Science.gov

Sample records for frizzled related protein

  1. 76 FR 63316 - Prospective Grant of Exclusive License: Secreted Frizzled Related Protein-1 (sFRP-1) and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-12

    ... Related Protein-1 (sFRP-1) and derivatives thereof and their Use In Therapeutic Applications AGENCY... exclusive license relates to a protein designated secreted Frizzled Related Protein-1 (sFRP-1). sFRP-1, also known as SARP-2 (Secreted Apoptosis Related Protein-2). The IP covers various sFRP-1 compositions...

  2. Cysteine-rich domains related to Frizzled receptors and Hedgehog-interacting proteins

    PubMed Central

    Pei, Jimin; Grishin, Nick V

    2012-01-01

    Frizzled and Smoothened are homologous seven-transmembrane proteins functioning in the Wnt and Hedgehog signaling pathways, respectively. They harbor an extracellular cysteine-rich domain (FZ-CRD), a mobile evolutionary unit that has been found in a number of other metazoan proteins and Frizzled-like proteins in Dictyostelium. Domains distantly related to FZ-CRDs, in Hedgehog-interacting proteins (HHIPs), folate receptors and riboflavin-binding proteins (FRBPs), and Niemann-Pick Type C1 proteins (NPC1s), referred to as HFN-CRDs, exhibit similar structures and disulfide connectivity patterns compared with FZ-CRDs. We used computational analyses to expand the homologous set of FZ-CRDs and HFN-CRDs, providing a better understanding of their evolution and classification. First, FZ-CRD-containing proteins with various domain compositions were identified in several major eukaryotic lineages including plants and Chromalveolata, revealing a wider phylogenetic distribution of FZ-CRDs than previously recognized. Second, two new and distinct groups of highly divergent FZ-CRDs were found by sensitive similarity searches. One of them is present in the calcium channel component Mid1 in fungi and the uncharacterized FAM155 proteins in metazoans. Members of the other new FZ-CRD group occur in the metazoan-specific RECK (reversion-inducing-cysteine-rich protein with Kazal motifs) proteins that are putative tumor suppressors acting as inhibitors of matrix metalloproteases. Finally, sequence and three-dimensional structural comparisons helped us uncover a divergent HFN-CRD in glypicans, which are important morphogen-binding heparan sulfate proteoglycans. Such a finding reinforces the evolutionary ties between the Wnt and Hedgehog signaling pathways and underscores the importance of gene duplications in creating essential signaling components in metazoan evolution. PMID:22693159

  3. Embryonic Dorsal-Ventral Signaling: Secreted Frizzled-Related Proteins as Inhibitors of Tolloid Proteinases

    PubMed Central

    Lee, Hojoon X.; Ambrosio, Andrea L.; Reversade, Bruno; De Robertis, E.M.

    2008-01-01

    SUMMARY Here we report an unexpected role for the secreted Frizzled-related protein (sFRP) Sizzled/Ogon as an inhibitor of the extracellular proteolytic reaction that controls BMP signaling during Xenopus gastrulation. Microinjection experiments suggest that the Frizzled domain of Sizzled regulates the activity of Xolloid-related (Xlr), a metalloproteinase that degrades Chordin, through the following molecular pathway: Szl ┤ Xlr ┤ Chd ┤ BMP → P-Smad1 → Szl. In biochemical assays, the Xlr proteinase has similar affinities for its endogenous substrate Chordin and for its competitive inhibitor Sizzled, which is resistant to enzyme digestion. Extracellular levels of Sizzled and Chordin in the gastrula embryo and enzyme reaction constants were all in the 10−8 M range, consistent with a physiological role in the regulation of dorsal-ventral patterning. Sizzled is also a natural inhibitor of BMP1, a Tolloid metalloproteinase of medical interest. Furthermore, mouse sFRP2 inhibited Xlr, suggesting a wider role for this molecular mechanism. PMID:16413488

  4. Secreted frizzled-related protein 1 regulates adipose tissue expansion and is dysregulated in severe obesity

    PubMed Central

    Lagathu, Claire; Christodoulides, Constantinos; Tan, Chong Yew; Virtue, Sam; Laudes, Matthias; Campbell, Mark; Ishikawa, Ko; Ortega, Francisco; Tinahones, Francisco J.; Fernández-Real, Jose-Manuel; Orešič, Matej; Sethi, Jaswinder K.; Vidal-Puig, Antonio

    2014-01-01

    Aim The Wnt/β-catenin signalling network offers potential targets to diagnose and uncouple obesity from its metabolic complications. Here we investigate the role of the Wnt antagonist, secreted Frizzled related protein 1 (SFRP1) in promoting adipogenesis in vitro and adipose tissue expansion in vivo. Methods We use a combination of human and murine, in vivo and in vitro models of adipogenesis, adipose tissue expansion and obesity-related metabolic syndrome to profile the involvement of SFRP1. Results Secreted Frizzled related protein 1 (SFRP1) is expressed in both murine and human mature adipocytes. The expression of SFRP1 is induced during in vitro adipogenesis and SFRP1 is preferentially expressed in mature adipocytes in human adipose tissue. Constitutive ectopic expression of SFRP1 is proadipogenic and inhibits the Wnt/β-catenin signalling pathway. In vivo endogenous levels of adipose SFRP1 are regulated in line with proadipogenic states. However, in longitudinal studies of high fat diet-fed mice we observed a dynamic temporal but biphasic regulation of endogenous SFRP1. In agreement with this profile we observed that SFRP1 expression in human tissues peaks in patients with mild obesity and gradually falls in morbidly obese subjects. Conclusions Our results suggest that SFRP1 is an endogenous modulator of Wnt/β-catenin signalling and participates in the paracrine regulation of human adipogenesis. The reduced adipose expression of SFRP1 in morbid obesity and its knock-on effect to prevent further adipose tissue expansion may contribute to the development of metabolic complications in these individuals. PMID:20514047

  5. Secreted frizzled related proteins inhibit fibrosis in vitro but appear redundant in vivo

    PubMed Central

    2014-01-01

    Background The pathogenesis of pulmonary fibrosis remains poorly understood. The Wnt signaling pathway regulates fibrogenesis in different organs. Here, we studied the role of two extracellular Wnt antagonists, secreted frizzled-related protein-1 (SFRP1) and frizzled-related protein (FRZB) on lung fibrosis in vitro and in vivo. For this purpose, we used an alveolar epithelial cell line and a lung fibroblast cell line, and the bleomycin-induced lung fibrosis model, respectively. Results During the course of bleomycin-induced lung fibrosis, Sfrp1 and Frzb expression are upregulated. Expression of Sfrp1 appears much higher than that of Frzb. In vitro, recombinant SFRP1, but not FRZB, counteracts the transforming growth factor β1 (TGFβ1)-induced upregulation of type I collagen expression both in pulmonary epithelial cells and fibroblasts. Both SFRP1 and FRZB inhibit the TGFβ1-induced increase of active β-catenin, but do not influence the TGFβ1-induced phosphorylation levels of SMAD3, positioning Wnt signaling activity downstream of the active TGFβ signal in lung fibroblasts, but not in alveolar epithelial cells. In vivo, Sfrp1 −/− and Frzb −/− mice showed identical responses to bleomycin in the lung compared to wild-type controls. Conclusions Although SFRP1 counteracts the effect of TGFβ1 in pulmonary cells in vitro; loss of neither SFRP1 nor FRZB alters fibrotic outcomes in the lungs in vivo. The lack of in vivo effect in the absence of specific SFRPs suggests functional redundancy within this family of Wnt antagonists. PMID:25317206

  6. Osteogenesis induced by frizzled-related protein (FRZB) is linked to the netrin-like domain.

    PubMed

    Thysen, Sarah; Cailotto, Frederic; Lories, Rik

    2016-05-01

    Abnormal Wnt signaling is associated with bone mass disorders. Frizzled-related protein (FRZB, also known as secreted frizzled-related protein-3 (SFRP3)) is a Wnt modulator that contains an amino-terminal cysteine-rich domain (CRD) and a carboxy-terminal Netrin-like (NTN) motif. Frzb(-/-) mice show increased cortical thickness. However, the direct effect of FRZB on osteogenic differentiation and the involvement of the structural domains herein are not fully understood. In this study, we observed that stable overexpression of Frzb in MC3T3-E1 cells increased calcium deposition and osteoblast markers compared with control. Western blot analysis showed that the increased osteogenesis was associated with reduced canonical, but increased non-canonical Wnt signaling. On the contrary, loss of Frzb induced the opposite effects on osteogenesis and Wnt signaling. To translationally validate the positive effects of FRZB on primary human cells, we treated human periosteal and human bone marrow stromal cells with conditioned medium from MC3T3-E1 cells overexpressing Frzb and observed an increase in Alizarin red staining. We further studied the effect of the domains. FrzbNTN overexpression induced similar effects on osteogenesis as full-length Frzb, whereas FrzbCRD overexpressing cells mimicked loss of Frzb experiments. The CRD is considered as the Wnt binding domain, but the NTN domain also has important effects on bone biology. FRZB and other SFRPs or their specific domains may hold surprising potential as therapeutics for bone and joint disorders considering that excess of SFRPs has effects that are not expected under physiological, endogenous expression conditions. PMID:26927515

  7. Expression patterns of Wnt signaling component, secreted frizzled-related protein 3 in astrocytoma and glioblastoma

    PubMed Central

    PEĆINA-ŠLAUS, NIVES; KAFKA, ANJA; VAROŠANEC, ANA MARIA; MARKOVIĆ, LEON; KRSNIK, ŽELJKA; NJIRIĆ, NIKO; MRAK, GORAN

    2016-01-01

    Secreted frizzled-related protein 3 (SFRP3) is a member of the family of soluble proteins, which modulate the Wnt signaling cascade. Novel research has identified aberrant expression of SFRPs in different types of cancer. In the present study the expression intensities and localizations of the SFRP3 protein across different histopathological grades of astrocytic brain tumors were investigated by immunohistochemistry, digital scanning and image analysis. The results demonstrated that the differences between expression levels and malignancy grades were statistically significant. Tumors were classified into four malignancy grades according to the World Health Organization guidelines. Moderate (P=0.014) and strong (P=0.028) nuclear expression levels were significantly different in pilocytic (grade I) and diffuse (grade II) astrocytomas demonstrating higher expression values, as compared with anaplastic astrocytoma (grade III) and glioblastoma (grade IV). When the sample was divided into two groups, the moderate and high cytoplasmic expression levels were observed to be significantly higher in glioblastomas than in the group comprising astrocytoma II and III. Furthermore, the results indicated that high grade tumors were associated with lower values of moderate (P=0.002) and strong (P=0.018) nuclear expression in comparison to low grade tumors. Analysis of cytoplasmic staining demonstrated that strong cytoplasmic expression was significantly higher in the astrocytoma III and IV group than in the astrocytoma I and II group (P=0.048). Furthermore, lower grade astrocytomas exhibited reduced membranous SFRP3 staining when compared with higher grade astrocytomas and this difference was statistically significant (P=0.036). The present results demonstrated that SFRP3 protein expression levels were decreased in the nucleus in higher grade astrocytoma (indicating the expected behavior of an antagonist of Wnt signaling), whereas when the SFRP3 was located in the cytoplasm an

  8. Computer aided screening of secreted frizzled-related protein 4 (SFRP4): a potential control for diabetes mellitus.

    PubMed

    Bukhari, Shazia Anwer; Shamshari, Waseem Akhtar; Ur-Rahman, Mahmood; Zia-Ul-Haq, Muhammad; Jaafar, Hawa Z E

    2014-01-01

    Diabetes mellitus is a life threatening disease and scientists are doing their best to find a cost effective and permanent treatment of this malady. The recent trend is to control the disease by target base inhibiting of enzymes or proteins. Secreted frizzled-related protein 4 (SFRP4) is found to cause five times more risk of diabetes when expressed above average levels. This study was therefore designed to analyze the SFRP4 and to find its potential inhibitors. SFRP4 was analyzed by bio-informatics tools of sequence tool and structure tool. A total of three potential inhibitors of SFRP4 were found, namely cyclothiazide, clopamide and perindopril. These inhibitors showed significant interactions with SFRP4 as compared to other inhibitors as well as control (acetohexamide). The findings suggest the possible treatment of diabetes mellitus type 2 by inhibiting the SFRP4 using the inhibitors cyclothiazide, clopamide and perindopril. PMID:25019556

  9. Secreted Frizzled-related protein-2 (sFRP2) augments canonical Wnt3a-induced signaling

    SciTech Connect

    Marschall, Zofia von; Fisher, Larry W.

    2010-09-24

    Research highlights: {yields} sFRP2 enhances the Wnt3a-induced {beta}-catenin stabilization and its nuclear translocation. {yields} sFRP2 enhances LRP6 phosphorylation and Wnt3a/{beta}-catenin transcriptional reporter activity. {yields} Dickkopf-1 (DKK1) fully antagonizes both Wnt3a/sFRP2-induced LRP6 phosphorylation and transcriptional activity. {yields} sFRP2 enhances expression of genes known to be regulated by Wnt3a signaling. -- Abstract: Secreted Frizzled-related proteins (sFRP) are involved in embryonic development as well as pathological conditions including bone and myocardial disorders and cancer. Because of their sequence homology with the Wnt-binding domain of Frizzled, they have generally been considered antagonists of canonical Wnt signaling. However, additional activities of various sFRPs including both synergism and mimicry of Wnt signaling as well as functions other than modulation of Wnt signaling have been reported. Using human embryonic kidney cells (HEK293A), we found that sFRP2 enhanced Wnt3a-dependent phosphorylation of LRP6 as well as both cytosolic {beta}-catenin levels and its nuclear translocation. While addition of recombinant sFRP2 had no activity by itself, Top/Fop luciferase reporter assays showed a dose-dependent increase of Wnt3a-mediated transcriptional activity. sFRP2 enhancement of Wnt3a signaling was abolished by treatment with the Wnt antagonist, Dickkopf-1 (DKK1). Wnt-signaling pathway qPCR arrays showed that sFRP2 enhanced the Wnt3a-mediated transcriptional up-regulation of several genes regulated by Wnt3a including its antagonists, DKK1, and Naked cuticle-1 homolog (NKD1). These results support sFRP2's role as an enhancer of Wnt/{beta}-catenin signaling, a result with biological impact for both normal development and diverse pathologies such as tumorigenesis.

  10. Secreted frizzled related protein 2 (Sfrp2) is the key Akt-mesenchymal stem cell-released paracrine factor mediating myocardial survival and repair

    PubMed Central

    Mirotsou, Maria; Zhang, Zhongyan; Deb, Arjun; Zhang, Lunan; Gnecchi, Massimiliano; Noiseux, Nicolas; Mu, Hui; Pachori, Alok; Dzau, Victor

    2007-01-01

    Stem cell therapy has emerged as a promising tool for the treatment of a variety of diseases. Previously, we have shown that Akt-modified mesenchymal stem cells mediate tissue repair through paracrine mechanisms. Using a comprehensive functional genomic strategy, we show that secreted frizzled related protein 2 (Sfrp2) is the key stem cell paracrine factor that mediates myocardial survival and repair after ischemic injury. Sfrp2 is known to modulate Wnt signaling, and we demonstrate that cardiomyocytes treated with secreted frizzled related protein increase cellular β-catenin and up-regulate expression of antiapoptotic genes. These findings reveal the key role played by Sfrp2 in mediating the paracrine effects of Akt-mesenchymal stem cells on tissue repair and identify modulation of Wnt signaling as a therapeutic target for heart disease. PMID:17251350

  11. Dorsal–Ventral patterning: Crescent is a dorsally secreted Frizzled-related protein that competitively inhibits Tolloid proteases

    PubMed Central

    Ploper, Diego; Lee, Hojoon X.; De Robertis, Edward M.

    2011-01-01

    In Xenopus, dorsal–ventral (D–V) patterning can self-regulate after embryo bisection. This is mediated by an extracellular network of proteins secreted by the dorsal and ventral centers of the gastrula. Different proteins of similar activity can be secreted at these two poles, but under opposite transcriptional control. Here we show that Crescent, a dorsal protein, can compensate for the loss of Sizzled, a ventral protein. Crescent is a secreted Frizzled-Related Protein (sFRP) known to regulate Wnt8 and Wnt11 activity. We now find that Crescent also regulates the BMP pathway. Crescent expression was increased by the BMP antagonist Chordin and repressed by BMP4, while the opposite was true for Sizzled. Crescent knock-down increased the expression of BMP target genes, and synergized with Sizzled morpholinos. Thus, Crescent loss-of-function is compensated by increased expression of its ventral counterpart Sizzled. Crescent overexpression dorsalized whole embryos but not ventral half-embryos, indicating that Crescent requires a dorsal component to exert its anti-BMP activity. Crescent protein lost its dorsalizing activity in Chordin-depleted embryos. When co-injected, Crescent and Chordin proteins greatly synergized in the dorsalization of Xenopus embryos. The molecular mechanism of these phenotypes is explained by the ability of Crescent to inhibit Tolloid metalloproteinases, which normally degrade Chordin. Enzyme kinetic studies showed that Crescent was a competitive inhibitor of Tolloid activity, which bound to Tolloid/BMP1 with a KD of 11 nM. In sum, Crescent is a new component of the D–V pathway, which functions as the dorsal counterpart of Sizzled, through the regulation of chordinases of the Tolloid family. PMID:21295563

  12. Secreted Frizzled Related Protein 2 is a procollagen C proteinase enhancer with a role in myocardial infarction-associated fibrosis

    PubMed Central

    Kobayashi, Koichi; Luo, Min; Zhang, Yue; Wilkes, David C.; Ge, Gaoxiang; Grieskamp, Thomas; Yamada, Chikaomi; Liu, Ting-Chun; Huang, Guorui; Basson, Craig T.; Kispert, Andreas; Greenspan, Daniel S.; Sato, Thomas N.

    2009-01-01

    Secreted frizzled related proteins (sFRPs) have emerged as key regulators of a wide range of developmental and disease processes, with virtually all known functions of mammalian sFRPs attributed to their ability to antagonize Wnt signaling. Recently however, the Xenopus and zebrafish sFRP, Sizzled, was shown to function as an antagonist of Chordin processing by Tolloid-like metalloproteinases, leading to the proposal that sFRPs may function as evolutionarily-conserved antagonists of the chordinase activities of this class of proteinases. Herein, in contrast to this proposal, we show that the mammalian sFRP, sFRP2, does not affect Chordin processing, but instead can serve as a direct enhancer of the procollagen C-proteinase activity of Tolloid-like metalloproteinases. We further show that the level of fibrosis, in which procollagen processing by Tolloid-like proteinases plays a rate-limiting role, is markedly reduced in sFRP2-null mice subjected to myocardial infarction. Importantly, this reduced level of fibrosis is accompanied by significantly improved cardiac function. This study thus uncovers a novel function for sFRP2 and a potential therapeutic application for sFRP2 antagonism in controlling fibrosis in the infarcted heart. PMID:19079247

  13. Epigenetic inactivation of the canonical Wnt antagonist secreted frizzled-related protein 1 in hepatocellular carcinoma cells.

    PubMed

    Wu, Y; Li, J; Sun, C Y; Zhou, Y; Zhao, Y F; Zhang, S J

    2012-01-01

    Secreted Frizzled-related protein 1 (sFRP1), as one of most important Wnt antagonists, is frequently silenced by promoter hypermethylation in many types of tumor, including hepatocellular carcinoma (HCC). In this study, we aimed to investigate whether restoration of sFRP1 affected HCC metastatic behavior. sFRP1 mRNA expression and promoter methylation in HCC tissues and cell lines were examined using RT-PCR and methylation-specific PCR (MS-PCR), respectively. sFRP1 protein expression was assessed by Western Blot. We generated stable HCC cell line restoration of sFRP1 in HepG2 cells, which naturally do not express detectable sFRP1 mRNA. The effects of exogenous sFRP1 on HepG2 cell invasion were investigated using trans-well assay. Also the effects of sFRP1 re-expression on the β-catenin/T-cell factor-dependent transcription activity was measured by luciferase assay.sFRP1 promoter methylation was frequently observed in HCC tissues (60%) and cell lines (75%). All samples with sFRP1 methylation showed down-regulation of sFRP1 expression in HCC cell lines. Demethylation treatment with 5-aza-20-deoxycytidine in HCC cells restored sFRP1 expression. Restoration of sFRP1 substantially impaired the invasive potentials of HepG2 cells. Moreover, exogenous sFRP1 caused significant decrease of β-catenin/T-cell factor-dependent transcription activity.These findings demonstrate that sFRP1 silencing due to promoter hypermethylation is a major event during tumorigenesis. sFRP1 is also a negative modulator of canonical Wnt signaling, which could contribute to metastasis in HCC progression, thus providing a possible therapeutic strategy against HCC. PMID:22296502

  14. Secreted Frizzled related protein-4 (sFRP4) promotes epidermal differentiation and apoptosis

    SciTech Connect

    Maganga, Richard; Giles, Natalie; Adcroft, Katharine; Unni, Ambili; Keeney, Diane; Wood, Fiona; Fear, Mark Dharmarajan, Arunasalam

    2008-12-12

    The skin provides vital protection from infection and dehydration. Maintenance of the skin is through a constant program of proliferation, differentiation and apoptosis of epidermal cells, whereby proliferating cells in the basal layer differentiating to form the keratinized, anucleated stratum corneum. The WNT signalling pathway is known to be important in the skin. WNT signalling has been shown to be important both in epidermal development and in the maintenance and cycling of hair follicles and epidermal stem cells. However, the precise role for this pathway in epidermal differentiation remains unknown. We investigated the role of the WNT signalling inhibitor sFRP4 in epidermal differentiation. sFRP4 is expressed in both normal skin and keratinocytes in culture. Expression of sFRP4 mRNA and protein increases with keratinocyte differentiation and apoptosis, whilst exposure of keratinocytes to exogenous sFRP4 promotes apoptosis and expression of the terminal differentiation marker Involucrin. These data suggest sFRP4 promotes epidermal differentiation.

  15. Secreted Frizzled-Related Protein 4 (SFRP4) is Elevated in Patients with Diabetes Mellitus.

    PubMed

    Brix, J M; Krzizek, E C; Hoebaus, C; Ludvik, B; Schernthaner, G; Schernthaner, G H

    2016-05-01

    Recently, SFRP4 was identified as a molecular link between islet inflammation and defective insulin secretion. Gene co-expression analysis detected a molecule associated with type 2 diabetes mellitus (T2D), elevated HbA1c, and reduced insulin secretion in mice as well as in a pilot sample of humans. To our knowledge SFRP4 has never been investigated in patients with different types of diabetes. We included 179 patients: 46 with type 1 diabetes (T1D), 30 age matched healthy controls for patients with T1D (CO-T1D), 55 with T2D, 37 with latent autoimmune diabetes of the adult (LADA) and 30 healthy controls (CO) for patients with T2D and LADA. Apart from anthropometric data, lipids and renal parameters were assessed. SFRP4 levels were measured by a commercial ELISA. Patients with diabetes had significant higher SFRP4 levels than CO: T2D vs. CO: 37.1±26.7 vs. 8.8±3.0 ng/ml, p<0.001; LADA vs. CO: 15.6±6.2 vs. 8.7±3.0 ng/ml, p<0.001; T1D vs. CO-T1D: 24.6±17.9 vs. 16.9±4.5 ng/ml, p=0.011. SFRP4 levels were correlated with age, BMI, HbA1c, HDL-cholesterol, and triglycerides. A multivariate model revealed HDL-cholesterol, triglycerides and BMI as predictors for SFRP4. This is the first study demonstrating that SFRP4 is significantly increased in patients with different types of diabetes suggesting that this protein is generally involved in islet dysfunction and potentially subclinical inflammation irrespective of type of diabetes. PMID:26882051

  16. Secreted frizzled-related protein disrupts PCP in eye lens fiber cells that have polarised primary cilia.

    PubMed

    Sugiyama, Yuki; Stump, Richard J W; Nguyen, Anke; Wen, Li; Chen, Yongjuan; Wang, Yanshu; Murdoch, Jennifer N; Lovicu, Frank J; McAvoy, John W

    2010-02-15

    Planar cell polarity (PCP) signaling polarises cells along tissue axes. Although pathways involved are becoming better understood, outstanding issues include; (i) existence/identity of cues that orchestrate global polarisation in tissues, and (ii) the generality of the link between polarisation of primary cilia and asymmetric localisation of PCP proteins. Mammalian lenses are mainly comprised of epithelial-derived fiber cells. Concentrically arranged fibers are precisely aligned as they elongate along the anterior-posterior axis and orientate towards lens poles where they meet fibers from other segments to form characteristic sutures. We show that lens exhibits PCP, with each fiber cell having an apically situated cilium and in most cases this is polarised towards the anterior pole. Frizzled and other PCP proteins are also asymmetrically localised along the equatorial-anterior axis. Mutations in core PCP genes Van Gogh-like 2 and Celsr1 perturb oriented fiber alignment and suture formation. Suppression of the PCP pathway by overexpressing Sfrp2 shows that whilst local groups of fibers are often similarly oriented, they lack global orientation; consequently when local groups of fibers with different orientations meet they form multiple, small, ectopic suture-like configurations. This indicates that this extracellular inhibitor disrupts a global polarising signal that utilises a PCP-mediated mechanism to coordinate the global alignment and orientation of fibers to lens poles. PMID:19968984

  17. Secreted Frizzled-related Protein 2 (sFRP2) Redirects Non-canonical Wnt Signaling from Fz7 to Ror2 during Vertebrate Gastrulation.

    PubMed

    Brinkmann, Eva-Maria; Mattes, Benjamin; Kumar, Rahul; Hagemann, Anja I H; Gradl, Dietmar; Scholpp, Steffen; Steinbeisser, Herbert; Kaufmann, Lilian T; Özbek, Suat

    2016-06-24

    Convergent extension movements during vertebrate gastrulation require a balanced activity of non-canonical Wnt signaling pathways, but the factors regulating this interplay on the molecular level are poorly characterized. Here we show that sFRP2, a member of the secreted frizzled-related protein (sFRP) family, is required for morphogenesis and papc expression during Xenopus gastrulation. We further provide evidence that sFRP2 redirects non-canonical Wnt signaling from Frizzled 7 (Fz7) to the receptor tyrosine kinase-like orphan receptor 2 (Ror2). During this process, sFRP2 promotes Ror2 signal transduction by stabilizing Wnt5a-Ror2 complexes at the membrane, whereas it inhibits Fz7 signaling, probably by blocking Fz7 receptor endocytosis. The cysteine-rich domain of sFRP2 is sufficient for Ror2 activation, and related sFRPs can substitute for this function. Notably, direct interaction of the two receptors via their cysteine-rich domains also promotes Ror2-mediated papc expression but inhibits Fz7 signaling. We propose that sFRPs can act as a molecular switch, channeling the signal input for different non-canonical Wnt pathways during vertebrate gastrulation. PMID:27129770

  18. Secreted Frizzled-Related Protein 2 (sFRP2) Functions as a Melanogenic Stimulator; the Role of sFRP2 in UV-Induced Hyperpigmentary Disorders.

    PubMed

    Kim, Misun; Han, Jae Ho; Kim, Jang-Hee; Park, Tae Jun; Kang, Hee Young

    2016-01-01

    In this study, we found that secreted frizzled-related protein 2 (sFRP2) is overexpressed in the hyperpigmentary skin of melasma and solar lentigo and in acutely UV-irradiated skin. To investigate the effect of sFRP2 on melanogenesis, normal human melanocytes were infected with sFRP2-lentivirus or sh-sFRP2. It was found that sFRP2 stimulates melanogenesis through microphthalmia-associated transcription factor and/or tyrosinase upregulation via β-catenin signaling. The stimulatory action of sFRP2 in pigmentation was further confirmed in melanocytes cocultured with fibroblasts and in ex vivo cultured skin. The findings suggest that sFRP2 functions as a melanogenic stimulator and that it plays a role in the development of UV-induced hyperpigmentary disorders. PMID:26763443

  19. Low expression of secreted frizzled-related protein 2 and nuclear accumulation of β-catenin in aggressive nonfunctioning pituitary adenoma

    PubMed Central

    WU, YOUTU; BAI, JIWEI; HONG, LINCHUAN; LIU, CHUNHUI; YU, SHENGYUAN; YU, GUOQIANG; ZHANG, YAZHUO

    2016-01-01

    The identification of a specific molecular marker for aggressiveness of nonfunctioning pituitary adenomas (NFPAs) is urgently required in order to guide the clinical diagnosis and treatment of NFPAs. In the present study, low expression of secreted frizzled-related protein 2 (sFRP2) in NFPAs was demonstrated by reverse transcription-quantitative polymerase chain reaction, western blot and immunohistochemical analyses. The results confirmed an abnormal accumulation of free β-catenin in the nuclei of NFPAs, which is the core step for the activation of the Wnt canonical signaling pathway. Furthermore, cyclin D1 and c-Myc, the downstream proteins of the Wnt canonical signaling pathway, were overexpressed in aggressive NFPAs. These findings demonstrated the activation of the Wnt canonical signaling pathway in aggressive NFPAs. In addition, sFRP2 expression was observed to be inversely correlated to the aggressiveness of NFPAs. Therefore, sFRP2 may act as a tumor suppressor through modulation of the cellular cytosolic pool of β-catenin in NFPAs. Furthermore, the expression of sFRP2 may serve as a biomarker for NFPAs aggressiveness and prognosis. PMID:27347125

  20. Secreted Frizzled-Related Protein 4 Inhibits Glioma Stem-Like Cells by Reversing Epithelial to Mesenchymal Transition, Inducing Apoptosis and Decreasing Cancer Stem Cell Properties

    PubMed Central

    G, Bhuvanalakshmi; Arfuso, Frank; Millward, Michael; Dharmarajan, Arun; Warrier, Sudha

    2015-01-01

    The Wnt pathway is integrally involved in regulating self-renewal, proliferation, and maintenance of cancer stem cells (CSCs). We explored the effect of the Wnt antagonist, secreted frizzled-related protein 4 (sFRP4), in modulating epithelial to mesenchymal transition (EMT) in CSCs from human glioblastoma cells lines, U87 and U373. sFRP4 chemo-sensitized CSC-enriched cells to the most commonly used anti-glioblastoma drug, temozolomide (TMZ), by the reversal of EMT. Cell movement, colony formation, and invasion in vitro were suppressed by sFRP4+TMZ treatment, which correlated with the switch of expression of markers from mesenchymal (Twist, Snail, N-cadherin) to epithelial (E-cadherin). sFRP4 treatment elicited activation of the Wnt-Ca2+ pathway, which antagonizes the Wnt/ß-catenin pathway. Significantly, the chemo-sensitization effect of sFRP4 was correlated with the reduction in the expression of drug resistance markers ABCG2, ABCC2, and ABCC4. The efficacy of sFRP4+TMZ treatment was demonstrated in vivo using nude mice, which showed minimum tumor engraftment using CSCs pretreated with sFRP4+TMZ. These studies indicate that sFRP4 treatment would help to improve response to commonly used chemotherapeutics in gliomas by modulating EMT via the Wnt/ß-catenin pathway. These findings could be exploited for designing better targeted strategies to improve chemo-response and eventually eliminate glioblastoma CSCs. PMID:26030909

  1. DNA methylation analysis of secreted frizzled-related protein 2 gene for the early detection of colorectal cancer in fecal DNA

    PubMed Central

    Babaei, Hadi; Mohammadi, Mohsen; Salehi, Rasoul

    2016-01-01

    Background: The early detection of colorectal cancer (CRC) with high sensitivity screening is essential for the reduction of cancer-specific mortality. Abnormally methylated genes that are responsible for the pathogenesis of cancers can be used as biomarkers for the detection of CRC. The methylation status of the secreted frizzled-related protein 2 (SFRP2) gene was evaluated for their use as a marker in the noninvasive detection of CRC. Materials and Methods: Methylation-specific polymerase chain reaction was performed to analyze the promoter CpG methylation of SFRP2 in the fecal DNA of 25 patients with CRC and 25 individuals exhibiting normal colonoscopy results. Results: Promoter methylation levels of SFRP2 in CRC patients and in healthy controls were 60% and 8%, respectively. Methylation of the SFRP2 promoter in fecal DNA is associated with the presence of colorectal tumors. Conclusion: Hence, the detection of aberrantly methylated DNA in fecal samples may present a promising, noninvasive screening method for CRC.

  2. Loss of Secreted Frizzled-Related Protein 4 Correlates with an Aggressive Phenotype and Predicts Poor Outcome in Ovarian Cancer Patients

    PubMed Central

    Nixdorf, Sheri; Ford, Caroline E.; Olivier, Jake; Caduff, Rosmarie; Scurry, James P.; Guertler, Rea; Hornung, Daniela; Mueller, Renato; Fink, Daniel A.; Hacker, Neville F.; Heinzelmann-Schwarz, Viola A.

    2012-01-01

    Background Activation of the Wnt signaling pathway is implicated in aberrant cellular proliferation in various cancers. In 40% of endometrioid ovarian cancers, constitutive activation of the pathway is due to oncogenic mutations in β-catenin or other inactivating mutations in key negative regulators. Secreted frizzled-related protein 4 (SFRP4) has been proposed to have inhibitory activity through binding and sequestering Wnt ligands. Methodology/Principal Findings We performed RT-qPCR and Western-blotting in primary cultures and ovarian cell lines for SFRP4 and its key downstream regulators activated β-catenin, β-catenin and GSK3β. SFRP4 was then examined by immunohistochemistry in a cohort of 721 patients and due to its proposed secretory function, in plasma, presenting the first ELISA for SFRP4. SFRP4 was most highly expressed in tubal epithelium and decreased with malignant transformation, both on RNA and on protein level, where it was even more profound in the membrane fraction (p<0.0001). SFRP4 was expressed on the protein level in all histotypes of ovarian cancer but was decreased from borderline tumors to cancers and with loss of cellular differentiation. Loss of membrane expression was an independent predictor of poor survival in ovarian cancer patients (p = 0.02 unadjusted; p = 0.089 adjusted), which increased the risk of a patient to die from this disease by the factor 1.8. Conclusions/Significance Our results support a role for SFRP4 as a tumor suppressor gene in ovarian cancers via inhibition of the Wnt signaling pathway. This has not only predictive implications but could also facilitate a therapeutic role using epigenetic targets. PMID:22363760

  3. Induction of CXC chemokines in human mesenchymal stem cells by stimulation with secreted frizzled-related proteins through non-canonical Wnt signaling

    PubMed Central

    Bischoff, David S; Zhu, Jian-Hua; Makhijani, Nalini S; Yamaguchi, Dean T

    2015-01-01

    AIM: To investigate the effect of secreted frizzled-related proteins (sFRPs) on CXC chemokine expression in human mesenchymal stem cells (hMSCs). METHODS: CXC chemokines such as CXCL5 and CXCL8 are induced in hMSCs during differentiation with osteogenic differentiation medium (OGM) and may be involved in angiogenic stimulation during bone repair. hMSCs were treated with conditioned medium (CM) from L-cells expressing non-canonical Wnt5a protein, or with control CM from wild type L-cells, or directly with sFRPs for up to 10 d in culture. mRNA expression levels of both CXCL5 and CXCL8 were quantitated by real-time reverse transcriptase-polymerase chain reaction and secreted protein levels of these proteins determined by ELISA. Dose- (0-500 ng/mL) and time-response curves were generated for treatment with sFRP1. Signal transduction pathways were explored by western blot analysis with pan- or phosphorylation-specific antibodies, through use of specific pathway inhibitors, and through use of siRNAs targeting specific frizzled receptors (Fzd)-2 and 5 or the receptor tyrosine kinase-like orphan receptor-2 (RoR2) prior to treatment with sFRPs. RESULTS: CM from L-cells expressing Wnt5a, a non-canonical Wnt, stimulated an increase in CXCL5 mRNA expression and protein secretion in comparison to control L-cell CM. sFRP1, which should inhibit both canonical and non-canonical Wnt signaling, surprisingly enhanced the expression of CXCL5 at 7 and 10 d. Dickkopf1, an inhibitor of canonical Wnt signaling prevented the sFRP-stimulated induction of CXCL5 and actually inhibited basal levels of CXCL5 expression at 7 but not at 10 d post treatment. In addition, all four sFRPs isoforms induced CXCL8 expression in a dose- and time-dependent manner with maximum expression at 7 d with treatment at 150 ng/mL. The largest increases in CXCL5 expression were seen from stimulation with sFRP1 or sFRP2. Analysis of mitogen-activated protein kinase signaling pathways in the presence of OGM showed s

  4. Therapeutic approach to target mesothelioma cancer cells using the Wnt antagonist, secreted frizzled-related protein 4: Metabolic state of cancer cells.

    PubMed

    Perumal, Vanathi; Pohl, Sebastian; Keane, Kevin N; Arfuso, Frank; Newsholme, Philip; Fox, Simon; Dharmarajan, Arun

    2016-02-15

    Malignant mesothelioma (MM) is an aggressive cancer, characterized by rapid progression, along with late metastasis and poor patient prognosis. It is resistant to many forms of standard anti-cancer treatment. In this study, we determined the effect of secreted frizzled-related protein 4 (sFRP4), a Wnt pathway inhibitor, on cancer cell proliferation and metabolism using the JU77 mesothelioma cell line. Treatment with sFRP4 (250 pg/ml) resulted in a significant reduction of cell proliferation. The addition of the Wnt activator Wnt3a (250 pg/ml) or sFRP4 had no significant effect on ATP production and glucose utilisation in JU77 cells at both the 24 and 48 h time points examined. We also examined their effect on Akt and Glycogen synthase kinase-3 beta (GSK3β) phosphorylation, which are both important components of Wnt signalling and glucose metabolism. We found that protein phosphorylation of Akt and GSK3β varied over the 24h and 48 h time points, with constitutive phosphorylation of Akt at serine 473 (pAkt) decreasing to its most significant level when treated with Wnt3a+sFRP4 at the 24h time point. A significant reduction in the level of Cytochrome c oxidase was observed at the 48 h time point, when sFRP4 and Wnt3a were added in combination. We conclude that sFRP4 may function, in part, to reduce/alter cancer cell metabolism, which may lead to sensitisation of cancer cells to chemotherapeutics, or even cell death. PMID:26868304

  5. Secreted Frizzled-Related Protein 5 Attenuates High Phosphate-Induced Calcification in Vascular Smooth Muscle Cells by Inhibiting the Wnt/ß-Catenin Pathway.

    PubMed

    Deng, Dai; Diao, Zongli; Han, Xue; Liu, Wenhu

    2016-07-01

    Vascular calcification (VC) is highly prevalent and represents a major cardiovascular risk factor in chronic kidney disease (CKD) patients. High phosphate (HP) levels are strongly associated with VC in this population. Secreted frizzled-related protein 5 (SFRP5), one of the inhibitors of the Wnt pathway, is a known anti-inflammatory adipokine with a positive effect on metabolic and cardiovascular diseases, in addition to its anticancer potency. However, the role of SFRP5 in the pathophysiology of VC is unclear. This work aimed to study the mechanism of action of SFRP5 on the progression of HP-induced VC, which resembles the CKD-related VC, through its direct effect on vascular smooth muscle cells (VSMCs) in vitro. Addition of SFRP5 significantly inhibited HP-induced calcification of VSMCs as determined by Alizarin red staining and calcium content. The inhibitory effect of SFRP5 on calcification of VSMCs was due to the suppression of HP-induced expression of calcification and osteoblastic markers. In addition, SFRP5 abrogated HP-induced activation of the Wnt/ß-catenin pathway, which plays a key role in the pathogenesis of VC. The specificity of SFRP5 for the inhibition of calcification of VSMCs was confirmed by using a neutralizing antibody to SFRP5. Our results suggest that SFRP5 inhibits HP-induced calcification of VSMCs by inhibiting the expression of calcification and osteoblastic markers, as well as the Wnt/ß-catenin pathway. Our study may indicate that SFRP5 is a potential therapeutic agent in calcification of VSMCs. PMID:26895007

  6. A DNA Microarray Analysis of Chemokine and Receptor Genes in the Rat Dental Follicle – Role of Secreted Frizzled-Related Protein-1 in Osteoclastogenesis

    PubMed Central

    Liu, Dawen; Wise, Gary E.

