Sample records for fronto-occipital fasciculus ifof

  1. Subcomponents and Connectivity of the Inferior Fronto-Occipital Fasciculus Revealed by Diffusion Spectrum Imaging Fiber Tracking

    PubMed Central

    Wu, Yupeng; Sun, Dandan; Wang, Yong; Wang, Yibao

    2016-01-01

    The definitive structure and functional role of the inferior fronto-occipital fasciculus (IFOF) are still controversial. In this study, we aimed to investigate the connectivity, asymmetry, and segmentation patterns of this bundle. High angular diffusion spectrum imaging (DSI) analysis was performed on 10 healthy adults and a 90-subject DSI template (NTU-90 Atlas). In addition, a new tractography approach based on the anatomic subregions and two regions of interest (ROI) was evaluated for the fiber reconstructions. More widespread anterior-posterior connections than previous “standard” definition of the IFOF were found. This distinct pathway demonstrated a greater inter-subjects connective variability with a maximum of 40% overlap in its central part. The statistical results revealed no asymmetry between the left and right hemispheres and no significant differences existed in distributions of the IFOF according to sex. In addition, five subcomponents within the IFOF were identified according to the frontal areas of originations. As the subcomponents passed through the anterior floor of the external capsule, the fibers radiated to the posterior terminations. The most common connection patterns of the subcomponents were as follows: IFOF-I, from frontal polar cortex to occipital pole, inferior occipital lobe, middle occipital lobe, superior occipital lobe, and pericalcarine; IFOF-II, from orbito-frontal cortex to occipital pole, inferior occipital lobe, middle occipital lobe, superior occipital lobe, and pericalcarine; IFOF-III, from inferior frontal gyrus to inferior occipital lobe, middle occipital lobe, superior occipital lobe, occipital pole, and pericalcarine; IFOF-IV, from middle frontal gyrus to occipital pole, and inferior occipital lobe; IFOF-V, from superior frontal gyrus to occipital pole, inferior occipital lobe, and middle occipital lobe. Our work demonstrates the feasibility of high resolution diffusion tensor tractography with sufficient sensitivity

  2. Cortical Terminations of the Inferior Fronto-Occipital and Uncinate Fasciculi: Anatomical Stem-Based Virtual Dissection

    PubMed Central

    Hau, Janice; Sarubbo, Silvio; Perchey, Guy; Crivello, Fabrice; Zago, Laure; Mellet, Emmanuel; Jobard, Gaël; Joliot, Marc; Mazoyer, Bernard M.; Tzourio-Mazoyer, Nathalie; Petit, Laurent

    2016-01-01

    We combined the neuroanatomists’ approach of defining a fascicle as all fibers passing through its compact stem with diffusion-weighted tractography to investigate the cortical terminations of two association tracts, the inferior fronto-occipital fasciculus (IFOF) and the uncinate fasciculus (UF), which have recently been implicated in the ventral language circuitry. The aim was to provide a detailed and quantitative description of their terminations in 60 healthy subjects and to do so to apply an anatomical stem-based virtual dissection, mimicking classical post-mortem dissection, to extract with minimal a priori the IFOF and UF from tractography datasets. In both tracts, we consistently observed more extensive termination territories than their conventional definitions, within the middle and superior frontal, superior parietal and angular gyri for the IFOF and the middle frontal gyrus and superior, middle and inferior temporal gyri beyond the temporal pole for the UF. We revealed new insights regarding the internal organization of these tracts by investigating for the first time the frequency, distribution and hemispheric asymmetry of their terminations. Interestingly, we observed a dissociation between the lateral right-lateralized and medial left-lateralized fronto-occipital branches of the IFOF. In the UF, we observed a rightward lateralization of the orbito-frontal and temporal branches. We revealed a more detailed map of the terminations of these fiber pathways that will enable greater specificity for correlating with diseased populations and other behavioral measures. The limitations of the diffusion tensor model in this study are also discussed. We conclude that anatomical stem-based virtual dissection with diffusion tractography is a fruitful method for studying the structural anatomy of the human white matter pathways. PMID:27252628

  3. Direct evidence for the contributive role of the right inferior fronto-occipital fasciculus in non-verbal semantic cognition.

    PubMed

    Herbet, Guillaume; Moritz-Gasser, Sylvie; Duffau, Hugues

    2017-05-01

    The neural foundations underlying semantic processing have been extensively investigated, highlighting a pivotal role of the ventral stream. However, although studies concerning the involvement of the left ventral route in verbal semantics are proficient, the potential implication of the right ventral pathway in non-verbal semantics has been to date unexplored. To gain insights on this matter, we used an intraoperative direct electrostimulation to map the structures mediating the non-verbal semantic system in the right hemisphere. Thirteen patients presenting with a right low-grade glioma located within or close to the ventral stream were included. During the 'awake' procedure, patients performed both a visual non-verbal semantic task and a verbal (control) task. At the cortical level, in the right hemisphere, we found non-verbal semantic-related sites (n = 7 in 6 patients) in structures commonly associated with verbal semantic processes in the left hemisphere, including the superior temporal gyrus, the pars triangularis, and the dorsolateral prefrontal cortex. At the subcortical level, we found non-verbal semantic-related sites in all but one patient (n = 15 sites in 12 patients). Importantly, all these responsive stimulation points were located on the spatial course of the right inferior fronto-occipital fasciculus (IFOF). These findings provide direct support for a critical role of the right IFOF in non-verbal semantic processing. Based upon these original data, and in connection with previous findings showing the involvement of the left IFOF in non-verbal semantic processing, we hypothesize the existence of a bilateral network underpinning the non-verbal semantic system, with a homotopic connectional architecture.

  4. Pathways of the inferior frontal occipital fasciculus in overt speech and reading.

    PubMed

    Rollans, Claire; Cheema, Kulpreet; Georgiou, George K; Cummine, Jacqueline

    2017-11-19

    In this study, we examined the relationship between tractography-based measures of white matter integrity (ex. fractional anisotropy [FA]) from diffusion tensor imaging (DTI) and five reading-related tasks, including rapid automatized naming (RAN) of letters, digits, and objects, and reading of real words and nonwords. Twenty university students with no reported history of reading difficulties were tested on all five tasks and their performance was correlated with diffusion measures extracted through DTI tractography. A secondary analysis using whole-brain Tract-Based Spatial Statistics (TBSS) was also used to find clusters showing significant negative correlations between reaction time and FA. Results showed a significant relationship between the left inferior fronto-occipital fasciculus FA and performance on the RAN of objects task, as well as a strong relationship to nonword reading, which suggests a role for this tract in slower, non-automatic and/or resource-demanding speech tasks. There were no significant relationships between FA and the faster, more automatic speech tasks (RAN of letters and digits, and real word reading). These findings provide evidence for the role of the inferior fronto-occipital fasciculus in tasks that are highly demanding of orthography-phonology translation (e.g., nonword reading) and semantic processing (e.g., RAN object). This demonstrates the importance of the inferior fronto-occipital fasciculus in basic naming and suggests that this tract may be a sensitive predictor of rapid naming performance within the typical population. We discuss the findings in the context of current models of reading and speech production to further characterize the white matter pathways associated with basic reading processes. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  5. Decreased white matter integrity in fronto-occipital fasciculus bundles: relation to visual information processing in alcohol-dependent subjects.

    PubMed

    Bagga, Deepika; Sharma, Aakansha; Kumari, Archana; Kaur, Prabhjot; Bhattacharya, Debajyoti; Garg, Mohan Lal; Khushu, Subash; Singh, Namita

    2014-02-01

    Chronic alcohol abuse is characterized by impaired cognitive abilities with a more severe deficit in visual than in verbal functions. Neuropathologically, it is associated with widespread brain structural compromise marked by gray matter shrinkage, ventricular enlargement, and white matter degradation. The present study sought to increase current understanding of the impairment of visual processing abilities in alcohol-dependent subjects, and its correlation with white matter microstructural alterations, using diffusion tensor imaging (DTI). To that end, a DTI study was carried out on 35 alcohol-dependent subjects and 30 healthy male control subjects. Neuropsychological tests were assessed for visual processing skills and deficits were reported as raw dysfunction scores (rDyS). Reduced FA (fractional anisotropy) and increased MD (mean diffusivity) were observed bilaterally in inferior and superior fronto-occipital fasciculus (FOF) fiber bundles. A significant inverse correlation in rDyS and FA values was observed in these fiber tracts whereas a positive correlation of these scores was found with the MD values. Our results suggest that FOF fiber bundles linking the frontal lobe to occipital lobe might be related to visual processing skills. This is the first report of an alteration of the white matter microstructure of FOF fiber bundles that might have functional consequences for visual processing in alcohol-dependent subjects who exhibit no neurological complications. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Inferior fronto-temporo-occipital connectivity: a missing link between maltreated girls and neglectful mothers

    PubMed Central

    León, Inmaculada; Góngora, Daylin; Hernández-Cabrera, Juan A.; Byrne, Sonia; Bobes, María A.

    2016-01-01

    The neurobiological alterations resulting from adverse childhood experiences that subsequently may lead to neglectful mothering are poorly understood. Maternal neglect of an infant’s basic needs is the most prevalent type of child maltreatment. We tested white matter alterations in neglectful mothers, the majority of whom had also suffered maltreatment in their childhood, and compared them to a matched control group. The two groups were discriminated by a structural brain connectivity pattern comprising inferior fronto-temporo-occipital connectivity, which constitutes a major portion of the face-processing network and was indexed by fewer streamlines in neglectful mothers. Mediation and regression analyses showed that fewer streamlines in the right inferior longitudinal fasciculus tract (ILF-R) predicted a poorer quality of mother–child emotional availability observed during cooperative play and that effect depended on the respective interactions with left and right inferior fronto-occipital fasciculi (IFO-R/L), with no significant impact of psychopathological and cognitive conditions. Volume alteration in ILF-R but not in IFO-L modulated the impact of having been maltreated on emotional availability. The findings suggest the altered inferior fronto-temporal-occipital connectivity, affecting emotional visual processing, as a possible common neurological substrate linking a history of childhood maltreatment with maternal neglect. PMID:27342834

  7. Testing the connections within face processing circuitry in Capgras delusion with diffusion imaging tractography

    PubMed Central

    Bobes, Maria A.; Góngora, Daylin; Valdes, Annette; Santos, Yusniel; Acosta, Yanely; Fernandez Garcia, Yuriem; Lage, Agustin; Valdés-Sosa, Mitchell

    2016-01-01

    Although Capgras delusion (CD) patients are capable of recognizing familiar faces, they present a delusional belief that some relatives have been replaced by impostors. CD has been explained as a selective disruption of a pathway processing affective values of familiar faces. To test the integrity of connections within face processing circuitry, diffusion tensor imaging was performed in a CD patient and 10 age-matched controls. Voxel-based morphometry indicated gray matter damage in right frontal areas. Tractography was used to examine two important tracts of the face processing circuitry: the inferior fronto-occipital fasciculus (IFOF) and the inferior longitudinal (ILF). The superior longitudinal fasciculus (SLF) and commissural tracts were also assessed. CD patient did not differ from controls in the commissural fibers, or the SLF. Right and left ILF, and right IFOF were also equivalent to those of controls. However, the left IFOF was significantly reduced respect to controls, also showing a significant dissociation with the ILF, which represents a selective impairment in the fiber-tract connecting occipital and frontal areas. This suggests a possible involvement of the IFOF in affective processing of faces in typical observers and in covert recognition in some cases with prosopagnosia. PMID:26909325

  8. Bilingualism modulates the white matter structure of language-related pathways.

    PubMed

    Hämäläinen, Sini; Sairanen, Viljami; Leminen, Alina; Lehtonen, Minna

    2017-05-15

    Learning and speaking a second language (L2) may result in profound changes in the human brain. Here, we investigated local structural differences along two language-related white matter trajectories, the arcuate fasciculus and the inferior fronto-occipital fasciculus (IFOF), between early simultaneous bilinguals and late sequential bilinguals. We also examined whether early exposure to two languages might lead to a more bilateral structural organization of the arcuate fasciculus. Fractional anisotropy, mean and radial diffusivities (FA, MD, and RD respectively) were extracted to analyse tract-specific changes. Additionally, global voxel-wise effects were investigated with Tract-Based Spatial Statistics (TBSS). We found that relative to late exposure, early exposure to L2 leads to increased FA along a phonology-related segment of the arcuate fasciculus, but induces no modulations along the IFOF, associated to semantic processing. Late sequential bilingualism, however, was associated with decreased MD along the bilateral IFOF. Our results suggest that early vs. late bilingualism may lead to qualitatively different kind of changes in the structural language-related network. Furthermore, we show that early bilingualism contributes to the structural laterality of the arcuate fasciculus, leading to a more bilateral organization of these perisylvian language-related tracts. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Higher integrity of the motor and visual pathways in long-term video game players.

    PubMed

    Zhang, Yang; Du, Guijin; Yang, Yongxin; Qin, Wen; Li, Xiaodong; Zhang, Quan

    2015-01-01

    Long term video game players (VGPs) exhibit superior visual and motor skills compared with non-video game control subjects (NVGCs). However, the neural basis underlying the enhanced behavioral performance remains largely unknown. To clarify this issue, the present study compared the whiter matter integrity within the corticospinal tracts (CST), the superior longitudinal fasciculus (SLF), the inferior longitudinal fasciculus (ILF), and the inferior fronto-occipital fasciculus (IFOF) between the VGPs and the NVGCs using diffusion tensor imaging. Compared with the NVGCs, voxel-wise comparisons revealed significantly higher fractional anisotropy (FA) values in some regions within the left CST, left SLF, bilateral ILF, and IFOF in VGPs. Furthermore, higher FA values in the left CST at the level of cerebral peduncle predicted a faster response in visual attention tasks. These results suggest that higher white matter integrity in the motor and higher-tier visual pathways is associated with long-term video game playing, which may contribute to the understanding on how video game play influences motor and visual performance.

  10. Individual differences in white matter microstructure predict semantic control.

    PubMed

    Nugiel, Tehila; Alm, Kylie H; Olson, Ingrid R

    2016-12-01

    In everyday conversation, we make many rapid choices between competing concepts and words in order to convey our intent. This process is termed semantic control, and it is thought to rely on information transmission between a distributed semantic store in the temporal lobes and a more discrete region, optimized for retrieval and selection, in the left inferior frontal gyrus. Here, we used diffusion tensor imaging in a group of neurologically normal young adults to investigate the relationship between semantic control and white matter tracts that have been implicated in semantic memory retrieval. Participants completed a verb generation task that taps semantic control (Snyder & Munakata, 2008; Snyder et al., 2010) and underwent a diffusion imaging scan. Deterministic tractography was performed to compute indices representing the microstructural properties of the inferior fronto-occipital fasciculus (IFOF), the uncinate fasciculus (UF), and the inferior longitudinal fasciculus (ILF). Microstructural measures of the UF failed to predict semantic control performance. However, there was a significant relationship between microstructure of the left IFOF and ILF and individual differences in semantic control. Our findings support the view put forth by Duffau (2013) that the IFOF is a key structural pathway in semantic retrieval.

  11. Occipital White Matter Tracts in Human and Macaque

    PubMed Central

    Takemura, Hiromasa; Pestilli, Franco; Weiner, Kevin S.; Landi, Sofia M.; Sliwa, Julia; Ye, Frank Q.; Barnett, Michael A.; Leopold, David A.; Freiwald, Winrich A.; Logothetis, Nikos K.; Wandell, Brian A.

    2017-01-01

    Abstract We compare several major white-matter tracts in human and macaque occipital lobe using diffusion magnetic resonance imaging. The comparison suggests similarities but also significant differences in the tracts. There are several apparently homologous tracts in the 2 species, including the vertical occipital fasciculus (VOF), optic radiation, forceps major, and inferior longitudinal fasciculus (ILF). There is one large human tract, the inferior fronto-occipital fasciculus, with no corresponding fasciculus in macaque. We could identify the macaque VOF (mVOF), which has been little studied. Its position is consistent with classical invasive anatomical studies by Wernicke. VOF homology is supported by similarity of the endpoints in V3A and ventral V4 across species. The mVOF fibers intertwine with the dorsal segment of the ILF, but the human VOF appears to be lateral to the ILF. These similarities and differences between the occipital lobe tracts will be useful in establishing which circuitry in the macaque can serve as an accurate model for human visual cortex. PMID:28369290

  12. Neural organization of ventral white matter tracts parallels the initial steps of reading development: A DTI tractography study.

    PubMed

    Vanderauwera, Jolijn; De Vos, Astrid; Forkel, Stephanie J; Catani, Marco; Wouters, Jan; Vandermosten, Maaike; Ghesquière, Pol

    2018-05-18

    Insight in the developmental trajectory of the neuroanatomical reading correlates is important to understand related cognitive processes and disorders. In adults, a dual pathway model has been suggested encompassing a dorsal phonological and a ventral orthographic white matter system. This dichotomy seems not present in pre-readers, and the specific role of ventral white matter in reading remains unclear. Therefore, the present longitudinal study investigated the relation between ventral white matter and cognitive processes underlying reading in children with a broad range of reading skills (n = 61). Ventral pathways of the reading network were manually traced using diffusion tractography: the inferior fronto-occipital fasciculus (IFOF), inferior longitudinal fasciculus (ILF) and uncinate fasciculus (UF). Pathways were examined pre-reading (5-6 years) and after two years of reading acquisition (7-8 years). Dimension reduction for the cognitive measures resulted in one component for pre-reading cognitive measures and a separate phonological and orthographic component for the early reading measures. Regression analyses revealed a relation between the pre-reading cognitive component and bilateral IFOF and left ILF. Interestingly, exclusively the left IFOF was related to the orthographic component, whereas none of the pathways was related to the phonological component. Hence, the left IFOF seems to serve as the lexical reading route, already in the earliest reading stages. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Decreased integrity of the fronto-temporal fibers of the left inferior occipito-frontal fasciculus associated with auditory verbal hallucinations in schizophrenia.

