes the system and leads the two chains to fold. The specific properties of three-state dimers acquired through evolution are expected to be more robust than those of two-state dimers; a fact that has consequences on proteins connected with viral diseases. PMID:12786180

  8. On the moving contact line singularity: asymptotics of a diffuse-interface model.

    PubMed

    Sibley, David N; Nold, Andreas; Savva, Nikos; Kalliadasis, Serafim

    2013-03-01

    The behaviour of a solid-liquid-gas system near the three-phase contact line is considered using a diffuse-interface model with no-slip at the solid and where the fluid phase is specified by a continuous density field. Relaxation of the classical approach of a sharp liquid-gas interface and careful examination of the asymptotic behaviour as the contact line is approached is shown to resolve the stress and pressure singularities associated with the moving contact line problem. Various features of the model are scrutinised, alongside extensions to incorporate slip, finite-time relaxation of the chemical potential, or a precursor film at the wall. PMID:23515762

  9. A substitute model of two-dimensional dry friction exposed to dither generated by rolling contact of wheel and rail

    NASA Astrophysics Data System (ADS)

    Piotrowski, Jerzy

    2012-10-01

    Dither generated by rolling contact of wheel and rail smoothes dry friction damping provided by the primary suspension dampers of freight wagons and it should be taken into account in numerical simulations. But numerically the problem is non-smooth and this leads to long execution time during simulation, especially when the vehicle with friction dampers is modelled in the environment of an multi-body system simulation program, whose solver has to cope with many strong non-linearities. The other difficulty is the necessity of handling within the code a number of big volume files of recorded dither sampled with high frequency. To avoid these difficulties, a substitute model of two-dimensional dry friction exposed to dither is proposed that does not need application of dither during simulation, but it behaves as if dither were applied. Due to this property of the model, the excitation of the vehicle model by track irregularities may be supplied as low-frequency input, which allows fast execution and, the necessity of handling high-volume files of recorded dither is avoided. The substitute model is numerically effective. To identify parameters of the substitute model, a pre-processing employing a sample of the realistic dither is carried-out on a simple two-degrees-of-freedom system. The substitute model is anisotropic, describing anisotropic properties of the two-dimensional friction arising in the presence of one-dimensional dither. The model may be applied in other branches of engineering, for example, in mechatronics and robotics, where application of dither may improve the accuracy of positioning devices.

  10. Physical ageing of the contact line on colloidal particles at liquid interfaces

    NASA Astrophysics Data System (ADS)

    Kaz, David M.; McGorty, Ryan; Mani, Madhav; Brenner, Michael P.; Manoharan, Vinothan N.

    2012-02-01

    Young’s law predicts that a colloidal sphere in equilibrium with a liquid interface will straddle the two fluids, its height above the interface defined by an equilibrium contact angle. This has been used to explain why colloids often bind to liquid interfaces, and has been exploited in emulsification, water purification, mineral recovery, encapsulation and the making of nanostructured materials. However, little is known about the dynamics of binding. Here we show that the adsorption of polystyrene microspheres to a water/oil interface is characterized by a sudden breach and an unexpectedly slow relaxation. The relaxation appears logarithmic in time, indicating that complete equilibration may take months. Surprisingly, viscous dissipation appears to play little role. Instead, the observed dynamics, which bear strong resemblance to ageing in glassy systems, agree well with a model describing activated hopping of the contact line over nanoscale surface heterogeneities. These results may provide clues to longstanding questions on colloidal interactions at an interface.

  11. The friction and wear of metals and binary alloys in contact with an abrasive grit of single-crystal silicon carbide

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1979-01-01

    Sliding friction experiments were conducted with various metals and iron-base binary alloys (alloying elements Ti, Cr, Mn, Ni, Rh, and W) in contact with single-crystal silicon carbide riders. Results indicate that the coefficient of friction and groove height (corresponding to the wear volume) decrease linearly as the shear strength of the bulk metal increases. The coefficient of friction and groove height generally decrease with an increase in solute content of binary alloys. A separate correlation exists between the solute to iron atomic radius ratio and the decreasing rates of change of coefficient of friction and groove height with increasing solute content. These rates of change are minimum at a solute to iron radius ratio of unity. They increase as the atomic ratio increases or decreases linearly from unity. The correlations indicate that atomic size is an important parameter in controlling friction and wear of alloys.

  12. Contact conductance evaluation for a full scale space erectable radiator pressurized interface

    NASA Technical Reports Server (NTRS)

    Duschatko, R. John

    1989-01-01

    The baseline thermal control configuration for the Space Station Freedom includes a contact heat exchanger to provide efficient heat transfer between the two-phase thermal bus heat collection/delivery system and the radiator panel heat rejection system. The contact heat exchanger provides a dry interface for a modular radiator system with easy on-orbit panel replacement. July 1988 testing of the Space Erectable Radiator System (SERS) at NASA-JSC provided thermal/vacuum data for three full-scale prototype units of a pressurized dry contact heat exchanger design. Derived contact conductance values agreed with predictions and previous element tests and demonstrated high conductance for relatively low pressure levels. A limited amount of data was also obtained below the operating pressure, resulting in contact conductance trends with respect to interface pressure.

  13. Particle contact angles at fluid interfaces: pushing the boundary beyond hard uniform spherical colloids

    NASA Astrophysics Data System (ADS)

    Zanini, Michele; Isa, Lucio

    2016-08-01

    Micro and nanoparticles at fluid interfaces have been attracting increasing interest in the last few decades as building blocks for materials, as mechanical and structural probes for complex interfaces and as models for two-dimensional systems. The three-phase contact angle enters practically all aspects of the particle behavior at the interface: its thermodynamics (binding energy to the interface), dynamics (motion and drag at the interface) and interactions with the interface (adsorption and wetting). Moreover, many interactions among particles at the interface also strongly depend on the contact angle. These concepts have been extensively discussed for non-deformable, homogeneous and mostly spherical particles, but recent progress in particle synthesis and fabrication has instead moved in the direction of producing more complex micro and nanoscale objects, which can be responsive, deformable, heterogenous and/or anisotropic in shape, surface chemistry and material properties. These new particles have a much greater potential for applications and new science, and the study of their behavior at interfaces has only very recently started. In this paper, we critically review the current state of the art of the experimental methods available to measure the contact angle of micro and nanoparticles at fluid interfaces, indicating their strengths and limitations. We then comment on new particle systems that are currently attracting increasing interest in relation to their adsorption and assembly at fluid interfaces and discuss if and which ones of the current techniques are suited to investigate their properties at interfaces. Based on this discussion, we will finally try to indicate a direction in which new experimental methods should develop in the future to tackle the new challenges posed by the novel types of particles that more and more often are used at interfaces.

  14. Particle contact angles at fluid interfaces: pushing the boundary beyond hard uniform spherical colloids.

    PubMed

    Zanini, Michele; Isa, Lucio

    2016-08-10

    Micro and nanoparticles at fluid interfaces have been attracting increasing interest in the last few decades as building blocks for materials, as mechanical and structural probes for complex interfaces and as models for two-dimensional systems. The three-phase contact angle enters practically all aspects of the particle behavior at the interface: its thermodynamics (binding energy to the interface), dynamics (motion and drag at the interface) and interactions with the interface (adsorption and wetting). Moreover, many interactions among particles at the interface also strongly depend on the contact angle. These concepts have been extensively discussed for non-deformable, homogeneous and mostly spherical particles, but recent progress in particle synthesis and fabrication has instead moved in the direction of producing more complex micro and nanoscale objects, which can be responsive, deformable, heterogenous and/or anisotropic in shape, surface chemistry and material properties. These new particles have a much greater potential for applications and new science, and the study of their behavior at interfaces has only very recently started. In this paper, we critically review the current state of the art of the experimental methods available to measure the contact angle of micro and nanoparticles at fluid interfaces, indicating their strengths and limitations. We then comment on new particle systems that are currently attracting increasing interest in relation to their adsorption and assembly at fluid interfaces and discuss if and which ones of the current techniques are suited to investigate their properties at interfaces. Based on this discussion, we will finally try to indicate a direction in which new experimental methods should develop in the future to tackle the new challenges posed by the novel types of particles that more and more often are used at interfaces. PMID:27299800

  15. Equivalent series system to model a multiple friction pendulum system with numerous sliding interfaces for seismic analyses

    NASA Astrophysics Data System (ADS)

    Tsai, C. S.; Su, H. C.; Chiang, T. C.

    2014-03-01

    Current structural analysis software programs offer few if any applicable device-specific hysteresis rules or nonlinear elements to simulate the precise mechanical behavior of a multiple friction pendulum system (MFPS) with numerous sliding interfaces. Based on the concept of subsystems, an equivalent series system that adopts existing nonlinear elements with parameters systematically calculated and mathematically proven through rigorous derivations is proposed. The aim is to simulate the characteristics of sliding motions for an MFPS isolation system with numerous concave sliding interfaces without prior knowledge of detailed information on the mobilized forces at various sliding stages. An MFPS with numerous concave sliding interfaces and one articulated or rigid slider located between these interfaces is divided into two subsystems: the first represents the concave sliding interfaces above the slider, and the second represents those below the slider. The equivalent series system for the entire system is then obtained by connecting those for each subsystem in series. The equivalent series system is validated by comparing numerical results for an MFPS with four sliding interfaces obtained from the proposed method with those from a previous study by Fenz and Constantinou. Furthermore, these numerical results demonstrate that an MFPS isolator with numerous concave sliding interfaces, which may have any number of sliding interfaces, is a good isolation device to protect structures from earthquake damage through appropriate designs with controllable mechanisms.

  16. Contact angle and detachment energy of shape anisotropic particles at fluid-fluid interfaces.

    PubMed

    Anjali, Thriveni G; Basavaraj, Madivala G

    2016-09-15

    The three phase contact angle of particles, a measure of its wettability, is an important factor that greatly influences their behaviour at interfaces. It is one of the principal design parameters for potential applications of particles as emulsion/foam stabilizers, functional coatings and other novel materials. In the present work, the effect of size, shape and surface chemistry of particles on their contact angle is investigated using the gel trapping technique, which facilitates the direct visualization of the equilibrium position of particles at interfaces. The contact angle of hematite particles of spherocylindrical, peanut and cuboidal shapes, hematite-silica core-shell and silica shells is reported at a single particle level. The spherocylindrical and peanut shaped particles are always positioned with their major axis parallel to the interface. However, for cuboidal particles at air-water as well as decane-water interfaces, different orientations namely - face-up, edge-up and the vertex-up - are observed. The influence of gravity on the equilibrium position of the colloidal particles at the interface is studied using the hematite-silica core-shell particles and the silica shells. The measured contact angle values are utilized in the calculations of the detachment and surface energies of the hematite particles adsorbed at the interface. PMID:27285780

  17. Understanding the fabric of protein crystals: computational classification of biological interfaces and crystal contacts

    PubMed Central

    Capitani, Guido; Duarte, Jose M.; Baskaran, Kumaran; Bliven, Spencer; Somody, Joseph C.

    2016-01-01

    Modern structural biology still draws the vast majority of information from crystallography, a technique where the objects being investigated are embedded in a crystal lattice. Given the complexity and variety of those objects, it becomes fundamental to computationally assess which of the interfaces in the lattice are biologically relevant and which are simply crystal contacts. Since the mid-1990s, several approaches have been applied to obtain high-accuracy classification of crystal contacts and biological protein–protein interfaces. This review provides an overview of the concepts and main approaches to protein interface classification: thermodynamic estimation of interface stability, evolutionary approaches based on conservation of interface residues, and co-occurrence of the interface across different crystal forms. Among the three categories, evolutionary approaches offer the strongest promise for improvement, thanks to the incessant growth in sequence knowledge. Importantly, protein interface classification algorithms can also be used on multimeric structures obtained using other high-resolution techniques or for protein assembly design or validation purposes. A key issue linked to protein interface classification is the identification of the biological assembly of a crystal structure and the analysis of its symmetry. Here, we highlight the most important concepts and problems to be overcome in assembly prediction. Over the next few years, tools and concepts of interface classification will probably become more frequently used and integrated in several areas of structural biology and structural bioinformatics. Among the main challenges for the future are better addressing of weak interfaces and the application of interface classification concepts to prediction problems like protein–protein docking. Supplementary information: Supplementary data are available at Bioinformatics online. Contact: guido.capitani@psi.ch PMID:26508758

  18. The effect of load in a contact with boundary lubrication. [reduction of coefficient of friction

    NASA Technical Reports Server (NTRS)

    Georges, J. M.; Lamy, B.; Daronnat, M.; Moro, S.

    1978-01-01

    The effect of the transition load on the wear in a contact with boundary lubrication was investigated. An experimental method was developed for this purpose, and parameters affecting the boundary lubrication under industrial operating conditions were identified. These parameters are the adsorbed boundary film, the contact microgeometry (surface roughness), macrogeometry, and hardness of materials used. It was found that the curve of the tops of the surface protrustion affect the transition load, and thus the boundary lubrication. The transition load also depends on the chemical nature of the contact and its geometrical and mechanical aspects.

  19. Experimental Study of the Rolling-Sliding Contact Conditions in a PA66/STEEL Gear Using Twin-Disc Test Rig: Friction and Wear Analysis

    NASA Astrophysics Data System (ADS)

    Mbarek, Meftah; Rhaiem, Sadok; Kharrat, Mohamed; Dammak, Maher

    2015-09-01

    This study investigates the effects of sliding ratio on the tribological response of the contact between the teeth of a metal/polymer gear in the regions close to the pitch point. For this purpose, a new twin-disc test rig was developed on the basis of two discs of different diameters rotating one above the other at the same angular speed. Two different materials were used: non-alloyed structural steel (C45) and polyamide (PA66). The effect of the slip ratio (4%, 12%, 20% and 28%) was studied at a constant pressure of 34 MPa and a constant angular speed of 300 rpm. In addition, the contact conditions were controlled with measurements of the two discs surface temperatures. The results indicate that the wear and the friction are closely related to the contact temperature generated by the sliding phenomenon. At low slip ratio (4% and 12%), the coefficient of friction and the temperature are characterized by a quasi-linear increase with time, and the wear increases slowly. At higher slip ratio (20% and 28%), the coefficient of friction and the temperature presents a steady state, and the wear increases dramatically. During the test, a film of transferred PA66 is formed on the steel surface causing the development of adhesive interactions between the contacting discs which increase the friction coefficient and the contact temperature. The high thermal conductivity of steel as compared to that of the polymer can reduce enormously the contact temperature generated by the sliding process.

  20. Pressure distribution for patchlike contact in seals with frictional heating, thermal expansion, and wear

    NASA Technical Reports Server (NTRS)

    Kilaparti, S. R.; Burton, R. A.

    1976-01-01

    Sliding contact in seals is known to change at high sliding speed from initially uniform pressure to a deformed state where contact is restricted to small patches of the surface. An earlier analysis of such contact was based upon the assumption of uniform pressure on the small patches. The present study draws upon a thermoelastic influence function to provide simultaneous equations for pressure on subdivisions of the patches. The final result is that at high wear rate (and, consequently, high traversal speed of the patch along the surface of the more conductive body of the contacting pair) the pressure distribution becomes roughly triangular with the maximum pressure toward the leading edge of the patch.

  1. Atomic Scale Interface Manipulation, Structural Engineering, and Their Impact on Ultrathin Carbon Films in Controlling Wear, Friction, and Corrosion.

    PubMed

    Dwivedi, Neeraj; Yeo, Reuben J; Yak, Leonard J K; Satyanarayana, Nalam; Dhand, Chetna; Bhat, Thirumaleshwara N; Zhang, Zheng; Tripathy, Sudhiranjan; Bhatia, Charanjit S

    2016-07-13

    Reducing friction, wear, and corrosion of diverse materials/devices using <2 nm thick protective carbon films remains challenging, which limits the developments of many technologies, such as magnetic data storage systems. Here, we present a novel approach based on atomic scale interface manipulation to engineer and control the friction, wear, corrosion, and structural characteristics of 0.7-1.7 nm carbon-based films on CoCrPt:oxide-based magnetic media. We demonstrate that when an atomically thin (∼0.5 nm) chromium nitride (CrNx) layer is sandwiched between the magnetic media and an ultrathin carbon overlayer (1.2 nm), it modifies the film-substrate interface, creates various types of interfacial bonding, increases the interfacial adhesion, and tunes the structure of carbon in terms of its sp(3) bonding. These contribute to its remarkable functional properties, such as stable and lowest coefficient of friction (∼0.15-0.2), highest wear resistance and better corrosion resistance despite being only ∼1.7 nm thick, surpassing those of ∼2.7 nm thick current commercial carbon overcoat (COC) and other overcoats in this work. While this approach has direct implications for advancing current magnetic storage technology with its ultralow thickness, it can also be applied to advance the protective and barrier capabilities of other ultrathin materials for associated technologies. PMID:27267790

  2. Evaporation, viscous flow, and electrostatic interaction of charged interfaces in the apparent contact line region

    NASA Astrophysics Data System (ADS)

    Ketelaar, Christiaan; Ajaev, Vladimir S.

    2015-11-01

    We consider evaporation of an aqueous solution near an apparent contact line separating a macroscopically dry area of a heated solid substrate and a constant-curvature meniscus far away from the substrate. Viscous flow, described by a lubrication-type model, is coupled to the interaction of electrical double layers formed near the solid-liquid and liquid-vapor interfaces. The electrostatic interaction is described using the nonlinear Poisson-Boltzmann equation and is shown to affect both normal and shear stress balances at the deformable interface. For steady configurations, we find that the apparent contact line region becomes wider and the total evaporation rate there increases as the substrate potential is increased. Motion of the apparent contact line in response to changes in the substrate temperature is also investigated. The contact line speed is found to increase when the electrostatic effects are incorporated into the model.

  3. Improving Contact Interfaces in Fully Printed Carbon Nanotube Thin-Film Transistors.

    PubMed

    Cao, Changyong; Andrews, Joseph B; Kumar, Abhinay; Franklin, Aaron D

    2016-05-24

    Single-walled carbon nanotubes (CNTs) printed into thin films have been shown to yield high mobility, thermal conductivity, mechanical flexibility, and chemical stability as semiconducting channels in field-effect, thin-film transistors (TFTs). Printed CNT-TFTs of many varieties have been studied; however, there has been limited effort toward improving overall CNT-TFT performance. In particular, contact resistance plays a dominant role in determining the performance and degree of variability in the TFTs, especially in fully printed devices where the contacts and channel are both printed. In this work, we have systematically investigated the contact resistance and overall performance of fully printed CNT-TFTs employing three different printed contact materials-Ag nanoparticles, Au nanoparticles, and metallic CNTs-each in the following distinct contact geometries: top, bottom, and double. The active channel for each device was printed from the dispersion of high-purity (>99%) semiconducting CNTs, and all printing was carried out using an aerosol jet printer. Hundreds of devices with different channel lengths (from 20 to 500 μm) were fabricated for extracting contact resistance and determining related contact effects. Printed bottom contacts are shown to be advantageous compared to the more common top contacts, regardless of contact material. Further, compared to single (top or bottom) contacts, double contacts offer a significant decrease (>35%) in contact resistance for all types of contact materials, with the metallic CNTs yielding the best overall performance. These findings underscore the impact of printed contact materials and structures when interfacing with CNT thin films, providing key guidance for the further development of printed nanomaterial electronics. PMID:27097302

  4. Does p-type ohmic contact exist in WSe2-metal interfaces?

    NASA Astrophysics Data System (ADS)

    Wang, Yangyang; Yang, Ruo Xi; Quhe, Ruge; Zhong, Hongxia; Cong, Linxiao; Ye, Meng; Ni, Zeyuan; Song, Zhigang; Yang, Jinbo; Shi, Junjie; Li, Ju; Lu, Jing

    2015-12-01

    Formation of low-resistance metal contacts is the biggest challenge that masks the intrinsic exceptional electronic properties of two dimensional WSe2 devices. We present the first comparative study of the interfacial properties between monolayer/bilayer (ML/BL) WSe2 and Sc, Al, Ag, Au, Pd, and Pt contacts by using ab initio energy band calculations with inclusion of the spin-orbital coupling (SOC) effects and quantum transport simulations. The interlayer coupling tends to reduce both the electron and hole Schottky barrier heights (SBHs) and alters the polarity for the WSe2-Au contact, while the SOC chiefly reduces the hole SBH. In the absence of the SOC, the Pd contact has the smallest hole SBH. Dramatically, the Pt contact surpasses the Pd contact and becomes the p-type ohmic or quasi-ohmic contact with inclusion of the SOC. Therefore, p-type ohmic or quasi-ohmic contact exists in WSe2-metal interfaces. Our study provides a theoretical foundation for the selection of favorable metal electrodes in ML/BL WSe2 devices.Formation of low-resistance metal contacts is the biggest challenge that masks the intrinsic exceptional electronic properties of two dimensional WSe2 devices. We present the first comparative study of the interfacial properties between monolayer/bilayer (ML/BL) WSe2 and Sc, Al, Ag, Au, Pd, and Pt contacts by using ab initio energy band calculations with inclusion of the spin-orbital coupling (SOC) effects and quantum transport simulations. The interlayer coupling tends to reduce both the electron and hole Schottky barrier heights (SBHs) and alters the polarity for the WSe2-Au contact, while the SOC chiefly reduces the hole SBH. In the absence of the SOC, the Pd contact has the smallest hole SBH. Dramatically, the Pt contact surpasses the Pd contact and becomes the p-type ohmic or quasi-ohmic contact with inclusion of the SOC. Therefore, p-type ohmic or quasi-ohmic contact exists in WSe2-metal interfaces. Our study provides a theoretical foundation for

  5. Prediction of bead area contact load at the tire-wheel interface using NASTRAN

    NASA Technical Reports Server (NTRS)

    Chen, C. H. S.

    1982-01-01

    The theoretical prediction of the bead area contact load at the tire wheel interface using NASTRAN is reported. The application of the linear code to a basically nonlinear problem results in excessive deformation of the structure and the tire-wheel contact conditions become impossible to achieve. A psuedo-nonlinear approach was adopted in which the moduli of the cord reinforced composite are increased so that the computed key deformations matched that of the experiment. Numerical results presented are discussed.

  6. Considerations on the moving contact-line singularity, with application to frictional drag on a slender drop

    NASA Technical Reports Server (NTRS)

    Durbin, P. A.

    1988-01-01

    It has previously been shown that the no-slip boundary conditions leads to a singularity at a moving contact line and that this presumes some form of slip. Present considerations on the energetics of slip due to shear stress lead to a yield stress boundary condition. A model for the distortion of the liquid state near solid boundaries gives a physical basis for this boundary condition. The yield stress condition is illustrated by an analysis of a slender drop rolling down an incline. That analysis provides a formula for the frictional drag resisting the drop movement. With the present boundary condition, the length of the slip region becomes a property of the fluid flow.

  7. Understanding the fabric of protein crystals: computational classification of biological interfaces and crystal contacts.

    PubMed

    Capitani, Guido; Duarte, Jose M; Baskaran, Kumaran; Bliven, Spencer; Somody, Joseph C

    2016-02-15

    Modern structural biology still draws the vast majority of information from crystallography, a technique where the objects being investigated are embedded in a crystal lattice. Given the complexity and variety of those objects, it becomes fundamental to computationally assess which of the interfaces in the lattice are biologically relevant and which are simply crystal contacts. Since the mid-1990s, several approaches have been applied to obtain high-accuracy classification of crystal contacts and biological protein-protein interfaces. This review provides an overview of the concepts and main approaches to protein interface classification: thermodynamic estimation of interface stability, evolutionary approaches based on conservation of interface residues, and co-occurrence of the interface across different crystal forms. Among the three categories, evolutionary approaches offer the strongest promise for improvement, thanks to the incessant growth in sequence knowledge. Importantly, protein interface classification algorithms can also be used on multimeric structures obtained using other high-resolution techniques or for protein assembly design or validation purposes. A key issue linked to protein interface classification is the identification of the biological assembly of a crystal structure and the analysis of its symmetry. Here, we highlight the most important concepts and problems to be overcome in assembly prediction. Over the next few years, tools and concepts of interface classification will probably become more frequently used and integrated in several areas of structural biology and structural bioinformatics. Among the main challenges for the future are better addressing of weak interfaces and the application of interface classification concepts to prediction problems like protein-protein docking. PMID:26508758

  8. Method for characterizing the contact resistance of metal-vanadium dioxide thin film interfaces

    SciTech Connect

    Percy, R.; Stan, M.; Weikle, R. M.; Kittiwatanakul, S.; Lu, J.; Wolf, S.

    2014-07-14

    The standard method for determining the contact resistance of planar metal-semiconductor interfaces can underestimate the true contact resistance under normal operating conditions, as it relies on the resistivity of the semiconductor material remaining constant during measurement. However, the strong temperature dependence of the resistivity of VO{sub 2} requires a modified approach that maintains a constant power density dissipated within the film to account for Joule heating. We develop a method for measuring contact resistance in semiconductors with a high thermal coefficient of resistivity, demonstrate this method with an example, and compare the results with the standard technique.

  9. Electrical contact at the interface between silicon and transfer-printed gold films by eutectic joining.

    PubMed

    Keum, Hohyun; Chung, Hyun-Joong; Kim, Seok

    2013-07-10

    This paper presents the electrical and morphological properties at the interface between a metal (Au) and a semiconductor (Si) formed by a novel transfer-printing technology. This work shows that a transfer-printed thin (hundreds of nanometers) Au film forms excellent electrical contact on a Si substrate when appropriate thermal treatment is applied. The successful electrical contact is attributed to eutectic joining, which allows for the right amount of atomic level mass transport between Au and Si. The outcomes suggest that transfer-printing-based micromanufacturing can realize not only strong mechanical bonding but also high-quality electrical contact via eutectic joining. PMID:23751269

  10. Reducing contact resistance in ferroelectric organic transistors by buffering the semiconductor/dielectric interface

    NASA Astrophysics Data System (ADS)

    Sun, Huabin; Yin, Yao; Wang, Qijing; Jun, Qian; Wang, Yu; Tsukagoshi, Kazuhito; Wang, Xizhang; Hu, Zheng; Pan, Lijia; Zheng, Youdou; Shi, Yi; Li, Yun

    2015-08-01

    The reduction of contact resistance in ferroelectric organic field-effect transistors (Fe-OFETs) by buffering the interfacial polarization fluctuation was reported. An ultrathin poly(methyl methacrylate) layer was inserted between the ferroelectric polymer and organic semiconductor layers. The contact resistance was significantly reduced to 55 kΩ cm. By contrast, Fe-OFETs without buffering exhibited a significantly larger contact resistance of 260 kΩ cm. Results showed that such an enhanced charge injection was attributed to the buffering effect at the semiconductor/ferroelectric interface, which narrowed the trap distribution of the organic semiconductor in the contact region. The presented work provided an efficient method of lowering the contact resistance in Fe-OFETs, which is beneficial for the further development of Fe-OFETs.

  11. Vibration transfer in the ball-stem contact interface of artificial hips.

    PubMed

    Hothan, Arne; Lewerenz, Kathrin; Weiss, Cornelius; Hoffmann, Norbert; Morlock, Michael; Huber, Gerd

    2013-10-01

    Audible squeaking has put the reputation of ceramic bearings for total hip replacements into question. Inter-articular friction induces vibrations in the ceramic head which are transferred through the head-taper interface to the femoral stem. If excited to sufficient amplitudes, squeaking can be emitted by the stem. Hence, the damping and amplification properties of this interface have a crucial influence on stem vibrations. The aim of this study was to determine the vibration transfer behavior between the head and the taper of a femoral stem and its dependence on the assembly force, in order to assess its influence on the development of audible squeaking. A ceramic head was assembled on a titanium femoral stem taper with high and low forces. Frequency response functions characterizing the head-stem interface were determined experimentally. The interface demonstrated negligible influence on vibration transfer in the squeaking frequency range (1-5 kHz). However its damping effect in lower and higher frequency ranges was significant and some areas of amplification were also found. Although squeaking vibration was not influenced by the particular interface studied, the method established can be utilized to trace taper designs with dynamic properties that decrease the susceptibility to squeaking. PMID:23707143

  12. Improvement and evaluation of thermal, electrical, sealing and mechanical contacts, and their interface materials

    NASA Astrophysics Data System (ADS)

    Luo, Xiangcheng

    Material contacts, including thermal, electrical, seating (fluid sealing and electromagnetic sealing) and mechanical (pressure) contacts, together with their interface materials, were, evaluated, and in some cases, improved beyond the state of the art. The evaluation involved the use of thermal, electrical and mechanical methods. For thermal contacts, this work evaluated and improved the heat transfer efficiency between two contacting components by developing various thermal interface pastes. Sodium silicate based thermal pastes (with boron nitride particles as the thermally conductive filler) as well as polyethylene glycol (PEG) based thermal pastes were developed and evaluated. The optimum volume fractions of BN in sodium silicate based pastes and PEG based pastes were 16% and 18% respectively. The contribution of Li+ ions to the thermal contact conductance in the PEG-based paste was confirmed. For electrical contacts, the relationship between the mechanical reliability and electrical reliability of solder/copper and silver-epoxy/copper joints was addressed. Mechanical pull-out testing was conducted on solder/copper and silver-epoxy/copper joints, while the contact electrical resistivity was measured. Cleansing of the copper surface was more effective for the reliability of silver-epoxy/copper joint than that of solder/copper joint. For sealing contacts, this work evaluated flexible graphite as an electromagnetic shielding gasket material. Flexible graphite was found to be at least comparable to conductive filled silicone (the state of the art) in terms of the shielding effectiveness. The conformability of flexible graphite with its mating metal surface under repeated compression was characterized by monitoring the contact electrical resistance, as the conformability is important to both electromagnetic scaling and fluid waling using flexible graphite. For mechanical contacts, this work focused on the correlation of the interface structure (such as elastic

  13. Universal Aging Mechanism for Static and Sliding Friction of Metallic Nanoparticles

    NASA Astrophysics Data System (ADS)

    Feldmann, Michael; Dietzel, Dirk; Tekiel, Antoni; Topple, Jessica; Grütter, Peter; Schirmeisen, André

    2016-07-01

    The term "contact aging" refers to the temporal evolution of the interface between a slider and a substrate usually resulting in increasing friction with time. Current phenomenological models for multiasperity contacts anticipate that such aging is not only the driving force behind the transition from static to sliding friction, but at the same time influences the general dynamics of the sliding friction process. To correlate static and sliding friction on the nanoscale, we show experimental evidence of stick-slip friction for nanoparticles sliding on graphite over a wide dynamic range. We can assign defined periods of aging to the stick phases of the particles, which agree with simulations explicitly including contact aging. Additional slide-hold-slide experiments for the same system allow linking the sliding friction results to static friction measurements, where both friction mechanisms can be universally described by a common aging formalism.

  14. Universal Aging Mechanism for Static and Sliding Friction of Metallic Nanoparticles.

    PubMed

    Feldmann, Michael; Dietzel, Dirk; Tekiel, Antoni; Topple, Jessica; Grütter, Peter; Schirmeisen, André

    2016-07-01

    The term "contact aging" refers to the temporal evolution of the interface between a slider and a substrate usually resulting in increasing friction with time. Current phenomenological models for multiasperity contacts anticipate that such aging is not only the driving force behind the transition from static to sliding friction, but at the same time influences the general dynamics of the sliding friction process. To correlate static and sliding friction on the nanoscale, we show experimental evidence of stick-slip friction for nanoparticles sliding on graphite over a wide dynamic range. We can assign defined periods of aging to the stick phases of the particles, which agree with simulations explicitly including contact aging. Additional slide-hold-slide experiments for the same system allow linking the sliding friction results to static friction measurements, where both friction mechanisms can be universally described by a common aging formalism. PMID:27447515

  15. Friction-induced formation of heat with account for heat transfer through the contact surface between homogeneous and piecewise-homogeneous semispaces

    NASA Astrophysics Data System (ADS)

    Evtushenko, A. A.; Kuciej, M.

    2011-05-01

    An analytical solution of the boundary-value heat conduction problem is obtained for a tribosystem consisting of a homogeneous semispace sliding with a constant velocity along the surface of a plane-parallel strip applied to a semi-infinite foundation. The tribosystem is heated as a result of the frictional heat formation on the sliding surface. It is assumed that the thermal contact of the semispace with the strip is not full. With the aid of the Duhamel theorem, a solution for the considered tribosystem, with sliding at a constant deceleration, is also constructed that models heat formation from friction in disk brakes. For the materials of the friction pair "pig iron semispace (disk)-metal-ceramic strip (lining)-steel foundation (frame)," the influence of the coefficient of thermal conductivity of the contact (Biot number) on the temperature distribution was investigated.

  16. Classical shear cracks drive the onset of dry frictional motion.

    PubMed

    Svetlizky, Ilya; Fineberg, Jay

    2014-05-01

    Frictional processes entail the rupture of the ensemble of discrete contacts defining a frictional interface. There are a variety of views on how best to describe the onset of dry frictional motion. These range from modelling friction with a single degree of freedom, a 'friction coefficient', to theoretical treatments using dynamic fracture to account for spatial and temporal dynamics along the interface. We investigated the onset of dry frictional motion by performing simultaneous high-speed measurements of the real contact area and the strain fields in the region surrounding propagating rupture tips within the dry (nominally flat) rough interfaces formed by brittle polymer blocks. Here we show that the transition from 'static' to 'dynamic' friction is quantitatively described by classical singular solutions for the motion of a rapid shear crack. We find that these singular solutions, originally derived to describe brittle fracture, are in excellent agreement with the experiments for slow propagation, whereas some significant discrepancies arise as the rupture velocity approaches the Rayleigh wave speed. In addition, the energy dissipated in the fracture of the contacts remains nearly constant throughout the entire range in which the rupture velocity is less than the Rayleigh wave speed, whereas the size of the dissipative zone undergoes a Lorentz-like contraction as the rupture velocity approaches the Rayleigh wave speed. This coupling between friction and fracture is critical to our fundamental understanding of frictional motion and related processes, such as earthquake dynamics. PMID:24805344

  17. Non-smooth Hopf-type bifurcations arising from impact–friction contact events in rotating machinery

    PubMed Central

    Mora, Karin; Budd, Chris; Glendinning, Paul; Keogh, Patrick

    2014-01-01

    We analyse the novel dynamics arising in a nonlinear rotor dynamic system by investigating the discontinuity-induced bifurcations corresponding to collisions with the rotor housing (touchdown bearing surface interactions). The simplified Föppl/Jeffcott rotor with clearance and mass unbalance is modelled by a two degree of freedom impact–friction oscillator, as appropriate for a rigid rotor levitated by magnetic bearings. Two types of motion observed in experiments are of interest in this paper: no contact and repeated instantaneous contact. We study how these are affected by damping and stiffness present in the system using analytical and numerical piecewise-smooth dynamical systems methods. By studying the impact map, we show that these types of motion arise at a novel non-smooth Hopf-type bifurcation from a boundary equilibrium bifurcation point for certain parameter values. A local analysis of this bifurcation point allows us a complete understanding of this behaviour in a general setting. The analysis identifies criteria for the existence of such smooth and non-smooth bifurcations, which is an essential step towards achieving reliable and robust controllers that can take compensating action. PMID:25383034

  18. Non-smooth Hopf-type bifurcations arising from impact-friction contact events in rotating machinery.

    PubMed

    Mora, Karin; Budd, Chris; Glendinning, Paul; Keogh, Patrick

    2014-11-01

    We analyse the novel dynamics arising in a nonlinear rotor dynamic system by investigating the discontinuity-induced bifurcations corresponding to collisions with the rotor housing (touchdown bearing surface interactions). The simplified Föppl/Jeffcott rotor with clearance and mass unbalance is modelled by a two degree of freedom impact-friction oscillator, as appropriate for a rigid rotor levitated by magnetic bearings. Two types of motion observed in experiments are of interest in this paper: no contact and repeated instantaneous contact. We study how these are affected by damping and stiffness present in the system using analytical and numerical piecewise-smooth dynamical systems methods. By studying the impact map, we show that these types of motion arise at a novel non-smooth Hopf-type bifurcation from a boundary equilibrium bifurcation point for certain parameter values. A local analysis of this bifurcation point allows us a complete understanding of this behaviour in a general setting. The analysis identifies criteria for the existence of such smooth and non-smooth bifurcations, which is an essential step towards achieving reliable and robust controllers that can take compensating action. PMID:25383034

  19. Thermal contact conductance of a bone-dry paper handsheet/metal interface

    SciTech Connect

    Seyed-Yagoobi, J.; Ng, K.H.; Fletcher, L.S. )

    1992-05-01

    An apparatus was constructed for determination of the thermal contact conductance for a paper handsheet/metal interface and for measurement of the effective thermal conductivity of handsheet samples. Bone-dry Bleached Southern Mixed Kraft handsheets with a water retention value of 1.832 were used to study the effect of pressure on thermal contact conductance and to measure the effective thermal conductivity of samples at various sheet density levels. A regression model describing the interface thermal contact conductance as a function of pressure and basis weight was derived. The contact conductance increases with increasing pressure or with decreasing basis weight. At a pressure of 2.3 kPa, the value of the interface contact conductance for the bone-dry samples considered ranges from approximately 97 W/m{sup 2}K for a sheet of 348.7 g/m{sup 2} basis weight to 200 W/m{sup 2}K for a sheet of 68.0 g/m{sup 2} basis weight. For pressures near 300 kPa, these values increase to 146 and 452 W/m{sup 2}K, respectively. The effective thermal conductivity of the handsheet samples was derived from measured values of overall joint conductance and interface contact conductance. The results indicate that the thermal conductivity of the bone-dry samples increases with increasing sheet density, ranging from 0.14 W/mK to 0.70 W/mK for sheet densities of 90 kg/m{sup 3} to 500 kg/m{sup 3}, respectively, for the samples considered.

  20. Mesh Size Control of Friction

    NASA Astrophysics Data System (ADS)

    Pitenis, Angela; Uruena, Juan Manuel; Schulze, Kyle D.; Cooper, Andrew C.; Angelini, Thomas E.; Sawyer, W. Gregory

    Soft, permeable sliding interfaces in aqueous environments are ubiquitous in nature but their ability to maintain high lubricity in a poor lubricant (water) has not been well understood. Hydrogels are excellent materials for fundamental soft matter and biotribology studies due to their high water content. While mesh size controls the material and transport properties of a hydrogel, its effects on friction were only recently explored. Polyacrylamide hydrogels slid in a Gemini (self-mated) interface produced low friction under low speeds, low pressures, macroscopic contact areas, and room temperature aqueous environments. The friction coefficients at these interfaces are lowest at low speeds and are speed-independent. This behavior is due to thermal fluctuations at the interface separating the surfaces, with water shearing in this region being the main source of dissipation. We found that mesh size had an inverse correlation with friction. We further investigated a transition from this behavior at higher speeds, and found that the transition speed correlated with the mesh size and relaxation time of the polymer network. Very soft and correspondingly large mesh size Gemini hydrogels show superlubricity under specific conditions with friction being less than 0.005.

  1. Load-Dependent Friction Hysteresis on Graphene.

    PubMed

    Ye, Zhijiang; Egberts, Philip; Han, Gang Hee; Johnson, A T Charlie; Carpick, Robert W; Martini, Ashlie

    2016-05-24

    Nanoscale friction often exhibits hysteresis when load is increased (loading) and then decreased (unloading) and is manifested as larger friction measured during unloading compared to loading for a given load. In this work, the origins of load-dependent friction hysteresis were explored through atomic force microscopy (AFM) experiments of a silicon tip sliding on chemical vapor deposited graphene in air, and molecular dynamics simulations of a model AFM tip on graphene, mimicking both vacuum and humid air environmental conditions. It was found that only simulations with water at the tip-graphene contact reproduced the experimentally observed hysteresis. The mechanisms underlying this friction hysteresis were then investigated in the simulations by varying the graphene-water interaction strength. The size of the water-graphene interface exhibited hysteresis trends consistent with the friction, while measures of other previously proposed mechanisms, such as out-of-plane deformation of the graphene film and irreversible reorganization of the water molecules at the shearing interface, were less correlated to the friction hysteresis. The relationship between the size of the sliding interface and friction observed in the simulations was explained in terms of the varying contact angles in front of and behind the sliding tip, which were larger during loading than unloading. PMID:27110836

  2. Does p-type ohmic contact exist in WSe2-metal interfaces?

    PubMed

    Wang, Yangyang; Yang, Ruo Xi; Quhe, Ruge; Zhong, Hongxia; Cong, Linxiao; Ye, Meng; Ni, Zeyuan; Song, Zhigang; Yang, Jinbo; Shi, Junjie; Li, Ju; Lu, Jing

    2016-01-14

    Formation of low-resistance metal contacts is the biggest challenge that masks the intrinsic exceptional electronic properties of two dimensional WSe2 devices. We present the first comparative study of the interfacial properties between monolayer/bilayer (ML/BL) WSe2 and Sc, Al, Ag, Au, Pd, and Pt contacts by using ab initio energy band calculations with inclusion of the spin-orbital coupling (SOC) effects and quantum transport simulations. The interlayer coupling tends to reduce both the electron and hole Schottky barrier heights (SBHs) and alters the polarity for the WSe2-Au contact, while the SOC chiefly reduces the hole SBH. In the absence of the SOC, the Pd contact has the smallest hole SBH. Dramatically, the Pt contact surpasses the Pd contact and becomes the p-type ohmic or quasi-ohmic contact with inclusion of the SOC. Therefore, p-type ohmic or quasi-ohmic contact exists in WSe2-metal interfaces. Our study provides a theoretical foundation for the selection of favorable metal electrodes in ML/BL WSe2 devices. PMID:26666570

  3. Interface Reactions and Electrical Characteristics of Au/GaSb Contacts

    SciTech Connect

    H. Ehsani; R.J. Gutmann; G.W. Charache

    2000-07-07

    The reaction of Au with GaSb occurs at a relatively low temperature (100 C). Upon annealing, a AuSb{sub 2} compound and several Au-Ga phases are produced. Phase transitions occur toward higher Ga concentration with increasing annealing temperatures. Furthermore, the depth of the contact also increases with increased annealing temperature. They found that the AuSb{sub 2} compound forms on the GaSb surface, with the compound crystal partially ordered with respect to the substrate. The transition of Schottky- to ohmic-contact behavior in Au/n-type GaSb occurs simultaneously with the formation of the AuGa compound at about a 250 C annealing temperature. This ohmic contact forms without the segregation of dopants at the metallic compound/GaSb interface. Therefore it is postulated that transition from Schottky- to ohmic-contact behavior is obtained through a series of tunneling transitions of electrons through defects in the depletion region in the Au/n-type GaSb contacts. Contact resistivities of 6-7 x 10{sup -6} {Omega}-cm{sup 2} were obtained with the annealing temperature between 300 and 350 C for 30 seconds. In Au/p-type GaSb contacts, the resistivity was independent of the annealing temperature. This suggested that the carrier transport in p-type contact dominated by thermionic emission.

  4. Contact-angle hysteresis on periodic microtextured surfaces: Strongly corrugated liquid interfaces

    NASA Astrophysics Data System (ADS)

    Iliev, Stanimir; Pesheva, Nina

    2016-06-01

    We study numerically the shapes of a liquid meniscus in contact with ultrahydrophobic pillar surfaces in Cassie's wetting regime, when the surface is covered with identical and periodically distributed micropillars. Using the full capillary model we obtain the advancing and the receding equilibrium meniscus shapes when the cross-sections of the pillars are both of square and circular shapes, for a broad interval of pillar concentrations. The bending of the liquid interface in the area between the pillars is studied in the framework of the full capillary model and compared to the results of the heterogeneous approximation model. The contact angle hysteresis is obtained when the three-phase contact line is located on one row (block case) or several rows (kink case) of pillars. It is found that the contact angle hysteresis is proportional to the line fraction of the contact line on pillars tops in the block case and to the surface fraction for pillar concentrations 0.1 -0.5 in the kink case. The contact angle hysteresis does not depend on the shape (circular or square) of the pillars cross-section. The expression for the proportionality of the receding contact angle to the line fraction [Raj et al., Langmuir 28, 15777 (2012), 10.1021/la303070s] in the case of block depinning is theoretically substantiated through the capillary force, acting on the solid plate at the meniscus contact line.