    2007-01-01

    The dental follicle, a loose connective tissue sac that surrounds the unerupted tooth, appears to regulate the osteoclastogenesis needed for eruption; i.e., bone resorption to form an eruption pathway. Thus, DNA microarray studies were conducted to determine which chemokines and their receptors were expressed chronologically in the dental follicle, chemokines that might attract osteoclast precursors. In the rat first mandibular molar, a major burst of osteoclastogenesis occurs at day 3 with a minor burst at day 10. The results of the microarray confirmed our previous studies showing the gene expression of molecules such as CSF-1 and MCP-1 in the dental follicle cells. Other new genes also were detected, including secreted frizzled-related protein-1 (SFRP-1), which was found to be down-regulated at days 3 and 9. Using rat bone marrow cultures to conduct in vitro osteoclastogenic assays, it was demonstrated that SFRP-1 inhibited osteoclast formation in a concentration-dependent fashion. However, with increasing concentrations of SFRP-1, the number of TRAP-positive mononuclear cells increased suggesting that SFRP-1 inhibits osteoclast formation by inhibiting the fusion of mononuclear cells (osteoclast precursors). Co-culturing bone marrow mononuclear cells and dental follicle cells demonstrated that the dental follicle cells were secreting a product(s) that inhibited osteoclastogenesis, as measured by counting of TRAP-positive osteoclasts. Adding an antibody either to SFRP-1 or OPG partially restored osteoclastogenesis. Adding both anti-SFRP-1 and anti-OPG fully negated the inhibitory effect of the follicle cells upon osteoclastogenesis. These results strongly suggest that SFRP-1 and OPG, both secreted by the dental follicle cells, use different pathways to exert their inhibitory effect on osteoclastogenesis. Based on these in vitro studies of osteoclastogenesis, it is likely that the down-regulation of SFRP-1 gene expression in the dental follicle at days 3 and 9 is

  7. Secreted Frizzled-related protein 1 (sFRP1) regulates spermatid adhesion in the testis via dephosphorylation of focal adhesion kinase and the nectin-3 adhesion protein complex

    PubMed Central

    Wong, Elissa W. P.; Lee, Will M.; Cheng, C. Yan

    2013-01-01

    Development of spermatozoa in adult mammalian testis during spermatogenesis involves extensive cell migration and differentiation. Spermatogonia that reside at the basal compartment of the seminiferous epithelium differentiate into more advanced germ cell types that migrate toward the apical compartment until elongated spermatids are released into the tubule lumen during spermiation. Apical ectoplasmic specialization (ES; a testis-specific anchoring junction) is the only cell junction that anchors and maintains the polarity of elongating/elongated spermatids (step 8–19 spermatids) in the epithelium. Little is known regarding the signaling pathways that trigger the disassembly of the apical ES at spermiation. Here, we show that secreted Frizzled-related protein 1 (sFRP1), a putative tumor suppressor gene that is frequently down-regulated in multiple carcinomas, is a crucial regulatory protein for spermiation. The expression of sFRP1 is tightly regulated in adult rat testis to control spermatid adhesion and sperm release at spermiation. Down-regulation of sFRP1 during testicular development was found to coincide with the onset of the first wave of spermiation at approximately age 45 d postpartum, implying that sFRP1 might be correlated with elongated spermatid adhesion conferred by the apical ES before spermiation. Indeed, administration of sFRP1 recombinant protein to the testis in vivo delayed spermiation, which was accompanied by down-regulation of phosphorylated (p)-focal adhesion kinase (FAK)-Tyr397 and retention of nectin-3 adhesion protein at the apical ES. To further investigate the functional relationship between p-FAK-Tyr397 and localization of nectin-3, we overexpressed sFRP1 using lentiviral vectors in the Sertoli-germ cell coculture system. Consistent with the in vivo findings, overexpression of sFRP1 induced down-regulation of p-FAK-Tyr397, leading to a decline in phosphorylation of nectin-3. In summary, this report highlights the critical role of s

  8. New class of blue animal pigments based on Frizzled and Kringle protein domains.

    PubMed

    Bulina, Maria E; Lukyanov, Konstantin A; Yampolsky, Ilia V; Chudakov, Dmitry M; Staroverov, Dmitry B; Shcheglov, Alexander S; Gurskaya, Nadya G; Lukyanov, Sergey

    2004-10-15

    The nature of coloration in many marine animals remains poorly investigated. Here we studied the blue pigment of a scyfoid jellyfish Rhizostoma pulmo and determined it to be a soluble extracellular 30-kDa chromoprotein with a complex absorption spectrum peaking at 420, 588, and 624 nm. Furthermore, we cloned the corresponding cDNA and confirmed its identity by immunoblotting and mass spectrometry experiments. The chromoprotein, named rpulFKz1, consists of two domains, a Frizzled cysteine-rich domain and a Kringle domain, inserted into one another. Generally, Frizzleds are members of a basic Wnt signal transduction pathway investigated intensely with regard to development and cancerogenesis. Kringles are autonomous structural domains found throughout the blood clotting and fibrinolytic proteins. Neither Frizzled and Kringle domains association with any type of coloration nor Kringle intrusion into Frizzled sequence was ever observed. Thus, rpulFKz1 represents a new class of animal pigments, whose chromogenic group remains undetermined. The striking homology between a chromoprotein and members of the signal transduction pathway provides a novel node in the evolution track of growth factor-mediated morphogenesis compounds. PMID:15297465

  9. Common dysregulation of Wnt/Frizzled receptor elements in human hepatocellular carcinoma

    PubMed Central

    Bengochea, A; de Souza, M M; Lefrançois, L; Le Roux, E; Galy, O; Chemin, I; Kim, M; Wands, J R; Trepo, C; Hainaut, P; Scoazec, J-Y; Vitvitski, L; Merle, P

    2008-01-01

    Dysregulation of growth factors and their receptors is central to human hepatocellular carcinoma (HCC). We previously demonstrated that the Frizzled-7 membrane receptor mediating the Wnt signalling can activate the β-catenin pathway and promotes malignancy in human hepatitis B virus-related HCCs. Expression patterns of all the 10 Frizzled receptors, and their extracellular soluble autoparacrine regulators (19 Wnt activators and 4 sFRP inhibitors) were assessed by real-time RT–PCR in 62 human HCC of different etiologies and their matched peritumorous areas. Immunostaining was performed to localise Frizzled on cell types in liver tissues. Regulation of three known Frizzled-dependent pathways (β-catenin, protein kinase C, and C-Jun NH2-terminal kinase) was measured in tissues by western blot. We found that eight Frizzled-potentially activating events were pleiotropically dysregulated in 95% HCC and 68% peritumours as compared to normal livers (upregulations of Frizzled-3/6/7 and Wnt3/4/5a, or downregulation of sFRP1/5), accumulating gradually with severity of fibrosis in peritumours and loss of differentiation status in tumours. The hepatocytes supported the Wnt/Frizzled signalling since specifically overexpressing Frizzled receptors in liver tissues. Dysregulation of the eight Frizzled-potentially activating events was associated with differential activation of the three known Frizzled-dependent pathways. This study provides an extensive analysis of the Wnt/Frizzled receptor elements and reveals that the dysregulation may be one of the most common and earliest events described thus far during hepatocarcinogenesis. PMID:18577996

  10. Structure-based Discovery of Novel Small Molecule Wnt Signaling Inhibitors by Targeting the Cysteine-rich Domain of Frizzled*

    PubMed Central

    Lee, Ho-Jin; Bao, Ju; Miller, Ami; Zhang, Chi; Wu, Jibo; Baday, Yiressy C.; Guibao, Cristina; Li, Lin; Wu, Dianqing; Zheng, Jie J.

    2015-01-01

    Frizzled is the earliest discovered glycosylated Wnt protein receptor and is critical for the initiation of Wnt signaling. Antagonizing Frizzled is effective in inhibiting the growth of multiple tumor types. The extracellular N terminus of Frizzled contains a conserved cysteine-rich domain that directly interacts with Wnt ligands. Structure-based virtual screening and cell-based assays were used to identify five small molecules that can inhibit canonical Wnt signaling and have low IC50 values in the micromolar range. NMR experiments confirmed that these compounds specifically bind to the Wnt binding site on the Frizzled8 cysteine-rich domain with submicromolar dissociation constants. Our study confirms the feasibility of targeting the Frizzled cysteine-rich domain as an effective way of regulating canonical Wnt signaling. These small molecules can be further optimized into more potent therapeutic agents for regulating abnormal Wnt signaling by targeting Frizzled. PMID:26504084

  11. RING finger protein PLR-1 blocks Wnt signaling by altering trafficking of Wnt Receptors

    NASA Astrophysics Data System (ADS)

    Robinson, Ryan E.

    Secreted Wnt proteins control a wide range of essential developmental processes, including axon guidance and establishment of anteroposterior neuronal polarity. We identified a transmembrane RING finger protein, PLR-1, that governs the response to Wnts by reducing the cell surface levels of Wnt receptors Frizzled, CAM-1 and LIN-18 in Caenorhabditis elegans. Frizzled, CAM-1 and LIN-18 are normally enriched at the plasma membrane where they are capable of detecting and responding to extracellular Wnts. However, when PLR-1 is expressed Frizzled, CAM-1 and LIN-18 are no longer detected at the cell surface and instead colocalize with PLR-1 in endosomes and Golgi. PLR-1 is related to a broad family of transmembrane proteins that contain a lumenal protease associated domain and a cytosolic RING finger. The RING finger is a hallmark of one type of E3 ubiquitin ligase and monoubiquitination is commonly used to regulate protein trafficking. Protease associated domains are largely thought to mediate interactions between proteins. To identify the domains responsible for PLR-1 regulation of Frizzled from the cell surface we utilized a series of fluorescently tagged fusion proteins and protein truncations containing various domains from PLR-1 and Frizzled. Our data suggests that PLR-1 and Frizzled interact and form a complex via their respective extracellular/lumenal domains, and that ubiqiuitination of Frizzled by PLR-1 targets the Frizzled/PLR-1 complex to the endosome.

  12. Spatio-Temporal Expression Pattern of Frizzled Receptors after Contusive Spinal Cord Injury in Adult Rats

    PubMed Central

    Arenas, Ernest; Rodriguez, Francisco Javier

    2012-01-01

    Background Wnt proteins are a large family of molecules that are critically involved in multiple central nervous system (CNS) developmental processes. Experimental evidences suggest a role for this family of proteins in many CNS disorders, including spinal cord injury (SCI), which is a major neuropathology owing to its high prevalence and chronic sensorimotor functional sequelae. Interestingly, most Wnt proteins and their inhibitors are expressed in the uninjured spinal cord, and their temporal expression patterns are dramatically altered after injury. However, little is known regarding the expression of their better-known receptors, the Frizzled family, after SCI. Thus, the aim of the present study was to evaluate the expression of Frizzled receptors in the damaged spinal cord. Findings Based on the evidence that Wnts are expressed in the spinal cord and are transcriptionally regulated by SCI in adulthood, we analysed the spatio-temporal mRNA and protein expression patterns of Frizzled receptors after contusive SCI using quantitative RT-PCR and single and double immunohistochemistry, respectively. Our results show that almost all of the 10 known Frizzled receptors were expressed in specific spatial patterns in the uninjured spinal cords. Moreover, the Frizzled mRNAs and proteins were expressed after SCI, although their expression patterns were altered during the temporal progression of SCI. Finally, analysis of cellular Frizzled 5 expression pattern by double immunohistochemistry showed that, in the uninjured spinal cord, this receptor was expressed in neurons, oligodendrocytes, astrocytes, microglia and NG2+ glial precursors. After injury, Frizzled 5 was not only still expressed in oligodendrocytes, astrocytes and NG2+ glial precursors but also in axons at all evaluated time points. Moreover, Frizzled 5 was expressed in reactive microglia/macrophages from 3 to 14 days post-injury. Conclusions Our data suggest the involvement of Frizzled receptors in physiological

  13. Insights into Frizzled evolution and new perspectives.

    PubMed

    Schenkelaars, Quentin; Fierro-Constain, Laura; Renard, Emmanuelle; Hill, April L; Borchiellini, Carole

    2015-01-01

    The Frizzled proteins (FZDs) are a family of trans-membrane receptors that play pivotal roles in Wnt pathways and thus in animal development. Based on evaluation of the Amphimedon queenslandica genome, it has been proposed that two Fzd genes may have been present before the split between demosponges and other animals. The major purpose of this study is to go deeper into the evolution of this family of proteins by evaluating an extended set of available data from bilaterians, cnidarians, and different basally branching animal lineages (Ctenophora, Placozoa, Porifera). The present study provides evidence that the last common ancestor of metazoans did possess two Fzd genes, and that the last common ancestor of cnidarians and bilaterians may have possessed four Fzd. Furthermore, amino acid analyses revealed an accurate diagnostic motif for these four FZD subfamilies facilitating the assignation of Frizzled paralogs to each subfamily. By highlighting conserved amino acids for each FZD subfamily, our study could also provide a framework for further research on the precise mechanisms that have driven FZD neo-functionalization. PMID:25801223

  14. The Anti-Helminthic Niclosamide Inhibits Wnt/Frizzled1 Signaling†

    PubMed Central

    Chen, Minyong; Wang, Jiangbo; Lu, Jiuyi; Bond, Michael C.; Ren, Xiu-Rong; Lyerly, H. Kim; Barak, Larry S.; Chen, Wei

    2009-01-01

    Wnt proteins bind to seven-transmembrane Frizzled receptors to mediate the important developmental, morphogenetic, and tissue-regenerative effects of Wnt signaling. Dysregulated Wnt signaling is associated with many cancers. Currently there exist no drug candidates, or even tool compounds that modulate Wnt-mediated receptor trafficking, and subsequent Wnt signaling. We examined libraries of FDA-approved drugs for their utility as Frizzled internalization modulators, employing a primary imaged-based GFP-fluorescence assay that uses Frizzled1 endocytosis as the readout. We now report that the anti-helminthic niclosamide, a drug used for the treatment of tapeworm, promotes Frizzled1 endocytosis, down regulates Dishevelled-2 protein, and inhibits Wnt3A-stimulated β-catenin stabilization and LEF/TCF reporter activity. Additionally, following niclosamide mediated internalization, the Frizzled1 receptor co-localizes in vesicles containing Transferrin and agonist-activated β2-adrenergic receptor. Therefore, niclosamide may serve as a negative modulator of Wnt/Frizzled1 signaling by depleting up-stream signaling molecules (i.e. Frizzled and Dishevelled), and moreover may provide a valuable means to study the physiological consequences of Wnt signaling. PMID:19772353

  15. Expression of the Wnt Receptor Frizzled-4 in the Human Enteric Nervous System of Infants

    PubMed Central

    Nothelfer, Katharina; Obermayr, Florian; Belz, Nadine; Reinartz, Ellen; Bareiss, Petra M.; Bühring, Hans-Jörg; Beschorner, Rudi; Just, Lothar

    2016-01-01

    The Wnt signalling pathway plays a crucial role in the development of the nervous system. This signalling cascade is initiated upon binding of the secreted Wnt ligand to a member of the family of frizzled receptors. In the present study, we analysed the presence of frizzled-4 in the enteric nervous system of human infants. Frizzled-4 could be identified by immunohistochemistry in a subpopulation of enteric neuronal and glial cells in the small and large intestine. Detection of frizzled-4 in the tunica muscularis by RT-PCR confirmed this receptor's expression on the mRNA level. Interestingly, we observed distinct cell populations that co-expressed frizzled-4 with the intermediate filament protein nestin and the neurotrophin receptor p75NTR, which have been reported to be expressed in neural progenitor cells. Flow cytometry analysis revealed that 60% of p75NTR positive cells of the tunica muscularis were positive for frizzled-4. Additionally, in pathological samples of Hirschsprung's disease, the expression of this Wnt receptor correlated with the number of myenteric ganglion cells and decreased from normoganglionic to aganglionic areas of large intestine. The expression pattern of frizzled-4 indicates that this Wnt receptor could be involved in postnatal development and/or function of the enteric nervous system. PMID:26697080

  16. Frizzled 7 and PIP2 binding by syntenin PDZ2 domain supports Frizzled 7 trafficking and signalling.

    PubMed

    Egea-Jimenez, Antonio Luis; Gallardo, Rodrigo; Garcia-Pino, Abel; Ivarsson, Ylva; Wawrzyniak, Anna Maria; Kashyap, Rudra; Loris, Remy; Schymkowitz, Joost; Rousseau, Frederic; Zimmermann, Pascale

    2016-01-01

    PDZ domain-containing proteins work as intracellular scaffolds to control spatio-temporal aspects of cell signalling. This function is supported by the ability of their PDZ domains to bind other proteins such as receptors, but also phosphoinositide lipids important for membrane trafficking. Here we report a crystal structure of the syntenin PDZ tandem in complex with the carboxy-terminal fragment of Frizzled 7 and phosphatidylinositol 4,5-bisphosphate (PIP2). The crystal structure reveals a tripartite interaction formed via the second PDZ domain of syntenin. Biophysical and biochemical experiments establish co-operative binding of the tripartite complex and identify residues crucial for membrane PIP2-specific recognition. Experiments with cells support the importance of the syntenin-PIP2 interaction for plasma membrane targeting of Frizzled 7 and c-jun phosphorylation. This study contributes to our understanding of the biology of PDZ proteins as key players in membrane compartmentalization and dynamics. PMID:27386966

  17. Frizzled 7 and PIP2 binding by syntenin PDZ2 domain supports Frizzled 7 trafficking and signalling

    NASA Astrophysics Data System (ADS)

    Egea-Jimenez, Antonio Luis; Gallardo, Rodrigo; Garcia-Pino, Abel; Ivarsson, Ylva; Wawrzyniak, Anna Maria; Kashyap, Rudra; Loris, Remy; Schymkowitz, Joost; Rousseau, Frederic; Zimmermann, Pascale

    2016-07-01

    PDZ domain-containing proteins work as intracellular scaffolds to control spatio-temporal aspects of cell signalling. This function is supported by the ability of their PDZ domains to bind other proteins such as receptors, but also phosphoinositide lipids important for membrane trafficking. Here we report a crystal structure of the syntenin PDZ tandem in complex with the carboxy-terminal fragment of Frizzled 7 and phosphatidylinositol 4,5-bisphosphate (PIP2). The crystal structure reveals a tripartite interaction formed via the second PDZ domain of syntenin. Biophysical and biochemical experiments establish co-operative binding of the tripartite complex and identify residues crucial for membrane PIP2-specific recognition. Experiments with cells support the importance of the syntenin-PIP2 interaction for plasma membrane targeting of Frizzled 7 and c-jun phosphorylation. This study contributes to our understanding of the biology of PDZ proteins as key players in membrane compartmentalization and dynamics.

  18. Diego and Prickle regulate Frizzled planar cell polarity signalling by competing for Dishevelled binding.

    PubMed

    Jenny, Andreas; Reynolds-Kenneally, Jessica; Das, Gishnu; Burnett, Micheal; Mlodzik, Marek

    2005-07-01

    Epithelial planar cell polarity (PCP) is evident in the cellular organization of many tissues in vertebrates and invertebrates. In mammals, PCP signalling governs convergent extension during gastrulation and the organization of a wide variety of structures, including the orientation of body hair and sensory hair cells of the inner ear. In Drosophila melanogaster, PCP is manifest in adult tissues, including ommatidial arrangement in the compound eye and hair orientation in wing cells. PCP establishment requires the conserved Frizzled/Dishevelled PCP pathway. Mutations in PCP-pathway-associated genes cause aberrant orientation of body hair or inner-ear sensory cells in mice, or misorientation of ommatidia and wing hair in D. melanogaster. Here we provide mechanistic insight into Frizzled/Dishevelled signalling regulation. We show that the ankyrin-repeat protein Diego binds directly to Dishevelled and promotes Frizzled signalling. Dishevelled can also be bound by the Frizzled PCP antagonist Prickle. Strikingly, Diego and Prickle compete with one another for Dishevelled binding, thereby modulating Frizzled/Dishevelled activity and ensuring tight control over Frizzled PCP signalling. PMID:15937478

  19. The origin of GPCRs: identification of mammalian like Rhodopsin, Adhesion, Glutamate and Frizzled GPCRs in fungi.

    PubMed

    Krishnan, Arunkumar; Almén, Markus Sällman; Fredriksson, Robert; Schiöth, Helgi B

    2012-01-01

    G protein-coupled receptors (GPCRs) in humans are classified into the five main families named Glutamate, Rhodopsin, Adhesion, Frizzled and Secretin according to the GRAFS classification. Previous results show that these mammalian GRAFS families are well represented in the Metazoan lineages, but they have not been shown to be present in Fungi. Here, we systematically mined 79 fungal genomes and provide the first evidence that four of the five main mammalian families of GPCRs, namely Rhodopsin, Adhesion, Glutamate and Frizzled, are present in Fungi and found 142 novel sequences between them. Significantly, we provide strong evidence that the Rhodopsin family emerged from the cAMP receptor family in an event close to the split of Opisthokonts and not in Placozoa, as earlier assumed. The Rhodopsin family then expanded greatly in Metazoans while the cAMP receptor family is found in 3 invertebrate species and lost in the vertebrates. We estimate that the Adhesion and Frizzled families evolved before the split of Unikonts from a common ancestor of all major eukaryotic lineages. Also, the study highlights that the fungal Adhesion receptors do not have N-terminal domains whereas the fungal Glutamate receptors have a broad repertoire of mammalian-like N-terminal domains. Further, mining of the close unicellular relatives of the Metazoan lineage, Salpingoeca rosetta and Capsaspora owczarzaki, obtained a rich group of both the Adhesion and Glutamate families, which in particular provided insight to the early emergence of the N-terminal domains of the Adhesion family. We identified 619 Fungi specific GPCRs across 79 genomes and revealed that Blastocladiomycota and Chytridiomycota phylum have Metazoan-like GPCRs rather than the GPCRs specific for Fungi. Overall, this study provides the first evidence of the presence of four of the five main GRAFS families in Fungi and clarifies the early evolutionary history of the GPCR superfamily. PMID:22238661

  20. The Origin of GPCRs: Identification of Mammalian like Rhodopsin, Adhesion, Glutamate and Frizzled GPCRs in Fungi

    PubMed Central

    Fredriksson, Robert; Schiöth, Helgi B.

    2012-01-01

    G protein-coupled receptors (GPCRs) in humans are classified into the five main families named Glutamate, Rhodopsin, Adhesion, Frizzled and Secretin according to the GRAFS classification. Previous results show that these mammalian GRAFS families are well represented in the Metazoan lineages, but they have not been shown to be present in Fungi. Here, we systematically mined 79 fungal genomes and provide the first evidence that four of the five main mammalian families of GPCRs, namely Rhodopsin, Adhesion, Glutamate and Frizzled, are present in Fungi and found 142 novel sequences between them. Significantly, we provide strong evidence that the Rhodopsin family emerged from the cAMP receptor family in an event close to the split of Opisthokonts and not in Placozoa, as earlier assumed. The Rhodopsin family then expanded greatly in Metazoans while the cAMP receptor family is found in 3 invertebrate species and lost in the vertebrates. We estimate that the Adhesion and Frizzled families evolved before the split of Unikonts from a common ancestor of all major eukaryotic lineages. Also, the study highlights that the fungal Adhesion receptors do not have N-terminal domains whereas the fungal Glutamate receptors have a broad repertoire of mammalian-like N-terminal domains. Further, mining of the close unicellular relatives of the Metazoan lineage, Salpingoeca rosetta and Capsaspora owczarzaki, obtained a rich group of both the Adhesion and Glutamate families, which in particular provided insight to the early emergence of the N-terminal domains of the Adhesion family. We identified 619 Fungi specific GPCRs across 79 genomes and revealed that Blastocladiomycota and Chytridiomycota phylum have Metazoan-like GPCRs rather than the GPCRs specific for Fungi. Overall, this study provides the first evidence of the presence of four of the five main GRAFS families in Fungi and clarifies the early evolutionary history of the GPCR superfamily. PMID:22238661

  1. Frizzleds and WNT/β-catenin signaling--The black box of ligand-receptor selectivity, complex stoichiometry and activation kinetics.

    PubMed

    Schulte, Gunnar

    2015-09-15

    The lipoglycoproteins of the mammalian WNT family induce β-catenin-dependent signaling through interaction with members of the Class Frizzled receptors and LDL receptor-related protein 5/6 (LRP5/6) albeit with unknown selectivity. The 10 mammalian Frizzleds (FZDs) are seven transmembrane (7TM) spanning receptors and have recently been classified as G protein-coupled receptors (GPCRs). This review summarizes the current knowledge about WNT/FZD selectivity and functional selectivity, the role of co-receptors for signal specification, the formation of receptor complexes as well as the kinetics and mechanisms of signal initiation with focus on WNT/β-catenin signaling. In order to exploit the true therapeutic potential of WNT/FZD signaling to treat human disease, it is clear that substantial progress in the understanding of receptor complex formation and signal specification has to precede a mechanism-based drug design targeting WNT receptors. PMID:26003275

  2. USP6 oncogene promotes Wnt signaling by deubiquitylating Frizzleds.

    PubMed

    Madan, Babita; Walker, Matthew P; Young, Robert; Quick, Laura; Orgel, Kelly A; Ryan, Meagan; Gupta, Priti; Henrich, Ian C; Ferrer, Marc; Marine, Shane; Roberts, Brian S; Arthur, William T; Berndt, Jason D; Oliveira, Andre M; Moon, Randall T; Virshup, David M; Chou, Margaret M; Major, Michael B

    2016-05-24

    The Wnt signaling pathways play pivotal roles in carcinogenesis. Modulation of the cell-surface abundance of Wnt receptors is emerging as an important mechanism for regulating sensitivity to Wnt ligands. Endocytosis and degradation of the Wnt receptors Frizzled (Fzd) and lipoprotein-related protein 6 (LRP6) are regulated by the E3 ubiquitin ligases zinc and ring finger 3 (ZNRF3) and ring finger protein 43 (RNF43), which are disrupted in cancer. In a genome-wide small interfering RNA screen, we identified the deubiquitylase ubiquitin-specific protease 6 (USP6) as a potent activator of Wnt signaling. USP6 enhances Wnt signaling by deubiquitylating Fzds, thereby increasing their cell-surface abundance. Chromosomal translocations in nodular fasciitis result in USP6 overexpression, leading to transcriptional activation of the Wnt/β-catenin pathway. Inhibition of Wnt signaling using Dickkopf-1 (DKK1) or a Porcupine (PORCN) inhibitor significantly decreased the growth of USP6-driven xenograft tumors, indicating that Wnt signaling is a key target of USP6 during tumorigenesis. Our study defines an additional route to ectopic Wnt pathway activation in human disease, and identifies a potential approach to modulate Wnt signaling for therapeutic benefit. PMID:27162353

  3. Wnt-5a/Frizzled9 Receptor Signaling through the Gαo-Gβγ Complex Regulates Dendritic Spine Formation.

    PubMed

    Ramírez, Valerie T; Ramos-Fernández, Eva; Henríquez, Juan Pablo; Lorenzo, Alfredo; Inestrosa, Nibaldo C

    2016-09-01

    Wnt ligands play crucial roles in the development and regulation of synapse structure and function. Specifically, Wnt-5a acts as a secreted growth factor that regulates dendritic spine formation in rodent hippocampal neurons, resulting in postsynaptic development that promotes the clustering of the PSD-95 (postsynaptic density protein 95). Here, we focused on the early events occurring after the interaction between Wnt-5a and its Frizzled receptor at the neuronal cell surface. Additionally, we studied the role of heterotrimeric G proteins in Wnt-5a-dependent synaptic development. We report that FZD9 (Frizzled9), a Wnt receptor related to Williams syndrome, is localized in the postsynaptic region, where it interacts with Wnt-5a. Functionally, FZD9 is required for the Wnt-5a-mediated increase in dendritic spine density. FZD9 forms a precoupled complex with Gαo under basal conditions that dissociates after Wnt-5a stimulation. Accordingly, we found that G protein inhibition abrogates the Wnt-5a-dependent pathway in hippocampal neurons. In particular, the activation of Gαo appears to be a key factor controlling the Wnt-5a-induced dendritic spine density. In addition, we found that Gβγ is required for the Wnt-5a-mediated increase in cytosolic calcium levels and spinogenesis. Our findings reveal that FZD9 and heterotrimeric G proteins regulate Wnt-5a signaling and dendritic spines in cultured hippocampal neurons. PMID:27402827

  4. Crystal Structure of the Frizzled-Like Cysteine-Rich Domain of the Receptor Tyrosine Kinase MuSK

    SciTech Connect

    Stiegler, A.; Burden, S; Hubbard, S

    2009-01-01

    Muscle-specific kinase (MuSK) is an essential receptor tyrosine kinase for the establishment and maintenance of the neuromuscular junction (NMJ). Activation of MuSK by agrin, a neuronally derived heparan-sulfate proteoglycan, and LRP4 (low-density lipoprotein receptor-related protein-4), the agrin receptor, leads to clustering of acetylcholine receptors on the postsynaptic side of the NMJ. The ectodomain of MuSK comprises three immunoglobulin-like domains and a cysteine-rich domain (Fz-CRD) related to those in Frizzled proteins, the receptors for Wnts. Here, we report the crystal structure of the MuSK Fz-CRD at 2.1 {angstrom} resolution. The structure reveals a five-disulfide-bridged domain similar to CRDs of Frizzled proteins but with a divergent C-terminal region. An asymmetric dimer present in the crystal structure implicates surface hydrophobic residues that may function in homotypic or heterotypic interactions to mediate co-clustering of MuSK, rapsyn, and acetylcholine receptors at the NMJ.

  5. Crystal structure of the frizzled-like cysteine-rich domain of the receptor tyrosine kinase MuSK.

    PubMed

    Stiegler, Amy L; Burden, Steven J; Hubbard, Stevan R

    2009-10-16

    Muscle-specific kinase (MuSK) is an essential receptor tyrosine kinase for the establishment and maintenance of the neuromuscular junction (NMJ). Activation of MuSK by agrin, a neuronally derived heparan-sulfate proteoglycan, and LRP4 (low-density lipoprotein receptor-related protein-4), the agrin receptor, leads to clustering of acetylcholine receptors on the postsynaptic side of the NMJ. The ectodomain of MuSK comprises three immunoglobulin-like domains and a cysteine-rich domain (Fz-CRD) related to those in Frizzled proteins, the receptors for Wnts. Here, we report the crystal structure of the MuSK Fz-CRD at 2.1 A resolution. The structure reveals a five-disulfide-bridged domain similar to CRDs of Frizzled proteins but with a divergent C-terminal region. An asymmetric dimer present in the crystal structure implicates surface hydrophobic residues that may function in homotypic or heterotypic interactions to mediate co-clustering of MuSK, rapsyn, and acetylcholine receptors at the NMJ. PMID:19664639

  6. Structure and functional properties of Norrin mimic Wnt for signalling with Frizzled4, Lrp5/6, and proteoglycan

    PubMed Central

    Chang, Tao-Hsin; Hsieh, Fu-Lien; Zebisch, Matthias; Harlos, Karl; Elegheert, Jonathan; Jones, E Yvonne

    2015-01-01

    Wnt signalling regulates multiple processes including angiogenesis, inflammation, and tumorigenesis. Norrin (Norrie Disease Protein) is a cystine-knot like growth factor. Although unrelated to Wnt, Norrin activates the Wnt/β-catenin pathway. Signal complex formation involves Frizzled4 (Fz4), low-density lipoprotein receptor related protein 5/6 (Lrp5/6), Tetraspanin-12 and glycosaminoglycans (GAGs). Here, we report crystallographic and small-angle X-ray scattering analyses of Norrin in complex with Fz4 cysteine-rich domain (Fz4CRD), of this complex bound with GAG analogues, and of unliganded Norrin and Fz4CRD. Our structural, biophysical and cellular data, map Fz4 and putative Lrp5/6 binding sites to distinct patches on Norrin, and reveal a GAG binding site spanning Norrin and Fz4CRD. These results explain numerous disease-associated mutations. Comparison with the Xenopus Wnt8–mouse Fz8CRD complex reveals Norrin mimics Wnt for Frizzled recognition. The production and characterization of wild-type and mutant Norrins reported here open new avenues for the development of therapeutics to combat abnormal Norrin/Wnt signalling. DOI: http://dx.doi.org/10.7554/eLife.06554.001 PMID:26158506

  7. Frizzled6 controls hair patterning in mice.

    PubMed

    Guo, Nini; Hawkins, Charles; Nathans, Jeremy

    2004-06-22

    Hair whorls and other macroscopic hair patterns are found in a variety of mammalian species, including humans. We show here that Frizzled6 (Fz6), one member of a large family of integral membrane Wnt receptors, controls macroscopic hair patterning in the mouse. Fz6 is expressed in the skin and hair follicles, and targeted deletion of the Fz6 gene produces stereotyped whorls on the hind feet, variable whorls and tufts on the head, and misorientation of hairs on the torso. Embryo chimera experiments imply that Fz6 acts locally to control or propagate the macroscopic hair pattern and that epithelial cells rather than melanocytes are the source of Fz6-dependent signaling. The Fz6 phenotype strongly resembles the wing-hair and bristle patterning defects observed in Drosophila frizzled mutants. These data imply that hair patterning in mammals uses a Fz-dependent tissue polarity system similar to the one that patterns the Drosophila cuticle. PMID:15169958

  8. Wnt, Frizzled, and sFRP gene expression patterns during gastrulation in the starfish Patiria (Asterina) pectinifera.

    PubMed

    Kawai, Narudo; Kuraishi, Ritsu; Kaneko, Hiroyuki

    2016-05-01

    By the initial phase of gastrulation, Wnt pathway regulation mediates endomesoderm specification and establishes the animal-vegetal axis, thereby leading to proper gastrulation in starfish. To provide insight into the ancestral mechanism regulating deuterostome gastrulation, we identified the gene expression patterns of Wnt, Frizzled (Fz), and secreted frizzled-related protein (sFRP) family genes, which play a role in the initial stage of the Wnt pathway, in starfish Patiria (Asterina) pectinifera embryos using whole mount in situ hybridization. We identified ten Wnt, four Fz, and two sFRP paralogues. From the hatching blastula to the late gastrula stage, the majority of the Wnt genes and both Fz5/8 and sFRP1/5 were expressed in the posterior and anterior half of the embryo, respectively. Wnt8, Fz1, and Fz4 showed restricted expression in the lateral ectoderm. On the other hand, several genes were expressed de novo in the restricted domain of the archenteron at the late gastrula stage. These results suggest that the canonical and/or non-canonical Wnt pathway might implicate endomesoderm specification, anterior-posterior axis establishment, anterior-posterior patterning, and archenteron morphogenesis in the developmental context of starfish embryos. From comparison with the expression patterns observed in Patria miniata, we consider that the Wnt pathway is conserved among starfishes. PMID:27346542

  9. A large family of putative transmembrane receptors homologous to the product of the Drosophila tissue polarity gene frizzled.

    PubMed

    Wang, Y; Macke, J P; Abella, B S; Andreasson, K; Worley, P; Gilbert, D J; Copeland, N G; Jenkins, N A; Nathans, J

    1996-02-23

    In Drosophila melanogaster, the frizzled gene plays an essential role in the development of tissue polarity as assessed by the orientation of cuticular structures. Through a combination of random cDNA sequencing, degenerate polymerase chain reaction amplification, and low stringency hybridization we have identified six novel frizzled homologues from mammals, at least 11 from zebrafish, several from chicken and sea urchin, and one from Caenorhabditis elegans. The complete deduced amino acid sequences of the mammalian and nematode homologues share with the Drosophila frizzled protein a conserved amino-terminal cysteine-rich domain and seven putative transmembrane segments. Each of the mammalian homologues is expressed in a distinctive set of tissues in the adult, and at least three are expressed during embryogenesis. As hypothesized for the Drosophila frizzled protein, the frizzled homologues are likely to act as transmembrane receptors for as yet unidentified ligands. These observations predict the existence of a family of signal transduction pathways that are homologous to the pathway that determines tissue polarity in Drosophila. PMID:8626800

  10. Frizzled-4 C-terminus Distal to KTXXXW Motif is Essential for Normal Dishevelled Recruitment and Norrin-stimulated Activation of Lef/Tcf-dependent Transcriptional Activation.

    PubMed

    Bertalovitz, Alexander C; Pau, Milly S; Gao, Shujuan; Malbon, Craig C; Wang, Hsien-Yu

    2016-01-01

    The carboxy (C)-termini of G protein coupled receptors (GPCR) dictate essential functions. The KTXXXW motif C-terminus of Frizzleds (FZD) has been implicated in recruitment of Dishevelled (DVL). Through study of FZD4 and its associated ligand Norrin, we report that a minimum of three residues distal to the KTXXXW motif in the C-terminal tail of Frizzled-4 are essential for DVL recruitment and robust Lef/Tcf-dependent transcriptional activation in response to Norrin. PMID:27096005

  11. Frizzled-4 C-terminus Distal to KTXXXW Motif is Essential for Normal Dishevelled Recruitment and Norrin-stimulated Activation of Lef/Tcf-dependent Transcriptional Activation

    PubMed Central

    Pau, Milly S.; Gao, Shujuan; Malbon, Craig C.; Wang, Hsien-yu

    2016-01-01

    The carboxy (C)-termini of G protein coupled receptors (GPCR) dictate essential functions. The KTXXXW motif C-terminus of Frizzleds (FZD) has been implicated in recruitment of Dishevelled (DVL). Through study of FZD4 and its associated ligand Norrin, we report that a minimum of three residues distal to the KTXXXW motif in the C-terminal tail of Frizzled-4 are essential for DVL recruitment and robust Lef/Tcf-dependent transcriptional activation in response to Norrin. PMID:27096005

  12. Tenotomy immobilization as a model to investigate skeletal muscle fibrosis (with emphasis on Secreted frizzled-related protein 2).

    PubMed

    Akpulat, Uğur; Onbaşılar, İlyas; Kocaefe, Y Çetin

    2016-06-01

    The pathological endpoint of congenital and senile myopathies is chronic muscle degeneration characterized by the atrophy of contractile elements, accompanied by fibrosis and fatty infiltration of the interstitium. Tenotomy is the release of preload that causes abrupt shortening of the muscle and models atrophy and fibrosis without prominent inflammatory response. Fibrosis in the skeletal muscle is known to be triggered by transforming growth factor (TGF)-β, which is activated by inflammatory events. As these were lacking, tenotomy provided an opportunity to investigate transcriptional events on a background without inflammation. An unbiased look at the transcriptome of tenotomy-immobilized soleus muscle revealed that the majority of the transcriptional changes took place in the first 4 wk. Regarding atrophy, proteasomal and lysosomal pathways were actively involved in accompanying cathepsins and calpains in the breakdown of the macromolecular contractile machinery. The transcriptome provided clear-cut evidence for the upregulation of collagens and several extracellular matrix components that define fibrotic remodeling of the skeletal muscle architecture as well as activation of the fibro-adipogenic precursors. Concomitantly, Sfrp2, a Wnt antagonist as well as a procollagen processor, accompanied fibrosis in skeletal muscle with an expression that was stringently confined to the slow-twitch fibers. An interpreted mechanistic scenario construed the kinetic events initiated through the abnormal shortening of the muscle fibers as enough to trigger the resident latent TGF-β in the extracellular matrix, leading to the activation of fibroadipogenic precursors. As in the heart, Sfrp2 shows itself to be a therapeutic target for the prevention of irreversible fibrosis in degenerative skeletal muscle conditions. PMID:27113532

  13. Norrin protected Blood Brain Barrier via Frizzled 4/β-catenin Pathway after Subarachnoid Hemorrhage in Rats

    PubMed Central

    Chen, Yujie; Zhang, Yang; Tang, Junjia; Liu, Fei; Hu, Qin; Luo, Chunxia; Tang, Jiping; Feng, Hua; Zhang, John H

    2014-01-01

    Background and Purpose Norrin and its receptor Frizzled 4 have important roles in the blood-brain barrier (BBB) development. This study is to investigate a potential role and mechanism of Norrin/Frizzled 4 on protecting BBB integrity after subarachnoid hemorrhage (SAH). Methods One hundred and seventy-eight male Sprague-Dawley rats were used. SAH model was induced by endovascular perforation. Frizzled 4 small interfering RNA (siRNA) was injected intracerebroventricularly 48 hours before SAH. Norrin was administrated intracerebroventricularly 3 hours after SAH. SAH grade, neurologic scores, brain water content, Evans blue extravasation, western blots and immunofluorescence were employed to study the mechanisms of Norrin and its receptor regulation protein TSPAN12, as well as neurological outcome. Results Endogenous Norrin and TSPAN12 expression were increased after SAH, and Norrin was colocalizated with astrocytes marker GFAP in cortex. Exogenous Norrin treatment significantly alleviated neurobehavioral dysfunction, reduced brain water content and Evans blue extravasation, promoted β-catenin nuclear translocation and increased Occludin, VE-Cadherin and ZO-1 expressions. These effects were abolished by Frizzled 4 siRNA pretreated before SAH. Conclusions Norrin protected BBB integrity and improved neurological outcome after SAH, and the action of Norrin seemed mediated by Frizzled 4 receptor activation which promoted β-catenin nuclear translocation, which then enhanced Occludin, VE-Cadherin and ZO-1 expression. Norrin might have potential to protect BBB after SAH. PMID:25550365

  14. Frizzled-7 promoter is highly active in tumors and promoter-driven Shiga-like toxin I inhibits hepatocellular carcinoma growth

    PubMed Central

    Xia, Yanyan; Qu, Lili; Li, Qiwen; Pang, Lu; Si, Jin; Li, Zhiyang

    2015-01-01

    Frizzled-7 protein plays a significant role in the formation of several malignant tumors. Up regulation of the Frizzled-7 in cancer cell lines is associated with nuclear accumulation of wild-type β-catenin from the Wnt/β-catenin pathway which is frequently activated in tumors. To analyze activity of the Frizzled-7 promoter in tumor cells, we constructed two recombinant plasmid vectors in which the Frizzled-7 promoter was used to drive the expression of green fluorescent protein (GFP) and Shiga-like toxin I (Stx1) (pFZD7-GFP/Stx1) genes. The Frizzled-7 protein was found to be expressed in the cancer cell lines but not in the normal cell lines. The GFP expression was restricted to the cancer cell lines and xenografts in the BALB/C mice but not to normal cell lines. Moreover, cell proliferation and tumor growth decreased significantly after transfection with the pFZD7-Stx1. Results from this study will help determine a highly effective strategy for gene therapy of tumors. PMID:26498690

  15. Frizzled7: A Promising Achilles' Heel for Targeting the Wnt Receptor Complex to Treat Cancer.

    PubMed

    Phesse, Toby; Flanagan, Dustin; Vincan, Elizabeth

    2016-01-01

    Frizzled7 is arguably the most studied member of the Frizzled family, which are the cognate Wnt receptors. Frizzled7 is highly conserved through evolution, from Hydra through to humans, and is expressed in diverse organisms, tissues and human disease contexts. Frizzled receptors can homo- or hetero-polymerise and associate with several co-receptors to transmit Wnt signalling. Notably, Frizzled7 can transmit signalling via multiple Wnt transduction pathways and bind to several different Wnt ligands, Frizzled receptors and co-receptors. These promiscuous binding and functional properties are thought to underlie the pivotal role Frizzled7 plays in embryonic developmental and stem cell function. Recent studies have identified that Frizzled7 is upregulated in diverse human cancers, and promotes proliferation, progression and invasion, and orchestrates cellular transitions that underscore cancer metastasis. Importantly, Frizzled7 is able to regulate Wnt signalling activity even in cancer cells which have mutations to down-stream signal transducers. In this review we discuss the various aspects of Frizzled7 signalling and function, and the implications these have for therapeutic targeting of Frizzled7 in cancer. PMID:27196929

  16. Frizzled7: A Promising Achilles’ Heel for Targeting the Wnt Receptor Complex to Treat Cancer

    PubMed Central

    Phesse, Toby; Flanagan, Dustin; Vincan, Elizabeth

    2016-01-01

    Frizzled7 is arguably the most studied member of the Frizzled family, which are the cognate Wnt receptors. Frizzled7 is highly conserved through evolution, from Hydra through to humans, and is expressed in diverse organisms, tissues and human disease contexts. Frizzled receptors can homo- or hetero-polymerise and associate with several co-receptors to transmit Wnt signalling. Notably, Frizzled7 can transmit signalling via multiple Wnt transduction pathways and bind to several different Wnt ligands, Frizzled receptors and co-receptors. These promiscuous binding and functional properties are thought to underlie the pivotal role Frizzled7 plays in embryonic developmental and stem cell function. Recent studies have identified that Frizzled7 is upregulated in diverse human cancers, and promotes proliferation, progression and invasion, and orchestrates cellular transitions that underscore cancer metastasis. Importantly, Frizzled7 is able to regulate Wnt signalling activity even in cancer cells which have mutations to down-stream signal transducers. In this review we discuss the various aspects of Frizzled7 signalling and function, and the implications these have for therapeutic targeting of Frizzled7 in cancer. PMID:27196929

  17. Van Gogh and Frizzled Act Redundantly in the Drosophila Sensory Organ Precursor Cell to Orient Its Asymmetric Division

    PubMed Central

    Schweisguth, François

    2009-01-01

    Drosophila sensory organ precursor cells (SOPs) divide asymmetrically along the anterior-posterior (a-p) body axis to generate two different daughter cells. Planar Cell Polarity (PCP) regulates the a-p orientation of the SOP division. The localization of the PCP proteins Van Gogh (Vang) and Frizzled (Fz) define anterior and posterior apical membrane domains prior to SOP division. Here, we investigate the relative contributions of Vang, Fz and Dishevelled (Dsh), a membrane-associated protein acting downstream of Fz, in orienting SOP polarity. Genetic and live imaging analyses suggest that Dsh restricts the localization of a centrosome-attracting activity to the anterior cortex and that Vang is a target of Dsh in this process. Using a clone border assay, we provide evidence that the Vang and fz genes act redundantly in SOPs to orient its polarity axis in response to extrinsic local PCP cues. Additionally, we find that the activity of Vang is dispensable for the non-autonomous polarizing activity of fz. These observations indicate that both Vang and Fz act as cues for downstream effectors orienting the planar polarity axis of dividing SOPs. PMID:19214234

  18. A mutation in FRIZZLED2 impairs Wnt signaling and causes autosomal dominant omodysplasia

    PubMed Central

    Saal, Howard M.; Prows, Cynthia A.; Guerreiro, Iris; Donlin, Milene; Knudson, Luke; Sund, Kristen L.; Chang, Ching-Fang; Brugmann, Samantha A.; Stottmann, Rolf W.