    PubMed

    Oestreich, Lena K L; McCarthy-Jones, Simon; Whitford, Thomas J

    2016-06-01

    Auditory verbal hallucinations (AVH) have been proposed to result from altered connectivity between frontal speech production regions and temporal speech perception regions. Whilst the dorsal language pathway, serviced by the arcuate fasciculus, has been extensively studied in relation to AVH, the ventral language pathway, serviced by the inferior occipito-frontal fasciculus (IOFF) has been rarely studied in relation to AVH. This study examined whether structural changes in anatomically defined subregions of the IOFF were associated with AVH in patients with schizophrenia. Diffusion tensor imaging scans and clinical data were obtained from the Australian Schizophrenia Research Bank for 113 schizophrenia patients, of whom 39 had lifetime experience of AVH (18 had current AVH, 21 had remitted AVH), 74 had no lifetime experience of AVH, and 40 healthy controls. Schizophrenia patients with a lifetime experience of AVH exhibited reduced fractional anisotropy (FA) in the fronto-temporal fibers of the left IOFF compared to both healthy controls and schizophrenia patients without AVH. In contrast, structural abnormalities in the temporal and occipital regions of the IOFF were observed bilaterally in both patient groups, relative to the healthy controls. These results suggest that while changes in the structural integrity of the bilateral IOFF are associated with schizophrenia per se, integrity reductions in the fronto-temporal fibers of the left IOFF may be specifically associated with AVH.

  14. Higher integrity of the motor and visual pathways in long-term video game players

    PubMed Central

    Du, Guijin; Yang, Yongxin; Qin, Wen; Li, Xiaodong; Zhang, Quan

    2015-01-01

    Long term video game players (VGPs) exhibit superior visual and motor skills compared with non-video game control subjects (NVGCs). However, the neural basis underlying the enhanced behavioral performance remains largely unknown. To clarify this issue, the present study compared the whiter matter integrity within the corticospinal tracts (CST), the superior longitudinal fasciculus (SLF), the inferior longitudinal fasciculus (ILF), and the inferior fronto-occipital fasciculus (IFOF) between the VGPs and the NVGCs using diffusion tensor imaging. Compared with the NVGCs, voxel-wise comparisons revealed significantly higher fractional anisotropy (FA) values in some regions within the left CST, left SLF, bilateral ILF, and IFOF in VGPs. Furthermore, higher FA values in the left CST at the level of cerebral peduncle predicted a faster response in visual attention tasks. These results suggest that higher white matter integrity in the motor and higher-tier visual pathways is associated with long-term video game playing, which may contribute to the understanding on how video game play influences motor and visual performance. PMID:25805981

  15. Variation in White Matter Connectivity Predicts the Ability to Remember Faces and Discriminate Their Emotions

    PubMed Central

    Unger, Ashley; Alm, Kylie H.; Collins, Jessica A.; O’Leary, Jacqueline M.; Olson, Ingrid R.

    2017-01-01

    Objective The extended face network contains clusters of neurons that perform distinct functions on facial stimuli. Regions in the posterior ventral visual stream appear to perform basic perceptual functions on faces, while more anterior regions, such as the ventral anterior temporal lobe and amygdala, function to link mnemonic and affective information to faces. Anterior and posterior regions are interconnected by a long-range white matter tracts however it is not known if variation in connectivity of these pathways explains cognitive performance. Methods Here, we used diffusion imaging and deterministic tractography in a cohort of 28 neurologically normal adults ages 18–28 to examine microstructural properties of visual fiber pathways and their relationship to certain mnemonic and affective functions involved in face processing. We investigated how inter-individual variability in two tracts, the inferior longitudinal fasciculus (ILF) and the inferior fronto-occipital fasciculus (IFOF), related to performance on tests of facial emotion recognition and face memory. Results Results revealed that microstructure of both tracts predicted variability in behavioral performance indexed by both tasks, suggesting that the ILF and IFOF play a role in facilitating our ability to discriminate emotional expressions in faces, as well as to remember unique faces. Variation in a control tract, the uncinate fasciculus, did not predict performance on these tasks. Conclusions These results corroborate and extend the findings of previous neuropsychology studies investigating the effects of damage to the ILF and IFOF, and demonstrate that differences in face processing abilities are related to white matter microstructure, even in healthy individuals. PMID:26888615

  16. Role of Frontotemporal Fiber Tract Integrity in Task-Switching Performance of Healthy Controls and Patients with Temporal Lobe Epilepsy

    PubMed Central

    Kucukboyaci, N. Erkut; Girard, H.M.; Hagler, D.J.; Kuperman, J.; Tecoma, E.S.; Iragui, V.J.; Halgren, E.; McDonald, C.R.

    2012-01-01

    The objective of this study is to investigate the relationships among frontotemporal fiber tract compromise and task-switching performance in healthy controls and patients with temporal lobe epilepsy (TLE). We performed diffusion tensor imaging (DTI) on 30 controls and 32 patients with TLE (15 left TLE). Fractional anisotropy (FA) was calculated for four fiber tracts [uncinate fasciculus (UncF), arcuate fasciculus (ArcF), dorsal cingulum (CING), and inferior fronto-occipital fasciculus (IFOF)]. Participants completed the Trail Making Test-B (TMT-B) and Verbal Fluency Category Switching (VFCS) test. Multivariate analyses of variances (MANOVAs) were performed to investigate group differences in fiber FA and set-shifting performances. Canonical correlations were used to examine the overall patterns of structural-cognitive relationships and were followed by within-group bivariate correlations. We found a significant canonical correlation between fiber FA and task-switching performance. In controls, TMT-B correlated with left IFOF, whereas VFCS correlated with FA of left ArcF and left UncF. These correlations were not significant in patients with TLE. We report significant correlations between frontotemporal fiber tract integrity and set-shifting performance in healthy controls that appear to be absent or attenuated in patients with TLE. These findings suggest a breakdown of typical structure-function relationships in TLE that may reflect aberrant developmental or degenerative processes. PMID:22014246

  17. Normal variation in fronto-occipital circuitry and cerebellar structure with an autism-associated polymorphism of CNTNAP2

    PubMed Central

    Tan, Geoffrey C.Y.; Doke, Thomas F.; Ashburner, John; Wood, Nicholas W.; Frackowiak, Richard S.J.

    2010-01-01

    Recent genetic studies have implicated a number of candidate genes in the pathogenesis of Autism Spectrum Disorder (ASD). Polymorphisms of CNTNAP2 (contactin-associated like protein-2), a member of the neurexin family, have already been implicated as a susceptibility gene for autism by at least 3 separate studies. We investigated variation in white and grey matter morphology using structural MRI and diffusion tensor imaging. We compared volumetric differences in white and grey matter and fractional anisotropy values in control subjects characterised by genotype at rs7794745, a single nucleotide polymorphism in CNTNAP2. Homozygotes for the risk allele showed significant reductions in grey and white matter volume and fractional anisotropy in several regions that have already been implicated in ASD, including the cerebellum, fusiform gyrus, occipital and frontal cortices. Male homozygotes for the risk alleles showed greater reductions in grey matter in the right frontal pole and in FA in the right rostral fronto-occipital fasciculus compared to their female counterparts who showed greater reductions in FA of the anterior thalamic radiation. Thus a risk allele for autism results in significant cerebral morphological variation, despite the absence of overt symptoms or behavioural abnormalities. The results are consistent with accumulating evidence of CNTNAP2's function in neuronal development. The finding suggests the possibility that the heterogeneous manifestations of ASD can be aetiologically characterised into distinct subtypes through genetic-morphological analysis. PMID:20176116

  18. Subconcussive Head Impact Exposure and White Matter Tract Changes over a Single Season of Youth Football

    PubMed Central

    Bahrami, Naeim; Sharma, Dev; Rosenthal, Scott; Davenport, Elizabeth M.; Urban, Jillian E.; Wagner, Benjamin; Jung, Youngkyoo; Vaughan, Christopher G.; Gioia, Gerard A.; Stitzel, Joel D.; Maldjian, Joseph A.

    2016-01-01

    Purpose To examine the effects of subconcussive impacts resulting from a single season of youth (age range, 8–13 years) football on changes in specific white matter (WM) tracts as detected with diffusion-tensor imaging in the absence of clinically diagnosed concussions. Materials and Methods Head impact data were recorded by using the Head Impact Telemetry system and quantified as the combined-probability risk-weighted cumulative exposure (RWECP). Twenty-five male participants were evaluated for seasonal fractional anisotropy (FA) changes in specific WM tracts: the inferior fronto-occipital fasciculus (IFOF), inferior longitudinal fasciculus, and superior longitudinal fasciculus (SLF). Fiber tracts were segmented into a central core and two fiber terminals. The relationship between seasonal FA change in the whole fiber, central core, and the fiber terminals with RWECP was also investigated. Linear regression analysis was conducted to determine the association between RWECP and change in fiber tract FA during the season. Results There were statistically significant linear relationships between RWEcp and decreased FA in the whole (R2 = 0.433; P = .003), core (R2 = 0.3649; P = .007), and terminals (R2 = 0.5666; P < .001) of left IFOF. A trend toward statistical significance (P = .08) in right SLF was observed. A statistically significant correlation between decrease in FA of the right SLF terminal and RWECP was also observed (R2 = 0.2893; P = .028). Conclusion This study found a statistically significant relationship between head impact exposure and change of FAfractional anisotropy value of whole, core, and terminals of left IFOF and right SLF’s terminals where WM and gray matter intersect, in the absence of a clinically diagnosed concussion. © RSNA, 2016 PMID:27775478

  19. Subconcussive Head Impact Exposure and White Matter Tract Changes over a Single Season of Youth Football.

    PubMed

    Bahrami, Naeim; Sharma, Dev; Rosenthal, Scott; Davenport, Elizabeth M; Urban, Jillian E; Wagner, Benjamin; Jung, Youngkyoo; Vaughan, Christopher G; Gioia, Gerard A; Stitzel, Joel D; Whitlow, Christopher T; Maldjian, Joseph A

    2016-12-01

    Purpose To examine the effects of subconcussive impacts resulting from a single season of youth (age range, 8-13 years) football on changes in specific white matter (WM) tracts as detected with diffusion-tensor imaging in the absence of clinically diagnosed concussions. Materials and Methods Head impact data were recorded by using the Head Impact Telemetry system and quantified as the combined-probability risk-weighted cumulative exposure (RWE CP ). Twenty-five male participants were evaluated for seasonal fractional anisotropy (FA) changes in specific WM tracts: the inferior fronto-occipital fasciculus (IFOF), inferior longitudinal fasciculus, and superior longitudinal fasciculus (SLF). Fiber tracts were segmented into a central core and two fiber terminals. The relationship between seasonal FA change in the whole fiber, central core, and the fiber terminals with RWE CP was also investigated. Linear regression analysis was conducted to determine the association between RWE CP and change in fiber tract FA during the season. Results There were statistically significant linear relationships between RWE cp and decreased FA in the whole (R 2 = 0.433; P = .003), core (R 2 = 0.3649; P = .007), and terminals (R 2 = 0.5666; P < .001) of left IFOF. A trend toward statistical significance (P = .08) in right SLF was observed. A statistically significant correlation between decrease in FA of the right SLF terminal and RWE CP was also observed (R 2 = 0.2893; P = .028). Conclusion This study found a statistically significant relationship between head impact exposure and change of FA fractional anisotropy value of whole, core, and terminals of left IFOF and right SLF's terminals where WM and gray matter intersect, in the absence of a clinically diagnosed concussion. © RSNA, 2016.

  20. Genetic Contributions to Changes of Fiber Tracts of Ventral Visual Stream in 22q11.2 Deletion Syndrome

    PubMed Central

    Kikinis, Zora; Makris, Nikos; Finn, Christine T.; Bouix, Sylvain; Lucia, Diandra; Coleman, Michael J.; Tworog-Dube, Erica; Kikinis, Ron; Kucherlapati, Raju; Shenton, Martha E.; Kubicki, Marek

    2013-01-01

    Patients with 22q11.2 deletion syndrome (22q11.2DS) represent a population at high risk for developing schizophrenia, as well as learning disabilities. Deficits in visuo-spatial memory are thought to underlie some of the cognitive disabilities. Neuronal substrates of visuo-spatial memory include the inferior fronto-occipital fasciculus (IFOF) and the inferior longitudinal fasciculus (ILF), two tracts that comprise the ventral visual stream. Diffusion Tensor Magnetic Resonance Imaging (DT-MRI) is an established method to evaluate white matter (WM) connections in vivo. DT-MRI scans of nine 22q11.2DS young adults and nine matched healthy subjects were acquired. Tractography of the IFOF and the ILF was performed. DT-MRI indices, including Fractional anisotropy (FA) (measure of WM changes), axial diffusivity (AD, measure of axonal changes) and radial diffusivity (RD, measure of myelin changes) of each of the tracts and each group were measured and compared. The 22q11.2DS group showed statistically significant reductions of FA in IFOF in the left hemisphere. Additionally, reductions of AD were found in the IFOF and the ILF in both hemispheres. These findings might be the consequence of axonal changes, which is possibly due to fewer, thinner, or less organized fibers. No changes in RD were detected in any of the tracts delineated, which is in contrast to findings in schizophrenia patients where increases in RD are believed to be indicative of demyelination. We conclude that reduced axonal changes may be key to understanding the underlying pathology of WM leading to the visuo-spatial phenotype in 22q11.2DS. PMID:23612843

  1. Abnormal fronto-parietal white matter organisation in the superior longitudinal fasciculus branches in autism spectrum disorders.

    PubMed

    Fitzgerald, Jacqueline; Leemans, Alexander; Kehoe, Elizabeth; O'Hanlon, Erik; Gallagher, Louise; McGrath, Jane

    2018-03-01

    Core features of autism spectrum disorder (ASD) may be underpinned by disrupted functional and structural neural connectivity. Abnormal fronto-parietal functional connectivity has been widely reported in the literature; this may be underpinned by disrupted microstructural organisation of white matter. The superior longitudinal fasciculus (SLF) is a major fronto-parietal white matter tract, the structure of which has been little studied in ASD. The fronto-parietal projections of this tract (SLF I, II and III) are thought to play an important role in a number of cognitive functions including attention and visuospatial processing. To date, the isolation of the fronto-parietal branches of the SLF has been hampered by limitations of traditional tractography approaches. Constrained spherical deconvolution (CSD)-based tractography is an advanced approach that allows valid isolation of the fronto-parietal branches of the SLF. Diffusion MRI data were acquired from 45 participants with ASD and 45 age- and IQ-matched controls. The SLF I, II and III branches were isolated using CSD-based tractography in ExploreDTI. Significantly greater fractional anisotropy (FA) was observed in the right SLF II relative to controls. The ASD group also showed greater linear diffusion coefficient in the left SLF I and the right SLF II. In the SLF II, the ASD group had significantly greater right lateralisation of FA in comparison with the control group. The clinical and functional implications of increased FA in white matter are poorly understood; however, it is possible that this increased white matter organisation in the SLF in ASD may contribute to relative processing advantages in the condition. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  2. Structural Variability within Frontoparietal Networks and Individual Differences in Attentional Functions: An Approach Using the Theory of Visual Attention.

    PubMed

    Chechlacz, Magdalena; Gillebert, Celine R; Vangkilde, Signe A; Petersen, Anders; Humphreys, Glyn W

    2015-07-29

    Visuospatial attention allows us to select and act upon a subset of behaviorally relevant visual stimuli while ignoring distraction. Bundesen's theory of visual attention (TVA) (Bundesen, 1990) offers a quantitative analysis of the different facets of attention within a unitary model and provides a powerful analytic framework for understanding individual differences in attentional functions. Visuospatial attention is contingent upon large networks, distributed across both hemispheres, consisting of several cortical areas interconnected by long-association frontoparietal pathways, including three branches of the superior longitudinal fasciculus (SLF I-III) and the inferior fronto-occipital fasciculus (IFOF). Here we examine whether structural variability within human frontoparietal networks mediates differences in attention abilities as assessed by the TVA. Structural measures were based on spherical deconvolution and tractography-derived indices of tract volume and hindrance-modulated orientational anisotropy (HMOA). Individual differences in visual short-term memory (VSTM) were linked to variability in the microstructure (HMOA) of SLF II, SLF III, and IFOF within the right hemisphere. Moreover, VSTM and speed of information processing were linked to hemispheric lateralization within the IFOF. Differences in spatial bias were mediated by both variability in microstructure and volume of the right SLF II. Our data indicate that the microstructural and macrostrucutral organization of white matter pathways differentially contributes to both the anatomical lateralization of frontoparietal attentional networks and to individual differences in attentional functions. We conclude that individual differences in VSTM capacity, processing speed, and spatial bias, as assessed by TVA, link to variability in structural organization within frontoparietal pathways. Copyright © 2015 Chechlacz et al.