  5. Exploring the Interface Between Religion and Contact with the Dead Among Older Mexican Americans

    PubMed Central

    Krause, Neal; Bastida, Elena

    2011-01-01

    The purpose of the current study is to examine the relationship between religion and post death contact among older Mexican Americans. Four major themes emerged from 52 in-depth interviews that were conducted with Older Mexican Americans residing in Texas. First, many older study participants told us they had contact with the dead, but others indicated this was not possible. Second, the form in which contact with the dead was made varied greatly. Some older Mexican Americans reported they had visual contact with the dead, while others said they only made contact with the dead through dreams. Third, although some older Mexican American study participants believed that it was in the best interests of the dead to contact the living, others felt the dead should instead be in Heaven with God. Fourth, the participants in our study reported that having contact with the dead provides a number of important social and psychological benefits. In the process of discussing these themes, an emphasis is placed on how beliefs and experiences with the dead interface with religion. In addition, we also explore how post death contact may be associated with health and well-being in late life. PMID:21399735

  6. Exploring the Interface Between Religion and Contact with the Dead Among Older Mexican Americans.

    PubMed

    Krause, Neal; Bastida, Elena

    2010-01-01

    The purpose of the current study is to examine the relationship between religion and post death contact among older Mexican Americans. Four major themes emerged from 52 in-depth interviews that were conducted with Older Mexican Americans residing in Texas. First, many older study participants told us they had contact with the dead, but others indicated this was not possible. Second, the form in which contact with the dead was made varied greatly. Some older Mexican Americans reported they had visual contact with the dead, while others said they only made contact with the dead through dreams. Third, although some older Mexican American study participants believed that it was in the best interests of the dead to contact the living, others felt the dead should instead be in Heaven with God. Fourth, the participants in our study reported that having contact with the dead provides a number of important social and psychological benefits. In the process of discussing these themes, an emphasis is placed on how beliefs and experiences with the dead interface with religion. In addition, we also explore how post death contact may be associated with health and well-being in late life. PMID:21399735

  7. Numerical simulations of the moving contact line problem using a diffuse-interface model

    NASA Astrophysics Data System (ADS)

    Afzaal, Muhammad; Sibley, David; Duncan, Andrew; Yatsyshin, Petr; Duran-Olivencia, Miguel A.; Nold, Andreas; Savva, Nikos; Schmuck, Markus; Kalliadasis, Serafim

    2015-11-01

    Moving contact lines are a ubiquitous phenomenon both in nature and in many modern technologies. One prevalent way of numerically tackling the problem is with diffuse-interface (phase-field) models, where the classical sharp-interface model of continuum mechanics is relaxed to one with a finite thickness fluid-fluid interface, capturing physics from mesoscopic lengthscales. The present work is devoted to the study of the contact line between two fluids confined by two parallel plates, i.e. a dynamically moving meniscus. Our approach is based on a coupled Navier-Stokes/Cahn-Hilliard model. This system of partial differential equations allows a tractable numerical solution to be computed, capturing diffusive and advective effects in a prototypical case study in a finite-element framework. Particular attention is paid to the static and dynamic contact angle of the meniscus advancing or receding between the plates. The results obtained from our approach are compared to the classical sharp-interface model to elicit the importance of considering diffusion and associated effects. We acknowledge financial support from European Research Council via Advanced Grant No. 247031.

  8. Tuning back contact property via artificial interface dipoles in Si/organic hybrid solar cells

    NASA Astrophysics Data System (ADS)

    Wang, Dan; Sheng, Jiang; Wu, Sudong; Zhu, Juye; Chen, Shaojie; Gao, Pingqi; Ye, Jichun

    2016-07-01

    Back contact property plays a key role in the charge collection efficiency of c-Si/poly(3,4-ethylthiophene):poly(styrenesulfonate) hybrid solar cells (Si-HSCs), as an alternative for the high-efficiency and low-cost photovoltaic devices. In this letter, we utilize the water soluble poly (ethylene oxide) (PEO) to modify the Al/Si interface to be an Ohmic contact via interface dipole tuning, decreasing the work function of the Al film. This Ohmic contact improves the electron collection efficiency of the rear electrode, increasing the short circuit current density (Jsc). Furthermore, the interface dipoles make the band bending downward to increase the total barrier height of built-in electric field of the solar cell, enhancing the open circuit voltage (Voc). The PEO solar cell exhibits an excellent performance, 12.29% power conversion efficiency, a 25.28% increase from the reference solar cell without a PEO interlayer. The simple and water soluble method as a promising alternative is used to develop the interfacial contact quality of the rear electrode for the high photovoltaic performance of Si-HSCs.

  9. Universal Regimes in the Relaxation of Stepped Liquid Interfaces near Contact Lines

    NASA Astrophysics Data System (ADS)

    Baeumchen, Oliver; Salez, Thomas; Benzaquen, Michael; Raphael, Elie; Rivetti, Marco

    2015-03-01

    A liquid droplet on a perfectly smooth surface wets or dewets the substrate according to the difference between initial and equilibrium contact angles. Such a scenario, however, becomes much less intuitive whenever the initial shape of the interface is non-spherical. Indeed, the capillary-driven relaxation of the liquid surface may be in competition with the relaxation of the contact angle at the three-phase contact line. Here, we study the dynamics of stepped interfaces of thin polystyrene films on hydrophilic substrates. Annealing the polymeric film above its glass transition temperature induces flow which is precisely monitored using ex- and in-situ atomic force microscopy. Both pinned and receding contact line regimes are observed, corresponding to capillary levelling and dewetting of the liquid film. Rescaling with regard to the viscosity, surface tension and film thickness collapses the data on a master curve, providing a universal time for the transition between both regimes. In addition, we prove that the pinned interface exhibits self-similar height profiles which are captured by a thin film model in lubrication approximation.

  10. Energetics and Solvation Effects at the Photoanode/Catalyst Interface: Ohmic Contact versus Schottky Barrier.

    PubMed

    Ping, Yuan; Goddard, William A; Galli, Giulia A

    2015-04-29

    The design of optimal interfaces between photoelectrodes and catalysts is a key challenge in building photoelectrochemical cells to split water. Iridium dioxide (IrO2) is an efficient catalyst for oxygen evolution, stable in acidic conditions, and hence a good candidate to be interfaced with photoanodes. Using first-principles quantum mechanical calculations, we investigated the structural and electronic properties of tungsten trioxide (WO3) surfaces interfaced with an IrO2 thin film. We built a microscopic model of the interface that exhibits a formation energy lower than the surface energy of the most stable IrO2 surface, in spite of a large lattice mismatch, and has no impurity states pinning the Fermi level. We found that, upon full coverage of WO3 by IrO2, the two oxides form undesirable Ohmic contacts. However, our calculations predicted that if both oxides are partially exposed to water solvent, the relative position of the absorber conduction band and the catalyst Fermi level favors charge transfer to the catalyst and hence water splitting. We propose that, for oxide photoelectrodes interfaced with IrO2, it is advantageous to form rough interfaces with the catalyst, e.g., by depositing nanoparticles, instead of sharp interfaces with thin films. PMID:25867053

  11. Computational methods for frictional contact with applications to the Space Shuttle orbiter nose-gear tire: Comparisons of experimental measurements and analytical predictions

    NASA Technical Reports Server (NTRS)

    Tanner, John A.

    1996-01-01

    A computational procedure is presented for the solution of frictional contact problems for aircraft tires. A Space Shuttle nose-gear tire is modeled using a two-dimensional laminated anisotropic shell theory which includes the effects of variations in material and geometric parameters, transverse-shear deformation, and geometric nonlinearities. Contact conditions are incorporated into the formulation by using a perturbed Lagrangian approach with the fundamental unknowns consisting of the stress resultants, the generalized displacements, and the Lagrange multipliers associated with both contact and friction conditions. The contact-friction algorithm is based on a modified Coulomb friction law. A modified two-field, mixed-variational principle is used to obtain elemental arrays. This modification consists of augmenting the functional of that principle by two terms: the Lagrange multiplier vector associated with normal and tangential node contact-load intensities and a regularization term that is quadratic in the Lagrange multiplier vector. These capabilities and computational features are incorporated into an in-house computer code. Experimental measurements were taken to define the response of the Space Shuttle nose-gear tire to inflation-pressure loads and to inflation-pressure loads combined with normal static loads against a rigid flat plate. These experimental results describe the meridional growth of the tire cross section caused by inflation loading, the static load-deflection characteristics of the tire, the geometry of the tire footprint under static loading conditions, and the normal and tangential load-intensity distributions in the tire footprint for the various static vertical-loading conditions. Numerical results were obtained for the Space Shuttle nose-gear tire subjected to inflation pressure loads and combined inflation pressure and contact loads against a rigid flat plate. The experimental measurements and the numerical results are compared.

  12. Material properties of commonly-used interface materials and their static coefficients of friction with skin and socks.

    PubMed

    Sanders, J E; Greve, J M; Mitchell, S B; Zachariah, S G

    1998-06-01

    Compressive stiffness (CS) of different supporting materials used in prosthetics and orthotics and their static coefficients of friction (COF) with skin and socks were characterized. Materials tested included Spenco, Poron, nylon-reinforced silicone, Soft Pelite, Medium Pelite, Firm Plastazote, Regular Plastazote, and Nickelplast. A displacement-controlled testing device was constructed to assess the CS of 11.1 mm diameter material specimens under cyclic loading (1 Hz) to 220 kPa over 10- and 60-min periods. Results demonstrated local CS ranging from 687 kPa (Poron) to 3,990 kPa (Soft Pelite). To fit the cyclic stress-strain (S-S) data within an error of 4.0 percent full-scale output, the minimum order of fit required for Spenco, Poron, and nylon-reinforced silicone was a third-order polynomial; for Soft Pelite, Medium Pelite, Firm Plastazote, and Regular Plastazote, a second-order polynomial; and for Nickelplast, a linear fit. For all materials, the nonrecovered strains were related to loading time using an exponential fit. A biaxial force-controlled load applicator device was used to assess COF at skin-material, sock-material, and skin-sock interfaces for shear forces of 1 to 4 N applied to a 10.2 x 7.8 mm loading pad. COFs ranged from 0.48 (+/- 0.05) to 0.89 (+/- 0.09). COFs at skin-material interfaces were significantly (p < 0.05) higher than those at skin-sock interfaces. There was a trend of a higher COF at sock-material interfaces than at skin-sock interfaces. These data are of potential utility in finite element modeling sensitivity analysis of residual limb-prosthetic socket systems or body-orthosis systems to characterize effects of material features on interface pressure and shear stress distributions. PMID:9651888

  13. Coordinated Water Under Confinement Eases Sliding Friction

    NASA Astrophysics Data System (ADS)

    Defante, Adrian; Dhopotkar, Nishad; Dhinojwala, Ali

    Water is essential to a number of interfacial phenomena such as the lubrication of knee joints, protein folding, mass transport, and adsorption processes. We have used a biaxial friction cell to quantify underwater friction between a hydrophobic elastomeric lens and a hydrophobic self-assembled monolayer in the presence of surfactant solutions. To gain an understanding of the role of water in these processes we have coupled this measurement with surface sensitive sum frequency generation to directly probe the molecular constitution of the confined contact interface. We observe that role of confined coordinated water between two hydrophobic substrates covered with surfactants is the key to obtaining a low coefficient of friction.

  14. Use of Textured Surfaces to Mitigate Sliding Friction and Wear of Lubricated and Non-Lubricated Contacts

    SciTech Connect

    Blau, Peter Julian

    2012-03-01

    If properly employed, the placement of three-dimensional feature patterns, also referred to as textures, on relatively-moving, load-bearing surfaces can be beneficial to their friction and wear characteristics. For example, geometric patterns can function as lubricant supply channels or depressions in which to trap debris. They can also alter lubricant flow in a manner that produces thicker load-bearing films locally. Considering the area occupied by solid areas and spaces, textures also change the load distribution on surfaces. At least ten different attributes of textures can be specified, and their combinations offer wide latitude in surface engineering. By employing directional machining and grinding procedures, texturing has been used on bearings and seals for well over a half century, and the size scales of texturing vary widely. This report summarizes past work on the texturing of load-bearing surfaces, including past research on laser surface dimpling of ceramics done at ORNL. Textured surfaces generally show most pronounced effects when they are used in conformal or nearly conformal contacts, like that in face seals. Combining textures with other forms of surface modification and lubrication methods can offer additional benefits in surface engineering for tribology. As the literature and past work at ORNL shows, texturing does not always provide benefits. Rather, the selected pattern and arrangement of features must be matched to characteristics of the proposed application, bearing materials, and lubricants.

  15. Healing of Experimentally Simulated Fractures: Contact Neck Growth, and Strength Evolution of the Interface

    NASA Astrophysics Data System (ADS)

    Renard, F.; Dysthe, D.; Voisin, C.

    2008-12-01

    To investigate the physical processes operating in active fault zones, we conduct analogue laboratory experiments where we simulated a rough fracture that undergoes healing/shear cycles under dry condition or in the presence of a reactive fluid. This set-up is a surrogate for the healing/sealing of fractures and faults rocks, where fluid-rock interactions are operative at the millennium time scale. A rough slider of sodium chloride was left in contact with a flat glass plate under a constant normal load. The whole set-up was mounted on a microscope and left in a temperature-controlled box. The closure of the interface through several days was measured using high resolution displacement sensors and the contact surface was continuously imaged with a CCD camera. Under dry conditions, a small transient creep displacement perpendicularly to the fracture plane was measured. This deformation last for several minutes and finally stopped. Under fluid saturated conditions, a slow closure of the rough interface was measured over several days. This closure was concomitant with the growth of contact points, driven by surface tension forces. After 50 hours, up to 10% of the fracture surface was healed by this process. The force necessary to break the adhesion forces, allowing the sample to slide, was also measured after several periods of increasing holding times and showed a power law dependence with time. After each experiment, the fracture interface roughness was measured to nanometer resolution using white light interferometry. The morphology of the contacts was characterized by scaling relationships. Finally, we propose a macroscopic constitutive model of fracture closure and strength recovery, related to the dynamics of the contact asperities, which are seen to flatten and expand through time.

  16. Improvement of the electrical contact resistance at rough interfaces using two dimensional materials

    SciTech Connect

    Hu, Jianchen; Pan, Chengbin; Lanza, Mario; Li, Heng; Shen, Panpan; Sun, Hui; Duan, Huiling

    2015-12-07

    Reducing the electronic contact resistance at the interfaces of nanostructured materials is a major goal for many kinds of planar and three dimensional devices. In this work, we develop a method to enhance the electronic transport at rough interfaces by inserting a two dimensional flexible and conductive graphene sheet. We observe that an ultra-thin graphene layer with a thickness of 0.35 nm can remarkably reduce the roughness of a sample in a factor of 40%, avoiding the use of thick coatings, leading to a more homogeneous current flow, and extraordinarily increasing the total current compared to the graphene-free counterpart. Due to its simplicity and performance enhancement, this methodology can be of interest to many interface and device designers.

  17. Atomic-Scale Engineering of Abrupt Interface for Direct Spin Contact of Ferromagnetic Semiconductor with Silicon

    PubMed Central

    Averyanov, Dmitry V.; Karateeva, Christina G.; Karateev, Igor A.; Tokmachev, Andrey M.; Vasiliev, Alexander L.; Zolotarev, Sergey I.; Likhachev, Igor A.; Storchak, Vyacheslav G.

    2016-01-01

    Control and manipulation of the spin of conduction electrons in industrial semiconductors such as silicon are suggested as an operating principle for a new generation of spintronic devices. Coherent injection of spin-polarized carriers into Si is a key to this novel technology. It is contingent on our ability to engineer flawless interfaces of Si with a spin injector to prevent spin-flip scattering. The unique properties of the ferromagnetic semiconductor EuO make it a prospective spin injector into silicon. Recent advances in the epitaxial integration of EuO with Si bring the manufacturing of a direct spin contact within reach. Here we employ transmission electron microscopy to study the interface EuO/Si with atomic-scale resolution. We report techniques for interface control on a submonolayer scale through surface reconstruction. Thus we prevent formation of alien phases and imperfections detrimental to spin injection. This development opens a new avenue for semiconductor spintronics. PMID:26957146

  18. Atomic-Scale Engineering of Abrupt Interface for Direct Spin Contact of Ferromagnetic Semiconductor with Silicon

    NASA Astrophysics Data System (ADS)

    Averyanov, Dmitry V.; Karateeva, Christina G.; Karateev, Igor A.; Tokmachev, Andrey M.; Vasiliev, Alexander L.; Zolotarev, Sergey I.; Likhachev, Igor A.; Storchak, Vyacheslav G.

    2016-03-01

    Control and manipulation of the spin of conduction electrons in industrial semiconductors such as silicon are suggested as an operating principle for a new generation of spintronic devices. Coherent injection of spin-polarized carriers into Si is a key to this novel technology. It is contingent on our ability to engineer flawless interfaces of Si with a spin injector to prevent spin-flip scattering. The unique properties of the ferromagnetic semiconductor EuO make it a prospective spin injector into silicon. Recent advances in the epitaxial integration of EuO with Si bring the manufacturing of a direct spin contact within reach. Here we employ transmission electron microscopy to study the interface EuO/Si with atomic-scale resolution. We report techniques for interface control on a submonolayer scale through surface reconstruction. Thus we prevent formation of alien phases and imperfections detrimental to spin injection. This development opens a new avenue for semiconductor spintronics.

  19. Atomic-Scale Engineering of Abrupt Interface for Direct Spin Contact of Ferromagnetic Semiconductor with Silicon.

    PubMed

    Averyanov, Dmitry V; Karateeva, Christina G; Karateev, Igor A; Tokmachev, Andrey M; Vasiliev, Alexander L; Zolotarev, Sergey I; Likhachev, Igor A; Storchak, Vyacheslav G

    2016-01-01

    Control and manipulation of the spin of conduction electrons in industrial semiconductors such as silicon are suggested as an operating principle for a new generation of spintronic devices. Coherent injection of spin-polarized carriers into Si is a key to this novel technology. It is contingent on our ability to engineer flawless interfaces of Si with a spin injector to prevent spin-flip scattering. The unique properties of the ferromagnetic semiconductor EuO make it a prospective spin injector into silicon. Recent advances in the epitaxial integration of EuO with Si bring the manufacturing of a direct spin contact within reach. Here we employ transmission electron microscopy to study the interface EuO/Si with atomic-scale resolution. We report techniques for interface control on a submonolayer scale through surface reconstruction. Thus we prevent formation of alien phases and imperfections detrimental to spin injection. This development opens a new avenue for semiconductor spintronics. PMID:26957146

  20. Quantification of the Contact Area at the Head-Stem Taper Interface of Modular Hip Prostheses.

    PubMed

    Witt, Florian; Gührs, Julian; Morlock, Michael M; Bishop, Nicholas E

    2015-01-01

    Corrosion of modular taper junctions of hip implants may be associated with clinical failure. Taper design parameters, as well as the intraoperatively applied assembly forces, have been proposed to affect corrosion. Fretting corrosion is related to relative interface shear motion and fluid ingress, which may vary with contact force and area. It was hypothesised in this study that assembly forces modify the extent and distribution of the surface contact area at the taper interface between a cobalt chrome head and titanium stem taper with a standard threaded surface profile. Local abrasion of a thin gold coating applied to the stem taper prior to assembly was used to determine the contact area after disassembly. Profilometry was then used to assess permanent deformation of the stem taper surface profile. With increasing assembly force (500 N, 2000 N, 4000 N and 8000 N) the number of stem taper surface profile ridges in contact with the head taper was found to increase (9.2±9.3%, 65.4±10.8%, 92.8±6.0% and 100%) and the overall taper area in contact was also found to increase (0.6±0.7%, 5.5±1.0%, 9.9±1.1% and 16.1±0.9%). Contact was inconsistently distributed over the length of the taper. An increase in plastic radial deformation of the surface ridges (-0.05±0.14 μm, 0.1±0.14 μm, 0.21±0.22 μm and 0.96±0.25 μm) was also observed with increasing assembly force. The limited contact of the taper surface ridges at lower assembly forces may influence corrosion rates, suggesting that the magnitude of the assembly force may affect clinical outcome. The method presented provides a simple and practical assessment of the contact area at the taper interface. PMID:26280914

  1. Quantification of the Contact Area at the Head-Stem Taper Interface of Modular Hip Prostheses

    PubMed Central

    Witt, Florian; Gührs, Julian; Morlock, Michael M.; Bishop, Nicholas E.

    2015-01-01

    Corrosion of modular taper junctions of hip implants may be associated with clinical failure. Taper design parameters, as well as the intraoperatively applied assembly forces, have been proposed to affect corrosion. Fretting corrosion is related to relative interface shear motion and fluid ingress, which may vary with contact force and area. It was hypothesised in this study that assembly forces modify the extent and distribution of the surface contact area at the taper interface between a cobalt chrome head and titanium stem taper with a standard threaded surface profile. Local abrasion of a thin gold coating applied to the stem taper prior to assembly was used to determine the contact area after disassembly. Profilometry was then used to assess permanent deformation of the stem taper surface profile. With increasing assembly force (500 N, 2000 N, 4000 N and 8000 N) the number of stem taper surface profile ridges in contact with the head taper was found to increase (9.2±9.3%, 65.4±10.8%, 92.8±6.0% and 100%) and the overall taper area in contact was also found to increase (0.6±0.7%, 5.5±1.0%, 9.9±1.1% and 16.1±0.9%). Contact was inconsistently distributed over the length of the taper. An increase in plastic radial deformation of the surface ridges (-0.05±0.14 μm, 0.1±0.14 μm, 0.21±0.22 μm and 0.96±0.25 μm) was also observed with increasing assembly force. The limited contact of the taper surface ridges at lower assembly forces may influence corrosion rates, suggesting that the magnitude of the assembly force may affect clinical outcome. The method presented provides a simple and practical assessment of the contact area at the taper interface. PMID:26280914

  2. Bubble departure in the direct-contact boiling field with a continuous liquid-liquid interface

    SciTech Connect

    Kadoguchi, Katsuhiko

    2007-01-15

    Behavior of vapor bubbles was experimentally investigated in the boiling field where a volatile liquid layer of per-fluorocarbon PF5050 (boiling point 306K) was directly in contact with an immiscible hot liquid layer of water above it. Heat was supplied to the continuous liquid-liquid interface by the impingement of the downward hot water jet. Vapor bubbles were generated not only from this continuous interface but from a large number of PF5050 droplets floating on it. According to precise observation, incipience of boiling did not occur at the liquid-liquid interface but in the PF5050 liquid close to the interface in both cases of continuous and dispersed interfaces. As a result, the bubbles broke up the thin PF5050 liquid film above them and rose up into the water layer. This bubble departure phenomenon, which does not occur in the ordinary pool boiling field on the solid heating wall, is very important to evaluate the heat transfer performance in the present direct-contact boiling system. For modeling this behavior, sizes of the bubbles were measured at the moment just after they were released into the water pool. Volumes of the bubbles were larger in the case of departing from the continuous liquid-liquid interface than from the droplets. This tendency could be explained by taking into account the buoyancy force acting on unit area of the thin PF5050 liquid film above the bubble before departure, which was one of the most important parameters for the liquid film breakdown. (author)

  3. Thermal Contact Conductance Analysis of Nitride and Carbonitride Thin Film Coatings for Thermal Interface Material Application

    NASA Astrophysics Data System (ADS)

    Subramani, Shanmugan; Thing, Lee Yuan; Devarajan, Mutharasu

    2015-12-01

    In order to reduce and maintain the bond line thickness between substrate and LED package, solid thin film with good thermal conductivity is suggested as thermal interface material and the proposed film thickness is about less than 1 µ. The surface parameter such as roughness and hardness is a key factor which alters the contact conductance between the two matt surfaces. Consequently, filtered vacuum cathodic arc deposited nitride thin films (CrN, TiN, AlTiN, and TiCN) on copper substrate were tested for thermal interface material applications in electronic packaging. The thermal contact conductance of the prepared thin films was evaluated using surface properties such as microhardness and surface roughness. The results were verified with the theoretical model. The measured microhardness and surface roughness of CrN thin film are 17 GPa (low) and 0.768 µm (high), respectively. The measured thermal contact conductance of all thin films showed linear properties for applied pressure and very close to the values of theoretical model. High value in thermal contact conductance of about 256 W/m2 K was noticed with CrN thin film at 1100 kPa. The percentage of deviation for our measured contact conductance value from the theoretical model value was decreasing for the increased contact pressure and observed low value (7 pct) for CrN thin film at 1100 kPa. The thermal conductivity of all thin films was also calculated from the conductance model and observed high value (19.34 W/mK) with CrN thin film.

  4. Effect of Surface Chemistry on the Mechanisms and Governing Laws of Friction and Wear.

    PubMed

    Dai, Ling; Sorkin, Viacheslav; Zhang, Yong-Wei

    2016-04-01

    Recent studies have shown that interface chemistry, that is, the formation and breaking of chemical bonds across contacting interfaces, is closely related to the wear and friction behavior at the nanoscale. In reality, the dangling bond density (DBD) at contacting surfaces can vary greatly. Currently, it remains unclear how friction and wear mechanisms depend on DBDs and whether the Archard's law for wear and Amonton's law for friction are still applicable for contacting surfaces with different DBDs. In this work, we address these issues by studying the wear and friction behavior between two sliding diamond-like carbon surfaces by controlling DBDs via hydrogenation using molecular dynamics simulations. It is found that the chemical bond breaking and remaking across the contacting interface play the key role in determining the friction and wear behavior. During the sliding, a higher DBD leads to more chemical bond formations across the interface, causing stronger wear via either atom or cluster detachments. With the same DBD, a mechanism transition from an atom-by-atom to cluster detachments is observed by increasing the normal load. Remarkably, a fully saturated surface can exhibit a wearless friction. We further show that after necessary modifications, the Archard's law for wear and the Amonton's law for friction may be applicable at the nanoscale. The present work reveals insights into the effect of interface chemistry on the friction and wear, and it provides guidelines for effective antiwear design. PMID:27004415

  5. Adjustments to Local Friction in Multifinger Prehension

    PubMed Central

    Aoki, Tomoko; Latash, Mark L.; Zatsiorsky, Vladimir M.

    2010-01-01

    The authors studied the effects of surface friction at the digit–object interface on digit forces and moments when 12 participants statically held an object in a 5-digit grasp. The authors changed low-friction contact (LFC) with rayon and high-friction contact (HFC) with sandpaper independently for each digit in all 32 possible combinations. Normal forces of the thumb and virtual finger (VF), an imagined finger with a mechanical effect equal to that of the 4 fingers, increased with the thumb at LFC or with an increase in the number of fingers at LFC. When the thumb was at LFC, the thumb tangential force decreased. The VF tangential force decreased when the number of fingers at LFC increased. The interaction of the local responses to friction and the synergic responses necessary to maintain the equilibrium explain the coordination of individual digit forces. PMID:17664170

  6. Tuning thermal contact conductance at graphene-copper interface via surface nanoengineering

    NASA Astrophysics Data System (ADS)

    Hong, Yang; Li, Lei; Zeng, Xiao Cheng; Zhang, Jingchao

    2015-03-01

    Due to rapidly increasing power densities in nanoelectronics, efficient heat removal has become one of the most critical issues in thermal management and nanocircuit design. In this study, we report a surface nanoengineering design that can reduce the interfacial thermal resistance between graphene and copper substrate by 17%. Contrary to the conventional view that a rough surface tends to give higher thermal contact resistances, we find that by engraving the copper substrate with nanopillared patterns, an optimized hybrid structure can effectively facilitate the thermal transport across the graphene-copper interface. This counterintuitive behavior is due to the enhanced phonon interactions with the optimal nanopillared pattern. For pliable 2D materials like graphene, the structures can be easily bent to fit the surface formations of the substrate. The suspended areas of graphene are pulled towards the substrate via an attractive interatomic force, causing high local pressures (~2.9 MPa) on the top region of nanopillars. The high local pressures can greatly enhance the thermal energy coupling between graphene and copper, thereby lowering the thermal contact resistances. Our study provides a practical way to manipulate the thermal contact resistance between graphene and copper for the improvement of nano-device performance through engineering optimal nanoscale contact.Due to rapidly increasing power densities in nanoelectronics, efficient heat removal has become one of the most critical issues in thermal management and nanocircuit design. In this study, we report a surface nanoengineering design that can reduce the interfacial thermal resistance between graphene and copper substrate by 17%. Contrary to the conventional view that a rough surface tends to give higher thermal contact resistances, we find that by engraving the copper substrate with nanopillared patterns, an optimized hybrid structure can effectively facilitate the thermal transport across the graphene

  7. Organic heterojunctions: Contact-induced molecular reorientation, interface states, and charge re-distribution

    NASA Astrophysics Data System (ADS)

    Opitz, Andreas; Wilke, Andreas; Amsalem, Patrick; Oehzelt, Martin; Blum, Ralf-Peter; Rabe, Jürgen P.; Mizokuro, Toshiko; Hörmann, Ulrich; Hansson, Rickard; Moons, Ellen; Koch, Norbert

    2016-02-01

    We reveal the rather complex interplay of contact-induced re-orientation and interfacial electronic structure - in the presence of Fermi-level pinning - at prototypical molecular heterojunctions comprising copper phthalocyanine (H16CuPc) and its perfluorinated analogue (F16CuPc), by employing ultraviolet photoelectron and X-ray absorption spectroscopy. For both layer sequences, we find that Fermi-level (EF) pinning of the first layer on the conductive polymer substrate modifies the work function encountered by the second layer such that it also becomes EF-pinned, however, at the interface towards the first molecular layer. This results in a charge transfer accompanied by a sheet charge density at the organic/organic interface. While molecules in the bulk of the films exhibit upright orientation, contact formation at the heterojunction results in an interfacial bilayer with lying and co-facial orientation. This interfacial layer is not EF-pinned, but provides for an additional density of states at the interface that is not present in the bulk. With reliable knowledge of the organic heterojunction’s electronic structure we can explain the poor performance of these in photovoltaic cells as well as their valuable function as charge generation layer in electronic devices.

  8. Organic heterojunctions: Contact-induced molecular reorientation, interface states, and charge re-distribution.

    PubMed

    Opitz, Andreas; Wilke, Andreas; Amsalem, Patrick; Oehzelt, Martin; Blum, Ralf-Peter; Rabe, Jürgen P; Mizokuro, Toshiko; Hörmann, Ulrich; Hansson, Rickard; Moons, Ellen; Koch, Norbert

    2016-01-01

    We reveal the rather complex interplay of contact-induced re-orientation and interfacial electronic structure - in the presence of Fermi-level pinning - at prototypical molecular heterojunctions comprising copper phthalocyanine (H16CuPc) and its perfluorinated analogue (F16CuPc), by employing ultraviolet photoelectron and X-ray absorption spectroscopy. For both layer sequences, we find that Fermi-level (EF) pinning of the first layer on the conductive polymer substrate modifies the work function encountered by the second layer such that it also becomes EF-pinned, however, at the interface towards the first molecular layer. This results in a charge transfer accompanied by a sheet charge density at the organic/organic interface. While molecules in the bulk of the films exhibit upright orientation, contact formation at the heterojunction results in an interfacial bilayer with lying and co-facial orientation. This interfacial layer is not EF-pinned, but provides for an additional density of states at the interface that is not present in the bulk. With reliable knowledge of the organic heterojunction's electronic structure we can explain the poor performance of these in photovoltaic cells as well as their valuable function as charge generation layer in electronic devices. PMID:26887445

  9. Organic heterojunctions: Contact-induced molecular reorientation, interface states, and charge re-distribution

    PubMed Central

    Opitz, Andreas; Wilke, Andreas; Amsalem, Patrick; Oehzelt, Martin; Blum, Ralf-Peter; Rabe, Jürgen P.; Mizokuro, Toshiko; Hörmann, Ulrich; Hansson, Rickard; Moons, Ellen; Koch, Norbert

    2016-01-01

    We reveal the rather complex interplay of contact-induced re-orientation and interfacial electronic structure – in the presence of Fermi-level pinning – at prototypical molecular heterojunctions comprising copper phthalocyanine (H16CuPc) and its perfluorinated analogue (F16CuPc), by employing ultraviolet photoelectron and X-ray absorption spectroscopy. For both layer sequences, we find that Fermi-level (EF) pinning of the first layer on the conductive polymer substrate modifies the work function encountered by the second layer such that it also becomes EF-pinned, however, at the interface towards the first molecular layer. This results in a charge transfer accompanied by a sheet charge density at the organic/organic interface. While molecules in the bulk of the films exhibit upright orientation, contact formation at the heterojunction results in an interfacial bilayer with lying and co-facial orientation. This interfacial layer is not EF-pinned, but provides for an additional density of states at the interface that is not present in the bulk. With reliable knowledge of the organic heterojunction’s electronic structure we can explain the poor performance of these in photovoltaic cells as well as their valuable function as charge generation layer in electronic devices. PMID:26887445

  10. Atomistic Simulation of Single Asperity Contact

    NASA Astrophysics Data System (ADS)

    Philip; Kromer; Marder, Michael

    2003-03-01

    In the standard (Bowden and Tabor) model of friction, the macroscopic behavior of sliding results from the deformation of microscopic asperities in contact. A recent idea instead extracts macroscopic friction from the aggregate behavior of traveling, self-healing interfacial cracks: certain families of cracks are found to be mathematically forbidden, and the envelope of allowed cracks dictates the familiar Coulomb law of friction. To explore the connection between the new and traditional pictures of friction, we conducted molecular dynamics (MD) simulations of single-asperity contact subjected to an oscillatory sliding force -- a geometry important for the problem of fretting (damage due to small-scale vibratory contact). Our simulations reveal the importance of traveling interface cracks to the dynamics of slip at the interface, and illuminate the dynamics of crack initiation and suppression.

  11. Point contact resistive switching memory based on self-formed interface of Al/ITO

    NASA Astrophysics Data System (ADS)

    Li, Qiuhong; Qiu, Linjun; Wei, Xianhua; Dai, Bo; Zeng, Huizhong

    2016-07-01

    Point contact resistive switching random access memory (RRAM) has been achieved by directly sputtering Al electrodes on indium tin oxide (ITO) conductive glasses. The room-temperature deposited Al/ITO shows an asymmetrical bipolar resistive switching (BRS) behavior after a process of initialization which induces a stable high resistive state (HRS). It might be caused by the in-situ formation of an ultra-thin layer (≈4 nm) at the interface. By comparison, the Al/ITO device after vacuum annealed exhibits typical symmetrical BRS without an initiation or electroforming process. This can be ascribed to the ex-situ thickening of the interfacial layer (≈9.2 nm) to achieve the stable HRS after heat treatment. This work suggests that the self-formed interface of active Al electrode/ITO would provide the simplest geometry to construct RRAM.

  12. Calculating interface curvature and contact angle with NURBS for coating flow analysis

    NASA Astrophysics Data System (ADS)

    Hong, Hyeyoung; Nam, Jaewook

    2016-03-01

    Non-Uniform Rational B-Spline (NURBS) has actively been used in various field such as modeling, rendering, production of animation and engineering analysis program, etc., because NURBS has many advantages. It can exactly describe curved surface like conics, sphere and even human body. Also, it is effective at computational calculation because storage to calculate NURBS is far less compared to the other method. Therefore, we use NURBS curve to represent interface from computational data and experiment data. By exactly describing free surface, we can obtain several physical properties for calculating coating condition and compare these results with experimental results. It leads to calculate more accurate coating condition. In this study, we make smooth curve to represent interface using NURBS curve with optimization. And we calculate curvature and contact angle with these results.

  13. Point contact resistive switching memory based on self-formed interface of Al/ITO

    PubMed Central

    Li, Qiuhong; Qiu, Linjun; Wei, Xianhua; Dai, Bo; Zeng, Huizhong

    2016-01-01

    Point contact resistive switching random access memory (RRAM) has been achieved by directly sputtering Al electrodes on indium tin oxide (ITO) conductive glasses. The room-temperature deposited Al/ITO shows an asymmetrical bipolar resistive switching (BRS) behavior after a process of initialization which induces a stable high resistive state (HRS). It might be caused by the in-situ formation of an ultra-thin layer (≈4 nm) at the interface. By comparison, the Al/ITO device after vacuum annealed exhibits typical symmetrical BRS without an initiation or electroforming process. This can be ascribed to the ex-situ thickening of the interfacial layer (≈9.2 nm) to achieve the stable HRS after heat treatment. This work suggests that the self-formed interface of active Al electrode/ITO would provide the simplest geometry to construct RRAM. PMID:27383005

  14. Point contact resistive switching memory based on self-formed interface of Al/ITO.

    PubMed

    Li, Qiuhong; Qiu, Linjun; Wei, Xianhua; Dai, Bo; Zeng, Huizhong

    2016-01-01

    Point contact resistive switching random access memory (RRAM) has been achieved by directly sputtering Al electrodes on indium tin oxide (ITO) conductive glasses. The room-temperature deposited Al/ITO shows an asymmetrical bipolar resistive switching (BRS) behavior after a process of initialization which induces a stable high resistive state (HRS). It might be caused by the in-situ formation of an ultra-thin layer (≈4 nm) at the interface. By comparison, the Al/ITO device after vacuum annealed exhibits typical symmetrical BRS without an initiation or electroforming process. This can be ascribed to the ex-situ thickening of the interfacial layer (≈9.2 nm) to achieve the stable HRS after heat treatment. This work suggests that the self-formed interface of active Al electrode/ITO would provide the simplest geometry to construct RRAM. PMID:27383005

  15. Interface Engineering to Create a Strong Spin Filter Contact to Silicon.

    PubMed

    Caspers, C; Gloskovskii, A; Gorgoi, M; Besson, C; Luysberg, M; Rushchanskii, K Z; Ležaić, M; Fadley, C S; Drube, W; Müller, M

    2016-01-01

    Integrating epitaxial and ferromagnetic Europium Oxide (EuO) directly on silicon is a perfect route to enrich silicon nanotechnology with spin filter functionality. To date, the inherent chemical reactivity between EuO and Si has prevented a heteroepitaxial integration without significant contaminations of the interface with Eu silicides and Si oxides. We present a solution to this long-standing problem by applying two complementary passivation techniques for the reactive EuO/Si interface: (i) an in situ hydrogen-Si (001) passivation and (ii) the application of oxygen-protective Eu monolayers-without using any additional buffer layers. By careful chemical depth profiling of the oxide-semiconductor interface via hard x-ray photoemission spectroscopy, we show how to systematically minimize both Eu silicide and Si oxide formation to the sub-monolayer regime-and how to ultimately interface-engineer chemically clean, heteroepitaxial and ferromagnetic EuO/Si (001) in order to create a strong spin filter contact to silicon. PMID:26975515

  16. Interface Engineering to Create a Strong Spin Filter Contact to Silicon

    NASA Astrophysics Data System (ADS)

    Caspers, C.; Gloskovskii, A.; Gorgoi, M.; Besson, C.; Luysberg, M.; Rushchanskii, K. Z.; Ležaić, M.; Fadley, C. S.; Drube, W.; Müller, M.

    2016-03-01

    Integrating epitaxial and ferromagnetic Europium Oxide (EuO) directly on silicon is a perfect route to enrich silicon nanotechnology with spin filter functionality. To date, the inherent chemical reactivity between EuO and Si has prevented a heteroepitaxial integration without significant contaminations of the interface with Eu silicides and Si oxides. We present a solution to this long-standing problem by applying two complementary passivation techniques for the reactive EuO/Si interface: (i) an in situ hydrogen-Si (001) passivation and (ii) the application of oxygen-protective Eu monolayers–without using any additional buffer layers. By careful chemical depth profiling of the oxide-semiconductor interface via hard x-ray photoemission spectroscopy, we show how to systematically minimize both Eu silicide and Si oxide formation to the sub-monolayer regime–and how to ultimately interface-engineer chemically clean, heteroepitaxial and ferromagnetic EuO/Si (001) in order to create a strong spin filter contact to silicon.

  17. Interface Engineering to Create a Strong Spin Filter Contact to Silicon

    PubMed Central

    Caspers, C.; Gloskovskii, A.; Gorgoi, M.; Besson, C.; Luysberg, M.; Rushchanskii, K. Z.; Ležaić, M.; Fadley, C. S.; Drube, W.; Müller, M.

    2016-01-01

    Integrating epitaxial and ferromagnetic Europium Oxide (EuO) directly on silicon is a perfect route to enrich silicon nanotechnology with spin filter functionality. To date, the inherent chemical reactivity between EuO and Si has prevented a heteroepitaxial integration without significant contaminations of the interface with Eu silicides and Si oxides. We present a solution to this long-standing problem by applying two complementary passivation techniques for the reactive EuO/Si interface: (i) an in situ hydrogen-Si (001) passivation and (ii) the application of oxygen-protective Eu monolayers–without using any additional buffer layers. By careful chemical depth profiling of the oxide-semiconductor interface via hard x-ray photoemission spectroscopy, we show how to systematically minimize both Eu silicide and Si oxide formation to the sub-monolayer regime–and how to ultimately interface-engineer chemically clean, heteroepitaxial and ferromagnetic EuO/Si (001) in order to create a strong spin filter contact to silicon. PMID:26975515

  18. Domain nucleation in the contact layer at an interface of water and a polarizable substrate

    NASA Astrophysics Data System (ADS)

    Shevkunov, S. V.

    2013-10-01

    The growth of a molecular water film on the basic plane of a silver iodide monocrystal is studied through computer simulation. Decomposition into domains with spontaneous polarization is observed in the contact layer of the film at the interface with the substrate. The formation of domains is found to be sharply enhanced on a model substrate with the double polarizability of iodine ions; heteropolarization interactions caused by the formation of domain structures increase the film's coupling with the substrate. It is demonstrated that the vapor pressure needed for molecular film growth is reduced appreciably via heteropolarization interactions.

  19. Tuning thermal contact conductance at graphene-copper interface via surface nanoengineering.

    PubMed

    Hong, Yang; Li, Lei; Zeng, Xiao Cheng; Zhang, Jingchao

    2015-04-14

    Due to rapidly increasing power densities in nanoelectronics, efficient heat removal has become one of the most critical issues in thermal management and nanocircuit design. In this study, we report a surface nanoengineering design that can reduce the interfacial thermal resistance between graphene and copper substrate by 17%. Contrary to the conventional view that a rough surface tends to give higher thermal contact resistances, we find that by engraving the copper substrate with nanopillared patterns, an optimized hybrid structure can effectively facilitate the thermal transport across the graphene-copper interface. This counterintuitive behavior is due to the enhanced phonon interactions with the optimal nanopillared pattern. For pliable 2D materials like graphene, the structures can be easily bent to fit the surface formations of the substrate. The suspended areas of graphene are pulled towards the substrate via an attractive interatomic force, causing high local pressures (∼2.9 MPa) on the top region of nanopillars. The high local pressures can greatly enhance the thermal energy coupling between graphene and copper, thereby lowering the thermal contact resistances. Our study provides a practical way to manipulate the thermal contact resistance between graphene and copper for the improvement of nano-device performance through engineering optimal nanoscale contact. PMID:25784494

  20. A volume of fluid method for simulating fluid/fluid interfaces in contact with solid boundaries

    NASA Astrophysics Data System (ADS)

    Mahady, Kyle; Afkhami, Shahriar; Kondic, Lou

    2015-08-01

    In this paper, we present a novel approach to model the fluid/solid interaction forces in a direct solver of the Navier-Stokes equations based on the volume of fluid interface tracking method. The key ingredient of the model is the explicit inclusion of the fluid/solid interaction forces into the governing equations. We show that the interaction forces lead to a partial wetting condition and in particular to a natural definition of the equilibrium contact angle. We present two numerical methods to discretize the interaction forces that enter the model; these two approaches differ in complexity and convergence. To validate the computational framework, we consider the application of these models to simulate two-dimensional drops at equilibrium, as well as drop spreading. We demonstrate that the model, by including the underlying physics, captures contact line dynamics for arbitrary contact angles. More generally, the approach permits novel means to study contact lines, as well as a diverse range of phenomena that previously could not be addressed in direct simulations.

  1. Interface formation between pentacene and silver contacts investigated by surface-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Paez-Sierra, Beynor A.; Marulanda, Diana M.; Rodríguez, Hernán.

    2014-10-01

    Interface formation between organic semiconductors and substrates or electrodes is of great interest to develop functional devices. In this paper we discuss on the interface formation between the organic semiconductor pentacene and silver as the top electrode. Pentacene is commonly used as active layer in organic field-effect transistors (OFETs). It is known that in OFEts significant percentage of the drain current is realized at organic layer thickness below 5 nm. Therefore, understanding the monolayer regime is vital to identify the physics and chemistry of the organic semiconductor. We report Raman spectroscopy measurements of 1.5 nm pentacene films deposited under high vacuum conditions onto Au or SiO2 and covered by silver contacts. In order to achieve a detailed molecular identity upon metal evaporation, Raman spectra at each evaporation stage was recorded. Analysis proved that a bare 1.5 nm pentacene film on smooth Au substrates reflects significant enhancement of the Raman signal. Silver contact of about 1 nm thickness promotes enhancement of the Raman internal vibrational modes along the activation of normally infrared-active modes, and the enhancement factors are estimated to be close to 100. The Raman spectroscopy measurements indicate absence of metallorganic pentacene-Ag complexes regardless of the substrate.