    2015-01-01

    Autosomal dominant omodysplasia is a rare skeletal dysplasia characterized by short humeri, radial head dislocation, short first metacarpals, facial dysmorphism and genitourinary anomalies. We performed next-generation whole-exome sequencing and comparative analysis of a proband with omodysplasia, her unaffected parents and her affected daughter. We identified a de novo mutation in FRIZZLED2 (FZD2) in the proband and her daughter that was not found in unaffected family members. The FZD2 mutation (c.1644G>A) changes a tryptophan residue at amino acid 548 to a premature stop (p.Trp548*). This altered protein is still produced in vitro, but we show reduced ability of this mutant form of FZD2 to interact with its downstream target DISHEVELLED. Furthermore, expressing the mutant form of FZD2 in vitro is not able to facilitate the cellular response to canonical Wnt signaling like wild-type FZD2. We therefore conclude that the FRIZZLED2 mutation is a de novo, novel cause for autosomal dominant omodysplasia. PMID:25759469

  19. Differential expression of the Wnt putative receptors Frizzled during mouse somitogenesis.

    PubMed

    Borello, U; Buffa, V; Sonnino, C; Melchionna, R; Vivarelli, E; Cossu, G

    1999-12-01

    The expression of eight murine Frizzled (1,3-9) genes was studied during mouse somitogenesis, in order to correlate the Wnt-dependent activation of myogenesis with the expression of specific Frizzled putative receptors. Frizzled 1, 3, 6, 7, 8, and 9 have specific expression in the forming and differentiating somites. The genes analyzed have a complex and partly overlapping pattern of expression in other regions of the embryo. PMID:10559494

  20. Frizzled-Induced Van Gogh Phosphorylation by CK1ε Promotes Asymmetric Localization of Core PCP Factors in Drosophila.

    PubMed

    Kelly, Lindsay K; Wu, Jun; Yanfeng, Wang A; Mlodzik, Marek

    2016-07-12

    Epithelial tissues are polarized along two axes. In addition to apical-basal polarity, they are often polarized within the plane of the epithelium, so-called Planar Cell Polarity (PCP). PCP depends upon Wnt/Frizzled (Fz) signaling factors, including Fz itself and Van Gogh (Vang/Vangl). We sought to understand how Vang interaction with other core PCP factors affects Vang function. We find that Fz induces Vang phosphorylation in a cell-autonomous manner. Vang phosphorylation occurs on conserved N-terminal serine/threonine residues, is mediated by CK1ε/Dco, and is critical for polarized membrane localization of Vang and other PCP proteins. This regulatory mechanism does not require Fz signaling through Dishevelled and thus represents a cell-autonomous upstream interaction between Fz and Vang. Furthermore, this signaling event appears to be related to Wnt5a-mediated Vangl2 phosphorylation during mouse limb patterning and may thus be a general mechanism underlying Wnt-regulated PCP establishment. PMID:27346358

  1. Wnt Signaling Alteration in the Spinal Cord of Amyotrophic Lateral Sclerosis Transgenic Mice: Special Focus on Frizzled-5 Cellular Expression Pattern

    PubMed Central

    González-Fernández, Carlos; Mancuso, Renzo; del Valle, Jaume; Navarro, Xavier; Rodríguez, Francisco Javier

    2016-01-01

    Background Amyotrophic lateral sclerosis is a chronic neurodegenerative disease characterized by progressive paralysis due to degeneration of motor neurons by unknown causes. Recent evidence shows that Wnt signaling is involved in neurodegenerative processes, including Amyotrophic Lateral Sclerosis. However, to date, little is known regarding the expression of Wnt signaling components in this fatal condition. In the present study we used transgenic SOD1G93A mice to evaluate the expression of several Wnt signaling components, with special focus on Frizzled-5 cellular expression alteration along disease progression. Findings Based on previous studies demonstrating the expression of Wnts and their transcriptional regulation during Amyotrophic lateral sclerosis development, we have analyzed the mRNA expression of several Wnt signaling components in the spinal cord of SOD1G93A transgenic mice at different stages of the disease by using real time quantitative PCR analysis. Strikingly, one of the molecules that seemed not to be altered at mRNA level, Frizzled-5, showed a clear up-regulation at late stages in neurons, as evidenced by immunofluorescence assays. Moreover, increased Frizzled-5 appears to correlate with a decrease in NeuN signal in these cells, suggesting a correlation between neuronal affectation and the increased expression of this receptor. Conclusions Our data suggest the involvement of Wnt signaling pathways in the pathophysiology of Amyotrophic Lateral Sclerosis and, more specifically, the implication of Frizzled-5 receptor in the response of neuronal cells against neurodegeneration. Nevertheless, further experimental studies are needed to shed light on the specific role of Frizzled-5 and the emerging but increasing Wnt family of proteins research field as a potential target for this neuropathology. PMID:27192435

  2. The anti-apoptotic effect of IGF-1 on tissue resident stem cells is mediated via PI3-kinase dependent secreted frizzled related protein 2 (Sfrp2) release

    SciTech Connect

    Gehmert, Sebastian; Sadat, Sanga; Song Yaohua; Yan Yasheng; Alt, Eckhard

    2008-07-11

    Previous studies suggest that IGF-1 may be used as an adjuvant to stem cell transfer in order to improve cell engraftment in ischemic tissue. In the current study, we investigated the effect of IGF-1 on serum deprivation and hypoxia induced stem cell apoptosis and the possible mechanisms involved. Exposure of adipose tissue derived stem cells (ASCs) to serum deprivation and hypoxia resulted in significant apoptosis in ASC which is partially prevented by IGF-1. IGF-1's anti-apoptotic effect was abolished in ASCs transfected with Sfrp2 siRNA but not by the control siRNA. Using Western blot analysis, we demonstrated that serum deprivation and hypoxia reduced the expression of nuclear {beta}-catenin, which is reversed by IGF-1. IGF-1's effect on {beta}-catenin expression was abolished by the presence of PI3-kinase inhibitor LY294002 or in ASCs transfected with Sfrp2 siRNA. These results suggest that IGF-1, through the release of the Sfrp2, contributes to cell survival by stabilizing {beta}-catenin.

  3. Mammalian Sperm Fertility Related Proteins

    PubMed Central

    Ashrafzadeh, Ali; Karsani, Saiful Anuar; Nathan, Sheila

    2013-01-01

    Infertility is an important aspect of human and animal reproduction and still presents with much etiological ambiguity. As fifty percent of infertility is related to the male partner, molecular investigations on sperm and seminal plasma can lead to new knowledge on male infertility. Several comparisons between fertile and infertile human and other species sperm proteome have shown the existence of potential fertility markers. These proteins have been categorized into energy related, structural and other functional proteins which play a major role in sperm motility, capacitation and sperm-oocyte binding. The data from these studies show the impact of sperm proteome studies on identifying different valuable markers for fertility screening. In this article, we review recent development in unraveling sperm fertility related proteins. PMID:24151436

  4. WNT Stimulation Dissociates a Frizzled 4 Inactive-State Complex with Gα12/13.

    PubMed

    Arthofer, Elisa; Hot, Belma; Petersen, Julian; Strakova, Katerina; Jäger, Stefan; Grundmann, Manuel; Kostenis, Evi; Gutkind, J Silvio; Schulte, Gunnar

    2016-10-01

    Frizzleds (FZDs) are unconventional G protein-coupled receptors that belong to the class Frizzled. They are bound and activated by the Wingless/Int-1 lipoglycoprotein (WNT) family of secreted lipoglycoproteins. To date, mechanisms of signal initiation and FZD-G protein coupling remain poorly understood. Previously, we showed that FZD6 assembles with Gαi1/Gαq (but not with Gαs, Gαo and Ga12/13), and that these inactive-state complexes are dissociated by WNTs and regulated by the phosphoprotein Dishevelled (DVL). Here, we investigated the inactive-state assembly of heterotrimeric G proteins with FZD4, a receptor important in retinal vascular development and frequently mutated in Norrie disease or familial exudative vitreoretinopathy. Live-cell imaging experiments using fluorescence recovery after photobleaching show that human FZD4 assembles-in a DVL-independent manner-with Gα12/13 but not representatives of other heterotrimeric G protein subfamilies, such as Gαi1, Gαo, Gαs, and Gαq The FZD4-G protein complex dissociates upon stimulation with WNT-3A, WNT-5A, WNT-7A, and WNT-10B. In addition, WNT-induced dynamic mass redistribution changes in untransfected and, even more so, in FZD4 green fluorescent protein-transfected cells depend on Gα12/13 Furthermore, expression of FZD4 and Gα12 or Gα13 in human embryonic kidney 293 cells induces WNT-dependent membrane recruitment of p115-RHOGEF (RHO guanine nucleotide exchange factor, molecular weight 115 kDa), a direct target of Gα12/13 signaling, underlining the functionality of an FZD4-Gα12/13-RHO signaling axis. In summary, Gα12/13-mediated WNT/FZD4 signaling through p115-RHOGEF offers an intriguing and previously unappreciated mechanistic link of FZD4 signaling to cytoskeletal rearrangements and RHO signaling with implications for the regulation of angiogenesis during embryonic and tumor development. PMID:27458145

  5. Wnt signalling: the case of the 'missing' G-protein.

    PubMed

    Malbon, Craig C

    2011-02-01

    Wnt signalling remains a hot topic for cell signalling sleuthhounds. The trail of signalling downstream of the seven-transmembrane segment Frizzleds, which bind Wnt ligands, is replete of clues [e.g. LPR5/6 (lipoprotein receptor-related protein 5/6), G-proteins or Dishevelled] and yet remains the 'final problem'. Although the heptahelical nature of Frizzleds places them well within a populous family of G-protein-coupled receptors, resistance to this theme has waxed and waned amid increasing demands for 'proof'. The Wnt Homepage (http://www.stanford.edu/group/nusselab/cgi-bin/wnt/) has acted as a dynamic real-time arbiter of the controversy, highlighted by the appearance and later the disappearance of the G-protein from its central diagramming and tabulations. A recent publication in this issue of the Biochemical Journal offers a solution to the 'final problem', demonstrating under native conditions that Frizzleds expressed in mammalian brain preparations act functionally to catalyse guanine-nucleotide exchange in response to stimulation with Wnt3a. Lensed from the fictional character of Sherlock Holmes, The Case of the Missing G-Protein is investigated. PMID:21235522

  6. Frizzled-8 as a putative therapeutic target in human lung cancer

    SciTech Connect

    Wang, Hua-qing; Xu, Mei-lin; Ma, Jie; Zhang, Yi; Xie, Cong-hua

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer Fzd-8 is over-expressed in human lung cancer. Black-Right-Pointing-Pointer shRNA knock-down of Fzd-8 inhibits proliferation and Wnt pathway in lung cancer cells. Black-Right-Pointing-Pointer shRNA knock-down of Fzd-8 suppresses tumor growth in vivo. Black-Right-Pointing-Pointer shRNA knock-down Fzd-8 sensitizes lung cancer cells to chemotherapy Taxotere. -- Abstract: Lung cancer is the leading cause of cancer related deaths worldwide. It is necessary to better understand the molecular mechanisms involved in lung cancer in order to develop more effective therapeutics for the treatment of this disease. Recent reports have shown that Wnt signaling pathway is important in a number of cancer types including lung cancer. However, the role of Frizzled-8 (Fzd-8), one of the Frizzled family of receptors for the Wnt ligands, in lung cancer still remains to be elucidated. Here in this study we showed that Fzd-8 was over-expressed in human lung cancer tissue samples and cell lines. To investigate the functional importance of the Fzd-8 over-expression in lung cancer, we used shRNA to knock down Fzd-8 mRNA in lung cancer cells expressing the gene. We observed that Fzd-8 shRNA inhibited cell proliferation along with decreased activity of Wnt pathway in vitro, and also significantly suppressed A549 xenograft model in vivo (p < 0.05). Furthermore, we found that knocking down Fzd-8 by shRNA sensitized the lung cancer cells to chemotherapy Taxotere. These data suggest that Fzd-8 is a putative therapeutic target for human lung cancer and over-expression of Fzd-8 may be important for aberrant Wnt activation in lung cancer.

  7. Frizzled-9 impairs acetylcholine receptor clustering in skeletal muscle cells

    PubMed Central

    Avilés, Evelyn C.; Pinto, Cristina; Hanna, Patricia; Ojeda, Jorge; Pérez, Viviana; De Ferrari, Giancarlo V.; Zamorano, Pedro; Albistur, Miguel; Sandoval, Daniel; Henríquez, Juan P.

    2014-01-01

    Cumulative evidence indicates that Wnt pathways play crucial and diverse roles to assemble the neuromuscular junction (NMJ), a peripheral synapse characterized by the clustering of acetylcholine receptors (AChR) on postsynaptic densities. The molecular determinants of Wnt effects at the NMJ are still to be fully elucidated. We report here that the Wnt receptor Frizzled-9 (Fzd9) is expressed in developing skeletal muscles during NMJ synaptogenesis. In cultured myotubes, gain- and loss-of-function experiments revealed that Fzd9-mediated signaling impairs the AChR-clustering activity of agrin, an organizer of postsynaptic differentiation. Overexpression of Fzd9 induced the cytosolic accumulation of β-catenin, a key regulator of Wnt signaling. Consistently, Fzd9 and β-catenin localize in the postsynaptic domain of embryonic NMJs in vivo. Our findings represent the first evidence pointing to a crucial role of a Fzd-mediated, β-catenin-dependent signaling on the assembly of the vertebrate NMJ. PMID:24860427

  8. The Myopic-Ubpy-Hrs nexus enables endosomal recycling of Frizzled

    PubMed Central

    Pradhan-Sundd, Tirthadipa; Verheyen, Esther M.

    2015-01-01

    Endosomal trafficking of signaling proteins plays an essential role in cellular homeostasis. The seven-pass transmembrane protein Frizzled (Fz) is a critical component of Wnt signaling. Although Wnt signaling is proposed to be regulated by endosomal trafficking of Fz, the molecular events that enable this regulation are not completely understood. Here we show that the endosomal protein Myopic (Mop) regulates Fz trafficking in the Drosophila wing disk by inhibiting the ubiquitination and degradation of Hrs. Deletion of Mop or Hrs results in endosomal accumulation of Fz and therefore reduced Wnt signaling. The in situ proximity ligation assay revealed a strong association between Mop and Hrs in the Drosophila wing disk. Overexpression of Hrs rescues the trafficking defect caused by mop knockdown. Mop aids in the maintenance of Ubpy, which deubiquitinates (and thus stabilizes) Hrs. In the absence of the ubiquitin ligase Cbl, Mop is dispensable. These findings support a previously unknown role for Mop in endosomal trafficking of Fz in Wnt-receiving cells. PMID:26224310

  9. Frizzled 2 and frizzled 7 function redundantly in convergent extension and closure of the ventricular septum and palate: evidence for a network of interacting genes.

    PubMed

    Yu, Huimin; Ye, Xin; Guo, Nini; Nathans, Jeremy

    2012-12-01

    Frizzled (Fz) 2 and Fz7, together with Fz1, form a distinct subfamily within the Frizzled family of Wnt receptors. Using targeted gene deletion, we show that: Fz7(-/-) mice exhibit tail truncation and kinking with 100% penetrance and ventricular septal defects (VSDs) with ~15% penetrance; Fz2(+/-);Fz7(-/-) mice exhibit VSDs with ~50% penetrance and cleft palate with less than 10% penetrance; and Fz2(-/-);Fz7(-/-) mice exhibit convergent extension defects and mid-gestational lethality with 100% penetrance. When Fz2 and/or Fz7 mutations are combined with mutations in Vangl2, Dvl3, Wnt3a, Wnt5a or Wnt11, an increased frequency of VSDs is observed with Dvl3, Wnt3a and Wnt11; an increased frequency of palate closure defects is observed with Vangl2; and early lethality and enhanced tail shortening are observed with Wnt5a. To assess the signaling pathways that underlie these and other Frizzled-mediated genetic interactions, we used transfected mammalian cells to analyze (1) canonical Wnt signaling induced by all pairwise combinations of the ten mouse Frizzleds and the 19 mouse Wnts and (2) localization of each Frizzled at cell-cell junctional complexes formed by mouse Celsr1, a likely indicator of competence for planar cell polarity signaling. These in vitro experiments indicate that Fz2 and Fz7 are competent to signal via the canonical pathway. Taken together, the data suggest that genetic interactions between Fz2, Fz7 and Vangl2, Dvl3 and Wnt genes reflect interactions among different signaling pathways in developmental processes that are highly sensitive to perturbations in Frizzled signaling. PMID:23095888

  10. Parathyroid hormone-related protein blood test

    MedlinePlus

    ... gov/ency/article/003691.htm Parathyroid hormone-related protein blood test To use the sharing features on ... page, please enable JavaScript. The parathyroid hormone-related protein (PTH-RP) test measures the level of a ...

  11. Mapping of Wnt, Frizzled and Wnt inhibitor gene expression domains in the avian otic primordium

    PubMed Central

    Sienknecht, Ulrike J.; Fekete, Donna M.

    2010-01-01

    Wnt signaling activates at least three different pathways involved in development and disease. Interactions of secreted ligands and inhibitors with cell-surface receptors result in the activation or regulation of particular downstream intracellular cascades. During the developmental stages of otic vesicle closure and beginning morphogenesis, the forming inner ear transcribes a plethora of Wnt-related genes. We report expression of 23 genes out of 25 tested in situ hybridization probes on tissue serial sections. Sensory primordia and Frizzled gene expression share domains, with Fzd1 being a continuous marker. Prospective nonsensory domains express Wnts, whose transcripts mainly flank prosensory regions. Finally, Wnt inhibitor domains are superimposed over both prosensory and nonsensory otic regions. Three Wnt antagonists, Dkk1, SFRP2, and Frzb are prominent. Their gene expression patterns partly overlap and change over time, which adds to the diversity of molecular micro-environments. Strikingly, prosensory domains express Wnts transiently. This includes (1) the prosensory otic region of high proliferation, neuroblast delamination, and programmed cell death at stage 20/21 (Wnt3, -5b, -7b, -8b, -9a, -11), and (2) sensory primordia at stage 25 (Wnt7a, Wnt9a). In summary, robust Wnt-related gene expression shows both spatial and temporal tuning during inner ear development as the otic vesicle initiates morphogenesis and prosensory cell fate determination. PMID:19842206

  12. An optimized split-ubiquitin cDNA-library screening system to identify novel interactors of the human Frizzled 1 receptor

    PubMed Central

    Dirnberger, Dietmar; Messerschmid, Monika; Baumeister, Ralf

    2008-01-01

    The yeast split-ubiquitin system has previously been shown to be suitable to detect protein interactions of membrane proteins and of transcription factors in vivo. Therefore, this technology complements the classical split-transcription factor based yeast two-hybrid system (Y2H). Success or failure of the Y2H depends primarily on the ability to avoid false-negative and false-positive hits that become a limiting factor for the value of the system, especially in large scale proteomic analyses. We provide here a systematic assessment of parameters to help improving the quality of split-ubiquitin cDNA-library screenings. We experimentally defined the optimal 5-fluoroorotic acid (5-FOA) concentration as a key parameter to increase the reproducibility of interactions and, at the same time, to keep non-specific background growth low. Furthermore, we show that the efficacy of the 5-FOA selection is modulated by the plating density of the yeast clones. Moreover, a reporter-specific class of false-positive hits was identified, and a simple phenotypic assay for efficient de-selection was developed. We demonstrate the application of this improved system to identify novel interacting proteins of the human Frizzled 1 receptor. We identified several novel interactors with components of the Wnt-Frizzled signalling pathways and discuss their potential roles as direct mediators of Frizzled receptor signalling. The present work is the first example of a split-ubiquitin interaction screen using an in-situ expressed receptor of the serpentine class, emphasizing the suitability of the described improvements in the screening protocol. PMID:18319286

  13. Expression of Wnt Receptors in Adult Spiral Ganglion Neurons: Frizzled 9 Localization at Growth Cones of Regenerating Neurites

    PubMed Central

    Shah, S. M.; Kang, Y.-J.; Christensen, B. L.; Feng, A. S.; Kollmar, R.

    2009-01-01

    Little is known about signaling pathways, besides those of neurotrophic factors, that are operational in adult spiral ganglion neurons. In patients with sensorineural hearing loss, such pathways could eventually be targeted to stimulate and guide neurite outgrowth from the remnants of the spiral ganglion towards a cochlear implant, thereby improving the fidelity of sound transmission. To systematically identify neuronal receptors for guidance cues in the adult cochlea, we conducted a genome-wide cDNA microarray screen with two-month-old CBA/CaJ mice. A meta-analysis of our data and those from older mice in two other studies revealed the presence of neuronal transmembrane receptors that represent all four established guidance pathways—ephrin, netrin, semaphorin, and slit—in the mature cochlea as late as 15 months. In addition, we observed the expression of all known receptors for the Wnt morphogens, whose neuronal guidance function has only recently been recognized. In situ hybridizations located the mRNAs of the Wnt receptors frizzled 1, 4, 6, 9, and 10 specifically in adult spiral ganglion neurons. Finally, frizzled 9 protein was found in the growth cones of adult spiral ganglion neurons that were regenerating neurites in culture. We conclude from our results that adult spiral ganglion neurons are poised to respond to neurite damage, owing to the constitutive expression of a large and diverse collection of guidance receptors. Wnt signaling, in particular, emerges as a candidate pathway for guiding neurite outgrowth towards a cochlear implant after sensorineural hearing loss. PMID:19716861

  14. Expression patterns of Wnt signaling component, secreted frizzled‑related protein 3 in astrocytoma and glioblastoma.

    PubMed

    Pećina-Šlaus, Nives; Kafka, Anja; Varošanec, Ana Maria; Marković, Leon; Krsnik, Željka; Njirić, Niko; Mrak, Goran

    2016-05-01

    Secreted frizzled-related protein 3 (SFRP3) is a member of the family of soluble proteins, which modulate the Wnt signaling cascade. Novel research has identified aberrant expression of SFRPs in different types of cancer. In the present study the expression intensities and localizations of the SFRP3 protein across different histopathological grades of astrocytic brain tumors were investigated by immunohistochemistry, digital scanning and image analysis. The results demonstrated that the differences between expression levels and malignancy grades were statistically significant. Tumors were classified into four malignancy grades according to the World Health Organization guidelines. Moderate (P=0.014) and strong (P=0.028) nuclear expression levels were significantly different in pilocytic (grade I) and diffuse (grade II) astrocytomas demonstrating higher expression values, as compared with anaplastic astrocytoma (grade III) and glioblastoma (grade IV). When the sample was divided into two groups, the moderate and high cytoplasmic expression levels were observed to be significantly higher in glioblastomas than in the group comprising astrocytoma II and III. Furthermore, the results indicated that high grade tumors were associated with lower values of moderate (P=0.002) and strong (P=0.018) nuclear expression in comparison to low grade tumors. Analysis of cytoplasmic staining demonstrated that strong cytoplasmic expression was significantly higher in the astrocytoma III and IV group than in the astrocytoma I and II group (P=0.048). Furthermore, lower grade astrocytomas exhibited reduced membranous SFRP3 staining when compared with higher grade astrocytomas and this difference was statistically significant (P=0.036). The present results demonstrated that SFRP3 protein expression levels were decreased in the nucleus in higher grade astrocytoma (indicating the expected behavior of an antagonist of Wnt signaling), whereas when the SFRP3 was located in the

  15. Different Wnt signals act through the Frizzled and RYK receptors during Drosophila salivary gland migration.

    PubMed

    Harris, Katherine E; Beckendorf, Steven K

    2007-06-01

    Guided cell migration is necessary for the proper function and development of many tissues, one of which is the Drosophila embryonic salivary gland. Here we show that two distinct Wnt signaling pathways regulate salivary gland migration. Early in migration, the salivary gland responds to a WNT4-Frizzled signal for proper positioning within the embryo. Disruption of this signal, through mutations in Wnt4, frizzled or frizzled 2, results in misguided salivary glands that curve ventrally. Furthermore, disruption of downstream components of the canonical Wnt pathway, such as dishevelled or Tcf, also results in ventrally curved salivary glands. Analysis of a second Wnt signal, which acts through the atypical Wnt receptor Derailed, indicates a requirement for Wnt5 signaling late in salivary gland migration. WNT5 is expressed in the central nervous system and acts as a repulsive signal, needed to keep the migrating salivary gland on course. The receptor for WNT5, Derailed, is expressed in the actively migrating tip of the salivary glands. In embryos mutant for derailed or Wnt5, salivary gland migration is disrupted; the tip of the gland migrates abnormally toward the central nervous system. Our results suggest that both the Wnt4-frizzled pathway and a separate Wnt5-derailed pathway are needed for proper salivary gland migration. PMID:17507403

  16. Complement factor H related proteins (CFHRs).

    PubMed

    Skerka, Christine; Chen, Qian; Fremeaux-Bacchi, Veronique; Roumenina, Lubka T

    2013-12-15

    Factor H related proteins comprise a group of five plasma proteins: CFHR1, CFHR2, CFHR3, CFHR4 and CFHR5, and each member of this group binds to the central complement component C3b. Mutations, genetic deletions, duplications or rearrangements in the individual CFHR genes are associated with a number of diseases including atypical hemolytic uremic syndrome (aHUS), C3 glomerulopathies (C3 glomerulonephritis (C3GN), dense deposit disease (DDD) and CFHR5 nephropathy), IgA nephropathy, age related macular degeneration (AMD) and systemic lupus erythematosus (SLE). Although complement regulatory functions were attributed to most of the members of the CFHR protein family, the precise role of each CFHR protein in complement activation and the exact contribution to disease pathology is still unclear. Recent publications show that CFHR proteins form homo- as well as heterodimers. Genetic abnormalities within the CFHR gene locus can result in hybrid proteins with affected dimerization or recognition domains which cause defective functions. Here we summarize the recent data about CFHR genes and proteins in order to better understand the role of CFHR proteins in complement activation and in complement associated diseases. PMID:23830046

  17. The Wingless morphogen gradient is established by the cooperative action of Frizzled and Heparan Sulfate Proteoglycan receptors.

    PubMed

    Baeg, Gyeong-Hun; Selva, Erica M; Goodman, Robyn M; Dasgupta, Ramanuj; Perrimon, Norbert

    2004-12-01

    We have examined the respective contribution of Heparan Sulfate Proteoglycans (HSPGs) and Frizzled (Fz) proteins in the establishment of the Wingless (Wg) morphogen gradient. From the analysis of mutant clones of sulfateless/N-deacetylase-sulphotransferase in the wing imaginal disc, we find that lack of Heparan Sulfate (HS) causes a dramatic reduction of both extracellular and intracellular Wg in receiving cells. Our studies, together with others [Kirkpatrick, C.A., Dimitroff, B.D., Rawson, J.M., Selleck, S.B., 2004. Spatial regulation of Wingless morphogen distribution and signalling by Dally-like protein. Dev. Cell (in press)], reveals that the Glypican molecule Dally-like Protein (Dlp) is associated with both negative and positive roles in Wg short- and long-range signaling, respectively. In addition, analyses of the two Fz proteins indicate that the Fz and DFz2 receptors, in addition to transducing the signal, modulate the slope of the Wg gradient by regulating the amount of extracellular Wg. Taken together, our analysis illustrates how the coordinated activities of HSPGs and Fz/DFz2 shape the Wg morphogen gradient. PMID:15531366

  18. The PTK7-Related Transmembrane Proteins Off-track and Off-track 2 Are Co-receptors for Drosophila Wnt2 Required for Male Fertility

    PubMed Central

    Honemann-Capito, Mona; Brechtel-Curth, Katja; Hedderich, Marie; Wodarz, Andreas

    2014-01-01

    Wnt proteins regulate many developmental processes and are required for tissue homeostasis in adult animals. The cellular responses to Wnts are manifold and are determined by the respective Wnt ligand and its specific receptor complex in the plasma membrane. Wnt receptor complexes contain a member of the Frizzled family of serpentine receptors and a co-receptor, which commonly is a single-pass transmembrane protein. Vertebrate protein tyrosine kinase 7 (PTK7) was identified as a Wnt co-receptor required for control of planar cell polarity (PCP) in frogs and mice. We found that flies homozygous for a complete knock-out of the Drosophila PTK7 homolog off track (otk) are viable and fertile and do not show PCP phenotypes. We discovered an otk paralog (otk2, CG8964), which is co-expressed with otk throughout embryonic and larval development. Otk and Otk2 bind to each other and form complexes with Frizzled, Frizzled2 and Wnt2, pointing to a function as Wnt co-receptors. Flies lacking both otk and otk2 are viable but male sterile due to defective morphogenesis of the ejaculatory duct. Overexpression of Otk causes female sterility due to malformation of the oviduct, indicating that Otk and Otk2 are specifically involved in the sexually dimorphic development of the genital tract. PMID:25010066

  19. The effect of smoking on myeloid-related protein-8 and myeloid-related protein-14.

    PubMed

    Ertugrul, Abdullah Seckin; Sahin, Hacer

    2016-05-20

    The aim of this study was to determine the myeloid-related protein-8 and myeloid-related protein-14 levels in the gingival crevicular fluid of smoker patients with generalized aggressive periodontitis (SAgP), smoker patients with chronic periodontitis (SCP), smoker patients with gingivitis (SG-smoker control), non-smoker patients with generalized aggressive periodontitis (AgP), non-smoker patients with chronic periodontitis (CP), and non-smoker patients with gingivitis (G-non-smoker control). The periodontal statuses of the patients were determined by periodontal clinical measurements and radiographical evaluations. The levels of myeloid-related protein-8 and myeloid-related protein-14 in the gingival crevicular fluid were assessed using enzyme-linked immuno sorbent assay. The myeloid-related protein-8 and myeloid-related protein-14 levels in the gingival crevicular fluid of patients with generalized aggressive periodontitis (non-smoker and smoker) were found to be statistically higher than patients with chronic periodontitis (non-smoker and smoker) and patients with gingivitis (non-smoker and smoker). Myeloid-related protein-8 and myeloid-related protein-14 levels of non-smokers were significantly higher than smokers in all types of periodontitis and gingivitis. The decreased myeloid-related protein-8 and myeloid-related protein-14 level could have prevented the haemostasis of calcium which plays a significant role in the migration of neutrophiles. Smoking affects myeloid-related protein-8 and myeloid-related protein-14 levels and may inhibit the antimicrobial efficiency against microorganisms. Due to these reasons smoker generalized aggressive periodontitis patients need to be treated in detail and their maintenance durations should be shortened. PMID:27223132

  20. The Frizzled 3 gene is associated with methamphetamine psychosis in the Japanese population

    PubMed Central

    Kishimoto, Makiko; Ujike, Hiroshi; Okahisa, Yuko; Kotaka, Tatsuya; Takaki, Manabu; Kodama, Masafumi; Inada, Toshiya; Yamada, Mitsuhiko; Uchimura, Naohisa; Iwata, Nakao; Sora, Ichiro; Iyo, Masaomi; Ozaki, Norio; Kuroda, Shigetoshi

    2008-01-01

    Background Frizzled 3 (Fzd3) is a receptor required for the Wnt-signaling pathway, which has been implicated in the development of the central nervous system, including synaptogenesis and structural plasticity. We previously found a significant association between the FZD3 gene and susceptibility to schizophrenia, but subsequent studies showed inconsistent findings. To understand the roles of the FZD3 gene in psychotic disorders further, it should be useful to examine FZD3 in patients with methamphetamine psychosis because the clinical features of methamphetamine psychosis are similar to those of schizophrenia. Methods Six SNPs of FZD3, rs3757888 in the 3' flanking region, rs960914 in the intron 3, rs2241802, a synonymous SNP in the exon5, rs2323019 and rs352203 in the intron 5, and rs880481 in the intron 7, were selected based on the previous schizophrenic studies and analyzed in 188 patients with methamphetamine psychosis and 240 age- and gender-matched controls. Results A case-control association analyses revealed that two kinds of FZD3 haplotypes showed strong associations with methamphetamine psychosis (p < 0.00001). Having the G-A-T-G or A-G-C-A haplotype of rs2241802-rs2323019-rs352203-rs880481 was a potent negative risk factor (odds ratios were 0.13 and 0.086, respectively) for methamphetamine psychosis. Conclusion Our present and previous findings indicate that genetic variants of the FZD3 gene affect susceptibility to two analogous but distinct dopamine-related psychoses, endogenous and substance-induced psychosis. PMID:18702828

  1. A human homologue of the Drosophila polarity gene frizzled has been identified and mapped to 17q21.1

    SciTech Connect

    Zhao, Z.; Lee, C.C.; Baldini, A.

    1995-05-20

    The frizzled (fz) locus in Drosophila is required for the transmission of polarity signals across the plasma membrane in epidermal cells, as well as to their neighboring cells in the developing wing. The identification of a tissue polarity gene from the fz locus in Drosophila melanogaster has been reported. The fz gene encodes a protein (Fz) with seven putative transmembrane domains, which was suggested to function as a G-protein-coupled receptor. Here the authors report the identification of a human homologue for the fz gene (FZD2). The FZD2 gene was isolated from a human ovarian cDNA library and mapped to 17q21.1 by fluorescent in situ hybridization (FISH) with a corresponding cosmid. The full-length cDNA of human FZD2 encodes a protein (FZD-2) of 565 amino acids that shares 56% sequence identity with Drosophila Fz. The expression of the FZD2 gene seems to be developmentally regulated, with high levels of expression in fetal kidney and lung and in adult colon and ovary. The structure of FZD-2 suggests that it has a role in transmembrane signal transmission, although its precise physiological function and associated pathways are yet to be determined. 9 refs., 2 figs.

  2. Ribosome-Inactivating and Related Proteins

    PubMed Central

    Schrot, Joachim; Weng, Alexander; Melzig, Matthias F.

    2015-01-01

    Ribosome-inactivating proteins (RIPs) are toxins that act as N-glycosidases (EC 3.2.2.22). They are mainly produced by plants and classified as type 1 RIPs and type 2 RIPs. There are also RIPs and RIP related proteins that cannot be grouped into the classical type 1 and type 2 RIPs because of their different sizes, structures or functions. In addition, there is still not a uniform nomenclature or classification existing for RIPs. In this review, we give the current status of all known plant RIPs and we make a suggestion about how to unify those RIPs and RIP related proteins that cannot be classified as type 1 or type 2 RIPs. PMID:26008228

  3. The low-density lipoprotein receptor-related protein 10 is a negative regulator of the canonical Wnt/{beta}-catenin signaling pathway

    SciTech Connect

    Jeong, Young-Hee; Sekiya, Manami; Hirata, Michiko; Ye, Mingjuan; Yamagishi, Azumi; Lee, Sang-Mi; Kang, Man-Jong; Hosoda, Akemi; Fukumura, Tomoe; Kim, Dong-Ho; Saeki, Shigeru

    2010-02-19

    Wnt signaling pathways play fundamental roles in the differentiation, proliferation and functions of many cells as well as developmental, growth, and homeostatic processes in animals. Low-density lipoprotein receptor (LDLR)-related protein (LRP) 5 and LRP6 serve as coreceptors of Wnt proteins together with Frizzled receptors, triggering activation of canonical Wnt/{beta}-catenin signaling. Here, we found that LRP10, a new member of the LDLR gene family, inhibits the canonical Wnt/{beta}-catenin signaling pathway. The {beta}-catenin/T cell factor (TCF) transcriptional activity in HEK293 cells was activated by transfection with Wnt3a or LRP6, which was then inhibited by co-transfection with LRP10. Deletion of the extracellular domain of LRP10 negated its inhibitory effect. The inhibitory effect of LRP10 was consistently conserved in HEK293 cells even when GSK3{beta} phosphorylation was inhibited by incubation with lithium chloride and co-transfection with constitutively active S33Y-mutated {beta}-catenin. Nuclear {beta}-catenin accumulation was unaffected by LRP10. The present studies suggest that LRP10 may interfere with the formation of the {beta}-catenin/TCF complex and/or its binding to target DNA in the nucleus, and that the extracellular domain of LRP10 is critical for inhibition of the canonical Wnt/{beta}-catenin signaling pathway.

  4. Protein Simulation Data in the Relational Model.

    PubMed

    Simms, Andrew M; Daggett, Valerie

    2012-10-01

    High performance computing is leading to unprecedented volumes of data. Relational databases offer a robust and scalable model for storing and analyzing scientific data. However, these features do not come without a cost-significant design effort is required to build a functional and efficient repository. Modeling protein simulation data in a relational database presents several challenges: the data captured from individual simulations are large, multi-dimensional, and must integrate with both simulation software and external data sites. Here we present the dimensional design and relational implementation of a comprehensive data warehouse for storing and analyzing molecular dynamics simulations using SQL Server. PMID:23204646

  5. Protein Simulation Data in the Relational Model

    PubMed Central

    Simms, Andrew M.; Daggett, Valerie

    2011-01-01

    High performance computing is leading to unprecedented volumes of data. Relational databases offer a robust and scalable model for storing and analyzing scientific data. However, these features do not come without a cost—significant design effort is required to build a functional and efficient repository. Modeling protein simulation data in a relational database presents several challenges: the data captured from individual simulations are large, multi-dimensional, and must integrate with both simulation software and external data sites. Here we present the dimensional design and relational implementation of a comprehensive data warehouse for storing and analyzing molecular dynamics simulations using SQL Server. PMID:23204646

  6. Predicting Disease-Related Proteins Based on Clique Backbone in Protein-Protein Interaction Network

    PubMed Central

    Yang, Lei; Zhao, Xudong; Tang, Xianglong

    2014-01-01

    Network biology integrates different kinds of data, including physical or functional networks and disease gene sets, to interpret human disease. A clique (maximal complete subgraph) in a protein-protein interaction network is a topological module and possesses inherently biological significance. A disease-related clique possibly associates with complex diseases. Fully identifying disease components in a clique is conductive to uncovering disease mechanisms. This paper proposes an approach of predicting disease proteins based on cliques in a protein-protein interaction network. To tolerate false positive and negative interactions in protein networks, extending cliques and scoring predicted disease proteins with gene ontology terms are introduced to the clique-based method. Precisions of predicted disease proteins are verified by disease phenotypes and steadily keep to more than 95%. The predicted disease proteins associated with cliques can partly complement mapping between genotype and phenotype, and provide clues for understanding the pathogenesis of serious diseases. PMID:25013377

  7. Sec14 related proteins in yeast.

    PubMed

    Griac, Peter

    2007-06-01

    Lipid transport between membranes of eukaryotic organisms represents an essential aspect of organelle biogenesis. This transport must be strictly selective and directional to assure specific lipid composition of individual membranes. Despite the intensive research effort in the last few years, our understanding of how lipids are sorted and moved within cells is still rather limited. Evidence indicates that at least some of the mechanisms generating and maintaining non-random distribution of lipids in cells are linked to the action of phosphatidylinositol transfer proteins (PITPs). The major PITP in yeast Saccharomyces cerevisiae, Sec14p, is essential in promoting Golgi secretory function by modulating of its membrane lipid composition. This review focuses on a group of five yeast proteins that share significant sequence homology with Sec14p. Based on this sequence identity, they were termed Sfh (Sec fourteen homologue) proteins. It is a diverse group of proteins with distinct subcellular localizations and varied physiological functions related to lipid metabolism, phosphoinositide mediated signaling and membrane trafficking. PMID:17395532

  8. [Pathophysiological functions of follistatin related protein].