  3. White matter microstructural abnormalities in the frontal lobe of adults with antisocial personality disorder.

    PubMed

    Sundram, Frederick; Deeley, Quinton; Sarkar, Sagari; Daly, Eileen; Latham, Richard; Craig, Michael; Raczek, Malgorzata; Fahy, Tom; Picchioni, Marco; Barker, Gareth J; Murphy, Declan G M

    2012-02-01

    Antisocial personality disorder (ASPD) and psychopathy involve significant interpersonal and behavioural impairments. However, little is known about their underlying neurobiology and in particular, abnormalities in white matter (WM) microstructure. A preliminary diffusion tensor magnetic resonance imaging (DT-MRI) study of adult psychopaths employing tractography revealed abnormalities in the right uncinate fasciculus (UF) (Craig et al., 2009), indicating fronto-limbic disconnectivity. However, it is not clear whether WM abnormalities are restricted to this tract or are or more widespread, including other tracts which are involved in connectivity with the frontal lobe. We performed whole brain voxel-based analyses on WM fractional anisotropy (FA) and mean diffusivity (MD) maps acquired with DT-MRI to compare 15 adults with ASPD and healthy age, handedness and IQ-matched controls. Also, within ASPD subjects we related differences in FA and MD to measures of psychopathy. Significant WM FA reduction and MD increases were found respectively in ASPD subjects relative to controls. FA was bilaterally reduced in the genu of corpus callosum while in the right frontal lobe FA reduction was found in the UF, inferior fronto-occipital fasciculus (IFOF), anterior corona radiata and anterior limb and genu of the internal capsule. These differences negatively correlated with measures of psychopathy. Also in the right frontal lobe, increased MD was found in the IFOF and UF, and the corpus callosum and anterior corona radiata. There was a significant positive correlation between MD and psychopathy scores. The present study confirms a previous report of reduced FA in the UF. Additionally, we report for the first time, FA deficits in tracts involved in interhemispheric as well as frontal lobe connectivity in conjunction with MD increases in the frontal lobe. Hence, we provide evidence of significant WM microstructural abnormalities in frontal brain regions in ASPD and psychopathy

  4. Individual structural differences in left inferior parietal area are associated with schoolchildrens' arithmetic scores

    PubMed Central

    Li, Yongxin; Hu, Yuzheng; Wang, Yunqi; Weng, Jian; Chen, Feiyan

    2013-01-01

    Arithmetic skill is of critical importance for academic achievement, professional success and everyday life, and childhood is the key period to acquire this skill. Neuroimaging studies have identified that left parietal regions are a key neural substrate for representing arithmetic skill. Although the relationship between functional brain activity in left parietal regions and arithmetic skill has been studied in detail, it remains unclear about the relationship between arithmetic achievement and structural properties in left inferior parietal area in schoolchildren. The current study employed a combination of voxel-based morphometry (VBM) for high-resolution T1-weighted images and fiber tracking on diffusion tensor imaging (DTI) to examine the relationship between structural properties in the inferior parietal area and arithmetic achievement in 10-year-old schoolchildren. VBM of the T1-weighted images revealed that individual differences in arithmetic scores were significantly and positively correlated with the gray matter (GM) volume in the left intraparietal sulcus (IPS). Fiber tracking analysis revealed that the forceps major, left superior longitudinal fasciculus (SLF), bilateral inferior longitudinal fasciculus (ILF) and inferior fronto-occipital fasciculus (IFOF) were the primary pathways connecting the left IPS with other brain areas. Furthermore, the regression analysis of the probabilistic pathways revealed a significant and positive correlation between the fractional anisotropy (FA) values in the left SLF, ILF and bilateral IFOF and arithmetic scores. The brain structure-behavior correlation analyses indicated that the GM volumes in the left IPS and the FA values in the tract pathways connecting left IPS were both related to children's arithmetic achievement. The present findings provide evidence that individual structural differences in the left IPS are associated with arithmetic scores in schoolchildren. PMID:24367320

  5. Development of white matter microstructure in relation to verbal and visuospatial working memory—A longitudinal study

    PubMed Central

    Fjell, Anders M.; Tamnes, Christian K.; Grydeland, Håkon; Due-Tønnessen, Paulina; Bjørnerud, Atle; Sampaio-Baptista, Cassandra; Andersson, Jesper; Johansen-Berg, Heidi; Walhovd, Kristine B.

    2018-01-01

    Working memory capacity is pivotal for a broad specter of cognitive tasks and develops throughout childhood. This must in part rely on development of neural connections and white matter microstructure maturation, but there is scarce knowledge of specific relations between this and different aspects of working memory. Diffusion tensor imaging (DTI) enables us to study development of brain white matter microstructure. In a longitudinal DTI study of 148 healthy children between 4 and 11 years scanned twice with an on average 1.6 years interval, we characterized change in fractional anisotropy (FA), mean (MD), radial (RD) and axial diffusivity (AD) in 10 major white matter tracts hypothesized to be of importance for working memory. The results showed relationships between change in several tracts and change in visuospatial working memory. Specifically, improvement in visuospatial working memory capacity was significantly associated with decreased MD, RD and AD in inferior longitudinal fasciculus (ILF), inferior fronto-occipital fasciculus (IFOF) and uncinate fasciculus (UF) in the right hemisphere, as well as forceps major (FMaj). No significant relationships were found between change in DTI metrics and change in verbal working memory capacity. These findings yield new knowledge about brain development and corresponding working memory improvements in childhood. PMID:29689058

  6. Pathways to Seeing Music: Enhanced Structural Connectivity in Colored-Music Synesthesia

    PubMed Central

    Zamm, Anna; Schlaug, Gottfried; Eagleman, David M.; Loui, Psyche

    2013-01-01

    Synesthesia, a condition in which a stimulus in one sensory modality consistently and automatically triggers concurrent percepts in another modality, provides a window into the neural correlates of cross-modal associations. While research on grapheme-color synesthesia has provided evidence for both hyperconnectivity/hyperbinding and disinhibited feedback as possible underlying mechanisms, less research has explored the neuroanatomical basis of other forms of synesthesia. In the current study we investigated the white matter correlates of colored-music synesthesia. As these synesthetes report seeing colors upon hearing musical sounds, we hypothesized they might show different patterns of connectivity between visual and auditory association areas. We used diffusion tensor imaging to trace the white matter tracts in temporal and occipital lobe regions in 10 synesthetes and 10 matched non-synesthete controls. Results showed that synesthetes possessed different hemispheric patterns of fractional anisotropy, an index of white matter integrity, in the inferior fronto-occipital fasciculus (IFOF), a major white matter pathway that connects visual and auditory association areas to frontal regions. Specifically, white matter integrity within the right IFOF was significantly greater in synesthetes than controls. Furthermore, white matter integrity in synesthetes was correlated with scores on audiovisual tests of the Synesthesia Battery, especially in white matter underlying the right fusiform gyrus. Our findings provide the first evidence of a white matter substrate of colored-music synesthesia, and suggest that enhanced white matter connectivity is involved in enhanced cross-modal associations. PMID:23454047

  7. Self-face recognition shares brain regions active during proprioceptive illusion in the right inferior fronto-parietal superior longitudinal fasciculus III network.

    PubMed

    Morita, Tomoyo; Saito, Daisuke N; Ban, Midori; Shimada, Koji; Okamoto, Yuko; Kosaka, Hirotaka; Okazawa, Hidehiko; Asada, Minoru; Naito, Eiichi

    2017-04-21

    Proprioception is somatic sensation that allows us to sense and recognize position, posture, and their changes in our body parts. It pertains directly to oneself and may contribute to bodily awareness. Likewise, one's face is a symbol of oneself, so that visual self-face recognition directly contributes to the awareness of self as distinct from others. Recently, we showed that right-hemispheric dominant activity in the inferior fronto-parietal cortices, which are connected by the inferior branch of the superior longitudinal fasciculus (SLF III), is associated with proprioceptive illusion (awareness), in concert with sensorimotor activity. Herein, we tested the hypothesis that visual self-face recognition shares brain regions active during proprioceptive illusion in the right inferior fronto-parietal SLF III network. We scanned brain activity using functional magnetic resonance imaging while twenty-two right-handed healthy adults performed two tasks. One was a proprioceptive illusion task, where blindfolded participants experienced a proprioceptive illusion of right hand movement. The other was a visual self-face recognition task, where the participants judged whether an observed face was their own. We examined whether the self-face recognition and the proprioceptive illusion commonly activated the inferior fronto-parietal cortices connected by the SLF III in a right-hemispheric dominant manner. Despite the difference in sensory modality and in the body parts involved in the two tasks, both tasks activated the right inferior fronto-parietal cortices, which are likely connected by the SLF III, in a right-side dominant manner. Here we discuss possible roles for right inferior fronto-parietal activity in bodily awareness and self-awareness. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  8. White matter connectivity and Internet gaming disorder

    PubMed Central

    Jeong, Bum Seok; Han, Doug Hyun; Kim, Sun Mi; Lee, Sang Won; Renshaw, Perry F.

    2017-01-01

    Internet use and on-line game play stimulate corticostriatal-limbic circuitry in both healthy subjects and subjects with Internet gaming disorder (IGD). We hypothesized that increased fractional anisotropy (FA) with decreased radial diffusivity (RD) would be observed in IGD subjects, compared with healthy control subjects, and that these white matter indices would be associated with clinical variables including duration of illness and executive function. We screened 181 male patients in order to recruit a large number (n = 58) of IGD subjects without psychiatric co-morbidity as well as 26 male healthy comparison subjects. Multiple diffusion-weighted images were acquired using a 3.0 Tesla magnetic resonance imaging scanner. Tract-based spatial statistics was applied to compare group differences in diffusion tensor imaging (DTI) metrics between IGD and healthy comparison subjects. IGD subjects had increased FA values within forceps minor, right anterior thalamic radiation, right corticospinal tract, right inferior longitudinal fasciculus, right cingulum to hippocampus and right inferior fronto-occipital fasciculus (IFOF) as well as parallel decreases in RD value within forceps minor, right anterior thalamic radiation and IFOF relative to healthy control subjects. In addition, the duration of illness in IGD subjects was positively correlated with the FA values (integrity of white matter fibers) and negatively correlated with RD scores (diffusivity of axonal density) of whole brain white matter. In IGD subjects without psychiatric co-morbidity, our DTI results suggest that increased myelination (increased FA and decreased RD values) in right-sided frontal fiber tracts may be the result of extended game play. PMID:25899390

  9. White matter tracts associated with set-shifting in healthy aging.

    PubMed

    Perry, Michele E; McDonald, Carrie R; Hagler, Donald J; Gharapetian, Lusineh; Kuperman, Joshua M; Koyama, Alain K; Dale, Anders M; McEvoy, Linda K

    2009-11-01

    Attentional set-shifting ability, commonly assessed with the Trail Making Test (TMT), decreases with increasing age in adults. Since set-shifting performance relies on activity in widespread brain regions, deterioration of the white matter tracts that connect these regions may underlie the age-related decrease in performance. We used an automated fiber tracking method to investigate the relationship between white matter integrity in several cortical association tracts and TMT performance in a sample of 24 healthy adults, 21-80 years. Diffusion tensor images were used to compute average fractional anisotropy (FA) for five cortical association tracts, the corpus callosum (CC), and the corticospinal tract (CST), which served as a control. Results showed that advancing age was associated with declines in set-shifting performance and with decreased FA in the CC and in association tracts that connect frontal cortex to more posterior brain regions, including the inferior fronto-occipital fasciculus (IFOF), uncinate fasciculus (UF), and superior longitudinal fasciculus (SLF). Declines in average FA in these tracts, and in average FA of the right inferior longitudinal fasciculus (ILF), were associated with increased time to completion on the set-shifting subtask of the TMT but not with the simple sequencing subtask. FA values in these tracts were strong mediators of the effect of age on set-shifting performance. Automated tractography methods can enhance our understanding of the fiber systems involved in performance of specific cognitive tasks and of the functional consequences of age-related changes in those systems.

  10. Increased brain white matter axial diffusivity associated with fatigue, pain and hyperalgesia in Gulf War illness.

    PubMed

    Rayhan, Rakib U; Stevens, Benson W; Timbol, Christian R; Adewuyi, Oluwatoyin; Walitt, Brian; VanMeter, John W; Baraniuk, James N

    2013-01-01

    Gulf War exposures in 1990 and 1991 have caused 25% to 30% of deployed personnel to develop a syndrome of chronic fatigue, pain, hyperalgesia, cognitive and affective dysfunction. Gulf War veterans (n = 31) and sedentary veteran and civilian controls (n = 20) completed fMRI scans for diffusion tensor imaging. A combination of dolorimetry, subjective reports of pain and fatigue were correlated to white matter diffusivity properties to identify tracts associated with symptom constructs. Gulf War Illness subjects had significantly correlated fatigue, pain, hyperalgesia, and increased axial diffusivity in the right inferior fronto-occipital fasciculus. ROC generated thresholds and subsequent binary regression analysis predicted CMI classification based upon axial diffusivity in the right inferior fronto-occipital fasciculus. These correlates were absent for controls in dichotomous regression analysis. The right inferior fronto-occipital fasciculus may be a potential biomarker for Gulf War Illness. This tract links cortical regions involved in fatigue, pain, emotional and reward processing, and the right ventral attention network in cognition. The axonal neuropathological mechanism(s) explaining increased axial diffusivity may account for the most prominent symptoms of Gulf War Illness.

  11. Age-Related Differences In White Matter Tract Microstructure Are Associated With Cognitive Performance From Childhood to Adulthood

    PubMed Central

    Peters, Bart D.; Ikuta, Toshikazu; DeRosse, Pamela; John, Majnu; Burdick, Katherine E.; Gruner, Patricia; Prendergast, Daniel M.; Szeszko, Philip R.; Malhotra, Anil K.

    2013-01-01

    Background Age-related differences in white matter (WM) tract microstructure have been well-established across the lifespan. In the present cross-sectional study we examined whether these differences are associated with neurocognitive performance from childhood to late adulthood. Methods Diffusion tensor imaging was performed in 296 healthy subjects aged 8–68 years (mean=29.6, SD=14.6). The corpus callosum, two projection tracts, and five association tracts were traced using probabilistic tractography. A neurocognitive test battery was used to assess speed of processing, attention, spatial working memory, verbal functioning, visual learning and executive functioning. Linear mediation models were used to examine whether differences in WM tract fractional anisotropy (FA) were associated with neurocognitive performance, independent of the effect of age. Results From childhood to early adulthood, higher FA of the cingulum bundle and inferior fronto-occipital fasciculus (IFOF) was associated with higher executive functioning and global cognitive functioning, respectively, independent of the effect of age. When adjusting for speed of processing, FA of the IFOF was no longer associated with performance in the other cognitive domains with the exception of visual learning. From early adulthood to late adulthood, WM tract FA was not associated with cognitive performance independent of the age effect. Conclusions The cingulum bundle may play a critical role in protracted maturation of executive functioning. The IFOF may play a key role in maturation of visual learning, and may act as a central ‘hub’ in global cognitive maturation by subserving maturation of processing speed. PMID:23830668

  12. Involuntary switching into the native language induced by electrocortical stimulation of the superior temporal gyrus: a multimodal mapping study.

    PubMed

    Tomasino, Barbara; Marin, Dario; Canderan, Cinzia; Maieron, Marta; Budai, Riccardo; Fabbro, Franco; Skrap, Miran

    2014-09-01

    We describe involuntary language switching from L2 to L1 evoked by electro-stimulation in the superior temporal gyrus in a 30-year-old right-handed Serbian (L1) speaker who was also a late Italian learner (L2). The patient underwent awake brain surgery. Stimulation of other portions of the exposed cortex did not cause language switching as did not stimulation of the left inferior frontal gyrus, where we evoked a speech arrest. Stimulation effects on language switching were selective, namely, interfered with counting behaviour but not with object naming. The coordinates of the positive site were combined with functional and fibre tracking (DTI) data. Results showed that the language switching site belonged to a significant fMRI cluster in the left superior temporal gyrus/supramarginal gyrus found activated for both L1 and L2, and for both the patient and controls, and did not overlap with the inferior fronto-occipital fasciculus (IFOF), the inferior longitudinal fasciculus (ILF) and the superior longitudinal fasciculus (SLF). This area, also known as Stp, has a role in phonological processing. Language switching phenomenon we observed can be partly explained by transient dysfunction of the feed-forward control mechanism hypothesized by the DIVA (Directions Into Velocities of Articulators) model (Golfinopoulos, E., Tourville, J. A., & Guenther, F. H. (2010). The integration of large-scale neural network modeling and functional brain imaging in speech motor control. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Brain white matter microstructure is associated with susceptibility to motion-induced nausea.

    PubMed

    Napadow, V; Sheehan, J; Kim, J; Dassatti, A; Thurler, A H; Surjanhata, B; Vangel, M; Makris, N; Schaechter, J D; Kuo, B

    2013-05-01

    Nausea is associated with significant morbidity, and there is a wide range in the propensity of individuals to experience nausea. The neural basis of the heterogeneity in nausea susceptibility is poorly understood. Our previous functional magnetic resonance imaging (fMRI) study in healthy adults showed that a visual motion stimulus caused activation in the right MT+/V5 area, and that increased sensation of nausea due to this stimulus was associated with increased activation in the right anterior insula. For the current study, we hypothesized that individual differences in visual motion-induced nausea are due to microstructural differences in the inferior fronto-occipital fasciculus (IFOF), the white matter tract connecting the right visual motion processing area (MT+/V5) and right anterior insula. To test this hypothesis, we acquired diffusion tensor imaging data from 30 healthy adults who were subsequently dichotomized into high and low nausea susceptibility groups based on the Motion Sickness Susceptibility Scale. We quantified diffusion along the IFOF for each subject based on axial diffusivity (AD); radial diffusivity (RD), mean diffusivity (MD) and fractional anisotropy (FA), and evaluated between-group differences in these diffusion metrics. Subjects with high susceptibility to nausea rated significantly (P < 0.001) higher nausea intensity to visual motion stimuli and had significantly (P < 0.05) lower AD and MD along the right IFOF compared to subjects with low susceptibility to nausea. This result suggests that differences in white matter microstructure within tracts connecting visual motion and nausea-processing brain areas may contribute to nausea susceptibility or may have resulted from an increased history of nausea episodes. © 2013 Blackwell Publishing Ltd.