  2. Single-asperity friction during quasi-static sliding

    NASA Astrophysics Data System (ADS)

    Sharp, Tristan; Pastewka, Lars; Robbins, Mark

    2015-03-01

    The static friction of an asperity is investigated using atomic-scale simulations. We explore scale effects by varying the sphere radius R and the contact radius a from nanometers to micrometers. We first consider commensurate contact between bare lattices with repulsive interactions across the interface. In small contacts, all contacting atoms move coherently and the friction coefficient μ is independent of contact radius and load. In larger contacts, interfacial slip is mediated by localized dislocations, and the static friction coefficient μ ~ (Ra0/a2) 2 / 3 , where a0 is the nearest-neighbor spacing. In very large contacts μ stops decreasing and begins to increase with a, at fixed R. The results are in sharp contrast to Cattaneo-Mindlin continuum theory where μ is independent of contact size. Separate simulations are performed to connect the results to the dislocation-based models of contact-size effects due to Hurtado and Kim, and Gao, which assume adhesive interactions between surfaces and find μ ~ (a0/a)1/2. Simulations for incommensurate contacts show a transition from superlubricity for rigid contacts to a finite friction associated with the Peierls stress in very large contacts. Support from: DMR-1006805; NSF IGERT-0801471; OCI-0963185; CMMI-0923018

  3. Slip-stick and the evolution of frictional strength.

    PubMed

    Ben-David, Oded; Rubinstein, Shmuel M; Fineberg, Jay

    2010-01-01

    The evolution of frictional strength has great fundamental and practical importance. Applications range from earthquake dynamics to hard-drive read/write cycles. Frictional strength is governed by the resistance to shear of the large ensemble of discrete contacts that forms the interface that separates two sliding bodies. An interface's overall strength is determined by both the real contact area and the contacts' shear strength. Whereas the average motion of large, slowly sliding bodies is well-described by empirical friction laws, interface strength is a dynamic entity that is inherently related to both fast processes such as detachment/re-attachment and the slow process of contact area rejuvenation. Here we show how frictional strength evolves from extremely short to long timescales, by continuous measurements of the concurrent local evolution of the real contact area and the corresponding interface motion (slip) from the first microseconds when contact detachment occurs to large (100-second) timescales. We identify four distinct and inter-related phases of evolution. First, all of the local contact area reduction occurs within a few microseconds, on the passage of a crack-like front. This is followed by the onset of rapid slip over a characteristic time, the value of which suggests a fracture-induced reduction of contact strength before any slip occurs. This rapid slip phase culminates with a sharp transition to slip at velocities an order of magnitude slower. At slip arrest, 'ageing' immediately commences as contact area increases on a characteristic timescale determined by the system's local memory of its effective contact time before slip arrest. We show how the singular logarithmic behaviour generally associated with ageing is cut off at short times. These results provide a comprehensive picture of how frictional strength evolves from the short times and rapid slip velocities at the onset of motion to ageing at the long times following slip arrest. PMID

  4. Mechanisms of friction in diamondlike nanocomposite coatings

    SciTech Connect

    Scharf, T. W.; Ohlhausen, J. A.; Tallant, D. R.; Prasad, S. V.

    2007-03-15

    Diamondlike nanocomposite (DLN) coatings (C:H:Si:O) processed from siloxane precursors by plasma enhanced chemical vapor deposition are well known for their low friction and wear behaviors. In the current study, we have investigated the fundamental mechanisms of friction and interfacial shear strength in DLN coatings and the roles of contact stress and environment on their tribological behavior. Friction and wear measurements were performed from 0.25 to 0.6 GPa contact pressures in three environments: dry (<1% RH) nitrogen, dry (<1% RH) air, and humid (50% RH) air, with precise control of dew point and oxygen content. At 0.3 GPa contact stress, the coefficient of friction (COF) in dry nitrogen was extremely low, {approx}0.02, whereas in humid air it increased to {approx}0.2, with minimal amount of wear in both environments. The coatings also exhibited non-Amontonian friction behavior, with COF decreasing with an increase in Hertzian contact stress. The main mechanism responsible for low friction and wear under varying contact stresses and environments is governed by the interfacial sliding between the DLN coating and the friction-induced transfer film adhered to the ball counterface. This interfacial shear strength, computed from COF-inverse Hertzian contact stress plots, was found to be 9 MPa in dry nitrogen and 78 MPa in humid air. Time-of-flight secondary ion mass spectroscopy analysis of the interfaces (wear tracks and transfer films) was used to explain the tribochemical effects in both environments. The transfer films generated in humid air were found to be enriched with SiO{sub 2} containing fragments, whereas those formed in dry nitrogen had hydrogenated and long range ordered carbons with practically no SiO{sub 2} fragments, ultimately resulting in much lower interfacial shear strength and COF.

  5. Real-time deflection and friction force imaging by bimorph-based resonance-type high-speed scanning force microscopy in the contact mode

    NASA Astrophysics Data System (ADS)

    Cai, Wei; Fan, Haiyun; Zhao, Jianyong; Shang, Guangyi

    2014-12-01

    We report herein an alternative high-speed scanning force microscopy method in the contact mode based on a resonance-type piezoelectric bimorph scanner. The experimental setup, the modified optical beam deflection scheme suitable for smaller cantilevers, and a high-speed control program for simultaneous data capture are described in detail. The feature of the method is that the deflection and friction force images of the sample surface can be obtained simultaneously in real time. Images of various samples (e.g., a test grating, a thin gold film, and fluorine-doped tin oxide-coated glass slides) are acquired successfully. The imaging rate is 25 frames per second, and the average scan speed reaches a value of approximately 2.5 cm/s. The method combines the advantages of both observing the dynamic processes of the sample surface and monitoring the frictional properties on the nanometer scale.

  6. Understanding Charge Transfer Reactions at the Interface of Plasmas in Contact with Liquids

    NASA Astrophysics Data System (ADS)

    Go, David

    2015-09-01

    Plasmas in and in contact with liquids offer a very rich physical and chemical environment where a multitude of species (electrons, ions, neutrals) and physical phenomena (light, electric fields) intersect. With emerging applications in medicine, environmental remediation, and materials synthesis, it has become paramount to understand the many processes occurring at the interface in order to design and optimize new technologies. Perhaps the most important plasma species is the electron, and it thus reasonable to assume it can play a critical role when plasmas are brought in contact with liquids as well. Over the past several years, our group has focused on deciphering the nature of electron transfer from a plasma to liquid and the subsequent chemistry the electrons induce. Our experimental configuration is the plasma equivalent of an electrochemical or electrolytic cell, where the cathode and anode are submerged in an electrolyte solution and current is carried by reduction reactions at the cathode and oxidation reactions at the anode. When the cathode is replaced by a plasma, the circuit is explicitly completed by the injection of plasma electrons into the solution where they stably solvate before inducing reduction reactions. Recently, we have demonstrated the first direct detection of these stably solvated electrons using a novel total internal reflection absorption spectroscopy experiment, resulting in the first measurement of the optical absorption spectrum for plasma-solvated electrons. Further, we have shown that the lifetime of these electrons can be significantly reduced if suitable solution- and plasma-phase scavengers are used to react quickly with these electrons. These results highlight the complexity of the plasma-liquid interface and how charge-transfer processes often compete with other chemistry that occurs at the plasma-liquid interface, such as the dissolution of plasma species into the liquid. This work was supported by the U.S. Army Research

  7. Effect of interfaces on electron transport properties of MoS2-Au Contacts

    NASA Astrophysics Data System (ADS)

    Aminpour, Maral; Hapala, Prokop; Le, Duy; Jelinek, Pavel; Rahman, Talat S.; Rahman's Group Collaboration; Nanosurf Lab Collaboration

    2014-03-01

    Single layer MoS2 is a promising material for future electronic devices such as transistors since it has good transport characteristics with mobility greater than 200 cm-1V-1s-1 and on-off current ratios up to 108. However, before MoS2 can become a mainstream electronic material for the semiconductor industry, the design of low resistive metal-semiconductor junctions as contacts of the electronic devices needs to be addressed and studied systematically. We have examined the effect of Au contacts on the electronic transport properties of single layer MoS2 using density functional theory in combination with the non-equilibrium Green's function method. The Schottky barrier between Au contact and MoS2, transmission spectra, and I-V curves will be reported and discussed as a function of MoS2 and Au interfaces of varying geometry. This work is supported in part by the US Department of Energy under grant DE-FG02-07ER15842.

  8. Contact heat conductance at a diamond-OFHC copper interface with GaIn eutectic as a heat transfer medium

    NASA Astrophysics Data System (ADS)

    Assoufid, L.; Khounsary, A. M.

    1996-09-01

    The results of an experimental study of the contact heat conductance across a single diamond crystal interface with OFHC copper (Cu) are reported. Gallium-indium (GaIn) eutectic was used as an interstitial material. Contact conductance data are important in the design and the prediction of the performance of x-ray optics under high-heat-load conditions. Two sets of experiments were carried out. In one, the copper surface in contact with diamond was polished and then electroless plated with 1 μm of nickel, while in the other, the copper contact surface was left as machined. The measured average interface heat conductances are 44.7±8 W/cm2-K for nonplated copper and 23.0±8 W/cm2-K for nickel-plated copper. For reference, the thermal contact conductances at a copper-copper interface (without diamond) were also measured, and the results are reported. A typical diamond monochromator, 0.2 mm thick, will absorb about 44 W under a standard undulator beam at the Advanced Photon Source. The measured conductance for nickel-plated copper suggests that the temperature drop across the interface of diamond and nickel-plated copper, with a 20 mm 2 contact area, will be about 10°C. Therefore temperature rises are rather modest, and the accuracy of the measured contact conductances presented here are sufficient for design purposes.

  9. Contact heat conductance at a diamond-OFHC copper interface with GaIn eutectic as a heat transfer medium

    SciTech Connect

    Assoufid, L.; Khounsary, A.

    1996-09-01

    The results of an experimental study of the contact heat conductance across a single diamond crystal interface with OFHC copper (Cu) are reported. Gallium-indium (GaIn) eutectic was used as an interstitial material. Contact conductance data are important in the design and the prediction of the performance of x-ray optics under high-heat-load conditions. Two sets of experiments were carried out. In one, the copper surface in contact with diamond was polished and then electroless plated with 1 {mu}m of nickel, while in the other, the copper contact surface was left as machined. The measured average interface heat conductances are 44.7{plus_minus}8 W/cm{sup 2}-K for nonplated copper and 23.0{plus_minus}8 W/cm{sup 2}-K for nickel-plated copper. For reference, the thermal contact conductances at a copper-copper interface (without diamond) were also measured, and the results are reported. A typical diamond monochromator, 0.2 mm thick, will absorb about 44 W under a standard undulator beam at the Advanced Photon Source. The measured conductance for nickel-plated copper suggests that the temperature drop across the interface of diamond and nickel-plated copper, with a 20 mm {sup 2}contact area, will be about 10{degree}C. Therefore temperature rises are rather modest, and the accuracy of the measured contact conductances presented here are sufficient for design purposes. {copyright} {ital 1996 American Institute of Physics.}

  10. The structure of slip-pulses and supershear ruptures driving slip in bimaterial friction

    PubMed Central

    Shlomai, Hadar; Fineberg, Jay

    2016-01-01

    The most general frictional motion in nature involves bimaterial interfaces, when contacting bodies possess different elastic properties. Frictional motion occurs when the contacts composing the interface separating these bodies detach via propagating rupture fronts. Coupling between slip and normal stress variations is unique to bimaterial interfaces. Here we use high speed simultaneous measurements of slip velocities, real contact area and stresses to explicitly reveal this bimaterial coupling and its role in determining different classes of rupture modes and their structures. We directly observe slip-pulses, highly localized slip accompanied by large local reduction of the normal stress near the rupture tip. These pulses propagate in the direction of motion of the softer material at a selected (maximal) velocity and continuously evolve while propagating. In the opposite direction bimaterial coupling favors crack-like ‘supershear' fronts. The robustness of these structures shows the importance of bimaterial coupling to frictional motion and modes of frictional dissipation. PMID:27278687

  11. The structure of slip-pulses and supershear ruptures driving slip in bimaterial friction.

    PubMed

    Shlomai, Hadar; Fineberg, Jay

    2016-01-01

    The most general frictional motion in nature involves bimaterial interfaces, when contacting bodies possess different elastic properties. Frictional motion occurs when the contacts composing the interface separating these bodies detach via propagating rupture fronts. Coupling between slip and normal stress variations is unique to bimaterial interfaces. Here we use high speed simultaneous measurements of slip velocities, real contact area and stresses to explicitly reveal this bimaterial coupling and its role in determining different classes of rupture modes and their structures. We directly observe slip-pulses, highly localized slip accompanied by large local reduction of the normal stress near the rupture tip. These pulses propagate in the direction of motion of the softer material at a selected (maximal) velocity and continuously evolve while propagating. In the opposite direction bimaterial coupling favors crack-like 'supershear' fronts. The robustness of these structures shows the importance of bimaterial coupling to frictional motion and modes of frictional dissipation. PMID:27278687

  12. The structure of slip-pulses and supershear ruptures driving slip in bimaterial friction

    NASA Astrophysics Data System (ADS)

    Shlomai, Hadar; Fineberg, Jay

    2016-06-01

    The most general frictional motion in nature involves bimaterial interfaces, when contacting bodies possess different elastic properties. Frictional motion occurs when the contacts composing the interface separating these bodies detach via propagating rupture fronts. Coupling between slip and normal stress variations is unique to bimaterial interfaces. Here we use high speed simultaneous measurements of slip velocities, real contact area and stresses to explicitly reveal this bimaterial coupling and its role in determining different classes of rupture modes and their structures. We directly observe slip-pulses, highly localized slip accompanied by large local reduction of the normal stress near the rupture tip. These pulses propagate in the direction of motion of the softer material at a selected (maximal) velocity and continuously evolve while propagating. In the opposite direction bimaterial coupling favors crack-like `supershear' fronts. The robustness of these structures shows the importance of bimaterial coupling to frictional motion and modes of frictional dissipation.

  13. The effect of frictional torque and bending moment on corrosion at the taper interface : an in vitro study.

    PubMed

    Panagiotidou, A; Meswania, J; Osman, K; Bolland, B; Latham, J; Skinner, J; Haddad, F S; Hart, A; Blunn, G

    2015-04-01

    The aim of this study was to assess the effect of frictional torque and bending moment on fretting corrosion at the taper interface of a modular femoral component and to investigate whether different combinations of material also had an effect. The combinations we examined were 1) cobalt-chromium (CoCr) heads on CoCr stems 2) CoCr heads on titanium alloy (Ti) stems and 3) ceramic heads on CoCr stems. In test 1 increasing torque was imposed by offsetting the stem in the anteroposterior plane in increments of 0 mm, 4 mm, 6 mm and 8 mm when the torque generated was equivalent to 0 Nm, 9 Nm, 14 Nm and 18 Nm. In test 2 we investigated the effect of increasing the bending moment by offsetting the application of axial load from the midline in the mediolateral plane. Increments of offset equivalent to head + 0 mm, head + 7 mm and head + 14 mm were used. Significantly higher currents and amplitudes were seen with increasing torque for all combinations of material. However, Ti stems showed the highest corrosion currents. Increased bending moments associated with using larger offset heads produced more corrosion: Ti stems generally performed worse than CoCr stems. Using ceramic heads did not prevent corrosion, but reduced it significantly in all loading configurations. PMID:25820883

  14. Friction and wear with a single-crystal abrasive grit of silicon carbide in contact with iron base binary alloys in oil: Effects of alloying element and its content

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1979-01-01

    Sliding friction experiments were conducted with various iron-base binary alloys (alloying elements were Ti, Cr, Mn, Ni, Rh, and W) in contact with a rider of 0.025-millimeter-radius, single-crystal silicon carbide in mineral oil. Results indicate that atomic size and content of alloying element play a dominant role in controlling the abrasive-wear and -friction properties of iron-base binary alloys. The coefficient of friction and groove height (wear volume) general alloy decrease, and the contact pressure increases in solute content. There appears to be very good correlation of the solute to iron atomic radius ratio with the decreasing rate of coefficient of friction, the decreasing rate of groove height (wear volume), and the increasing rate of contact pressure with increasing solute content C. Those rates increase as the solute to iron atomic radius ratio increases from unity.

  15. Near-Edge X-ray Absorption Fine Structure Imaging of Spherical and Flat Counterfaces of Ultrananocrystalline Diamond Tribological Contacts: A Correlation of Surface Chemistry and Friction

    SciTech Connect

    A Konicek; C Jaye; M Hamilton; W Sawyer; D Fischer; R Carpick

    2011-12-31

    A recently installed synchrotron radiation near-edge X-ray absorption fine structure (NEXAFS) full field imaging electron spectrometer was used to spatially resolve the chemical changes of both counterfaces from an ultra-nanocrystalline diamond (UNCD) tribological contact. A silicon flat and Si{sub 3}N{sub 4} sphere were both coated with UNCD, and employed to form two wear tracks on the flat in a linear reciprocating tribometer. The first wear track was produced using a new, unconditioned sphere whose surface was thus conditioned during this first experiment. This led to faster run-in and lower friction when producing a second wear track using the conditioned sphere. The large depth of field of the magnetically guided NEXAFS imaging detector enabled rapid, large area spectromicroscopic imaging of both the spherical and flat surfaces. Laterally resolved NEXAFS data from the tribological contact area revealed that both substrates had an as-grown surface layer that contained a higher fraction of sp{sup 2}-bonded carbon and oxygen which was mechanically removed. Unlike the flat, the film on the sphere showed evidence of having graphitic character, both before and after sliding. These results show that the graphitic character of the sphere is not solely responsible for low friction and short run-in. Rather, conditioning the sphere, likely by removing asperities and passivating dangling bonds, leads to lower friction with less chemical modification of the substrate in subsequent tests. The new NEXAFS imaging spectroscopy detector enabled a more complete understanding of the tribological phenomena by imaging, for the first time, the surface chemistry of the spherical counterface which had been in continual contact during wear track formation.

  16. Micromachine friction test apparatus

    DOEpatents

    deBoer, Maarten P.; Redmond, James M.; Michalske, Terry A.

    2002-01-01

    A microelectromechanical (MEM) friction test apparatus is disclosed for determining static or dynamic friction in MEM devices. The friction test apparatus, formed by surface micromachining, is based on a friction pad supported at one end of a cantilevered beam, with the friction pad overlying a contact pad formed on the substrate. A first electrostatic actuator can be used to bring a lower surface of the friction pad into contact with an upper surface of the contact pad with a controlled and adjustable force of contact. A second electrostatic actuator can then be used to bend the cantilevered beam, thereby shortening its length and generating a relative motion between the two contacting surfaces. The displacement of the cantilevered beam can be measured optically and used to determine the static or dynamic friction, including frictional losses and the coefficient of friction between the surfaces. The test apparatus can also be used to assess the reliability of rubbing surfaces in MEM devices by producing and measuring wear of those surfaces. Finally, the friction test apparatus, which is small in size, can be used as an in situ process quality tool for improving the fabrication of MEM devices.

  17. Use B-factor related features for accurate classification between protein binding interfaces and crystal packing contacts

    PubMed Central

    2014-01-01

    Background Distinction between true protein interactions and crystal packing contacts is important for structural bioinformatics studies to respond to the need of accurate classification of the rapidly increasing protein structures. There are many unannotated crystal contacts and there also exist false annotations in this rapidly expanding volume of data. Previous tools have been proposed to address this problem. However, challenging issues still remain, such as low performance when the training and test data contain mixed interfaces having diverse sizes of contact areas. Methods and results B factor is a measure to quantify the vibrational motion of an atom, a more relevant feature than interface size to characterize protein binding. We propose to use three features related to B factor for the classification between biological interfaces and crystal packing contacts. The first feature is the sum of the normalized B factors of the interfacial atoms in the contact area, the second is the average of the interfacial B factor per residue in the chain, and the third is the average number of interfacial atoms with a negative normalized B factor per residue in the chain. We investigate the distribution properties of these basic features and a compound feature on four datasets of biological binding and crystal packing, and on a protein binding-only dataset with known binding affinity. We also compare the cross-dataset classification performance of these features with existing methods and with a widely-used and the most effective feature interface area. The results demonstrate that our features outperform the interface area approach and the existing prediction methods remarkably for many tests on all of these datasets. Conclusions The proposed B factor related features are more effective than interface area to distinguish crystal packing from biological binding interfaces. Our computational methods have a potential for large-scale and accurate identification of biological

  18. Characterization of Protein–Protein Interfaces through a Protein Contact Network Approach

    PubMed Central

    Di Paola, Luisa; Platania, Chiara Bianca Maria; Oliva, Gabriele; Setola, Roberto; Pascucci, Federica; Giuliani, Alessandro

    2015-01-01

    Anthrax toxin comprises three different proteins, jointly acting to exert toxic activity: a non-toxic protective agent (PA), toxic edema factor (EF), and lethal factor (LF). Binding of PA to anthrax receptors promotes oligomerization of PA, binding of EF and LF, and then endocytosis of the complex. Homomeric forms of PA, complexes of PA bound to LF and to the endogenous receptor capillary morphogenesis gene 2 (CMG2) were analyzed. In this work, we characterized protein–protein interfaces (PPIs) and identified key residues at PPIs of complexes, by means of a protein contact network (PCN) approach. Flexibility and global and local topological properties of each PCN were computed. The vulnerability of each PCN was calculated using different node removal strategies, with reference to specific PCN topological descriptors, such as participation coefficient, contact order, and degree. The participation coefficient P, the topological descriptor of the node’s ability to intervene in protein inter-module communication, was the key descriptor of PCN vulnerability of all structures. High P residues were localized both at PPIs and other regions of complexes, so that we argued an allosteric mechanism in protein–protein interactions. The identification of residues, with key role in the stability of PPIs, has a huge potential in the development of new drugs, which would be designed to target not only PPIs but also residues localized in allosteric regions of supramolecular complexes. PMID:26579512

  19. Intermixing and chemical structure at the interface between n-GaN and V-based contacts

    SciTech Connect

    Pookpanratana, S.; France, R.; Bar, M.; Weinhardt, L.; Fuchs, O.; Blum, M.; Yang, W.; Denlinger, J. D.; Moustakas, T. D.; Heske, C.

    2008-06-30

    The interface between n-type GaN and V-based contacts was characterized by soft x-ray spectroscopy. We have investigated the chemical interface structure before and after a rapid thermal annealing (RTA) step, which is crucial for the formation of an Ohmic contact. X-ray photoelectron and x-ray excited Auger electron spectra suggestthat RTA induces an accumulation of metallic Ga at the surface. Using x-ray emission spectroscopy, we find that the probed nitrogen atoms are in a VN-like environment, indicating that vanadium interacts with nitrogen atoms from the GaN to form VN.

  20. Nanotribology and Nanoscale Friction

    SciTech Connect

    Guo, Yi; Qu, Zhihua; Braiman, Yehuda; Zhang, Zhenyu; Barhen, Jacob

    2008-01-01

    Tribology is the science and technology of contacting solid surfaces in relative motion, including the study of lubricants, lubrication, friction, wear, and bearings. It is estimated that friction and wear cost the U.S. economy 6% of the gross national product (Persson, 2000). For example, 5% of the total energy generated in an automobile engine is lost to frictional resistance. The study of nanoscale friction has a technological impact in reducing energy loss in machines, in microelectromechanical systems (MEMS), and in the development of durable, low-friction surfaces and ultra-thin lubrication films.

  1. Friction and wear of single-crystal manganese-zinc ferrite

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1979-01-01

    Sliding friction experiments were conducted with single crystal manganese-zinc ferrite in contact with itself and with transition metals. Results indicate mating highest atomic density directions (110) on matched crystallographic planes exhibit the lowest coefficient of friction, indicating that direction is important in the friction behavior of ferrite. Matched parallel high atomic density planes and crystallographic directions at the interface exhibit low coefficients of friction. The coefficients of friction for ferrite in contact with various metals are related to the relative chemical activity of these metals. The more active the metal, the higher the coefficient of friction. Cracking and the formation of hexagon- and rectangular-shaped platelet wear debris due to cleavages of (110) planes are observed on the ferrite surfaces as a result of sliding.

  2. Friction and wear of single-crystal manganese-zinc ferrite

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1979-01-01

    Sliding friction experiments were conducted with single-crystal manganese-zinc ferrite in contact with itself and with transition metals. Results indicate mating highest atomic density directions (110 line type) on matched crystallographic planes exhibit the lowest coefficient of friction indicating that direction is important in the friction behavior of ferrite. Matched parallel high atomic density planes and crystallographic directions at the interface exhibit low coefficients of friction. The coefficients of friction for ferrite in contact with various metals are related to the relative chemical activity of these metals. The more active the metal, the higher the coefficient of friction. Cracking and the formation of hexagon- and rectangular-shaped platelet wear debris due to cleavages are observed on the ferrite surfaces as a result of sliding.

  3. Novel experimental methods for investigating high speed friction of titanium-aluminum-vanadium/tool steel interface and dynamic failure of extrinsically toughened DRA composites

    NASA Astrophysics Data System (ADS)

    Irfan, Mohammad Abdulaziz

    Dynamic deformation, flow, and failure are integral parts of all dynamic processes in materials. Invariably, dynamic failure also involves the relative sliding of one component of the material over the other. Advances in elucidation of these failure mechanisms under high loading rates has been of great interest to scientists working in this area. The need to develop new dynamic mechanical property tests for materials under well characterized and controllable loading conditions has always been a challenge to experimentalists. The current study focuses on the development of two experimental methods to study some aspects of dynamic material response. The first part focuses on the development of a single stage gas gun facility for investigating high-speed metal to metal interfacial friction with applications to high speed machining. During the course of this investigation a gas gun was designed and built capable of accelerating projectiles upto velocities of 1 km/s. Using this gas gun pressure-shear plate impact friction experiments were conducted to simulate conditions similar to high speed machining at the tool-workpiece interface. The impacting plates were fabricated from materials representing the tribo-pair of interest. Accurate measurements of the interfacial tractions, i.e. the normal pressure and the frictional stress at the tribo-pair interface, and the interfacial slip velocity could be made by employing laser interferometry. Normal pressures of the order of 1-2 MPa were generated and slipping velocities of the order of 50 m/s were obtained. In order to illustrate the structure of the constitutive law governing friction, the study included experimental investigation of frictional response to step changes in normal pressure and interfacial shear stress. The results of these experiments indicate that sliding resistance for Ti6Al4V/CH steel interface is much lower than measured under quasi-static sliding conditions. Also the temperature at the interface strongly

  4. Effect of formation and state of interface on joint strength in friction stir spot welding for advanced high strength steel sheets

    NASA Astrophysics Data System (ADS)

    Taniguchi, Koichi; Matsushita, Muneo; Ikeda, Rinsei; Oi, Kenji

    2014-08-01

    The tensile shear strength and cross tension strength of friction stir spot welded joints were evaluated in the cases of lap joints of 270 N/mm2 grade and 980 N/mm2 grade cold rolled steel sheets with respect to the stir zone area, hardness distribution, and interface condition between the sheets. The results suggested that both the tensile shear strength and cross tension strength were based on the stir zone area and its hardness in both grades of steel. The "hook" shape of the interface also affected the joint strength. However, the joining that occurred across the interfaces had a significant influence on the value of the joint strength in the case of the 270 N/mm2 grade steel.

  5. Aftershocks in a frictional earthquake model.

    PubMed

    Braun, O M; Tosatti, Erio

    2014-09-01

    Inspired by spring-block models, we elaborate a "minimal" physical model of earthquakes which reproduces two main empirical seismological laws, the Gutenberg-Richter law and the Omori aftershock law. Our point is to demonstrate that the simultaneous incorporation of aging of contacts in the sliding interface and of elasticity of the sliding plates constitutes the minimal ingredients to account for both laws within the same frictional model. PMID:25314453

  6. Frictional properties of lubrication greases with the addition of nickel nanoparticles in pneumatic cylinder

    NASA Astrophysics Data System (ADS)

    Chang, Ho; Lan, Chou-Wei; Guo, Jia-Bin

    2011-12-01

    This paper studies the influence of addition of 100 nm diameter nickel nano-particles on the friction properties of synthetic grease (Li base, VG100) in pneumatic cylinder. The friction force test of pneumatic cylinder equipment measures the frictional force between seal and cylinder bore in pneumatic cylinders. The lubricants with addition of nickel nano-particles were used for lubricating the contact interface between seal and cylinder bore. The friction force test equipment employ a load cell force sensor to measure the friction force between seals and cylinder bores. Results obtained from experimental tests are compared to determine the friction force between seals and cylinder bore in pneumatic cylinders. The study leads to the conclusion that the addition of nickel nano-particles to synthetic grease results in a decrease in friction force between seals and cylinder bores in pneumatic cylinder. This tribological behavior is closely related to the deposition of nano-particles on the rubbing surfaces

  7. A Diffuse Interface Method with Adaptive Mesh Refinement for Simulation of Incompressible Multi-Phase Flows with Moving Contact Lines

    NASA Astrophysics Data System (ADS)

    Sui, Yi; Spelt, Peter D. M.; Ding, Hang

    2010-11-01

    Diffuse Interface (DI) methods are employed widely for the numerical simulation of two-phase flows, even with moving contact lines. In a DI method, the interface thickness should be as thin as possible to simulate spreading phenomena under realistic flow conditions, so a fine grid is required, beyond the reach of current methods that employ a uniform grid. Here we have integrated a DI method based on a uniform mesh, to a block-based adaptive mesh refinement method, so that only the regions near the interface are resolved by a fine mesh. The performance of the present method is tested by simulations including drop deformation in shear flow, Rayleigh-Taylor instability and drop spreading on a flat surface, et al. The results show that the present method can give accurate results with much smaller computational cost, compared to the original DI method based on a uniform mesh. Based on the present method, simulation of drop spreading is carried out with Cahn number of 0.001 and the contact line region is well resolved. The flow field near the contact line, the contact line speed as well as the apparent contact angle are investigated in detail and compared with previous analytical work.

  8. Is frictional healing slip-dependent?

    NASA Astrophysics Data System (ADS)

    Bhattacharya, P.; Rubin, A. M.; Ryan, K. L.; Riviere, J. V.; Marone, C.

    2015-12-01

    Frictional re-strengthening of bare rock surfaces at very low stresses and near zero slip rate, as observed in the laboratory, is traditionally interpreted as showing support for purely time-dependent healing as embodied in the Aging law. However, while slide-hold-slide experiments on bare surfaces do show an apparent (purely) time-dependent increase in the static friction upon reslide, we show that the stress minima attained during the preceding holds show a strong slip-dependence which contradict the Aging law. A velocity strengthening Slip law explains such data much better. We also show that, large velocity step decreases, which drive the system far below steady state just like long holds, clearly support the slip-dependent response of the Slip law over the time-dependent healing contained in the Aging law. But, while time-dependent healing has an intuitive physical picture in terms of growth of the 'real contact area' with time, it is more difficult to ascribe one to slip-dependent healing. Here, we explore the possibility that the slip-dependence arises out of an interplay between contact `quality' and `quantity' at the scale of the asperity contacts. First, to further study the slip-dependence of healing, we carry out large velocity step decreases and sequences of long slide-hold-slides on both bare rock and gouge. Secondly, to probe the micro-mechanical origins of healing, we complement our mechanical data with amplitudes and travel time data of ultrasonic P- and S- waves transmitted across the sliding interface. While ultrasonic P-wave transmissivity has been used as a proxy for 'real contact area' in friction experiments by Nagata et al. (2012, 2014) before, the simultaneous use of P- and S-phases in our experiments is designed specifically to probe contact rheology. Initial results show strong correlations between changes in friction, transmitted wave amplitudes and travel times in response to changes in slip rate. We also observe important differences

  9. Friction damping of two-dimensional motion and its application in vibration control

    NASA Technical Reports Server (NTRS)

    Menq, C.-H.; Chidamparam, P.; Griffin, J. H.

    1991-01-01

    This paper presents an approximate method for analyzing the two-dimensional friction contact problem so as to compute the dynamic response of a structure constrained by friction interfaces. The friction force at the joint is formulated based on the Coulomb model. The single-term harmonic balance scheme, together with the receptance approach of decoupling the effect of the friction force on the structure from those of the external forces has been utilized to obtain the steady state response. The computational efficiency and accuracy of the method are demonstrated by comparing the results with long-term time solutions.

  10. Characterization of the metal-semiconductor interface of gold contacts on CdZnTe formed by electroless deposition

    NASA Astrophysics Data System (ADS)

    Bell, Steven J.; Baker, Mark A.; Duarte, Diana D.; Schneider, Andreas; Seller, Paul; Sellin, Paul J.; Veale, Matthew C.; Wilson, Matthew D.

    2015-06-01

    Fully spectroscopic x/γ-ray imaging is now possible thanks to advances in the growth of wide-bandgap semiconductors. One of the most promising materials is cadmium zinc telluride (CdZnTe or CZT), which has been demonstrated in homeland security, medical imaging, astrophysics and industrial analysis applications. These applications have demanding energy and spatial resolution requirements that are not always met by the metal contacts deposited on the CdZnTe. To improve the contacts, the interface formed between metal and semiconductor during contact deposition must be better understood. Gold has a work function closely matching that of high resistivity CdZnTe and is a popular choice of contact metal. Gold contacts are often formed by electroless deposition however this forms a complex interface. The prior CdZnTe surface preparation, such as mechanical or chemo-mechanical polishing, and electroless deposition parameters, such as gold chloride solution temperature, play important roles in the formation of the interface and are the subject of the presented work. Techniques such as focused ion beam (FIB) cross section imaging, transmission electron microscopy (TEM), energy dispersive x-ray spectroscopy (EDS), x-ray photoelectron spectroscopy (XPS) and current  -  voltage (I-V) analysis have been used to characterize the interface. It has been found that the electroless reaction depends on the surface preparation and for chemo-mechanically polished (1 1 1) CdZnTe, it also depends on the A/B face identity. Where the deposition occurred at elevated temperature, the deposited contacts were found to produce a greater leakage current and suffered from increased subsurface voiding due to the formation of cadmium chloride.

  11. Au nanoparticles embedded at the interface of Al/4H-SiC Schottky contacts for current density enhancement

    NASA Astrophysics Data System (ADS)

    Gorji, Mohammad Saleh; Cheong, Kuan Yew

    2015-01-01

    Nanostructured contacts, comprised of nanoparticles (NPs) embedded at the interface of contact/semiconductor, offer a viable solution in modification of Schottky barrier height (SBH) in Schottky contacts. The successful performance of devices with such nanostructured contacts requires a feasible selection of NPs/contact material based on theoretical calculations and a cost effective and reproducible route for NPs deposition. Acidification of commercially available colloidal Au NPs solution by HF has been selected here as a simple bench-top technique for deposition of Au NPs on n- and p-type 4H-SiC substrates. Theoretical calculations based on the model of inhomogeneity in SBH (ISBH) were used to make a more appropriate selection of NPs type (Au) and size (5 and 10 nm, diameter) with respect to contact metal (Al). Al/Au NPs/SiC Schottky barrier diodes were then fabricated, and their electrical characteristics exhibited current density enhancement due to the SBH lowering. The source of SBH lowering was determined to be the local electric field enhancement due to NPs effect, which was further investigated using the models of ISBH and tunneling enhancement at triple interface.

  12. Real-time deflection and friction force imaging by bimorph-based resonance-type high-speed scanning force microscopy in the contact mode

    PubMed Central

    2014-01-01

    We report herein an alternative high-speed scanning force microscopy method in the contact mode based on a resonance-type piezoelectric bimorph scanner. The experimental setup, the modified optical beam deflection scheme suitable for smaller cantilevers, and a high-speed control program for simultaneous data capture are described in detail. The feature of the method is that the deflection and friction force images of the sample surface can be obtained simultaneously in real time. Images of various samples (e.g., a test grating, a thin gold film, and fluorine-doped tin oxide-coated glass slides) are acquired successfully. The imaging rate is 25 frames per second, and the average scan speed reaches a value of approximately 2.5 cm/s. The method combines the advantages of both observing the dynamic processes of the sample surface and monitoring the frictional properties on the nanometer scale. PACS 07.79.Lh; 07.79.Sp; 68.37.Ps PMID:25593555

  13. Friction and wear of selected metals and alloys in sliding contact with AISI 440 C stainless steel in liquid methane and in liquid natural gas

    NASA Technical Reports Server (NTRS)

    Wisander, D. W.

    1978-01-01

    Aluminum, titanium, beryllium, nickel, iron, copper, and several copper alloys were run in sliding contact with AISI 440C in liquid methane and natural gas. All of the metals run except copper and the copper alloys of tin and tin-lead showed severely galled wear scars. Friction coefficients varied from 0.2 to 1.0, the lowest being for copper, copper-17 wt. % tin, and copper-8 wt. % tin-22 wt. % lead. The wear rate for copper was two orders of magnitude lower than that of the other metals run. An additional order of magnitude of wear reduction was achieved by the addition of tin and/or lead to copper.

  14. Statistics of frictional families.

    PubMed

    Shen, Tianqi; Papanikolaou, Stefanos; O'Hern, Corey S; Shattuck, Mark D

    2014-09-19

    We develop a theoretical description for mechanically stable frictional packings in terms of the difference between the total number of contacts required for isostatic packings of frictionless disks and the number of contacts in frictional packings, m=Nc0 - Nc. The saddle order m represents the number of unconstrained degrees of freedom that a static packing would possess if friction were removed. Using a novel numerical method that allows us to enumerate disk packings for each m, we show that the probability to obtain a packing with saddle order m at a given static friction coefficient μ, Pm(μ), can be expressed as a power series in μ. Using this form for Pm(μ), we quantitatively describe the dependence of the average contact number on the friction coefficient for static disk packings obtained from direct simulations of the Cundall-Strack model for all μ and N. PMID:25279647

  15. Barrier height determination on Schottky contacts formed at the back contact-semiconductor interface of degraded solar cells

    NASA Technical Reports Server (NTRS)

    Misiakos, K.; Lathrop, J. W.

    1984-01-01

    A method is described of determining an equivalent circuit for solar cells which have degraded as a result of the formation of a rectifying Schottky barrier at the back contact. An excellent fit of experimental data has been achieved using SCEPTRE with an equivalent circuit derived from the shape of the measured current voltage characteristics. One key parameter of the Schottky barrier diode, the reverse saturation current, can be used to determine the barrier potential. The barrier potential increases as the cell is stressed with 0.5 volts being a typical experimentally determined value for a degraded cell.

  16. Barrier height determination on Schottky contacts formed at the back contact-semiconductor interface of degraded solar cells

    NASA Astrophysics Data System (ADS)

    Misiakos, K.; Lathrop, J. W.

    A method is described of determining an equivalent circuit for solar cells which have degraded as a result of the formation of a rectifying Schottky barrier at the back contact. An excellent fit of experimental data has been achieved using SCEPTRE with an equivalent circuit derived from the shape of the measured current voltage characteristics. One key parameter of the Schottky barrier diode, the reverse saturation current, can be used to determine the barrier potential. The barrier potential increases as the cell is stressed with 0.5 volts being a typical experimentally determined value for a degraded cell.

  17. Schottky barrier heights at the interfaces between pure-phase InAs nanowires and metal contacts

    NASA Astrophysics Data System (ADS)

    Feng, Boyong; Huang, Shaoyun; Wang, Jiyin; Pan, Dong; Zhao, Jianghua; Xu, H. Q.

    2016-02-01

    Understanding of the Schottky barriers formed at metal contact-InAs nanowire interfaces is of great importance for the development of high-performance InAs nanowire nanoelectronic and quantum devices. Here, we report a systematical study of InAs nanowire field-effect transistors (FETs) and the Schottky barrier heights formed at the contact-nanowire interfaces. The InAs nanowires employed are grown by molecular beam epitaxy and are high material quality single crystals, and the devices are made by directly contacting the nanowires with a series of metals of different work functions. The fabricated InAs nanowire FET devices are characterized by electrical measurements at different temperatures and the Schottky barrier heights are extracted from the measured temperature and gate-voltage dependences of the channel current. We show that although the work functions of the contact metals are widely spread, the Schottky barrier heights are determined to be distributed over 35-55 meV, showing a weak but not negligible dependence on the metals. The deduced Fermi level in the InAs nanowire channels is found to be in the band gap and very close to the conduction band. The physical origin of the results is discussed in terms of Fermi level pinning by the surface states of the InAs nanowires and a shift in pinned Fermi level induced by the metal-related interface states.

  18. An optical sensor for detecting the contact location of a gas-liquid interface on a body

    NASA Astrophysics Data System (ADS)

    Belden, Jesse; Jandron, Michael

    2014-08-01

    An optical sensor for detecting the dynamic contact location of a gas-liquid interface along the length of a body is described. The sensor is developed in the context of applications to supercavitating bodies requiring measurement of the dynamic cavity contact location; however, the sensing method is extendable to other applications as well. The optical principle of total internal reflection is exploited to detect changes in refractive index of the medium contacting the body at discrete locations along its length. The derived theoretical operation of the sensor predicts a signal attenuation of 18 dB when a sensed location changes from air-contacting to water-contacting. Theory also shows that spatial resolution (d) scales linearly with sensor length (Ls) and a resolution of 0.01Ls can be achieved. A prototype sensor is constructed from simple components and response characteristics are quantified for different ambient light conditions as well as partial wetting states. Three methods of sensor calibration are described and a signal processing framework is developed that allows for robust detection of the gas-liquid contact location. In a tank draining experiment, the prototype sensor resolves the water level with accuracy limited only by the spatial resolution, which is constrained by the experimental setup. A more representative experiment is performed in which the prototype sensor accurately measures the dynamic contact location of a gas cavity on a water tunnel wall.

  19. An optical sensor for detecting the contact location of a gas-liquid interface on a body.

    PubMed

    Belden, Jesse; Jandron, Michael

    2014-08-01

    An optical sensor for detecting the dynamic contact location of a gas-liquid interface along the length of a body is described. The sensor is developed in the context of applications to supercavitating bodies requiring measurement of the dynamic cavity contact location; however, the sensing method is extendable to other applications as well. The optical principle of total internal reflection is exploited to detect changes in refractive index of the medium contacting the body at discrete locations along its length. The derived theoretical operation of the sensor predicts a signal attenuation of 18 dB when a sensed location changes from air-contacting to water-contacting. Theory also shows that spatial resolution (d) scales linearly with sensor length (L(s)) and a resolution of 0.01L(s) can be achieved. A prototype sensor is constructed from simple components and response characteristics are quantified for different ambient light conditions as well as partial wetting states. Three methods of sensor calibration are described and a signal processing framework is developed that allows for robust detection of the gas-liquid contact location. In a tank draining experiment, the prototype sensor resolves the water level with accuracy limited only by the spatial resolution, which is constrained by the experimental setup. A more representative experiment is performed in which the prototype sensor accurately measures the dynamic contact location of a gas cavity on a water tunnel wall. PMID:25173325

  20. Adhesion and friction of thin metal films

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1976-01-01

    Sliding friction experiments were conducted in vacuum with thin films of titanium, chromium, iron, and platinum sputter deposited on quartz or mica substrates. A single crystal hemispherically tipped gold slider was used in contact with the films at loads of 1.0 to 30.0 and at a sliding velocity of 0.7 mm/min at 23 C. Test results indicate that the friction coefficient is dependent on the adhesion of two interfaces, that between the film and its substrate and the slider and the film. There exists a relationship between the percent d bond character of metals in bulk and in thin film form and the friction coefficient. Oxygen can increase adhesive bonding of a metal film (platinum) to a substrate.

  1. In search of quantum-limited contact resistance: understanding the intrinsic and extrinsic effects on the graphene–metal interface

    NASA Astrophysics Data System (ADS)

    Nath, Anindya; Currie, Marc; Boyd, Anthony K.; Wheeler, Virginia D.; Koehler, Andrew D.; Tadjer, Marko J.; Robinson, Zachary R.; Sridhara, Karthik; Hernandez, Sandra C.; Wollmershauser, James A.; Robinson, Jeremy T.; Myers-Ward, Rachael L.; Rao, Mulpuri V.; Gaskill, D. Kurt

    2016-06-01

    Owing to its two-dimensional structure, graphene is extremely sensitive to surface contamination. Conventional processing techniques inevitably modify graphene’s intrinsic properties by introducing adsorbents and/or defects which limit device performance and understanding the intrinsic properties of graphene. Here we demonstrate femtosecond laser direct patterning of graphene microstructures, without the aid of resists or other chemicals, that enables us to study both intrinsic and extrinsic effects on the graphene–metal interface. The pulsed femtosecond laser was configured to ablate epitaxial graphene (EG) on a sub-micrometer scale and form a precisely defined region without damaging the surrounding material or substrate. The ablated area was sufficient to electrically isolate transfer length measurement structures and Hall devices for subsequent transport measurements. Using pristine and systematically contaminated surfaces, we found that Ni does not form bonds to EG synthesized on SiC in contrast to the well-known C–Ni bond formation for graphene synthesized on metals; known as end-contacting. Without end-contacting, the contact resistance (R C) of Ni to pristine and resist-contaminated EG are one and two orders of magnitude larger, respectively, than the intrinsic quantum limited contact resistance. The range of reported R C values is explained using carrier transmission probability, as exemplified by the Landauer–Büttiker model, which is dependent on the presence or absence of end-contacts and dopant/work-function mediated conduction. The model predicts the need for both end-contacts and a clean graphene–metal interface as necessary conditions to approach quantum limited contact resistance.

  2. The frictional response of patterned soft polymer surfaces

    NASA Astrophysics Data System (ADS)

    Rand, Charles J.

    2008-10-01

    Friction plays an intricate role in our everyday lives, it is therefore critical to understand the underlying features of friction to better help control and manipulate the response anywhere two surfaces in contact move past each other by a sliding motion. Here we present results targeting a thorough understanding of soft material friction and how it can be manipulated with patterns. We found that the naturally occurring length scale or periodicity (lambda) of frictionally induced patterns, Schallamach waves, could be described using two materials properties (critical energy release rate Gc and complex modulus (E*), i.e. lambdainfinity Gc /E*). Following this, we evaluated the effect of a single defect at a sliding interface. Sliding over a defect can be used to model the sliding from one feature to another in a patterned surface. Defects decreased the sliding frictional force by as much as 80% sliding and this decrease was attributed to changes in tangential stiffness of the sliding interface. The frictional response of surface wrinkles, where multiple edges or defects are acting in concert, was also evaluated. Wrinkles were shown to decrease friction (F) and changes in contact area (A) could not describe this decrease. A tangential stiffness correction factor (fx) and changes in the critical energy release rate were used to describe this deviation (F infinity Gc *A*fx/ℓ, where ℓ is a materials defined length scale of dissipation). This scaling can be used to describe the friction of any topographically patterned surface including the Gecko's foot, where the feature size is smaller than ℓ and thus replaces ℓ, increasing the friction compared to a flat surface. Also, mechanically-induced surface defects were used to align osmotically driven surface wrinkles by creating stress discontinuities that convert the global biaxial stress state to local uniaxial stresses. Defect spacing was used to control the alignment process at the surface of the wrinkled rigid

  3. Is internal friction friction?

    USGS Publications Warehouse

    Savage, J.C.; Byerlee, J.D.; Lockner, D.A.