    PubMed

    Shen, Hua; Liu, Yu-Yang

    2009-10-01

    Follistatin related protein (FRP) is an extra-cellular glycoprotein, involved in several pathological and physiological processes such as cell proliferation, migration, tissue remodeling, embryonic development, and cell-cell interaction. Nowadays researches showed that FRP possesses dual functions, including inhibiting cell apoptosis and inhibiting cell proliferation. In myocardial ischemia model, FRP is certified to have the effect of protecting myocardial cell and inhibiting apoptosis. At the same time FRP promotes endothelial cell proliferation. FRP is also synthesized by vascular smooth muscle cell (VSMC) to regulate the functions of VSMC via feedback mechanism. FRP can induce apoptosis in various cancer cell lines. In this review, we summarized the up-to-date data to show the structure, functions, mechanisms and regulation pathways of the protein. PMID:21417029

  9. The Chicken Frizzle Feather Is Due to an α-Keratin (KRT75) Mutation That Causes a Defective Rachis

    PubMed Central

    Foley, John; Foley, Anne; McDonald, Merry-Lynn; Juan, Wen-Tau; Huang, Chih-Jen; Lai, Yu-Ting; Lo, Wen-Sui; Chen, Chih-Feng; Leal, Suzanne M.; Zhang, Huanmin; Widelitz, Randall B.; Patel, Pragna I.; Li, Wen-Hsiung; Chuong, Cheng-Ming

    2012-01-01

    Feathers have complex forms and are an excellent model to study the development and evolution of morphologies. Existing chicken feather mutants are especially useful for identifying genetic determinants of feather formation. This study focused on the gene F, underlying the frizzle feather trait that has a characteristic curled feather rachis and barbs in domestic chickens. Our developmental biology studies identified defects in feather medulla formation, and physical studies revealed that the frizzle feather curls in a stepwise manner. The frizzle gene is transmitted in an autosomal incomplete dominant mode. A whole-genome linkage scan of five pedigrees with 2678 SNPs revealed association of the frizzle locus with a keratin gene-enriched region within the linkage group E22C19W28_E50C23. Sequence analyses of the keratin gene cluster identified a 69 bp in-frame deletion in a conserved region of KRT75, an α-keratin gene. Retroviral-mediated expression of the mutated F cDNA in the wild-type rectrix qualitatively changed the bending of the rachis with some features of frizzle feathers including irregular kinks, severe bending near their distal ends, and substantially higher variations among samples in comparison to normal feathers. These results confirmed KRT75 as the F gene. This study demonstrates the potential of our approach for identifying genetic determinants of feather forms. PMID:22829773

  10. The chicken frizzle feather is due to an α-keratin (KRT75) mutation that causes a defective rachis.

    PubMed

    Ng, Chen Siang; Wu, Ping; Foley, John; Foley, Anne; McDonald, Merry-Lynn; Juan, Wen-Tau; Huang, Chih-Jen; Lai, Yu-Ting; Lo, Wen-Sui; Chen, Chih-Feng; Leal, Suzanne M; Zhang, Huanmin; Widelitz, Randall B; Patel, Pragna I; Li, Wen-Hsiung; Chuong, Cheng-Ming

    2012-01-01

    Feathers have complex forms and are an excellent model to study the development and evolution of morphologies. Existing chicken feather mutants are especially useful for identifying genetic determinants of feather formation. This study focused on the gene F, underlying the frizzle feather trait that has a characteristic curled feather rachis and barbs in domestic chickens. Our developmental biology studies identified defects in feather medulla formation, and physical studies revealed that the frizzle feather curls in a stepwise manner. The frizzle gene is transmitted in an autosomal incomplete dominant mode. A whole-genome linkage scan of five pedigrees with 2678 SNPs revealed association of the frizzle locus with a keratin gene-enriched region within the linkage group E22C19W28_E50C23. Sequence analyses of the keratin gene cluster identified a 69 bp in-frame deletion in a conserved region of KRT75, an α-keratin gene. Retroviral-mediated expression of the mutated F cDNA in the wild-type rectrix qualitatively changed the bending of the rachis with some features of frizzle feathers including irregular kinks, severe bending near their distal ends, and substantially higher variations among samples in comparison to normal feathers. These results confirmed KRT75 as the F gene. This study demonstrates the potential of our approach for identifying genetic determinants of feather forms. PMID:22829773

  11. Role of the Wnt-Frizzled system in cardiac pathophysiology: a rapidly developing, poorly understood area with enormous potential

    PubMed Central

    Dawson, Kristin; Aflaki, Mona; Nattel, Stanley

    2013-01-01

    The Wnt-Frizzled (Fzd) G-protein-coupled receptor system, involving 19 distinct Wnt ligands and 10 Fzd receptors, plays key roles in the development and functioning of many organ systems. There is increasing evidence that Wnt-Fzd signalling is important in regulating cardiac function. Wnt-Fzd signalling primarily involves a canonical pathway, with dishevelled-1-dependent nuclear translocation of β-catenin that derepresses Wnt-sensitive gene transcription, but can also include non-canonical pathways via phospholipase-C/Ca2+ mobilization and dishevelled-protein activation of small GTPases. Wnt-Fzd effects vary with specific ligand/receptor interactions and associated downstream pathways. This paper reviews the biochemistry and physiology of the Wnt-Fzd complex, and presents current knowledge of Wnt signalling in cardiac remodelling processes such as hypertrophy and fibrosis, as well as disease states such as myocardial infarction (MI), heart failure and arrhythmias. Wnt signalling is activated during hypertrophy; inhibiting Wnt signalling by activating glycogen synthase kinase attenuates the hypertrophic response. Wnt signalling has complex and time-dependent actions post-MI, so that either beneficial or harmful effects might result from Wnt-directed interventions. Stem cell biology, a promising area for therapeutic intervention, is highly regulated by Wnt signalling. The Wnt system regulates fibroblast function, and is prominently altered in arrhythmogenic ventricular cardiomyopathy, a familial disease involving excess deposition of fibroadipose tissue. Wnt signalling controls connexin43 expression, thereby contributing to the regulation of cardiac electrical stability and arrhythmia generation. Although much has been learned about Wnt-Fzd signalling in hypertrophy and infarction, its role is poorly understood for a broad range of other heart disorders. Much more needs to be learned for its contributions to be fully appreciated, and to permit more effective

  12. Plant Calmodulins and Calmodulin-Related Proteins

    PubMed Central

    Ranty, Benoît; Aldon, Didier

    2006-01-01

    The calmodulin (CaM) family is a major class of calcium sensor proteins which collectively play a crucial role in cellular signaling cascades through the regulation of numerous target proteins. Although CaM is one of the most conserved proteins in all eukaryotes, several features of CaM and its downstream effector proteins are unique to plants. The continuously growing repertoire of CaM-binding proteins includes several plant-specific proteins. Plants also possess a particular set of CaM isoforms and CaM-like proteins (CMLs) whose functions have just begun to be elucidated. This review summarizes recent insights that help to understand the role of this multigene family in plant development and adaptation to environmental stimuli. PMID:19521489

  13. Website on Protein Interaction and Protein Structure Related Work

    NASA Technical Reports Server (NTRS)

    Samanta, Manoj; Liang, Shoudan; Biegel, Bryan (Technical Monitor)

    2003-01-01

    In today's world, three seemingly diverse fields - computer information technology, nanotechnology and biotechnology are joining forces to enlarge our scientific knowledge and solve complex technological problems. Our group is dedicated to conduct theoretical research exploring the challenges in this area. The major areas of research include: 1) Yeast Protein Interactions; 2) Protein Structures; and 3) Current Transport through Small Molecules.

  14. The chicken frizzle feather is due to an a-keratin (KRT75) mutation that causes a defective rachis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Feathers have complex forms and are an excellent model to study the development and evolution of morphologies. Existing chicken feather mutants are especially useful for identifying genetic determinants of feather formation. The present study focused on the gene, F, underlying the frizzle feather tr...

  15. Oxysterol-related-binding-protein related Protein-2 (ORP2) regulates cortisol biosynthesis and cholesterol homeostasis.

    PubMed

    Escajadillo, Tamara; Wang, Hongxia; Li, Linda; Li, Donghui; Sewer, Marion B

    2016-05-15

    Oxysterol binding protein-related protein 2 (ORP2) is a lipid binding protein that has been implicated in various cellular processes, including lipid sensing, cholesterol efflux, and endocytosis. We recently identified ORP2 as a member of a protein complex that regulates glucocorticoid biosynthesis. Herein, we examine the effect of silencing ORP2 on adrenocortical function and show that the ORP2 knockdown cells exhibit reduced amounts of multiple steroid metabolites, including progesterone, 11-deoxycortisol, and cortisol, but have increased concentrations of androgens, and estrogens. Moreover, silencing ORP2 suppresses the expression of most proteins required for cortisol production and reduces the expression of steroidogenic factor 1 (SF1). ORP2 silencing also increases cellular cholesterol, concomitant with decreased amounts of 22-hydroxycholesterol and 7-ketocholesterol, two molecules that have been shown to bind to ORP2. Further, we show that ORP2 binds to liver X receptor (LXR) and is required for nuclear LXR expression. LXR and ORP2 are recruited to the CYP11B1 promoter in response to cAMP signaling. Additionally, ORP2 is required for the expression of other LXR target genes, including ABCA1 and the LDL receptor (LDLR). In summary, we establish a novel role for ORP2 in regulating steroidogenic capacity and cholesterol homeostasis in the adrenal cortex. PMID:26992564

  16. Nanoimaging for protein misfolding and related diseases

    PubMed Central

    Lyubchenko, Yuri L.; Sherman, Simon; Shlyakhtenko, Luda S.; Uversky, Vladimir N.

    2006-01-01

    Misfolding and aggregation of proteins is a common thread linking a number of important human health problems. The misfolded and aggregated proteins are inducers of cellular stress and activators of immunity in neurodegenerative diseases. They might posses clear cytotoxic properties, being responsible for the dysfunction and loss of cells in the affected organs. Despite the crucial importance of protein misfolding and abnormal interactions, very little is currently known about the molecular mechanism underlying these processes. Factors that lead to protein misfolding and aggregation in vitro are poorly understood, not to mention the complexities involved in the formation of protein nanoparticles with different morphologies (e.g. the nanopores) in vivo. A better understanding of the molecular mechanisms of misfolding and aggregation might facilitate development of the rational approaches to prevent pathologies mediated by protein misfolding. The conventional tools currently available to researchers can only provide an averaged picture of a living system, whereas much of the subtle or short-lived information is lost. We believe that the existing and emerging nanotools might help solving these problems by opening the entirely novel pathways for the development of early diagnostic and therapeutic approaches. This article summarizes recent advances of the nanoscience in detection and characterization of misfolded protein conformations. Based on these findings we outline our view on the nanoscience development towards identification intracellular nanomachines and/or multicomponent complexes critically involved in protein misfolding. PMID:16823798

  17. ECM Proteins Glycosylation and Relation to Diabetes

    NASA Astrophysics Data System (ADS)

    Pernodet, Nadine; Bloomberg, Ayla; Sood, Vandana; Slutsky, Lenny; Ge, Shouren; Clark, Richard; Rafailovich, Miriam

    2004-03-01

    The chemical modification and crosslinking of proteins by sugar glycosylation contribute to the aging of tissue proteins, and acceleration of this reaction during hyperglycemia is implicated in the pathogenesis of diabetic complications, such as disorder of the wound healing. Advanced glycation endproducts (AGEs) formation and protein crosslinking are irreversible processes that alter the structural and functional properties of proteins, lipid components and nucleic acids. And the mechanism, by which it happens, is not clear. Fibrinogen and fibronectin are plasma proteins, which play a major role in human wound healing. Fibrinogen converts to an insoluble fibrin "gel" following a cut, which eventually forms a clot to prevent blood loss, to direct cell adhesion and migration for forming scars. Fibronectin is a critical protein for cell adhesion and migration in wound healing. The effects of glucose on the binding of these plasma proteins from the extra cellular matrix (ECM) were followed at different concentrations by atomic force microscopy and lateral force modulation to measure the mechanical response of the samples. Glucose solutions (1, 2, and 3mg/mL) were incubated with the protein (100 mg/ml) and silicon (Si) substrates spun with sulfonated polystyrene (SPS) 28% for five days. Data showed that not only the organization of the protein on the surface was affected but also its mechanical properties. At 3 mg/mL glucose, Fn fibers were observed to be harder than those of the control, in good agreement with our hypothesis that glycosylation hardens tissues by crosslinking of proteins in the ECM and might cause fibers to break more easily.

  18. A novel Wnt5a-Frizzled4 signaling pathway mediates activity-independent dendrite morphogenesis via the distal PDZ motif of Frizzled 4.

    PubMed

    Bian, Wen-Jie; Miao, Wan-Ying; He, Shun-Ji; Wan, Zong-Fang; Luo, Zhen-Ge; Yu, Xiang

    2015-08-01

    The morphology of the dendritic tree is critical to neuronal function and neural circuit wiring. Several Wnt family members have been demonstrated to play important roles in dendrite development. However, the Wnt receptors responsible for mediating this process remain largely elusive. Using primary hippocampal neuronal cultures as a model system, we report that Frizzled4 (Fzd4), a member of the Fzd family of Wnt receptors, specifically signals downstream of Wnt5a to promote dendrite branching and growth. Interestingly, the less conserved distal PDZ binding motif of Fzd4, and not its conserved proximal Dvl-interacting PDZ motif, is required for mediating this effect. We further showed that Dvl signaled parallel to and independent of Fzd4 in promoting dendrite growth. Unlike most previously described pathways, Wnt5a/Fzd4 signaling promoted dendrite development in an activity-independent and autocrine fashion. Together, these results provide the first identification of a Wnt receptor for regulating dendrite development in the mammalian system, and demonstrate a novel function of the distal PDZ motif of Fzd4 in dendrite morphogenesis, thereby expanding our knowledge of the complex roles of Wnt signaling in neural development. PMID:25424568

  19. The spatio-temporal domains of Frizzled6 action in planar polarity control of hair follicle orientation.

    PubMed

    Chang, Hao; Smallwood, Philip M; Williams, John; Nathans, Jeremy

    2016-01-01

    In mammals, hair follicles cover most of the body surface and exhibit precise and stereotyped orientations relative to the body axes. Follicle orientation is controlled by the planar cell polarity (PCP; or, more generally, tissue polarity) system, as determined by the follicle mis-orientation phenotypes observed in mice with PCP gene mutations. The present study uses conditional knockout alleles of the PCP genes Frizzled6 (Fz6), Vangl1, and Vangl2, together with a series of Cre drivers to interrogate the spatio-temporal domains of PCP gene action in the developing mouse epidermis required for follicle orientation. Fz6 is required starting between embryonic day (E)11.5 and E12.5. Eliminating Fz6 in either the anterior or the posterior halves of the embryo or in either the feet or the torso leads to follicle mis-orientation phenotypes that are limited to the territories associated with Fz6 loss, implying either that PCP signaling is required for communicating polarity information on a local but not a global scale, or that there are multiple independent sources of global polarity information. Eliminating Fz6 in most hair follicle cells or in the inter-follicular epidermis at E15.5 suggests that PCP signaling in developing follicles is not required to maintain their orientation. The asymmetric arrangement of Merkel cells around the base of each guard hair follicle dependents on Fz6 expression in the epidermis but not in differentiating Merkel cells. These experiments constrain current models of PCP signaling and the flow of polarity information in mammalian skin. PMID:26517967

  20. TGF-β-induced profibrotic signaling is regulated in part by the WNT receptor Frizzled-8.

    PubMed

    Spanjer, Anita I R; Baarsma, Hoeke A; Oostenbrink, Lisette M; Jansen, Sepp R; Kuipers, Christine C; Lindner, Michael; Postma, Dirkje S; Meurs, Herman; Heijink, Irene H; Gosens, Reinoud; Königshoff, Melanie

    2016-05-01

    TGF-β is important in lung injury and remodeling processes. TGF-β and Wingless/integrase-1 (WNT) signaling are interconnected; however, the WNT ligand-receptor complexes involved are unknown. Thus, we aimed to identify Frizzled (FZD) receptors that mediate TGF-β-induced profibrotic signaling. MRC-5 and primary human lung fibroblasts were stimulated with TGF-β1, WNT-5A, or WNT-5B in the presence and absence of specific pathway inhibitors. Specific small interfering RNA was used to knock down FZD8. In vivo studies using bleomycin-induced lung fibrosis were performed in wild-type and FZD8-deficient mice. TGF-β1 induced FZD8 specifically via Smad3-dependent signaling in MRC-5 and primary human lung fibroblasts. It is noteworthy that FZD8 knockdown reduced TGF-β1-induced collagen Iα1, fibronectin, versican, α-smooth muscle (sm)-actin, and connective tissue growth factor. Moreover, bleomycin-induced lung fibrosis was attenuated in FZD8-deficient mice in vivo Although inhibition of canonical WNT signaling did not affect TGF-β1-induced gene expression in vitro, noncanonical WNT-5B mimicked TGF-β1-induced fibroblast activation. FZD8 knockdown reduced both WNT-5B-induced gene expression of fibronectin and α-sm-actin, as well as WNT-5B-induced changes in cellular impedance. Collectively, our findings demonstrate a role for FZD8 in TGF-β-induced profibrotic signaling and imply that WNT-5B may be the ligand for FZD8 in these responses.-Spanjer, A. I. R., Baarsma, H. A., Oostenbrink, L. M., Jansen, S. R., Kuipers, C. C., Lindner, M., Postma, D. S., Meurs, H., Heijink, I. H., Gosens, R., Königshoff, M. TGF-β-induced profibrotic signaling is regulated in part by the WNT receptor Frizzled-8. PMID:26849959

  1. The Sclerostin-Bone Protein Interactome

    PubMed Central

    Devarajan-Ketha, Hemamalini; Craig, Theodore A.; Madden, Benjamin J.; Bergen, H. Robert; Kumar, Rajiv

    2012-01-01

    The secreted glycoprotein, sclerostin alters bone formation. To gain insights into the mechanism of action of sclerostin, we examined the interactions of sclerostin with bone proteins using a sclerostin affinity capture technique. Proteins from decalcified rat bone were captured on sclerostin-maltose binding protein (MBP) amylose column, or on a MBP amylose column. The columns were extensively washed with low ionic strength buffer, and bound proteins were eluted with buffer containing 1M sodium chloride. Eluted proteins were separated by denaturing sodium-dodecyl sulfate gel electrophoresis and were identified by mass spectrometry. Several previously unidentified full-length sclerostin-interacting proteins such as alkaline phosphatase, carbonic anhydrase, gremlin-1, fetuin A, midkine, annexin A1 and A2, and collagen α1, which have established roles in bone formation or resorption processes, were bound to the sclerostin-MBP amylose resin but not to the MBP amylose resin. Other full-length sclerostin-interacting proteins such as casein kinase II and secreted frizzled related protein 4 that modulate Wnt signaling were identified. Several peptides derived from proteins such as PHEX, asporin and follistatin protein that regulate bone metabolism also bound sclerostin. Sclerostin interacts with multiple proteins that alter bone formation and resorption and is likely to function by altering several biologically relevant pathways in bone. PMID:22206666

  2. Norrin, Frizzled4, and Lrp5 signaling in endothelial cells controls a genetic program for retinal vascularization

    PubMed Central

    Ye, Xin; Wang, Yanshu; Cahill, Hugh; Yu, Minzhong; Badea, Tudor C.; Smallwood, Philip M.; Peachey, Neal S.; Nathans, Jeremy

    2009-01-01

    SUMMARY Disorders of vascular structure and function play a central role in a wide variety of CNS diseases. Mutations in the Frizzled4 (Fz4) receptor, Lrp5 co-receptor, or Norrin ligand cause retinal hypovascularization, but the role of Norrin/Fz4/Lrp signaling in vascular development has not been defined. Using mouse genetic and cell culture models, we show that loss of Fz4 signaling in endothelial cells causes defective vascular growth, which leads to chronic but reversible silencing of retinal neurons. Loss of Fz4 in all endothelial cells disrupts the blood brain barrier in the cerebellum, while excessive Fz4 signaling disrupts embryonic angiogenesis. Sox17, a transcription factor that is up-regulated by Norrin/Fz4/Lrp signaling, plays a central role in inducing the angiogenic program controlled by Norrin/Fz4/Lrp. These experiments establish a cellular basis for retinal hypovascularization diseases due to insufficient Frizzled signaling, and they suggest a broader role for Frizzled signaling in vascular growth, remodeling, maintenance, and disease. PMID:19837032

  3. Relating protein adduction to gene expression changes: a systems approach

    PubMed Central

    Zhang, Bing; Shi, Zhiao; Duncan, Dexter T; Prodduturi, Naresh; Marnett, Lawrence J; Liebler, Daniel C

    2013-01-01

    Modification of proteins by reactive electrophiles such as the 4-hydroxy-2-nonenal (HNE) plays a critical role in oxidant-associated human diseases. However, little is known about protein adduction and the mechanism by which protein damage elicits adaptive effects and toxicity. We developed a systems approach for relating protein adduction to gene expression changes through the integration of protein adduction, gene expression, protein-DNA interaction, and protein-protein interaction data. Using a random walk strategy, we expanded a list of responsive transcription factors inferred from gene expression studies to upstream signaling networks, which in turn allowed overlaying protein adduction data on the network for the prediction of stress sensors and their associated regulatory mechanisms. We demonstrated the general applicability of transcription factor-based signaling network inference using 103 known pathways. Applying our workflow on gene expression and protein adduction data from HNE-treatment not only rediscovered known mechanisms of electrophile stress but also generated novel hypotheses regarding protein damage sensors. Although developed for analyzing protein adduction data, the framework can be easily adapted for phosphoproteomics and other types of protein modification data. PMID:21594272

  4. PSSARD: protein sequence-structure analysis relational database.

    PubMed

    Guruprasad, Kunchur; Srikanth, K; Babu, A V N

    2005-09-15

    We have implemented a relational database comprising a representative dataset of amino acid sequences and their associated secondary structure. The representative amino acid sequences were selected according to the PDB_SELECT program by choosing proteins corresponding to protein crystal structure data deposited in the protein data bank that share less than 25% overall pair-wise sequence identity. The secondary structure was extracted from the protein data bank website. The information content in the database includes the protein description, PDB code, crystal structure resolution, total number of amino acid residues in the protein chain, amino acid sequence, secondary structure conformation and its summary. The database is freely accessible from the website mentioned below and is useful to query on any of the above fields. The database is particularly useful to quickly retrieve amino acid sequences that are compatible to any super-secondary structure conformation from several proteins simultaneously. PMID:16054209

  5. The role of G protein-coupled receptors in cochlear planar cell polarity.

    PubMed

    Sun, Jinpeng; Zhang, Daolai; Wang, Yanfei; Lin, Hal; Yu, Xiao; Xu, Zhigang

    2016-08-01

    Planar cell polarity (PCP) is defined as the coordinated alignment of cell polarity across the tissue plane, which is important for the integration of cells into tissues. One of the best examples of PCP is in the cochlear epithelium. Several core PCP proteins have been identified to play important roles in PCP regulation, in which these proteins form complexes and associate with the cell membrane asymmetrically, mediating intercellular PCP signal transduction. Among the core PCP proteins are two G protein-coupled receptors (GPCRs), Celsr and Frizzled, both of which have been shown to play important roles in cochlear PCP regulation. Celsr and Frizzled genes are expressed in the cochlear sensory epithelium, and Frizzled1, 2, 3 and 6 show asymmetric localizations on the cell membrane of hair cells or supporting cells. In the animal model, Celsr1, Frizzled2 and Frizzled3/6 mutant or knockout mice have profound cochlear PCP deficits. Downstream of GPCR signaling, Gαi was shown to asymmetrically localize on the apical surface of hair cells, together with LGN and mInsc, Gαi controls cochlear PCP in a cell-autonomous way. Inactivity of Gαi, LGN or mInsc results in PCP deficits in the mouse cochlea. We hypothesize that GPCR-Gαi coupling plays a pivotal role in cochlear PCP regulation via connecting the intercellular PCP signals with cell-autonomous PCP machinery. Further investigations are needed to fully understand the mechanism of cochlear PCP regulation. PMID:26921719

  6. Current Overview of Allergens of Plant Pathogenesis Related Protein Families

    PubMed Central

    Sinha, Mau; Singh, Rashmi Prabha; Kushwaha, Gajraj Singh; Iqbal, Naseer; Singh, Avinash; Kaushik, Sanket; Sharma, Sujata; Singh, Tej P.

    2014-01-01

    Pathogenesis related (PR) proteins are one of the major sources of plant derived allergens. These proteins are induced by the plants as a defense response system in stress conditions like microbial and insect infections, wounding, exposure to harsh chemicals, and atmospheric conditions. However, some plant tissues that are more exposed to environmental conditions like UV irradiation and insect or fungal attacks express these proteins constitutively. These proteins are mostly resistant to proteases and most of them show considerable stability at low pH. Many of these plant pathogenesis related proteins are found to act as food allergens, latex allergens, and pollen allergens. Proteins having similar amino acid sequences among the members of PR proteins may be responsible for cross-reactivity among allergens from diverse plants. This review analyzes the different pathogenesis related protein families that have been reported as allergens. Proteins of these families have been characterized in regard to their biological functions, amino acid sequence, and cross-reactivity. The three-dimensional structures of some of these allergens have also been evaluated to elucidate the antigenic determinants of these molecules and to explain the cross-reactivity among the various allergens. PMID:24696647

  7. Positioning of centrioles is a conserved readout of Frizzled planar cell polarity signalling.

    PubMed

    Carvajal-Gonzalez, Jose Maria; Roman, Angel-Carlos; Mlodzik, Marek

    2016-01-01

    Planar cell polarity (PCP) signalling is a well-conserved developmental pathway regulating cellular orientation during development. An evolutionarily conserved pathway readout is not established and, moreover, it is thought that PCP mediated cellular responses are tissue-specific. A key PCP function in vertebrates is to regulate coordinated centriole/cilia positioning, a function that has not been associated with PCP in Drosophila. Here we report instructive input of Frizzled-PCP (Fz/PCP) signalling into polarized centriole positioning in Drosophila wings. We show that centrioles are polarized in pupal wing cells as a readout of PCP signalling, with both gain and loss-of-function Fz/PCP signalling affecting centriole polarization. Importantly, loss or gain of centrioles does not affect Fz/PCP establishment, implicating centriolar positioning as a conserved PCP-readout, likely downstream of PCP-regulated actin polymerization. Together with vertebrate data, these results suggest a unifying model of centriole/cilia positioning as a common downstream effect of PCP signalling from flies to mammals. PMID:27021213

  8. Positioning of centrioles is a conserved readout of Frizzled planar cell polarity signalling

    PubMed Central

    Carvajal-Gonzalez, Jose Maria; Roman, Angel-Carlos; Mlodzik, Marek

    2016-01-01

    Planar cell polarity (PCP) signalling is a well-conserved developmental pathway regulating cellular orientation during development. An evolutionarily conserved pathway readout is not established and, moreover, it is thought that PCP mediated cellular responses are tissue-specific. A key PCP function in vertebrates is to regulate coordinated centriole/cilia positioning, a function that has not been associated with PCP in Drosophila. Here we report instructive input of Frizzled-PCP (Fz/PCP) signalling into polarized centriole positioning in Drosophila wings. We show that centrioles are polarized in pupal wing cells as a readout of PCP signalling, with both gain and loss-of-function Fz/PCP signalling affecting centriole polarization. Importantly, loss or gain of centrioles does not affect Fz/PCP establishment, implicating centriolar positioning as a conserved PCP-readout, likely downstream of PCP-regulated actin polymerization. Together with vertebrate data, these results suggest a unifying model of centriole/cilia positioning as a common downstream effect of PCP signalling from flies to mammals. PMID:27021213

  9. Characterization and embryonic expression of four amphioxus Frizzled genes with important functions during early embryogenesis.

    PubMed

    Qian, Guanghui; Li, Guang; Chen, Xiaoying; Wang, Yiquan

    2013-12-01

    The Wnt signaling pathway plays crucial roles in the embryonic patterning of all metazoans. Recent studies on Wnt genes in amphioxus have shed important insights into the evolution of the vertebrate Wnt gene family and their functions. Nevertheless, the potential roles of Wnt family receptors encoded by Frizzled (Fz) genes in amphioxus embryonic development remain to be investigated. In the present study, we identified four amphioxus Fz genes-AmphiFz1/2/7, AmphiFz4, AmphiFz5/8, and AmphiFz9/10-and analyzed their expression patterns during amphioxus embryogenesis. We found that these four Fz genes were maternally expressed and might be involved in early animal-vegetal axis establishment. The AmphiFz1/2/7 transcripts were detected in the central dorsal neural plate, mesoderm, the Hatschek's pit, and rim of the mouth, whereas those of AmphiFz4 were detected in the mesoderm, pharyngeal endoderm, and entire gut region. AmphiFz5/8 was exclusively expressed in the anterior-most region, whereas AmphiFz9/10 was expressed in the neural plate, somites, and tail bud. The dynamic and diverse expression patterns of amphioxus Fz genes suggest that these genes are not only associated with early embryonic axis establishment but also are involved in the development of several organs in amphioxus. PMID:24012522

  10. Protein Structure Is Related to RNA Structural Reactivity In Vivo.

    PubMed

    Tang, Yin; Assmann, Sarah M; Bevilacqua, Philip C

    2016-02-27

    We assessed whether in vivo mRNA structural reactivity and the structure of the encoded protein are related. This is the first investigation of such a relationship that utilizes information on RNA structure obtained in living cells. Based on our recent genome-wide Structure-seq analysis in Arabidopsis thaliana, we report that, as a meta property, regions of individual mRNAs that code for protein domains generally have higher reactivity to DMS (dimethyl sulfate), a chemical that covalently modifies accessible As and Cs, than regions that encode protein domain junctions. This relationship is prominent for proteins annotated for catalytic activity and reversed in proteins annotated for binding and transcription regulatory activity. Upon analyzing intrinsically disordered proteins, we found a similar pattern for disordered regions as compared to ordered regions: regions of individual mRNAs that code for ordered regions have significantly higher DMS reactivity than regions that code for intrinsically disordered regions. Based on these effects, we hypothesize that the decreased DMS reactivity of RNA regions that encode protein domain junctions or intrinsically disordered regions may reflect increased RNA structure that may slow translation, allowing time for the nascent protein domain or ordered region of the protein to fold, thereby reducing protein misfolding. In addition, a drop in DMS reactivity was observed on portions of mRNA sequences that correspond to the C-termini of protein domains, suggesting ribosome protection at these mRNA regions. Structural relationships between mRNAs and their encoded proteins may have evolved to allow efficient and accurate protein folding. PMID:26598238

  11. Relative Quantification of Several Plasma Proteins during Liver Transplantation Surgery

    PubMed Central

    Parviainen, Ville; Joenväärä, Sakari; Tukiainen, Eija; Ilmakunnas, Minna; Isoniemi, Helena; Renkonen, Risto

    2011-01-01

    Plasma proteome is widely used in studying changes occurring in human body during disease or other disturbances. Immunological methods are commonly used in such studies. In recent years, mass spectrometry has gained popularity in high-throughput analysis of plasma proteins. In this study, we tested whether mass spectrometry and iTRAQ-based protein quantification might be used in proteomic analysis of human plasma during liver transplantation surgery to characterize changes in protein abundances occurring during early graft reperfusion. We sampled blood from systemic circulation as well as blood entering and exiting the liver. After immunodepletion of six high-abundant plasma proteins, trypsin digestion, iTRAQ labeling, and cation-exchange fractionation, the peptides were analyzed by reverse phase nano-LC-MS/MS. In total, 72 proteins were identified of which 31 could be quantified in all patient specimens collected. Of these 31 proteins, ten, mostly medium-to-high abundance plasma proteins with a concentration range of 50–2000 mg/L, displayed relative abundance change of more than 10%. The changes in protein abundance observed in this study allow further research on the role of several proteins in ischemia-reperfusion injury during liver transplantation and possibly in other surgery. PMID:22187521

  12. Dietary proteins and food-related reward signals

    PubMed Central

    Peuhkuri, Katri; Sihvola, Nora; Korpela, Riitta

    2011-01-01

    Proteins play a crucial role in almost all biological processes. Dietary proteins are generally considered as energy yielding nutrients and as a source of amino acids for various purposes. In addition, they may have a role in food-related reward signals. The purpose of this review was to give an overview of the role of dietary proteins in food-related reward and possible mechanisms behind such effects. Dietary proteins may elicit food-related reward by several different postprandial mechanisms, including neural and humoral signals from the gastrointestinal tract to the brain. In order to exert rewarding effects, protein have to be absorbed from the intestine and reach the target cells in sufficient concentrations, or act via receptors ad cell signalling in the gut without absorption. Complex interactions between different possible mechanisms make it very difficult to gain a clear view on the role and intesity of each mechanism. It is concluded that, in principle, dietary proteins may have a role in food-related reward. However, the evidence is based mostly on experiments with animal models and one should be careful in drawing conclusions of clinical relevance. PMID:21909291

  13. Structural studies of human glioma pathogenesis-related protein 1

    SciTech Connect

    Asojo, Oluwatoyin A.; Koski, Raymond A.; Bonafé, Nathalie

    2011-10-01

    Structural analysis of a truncated soluble domain of human glioma pathogenesis-related protein 1, a membrane protein implicated in the proliferation of aggressive brain cancer, is presented. Human glioma pathogenesis-related protein 1 (GLIPR1) is a membrane protein that is highly upregulated in brain cancers but is barely detectable in normal brain tissue. GLIPR1 is composed of a signal peptide that directs its secretion, a conserved cysteine-rich CAP (cysteine-rich secretory proteins, antigen 5 and pathogenesis-related 1 proteins) domain and a transmembrane domain. GLIPR1 is currently being investigated as a candidate for prostate cancer gene therapy and for glioblastoma targeted therapy. Crystal structures of a truncated soluble domain of the human GLIPR1 protein (sGLIPR1) solved by molecular replacement using a truncated polyalanine search model of the CAP domain of stecrisp, a snake-venom cysteine-rich secretory protein (CRISP), are presented. The correct molecular-replacement solution could only be obtained by removing all loops from the search model. The native structure was refined to 1.85 Å resolution and that of a Zn{sup 2+} complex was refined to 2.2 Å resolution. The latter structure revealed that the putative binding cavity coordinates Zn{sup 2+} similarly to snake-venom CRISPs, which are involved in Zn{sup 2+}-dependent mechanisms of inflammatory modulation. Both sGLIPR1 structures have extensive flexible loop/turn regions and unique charge distributions that were not observed in any of the previously reported CAP protein structures. A model is also proposed for the structure of full-length membrane-bound GLIPR1.

  14. Development of the aboral domain in Nematostella requires β-catenin and the opposing activities of Six3/6 and Frizzled5/8

    PubMed Central

    Leclère, Lucas; Bause, Markus; Sinigaglia, Chiara; Steger, Julia; Rentzsch, Fabian

    2016-01-01

    ABSTRACT The development of the oral pole in cnidarians and the posterior pole in bilaterians is regulated by canonical Wnt signaling, whereas a set of transcription factors, including Six3/6 and FoxQ2, controls aboral development in cnidarians and anterior identity in bilaterians. However, it is poorly understood how these two patterning systems are initially set up in order to generate correct patterning along the primary body axis. Investigating the early steps of aboral pole formation in the sea anemone Nematostella vectensis, we found that, at blastula stage, oral genes are expressed before aboral genes and that Nvβ-catenin regulates both oral and aboral development. In the oral hemisphere, Nvβ-catenin specifies all subdomains except the oral-most, NvSnailA-expressing domain, which is expanded upon Nvβ-catenin knockdown. In addition, Nvβ-catenin establishes the aboral patterning system by promoting the expression of NvSix3/6 at the aboral pole and suppressing the Wnt receptor NvFrizzled5/8 at the oral pole. NvFrizzled5/8 expression thereby gets restricted to the aboral domain. At gastrula stage, NvSix3/6 and NvFrizzled5/8 are both expressed in the aboral domain, but they have opposing activities, with NvSix3/6 maintaining and NvFrizzled5/8 restricting the size of the aboral domain. At planula stage, NvFrizzled5/8 is required for patterning within the aboral domain and for regulating the size of the apical organ by modulation of a previously characterized FGF feedback loop. Our findings suggest conserved roles for Six3/6 and Frizzled5/8 in aboral/anterior development and reveal key functions for Nvβ-catenin in the patterning of the entire oral-aboral axis of Nematostella. PMID:26989171

  15. Development of the aboral domain in Nematostella requires β-catenin and the opposing activities of Six3/6 and Frizzled5/8.

    PubMed

    Leclère, Lucas; Bause, Markus; Sinigaglia, Chiara; Steger, Julia; Rentzsch, Fabian

    2016-05-15

    The development of the oral pole in cnidarians and the posterior pole in bilaterians is regulated by canonical Wnt signaling, whereas a set of transcription factors, including Six3/6 and FoxQ2, controls aboral development in cnidarians and anterior identity in bilaterians. However, it is poorly understood how these two patterning systems are initially set up in order to generate correct patterning along the primary body axis. Investigating the early steps of aboral pole formation in the sea anemone Nematostella vectensis, we found that, at blastula stage, oral genes are expressed before aboral genes and that Nvβ-catenin regulates both oral and aboral development. In the oral hemisphere, Nvβ-catenin specifies all subdomains except the oral-most, NvSnailA-expressing domain, which is expanded upon Nvβ-catenin knockdown. In addition, Nvβ-catenin establishes the aboral patterning system by promoting the expression of NvSix3/6 at the aboral pole and suppressing the Wnt receptor NvFrizzled5/8 at the oral pole. NvFrizzled5/8 expression thereby gets restricted to the aboral domain. At gastrula stage, NvSix3/6 and NvFrizzled5/8 are both expressed in the aboral domain, but they have opposing activities, with NvSix3/6 maintaining and NvFrizzled5/8 restricting the size of the aboral domain. At planula stage, NvFrizzled5/8 is required for patterning within the aboral domain and for regulating the size of the apical organ by modulation of a previously characterized FGF feedback loop. Our findings suggest conserved roles for Six3/6 and Frizzled5/8 in aboral/anterior development and reveal key functions for Nvβ-catenin in the patterning of the entire oral-aboral axis of Nematostella. PMID:26989171

  16. Planar cell polarity protein localization in the secretory ameloblasts of rat incisors.

    PubMed

    Nishikawa, Sumio; Kawamoto, Tadafumi

    2012-05-01

    The localization of the planar cell polarity proteins Vang12, frizzled-3, Vang11, and Celsr1 in the rat incisors was examined using immunocytochemistry. The results showed that Vang12 was localized at two regions of the Tomes' processes of inner enamel-secretory ameloblasts in rat incisors: a proximal and a distal region. In contrast, frizzled-3 was localized at adherens junctions of the proximal and distal areas of inner enamel- and outer enamel-secretory ameloblasts, where N-cadherin and β-catenin were localized. frizzled-3 was also localized in differentiating inner enamel epithelial cells. Vang11 was localized sparsely in differentiating preameloblasts and extensively at the cell boundary of stratum intermedium. Celsr1 was not localized in ameloblasts but localized in odontoblasts extensively. These results suggest the involvement of planar cell polarity proteins in odontogenesis. PMID:22378702

  17. Benchmarking NMR experiments: A relational database of protein pulse sequences

    NASA Astrophysics Data System (ADS)

    Senthamarai, Russell R. P.; Kuprov, Ilya; Pervushin, Konstantin

    2010-03-01

    Systematic benchmarking of multi-dimensional protein NMR experiments is a critical prerequisite for optimal allocation of NMR resources for structural analysis of challenging proteins, e.g. large proteins with limited solubility or proteins prone to aggregation. We propose a set of benchmarking parameters for essential protein NMR experiments organized into a lightweight (single XML file) relational database (RDB), which includes all the necessary auxiliaries (waveforms, decoupling sequences, calibration tables, setup algorithms and an RDB management system). The database is interfaced to the Spinach library ( http://spindynamics.org), which enables accurate simulation and benchmarking of NMR experiments on large spin systems. A key feature is the ability to use a single user-specified spin system to simulate the majority of deposited solution state NMR experiments, thus providing the (hitherto unavailable) unified framework for pulse sequence evaluation. This development enables predicting relative sensitivity of deposited implementations of NMR experiments, thus providing a basis for comparison, optimization and, eventually, automation of NMR analysis. The benchmarking is demonstrated with two proteins, of 170 amino acids I domain of αXβ2 Integrin and 440 amino acids NS3 helicase.

  18. [Construction of nervous system relative protein and gene secondary database].

    PubMed

    Wang, Pan; Chen, Xinhao; Liu, Xiangming

    2007-10-01

    Along with the rapid research of neural molecular biology, abundant data are produced so that the collection and coordination of high-throughout data about nervous system relative proteins and genes are imperative. Through analyzing the biological primary databases maintained by NCBI and RCSB as the main data source and designing a new data model, a local specialized secondary database is constructed, which mainly includes nucleotide sequences, protein sequences and protein structures, and is established on Sun Blade 2000 System and Oracle 9i. All programs are developed by Java technology. A method of web information automatic retrieval with XML is proposed for sequence data collection and submission to the database. JSP + JavaBean technology is used to support data promulgation on Internet. The establishment of this database provides an excellent platform for the research of neural molecular biology and the pathogenesis of related diseases. PMID:18027688

  19. Antifreeze proteins in winter rye are similar to pathogenesis-related proteins.

    PubMed Central

    Hon, W C; Griffith, M; Mlynarz, A; Kwok, Y C; Yang, D S

    1995-01-01

    The ability to control extracellular ice formation during freezing is critical to the survival of freezing-tolerant plants. Antifreeze proteins, which are proteins that have the ability to retard ice crystal growth, were recently identified as the most abundant apoplastic proteins in cold-acclimated winter rye (Secale cereale L.) leaves. In the experiments reported here, amino-terminal sequence comparisons, immuno-cross-reactions, and enzyme activity assays all indicated that these antifreeze proteins are similar to members of three classes of pathogenesis-related proteins, namely, endochitinases, endo-beta-1,3-glucanases, and thaumatin-like proteins. Apoplastic endochitinases and endo-beta-1,3-glucanases that were induced by pathogens in freezing-sensitive tobacco did not exhibit antifreeze activity. Our findings suggest that subtle structural differences may have evolved in the pathogenesis-related proteins that accumulate at cold temperatures in winter rye to confer upon these proteins the ability to bind to ice. PMID:8552719

  20. Dickkopf-related protein 3 is a potential Aβ-associated protein in Alzheimer's Disease.

    PubMed

    Bruggink, Kim A; Kuiperij, H Bea; Gloerich, Jolein; Otte-Höller, Irene; Rozemuller, Annemieke J M; Claassen, Jurgen A H R; Küsters, Benno; Verbeek, Marcel M

    2015-09-01

    Amyloid-β (Aβ) is the most prominent protein in Alzheimer's disease (AD) senile plaques. In addition, Aβ interacts with a variety of Aβ-associated proteins (AAPs), some of which can form complexes with Aβ and influence its clearance, aggregation or toxicity. Identification of novel AAPs may shed new light on the pathophysiology of AD and the metabolic fate of Aβ. In this study, we aimed to identify new AAPs by searching for proteins that may form soluble complexes with Aβ in CSF, using a proteomics approach. We identified the secreted Wnt pathway protein Dickkopf-related protein 3 (Dkk-3) as a potential Aβ-associated protein. Using immunohistochemistry on human AD brain tissue, we observed that (i) Dkk-3 co-localizes with Aβ in the brain, both in diffuse and classic plaques. (ii) Dkk-3 is expressed in neurons and in blood vessel walls in the brain and (iii) is secreted by leptomeningeal smooth muscle cells in vitro. Finally, measurements using ELISA revealed that (iv) Dkk-3 protein is abundantly present in both cerebrospinal fluid and serum, but its levels are similar in non-demented controls and patients with AD, Lewy body dementia, and frontotemporal dementia. Our study demonstrates that Dkk-3 is a hitherto unidentified Aβ-associated protein which, given its relatively high cerebral concentrations and co-localization with Aβ, is potentially involved in AD pathology. In this study, we propose that Dickkopf-related protein-3 (Dkk-3) might be a novel Amyloid-β (Aβ) associated protein. We demonstrate that Dkk-3 is expressed in the brain, especially in vessel walls, and co-localizes with Aβ in senile plaques. Furthermore, Dkk-3 levels in cerebrospinal fluid strongly correlate with Aβ40 levels, but were not suitable to discriminate non-demented controls and patients with dementia. PMID:26119087

  1. Surfactant Proteins in Smoking-Related Lung Disease.

    PubMed

    Papaioannou, Andriana I; Papiris, Spyridon; Papadaki, Georgia; Manali, Effrosyni D; Roussou, Aneza; Spathis, Aris; Karakitsos, Petros; Kostikas, Konstantinos

    2016-01-01

    Pulmonary surfactant is a highly surface-active mixture of proteins and lipids that is synthesized and secreted in the alveoli by type II epithelial cells and is found in the fluid lining the alveolar surface. The protein part of surfactant constitutes two hydrophilic proteins (SP-A and SP-D) that regulate surfactant metabolism and have immunologic functions, and two hydrophobic proteins (SP-B and SP-C), which play a direct role in the organization of the surfactant structure in the interphase and in the stabilization of the lipid layers during the respiratory cycle. Several studies have shown that cigarette smoke seems to affect, in several ways, both surfactant homeostasis and function. The alterations in surfactants' biophysical properties caused by cigarette smoking, contribute to the development of several smoking related lung diseases. In this review we provide information on biochemical and physiological aspects of the pulmonary surfactant and on its possible association with the development of two major chronic diseases of the lung known to be related to smoking, i.e. chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF). Additional information on the possible role of surfactant protein alterations and/or dysfunction in the combination of these two conditions, recently described as combined pulmonary fibrosis and emphysema (CPFE) are also provided. PMID:26420367

  2. Antibody arrays for determination of relative protein abundances.

    PubMed

    Chaga, Grigoriy S

    2008-01-01

    As a large number of genome-sequencing projects reached completion, the attention of the scientific community is turning toward understanding the structure-functions of gene translation products-the proteins as well as the complete complement of proteins-the proteome. One goal of proteomics is to correlate changes in protein abundance with biological processes and disease states. To help accelerate this avenue of proteomics, a significant effort has been devoted to the development of multiplexed methods for protein analyses. We have developed an Antibody Microarray, a chip-based technology for multiparallel determination of relative abundance of hundreds of proteins. The Antibody Microarray is composed of hundreds of distinct monoclonal antibodies printed at high density on a glass slide. It utilizes a novel experimental setup and data analysis algorithm, which enables scientists to assay hundreds of cytosolic, nuclear, and membrane-bound proteins with a single experiment. Examples of biological samples that are analyzed on the Antibody Microarray include tissue samples, cell cultures, and body fluids. PMID:18370316

  3. Structural studies of human glioma pathogenesis-related protein 1

    PubMed Central

    Asojo, Oluwatoyin A.; Koski, Raymond A.; Bonafé, Nathalie

    2011-01-01

    Human glioma pathogenesis-related protein 1 (GLIPR1) is a membrane protein that is highly upregulated in brain cancers but is barely detectable in normal brain tissue. GLIPR1 is composed of a signal peptide that directs its secretion, a conserved cysteine-rich CAP (cysteine-rich secretory proteins, antigen 5 and pathogenesis-related 1 proteins) domain and a transmembrane domain. GLIPR1 is currently being investigated as a candidate for prostate cancer gene therapy and for glioblastoma targeted therapy. Crystal structures of a truncated soluble domain of the human GLIPR1 protein (sGLIPR1) solved by molecular replacement using a truncated polyalanine search model of the CAP domain of stecrisp, a snake-venom cysteine-rich secretory protein (CRISP), are presented. The correct molecular-replacement solution could only be obtained by removing all loops from the search model. The native structure was refined to 1.85 Å resolution and that of a Zn2+ complex was refined to 2.2 Å resolution. The latter structure revealed that the putative binding cavity coordinates Zn2+ similarly to snake-venom CRISPs, which are involved in Zn2+-dependent mechanisms of inflammatory modulation. Both sGLIPR1 structures have extensive flexible loop/turn regions and unique charge distributions that were not observed in any of the previously reported CAP protein structures. A model is also proposed for the structure of full-length membrane-bound GLIPR1. PMID:21931216

  4. Predicting disease-related genes by topological similarity in human protein-protein interaction network

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Hu, Ke; Tang, Yi

    2010-08-01

    Predicting genes likely to be involved in human diseases is an important task in bioinformatics field. Nowadays, the accumulation of human protein-protein interactions (PPIs) data provides us an unprecedented opportunity to gain insight into human diseases. In this paper, we adopt the topological similarity in human protein-protein interaction network to predict disease-related genes. As a computational algorithm to speed up the identification of disease-related genes, the topological similarity has substantial advantages over previous topology-based algorithms. First of all, it provides a global measurement of similarity between two vertices. Secondly, quantity which can measure new topological feature has been integrated into the notion of topological similarity. Our method is specially designed for predicting disease-related genes of single disease-gene family. The proposed method is applied to human protein-protein interaction and hepatocellular carcinoma (HCC) data. The results show a significant enrichment of disease-related genes that are characterized by higher topological similarity than other genes.