  14. Abnormal white matter integrity in chronic users of codeine-containing cough syrups: a tract-based spatial statistics study.

    PubMed

    Qiu, Y-W; Su, H-H; Lv, X-F; Jiang, G-H

    2015-01-01

    Codeine-containing cough syrups have become one of the most popular drugs of abuse in young people in the world. Chronic codeine-containing cough syrup abuse is related to impairments in a broad range of cognitive functions. However, the potential brain white matter impairment caused by chronic codeine-containing cough syrup abuse has not been reported previously. Our aim was to investigate abnormalities in the microstructure of brain white matter in chronic users of codeine-containing syrups and to determine whether these WM abnormalities are related to the duration of the use these syrups and clinical impulsivity. Thirty chronic codeine-containing syrup users and 30 matched controls were evaluated. Diffusion tensor imaging was performed by using a single-shot spin-echo-planar sequence. Whole-brain voxelwise analysis of fractional anisotropy was performed by using tract-based spatial statistics to localize abnormal WM regions. The Barratt Impulsiveness Scale 11 was surveyed to assess participants' impulsivity. Volume-of-interest analysis was used to detect changes of diffusivity indices in regions with fractional anisotropy abnormalities. Abnormal fractional anisotropy was extracted and correlated with clinical impulsivity and the duration of codeine-containing syrup use. Chronic codeine-containing syrup users had significantly lower fractional anisotropy in the inferior fronto-occipital fasciculus of the bilateral temporo-occipital regions, right frontal region, and the right corona radiata WM than controls. There were significant negative correlations among fractional anisotropy values of the right frontal region of the inferior fronto-occipital fasciculus and the right superior corona radiata WM and Barratt Impulsiveness Scale total scores, and between the right frontal region of the inferior fronto-occipital fasciculus and nonplan impulsivity scores in chronic codeine-containing syrup users. There was also a significant negative correlation between fractional

  15. The vertical occipital fasciculus: a century of controversy resolved by in vivo measurements.

    PubMed

    Yeatman, Jason D; Weiner, Kevin S; Pestilli, Franco; Rokem, Ariel; Mezer, Aviv; Wandell, Brian A

    2014-12-02

    The vertical occipital fasciculus (VOF) is the only major fiber bundle connecting dorsolateral and ventrolateral visual cortex. Only a handful of studies have examined the anatomy of the VOF or its role in cognition in the living human brain. Here, we trace the contentious history of the VOF, beginning with its original discovery in monkey by Wernicke (1881) and in human by Obersteiner (1888), to its disappearance from the literature, and recent reemergence a century later. We introduce an algorithm to identify the VOF in vivo using diffusion-weighted imaging and tractography, and show that the VOF can be found in every hemisphere (n = 74). Quantitative T1 measurements demonstrate that tissue properties, such as myelination, in the VOF differ from neighboring white-matter tracts. The terminations of the VOF are in consistent positions relative to cortical folding patterns in the dorsal and ventral visual streams. Recent findings demonstrate that these same anatomical locations also mark cytoarchitectonic and functional transitions in dorsal and ventral visual cortex. We conclude that the VOF is likely to serve a unique role in the communication of signals between regions on the ventral surface that are important for the perception of visual categories (e.g., words, faces, bodies, etc.) and regions on the dorsal surface involved in the control of eye movements, attention, and motion perception.

  16. Neuronal substrates of Corsi Block span: Lesion symptom mapping analyses in relation to attentional competition and spatial bias.

    PubMed

    Chechlacz, Magdalena; Rotshtein, Pia; Humphreys, Glyn W

    2014-11-01

    Spatial working memory problems are frequently reported following brain damage within both left and right hemispheres but with the severity often being grater in individuals with right hemisphere lesions. Clinically, deficits in spatial working memory have also been noted in patients with visuospatial disorders such as unilateral neglect. Here, we examined neural substrates of short-term memory for spatial locations based on the Corsi Block tapping task and the relationship with the visuospatial deficits of neglect and extinction in a group of chronic neuropsychological patients. Principal Component Analysis (PCA) was used to distinguish shared and dissociate functional components. The neural substrates of spatial short-term memory deficits and the components identified by PCA were examined using whole brain voxel-based morphometry and tract-wise lesion deficits analyses. We found that bilateral lesions within occipital cortex (middle occipital gyrus) and right posterior parietal cortex, along with disconnection of the right parieto-temporal segment of arcuate fasciculus, were associated with low spatial memory span. A single component revealed by PCA accounted for over half of the variance and was linked to damage to right posterior brain regions (temporo-parietal junction, the inferior parietal lobule and middle temporal gyrus extending into middle occipital gyrus). We also found link to disconnections within several association pathways including the superior longitudinal fasciculus, arcuate fasciculus, inferior fronto-occipital fasciculus and inferior longitudinal fasciculus. These results indicate that different visuospatial deficits converge into a single component mapped within posterior parietal areas and fronto-parietal white matter pathways. Furthermore, the data presented here fit with the role of posterior parietal cortex/temporo-parietal junction in maintaining a map of salient locations in space, with Corsi Block performance being impaired when the

  17. Strength of Temporal White Matter Pathways Predicts Semantic Learning.

    PubMed

    Ripollés, Pablo; Biel, Davina; Peñaloza, Claudia; Kaufmann, Jörn; Marco-Pallarés, Josep; Noesselt, Toemme; Rodríguez-Fornells, Antoni

    2017-11-15

    Learning the associations between words and meanings is a fundamental human ability. Although the language network is cortically well defined, the role of the white matter pathways supporting novel word-to-meaning mappings remains unclear. Here, by using contextual and cross-situational word learning, we tested whether learning the meaning of a new word is related to the integrity of the language-related white matter pathways in 40 adults (18 women). The arcuate, uncinate, inferior-fronto-occipital and inferior-longitudinal fasciculi were virtually dissected using manual and automatic deterministic fiber tracking. Critically, the automatic method allowed assessing the white matter microstructure along the tract. Results demonstrate that the microstructural properties of the left inferior-longitudinal fasciculus predict contextual learning, whereas the left uncinate was associated with cross-situational learning. In addition, we identified regions of special importance within these pathways: the posterior middle temporal gyrus, thought to serve as a lexical interface and specifically related to contextual learning; the anterior temporal lobe, known to be an amodal hub for semantic processing and related to cross-situational learning; and the white matter near the hippocampus, a structure fundamental for the initial stages of new-word learning and, remarkably, related to both types of word learning. No significant associations were found for the inferior-fronto-occipital fasciculus or the arcuate. While previous results suggest that learning new phonological word forms is mediated by the arcuate fasciculus, these findings show that the temporal pathways are the crucial neural substrate supporting one of the most striking human abilities: our capacity to identify correct associations between words and meanings under referential indeterminacy. SIGNIFICANCE STATEMENT The language-processing network is cortically (i.e., gray matter) well defined. However, the role of the

  18. Relationship between white matter integrity and serum cortisol levels in drug-naive patients with major depressive disorder: diffusion tensor imaging study using tract-based spatial statistics.

    PubMed

    Liu, Xiaodan; Watanabe, Keita; Kakeda, Shingo; Yoshimura, Reiji; Abe, Osamu; Ide, Satoru; Hayashi, Kenji; Katsuki, Asuka; Umene-Nakano, Wakako; Watanabe, Rieko; Ueda, Issei; Nakamura, Jun; Korogi, Yukunori

    2016-06-01

    Higher daytime cortisol levels because of a hyperactive hypothalamic-pituitary-adrenal axis have been reported in patients with major depressive disorder (MDD). The elevated glucocorticoids inhibit the proliferation of the oligodendrocytes that are responsible for myelinating the axons of white matter fibre tracts. To evaluate the relationship between white matter integrity and serum cortisol levels during a first depressive episode in drug-naive patients with MDD (MDD group) using a tract-based spatial statistics (TBSS) method. The MDD group (n = 29) and a healthy control group (n = 47) underwent diffusion tensor imaging (DTI) scans and an analysis was conducted using TBSS. Morning blood samples were obtained from both groups for cortisol measurement. Compared with the controls, the MDD group had significantly reduced fractional anisotropy values (P<0.05, family-wise error (FWE)-corrected) in the inferior fronto-occipital fasciculus, uncinate fasciculus and anterior thalamic radiation. The fractional anisotropy values of the inferior fronto-occipital fasciculus, uncinate fasciculus and anterior thalamic radiation had significantly negative correlations with the serum cortisol levels in the MDD group (P<0.05, FWE-corrected). Our findings indicate that the elevated cortisol levels in the MDD group may injure the white matter integrity in the frontal-subcortical and frontal-limbic circuits. © The Royal College of Psychiatrists 2016.

  19. Double-letter processing in surface dyslexia and dysgraphia following a left temporal lesion: A multimodal neuroimaging study.

    PubMed

    Tomasino, Barbara; Marin, Dario; Maieron, Marta; D'Agostini, Serena; Fabbro, Franco; Skrap, Miran; Luzzatti, Claudio

    2015-12-01

    Neuropsychological data about acquired impairments in reading and writing provide a strong basis for the theoretical framework of the dual-route models. The present study explored the functional neuroanatomy of the reading and spelling processing system. We describe the reading and writing performance of patient CF, an Italian native speaker who developed an extremely selective reading and spelling deficit (his spontaneous speech, oral comprehension, repetition and oral picture naming were almost unimpaired) in processing double letters associated with surface dyslexia and dysgraphia, following a tumor in the left temporal lobe. In particular, the majority of CF's errors in spelling were phonologically plausible substitutions, errors concerning letter numerosity of consonants, and syllabic phoneme-to-grapheme conversion (PGC) errors. A similar pattern of impairment also emerged in his reading behavior, with a majority of lexical stress errors (the only possible type of surface reading errors in the Italian language, due the extreme regularity of print-to-sound correspondence). CF's neuropsychological profile was combined with structural neuroimaging data, fiber tracking, and functional maps and compared to that of healthy control participants. We related CF's deficit to a dissociation between impaired ventral/lexical route (as evidenced by a fractional anisotropy - FA decrease along the inferior fronto-occipital fasciculus - IFOF) and relatively preserved dorsal/phonological route (as evidenced by a rather full integrity of the superior longitudinal fasciculus - SLF). In terms of functional processing, the lexical-semantic ventral route network was more activated in controls than in CF, while the network supporting the dorsal route was shared by CF and the control participants. Our results are discussed within the theoretical framework of dual-route models of reading and spelling, emphasize the importance of the IFOF both in lexical reading and spelling, and offer

  20. Anatomical substrates of cognitive and clinical dimensions in first episode schizophrenia.

    PubMed

    Rigucci, S; Rossi-Espagnet, C; Ferracuti, S; De Carolis, A; Corigliano, V; Carducci, F; Mancinelli, I; Cicone, F; Tatarelli, R; Bozzao, A; Girardi, P; Comparelli, A

    2013-10-01

    To explore gray (GM) and white matter (WM) abnormalities and the relationships with neuropsychopathology in first-episode schizophrenia (FES). Nineteen patients with first episode of non-affective psychosis and 18 controls underwent a magnetic resonance voxel-based morphometry. Additionally, WM fractional anisotropy (FA) was calculated. For correlative analysis, symptoms and neuropsychological performances were scored by PANSS and by a comprehensive neuropsychological assessment respectively. Patients showed significantly decreased volume of left temporal lobe and disarray of all major WM tracts. Disorganized PANSS factor was inversely related to left cerebellar GM volume (corrected P = 0.03) and to WM FA of the left cerebellum, inferior fronto-occipital fasciculi (IFOF), and inferior longitudinal fasciculi (corrected P < 0.05). PANSS negative factor was inversely related to FA in the IFOF and superior longitudinal fasciculi (corrected P < 0.05). Impairment in facial emotion identification showed associations with temporo-occipital GM volume decrease (corrected P = 0.003) and WM disarray of superior and middle temporal gyri, anterior thalamic radiation, and superior longitudinal fasciculi (corrected P < 0.05). Speed of processing and visual memory correlated with WM abnormalities in fronto-temporal tracts. These results confirm how the structural development of key brain regions is related to neuropsychopathological dysfunction in FES, consistently with a neurodevelopmentally derived misconnection syndrome. © 2012 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. White Matter Abnormalities in Autism and Unaffected Siblings.

    PubMed

    Jou, Roger J; Reed, Hannah E; Kaiser, Martha D; Voos, Avery C; Volkmar, Fred R; Pelphrey, Kevin A

    2016-01-01

    This study was conducted to identify a potential neuroendophenotype for autism using diffusion tensor imaging. Whole-brain, voxel-based analysis of fractional anisotropy was conducted in 50 children: 19 with autism, 20 unaffected siblings, and 11 controls. Relative to controls, participants with autism exhibited bilateral reductions in fractional anisotropy across association, commissure, and projection fibers. The most severely affected tracts included the uncinate fasciculus, forceps minor, and inferior fronto-occipital fasciculus. Unaffected siblings also exhibited reductions in fractional anisotropy, albeit less severe with fewer affected tracts, sparing the uncinate fasciculus and forceps minor. These results suggest the presence of a neuroendophenotype for autism.

  2. The course and the anatomo-functional relationships of the optic radiation: a combined study with ‘post mortem’ dissections and ‘in vivo’ direct electrical mapping

    PubMed Central

    Sarubbo, Silvio; De Benedictis, Alessandro; Milani, Paola; Paradiso, Beatrice; Barbareschi, Mattia; Rozzanigo, Umbero; Colarusso, Enzo; Tugnoli, Valeria; Farneti, Marco; Granieri, Enrico; Duffau, Hugues; Chioffi, Franco

    2015-01-01

    Even if different dissection, tractographic and connectivity studies provided pure anatomical evidences about the optic radiations (ORs), descriptions of both the anatomical structure and the anatomo-functional relationships of the ORs with the adjacent bundles were not reported. We propose a detailed anatomical and functional study with ‘post mortem’ dissections and ‘in vivo’ direct electrical stimulation (DES) of the OR, demonstrating also the relationships with the adjacent eloquent bundles in a neurosurgical ‘connectomic’ perspective. Six human hemispheres (three left, three right) were dissected after a modified Klingler's preparation. The anatomy of the white matter was analysed according to systematic and topographical surgical perspectives. The anatomical results were correlated to the functional responses collected during three resections of tumours guided by cortico-subcortical DES during awake procedures. We identified two groups of fibres forming the OR. The superior component runs along the lateral wall of the occipital horn, the trigone and the supero-medial wall of the temporal horn. The inferior component covers inferiorly the occipital horn and the trigone, the lateral wall of the temporal horn and arches antero-medially to form the Meyer's Loop. The inferior fronto-occipital fascicle (IFOF) covers completely the superior OR along its entire course, as confirmed by the subcortical DES. The inferior longitudinal fascicle runs in a postero-anterior and inferior direction, covering the superior OR posteriorly and the inferior OR anteriorly. The IFOF identification allows the preservation of the superior OR in the anterior temporal resection, avoiding post-operative complete hemianopia. The identification of the superior OR during the posterior temporal, inferior parietal and occipital resections leads to the preservation of the IFOF and of the eloquent functions it subserves. The accurate knowledge of the OR course and the relationships

  3. The Dorsal Rather than Ventral Pathway Better Reflects Individual Syntactic Abilities in Second Language

    PubMed Central

    Yamamoto, Kayako; Sakai, Kuniyoshi L.

    2016-01-01

    The left inferior frontal gyrus (IFG) has been reported to be critically involved in syntactic processing, not only in first language (L1), but in second language (L2). Indeed, the leftward lateralization of the IFG has been shown to be correlated with the performance of a syntactic task in L2. Given that posterior language-related regions are systematically connected with the left IFG, the next question is which of the dorsal and ventral pathways is more critical to the individual syntactic abilities in L2. Here we used diffusion magnetic resonance imaging (MRI) and tractography with newly developed semi-automatic methods of defining seeds and selecting regions of interest (ROIs). We calculated mean thickness and fractional anisotropy (FA) in each ROI for the arcuate fasciculus (Arcuate) of the dorsal pathway, as well as for the inferior fronto-occipital fasciculus (IFOF) of the ventral pathway. In Experiment I, we performed partial correlation analyses between FA and the accuracy of the syntactic task, removing the effects of the accuracy of a spelling task, gender, and handedness. Among the two pathways in each hemisphere, only FA of the left Arcuate was significantly correlated with individual accuracy of the syntactic task. In Experiment II, we recruited monozygotic twins and examined to what extent their L2 abilities and their structural properties were similar. Within twin pairs, the highest significant correlation was observed for reaction times of the spelling task, while the correlation for the accuracy of the syntactic task was marginal; these two correlation coefficients were significantly different. Moreover, the thickness of the left Arcuate was highly correlated within pairs, while its FA, as well as the thickness/FA in the ventral pathways, was not significantly correlated. The correlation coefficient for the thickness of the left Arcuate was significantly larger than that of the left IFOF. These results suggest that the thickness of the left

  4. Repeating with the right hemisphere: reduced interactions between phonological and lexical-semantic systems in crossed aphasia?