    1996-01-01

    Mogi [1974] proposed a simple model of the incipient rupture surface to explain the Coulomb failure criterion. We show here that this model can plausibly be extended to explain the Mohr failure criterion. In Mogi's model the incipient rupture surface immediately before fracture consists of areas across which material integrity is maintained (intact areas) and areas across which it is not (cracks). The strength of the incipient rupture surface is made up of the inherent strength of the intact areas plus the frictional resistance to sliding offered by the cracked areas. Although the coefficient of internal friction (slope of the strength versus normal stress curve) depends upon both the frictional and inherent strengths, the phenomenon of internal friction can be identified with the frictional part. The curvature of the Mohr failure envelope is interpreted as a consequence of differences in damage (cracking) accumulated in prefailure loading at different confining pressures.

  4. Development and Integration of Single-Asperity Nanotribology Experiments & Nanoscale Interface Finite Element Modeling for Prediction and Control of Friction and Damage in Micro- and Nano-mechnical Systems

    SciTech Connect

    R.W. Carpick; M.E. Plesha

    2007-03-03

    This report describes the accomplishments of the DOE BES grant entitled "Development and Integration of Single-Asperity Nanotribology Experiments & Nanoscale Interface Finite Element Modeling for Prediction and Control of Friction and Damage in Micro- and Nano-mechnical Systems". Key results are: the determination of nanoscale frictional properties of MEMS surfaces, self-assembled monolayers, and novel carbon-based films, as well as the development of models to describe this behavior.

  5. Microstructural Characterization of the U-9.1Mo Fuel/AA6061 Cladding Interface in Friction-Bonded Monolithic Fuel Plates Irradiated in the RERTR-6 Experiment

    NASA Astrophysics Data System (ADS)

    Keiser, Dennis D.; Jue, Jan-Fong; Miller, Brandon; Gan, Jian; Robinson, Adam; Medvedev, Pavel; Madden, James; Wachs, Dan; Clark, Curtis; Meyer, Mitch

    2015-09-01

    Low-enrichment (235U < 20 pct) U-Mo monolithic fuel is being developed for use in research and test reactors. The earliest design for this fuel that was investigated via reactor testing consisted of a nominally U-10Mo fuel foil encased in AA6061 (Al-6061) cladding. For a fuel design to be deemed adequate for final use in a reactor, it must maintain dimensional stability and retain fission products throughout irradiation, which means that there must be good integrity at the fuel foil/cladding interface. To investigate the nature of the fuel/cladding interface for this fuel type after irradiation, fuel plates were fabricated using a friction bonding process, tested in INL's advanced test reactor (ATR), and then subsequently characterized using optical metallography, scanning electron microscopy, and transmission electron microscopy. Results of this characterization showed that the fuel/cladding interaction layers present at the U-Mo fuel/AA6061 cladding interface after fabrication became amorphous during irradiation. Up to two main interaction layers, based on composition, could be found at the fuel/cladding interface, depending on location. After irradiation, an Al-rich layer contained very few fission gas bubbles, but did exhibit Xe enrichment near the AA6061 cladding interface. Another layer, which contained more Si, had more observable fission gas bubbles. In the samples produced using a focused ion beam at the interaction zone/AA6061 cladding interface, possible indications of porosity/debonding were found, which suggested that the interface in this location is relatively weak.

  6. Thermal contact conductance of metallic coated BiCaSrCuO superconductor/copper interfaces at cryogenic temperatures

    NASA Astrophysics Data System (ADS)

    Ochterbeck, J. M.; Peterson, G. P.; Fletcher, L. S.

    1992-02-01

    The effects of vapor deposited coatings on the thermal contact conductance of cold pressed, normal state BiCaSrCuO superconductor/oxygen-free copper interfaces were experimentally investigated over a pressure range of 200 to 2000 kPa. Using traditional vapor deposition processes, thin coatings of indium or lead were applied to the superconductor material to determine the effect on the heat transfer occurring at the interface. The test data indicate that the contact conductance can be enhanced using these coatings, with indium providing the greater enhancement. The experimental program revealed the need for a better understanding and control of the vapor deposition process when using soft metallic coatings. Also, the temperature-dependent microhardness of copper was experimentally determined and found to increase by approximately 35 percent as the temperature decreased from 300 to 85 K. An empirical model was developed to predict the effect of soft coatings on the thermal contact conductance of the superconductor/copper interfaces. When applied, the model agreed well with the data obtained in this investigation at low coating thicknesses but overpredicted the data as the thickness increased. In addition, the model agreed very well with data obtained in a previous investigation for silver-coated nickel substrates at all coating thicknesses.

  7. Thermal contact conductance of metallic coated BiCaSrCuO superconductor/copper interfaces at cryogenic temperatures

    SciTech Connect

    Ochterbeck, J.M.; Peterson, G.P.; Fletcher, L.S. )

    1992-02-01

    The effects of vapor deposited coatings on the thermal contact conductance of cold pressed, normal state BiCaSrCuO superconductor/oxygen-free copper interfaces were experimentally investigated over a pressure range of 200 to 2,000 kPa. Using traditional vapor deposition processes, thin coatings of indium or lead were applied to the superconductor material to determine the effect on the heat transfer occurring at the interface. The test data indicate that the contact conductance can be enhanced using these coatings, with indium providing the greater enhancement. The experimental program revealed the need for a better understanding and control of the vapor deposition process when using soft metallic coatings. Also, the temperature-dependent microhardness of copper was experimentally determined and found to increase by approximately 35 percent as the temperature decreased from 300 to 85 K. An empirical model was developed to predict the effect of soft coatings on the thermal contact conductance of the superconductor/copper interfaces. When applied, the model agreed well with the data obtained in this investigation at low coating thicknesses but overpredicted the data as the thickness increased. In addition, the model agreed very well with data obtained in a previous investigation for silvercoated nickel substrates at all coating thicknesses.

  8. Selection and Evaluation of Thermal Interface Materials for Reduction of the Thermal Contact Resistance of Thermoelectric Generators

    NASA Astrophysics Data System (ADS)

    Sakamoto, Tatsuya; Iida, Tsutomu; Sekiguchi, Takeshi; Taguchi, Yutaka; Hirayama, Naomi; Nishio, Keishi; Takanashi, Yoshifumi

    2014-10-01

    A variety of thermal interface materials (TIMs) were investigated to find a suitable TIM for improving the performance of thermoelectric power generators (TEGs) operating in the medium-temperature range (600-900 K). The thermal resistance at the thermal interface between which the TIM was inserted was evaluated. The TIMs were chosen on the basis of their thermal stability when used with TEGs operating at medium temperatures, their electrical insulating properties, their thermal conductivity, and their thickness. The results suggest that the boron nitride (BN)-based ceramic coating, Whity Paint, and the polyurethane-based sheet, TSU700-H, are suitable TIMs for the heat source and heat sink sides, respectively, of the TEG. Use of these effectively enhances TEG performance because they reduce the thermal contact resistance at the thermal interface.

  9. Induction of Electrode-Cellular Interfaces with ˜ 0.05 μm^2 Contact Areas

    NASA Astrophysics Data System (ADS)

    Flanders, Bret; Thapa, Prem

    2009-10-01

    Individual cells of the slime mold Dictyostelium discoideum attach themselves to negatively biased nanoelectrodes that are separated by 30 μm from grounded electrodes. There is a -43 mV voltage-threshold for cell-to-electrode attachment, with negligible probability across the 0 to -38 mV range but probability that approaches 0.7 across the -46 to -100 mV range. A cell initiates contact by extending a pseudopod to the electrode and maintains contact until the voltage is turned off. Scanning electron micrographs of these interfaces show the contact areas to be of the order of 0.05 μm^2. Insight into this straight-forward, reproducible process may lead to new electrode-cellular attachment strategies that complement established approaches, such as blind sampling and patch clamp.

  10. Strongly Modulated Friction of a Film-Terminated Ridge-Channel Structure

    NASA Astrophysics Data System (ADS)

    He, Zhenping; Hui, Chung-Yuen; Levrard, Benjamin; Bai, Ying; Jagota, Anand

    2016-05-01

    Natural contacting surfaces have remarkable surface mechanical properties, which has led to the development of bioinspired surface structures using rubbery materials with strongly enhanced adhesion and static friction. However, sliding friction of structured rubbery surfaces is almost always significantly lower than that of a flat control, often due to significant loss of contact. Here we show that a film-terminated ridge-channel structure can strongly enhance sliding friction. We show that with properly chosen materials and geometrical parameters the near surface structure undergoes mechanical instabilities along with complex folding and sliding of internal interfaces, which is responsible for the enhancement of sliding friction. Because this structure shows no enhancement of adhesion under normal indentation by a sphere, it breaks the connection between energy loss during normal and shear loading. This makes it potentially interesting in many applications, for instance in tires, where one wishes to minimize rolling resistance (normal loading) while maximizing sliding friction (shear loading).

  11. Strongly Modulated Friction of a Film-Terminated Ridge-Channel Structure.

    PubMed

    He, Zhenping; Hui, Chung-Yuen; Levrard, Benjamin; Bai, Ying; Jagota, Anand

    2016-01-01

    Natural contacting surfaces have remarkable surface mechanical properties, which has led to the development of bioinspired surface structures using rubbery materials with strongly enhanced adhesion and static friction. However, sliding friction of structured rubbery surfaces is almost always significantly lower than that of a flat control, often due to significant loss of contact. Here we show that a film-terminated ridge-channel structure can strongly enhance sliding friction. We show that with properly chosen materials and geometrical parameters the near surface structure undergoes mechanical instabilities along with complex folding and sliding of internal interfaces, which is responsible for the enhancement of sliding friction. Because this structure shows no enhancement of adhesion under normal indentation by a sphere, it breaks the connection between energy loss during normal and shear loading. This makes it potentially interesting in many applications, for instance in tires, where one wishes to minimize rolling resistance (normal loading) while maximizing sliding friction (shear loading). PMID:27226233

  12. Strongly Modulated Friction of a Film-Terminated Ridge-Channel Structure

    PubMed Central

    He, Zhenping; Hui, Chung-Yuen; Levrard, Benjamin; Bai, Ying; Jagota, Anand

    2016-01-01

    Natural contacting surfaces have remarkable surface mechanical properties, which has led to the development of bioinspired surface structures using rubbery materials with strongly enhanced adhesion and static friction. However, sliding friction of structured rubbery surfaces is almost always significantly lower than that of a flat control, often due to significant loss of contact. Here we show that a film-terminated ridge-channel structure can strongly enhance sliding friction. We show that with properly chosen materials and geometrical parameters the near surface structure undergoes mechanical instabilities along with complex folding and sliding of internal interfaces, which is responsible for the enhancement of sliding friction. Because this structure shows no enhancement of adhesion under normal indentation by a sphere, it breaks the connection between energy loss during normal and shear loading. This makes it potentially interesting in many applications, for instance in tires, where one wishes to minimize rolling resistance (normal loading) while maximizing sliding friction (shear loading). PMID:27226233

  13. Numerical Simulation of Nonlinear Ultrasonic Waves Due to Bi-material Interface Contact

    NASA Astrophysics Data System (ADS)

    Hirose, S.; Saitoh, T.

    2014-06-01

    Boundary integral equations are formulated to investigate nonlinear waves generated by a debonding interface of bi-material subjected to an incident plane wave. For the numerical simulation, the IRK (Implicit Runge-Kutta method) based CQ-BEM (Convolution Quadrature-Boundary Element Method) is developed. The interface conditions for a debonding area, consisting of three phases of separation, stick, and slip, are developed for the simulation of nonlinear ultrasonic waves. Numerical results are obtained and discussed for normal incidence of a plane longitudinal wave onto the nonlinear interface with a static compressive stress.

  14. Friction and hardness of gold films deposited by ion plating and evaporation

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Spalvins, T.; Buckley, D. H.

    1983-01-01

    Sliding friction experiments were conducted with ion-plated and vapor-deposited gold films on various substrates in contact with a 0.025-mm-radius spherical silicon carbide rider in mineral oil. Hardness measurements were also made to examine the hardness depth profile of the coated gold on the substrate. The results indicate that the hardness is influenced by the depth of the gold coating from the surface. The hardness increases with an increase in the depth. The hardness is also related to the composition gradient in the graded interface between the gold coating and the substrate. The graded interface exhibited the highest hardness resulting from an alloy hardening effect. The coefficient of friction is inversely related to the hardness, namely, the load carrying capacity of the surface. The greater the hardness that the metal surface possesses, the lower is the coefficient of friction. The graded interface exhibited the lowest coefficient of friction.

  15. Fast contact of solid-liquid interface created high strength multi-layered cellulose hydrogels with controllable size.

    PubMed

    He, Meng; Zhao, Yanteng; Duan, Jiangjiang; Wang, Zhenggang; Chen, Yun; Zhang, Lina

    2014-02-12

    Novel onion-like and multi-layered tubular cellulose hydrogels were constructed, for the first time, from the cellulose solution in a 7% NaOH/12% urea aqueous solvent by changing the shape of the gel cores. In our findings, the contacting of the cellulose solution with the surface of the agarose gel rod or sphere loaded with acetic acid led to the close chain packing to form immediately a gel layer, as a result of the destruction of the cellulose inclusion complex by acid through inducing the cellulose self-aggregation. Subsequently, multi-layered cellulose hydrogels were fabricated via a multi-step interrupted gelation process. The size, layer thickness and inter-layer space of the multi-layered hydrogels could be controlled by adjusting the cellulose concentrations, the gel core diameter and the contacting time of the solid-liquid interface. The multi-layered cellulose hydrogels displayed good architectural stability and solvent resistance. Moreover, the hydrogels exhibited high compressive strength and excellent biocompatibility. L929 cells could adhere and proliferate on the surface of the layers and in interior space, showing great potential as tissue engineering scaffolds and cell culture carrier. This work opens up a new avenue for the construction of the high strength multi-layered cellulose hydrogels formed from inner to outside via a fast contact of solid-liquid interface. PMID:24405277

  16. Friction at small displacement.

    NASA Technical Reports Server (NTRS)

    Campbell, W. E.; Aronstein, J.

    1972-01-01

    Low contact resistance between metal surfaces is often observed in spite of interposed lubricant and/or oxide films. To study this effect an apparatus is used with which normal force and tangential microdisplacement are applied between a small lead rider and a gold flat with various surface film conditions. Under nonoxidized and nonlubricated conditions, and with either oxide or stearic acid lubricant film alone, friction is high and contact resistance is low. With oxide and lubricant together, friction is much lower and slide is smooth, but contact resistance remains low and Ohm's law is obeyed. The results are consistent with Greenwood's theory of contact resistance for a cluster of minute metallic contact spots within the load-supporting area. The contact resistance of such a cluster is indistinguishable, for practical purposes, from that given by complete metallic contact.

  17. An Alternative Frictional Boundary Condition for Computational Fluid Dynamics Simulation of Friction Stir Welding

    NASA Astrophysics Data System (ADS)

    Chen, Gaoqiang; Feng, Zhili; Zhu, Yucan; Shi, Qingyu

    2016-07-01

    For better application of numerical simulation in optimization and design of friction stir welding (FSW), this paper presents a new frictional boundary condition at the tool/workpiece interface for computational fluid dynamics (CFD) modeling of FSW. The proposed boundary condition is based on an implementation of the Coulomb friction model. Using the new boundary condition, the CFD simulation yields non-uniform distribution of contact state over the tool/workpiece interface, as validated by the experimental weld macrostructure. It is found that interfacial sticking state is present over large area at the tool-workpiece interface, while significant interfacial sliding occurs at the shoulder periphery, the lower part of pin side, and the periphery of pin bottom. Due to the interfacial sticking, a rotating flow zone is found under the shoulder, in which fast circular motion occurs. The diameter of the rotating flow zone is smaller than the shoulder diameter, which is attributed to the presence of the interfacial sliding at the shoulder periphery. For the simulated welding condition, the heat generation due to friction and plastic deformation makes up 54.4 and 45.6% of the total heat generation rate, respectively. The simulated temperature field is validated by the good agreement to the experimental measurements.

  18. The influence of fault geometry and frictional contact properties on slip surface behavior and off-fault damage: insights from quasi-static modeling of small strike-slip faults from the Sierra Nevada, CA

    NASA Astrophysics Data System (ADS)

    Ritz, E.; Pollard, D. D.

    2011-12-01

    Geological and geophysical investigations demonstrate that faults are geometrically complex structures, and that the nature and intensity of off-fault damage is spatially correlated with geometric irregularities of the slip surfaces. Geologic observations of exhumed meter-scale strike-slip faults in the Bear Creek drainage, central Sierra Nevada, CA, provide insight into the relationship between non-planar fault geometry and frictional slip at depth. We investigate natural fault geometries in an otherwise homogeneous and isotropic elastic material with a two-dimensional displacement discontinuity method (DDM). Although the DDM is a powerful tool, frictional contact problems are beyond the scope of the elementary implementation because it allows interpenetration of the crack surfaces. By incorporating a complementarity algorithm, we are able to enforce appropriate contact boundary conditions along the model faults and include variable friction and frictional strength. This tool allows us to model quasi-static slip on non-planar faults and the resulting deformation of the surrounding rock. Both field observations and numerical investigations indicate that sliding along geometrically discontinuous or irregular faults may lead to opening of the fault and the formation of new fractures, affecting permeability in the nearby rock mass and consequently impacting pore fluid pressure. Numerical simulations of natural fault geometries provide local stress fields that are correlated to the style and spatial distribution of off-fault damage. We also show how varying the friction and frictional strength along the model faults affects slip surface behavior and consequently influences the stress distributions in the adjacent material.

  19. Use of separate ZnTe interface layers to form ohmic contacts to p-CdTe films

    DOEpatents

    Gessert, T.A.

    1999-06-01

    A method of is disclosed improving electrical contact to a thin film of a p-type tellurium-containing II-VI semiconductor comprising: depositing a first undoped layer of ZnTe on a thin film of p-type tellurium containing II-VI semiconductor with material properties selected to limit the formation of potential barriers at the interface between the p-CdTe and the undoped layer, to a thickness sufficient to control diffusion of the metallic-doped ZnTe into the p-type tellurium-containing II-VI semiconductor, but thin enough to minimize affects of series resistance; depositing a second heavy doped p-type ZnTe layer to the first layer using an appropriate dopant; and depositing an appropriate metal onto the outer-most surface of the doped ZnTe layer for connecting an external electrical conductor to an ohmic contact. 11 figs.

  20. Use of separate ZnTe interface layers to form OHMIC contacts to p-CdTe films

    DOEpatents

    Gessert, Timothy A.

    1999-01-01

    A method of improving electrical contact to a thin film of a p-type tellurium-containing II-VI semiconductor comprising: depositing a first undoped layer of ZnTe on a thin film of p-type tellurium containing II-VI semiconductor with material properties selected to limit the formation of potential barriers at the interface between the p-CdTe and the undoped layer, to a thickness sufficient to control diffusion of the metallic-doped ZnTe into the p-type tellurim-containing II-VI semiconductor, but thin enough to minimize affects of series resistance; depositing a second heavy doped p-type ZnTe layer to the first layer using an appropriate dopant; and depositing an appropriate metal onto the outer-most surface of the doped ZnTe layer for connecting an external electrical conductor to an ohmic contact.

  1. Low interfacial contact resistance of Al-graphene composites via interface engineering

    NASA Astrophysics Data System (ADS)

    Hahm, Myung Gwan; Nam, Jaewook; Choi, Minseok; Park, Chi-Dong; Cho, Byungjin; Kazunori, Sanada; Ahm Kim, Yoong; Kim, Dong Young; Endo, Morinobu; Kim, Dong-Ho; Vajtai, Robert; Ajayan, Pulickel M.; Moo Song, Sung

    2015-05-01

    Al-based composites incorporating multilayered graphene sheets were developed via a facile approach. The multilayered graphene sheets were fabricated from the expanded graphite via a simple mechanical exfoliation process. The facile extrusion molding process with Al powder and graphene sheets exfoliated from expended graphite afforded Al-based graphene composite rods. These composites showed enhanced thermal conductivity compared to the pristine Al rods. Moreover, the Al-based multilayered graphene sheet composites exhibited lower interfacial contact resistance between graphene-based electrodes than the pristine Al. With increasing degrees of dispersion, the number of exposed graphene sheets increases, thereby significantly decreasing the interfacial contact resistance between the composite and external graphite electrode.

  2. Scalar model for frictional precursors dynamics.

    PubMed

    Taloni, Alessandro; Benassi, Andrea; Sandfeld, Stefan; Zapperi, Stefano

    2015-01-01

    Recent experiments indicate that frictional sliding occurs by nucleation of detachment fronts at the contact interface that may appear well before the onset of global sliding. This intriguing precursory activity is not accounted for by traditional friction theories but is extremely important for friction dominated geophysical phenomena as earthquakes, landslides or avalanches. Here we simulate the onset of slip of a three dimensional elastic body resting on a surface and show that experimentally observed frictional precursors depend in a complex non-universal way on the sample geometry and loading conditions. Our model satisfies Archard's law and Amontons' first and second laws, reproducing with remarkable precision the real contact area dynamics, the precursors' envelope dynamics prior to sliding, and the normal and shear internal stress distributions close to the interfacial surface. Moreover, it allows to assess which features can be attributed to the elastic equilibrium, and which are attributed to the out-of-equilibrium dynamics, suggesting that precursory activity is an intrinsically quasi-static physical process. A direct calculation of the evolution of the Coulomb stress before and during precursors nucleation shows large variations across the sample, explaining why earthquake forecasting methods based only on accumulated slip and Coulomb stress monitoring are often ineffective. PMID:25640079

  3. Scalar model for frictional precursors dynamics

    PubMed Central

    Taloni, Alessandro; Benassi, Andrea; Sandfeld, Stefan; Zapperi, Stefano

    2015-01-01

    Recent experiments indicate that frictional sliding occurs by nucleation of detachment fronts at the contact interface that may appear well before the onset of global sliding. This intriguing precursory activity is not accounted for by traditional friction theories but is extremely important for friction dominated geophysical phenomena as earthquakes, landslides or avalanches. Here we simulate the onset of slip of a three dimensional elastic body resting on a surface and show that experimentally observed frictional precursors depend in a complex non-universal way on the sample geometry and loading conditions. Our model satisfies Archard's law and Amontons' first and second laws, reproducing with remarkable precision the real contact area dynamics, the precursors' envelope dynamics prior to sliding, and the normal and shear internal stress distributions close to the interfacial surface. Moreover, it allows to assess which features can be attributed to the elastic equilibrium, and which are attributed to the out-of-equilibrium dynamics, suggesting that precursory activity is an intrinsically quasi-static physical process. A direct calculation of the evolution of the Coulomb stress before and during precursors nucleation shows large variations across the sample, explaining why earthquake forecasting methods based only on accumulated slip and Coulomb stress monitoring are often ineffective. PMID:25640079

  4. Molecular dynamics of the P450cam-Pdx complex reveals complex stability and novel interface contacts.

    PubMed

    Hollingsworth, Scott A; Poulos, Thomas L

    2015-01-01

    Cytochrome P450cam catalyzes the stereo and regiospecific hydroxylation of camphor to 5-exo-hydroxylcamphor. The two electrons for the oxidation of camphor are provided by putidaredoxin (Pdx), a Fe2 S2 containing protein. Two recent crystal structures of the P450cam-Pdx complex, one solved with the aid of covalent cross-linking and one without, have provided a structural picture of the redox partner interaction. To study the stability of the complex structure and the minor differences between the recent crystal structures, a 100 nanosecond molecular dynamics (MD) simulation of the cross-linked structure, mutated in silico to wild type and the linker molecule removed, was performed. The complex was stable over the course of the simulation though conformational changes including the movement of the C helix of P450cam further toward Pdx allowed for the formation of a number of new contacts at the complex interface that remained stable throughout the simulation. While several minor crystal contacts were lost in the simulation, all major contacts that had been experimentally studied previously were maintained. The equilibrated MD structure contained a mixture of contacts resembling both the cross-linked and noncovalent structures and the newly identified interactions. Finally, the reformation of the P450cam Asp251-Arg186 ion pair in the MD simulation mirrors the ion pair observed in the more promiscuous CYP101D1 and suggests that the Asp251-Arg186 ion pair may be important. PMID:25307478

  5. Characterization of plasma etching induced interface states at Ti/p-SiGe Schottky contacts

    SciTech Connect

    Mamor, M.; Sellai, A.

    2008-07-15

    The authors have used current-voltage (I-V) data measured over a wide temperature range (100-300 K) complemented by deep level transient spectroscopy (DLTS) for the assessment of the defects introduced in Si{sub 0.95}Ge{sub 0.05} by argon plasma sputter etching. From DLTS, defect concentration depth profiling was extracted and revealed that the main defect introduced during argon plasma sputtering is located very close to the surface. I-V-T analysis shows that the electrical characteristics deviated from the ideal case and indicate the presence of interface states, resulting from the plasma etching induced surface states at Ti/Si{sub 0.95}Ge{sub 0.05} interface. The interface state density as well as its temperature dependence were obtained from forward bias I-V-T measurements by considering the bias dependence of effective barrier height {phi}{sub e}. It is found that interface states density is temperature dependent although weakly.

  6. Thermal contact resistance for a CU/G-10CR interface in a cylindrical geometry

    SciTech Connect

    Phelan, P.E.; Niemann, R.C.; Nicol, T.H.

    1996-07-01

    A major component of a high-T[sub c] superconductor current lead designed to provide current to low-T[sub c] superconductor magnets is the heat intercept connection, which is a cylindrical structure consisting of an inner Cu disk, a thin-walled G-10CR composite tube, and an outer Cu ring, assembled by a thermal interference fit. It was determined in a previous study that the thermal contact resistance (R[sub c]) between the composite tube and the two Cu pieces contributed a substantial portion of the total thermal resistance between the inner and outer Cu pieces. This report emphasizes the analysis of the data for the third and final design of the heat intercept connection. In particular, it is found that R[sub c] decreases dramatically with increasing heat flux, a result consistent with earlier studies of composite cylinders. However, for the present data, the thermal contact conductance [=1/R{sub c}]varies with the calculated contact pressure with a power-law exponent of approximately 10, as compared to a theoretical value near 1. In addition, the presence of He or N[sub 2] gas substantially reduces R [sub c] even though the contacting surfaces are coated with a thermal grease.

  7. Organic transistors fabricated by contact coating at liquid-solid interface for nano-structures

    NASA Astrophysics Data System (ADS)

    Cheng, Yu-Wen; Chen, Chao-Hsuan; Meng, Hsin-Fei; Zan, Hsiao-Wen; Chao, Yu-Chiang; Horng, Sheng-Fu

    2015-10-01

    A contact coating method is developed to cover the nano-channels with 100 nm or 200 nm diameter and 400 nm depth with a poly(4-vinylphenol) (PVP). In such coating the nano-channels faces downwards and its vertical position is controlled by a motor. The surface is first lowered to be in immediate contact with the polyvinylpyrrolidone (PVPY) water solution with concentration from 1 to 5 wt%, then pulled at the speed of 0.004 to 0.4 mm/s. By tuning the pulling speed and concentration we can realize conformal, filled, top-only, as well as floating film morphology. For a reproducible liquid detachment from the solid, the sample has a small tilt angle of 3 degree. Contact coating is used to cover the Al grid base of the vertical space-charge-limited transistor with PVPY. Poly(3-hexylthiophene-2,5-diyl) (P3HT) as the semiconductor. The transistor breakdown voltage is raised due to base coverage achieved by contact coating.

  8. Partial squeeze film levitation modulates fingertip friction.

    PubMed

    Wiertlewski, Michaël; Fenton Friesen, Rebecca; Colgate, J Edward

    2016-08-16

    When touched, a glass plate excited with ultrasonic transverse waves feels notably more slippery than it does at rest. To study this phenomenon, we use frustrated total internal reflection to image the asperities of the skin that are in intimate contact with a glass plate. We observed that the load at the interface is shared between the elastic compression of the asperities of the skin and a squeeze film of air. Stroboscopic investigation reveals that the time evolution of the interfacial gap is partially out of phase with the plate vibration. Taken together, these results suggest that the skin bounces against the vibrating plate but that the bounces are cushioned by a squeeze film of air that does not have time to escape the interfacial separation. This behavior results in dynamic levitation, in which the average number of asperities in intimate contact is reduced, thereby reducing friction. This improved understanding of the physics of friction reduction provides key guidelines for designing interfaces that can dynamically modulate friction with soft materials and biological tissues, such as human fingertips. PMID:27482117

  9. Dynamic friction measurements on living HeLa cells

    NASA Astrophysics Data System (ADS)

    Goulet, Marc-Antoni; Colbert, Marie-Josée; Dalnoki-Veress, Kari

    2008-03-01

    The interaction of cells with various interfaces, and especially man-made surfaces, is an active field of research. In our experiment we use a micropipette to measure both the friction and normal force as a cell slides across a surface. A thin substrate, coated with Poly-L-Lysine is brought into contact with a HeLa cell. The adjustable substrate motion is used to study the response of the cell at various normal forces and speeds. Analysis of the micropipette provides dynamic measurements of both the friction and normal force. With our novel setup we are able to probe the attachment/detachment process of living cells.

  10. Friction in orthodontics

    PubMed Central

    Prashant, P. S.; Nandan, Hemant; Gopalakrishnan, Meera

    2015-01-01

    Conventional wisdom suggests that resistance to sliding (RS) generated at the wire-bracket interface has a bearing on the force transmitted to the teeth. The relative importance of static and kinetic friction and also the effect of friction on anchorage has been a topic of debate. Lot of research work has been done to evaluate the various factors that affect friction and thus purportedly retards the rate of tooth movement. However, relevancy of these studies is questionable as the methodology used hardly simulates the oral conditions. Lately studies have concluded that more emphasis should be laid on binding and notching of archwires as these are considered to be the primary factors involved in retarding the tooth movement. This article reviews the various components involved in RS and the factors affecting friction. Further, research work should be carried out to provide cost effective alternatives aimed at reducing friction. PMID:26538873

  11. Low interfacial contact resistance of Al-graphene composites via interface engineering.

    PubMed

    Hahm, Myung Gwan; Nam, Jaewook; Choi, Minseok; Park, Chi-Dong; Cho, Byungjin; Kazunori, Sanada; Kim, Yoong Ahm; Kim, Dong Young; Endo, Morinobu; Kim, Dong-Ho; Vajtai, Robert; Ajayan, Pulickel M; Song, Sung Moo

    2015-05-29

    Al-based composites incorporating multilayered graphene sheets were developed via a facile approach. The multilayered graphene sheets were fabricated from the expanded graphite via a simple mechanical exfoliation process. The facile extrusion molding process with Al powder and graphene sheets exfoliated from expended graphite afforded Al-based graphene composite rods. These composites showed enhanced thermal conductivity compared to the pristine Al rods. Moreover, the Al-based multilayered graphene sheet composites exhibited lower interfacial contact resistance between graphene-based electrodes than the pristine Al. With increasing degrees of dispersion, the number of exposed graphene sheets increases, thereby significantly decreasing the interfacial contact resistance between the composite and external graphite electrode. PMID:25944839

  12. Smart friction driven systems

    NASA Astrophysics Data System (ADS)

    Nitsche, Rainer; Gaul, Lothar

    2005-02-01

    Vibration properties of most assembled mechanical systems depend on frictional damping in joints. The nonlinear transfer behavior of the frictional interfaces often provides the dominant damping mechanism in a built-up structure and plays an important role in the vibratory response of the structure (Gaul and Nitsche 2001 Appl. Mech. Rev. 54 93-105). For improving the performance of systems, many studies have been carried out to predict, measure and/or enhance the energy dissipation of friction. To enhance the friction damping in joint connections a semi-active joint is investigated. A rotational joint connection is designed and manufactured such that the normal force in the friction interface can be influenced with a piezoelectric stack disc. With the piezoelectric device the normal force and thus the friction damping in the joint connection can be controlled. A control design method, namely semi-active control, is investigated. The recently developed LuGre friction model is used to describe the nonlinear transfer behavior of joints. This model is based on a bristle model and turns out to be highly suitable for systems assembled by such smart joints. Those systems can also be regarded as friction driven systems, since the energy flow is controlled by smart joints. The semi-active method is well suited for large space structures since the friction damping in joints turned out to be a major source of damping. To show the applicability of the proposed concept to large space structures a two-beam system representing a part of a large space structure is considered. Two flexible beams are connected with a semi-active joint connection. It can be shown that the damping of the system can be improved significantly by controlling the normal force in the semi-active joint connection. Experimental results validate the damping improvement due to the semi-active friction damping.

  13. Effects of chemical intermixing on electrical and thermal contact conductances at metallized bismuth and antimony telluride interfaces

    SciTech Connect

    Devender,; Mehta, Rutvik J.; Ramanath, Ganpati; Lofgreen, Kelly; Mahajan, Ravi; Yamaguchi, Masashi; Borca-Tasciuc, Theodorian

    2015-03-15

    Tailoring electrical and thermal contact conductivities (Σ{sub c} and Γ{sub c}) across metallized pnictogen chalcogenide interfaces is key for realizing efficient thermoelectric devices. The authors report that Cu, Ni, Ti, and Ta diffusion and interfacial telluride formation with n-Bi{sub 2}Te{sub 3} and p-Sb{sub 2}Te{sub 3} influence both Σ{sub c} and Γ{sub c}. Cu metallization yields the highest Γ{sub c} and the lowest Σ{sub c}, correlating with maximal metal diffusion and copper telluride formation. Ni diffuses less and yields the highest Σ{sub c} with Sb{sub 2}Te{sub 3} due to p-type nickel telluride formation, which diminishes Σ{sub c} improvement with n-Bi{sub 2}Te{sub 3} interfaces. Ta and Ti contacts yield the lowest properties similar to that in Ni-metallized structures. These correlations between interfacial diffusion and phase formation on electronic and thermal transport properties will be important for devising suitable metallization for thermoelectric devices.

  14. Properties of ferrites important to their friction and wear behavior

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1983-01-01

    Environmental, chemical and crystallographical effects on the fundamental nature on friction and wear of the ferrites in contact with metals, magnetic tapes and themselves are reviewed. The removal of adsorbed films from the surfaces of ferrites results in very strong interfacial adhesion and high friction in ferrite to metal and ferrite to magnetic tape contacts. The metal ferrite bond at the interface is primarily a chemical bond between the metal atoms and the large oxygen anions in the ferrite surface, and the strength of these bonds is related to the oxygen to metal bond strength in the metal oxide. The more active the metal, the higher is the coefficient of friction. Not only under adhesive conditions, but also under abrasive conditions the friction and wear properties of ferrites are related to the crystallographic orientation. With ferrite to ferrite contact the mating of highest atomic density (most closely packed) direction on matched crystallographic planes, that is, 110 directions on /110/planes, results in the lowest coefficient of friction.

  15. Direct evidence of phospholipids in gecko footprints and spatula–substrate contact interface detected using surface-sensitive spectroscopy

    PubMed Central

    Hsu, Ping Yuan; Ge, Liehui; Li, Xiaopeng; Stark, Alyssa Y.; Wesdemiotis, Chrys; Niewiarowski, Peter H.; Dhinojwala, Ali

    2012-01-01

    Observers ranging from Aristotle to young children have long marvelled at the ability of geckos to cling to walls and ceilings. Detailed studies have revealed that geckos are ‘sticky’ without the use of glue or suction devices. Instead, a gecko's stickiness derives from van der Waals interactions between proteinaceous hairs called setae and substrate. Here, we present surprising evidence that although geckos do not use glue, a residue is transferred on surfaces as they walk—geckos leave footprints. Using matrix-free nano-assisted laser desorption-ionization mass spectrometry, we identified the residue as phospholipids with phosphocholine head groups. Moreover, interface-sensitive sum-frequency generation spectroscopy revealed predominantly hydrophobic methyl and methylene groups and the complete absence of water at the contact interface between a gecko toe pad and the substrate. The presence of lipids has never been considered in current models of gecko adhesion. Our analysis of gecko footprints and the toe pad–substrate interface has significant consequences for models of gecko adhesion and by extension, the design of synthetic mimics. PMID:21865250

  16. Low-Friction Joint for Robot Fingers

    NASA Technical Reports Server (NTRS)

    Ruoff, C. F.

    1985-01-01

    Mechanical linkage allows adjacent parts to move relative to each other with low friction and with no chatter, slipping, or backlash. Low-friction joint of two surfaces in rolling contact, held in alinement by taut flexible bands. No sliding friction or "stick-slip" motion: Only rolling-contact and bending friction within bands. Proposed linkage intended for finger joints in mechanical hands for robots and manipulators.

  17. The frequency response of dynamic friction: Enhanced rate-and-state models

    NASA Astrophysics Data System (ADS)

    Cabboi, A.; Putelat, T.; Woodhouse, J.

    2016-07-01

    The prediction and control of friction-induced vibration requires a sufficiently accurate constitutive law for dynamic friction at the sliding interface: for linearised stability analysis, this requirement takes the form of a frictional frequency response function. Systematic measurements of this frictional frequency response function are presented for small samples of nylon and polycarbonate sliding against a glass disc. Previous efforts to explain such measurements from a theoretical model have failed, but an enhanced rate-and-state model is presented which is shown to match the measurements remarkably well. The tested parameter space covers a range of normal forces (10-50 N), of sliding speeds (1-10 mm/s) and frequencies (100-2000 Hz). The key new ingredient in the model is the inclusion of contact stiffness to take into account elastic deformations near the interface. A systematic methodology is presented to discriminate among possible variants of the model, and then to identify the model parameter values.

  18. More insights into the ZnO/a-SiC:H(B) interface -- an improved TCO/p contact

    SciTech Connect

    Boehmer, E.; Siebke, F.; Rech, B.; Beneking, C.; Wagner, H.

    1996-12-31

    Solar cells based on amorphous silicon (a-Si:H) exhibit a decreased fill factor if ZnO is used as front electrode instead of SnO{sub 2} This is due to a poor electric contact between the ZnO and the p-type a-SiC:H(B) layer. To gain a deeper understanding of the chemical and electronic properties of the ZnO/p interface, in-situ XPS measurements were applied to thin a-SiC:H(B) films deposited on ZnO. The effects of CO{sub 2} and H{sub 2} plasma pretreatments on clean ZnO surfaces and the influence of deposition conditions on the ZnO/a-SiC:H interface were investigated. Upon H{sub 2} plasma treatment the formation of SiO{sub x} by chemical transport of Si from the reactor walls is observed. Furthermore, a shift of all core levels towards higher binding energies indicates the formation of an accumulation layer. CO{sub 2} plasma treatments show no effects on ZnO. Depth profiling across the ZnO/a-SiC:H interface indicates SiO{sub 2} formation on ZnO. The depth profile of ZnO related core levels exhibits two features: a reduction of the ZnO at the interface, and, after longer sputter times, a core level shift towards higher binding energy due to an hydrogen induced accumulation layer in the n-type ZnO. The latter causes a depletion of the p-layer resulting in an enhanced series resistance and diminished fill factor. To reduce the depletion layer thin highly conductive microcrystalline layers were introduced, increasing the fill factor up to 74%.

  19. The Degradation Interface of Magnesium Based Alloys in Direct Contact with Human Primary Osteoblast Cells

    PubMed Central

    Willumeit-Römer, Regine; Laipple, Daniel; Luthringer, Bérengère; Feyerabend, Frank

    2016-01-01

    Magnesium alloys have been identified as a new generation material of orthopaedic implants. In vitro setups mimicking physiological conditions are promising for material / degradation analysis prior to in vivo studies however the direct influence of cell on the degradation mechanism has never been investigated. For the first time, the direct, active, influence of human primary osteoblasts on magnesium-based materials (pure magnesium, Mg-2Ag and Mg-10Gd alloys) is studied for up to 14 days. Several parameters such as composition of the degradation interface (directly beneath the cells) are analysed with a scanning electron microscope equipped with energy dispersive X-ray and focused ion beam. Furthermore, influence of the materials on cell metabolism is examined via different parameters like active mineralisation process. The results are highlighting the influences of the selected alloying element on the initial cells metabolic activity. PMID:27327435

  20. Exploring of protein - protein interactions at the solid - aqueous interface by means of contact angle measurements.

    PubMed

    Grabowska, I; Dehaen, W; Radecka, H; Radecki, J

    2016-05-01

    In this article we present the results of the studies on interactions between the VC1 domain of the Receptor for Advanced Glycation End Products (RAGE) and its ligand, the S100B protein, performed by contact angle measurements. Histidine-tagged (His6) VC1-RAGE domain was covalently bonded to Cu(II) or Ni(II) complexes with dipyrromethene (DPM) self-assembled on gold surface. The method based on the theory of van Oss was used for the purpose of determining the Lifshitz-van der Waals (γ(LW)) component as well as the electron acceptor-electron donor (the Lewis acid-base, γ(+)-γ(-)) parameters of the VC1-RAGE-S100B complex. Moreover, the surface free energies of the interactions between the VC1 domain attached to the surface and the ligand present in the aqueous phase were determined. The specificity of the VC1- RAGE interactions with the ligand studied was also proved. PMID:26918510

  1. Static friction between silicon nanowires and elastomeric substrates.

    PubMed

    Qin, Qingquan; Zhu, Yong

    2011-09-27

    This paper reports the first direct measurements of static friction force and interfacial shear strength between silicon (Si) nanowires (NWs) and poly(dimethylsiloxane) (PDMS). A micromanipulator is used to manipulate and deform the NWs under a high-magnification optical microscope in real time. The static friction force is measured based on "the most-bent state" of the NWs. The static friction and interface shear strength are found to depend on the ultraviolet/ozone (UVO) treatment of PDMS. The shear strength starts at 0.30 MPa without UVO treatment, increases rapidly up to 10.57 MPa at 60 min of treatment and decreases for longer treatment. Water contact angle measurements suggest that the UVO-induced hydrophobic-to-hydrophilic conversion of PDMS surface is responsible for the increase in the static friction, while the hydrophobic recovery effect contributes to the decrease. The static friction between NWs and PDMS is of critical relevance to many device applications of NWs including NW-based flexible/stretchable electronics, NW assembly and nanocomposites (e.g., supercapacitors). Our results will enable quantitative interface design and control for such applications. PMID:21815652

  2. Formation of perfect ohmic contact at indium tin oxide/N,N'-di(naphthalene-1-yl)-N,N'-diphenyl-benzidine interface using ReO3

    NASA Astrophysics Data System (ADS)

    Yoo, Seung-Jun; Chang, Jung-Hung; Lee, Jeong-Hwan; Moon, Chang-Ki; Wu, Chih-I.; Kim, Jang-Joo

    2014-01-01

    A perfect ohmic contact is formed at the interface of indium tin oxide (ITO) and N,N'-di(naphthalene-1-yl)-N,N'-diphenyl-benzidine (NPB) using ReO3 as the interfacial layer. The hole injection efficiency is close to 100% at the interface, which is much higher than those for interfacial layers of 1,4,5,8,9,11-hexaazatripheylene hexacarbonitrile (HAT-CN) and MoO3. Interestingly, the ReO3 and MoO3 interfacial layers result in the same hole injection barrier, ~0.4 eV, to NPB, indicating that the Fermi level is pinned to the NPB polaron energy level. However, a significant difference is observed in the generated charge density in the NPB layer near the interfacial layer/NPB interface, indicating that charge generation at the interface plays an important role in forming the ohmic contact.

  3. Formation of perfect ohmic contact at indium tin oxide/N,N'-di(naphthalene-1-yl)-N,N'-diphenyl-benzidine interface using ReO3.