  5. The Wnt Frizzled Receptor MOM-5 Regulates the UNC-5 Netrin Receptor through Small GTPase-Dependent Signaling to Determine the Polarity of Migrating Cells

    PubMed Central

    Levy-Strumpf, Naomi; Krizus, Meghan; Zheng, Hong; Brown, Louise; Culotti, Joseph G.

    2015-01-01

    Wnt and Netrin signaling regulate diverse essential functions. Using a genetic approach combined with temporal gene expression analysis, we found a regulatory link between the Wnt receptor MOM-5/Frizzled and the UNC-6/Netrin receptor UNC-5. These two receptors play key roles in guiding cell and axon migrations, including the migration of the C. elegans Distal Tip Cells (DTCs). DTCs migrate post-embryonically in three sequential phases: in the first phase along the Antero-Posterior (A/P) axis, in the second, along the Dorso-Ventral (D/V) axis, and in the third, along the A/P axis. Loss of MOM-5/Frizzled function causes third phase A/P polarity reversals of the migrating DTCs. We show that an over-expression of UNC-5 causes similar DTC A/P polarity reversals and that unc-5 deficits markedly suppress the A/P polarity reversals caused by mutations in mom-5/frizzled. This implicates MOM-5/Frizzled as a negative regulator of unc-5. We provide further evidence that small GTPases mediate MOM-5’s regulation of unc-5 such that one outcome of impaired function of small GTPases like CED-10/Rac and MIG-2/RhoG is an increase in unc-5 function. The work presented here demonstrates the existence of cross talk between components of the Netrin and Wnt signaling pathways and provides further insights into the way guidance signaling mechanisms are integrated to orchestrate directed cell migration. PMID:26292279

  6. Cytoskeletal protein kinases: titin and its relations in mechanosensing.

    PubMed

    Gautel, Mathias

    2011-07-01

    Titin, the giant elastic ruler protein of striated muscle sarcomeres, contains a catalytic kinase domain related to a family of intrasterically regulated protein kinases. The most extensively studied member of this branch of the human kinome is the Ca(2+)-calmodulin (CaM)-regulated myosin light-chain kinases (MLCK). However, not all kinases of the MLCK branch are functional MLCKs, and about half lack a CaM binding site in their C-terminal autoinhibitory tail (AI). A unifying feature is their association with the cytoskeleton, mostly via actin and myosin filaments. Titin kinase, similar to its invertebrate analogue twitchin kinase and likely other "MLCKs", is not Ca(2+)-calmodulin-activated. Recently, local protein unfolding of the C-terminal AI has emerged as a common mechanism in the activation of CaM kinases. Single-molecule data suggested that opening of the TK active site could also be achieved by mechanical unfolding of the AI. Mechanical modulation of catalytic activity might thus allow cytoskeletal signalling proteins to act as mechanosensors, creating feedback mechanisms between cytoskeletal tension and tension generation or cellular remodelling. Similar to other MLCK-like kinases like DRAK2 and DAPK1, TK is linked to protein turnover regulation via the autophagy/lysosomal system, suggesting the MLCK-like kinases have common functions beyond contraction regulation. PMID:21416260

  7. Nanoparticles in relation to peptide and protein aggregation

    PubMed Central

    Zaman, Masihuz; Ahmad, Ejaz; Qadeer, Atiyatul; Rabbani, Gulam; Khan, Rizwan Hasan

    2014-01-01

    Over the past two decades, there has been considerable research interest in the use of nanoparticles in the study of protein and peptide aggregation, and of amyloid-related diseases. The influence of nanoparticles on amyloid formation yields great interest due to its small size and high surface area-to-volume ratio. Targeting nucleation kinetics by nanoparticles is one of the most searched for ways to control or induce this phenomenon. The observed effect of nanoparticles on the nucleation phase is determined by particle composition, as well as the amount and nature of the particle’s surface. Various thermodynamic parameters influence the interaction of proteins and nanoparticles in the solution, and regulate the protein assembly into fibrils, as well as the disaggregation of preformed fibrils. Metals, organic particles, inorganic particles, amino acids, peptides, proteins, and so on are more suitable candidates for nanoparticle formulation. In the present review, we attempt to explore the effects of nanoparticles on protein and peptide fibrillation processes from both perspectives (ie, as inducers and inhibitors on nucleation kinetics and in the disaggregation of preformed fibrils). Their formulation and characterization by different techniques have been also addressed, along with their toxicological effects, both in vivo and in vitro. PMID:24611007

  8. Age-Related Differences in Plasma Proteins: How Plasma Proteins Change from Neonates to Adults

    PubMed Central

    Ignjatovic, Vera; Lai, Cera; Summerhayes, Robyn; Mathesius, Ulrike; Tawfilis, Sherif; Perugini, Matthew A.; Monagle, Paul

    2011-01-01

    The incidence of major diseases such as cardiovascular disease, thrombosis and cancer increases with age and is the major cause of mortality world-wide, with neonates and children somehow protected from such diseases of ageing. We hypothesized that there are major developmental differences in plasma proteins and that these contribute to age-related changes in the incidence of major diseases. We evaluated the human plasma proteome in healthy neonates, children and adults using the 2D-DIGE approach. We demonstrate significant changes in number and abundance of up to 100 protein spots that have marked differences in during the transition of the plasma proteome from neonate and child through to adult. These proteins are known to be involved in numerous physiological processes such as iron transport and homeostasis, immune response, haemostasis and apoptosis, amongst others. Importantly, we determined that the proteins that are differentially expressed with age are not the same proteins that are differentially expressed with gender and that the degree of phosphorylation of plasma proteins also changes with age. Given the multi-functionality of these proteins in human physiology, understanding the differences in the plasma proteome in neonates and children compared to adults will make a major contribution to our understanding of developmental biology in humans. PMID:21365000

  9. Survivin and related proteins in canine mammary tumors: immunohistochemical expression.

    PubMed

    Bongiovanni, L; Romanucci, M; Malatesta, D; D'Andrea, A; Ciccarelli, A; Della Salda, L

    2015-03-01

    Survivin is reexpressed in most human breast cancers, where its expression has been associated with tumor aggressiveness, poor prognosis, and poor response to therapy. Survivin expression was evaluated in 41 malignant canine mammary tumors (CMTs) by immunohistochemistry, in relation to histological grade and stage, and correlated with that of some related molecules (β-catenin, caspase 3, heat shock proteins) to understand their possible role in canine mammary tumorigenesis. An increase in nuclear survivin expression, compared with healthy mammary glands, was observed in CMTs, where nuclear immunolabeling was related to the presence of necrosis. No statistically significant relation was found between the expression of the investigated molecules and the histological grade or stage. The present study may suggest an important involvement of survivin in CMT tumorigenesis. Its overexpression in most of the cases evaluated might suggest that targeting survivin in CMTs may be a valid anticancer therapy. PMID:24686389

  10. Sequence and comparative genomic analysis of actin-related proteins.

    PubMed

    Muller, Jean; Oma, Yukako; Vallar, Laurent; Friederich, Evelyne; Poch, Olivier; Winsor, Barbara

    2005-12-01

    Actin-related proteins (ARPs) are key players in cytoskeleton activities and nuclear functions. Two complexes, ARP2/3 and ARP1/11, also known as dynactin, are implicated in actin dynamics and in microtubule-based trafficking, respectively. ARP4 to ARP9 are components of many chromatin-modulating complexes. Conventional actins and ARPs codefine a large family of homologous proteins, the actin superfamily, with a tertiary structure known as the actin fold. Because ARPs and actin share high sequence conservation, clear family definition requires distinct features to easily and systematically identify each subfamily. In this study we performed an in depth sequence and comparative genomic analysis of ARP subfamilies. A high-quality multiple alignment of approximately 700 complete protein sequences homologous to actin, including 148 ARP sequences, allowed us to extend the ARP classification to new organisms. Sequence alignments revealed conserved residues, motifs, and inserted sequence signatures to define each ARP subfamily. These discriminative characteristics allowed us to develop ARPAnno (http://bips.u-strasbg.fr/ARPAnno), a new web server dedicated to the annotation of ARP sequences. Analyses of sequence conservation among actins and ARPs highlight part of the actin fold and suggest interactions between ARPs and actin-binding proteins. Finally, analysis of ARP distribution across eukaryotic phyla emphasizes the central importance of nuclear ARPs, particularly the multifunctional ARP4. PMID:16195354

  11. Mutations alter secretion of fukutin-related protein.

    PubMed

    Lu, Pei J; Zillmer, Allen; Wu, XiaoHua; Lochmuller, Hanns; Vachris, Judy; Blake, Derek; Chan, Yiumo Michael; Lu, Qi L

    2010-02-01

    Mutations in the fukutin-related protein (FKRP) gene cause limb-girdle muscular dystrophy type 2I (LGMD2I) as well as other severe muscle disorders, including Walker-Warburg syndrome, muscle-eye-brain disease, and congenital muscular dystrophy type 1C. The FKRP gene encodes a putative glycosyltransferase, but its precise localization and functions have yet to be determined. In the present study, we demonstrated that normal FKRP is secreted into culture medium and mutations alter the pattern of secretion in CHO cells. L276I mutation associated with mild disease phenotype was shown to reduce the level of secretion whereas P448L and C318Y mutations associated with severe disease phenotype almost abolished the secretion. However, a truncated FKRP mutant protein lacking the entire C-terminal 185 amino acids due to the E310X nonsense mutation was able to secrete as efficiently as the normal FKRP. The N-terminal signal peptide sequence is apparently cleaved from the secreted FKRP proteins. Alteration of the secretion pathway by different mutations and spontaneous read-through of nonsense mutation may contribute to wide variations in phenotypes associated with FKRP-related diseases. PMID:19900540

  12. Pathogenesis-related proteins protect extrafloral nectar from microbial infestation.

    PubMed

    González-Teuber, Marcia; Eilmus, Sascha; Muck, Alexander; Svatos, Ales; Heil, Martin

    2009-05-01

    Plants in more than 300 genera produce extrafloral nectar (EFN) to attract carnivores as a means of indirect defence against herbivores. As EFN is secreted at nectaries that are not physically protected from the environment, and contains carbohydrates and amino acids, EFN must be protected from infestation by micro-organisms. We investigated the proteins and anti-microbial activity in the EFN of two Central American Acacia myrmecophytes (A. cornigera and A. hindsii) and two related non-myrmecophytes (A. farnesiana and Prosopis juliflora). Acacia myrmecophytes secrete EFN constitutively at high rates to nourish the ants inhabiting these plants as symbiotic mutualists, while non-myrmecophytes secrete EFN only in response to herbivore damage to attract non-symbiotic ants. Thus, the quality and anti-microbial protection of the EFN secreted by these two types of plants were likely to differ. Indeed, myrmecophyte EFN contained significantly more proteins than the EFN of non-myrmecophytes, and was protected effectively from microbial infestation. We found activity for three classes of pathogenesis-related (PR) enzymes: chitinase, beta-1,3-glucanase and peroxidase. Chitinases and beta-1,3-glucanases were significantly more active in myrmecophyte EFN, and chitinase at the concentrations found in myrmecophyte EFN significantly inhibited yeast growth. Of the 52 proteins found in A. cornigera EFN, 28 were annotated using nanoLC-MS/MS data, indicating that chitinases and glucanases contribute more than 50% of the total protein content in the EFN of this myrmecophyte. Our study demonstrates that PR enzymes play an important role in protecting EFN from microbial infestation. PMID:19143997

  13. Identifying Novel Candidate Genes Related to Apoptosis from a Protein-Protein Interaction Network

    PubMed Central

    Wang, Baoman; Yuan, Fei; Kong, Xiangyin; Hu, Lan-Dian; Cai, Yu-Dong

    2015-01-01

    Apoptosis is the process of programmed cell death (PCD) that occurs in multicellular organisms. This process of normal cell death is required to maintain the balance of homeostasis. In addition, some diseases, such as obesity, cancer, and neurodegenerative diseases, can be cured through apoptosis, which produces few side effects. An effective comprehension of the mechanisms underlying apoptosis will be helpful to prevent and treat some diseases. The identification of genes related to apoptosis is essential to uncover its underlying mechanisms. In this study, a computational method was proposed to identify novel candidate genes related to apoptosis. First, protein-protein interaction information was used to construct a weighted graph. Second, a shortest path algorithm was applied to the graph to search for new candidate genes. Finally, the obtained genes were filtered by a permutation test. As a result, 26 genes were obtained, and we discuss their likelihood of being novel apoptosis-related genes by collecting evidence from published literature. PMID:26543496

  14. Parathyroid Hormone–Related Protein Promotes Epithelial–Mesenchymal Transition

    PubMed Central

    Ardura, Juan Antonio; Rayego-Mateos, Sandra; Rámila, David; Ruiz-Ortega, Marta

    2010-01-01

    Epithelial–mesenchymal transition (EMT) is an important process that contributes to renal fibrogenesis. TGF-β1 and EGF stimulate EMT. Recent studies suggested that parathyroid hormone–related protein (PTHrP) promotes fibrogenesis in the damaged kidney, apparently dependent on its interaction with vascular endothelial growth factor (VEGF), but whether it also interacts with TGF-β and EGF to modulate EMT is unknown. Here, PTHrP(1-36) increased TGF-β1 in cultured tubuloepithelial cells and TGF-β blockade inhibited PTHrP-induced EMT-related changes, including upregulation of α-smooth muscle actin and integrin-linked kinase, nuclear translocation of Snail, and downregulation of E-cadherin and zonula occludens-1. PTHrP(1-36) also induced EGF receptor (EGFR) activation; inhibition of protein kinase C and metalloproteases abrogated this activation. Inhibition of EGFR activation abolished these EMT-related changes, the activation of ERK1/2, and upregulation of TGF-β1 and VEGF by PTHrP(1-36). Moreover, inhibition of ERK1/2 blocked EMT induced by either PTHrP(1-36), TGF-β1, EGF, or VEGF. In vivo, obstruction of mouse kidneys led to changes consistent with EMT and upregulation of TGF-β1 mRNA, p-EGFR protein, and PTHrP. Taken together, these data suggest that PTHrP, TGF-β, EGF, and VEGF might cooperate through activation of ERK1/2 to induce EMT in renal tubuloepithelial cells. PMID:19959711

  15. Estimating relative abundances of proteins from shotgun proteomics data

    PubMed Central

    2012-01-01

    Background Spectral counting methods provide an easy means of identifying proteins with differing abundances between complex mixtures using shotgun proteomics data. The crux spectral-counts command, implemented as part of the Crux software toolkit, implements four previously reported spectral counting methods, the spectral index (SIN), the exponentially modified protein abundance index (emPAI), the normalized spectral abundance factor (NSAF), and the distributed normalized spectral abundance factor (dNSAF). Results We compared the reproducibility and the linearity relative to each protein’s abundance of the four spectral counting metrics. Our analysis suggests that NSAF yields the most reproducible counts across technical and biological replicates, and both SIN and NSAF achieve the best linearity. Conclusions With the crux spectral-counts command, Crux provides open-source modular methods to analyze mass spectrometry data for identifying and now quantifying peptides and proteins. The C++ source code, compiled binaries, spectra and sequence databases are available at http://noble.gs.washington.edu/proj/crux-spectral-counts. PMID:23164367

  16. Perilipin-related protein regulates lipid metabolism in C. elegans

    PubMed Central

    Chughtai, Ahmed Ali; Kaššák, Filip; Kostrouchová, Markéta; Novotný, Jan Philipp; Krause, Michael W.; Kostrouch, Zdenek

    2015-01-01

    Perilipins are lipid droplet surface proteins that contribute to fat metabolism by controlling the access of lipids to lipolytic enzymes. Perilipins have been identified in organisms as diverse as metazoa, fungi, and amoebas but strikingly not in nematodes. Here we identify the protein encoded by the W01A8.1 gene in Caenorhabditis elegans as the closest homologue and likely orthologue of metazoan perilipin. We demonstrate that nematode W01A8.1 is a cytoplasmic protein residing on lipid droplets similarly as human perilipins 1 and 2. Downregulation or elimination of W01A8.1 affects the appearance of lipid droplets resulting in the formation of large lipid droplets localized around the dividing nucleus during the early zygotic divisions. Visualization of lipid containing structures by CARS microscopy in vivo showed that lipid-containing structures become gradually enlarged during oogenesis and relocate during the first zygotic division around the dividing nucleus. In mutant embryos, the lipid containing structures show defective intracellular distribution in subsequent embryonic divisions and become gradually smaller during further development. In contrast to embryos, lipid-containing structures in enterocytes and in epidermal cells of adult animals are smaller in mutants than in wild type animals. Our results demonstrate the existence of a perilipin-related regulation of fat metabolism in nematodes and provide new possibilities for functional studies of lipid metabolism. PMID:26357594

  17. HPMV: human protein mutation viewer - relating sequence mutations to protein sequence architecture and function changes.

    PubMed

    Sherman, Westley Arthur; Kuchibhatla, Durga Bhavani; Limviphuvadh, Vachiranee; Maurer-Stroh, Sebastian; Eisenhaber, Birgit; Eisenhaber, Frank

    2015-10-01

    Next-generation sequencing advances are rapidly expanding the number of human mutations to be analyzed for causative roles in genetic disorders. Our Human Protein Mutation Viewer (HPMV) is intended to explore the biomolecular mechanistic significance of non-synonymous human mutations in protein-coding genomic regions. The tool helps to assess whether protein mutations affect the occurrence of sequence-architectural features (globular domains, targeting signals, post-translational modification sites, etc.). As input, HPMV accepts protein mutations - as UniProt accessions with mutations (e.g. HGVS nomenclature), genome coordinates, or FASTA sequences. As output, HPMV provides an interactive cartoon showing the mutations in relation to elements of the sequence architecture. A large variety of protein sequence architectural features were selected for their particular relevance to mutation interpretation. Clicking a sequence feature in the cartoon expands a tree view of additional information including multiple sequence alignments of conserved domains and a simple 3D viewer mapping the mutation to known PDB structures, if available. The cartoon is also correlated with a multiple sequence alignment of similar sequences from other organisms. In cases where a mutation is likely to have a straightforward interpretation (e.g. a point mutation disrupting a well-understood targeting signal), this interpretation is suggested. The interactive cartoon can be downloaded as standalone viewer in Java jar format to be saved and viewed later with only a standard Java runtime environment. The HPMV website is: http://hpmv.bii.a-star.edu.sg/ . PMID:26503432

  18. Bacterial expansins and related proteins from the world of microbes.

    PubMed

    Georgelis, Nikolaos; Nikolaidis, Nikolas; Cosgrove, Daniel J

    2015-05-01

    The discovery of microbial expansins emerged from studies of the mechanism of plant cell growth and the molecular basis of plant cell wall extensibility. Expansins are wall-loosening proteins that are universal in the plant kingdom and are also found in a small set of phylogenetically diverse bacteria, fungi, and other organisms, most of which colonize plant surfaces. They loosen plant cell walls without detectable lytic activity. Bacterial expansins have attracted considerable attention recently for their potential use in cellulosic biomass conversion for biofuel production, as a means to disaggregate cellulosic structures by nonlytic means ("amorphogenesis"). Evolutionary analysis indicates that microbial expansins originated by multiple horizontal gene transfers from plants. Crystallographic analysis of BsEXLX1, the expansin from Bacillus subtilis, shows that microbial expansins consist of two tightly packed domains: the N-terminal domain D1 has a double-ψ β-barrel fold similar to glycosyl hydrolase family-45 enzymes but lacks catalytic residues usually required for hydrolysis; the C-terminal domain D2 has a unique β-sandwich fold with three co-linear aromatic residues that bind β-1,4-glucans by hydrophobic interactions. Genetic deletion of expansin in Bacillus and Clavibacter cripples their ability to colonize plant tissues. We assess reports that expansin addition enhances cellulose breakdown by cellulase and compare expansins with distantly related proteins named swollenin, cerato-platanin, and loosenin. We end in a speculative vein about the biological roles of microbial expansins and their potential applications. Advances in this field will be aided by a deeper understanding of how these proteins modify cellulosic structures. PMID:25833181

  19. Bacterial expansins and related proteins from the world of microbes

    PubMed Central

    Georgelis, Nikolaos; Nikolaidis, Nikolas; Cosgrove, Daniel J.

    2015-01-01

    The discovery of microbial expansins emerged from studies of the mechanism of plant cell growth and the molecular basis of plant cell wall extensibility. Expansins are wall-loosening proteins that are universal in the plant kingdom and are also found in a small set of phylogenetically diverse bacteria, fungi, and other organisms, most of which colonize plant surfaces. They loosen plant cell walls without detectable lytic activity. Bacterial expansins have attracted considerable attention recently for their potential use in cellulosic biomass conversion for biofuel production, as a means to disaggregate cellulosic structures by non-lytic means (‘amorphogenesis’). Evolutionary analysis indicates that microbial expansins originated by multiple horizontal gene transfers from plants. Crystallographic analysis of BsEXLX1, the expansin from Bacillus subtilis, shows that microbial expansins consist of two tightly-packed domains: the N-terminal domain D1 has a double-ψ β-barrel fold similar to glycosyl hydrolase family-45 enzymes, but lacks catalytic residues usually required for hydrolysis; the C-terminal domain D2 has a unique β-sandwich fold with three co-linear aromatic residues that bind β-1,4-glucans by hydrophobic interactions. Genetic deletion of expansin in Bacillus and Clavibacter cripples their ability to colonize plant tissues. We assess reports that expansin addition enhances cellulose breakdown by cellulase and compare expansins with distantly related proteins named swollenin, cerato-platanin and loosenin. We end in a speculative vein about the biological roles of microbial expansins and their potential applications. Advances in this field will be aided by a deeper understanding of how these proteins modify cellulosic structures. PMID:25833181

  20. AA protein-related renal amyloidosis in drug addicts.

    PubMed Central

    Menchel, S.; Cohen, D.; Gross, E.; Frangione, B.; Gallo, G.

    1983-01-01

    Reports of renal amyloidosis occurring among narcotic addicts have been limited, for the most part, to case reports. In a prospective survey of 150 addicts examined at autopsy in the Office of the Chief Medical Examiner of the City of New York, 7 cases of renal amyloidosis were found. Immunohistologic examination demonstrated that in all of the 7 cases, the amyloid was AA protein-related. The amyloid extracted from the kidneys of two addicts and analyzed biochemically did not differ from the AA amyloid secondary to chronic infectious and inflammatory diseases. The combined data of previous reports and the present survey demonstrate that addicts who are subcutaneous users with skin infections most frequently develop amyloidosis. Our data demonstrating renal amyloidosis in 26% of addicts with chronic suppurative skin infections suggest that such addicts are at high risk for the development of amyloidosis. Images Figure 1 Figure 2 PMID:6881286

  1. Long noncoding RNA AK126698 inhibits proliferation and migration of non-small cell lung cancer cells by targeting Frizzled-8 and suppressing Wnt/β-catenin signaling pathway

    PubMed Central

    Fu, Xiao; Li, Hui; Liu, Chunxiao; Hu, Bin; Li, Tong; Wang, Yang

    2016-01-01

    Background Recent studies indicate that long noncoding RNAs (lncRNAs) play a key role in the control of cellular processes such as proliferation, metastasis, and differentiation. The lncRNA dysregulation has been identified in all types of cancer. We previously found that lncRNA AK126698 suppresses cisplatin resistance in A549 cells through the Wnt/β-catenin signaling pathway. However, the clinical significance of lncRNA AK126698 and the molecular mechanisms through which it regulates cancer cell proliferation and migration are largely unknown. Methods We examined the expression of lncRNA AK126698 in 56 non-small cell lung cancer (NSCLC) tissue samples and three NSCLC cell lines using quantitative real-time polymerase chain reaction. Gain and loss of function approaches were used to evaluate the biological function of AK126698 in NSCLC cells. The effects of lncRNA AK126698 on cell proliferation were investigated using cell counting kit-8 and 5-ethynyl-2′-deoxyuridine assays, and apoptosis was measured by flow cytometry. Protein levels of AK126698 targets were evaluated by Western blotting. Results Our results showed that lncRNA AK126698 was significantly downregulated in NSCLC tissues, compared with paired adjacent nontumor tissue samples. Furthermore, lower AK126698 expression was associated with larger tumor size and advanced tumor stage. Ectopic AK126698 expression inhibited cell proliferation and migration and induced apoptosis. Conversely, decreased AK126698 expression promoted cell proliferation and migration and inhibited cell apoptosis. Importantly, we demonstrated that Frizzled-8, a receptor of Wnt/β-catenin pathway, was a target of AK126698. Furthermore, AK126698 could inhibit the activation of Wnt/β-catenin pathway, which was demonstrated by measuring the expression levels of Axin1, β-catenin, c-myc, cyclin D1, and E-cadherin. Conclusion It was found in the study that lncRNA AK126698 inhibits the proliferation and migration of NSCLC cells by

  2. The transthyretin-related protein: structural investigation of a novel protein family.

    PubMed

    Lundberg, Erik; Bäckström, Stefan; Sauer, Uwe H; Sauer-Eriksson, A Elisabeth

    2006-09-01

    The transthyretin-related protein (TRP) family comprises proteins predicted to be structurally related to the homotetrameric transport protein transthyretin (TTR). The function of TRPs is not yet fully established, but recent data suggest that they are involved in purine catabolism. We have determined the three-dimensional structure of the Escherichia coli TRP in two crystal forms; one at 1.65 A resolution in the presence of zinc, and the other at 2.1 A resolution in the presence of zinc and bromide. The structures revealed five zinc-ion-binding sites per monomer. Of these, the zinc ions bound at sites I and II are coordinated in tetrahedral geometries to the side chains of residues His9, His96, His98, Ser114, and three water molecules at the putative ligand-binding site. Of these four residues, His9, His98, and Ser114 are conserved. His9 and His98 bind the central zinc (site I) together with two water molecules. The side chain of His98 also binds to the zinc ion at site II. Bromide ions bind at site I only, replacing one of the water molecules coordinated to the zinc ion. The C-terminal four amino acid sequence motif Y-[RK]-G-[ST] constitutes the signature sequence of the TRP family. Two Tyr111 residues form direct hydrogen bonds to each other over the tetramer interface at the area, which in TTR constitutes the rear part of its thyroxine-binding channel. The putative substrate/ligand-binding channel of TRP is consequently shallower and broader than its counterpart in TTR. PMID:16723258

  3. Proteomic Analysis of Sauvignon Blanc Grape Skin, Pulp and Seed and Relative Quantification of Pathogenesis-Related Proteins

    PubMed Central

    Tian, Bin; Harrison, Roland; Morton, James; Deb-Choudhury, Santanu

    2015-01-01

    Thaumatin-like proteins (TLPs) and chitinases are the main constituents of so-called protein hazes which can form in finished white wine and which is a great concern of winemakers. These soluble pathogenesis-related (PR) proteins are extracted from grape berries. However, their distribution in different grape tissues is not well documented. In this study, proteins were first separately extracted from the skin, pulp and seed of Sauvignon Blanc grapes, followed by trypsin digestion and analysis by liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS). Proteins identified included 75 proteins from Sauvignon Blanc grape skin, 63 from grape pulp and 35 from grape seed, mostly functionally classified as associated with metabolism and energy. Some were present exclusively in specific grape tissues; for example, proteins involved in photosynthesis were only detected in grape skin and proteins found in alcoholic fermentation were only detected in grape pulp. Moreover, proteins identified in grape seed were less diverse than those identified in grape skin and pulp. TLPs and chitinases were identified in both Sauvignon Blanc grape skin and pulp, but not in the seed. To relatively quantify the PR proteins, the protein extracts of grape tissues were seperated by HPLC first and then analysed by SDS-PAGE. The results showed that the protein fractions eluted at 9.3 min and 19.2 min under the chromatographic conditions of this study confirmed that these corresponded to TLPs and chitinases seperately. Thus, the relative quantification of TLPs and chitinases in protein extracts was carried out by comparing the area of corresponding peaks against the area of a thamautin standard. The results presented in this study clearly demonstrated the distribution of haze-forming PR proteins in grape berries, and the relative quantification of TLPs and chitinases could be applied in fast tracking of changes in PR proteins during grape growth and determination of PR

  4. Protein Synthesis in Relation to Ripening of Pome Fruits 1

    PubMed Central

    Frenkel, Chaim; Klein, Isaac; Dilley, D. R.

    1968-01-01

    Protein synthesis by intact Bartlett pear fruits was studied with ripening as measured by flesh softening, chlorophyll degradation, respiration, ethylene synthesis, and malic enzyme activity. Protein synthesis is required for normal ripening, and the proteins synthesized early in the ripening process are, in fact, enzymes required for ripening. 14C-Phenylalanine is differentially incorporated into fruit proteins separated by acrylamide gel electrophoresis of pome fruits taken at successive ripening stages. Capacity for malic enzyme synthesis increases during the early stage of ripening. Fruit ripening and ethylene synthesis are inhibited when protein synthesis is blocked by treatment with cycloheximide at the early-climacteric stage. Cycloheximide became less effective as the climacteric developed. Ethylene did not overcome inhibition of ripening by cycloheximide. The respiratory climacteric is not inhibited by cycloheximide. It is concluded that normal ripening of pome fruits is a highly coordinated process of biochemical differentiation involving directed protein synthesis. PMID:16656897

  5. Parathyroid Hormone-Related Protein Analogs as Osteoporosis Therapies.

    PubMed

    Esbrit, Pedro; Herrera, Sabina; Portal-Núñez, Sergio; Nogués, Xavier; Díez-Pérez, Adolfo

    2016-04-01

    The only bone anabolic agent currently available for osteoporosis treatment is parathyroid hormone (PTH)-either its N-terminal 1-34 fragment or the whole molecule of 1-84 aminoacids-whose intermittent administration stimulates new bone formation by targeting osteoblastogenesis and osteoblast survival. PTH-related protein (PTHrP) is an abundant factor in bone which shows N-terminal homology with PTH and thus exhibits high affinity for the same PTH type 1 receptor in osteoblasts. Therefore, it is not surprising that intermittently administered N-terminal PTHrP peptides induce bone anabolism in animals and humans. Furthermore, the C-terminal region of PTHrP also elicits osteogenic features in vitro in osteoblastic cells and in various animal models of osteoporosis. In this review, we discuss the current concepts about the cellular and molecular mechanisms whereby PTHrP may induce anabolic actions in bone. Pre-clinical studies and clinical data using N-terminal PTHrP analogs are also summarized, pointing to PTHrP as a promising alternative to current bone anabolic therapies. PMID:26259869

  6. Parathyroid hormone-related protein is required for tooth eruption

    PubMed Central

    Philbrick, William M.; Dreyer, Barbara E.; Nakchbandi, Inaam A.; Karaplis, Andrew C.

    1998-01-01

    Parathyroid hormone (PTH)-related protein (PTHrP)-knockout mice die at birth with a chondrodystrophic phenotype characterized by premature chondrocyte differentiation and accelerated bone formation, whereas overexpression of PTHrP in the chondrocytes of transgenic mice produces a delay in chondrocyte maturation and endochondral ossification. Replacement of PTHrP expression in the chondrocytes of PTHrP-knockout mice using a procollagen II-driven transgene results in the correction of the lethal skeletal abnormalities and generates animals that are effectively PTHrP-null in all sites other than cartilage. These rescued PTHrP-knockout mice survive to at least 6 months of age but are small in stature and display a number of developmental defects, including cranial chondrodystrophy and a failure of tooth eruption. Teeth appear to develop normally but become trapped by the surrounding bone and undergo progressive impaction. Localization of PTHrP mRNA during normal tooth development by in situ hybridization reveals increasing levels of expression in the enamel epithelium before the formation of the eruption pathway. The type I PTH/PTHrP receptor is expressed in both the adjacent dental mesenchyme and in the alveolar bone. The replacement of PTHrP expression in the enamel epithelium with a keratin 14-driven transgene corrects the defect in bone resorption and restores the normal program of tooth eruption. PTHrP therefore represents an essential signal in the formation of the eruption pathway. PMID:9751753

  7. Dynamin-related proteins in plant post-Golgi traffic

    PubMed Central

    Fujimoto, Masaru; Tsutsumi, Nobuhiro

    2014-01-01

    Membrane traffic between two organelles begins with the formation of transport vesicles from the donor organelle. Dynamin-related proteins (DRPs), which are large multidomain GTPases, play crucial roles in vesicle formation in post-Golgi traffic. Numerous in vivo and in vitro studies indicate that animal dynamins, which are members of DRP family, assemble into ring- or helix-shaped structures at the neck of a bud site on the donor membrane, where they constrict and sever the neck membrane in a GTP hydrolysis-dependent manner. While much is known about DRP-mediated trafficking in animal cells, little is known about it in plant cells. So far, two structurally distinct subfamilies of plant DRPs (DRP1 and DRP2) have been found to participate in various pathways of post-Golgi traffic. This review summarizes the structural and functional differences between these two DRP subfamilies, focusing on their molecular, cellular and developmental properties. We also discuss the molecular networks underlying the functional machinery centering on these two DRP subfamilies. Furthermore, we hope that this review will provide direction for future studies on the mechanisms of vesicle formation that are not only unique to plants but also common to eukaryotes. PMID:25237312

  8. Prostacyclin reverses the cigarette smoke-induced decrease in pulmonary Frizzled 9 expression through miR-31.

    PubMed

    Tennis, M A; New, M L; McArthur, D G; Merrick, D T; Dwyer-Nield, L D; Keith, R L

    2016-01-01

    Half of lung cancers are diagnosed in former smokers, leading to a significant treatment burden in this population. Chemoprevention in former smokers using the prostacyclin analogue iloprost reduces endobronchial dysplasia, a premalignant lung lesion. Iloprost requires the presence of the WNT receptor Frizzled 9 (Fzd9) for inhibition of transformed growth in vitro. To investigate the relationship between iloprost, cigarette smoke, and Fzd9 expression, we used human samples, mouse models, and in vitro studies. Fzd9 expression was low in human lung tumors and in progressive dysplasias. In mouse models and in vitro studies, tobacco smoke carcinogens reduced expression of Fzd9 while prostacyclin maintained or increased expression. Expression of miR-31 repressed Fzd9 expression, which was abrogated by prostacyclin. We propose a model where cigarette smoke exposure increases miR-31 expression, which leads to decreased Fzd9 expression and prevents response to iloprost. When smoke is removed miR-31 is reduced, prostacyclin can increase Fzd9 expression, and progression of dysplasia is inhibited. Fzd9 and miR-31 are candidate biomarkers for precision application of iloprost and monitoring of treatment progress. As we continue to investigate the mechanisms of prostacyclin chemoprevention and identify biomarkers for its use, we will facilitate clinical trials and speed implementation of this valuable prevention approach. PMID:27339092

  9. Prostacyclin reverses the cigarette smoke-induced decrease in pulmonary Frizzled 9 expression through miR-31

    PubMed Central

    Tennis, M. A.; New, M. L.; McArthur, D. G.; Merrick, D. T.; Dwyer-Nield, L. D.; Keith, R. L.

    2016-01-01

    Half of lung cancers are diagnosed in former smokers, leading to a significant treatment burden in this population. Chemoprevention in former smokers using the prostacyclin analogue iloprost reduces endobronchial dysplasia, a premalignant lung lesion. Iloprost requires the presence of the WNT receptor Frizzled 9 (Fzd9) for inhibition of transformed growth in vitro. To investigate the relationship between iloprost, cigarette smoke, and Fzd9 expression, we used human samples, mouse models, and in vitro studies. Fzd9 expression was low in human lung tumors and in progressive dysplasias. In mouse models and in vitro studies, tobacco smoke carcinogens reduced expression of Fzd9 while prostacyclin maintained or increased expression. Expression of miR-31 repressed Fzd9 expression, which was abrogated by prostacyclin. We propose a model where cigarette smoke exposure increases miR-31 expression, which leads to decreased Fzd9 expression and prevents response to iloprost. When smoke is removed miR-31 is reduced, prostacyclin can increase Fzd9 expression, and progression of dysplasia is inhibited. Fzd9 and miR-31 are candidate biomarkers for precision application of iloprost and monitoring of treatment progress. As we continue to investigate the mechanisms of prostacyclin chemoprevention and identify biomarkers for its use, we will facilitate clinical trials and speed implementation of this valuable prevention approach. PMID:27339092

  10. Alpha shape and Delaunay triangulation in studies of protein-related interactions.

    PubMed

    Zhou, Weiqiang; Yan, Hong

    2014-01-01

    In recent years, more 3D protein structures have become available, which has made the analysis of large molecular structures much easier. There is a strong demand for geometric models for the study of protein-related interactions. Alpha shape and Delaunay triangulation are powerful tools to represent protein structures and have advantages in characterizing the surface curvature and atom contacts. This review presents state-of-the-art applications of alpha shape and Delaunay triangulation in the studies on protein-DNA, protein-protein, protein-ligand interactions and protein structure analysis. PMID:23193202

  11. A family of cellular proteins related to snake venom disintegrins.

    PubMed Central

    Weskamp, G; Blobel, C P

    1994-01-01

    Disintegrins are short soluble integrin ligands that were initially identified in snake venom. A previously recognized cellular protein with a disintegrin domain was the guinea pig sperm protein PH-30, a protein implicated in sperm-egg membrane binding and fusion. Here we present peptide sequences that are characteristic for several cellular disintegrin-domain proteins. These peptide sequences were deduced from cDNA sequence tags that were generated by polymerase chain reaction from various mouse tissue and a mouse muscle cell line. Northern blot analysis with four sequence tags revealed distinct mRNA expression patterns. Evidently, cellular proteins containing a disintegrin domain define a superfamily of potential integrin ligands that are likely to function in important cell-cell and cell-matrix interactions. Images PMID:8146185

  12. The major vault protein is related to the toxic anion resistance protein (TelA) family.

    PubMed

    Suprenant, Kathy A; Bloom, Nathan; Fang, Jianwen; Lushington, Gerald

    2007-03-01

    Vaults are barrel-shaped ribonucleoprotein particles that are abundant in certain tumors and multidrug resistant cancer cells. Prokaryotic relatives of the major vault protein, MVP, have not been identified. We used sequence analysis and molecular modeling to show that MVP and the toxic anion resistance protein, TelA of Rhodobacter sphaeroides strain 2.4.1, share a novel fold that consists of a three-stranded antiparallel beta-sheet. Because of this strong structural correspondence, we examined whether mammalian cell vaults respond to tellurite treatment. In the presence of the oxyanion tellurite, large vault aggregates, or vaultosomes, appear at the cell periphery in 15 min or less. Vaultosome formation is temperature-dependent, reversible, and occurs in normal human umbilical vein endothelial cells as well as transformed HeLa cervical cancer cells. Vaultosome formation is not restricted to tellurite and occurs in the presence of other toxic oxyanions (selenate, selinite, arsenate, arsenite, vanadate). In addition, vaultosomes form independently from other stress-induced ribonucleoprotein complexes, stress granules and aggresomes. Vaultosome formation is therefore a unique cellular response to an environmental toxin. PMID:17337707

  13. Origins of Myc Proteins – Using Intrinsic Protein Disorder to Trace Distant Relatives

    PubMed Central

    Mahani, Amir; Henriksson, Johan; Wright, Anthony P. H.