    PubMed Central

    De-Torres, Irene; Dávila, Guadalupe; Berthier, Marcelo L.; Walsh, Seán Froudist; Moreno-Torres, Ignacio; Ruiz-Cruces, Rafael

    2013-01-01

    Knowledge on the patterns of repetition amongst individuals who develop language deficits in association with right hemisphere lesions (crossed aphasia) is very limited. Available data indicate that repetition in some crossed aphasics experiencing phonological processing deficits is not heavily influenced by lexical-semantic variables (lexicality, imageability, and frequency) as is regularly reported in phonologically-impaired cases with left hemisphere damage. Moreover, in view of the fact that crossed aphasia is rare, information on the role of right cortical areas and white matter tracts underpinning language repetition deficits is scarce. In this study, repetition performance was assessed in two patients with crossed conduction aphasia and striatal/capsular vascular lesions encompassing the right arcuate fasciculus (AF) and inferior frontal-occipital fasciculus (IFOF), the temporal stem and the white matter underneath the supramarginal gyrus. Both patients showed lexicality effects repeating better words than non-words, but manipulation of other lexical-semantic variables exerted less influence on repetition performance. Imageability and frequency effects, production of meaning-based paraphrases during sentence repetition, or better performance on repeating novel sentences than overlearned clichés were hardly ever observed in these two patients. In one patient, diffusion tensor imaging disclosed damage to the right long direct segment of the AF and IFOF with relative sparing of the anterior indirect and posterior segments of the AF, together with fully developed left perisylvian white matter pathways. These findings suggest that striatal/capsular lesions extending into the right AF and IFOF in some individuals with right hemisphere language dominance are associated with atypical repetition patterns which might reflect reduced interactions between phonological and lexical-semantic processes. PMID:24151460

  5. Reduced white matter integrity and facial emotion perception in never-medicated patients with first-episode schizophrenia: A diffusion tensor imaging study.

    PubMed

    Zhao, Xiaoxin; Sui, Yuxiu; Yao, Jingjing; Lv, Yiding; Zhang, Xinyue; Jin, Zhuma; Chen, Lijun; Zhang, Xiangrong

    2017-07-03

    Facial emotion perception is impaired in schizophrenia. Although the pathology of schizophrenia is thought to involve abnormality in white matter (WM), few studies have examined the correlation between facial emotion perception and WM abnormalities in never-medicated patients with first-episode schizophrenia. The present study tested associations between facial emotion perception and WM integrity in order to investigate the neural basis of impaired facial emotion perception in schizophrenia. Sixty-three schizophrenic patients and thirty control subjects underwent facial emotion categorization (FEC). The FEC data was inserted into a logistic function model with subsequent analysis by independent-samples T test and the shift point and slope as outcome measurements. Severity of symptoms was measured using a five-factor model of the Positive and Negative Syndrome Scale (PANSS). Voxelwise group comparison of WM fractional anisotropy (FA) was operated using tract-based spatial statistics (TBSS). The correlation between impaired facial emotion perception and FA reduction was examined in patients using simple regression analysis within brain areas that showed a significant FA reduction in patients compared with controls. The same correlation analysis was also performed for control subjects in the whole brain. The patients with schizophrenia reported a higher shift point and a steeper slope than control subjects in FEC. The patients showed a significant FA reduction in left deep WM in the parietal, temporal and occipital lobes, a small portion of the corpus callosum (CC), and the corona radiata. In voxelwise correlation analysis, we found that facial emotion perception significantly correlated with reduced FA in various WM regions, including left forceps major (FM), inferior longitudinal fasciculus (ILF), inferior fronto-occipital fasciculus (IFOF), Left splenium of CC, and left ILF. The correlation analyses in healthy controls revealed no significant correlation of FA with

  6. Diffusion-tensor imaging of major white matter tracts and their role in language processing in aphasia.

    PubMed

    Ivanova, Maria V; Isaev, Dmitry Yu; Dragoy, Olga V; Akinina, Yulia S; Petrushevskiy, Alexey G; Fedina, Oksana N; Shklovsky, Victor M; Dronkers, Nina F

    2016-12-01

    A growing literature is pointing towards the importance of white matter tracts in understanding the neural mechanisms of language processing, and determining the nature of language deficits and recovery patterns in aphasia. Measurements extracted from diffusion-weighted (DW) images provide comprehensive in vivo measures of local microstructural properties of fiber pathways. In the current study, we compared microstructural properties of major white matter tracts implicated in language processing in each hemisphere (these included arcuate fasciculus (AF), superior longitudinal fasciculus (SLF), inferior longitudinal fasciculus (ILF), inferior frontal-occipital fasciculus (IFOF), uncinate fasciculus (UF), and corpus callosum (CC), and corticospinal tract (CST) for control purposes) between individuals with aphasia and healthy controls and investigated the relationship between these neural indices and language deficits. Thirty-seven individuals with aphasia due to left hemisphere stroke and eleven age-matched controls were scanned using DW imaging sequences. Fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD), axial diffusivity (AD) values for each major white matter tract were extracted from DW images using tract masks chosen from standardized atlases. Individuals with aphasia were also assessed with a standardized language test in Russian targeting comprehension and production at the word and sentence level. Individuals with aphasia had significantly lower FA values for left hemisphere tracts and significantly higher values of MD, RD and AD for both left and right hemisphere tracts compared to controls, all indicating profound impairment in tract integrity. Language comprehension was predominantly related to integrity of the left IFOF and left ILF, while language production was mainly related to integrity of the left AF. In addition, individual segments of these three tracts were differentially associated with language production and

  7. White matter alterations in temporal lobe epilepsy

    NASA Astrophysics Data System (ADS)

    Diniz, P. B.; Salmon, C. E.; Velasco, T. R.; Sakamoto, A. C.; Leite, J. P.; Santos, A. C.

    2011-03-01

    In This study, we used Fractional anisotropy (FA), mean diffusivity (D), parallel diffusivity (D//) and perpendicular diffusivity (D), to localize the regions where occur axonal lesion and demyelization. TBSS was applied to analyze the FA data. After, the regions with alteration were studied with D, D// and D maps. Patients exhibited widespread degradation of FA. With D, D// and D maps analysis we found alterations in corpus callosum, corticospinal tract, fornix, internal capsule, corona radiate, Sagittal stratum, cingulum, fronto-occipital fasciculus and uncinate fasciculus. Our results are consistent with the hypothesis that exist demyelization and axonal damage in patients with TLE.

  8. Decreased and Increased Anisotropy along Major Cerebral White Matter Tracts in Preterm Children and Adolescents

    PubMed Central

    Ben-Shachar, Michal; Feldman, Heidi M.

    2015-01-01

    Premature birth is highly prevalent and associated with neurodevelopmental delays and disorders. Adverse outcomes, particularly in children born before 32 weeks of gestation, have been attributed in large part to white matter injuries, often found in periventricular regions using conventional imaging. To date, tractography studies of white matter pathways in children and adolescents born preterm have evaluated only a limited number of tracts simultaneously. The current study compares diffusion properties along 18 major cerebral white matter pathways in children and adolescents born preterm (n = 27) and full term (n = 19), using diffusion magnetic resonance imaging and tractography. We found that compared to the full term group, the preterm group had significantly decreased FA in segments of the bilateral uncinate fasciculus and anterior segments of the right inferior fronto-occipital fasciculus. Additionally, the preterm group had significantly increased FA in segments of the right and left anterior thalamic radiations, posterior segments of the right inferior fronto-occipital fasciculus, and the right and left inferior longitudinal fasciculus. Increased FA in the preterm group was generally associated with decreased radial diffusivity. These findings indicate that prematurity-related white matter differences in later childhood and adolescence do not affect all tracts in the periventricular zone and can involve both decreased and increased FA. Differences in the patterns of radial diffusivity and axial diffusivity suggest that the tissue properties underlying group FA differences may vary within and across white matter tracts. Distinctive diffusion properties may relate to variations in the timing of injury in the neonatal period, extent of white matter dysmaturity and/or compensatory processes in childhood. PMID:26560745

  9. Tract specific analysis in patients with sickle cell disease

    NASA Astrophysics Data System (ADS)

    Chai, Yaqiong; Coloigner, Julie; Qu, Xiaoping; Choi, Soyoung; Bush, Adam; Borzage, Matt; Vu, Chau; Lepore, Natasha; Wood, John

    2015-12-01

    Sickle cell disease (SCD) is a hereditary blood disorder in which the oxygen-carrying hemoglobin molecule in red blood cells is abnormal. It affects numerous people in the world and leads to a shorter life span, pain, anemia, serious infections and neurocognitive decline. Tract-Specific Analysis (TSA) is a statistical method to evaluate white matter alterations due to neurocognitive diseases, using diffusion tensor magnetic resonance images. Here, for the first time, TSA is used to compare 11 major brain white matter (WM) tracts between SCD patients and age-matched healthy subjects. Alterations are found in the corpus callosum (CC), the cortico-spinal tract (CST), inferior fronto-occipital fasciculus (IFO), inferior longitudinal fasciculus (ILF), superior longitudinal fasciculus (SLF), and uncinated fasciculus (UNC). Based on previous studies on the neurocognitive functions of these tracts, the significant areas found in this paper might be related to several cognitive impairments and depression, both of which are observed in SCD patients.

  10. White matter tractography using diffusion tensor deflection.

    PubMed

    Lazar, Mariana; Weinstein, David M; Tsuruda, Jay S; Hasan, Khader M; Arfanakis, Konstantinos; Meyerand, M Elizabeth; Badie, Benham; Rowley, Howard A; Haughton, Victor; Field, Aaron; Alexander, Andrew L

    2003-04-01

    Diffusion tensor MRI provides unique directional diffusion information that can be used to estimate the patterns of white matter connectivity in the human brain. In this study, the behavior of an algorithm for white matter tractography is examined. The algorithm, called TEND, uses the entire diffusion tensor to deflect the estimated fiber trajectory. Simulations and imaging experiments on in vivo human brains were performed to investigate the behavior of the tractography algorithm. The simulations show that the deflection term is less sensitive than the major eigenvector to image noise. In the human brain imaging experiments, estimated tracts were generated in corpus callosum, corticospinal tract, internal capsule, corona radiata, superior longitudinal fasciculus, inferior longitudinal fasciculus, fronto-occipital fasciculus, and uncinate fasciculus. This approach is promising for mapping the organizational patterns of white matter in the human brain as well as mapping the relationship between major fiber trajectories and the location and extent of brain lesions. Copyright 2003 Wiley-Liss, Inc.

  11. Frontotemporal networks and behavioral symptoms in primary progressive aphasia.

    PubMed

    D'Anna, Lucio; Mesulam, Marsel M; Thiebaut de Schotten, Michel; Dell'Acqua, Flavio; Murphy, Declan; Wieneke, Christina; Martersteck, Adam; Cobia, Derin; Rogalski, Emily; Catani, Marco

    2016-04-12

    To determine if behavioral symptoms in patients with primary progressive aphasia (PPA) were associated with degeneration of a ventral frontotemporal network. We used diffusion tensor imaging tractography to quantify abnormalities of the uncinate fasciculus that connects the anterior temporal lobe and the ventrolateral frontal cortex. Two additional ventral tracts were studied: the inferior fronto-occipital fasciculus and the inferior longitudinal fasciculus. We also measured cortical thickness of anterior temporal and orbitofrontal regions interconnected by these tracts. Thirty-three patients with PPA and 26 healthy controls were recruited. In keeping with the PPA diagnosis, behavioral symptoms were distinctly less prominent than the language deficits. Although all 3 tracts had structural pathology as determined by tractography, significant correlations with scores on the Frontal Behavioral Inventory were found only for the uncinate fasciculus. Cortical atrophy of the orbitofrontal and anterior temporal lobe cortex was also correlated with these scores. Our findings indicate that damage to a frontotemporal network mediated by the uncinate fasciculus may underlie the emergence of behavioral symptoms in patients with PPA. © 2016 American Academy of Neurology.

  12. Frontotemporal networks and behavioral symptoms in primary progressive aphasia

    PubMed Central

    Mesulam, Marsel M.; Thiebaut de Schotten, Michel; Dell'Acqua, Flavio; Murphy, Declan; Wieneke, Christina; Martersteck, Adam; Cobia, Derin; Rogalski, Emily

    2016-01-01

    Objective: To determine if behavioral symptoms in patients with primary progressive aphasia (PPA) were associated with degeneration of a ventral frontotemporal network. Methods: We used diffusion tensor imaging tractography to quantify abnormalities of the uncinate fasciculus that connects the anterior temporal lobe and the ventrolateral frontal cortex. Two additional ventral tracts were studied: the inferior fronto-occipital fasciculus and the inferior longitudinal fasciculus. We also measured cortical thickness of anterior temporal and orbitofrontal regions interconnected by these tracts. Thirty-three patients with PPA and 26 healthy controls were recruited. Results: In keeping with the PPA diagnosis, behavioral symptoms were distinctly less prominent than the language deficits. Although all 3 tracts had structural pathology as determined by tractography, significant correlations with scores on the Frontal Behavioral Inventory were found only for the uncinate fasciculus. Cortical atrophy of the orbitofrontal and anterior temporal lobe cortex was also correlated with these scores. Conclusions: Our findings indicate that damage to a frontotemporal network mediated by the uncinate fasciculus may underlie the emergence of behavioral symptoms in patients with PPA. PMID:26992858

  13. Toward a functional neuroanatomy of semantic aphasia: A history and ten new cases.

    PubMed

    Dragoy, Olga; Akinina, Yulia; Dronkers, Nina

    2017-12-01

    Almost 70 years ago, Alexander Luria incorporated semantic aphasia among his aphasia classifications by demonstrating that deficits in linking the logical relationships of words in a sentence could co-occur with non-linguistic disorders of calculation, spatial gnosis and praxis deficits. In line with his comprehensive approach to the assessment of language and other cognitive functions, he argued that deficits in understanding semantically reversible sentences and prepositional phrases, for example, were in line with a single neuropsychological factor of impaired spatial analysis and synthesis, since understanding such grammatical relationships would also draw on their spatial relationships. Critically, Luria demonstrated the neural underpinnings of this syndrome with the critical implication of the cortex of the left temporal-parietal-occipital (TPO) junction. In this study, we report neuropsychological and lesion profiles of 10 new cases of semantic aphasia. Modern neuroimaging techniques provide support for the relevance of the left TPO area for semantic aphasia, but also extend Luria's neuroanatomical model by taking into account white matter pathways. Our findings suggest that tracts with parietal connectivity - the arcuate fasciculus (long and posterior segments), the inferior fronto-occipital fasciculus, the inferior longitudinal fasciculus, the superior longitudinal fasciculus II and III, and the corpus callosum - are implicated in the linguistic and non-linguistic deficits of patients with semantic aphasia. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Altered fronto-cerebellar connectivity in alcohol-naïve youth with a family history of alcoholism

    PubMed Central

    Herting, Megan M.; Fair, Damien; Nagel, Bonnie J.

    2011-01-01

    Fronto-cerebellar connections are thought to be involved in higher-order cognitive functioning. It is suspected that damage to this network may contribute to cognitive deficits in chronic alcoholics. However, it remains to be elucidated if fronto-cerebellar circuitry is altered in high-risk individuals even prior to alcohol use onset. The current study used functional connectivity MRI (fcMRI) to examine fronto-cerebellar circuitry in 13 alcohol-naïve, at-risk youth with a family history of alcoholism (FH+) and 14 age-matched controls. In addition, we examined how white matter microstructure, as evidenced by fractional anisotropy (FA) related to fcMRI. FH+ youth showed significantly reduced functional connectivity between bilateral anterior prefrontal cortices and contralateral cerebellar seed regions compared to controls. We found that this reduction in connectivity significantly correlated with reduced FA in the anterior limb of the internal capsule and the superior longitudinal fasciculus. Taken together, our findings reflect associated aberrant functional and structural connectivity in substance-naïve FH+ adolescents, perhaps suggesting an identifiable neurophenotypic precursor to substance use. Given the role of frontal and cerebellar brain regions in subserving executive functioning, the presence of premorbid abnormalities in fronto-cerebellar circuitry may heighten the risk for developing an alcohol use disorder in FH+ youth through atypical control processing. PMID:20970506

  15. Anterior Temporal Lobe Morphometry Predicts Categorization Ability.

    PubMed

    Garcin, Béatrice; Urbanski, Marika; Thiebaut de Schotten, Michel; Levy, Richard; Volle, Emmanuelle

    2018-01-01

    Categorization is the mental operation by which the brain classifies objects and events. It is classically assessed using semantic and non-semantic matching or sorting tasks. These tasks show a high variability in performance across healthy controls and the cerebral bases supporting this variability remain unknown. In this study we performed a voxel-based morphometry study to explore the relationships between semantic and shape categorization tasks and brain morphometric differences in 50 controls. We found significant correlation between categorization performance and the volume of the gray matter in the right anterior middle and inferior temporal gyri. Semantic categorization tasks were associated with more rostral temporal regions than shape categorization tasks. A significant relationship was also shown between white matter volume in the right temporal lobe and performance in the semantic tasks. Tractography revealed that this white matter region involved several projection and association fibers, including the arcuate fasciculus, inferior fronto-occipital fasciculus, uncinate fasciculus, and inferior longitudinal fasciculus. These results suggest that categorization abilities are supported by the anterior portion of the right temporal lobe and its interaction with other areas.

  16. Monkey to human comparative anatomy of the frontal lobe association tracts.

    PubMed

    Thiebaut de Schotten, Michel; Dell'Acqua, Flavio; Valabregue, Romain; Catani, Marco

    2012-01-01

    The greater expansion of the frontal lobes along the phylogeny scale has been interpreted as the signature of evolutionary changes underlying higher cognitive abilities in humans functions in humans. However, it is unknown how an increase in number of gyri, sulci and cortical areas in the frontal lobe have coincided with a parallel increase in connectivity. Here, using advanced tractography based on spherical deconvolution, we produced an atlas of human frontal association connections that we compared with axonal tracing studies of the monkey brain. We report several similarities between human and monkey in the cingulum, uncinate, superior longitudinal fasciculus, frontal aslant tract and orbito-polar tract. These similarities suggest to preserved functions across anthropoids. In addition, we found major differences in the arcuate fasciculus and the inferior fronto-occipital fasciculus. These differences indicate possible evolutionary changes in the connectional anatomy of the frontal lobes underlying unique human abilities. Copyright © 2011 Elsevier Srl. All rights reserved.