    PubMed

    Yoo, Seung-Jun; Chang, Jung-Hung; Lee, Jeong-Hwan; Moon, Chang-Ki; Wu, Chih-I; Kim, Jang-Joo

    2014-01-01

    A perfect ohmic contact is formed at the interface of indium tin oxide (ITO) and N,N'-di(naphthalene-1-yl)-N,N'-diphenyl-benzidine (NPB) using ReO3 as the interfacial layer. The hole injection efficiency is close to 100% at the interface, which is much higher than those for interfacial layers of 1,4,5,8,9,11-hexaazatripheylene hexacarbonitrile (HAT-CN) and MoO3. Interestingly, the ReO3 and MoO3 interfacial layers result in the same hole injection barrier, ≈0.4 eV, to NPB, indicating that the Fermi level is pinned to the NPB polaron energy level. However, a significant difference is observed in the generated charge density in the NPB layer near the interfacial layer/NPB interface, indicating that charge generation at the interface plays an important role in forming the ohmic contact. PMID:24469505

  4. Formation of perfect ohmic contact at indium tin oxide/N,N′-di(naphthalene-1-yl)-N,N′-diphenyl-benzidine interface using ReO3

    PubMed Central

    Yoo, Seung-Jun; Chang, Jung-Hung; Lee, Jeong-Hwan; Moon, Chang-Ki; Wu, Chih-I; Kim, Jang-Joo

    2014-01-01

    A perfect ohmic contact is formed at the interface of indium tin oxide (ITO) and N,N′-di(naphthalene-1-yl)-N,N′-diphenyl-benzidine (NPB) using ReO3 as the interfacial layer. The hole injection efficiency is close to 100% at the interface, which is much higher than those for interfacial layers of 1,4,5,8,9,11-hexaazatripheylene hexacarbonitrile (HAT-CN) and MoO3. Interestingly, the ReO3 and MoO3 interfacial layers result in the same hole injection barrier, ≈0.4 eV, to NPB, indicating that the Fermi level is pinned to the NPB polaron energy level. However, a significant difference is observed in the generated charge density in the NPB layer near the interfacial layer/NPB interface, indicating that charge generation at the interface plays an important role in forming the ohmic contact. PMID:24469505

  5. Study of intermolecular contacts in proteins and oligomer interfaces and preliminary investigations into the design and production of nanomaterials from proteins

    NASA Astrophysics Data System (ADS)

    Iyer, Ganesh Hariharan

    The first part of this research involved a study of the nature and extent of nonbonded interactions at crystal and oligomer interfaces. A survey was compiled of several characteristics of intersubunit contacts in 58 different oligomeric proteins, and of the intermolecular contacts in 223 protein crystal structures. Routines written in "S" language were utilized for the generation of the observed and expected contacts. The information in the Protein Data Bank (PDB) was extracted using the database management system, Protein Knowledge Base (PKB). Potentials of mean force for atom-atom contacts and residue-residue contacts were derived by comparison of the number of observed interactions with the number expected by mass action. Preference association matrices and log-linear analyses were applied to determine the different factors that could contribute to the overall interactions at the interfaces of oligomers and crystals. Surface patches at oligomer and crystal interfaces were also studied to further investigate the origin of the differences in their stabilities. Total number of atoms in contact and the secondary structure elements involved are similar in the two types of interfaces. Crystal contacts result from more numerous interactions by polar residues, compared with a tendency toward nonpolar amino acid prominent in oligomer interfaces. Contact potentials indicate that hydrophobic interactions at oligomer interfaces favor aromatic amino acids and methionine over aliphatic amino acids; and that crystal contacts form in such a way as to avoid inclusion of hydrophobic interactions. The second part involved the development of a new class of biomaterials from two-dimensional arrays of ordered proteins. Point mutations were planned to introduce cysteine residues at appropriate locations to enable cross-linking at the molecular interface within given crystallographic planes. Crystallization and subsequent cross-linking of the modified protein would lead to the

  6. Physically representative atomistic modeling of atomic-scale friction

    NASA Astrophysics Data System (ADS)

    Dong, Yalin

    Nanotribology is a research field to study friction, adhesion, wear and lubrication occurred between two sliding interfaces at nano scale. This study is motivated by the demanding need of miniaturization mechanical components in Micro Electro Mechanical Systems (MEMS), improvement of durability in magnetic storage system, and other industrial applications. Overcoming tribological failure and finding ways to control friction at small scale have become keys to commercialize MEMS with sliding components as well as to stimulate the technological innovation associated with the development of MEMS. In addition to the industrial applications, such research is also scientifically fascinating because it opens a door to understand macroscopic friction from the most bottom atomic level, and therefore serves as a bridge between science and engineering. This thesis focuses on solid/solid atomic friction and its associated energy dissipation through theoretical analysis, atomistic simulation, transition state theory, and close collaboration with experimentalists. Reduced-order models have many advantages for its simplification and capacity to simulating long-time event. We will apply Prandtl-Tomlinson models and their extensions to interpret dry atomic-scale friction. We begin with the fundamental equations and build on them step-by-step from the simple quasistatic one-spring, one-mass model for predicting transitions between friction regimes to the two-dimensional and multi-atom models for describing the effect of contact area. Theoretical analysis, numerical implementation, and predicted physical phenomena are all discussed. In the process, we demonstrate the significant potential for this approach to yield new fundamental understanding of atomic-scale friction. Atomistic modeling can never be overemphasized in the investigation of atomic friction, in which each single atom could play a significant role, but is hard to be captured experimentally. In atomic friction, the

  7. Friction-Testing Machine

    NASA Technical Reports Server (NTRS)

    Benz, F. J.; Dixon, D. S.; Shaw, R. C.

    1986-01-01

    Testing machine evaluates wear and ignition characteristics of materials in rubbing contact. Offers advantages over other laboratory methods of measuring wear because it simulates operating conditions under which material will actually be used. Machine used to determine wear characteristics, rank and select materials for service with such active oxidizers as oxygen, halogens, and oxides of nitrogen, measure wear characteristics, and determine coefficients of friction.

  8. A study of friction mechanisms between a surrogate skin (Lorica soft) and nonwoven fabrics.

    PubMed

    Cottenden, David J; Cottenden, Alan M

    2013-12-01

    Hygiene products such as incontinence pads bring nonwoven fabrics into contact with users' skin, which can cause damage in various ways, including the nonwoven abrading the skin by friction. The aim of the work described here was to develop and use methods for understanding the origin of friction between nonwoven fabrics and skin by relating measured normal and friction forces to the nature and area of the contact (fibre footprint) between them. The method development work reported here used a skin surrogate (Lorica Soft) in place of skin for reproducibility. The work was primarily experimental in nature, and involved two separate approaches. In the first, a microscope with a shallow depth of field was used to determine the length of nonwoven fibre in contact with a facing surface as a function of pressure, from which the contact area could be inferred; and, in the second, friction between chosen nonwoven fabrics and Lorica Soft was measured at a variety of anatomically relevant pressures (0.25-32.1kPa) and speeds (0.05-5mms(-1)). Both techniques were extensively validated, and showed reproducibility of about 5% in length and force, respectively. Straightforward inspection of the data for Lorica Soft against the nonwovens showed that Amontons' law (with respect to load) was obeyed to high precision (R(2)>0.999 in all cases), though there was the suggestion of sub-linearity at low loads. More detailed consideration of the friction traces suggested that two different friction mechanisms are important, and comparison with the contact data suggests tentatively that they may correspond to adhesion between two different populations of contacts, one "rough" and one "smooth". This additional insight is a good illustration of how these techniques may prove valuable in studying other, similar interfaces. In particular, they could be used to investigate interfaces between nonwovens and skin, which was the primary motivation for developing them. PMID:23768960

  9. General theory of frictional heating with application to rubber friction

    NASA Astrophysics Data System (ADS)

    Fortunato, G.; Ciaravola, V.; Furno, A.; Lorenz, B.; Persson, B. N. J.

    2015-05-01

    The energy dissipation in the contact regions between solids in sliding contact can result in high local temperatures which may strongly effect friction and wear. This is the case for rubber sliding on road surfaces at speeds above 1 mm s-1. We derive equations which describe the frictional heating for solids with arbitrary thermal properties. The theory is applied to rubber friction on road surfaces and we take into account that the frictional energy is partly produced inside the rubber due to the internal friction of rubber and in a thin (nanometer) interfacial layer at the rubber-road contact region. The heat transfer between the rubber and the road surface is described by a heat transfer coefficient which depends on the sliding speed. Numerical results are presented and compared to experimental data. We find that frictional heating results in a kinetic friction force which depends on the orientation of the sliding block, thus violating one of the two basic Leonardo da Vinci ‘laws’ of friction.

  10. Nanometer-scale properties of metal/oxide interfaces and ``end-on'' metal contacts to Si nanowires studied by ballistic electron emission microscopy (BEEM)

    NASA Astrophysics Data System (ADS)

    Pelz, Jon

    2012-02-01

    BEEM is a hot-electron (HE) technique based on scanning tunneling microscopy that can probe buried metal/semiconductor and metal/dielectric interfaces with nm-scale spatial resolution and energy resolution of a few meV. BEEM is a three-terminal technique, so the HE energy and interface electric field can be varied independently. I will discuss two studies of interest for future transistor technologies. The first concerns the band structure and alignments in a 20 nm-thick film of the high-k dielectric material Sc2O3 grown epitaxially on Si(111). Sc2O3 and related rare-earth/transition metal oxide films on Si were found to have similar band alignments and bandgap, and also ``tailing'' conduction band (CB) states extending ˜1 eV below the primary CB. We combined BEEM with internal photoemission to measure the band alignment and to study electron transport through these ``tail'' states.ootnotetextW. Cai, S. E. Stone, J. P. Pelz, L. F. Edge, and D. G. Schlom, Appl. Phys. Lett 91, 042901 (2007). Surprisingly, these tail states were found to form a robust band of extended states that supports elastic hot-electron transport even against an applied electric field. The second study concerns HE injection and transport through ``end-on'' metal contacts made to ˜100 nm diameter vertical Si nanowires (NWs) embedded in a SiO2 dielectric. At low HE flux, We observed lateral variations of the local Schottky Barrier Height (SBH) across individual end-on Au Schottky contacts, with the SBH at the contact edge found to be ˜25 meV lower than at the contact center. Finite-element electrostatic simulations suggest that this is due to a larger interface electric field at the contact edge due to positively charged Si/native-oxide interface states near the Au/NW contact, with this (equilibrium) interface state charge induced by local band bending due to the high work function Au contact. We also observed a strong suppression of the hot-electron transmission efficiency at larger HE flux

  11. Characteristics of Friction Welding Between Solid Bar of 6061 Al Alloy and Pipe of Al-Si12CuNi Al Cast Alloy

    NASA Astrophysics Data System (ADS)

    Kimura, M.; Sakaguchi, H.; Kusaka, M.; Kaizu, K.; Takahashi, T.

    2015-11-01

    This paper describes the characteristics of friction welding between a solid bar of 6061 Al alloy and a pipe of Al-Si12CuNi (AC8A) Al cast alloy. When the joint was made by a continuous drive friction welding machine (conventional method), the AC8A portion of the joint showed heavy deformation and the AA6061 showed minimal deformation. In particular, the joint could not be successfully made with following conditions, because AC8A pipe side crushed due to insufficient friction heat or high pressure: a short friction time such as 0.3 s, high friction pressure such as 100 MPa, or high forge pressure such as 150 MPa. The heavy deformation of AC8A side was caused by increasing friction torque during braking. To prevent braking deformation until rotation stops, a joint was made by a continuous drive friction welding machine that has an electromagnetic clutch. When the clutch was released, the relative speed between both specimens simultaneously decreased to zero. When the joint was made with friction pressure of 25 MPa, friction time of 0.3 s, and forge pressure of 125 MPa, the joining could be successfully achieved and that had approximately 16% efficiency. In addition, when the joint was made with friction pressure of 25 MPa, friction time of 0.7 s, and forge pressure of 125 MPa, it had approximately 54% efficiency. However, all joints showed the fracture between the traveled weld interface and the AC8A side, because the weld interface traveled in the longitudinal direction of AC8A side from the first contacted position of both weld faying surfaces. Hence, it was clarified that the friction welding between a solid bar of AA6061 and a cast pipe of AC8A was not desirable since the traveling phenomena of the weld interface were caused by the combination of the shapes of the friction welding specimens.

  12. Research on torsional friction behavior and fluid load support of PVA/HA composite hydrogel.

    PubMed

    Chen, Kai; Zhang, Dekun; Yang, Xuehui; Cui, Xiaotong; Zhang, Xin; Wang, Qingliang

    2016-09-01

    Hydrogels have been extensively studied for use as synthetic articular cartilage. This study aimed to investigate (1) the torsional friction contact state and the transformation mechanism of PVA/HA composite hydrogel against CoCrMo femoral head and (2) effects of load and torsional angle on torsional friction behavior. The finite element method was used to study fluid load support of PVA/HA composite hydrogel. Results show fluid loss increases gradually of PVA/HA composite hydrogel with torsional friction time, leading to fluid load support decreases. The contact state changes from full slip state to stick-slip mixed state. As the load increases, friction coefficient and adhesion zone increase gradually. As the torsional angle increases, friction coefficient and slip trend of the contact interface increase, resulting in the increase of the slip zone and the reduction of the adhesion zone. Fluid loss increases of PVA/HA composite hydrogel as the load and the torsional angle increase, which causes the decrease of fluid load support and the increase of friction coefficient. PMID:27209115

  13. An analytical model for the heat generation in friction stir welding

    NASA Astrophysics Data System (ADS)

    Schmidt, H.; Hattel, J.; Wert, J.

    2004-01-01

    The objective of this work is to establish an analytical model for heat generation by friction stir welding (FSW), based on different assumptions of the contact condition between the rotating tool surface and the weld piece. The material flow and heat generation are characterized by the contact conditions at the interface, and are described as sliding, sticking or partial sliding/sticking. Different mechanisms of heat generation are behind each contact condition, making this study important for further understanding of the real FSW process. The analytical expression for the heat generation is a modification of previous analytical models known from the literature and accounts for both conical surfaces and different contact conditions. Experimental results on plunge force and torque are used to determine the contact condition. The sliding condition yields a proportional relationship between the plunge force and heat generation. This is not demonstrated in the experiment, which suggests that the sticking contact condition is present at the tool/matrix interface.

  14. Frictional melt and seismic slip

    NASA Astrophysics Data System (ADS)

    Nielsen, S.; di Toro, G.; Hirose, T.; Shimamoto, T.

    2008-01-01

    Frictional melt is implied in a variety of processes such as seismic slip, ice skating, and meteorite combustion. A steady state can be reached when melt is continuously produced and extruded from the sliding interface, as shown recently in a number of laboratory rock friction experiments. A thin, low-viscosity, high-temperature melt layer is formed resulting in low shear resistance. A theoretical solution describing the coupling of shear heating, thermal diffusion, and extrusion is obtained, without imposing a priori the melt thickness. The steady state shear traction can be approximated at high slip rates by the theoretical form τss = σn1/4 (A/?) ? under a normal stress σn, slip rate V, radius of contact area R (A is a dimensional normalizing factor and W is a characteristic rate). Although the model offers a rather simplified view of a complex process, the predictions are compatible with experimental observations. In particular, we consider laboratory simulations of seismic slip on earthquake faults. A series of high-velocity rotary shear experiments on rocks, performed for σn in the range 1-20 MPa and slip rates in the range 0.5-2 m s-1, is confronted to the theoretical model. The behavior is reasonably well reproduced, though the effect of radiation loss taking place in the experiment somewhat alters the data. The scaling of friction with σn, R, and V in the presence of melt suggests that extrapolation of laboratory measures to real Earth is a highly nonlinear, nontrivial exercise.

  15. Solid friction between soft filaments

    NASA Astrophysics Data System (ADS)

    Ward, Andrew; Hilitski, Feodor; Schwenger, Walter; Welch, David; Lau, A. W. C.; Vitelli, Vincenzo; Mahadevan, L.; Dogic, Zvonimir

    2015-06-01

    Any macroscopic deformation of a filamentous bundle is necessarily accompanied by local sliding and/or stretching of the constituent filaments. Yet the nature of the sliding friction between two aligned filaments interacting through multiple contacts remains largely unexplored. Here, by directly measuring the sliding forces between two bundled F-actin filaments, we show that these frictional forces are unexpectedly large, scale logarithmically with sliding velocity as in solid-like friction, and exhibit complex dependence on the filaments’ overlap length. We also show that a reduction of the frictional force by orders of magnitude, associated with a transition from solid-like friction to Stokes’s drag, can be induced by coating F-actin with polymeric brushes. Furthermore, we observe similar transitions in filamentous microtubules and bacterial flagella. Our findings demonstrate how altering a filament’s elasticity, structure and interactions can be used to engineer interfilament friction and thus tune the properties of fibrous composite materials.

  16. Solid friction between soft filaments.

    PubMed

    Ward, Andrew; Hilitski, Feodor; Schwenger, Walter; Welch, David; Lau, A W C; Vitelli, Vincenzo; Mahadevan, L; Dogic, Zvonimir

    2015-06-01

    Any macroscopic deformation of a filamentous bundle is necessarily accompanied by local sliding and/or stretching of the constituent filaments. Yet the nature of the sliding friction between two aligned filaments interacting through multiple contacts remains largely unexplored. Here, by directly measuring the sliding forces between two bundled F-actin filaments, we show that these frictional forces are unexpectedly large, scale logarithmically with sliding velocity as in solid-like friction, and exhibit complex dependence on the filaments' overlap length. We also show that a reduction of the frictional force by orders of magnitude, associated with a transition from solid-like friction to Stokes's drag, can be induced by coating F-actin with polymeric brushes. Furthermore, we observe similar transitions in filamentous microtubules and bacterial flagella. Our findings demonstrate how altering a filament's elasticity, structure and interactions can be used to engineer interfilament friction and thus tune the properties of fibrous composite materials. PMID:25730393

  17. Exploring and Explaining Friction with the Prandtl-Tomlinson Model.

    PubMed

    Schwarz, Udo D; Hölscher, Hendrik

    2016-01-26

    The Prandtl-Tomlinson model of friction, first introduced in 1928 as a "conceptual model" for a single-atom contact, consists of a point mass that is dragged over a sinusoidal potential by a spring. After decades of virtual oblivion, it has recently found impressive validation for contacts comprising tens or even hundreds of atoms. To date, the Prandtl-Tomlinson model enjoys widespread popularity as depicting arguably the most insightful mechanical analogue to atomic-scale effects occurring at sliding interfaces. In this issue of ACS Nano, Pawlak et al. demonstrate the model's applicability to a true single-atom contact, thereby illustrating that simple mechanical representations can indeed go a long way toward explaining interactions at atomically defined interfaces. PMID:26765866

  18. Effects of Roughness and Inertia on Precursors to Frictional Sliding

    NASA Astrophysics Data System (ADS)

    Robbins, Mark O.; Salerno, K. Michael

    2012-02-01

    Experiments show that when a PMMA block on a surface is normally loaded and driven by an external shear force, contact at the interface is modified in discrete precursor slips prior to steady state sliding.[1] Our simulations use an atomistic model of a rough two-dimensional block in contact with a flat surface to investigate the evolution of stress and displacement along the contact between surfaces. The talk will show how local and global stress conditions govern the initiation of interfacial cracks as well as the spatial extension of the cracked region. Inertia also plays an important role in determining the number and size of slips before sliding and influences the distribution of stresses at the interface. Finally, the geometry of surface asperities also influences the interfacial evolution and the total friction force. The relationship between the interfacial stress state and rupture velocity will also be discussed. [1] S.M. Rubinstein, G. Cohen and J. Fineberg, PRL 98, 226103 (2007)

  19. Characterization of interface reaction of Ti/Al-based ohmic contacts on AlGaN/GaN epitaxial layers on GaN substrate

    NASA Astrophysics Data System (ADS)

    Zadeh, Daryoush H.; Tanabe, Shinichi; Watanabe, Noriyuki; Matsuzaki, Hideaki

    2016-05-01

    The ohmic properties of Ti/Al/Mo/Au contacts on a high-quality AlGaN/GaN heterostructure epitaxially grown on a GaN substrate were investigated. Systematic structural and electrical analyses of the metal/AlGaN interface after annealing in N2 at 700 and 900 °C were conducted. After annealing at 900 °C, a new Al-rich interlayer with nitrogen vacancies was formed at the metal/AlGaN interface. Ohmic contacts with a low specific contact resistance (ρc) of 5.1 × 10‑6 Ω cm2 and a dominant field emission carrier transport mechanism were achieved. The fabrication of recessed-AlGaN-structured ohmic contact with ρc as low as 2.4 × 10‑5 Ω cm2 at a low annealing temperature of 650 °C, was also successfully demonstrated. This result indicates that a process methodology can be provided for fabricating low-resistivity ohmic contacts with a low thermal budget on a high-quality AlGaN/GaN structure, which is based on an appropriate control of the metal/AlGaN interface and AlGaN thickness rather than relying on the existence of threading dislocations.

  20. Generic two-phase coexistence, relaxation kinetics, and interface propagation in the quadratic contact process: Simulation studies

    NASA Astrophysics Data System (ADS)

    Guo, Xiaofang; Liu, Da-Jiang; Evans, J. W.

    2007-06-01

    The quadratic contact process is formulated as an adsorption-desorption model on a two-dimensional square lattice. It involves random adsorption at empty sites and correlated desorption requiring diagonally adjacent pairs of empty neighbors. We assess the model behavior utilizing kinetic Monte Carlo simulations. One finds generic two-phase coexistence between a low-coverage active steady state and a completely covered or “poisoned” absorbing steady state; i.e., both states are stable over a finite range of adsorption rates or “pressures.” This behavior is in marked contrast to that for equilibrium phase separation. For spatially homogeneous systems, we provide a comprehensive characterization of the kinetics of relaxation to the steady states. We analyze rapid poisoning for higher pressures above an effective spinodal point terminating a metastable active state, nucleation-mediated poisoning in the metastable region, the dynamics of poisoned droplets within the two-phase coexistence region, and behavior reminiscent of bootstrap percolation dynamics for lower pressures. For spatially inhomogeneous systems, we analyze the propagation of planar interfaces between active and absorbing states, fully characterizing an orientation dependence which underlies the generic two-phase coexistence.

  1. Static friction between rigid fractal surfaces

    NASA Astrophysics Data System (ADS)

    Alonso-Marroquin, Fernando; Huang, Pengyu; Hanaor, Dorian A. H.; Flores-Johnson, E. A.; Proust, Gwénaëlle; Gan, Yixiang; Shen, Luming

    2015-09-01

    Using spheropolygon-based simulations and contact slope analysis, we investigate the effects of surface topography and atomic scale friction on the macroscopically observed friction between rigid blocks with fractal surface structures. From our mathematical derivation, the angle of macroscopic friction is the result of the sum of the angle of atomic friction and the slope angle between the contact surfaces. The latter is obtained from the determination of all possible contact slopes between the two surface profiles through an alternative signature function. Our theory is validated through numerical simulations of spheropolygons with fractal Koch surfaces and is applied to the description of frictional properties of Weierstrass-Mandelbrot surfaces. The agreement between simulations and theory suggests that for interpreting macroscopic frictional behavior, the descriptors of surface morphology should be defined from the signature function rather than from the slopes of the contacting surfaces.

  2. Accurate determination of interface trap state parameters by admittance spectroscopy in the presence of a Schottky barrier contact: Application to ZnO-based solar cells

    NASA Astrophysics Data System (ADS)

    Marin, Andrew T.; Musselman, Kevin P.; MacManus-Driscoll, Judith L.

    2013-04-01

    This work shows that when a Schottky barrier is present in a photovoltaic device, such as in a device with an ITO/ZnO contact, equivalent circuit analysis must be performed with admittance spectroscopy to accurately determine the pn junction interface recombination parameters (i.e., capture cross section and density of trap states). Without equivalent circuit analysis, a Schottky barrier can produce an error of ˜4-orders of magnitude in the capture cross section and ˜50% error in the measured density of trap states. Using a solution processed ZnO/Cu2O photovoltaic test system, we apply our analysis to clearly separate the contributions of interface states at the pn junction from the Schottky barrier at the ITO/ZnO contact so that the interface state recombination parameters can be accurately characterized. This work is widely applicable to the multitude of photovoltaic devices, which use ZnO adjacent to ITO.

  3. Frictional behavior of automotive brake materials under wet and dry conditions

    SciTech Connect

    Blau, P.J.; Martin, R.L.; Weintraub, M.H.; Jang, Ho; Donlon, W.

    1996-12-15

    The purpose of this effort was to develop an improved understanding of the relationship between the structure and frictional behavior of materials in the disc brake/rotor interface with a view toward improving the performance of automotive disc brakes. The three tasks involved in this Cooperative Research and Development Agreement (CRADA) were as follows: Task 1. Investigation of Brake Pads and Rotors. Characterize surface features of worn brake pads and rotors, with special attention to the transfer film which forms on them during operation. Ford to supply specimens for examination and other supporting information. Task 2. Effects of Atmosphere and Repeated Applications on Brake Material Friction. Conduct pin-on-disk friction tests at ORNL under controlled moisture levels to determine effects of relative humidity on frictional behavior of brake pad and rotor materials. Conduct limited tests on the characteristics of friction under application of repeated contacts. Task 3. Comparison of Dynamometer Tests with Laboratory Friction Tests. Compare ORNL friction data with Ford dynamometer test data to establish the degree to which the simple bench tests can be useful in helping to understand frictional behavior in full-scale brake component tests. This final report summarizes work performed under this CRADA.

  4. A diffuse-interface immersed-boundary method for two-dimensional simulation of flows with moving contact lines on curved substrates

    NASA Astrophysics Data System (ADS)

    Liu, Hao-Ran; Ding, Hang

    2015-08-01

    We propose an approach to simulate flows with moving contact lines (MCLs) on curved substrates on a Cartesian mesh. The approach combines an immersed boundary method with a three-component diffuse-interface model and a characteristic MCL model. The immersed boundary method is able to accurately enforce the no-slip boundary condition at the solid surface, thereby circumventing the penetration of the gas and the liquid into the solid by convection. On the other hand, using the three-component diffuse-interface model can prevent the gas and liquid from infiltrating into the solid substrate through the diffusive fluxes during the interface evolution. A combination of these two methods appears to effectively conserve the mass of the phases in the computation. The characteristic MCL model not only allows the contact lines to move on the curved boundaries, but makes the gas-liquid interface to intersect the solid object at an angle in consistence with the prescribed contact angle, even with the variation of surface tangent at the solid substrate. We examine the performance of the approach through a variety of numerical experiments. The mass conservation and interface shapes at equilibrium were tested through the simulation of drop spreading on a circular cylinder. The dynamic behaviors of moving contact lines were validated by simulating the droplet spreading on a flat substrate, and we compared the numerical results against theoretical predictions and previous experimental observations. The method was also applied to the simulations of flows with curved boundaries and moving contact lines, such as drop impact on a sphere and water entry of a sphere. Finally, we studied the penetration process of a two-dimensional drop into a porous substrate that consists of a cluster of circular cylinders.

  5. Contact area and static pressure profile at the plate-bone interface in the nonluted and luted bone plate.

    PubMed

    Staller, G S; Richardson, D W; Nunamaker, D M; Provost, M

    1995-01-01

    Contact area and pressure between 6-hole broad dynamic compression plates and 20 pairs of equine third metatarsal bones were measured using nonluted and luted plating techniques. Pressure-sensitive film (pressure ranges 10 to 50 MPa and 50 to 130 MPa) was used as the static pressure transducer. Nonluted and one of two luting techniques were tested on each pair of bones; each luting technique was tested on 20 bones. Quantitative determinations of contact area and pressure were made using computerized image processing techniques. Mean (+/- SD) total contact area for nonluted plates was 18.49% +/- 3.5% of the potential plate-bone contact area. Luting increased (P < .05) total contact area to 25.56% +/- 4.0% and 31.29% +/- 6.6% for the respective luting techniques. The effects of luting on contact area were dependent on the contact pressure. At contact pressure ranges 10 to 20 and 21 to 35 MPa, luting increased contact area. In contact pressure ranges 36 to 45 and 50 to 65 MPa, plate-bone contact was inherently greatest and plate luting had no significant effect on contact area. In contact pressure ranges 66 to 99 and 100 to 126 MPa, luting decreased contact area. Contact area was increased at lower contact pressures at the expense of higher pressure contact. Contact in the middle third of the plate was 20% to 40% of the contact at either end of the plate. Plate luting increased contact area best where plate-bone contour was most similar. PMID:7571381

  6. Non-monotonic dependence of the friction coefficient on heterogeneous stiffness

    PubMed Central

    Giacco, F.; Ciamarra, M. Pica; Saggese, L.; de Arcangelis, L.; Lippiello, E.

    2014-01-01

    The complexity of the frictional dynamics at the microscopic scale makes difficult to identify all of its controlling parameters. Indeed, experiments on sheared elastic bodies have shown that the static friction coefficient depends on loading conditions, the real area of contact along the interfaces and the confining pressure. Here we show, by means of numerical simulations of a 2D Burridge-Knopoff model with a simple local friction law, that the macroscopic friction coefficient depends non-monotonically on the bulk elasticity of the system. This occurs because elastic constants control the geometrical features of the rupture fronts during the stick-slip dynamics, leading to four different ordering regimes characterized by different orientations of the rupture fronts with respect to the external shear direction. We rationalize these results by means of an energetic balance argument. PMID:25345800

  7. A novel analytical approach for determining the frictional moments and torques acting on modular femoral components in total hip replacements.

    PubMed

    Farhoudi, H; Oskouei, R H; Jones, C F; Taylor, M

    2015-04-13

    A three dimensional analytical approach was developed to determine the frictional moment vector generated by the relative sliding of the head-cup bearing couple of a total hip replacement. The frictional moment projection onto the femoral neck was also determined over the loading cycle. Predicted frictional moments for nine combinations of bearing materials and diameters were in close agreement with existing in vitro data. The analytical method was then applied to simplified gait (lubrication conditions of dry and serum), ISO standard gait and physiological level gait loading cycles. ISO standard gait had a total contact force of about two fold of physiological level gait and there was a corresponding increase in the maximum frictional torque on neck from 0.66×BW%m to 0.88×BW%m. For the ISO standard gait, the maximum frictional torque occurred at the same instance of maximum frictional moment and the maximum contact force. In contrast, for the physiological level gait, the frictional torque did not occur at the same instance as the peak load. This suggests that the neck frictional torque is a function of other parameters, such as angle between neck axis and frictional moment vector, as well as the magnitude of the contact force and frictional moment. The developed methodology was able to predict the maximum magnitude and change of directions of moments and the variation of torque at the head neck interface. The data will be useful for experimental studies assessing the fretting behaviour of the head neck junction, by providing appropriate loading data. PMID:25721768

  8. Numerical analysis of human dental occlusal contact

    NASA Astrophysics Data System (ADS)

    Bastos, F. S.; Las Casas, E. B.; Godoy, G. C. D.; Meireles, A. B.

    2010-06-01

    The purpose of this study was to obtain real contact areas, forces, and pressures acting on human dental enamel as a function of the nominal pressure during dental occlusal contact. The described development consisted of three steps: characterization of the surface roughness by 3D contact profilometry test, finite element analysis of micro responses for each pair of main asperities in contact, and homogenization of macro responses using an assumed probability density function. The inelastic deformation of enamel was considered, adjusting the stress-strain relationship of sound enamel to that obtained from instrumented indentation tests conducted with spherical tip. A mechanical part of the static friction coefficient was estimated as the ratio between tangential and normal components of the overall resistive force, resulting in μd = 0.057. Less than 1% of contact pairs reached the yield stress of enamel, indicating that the occlusal contact is essentially elastic. The micro-models indicated an average hardness of 6.25GPa, and the homogenized result for macroscopic interface was around 9GPa. Further refinements of the methodology and verification using experimental data can provide a better understanding of processes related to contact, friction and wear of human tooth enamel.

  9. A three-dimensional finite element analysis of a passive and friction fit implant abutment interface and the influence of occlusal table dimension on the stress distribution pattern on the implant and surrounding bone

    PubMed Central

    Sarfaraz, Hasan; Paulose, Anoopa; Shenoy, K. Kamalakanth; Hussain, Akhter

    2015-01-01

    Aims: The aim of the study was to evaluate the stress distribution pattern in the implant and the surrounding bone for a passive and a friction fit implant abutment interface and to analyze the influence of occlusal table dimension on the stress generated. Materials and Methods: CAD models of two different types of implant abutment connections, the passive fit or the slip-fit represented by the Nobel Replace Tri-lobe connection and the friction fit or active fit represented by the Nobel active conical connection were made. The stress distribution pattern was studied at different occlusal dimension. Six models were constructed in PRO-ENGINEER 05 of the two implant abutment connection for three different occlusal dimensions each. The implant and abutment complex was placed in cortical and cancellous bone modeled using a computed tomography scan. This complex was subjected to a force of 100 N in the axial and oblique direction. The amount of stress and the pattern of stress generated were recorded on a color scale using ANSYS 13 software. Results: The results showed that overall maximum Von Misses stress on the bone is significantly less for friction fit than the passive fit in any loading conditions stresses on the implant were significantly higher for the friction fit than the passive fit. The narrow occlusal table models generated the least amount of stress on the implant abutment interface. Conclusion: It can thus be concluded that the conical connection distributes more stress to the implant body and dissipates less stress to the surrounding bone. A narrow occlusal table considerably reduces the occlusal overload. PMID:26929518

  10. Ultralow Contact Resistivity for a Metal/p-Type Silicon Interface by High-Concentration Germanium and Boron Doping Combined with Low-Temperature Annealing

    NASA Astrophysics Data System (ADS)

    Murakoshi, Atsushi; Iwase, Masao; Niiyama, Hiromi; Koike, Mitsuo; Suguro, Kyoichi

    2013-07-01

    A contact resistivity of 6.9×10-9 Ω.cm2 has been obtained in an AlSi (1 wt %)-Cu (0.5 wt %) alloy/silicon system by using heavy-dose ion implantations of germanium and boron combined with low-temperature annealing. The analysis of the combined state showed that B12 cluster was incorporated and the supersaturation activation layer was formed into the region where germanium separated. Separated germanium is expected to have high interface state density. It is considered that this interface state density also has a Fermi level, and in order to reduce the difference from the Fermi level of the substrate, the charge moves to interface state density from the substrate. As a result, it is not based on a metallic material but a work function becomes small because pinning by which a Fermi level is fixed to interface state density occurs owing to the substrate/metal interface. It is considered to be attributable to the existence of a Ge-rich layer formed by low-temperature annealing, and a supersaturation activation layer that lowers contact resistance was formed.

  11. The formulation of dynamical contact problems with friction in the case of systems of rigid bodies and general discrete mechanical systems—Painlevé and Kane paradoxes revisited

    NASA Astrophysics Data System (ADS)

    Charles, Alexandre; Ballard, Patrick

    2016-08-01

    The dynamics of mechanical systems with a finite number of degrees of freedom (discrete mechanical systems) is governed by the Lagrange equation which is a second-order differential equation on a Riemannian manifold (the configuration manifold). The handling of perfect (frictionless) unilateral constraints in this framework (that of Lagrange's analytical dynamics) was undertaken by Schatzman and Moreau at the beginning of the 1980s. A mathematically sound and consistent evolution problem was obtained, paving the road for many subsequent theoretical investigations. In this general evolution problem, the only reaction force which is involved is a generalized reaction force, consistently with the virtual power philosophy of Lagrange. Surprisingly, such a general formulation was never derived in the case of frictional unilateral multibody dynamics. Instead, the paradigm of the Coulomb law applying to reaction forces in the real world is generally invoked. So far, this paradigm has only enabled to obtain a consistent evolution problem in only some very few specific examples and to suggest numerical algorithms to produce computational examples (numerical modeling). In particular, it is not clear what is the evolution problem underlying the computational examples. Moreover, some of the few specific cases in which this paradigm enables to write down a precise evolution problem are known to show paradoxes: the Painlevé paradox (indeterminacy) and the Kane paradox (increase in kinetic energy due to friction). In this paper, we follow Lagrange's philosophy and formulate the frictional unilateral multibody dynamics in terms of the generalized reaction force and not in terms of the real-world reaction force. A general evolution problem that governs the dynamics is obtained for the first time. We prove that all the solutions are dissipative; that is, this new formulation is free of Kane paradox. We also prove that some indeterminacy of the Painlevé paradox is fixed in this

  12. Collective behavior of asperities as a model for friction and adhesion

    NASA Astrophysics Data System (ADS)

    Hulikal, Srivatsan

    Understanding friction and adhesion in static and sliding contact of surfaces is important in numerous physical phenomena and technological applications. Most surfaces are rough at the microscale, and thus the real area of contact is only a fraction of the nominal area. The macroscopic frictional and adhesive response is determined by the collective behavior of the population of evolving and interacting microscopic contacts. This collective behavior can be very different from the behavior of individual contacts. It is thus important to understand how the macroscopic response emerges from the microscopic one. In this thesis, we develop a theoretical and computational framework to study the collective behavior. Our philosophy is to assume a simple behavior of a single asperity and study the collective response of an ensemble. Our work bridges the existing well-developed studies of single asperities with phenomenological laws that describe macroscopic rate-and-state behavior of frictional interfaces. We find that many aspects of the macroscopic behavior are robust with respect to the microscopic response. This explains why qualitatively similar frictional features are seen for a diverse range of materials. We first show that the collective response of an ensemble of one-dimensional independent viscoelastic elements interacting through a mean field reproduces many qualitative features of static and sliding friction evolution. The resulting macroscopic behavior is different from the microscopic one: for example, even if each contact is velocity-strengthening, the macroscopic behavior can be velocity-weakening. The framework is then extended to incorporate three-dimensional rough surfaces, long- range elastic interactions between contacts, and time-dependent material behaviors such as viscoelasticity and viscoplasticity. Interestingly, the mean field behavior dominates and the elastic interactions, though important from a quantitative perspective, do not change the

  13. Friction drive of an SAW motor. Part II: analyses.

    PubMed

    Shigematsu, Takashi; Kurosawa, Minoru Kuribayashi

    2008-09-01

    The mechanics of the friction drive of a surface acoustic wave motor were investigated by means of contact mechanics theory. As a means to control the contact condition, the motor's slider had projections on its frictional surface. Assuming the projection was a rigid circular punch and the slider body was an elastic half-space allowed application of contact mechanics formulae to the analyses of the friction drive. Because the projection contacted the Rayleigh wave vibration, the projection's responses were considered dynamic; thus, the dynamics were also analyzed in the same framework of contact mechanics formulae. Moreover, the analyses were applied to measurements of the projection's displacement to examine the detailed mechanics during the friction drive. We calculated the contact/frictional forces based on the measurement and indicated the necessity of further investigation of the surface acoustic wave motor's friction drive, because the usual friction law was unable to explain the measurement. PMID:18986897

  14. Friction welding.

    NASA Technical Reports Server (NTRS)

    Moore, T. J.

    1972-01-01

    Results of an exploratory study of the structure and properties of friction welds in Udimet 700 (U-700) and TD-nickel (TD-Ni) bar materials, as well as dissimilar U-700/TD-Ni friction welds. Butt welds were prepared by friction welding 12.7-mm-diam U-700 bars and TD-Ni bars. Specimens for elevated temperature tensile and stress rupture testing were machined after a postweld heat treatment. Friction welding of U-700 shows great potential because the welds were found to be as strong as the parent metal in stress rupture and tensile tests at 760 and 980 C. In addition, the weld line was not detectable by metallographic examination after postheating. Friction welds in TD-Ni or between U-700 and TD-Ni were extremely weak at elevated temperatures. The TD-Ni friction welds could support only 9% as much stress as the base metal for 10-hour stress rupture life at 1090 C. The U-700/TD-Ni weld could sustain only 15% as much stress as the TD-Ni parent metal for a 10-hour stress rupture life at 930 C. Thus friction welding is not a suitable joining method for obtaining high-strength TD-Ni or U-700/TD-Ni weldments.

  15. Nanoscale wear and kinetic friction between atomically smooth surfaces sliding at high speeds

    SciTech Connect

    Rajauria, Sukumar Canchi, Sripathi V. Schreck, Erhard; Marchon, Bruno

    2015-02-23

    The kinetic friction and wear at high sliding speeds is investigated using the head-disk interface of hard disk drives, wherein the head and the disk are less than 10 nm apart and move at sliding speeds of 5–10 m/s relative to each other. While the spacing between the sliding surfaces is of the same order of magnitude as various AFM based fundamental studies on friction, the sliding speed is nearly six orders of magnitude larger, allowing a unique set-up for a systematic study of nanoscale wear at high sliding speeds. In a hard disk drive, the physical contact between the head and the disk leads to friction, wear, and degradation of the head overcoat material (typically diamond like carbon). In this work, strain gauge based friction measurements are performed; the friction coefficient as well as the adhering shear strength at the head-disk interface is extracted; and an experimental set-up for studying friction between high speed sliding surfaces is exemplified.

  16. Why children do not attend their appointments: is there a need for an interface between general practitioners and hospitals allowing for the exchange of patients’ contact details?

    PubMed Central

    Karafillakis, Emilie N; Majeed, Azeem

    2016-01-01

    Objectives A service evaluation project on the reasons why children do not attend their outpatient appointments. Design Analysis of paediatric clinic lists over two consecutive days. Parents of the non-attenders were identified and their reasons for not attending the appointment were elicited using a survey. Setting The appointments were scheduled to take place in the Paediatric department at St. Mary’s Hospital, London. Participants Of the 201 appointments scheduled, 49 patients did not attend their paediatric appointment. Telephone contact was successful with 35 parents. Main outcome measures Parents were asked to verify if their contact details were correct, if they were aware of the appointment and if they had received a reminder. The reasons for non-attendance were explored. Results Of the 49 non-attenders, correct contact details were held on file for 24 of the patients (49.0%). Of the 35 parents contacted, 18 were aware (51.4%) of their child’s appointment. Conclusions This project revealed that the principal reason for non-attendance is unawareness of the appointment due to incorrect contact details held by the hospital. Potential strategies for reducing non-attendance at this paediatric outpatient clinic include developing a confirmation or reminder system and improved communication with parents. The creation of a new interface between hospitals and GPs would allow hospitals to access patient contact details held by GPs. It would also ensure that hospitals hold up-to-date patient contact details and that appointment details are effectively communicated to parents. The interface would automatically feed through any updated patient details, keeping hospital records current. PMID:27540489

  17. Molecular simulation of the frictional behavior of polymer-on-polymer sliding.

    PubMed

    Yew, Y K; Minn, Myo; Sinha, S K; Tan, V B C

    2011-05-17

    Molecular simulations of the sliding processes of polymer-on-polymer systems were performed to investigate the surface and subsurface deformations and how these affect tribological characteristics of nanometer-scale polymer films. It is shown that a very severe deformation is localized to a band of material about 2.5 nm thick at the interface of the polymer surfaces. Outside of this band, the polymer films experience a uniform shear strain that reaches a finite steady-state value of close to 100%. Only after the polymer films have achieved this steady-state shear strain do the contacting surfaces of the films show significant relative slippage over each other. Because severe deformation is limited to a localized band much thinner than the polymeric films, the thickness of the deformation band is envisaged to be independent of the film thickness and hence frictional forces are expected to be independent of the thickness of the polymer films. A strong dependency of friction on interfacial adhesion, surface roughness, and the shear modulus of the sliding system was observed. Although the simulations showed that frictional forces increase linearly with contact pressure, adhesive forces contribute significantly to the overall friction and must therefore be accounted for in nanometer-scale friction. It is also shown that the coefficient of friction is lower for lower-density polymers as well as for polymers with higher molecular weights. PMID:21517050

  18. Size Scaling of Static Friction

    NASA Astrophysics Data System (ADS)

    Braun, O. M.; Manini, Nicola; Tosatti, Erio

    2013-02-01

    Sliding friction across a thin soft lubricant film typically occurs by stick slip, the lubricant fully solidifying at stick, yielding and flowing at slip. The static friction force per unit area preceding slip is known from molecular dynamics (MD) simulations to decrease with increasing contact area. That makes the large-size fate of stick slip unclear and unknown; its possible vanishing is important as it would herald smooth sliding with a dramatic drop of kinetic friction at large size. Here we formulate a scaling law of the static friction force, which for a soft lubricant is predicted to decrease as fm+Δf/Aγ for increasing contact area A, with γ>0. Our main finding is that the value of fm, controlling the survival of stick slip at large size, can be evaluated by simulations of comparably small size. MD simulations of soft lubricant sliding are presented, which verify this theory.

  19. Rolling-Friction Robotic Gripper

    NASA Technical Reports Server (NTRS)

    Vranish, John M.

    1992-01-01

    Robotic gripper using rolling-friction fingers closes in on object with interface designed to mate with rollers somewhat misaligned initially, aligns object with respect to itself, then holds object securely in uniquely determined position and orientation. Operation of gripper causes minimal wear and burring of gripper and object. Exerts minimal friction forces on object when grasping and releasing. Releases object easily and reliably even when side forces and torques are between itself and object.

  20. Numerical implementation of a state variable model for friction

    SciTech Connect

    Korzekwa, D.A.; Boyce, D.E.

    1995-03-01

    A general state variable model for friction has been incorporated into a finite element code for viscoplasticity. A contact area evolution model is used in a finite element model of a sheet forming friction test. The results show that a state variable model can be used to capture complex friction behavior in metal forming simulations. It is proposed that simulations can play an important role in the analysis of friction experiments and the development of friction models.

  1. Structure and interface chemistry of MoO3 back contacts in Cu(In,Ga)Se2 thin film solar cells

    NASA Astrophysics Data System (ADS)

    Simchi, Hamed; McCandless, Brian E.; Meng, T.; Shafarman, William N.