    2013-01-01

    Mammalian Myc proteins are important determinants of cell proliferation as well as the undifferentiated state of stem cells and their activity is frequently deregulated in cancer. Based mainly on conservation in the C-terminal DNA-binding and dimerization domain, Myc-like proteins have been reported in many simpler organisms within and outside the Metazoa but they have not been found in fungi or plants. Several important signature motifs defining mammalian Myc proteins are found in the N-terminal domain but the extent to which these are found in the Myc-like proteins from simpler organisms is not well established. The extent of N-terminal signature sequence conservation would give important insights about the evolution of Myc proteins and their current function in mammalian physiology and disease. In a systematic study of Myc-like proteins we show that N-terminal signature motifs are not readily detectable in individual Myc-like proteins from invertebrates but that weak similarities to Myc boxes 1 and 2 can be found in the N-termini of the simplest Metazoa as well as the unicellular choanoflagellate, Monosiga brevicollis, using multiple protein alignments. Phylogenetic support for the connections of these proteins to established Myc proteins is however poor. We show that the pattern of predicted protein disorder along the length of Myc proteins can be used as a complementary approach to making dendrograms of Myc proteins that aids the classification of Myc proteins. This suggests that the pattern of disorder within Myc proteins is more conserved through evolution than their amino acid sequence. In the disorder-based dendrograms the Myc-like proteins from simpler organisms, including M. brevicollis, are connected to established Myc proteins with a higher degree of certainty. Our results suggest that protein disorder based dendrograms may be of general significance for studying distant relationships between proteins, such as transcription factors, that have high

  14. Heat-induced Protein Structure and Subfractions in Relation to Protein Degradation Kinetics and Intestinal Availability in Dairy Cattle

    SciTech Connect

    Doiron, K.; Yu, P; McKinnon, J; Christensen, D

    2009-01-01

    The objectives of this study were to reveal protein structures of feed tissues affected by heat processing at a cellular level, using the synchrotron-based Fourier transform infrared microspectroscopy as a novel approach, and quantify protein structure in relation to protein digestive kinetics and nutritive value in the rumen and intestine in dairy cattle. The parameters assessed included (1) protein structure a-helix to e-sheet ratio; (2) protein subfractions profiles; (3) protein degradation kinetics and effective degradability; (4) predicted nutrient supply using the intestinally absorbed protein supply (DVE)/degraded protein balance (OEB) system for dairy cattle. In this study, Vimy flaxseed protein was used as a model feed protein and was autoclave-heated at 120C for 20, 40, and 60 min in treatments T1, T2, and T3, respectively. The results showed that using the synchrotron-based Fourier transform infrared microspectroscopy revealed and identified the heat-induced protein structure changes. Heating at 120C for 40 and 60 min increased the protein structure a-helix to e-sheet ratio. There were linear effects of heating time on the ratio. The heating also changed chemical profiles, which showed soluble CP decreased upon heating with concomitant increases in nonprotein nitrogen, neutral, and acid detergent insoluble nitrogen. The protein subfractions with the greatest changes were PB1, which showed a dramatic reduction, and PB2, which showed a dramatic increase, demonstrating a decrease in overall protein degradability. In situ results showed a reduction in rumen-degradable protein and in rumen-degradable dry matter without differences between the treatments. Intestinal digestibility, determined using a 3-step in vitro procedure, showed no changes to rumen undegradable protein. Modeling results showed that heating increased total intestinally absorbable protein (feed DVE value) and decreased degraded protein balance (feed OEB value), but there were no differences

  15. Avidin related protein 2 shows unique structural and functional features among the avidin protein family

    PubMed Central

    Hytönen, Vesa P; Määttä, Juha AE; Kidron, Heidi; Halling, Katrin K; Hörhä, Jarno; Kulomaa, Tuomas; Nyholm, Thomas KM; Johnson, Mark S; Salminen, Tiina A; Kulomaa, Markku S; Airenne, Tomi T

    2005-01-01

    Background The chicken avidin gene family consists of avidin and several avidin related genes (AVRs). Of these gene products, avidin is the best characterized and is known for its extremely high affinity for D-biotin, a property that is utilized in numerous modern life science applications. Recently, the AVR genes have been expressed as recombinant proteins, which have shown different biotin-binding properties as compared to avidin. Results In the present study, we have employed multiple biochemical methods to better understand the structure-function relationship of AVR proteins focusing on AVR2. Firstly, we have solved the high-resolution crystal structure of AVR2 in complex with a bound ligand, D-biotin. The AVR2 structure reveals an overall fold similar to the previously determined structures of avidin and AVR4. Major differences are seen, especially at the 1–3 subunit interface, which is stabilized mainly by polar interactions in the case of AVR2 but by hydrophobic interactions in the case of AVR4 and avidin, and in the vicinity of the biotin binding pocket. Secondly, mutagenesis, competitive dissociation analysis and differential scanning calorimetry were used to compare and study the biotin-binding properties as well as the thermal stability of AVRs and avidin. These analyses pinpointed the importance of residue 109 for biotin binding and stability of AVRs. The I109K mutation increased the biotin-binding affinity of AVR2, whereas the K109I mutation decreased the biotin-binding affinity of AVR4. Furthermore, the thermal stability of AVR2(I109K) increased in comparison to the wild-type protein and the K109I mutation led to a decrease in the thermal stability of AVR4. Conclusion Altogether, this study broadens our understanding of the structural features determining the ligand-binding affinities and stability as well as the molecular evolution within the protein family. This novel information can be applied to further develop and improve the tools already

  16. A method for investigating protein-protein interactions related to Salmonella typhimurium pathogenesis

    SciTech Connect

    Chowdhury, Saiful M.; Shi, Liang; Yoon, Hyunjin; Ansong, Charles; Rommereim, Leah M.; Norbeck, Angela D.; Auberry, Kenneth J.; Moore, R. J.; Adkins, Joshua N.; Heffron, Fred; Smith, Richard D.

    2009-02-10

    We successfully modified an existing method to investigate protein-protein interactions in the pathogenic bacterium Salmonella typhimurium (STM). This method includes i) addition of a histidine-biotin-histidine tag to the bait proteins via recombinant DNA techniques; ii) in vivo cross-linking with formaldehyde; iii) tandem affinity purification of bait proteins under fully denaturing conditions; and iv) identification of the proteins cross-linked to the bait proteins by liquid-chromatography in conjunction with tandem mass-spectrometry. In vivo cross-linking stabilized protein interactions permitted the subsequent two-step purification step conducted under denaturing conditions. The two-step purification greatly reduced nonspecific binding of non-cross-linked proteins to bait proteins. Two different negative controls were employed to reduce false-positive identification. In an initial demonstration of this approach, we tagged three selected STM proteins- HimD, PduB and PhoP- with known binding partners that ranged from stable (e.g., HimD) to transient (i.e., PhoP). Distinct sets of interacting proteins were identified with each bait protein, including the known binding partners such as HimA for HimD, as well as anticipated and unexpected binding partners. Our results suggest that novel protein-protein interactions may be critical to pathogenesis by Salmonella typhimurium. .

  17. Dialysis-related amyloidosis: visceral involvement and protein constituents.

    PubMed

    Campistol, J M; Argilés, A

    1996-01-01

    beta 2-M amyloidosis mainly concerns dialysis patients and typically presents with osteoarticular symptoms. In order to precise the incidence and gravity of visceral involvement, subcutaneous abdominal fat aspirates, skin and rectal biopsies, as well as echocardiograms were performed in 26 patients with severe beta 2-M amyloidosis. Visceral amyloidosis was confirmed in 58% and the numbers were even higher when including heart abnormalities suggestive of amyloidosis (81%). Clinical manifestations of visceral involvement were usually not severe and include odynophagia, gastrointestinal haemorrhage, intestinal obstruction, kidney stones, myocardial dysfunction and subcutaneous tumours. The removal and synthesis rates of beta 2-M were assessed during dialysis. Serum 131I-beta 2-M levels decreased by 5-10% with cuprophane and by 40-45% with polysulfone and polyacrylonitrile membranes. These reduction rates were higher than those found with unlabelled beta 2-M suggesting an increased synthesis or release during dialysis. The protein constituents of amyloid deposits were studied. Two different preparative methods to extract the proteins from amyloid deposits were used. TCA precipitation showed the presence of several proteins which were not observed with PBS homogenizing and resuspending in guanidine. The protein constituents of amyloid fibrils were studied by both, two dimensional gel electrophoresis (2D-gel) as well as protein sequencing after gel filtration. Similarly, the technical approach used for protein analysis greatly influenced the results. It was observed that 2D-gel displayed the presence of proteins which were missed by the gel filtration technique. Some of the proteins contained in amyloid deposits in addition to beta 2-M, were identified as globin chains, kappa and lambda light chains of immunoglobulins, and alpha 2 macroglobulin. A putative participation of these other protein constituents on the pathogenesis of beta 2-microglobulin amyloidosis is

  18. Related proteins are phosphorylated at tyrosine in response to mitogenic stimuli and at meiosis.

    PubMed Central

    Cooper, J A

    1989-01-01

    Forty-two-kilodalton proteins that contain phosphotyrosine in metaphase-arrested Xenopus laevis eggs are closely related to p42, a protein that is phosphorylated at tyrosine when somatic cells are exposed to mitogenic stimuli. Images PMID:2779558

  19. [Unfolding chaperone as a prion protein relating molecule].

    PubMed

    Hachiya, Naomi S; Sakasegawa, Yuji; Kaneko, Kiyotoshi

    2003-11-01

    Prion protein exists in two different isoforms, a normal cellular isoform (PrPc) and an abnormal infectious isoform (PrPSc), the latter is a causative agent of prion disease such as mad cow disease and Creutzfeldt-Jakob disease. Amino acid sequences of PrPc and PrPSc are identical, but their conformations are rather different; PrPc rich in non beta-sheet vs. PrPSc rich in beta-sheet isoform. Since the two isoforms have quite different conformation, this host factor might be a molecular chaperone, which enables to override an energy barrier between PrPc and PrPSc. To examine the protein unfolding activities against collectively folded structure exist or not, we constructed an assay system and purified a novel molecular chaperone. Unfolding, from S. cerevisiae. Unfolding consists of oligomeric ring-like structure with the central cavity and has an ATP-dependent protein Unfoldingg activity with broad specificity in vitro, of which targets included PrP in beta-sheet form, alpha-synuclein, and A beta protein. We have also found that mouse neuroblastoma N2a cells contained the activity. Treatment of this factor with an ATP-hydrolyzing enzyme, apyrase, caused the decrease in its protein Unfoldingg activity. It was suggested that the purified protein probably formed homo-oligomer consisting of 4-5 subunits and its activity was ATP-dependent. PMID:15152473

  20. Total protein, animal protein, and physical activity in relation to muscle mass in middle-aged and older Americans

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Resistance training is recognized as a good strategy for retarding age-related declines in muscle mass and strength. Recent studies have also highlighted the potential value of protein intakes in excess of current recommendations. The roles that leisure-time physical activity and protein quality mig...

  1. The inverse autotransporter family: intimin, invasin and related proteins.

    PubMed

    Leo, Jack C; Oberhettinger, Philipp; Schütz, Monika; Linke, Dirk

    2015-02-01

    Intimin and invasin are adhesins and central virulence factors of attaching and effacing bacteria, such as enterohaemorrhagic Escherichia coli, and enteropathogenic Yersiniae, respectively. These proteins are prototypes of a large family of adhesins distributed widely in Gram-negative bacteria. It is now evident that this protein family represents a previously unrecognized autotransporter secretion system, termed type Ve secretion. In contrast to classical autotransport, where the transmembrane β-barrel domain or translocation unit is C-terminal to the extracellular region or passenger domain, type Ve-secreted proteins have an inverted topology with the passenger domain C-terminal to the translocation unit; hence the term inverse autotransporter. This minireview covers the recent advances in elucidating the structure and biogenesis of inverse autotransporters. PMID:25596886

  2. Transgenic Expression of miR-222 Disrupts Intestinal Epithelial Regeneration by Targeting Multiple Genes Including Frizzled-7

    PubMed Central

    Chung, Hee Kyoung; Chen, Yu; Rao, Jaladanki N; Liu, Lan; Xiao, Lan; Turner, Douglas J; Yang, Peixin; Gorospe, Myriam; Wang, Jian-Ying

    2015-01-01

    Defects in intestinal epithelial integrity occur commonly in various pathologies. miR-222 is implicated in many aspects of cellular function and plays an important role in several diseases, but its exact biological function in the intestinal epithelium is underexplored. We generated mice with intestinal epithelial tissue-specific overexpression of miR-222 to investigate the function of miR-222 in intestinal physiology and diseases in vivo. Transgenic expression of miR-222 inhibited mucosal growth and increased susceptibility to apoptosis in the small intestine, thus leading to mucosal atrophy. The miR-222–elevated intestinal epithelium was vulnerable to pathological stress, since local overexpression of miR-222 not only delayed mucosal repair after ischemia/reperfusion-induced injury, but also exacerbated gut barrier dysfunction induced by exposure to cecal ligation and puncture. miR-222 overexpression also decreased expression of the Wnt receptor Frizzled-7 (FZD7), cyclin-dependent kinase 4 and tight junctions in the mucosal tissue. Mechanistically, we identified the Fzd7 messenger ribonucleic acid (mRNA) as a novel target of miR-222 and found that [miR-222/Fzd7 mRNA] association repressed Fzd7 mRNA translation. These results implicate miR-222 as a negative regulator of normal intestinal epithelial regeneration and protection by downregulating expression of multiple genes including the Fzd7. Our findings also suggest a novel role of increased miR-222 in the pathogenesis of mucosal growth inhibition, delayed healing and barrier dysfunction. PMID:26252186

  3. Functional Analysis of Dishevelled-3 Phosphorylation Identifies Distinct Mechanisms Driven by Casein Kinase 1ϵ and Frizzled5*

    PubMed Central

    Bernatík, Ondřej; Šedová, Kateřina; Schille, Carolin; Ganji, Ranjani Sri; Červenka, Igor; Trantírek, Lukáš; Schambony, Alexandra; Zdráhal, Zbyněk; Bryja, Vítězslav

    2014-01-01

    Dishevelled-3 (Dvl3), a key component of the Wnt signaling pathways, acts downstream of Frizzled (Fzd) receptors and gets heavily phosphorylated in response to pathway activation by Wnt ligands. Casein kinase 1ϵ (CK1ϵ) was identified as the major kinase responsible for Wnt-induced Dvl3 phosphorylation. Currently it is not clear which Dvl residues are phosphorylated and what is the consequence of individual phosphorylation events. In the present study we employed mass spectrometry to analyze in a comprehensive way the phosphorylation of human Dvl3 induced by CK1ϵ. Our analysis revealed >50 phosphorylation sites on Dvl3; only a minority of these sites was found dynamically induced after co-expression of CK1ϵ, and surprisingly, phosphorylation of one cluster of modified residues was down-regulated. Dynamically phosphorylated sites were analyzed functionally. Mutations within PDZ domain (S280A and S311A) reduced the ability of Dvl3 to activate TCF/LEF (T-cell factor/lymphoid enhancer factor)-driven transcription and induce secondary axis in Xenopus embryos. In contrast, mutations of clustered Ser/Thr in the Dvl3 C terminus prevented ability of CK1ϵ to induce electrophoretic mobility shift of Dvl3 and its even subcellular localization. Surprisingly, mobility shift and subcellular localization changes induced by Fzd5, a Wnt receptor, were in all these mutants indistinguishable from wild type Dvl3. In summary, our data on the molecular level (i) support previous the assumption that CK1ϵ acts via phosphorylation of distinct residues as the activator as well as the shut-off signal of Wnt/β-catenin signaling and (ii) suggest that CK1ϵ acts on Dvl via different mechanism than Fzd5. PMID:24993822

  4. Proteomic analysis of Clostridium thermocellum core metabolism: relative protein expression profiles and growth phase-dependent changes in protein expression

    PubMed Central

    2012-01-01

    Background Clostridium thermocellum produces H2 and ethanol, as well as CO2, acetate, formate, and lactate, directly from cellulosic biomass. It is therefore an attractive model for biofuel production via consolidated bioprocessing. Optimization of end-product yields and titres is crucial for making biofuel production economically feasible. Relative protein expression profiles may provide targets for metabolic engineering, while understanding changes in protein expression and metabolism in response to carbon limitation, pH, and growth phase may aid in reactor optimization. We performed shotgun 2D-HPLC-MS/MS on closed-batch cellobiose-grown exponential phase C. thermocellum cell-free extracts to determine relative protein expression profiles of core metabolic proteins involved carbohydrate utilization, energy conservation, and end-product synthesis. iTRAQ (isobaric tag for relative and absolute quantitation) based protein quantitation was used to determine changes in core metabolic proteins in response to growth phase. Results Relative abundance profiles revealed differential levels of putative enzymes capable of catalyzing parallel pathways. The majority of proteins involved in pyruvate catabolism and end-product synthesis were detected with high abundance, with the exception of aldehyde dehydrogenase, ferredoxin-dependent Ech-type [NiFe]-hydrogenase, and RNF-type NADH:ferredoxin oxidoreductase. Using 4-plex 2D-HPLC-MS/MS, 24% of the 144 core metabolism proteins detected demonstrated moderate changes in expression during transition from exponential to stationary phase. Notably, proteins involved in pyruvate synthesis decreased in stationary phase, whereas proteins involved in glycogen metabolism, pyruvate catabolism, and end-product synthesis increased in stationary phase. Several proteins that may directly dictate end-product synthesis patterns, including pyruvate:ferredoxin oxidoreductases, alcohol dehydrogenases, and a putative bifurcating hydrogenase

  5. Quantitative thermophoretic study of disease-related protein aggregates

    PubMed Central

    Wolff , Manuel; Mittag, Judith J.; Herling, Therese W.; Genst, Erwin De; Dobson, Christopher M.; Knowles, Tuomas P. J.; Braun, Dieter; Buell, Alexander K.

    2016-01-01

    Amyloid fibrils are a hallmark of a range of neurodegenerative disorders, including Alzheimer’s and Parkinson’s diseases. A detailed understanding of the physico-chemical properties of the different aggregated forms of proteins, and of their interactions with other compounds of diagnostic or therapeutic interest, is crucial for devising effective strategies against such diseases. Protein aggregates are situated at the boundary between soluble and insoluble structures, and are challenging to study because classical biophysical techniques, such as scattering, spectroscopic and calorimetric methods, are not well adapted for their study. Here we present a detailed characterization of the thermophoretic behavior of different forms of the protein α-synuclein, whose aggregation is associated with Parkinson’s disease. Thermophoresis is the directed net diffusional flux of molecules and colloidal particles in a temperature gradient. Because of their low volume requirements and rapidity, analytical methods based on this effect have considerable potential for high throughput screening for drug discovery. In this paper we rationalize and describe in quantitative terms the thermophoretic behavior of monomeric, oligomeric and fibrillar forms of α-synuclein. Furthermore, we demonstrate that microscale thermophoresis (MST) is a valuable method for screening for ligands and binding partners of even such highly challenging samples as supramolecular protein aggregates. PMID:26984748

  6. Amino acid alignment of cholinesterases, esterases, lipases, and related proteins

    SciTech Connect

    Gentry, M.K.; Doctor, B.P.

    1995-12-31

    The alignments previously published (Gentry Doctor, 1991; Cygler et al., 1993), nine and 32 sequences respectively, have been further expanded by the addition of 22 newly-found sequences. References and protein sequences were found by searching on the term acetylcholinesterase using the software package Entrez, an integrated citation and sequence retrieval system (National Center for Biotechnology Information, NLM, Bethesda, MD).

  7. Analysis of protein conformational characteristics related to thermostability.

    PubMed

    Querol, E; Perez-Pons, J A; Mozo-Villarias, A

    1996-03-01

    The thermal stability of proteins was studied, 195 single amino acid residue replacements reported elsewhere being analysed for several protein conformational characteristics: type of residue replacement; conservative versus nonconservative substitution; replacement being in a homologous stretch of amino acid residues; change in hydrogen bond, van der Waals and secondary structure propensities; solvent-accessible versus inaccessible replacement; type of secondary structure involved in the substitution; the physico-chemical characteristics to which the thermostability enhancement can be attributed; and the relationship of the replacement site to the folding intermediates of the protein, when known. From the above analyses, some general rules arise which suggest where amino acid substitutions can be made to enhance protein thermostability: substitutions are conservative according to the Dayhoff matrix; mainly occur on conserved stretches of residues; preferentially occur on solvent-accessible residues; maintain or enhance the secondary structure propensity upon substitution; contribute to neutralize the dipole moment of the caps of helices and strands; and tend to increase the number of potential hydrogen bonding or van der Waals contacts or improve hydrophobic packing. PMID:8736493

  8. Prediction of functional residues in water channels and related proteins.

    PubMed Central

    Froger, A.; Tallur, B.; Thomas, D.; Delamarche, C.

    1998-01-01

    In this paper, we present an updated classification of the ubiquitous MIP (Major Intrinsic Protein) family proteins, including 153 fully or partially sequenced members available in public databases. Presently, about 30 of these proteins have been functionally characterized, exhibiting essentially two distinct types of channel properties: (1) specific water transport by the aquaporins, and (2) small neutral solutes transport, such as glycerol by the glycerol facilitators. Sequence alignments were used to predict amino acids and motifs discriminant in channel specificity. The protein sequences were also analyzed using statistical tools (comparisons of means and correspondence analysis). Five key positions were clearly identified where the residues are specific for each functional subgroup and exhibit high dissimilar physico-chemical properties. Moreover, we have found that the putative channels for small neutral solutes clearly differ from the aquaporins by the amino acid content and the length of predicted loop regions, suggesting a substrate filter function for these loops. From these results, we propose a signature pattern for water transport. PMID:9655351

  9. Relating gas phase to solution conformations: Lessons from disordered proteins

    PubMed Central

    Beveridge, Rebecca; Phillips, Ashley S.; Denbigh, Laetitia; Saleem, Hassan M.; MacPhee, Cait E.

    2015-01-01

    In recent years both mass spectrometry (MS) and ion mobility mass spectrometry (IM‐MS) have been developed as techniques with which to study proteins that lack a fixed tertiary structure but may contain regions that form secondary structure elements transiently, namely intrinsically disordered proteins (IDPs). IM‐MS is a suitable method for the study of IDPs which provides an insight to conformations that are present in solution, potentially enabling the analysis of lowly populated structural forms. Here, we describe the IM‐MS data of two IDPs; α‐Synuclein (α‐Syn) which is implicated in Parkinson's disease, and Apolipoprotein C‐II (ApoC‐II) which is involved in cardiovascular diseases. We report an apparent discrepancy in the way that ApoC‐II behaves in the gas phase. While most IDPs, including α‐Syn, present in many charge states and a wide range of rotationally averaged collision cross sections (CCSs), ApoC‐II presents in just four charge states and a very narrow range of CCSs, independent of solution conditions. Here, we compare MS and IM‐MS data of both proteins, and rationalise the differences between the proteins in terms of different ionisation processes which they may adhere to. PMID:25920945

  10. Relating gas phase to solution conformations: Lessons from disordered proteins.

    PubMed

    Beveridge, Rebecca; Phillips, Ashley S; Denbigh, Laetitia; Saleem, Hassan M; MacPhee, Cait E; Barran, Perdita E

    2015-08-01

    In recent years both mass spectrometry (MS) and ion mobility mass spectrometry (IM-MS) have been developed as techniques with which to study proteins that lack a fixed tertiary structure but may contain regions that form secondary structure elements transiently, namely intrinsically disordered proteins (IDPs). IM-MS is a suitable method for the study of IDPs which provides an insight to conformations that are present in solution, potentially enabling the analysis of lowly populated structural forms. Here, we describe the IM-MS data of two IDPs; α-Synuclein (α-Syn) which is implicated in Parkinson's disease, and Apolipoprotein C-II (ApoC-II) which is involved in cardiovascular diseases. We report an apparent discrepancy in the way that ApoC-II behaves in the gas phase. While most IDPs, including α-Syn, present in many charge states and a wide range of rotationally averaged collision cross sections (CCSs), ApoC-II presents in just four charge states and a very narrow range of CCSs, independent of solution conditions. Here, we compare MS and IM-MS data of both proteins, and rationalise the differences between the proteins in terms of different ionisation processes which they may adhere to. PMID:25920945

  11. Stability of ALS-related Superoxide Dismutase Protein variants

    NASA Astrophysics Data System (ADS)

    Lusebrink, Daniel; Plotkin, Steven

    Superoxide dismutase (SOD1) is a metal binding, homodimeric protein, whose misfolding is implicated in the neurodegenerative disease amyotrophic lateral sclerosis (ALS). Monomerization is believed to be a key step in the propagation of the disease. The dimer stability is often difficult to measure experimentally however, because it is entangled with protein unfolding and metal loss. We thus computationally investigate the dimer stability of mutants of SOD1 known to be associated with ALS. We report on systematic trends in dimer stability, as well as intriguing allosteric communication between mutations and the dimer interface. We study the dimer stabilities in molecular dynamics simulations and obtain the binding free energies of the dimers from pulling essays. Mutations are applied in silicoand we compare the differences of binding free energies compared to the wild type.

  12. DDRprot: a database of DNA damage response-related proteins

    PubMed Central

    Andrés-León, Eduardo; Cases, Ildefonso; Arcas, Aida; Rojas, Ana M.

    2016-01-01

    The DNA Damage Response (DDR) signalling network is an essential system that protects the genome’s integrity. The DDRprot database presented here is a resource that integrates manually curated information on the human DDR network and its sub-pathways. For each particular DDR protein, we present detailed information about its function. If involved in post-translational modifications (PTMs) with each other, we depict the position of the modified residue/s in the three-dimensional structures, when resolved structures are available for the proteins. All this information is linked to the original publication from where it was obtained. Phylogenetic information is also shown, including time of emergence and conservation across 47 selected species, family trees and sequence alignments of homologues. The DDRprot database can be queried by different criteria: pathways, species, evolutionary age or involvement in (PTM). Sequence searches using hidden Markov models can be also used. Database URL: http://ddr.cbbio.es. PMID:27577567

  13. DDRprot: a database of DNA damage response-related proteins.

    PubMed

    Andrés-León, Eduardo; Cases, Ildefonso; Arcas, Aida; Rojas, Ana M

    2016-01-01

    The DNA Damage Response (DDR) signalling network is an essential system that protects the genome's integrity. The DDRprot database presented here is a resource that integrates manually curated information on the human DDR network and its sub-pathways. For each particular DDR protein, we present detailed information about its function. If involved in post-translational modifications (PTMs) with each other, we depict the position of the modified residue/s in the three-dimensional structures, when resolved structures are available for the proteins. All this information is linked to the original publication from where it was obtained. Phylogenetic information is also shown, including time of emergence and conservation across 47 selected species, family trees and sequence alignments of homologues. The DDRprot database can be queried by different criteria: pathways, species, evolutionary age or involvement in (PTM). Sequence searches using hidden Markov models can be also used.Database URL: http://ddr.cbbio.es. PMID:27577567

  14. Regulation of Sp1 by cell cycle related proteins

    PubMed Central

    Tapias, Alicia; Ciudad, Carlos J.; Roninson, Igor B.; Noé, Véronique

    2009-01-01

    Sp1 transcription factor regulates the expression of multiple genes, including the Sp1 gene itself. We analyzed the ability of different cell cycle regulatory proteins to interact with Sp1 and to affect Sp1 promoter activity. Using an antibody array, we observed that CDK4, SKP2, Rad51, BRCA2 and p21 could interact with Sp1 and we confirmed these interactions by co-immunoprecipitation. CDK4, SKP2, Rad51, BRCA2 and p21 also activated the Sp1 promoter. Among the known Sp1-interacting proteins, E2F-DP1, Cyclin D1, Stat3 and Rb activated the Sp1 promoter, whereas p53 and NFκB inhibited it. The proteins that regulated Sp1 gene expression were shown by positive chromatin immunoprecipitation to be bound to the Sp1 promoter. Moreover, SKP2, BRCA2, p21, E2F-DP1, Stat3, Rb, p53 and NFκB had similar effects on an artificial promoter containing only Sp1 binding sites. Transient transfections of CDK4, Rad51, E2F-DP1, p21 and Stat3 increased mRNA expression from the endogenous Sp1 gene in HeLa cells whereas overexpression of NFκB, and p53 decreased Sp1 mRNA levels. p21 expression from a stably integrated inducible promoter in HT1080 cells activated Sp1 expression at the promoter and mRNA levels, but at the same time it decreased Sp1 protein levels due to the activation of Sp1 degradation. The observed multiple effects of cell cycle regulators on Sp1 suggest that Sp1 may be a key mediator of cell cycle associated changes in gene expression. PMID:18769160

  15. Relating the effects of protein type and content in increased-protein cheese pies to consumers' perception of satiating capacity.

    PubMed

    Marcano, J; Varela, P; Fiszman, S

    2015-02-01

    Since proteins have been shown to have the highest satiation-inducing effects of all the macronutrients, increasing the protein level is one of the main strategies for designing foods with enhanced satiating capacity. However, few studies analyze the effect that protein addition has on the texture and flavor characteristics of the target food item to relate it to the expected satiating capacity it elicits. The present work studied cheese pies with three levels of soy and whey proteins. Since the protein level altered the rheological behavior of the batters before baking and the texture of the baked pies, the feasibility of adding several protein levels for obtaining a range of final products was investigated. A check-all-that-apply questionnaire containing 32 sensory and non-sensory characteristics of the samples was given to consumers (n = 131) who also scored the perceived samples' satiating capacity. The results showed that the type and content of protein contributed distinctive sensory characteristics to the samples that could be related to their satiating capacity perception. Harder and drier samples (high protein levels) were perceived as more satiating with less perceptible sweet and milky cheese pie characteristic flavors. Soy contributed an off-flavour. These results will contribute to a better understanding of the interrelation of all these factors, aiding the development of highly palatable solid foods with enhanced satiating capacities. PMID:25504480

  16. Biologically active protein fragments containing specific binding regions of serum albumin or related proteins

    NASA Technical Reports Server (NTRS)

    Carter, Daniel C. (Inventor)

    1998-01-01

    In accordance with the present invention, biologically active protein fragments can be constructed which contain only those specific portions of the serum albumin family of proteins such as regions known as subdomains IIA and IIIA which are primarily responsible for the binding properties of the serum albumins. The artificial serums that can be prepared from these biologically active protein fragments are advantageous in that they can be produced much more easily than serums containing the whole albumin, yet still retain all or most of the original binding potential of the full albumin proteins. In addition, since the protein fragment serums of the present invention can be made from non-natural sources using conventional recombinant DNA techniques, they are far safer than serums containing natural albumin because they do not carry the potentially harmful viruses and other contaminants that will be found in the natural substances.

  17. A new standard nomenclature for proteins related to Apx and Shroom

    PubMed Central

    Hagens, Olivier; Ballabio, Andrea; Kalscheuer, Vera; Kraehenbuhl, Jean-Pierre; Schiaffino, M Vittoria; Smith, Peter; Staub, Olivier; Hildebrand, Jeff; Wallingford, John B

    2006-01-01

    Shroom is a recently-described regulator of cell shape changes in the developing nervous system. This protein is a member of a small family of related proteins that are defined by sequence similarity and in most cases by some link to the actin cytoskeleton. At present these proteins are named Shroom, APX, APXL, and KIAA1202. In light of the growing interest in this family of proteins, we propose here a new standard nomenclature. PMID:16615870

  18. Bacterial binding protein-dependent permeases: characterization of distinctive signatures for functionally related integral cytoplasmic membrane proteins.

    PubMed

    Saurin, W; Köster, W; Dassa, E

    1994-06-01

    Bacterial binding protein-dependent transport systems belong to the superfamily of ABC transporters, which is widely distributed among living organisms. Their hydrophobic membrane proteins are the least characterized components. The primary structures of 61 integral membrane proteins from 35 uptake systems were compared in order to characterize a short conserved hydrophilic segment, with a consensus EAA---G---------I-LP, located approximately 100 residues from the C-terminus. Secondary structure predictions indicated that this conserved region might be formed by two amphipathic alpha-helices connected by a loop containing the invariant G residue. We classified the conserved motifs and found that membrane proteins from systems transporting structurally related substrates specifically display a greater number of identical residues in the conserved region. We determined a consensus for each class of membrane protein and showed that these can be considered as signatures. PMID:7934906

  19. Phenylketonuria: brain phenylalanine concentrations relate inversely to cerebral protein synthesis

    PubMed Central

    de Groot, Martijn J; Sijens, Paul E; Reijngoud, Dirk-Jan; Paans, Anne M; van Spronsen, Francjan J

    2015-01-01

    In phenylketonuria, elevated plasma phenylalanine concentrations may disturb blood-to-brain large neutral amino acid (LNAA) transport and cerebral protein synthesis (CPS). We investigated the associations between these processes, using data obtained by positron emission tomography with l-[1-11C]-tyrosine (11C-Tyr) as a tracer. Blood-to-brain transport of non-Phe LNAAs was modeled by the rate constant for 11C-Tyr transport from arterial plasma to brain tissue (K1), while CPS was modeled by the rate constant for 11C-Tyr incorporation into cerebral protein (k3). Brain phenylalanine concentrations were measured by magnetic resonance spectroscopy in three volumes of interest (VOIs): supraventricular brain tissue (VOI 1), ventricular brain tissue (VOI 2), and fluid-containing ventricular voxels (VOI 3). The associations between k3 and each predictor variable were analyzed by multiple linear regression. The rate constant k3 was inversely associated with brain phenylalanine concentrations in VOIs 2 and 3 (adjusted R2=0.826, F=19.936, P=0.021). Since brain phenylalanine concentrations in these VOIs highly correlated with each other, the specific associations of each predictor with k3 could not be determined. The associations between k3 and plasma phenylalanine concentration, K1, and brain phenylalanine concentrations in VOI 1 were nonsignificant. In conclusion, our study shows an inverse association between k3 and increased brain phenylalanine concentrations. PMID:25352046

  20. Signal Propagation in Proteins and Relation to Equilibrium Fluctuations

    PubMed Central

    Chennubhotla, Chakra; Bahar, Ivet

    2007-01-01

    Elastic network (EN) models have been widely used in recent years for describing protein dynamics, based on the premise that the motions naturally accessible to native structures are relevant to biological function. We posit that equilibrium motions also determine communication mechanisms inherent to the network architecture. To this end, we explore the stochastics of a discrete-time, discrete-state Markov process of information transfer across the network of residues. We measure the communication abilities of residue pairs in terms of hit and commute times, i.e., the number of steps it takes on an average to send and receive signals. Functionally active residues are found to possess enhanced communication propensities, evidenced by their short hit times. Furthermore, secondary structural elements emerge as efficient mediators of communication. The present findings provide us with insights on the topological basis of communication in proteins and design principles for efficient signal transduction. While hit/commute times are information-theoretic concepts, a central contribution of this work is to rigorously show that they have physical origins directly relevant to the equilibrium fluctuations of residues predicted by EN models. PMID:17892319

  1. Autophagy-related intrinsically disordered proteins in intra-nuclear compartments.

    PubMed

    Na, Insung; Meng, Fanchi; Kurgan, Lukasz; Uversky, Vladimir N

    2016-08-16

    Recent analyses indicated that autophagy can be regulated via some nuclear transcriptional networks and many important players in the autophagy and other forms of programmed cell death are known to be intrinsically disordered. To this end, we analyzed similarities and differences in the intrinsic disorder distribution of nuclear and non-nuclear proteins related to autophagy. We also looked at the peculiarities of the distribution of the intrinsically disordered autophagy-related proteins in various intra-nuclear organelles, such as the nucleolus, chromatin, Cajal bodies, nuclear speckles, promyelocytic leukemia (PML) nuclear bodies, nuclear lamina, nuclear pores, and perinucleolar compartment. This analysis revealed that the autophagy-related proteins constitute about 2.5% of the non-nuclear proteins and 3.3% of the nuclear proteins, which corresponds to a substantial enrichment by about 32% in the nucleus. Curiously, although, in general, the autophagy-related proteins share similar characteristics of disorder with a generic set of all non-nuclear proteins, chromatin and nuclear speckles are enriched in the intrinsically disordered autophagy proteins (29 and 37% of these proteins are disordered, respectively) and have high disorder content at 0.24 and 0.27, respectively. Therefore, our data suggest that some of the nuclear disordered proteins may play important roles in autophagy. PMID:27377881

  2. Relating structure and internalization for ROMP-based protein mimics.

    PubMed

    Backlund, Coralie M; Takeuchi, Toshihide; Futaki, Shiroh; Tew, Gregory N

    2016-07-01

    Elucidating the predominant cellular entry mechanism for protein transduction domains (PTDs) and their synthetic mimics (PTDMs) is a complicated problem that continues to be a significant source of debate in the literature. The PTDMs reported here provide a well-controlled platform to vary molecular composition for structure activity relationship studies to further our understanding of PTDs, their non-covalent association with cargo, and their cellular internalization pathways. Specifically, several guanidine rich homopolymers, along with an amphiphilic block copolymer were used to investigate the relationship between structure and internalization activity in HeLa cells, both alone and non-covalently complexed with EGFP by flow cytometery and confocal imaging. The findings indicate that while changing the amount of positive charge on our PTDMs does not seem to affect the endosomal uptake, the presence of hydrophobicity appears to be a critical factor for the polymers to enter cells either alone, or with associated cargo. PMID:27039278

  3. NeuCode Labels for Relative Protein Quantification *

    PubMed Central

    Merrill, Anna E.; Hebert, Alexander S.; MacGilvray, Matthew E.; Rose, Christopher M.; Bailey, Derek J.; Bradley, Joel C.; Wood, William W.; El Masri, Marwan; Westphall, Michael S.; Gasch, Audrey P.; Coon, Joshua J.

    2014-01-01

    We describe a synthesis strategy for the preparation of lysine isotopologues that differ in mass by as little as 6 mDa. We demonstrate that incorporation of these molecules into the proteomes of actively growing cells does not affect cellular proliferation, and we discuss how to use the embedded mass signatures (neutron encoding (NeuCode)) for multiplexed proteome quantification by means of high-resolution mass spectrometry. NeuCode SILAC amalgamates the quantitative accuracy of SILAC with the multiplexing of isobaric tags and, in doing so, offers up new opportunities for biological investigation. We applied NeuCode SILAC to examine the relationship between transcript and protein levels in yeast cells responding to environmental stress. Finally, we monitored the time-resolved responses of five signaling mutants in a single 18-plex experiment. PMID:24938287

  4. Quantitative proteomic analysis of mice corneal tissues reveals angiogenesis-related proteins involved in corneal neovascularization.

    PubMed

    Shen, Minqian; Tao, Yimin; Feng, Yifan; Liu, Xing; Yuan, Fei; Zhou, Hu

    2016-07-01

    Corneal neovascularization (CNV) was induced in Balb/c mice by alkali burns in the central area of the cornea with a diameter of 2.5mm. After fourteen days, the cornea from one eye was collected for histological staining for CNV examination, while the cornea from the other eye of the same mouse was harvested for proteomic analysis. The label-free quantitative proteomic approach was applied to analyze five normal corneal tissues (normal group mice n=5) and five corresponding neovascularized corneal tissues (model group mice n=5). A total of 2124 proteins were identified, and 1682 proteins were quantified from these corneal tissues. Among these quantified proteins, 290 proteins were significantly changed between normal and alkali burned corneal tissues. Of these significantly changed proteins, 35 were reported or predicted as angiogenesis-related proteins. Then, these 35 proteins were analyzed using Ingenuity Pathway Analysis Software, resulting in 26 proteins enriched and connected to each other in the protein-protein interaction network, such as Lcn-2, αB-crystallin and Serpinf1 (PEDF). These three significantly changed proteins were selected for further Western blotting validation. Consistent with the quantitative proteomic results, Western blotting showed that Lcn-2 and αB-crystallin were significantly up-regulated in CNV model, while PEDF was down-regulated. This study provided increased understanding of angiogenesis-related proteins involved in corneal vascular development, which will be useful in the ophthalmic clinic of specifically target angiogenesis. PMID:27049463

  5. Centrin protein and genes in Trichomonas vaginalis and close relatives.

    PubMed

    Brugerolle, G; Bricheux, G; Coffe, G

    2000-01-01

    Anti-centrin monoclonal antibodies 20H5 and 11B2 produced against Clamydomononas centrin decorated the group of basal bodies as well as very closely attached structures in all trichomonads studied and in the devescovinids Foaina and Devescovina. Moreover, these antibodies decorated the undulating membrane in Trichomonas vaginalis, Trichomitus batrachorum, and Tritrichomonas foetus, and the cresta in Foaina. Centrin was not demonstrated in the dividing spindle and paradesmosis. Immunogold labeling, both in pre- and post-embedding, confirmed that centrin is associated with the basal body cylinder and is a component of the nine anchoring arms between the terminal plate of flagellar bases and the plasma-membrane. Centrin is also associated with the hook-shaped fibers attached to basal bodies (F1, F3), the X-fiber, and along sigmoid fibers (F2) at the pelta-axostyle junction, which is the microtubule organizing center for pelta-axostyle microtubules. There was no labeling on the striated costa and parabasal fibers nor on microtubular pelta-axostyle, but the fibrous structure inside the undulating membrane was labeled in T. vaginalis. Two proteins of 22-20 kDa corresponding to the centrin molecular mass were recognized by immunoblotting using these antibodies in the three trichomonad species examined. By screening a T. vaginalis cDNA library with 20H5 antibody, two genes encoding identical protein sequences were found. The sequence comprises the 4 typical EF-hand Ca++-binding domains present in every known centrin. Trichomonad centrin is closer to the green algal cluster (70% identity) than to the yeast Cdc31 cluster (55% identity) or the Alveolata cluster (46% identity). PMID:10750840

  6. Suppression of hepatocellular carcinoma cell proliferation by short hairpin RNA of frizzled 2 with Sonazoid-enhanced irradiation.