  17. Structural white-matter connections mediating distinct behavioral components of spatial neglect in right brain-damaged patients.

    PubMed

    Vaessen, Maarten J; Saj, Arnaud; Lovblad, Karl-Olof; Gschwind, Markus; Vuilleumier, Patrik

    2016-04-01

    Spatial neglect is a neuropsychological syndrome in which patients fail to perceive and orient to stimuli located in the space contralateral to the lesioned hemisphere. It is characterized by a wide heterogeneity in clinical symptoms which can be grouped into distinct behavioral components correlating with different lesion sites. Moreover, damage to white-matter (WM) fiber tracts has been suggested to disconnect brain networks that mediate different functions associated with spatial cognition and attention. However, it remains unclear what WM pathways are associated with functionally dissociable neglect components. In this study we examined nine patients with a focal right hemisphere stroke using a series of neuropsychological tests and diffusion tensor imaging (DTI) in order to disentangle the role of specific WM pathways in neglect symptoms. First, following previous work, the behavioral test scores of patients were factorized into three independent components reflecting perceptual, exploratory, and object-centered deficits in spatial awareness. We then examined the structural neural substrates of these components by correlating indices of WM integrity (fractional anisotropy) with the severity of deficits along each profile. Several locations in the right parietal and frontal WM correlated with neuropsychological scores. Fiber tracts projecting from these locations indicated that posterior parts of the superior longitudinal fasciculus (SLF), as well as nearby callosal fibers connecting ipsilateral and contralateral parietal areas, were associated with perceptual spatial deficits, whereas more anterior parts of SLF and inferior fronto-occipital fasciculus (IFOF) were predominantly associated with object-centered deficits. In addition, connections between frontal areas and superior colliculus were found to be associated with the exploratory deficits. Our results provide novel support to the view that neglect may result from disconnection lesions in distributed

  18. Neuroticism is linked to microstructural left-right asymmetry of fronto-limbic fibre tracts in adolescents with opposite effects in boys and girls.

    PubMed

    Madsen, Kathrine Skak; Jernigan, Terry L; Vestergaard, Martin; Mortensen, Erik Lykke; Baaré, William F C

    2018-06-01

    Neuroticism is a fundamental personality trait that reflects a tendency to experience heightened negative affect and susceptibility to stress. Negative emotionality has been associated with fronto-limbic brain structures and connecting fibre tracts. The major fibre tracts connecting the frontal and limbic brain regions are the cingulum bundle and uncinate fasciculus. We previously found that healthy adults with higher neuroticism scores had decreased left relative to right fractional anisotropy (FA) of the cingulum. Both cingulum and uncinate fasciculus FA increases throughout childhood and into early adulthood. Since adolescence is associated with an increased incidence of anxiety and mood disorders, for which neuroticism is a known risk factor, the question arises whether the association between neuroticism and fronto-limbic white matter microstructure asymmetry is already present in children and adolescents or whether such relationship emerges during this age period. To address this question, we assessed 72 typically-developing 10-to-15 year-olds with diffusion-weighted imaging on a 3 T magnetic resonance scanner. Neuroticism was assessed with the Junior Eysenck Personality Questionnaire. FA and parallel and perpendicular diffusivity measures were extracted for cingulum, uncinate fasciculus as well as the white matter underlying the ventromedial prefrontal cortex. Higher neuroticism scores were associated with decreased left relative to right cingulum FA in boys, while in girls, higher neuroticism scores were associated with increased left relative to right cingulum and ventromedial prefrontal white matter FA, indicating that there are sex differences in the neural correlates of neuroticism. Our findings suggest that the link between neuroticism and frontal-limbic white matter microstructure asymmetry likely predates early adolescence. Future studies need to elucidate the significance of the observed sex differences in the neural correlates of neuroticism

  19. Context-specific differences in fronto-parieto-occipital effective connectivity during short-term memory maintenance.

    PubMed

    Kundu, Bornali; Chang, Jui-Yang; Postle, Bradley R; Van Veen, Barry D

    2015-07-01

    Although visual short-term memory (VSTM) performance has been hypothesized to rely on two distinct mechanisms, capacity and filtering, the two have not been dissociated using network-level causality measures. Here, we hypothesized that behavioral tasks challenging capacity or distraction filtering would both engage a common network of areas, namely dorsolateral prefrontal cortex (dlPFC), superior parietal lobule (SPL), and occipital cortex, but would do so according to dissociable patterns of effective connectivity. We tested this by estimating directed connectivity between areas using conditional Granger causality (cGC). Consistent with our prediction, the results indicated that increasing mnemonic load (capacity) increased the top-down drive from dlPFC to SPL, and cGC in the alpha (8-14Hz) frequency range was a predominant component of this effect. The presence of distraction during encoding (filtering), in contrast, was associated with increased top-down drive from dlPFC to occipital cortices directly and from SPL to occipital cortices directly, in both cases in the beta (15-25Hz) range. Thus, although a common anatomical network may serve VSTM in different contexts, it does so via specific functions that are carried out within distinct, dynamically configured frequency channels. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Analysis of the volumetric relationship among human ocular, orbital and fronto-occipital cortical morphology

    PubMed Central

    Masters, Michael; Bruner, Emiliano; Queer, Sarah; Traynor, Sarah; Senjem, Jess

    2015-01-01

    Recent research on the visual system has focused on investigating the relationship among eye (ocular), orbital, and visual cortical anatomy in humans. This issue is relevant in evolutionary and medical fields. In terms of evolution, only in modern humans and Neandertals are the orbits positioned beneath the frontal lobes, with consequent structural constraints. In terms of medicine, such constraints can be associated with minor deformation of the eye, vision defects, and patterns of integration among these features, and in association with the frontal lobes, are important to consider in reconstructive surgery. Further study is therefore necessary to establish how these variables are related, and to what extent ocular size is associated with orbital and cerebral cortical volumes. Relationships among these anatomical components were investigated using magnetic resonance images from a large sample of 83 individuals, which also included each subject’s body height, age, sex, and uncorrected visual acuity score. Occipital and frontal gyri volumes were calculated using two different cortical parcellation tools in order to provide a better understanding of how the eye and orbit vary in relation to visual cortical gyri, and frontal cortical gyri which are not directly related to visual processing. Results indicated that ocular and orbital volumes were weakly correlated, and that eye volume explains only a small proportion of the variance in orbital volume. Ocular and orbital volumes were also found to be equally and, in most cases, more highly correlated with five frontal lobe gyri than with occipital lobe gyri associated with V1, V2, and V3 of the visual cortex. Additionally, after accounting for age and sex variation, the relationship between ocular and total visual cortical volume was no longer statistically significant, but remained significantly related to total frontal lobe volume. The relationship between orbital and visual cortical volumes remained significant for

  1. Working memory training in congenitally blind individuals results in an integration of occipital cortex in functional networks.

    PubMed

    Gudi-Mindermann, Helene; Rimmele, Johanna M; Nolte, Guido; Bruns, Patrick; Engel, Andreas K; Röder, Brigitte

    2018-04-12

    The functional relevance of crossmodal activation (e.g. auditory activation of occipital brain regions) in congenitally blind individuals is still not fully understood. The present study tested whether the occipital cortex of blind individuals is integrated into a challenged functional network. A working memory (WM) training over four sessions was implemented. Congenitally blind and matched sighted participants were adaptively trained with an n-back task employing either voices (auditory training) or tactile stimuli (tactile training). In addition, a minimally demanding 1-back task served as an active control condition. Power and functional connectivity of EEG activity evolving during the maintenance period of an auditory 2-back task were analyzed, run prior to and after the WM training. Modality-specific (following auditory training) and modality-independent WM training effects (following both auditory and tactile training) were assessed. Improvements in auditory WM were observed in all groups, and blind and sighted individuals did not differ in training gains. Auditory and tactile training of sighted participants led, relative to the active control group, to an increase in fronto-parietal theta-band power, suggesting a training-induced strengthening of the existing modality-independent WM network. No power effects were observed in the blind. Rather, after auditory training the blind showed a decrease in theta-band connectivity between central, parietal, and occipital electrodes compared to the blind tactile training and active control groups. Furthermore, in the blind auditory training increased beta-band connectivity between fronto-parietal, central and occipital electrodes. In the congenitally blind, these findings suggest a stronger integration of occipital areas into the auditory WM network. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Design fluency and neuroanatomical correlates in 54 neurosurgical patients with lesions to the right hemisphere.

    PubMed

    Marin, Dario; Madotto, Eleonora; Fabbro, Franco; Skrap, Miran; Tomasino, Barbara

    2017-10-01

    We addressed the neuroanatomical correlates of 54 right-brain-damaged neurosurgical patients on visuo-spatial design fluency, which is a measure of the ability to generate/plan a series of new abstract combinations in a flexible way. 22.2% of the patients were impaired. They failed the task because they did not use strategic behavior, in particular they used rotational strategy to a significantly lower extent and produced a significantly higher rate of perseverative errors. Overall performance did not correlate with neuropsychological tests, suggesting that proficient performance was independent of other cognitive domains. Performance significantly correlated with use of rotational strategy. Tasks related to executive functions such as psychomotor speed and capacity to shift were positively correlated to the number of strategies used to solve the task. Lesion analysis showed that the maximum density of the patients' lesions-obtained by subtracting the overlap of lesions of spared patients from the overlap of lesions of impaired patients-overlaps with the precentral gyrus, rolandic operculum/insula, superior/middle temporal gyrus/hippocampus and, at subcortical level, with part of the superior longitudinal fasciculus, external capsule, retrolenticular part of the internal capsule and sagittal stratum (inferior longitudinal fasciculus and inferior fronto-occipital fasciculus). These areas are part of the fronto-parietal-temporal network known to be involved in top-down control of visuo-spatial attention, suggesting that the mechanisms and the strategies needed for proficient performance are essentially visuo-spatial in nature.

  3. Occipital cortex of blind individuals is functionally coupled with executive control areas of frontal cortex.

    PubMed

    Deen, Ben; Saxe, Rebecca; Bedny, Marina

    2015-08-01

    In congenital blindness, the occipital cortex responds to a range of nonvisual inputs, including tactile, auditory, and linguistic stimuli. Are these changes in functional responses to stimuli accompanied by altered interactions with nonvisual functional networks? To answer this question, we introduce a data-driven method that searches across cortex for functional connectivity differences across groups. Replicating prior work, we find increased fronto-occipital functional connectivity in congenitally blind relative to blindfolded sighted participants. We demonstrate that this heightened connectivity extends over most of occipital cortex but is specific to a subset of regions in the inferior, dorsal, and medial frontal lobe. To assess the functional profile of these frontal areas, we used an n-back working memory task and a sentence comprehension task. We find that, among prefrontal areas with overconnectivity to occipital cortex, one left inferior frontal region responds to language over music. By contrast, the majority of these regions responded to working memory load but not language. These results suggest that in blindness occipital cortex interacts more with working memory systems and raise new questions about the function and mechanism of occipital plasticity.

  4. Lithium and GSK3-β Promoter Gene Variants Influence White Matter Microstructure in Bipolar Disorder

    PubMed Central

    Benedetti, Francesco; Bollettini, Irene; Barberi, Ignazio; Radaelli, Daniele; Poletti, Sara; Locatelli, Clara; Pirovano, Adele; Lorenzi, Cristina; Falini, Andrea; Colombo, Cristina; Smeraldi, Enrico

    2013-01-01

    Lithium is the mainstay for the treatment of bipolar disorder (BD) and inhibits glycogen synthase kinase 3-β (GSK3-β). The less active GSK3-β promoter gene variants have been associated with less detrimental clinical features of BD. GSK3-β gene variants and lithium can influence brain gray matter structure in psychiatric conditions. Diffusion tensor imaging (DTI) measures of white matter (WM) integrity showed widespred disruption of WM structure in BD. In a sample of 70 patients affected by a major depressive episode in course of BD, we investigated the effect of ongoing long-term lithium treatment and GSK3-β promoter rs334558 polymorphism on WM microstructure, using DTI and tract-based spatial statistics with threshold-free cluster enhancement. We report that the less active GSK3-β rs334558*C gene-promoter variants, and the long-term administration of the GSK3-β inhibitor lithium, were associated with increases of DTI measures of axial diffusivity (AD) in several WM fiber tracts, including corpus callosum, forceps major, anterior and posterior cingulum bundle (bilaterally including its hippocampal part), left superior and inferior longitudinal fasciculus, left inferior fronto-occipital fasciculus, left posterior thalamic radiation, bilateral superior and posterior corona radiata, and bilateral corticospinal tract. AD reflects the integrity of axons and myelin sheaths. We suggest that GSK3-β inhibition and lithium could counteract the detrimental influences of BD on WM structure, with specific benefits resulting from effects on specific WM tracts contributing to the functional integrity of the brain and involving interhemispheric, limbic, and large frontal, parietal, and fronto-occipital connections. PMID:22990942

  5. Activation of the right fronto-temporal cortex during maternal facial recognition in young infants.

    PubMed

    Carlsson, Jakob; Lagercrantz, Hugo; Olson, Linus; Printz, Gordana; Bartocci, Marco

    2008-09-01

    Within the first days of life infants can already recognize their mother. This ability is based on several sensory mechanisms and increases during the first year of life, having its most crucial phase between 6 and 9 months when cortical circuits develop. The underlying cortical structures that are involved in this process are still unknown. Herein we report how the prefrontal cortices of healthy 6- to 9-month-old infants react to the sight of their mother's faces compared to that of an unknown female face. Concentrations of oxygenated haemoglobin [HbO2] and deoxygenated haemoglobin [HHb] were measured using near infrared spectroscopy (NIRS) in both fronto-temporal and occipital areas on the right side during the exposure to maternal and unfamiliar faces. The infants exhibited a distinct and significantly higher activation-related haemodynamic response in the right fronto-temporal cortex following exposure to the image of their mother's face, [HbO2] (0.75 micromol/L, p < 0.001), as compared to that of an unknown face (0.25 micromol/L, p < 0.001). Event-related haemodynamic changes, suggesting cortical activation, in response to the sight of human faces were detected in 6- to 9-month old children. The right fronto-temporal cortex appears to be involved in face recognition processes at this age.

  6. [Tractography of the uncinate fasciculus and the posterior cingulate fasciculus in patients with mild cognitive impairment and Alzheimer disease].

    PubMed

    Larroza, A; Moratal, D; D'ocón Alcañiz, V; Arana, E

    2014-01-01

    Brain tractography is a non-invasive medical imaging technique which enables in vivo visualisation and various types of quantitative studies of white matter fibre tracts connecting different parts of the brain. We completed a quantitative study using brain tractography with diffusion tensor imaging in patients with mild cognitive impairment, patients with Alzheimer disease, and normal controls, in order to analyse the reproducibility and validity of the results. Fractional anisotropy (FA) and mean diffusivity (MD) were measured across the uncinate fasciculus and the posterior cingulate fasciculus in images, obtained from a database and a research centre, representing 52 subjects distributed among the 3 study groups. Two observers took the measurements twice in order to evaluate intra- and inter-observer reproducibility. Measurements of FA and MD of the uncinate fasciculus delivered an intraclass correlation coefficient above 0.9; ICC was above 0.68 for the posterior cingulate fasciculus. Patients with Alzheimer disease showed lower values of FA and higher MD values in the right uncinate fasciculus in images from the research centre. A comparison of the measurements from the 2 centres revealed significant differences. We established a reproducible methodology for performing tractography of the tracts in question. FA and MD indexes may serve as early indicators of Alzheimer disease. The type of equipment and the method used to acquire images must be considered because they may alter results as shown by comparing the 2 data sets in this study. Copyright © 2012 Sociedad Española de Neurología. Published by Elsevier Espana. All rights reserved.

  7. Asymmetries of the arcuate fasciculus in monozygotic twins: genetic and nongenetic influences.

    PubMed

    Häberling, Isabelle S; Badzakova-Trajkov, Gjurgjica; Corballis, Michael C

    2013-01-01

    We assessed cerebral asymmetry for language in 35 monozygotic twin pairs. Using DTI, we reconstructed the arcuate fasciculus in each twin. Among the male twins, right-handed pairs showed greater left-sided asymmetry of connectivity in the arcuate fasciculus than did those with discordant handedness, and within the discordant group the right-handers had greater left-sided volume asymmetry of the arcuate fasciculus than did their left-handed co-twins. There were no such effects in the female twins. Cerebral asymmetry for language showed more consistent results, with the more left-cerebrally dominant twins also showing more leftward asymmetry of high anisotropic fibers in the arcuate fasciculus, a result applying equally to female as to male twins. Reversals of arcuate fasciculus asymmetry were restricted to pairs discordant for language dominance, with the left-cerebrally dominant twins showing leftward and the right-cerebrally dominant twins rightward asymmetry of anisotropic diffusion in the arcuate fasciculus. Because monozygotic twin pairs share the same genotype, our results indicate a strong nongenetic component in arcuate fasciculus asymmetry, particularly in those discordant for cerebral asymmetry.