    2014-01-01

    Molybdenum oxide (MoO3) is considered as a possible primary back contact for Cu(InGa)Se2 thin film solar cells for its potential as a transparent back contact for superstrate and bifacial devices. MoO3 films were deposited on Mo or ITO-coated soda lime glass substrates by reactive rf sputtering in an ambient of Ar + O2 with O2/(O2 + Ar) = 35% on which Cu(In0.7Ga0.3)Se2 alloy absorber layers were deposited using multi-source elemental evaporation. Scanning Electron Microscopy studies showed uniform coverage of the as-deposited MoO3 layer and good adhesion was obtained in all cases. X-ray Photoelectron Spectroscopy depth profile analysis showed that MoSe2 was not formed at the Cu(InGa)Se2 interface with either the Mo-MoO3 or ITO-MoO3 back contacts. Determination of the valence band offsets showed that the MoO3 layer at the interface changes the energy band alignment with Cu(InGa)Se2, producing a primary contact with lower valence band offset than ITO. Cu(In,Ga)Se2 thin film solar cells prepared using an as-deposited Mo-MoO3 back contact yielded a best conversion efficiency of 14%, with VOC = 647 mV, JSC = 28.4 mA/cm2, and FF = 78.1%. Cells with ITO-MoO3 back contact showed a best efficiency of 12%, with VOC = 642 mV, JSC = 26.8 mA/cm2, and FF = 69.2%.

  2. Corrosion effects on friction factors

    SciTech Connect

    Magleby, H.L.; Shaffer, S.J.

    1996-03-01

    This paper presents the results of NRC-sponsored material specimen tests that were performed to determine if corrosion increases the friction factors of sliding surfaces of motor-operated gate valves, which could require higher forces to close and open safety-related valves when subjected to their design basis differential pressures. Friction tests were performed with uncorroded specimens and specimens subjected to accelerated corrosion. Preliminary tests at ambient conditions showed that corrosion increased the friction factors, indicating the need for additional tests duplicating valve operating parameters at hot conditions. The additional tests showed friction factors of corroded specimens were 0.1 to 0.2 higher than for uncorroded specimens, and that the friction factors of the corroded specimens were not very dependent on contact stress or corrosion film thickness. The measured values of friction factors for the three corrosion films tested (simulating three operating times) were in the range of 0.3 to 0.4. The friction factor for even the shortest simulated operating time was essentially the same as the others, indicating that the friction factors appear to reach a plateau and that the plateau is reached quickly.

  3. Development and Application of Non-linear Friction Models for Metal Forming Simulation

    NASA Astrophysics Data System (ADS)

    Ma, Ninshu; Sugitomo, Nobuhiko

    2011-08-01

    Friction has a significant effect on the formability of stamping parts. A constant friction coefficient between stamping tools and blank is often employed in the metal forming simulating. In this presented work, several non-linear friction models which considers of the change of friction coefficient with contact pressure, sliding velocity, sliding distance, frictional work, plastic strain and temperature were developed using LS-DYNA customized friction subroutine. The validity was verified by numerical friction testing models and deep drawing model.

  4. Friction Anisotropy with Respect to Topographic Orientation

    PubMed Central

    Yu, Chengjiao; Wang, Q. Jane

    2012-01-01

    Friction characteristics with respect to surface topographic orientation were investigated using surfaces of different materials and fabricated with grooves of different scales. Scratching friction tests were conducted using a nano-indentation-scratching system with the tip motion parallel or perpendicular to the groove orientation. Similar friction anisotropy trends were observed for all the surfaces studied, which are (1) under a light load and for surfaces with narrow grooves, the tip motion parallel to the grooves offers higher friction coefficients than does that perpendicular to them, (2) otherwise, equal or lower friction coefficients are found under this motion. The influences of groove size relative to the diameter of the mating tip (as a representative asperity), surface contact stiffness, contact area, and the characteristic stiction length are discussed. The appearance of this friction anisotropy is independent of material; however, the boundary and the point of trend transition depend on material properties. PMID:23248751

  5. Novel Friction Law for the Static Friction Force based on Local Precursor Slipping

    PubMed Central

    Katano, Yu; Nakano, Ken; Otsuki, Michio; Matsukawa, Hiroshi

    2014-01-01

    The sliding of a solid object on a solid substrate requires a shear force that is larger than the maximum static friction force. It is commonly believed that the maximum static friction force is proportional to the loading force and does not depend on the apparent contact area. The ratio of the maximum static friction force to the loading force is called the static friction coefficient µM, which is considered to be a constant. Here, we conduct experiments demonstrating that the static friction force of a slider on a substrate follows a novel friction law under certain conditions. The magnitude of µM decreases as the loading force increases or as the apparent contact area decreases. This behavior is caused by the slip of local precursors before the onset of bulk sliding and is consistent with recent theory. The results of this study will develop novel methods for static friction control. PMID:25205283

  6. Interface annealing characterization of Ti/Al/Au ohmic contacts to p-type 4H-SiC

    NASA Astrophysics Data System (ADS)

    Chao, Han; Yuming, Zhang; Qingwen, Song; Xiaoyan, Tang; Hui, Guo; Yimen, Zhang; Fei, Yang; Yingxi, Niu

    2015-12-01

    Ti/Al/Au ohmic contacts to p-type 4H-SiC in terms of a different annealing time and Ti composition are reported. At 1050 °C, proper increase in annealing time plays a critical role in the Schottky to ohmic contact conversion. With the optimized annealing time, the contact with a high Ti content yields a lower specific contact resistivity (ρc) of 6.4 × 10-5 Ω·cm2 compared with the low-Ti contact. The annealed surface morphology and phase resultants were examined by scanning electron microscopy (SEM) and X-ray diffraction (XRD), respectively. For the better ohmic contact, element distribution and chemical states were qualitatively identified by X-ray photoelectron spectroscopy (XPS) depth analysis. In particular, the presence of C and a Si-related phase was discussed and associated with the change in the surface status of the as-grown epilayer of 4H-SiC during annealing. The results reveal that the out-diffused C and Si atoms, with an approximate atomic ratio of 1 : 1 in the contact layer, can combine to form an amorphous Si-C state. The polycrystalline graphite instead of an unreacted C cluster in the whole alloyed structure and an extra nanosize graphite flake on the outermost surface of the annealed contact were confirmed by Raman spectroscopy. Project supported by the Key Specific Projects of Ministry of Education of China (No. 625010101), the Specific Project of the Core Devices (No. 2013ZX01001001-004), and the Science Project of State Grid (No. SGRI-WD-71-14-004).

  7. Slow frictional waves

    NASA Astrophysics Data System (ADS)

    Viswanathan, Koushik; Sundaram, Narayan; Chandrasekar, Srinivasan

    Stick-slip, manifest as intermittent tangential motion between two dry solid surfaces, is a friction instability that governs diverse phenomena from automobile brake squeals to earthquakes. We show, using high-speed in situ imaging of an adhesive polymer interface, that low velocity stick-slip is fundamentally of three kinds, corresponding to passage of three different surface waves -- separation pulses, slip pulses and the well-known Schallamach waves. These waves, traveling much slower than elastic waves, have clear distinguishing properties. Separation pulses and Schallamach waves involve local interface separation, and propagate in opposite directions while slip pulses are characterized by a sharp stress front and do not display any interface detachment. A change in the stick-slip mode from separation to slip pulse is effected simply by increasing the normal force. Together, these three waves constitute all possible stick-slip modes in adhesive friction and are shown to have direct analogues in muscular locomotory waves in soft bodied invertebrates. A theory for slow wave propagation is also presented which is capable of explaining the attendant interface displacements, velocities and stresses.

  8. Self-sustained lift and low friction via soft lubrication.

    PubMed

    Saintyves, Baudouin; Jules, Theo; Salez, Thomas; Mahadevan, L

    2016-05-24

    Relative motion between soft wet solids arises in a number of applications in natural and artificial settings, and invariably couples elastic deformation fluid flow. We explore this in a minimal setting by considering a fluid-immersed negatively buoyant cylinder moving along a soft inclined wall. Our experiments show that there is an emergent robust steady-state sliding regime of the cylinder with an effective friction that is significantly reduced relative to that of rigid fluid-lubricated contacts. A simple scaling approach that couples the cylinder-induced flow to substrate deformation allows us to explain the elastohydrodynamic lift that underlies the self-sustained lubricated motion of the cylinder, consistent with recent theoretical predictions. Our results suggest an explanation for a range of effects such as reduced wear in animal joints and long-runout landslides, and can be couched as a design principle for low-friction interfaces. PMID:27162361

  9. Frictional ageing from interfacial bonding and the origins of rate and state friction.

    PubMed

    Li, Qunyang; Tullis, Terry E; Goldsby, David; Carpick, Robert W

    2011-12-01

    Earthquakes have long been recognized as being the result of stick-slip frictional instabilities. Over the past few decades, laboratory studies of rock friction have elucidated many aspects of tectonic fault zone processes and earthquake phenomena. Typically, the static friction of rocks grows logarithmically with time when they are held in stationary contact, but the mechanism responsible for this strengthening is not understood. This time-dependent increase of frictional strength, or frictional ageing, is one manifestation of the 'evolution effect' in rate and state friction theory. A prevailing view is that the time dependence of rock friction results from increases in contact area caused by creep of contacting asperities. Here we present the results of atomic force microscopy experiments that instead show that frictional ageing arises from the formation of interfacial chemical bonds, and the large magnitude of ageing at the nanometre scale is quantitatively consistent with what is required to explain observations in macroscopic rock friction experiments. The relative magnitude of the evolution effect compared with that of the 'direct effect'--the dependence of friction on instantaneous changes in slip velocity--determine whether unstable slip, leading to earthquakes, is possible. Understanding the mechanism underlying the evolution effect would enable us to formulate physically based frictional constitutive laws, rather than the current empirically based 'laws', allowing more confident extrapolation to natural faults. PMID:22139421

  10. Rate-dependent frictional adhesion in natural and synthetic gecko setae

    PubMed Central

    Gravish, Nick; Wilkinson, Matt; Sponberg, Simon; Parness, Aaron; Esparza, Noe; Soto, Daniel; Yamaguchi, Tetsuo; Broide, Michael; Cutkosky, Mark; Creton, Costantino; Autumn, Kellar

    2010-01-01

    Geckos owe their remarkable stickiness to millions of dry, hard setae on their toes. In this study, we discovered that gecko setae stick more strongly the faster they slide, and do not wear out after 30 000 cycles. This is surprising because friction between dry, hard, macroscopic materials typically decreases at the onset of sliding, and as velocity increases, friction continues to decrease because of a reduction in the number of interfacial contacts, due in part to wear. Gecko setae did not exhibit the decrease in adhesion or friction characteristic of a transition from static to kinetic contact mechanics. Instead, friction and adhesion forces increased at the onset of sliding and continued to increase with shear speed from 500 nm s−1 to 158 mm s−1. To explain how apparently fluid-like, wear-free dynamic friction and adhesion occur macroscopically in a dry, hard solid, we proposed a model based on a population of nanoscopic stick–slip events. In the model, contact elements are either in static contact or in the process of slipping to a new static contact. If stick–slip events are uncorrelated, the model further predicted that contact forces should increase to a critical velocity (V*) and then decrease at velocities greater than V*. We hypothesized that, like natural gecko setae, but unlike any conventional adhesive, gecko-like synthetic adhesives (GSAs) could adhere while sliding. To test the generality of our results and the validity of our model, we fabricated a GSA using a hard silicone polymer. While sliding, the GSA exhibited steady-state adhesion and velocity dependence similar to that of gecko setae. Observations at the interface indicated that macroscopically smooth sliding of the GSA emerged from randomly occurring stick–slip events in the population of flexible fibrils, confirming our model predictions. PMID:19493896

  11. Investigation of squeal noise under positive friction characteristics condition provided by friction modifiers

    NASA Astrophysics Data System (ADS)

    Liu, Xiaogang; Meehan, Paul A.

    2016-06-01

    Field application of friction modifiers on the top of rail has been shown to effectively curb squeal and reduce lateral forces, but performance can be variable, according to other relevant research. Up to now, most investigations of friction modifiers were conducted in the field, where it is difficult to control or measure important parameters such as angle of attack, rolling speed, adhesion ratio etc. In the present investigation, the effect of different friction modifiers on the occurrence of squeal was investigated on a rolling contact two disk test rig. In particular, friction-creep curves and squeal sound pressure levels were measured under different rolling speeds and friction modifiers. The results show friction modifiers can eliminate or reduce the negative slope of friction-creep curves, but squeal noise still exists. Theoretical modelling of instantaneous creep behaviours reveals a possible reason why wheel squeal still exists after the application of friction modifiers.

  12. Linear and non-linear wall friction of wet foams.

    PubMed

    Le Merrer, Marie; Lespiat, Rémi; Höhler, Reinhard; Cohen-Addad, Sylvie

    2015-01-14

    We study the wall slip of aqueous foams with a high liquid content. We use a set-up where, driven by buoyancy, a foam creeps along an inclined smooth solid wall which is immersed in the foaming solution. This configuration allows the force driving the bubble motion and the bubble confinement in the vicinity of the wall to be tuned independently. First, we consider bubble monolayers with small Bond number Bo < 1 and measure the relation between the friction force F and the bubble velocity V. For bubbles which are so small that they are almost spherical, the friction law F ∝ V is Stokes-like. The analysis shows that the minimal thickness of the lubricating contact between the bubble and the wall is governed by DLVO long-range forces. Our results are the first evidence of this predicted linear friction regime for creeping bubbles. Due to buoyancy, large bubbles flatten against the wall. In this case, dissipation arises because of viscous flow in the dynamic meniscus between the contact film and the spherical part of the bubble. It leads to a non-linear Bretherton-like friction law F ∝ V(2/3), as expected for slipping bubbles with mobile liquid-gas interfaces. The Stokes-like friction dominates for capillary numbers Ca larger than the crossover value Ca* ∼ Bo(3/2). The overall friction force can be expressed as the sum of these two contributions. On this basis, we then study 3D foams close to the jamming transition with osmotic pressures Π small compared to the capillary pressure Pc. We measure the wall shear stress τ as a function of the capillary number, and we evidence two friction regimes that are consistent with those found for the monolayer. Similarly to this latter case, the total shear stress can be expressed as the sum of the Stokes-like friction term τ ∝ Ca and the Bretherton-like one τ ∝ Ca(2/3). However, for a 3D foam, the crossover at a capillary number Ca** between both regimes is governed by the ratio of the osmotic pressure to the

  13. On the dependency of friction on load: Theory and experiment

    NASA Astrophysics Data System (ADS)

    Braun, O. M.; Steenwyk, B.; Warhadpande, A.; Persson, B. N. J.

    2016-03-01

    In rubber friction studies it is often observed that the kinetic friction coefficient depends on the nominal contact pressure. This is usually due to frictional heating, which softens the rubber, increases the area of contact, and (in most cases) reduces the viscoelastic contribution to the friction. In this paper we present experimental results showing that the rubber friction also depends on the nominal contact pressure at such low sliding speed that frictional heating is negligible. This effect has important implications for rubber sliding dynamics, e.g., in the context of the tire-road grip. We attribute this effect to the viscoelastic coupling between the macroasperity contact regions, and present a simple earthquakelike model and numerical simulations supporting this picture. The mechanism for the dependency of the friction coefficient on the load considered is very general, and is relevant for non-rubber materials as well.

  14. Interfacial deformation and friction heating in ultrasonic Al ribbon bonding

    NASA Astrophysics Data System (ADS)

    Takahashi, Yasuo; Maeda, Masakatsu; Ando, Masaya; Yamaguchi, Eito

    2014-08-01

    The interfacial deformation and friction behavior between an Al ribbon and an electric pad (or substrate) during ultrasonic bonding is analyzed, based on numerical simulation and experimental results. The friction heating is estimated by the friction slip work at the bonding interface between the ribbon and pad. The temperature rise of the bonding interface is calculated by the numerical simulation and compared with the experimental results. It is suggested that the electric pad reduces the temperature rise, as compared to the bonding process without a pad. The shear stress at the bonding interface increases as the bonding progresses. The frictional slip due to adhesion increases stress and heats the bond interface.

  15. Effect of Operating Conditions on Tribological Response of Al Al Sliding Electrical Interface

    SciTech Connect

    Bansal, Dinesh G; Streator, Jeffrey L

    2011-01-01

    Aluminum is widely used in electrical contacts due to its electrical properties and inexpensiveness when compared to copper. In this study, we investigate the influence of operating conditions like contact load (pressure), sliding speed, current, and surface roughness on the electrical and tribological behavior of the interface. The tests are conducted on a linear, pin-on-flat tribo-simulator specially designed to investigate electrical contacts under high contact pressures and high current densities. Control parameters include sliding speed, load, current, and surface roughness. The response of the interface is evaluated in the light of coefficient of friction, contact resistance, contact voltage, mass loss of pins, and interfacial temperature rise. As compared to sliding speed, load, and roughness, current is found to have the greatest influence on the various measured parameters. Under certain test conditions, the interface operates in a voltage saturation regime, wherein increase in current do not result in any increase in contact voltage. Within the voltage saturation regime the coefficient of friction tends to be lower, a result that is attributed to the higher temperatures associated with the higher voltage (and resulting material softening). Higher interfacial temperatures also appear to be responsible for the higher wear rates observed at higher current levels as well as lower coefficients of friction for smoother surfaces in the presence of current.

  16. Circuit racing, track texture, temperature and rubber friction

    NASA Astrophysics Data System (ADS)

    Sharp, R. S.; Gruber, P.; Fina, E.

    2016-04-01

    Some general observations relating to tyre shear forces and road surfaces are followed by more specific considerations from circuit racing. The discussion then focuses on the mechanics of rubber friction. The classical experiments of Grosch are outlined and the interpretations that can be put on them are discussed. The interpretations involve rubber viscoelasticity, so that the vibration properties of rubber need to be considered. Adhesion and deformation mechanisms for energy dissipation at the interface between rubber and road and in the rubber itself are highlighted. The enquiry is concentrated on energy loss by deformation or hysteresis subsequently. Persson's deformation theory is outlined and the material properties necessary to apply the theory to Grosch's experiments are discussed. Predictions of the friction coefficient relating to one particular rubber compound and a rough surface are made using the theory and these are compared with the appropriate results from Grosch. Predictions from Persson's theory of the influence of nominal contact pressure on the friction coefficient are also examined. The extent of the agreement between theory and experiment is discussed. It is concluded that there is value in the theory but that it is far from complete. There is considerable scope for further research on the mechanics of rubber friction.

  17. Friction and roughness of a melting rock surface

    NASA Astrophysics Data System (ADS)

    Nielsen, Stefan; di Toro, Giulio; Griffith, Ashley

    2010-05-01

    Under extreme conditions like those encountered during earthquake slip, frictional melt is likely to occur. It has been observed on fossil faults that the melt is mostly extruded toward local extensional jogs or lateral tension cracks. A similar condition is reproduced in laboratory experiments with a rotary shear apparatus. When this happens, a thin and irregular melt layer is formed whereby the normal load is still in part supported by contact asperities under an incipient yield condition (as in dry friction models), but also, in the interstices between asperities, by the pressure of the viscous fluid wetting the interface. In addition, roughness of the surface is dynamically reshaped by the melting process of an inhomogeneous material (polymineral rock). In particular, we argue that the roughness decreases with temperature gradient and the melting rate. Taking into account the above conditions, we obtain an expression for the average melt layer thickness and viscous pressure that may be used in estimates of friction in the presence of melt. We argue that the ratio of melt thickness to roughness depends on sliding velocity; such a ratio may be used as a gauge of slip-rate during fossil earthquakes on faults bearing pseudotachylite (solidified melt). Finally, we derive an improved analytical solution for friction in the presence of melt including the effect of roughness evolution.

  18. Friction and roughness of a melting rock surface

    NASA Astrophysics Data System (ADS)

    Nielsen, S.; di Toro, G.; Griffith, W. A.

    2010-07-01

    Under extreme conditions like those encountered during earthquake slip, frictional melt is likely to occur. It has been observed on ancient faults that the melt is mostly extruded toward local extensional jogs or lateral tension cracks. In the case of laboratory experiments with a rotary shear apparatus, melt is extruded from the sample borders. When this happens, a thin and irregular melt layer is formed whereby the normal load is still in part supported by contact asperities under an incipient yield condition (as in dry friction models), but also, in the interstices between asperities, by the pressure of the viscous fluid wetting the interface. In addition, roughness of the surface is dynamically reshaped by the melting process of an inhomogeneous material (polymineralic rock). In particular, we argue that the roughness of the melting surface decreases with melting rate and temperature gradient perpendicular to the fault. Taking into account the above conditions, we obtain an expression for the average melt layer thickness and viscous pressure that may be used in estimates of friction in the presence of melt. We argue that the ratio of melt thickness to roughness depends on sliding velocity; such a ratio may be used as a gauge of slip-rate during fossil earthquakes on faults bearing pseudotachylite (solidified melt). Finally, we derive an improved analytical solution for friction in the presence of melt including the effect of roughness evolution.

  19. A multibody knee model with discrete cartilage prediction of tibio-femoral contact mechanics.

    PubMed

    Guess, Trent M; Liu, Hongzeng; Bhashyam, Sampath; Thiagarajan, Ganesh

    2013-01-01

    Combining musculoskeletal simulations with anatomical joint models capable of predicting cartilage contact mechanics would provide a valuable tool for studying the relationships between muscle force and cartilage loading. As a step towards producing multibody musculoskeletal models that include representation of cartilage tissue mechanics, this research developed a subject-specific multibody knee model that represented the tibia plateau cartilage as discrete rigid bodies that interacted with the femur through deformable contacts. Parameters for the compliant contact law were derived using three methods: (1) simplified Hertzian contact theory, (2) simplified elastic foundation contact theory and (3) parameter optimisation from a finite element (FE) solution. The contact parameters and contact friction were evaluated during a simulated walk in a virtual dynamic knee simulator, and the resulting kinematics were compared with measured in vitro kinematics. The effects on predicted contact pressures and cartilage-bone interface shear forces during the simulated walk were also evaluated. The compliant contact stiffness parameters had a statistically significant effect on predicted contact pressures as well as all tibio-femoral motions except flexion-extension. The contact friction was not statistically significant to contact pressures, but was statistically significant to medial-lateral translation and all rotations except flexion-extension. The magnitude of kinematic differences between model formulations was relatively small, but contact pressure predictions were sensitive to model formulation. The developed multibody knee model was computationally efficient and had a computation time 283 times faster than a FE simulation using the same geometries and boundary conditions. PMID:21970765

  20. Taylor series to solve friction problems

    NASA Astrophysics Data System (ADS)

    Béchet, Fabien; Lejeune, Arnaud; Potier-Ferry, Michel

    2010-06-01

    Thin metallic sheet transportation appears in numerous manufacturing processes such as continuous annealing, levelling or galvanization. It involves various nonlinear phenomena and, in particular, contact with friction. We develop a numerical method to solve this kind of mechanical problem, using shell finite elements and the Asymptotic Numerical Method (ANM). This article focuses on the treatment of the friction equations with ANM.

  1. Annealing behaviors of vacancy-type defects near interfaces between metal contacts and GaN probed using a monoenergetic positron beam

    SciTech Connect

    Uedono, Akira Yoshihara, Nakaaki; Fujishima, Tatsuya; Piedra, Daniel; Palacios, Tomás; Ishibashi, Shoji; Sumiya, Masatomo; Laboutin, Oleg; Johnson, Wayne

    2014-08-04

    Vacancy-type defects near interfaces between metal contacts and GaN grown on Si substrates by metal organic chemical vapor deposition have been studied using a monoenergetic positron beam. Measurements of Doppler broadening spectra of the annihilation radiation for Ti-deposited GaN showed that optically active vacancy-type defects were introduced below the Ti/GaN interface after annealing at 800 °C. Charge transition of those defects due to electron capture was observed and was found to correlate with a yellow band in the photoluminescence spectrum. The major defect species was identified as vacancy clusters such as three to five Ga-vacancies coupled with multiple nitrogen-vacancies. The annealing behaviors of vacancy-type defects in Ti-, Ni-, and Pt-deposited GaN were also examined.

  2. Super-giant magnetoresistance at room-temperature in copper nanowires due to magnetic field modulation of potential barrier heights at nanowire-contact interfaces

    NASA Astrophysics Data System (ADS)

    Hossain, Md I.; Maksud, M.; Palapati, N. K. R.; Subramanian, A.; Atulasimha, J.; Bandyopadhyay, S.

    2016-07-01

    We have observed a super-giant (∼10 000 000%) negative magnetoresistance at 39 mT field in Cu nanowires contacted with Au contact pads. In these nanowires, potential barriers form at the two Cu/Au interfaces because of Cu oxidation that results in an ultrathin copper oxide layer forming between Cu and Au. Current flows when electrons tunnel through, and/or thermionically emit over, these barriers. A magnetic field applied transverse to the direction of current flow along the wire deflects electrons toward one edge of the wire because of the Lorentz force, causing electron accumulation at that edge and depletion at the other. This lowers the potential barrier at the accumulated edge and raises it at the depleted edge, causing a super-giant magnetoresistance at room temperature.

  3. Super-giant magnetoresistance at room-temperature in copper nanowires due to magnetic field modulation of potential barrier heights at nanowire-contact interfaces.

    PubMed

    Hossain, Md I; Maksud, M; Palapati, N K R; Subramanian, A; Atulasimha, J; Bandyopadhyay, S

    2016-07-29

    We have observed a super-giant (∼10 000 000%) negative magnetoresistance at 39 mT field in Cu nanowires contacted with Au contact pads. In these nanowires, potential barriers form at the two Cu/Au interfaces because of Cu oxidation that results in an ultrathin copper oxide layer forming between Cu and Au. Current flows when electrons tunnel through, and/or thermionically emit over, these barriers. A magnetic field applied transverse to the direction of current flow along the wire deflects electrons toward one edge of the wire because of the Lorentz force, causing electron accumulation at that edge and depletion at the other. This lowers the potential barrier at the accumulated edge and raises it at the depleted edge, causing a super-giant magnetoresistance at room temperature. PMID:27320491

  4. The silicon/zinc oxide interface in amorphous silicon-based thin-film solar cells: Understanding an empirically optimized contact

    SciTech Connect

    Gerlach, D.; Wilks, R. G.; Wimmer, M.; Felix, R.; Gorgoi, M.; Lips, K.; Rech, B.; Wippler, D.; Mueck, A.; Meier, M.; Huepkes, J.; Lozac'h, M.; Ueda, S.; Sumiya, M.; Yoshikawa, H.; Kobayashi, K.; Baer, M.

    2013-07-08

    The electronic structure of the interface between the boron-doped oxygenated amorphous silicon 'window layer' (a-SiO{sub x}:H(B)) and aluminum-doped zinc oxide (ZnO:Al) was investigated using hard x-ray photoelectron spectroscopy and compared to that of the boron-doped microcrystalline silicon ({mu}c-Si:H(B))/ZnO:Al interface. The corresponding valence band offsets have been determined to be (-2.87 {+-} 0.27) eV and (-3.37 {+-} 0.27) eV, respectively. A lower tunnel junction barrier height at the {mu}c-Si:H(B)/ZnO:Al interface compared to that at the a-SiO{sub x}:H(B)/ZnO:Al interface is found and linked to the higher device performances in cells where a {mu}c-Si:H(B) buffer between the a-Si:H p-i-n absorber stack and the ZnO:Al contact is employed.

  5. The silicon/zinc oxide interface in amorphous silicon-based thin-film solar cells: Understanding an empirically optimized contact

    NASA Astrophysics Data System (ADS)

    Gerlach, D.; Wilks, R. G.; Wippler, D.; Wimmer, M.; Lozac'h, M.; Félix, R.; Mück, A.; Meier, M.; Ueda, S.; Yoshikawa, H.; Gorgoi, M.; Lips, K.; Rech, B.; Sumiya, M.; Hüpkes, J.; Kobayashi, K.; Bär, M.

    2013-07-01

    The electronic structure of the interface between the boron-doped oxygenated amorphous silicon "window layer" (a-SiOx:H(B)) and aluminum-doped zinc oxide (ZnO:Al) was investigated using hard x-ray photoelectron spectroscopy and compared to that of the boron-doped microcrystalline silicon (μc-Si:H(B))/ZnO:Al interface. The corresponding valence band offsets have been determined to be (-2.87 ± 0.27) eV and (-3.37 ± 0.27) eV, respectively. A lower tunnel junction barrier height at the μc-Si:H(B)/ZnO:Al interface compared to that at the a-SiOx:H(B)/ZnO:Al interface is found and linked to the higher device performances in cells where a μc-Si:H(B) buffer between the a-Si:H p-i-n absorber stack and the ZnO:Al contact is employed.

  6. Internal rotor friction instability

    NASA Technical Reports Server (NTRS)

    Walton, J.; Artiles, A.; Lund, J.; Dill, J.; Zorzi, E.

    1990-01-01

    The analytical developments and experimental investigations performed in assessing the effect of internal friction on rotor systems dynamic performance are documented. Analytical component models for axial splines, Curvic splines, and interference fit joints commonly found in modern high speed turbomachinery were developed. Rotor systems operating above a bending critical speed were shown to exhibit unstable subsynchronous vibrations at the first natural frequency. The effect of speed, bearing stiffness, joint stiffness, external damping, torque, and coefficient of friction, was evaluated. Testing included material coefficient of friction evaluations, component joint quantity and form of damping determinations, and rotordynamic stability assessments. Under conditions similar to those in the SSME turbopumps, material interfaces experienced a coefficient of friction of approx. 0.2 for lubricated and 0.8 for unlubricated conditions. The damping observed in the component joints displayed nearly linear behavior with increasing amplitude. Thus, the measured damping, as a function of amplitude, is not represented by either linear or Coulomb friction damper models. Rotordynamic testing of an axial spline joint under 5000 in.-lb of static torque, demonstrated the presence of an extremely severe instability when the rotor was operated above its first flexible natural frequency. The presence of this instability was predicted by nonlinear rotordynamic time-transient analysis using the nonlinear component model developed under this program. Corresponding rotordynamic testing of a shaft with an interference fit joint demonstrated the presence of subsynchronous vibrations at the first natural frequency. While subsynchronous vibrations were observed, they were bounded and significantly lower in amplitude than the synchronous vibrations.

  7. Contact resistivity decrease at a metal/semiconductor interface by a solid-to-liquid phase transitional metallo-organic silver.

    PubMed

    Shin, Dong-Youn; Seo, Jun-Young; Kang, Min Gu; Song, Hee-eun

    2014-09-24

    We present a new approach to ensure the low contact resistivity of a silver paste at a metal/semiconductor interface over a broad range of peak firing temperatures by using a solid-to-liquid phase transitional metallo-organic silver, that is, silver neodecanoate. Silver nanoclusters, thermally derived from silver neodecanoate, are readily dissolved into the melt of metal oxide glass frit even at low temperatures, at which point the molten metal oxide glass frit lacks the dissociation capability of bulk silver into Ag(+) ions. In the presence of O(2-) ions in the melt of metal oxide glass frit, the redox reaction from Ag(+) to Ag(0) augments the noble-metal-assisted etching capability to remove the passivation layer of silicon nitride. Moreover, during the cooling stage, the nucleated silver atoms enrich the content of silver nanocolloids in the solidified metal oxide glass layer. The resulting contact resistivity of silver paste with silver neodecanoate at the metal/semiconductor interface thus remains low-between 4.12 and 16.08 mΩ cm(2)-whereas without silver neodecanoate, the paste exhibits a contact resistivity between 2.61 and 72.38 mΩ cm(2) in the range of peak firing temperatures from 750 to 810 °C. The advantage of using silver neodecanoate in silver paste becomes evident in that contact resistivity remains low over the broad range of peak firing temperatures, thus providing greater flexibility with respect to the firing temperature required in silicon solar cell applications. PMID:25182502

  8. Theoretical model for adhesive friction between elastomers and rough solid surfaces.

    PubMed

    Momozono, Satoshi; Nakamura, Kenya; Kyogoku, Keiji

    2010-03-21

    A theoretical model for the adhesive friction between elastomers and rough solid surfaces is proposed on the basis of opening crack propagation processes at the boundary of the contact interfaces and the rate processes of formation of molecular bonds on the solid surface. This model, which is expressed as a product of the terms related to the two abovementioned processes, requires some measurable and fitted parameters such as the frictional shear strength expressed as a function of viscoelastic dissipation, rate-dependent elasticity, density of bonded molecular chains at a contact junction, critical velocity related to viscoelastic relaxation, and critical velocity related to the rate process of formation of molecular bonds on the solid surface. The friction-velocity relationship exhibits a remarkable fit to previously obtained experimental results for polymers such as engineering rubber, gels, and plastics (glassy polymers), and all fitting parameters are physically reasonable. The viscoelastic index "n" is also related to the "glass-to-rubber transition" of a nanometer-thick polymer layer for frictional behavior. Thus, from a practical viewpoint, this model can be used effectively for fitting the adhesive friction behavior of polymers. PMID:20331279

  9. Theoretical model for adhesive friction between elastomers and rough solid surfaces

    NASA Astrophysics Data System (ADS)

    Momozono, Satoshi; Nakamura, Kenya; Kyogoku, Keiji

    2010-03-01

    A theoretical model for the adhesive friction between elastomers and rough solid surfaces is proposed on the basis of opening crack propagation processes at the boundary of the contact interfaces and the rate processes of formation of molecular bonds on the solid surface. This model, which is expressed as a product of the terms related to the two abovementioned processes, requires some measurable and fitted parameters such as the frictional shear strength expressed as a function of viscoelastic dissipation, rate-dependent elasticity, density of bonded molecular chains at a contact junction, critical velocity related to viscoelastic relaxation, and critical velocity related to the rate process of formation of molecular bonds on the solid surface. The friction-velocity relationship exhibits a remarkable fit to previously obtained experimental results for polymers such as engineering rubber, gels, and plastics (glassy polymers), and all fitting parameters are physically reasonable. The viscoelastic index "n" is also related to the "glass-to-rubber transition" of a nanometer-thick polymer layer for frictional behavior. Thus, from a practical viewpoint, this model can be used effectively for fitting the adhesive friction behavior of polymers.

  10. The atomic scale origin of wear on mica and its contribution to friction

    SciTech Connect

    Kopta, Susanne; Salmeron, Miquel

    1999-12-16

    Atomic force microscopy is used to show that production of surface point defects at the interface of rubbing solids is an important mechanism of energy dissipation in friction. Using mica and Si-tips, we show that defects are produced by the rupture of Si-O bonds at the surface. These defects, which are not visible in contact mode AFM images, have a noticeable contribution to friction. When defects accumulate beyond a critical concentration, they grow to form visible wear scars {approximately} 2 Angstrom deep at first and deeper holes later. The contribution of defect production to friction is explained by a simple model, which is based on the stress-induced enhancement of the rate of thermal defect production.

  11. Observation of a Dislocation-Related Interfacial Friction Mechanism in Mobile Solid 4He

    NASA Astrophysics Data System (ADS)

    Eyal, Anna; Livne, Ethan; Polturak, Emil

    2016-04-01

    We report a study of the temperature and stress dependence of the friction associated with a relative motion of crystallites of solid 4He in contact with each other. A situation where such motion exists emerges spontaneously during a disordering of a single crystal contained inside an annular sample space of a torsional oscillator (TO). Under the torque applied by the oscillating walls of the TO these crystallites move relative to each other, generating measurable dissipation at their interface. We studied this friction between 0.5 and 1.8 K in solid samples grown from commercially pure 4He and from a 100 ppm 3He-4He mixture. The data were analyzed by modeling the TO as a driven harmonic oscillator. In this model, an analysis of the resonant frequency and amplitude of the TO yields the temperature dependence of the friction coefficient. By fitting the data to specific forms, we found that over our temperature range, the dominant friction mechanism associated with the interfacial motion of the crystallites results from climb of individual dislocations. The characteristic energy scale associated with this friction can be 3 or 6 K, depending on the sample. The motion of the solid in the presence of such friction can perhaps be described as the low limit of "slip-stick" motion.

  12. Elements of Friction Theory and Nanotribology

    NASA Astrophysics Data System (ADS)

    Gnecco, Enrico; Meyer, Ernst

    2015-04-01

    Preface; 1. Introduction; 2. Dry friction and damped oscillators; Part I. Elastic Contacts: 3. Elements of theory of elasticity; 4. Normal contacts; 5. Tangential contacts; 6. Elastic rolling; 7. Beams, plates and layered materials; Part II. Advanced Contact Mechanics: 8. Rough contacts; 9. Viscoelastic contacts; 10. Adhesive contacts; 11. Thermal and electric effects; 12. Plastic contacts; 13. Fracture; 14. Stick-slip; Part III. Nanotribology: 15. Atomic-scale stick-slip; 16. Atomic-scale stick-slip in two dimensions; 17. Instrumental and computational methods in nanotribology; 18. Experimental results in nanotribology; 19. Nanomanipulation; 20. Wear on the nanoscale; 21. Non-contact friction; Part IV. Lubrication: 22. Drag in a viscous fluid; 23. Lubrication; 24. Viscous phenomena in confined or spreading liquids; Appendix A; Appendix B; Appendix C; Notes; References; Index.

  13. Structure and interface chemistry of MoO{sub 3} back contacts in Cu(In,Ga)Se{sub 2} thin film solar cells

    SciTech Connect

    Simchi, Hamed; Shafarman, William N.; McCandless, Brian E.; Meng, T.

    2014-01-21

    Molybdenum oxide (MoO{sub 3}) is considered as a possible primary back contact for Cu(InGa)Se{sub 2} thin film solar cells for its potential as a transparent back contact for superstrate and bifacial devices. MoO{sub 3} films were deposited on Mo or ITO-coated soda lime glass substrates by reactive rf sputtering in an ambient of Ar + O{sub 2} with O{sub 2}/(O{sub 2} + Ar) = 35% on which Cu(In{sub 0.7}Ga{sub 0.3})Se{sub 2} alloy absorber layers were deposited using multi-source elemental evaporation. Scanning Electron Microscopy studies showed uniform coverage of the as-deposited MoO{sub 3} layer and good adhesion was obtained in all cases. X-ray Photoelectron Spectroscopy depth profile analysis showed that MoSe{sub 2} was not formed at the Cu(InGa)Se{sub 2} interface with either the Mo-MoO{sub 3} or ITO-MoO{sub 3} back contacts. Determination of the valence band offsets showed that the MoO{sub 3} layer at the interface changes the energy band alignment with Cu(InGa)Se{sub 2}, producing a primary contact with lower valence band offset than ITO. Cu(In,Ga)Se{sub 2} thin film solar cells prepared using an as-deposited Mo-MoO{sub 3} back contact yielded a best conversion efficiency of 14%, with V{sub OC} = 647 mV, J{sub SC} = 28.4 mA/cm{sup 2}, and FF = 78.1%. Cells with ITO-MoO{sub 3} back contact showed a best efficiency of 12%, with V{sub OC} = 642 mV, J{sub SC} = 26.8 mA/cm{sup 2}, and FF = 69.2%.

  14. Friction characteristics of Cd-rich carbonate films on calcite surfaces: implications for compositional differentiation at the nanometer scale

    PubMed Central

    2009-01-01

    Lateral Force Microscopy (LFM) studies were carried out on cleaved calcite sections in contact with solutions supersaturated with respect to otavite (CdCO3) or calcite-otavite solid solutions (SS) as a means to examine the potential for future application of LFM as a nanometer-scale mineral surface composition mapping technique. Layer-by-layer growth of surface films took place either by step advancement or by a surface nucleation and step advancement mechanisms. Friction vs. applied load data acquired on the films and the calcite substrate were successfully fitted to the Johnson Kendall Roberts (JKR) model for single asperity contacts. Following this model, friction differences between film and substrate at low loads were dictated by differences in adhesion, whereas at higher load they reflect differences in contact shear strength. In most experiments at fixed load, the film showed higher friction than the calcite surface, but the friction-load dependence for the different surfaces revealed that at low loads (0–40 nN), a calcian otavite film has lower friction than calcite; a result that is contrary to earlier LFM reports of the same system. Multilayer films of calcian-otavite displayed increasing friction with film thickness, consistent with the expectation that the film surface composition will become increasingly Cd-rich with increasing thickness. Both load- and thickness-dependence trends support the hypothesis that the contact shear strength correlates with the hydration enthalpy of the surface ions, thereby imparting friction sensitivity in the LFM to mineral-water interface composition. PMID:19549312

  15. Thermodynamics of a Block Sliding across a Frictional Surface

    ERIC Educational Resources Information Center

    Mungan, Carl E.

    2007-01-01

    The following idealized problem is intended to illustrate some basic thermodynamic concepts involved in kinetic friction. A block of mass m is sliding on top of a frictional, flat-topped table of mass M. The table is magnetically levitated, so that it can move without thermal contact and friction across a horizontal floor. The table is initially…

  16. Differentiation of the functional in an optimization problem for diffusion and convective transfer coefficients of elliptic imperfect contact interface problems

    NASA Astrophysics Data System (ADS)

    Manapova, Aigul

    2016-08-01

    We consider optimal control problems for second order elliptic equations with non-self-adjoint operators-convection-diffusion problems. Control processes are described by semi-linear convection-diffusion equation with discontinuous data and solutions (states) subject to the boundary interface conditions of imperfect type (i.e., problems with a jump of the coefficients and the solution on the interface; the jump of the solution is proportional to the normal component of the flux). Controls are involved in the coefficients of diffusion and convective transfer. We prove differentiability and Lipshitz continuity of the cost functional, depending on a state of the system and a control. The calculation of the gradients uses the numerical solutions of direct problems for the state and adjoint problems.

  17. Measurement of Gear Tooth Dynamic Friction

    NASA Technical Reports Server (NTRS)

    Rebbechi, Brian; Oswald, Fred B.; Townsend, Dennis P.

    1996-01-01

    Measurements of dynamic friction forces at the gear tooth contact were undertaken using strain gages at the root fillets of two successive teeth. Results are presented from two gear sets over a range of speeds and loads. The results demonstrate that the friction coefficient does not appear to be significantly influenced by the sliding reversal at the pitch point, and that the friction coefficient values found are in accord with those in general use. The friction coefficient was found to increase at low sliding speeds. This agrees with the results of disc machine testing.

  18. Tribological Properties of Ti-Based Alloys in a Simulated Bone-Implant Interface with Ringer's Solution at Fretting Contacts

    PubMed Central

    Ramos-Saenz, C.R.; Sundaram, P.A.; Diffoot-Carlo, N.

    2010-01-01

    The wear properties of oxidized and non-oxidized gamma-TiAl (a potential biomaterial) as well as Ti-6Al-4V and CP-Ti disks were studied and characterized by means of standard wear tests using a custom made bone pin arrangement. The Ti-base disks were oxidized in air at 500°C and 800°C for one hour. The tribological properties of the oxides formed over the disks were studied using a linear reciprocating wear testing machine under both dry and simulated biological conditions using Ringer's solution. Loss of metal oxide and coefficient of friction values were determined from the wear testing. From the results, abrasion and adhesion were the primary wear mechanisms in each of the three alloy-bone pairs. Specifically, the oxide formed on gamma-TiAl possessed the highest COF and wear resistance of the three materials which were studied. Also, as expected, bone wears down faster than the Ti-base metal oxide. PMID:20826360

  19. Tribological properties of Ti-based alloys in a simulated bone-implant interface with Ringer's solution at fretting contacts.

    PubMed

    Ramos-Saenz, C R; Sundaram, P A; Diffoot-Carlo, N

    2010-11-01

    The wear properties of oxidized and non-oxidized gamma-TiAl (a potential biomaterial) as well as Ti-6Al-4V and CP-Ti disks were studied and characterized by means of standard wear tests using a custom made bone pin arrangement. The Ti-based disks were oxidized in air at 500 and 800 degrees C for one hour. The tribological properties of the oxides formed over the disks were studied using a linear reciprocating wear testing machine under both dry and simulated biological conditions using Ringer's solution. Loss of metal oxide and coefficient of friction values were determined from wear testing. From the results, abrasion and adhesion were the primary wear mechanisms in each of the three alloy-bone pairs. Specifically, the oxide formed on gamma-TiAl possessed the highest COF and wear resistance of the three materials which were studied. Also, as expected, bone wears down faster than the Ti-based metal oxide. PMID:20826360

  20. System dynamic instabilities induced by sliding contact: A numerical analysis with experimental validation

    NASA Astrophysics Data System (ADS)

    Brunetti, J.; Massi, F.; Saulot, A.; Renouf, M.; D`Ambrogio, W.

    2015-06-01

    Mechanical systems present several contact surfaces between deformable bodies. The contact interface can be either static (joints) or in sliding (active interfaces). The sliding interfaces can have several roles and according to their application they can be developed either for maximizing the friction coefficient and the energy dissipation (e.g. brakes) or rather to allow the relative displacement at joints with a maximum efficiency. In both cases the coupling between system and local contact dynamics can bring to system dynamics instabilities (e.g. brake squeal or squeaking of hip prostheses). This results in unstable vibrations of the system, induced by the oscillation of the contact forces. In the literature, a large number of works deal with such kind of instabilities and are mainly focused on applied problems such as brake squeal noise. This paper shows a more general numerical analysis of a simple system constituted by two bodies in sliding contact: a rigid cylinder rotating inside a deformable one. The parametrical Complex Eigenvalue Analysis and the transient numerical simulations show how the friction forces can give rise to in-plane dynamic instabilities due to the interaction between two system modes, even for such a simple system characterized by one deformable body. Results from transient simulations highlight the key role of realistic values of the material damping to have convergence of the model and, consequently, reliable physical results. To this aim an experimental estimation of the material damping has been carried out. Moreover, the simplicity of the system allows for a deeper analysis of the contact instability and a balance of the energy flux among friction, system vibrations and damping. The numerical results have been validated by comparison with experimental ones, obtained by a specific test bench developed to reproduce and analyze the contact friction instabilities.