    PubMed

    Tomizawa, Minoru; Shinozaki, Fuminobu; Motoyoshi, Yasufumi; Sugiyama, Takao; Yamamoto, Shigenori; Ishige, Naoki

    2016-01-01

    Short-hairpin RNA of frizzled-2 (shRNA-Fz2) is known to suppress the proliferation of hepatocellular carcinoma (HCC) cells; however, its effect on HCC cell motility is unknown. In this study, suppression of HCC cell motility by shRNA-Fz2 was analyzed, and introduction of shRNA-Fz2 into HCC cells was facilitated with ultrasound (US) irradiation generated from a diagnostic US device, which was enhanced by the contrast-enhanced US reagent Sonazoid. The HCC cell lines HLF and PLC/PRF/5 that were transfected with shRNA-Fz2 were plated to form monolayers, following which the cell monolayers were scratched with a sterile razor. After 48 h, the cells were stained with hematoxylin and eosin, and the distance between the growing edge of the cell layer and the scratch lines was measured. Total RNA from the cells was isolated and subjected to real-time quantitative PCR to quantify matrix metalloproteinase 9 expression at 48 h after transfection of shRNA-Fz2. Starch-iodide method was applied to analyze the generation of H2O2 following US irradiation with the addition of Sonazoid in the liquid, and cell proliferation was analyzed 72 h later. The distances between the growing edge of the cell layer and the scratch lines and MMP9 expression levels were significantly decreased with transfection of shRNA-Fz2 (P<0.05). In the starch-iodide method, absorbance significantly decreased with the addition of Sonazoid (P<0.05), which suggested that US irradiation with Sonazoid generated H2O2 and enhanced sonoporation. ShRNA-Fz2 suppressed cell proliferation of both cell lines at a mechanical index of 0.4. Motility of HLF cells and PLC/PRF/5 cells was suppressed by shRNA-FZ2. Sonazoid enhanced sonoporation of the cells with the diagnostic US device and the suppression of proliferation of both HCC cell lines by shRNA-Fz2. PMID:26648389

  7. PPI-IRO: a two-stage method for protein-protein interaction extraction based on interaction relation ontology.

    PubMed

    Li, Chuan-Xi; Chen, Peng; Wang, Ru-Jing; Wang, Xiu-Jie; Su, Ya-Ru; Li, Jinyan

    2014-01-01

    Mining Protein-Protein Interactions (PPIs) from the fast-growing biomedical literature resources has been proven as an effective approach for the identification of biological regulatory networks. This paper presents a novel method based on the idea of Interaction Relation Ontology (IRO), which specifies and organises words of various proteins interaction relationships. Our method is a two-stage PPI extraction method. At first, IRO is applied in a binary classifier to determine whether sentences contain a relation or not. Then, IRO is taken to guide PPI extraction by building sentence dependency parse tree. Comprehensive and quantitative evaluations and detailed analyses are used to demonstrate the significant performance of IRO on relation sentences classification and PPI extraction. Our PPI extraction method yielded a recall of around 80% and 90% and an F1 of around 54% and 66% on corpora of AIMed and BioInfer, respectively, which are superior to most existing extraction methods. PMID:25757257

  8. Large-scale identification of encystment-related proteins and genes in Pseudourostyla cristata

    PubMed Central

    Gao, Xiuxia; Chen, Fenfen; Niu, Tao; Qu, Ruidan; Chen, Jiwu

    2015-01-01

    The transformation of a ciliate into cyst is an advance strategy against an adverse situation. However, the molecular mechanism for the encystation of free-living ciliates is poorly understood. A large-scale identification of the encystment-related proteins and genes in ciliate would provide us with deeper insights into the molecular mechanisms for the encystations of ciliate. We identified the encystment-related proteins and genes in Pseudourostyla cristata with shotgun LC-MS/MS and scale qRT-PCR, respectively, in this report. A total of 668 proteins were detected in the resting cysts, 102 of these proteins were high credible proteins, whereas 88 high credible proteins of the 724 total proteins were found in the vegetative cells. Compared with the vegetative cell, 6 specific proteins were found in the resting cyst. However, the majority of high credible proteins in the resting cyst and the vegetative cell were co-expressed. We compared 47 genes of the co-expressed proteins with known functions in both the cyst and the vegetative cell using scale qRT-PCR. Twenty-seven of 47 genes were differentially expressed in the cyst compared with the vegetative cell. In our identifications, many uncharacterized proteins were also found. These results will help reveal the molecular mechanism for the formation of cyst in ciliates. PMID:26079518

  9. Human-chromatin-related protein interactions identify a demethylase complex required for chromosome segregation.

    PubMed

    Marcon, Edyta; Ni, Zuyao; Pu, Shuye; Turinsky, Andrei L; Trimble, Sandra Smiley; Olsen, Jonathan B; Silverman-Gavrila, Rosalind; Silverman-Gavrila, Lorelei; Phanse, Sadhna; Guo, Hongbo; Zhong, Guoqing; Guo, Xinghua; Young, Peter; Bailey, Swneke; Roudeva, Denitza; Zhao, Dorothy; Hewel, Johannes; Li, Joyce; Gräslund, Susanne; Paduch, Marcin; Kossiakoff, Anthony A; Lupien, Mathieu; Emili, Andrew; Wodak, Shoshana J; Greenblatt, Jack

    2014-07-10

    Chromatin regulation is driven by multicomponent protein complexes, which form functional modules. Deciphering the components of these modules and their interactions is central to understanding the molecular pathways these proteins are regulating, their functions, and their relation to both normal development and disease. We describe the use of affinity purifications of tagged human proteins coupled with mass spectrometry to generate a protein-protein interaction map encompassing known and predicted chromatin-related proteins. On the basis of 1,394 successful purifications of 293 proteins, we report a high-confidence (85% precision) network involving 11,464 protein-protein interactions among 1,738 different human proteins, grouped into 164 often overlapping protein complexes with a particular focus on the family of JmjC-containing lysine demethylases, their partners, and their roles in chromatin remodeling. We show that RCCD1 is a partner of histone H3K36 demethylase KDM8 and demonstrate that both are important for cell-cycle-regulated transcriptional repression in centromeric regions and accurate mitotic division. PMID:24981860

  10. Glycated Lysine Residues: A Marker for Non-Enzymatic Protein Glycation in Age-Related Diseases

    PubMed Central

    Ansari, Nadeem A.; Moinuddin; Ali, Rashid

    2011-01-01

    Nonenzymatic glycosylation or glycation of macromolecules, especially proteins leading to their oxidation, play an important role in diseases. Glycation of proteins primarily results in the formation of an early stage and stable Amadori-lysine product which undergo further irreversible chemical reactions to form advanced glycation endproducts (AGEs). This review focuses these products in lysine rich proteins such as collagen and human serum albumin for their role in aging and age-related diseases. Antigenic characteristics of glycated lysine residues in proteins together with the presence of serum autoantibodies to the glycated lysine products and lysine-rich proteins in diabetes and arthritis patients indicates that these modified lysine residues may be a novel biomarker for protein glycation in aging and age-related diseases. PMID:21725160

  11. Major basic protein, but not eosinophil cationic protein or eosinophil protein X, is related to atopy in cystic fibrosis.

    PubMed

    Koller, D Y; Halmerbauer, G; Müller, J; Frischer, T; Schierl, M

    1999-10-01

    Increased eosinophil granule proteins have been described in serum and sputum samples of patients with cystic fibrosis (CF). It has been assumed that eosinophil degranulation is enhanced in atopic subjects - as in asthmatics. Since in CF no differences in eosinophil cationic protein (ECP), eosinophil protein X (EPX), and eosinophil peroxidase between atopic and nonatopic subjects have been detected, we investigated whether major basic protein (MBP) is increased in serum and sputum samples derived from atopic (n = 14) compared with nonatopic CF subjects (n = 26). In CF patients, high mean serum (sputum) levels of ECP 29.7 microg/l (2.7 mg/l), EPX 53.7 microg/l (7.9 mg/l), and MBP 984.6 microg/l but low sputum MBP levels (57.4 microg/l) were measured. In addition, in serum and in sputum samples, a significant correlation between MBP and ECP (P<0.03 and P<0.0001, respectively) or EPX (P<0.05 and P<0.0004, respectively) was detected. By subdivision of the patients into allergic and nonallergic subjects, significant differences were found for serum MBP values only(mean 1382.2 microg/l vs. 770.5 microg/l; P<0.0001), but not for ECP or EPX serum levels or for eosinophil proteins in sputum. Although no differences between atopic and nonatopic CF patients in ECP and EPX were found, serum MBP levels were higher in patients sensitized to inhalant allergens than in nonsensitized subjects. These results indicate differential release of eosinophil granule proteins in peripheral blood from eosinophils, and they also indicate that MBP in serum likely is to be a better discriminator of atopy in CF. PMID:10536888

  12. Proteomics Based Identification of Cell Migration Related Proteins in HBV Expressing HepG2 Cells

    PubMed Central

    Feng, Huixing; Li, Xi; Chan, Vincent; Chen, Wei Ning

    2014-01-01

    Proteomics study was performed to investigate the specific protein expression profiles of HepG2 cells transfected with mutant HBV compared with wildtype HBV genome, aiming to identify the specific functions of SH3 binding domain (proline rich region) located in HBx. In addition to the cell movement and kinetics changes due to the expression of HBV genome we have observed previously, here we further targeted to explore the specific changes of cellular proteins and potential intracellular protein interactions, which might provide more information of the potential cellular mechanism of the differentiated cell movements. Specific changes of a number of proteins were shown in global protein profiling in HepG2 cells expressing wildtype HBV, including cell migration related proteins, and interestingly the changes were found recovered by SH3 binding domain mutated HBV. The distinctive expressions of proteins were validated by Western blot analysis. PMID:24763314

  13. Protein Secondary Structures (alpha-helix and beta-sheet) at a Cellular Levle and Protein Fractions in Relation to Rumen Degradation Behaviours of Protein: A New Approach

    SciTech Connect

    Yu,P.

    2007-01-01

    Studying the secondary structure of proteins leads to an understanding of the components that make up a whole protein, and such an understanding of the structure of the whole protein is often vital to understanding its digestive behaviour and nutritive value in animals. The main protein secondary structures are the {alpha}-helix and {beta}-sheet. The percentage of these two structures in protein secondary structures influences protein nutritive value, quality and digestive behaviour. A high percentage of {beta}-sheet structure may partly cause a low access to gastrointestinal digestive enzymes, which results in a low protein value. The objectives of the present study were to use advanced synchrotron-based Fourier transform IR (S-FTIR) microspectroscopy as a new approach to reveal the molecular chemistry of the protein secondary structures of feed tissues affected by heat-processing within intact tissue at a cellular level, and to quantify protein secondary structures using multicomponent peak modelling Gaussian and Lorentzian methods, in relation to protein digestive behaviours and nutritive value in the rumen, which was determined using the Cornell Net Carbohydrate Protein System. The synchrotron-based molecular chemistry research experiment was performed at the National Synchrotron Light Source at Brookhaven National Laboratory, US Department of Energy. The results showed that, with S-FTIR microspectroscopy, the molecular chemistry, ultrastructural chemical make-up and nutritive characteristics could be revealed at a high ultraspatial resolution ({approx}10 {mu}m). S-FTIR microspectroscopy revealed that the secondary structure of protein differed between raw and roasted golden flaxseeds in terms of the percentages and ratio of {alpha}-helixes and {beta}-sheets in the mid-IR range at the cellular level. By using multicomponent peak modelling, the results show that the roasting reduced (P <0.05) the percentage of {alpha}-helixes (from 47.1% to 36.1%: S

  14. A relational database of protein structures designed for flexible enquiries about conformation.

    PubMed

    Islam, S A; Sternberg, M J

    1989-03-01

    A relational database of protein structure has been developed to enable rapid and flexible enquiries about the occurrence of many aspects of protein architecture. The coordinates of 294 proteins from the Brookhaven Data Bank have been processed by standard computer programs to generate many additional terms that quantify aspects of protein structure. These terms include solvent accessibility, main-chain and side-chain dihedral angles, and secondary structure. In a relational database, the information is stored in tables with columns holding the different terms and rows holding the different entries for the terms. The different relational base tables store the information about the protein coordinate set, the different chains in the protein, the amino acid residues and ligands, the atomic coordinates, the salt bridges, the hydrogen bonds, the disulphide bridges and the close tertiary contacts. The database was established under ORACLE management system. Enquiries are constructed in ORACLE using SQL (structured query language) which is simple to use and alleviates the need for extensive computer programs. A single table can be searched for entries that meet various criteria, e.g. all protein solved to better than a given resolution. The power of the database occurs when several tables, or the entries in a single table, are cross-correlated. For example the dihedral angles of proline in the fourth position in an alpha-helix in high resolution structures can be rapidly obtained. The structural database provides a powerful tool to obtain empirical rules about protein conformation. This database of protein structures is part of a joint project between Birkbeck College and Leeds University to establish an integrated data resource of protein sequences and structures (ISIS) that encodes the complex patterns of residues and coordinates that define protein conformation. The entire data resource (ISIS) will provide a system to guide all areas of protein modelling including

  15. Mining for Candidate Genes Related to Pancreatic Cancer Using Protein-Protein Interactions and a Shortest Path Approach

    PubMed Central

    Yuan, Fei; Zhang, Yu-Hang; Wan, Sibao; Wang, ShaoPeng; Kong, Xiang-Yin

    2015-01-01

    Pancreatic cancer (PC) is a highly malignant tumor derived from pancreas tissue and is one of the leading causes of death from cancer. Its molecular mechanism has been partially revealed by validating its oncogenes and tumor suppressor genes; however, the available data remain insufficient for medical workers to design effective treatments. Large-scale identification of PC-related genes can promote studies on PC. In this study, we propose a computational method for mining new candidate PC-related genes. A large network was constructed using protein-protein interaction information, and a shortest path approach was applied to mine new candidate genes based on validated PC-related genes. In addition, a permutation test was adopted to further select key candidate genes. Finally, for all discovered candidate genes, the likelihood that the genes are novel PC-related genes is discussed based on their currently known functions. PMID:26613085

  16. A Shortest Dependency Path Based Convolutional Neural Network for Protein-Protein Relation Extraction

    PubMed Central

    Quan, Chanqin

    2016-01-01

    The state-of-the-art methods for protein-protein interaction (PPI) extraction are primarily based on kernel methods, and their performances strongly depend on the handcraft features. In this paper, we tackle PPI extraction by using convolutional neural networks (CNN) and propose a shortest dependency path based CNN (sdpCNN) model. The proposed method (1) only takes the sdp and word embedding as input and (2) could avoid bias from feature selection by using CNN. We performed experiments on standard Aimed and BioInfer datasets, and the experimental results demonstrated that our approach outperformed state-of-the-art kernel based methods. In particular, by tracking the sdpCNN model, we find that sdpCNN could extract key features automatically and it is verified that pretrained word embedding is crucial in PPI task. PMID:27493967

  17. A Shortest Dependency Path Based Convolutional Neural Network for Protein-Protein Relation Extraction.

    PubMed

    Hua, Lei; Quan, Chanqin

    2016-01-01

    The state-of-the-art methods for protein-protein interaction (PPI) extraction are primarily based on kernel methods, and their performances strongly depend on the handcraft features. In this paper, we tackle PPI extraction by using convolutional neural networks (CNN) and propose a shortest dependency path based CNN (sdpCNN) model. The proposed method (1) only takes the sdp and word embedding as input and (2) could avoid bias from feature selection by using CNN. We performed experiments on standard Aimed and BioInfer datasets, and the experimental results demonstrated that our approach outperformed state-of-the-art kernel based methods. In particular, by tracking the sdpCNN model, we find that sdpCNN could extract key features automatically and it is verified that pretrained word embedding is crucial in PPI task. PMID:27493967

  18. Expression and Functional Characterization of two Pathogenesis-Related Protein 10 Genes from Zea mays

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pathogenesis-related protein 10 (PR10) is one of seventeen PR protein families and plays important roles in plant response to biotic and abiotic stresses. A novel PR10 gene (ZmPR10.1), which shares 89.8% and 85.7% identity to the previous ZmPR10 at the nucleotide and amino acid sequence level, respe...

  19. Heterologous expression and functional analysis of the wheat group 1 pathogenesis-related (PR-1) proteins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The group 1 pathogenesis-related (PR-1) proteins have been widely used as hallmarks of plant defense pathways, but their biological functions are still unknown. We report here the functional analysis of two basic PR-1 proteins following the identification of the wheat PR-1 gene family (Lu et al., 20...

  20. LDL Receptor-related Protein 1 Regulates the Abundance of Diverse Cell-signaling Proteins in the Plasma Membrane Proteome

    PubMed Central

    Gaultier, Alban; Simon, Gabriel; Niessen, Sherry; Dix, Melissa; Takimoto, Shinako; Cravatt, Benjamin F.; Gonias, Steven L.

    2010-01-01

    LDL receptor-related protein 1 (LRP1) is an endocytic receptor, reported to regulate the abundance of other receptors in the plasma membrane, including uPAR and tissue factor. The goal of this study was to identify novel plasma membrane proteins, involved in cell-signaling, which are regulated by LRP1. Membrane protein ectodomains were prepared from RAW 264.7 cells in which LRP1 was silenced and control cells using protease K. Peptides were identified by LC-MS/MS. By analysis of spectral counts, 31 transmembrane and secreted proteins were regulated in abundance at least 2-fold when LRP1 was silenced. Validation studies confirmed that semaphorin4D (Sema4D), plexin domain-containing protein-1 (Plxdc1), and neuropilin-1 were more abundant in the membranes of LRP1 gene-silenced cells. Regulation of Plxdc1 by LRP1 was confirmed in CHO cells, as a second model system. Plxdc1 co-immunoprecipitated with LRP1 from extracts of RAW 264.7 cells and mouse liver. Although Sema4D did not co-immunoprecipitate with LRP1, the cell-surface level of Sema4D was increased by RAP, which binds to LRP1 and inhibits binding of other ligands. These studies identify Plxdc1, Sema4D, and neuropilin-1 as novel LRP1-regulated cell-signaling proteins. Overall, LRP1 emerges as a generalized regulator of the plasma membrane proteome. PMID:20919742

  1. Protein 4.1, a component of the erythrocyte membrane skeleton and its related homologue proteins forming the protein 4.1/FERM superfamily.

    PubMed

    Diakowski, Witold; Grzybek, Michał; Sikorski, Aleksander F

    2006-01-01

    The review is focused on the domain structure and function of protein 4.1, one of the proteins belonging to the membrane skeleton. The protein 4.1 of the red blood cells (4.1R) is a multifunctional protein that localizes to the membrane skeleton and stabilizes erythrocyte shape and membrane mechanical properties, such as deformability and stability, via lateral interactions with spectrin, actin, glycophorin C and protein p55. Protein 4.1 binding is modulated through the action of kinases and/or calmodulin-Ca2+. Non-erythroid cells express the 4.1R homologues: 4.1G (general type), 4.1B (brain type), and 4.1N (neuron type), and the whole group belongs to the protein 4.1 superfamily, which is characterized by the presence of a highly conserved FERM domain at the N-terminus of the molecule. Proteins 4.1R, 4.1G, 4.1N and 4.1B are encoded by different genes. Most of the 4.1 superfamily proteins also contain an actin-binding domain. To date, more than 40 members have been identified. They can be divided into five groups: protein 4.1 molecules, ERM proteins, talin-related molecules, protein tyrosine phosphatase (PTPH) proteins and NBL4 proteins. We have focused our attention on the main, well known representatives of 4.1 superfamily and tried to choose the proteins which are close to 4.1R or which have distinct functions. 4.1 family proteins are not just linkers between the plasma membrane and membrane skeleton; they also play an important role in various processes. Some, such as focal adhesion kinase (FAK), non-receptor tyrosine kinase that localizes to focal adhesions in adherent cells, play the role in cell adhesion. The other members control or take part in tumor suppression, regulation of cell cycle progression, inhibition of cell proliferation, downstream signaling of the glutamate receptors, and establishment of cell polarity; some are also involved in cell proliferation, cell motility, and/or cell-to-cell communication. PMID:17219717

  2. Gray matter–related proteins are associated with childhood-onset multiple sclerosis

    PubMed Central

    Singh, Vaibhav; van Pelt, E. Daniëlle; Stoop, Marcel P.; Stingl, Christoph; Ketelslegers, Immy A.; Neuteboom, Rinze F.; Catsman-Berrevoets, Coriene E.; Luider, Theo M.

    2015-01-01

    Objective: To identify CSF biomarkers for multiple sclerosis (MS) in children with an initial acquired CNS demyelinating syndrome (ADS). Methods: CSF was collected from a cohort of 39 children with initial ADS, 18 of whom were diagnosed with MS and 21 of whom had a monophasic disease course. Proteomic analysis of trypsinized CSF (20 μL) was performed by nano-liquid chromatography Orbitrap mass spectrometry. Univariate statistical analysis was used to identify differentially abundant proteins between childhood-onset MS and monophasic ADS. Results: A total of 2,260 peptides corresponding to 318 proteins were identified in the total set of samples. Of these 2,260 peptides, 88 were identified as being most distinctive between MS and ADS. Fifty-three peptides, corresponding to 14 proteins, had higher abundance in children with MS compared to children with monophasic ADS. Twelve of these 14 proteins were linked to neuronal functions and structures, such as synapses, axons, and CNS proteases (e.g., neurofascin, carboxypeptidase E, brevican core protein, and contactin-2). The other 2 were functionally related to immune function. The 35 peptides identified with decreased abundance in children with MS corresponded to 7 proteins. Six of them were linked to innate immune function (e.g., haptoglobin, haptoglobin-related protein, C4b-binding protein alpha chain, and monocyte differentiation antigen CD14) and 1 was linked to cellular adhesion (protein diaphanous homolog 1). Conclusion: At first onset of ADS, CSF of children diagnosed with MS showed increased abundance of CNS gray matter–related proteins, whereas CSF of children with a monophasic disease course showed increased abundance of innate immunity–related proteins. PMID:26445729

  3. The Dishevelled Protein Family: Still Rather a Mystery After Over 20 Years of Molecular Studies

    PubMed Central

    Mlodzik, Marek

    2016-01-01

    Dishevelled (Dsh) is a key component of Wnt-signaling pathways and possibly also has other functional requirements. Dsh appears to be a key factor to interpret Wnt signals coming via the Wnt-receptor family, the Frizzled proteins, from the plasma membrane and route them into the correct intracellular pathways. However, how Dsh is regulated to relay signal flow to specific and distinct cellular responses upon interaction with the same Wnt-receptor family remains very poorly understood. PMID:26969973

  4. Sequence-related human proteins cluster by degree of evolutionary conservation

    NASA Astrophysics Data System (ADS)

    Mrowka, Ralf; Patzak, Andreas; Herzel, Hanspeter; Holste, Dirk

    2004-11-01

    Gene duplication followed by adaptive evolution is thought to be a central mechanism for the emergence of novel genes. To illuminate the contribution of duplicated protein-coding sequences to the complexity of the human genome, we study the connectivity of pairwise sequence-related human proteins and construct a network (N) of linked protein sequences with shared similarities. We find that (i) the connectivity distribution P(k) for k sequence-related proteins decays as a power law P(k)˜k-γ with γ≈1.2 , (ii) the top rank of N consists of a single large cluster of proteins (≈70%) , while bottom ranks consist of multiple isolated clusters, and (iii) structural characteristics of N show both a high degree of clustering and an intermediate connectivity (“small-world” features). We gain further insight into structural properties of N by studying the relationship between the connectivity distribution and the phylogenetic conservation of proteins in bacteria, plants, invertebrates, and vertebrates. We find that (iv) the proportion of sequence-related proteins increases with increasing extent of evolutionary conservation. Our results support that small-world network properties constitute a footprint of an evolutionary mechanism and extend the traditional interpretation of protein families.

  5. Determination of relative protein abundance by internally normalized ratio algorithm with antibody arrays.

    PubMed

    Andersson, Oskar; Kozlowski, Mark; Garachtchenko, Tatiana; Nikoloff, Corina; Lew, Nancy; Litman, David J; Chaga, Grigoriy

    2005-01-01

    In this paper, we report an experimental setup and mathematical algorithm for determination of relative protein abundance from directly labeled native protein samples applied to an array of antibodies. The application of the proposed experimental system compensates internally at each array element for a number of deficiencies in array experiments such as differential labeling efficiency in dual color assay systems, differential solubility of protein molecules in dual color assay systems, and differential affinity of capture reagents toward proteins labeled with two different fluorescent dyes. This system offers full compensation for variable amounts of capture reagents on separate array structures, as well as limited compensation for nonspecific interactions between capture reagents and analytes. The proposed experimental strategy enables the use of a large number of capture reagents to develop a true multiplex analysis system that will yield complete relative protein abundance information in two biological systems. PMID:15952723

  6. Isolation and characterization of six pathogenesis-related (PR) proteins of Samsun NN tobacco.

    PubMed

    Kauffmann, S; Legrand, M; Fritig, B

    1990-03-01

    The purification to homogeneity of pathogenesis-related (PR) proteins R and S from Nicotiana tabacum cv. Samsun NN leaves has been achieved by using a combination of conventional and high-performance chromatographic supports. The same procedure allowed the purification and the characterization of four other proteins which displayed some properties characteristic of tobacco PR proteins and were shown to accumulate in tobacco leaves in response to virus infection. They can be, therefore, considered as new tobacco PR proteins which we designate as PR-s1, -s2, -r1 and -r2. The relative electrophoretic mobilities (Rf) under non-denaturing conditions were estimated to 0.30 for PR-r1 and -r2, 0.25 for Pr-R, 0.20 for PR-s1 and -s2 and 0.15 for PR-S. On SDS gels PR proteins R and S possessed the same apparent molecular weight (Mr 24,000) as did PR-proteins s1 and r1 (Mr 14,500) and PR-s2 and -r2 (Mr 13,000). However, proteins s1, s2, r1 and r2 had identical electrophoretic mobilities on SDS gels when the loading sample buffer contained no reducing agent. Polyclonal antisera were raised against PR proteins R and S and used in immunoblotting experiments. Proteins R and S were shown to be serologically closely related. No cross-reaction was detected with any of the four new tobacco PR proteins r1, r2, s1 and s2 or with the previously described PR proteins, i.e. PR-1a, -1b, -1c, -2, -N, -O, -P and -Q. PMID:2102821

  7. WDR76 Co-Localizes with Heterochromatin Related Proteins and Rapidly Responds to DNA Damage

    PubMed Central

    Gilmore, Joshua M.; Sardiu, Mihaela E.; Groppe, Brad D.; Thornton, Janet L.; Liu, Xingyu; Dayebgadoh, Gerald; Banks, Charles A.; Slaughter, Brian D.; Unruh, Jay R.; Workman, Jerry L.; Florens, Laurence; Washburn, Michael P.

    2016-01-01

    Proteins that respond to DNA damage play critical roles in normal and diseased states in human biology. Studies have suggested that the S. cerevisiae protein CMR1/YDL156w is associated with histones and is possibly associated with DNA repair and replication processes. Through a quantitative proteomic analysis of affinity purifications here we show that the human homologue of this protein, WDR76, shares multiple protein associations with the histones H2A, H2B, and H4. Furthermore, our quantitative proteomic analysis of WDR76 associated proteins demonstrated links to proteins in the DNA damage response like PARP1 and XRCC5 and heterochromatin related proteins like CBX1, CBX3, and CBX5. Co-immunoprecipitation studies validated these interactions. Next, quantitative imaging studies demonstrated that WDR76 was recruited to laser induced DNA damage immediately after induction, and we compared the recruitment of WDR76 to laser induced DNA damage to known DNA damage proteins like PARP1, XRCC5, and RPA1. In addition, WDR76 co-localizes to puncta with the heterochromatin proteins CBX1 and CBX5, which are also recruited to DNA damage but much less intensely than WDR76. This work demonstrates the chromatin and DNA damage protein associations of WDR76 and demonstrates the rapid response of WDR76 to laser induced DNA damage. PMID:27248496

  8. Expression of lung resistance-related protein, LRP, and multidrug resistance-related protein, MRP1, in normal human lung cells in long-term cultures.

    PubMed

    Lehmann, Thomas; Torky, Abdel-Rahman Wageeh; Stehfest, Ekkehard; Hofmann, Stefan; Foth, Heidi

    2005-10-01

    Transport processes form part of the body's defense mechanism, and they determine the intracellular levels of many endogenous and exogenous compounds. The multidrug resistance-related protein MRP1 and the lung resistance-related protein LRP are associated with drug resistance against chemotherapeutics; they protect cells against toxic compounds. There is much experimental evidence to suggest that both of these transporter proteins serve important physiological functions. The expression of LRP and MRP1 was studied in normal human bronchial epithelial cells (NHBEC) and peripheral lung cells (PLC) obtained from explant cultures from morphologically-normal human lung tissue taken from patients with lung cancer. LRP (mRNA and protein) was detected in the cells of the bronchi as well as the peripheral lung with low (a factor of 2.6) inter-individual variation in the first generation. No significant alterations were noted for LRP within three-to-four generations in the same patient. LRP expression was not substantially different between cultures from different topographic regions of the human lung. MRP1 protein and MRP1 mRNA could also be detected in all of the NHBEC and PLC cultures studied, but with substantially higher (a factor of 7.7) intra-individual variation in the first generation than for LRP. MRP expression was the same for bronchial cells and PLC when the material was obtained from both sites. The level of mRNA for MRP1 was, in general, less stable than that for LRP. In multigeneration explant cultures, the levels of LRP mRNA and protein and MRP1 protein did not fluctuate greatly, but the level of MRP1 mRNA dropped to about 25% of the reference value within four generations (after about 8-10 weeks of culture). In one case, NHBEC subpassages were followed over a period of 20 weeks. In this system MRP mRNA levels increased by more than threefold, while levels of MRP1 protein and LRP mRNA and protein were expressed at almost constant rates. PMID:15986202

  9. Cilia/Ift protein and motor-related bone diseases and mouse models

    PubMed Central

    Yuan, Xue; Yang, Shuying

    2015-01-01

    Primary cilia are essential cellular organelles projecting from the cell surface to sense and transduce developmental signaling. They are tiny but have complicated structures containing microtubule (MT)-based internal structures (the axoneme) and mother centriole formed basal body. Intraflagellar transport (Ift) operated by Ift proteins and motors are indispensable for cilia formation and function. Mutations in Ift proteins or Ift motors cause various human diseases, some of which have severe bone defects. Over the last few decades, major advances have occurred in understanding the roles of these proteins and cilia in bone development and remodeling by examining cilia/Ift protein-related human diseases and establishing mouse transgenic models. In this review, we describe current advances in the understanding of the cilia/Ift structure and function. We further summarize cilia/Ift-related human diseases and current mouse models with an emphasis on bone-related phenotypes, cilia morphology, and signaling pathways. PMID:25553465

  10. Endogenous erythropoietin varies significantly with inflammation-related proteins in extremely premature newborns

    PubMed Central

    Logan, J. Wells; Allred, Elizabeth N.; Fichorova, Raina N.; Engelke, Stephen; Dammann, Olaf; Leviton, Alan

    2014-01-01

    Introduction Erythropoietin, a pluripotent glycoprotein essential for erythropoiesis, fetal growth, and development, has recently been implicated in innate immune regulation. Data from the ELGAN Study allowed us to evaluate relationships between endogenous erythropoietin and 25 inflammation-related proteins in extremely premature newborns. Methods We measured the concentrations of 25 inflammation-related proteins and of erythropoietin in blood spots collected on postnatal days 1, 7, and 14 from 936 infants born before 28 weeks gestation. We calculated the odds that infants with an inflammation-related protein in the highest quartile for gestational age and collection day had an erythropoietin concentration in the highest or lowest quartile. Results The proportion of children with inflammation-associated protein concentrations in the top quartile tended to increase monotonically with increasing quartile of EPO concentrations on 2 of the 3 days assessed. To a large extent, on each of the 3 days assessed, the odds ratios for an erythropoietin concentration in the top quartile were significantly elevated among those with an inflammation-related protein concentration in the top quartile. Conclusions Our findings suggest that in very preterm newborns, circulating levels of endogenous erythropoietin vary significantly with circulating levels of inflammation-related proteins. Elevation of endogenous erythropoietin might not be an epiphenomenon, but instead might contribute to subsequent events, by either promoting or reducing inflammation, or by promoting an anti-injury or repair capability. PMID:25022958

  11. Muscle Protein Alterations in LGMD2I Patients With Different Mutations in the Fukutin-related Protein Gene

    PubMed Central

    Yamamoto, Lydia U.; Velloso, Fernando J.; Lima, Bruno L.; Fogaça, Luciana L.Q.; de Paula, Flávia; Vieira, Natássia M.; Zatz, Mayana; Vainzof, Mariz

    2008-01-01

    Fukutin-related protein (FKRP) is a protein involved in the glycosylation of cell surface molecules. Pathogenic mutations in the FKRP gene cause both the more severe congenital muscular dystrophy Type 1C and the milder Limb-Girdle Type 2I form (LGMD2I). Here we report muscle histological alterations and the analysis of 11 muscle proteins: dystrophin, four sarcoglycans, calpain 3, dysferlin, telethonin, collagen VI, α-DG, and α2-laminin, in muscle biopsies from 13 unrelated LGMD2I patients with 10 different FKRP mutations. In all, a typical dystrophic pattern was observed. In eight patients, a high frequency of rimmed vacuoles was also found. A variable degree of α2-laminin deficiency was detected in 12 patients through immunofluorescence analysis, and 10 patients presented α-DG deficiency on sarcolemmal membranes. Additionally, through Western blot analysis, deficiency of calpain 3 and dystrophin bands was found in four and two patients, respectively. All the remaining proteins showed a similar pattern to normal controls. These results suggest that, in our population of LGMD2I patients, different mutations in the FKRP gene are associated with several secondary muscle protein reductions, and the deficiencies of α2-laminin and α-DG on sections are prevalent, independently of mutation type or clinical severity. (J Histochem Cytochem 56:995–1001, 2008) PMID:18645206

  12. Muscle protein alterations in LGMD2I patients with different mutations in the Fukutin-related protein gene.

    PubMed

    Yamamoto, Lydia U; Velloso, Fernando J; Lima, Bruno L; Fogaça, Luciana L Q; de Paula, Flávia; Vieira, Natássia M; Zatz, Mayana; Vainzof, Mariz

    2008-11-01

    Fukutin-related protein (FKRP) is a protein involved in the glycosylation of cell surface molecules. Pathogenic mutations in the FKRP gene cause both the more severe congenital muscular dystrophy Type 1C and the milder Limb-Girdle Type 2I form (LGMD2I). Here we report muscle histological alterations and the analysis of 11 muscle proteins: dystrophin, four sarcoglycans, calpain 3, dysferlin, telethonin, collagen VI, alpha-DG, and alpha2-laminin, in muscle biopsies from 13 unrelated LGMD2I patients with 10 different FKRP mutations. In all, a typical dystrophic pattern was observed. In eight patients, a high frequency of rimmed vacuoles was also found. A variable degree of alpha2-laminin deficiency was detected in 12 patients through immunofluorescence analysis, and 10 patients presented alpha-DG deficiency on sarcolemmal membranes. Additionally, through Western blot analysis, deficiency of calpain 3 and dystrophin bands was found in four and two patients, respectively. All the remaining proteins showed a similar pattern to normal controls. These results suggest that, in our population of LGMD2I patients, different mutations in the FKRP gene are associated with several secondary muscle protein reductions, and the deficiencies of alpha2-laminin and alpha-DG on sections are prevalent, independently of mutation type or clinical severity. PMID:18645206

  13. Space-related pharma-motifs for fast search of protein binding motifs and polypharmacological targets

    PubMed Central

    2012-01-01

    Background To discover a compound inhibiting multiple proteins (i.e. polypharmacological targets) is a new paradigm for the complex diseases (e.g. cancers and diabetes). In general, the polypharmacological proteins often share similar local binding environments and motifs. As the exponential growth of the number of protein structures, to find the similar structural binding motifs (pharma-motifs) is an emergency task for drug discovery (e.g. side effects and new uses for old drugs) and protein functions. Results We have developed a Space-Related Pharmamotifs (called SRPmotif) method to recognize the binding motifs by searching against protein structure database. SRPmotif is able to recognize conserved binding environments containing spatially discontinuous pharma-motifs which are often short conserved peptides with specific physico-chemical properties for protein functions. Among 356 pharma-motifs, 56.5% interacting residues are highly conserved. Experimental results indicate that 81.1% and 92.7% polypharmacological targets of each protein-ligand complex are annotated with same biological process (BP) and molecular function (MF) terms, respectively, based on Gene Ontology (GO). Our experimental results show that the identified pharma-motifs often consist of key residues in functional (active) sites and play the key roles for protein functions. The SRPmotif is available at http://gemdock.life.nctu.edu.tw/SRP/. Conclusions SRPmotif is able to identify similar pharma-interfaces and pharma-motifs sharing similar binding environments for polypharmacological targets by rapidly searching against the protein structure database. Pharma-motifs describe the conservations of binding environments for drug discovery and protein functions. Additionally, these pharma-motifs provide the clues for discovering new sequence-based motifs to predict protein functions from protein sequence databases. We believe that SRPmotif is useful for elucidating protein functions and drug discovery

  14. Newcastle disease virus NP and P proteins induce autophagy via the endoplasmic reticulum stress-related unfolded protein response

    PubMed Central

    Cheng, Jing-Hua; Sun, Ying-Jie; Zhang, Fan-Qing; Zhang, Xiao-Rong; Qiu, Xv-Sheng; Yu, Li-Ping; Wu, Yan-Tao; Ding, Chan

    2016-01-01

    Newcastle disease virus (NDV) can replicate and trigger autophagy in human tumor cells. Our previous study confirmed the critical role of autophagy in NDV infection. Here we studied the role of NDV structural proteins in the induction of autophagy through endoplasmic reticulum (ER) stress-related unfolded protein response (UPR) pathways. Ectopic expression of the NDV nucleocapsid protein (NP) or phosphoprotein (P) was sufficient to induce autophagy. NP or P expression also altered ER homeostasis. The PERK and ATF6 pathways, but not the XBP1 pathway, all of which are components of the UPR, were activated in both NDV-infected and NP or P-transfected cells. Knockdown of PERK or ATF6 inhibited NDV-induced autophagy and reduced the extent of NDV replication. Collectively, these data suggest not only roles for the NDV NP and P proteins in autophagy, but also offer new insights into the mechanisms of NDV-induced autophagy through activation of the ER stress-related UPR pathway. PMID:27097866

  15. The activin binding proteins follistatin and follistatin-related protein are differentially regulated in vitro and during cutaneous wound repair.

    PubMed

    Wankell, M; Kaesler, S; Zhang, Y Q; Florence, C; Werner, S; Duan, R

    2001-12-01

    Follistatin is a secreted protein that binds activin in vitro and in vivo and thereby inhibits its biological functions. Recently, related human and murine genes, designated follistatin-related gene (FLRG), were identified, and their products were shown to bind activin with high affinity. In this study we further characterized the murine FLRG protein, and we analyzed its tissue-specific expression and regulation in comparison with those of follistatin. Transient expression of the mouse FLRG protein in COS-1 cells revealed that the FLRG cDNA encodes a secreted glycoprotein. FLRG mRNA was expressed at high levels in the lung, the testis, the uterus and, particularly, the skin. Immunohistochemistry revealed the presence of FLRG in the basement membrane between the dermis and the epidermis and around blood vessels. FLRG mRNA expression was induced in keratinocytes by keratinocyte growth factor, epidermal growth factor and transforming growth factor-beta 1, and in fibroblasts by platelet-derived growth factor and epidermal growth factor. The induction was more rapid, but weaker, than that of follistatin. Most interestingly, both follistatin and FLRG were expressed during the wound healing process, but their distribution within the wound was different. The different expression pattern of FLRG and follistatin and their differential regulation suggest different functions of these activin-binding proteins in vivo. PMID:11739004

  16. Immunolocalization of Tom1 in relation to protein degradation systems in Alzheimer's disease.

    PubMed

    Makioka, Kouki; Yamazaki, Tsuneo; Takatama, Masamitsu; Ikeda, Masaki; Murayama, Shigeo; Okamoto, Koichi; Ikeda, Yoshio

    2016-06-15

    Alzheimer's disease (AD) is an age-related neurodegenerative disorder. Its pathological hallmarks are senile plaques (SPs), which contain extracellular deposits of amyloid β (Aβ) protein fibrils and dystrophic neurites (DNs), and neurofibrillary tangles (NFTs) containing hyperphosphorylated tau. Impairment of protein-degradation systems, including the ubiquitin-proteasome and the autophagy-lysosome systems, has been proposed as one of the causes of the accumulation of these aberrant proteins in AD brains. Tom1 (target of Myb1) was originally identified by the induction of its expression by the v-Myb oncogene and is a part of two major protein-degradation systems. The present study was conducted by immunohistochemical and immunofluorescent stainings to show that Tom1 was localized in DNs, perisomatic granules (PSGs), and NFTs in AD brains. Moreover, in DNs, Tom1 colocalized with ubiquitin, lysosomal proteins, and Tom1-related proteins (Tollip and myosin VI), which act in both protein-degradation systems via Tom1. These results indicate that Tom1 plays important roles in protein-degradation systems in AD pathogenesis. PMID:27206884

  17. Dephosphorylation of Tctex2-related dynein light chain by type 2A protein phosphatase.

    PubMed

    Inaba, Kazuo

    2002-10-01

    Sperm flagellar movements are regulated by cAMP-dependent protein phosphorylation. Tctex2-related light chain of outer arm dynein is a well-defined phosphorylated protein that is phosphorylated at activation of sperm motility. Here, the protein phosphatase that dephosphorylates Tctex2-related dynein light chain (LC2) has been characterized in salmonid fish sperm. Most of the phosphatase activity against LC2 is found in Triton-soluble fraction of flagella but trace extent of the activity is retained in the axoneme. The dephosphorylation of LC2 is inhibited by okadaic acid at more than 1nM, whereas that of dynein alpha heavy chain is inhibited at more than 10nM. The addition of Ca(2+) gives no direct effect on LC2 dephosphorylation, but it accelerates the dephosphorylation of the regulatory subunit of cAMP-dependent protein kinase, resulting in the decrease of LC2 phosphorylation. The activity to dephosphorylate the LC2 is separated by MonoQ ion-exchange column chromatography along with the immunoreactivity to the antibody against the catalytic subunit of type 2A protein phosphatase. These results suggest that LC2 is dephosphorylated by type 2A protein phosphatase and that dynein alpha heavy chain and the regulatory subunit of cAMP-dependent protein kinase are dephosphorylated by other types of protein phosphatases. PMID:12359223

  18. Cardiovascular-related proteins identified in human plasma by the HUPO Plasma Proteome Project pilot phase.

    PubMed

    Berhane, Beniam T; Zong, Chenggong; Liem, David A; Huang, Aaron; Le, Steven; Edmondson, Ricky D; Jones, Richard C; Qiao, Xin; Whitelegge, Julian P; Ping, Peipei; Vondriska, Thomas M

    2005-08-01

    Proteomic profiling of accessible bodily fluids, such as plasma, has the potential to accelerate biomarker/biosignature development for human diseases. The HUPO Plasma Proteome Project pilot phase examined human plasma with distinct proteomic approaches across multiple laboratories worldwide. Through this effort, we confidently identified 3020 proteins, each requiring a minimum of two high-scoring MS/MS spectra. A critical step subsequent to protein identification is functional annotation, in particular with regard to organ systems and disease. Performing exhaustive literature searches, we have manually annotated a subset of these 3020 proteins that have cardiovascular-related functions on the basis of an existing body of published information. These cardiovascular-related proteins can be organized into eight groups: markers of inflammation and/or cardiovascular disease, vascular and coagulation, signaling, growth and differentiation, cytoskeletal, transcription factors, channels/receptors and heart failure and remodeling. In addition, analysis of the peptide per protein ratio for MS/MS identification reveals group-specific trends. These findings serve as a resource to interrogate the functions of plasma proteins, and moreover, the list of cardiovascular-related proteins in plasma constitutes a baseline proteomic blueprint for the future development of biosignatures for diseases such as myocardial ischemia and atherosclerosis. PMID:16052623

  19. Protein level affects the relative lysine requirement of growing rainbow trout (Oncorhynchus mykiss) fry.

    PubMed

    Bodin, Noelie; Govaerts, Bernadette; Abboudi, Tarik; Detavernier, Christel; De Saeger, Sarah; Larondelle, Yvan; Rollin, Xavier

    2009-07-01

    The effect of two digestible protein levels (310 and 469 g/kg DM) on the relative lysine (Lys; g Lys/kg DM or g Lys/100 g protein) and the absolute Lys (g Lys intake/kg 0.75 per d) requirements was studied in rainbow trout fry using a dose-response trial. At each protein level, sixteen isoenergetic (22-23 MJ digestible energy/kg DM) diets were tested, involving a full range (2-70 g/kg DM) of sixteen Lys levels. Each diet was given to one group of sixty rainbow trout fry (mean initial body weight 0.78 g) reared at 15 degrees C for 31 feeding d. The Lys requirements were estimated based on the relationships between weight, protein, and Lys gains (g/kg 0.75 per d) and Lys concentration (g/kg DM or g/100 g protein) or Lys intake (g/kg 0.75 per d), using the broken-line model (BLM) and the non-linear four-parameter saturation kinetics model (SKM-4). Both the model and the response criterion chosen markedly impacted the relative Lys requirement. The relative Lys requirement for Lys gain of rainbow trout estimated with the BLM (and SKM-4 at 90 % of the maximum response) increased from 16.8 (19.6) g/kg DM at a low protein level to 23.4 (24.5) g/kg DM at a high protein level. However, the dietary protein content affected neither the absolute Lys requirement nor the relative Lys requirement expressed as g Lys/100 g protein nor the Lys requirement for maintenance (21 mg Lys/kg 0.75 per d). PMID:19138439

  20. Differential proteomics analysis of proteins from human diabetic and age-related cataractous lenses

    PubMed Central

    Zhu, Jing; Shao, Jun; Yao, Yong; Chu, Zhao Dong; Yu, Qian Qian; Zhao, Wei; Lin, Qing; Zhang, Zi Yin

    2013-01-01

    Backgound: To investigate the differential lens proteomics between diabetic cataract, age-related cataract, and natural subjects. Materials and Methods: Two-dimensional electrophoresis (2-DE), mass spectrometry (MS), and enzyme-linked immunosorbent assay (ELISA) were employed. Total soluble proteins in lenses of type I diabetic cataract, age-related cataract (nondiabetic) patients, and normal control were extracted and subjected to 2-DE. The differential protein spots were recovered, digested with trypsin, and further applied to MALDI-TOF-MS. ELISA analysis was used to determine the levels of differential proteins in lenses of three groups. Results: 2-DE analysis reflected that lens proteins of normal control, diabetic, and age-related cataract subjects were in the section of pH 5-9 and the relative molecular weights were 14-97 kDa, while relative molecular weight of more abundant crystallines was localized at 20-31 kDa. five differential protein spots were detected and identified using MALDI-TOF-MS, including beta-crystallin A3, alpha-crystallin B chain, chain A of crystal structure of truncated human beta-B1-crystallin, beta-crystallin B1, and an interesting unnamed protein product highly similar to alpha-crystallin B chain, respectively. ELISA analysis revealed that lenses of diabetic cataract patients should contain significantly more concentrations of beta-crystallin A3, alpha-crystallin B chain, and beta-crystallin B1 than those of age-related cataract patients and normal control. Conclusion: This study clearly reflected the differential proteins of diabetic cataract, age-related cataract lenses compared with natural subjects, and it is helpful for the further research on the principles and mechanisms of different types of cataract. PMID:24520233

  1. Fission yeast pkl1 is a kinesin-related protein involved in mitotic spindle function.

    PubMed Central

    Pidoux, A L; LeDizet, M; Cande, W Z

    1996-01-01

    We have used anti-peptide antibodies raised against highly conserved regions of the kinesin motor domain to identify kinesin-related proteins in the fission yeast Schizosaccharomyces pombe. Here we report the identification of a new kinesin-related protein, which we have named pkl1. Sequence homology and domain organization place pkl1 in the Kar3/ncd subfamily of kinesin-related proteins. Bacterially expressed pkl1 fusion proteins display microtubule-stimulated ATPase activity, nucleotide-sensitive binding, and bundling of microtubules. Immunofluorescence studies with affinity-purified antibodies indicate that the pkl1 protein localizes to the nucleus and the mitotic spindle. Pkl1 null mutants are viable but have increased sensitivity to microtubule-disrupting drugs. Disruption of pkl1+ suppresses mutations in another kinesin-related protein, cut7, which is known to act in the spindle. Overexpression of pkl1 to very high levels causes a similar phenotype to that seen in cut7 mutants: V-shaped and star-shaped microtubule structures are observed, which we interpret to be spindles with unseparated spindle poles. These observations suggest that pkl1 and cut7 provide opposing forces in the spindle. We propose that pkl1 functions as a microtubule-dependent motor that is involved in microtubule organization in the mitotic spindle. Images PMID:8898367

  2. Prion Protein M129V Polymorphism Affects Retrieval-Related Brain Activity

    ERIC Educational Resources Information Center

    Buchmann, Andreas; Mondadori, Christian R. A.; Hanggi, Jurgen; Aerni, Amanda; Vrticka, Pascal; Luechinger, Roger; Boesiger, Peter; Hock, Christoph; Nitsch, Roger M.; de Quervain, Dominique J.-F.; Papassotiropoulos, Andreas; Henke, Katharina

    2008-01-01

    The prion protein Met129Val polymorphism has recently been related to human long-term memory with carriers of either the 129[superscript MM] or the 129[superscript MV] genotype recalling 17% more words than 129[superscript VV] carriers at 24 h following learning. Here, we sampled genotype differences in retrieval-related brain activity at 30 min…

  3. Interactions between Small Heat Shock Protein α-Crystallin and Galectin-Related Interfiber Protein (GRIFIN) in the Ocular Lens†

    PubMed Central

    Barton, Kelly A.; Hsu, Cheng-Da; Petrash, J. Mark

    2013-01-01

    As a member of the small heat shock protein superfamily, α-crystallin has a chaperone-like ability to recognize and bind denatured or unfolded proteins and prevent their aggregation. Recent studies suggest that α-crystallin may also interact with a variety of proteins under native conditions in vitro. To identify potential binding partners for α-crystallin in the intact ocular lens, we conducted cross-linking studies in transgenic mouse lenses designed for overexpression of His-tagged human αA-crystallin. Interacting proteins were copurified with the epitope-tagged crystallin complexes and were identified by tandem mass spectrometry. This approach identified GRIFIN (galectin-related interfiber protein) as a novel binding partner. Consistent with results from cross-linking, GRIFIN subunits copurified with α-crystallin complexes during size exclusion chromatography of nontransgenic mouse lens extracts prepared without chemical cross-linking. Equilibrium binding to GRIFIN was studied using native α-crystallin isolated from calf lenses as well as oligomeric complexes reconstituted from recombinant αA- and αB-crystallin subunits. Calf lens α-crystallin binds GRIFIN with relatively high affinity (Kd=6.5 ± 0.8 μM) at a stoichiometry of 0.25 ± 0.01 GRIFIN monomer/α-crystallin subunit. The binding interaction between α-crystallin and GRIFIN is enhanced up to 5-fold in the presence of 3 mM ATP. These binding data support the hypothesis that GRIFIN is a novel binding partner of α-crystallin in the lens. PMID:19296714

  4. Arabidopsis dynamin-related protein 1A polymers bind, but do not tubulate, liposomes

    SciTech Connect

    Backues, Steven K.; Bednarek, Sebastian Y.