  8. Tractography of Association Fibers Associated with Language Processing.

    PubMed

    Egger, K; Yang, S; Reisert, M; Kaller, C; Mader, I; Beume, L; Weiller, C; Urbach, H

    2015-10-01

    Several major association fiber tracts are known to be part of the language processing system. There is evidence that high angular diffusion-based MRI is able to separate these fascicles in a constant way. In this study, we wanted to proof this thesis using a novel whole brain "global tracking" approach and to test for possible lateralization. Global tracking was performed in six healthy right-handed volunteers for the arcuate fascicle (AF), the medial longitudinal fascicle (MdLF), the inferior fronto-occipital fascicle (IFOF), and the inferior longitudinal fascicle (ILF). These fiber tracts were characterized quantitatively using the number of streamlines (SL) and the mean fractional anisotropy (FA). We were able to characterize the AF, the MdLF, the IFOF, and the ILF consistently in six healthy volunteers using global tracking. A left-sided dominance (LI > 0.2) for the AF was found in all participants. The MdLF showed a left-sided dominance in four participants (one female, three male). Regarding the FA, no lateralization (LI > 0.2) could be shown in any of the fascicles. Using a novel global tracking algorithm we confirmed that the courses of the primary language processing associated fascicles can consistently be differentiated. Additionally we were able to show a streamline-based left-sided lateralization in the AF of all right-handed healthy subjects.

  9. Concurrent white and gray matter degeneration of disease-specific networks in early-stage Alzheimer's disease and behavioral variant frontotemporal dementia.

    PubMed

    Steketee, Rebecca M E; Meijboom, Rozanna; de Groot, Marius; Bron, Esther E; Niessen, Wiro J; van der Lugt, Aad; van Swieten, John C; Smits, Marion

    2016-07-01

    This study investigates regional coherence between white matter (WM) microstructure and gray matter (GM) volume and perfusion measures in Alzheimer's disease (AD) and behavioral variant frontotemporal dementia (bvFTD) using a correlational approach. WM-GM coherence, compared with controls, was stronger between cingulum WM and frontotemporal GM in AD, and temporoparietal GM in bvFTD. In addition, in AD compared with controls, coherence was stronger between inferior fronto-occipital fasciculus WM microstructure and occipital GM perfusion. In this first study assessing regional WM-GM coherence in AD and bvFTD, we show that WM microstructure and GM volume and perfusion measures are coherent, particularly in regions implicated in AD and bvFTD pathology. This indicates concurrent degeneration in disease-specific networks. Our methodology allows for the detection of incipient abnormalities that go undetected in conventional between-group analyses. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Tract-based spatial statistics analysis of white matter changes in children with anisometropic amblyopia.

    PubMed

    Li, Qian; Zhai, Liying; Jiang, Qinying; Qin, Wen; Li, Qingji; Yin, Xiaohui; Guo, Mingxia

    2015-06-15

    Amblyopia is a neurological disorder of vision that follows abnormal binocular interaction or visual deprivation during early life. Previous studies have reported multiple functional or structural cortical alterations. Although white matter was also studied, it still cannot be clarified clearly which fasciculus was affected by amblyopia. In the present study, tract-based spatial statistics analysis was applied to diffusion tensor imaging (DTI) to investigate potential diffusion changes of neural tracts in anisometropic amblyopia. Fractional anisotropy (FA) value was calculated and compared between 20 amblyopic children and 18 healthy age-matched controls. In contrast to the controls, significant decreases in FA values were found in right optic radiation (OR), left inferior longitudinal fasciculus/inferior fronto-occipital fasciculus (ILF/IFO) and right superior longitudinal fasciculus (SLF) in the amblyopia. Furthermore, FA values of these identified tracts showed positive correlation with visual acuity. It can be inferred that abnormal visual input not only hinders OR from well developed, but also impairs fasciculi associated with dorsal and ventral visual pathways, which may be responsible for the amblyopic deficiency in object discrimination and stereopsis. Increased FA was detected in right posterior part of corpus callosum (CC) with a medium effect size, which may be due to compensation effect. DTI with subsequent measurement of FA is a useful tool for investigating neuronal tract involvement in amblyopia. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  11. Combined DTI Tractography and Functional MRI Study of the Language Connectome in Healthy Volunteers: Extensive Mapping of White Matter Fascicles and Cortical Activations.

    PubMed

    Vassal, François; Schneider, Fabien; Boutet, Claire; Jean, Betty; Sontheimer, Anna; Lemaire, Jean-Jacques

    2016-01-01

    Despite a better understanding of brain language organization into large-scale cortical networks, the underlying white matter (WM) connectivity is still not mastered. Here we combined diffusion tensor imaging (DTI) fiber tracking (FT) and language functional magnetic resonance imaging (fMRI) in twenty healthy subjects to gain new insights into the macroscopic structural connectivity of language. Eight putative WM fascicles for language were probed using a deterministic DTI-FT technique: the arcuate fascicle (AF), superior longitudinal fascicle (SLF), uncinate fascicle (UF), temporo-occipital fascicle, inferior fronto-occipital fascicle (IFOF), middle longitudinal fascicle (MdLF), frontal aslant fascicle and operculopremotor fascicle. Specific measurements (i.e. volume, length, fractional anisotropy) and precise cortical terminations were derived for each WM fascicle within both hemispheres. Connections between these WM fascicles and fMRI activations were studied to determine which WM fascicles are related to language. WM fascicle volumes showed asymmetries: leftward for the AF, temporoparietal segment of SLF and UF, and rightward for the frontoparietal segment of the SLF. The lateralization of the AF, IFOF and MdLF extended to differences in patterns of anatomical connections, which may relate to specific hemispheric abilities. The leftward asymmetry of the AF was correlated to the leftward asymmetry of fMRI activations, suggesting that the lateralization of the AF is a structural substrate of hemispheric language dominance. We found consistent connections between fMRI activations and terminations of the eight WM fascicles, providing a detailed description of the language connectome. WM fascicle terminations were also observed beyond fMRI-confirmed language areas and reached numerous cortical areas involved in different functional brain networks. These findings suggest that the reported WM fascicles are not exclusively involved in language and might be related to

  12. Joint source based morphometry identifies linked gray and white matter group differences.

    PubMed

    Xu, Lai; Pearlson, Godfrey; Calhoun, Vince D

    2009-02-01

    We present a multivariate approach called joint source based morphometry (jSBM), to identify linked gray and white matter regions which differ between groups. In jSBM, joint independent component analysis (jICA) is used to decompose preprocessed gray and white matter images into joint sources and statistical analysis is used to determine the significant joint sources showing group differences and their relationship to other variables of interest (e.g. age or sex). The identified joint sources are groupings of linked gray and white matter regions with common covariation among subjects. In this study, we first provide a simulation to validate the jSBM approach. To illustrate our method on real data, jSBM is then applied to structural magnetic resonance imaging (sMRI) data obtained from 120 chronic schizophrenia patients and 120 healthy controls to identify group differences. JSBM identified four joint sources as significantly associated with schizophrenia. Linked gray-white matter regions identified in each of the joint sources included: 1) temporal--corpus callosum, 2) occipital/frontal--inferior fronto-occipital fasciculus, 3) frontal/parietal/occipital/temporal--superior longitudinal fasciculus and 4) parietal/frontal--thalamus. Age effects on all four joint sources were significant, but sex effects were significant only for the third joint source. Our findings demonstrate that jSBM can exploit the natural linkage between gray and white matter by incorporating them into a unified framework. This approach is applicable to a wide variety of problems to study linked gray and white matter group differences.

  13. Joint source based morphometry identifies linked gray and white matter group differences

    PubMed Central

    Xu, Lai; Pearlson, Godfrey; Calhoun, Vince D.

    2009-01-01

    We present a multivariate approach called joint source based morphometry (jSBM), to identify linked gray and white matter regions which differ between groups. In jSBM, joint independent component analysis (jICA) is used to decompose preprocessed gray and white matter images into joint sources and statistical analysis is used to determine the significant joint sources showing group differences and their relationship to other variables of interest (e.g. age or sex). The identified joint sources are groupings of linked gray and white matter regions with common covariation among subjects. In this study, we first provide a simulation to validate the jSBM approach. To illustrate our method on real data, jSBM is then applied to structural magnetic resonance imaging (sMRI) data obtained from 120 chronic schizophrenia patients and 120 healthy controls to identify group differences. JSBM identified four joint sources as significantly associated with schizophrenia. Linked gray–white matter regions identified in each of the joint sources included: 1) temporal — corpus callosum, 2) occipital/frontal — inferior fronto-occipital fasciculus, 3) frontal/parietal/occipital/temporal —superior longitudinal fasciculus and 4) parietal/frontal — thalamus. Age effects on all four joint sources were significant, but sex effects were significant only for the third joint source. Our findings demonstrate that jSBM can exploit the natural linkage between gray and white matter by incorporating them into a unified framework. This approach is applicable to a wide variety of problems to study linked gray and white matter group differences. PMID:18992825

  14. Right arcuate fasciculus abnormality in chronic fatigue syndrome.

    PubMed

    Zeineh, Michael M; Kang, James; Atlas, Scott W; Raman, Mira M; Reiss, Allan L; Norris, Jane L; Valencia, Ian; Montoya, Jose G

    2015-02-01

    To identify whether patients with chronic fatigue syndrome (CFS) have differences in gross brain structure, microscopic structure, or brain perfusion that may explain their symptoms. Fifteen patients with CFS were identified by means of retrospective review with an institutional review board-approved waiver of consent and waiver of authorization. Fourteen age- and sex-matched control subjects provided informed consent in accordance with the institutional review board and HIPAA. All subjects underwent 3.0-T volumetric T1-weighted magnetic resonance (MR) imaging, with two diffusion-tensor imaging (DTI) acquisitions and arterial spin labeling (ASL). Open source software was used to segment supratentorial gray and white matter and cerebrospinal fluid to compare gray and white matter volumes and cortical thickness. DTI data were processed with automated fiber quantification, which was used to compare piecewise fractional anisotropy (FA) along 20 tracks. For the volumetric analysis, a regression was performed to account for differences in age, handedness, and total intracranial volume, and for the DTI, FA was compared piecewise along tracks by using an unpaired t test. The open source software segmentation was used to compare cerebral blood flow as measured with ASL. In the CFS population, FA was increased in the right arcuate fasciculus (P = .0015), and in right-handers, FA was also increased in the right inferior longitudinal fasciculus (ILF) (P = .0008). In patients with CFS, right anterior arcuate FA increased with disease severity (r = 0.649, P = .026). Bilateral white matter volumes were reduced in CFS (mean ± standard deviation, 467 581 mm(3) ± 47 610 for patients vs 504 864 mm(3) ± 68 126 for control subjects, P = .0026), and cortical thickness increased in both right arcuate end points, the middle temporal (T = 4.25) and precentral (T = 6.47) gyri, and one right ILF end point, the occipital lobe (T = 5.36). ASL showed no significant differences. Bilateral

  15. White matter changes in preclinical Alzheimer's disease: a magnetic resonance imaging-diffusion tensor imaging study on cognitively normal older people with positive amyloid β protein 42 levels.

    PubMed

    Molinuevo, José Luis; Ripolles, Pablo; Simó, Marta; Lladó, Albert; Olives, Jaume; Balasa, Mircea; Antonell, Anna; Rodriguez-Fornells, Antoni; Rami, Lorena

    2014-12-01

    The aim of this study was to use diffusion tensor imaging measures to determine the existence of white matter microstructural differences in the preclinical phases of Alzheimer's disease, assessing cognitively normal older individuals with positive amyloid β protein (Aβ42) levels (CN_Aβ42+) on the basis of normal cognition and cerebrospinal fluid Aβ42 levels below 500 pg/mL. Nineteen CN_Aβ42+ and 19 subjects with Aβ42 levels above 500 pg/mL (CN_Aβ42-) were included. We encountered increases in axial diffusivity (AxD) in CN_Aβ42+ relative to CN_Aβ42- in the corpus callosum, corona radiata, internal capsule, and superior longitudinal fasciculus bilaterally, and also in the left fornix, left uncinate fasciculus, and left inferior fronto-occipital fasciculus. However, no differences were found in other diffusion tensor imaging indexes. Cognitive reserve scores were positively associated with AxD exclusively in the CN_Aβ42+ group. The finding of AxD alteration together with preserved fractional anisotropy, mean diffusivity, and radial diffusivity indexes in the CN_Aβ42+ group may indicate that, subtle axonal changes may be happening in the preclinical phases of Alzheimer's disease, whereas white matter integrity is still widely preserved. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. White matter microstructure integrity in relation to reading proficiency☆.

    PubMed

    Nikki Arrington, C; Kulesz, Paulina A; Juranek, Jenifer; Cirino, Paul T; Fletcher, Jack M

    2017-11-01

    Components of reading proficiency such asaccuracy, fluency, and comprehension require the successful coordination of numerous, yet distinct, cortical regions. Underlying white matter tracts allow for communication among these regions. This study utilized unique residualized tract - based spatial statistics methodology to identify the relations of white matter microstructure integrity to three components of reading proficiency in 49 school - aged children with typically developing phonological decoding skills and 27 readers with poor decoders. Results indicated that measures of white matter integrity were differentially associated with components of reading proficiency. In both typical and poor decoders, reading comprehension correlated with measures of integrity of the right uncinate fasciculus; reading comprehension was also related to the left inferior longitudinal fasciculus in poor decoders. Also in poor decoders, word reading fluency was related to the right uncinate and left inferior fronto - occipital fasciculi. Word reading was unrelated to white matter integrity in either group. These findings expand our knowledge of the association between white matter integrity and different elements of reading proficiency. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Exploratory analysis of diffusion tensor imaging in children with attention deficit hyperactivity disorder: evidence of abnormal white matter structure.

    PubMed

    Pastura, Giuseppe; Doering, Thomas; Gasparetto, Emerson Leandro; Mattos, Paulo; Araújo, Alexandra Prüfer

    2016-06-01

    Abnormalities in the white matter microstructure of the attentional system have been implicated in the aetiology of attention deficit hyperactivity disorder (ADHD). Diffusion tensor imaging (DTI) is a promising magnetic resonance imaging (MRI) technology that has increasingly been used in studies of white matter microstructure in the brain. The main objective of this work was to perform an exploratory analysis of white matter tracts in a sample of children with ADHD versus typically developing children (TDC). For this purpose, 13 drug-naive children with ADHD of both genders underwent MRI using DTI acquisition methodology and tract-based spatial statistics. The results were compared to those of a sample of 14 age- and gender-matched TDC. Lower fractional anisotropy was observed in the splenium of the corpus callosum, right superior longitudinal fasciculus, bilateral retrolenticular part of the internal capsule, bilateral inferior fronto-occipital fasciculus, left external capsule and posterior thalamic radiation (including right optic radiation). We conclude that white matter tracts in attentional and motor control systems exhibited signs of abnormal microstructure in this sample of drug-naive children with ADHD.

  18. Diffusion-weighted MRI measures suggest increased white-matter integrity in Internet gaming disorder: Evidence from the comparison with recreational Internet game users.

    PubMed

    Dong, Guangheng; Wu, Lingdan; Wang, Ziliang; Wang, Yifan; Du, Xiaoxia; Potenza, Marc N

    2018-06-01

    Several studies have suggested that Internet gaming disorder (IGD) is related to altered brain white matter integrity. However, seeming inconsistencies exist and may reflect comparison groups not matched well for certain gaming characteristics. In order to address this possible concern, we recruited in the present study individuals with recreational Internet game use (RGU) comprised of individuals who spend similar amounts of time as IGD subjects playing online games without developing IGD. Diffusion tensor imaging data were collected from 42 IGD and 44 RGU subjects. Whole-brain comparisons showed that IGD subjects demonstrated increased fractional anisotropy (FA) in the bilateral anterior thalamic radiation, anterior limb of the internal capsule, bilateral corticospinal tract, bilateral inferior fronto-occipital fasciculus, corpus callosum, and bilateral inferior longitudinal fasciculus. In addition, Internet-addiction severity was positively correlated with FA values. Taken together, we conclude that IGD is associated with measures of increased white-matter integrity in tracts linking reward circuitry and sensory and motor control systems. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Occipital neuralgia.

    PubMed

    Dougherty, Carrie

    2014-05-01

    Occipital pain is a common complaint amongst patients with headache, and the differential can include many primary headache disorders such as cervicogenic headache or migraine. Occipital neuralgia is an uncommon cause of occipital pain characterized by paroxysmal lancinating pain in the distribution of the greater, lesser or third occipital nerves. Greater occipital nerve blockade with anesthetics and/or corticosteroids can aid in confirming the diagnosis and providing pain relief. However, nerve blocks are also effective in migraine headache and misdiagnosis can result in a false positive. Physical therapy and preventive medication with antiepileptics and tricyclic antidepressants are often effective treatments for occipital neuralgia. Refractory cases may require intervention with pulsed radiofrequency or occipital nerve stimulation.

  20. Diffuse alterations in grey and white matter associated with cognitive impairment in Shwachman–Diamond syndrome: Evidence from a multimodal approach

    PubMed Central

    Perobelli, Sandra; Alessandrini, Franco; Zoccatelli, Giada; Nicolis, Elena; Beltramello, Alberto; Assael, Baroukh M.; Cipolli, Marco

    2015-01-01

    the left limbic-anterior cingulate cortex (≥43%, p < 0.0004). Only in Broca's area in the left hemisphere did the patients show a thinner cortical thickness than that of controls (p = 0.01). Diffusion tensor imaging showed large, significant difference increases in both fractional anisotropy (+37%, p < 0.0001) and mean diffusivity (+35%, p < 0.005); the Tract-based Spatial Statistics analysis identified six abnormal clusters of white matter fibres in the fronto-callosal, right fronto-external capsulae, left fronto-parietal, right pontine, temporo-mesial and left anterior–medial–temporal regions. Brain areas activated during the Stroop task and those active during the resting state, are different, fewer and smaller in patients and correlate with worse performance (p = 0.002). Cognitive impairment in Shwachman–Diamond syndrome subjects is associated with diffuse brain anomalies in the grey matter (verbal skills with BA44 and BA20 in the right hemisphere; perceptual skills with BA5, 37, 20, 21, 42 in the left hemisphere) and white matter connectivity (verbal skills with alterations in the fronto-occipital fasciculus and with the inferior-longitudinal fasciculus; perceptual skills with the arcuate fasciculus, limbic and ponto-cerebellar fasciculus; memory skills with the arcuate fasciculus; executive functions with the anterior cingulated and arcuate fasciculus). PMID:25844324

  1. Diffuse alterations in grey and white matter associated with cognitive impairment in Shwachman-Diamond syndrome: evidence from a multimodal approach.