  1. High temperature ceramic interface study

    NASA Technical Reports Server (NTRS)

    Lindberg, L. J.

    1984-01-01

    Monolithic SiC and Si3N4 are susceptible to contact stress damage at static and sliding interfaces. Transformation-toughened zirconia (TTZ) was evaluated under sliding contact conditions to determine if the higher material fracture toughness would reduce the susceptibility to contact stress damage. Contact stress tests were conducted on four commercially available TTZ materials at normal loads ranging from 0.455 to 22.7 kg (1 to 50 pounds) at temperatures ranging from room temperature to 1204C (2200 F). Static and dynamic friction were measured as a function of temperature. Flexural strength measurements after these tests determined that the contact stress exposure did not reduce the strength of TTZ at contact loads of 0.455, 4.55, and 11.3 kg (1, 10, and 25 pounds). Prior testing with the lower toughness SiC and Si3N4 materials resulted in a substantial strength reduction at loads of only 4.55 and 11.3 kg (10 and 25 pounds). An increase in material toughness appears to improve ceramic material resistance to contact stress damage. Baseline material flexure strength was established and the stress rupture capability of TTZ was evaluated. Stress rupture tests determined that TTZ materials are susceptible to deformation due to creep and that aging of TTZ materials at elevated temperatures results in a reduction of material strength.

  2. Area of Interest 1, CO2 at the Interface. Nature and Dynamics of the Reservoir/Caprock Contact and Implications for Carbon Storage Performance

    SciTech Connect

    Mozley, Peter; Evans, James; Dewers, Thomas

    2014-10-31

    We examined the influence of geologic features present at the reservoir/caprock interface on the transmission of supercritical CO2 into and through caprock. We focused on the case of deformation-band faults in reservoir lithologies that intersect the interface and transition to opening-mode fractures in caprock lithologies. Deformation-band faults are exceeding common in potential CO2 injection units and our fieldwork in Utah indicates that this sort of transition is common. To quantify the impact of these interface features on flow and transport we first described the sedimentology and permeability characteristics of selected sites along the Navajo Sandstone (reservoir lithology) and Carmel Formation (caprock lithology) interface, and along the Slickrock Member (reservoir lithology) and Earthy Member (caprock lithology) of the Entrada Sandstone interface, and used this information to construct conceptual permeability models for numerical analysis. We then examined the impact of these structures on flow using single-phase and multiphase numerical flow models for these study sites. Key findings include: (1) Deformation-band faults strongly compartmentalize the reservoir and largely block cross-fault flow of supercritical CO2. (2) Significant flow of CO2 through the fractures is possible, however, the magnitude is dependent on the small-scale geometry of the contact between the opening-mode fracture and the deformation band fault. (3) Due to the presence of permeable units in the caprock, caprock units are capable of storing significant volumes of CO2, particularly when the fracture network does not extend all the way through the caprock. The large-scale distribution of these deformation-bandfault-to-opening-mode-fractures is related to the curvature of the beds, with greater densities of fractures in high curvature regions. We also examined core and outcrops from the Mount Simon Sandstone and Eau Claire

  3. Microstructural Characterization of the U-9.1Mo Fuel/AA6061 Cladding Interface in Friction-Bonded Monolithic Fuel Plates Irradiated in the RERTR-6 Experiment

    SciTech Connect

    Keiser, Dennis D.; Jue, Jan-Fong; Miller, Brandon; Gan, Jian; Robinson, Adam; Medvedev, Pavel; Madden, James; Wachs, Dan; Clark, Curtis; Meyer, Mitch

    2015-09-01

    Low-enrichment (U-235 < 20%) U-Mo monolithic fuel is being developed for use in research and test reactors. The earliest design for this fuel that was investigated via reactor testing was comprised of a nominally U-10Mo fuel foil encased in AA6061 (Al-6061) cladding. For a fuel design to be deemed adequate for final use in a reactor, it must maintain dimensional stability and retain fission products throughout irradiation, which means that there must be good integrity at the fuel foil/cladding interface. To investigate the nature of the fuel/cladding interface for this fuel type after irradiation, fuel plates that were tested in INL's Advanced Test Reactor (ATR) were subsequently characterized using optical metallography, scanning electron microscopy, and transmission electron microscopy. Results of this characterization showed that the fuel/cladding interaction layers present at the U-Mo fuel/AA6061 cladding interface after fabrication became amorphous during irradiation. Up to two main interaction layers, based on composition, could be found at the fuel/cladding interface, depending on location. After irradiation, an Al-rich layer contained very few fission gas bubbles, but did exhibit Xe enrichment near the AA6061 cladding interface. Another layer, which contained more Si, had more observable fission gas bubbles. Adjacent to the AA6061 cladding were Mg-rich precipitates, which was in close proximity to the region where Xe is observed to be enriched. In samples produced using a focused ion beam at the interaction zone/AA6061 cladding interface were possible indications of porosity/debonding, which suggested that the interface in this location is relatively weak.

  4. Cu(In,Ga)Se{sub 2} absorber thinning and the homo-interface model: Influence of Mo back contact and 3-stage process on device characteristics

    SciTech Connect

    Leonard, E.; Arzel, L.; Tomassini, M.; Barreau, N.; Zabierowski, P.; Fuertes Marrón, D.

    2014-08-21

    Thinning the absorber layer is one of the possibilities envisaged to further decrease the production costs of Cu(In,Ga)Se{sub 2} (CIGSe) thin films solar cell technology. In the present study, the electronic transport in submicron CIGSe-based devices has been investigated and compared to that of standard devices. It is observed that when the absorber is around 0.5 μm-thick, tunnelling enhanced interface recombination dominates, which harms cells energy conversion efficiency. It is also shown that by varying either the properties of the Mo back contact or the characteristics of 3-stage growth processing, one can shift the dominating recombination mechanism from interface to space charge region and thereby improve the cells efficiency. Discussions on these experimental facts led to the conclusions that 3-stage process implies the formation of a CIGSe/CIGSe homo-interface, whose location as well as properties rule the device operation; its influence is enhanced in submicron CIGSe based solar cells.

  5. Effect of friction on the rheology of dense suspensions

    NASA Astrophysics Data System (ADS)

    Gallier, Stany; Lemaire, Elisabeth; Peters, François; Lobry, Laurent

    2014-11-01

    This work reports three-dimensional numerical simulations of sheared non-Brownian concentrated suspensions using a fictitious domain method. Contacts between particles are modeled using a DEM-like approach (Discrete Element Method), which allows for a more physical description, including roughness and friction. This study emphasizes the effect of friction between particles and its role on rheological properties, especially on normal stress differences. Friction is shown to notably increase viscosity and second normal stress difference | N2 | and decrease | N1 | , in better agreement with experiments. The hydrodynamic and contact contributions to the overall particle stress are particularly investigated and this shows that the effect of friction is mostly due to the additional contact stress since the hydrodynamic stress remains unaffected by friction. Simulation results are also compared with experiments and the agreement is improved when friction is accounted for: this suggests that friction is operative in actual suspensions.

  6. Modeling of friction-induced deformation and microstructures.

    SciTech Connect

    Michael, Joseph Richard; Prasad, Somuri V.; Jungk, John Michael; Cordill, Megan J.; Bammann, Douglas J.; Battaile, Corbett Chandler; Moody, Neville Reid; Majumdar, Bhaskar Sinha (New Mexico Institure of Mining and Technology)

    2006-12-01

    Frictional contact results in surface and subsurface damage that could influence the performance, aging, and reliability of moving mechanical assemblies. Changes in surface roughness, hardness, grain size and texture often occur during the initial run-in period, resulting in the evolution of subsurface layers with characteristic microstructural features that are different from those of the bulk. The objective of this LDRD funded research was to model friction-induced microstructures. In order to accomplish this objective, novel experimental techniques were developed to make friction measurements on single crystal surfaces along specific crystallographic surfaces. Focused ion beam techniques were used to prepare cross-sections of wear scars, and electron backscattered diffraction (EBSD) and TEM to understand the deformation, orientation changes, and recrystallization that are associated with sliding wear. The extent of subsurface deformation and the coefficient of friction were strongly dependent on the crystal orientation. These experimental observations and insights were used to develop and validate phenomenological models. A phenomenological model was developed to elucidate the relationships between deformation, microstructure formation, and friction during wear. The contact mechanics problem was described by well-known mathematical solutions for the stresses during sliding friction. Crystal plasticity theory was used to describe the evolution of dislocation content in the worn material, which in turn provided an estimate of the characteristic microstructural feature size as a function of the imposed strain. An analysis of grain boundary sliding in ultra-fine-grained material provided a mechanism for lubrication, and model predictions of the contribution of grain boundary sliding (relative to plastic deformation) to lubrication were in good qualitative agreement with experimental evidence. A nanomechanics-based approach has been developed for characterizing the

  7. Friction coefficient dependence on electrostatic tribocharging

    PubMed Central

    Burgo, Thiago A. L.; Silva, Cristiane A.; Balestrin, Lia B. S.; Galembeck, Fernando

    2013-01-01

    Friction between dielectric surfaces produces patterns of fixed, stable electric charges that in turn contribute electrostatic components to surface interactions between the contacting solids. The literature presents a wealth of information on the electronic contributions to friction in metals and semiconductors but the effect of triboelectricity on friction coefficients of dielectrics is as yet poorly defined and understood. In this work, friction coefficients were measured on tribocharged polytetrafluoroethylene (PTFE), using three different techniques. As a result, friction coefficients at the macro- and nanoscales increase many-fold when PTFE surfaces are tribocharged, but this effect is eliminated by silanization of glass spheres rolling on PTFE. In conclusion, tribocharging may supersede all other contributions to macro- and nanoscale friction coefficients in PTFE and probably in other insulating polymers. PMID:23934227

  8. Solid friction between soft filaments

    PubMed Central

    Ward, Andrew; Hilitski, Feodor; Schwenger, Walter; Welch, David; Lau, A.W. C.; Vitelli, Vincenzo; Mahadevan, L.; Dogic, Zvonimir

    2015-01-01

    Any macroscopic deformation of a filamentous bundle is necessarily accompanied by local sliding and/or stretching of the constituent filaments1,2. Yet the nature of the sliding friction between two aligned filaments interacting through multiple contacts remains largely unexplored. Here, by directly measuring the sliding forces between two bundled F-actin filaments, we show that these frictional forces are unexpectedly large, scale logarithmically with sliding velocity as in solid-like friction, and exhibit complex dependence on the filaments’ overlap length. We also show that a reduction of the frictional force by orders of magnitude, associated with a transition from solid-like friction to Stokes’s drag, can be induced by coating F-actin with polymeric brushes. Furthermore, we observe similar transitions in filamentous microtubules and bacterial flagella. Our findings demonstrate how altering a filament’s elasticity, structure and interactions can be used to engineer interfilament friction and thus tune the properties of fibrous composite materials. PMID:25730393

  9. An axisymmetric numerical elastic contact model for application to the transmission of ultrasound across a rough interface

    NASA Astrophysics Data System (ADS)

    Long, R.; Lowe, M.; Cawley, P.

    2000-05-01

    Ultrasonic pulse velocity measurements are a useful indicator of certain kinds of problems in concrete. A number of tests are often performed on a grid so as to construct a contour map of the velocity of sound which aids the recognition of problem areas. The application of a viscous couplant at each grid point, to enable ultrasonic coupling to the rough surface, proves both time consuming and inconvenient. As an alternative, coupling via a compliant solid is being researched. Two designs which are being investigated are a rubber disk which is simply attached to the face of the transducer, and a membrane which encapsulates a liquid volume. Axi-symmetric contact models have been derived to predict the deformation of the contact surfaces of such devices when pressed onto a rigid rough surface, and thereby to estimate the strength of the transmission of the signal into the concrete. The option of wetting the surfaces of the rubber with a thin film of water is also considered. Experimental measurements of transmission have been made and have been found to compare favorably with the predictions. The poster shows the basis of the designs, how the models are derived and summary results.

  10. Investigation of Structural, Chemical, and Electrical Properties of CdTe/Back Contact Interface by TEM and XPS

    NASA Astrophysics Data System (ADS)

    Han, Jun-feng; Krishnakumar, V.; Schimper, H.-J.; Cha, Li-mei; Liao, Cheng

    2015-10-01

    CdTe solar cell back contact preparation usually includes a chemical etching process which helps to obtain a Te-rich p-doped CdTe surface. In this work we compared the influence of two different etching solutions [nitricâ€"phosphoric (NP) and nitricâ€"acetic acid (NA)] on the CdTe surface. Transmission electron microscopy indicated that a Te-rich layer was formed on the surface of polycrystalline CdTe films after the etching process. The layer thickness was 80 nm and 10 nm for NP and NA etching solutions, respectively. In addition, the images showed that the influence of the etching solution was preferentially along the grain boundaries. The chemical properties of the etched CdTe surface were studied by using x-ray photoelectron spectroscopy. The nitricâ€"phosphoric acid yielded a relatively thicker Te-rich layer on the CdTe surface. On the other hand, the Jâ€" V properties of the solar cells prepared using nitricâ€"acetic acid showed no rollover behavior, indicating improved back contact. The solar cells prepared with the NA and NP etching processes yielded >10% solar cell efficiency. The CdTe solar cell homogeneity was improved by the NA etching method.

  11. Noncontact friction via capillary shear interaction at nanoscale

    NASA Astrophysics Data System (ADS)

    Lee, Manhee; Kim, Bongsu; Kim, Jongwoo; Jhe, Wonho

    2015-06-01

    Friction in an ambient condition involves highly nonlinear interactions of capillary force, induced by the capillary-condensed water nanobridges between contact or noncontact asperities of two sliding surfaces. Since the real contact area of sliding solids is much smaller than the apparent contact area, the nanobridges formed on the distant asperities can contribute significantly to the overall friction. Therefore, it is essential to understand how the water nanobridges mediate the `noncontact' friction, which helps narrow the gap between our knowledge of friction on the microscopic and macroscopic scales. Here we show, by using noncontact dynamic force spectroscopy, the single capillary bridge generates noncontact friction via its shear interaction. The pinning-depinning dynamics of the nanobridge's contact line produces nonviscous damping, which occurs even without normal load and dominates the capillary-induced hydrodynamic damping. The novel nanofriction mechanism may provide a deeper microscopic view of macroscopic friction in air where numerous asperities exist.

  12. Noncontact friction via capillary shear interaction at nanoscale

    PubMed Central

    Lee, Manhee; Kim, Bongsu; Kim, Jongwoo; Jhe, Wonho

    2015-01-01

    Friction in an ambient condition involves highly nonlinear interactions of capillary force, induced by the capillary-condensed water nanobridges between contact or noncontact asperities of two sliding surfaces. Since the real contact area of sliding solids is much smaller than the apparent contact area, the nanobridges formed on the distant asperities can contribute significantly to the overall friction. Therefore, it is essential to understand how the water nanobridges mediate the ‘noncontact' friction, which helps narrow the gap between our knowledge of friction on the microscopic and macroscopic scales. Here we show, by using noncontact dynamic force spectroscopy, the single capillary bridge generates noncontact friction via its shear interaction. The pinning–depinning dynamics of the nanobridge's contact line produces nonviscous damping, which occurs even without normal load and dominates the capillary-induced hydrodynamic damping. The novel nanofriction mechanism may provide a deeper microscopic view of macroscopic friction in air where numerous asperities exist. PMID:26066909

  13. Effect of friction on shear jamming

    NASA Astrophysics Data System (ADS)

    Wang, Dong; Bares, Jonathan; Dijksman, Joshua; Ren, Jie; Zheng, Hu; Behringer, Robert

    Shear jamming of granular materials was first found for systems of frictional disks, with a static friction coefficient μ ~ 0 . 6 (Bi et al. Nature (2011)). Jamming by shear is obtained by starting from a zero-stress state with a packing fraction ϕ between ϕJ (isotropic jamming) and a lowest ϕS for shear jamming. This phenomenon is associated with strong anisotropy in stress and the contact network in the form of force chains, which are stabilized and/or enhanced by the presence of friction. Whether shear jamming occurs for frictionless particles is under debate. The issue we address experimentally is how changing friction affects shear jamming. By applying a homogeneous simple shear, we study the effect of friction by using photoelastic disks either wrapped with Teflon to reduce friction or with fine teeth on the edge to increase friction. Shear jamming is still observed; however, the difference ϕJ -ϕS is smaller with lower friction. We also observe larger fluctuations due to initial configurations both at the lowest and the highest friction systems studied. Ongoing work is to use particles made of gelatin to reduce the friction coefficient to the order of 0.01. We acknowledge support from NSF Grant DMR1206351, NASA Grant NNX15AD38G and the William M. Keck Foundation.

  14. Effect of friction on shear jamming

    NASA Astrophysics Data System (ADS)

    Wang, Dong; Bares, Jonathan; Dijksman, Joshua; Ren, Jie; Zheng, Hu; Behringer, Robert

    2015-11-01

    Shear jamming of granular materials was first found for systems of frictional disks, with a static friction coefficient μ ~ 0 . 6. Jamming by shear is obtained by starting from a zero-stress state with a packing fraction ϕ between ϕJ (isotropic jamming) and a lowest ϕS for shear jamming. This phenomenon is associated with strong anisotropy in stress and the contact network in the form of force chains, which are stabilized and/or enhanced by the presence of friction. Whether shear jamming occurs for frictionless particles is under debate. The issue we address experimentally is how changing friction affects shear jamming. By applying a homogeneous simple shear, we study the effect of friction by using photoelastic disks either wrapped with Teflon to reduce friction or with fine teeth on the edge to increase friction. Shear jamming is still observed; however, the difference ϕJ -ϕS is smaller with lower friction. We also observe larger fluctuations due to initial configurations both at the lowest and the highest friction systems studied. Ongoing work is to characterize response from different friction systems under shear with information at local scale. We acknowledge support from NSF-DMR1206351, NASA NNX15AD38G and W.M. Keck Foundation.

  15. Stochastic stick-slip nanoscale friction on oxide surfaces.

    PubMed

    Craciun, A D; Gallani, J L; Rastei, M V

    2016-02-01

    The force needed to move a nanometer-scale contact on various oxide surfaces has been studied using an atomic force microscope and theoretical modeling. Force-distance traces unveil a stick-slip movement with erratic slip events separated by several nanometers. A linear scaling of friction force with normal load along with low pull-off forces reveals dispersive adhesive interactions at the interface. We model our findings by considering a variable Lennard-Jones-like interaction potential, which accounts for slip-induced variation of the effective contact area. The model explains the formation and fluctuation of stick-slip phases and provides guidelines for predicting transitions from stick-slip to continuous sliding on oxide surfaces. PMID:26751769

  16. Time-dependent friction and the mechanics of stick-slip

    USGS Publications Warehouse

    Dieterich, J.H.

    1978-01-01

    Time-dependent increase of static friction is characteristic of rock friction undera variety of experimental circumstances. Data presented here show an analogous velocity-dependent effect. A theor of friction is proposed that establishes a common basis for static and sliding friction. Creep at points of contact causes increases in friction that are proportional to the logarithm of the time that the population of points of contact exist. For static friction that time is the time of stationary contact. For sliding friction the time of contact is determined by the critical displacement required to change the population of contacts and the slip velocity. An analysis of a one-dimensional spring and slider system shows that experimental observations establishing the transition from stable sliding to stick-slip to be a function of normal stress, stiffness and surface finish are a consequence of time-dependent friction. ?? 1978 Birkha??user Verlag.

  17. Dynamic Ruptures on a Frictional Interface with Off-Fault Brittle Damage: Feedback Mechanisms and Effects on Slip and Near-Fault Motion

    NASA Astrophysics Data System (ADS)

    Xu, Shiqing; Ben-Zion, Yehuda; Ampuero, Jean-Paul; Lyakhovsky, Vladimir

    2015-05-01

    The spontaneous generation of brittle rock damage near and behind the tip of a propagating rupture can produce dynamic feedback mechanisms that modify significantly the rupture properties, seismic radiation, and generated fault zone structure. In this work, we study such feedback mechanisms for single rupture events and their consequences for earthquake physics and various possible observations. This is done through numerical simulations of in-plane dynamic ruptures on a frictional fault with bulk behavior governed by a brittle damage rheology that incorporates reduction of elastic moduli in off-fault yielding regions. The model simulations produce several features that modify key properties of the ruptures, local wave propagation, and fault zone damage. These include (1) dynamic generation of near-fault regions with lower elastic properties, (2) dynamic changes of normal stress on the fault, (3) rupture transition from crack-like to a detached pulse, (4) emergence of a rupture mode consisting of a train of pulses, (5) quasi-periodic modulation of slip rate on the fault, and (6) asymmetric near-fault ground motion with higher amplitude and longer duration on the side with reduced elastic moduli. The results can have significant implications to multiple topics ranging from rupture directivity and local amplification of seismic motion to near-fault tremor-like signals.

  18. Dynamic Ruptures on a Frictional Interface with Off-Fault Brittle Damage: Feedback Mechanisms and Effects on Slip and Near-Fault Motion

    NASA Astrophysics Data System (ADS)

    Xu, Shiqing; Ben-Zion, Yehuda; Ampuero, Jean-Paul; Lyakhovsky, Vladimir

    2014-09-01

    The spontaneous generation of brittle rock damage near and behind the tip of a propagating rupture can produce dynamic feedback mechanisms that modify significantly the rupture properties, seismic radiation, and generated fault zone structure. In this work, we study such feedback mechanisms for single rupture events and their consequences for earthquake physics and various possible observations. This is done through numerical simulations of in-plane dynamic ruptures on a frictional fault with bulk behavior governed by a brittle damage rheology that incorporates reduction of elastic moduli in off-fault yielding regions. The model simulations produce several features that modify key properties of the ruptures, local wave propagation, and fault zone damage. These include (1) dynamic generation of near-fault regions with lower elastic properties, (2) dynamic changes of normal stress on the fault, (3) rupture transition from crack-like to a detached pulse, (4) emergence of a rupture mode consisting of a train of pulses, (5) quasi-periodic modulation of slip rate on the fault, and (6) asymmetric near-fault ground motion with higher amplitude and longer duration on the side with reduced elastic moduli. The results can have significant implications to multiple topics ranging from rupture directivity and local amplification of seismic motion to near-fault tremor-like signals.

  19. Comparative study of electrical characteristics in (1 0 0) and (1 1 0) surface-oriented nMOSFETs with direct contact La-silicate/Si interface structure

    NASA Astrophysics Data System (ADS)

    Kawanago, T.; Kakushima, K.; Ahmet, P.; Kataoka, Y.; Nishiyama, A.; Sugii, N.; Tsutsui, K.; Natori, K.; Hattori, T.; Iwai, H.

    2013-06-01

    This study reports on the electrical characteristics of (1 1 0)-oriented nMOSFETs with a direct contact La-silicate/Si interface structure and the detailed comparison with (1 0 0)-oriented nMOSFETs. Precise control of oxygen partial pressure can provide the scaled EOT down to 0.73 nm on (1 1 0) orientation in common with (1 0 0) orientation. No frequency dispersion in Cgc-V characteristic for (1 1 0)-oriented nMOSFETs is successfully demonstrated at scaled EOT region, while higher amount of available bonds on (1 1 0) surface results in a larger interface state density, leading to the degradation of sub-threshold slope. High breakdown voltages of 2.85 V and 2.9 V for (1 0 0)- and (1 1 0)-oriented nMOSFETs are considered to be due to superior interfacial property. The electron mobility on (1 1 0) orientation is lower than that on (1 0 0) orientation because of the smaller energy split between fourfold valleys and twofold valleys as well as the larger density of states for lower-energy valleys in the (1 1 0) surface. Moreover, electron mobility is reduced with decreasing EOT in both (1 0 0)- and (1 1 0)-oriented nMOSFETs. It is found that threshold voltage instability by positive bias stress is mainly responsible for bulk trapping of electron even with a larger interface state density in (1 1 0) orientation and influence of surface orientation on threshold voltage instability is negligibly small.

  20. Preparation and Friction Force Microscopy Measurements of Immiscible, Opposing Polymer Brushes

    PubMed Central

    de Beer, Sissi; Kutnyanszky, Edit; Müser, Martin H.; Vancso, G. Julius

    2014-01-01

    Solvated polymer brushes are well known to lubricate high-pressure contacts, because they can sustain a positive normal load while maintaining low friction at the interface. Nevertheless, these systems can be sensitive to wear due to interdigitation of the opposing brushes. In a recent publication, we have shown via molecular dynamics simulations and atomic force microscopy experiments, that using an immiscible polymer brush system terminating the substrate and the slider surfaces, respectively, can eliminate such interdigitation. As a consequence, wear in the contacts is reduced. Moreover, the friction force is two orders of magnitude lower compared to traditional miscible polymer brush systems. This newly proposed system therefore holds great potential for application in industry. Here, the methodology to construct an immiscible polymer brush system of two different brushes each solvated by their own preferred solvent is presented. The procedure how to graft poly(N-isopropylacrylamide) (PNIPAM) from a flat surface and poly(methyl methacrylate) (PMMA) from an atomic force microscopy (AFM) colloidal probe is described. PNIPAM is solvated in water and PMMA in acetophenone. Via friction force AFM measurements, it is shown that the friction for this system is indeed reduced by two orders of magnitude compared to the miscible system of PMMA on PMMA solvated in acetophenone. PMID:25590429

  1. High friction on ice provided by elastomeric fiber composites with textured surfaces

    NASA Astrophysics Data System (ADS)

    Rizvi, R.; Naguib, H.; Fernie, G.; Dutta, T.

    2015-03-01

    Two main applications requiring high friction on ice are automobile tires and footwear. The main motivation behind the use of soft rubbers in these applications is the relatively high friction force generated between a smooth rubber contacting smooth ice. Unfortunately, the friction force between rubber and ice is very low at temperatures near the melting point of ice and as a result we still experience automobile accidents and pedestrian slips and falls in the winter. Here, we report on a class of compliant fiber-composite materials with textured surfaces that provide outstanding coefficients of friction on wet ice. The fibrous composites consist of a hard glass-fiber phase reinforcing a compliant thermoplastic polyurethane matrix. The glass-fiber phase is textured such that it is aligned transversally and protruding out of the elastomer surface. Our analysis indicates that the exposed fiber phase exhibits a "micro-cleat" effect, allowing for it to fracture the ice and increase the interfacial contact area thereby requiring a high force to shear the interface.

  2. Preparation and friction force microscopy measurements of immiscible, opposing polymer brushes.

    PubMed

    de Beer, Sissi; Kutnyanszky, Edit; Müser, Martin H; Vancso, G Julius

    2014-01-01

    Solvated polymer brushes are well known to lubricate high-pressure contacts, because they can sustain a positive normal load while maintaining low friction at the interface. Nevertheless, these systems can be sensitive to wear due to interdigitation of the opposing brushes. In a recent publication, we have shown via molecular dynamics simulations and atomic force microscopy experiments, that using an immiscible polymer brush system terminating the substrate and the slider surfaces, respectively, can eliminate such interdigitation. As a consequence, wear in the contacts is reduced. Moreover, the friction force is two orders of magnitude lower compared to traditional miscible polymer brush systems. This newly proposed system therefore holds great potential for application in industry. Here, the methodology to construct an immiscible polymer brush system of two different brushes each solvated by their own preferred solvent is presented. The procedure how to graft poly(N-isopropylacrylamide) (PNIPAM) from a flat surface and poly(methyl methacrylate) (PMMA) from an atomic force microscopy (AFM) colloidal probe is described. PNIPAM is solvated in water and PMMA in acetophenone. Via friction force AFM measurements, it is shown that the friction for this system is indeed reduced by two orders of magnitude compared to the miscible system of PMMA on PMMA solvated in acetophenone. PMID:25590429

  3. Preliminary Study of a Pull Plug Friction Weld

    NASA Technical Reports Server (NTRS)

    Buchanan, George R.

    1999-01-01

    A pull plug friction weld, simply defined, comprises inserting a rotating cone-shaped cylinder into a somewhat cone-shaped hole in a plate. The rotating plug makes contact with the edge of the plate and the resulting friction generates heat. The temperature of the plate material eventually reaches a magnitude that will cause the plate material at the edge of the hole to flow. This can be termed a temperature dependent plastic flow. The rotation of the plug is terminated, additional pressure is applied and the metal at the interface of the two materials cools and welding occurs. This preliminary study addresses only three aspects of a complete analysis that is multi-faceted. The transient temperature distribution for different pull plug configurations has been studied in some detail even though the initial conditions and boundary conditions may still be deemed tentative. The stress distribution within the pull plug caused by the heating pressure was studied along with a preliminary analysis of the thermoelastic stress distribution caused by friction heating. There are no definitive results for the stress analysis. Additional study will be required.

  4. Velocity Dependence of the Kinetic Friction of Nanoparticles

    NASA Astrophysics Data System (ADS)

    Dietzel, Dirk; Feldmann, Michael; Schirmeisen, Andre

    2010-03-01

    The velocity dependence of interfacial friction is of high interest to unveil the fundamental processes in nanoscopic friction. So far, different forms of velocity dependence have been observed for contacts between friction force microscope (FFM) tips and a substrate surface. In this work we present velocity-dependent friction measurements performed by nanoparticle manipulation of antimony nanoparticles on atomically flat HOPG substrates under UHV conditions. This allows to analyze interfacial friction for very well defined and clean surface contacts. A novel approach to nanoparticle manipulation, the so called 'tip-on-top' technique [1], made it possible to manipulate the same particle many times while varying the velocity. The antimony particles exhibit a qualitatively different velocity dependence on friction in comparison to direct tip-HOPG contacts. A characteristic change in velocity dependence was observed when comparing freshly prepared particles to contaminated specimen, which were exposed to air before the manipulation experiments. [1] Dietzel et al., Appl. Phys. Lett. 95, 53104 (2009)

  5. Rheological effects on friction in elastohydrodynamic lubrication

    NASA Technical Reports Server (NTRS)

    Trachman, E. G.; Cheng, H. S.

    1973-01-01

    An analytical and experimental investigation is presented of the friction in a rolling and sliding elastohydrodynamic lubricated contact. The rheological behavior of the lubricant is described in terms of two viscoelastic models. These models represent the separate effects of non-Newtonian behavior and the transient response of the fluid. A unified description of the non-Newtonian shear rate dependence of the viscosity is presented as a new hyperbolic liquid model. The transient response of viscosity, following the rapid pressure rise encountered in the contact, is described by a compressional viscoelastic model of the volume response of a liquid to an applied pressure step. The resulting momentum and energy equations are solved by an iterative numerical technique, and a friction coefficient is calculated. The experimental study was performed, with two synthetic paraffinic lubricants, to verify the friction predictions of the analysis. The values of friction coefficient from theory and experiment are in close agreement.

  6. Friction and Wear on the Atomic Scale

    NASA Astrophysics Data System (ADS)

    Gnecco, Enrico; Bennewitz, Roland; Pfeiffer, Oliver; Socoliuc, Anisoara; Meyer, Ernst

    Friction is an old subject of research: the empirical da Vinci-Amontons laws are common knowledge. Macroscopic experiments systematically performed by the school of Bowden and Tabor have revealed that macroscopic friction can be related to the collective action of small asperities. During the last 15 years, experiments performed with the atomic force microscope gave new insight into the physics of single asperities sliding over surfaces. This development, together with complementary experiments by means of surface force apparatus and quartz microbalance, established the new field of nanotribology. At the same time, increasing computing power allowed for the simulation of the processes in sliding contacts consisting of several hundred atoms. It became clear that atomic processes cannot be neglected in the interpretation of nanotribology experiments. Experiments on even well-defined surfaces directly revealed atomic structures in friction forces. This chapter will describe friction force microscopy experiments that reveal, more or less directly, atomic processes in the sliding contact.

  7. A local model for the thermomechanical conditions in friction stir welding

    NASA Astrophysics Data System (ADS)

    Schmidt, H.; Hattel, J.

    2005-01-01

    The conditions under which the deposition process in friction stir welding is successful are not fully understood. However, it is known that only under specific thermomechanical conditions does a weld formation occur. If these conditions are not present, void formation will occur leading to a faulty weld. The objective of the present work is to analyse the primary conditions under which the cavity behind the tool is filled. For this, a fully coupled thermomechanical three-dimensional FE model has been developed in ABAQUS/Explicit using the arbitrary Lagrangian-Eulerian formulation and the Johnson-Cook material law. The model accounts for the compressibility by including the elastic response of the aluminium matrix. The contact forces are modelled by Coulomb's Law of friction, making the contact condition highly solution dependent. Furthermore, separation between the workpiece and the tool is allowed. This is often neglected in other models. Once non-recoverable separation is estimated by the model, a void develops. This is suggested as a preliminary criterion for evaluating the success of the deposition process. Of special interest is the contact condition along the tool/matrix interface, which controls the efficiency of the deposition process. In most models presented previously in the literature, the material flow at the tool interface is prescribed as boundary conditions. In all other contact models, the material is forced to keep contact with the tool. Therefore, the models are unable to predict when the suitable thermomechanical conditions and welding parameters are present. In the present work, the quasi-stationary thermomechanical state in the workpiece is established by modelling the dwell and weld periods. The different thermomechanical states in the colder, stiffer far-field matrix and the hotter, softer near-field matrix (under the tool) result in contact at the tool/matrix interface, thus, no void formation is observed. The steady-state model results

  8. The impact of strain, bedding plane friction and overburden pressure on joint spacing

    NASA Astrophysics Data System (ADS)

    Arslan, Arzu; Schöpfer, Martin P. J.; Walsh, John J.; Childs, Conrad

    2010-05-01

    In layered sequences, rock joints usually best develop within the more brittle layers and commonly display a regular spacing that scales with layer thickness. A variety of conceptual and mechanical models have been advanced to explain this relationship. A limitation of previous approaches, however, is that fracture initiation and associated bedding-parallel slip are not explicitly simulated; instead, fractures were predefined and interfaces were welded. To surmount this problem, we have modelled the formation and growth of joints in layered sequences by using the two-dimensional Distinct Element Method (DEM) as implemented in the Particle Flow Code (PFC-2D). In PFC-2D, rock is represented by an assemblage of circular particles that are bonded at particle-particle contacts, with failure occurring when either the tensile or shear strength of a bond is exceeded. Model materials with different rheological properties can be generated by calibrating the results of synthetic mechanical test procedures with those of real rocks. Our simple models of jointing comprise a central brittle layer with high Young's modulus, which is embedded in a low Young's modulus matrix. The interfaces between the layers (i.e. bedding planes) are defined by ‘smooth joint' contacts, a modelling feature that eliminates interparticle bumpiness and associated interlocking friction. Consequently, this feature allows the user to assign macroscopic properties such as friction along layer interfaces in a controlled manner. Layer parallel extension is applied by assigning a velocity to particles at the lateral boundaries of the model while maintaining a constant vertical confining pressure. Models were extended until joint saturation was reached in the central layer. We thereby explored the impact of strain, bedding plane friction and overburden pressure on joint spacing. The modelling revealed that joint spacing decreases as strain, bedding plane friction and overburden pressure are increased

  9. The Pv product required for the frictional ignition of alloys

    NASA Technical Reports Server (NTRS)

    Stoltzfus, Joel M.; Benz, Frank J.; Homa, John

    1989-01-01

    NASA-White Sands has developed a frictional heating tester capable of evaluating the ignition properties of alloys in oxygen under friction conditions which involve rubbing. Sixteen alloys have been thus evaluated, yielding determinations of the product of the contact pressure and surface speed required for ignition in oxygen at 6.9 MPa; those which contained large Ni fractions manifested the greatest resistance to rubbing-induced ignition. The effect of the coefficient of friction is noted to be a major influence on ignition, and the results obtained indicate the value of frictional heating tests for environments involving frictional heating.

  10. Tactile texture and friction of soft sponge surfaces.

    PubMed

    Takahashi, Akira; Suzuki, Makoto; Imai, Yumi; Nonomura, Yoshimune

    2015-06-01

    We evaluated the tactile texture and frictional properties of five soft sponges with various cell sizes. The frictional forces were measured by a friction meter containing a contact probe with human-finger-like geometry and mechanical properties. When the subjects touched these sponges with their fingers, hard-textured sponges were deemed unpleasant. This tactile feeling changed with friction factors including friction coefficients, their temporal patterns, as well as mechanical and shape factors. These findings provide useful information on how to control the tactile textures of various sponges. PMID:25884490

  11. Effect of interfacial species on shear strength of metal-sapphire contacts

    NASA Technical Reports Server (NTRS)

    Pepper, S. V.

    1979-01-01

    The interfacial shear strength of the metal-insulator system has been studied by means of the coefficient of static friction of copper, nickel, or gold contacts on sapphire in ultrahigh vacuum. The effect on contact strength of adsorbed oxygen, nitrogen, chlorine, and carbon monoxide on the metal surfaces is reported. It was found that exposures as low as 1 L of O2 on Ni produced observable increases in contact strength, whereas exposures of 3 L of Cl2 lead to a decrease in contact strength. These results imply that submonolayer concentrations of these species at the interface of a thin Ni film on Al2O3 should affect film adhesion similarly. The atomic mechanism by which these surface or interface phases affect interfacial strength is not yet understood.

  12. Effect of Friction on Shear Jamming

    NASA Astrophysics Data System (ADS)

    Wang, Dong; Ren, Jie; Dijksman, Joshua; Bares, Jonathan; Behringer, Robert

    2015-03-01

    Shear jamming of granular materials was first found for systems of frictional disks, with a static friction coefficient μ ~ 0 . 6 (Bi et al. Nature (2011)). Jamming by shear is obtained by starting from a zero-stress state with a packing fraction ϕ between ϕJ (isotropic jamming) and a lowest ϕS for shear jamming. This phenomenon is associated with strong anisotropy in stress and the contact network in the form of force chains, which are stabilized and/or enhanced by the presence of friction. Whether shear jamming occurs for frictionless particles is under debate. The issue we address experimentally is how reducing friction affects shear jamming. We put the Teflon-wrapped photoelastic disks, lowering the friction substantially from previous experiments, in a well-studied 2D shear apparatus (Ren et al. PRL (2013)), which provides a uniform simple shear. Shear jamming is still observed; however, the difference ϕJ -ϕS is smaller with lower friction. We also observe larger anisotropies in fragile states compared to experiments with higher friction particles at the same density. In ongoing work we are studying systems using photoelastic disks with fine gears on the edge to generate very large effective friction. We acknowledge support from NSF Grant DMR1206351, NSF Grant DMS-1248071, NASA Grant NNX10AU01G and William M. Keck Foundation.

  13. Effect of friction on shear jamming

    NASA Astrophysics Data System (ADS)

    Wang, Dong; Ren, Jie; Dijksman, Joshua; Behringer, Robert

    2014-11-01

    Shear Jamming of granular materials was first found for systems of frictional disks, with a static friction coefficients μs ~= 0 . 6 . Jamming by shear is obtained by starting from a zero-stress state with a packing fraction ϕS <= ϕ <=ϕJ between ϕJ (isotropic jamming) and a lowest ϕS for shear jamming. This phenomenon is associated with strong anisotropy in stress and the contact network in the form of ``force chains,'' which are stabilized and/or enhanced by the presence of friction. The issue that we address experimentally is how reducing friction affects shear jamming. We use photoelastic disks that have been wrapped with Teflon, lowering the friction coefficient substantially from previous experiments. The Teflon-wrapped disks were placed in a well-studied 2D shear apparatus (Ren et al., PRL, 110, 018302 (2013)), which provides uniform simple shear without generating shear bands. Shear jamming is still observed, but the difference ϕJ -ϕS is smaller than for higher friction particles. With Teflon-wrapped disks, we observe larger anisotropies compared to the previous experiment with higher friction particles at the same packing fraction, which indicates force chains tending to be straight in the low friction system. We acknowledge support from NSF Grant No. DMR12-06351, ARO Grant No. W911NF-1-11-0110, and NASA Grant No. NNX10AU01G.

  14. Adhesion, friction and micromechanical properties of ceramics

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa

    1988-01-01

    The adhesion, friction, and micromechanical properties of ceramics, both in monolithic and coating form, are reviewed. Ceramics are examined in contact with themselves, other harder materials, and metals. For the simplicity of discussion, the tribological properties of concern in the processes are separated into two parts. The first part discusses the pull-off force (adhesion) and the shear force required to break the interfacial junctions between contacting surfaces. The role of chemical bonding in adhesion and friction, and the effects of surface contaminant films and temperature on tribological response with respect to adhesion and friction are discussed. The second part deals with abrasion of ceramics. Elastic, plastic, and fracture behavior of ceramics in solid state contact is discussed. The scratch technique of determining the critical load needed to fracture interfacial adhesive bonds of ceramic deposited on substrates is also addressed.

  15. Microstructure analysis in friction welding of copper and aluminum

    NASA Astrophysics Data System (ADS)

    Wibowo, A. G. Wahyu; Ismail, Rifky; Jamari, J.

    2016-04-01

    The Friction welding is a welding method with utilizing heat generated due to friction. Surfaces of two materials to be joined, one rotates the other being idle, is contacted by a pressure force. Friction on the second contact surface is done continuously so that the heat generated by the continuous friction will continue to rise. With the heat and the pressure force on the second surface to the second meeting of the material reaches its melting temperature then there is the process of welding. This paper examines the influence of the pressure force, rotational speed and contact time on friction welding of Aluminum (Al) and Copper (Cu) to the quality of welded joints. Friction welding process is performed on a friction welding machine that is equipped with the loading mechanism. The parameters used are the pressure force, rotational speed and friction time. Determination of the quality of welding is done by testing the tensile strength, hardness, and micro structure on the weld joint areas. The results showed that the friction welding quality is very good, this is evidenced by the results of a tensile strength test where the fault occurs outside the weld joint and increased violence in the weld joint. On the results visually cuts the welding area did not reveal any porosity so that it can be concluded that each metal contacts have melted perfectly and produce a connection with good quality.

  16. Friction characteristics of trocars in laparoscopic surgery.

    PubMed

    Alazmani, Ali; Roshan, Rupesh; Jayne, David G; Neville, Anne; Culmer, Peter

    2015-04-01

    This article investigates the friction characteristics of the instrument-trocar interface in laparoscopic surgery for varying linear instrument velocities, trocar seal design and material, and trocar tilt. Furthermore, the effect of applying lubrication at the instrument-trocar seal interface on friction was studied. A friction testing apparatus was designed and built to characterise the resistance force at the instrument-trocar interface as a function of the instrument's linear movement in the 12-mm trocar (at constant velocity) for different design, seal material, and angle of tilt. The resistance force depended on the trocar seal design and material properties, specifically surface roughness, elasticity, hardness, the direction of movement, and the instrument linear velocity, and varied between 0.25 and 8 N. Lubricating the shaft with silicone oil reduced the peak resistance force by 75% for all trocars and eliminated the stick-slip phenomenon evident in non-lubricated cases. The magnitude of fluctuation in resistance force depends on the trocar design and is attributed to stick-slip of the sealing mechanism and is generally higher during retraction in comparison to insertion. Trocars that have an inlet seal made of rubber/polyurethane showed higher resistance forces during retraction. Use of a lubricant significantly reduced frictional effects. Comparisons of the investigated trocars indicate that a low friction port, providing the surgeon with improved haptic feedback, can be designed by improving the tribological properties of the trocar seal interface. PMID:25825419

  17. Stress Wave Source Characterization: Impact, Fracture, and Sliding Friction

    NASA Astrophysics Data System (ADS)

    McLaskey, Gregory Christofer

    Rapidly varying forces, such as those associated with impact, rapid crack propagation, and fault rupture, are sources of stress waves which propagate through a solid body. This dissertation investigates how properties of a stress wave source can be identified or constrained using measurements recorded at an array of sensor sites located far from the source. This methodology is often called the method of acoustic emission and is useful for structural health monitoring and the noninvasive study of material behavior such as friction and fracture. In this dissertation, laboratory measurements of 1--300 mm wavelength stress waves are obtained by means of piezoelectric sensors which detect high frequency (10 kHz--3MHz) motions of a specimen's surface, picometers to nanometers in amplitude. Then, stress wave source characterization techniques are used to study ball impact, drying shrinkage cracking in concrete, and the micromechanics of stick-slip friction of Poly(methyl methacrylate) (PMMA) and rock/rock interfaces. In order to quantitatively relate recorded signals obtained with an array of sensors to a particular stress wave source, wave propagation effects and sensor distortions must be accounted for. This is achieved by modeling the physics of wave propagation and transduction as linear transfer functions. Wave propagation effects are precisely modeled by an elastodynamic Green's function, sensor distortion is characterized by an instrument response function, and the stress wave source is represented with a force moment tensor. These transfer function models are verified though calibration experiments which employ two different mechanical calibration sources: ball impact and glass capillary fracture. The suitability of the ball impact source model, based on Hertzian contact theory, is experimentally validated for small (˜1 mm) balls impacting massive plates composed of four different materials: aluminum, steel, glass, and PMMA. Using this transfer function approach

  18. Computing Contact Stresses In Gear Teeth

    NASA Technical Reports Server (NTRS)

    Oswald, Fred B.; Somprakit, Paisan; Huston, Ronald L.

    1995-01-01

    Improved method of computing contact stresses in gear teeth accounts for complicating effects like those of static and sliding friction. Provides iterative procedure for determination of contact region and nodal contact forces along with contact stresses. Method based on equations and computational procedure incorporating these effects routinely.