    2010-03-19

    The Arabidopsis dynamin-related protein 1A (AtDRP1A) is involved in endocytosis and cell plate maturation in Arabidopsis. Unlike dynamin, AtDRP1A does not have any recognized membrane binding or protein-protein interaction domains. We report that GTPase active AtDRP1A purified from Escherichia coli as a fusion to maltose binding protein forms homopolymers visible by negative staining electron microscopy. These polymers interact with protein-free liposomes whose lipid composition mimics that of the inner leaflet of the Arabidopsis plasma membrane, suggesting that lipid-binding may play a role in AtDRP1A function. However, AtDRP1A polymers do not appear to assemble and disassemble in a dynamic fashion and do not have the ability to tubulate liposomes in vitro, suggesting that additional factors or modifications are necessary for AtDRP1A's in vivo function.

  5. Expression of Autophagy and Reactive Oxygen Species-Related Proteins in Lacrimal Gland Adenoid Cystic Carcinoma

    PubMed Central

    Koo, Ja Seung; Kim, Ji Won

    2016-01-01

    Purpose To investigate the difference of expression of autophagy and reactive oxygen species (ROS) related proteins in adenoid cystic carcinoma (ACC) of lacrimal gland in comparison with ACC of salivary gland. Materials and Methods Formalin-fixed, paraffin-embedded tissue samples from patients pathologically diagnosed as lacrimal gland ACC (n=11) and salivary gland ACC (n=64) were used. Immunochemistry was used to measure expression of autophagy related proteins [beclin-1, light chain (LC) 3A, LC3B, p62, and BCL2/adenovirus E1B 19 kDa protein-interacting protein 3 (BNIP3)] and ROS related proteins [catalase, thioredoxinreductase, glutathione S-transferasepi (GSTpi), thioredoxin interacting protein, and manganese superoxide dismutase (MnSOD)]. The prognostic factors related to disease-free and overall survival (OS) in lacrimal gland ACC by log-rank tests, were determined. Results GSTpi in stromal cells was more highly expressed in lacrimal gland ACC (p=0.006), however, MnSOD in epithelial cells was expressed more in salivary gland ACC (p=0.046). LC3B positivity and BNIP3 positivity in epithelial component were associated with shorter disease-free survival (both p=0.002), and LC3A positivity in stromal component was the factor related to shorter OS (p=0.005). Conclusion This is the first study to demonstrate the expression of autophagy and ROS related proteins in lacrimal gland ACC in comparison with the salivary gland ACC, which would provide a basis for further study of autophagy and ROS mechanism as novel therapeutic targets in lacrimal gland ACC. PMID:26847304

  6. Oxysterol Binding Protein–related Protein 9 (ORP9) Is a Cholesterol Transfer Protein That Regulates Golgi Structure and Function

    PubMed Central

    Ngo, Mike

    2009-01-01

    Oxysterol-binding protein (OSBP) and OSBP-related proteins (ORPs) constitute a large gene family that differentially localize to organellar membranes, reflecting a functional role in sterol signaling and/or transport. OSBP partitions between the endoplasmic reticulum (ER) and Golgi apparatus where it imparts sterol-dependent regulation of ceramide transport and sphingomyelin synthesis. ORP9L also is localized to the ER–Golgi, but its role in secretion and lipid transport is unknown. Here we demonstrate that ORP9L partitioning between the trans-Golgi/trans-Golgi network (TGN), and the ER is mediated by a phosphatidylinositol 4-phosphate (PI-4P)-specific PH domain and VAMP-associated protein (VAP), respectively. In vitro, both OSBP and ORP9L mediated PI-4P–dependent cholesterol transport between liposomes, suggesting their primary in vivo function is sterol transfer between the Golgi and ER. Depletion of ORP9L by RNAi caused Golgi fragmentation, inhibition of vesicular somatitus virus glycoprotein transport from the ER and accumulation of cholesterol in endosomes/lysosomes. Complete cessation of protein transport and cell growth inhibition was achieved by inducible overexpression of ORP9S, a dominant negative variant lacking the PH domain. We conclude that ORP9 maintains the integrity of the early secretory pathway by mediating transport of sterols between the ER and trans-Golgi/TGN. PMID:19129476

  7. Purification, crystallization and X-ray diffraction analysis of human dynamin-related protein 1 GTPase-GED fusion protein

    PubMed Central

    Klinglmayr, Eva; Wenger, Julia; Mayr, Sandra; Bossy-Wetzel, Ella; Puehringer, Sandra

    2012-01-01

    The mechano-enzyme dynamin-related protein 1 plays an important role in mitochondrial fission and is implicated in cell physiology. Dysregulation of Drp1 is associated with abnormal mitochondrial dynamics and neuronal damage. Drp1 shares structural and functional similarities with dynamin 1 with respect to domain organization, ability to self-assemble into spiral-like oligomers and GTP-cycle-dependent membrane scission. Structural studies of human dynamin-1 have greatly improved the understanding of this prototypical member of the dynamin superfamily. However, high-resolution structural information for full-length human Drp1 covering the GTPase domain, the middle domain and the GTPase effector domain (GED) is still lacking. In order to obtain mechanistic insights into the catalytic activity, a nucleotide-free GTPase-GED fusion protein of human Drp1 was expressed, purified and crystallized. Initial X-ray diffraction experiments yielded data to 2.67 Å resolution. The hexagonal-shaped crystals belonged to space group P21212, with unit-cell parameters a = 53.59, b = 151.65, c = 43.53 Å, one molecule per asymmetric unit and a solvent content of 42%. Expression of selenomethionine-labelled protein is currently in progress. Here, the expression, purification, crystallization and X-ray diffraction analysis of the Drp1 GTPase-GED fusion protein are presented, which form a basis for more detailed structural and biophysical analysis. PMID:23027751

  8. Identification of oxidative stress-related proteins for predictive screening of hepatotoxicity using a proteomic approach.

    PubMed

    Yamamoto, Toshinori; Kikkawa, Rie; Yamada, Hiroshi; Horii, Ikuo

    2005-08-01

    We investigated the effects of three hepatotoxicants, acetaminophen (APAP), amiodarone (AD) and tetracycline (TC), on protein expression in primary cultured rat hepatocytes with toxicoproteomic approach, which is two-dimensional gel electrophoresis (2DE) and mass spectrometry. The objectives of this study were to search for alternative toxicity biomarkers which could be detected with high sensitivity prior to the appearance of morphological changes or alterations of analytical conventional biomarkers. The related proteins in the process of cell degeneration/necrosis such as cell death, lipid metabolism and lipid/carbohydrate metabolism were mainly affected under exposure to APAP, AD and TC, respectively. Among the differentially expressed proteins, several oxidative stress-related proteins were clearly identified after 24-hr exposure, even though they were not affected for 6-hr exposure. They were glutathione peroxidase (GPX) as a down-regulated protein as well as peroxiredoxin 1 (PRX1) and peroxiredoxin 2 (PRX2) as up-regulated proteins, which are known to serve as antioxidative enzymes in cells. These findings suggested that the focused proteins, GPX and PRXs, could be utilized as biomarkers of hepatotoxicity, and they were useful for setting high throughput screening methods to assess hepatotoxicity in the early stage of drug discovery. PMID:16141655

  9. Age-related changes in total protein and collagen metabolism in rat liver.

    PubMed

    Mays, P K; McAnulty, R; Laurent, G J

    1991-12-01

    Liver collagen levels are determined by a balance between synthesis and degradation, processes known to have rapid rates in growing animals. We report age-related changes in liver collagen synthesis and degradation rates, as well as protein synthesis rates, in rats at five ages from 1 to 24 mo. Fractional collagen synthesis rates were determined after injection of [14C]proline with a flooding dose of unlabeled proline and its incorporation as hydroxy-[14C]proline into proteins. Fractional protein synthesis rates were based on the uptake of [14C]proline into proteins. Fractional collagen degradation rates were calculated from the difference between collagen fractional synthesis and deposition rates. Fractional rates of collagen synthesis were similar between 1 mo (23.0% +/- 4.6%/day) and 24 mo (19.6% +/- 3.4%/day) of age. Collagen deposition into the extracellular matrix was extremely low at every age studied; therefore degradation pathways accounted for the bulk of the collagen synthesized. The mean fractional synthesis rate for the total protein pool was unaltered between 1 mo (105.0% +/- 7.2%/day) and 15 mo (89.9% +/- 6.0%/day) of age, after which it increased to 234.9% +/- 33.0%/day (p less than 0.05) by 24 mo of age. These results indicate that liver collagen and total protein synthesis rates were maintained at relatively high levels during development and maturity but that protein synthesis rates were highest in senescent animals. PMID:1959872

  10. Soluble Proteins in Alfalfa Roots as Related to Cold Hardiness 12

    PubMed Central

    Gerloff, Eldean D.; Stahmann, Mark A.; Smith, Dale

    1967-01-01

    Soluble proteins extracted from alfalfa roots of hardy and nonhardy varieties were studied in relation to cold hardiness with polyacrylamide gel electrophoresis and quantitative enzyme analysis. Soluble protein content of alfalfa roots increased during hardening in all varieties. Two new isoenzymes with peroxidase activities were found in the fully hardened samples but no large shifts in the electrophoretic pattern were detected with polyacrylamide gel electrophoresis. Peroxidase and catalase activities increased during hardening in all varieties, but only small differences among hardy and nonhardy varieties were detectable. The studies indicated that protein metabolism was altered during the hardening process. Images PMID:16656593

  11. Fast similarity search for protein 3D structures using topological pattern matching based on spatial relations.

    PubMed

    Park, Sung-Hee; Ryu, Keun Ho; Gilbert, David

    2005-08-01

    Similarity search for protein 3D structures become complex and computationally expensive due to the fact that the size of protein structure databases continues to grow tremendously. Recently, fast structural similarity search systems have been required to put them into practical use in protein structure classification whilst existing comparison systems do not provide comparison results on time. Our approach uses multi-step processing that composes of a preprocessing step to represent geometry of protein structures with spatial objects, a filter step to generate a small candidate set using approximate topological string matching, and a refinement step to compute a structural alignment. This paper describes the preprocessing and filtering for fast similarity search using the discovery of topological patterns of secondary structure elements based on spatial relations. Our system is fully implemented by using Oracle 8i spatial. We have previously shown that our approach has the advantage of speed of performance compared with other approach such as DALI. This work shows that the discovery of topological relations of secondary structure elements in protein structures by using spatial relations of spatial databases is practical for fast structural similarity search for proteins. PMID:16187404

  12. Novel lectin-related proteins are major components in lima bean (Phaseolus lunatus L.) seeds.

    PubMed

    Sparvoli, F; Gallo, A; Marinelli, D; Santucci, A; Bollini, R

    1998-02-17

    The only component of the lectin-related protein family so far reported in Lima bean (Phaseolus lunatus L.) seeds is the minor seed lectin (LBL). In the morphotype Big Lima, we have isolated and characterised two abundant lectin-related seed proteins and the corresponding cDNA clones. The clones show 93.7% nucleotide identity and encode an arcelin-like (ARL) and an alpha-amylase inhibitor-like (AIL) protein. Not considering the signal peptides, ARL and AIL polypeptides contain 239 and 233 amino acids, respectively. Each polypeptide is present in the mature protein as two glycoforms. ARL subunits (43 and 46 kDa) make up oligomers of about 125 to 130 kDa whereas AIL subunits (40 and 42 kDa) oligomerise in dimers of about 88 to 100 kDa. cDNA clones encoding two isoforms of the less abundant Lima bean lectin were also isolated. In common bean (P. vulgaris) the lectin locus encodes the lectin and the lectin-related proteins alpha-amylase inhibitor and arcelin, all plant defence proteins. Our data indicate extensive evolution of the locus also in Lima bean. PMID:9540803

  13. Increased expression of endocytosis-Related proteins in rat hippocampus following 10-day electroconvulsive seizure treatment.

    PubMed

    Enomoto, Shingo; Shimizu, Kunio; Nibuya, Masashi; Toda, Hiroyuki; Yoshino, Aihide; Suzuki, Eiji; Kondo, Takashi; Fukuda, Hiroshi

    2016-06-15

    Although electroconvulsive therapy (ECT) is clinically used for severe depression and drug-resistant Parkinson's disease, its exact biological background and mechanism have not yet been fully elucidated. Two potential explanations have been presented so far to explain the increased neuroplastic and resilient profiles of multiple ECT administrations. One is the alteration of central neurotransmitter receptor densities and the other is the expressional upregulation of brain derived neurotrophic factor in various brain regions with enhanced hippocampal neurogenesis and mossy fiber sprouting. In the present report, western blot analyses revealed significantly upregulated expression of various endocytosis-related proteins following 10-day electroconvulsive seizure (ECS) treatment in rat hippocampal homogenates and hippocampal lipid raft fractions extracted using an ultracentrifugation procedure. Upregulated proteins included endocytosis-related scaffolding proteins (caveolin-1, flotillin-1, and heavy and light chains of clathrin) and small GTPases (Rab5, Rab7, Rab11, and Rab4) specifically expressed on various types of endosomes. Two scaffolding proteins, caveolin-1 and flotillin-1, were also increased in the lipid raft fraction. Together with our previous finding of increased autophagy-related proteins in the hippocampal region, the present results suggest membrane trafficking machinery is enhanced following 10-day ECS treatment. We consider that the membrane trafficking machinery that transports functional proteins in the neuronal cells and from or into the synaptic membranes is one of the new candidates supporting the cellular and behavioral neuroplastic profiles of ECS treatments in animal experiments and ECT administrations in clinical settings. PMID:27177725

  14. Intake of Meat Proteins Substantially Increased the Relative Abundance of Genus Lactobacillus in Rat Feces

    PubMed Central

    Zhu, Yingying; Lin, Xisha; Li, He; Li, Yingqiu; Shi, Xuebin; Zhao, Fan; Xu, Xinglian; Li, Chunbao; Zhou, Guanghong

    2016-01-01

    Diet has been shown to have a critical influence on gut bacteria and host health, and high levels of red meat in diet have been shown to increase colonic DNA damage and thus be harmful to gut health. However, previous studies focused more on the effects of meat than of meat proteins. In order to investigate whether intake of meat proteins affects the composition and metabolic activities of gut microbiota, feces were collected from growing rats that were fed with either meat proteins (from beef, pork or fish) or non-meat proteins (casein or soy) for 14 days. The resulting composition of gut microbiota was profiled by sequencing the V4-V5 region of the 16S ribosomal RNA genes and the short chain fatty acids (SCFAs) were analyzed using gas chromatography. The composition of gut microbiota and SCFA levels were significantly different between the five diet groups. At a recommended dose of 20% protein in the diet, meat protein-fed rats had a higher relative abundance of the beneficial genus Lactobacillus, but lower levels of SCFAs and SCFA-producing bacteria including Fusobacterium, Bacteroides and Prevotella, compared with the soy protein-fed group. Further work is needed on the regulatory pathways linking dietary protein intake to gut microbiota. PMID:27042829

  15. Intake of Meat Proteins Substantially Increased the Relative Abundance of Genus Lactobacillus in Rat Feces.

    PubMed

    Zhu, Yingying; Lin, Xisha; Li, He; Li, Yingqiu; Shi, Xuebin; Zhao, Fan; Xu, Xinglian; Li, Chunbao; Zhou, Guanghong

    2016-01-01

    Diet has been shown to have a critical influence on gut bacteria and host health, and high levels of red meat in diet have been shown to increase colonic DNA damage and thus be harmful to gut health. However, previous studies focused more on the effects of meat than of meat proteins. In order to investigate whether intake of meat proteins affects the composition and metabolic activities of gut microbiota, feces were collected from growing rats that were fed with either meat proteins (from beef, pork or fish) or non-meat proteins (casein or soy) for 14 days. The resulting composition of gut microbiota was profiled by sequencing the V4-V5 region of the 16S ribosomal RNA genes and the short chain fatty acids (SCFAs) were analyzed using gas chromatography. The composition of gut microbiota and SCFA levels were significantly different between the five diet groups. At a recommended dose of 20% protein in the diet, meat protein-fed rats had a higher relative abundance of the beneficial genus Lactobacillus, but lower levels of SCFAs and SCFA-producing bacteria including Fusobacterium, Bacteroides and Prevotella, compared with the soy protein-fed group. Further work is needed on the regulatory pathways linking dietary protein intake to gut microbiota. PMID:27042829

  16. Protein markers for identification of Yersinia pestis and their variation related to culture

    SciTech Connect

    Wunschel, David S.; Engelmann, Heather E.; Victry, Kristin D.; Clowers, Brian H.; Sorensen, Christina M.; Valentine, Nancy B.; Mahoney Fahey, Christine M.; Wietsma, Thomas W.; Wahl, Karen L.

    2013-12-11

    The detection of high consequence pathogens, such as Yersinia pestis, is well established in biodefense laboratories for bioterror situations. Laboratory protocols are well established using specified culture media and a growth temperature of 37 °C for expression of specific antigens. Direct detection of Y. pestis protein markers, without prior culture, depends on their expression. Unfortunately protein expression can be impacted by the culture medium which cannot be predicted ahead of time. Furthermore, higher biomass yields are obtained at the optimal growth temperature (i.e. 28 °C–30 °C) and therefore are more likely to be used for bulk production. Analysis of Y. pestis grown on several types of media at 30 °C showed that several protein markers were found to be differentially detected in different media. Analysis of the identified proteins against a comprehensive database provided an additional level of organism identification. Peptides corresponding to variable regions of some proteins could separate large groups of strains and aid in organism identification. This work illustrates the need to understand variability of protein expression for detection targets. The potential for relating expression changes of known proteins to specific media factors, even in nutrient rich and chemically complex culture medium, may provide the opportunity to draw forensic information from protein profiles.

  17. Proteomic and transcriptomic analysis of rice tranglutaminase and chloroplast-related proteins.

    PubMed

    Campos, N; Torné, J M; Bleda, M J; Manich, A; Urreta, I; Montalbán, I A; Castañón, S; Moncalean, P; Santos, M

    2014-12-01

    The recently cloned rice transglutaminase gene (tgo) is the second plant transglutaminase identified to date (Campos et al. Plant Sci. 205-206 (2013) 97-110). Similarly to its counterpart in maize (tgz), this rice TGase was localized in the chloroplast, although in this case not exclusively. To further characterise plastidial tgo functionality, proteomic and transcriptomic studies were carried out to identify possible TGO-related proteins. Some LHCII antenna proteins were identified as TGO related using an in vitro proteomic approach, as well as ATPase and some PSII core proteins by mass spectrometry. To study the relationship between TGO and other plastidial proteins, a transcriptomic in vivo Dynamic Array (Fluidigm™) was used to analyse the mRNA expression of 30 plastidial genes with respect to that of tgo, in rice plants subjected to different periods of continuous illumination. The results indicated a gene-dependent tendency in the expression pattern that was related to tgo expression and to the illumination cycle. For certain genes, including tgo, significant differences between treatments, principally at the initiation and/or at the end of the illumination period, connected with the day/night cycling of gene expression, were observed. The tgo expression was especially related to plastidial proteins involved in photoprotection and the thylakoid electrochemical gradient. PMID:25443841

  18. Structural and functional diversity in the activity and regulation of DAPK-related protein kinases.

    PubMed

    Temmerman, Koen; Simon, Bertrand; Wilmanns, Matthias

    2013-11-01

    Within the large group of calcium/calmodulin-dependent protein kinases (CAMKs) of the human kinome, there is a distinct branch of highly related kinases that includes three families: death-associated protein-related kinases, myosin light-chain-related kinases and triple functional domain protein-related kinases. In this review, we refer to these collectively as DMT kinases. There are several functional features that span the three families, such as a broad involvement in apoptotic processes, cytoskeletal association and cellular plasticity. Other CAMKs contain a highly conserved HRD motif, which is a prerequisite for kinase regulation through activation-loop phosphorylation, but in all 16 members of the DMT branch, this is replaced by an HF/LD motif. This DMT kinase signature motif substitutes phosphorylation-dependent active-site interactions with a local hydrophobic core that maintains an active kinase conformation. Only about half of the DMT kinases have an additional autoregulatory domain, C-terminal to the kinase domain that binds calcium/calmodulin in order to regulate kinase activity. Protein substrates have been identified for some of the DMT kinases, but little is known about the mechanism of recognition. Substrate conformation could be an equally important parameter in substrate recognition as specific preferences in sequence position. Taking the data together, this kinase branch encapsulates a treasure trove of features that renders it distinct from many other protein kinases and calls for future research activities in this field. PMID:23745726

  19. Kinesin-related proteins in the mammalian testes: candidate motors for meiosis and morphogenesis.

    PubMed Central

    Sperry, A O; Zhao, L P

    1996-01-01

    The kinesin superfamily of molecular motors comprises proteins that participate in a wide variety of motile events within the cell. Members of this family share a highly homologous head domain responsible for force generation attached to a divergent tail domain thought to couple the motor domain to its target cargo. Many kinesin-related proteins (KRPs) participate in spindle morphogenesis and chromosome movement in cell division. Genetic analysis of mitotic KRPs in yeast and Drosophila, as well as biochemical experiments in other species, have suggested models for the function of KRPs in cell division, including both mitosis and meiosis. Although many mitotic KRPs have been identified, the relationship between mitotic motors and meiotic function is not clearly understood. We have used sequence similarity between mitotic KRPs to identify candidates for meiotic and/or mitotic motors in a vertebrate. We have identified a group of kinesin-related proteins from rat testes (termed here testes KRP1 through KRP6) that includes new members of the bimC and KIF2 subfamilies as well as proteins that may define new kinesin subfamilies. Five of the six testes KRPs identified are expressed primarily in testes. Three of these are expressed in a region of the seminiferous epithelia (SE) rich in meiotically active cells. Further characterization of one of these KRPs, KRP2, showed it to be a promising candidate for a motor in meiosis: it is localized to a meiotically active region of the SE and is homologous to motor proteins associated with the mitotic apparatus. Testes-specific genes provide the necessary probes to investigate whether the motor proteins that function in mammalian meiosis overlap with those of mitosis and whether motor proteins exist with functions unique to meiosis. Our search for meiotic motors in a vertebrate testes has successfully identified proteins with properties consistent with those of meiotic motors in addition to uncovering proteins that may function in

  20. Proteomic analysis of pregnancy-related proteins from pig uterus endometrium during pregnancy

    PubMed Central

    2011-01-01

    Many important molecular events associated with implantation and development occur within the female reproductive tract, especially within the uterus endometrium, during pregnancy periods. The endometrium includes the mucosal lining of the uterus, which provides a suitable site for implantation and development of a fertilized egg and fetus. To date, the molecular cascades in the uterus endometrium during pregnancy periods in pigs have not been elucidated fully. In this study, we compared the functional regulated proteins in the endometrium during pregnancy periods with those in non-pregnant conditions and investigated changes in expression patterns during pregnancy (days 40, 70, and 93) using two-dimensional gel electrophoresis (2-DE) and western blotting. The functional regulated proteins were identified and discovered from differentially expressed proteins in the uterus endometrium during pregnancy. We discovered 820 protein spots in a proteomic analysis of uterus endometrium tissues with 2-DE gels. We identified 63 of the 98 proteins regulated differentially among non-pregnant and pregnant tissues (matched and unmatched spots). Interestingly, 10 of these 63 proteins are development-, cytoskeleton- and chaperon-related proteins such as transferrin, protein DJ-1, transgelin, galectin-1, septin 2, stathmin 1, cofilin 1, fascin 1, heat shock protein (HSP) 90β and HSP 27. The specific expression patterns of these proteins in the endometrium during pregnancy were confirmed by western blotting. Our results suggest that the expressions of these genes involved in endometrium function and endometrium development from early to late gestation are associated with the regulation of endometrium development for maintaining pregnancy. PMID:21791079

  1. KinetochoreDB: a comprehensive online resource for the kinetochore and its related proteins.

    PubMed

    Li, Chen; Androulakis, Steve; Buckle, Ashley M; Song, Jiangning

    2016-01-01

    KinetochoreDB is an online resource for the kinetochore and its related proteins. It provides comprehensive annotations on 1554 related protein entries in terms of their amino acid sequence, protein domain context, protein 3D structure, predicted intrinsically disordered region, protein-protein interaction, post-translational modification site, functional domain and key metabolic/signaling pathways, integrating several public databases, computational annotations and experimental results. KinetochoreDB provides interactive and customizable search and data display functions that allow users to interrogate the database in an efficient and user-friendly manner. It uses PSI-BLAST searches to retrieve the homologs of all entries and generate multiple sequence alignments that contain important evolutionary information. This knowledgebase also provides annotations of single point mutations for entries with respect to their pathogenicity, which may be useful for generation of new hypotheses on their functions, as well as follow-up studies of human diseases. Database URL: http://lightning.med.monash.edu/kinetochoreDB2/. PMID:26989151

  2. Autoantibodies to purified nuclear proteins related to DNA metabolism during ageing and in SLE patients.

    PubMed Central

    Astaldi Ricotti, G C; Pazzaglia, M; Martelli, A M; Cerino, A; Bestagno, M; Caprelli, A; Riva, S; Pedrini, M A; Facchini, A

    1987-01-01

    In this study the specificity of circulating autoantibodies in ANA+ aged donors, ANA- donors and SLE patients was investigated by immunoblotting on total nuclear proteins and by ELISA on purified nuclear proteins, possibly related to DNA metabolism, such as DNA polymerase alpha, DNA-dependent ATPase, DNA Topoisomerase I, ssDBP, hnRNP, HMG and histones. Immunoblotting showed that sera from ANA+ aged donors present fewer antibodies to nuclear proteins, especially to those between 21,000 and 45,000, molecular weight (MW), than sera from SLE patients. When the specificity of antisera was further studied on purified nuclear proteins, it was found that the majority of sera from SLE patients react with most of the proteins tested, whereas sera from ANA+ aged donors mainly react with DNA polymerase alpha, DNA-dependent ATPase, DNA Topoisomerase I and histones. In addition, sera from a few ANA- donors also reacted with certain purified nuclear proteins in a statistically significant age-related manner. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:3497092

  3. PPInterFinder--a mining tool for extracting causal relations on human proteins from literature.

    PubMed

    Raja, Kalpana; Subramani, Suresh; Natarajan, Jeyakumar

    2013-01-01

    One of the most common and challenging problem in biomedical text mining is to mine protein-protein interactions (PPIs) from MEDLINE abstracts and full-text research articles because PPIs play a major role in understanding the various biological processes and the impact of proteins in diseases. We implemented, PPInterFinder--a web-based text mining tool to extract human PPIs from biomedical literature. PPInterFinder uses relation keyword co-occurrences with protein names to extract information on PPIs from MEDLINE abstracts and consists of three phases. First, it identifies the relation keyword using a parser with Tregex and a relation keyword dictionary. Next, it automatically identifies the candidate PPI pairs with a set of rules related to PPI recognition. Finally, it extracts the relations by matching the sentence with a set of 11 specific patterns based on the syntactic nature of PPI pair. We find that PPInterFinder is capable of predicting PPIs with the accuracy of 66.05% on AIMED corpus and outperforms most of the existing systems. DATABASE URL: http://www.biomining-bu.in/ppinterfinder/ PMID:23325628

  4. Myotubularin-related Proteins 3 and 4 Interact with Polo-like Kinase 1 and Centrosomal Protein of 55 kDa to Ensure Proper Abscission*

    PubMed Central

    St-Denis, Nicole; Gupta, Gagan D.; Lin, Zhen Yuan; Gonzalez-Badillo, Beatriz; Pelletier, Laurence; Gingras, Anne-Claude

    2015-01-01

    The myotubularins are a family of phosphatases that dephosphorylate the phosphatidylinositols phosphatidylinositol-3-phosphate and phosphatidylinositol-3,5-phosphate. Several family members are mutated in disease, yet the biological functions of the majority of myotubularins remain unknown. To gain insight into the roles of the individual enzymes, we have used affinity purification coupled to mass spectrometry to identify protein–protein interactions for the myotubularins. The myotubularin interactome comprises 66 high confidence (false discovery rate ≤1%) interactions, including 18 pairwise interactions between individual myotubularins. The results reveal a number of potential signaling contexts for this family of enzymes, including an intriguing, novel role for myotubularin-related protein 3 and myotubularin-related protein 4 in the regulation of abscission, the final step of mitosis in which the membrane bridge remaining between two daughter cells is cleaved. Both depletion and overexpression of either myotubularin-related protein 3 or myotubularin-related protein 4 result in abnormal midbody morphology and cytokinesis failure. Interestingly, myotubularin-related protein 3 and myotubularin-related protein 4 do not exert their effects through lipid regulation at the midbody, but regulate abscission during early mitosis, by interacting with the mitotic kinase polo-like kinase 1, and with centrosomal protein of 55 kDa (CEP55), an important regulator of abscission. Structure-function analysis reveals that, consistent with known intramyotubularin interactions, myotubularin-related protein 3 and myotubularin-related protein 4 interact through their respective coiled coil domains. The interaction between myotubularin-related protein 3 and polo-like kinase 1 relies on the divergent, nonlipid binding Fab1, YOTB, Vac1, and EEA1 domain of myotubularin-related protein 3, and myotubularin-related protein 4 interacts with CEP55 through a short GPPXXXY motif, analogous to

  5. Contaminant loading in remote Arctic lakes affects cellular stress-related proteins expression in feral charr.

    USGS Publications Warehouse

    Wiseman, Steve; Jorgensen, Even H.; Maule, Alec G.; Vijayan, Mathilakath M.

    2011-01-01

    The remote Arctic lakes on Bjornoya Island, Norway, offer a unique opportunity to study possible affect of lifelong contaminant exposure in wild populations of landlocked Arctic charr (Salvelinus alpinus). This is because Lake Ellasjoen has persistent organic pollutant (POP) levels that are significantly greater than in the nearby Lake Oyangen. We examined whether this differential contaminant loading was reflected in the expression of protein markers of exposure and effect in the native fish. We assessed the expressions of cellular stress markers, including cytochrome P4501A (Cyp1A), heat shock protein 70 (hsp70), and glucocorticoid receptor (GR) in feral charr from the two lakes. The average polychlorinated biphenyl (PCB) load in the charr liver from Ellasjoen was approximately 25-fold higher than in individuals from Oyangen. Liver Cyp1A protein expression was significantly higher in individuals from Ellasjoen compared with Oyangen, confirming differential PCB exposure. There was no significant difference in hsp70 protein expression in charr liver between the two lakes. However, brain hsp70 protein expression was significantly elevated in charr from Ellasjoen compared with Oyangen. Also, liver GR protein expression was significantly higher in the Ellasjoen charr compared with Oyangen charr. Taken together, our results suggest changes to cellular stress-related protein expression as a possible adaptation to chronic-contaminant exposure in feral charr in the Norwegian high-Arctic.

  6. Synthesis and Structural Characterization of Carboxyethylpyrrole-Modified Proteins: Mediators of Age-related Macular Degeneration

    PubMed Central

    Lu, Liang; Gu, Xiaorong; Hong, Li; Laird, James; Jaffe, Keeve; Choi, Jaewoo; Crabb, John; Salomon, Robert G.

    2009-01-01

    Protein modifications in which the ε-amino group of lysyl residues is incorporated into a 2-(ω-carboxyethyl)pyrrole (CEP) are mediators of age-related macular degeneration (AMD). They promote both angiogenesis into the retina (“wet AMD”) and geographic retinal atrophy (“dry AMD”). Blood levels of CEPs are biomarkers for clinical prognosis of the disease. To enable mechanistic studies of their role in promoting AMD, e.g., through the activation of B- and T-cells, interaction with receptors, or binding with complement proteins, we developed an efficient synthesis of CEP derivatives, that is especially effective for proteins. The structures of tryptic peptides derived from CEP-modified proteins were also determined. A key finding is that 4,7-dioxoheptanoic acid 9-fluorenylmethyl ester reacts with primary amines to provide 9-fluorenylmethyl esters of CEP-modified proteins that can be deprotected in situ with 1,8-diazabicyclo[5.4.0]undec-7-ene without causing protein denaturation. The introduction of multiple CEP-modifications with a wide variety of CEP:protein ratios is readily achieved using this strategy. PMID:19786352

  7. Clustering of protein families into functional subtypes using Relative Complexity Measure with reduced amino acid alphabets

    PubMed Central

    2010-01-01

    Background Phylogenetic analysis can be used to divide a protein family into subfamilies in the absence of experimental information. Most phylogenetic analysis methods utilize multiple alignment of sequences and are based on an evolutionary model. However, multiple alignment is not an automated procedure and requires human intervention to maintain alignment integrity and to produce phylogenies consistent with the functional splits in underlying sequences. To address this problem, we propose to use the alignment-free Relative Complexity Measure (RCM) combined with reduced amino acid alphabets to cluster protein families into functional subtypes purely on sequence criteria. Comparison with an alignment-based approach was also carried out to test the quality of the clustering. Results We demonstrate the robustness of RCM with reduced alphabets in clustering of protein sequences into families in a simulated dataset and seven well-characterized protein datasets. On protein datasets, crotonases, mandelate racemases, nucleotidyl cyclases and glycoside hydrolase family 2 were clustered into subfamilies with 100% accuracy whereas acyl transferase domains, haloacid dehalogenases, and vicinal oxygen chelates could be assigned to subfamilies with 97.2%, 96.9% and 92.2% accuracies, respectively. Conclusions The overall combination of methods in this paper is useful for clustering protein families into subtypes based on solely protein sequence information. The method is also flexible and computationally fast because it does not require multiple alignment of sequences. PMID:20718947

  8. Immunochemical detection of proteins related to the human c-myc exon 1.

    PubMed Central

    Gazin, C; Rigolet, M; Briand, J P; Van Regenmortel, M H; Galibert, F

    1986-01-01

    Published sequence data of the human c-myc gene indicate the presence of a coding capacity for a polypeptide of 188 residues within the first exon. Using antibodies raised against five synthetic peptides corresponding to different non-over-lapping parts of this polypeptide, two proteins of 32 kd and 58 kd antigenically related to the synthetic peptides have been detected in extracts of human cells. The confidence of this detection has been reinforced by showing that epitopes corresponding to different peptides were indeed located on the same molecule and that the 58 kd protein appears to be a dimeric form of the 32 kd protein. That these proteins originate from the first exon was indicated by: hybrid-arrested translation experiments followed by immunodetection of the translation products; in vitro translation of messenger RNA derived from cloned exon 1 by SP6 polymerase transcription. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. Fig. 5. Fig. 6. Fig. 7. PMID:2430795

  9. Identification and preliminary characterization of a protein motif related to the zinc finger.

    PubMed Central

    Lovering, R; Hanson, I M; Borden, K L; Martin, S; O'Reilly, N J; Evan, G I; Rahman, D; Pappin, D J; Trowsdale, J; Freemont, P S

    1993-01-01

    We have identified a protein motif, related to the zinc finger, which defines a newly discovered family of proteins. The motif was found in the sequence of the human RING1 gene, which is proximal to the major histocompatibility complex region on chromosome six. We propose naming this motif the "RING finger" and it is found in 27 proteins, all of which have putative DNA binding functions. We have synthesized a peptide corresponding to the RING1 motif and examined a number of properties, including metal and DNA binding. We provide evidence to support the suggestion that the RING finger motif is the DNA binding domain of this newly defined family of proteins. Images Fig. 1 Fig. 4 PMID:7681583

  10. Bisphenol-A Affects Male Fertility via Fertility-related Proteins in Spermatozoa

    PubMed Central

    Rahman, Md Saidur; Kwon, Woo-Sung; Lee, June-Sub; Yoon, Sung-Jae; Ryu, Buom-Yong; Pang, Myung-Geol

    2015-01-01

    The xenoestrogen bisphenol-A (BPA) is a widespread environmental contaminant that has been studied for its impact on male fertility in several species of animals and humans. Growing evidence suggests that xenoestrogens can bind to receptors on spermatozoa and thus alter sperm function. The objective of the study was to investigate the effects of varying concentrations of BPA (0.0001, 0.01, 1, and 100 μM for 6 h) on sperm function, fertilization, embryonic development, and on selected fertility-related proteins in spermatozoa. Our results showed that high concentrations of BPA inhibited sperm motility and motion kinematics by significantly decreasing ATP levels in spermatozoa. High BPA concentrations also increased the phosphorylation of tyrosine residues on sperm proteins involved in protein kinase A-dependent regulation and induced a precocious acrosome reaction, which resulted in poor fertilization and compromised embryonic development. In addition, BPA induced the down-regulation of β-actin and up-regulated peroxiredoxin-5, glutathione peroxidase 4, glyceraldehyde-3-phosphate dehydrogenase, and succinate dehydrogenase. Our results suggest that high concentrations of BPA alter sperm function, fertilization, and embryonic development via regulation and/or phosphorylation of fertility-related proteins in spermatozoa. We conclude that BPA-induced changes in fertility-related protein levels in spermatozoa may be provided a potential cue of BPA-mediated disease conditions. PMID:25772901