  19. Gas desorption during friction of amorphous carbon films

    NASA Astrophysics Data System (ADS)

    Rusanov, A.; Fontaine, J.; Martin, J.-M.; Mogne, T. L.; Nevshupa, R.

    2008-03-01

    Gas desorption induced by friction of solids, i.e. tribodesorption, is one of the numerous physical and chemical phenomena, which arise during friction as result of thermal and structural activation of material in a friction zone. Tribodesorption of carbon oxides, hydrocarbons, and water vapours may lead to significant deterioration of ultra high vacuum conditions in modern technological equipment in electronic, optoelectronic industries. Therefore, knowledge of tribodesorption is crucial for the performance and lifetime of vacuum tribosystems. Diamond-like carbon (DLC) coatings are interesting materials for vacuum tribological systems due to their high wear resistance and low friction. Highly hydrogenated amorphous carbon (a-C:H) films are known to exhibit extremely low friction coefficient under high vacuum or inert environment, known as 'superlubricity' or 'superlow friction'. However, the superlow friction period is not always stable and then tends to spontaneous transition to high friction. It is supposed that hydrogen supply from the bulk to the surface is crucial for establishing and maintaining superlow friction. Thus, tribodesorption can serve also as a new technique to determine the role of gases in superlow friction mechanisms. Desorption of various a-C:H films, deposited by PECVD, ion-beam deposition and deposition using diode system, has been studied by means of ultra-high vacuum tribometer equipped with a mass spectrometer. It was found that in superlow friction period desorption rate was below the detection limit in the 0-85 mass range. However, transition from superlow friction to high friction was accompanied by desorption of various gases, mainly of H2 and CH4. During friction transition, surfaces were heavily damaged. In experiments with DLC films with low hydrogen content tribodesorption was significant during the whole experiment, while low friction was not observed. From estimation of maximum surface temperature during sliding contact it was

  20. Scale effects in single-asperity friction

    NASA Astrophysics Data System (ADS)

    Robbins, Mark O.; Sharp, Tristan; Ligneres, Vincent; Pastewka, Lars

    2014-03-01

    Simulations are used to examine the static friction in model single-asperity contacts between a sphere and a flat elastic substrate. The two surfaces have the same crystalline structure. The radius R of the sphere and a of the contact are varied from nanometers to micrometers. For small contacts the atoms move coherently and the coefficient of friction μ is independent of load. As contact size increases, μ begins to drop. Results from a wide range of systems can be collapsed when μ is plotted against a2 / Ra0 where a0 nearest-neighbor spacing. The results are compared to Cattaneo-Mindlin continuum theory and dislocation-based models of contact-size effects from Hurtado and Kim and Gao. Supported by National Science Foundation Grant DMR 1006805 and IGERT 0801471.

  1. Three-DOF dynamic model with lubricant contact for thermal fly-height control nanotechnology

    NASA Astrophysics Data System (ADS)

    Vakis, Antonis I.; Hadjicostis, Christoforos N.; Polycarpou, Andreas A.

    2012-04-01

    A three-degree-of-freedom dynamic contact model with friction and lubricant contact is introduced for thermal fly-height control of a near-contact flying slider. The proposed model addresses the issue of contact with a molecularly thin lubricant layer and includes a third degree-of-freedom, roll. Neither lubricant contact nor roll has been accounted for in previous models of the head-disk interface. Roll angle rotations allow for possible contact at other slider features such as the contact pads, which may induce destabilizing moments to the slider motion and lead to unwanted slider-disk contact. While roll is important primarily during operational shock, the inclusion of lubricant contact is found to be an important determinant of the severity of steady contact while lubricant properties are shown to affect the transient properties of the jump-to- and out-of-contact slider behaviour for near- and light-contact operation. The model's validity is examined using available experimental and simulation data that predict flying height gain due to air bearing stiffening as well as significant vibration zones before and after steady-state contact.

  2. Estimation of friction under forging conditions by means of the ring-on-disc test

    SciTech Connect

    Buchner, Bernhard; Umgeher, Andreas; Buchmayr, Bruno

    2007-04-07

    In order to understand the tribological processes and interactions in the tool-workpiece-interface systematically, basic experiments that allow an independent variation of influencing parameters are necessary. The ring-on-disc test is a popular model experiment that is often used in tribological analyses at low normal contact pressures.The scope of the paper is an analysis of the applicability of the ring-on-disc test for high normal pressures as used in forging processes, using aluminium AA6082 as workpiece material. It turned out, that this test is a convenient method to measure friction under forging conditions.

  3. Turbine blade friction damping study

    NASA Technical Reports Server (NTRS)

    Dominic, R. J.

    1985-01-01

    A lumped parameter method, implemented on a VAX 11/780 computer shows that the primary parameters affecting the performance of the friction damper of the first stage turbine of the SSME high pressure fuel pump are: the damper-blade coefficient of friction; the normal force applied to the friction interface; the amplitude of the periodic forcing function; the relative phase angle of the forcing functions for adjacent blades bridged by a damper (effectively, the engine order of the forcing function); and the amount of hysteretic damping that acts to limit the vibration amplitude of the blade in its resonance modes. The low order flexural resonance vibration modes of HPFTP blades without dampers, with production dampers, and with two types of lightweight experimental dampers were evaluated in high speed spin pit tests. Results agree with those of the analytical study in that blades fitted with production friction dampers experienced the airfoil-alone flexural resonance mode, while those without dampers or with lighter weight dampers did not. No blades fitted with dampers experienced the whole blade flexural resonance mode during high speed tests, while those without dampers did.

  4. Friction phenomena and their impact on the shear behaviour of granular material

    NASA Astrophysics Data System (ADS)

    Suhr, Bettina; Six, Klaus

    2016-06-01

    In the discrete element simulation of granular materials, the modelling of contacts is crucial for the prediction of the macroscopic material behaviour. From the tribological point of view, friction at contacts needs to be modelled carefully, as it depends on several factors, e.g. contact normal load or temperature to name only two. In discrete element method (DEM) simulations the usage of Coulomb's law of friction is state of the art in modelling particle-particle contacts. Usually in Coulomb's law, for all contacts only one constant coefficient of friction is used, which needs to reflect all tribological effects. Thus, whenever one of the influence factors of friction varies over a wide range, it can be expected that the usage of only one constant coefficient of friction in Coulomb's law is an oversimplification of reality. For certain materials, e.g. steel, it is known that a dependency of the coefficient of friction on the contact normal load exists. A more tribological tangential contact law is implemented in DEM, where the interparticle friction coefficient depends on the averaged normal stress in the contact. Simulations of direct shear tests are conducted, using steel spheres of different size distributions. The strong influence of interparticle friction on the bulk friction is shown via a variation of the constant interparticle friction coefficient. Simulations with constant and stress-dependent interparticle friction are compared. For the stress-dependent interparticle friction, a normal stress dependency of the bulk friction is seen. In the literature, measurements of different granular materials and small normal loads also show a stress dependency of the bulk friction coefficient. With increasing applied normal stress, the bulk friction coefficient reduces both in the experiments and in the simulations.

  5. Frictional processes in volcanic conduits

    NASA Astrophysics Data System (ADS)

    Lavallee, Y.; Kendrick, J. E.; Petrakova, L.; Mitchell, T. M.; Heap, M. J.; Hirose, T.; Di Toro, G.; Hess, K.; Dingwell, D. B.

    2012-12-01

    The ascent of high-viscosity magma in upper conduits proceeds via the development of shear zones, which commonly fracture, producing fault surfaces that control the last hundreds of meters of ascent by frictional slip. Frictional slip in conduits may occur along magma-rock, rock-rock and magma-magma interfaces, with or without the presence of gouge material. During slip, frictional work is converted to heat, which may result in strong geochemical disequilibria as well as rheological variations, with important consequences on the dynamics of magma ascent. Here, we present a thermo-mechanical study on the ability of volcanic rocks (with different proportions of interstitial glass, crystals and vesicles) to sustain friction, and in some cases to melt, using a high-velocity rotary apparatus. The friction experiments were conducted at a range of slip velocities (1.3 mm/s to 1.3 m/s) along a (fault) plane subjected to different normal stresses (0.5-10 MPa). We observe that the behaviour of volcanic rocks during slip events varies remarkably. Frictional slip along dense crystal-rich rocks is characterized by the occurrence of comminution, commonly followed by melting. In contrast, slip along dense glass rocks rarely proceeds along a discrete plane - a glass subjected to slip tends to shatter as temperature enters the glass transition interval. Alternatively, glass can be slipped against a crystalline material. In the case of porous material, slip generally results in rapid abrasion of the porous material, producing a high amount of ash particles. The inability of the material to preserve its slip surface inhibits the generation of significant heat. Finally, during experiments in which ash gouge occupies the slip zone, friction generates a modest amount of heat and does not induce significant comminution along the slip plane. Mechanically, the frictional coefficients of the tested volcanic material vary significantly, depending whether the material may sustain slip (and

  6. The contact mechanics of fractal surfaces

    NASA Astrophysics Data System (ADS)

    Buzio, Renato; Boragno, Corrado; Biscarini, Fabio; Buatier de Mongeot, Francesco; Valbusa, Ugo

    2003-04-01

    The role of surface roughness in contact mechanics is relevant to processes ranging from adhesion to friction, wear and lubrication. It also promises to have a deep impact on applied science, including coatings technology and design of microelectromechanical systems. Despite the considerable results achieved by indentation experiments, particularly in the measurement of bulk hardness on nanometre scales, the contact behaviour of realistic surfaces, showing random multiscale roughness, remains largely unknown. Here we report experimental results concerning the mechanical response of self-affine thin films indented by a micrometric flat probe. The specimens, made of cluster-assembled carbon or of sexithienyl, an organic molecular material, were chosen as prototype systems for the broad class of self-affine fractal interfaces, today including surfaces grown under non-equilibrium conditions, fractures, manufactured metal surfaces and solidified liquid fronts. We observe that a regime exists in which roughness drives the contact mechanics: in this range surface stiffness varies by a few orders of magnitude on small but significant changes of fractal parameters. As a consequence, we demonstrate that soft solid interfaces can be appreciably strengthened by reducing both fractal dimension and surface roughness. This indicates a general route for tailoring the mechanical properties of solid bodies.

  7. Numerical simulation of the insertion process of an uncemented hip prosthesis in order to evaluate the influence of residual stress and contact distribution on the stem initial stability.

    PubMed

    Monea, Aida Georgeta; Pastrav, Leonard Cezar; Mulier, Michiel; Van der Perre, Georges; Jaecques, Siegfried V

    2014-01-01

    The long-term success of a cementless total hip arthroplasty depends on the implant geometry and interface bonding characteristics (fit, coating and ingrowth) and on stem stiffness. This study evaluates the influence of stem geometry and fitting conditions on the evolution and distribution of the bone-stem contact, stress and strain during and after the hip stem insertion, by means of dynamic finite element techniques. Next, the influence of the mechanical state (bone-stem contact, stress and strain) resulted from the insertion process on the stem initial resistance to subsidence is investigated. In addition, a study on the influence of bone-stem interface conditions (friction) on the insertion process and on the initial stem stability under physiological loading is performed. The results indicate that for a stem with tapered shape the contact in the proximal part of the stem was improved, but contact in the calcar region was achieved only when extra press-fit conditions were considered. Changes in stem geometry towards a more tapered shape and extra press fit and variation in the bone-stem interface conditions (contact amount and high friction) led to a raise in the total insertion force. A direct positive relationship was found between the stem resistance to subsidence and stem geometry (tapering and press fit), bone-stem interface conditions (bone-stem contact and friction interface) and the mechanical status at the end of the insertion (residual stress and strain). Therefore, further studies on evaluating the initial performance of different stem types should consider the parameters describing the bone-stem interface conditions and the mechanical state resulted from the insertion process. PMID:22548243

  8. PREFACE: The International Conference on Science of Friction

    NASA Astrophysics Data System (ADS)

    Miura, Kouji; Matsukawa, Hiroshi

    2007-07-01

    The first international conference on the science of friction in Japan was held at Irago, Aichi on 9-13 September 2007. The conference focused on the elementary process of friction phenomena from the atomic and molecular scale view. Topics covered in the conference are shown below.:

  9. Superlubricity and friction>
  10. Electronic and phononic contributions to friction>
  11. Friction on the atomic and molecular scales
  12. van der Waals friction and Casimir force
  13. Molecular motor and friction>
  14. Friction and adhesion in soft matter systems
  15. Wear and crack on the nanoscale
  16. Theoretical studies on the atomic scale friction and energy dissipation
  17. Friction and chaos
  18. Mechanical properties of nanoscale contacts
  19. Friction of powder
  20. The number of participants in the conference was approximately 100, registered from 11 countries. 48 oral and 29 poster talks were presented at the conference. This volume of Journal of Physics: Conference Series includes 23 papers devoted to the above topics of friction. The successful organization of the conference was made possible by the contribution of the members of the Organizing Committee and International Advisory Committee. The conference was made possible thanks to the financial support from Aichi University of Education and the Taihokogyo Tribology Research Foundation (TTRF), and moreover thanks to the approval societies of The Physical Society of Japan, The Surface Science Society of Japan, The Japanese Society of Tribologists and Toyota Physical and Chemical Research Institute. The details of the conference are available at http://www.science-of-friction.com . Finally we want to thank the speakers for the high quality of their talks and all participants for coming to Irago, Japan and actively contributing to the conference. Kouji Miura and Hiroshi Matsukawa Editors

  21. Thermal contact conductance of ceramic AlN and oxygen-free high-conductivity copper interfaces under low temperature and vacuum for high-temperature superconducting cryocooler cooling

    NASA Astrophysics Data System (ADS)

    Wang, Jian; Wang, Huiling; Zhuang, Hanrui

    2006-02-01

    In this article, a device for measuring thermal contact conductance under low temperature and vacuum for cryocooler cooling in high-temperature superconducting (HTS) system is presented. Such device may be used to simulate the real running condition of HTS equipments cooled by cryocooler. It is also convenient for temperature controlling. The thermal conductivity of ceramic AlN and the thermal contact conductance (TCC) between AlN and oxygen-free high-conductivity copper for the temperature range of 45-140 K and the vacuum range of 10-3-10-4Pa have been measured using axial steady heat-flow method on the Giffard-McMahon cryocooler with 5 W (20 K) capacity. Investigation shows that the TCC of the AlN /Cu interface increases as the temperature and the pressure load of contact interface increase, and the conductivity of ceramic AlN increases as temperature rises. An analysis based on micro- and nanocryogenic concepts is made to explain the behaviors of thermal conductivity for AlN and thermal contact conductance for the AlN /Cu interface.

  22. Friction between silicon and diamond at the nanoscale

    NASA Astrophysics Data System (ADS)

    Bai, Lichun; Sha, Zhen-Dong; Srikanth, Narasimalu; Pei, Qing-Xiang; Wang, Xu; Srolovitz, David J.; Zhou, Kun

    2015-06-01

    This work investigates the nanoscale friction between diamond-structure silicon (Si) and diamond via molecular dynamics simulation. The interaction between the interfaces is considered as strong covalent bonds. The effects of load, sliding velocity, temperature and lattice orientation are investigated. Results show that the friction can be divided into two stages: the static friction and the kinetic friction. During the static friction stage, the load, lattice orientation and temperature dramatically affects the friction by changing the elastic limit of Si. Large elastic deformation is induced in the Si block, which eventually leads to the formation of a thin layer of amorphous Si near the Si-diamond interface and thus the beginning of the kinetic friction stage. During the kinetic friction stage, only temperature and velocity have an effect on the friction. The investigation of the microstructural evolution of Si demonstrated that the kinetic friction can be categorized into two modes (stick-slip and smooth sliding) depending on the temperature of the fracture region.

  23. Interfacial friction obtained by lateral manipulation of nanoparticles using atomic force microscopy techniques

    NASA Astrophysics Data System (ADS)

    Dietzel, Dirk; Mönninghoff, Tristan; Jansen, Lars; Fuchs, Harald; Ritter, Claudia; Schwarz, Udo D.; Schirmeisen, André

    2007-10-01

    Nanometer scale metallic particles have been manipulated on an atomically flat graphite surface by atomic force microscopy techniques and quantitative information on interfacial friction was extracted from the lateral manipulation of these nanoparticles. Similar to conventional friction force microscopy, the particle-surface interfacial friction was extracted from the torsional signal of the cantilever during the particle pushing process. As a model system, we chose antimony particles with diameters between 50 and 500nm grown on a highly oriented pyrolytic graphite substrate. Three different manipulation strategies have been developed, which either enable the defined manipulation of individual nanoparticles or can be utilized to gather data on a larger number of particles found within a particular scan area, allowing for fast and statistically significant data collection. While the manipulation strategies are demonstrated here for operation under vacuum conditions, extensive testing indicated that the proposed methods are likewise suited for ambient environments. Since these techniques can be applied to a large variety of chemically and structurally different material combinations as well as a large range of particle sizes, our results indicate a viable route to solve many recent issues in the field of nanoscale friction, such as the influence of contact size and interface crystallinity.

  24. A Simple Measurement of the Sliding Friction Coefficient

    ERIC Educational Resources Information Center

    Gratton, Luigi M.; Defrancesco, Silvia

    2006-01-01

    We present a simple computer-aided experiment for investigating Coulomb's law of sliding friction in a classroom. It provides a way of testing the possible dependence of the friction coefficient on various parameters, such as types of materials, normal force, apparent area of contact and sliding velocity.

  25. Nanoscale Friction Behaviors of Hierarchical Superhydrophobic Structure of Diamond-like Carbon Films with Various Humidity Conditions

    NASA Astrophysics Data System (ADS)

    Jang, Young-Jun; Kousaka, Hiroyuki; Umehara, Noritsugu

    Superhydrophobic double roughening structure of DLC film was prepared by 2.45 GHz surface wave-excited plasma CVD with the mixture of methane (CH4) and tetramethylsilane (TMS: Si(CH3)4) gases on the undulated DLC film by a series of plasma Ar etching, coating process and plasma Ar etching. Static wetting angle of water was observed that double roughening structure of DLC was superhydrophobicity such as wetting angle 161°. This approach also increased in air pockets easily trap among the needle-like posts. For the low friction at nanoscale, the surface wettability of the solid lubrication played a significant role, when the DLC film modified from flat to double roughening structure, the friction was constantly inner humidity conditions. Results generally showed that humidity had insignificant effect on the nanoscale friction at superhydrophobic DLC surface. The effect of the superhydrophobic double roughening DLC and friction were discussed with the following factors; the surface morphology affinity to needle-like shape, a reduction of the real area of contact, graphitization and easily occur to slip at small contact interface due to superhydrophobicity.

  26. Toward understanding whether superhydrophobic surfaces can really decrease fluidic friction drag.

    PubMed

    Su, Bin; Li, Mei; Lu, Qinghua

    2010-04-20

    Superhydrophobic surfaces in nature such as legs of water striders can get an extra supporting force from the deformed water surface they contact, leading to an anticipation of using water-repellent surfaces on ship and even submarine hulls to reduce friction drag. Here, we first fabricate superhydrophobic coatings with microstructures on glass balls by introducing hydrophobic silica nanoparticles into a polyethylene terephthalate (PET) film. Then, the movement of a superhydrophobic ball on and below water surface is investigated and compared with that of a highly hydrophilic normal glass ball. The results reveal that a superhydrophobic ball can fall more slowly under water compared with a normal glass ball, because the dense microbubbles trapped at the solid/water interface around the superhydrophobic ball act not as a reducer, but as an enhancer for the friction drag. In contrast, the faster movement of a superhydrophobic ball on the water surface can be mainly attributed to the great reduction of skin friction owing to the increased area of the solid/atmosphere interface. PMID:20000363

  27. Finite element modelling of frictional instability between deformable rocks

    NASA Astrophysics Data System (ADS)

    Xing, H. L.; Makinouchi, A.

    2003-10-01

    Earthquakes are recognized as resulting from a stick-slip frictional instability along faults. Based on the node-to-point contact element strategy (an arbitrarily shaped contact element strategy applied with the static-explicit algorithm for modelling non-linear frictional contact problems proposed by authors), a finite element code for modelling the 3-D non-linear friction contact between deformable bodies has been developed and extended here to analyse the non-linear stick-slip frictional instability between deformable rocks with a rate- and state-dependent friction law. A typical fault bend model is taken as an application example to be analysed here. The variations of the normal contact force, the frictional force, the transition of stick-slip instable state and the related relative slip velocity along the fault between the deformable rocks and the stress evolution in the total bodies during the different stages are investigated, respectively. The calculated results demonstrate the usefulness of this code for simulating the non-linear frictional instability between deformable rocks. Copyright

  28. Frictional Characteristics of graphene

    NASA Astrophysics Data System (ADS)

    Lee, Changgu; Carpick, Robert; Hone, James

    2009-03-01

    The frictional characteristics of graphene were characterized using friction force microscopy (FFM). The frictional force for monolayer graphene is more than twice that of bulk graphite, with 2,3, and 4 layer samples showing a monotonic decrease in friction with increasing sample thickness. Measurements on suspended graphene membranes show identical results, ruling out substrate effects as the cause of the observed variation. Likewise, the adhesion force is identical for all samples. The frictional force is independent of load within experimental uncertainty, consistent with previous measurements on graphite. We consider several possible explanations for the origin of the observed thickness dependence.

  29. Ice friction: Role of non-uniform frictional heating and ice premelting

    NASA Astrophysics Data System (ADS)

    Persson, B. N. J.

    2015-12-01

    The low friction of ice is usually attributed to the formation of a thin water film due to melting of ice by frictional heating. Melting of ice is a first order phase transition where physical quantities like mass density, the elastic modulus or the shear strength changes abruptly at the transition temperature. Thus, one may expect the friction coefficient to change abruptly at some characteristic sliding speed, when the melt water film is produced. We show that taking into account that, due to non-uniform frictional heating, melting does not occur simultaneously in all the ice contact regions, the transition is not abrupt but still more rapid (as a function of sliding speed) than observed experimentally. The slower than expected drop in the friction with increasing sliding speed may be a consequence of the following paradoxical phenomena: before the melt-water film is formed, the friction of ice is high and a large frictional heating occur which may result in the melting of the ice. If a thin (nanometer) water film would form, the friction becomes low which results in small frictional heating and the freezing of the water film. This suggests a region in sliding speed where a thin (nanometer) surface layer of the ice may be in a mixed state with small ice-like and water-like domains, which fluctuate rapidly in space and time. Alternatively, and more likely, heat-softening of the ice may occur resulting in a thin, statistically homogeneous (in the lateral direction) layer of disordered ice, with a shear strength which decreases continuously as the ice surface temperature approaches the bulk melting temperature. This layer could be related to surface premelting of ice. Using a phenomenological expression for the frictional shear stress, I show that the calculated ice friction is in good agreement with experimental observations.

  30. Brush/Fin Thermal Interfaces

    NASA Technical Reports Server (NTRS)

    Knowles, Timothy R.; Seaman, Christopher L.; Ellman, Brett M.

    2004-01-01

    Brush/fin thermal interfaces are being developed to increase heat-transfer efficiency and thereby enhance the thermal management of orbital replaceable units (ORUs) of electronic and other equipment aboard the International Space Station. Brush/fin thermal interfaces could also be used to increase heat-transfer efficiency in terrestrial electronic and power systems. In a typical application according to conventional practice, a replaceable heat-generating unit includes a mounting surface with black-anodized metal fins that mesh with the matching fins of a heat sink or radiator on which the unit is mounted. The fins do not contact each other, but transfer heat via radiation exchange. A brush/fin interface also includes intermeshing fins, the difference being that the gaps between the fins are filled with brushes made of carbon or other fibers. The fibers span the gap between intermeshed fins, allowing heat transfer by conduction through the fibers. The fibers are attached to the metal surfaces as velvet-like coats in the manner of the carbon fiber brush heat exchangers described in the preceding article. The fiber brushes provide both mechanical compliance and thermal contact, thereby ensuring low contact thermal resistance. A certain amount of force is required to intermesh the fins due to sliding friction of the brush s fiber tips against the fins. This force increases linearly with penetration distance, reaching 1 psi (6.9 kPa) for full 2-in. (5.1 cm) penetration for the conventional radiant fin interface. Removal forces can be greater due to fiber buckling upon reversing the sliding direction. This buckling force can be greatly reduced by biasing the fibers at an angle perpendicularly to the sliding direction. Means of containing potentially harmful carbon fiber debris, which is electrically conductive, have been developed. Small prototype brush/fin thermal interfaces have been tested and found to exhibit temperature drops about onesixth of that of conventional

  31. Identifying the mechanisms of polymer friction through molecular dynamics simulation.

    PubMed

    Dai, Ling; Minn, M; Satyanarayana, N; Sinha, Sujeet K; Tan, V B C

    2011-12-20

    Mechanisms governing the tribological behavior of polymer-on-polymer sliding were investigated by molecular dynamics simulations. Three main mechanisms governing frictional behavior were identified. Interfacial "brushing" of molecular chain ends over one another was observed as the key contribution to frictional forces. With an increase of the sliding speed, fluctuations in frictional forces reduced in both magnitude and periodicity, leading to dynamic frictional behavior. While "brushing" remained prevalent, two additional irreversible mechanisms, "combing" and "chain scission", of molecular chains were observed when the interfaces were significantly diffused. PMID:22044344

  32. Hydrodynamic skin-friction reduction

    NASA Astrophysics Data System (ADS)

    Reed, Jason C.; Bushnell, Dennis M.; Weinstein, Leonard M.

    1989-10-01

    A process for reducing skin friction, inhibiting the effects of liquid turbulence, and decreasing heat transfer in a system involving flow of a liquid along a surface of a body includes applying a substantially integral sheet of a gas, e.g., air, immediately adjacent to the surface of the body; a marine vehicle, which has a longitudinally grooved surface in proximity with the liquid and with a surface material having high contact angle between the liquid and said wall to reduce interaction of the liquid; water, with the surface of the body; and the hull of the marine vehicle.

  1. Hydrodynamic skin-friction reduction

    NASA Technical Reports Server (NTRS)

    Reed, Jason C. (Inventor); Bushnell, Dennis M. (Inventor); Weinstein, Leonard M. (Inventor)

    1991-01-01

    A process for reducing skin friction, inhibiting the effects of liquid turbulence, and decreasing heat transfer in a system involving flow of a liquid along a surface of a body includes applying a substantially integral sheet of a gas, e.g., air, immediately adjacent to the surface of the body, e.g., a marine vehicle, which has a longitudinally grooved surface in proximity with the liquid and with a surface material having high contact angle between the liquid and said wall to reduce interaction of the liquid, e.g., water, with the surface of the body, e.g., the hull of the marine vehicle.

  2. Adhesion, friction, and wear behavior of clean metal-ceramic couples

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa

    1995-01-01

    When a clean metal is brought into contact with a clean, harder ceramic in ultrahigh vacuum, strong bonds form between the two materials. The interfacial bond strength between the metal and ceramic surfaces in sliding contact is generally greater than the cohesive bond strength in the metal. Thus, fracture of the cohesive bonds in the metal results when shearing occurs. These strong interfacial bonds and the shearing fracture in the metal are the main causes of the observed wear behavior and the transfer of the metal to the ceramic. In the literature, the surface energy (bond energy) per unit area of the metal is shown to be related to the degree of interfacial bond strength per unit area. Because the two materials of a metal-ceramic couple have markedly different ductilities, contact can cause considerable plastic deformation of the softer metal. It is the ductility of the metal, then, that determines the real area of contact. In general, the less ductile the metal, the smaller the real area of contact. The coefficient of friction for clean surfaces of metal-ceramic couples correlates with the metals total surface energy in the real area of contact gamma A (which is the product of the surface energy per unit area of the metal gamma and the real area of contact (A)). The coefficient of friction increases as gamma A increases. Furthermore, gamma A is associated with the wear and transfer of the metal at the metal-ceramic interface: the higher the value of gamma A, the greater the wear and transfer of the metal.

  3. Stick-Slip Friction of PDMS Surfaces for Bioinspired Adhesives.

    PubMed

    Xue, Longjian; Pham, Jonathan T; Iturri, Jagoba; Del Campo, Aránzazu

    2016-03-15

    Friction plays an important role in the adhesion of many climbing organisms, such as the gecko. During the shearing between two surfaces, periodic stick-slip behavior is often observed and may be critical to the adhesion of gecko setae and gecko-inspired adhesives. Here, we investigate the influence of short oligomers and pendent chains on the stick-slip friction of polydimethylsiloxane (PDMS), a commonly used material for bioinspired adhesives. Three different stick-slip patterns were observed on these surfaces (flat or microstructured) depending on the presence or absence of oligomers and their ability to diffuse out of the material. After washing samples to remove any untethered oligomeric chains, or after oxygen plasma treatment to convert the surface to a thin layer of silica, we decouple the contributions of stiffness, oligomers, and pendant chains to the stick-slip behavior. The stick phase is mainly controlled by the stiffness while the amount of untethered oligomers and pendant chains available at the contact interface defines the slip phase. A large amount of oligomers and pendant chains resulted in a large slip time, dominating the period of stick-slip motion. PMID:26903477

  4. Distributed friction damping of travelling wave vibration in rods.

    PubMed

    Tangpong, Xiangqing W; Wickert, Jonathan A; Akay, Adnan

    2008-03-13

    A ring damper can be affixed to a rotating base structure such as a gear, an automotive brake rotor or a gas turbine's labyrinth air seal. Depending on the frequency range, wavenumber and level of preload, vibration of the base structure can be effectively and passively attenuated by friction that develops along the interface between it and the damper. The assembly is modelled as two rods that couple in longitudinal vibration through spatially distributed hysteretic friction, with each rod having periodic boundary conditions in a manner analogous to an unwrapped ring and disc. As is representative of rotating machinery applications, the system is driven by a travelling wave disturbance, and for that form of excitation, the base structure's and the damper's responses are determined without the need for computationally intensive simulation. The damper's performance can be optimized with respect to normal preload, and its effectiveness is insensitive to variations in preload or the excitation's magnitude when its natural frequency is substantially lower than the base structure's in the absence of contact. PMID:17947203

  5. The effect of ligation method on friction in sliding mechanics.

    PubMed

    Hain, Max; Dhopatkar, Ashish; Rock, Peter

    2003-04-01

    During orthodontic tooth movement with the preadjusted edgewise system, friction generated at the bracket/archwire interface tends to impede the desired movement. The method of ligation is an important contributor to this frictional force. This in vitro study investigated the effect of ligation method on friction and evaluated the efficacy of the new slick elastomeric modules from TP Orthodontics (La Porte, Ind), which are claimed to reduce friction at the module/wire interface. Slick modules were compared with regular nonslick modules, stainless steel ligatures, and the SPEED self-ligating bracket system (Strite Industries, Cambridge, Ontario, Canada). The effect of using slick modules with metal-reinforced ceramic (Clarity, 3M Unitek, Monrovia, Calif) and miniature brackets (Minitwin, 3M Unitek) was also examined. Results showed that, when considering tooth movement along a 0.019 x 0.025-in stainless steel archwire, saliva-lubricated slick modules can reduce static friction at the module/archwire interface by up to 60%, regardless of the bracket system. The SPEED brackets produced the lowest friction compared with the 3 other tested bracket systems when regular modules were used. The use of slick modules, however, with all of the ligated bracket types tested significantly reduced friction to below the values recorded in the SPEED groups. Loosely tied stainless steel ligatures were found to generate the least friction. PMID:12695769

  6. High fidelity frictional models for MEMS.

    SciTech Connect

    Carpick, Robert W.; Reedy, Earl David, Jr.; Bitsie, Fernando; de Boer, Maarten Pieter; Corwin, Alex David; Ashurst, William Robert; Jones, Reese E.; Subhash, Ghatu S.; Street, Mark D.; Sumali, Anton Hartono; Antoun, Bonnie R.; Starr, Michael James; Redmond, James Michael; Flater, Erin E.

    2004-10-01

    The primary goals of the present study are to: (1) determine how and why MEMS-scale friction differs from friction on the macro-scale, and (2) to begin to develop a capability to perform finite element simulations of MEMS materials and components that accurately predicts response in the presence of adhesion and friction. Regarding the first goal, a newly developed nanotractor actuator was used to measure friction between molecular monolayer-coated, polysilicon surfaces. Amontons law does indeed apply over a wide range of forces. However, at low loads, which are of relevance to MEMS, there is an important adhesive contribution to the normal load that cannot be neglected. More importantly, we found that at short sliding distances, the concept of a coefficient of friction is not relevant; rather, one must invoke the notion of 'pre-sliding tangential deflections' (PSTD). Results of a simple 2-D model suggests that PSTD is a cascade of small-scale slips with a roughly constant number of contacts equilibrating the applied normal load. Regarding the second goal, an Adhesion Model and a Junction Model have been implemented in PRESTO, Sandia's transient dynamics, finite element code to enable asperity-level simulations. The Junction Model includes a tangential shear traction that opposes the relative tangential motion of contacting surfaces. An atomic force microscope (AFM)-based method was used to measure nano-scale, single asperity friction forces as a function of normal force. This data is used to determine Junction Model parameters. An illustrative simulation demonstrates the use of the Junction Model in conjunction with a mesh generated directly from an atomic force microscope (AFM) image to directly predict frictional response of a sliding asperity. Also with regards to the second goal, grid-level, homogenized models were studied. One would like to perform a finite element analysis of a MEMS component assuming nominally flat surfaces and to include the effect of

  7. Contact dermatitis

    MedlinePlus

    Dermatitis - contact; Allergic dermatitis; Dermatitis - allergic; Irritant contact dermatitis; Skin rash - contact dermatitis ... There are 2 types of contact dermatitis. Irritant dermatitis: This ... can be by contact with acids, alkaline materials such as soaps ...

  8. Friction Properties of Bio-mimetic Nano-fibrillar Arrays

    NASA Astrophysics Data System (ADS)

    Chen, Shao-Hua; Mi, Chun-Hui

    2009-10-01

    Nano-fibrillar arrays are fabricated using polystyrene materials. The average diameter of each fiber is about 300nm. Experiments show that such a fibrillar surface possesses a relatively hydrophobic feature with a water contact angle of 142°. Nanoscale friction properties are mainly focused on. It is found that the friction force of polystyrene nano-fibrillar surfaces is obviously enhanced in contrast to polystyrene smooth surfaces. The apparent coefficient of friction increases with the applied load, but is independent of the scanning speed. An interesting observation is that the friction force increases almost linearly with the real contact area, which abides by the fundamental Bowden-Tabor law of nano-scale friction.

  9. The friction and wear of TPS fibers

    NASA Technical Reports Server (NTRS)

    Bascom, W. D.; Wong, S.

    1987-01-01

    The sliding friction behavior of single filaments of SiO2, SiC, and an aluminoborosilicate has been determined. These fibers are used in thermal protection systems (TPS) and are subject to damage during weaving and aero-maneuvering. All fibers exhibited stick-slip friction indicating the successive formation and rupture of strong junctions between the contacting filaments. The static frictional resistance of the sized SiC filament was 4X greater than for the same filament after heat cleaning. This result suggests that the sizing is an organic polymer with a high shear yield strength. Heat cleaning exposes the SiC surface and/or leaves an inorganic residue so that the adhesional contact between filaments has a low fracture energy and frictional sliding occurs by brittle fracture. The frictional resistances of the sized and heat cleaned SiO2 and glass filaments were all comparable to that of the heat cleaned SiC. It would appear that the sizings as well as the heat cleaned surfaces of the silica and glass have low fracture energies so that the sliding resistance is determined by brittle fracture.

  10. Friction and Wear on the Atomic Scale

    NASA Astrophysics Data System (ADS)

    Gnecco, Enrico; Bennewitz, Roland; Pfeiffer, Oliver; Socoliuc, Anisoara; Meyer, Ernst

    Friction has long been the subject of research: the empirical da Vinci-Amontons friction laws have been common knowledge for centuries. Macroscopic experiments performed by the school of Bowden and Tabor revealed that macroscopic friction can be related to the collective action of small asperities. Over the last 15 years, experiments performed with the atomic force microscope have provided new insights into the physics of single asperities sliding over surfaces. This development, together with the results from complementary experiments using surface force apparatus and the quartz microbalance, have led to the new field of nanotribology. At the same time, increasing computing power has permitted the simulation of processes that occur during sliding contact involving several hundreds of atoms. It has become clear that atomic processes cannot be neglected when interpreting nanotribology experiments. Even on well-defined surfaces, experiments have revealed that atomic structure is directly linked to friction force. This chapter will describe friction force microscopy experiments that reveal, more or less directly, atomic processes during sliding contact.

  11. Status of Stellite 6 friction testing

    SciTech Connect

    Watkins, J.C.; DeWall, K.G.; Weidenhamer, G.H.

    1998-06-01

    For the past several years, researchers at the Idaho National Engineering and Environmental Laboratory, under the sponsorship of the US Nuclear Regulatory Commission, Office of Nuclear Regulatory Research, have been investigating the performance of motor-operated valves subjected to design basis flow and pressure loads. Part of this research addresses the friction that occurs at the interface between the valve disc and the valve body seats during operation of a gate valve. In most gate valves, these surfaces are hardfaced with Stellite 6, a cobalt-based alloy. Analytical methods exist for predicting the thrust needed to operate these valves at specific pressure conditions. To produce accurate valve thrust predictions, the analyst must have a reasonably accurate, though conservative, estimate of the coefficient of friction at the disc-to-seat interface. One of the questions that remains to be answered is whether, and to what extent, aging of the disc and seat surfaces effects the disc-to-seat coefficient of friction. Specifically, does the environment in a nuclear plants piping system cause the accumulation of an oxide film on these surfaces that increases the coefficient of friction; and if so, how great is the increase? This paper presents results of specimen tests addressing this issue, with emphasis on the following: (1) the characteristics and thickness of the oxide film that develops on Stellite 6 as it ages; (2) the change in the friction coefficient of Stellite 6 as it ages, including the question of whether the friction coefficient eventually reaches a plateau; and (3) the effect in-service cycling has on the characteristics and thickness of the oxide film and on the friction coefficient.

  12. Effect of friction on shear jamming

    NASA Astrophysics Data System (ADS)

    Wang, Dong; Ren, Jie; Dijksman, Joshua; Behringer, Robert

    2014-03-01

    Shear Jamming of granular materials was first found for systems of frictional disks, with a static friction coefficients μs ~= 0 . 6 . Jamming by shear is obtained by starting from a zero-stress state with a packing fraction ϕS <= ϕ <=ϕJ between ϕJ (isotropic jamming) and a lowest ϕS for shear jamming. This phenomenon is associated with strong anisotropy in stress and the contact network in the form of ``force chains,'' which are stabilized and/or enhanced by the presence of friction. We address experimentally how reducing friction affects shear jamming by using either teflon disks of teflon wrapped photoelastic particles. The teflon disks were placed in a wall driven 2D shear apparatus, in which we can probe shear stresses mechanically. Teflon-wrapped disks were placed in a bottom driven 2D shear apparatus (Ren et al., PRL 2013). Both apparatuses provide uniform simple shear. In all low- μ experiments, the shear jamming occurred, as observed through stress increases on the packing. However, the low- μ differences observed for ϕJ -ϕS were smaller than for higher friction particles. Ongoing work is studying systems using hydrogel disks, which have a lower friction coefficient than teflon. We acknowledge support from NSF Grant No. DMR12-06351, ARO Grant No. W911NF-1-11-0110, and NASA Grant No. NNX10AU01G.

  13. Friction of rocks

    USGS Publications Warehouse

    Byerlee, J.

    1978-01-01

    Experimental results in the published literature show that at low normal stress the shear stress required to slide one rock over another varies widely between experiments. This is because at low stress rock friction is strongly dependent on surface roughness. At high normal stress that effect is diminished and the friction is nearly independent of rock type. If the sliding surfaces are separated by gouge composed of Montmorillonite or vermiculite the friction can be very low. ?? 1978 Birkha??user Verlag.

  14. A Study on Tactile Friction and Wear

    NASA Astrophysics Data System (ADS)

    Sugishita, Junji; Usami, Hatsuhiko; Hattori, Tomokazu

    The tactile wear (“tezure” in Japanese) is an abrasion phenomenon of material surfaces caused by the contact of human hand over a long period of time. Though this phenomenon has been the focus of various articles, an extensive study with regard to the wear characteristics is of a profound importance. To date, we have several remarkable examples such as the statue of Pindola Bharadvaja (Buddhist) and the St. Peter statue (Christian). Followers of the respective religions who are deeply attached and rooted have been touching the statues as part of their rituals for many generations over centuries. In this study, an attempt is done to verify the friction and wear characteristics of various soft metals with contact of human finger. The results of our experiments show that the friction coefficient upon the contact of the human finger and pure copper are very high and thus proving tactile wear of soft metals can be generated easily.

  15. Modeling of rock friction 1. Experimental results and constitutive equations

    USGS Publications Warehouse

    Dieterich, J.H.

    1979-01-01

    Direct shear experiments on ground surfaces of a granodiorite from Raymond, California, at normal stresses of ??6 MPa demonstrate that competing time, displacement, and velocity effects control rock friction. It is proposed that the strength of the population of points of contacts between sliding surfaces determines frictional strength and that the population of contacts changes continuously with displacements. Previous experiments demonstrate that the strength of the contacts increases with the age of the contacts. The present experiments establish that a characteristic displacement, proportional to surface roughness, is required to change the population of contacts. Hence during slip the average age of the points of contact and therefore frictional strength decrease as slip velocity increases. Displacement weakening and consequently the potential for unstable slip occur whenever displacement reduces the average age of the contacts. In addition to this velocity dependency, which arises from displacement dependency and time dependency, the experiments also show a competing but transient increase in friction whenever slip velocity increases. Creep of the sliding surface at stresses below that for steady state slip is also observed. Constitutive relationships are developed that permit quantitative simulation of the friction versus displacement data as a function of surface roughness and for different time and velocity histories. Unstable slip in experiments is controlled by these constitutive effects and by the stiffness of the experimental system. It is argued that analogous properties control earthquake instability. Copyright ?? 1979 by the American Geophysical Union.

  16. On surface structure and friction regulation in reptilian limbless locomotion.

    PubMed

    Abdel-Aal, Hisham A

    2013-06-01

    One way of controlling friction and associated energy losses is to engineer a deterministic structural pattern on the surface of the rubbing parts (i.e., texture engineering). Custom texturing enhances the quality of lubrication, reduces friction, and allows the use of lubricants of lower viscosity. To date, a standardized procedure to generate deterministic texture constructs is virtually non-existent. Many engineers, therefore, study natural species to explore surface construction and to probe the role that surface topography assumes in friction control. Snakes offer rich examples of surfaces where topological features allow the optimization and control of frictional behavior. In this paper, we investigate the frictional behavior of a constrictor type reptile, Python regius. The study employed a specially designed tribo-acoustic probe capable of measuring the coefficient of friction and detecting the acoustical behavior of the skin in vivo. The results confirm the anisotropy of the frictional response of snakeskin. The coefficient of friction depends on the direction of sliding: the value in forward motion is lower than that in the converse direction. Detailed analysis of the surface metrological feature reveals that tuning frictional response in snakes originates from the hierarchical nature of surface topology combined to the profile asymmetry of the surface micro-features, and the variation of the curvature of the contacting scales at different body regions. Such a combination affords the reptile the ability to optimize the frictional response. PMID:23582565

  17. Direct, Robust Technique for the Measurement of Friction between Microspheres.

    PubMed

    Fernandez, Nicolas; Cayer-Barrioz, Juliette; Isa, Lucio; Spencer, Nicholas D

    2015-08-18

    Friction between microscopic objects controls many macroscopic phenomena. For instance, the friction between microasperities determines the tribology of rough surfaces in contact and in relative motion. Additionally, the friction between microparticles is responsible for many aspects of the rheological response of granular media, ranging from microscale contacts at the single-particle level to macroscopic flow properties of sheared, dry granular systems and non-Brownian suspensions. We propose a new, precise, and robust method, based on lateral force microscopy, to measure the coefficient of friction between microspheres quantitatively and without complex data processing. We have successfully applied this method to the contact between silica spheres in liquid with and without a polymer coating. PMID:26196157

  18. Subsonic semi-infinite crack with a finite friction zone in a bimaterial

    NASA Astrophysics Data System (ADS)

    Antipov, Y. A.

    2009-12-01

    Propagation of a semi-infinite crack along the interface between an elastic half-plane and a rigid half-plane is analyzed. The crack advances at constant subsonic speed. It is assumed that, ahead of the crack, there is a finite segment where the conditions of Coulomb friction law are satisfied. The contact zone of unknown a priori length propagates with the same speed as the crack. The problem reduces to a vector Riemann-Hilbert problem with a piece-wise constant matrix coefficient discontinuous at three points, 0, 1, and ∞. The problem is solved exactly in terms of Kummer's solutions of the associated hypergeometric differential equation. Numerical results are reported for the length of the contact friction zone, the stress singularity factor, the normal displacement u2, and the dynamic energy release rate G. It is found that in the case of frictionless contact for both the sub-Rayleigh and super-Rayleigh regimes, G is positive and the stress intensity factor KII does not vanish. In the sub-Rayleigh case, the normal displacement is positive everywhere in the opening zone. In the super-Rayleigh regime, there is a small neighborhood of the ending point of the open zone where the normal displacement is negative.

  19. Contact electrification field-effect transistor.

    PubMed

    Zhang, Chi; Tang, Wei; Zhang, Limin; Han, Changbao; Wang,