    PubMed

    Perobelli, Sandra; Alessandrini, Franco; Zoccatelli, Giada; Nicolis, Elena; Beltramello, Alberto; Assael, Baroukh M; Cipolli, Marco

    2015-01-01

    limbic-anterior cingulate cortex (≥43%, p < 0.0004). Only in Broca's area in the left hemisphere did the patients show a thinner cortical thickness than that of controls (p = 0.01). Diffusion tensor imaging showed large, significant difference increases in both fractional anisotropy (+37%, p < 0.0001) and mean diffusivity (+35%, p < 0.005); the Tract-based Spatial Statistics analysis identified six abnormal clusters of white matter fibres in the fronto-callosal, right fronto-external capsulae, left fronto-parietal, right pontine, temporo-mesial and left anterior-medial-temporal regions. Brain areas activated during the Stroop task and those active during the resting state, are different, fewer and smaller in patients and correlate with worse performance (p = 0.002). Cognitive impairment in Shwachman-Diamond syndrome subjects is associated with diffuse brain anomalies in the grey matter (verbal skills with BA44 and BA20 in the right hemisphere; perceptual skills with BA5, 37, 20, 21, 42 in the left hemisphere) and white matter connectivity (verbal skills with alterations in the fronto-occipital fasciculus and with the inferior-longitudinal fasciculus; perceptual skills with the arcuate fasciculus, limbic and ponto-cerebellar fasciculus; memory skills with the arcuate fasciculus; executive functions with the anterior cingulated and arcuate fasciculus).

  2. Similar white matter but opposite grey matter changes in schizophrenia and high-functioning autism.

    PubMed

    Katz, J; d'Albis, M-A; Boisgontier, J; Poupon, C; Mangin, J-F; Guevara, P; Duclap, D; Hamdani, N; Petit, J; Monnet, D; Le Corvoisier, P; Leboyer, M; Delorme, R; Houenou, J

    2016-07-01

    High-functioning autism (HFA) and schizophrenia (SZ) are two of the main neurodevelopmental disorders, sharing several clinical dimensions and risk factors. Their exact relationship is poorly understood, and few studies have directly compared both disorders. Our aim was thus to directly compare neuroanatomy of HFA and SZ using a multimodal MRI design. We scanned 79 male adult subjects with 3T MRI (23 with HFA, 24 with SZ and 32 healthy controls, with similar non-verbal IQ). We compared them using both diffusion-based whole-brain tractography and T1 voxel-based morphometry. HFA and SZ groups exhibited similar white matter alterations in the left fronto-occipital inferior fasciculus with a decrease in generalized fractional anisotropy compared with controls. In grey matter, the HFA group demonstrated bilateral prefrontal and anterior cingulate increases in contrast with prefrontal and left temporal reductions in SZ. HFA and SZ may share common white matter deficits in long-range connections involved in social functions, but opposite grey matter abnormalities in frontal regions that subserve complex cognitive functions. Our results are consistent with the fronto-occipital underconnectivity theory of HFA and the altered connectivity hypothesis of SZ and suggest the existence of both associated and diametrical liabilities to these two conditions. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Pre-cue Fronto-Occipital Alpha Phase and Distributed Cortical Oscillations Predict Failures of Cognitive Control

    PubMed Central

    Hamm, Jordan P.; Dyckman, Kara A.; McDowell, Jennifer E.; Clementz, Brett A.

    2012-01-01

    Cognitive control is required for correct performance on antisaccade tasks, including the ability to inhibit an externally driven ocular motor repsonse (a saccade to a peripheral stimulus) in favor of an internally driven ocular motor goal (a saccade directed away from a peripheral stimulus). Healthy humans occasionally produce errors during antisaccade tasks, but the mechanisms associated with such failures of cognitive control are uncertain. Most research on cognitive control failures focuses on post-stimulus processing, although a growing body of literature highlights a role of intrinsic brain activity in perceptual and cognitive performance. The current investigation used dense array electroencephalography and distributed source analyses to examine brain oscillations across a wide frequency bandwidth in the period prior to antisaccade cue onset. Results highlight four important aspects of ongoing and preparatory brain activations that differentiate error from correct antisaccade trials: (i) ongoing oscillatory beta (20–30Hz) power in anterior cingulate prior to trial initiation (lower for error trials), (ii) instantaneous phase of ongoing alpha-theta (7Hz) in frontal and occipital cortices immediately before trial initiation (opposite between trial types), (iii) gamma power (35–60Hz) in posterior parietal cortex 100 ms prior to cue onset (greater for error trials), and (iv) phase locking of alpha (5–12Hz) in parietal and occipital cortices immediately prior to cue onset (lower for error trials). These findings extend recently reported effects of pre-trial alpha phase on perception to cognitive control processes, and help identify the cortical generators of such phase effects. PMID:22593071

  4. Impairment of speech production predicted by lesion load of the left arcuate fasciculus.

    PubMed

    Marchina, Sarah; Zhu, Lin L; Norton, Andrea; Zipse, Lauryn; Wan, Catherine Y; Schlaug, Gottfried

    2011-08-01

    Previous studies have suggested that patients' potential for poststroke language recovery is related to lesion size; however, lesion location may also be of importance, particularly when fiber tracts that are critical to the sensorimotor mapping of sounds for articulation (eg, the arcuate fasciculus) have been damaged. In this study, we tested the hypothesis that lesion loads of the arcuate fasciculus (ie, volume of arcuate fasciculus that is affected by a patient's lesion) and of 2 other tracts involved in language processing (the extreme capsule and the uncinate fasciculus) are inversely related to the severity of speech production impairments in patients with stroke with aphasia. Thirty patients with chronic stroke with residual impairments in speech production underwent high-resolution anatomic MRI and a battery of cognitive and language tests. Impairment was assessed using 3 functional measures of spontaneous speech (eg, rate, informativeness, and overall efficiency) as well as naming ability. To quantitatively analyze the relationship between impairment scores and lesion load along the 3 fiber tracts, we calculated tract-lesion overlap volumes for each patient using probabilistic maps of the tracts derived from diffusion tensor images of 10 age-matched healthy subjects. Regression analyses showed that arcuate fasciculus lesion load, but not extreme capsule or uncinate fasciculus lesion load or overall lesion size, significantly predicted rate, informativeness, and overall efficiency of speech as well as naming ability. A new variable, arcuate fasciculus lesion load, complements established voxel-based lesion mapping techniques and, in the future, may potentially be used to estimate impairment and recovery potential after stroke and refine inclusion criteria for experimental rehabilitation programs.

  5. Greater Occipital Nerve Decompression for Occipital Neuralgia.

    PubMed

    Jose, Anson; Nagori, Shakil Ahmed; Chattopadhyay, Probodh K; Roychoudhury, Ajoy

    2018-05-14

    The aim of the study was to evaluate the effectiveness of greater occipital nerve decompression for the management of occipital neuralgia. Eleven patients of medical refractory occipital neuralgia were enrolled in the study. Local anaesthetic blocks were used for confirming diagnosis. All of them underwent surgical decompression of greater occipital nerve at the level of semispinalis capitis and trapezial tunnel. A pre and postoperative questionnaire was used to compare the severity of pain and number of pain episodes/month. Mean pain episodes reported by patients before surgery were 17.1 ± 5.63 episodes per month. This reduced to 4.1 ± 3.51 episodes per month (P < 0.0036) postsurgery. The mean intensity of pain also reduced from a preoperative 7.18 ± 1.33 to a postoperative of 1.73 ± 1.95 (P < 0.0033). Three patients reported complete elimination of pain after surgery while 6 patients reported significant relief of their symptoms. Only 2 patients failed to notice any significant improvement. The mean follow-up period was 12.45 ± 1.29 months. Surgical decompression of greater occipital nerve is a simple and viable treatment modality for the management of occipital neuralgia.

  6. Comprehensive Investigation of White Matter Tracts in Professional Chess Players and Relation to Expertise: Region of Interest and DMRI Connectometry.

    PubMed

    Mayeli, Mahsa; Rahmani, Farzaneh; Aarabi, Mohammad Hadi

    2018-01-01

    Purpose: Expertise is the product of training. Few studies have used functional connectivity or conventional diffusometric methods to identify neural underpinnings of chess expertise. Diffusometric variables of white matter might reflect these adaptive changes, along with changes in structural connectivity, which is a sensitive measure of microstructural changes. Method: Diffusometric variables of 29 professional chess players and 29 age-sex matched controls were extracted for white matter regions based on John Hopkin's Mori white matter atlas and partially correlated against professional training time and level of chess proficiency. Diffusion MRI connectometry was implemented to identify changes in structural connectivity in professional players compared to novices. Result: Compared to novices, higher planar anisotropy (CP) was observed in inferior longitudinal fasciculus (ILF), superior longitudinal fasciculus (SLF) and cingulate gyrus, in professional chess players, which correlated with higher RPM score in this group. Higher fractional anisotropy (FA) was observed in ILF, uncinate fasciculus (UF) and hippocampus and correlated with better scores in Raven's progressive matrices (RPM) score and longer duration of chess training in professional players. Consistently, radial diffusivity in bilateral IFOF, bilateral ILF and bilateral SLF was inversely correlated with level of training in professional players. DMRI connectometry analysis identified increased connectivity in bilateral UF, bilateral IFOF, bilateral cingulum, and corpus callosum in chess player's compared to controls. Conclusion: Structural connectivity of major associational subcortical white matter fibers are increased in professional chess players. FA and CP of ILF, SLF and UF directly correlates with duration of professional training and RPM score, in professional chess players.

  7. Comprehensive Investigation of White Matter Tracts in Professional Chess Players and Relation to Expertise: Region of Interest and DMRI Connectometry

    PubMed Central

    Mayeli, Mahsa; Rahmani, Farzaneh; Aarabi, Mohammad Hadi

    2018-01-01

    Purpose: Expertise is the product of training. Few studies have used functional connectivity or conventional diffusometric methods to identify neural underpinnings of chess expertise. Diffusometric variables of white matter might reflect these adaptive changes, along with changes in structural connectivity, which is a sensitive measure of microstructural changes. Method: Diffusometric variables of 29 professional chess players and 29 age-sex matched controls were extracted for white matter regions based on John Hopkin's Mori white matter atlas and partially correlated against professional training time and level of chess proficiency. Diffusion MRI connectometry was implemented to identify changes in structural connectivity in professional players compared to novices. Result: Compared to novices, higher planar anisotropy (CP) was observed in inferior longitudinal fasciculus (ILF), superior longitudinal fasciculus (SLF) and cingulate gyrus, in professional chess players, which correlated with higher RPM score in this group. Higher fractional anisotropy (FA) was observed in ILF, uncinate fasciculus (UF) and hippocampus and correlated with better scores in Raven's progressive matrices (RPM) score and longer duration of chess training in professional players. Consistently, radial diffusivity in bilateral IFOF, bilateral ILF and bilateral SLF was inversely correlated with level of training in professional players. DMRI connectometry analysis identified increased connectivity in bilateral UF, bilateral IFOF, bilateral cingulum, and corpus callosum in chess player's compared to controls. Conclusion: Structural connectivity of major associational subcortical white matter fibers are increased in professional chess players. FA and CP of ILF, SLF and UF directly correlates with duration of professional training and RPM score, in professional chess players. PMID:29773973

  8. Correlation between language function and the left arcuate fasciculus detected by diffusion tensor imaging tractography after brain tumor surgery.

    PubMed

    Hayashi, Yutaka; Kinoshita, Masashi; Nakada, Mitsutoshi; Hamada, Jun-ichiro

    2012-11-01

    Disturbance of the arcuate fasciculus in the dominant hemisphere is thought to be associated with language-processing disorders, including conduction aphasia. Although the arcuate fasciculus can be visualized in vivo with diffusion tensor imaging (DTI) tractography, its involvement in functional processes associated with language has not been shown dynamically using DTI tractography. In the present study, to clarify the participation of the arcuate fasciculus in language functions, postoperative changes in the arcuate fasciculus detected by DTI tractography were evaluated chronologically in relation to postoperative changes in language function after brain tumor surgery. Preoperative and postoperative arcuate fasciculus area and language function were examined in 7 right-handed patients with a brain tumor in the left hemisphere located in proximity to part of the arcuate fasciculus. The arcuate fasciculus was depicted, and its area was calculated using DTI tractography. Language functions were measured using the Western Aphasia Battery (WAB). After tumor resection, visualization of the arcuate fasciculus was increased in 5 of the 7 patients, and the total WAB score improved in 6 of the 7 patients. The relative ratio of postoperative visualized area of the arcuate fasciculus to preoperative visualized area of the arcuate fasciculus was increased in association with an improvement in postoperative language function (p = 0.0039). The role of the left arcuate fasciculus in language functions can be evaluated chronologically in vivo by DTI tractography after brain tumor surgery. Because increased postoperative visualization of the fasciculus was significantly associated with postoperative improvement in language functions, the arcuate fasciculus may play an important role in language function, as previously thought. In addition, postoperative changes in the arcuate fasciculus detected by DTI tractography could represent a predicting factor for postoperative language

  9. Regional vulnerability of longitudinal cortical association connectivity: Associated with structural network topology alterations in preterm children with cerebral palsy.

    PubMed

    Ceschin, Rafael; Lee, Vince K; Schmithorst, Vince; Panigrahy, Ashok

    2015-01-01

    Preterm born children with spastic diplegia type of cerebral palsy and white matter injury or periventricular leukomalacia (PVL), are known to have motor, visual and cognitive impairments. Most diffusion tensor imaging (DTI) studies performed in this group have demonstrated widespread abnormalities using averaged deterministic tractography and voxel-based DTI measurements. Little is known about structural network correlates of white matter topography and reorganization in preterm cerebral palsy, despite the availability of new therapies and the need for brain imaging biomarkers. Here, we combined novel post-processing methodology of probabilistic tractography data in this preterm cohort to improve spatial and regional delineation of longitudinal cortical association tract abnormalities using an along-tract approach, and compared these data to structural DTI cortical network topology analysis. DTI images were acquired on 16 preterm children with cerebral palsy (mean age 5.6 ± 4) and 75 healthy controls (mean age 5.7 ± 3.4). Despite mean tract analysis, Tract-Based Spatial Statistics (TBSS) and voxel-based morphometry (VBM) demonstrating diffusely reduced fractional anisotropy (FA) reduction in all white matter tracts, the along-tract analysis improved the detection of regional tract vulnerability. The along-tract map-structural network topology correlates revealed two associations: (1) reduced regional posterior-anterior gradient in FA of the longitudinal visual cortical association tracts (inferior fronto-occipital fasciculus, inferior longitudinal fasciculus, optic radiation, posterior thalamic radiation) correlated with reduced posterior-anterior gradient of intra-regional (nodal efficiency) metrics with relative sparing of frontal and temporal regions; and (2) reduced regional FA within frontal-thalamic-striatal white matter pathways (anterior limb/anterior thalamic radiation, superior longitudinal fasciculus and cortical spinal tract) correlated with

  10. Microstructural white matter tract alteration in Prader-Willi syndrome: A diffusion tensor imaging study.

    PubMed

    Rice, Lauren J; Lagopoulos, Jim; Brammer, Michael; Einfeld, Stewart L

    2017-09-01

    Prader-Willi Syndrome (PWS) is a genetic disorder characterized by infantile hypotonia, hyperphagia, hypogonadism, growth hormone deficiency, intellectual disability, and severe emotional and behavioral problems. The brain mechanisms that underpin these disturbances are unknown. Diffusion tensor imaging (DTI) enables in vivo investigation of the microstructural integrity of white matter pathways. To date, only one study has used DTI to examine white matter alterations in PWS. However, that study used selected regions of interest, rather than a whole brain analysis. In the present study, we used diffusion tensor and magnetic resonance (T 1-weighted) imaging to examine microstructural white matter changes in 15 individuals with PWS (17-30 years) and 15 age-and-gender-matched controls. Whole-brain voxel-wise statistical analysis of FA was carried out using tract-based spatial statistics (TBSS). Significantly decreased fractional anisotropy was found localized to the left hemisphere in individuals with PWS within the splenium of the corpus callosum, the internal capsule including the posterior thalamic radiation and the inferior frontal occipital fasciculus (IFOF). Reduced integrity of these white matter pathways in individuals with PWS may relate to orientating attention, emotion recognition, semantic processing, and sensorimotor dysfunction. © 2017 Wiley Periodicals, Inc.

  11. White Matter Integrity, Substance Use, and Risk Taking in Adolescence

    PubMed Central

    Jacobus, Joanna; Thayer, Rachel E.; Trim, Ryan S.; Bava, Sunita; Frank, Lawrence R.; Tapert, Susan F.

    2012-01-01

    White matter development is important for efficient communication between brain regions, higher order cognitive functioning, and complex behaviors. Adolescents have a higher propensity for engaging in risky behaviors, yet few studies have explored associations between white matter integrity and risk taking directly. Altered white matter integrity in mid-adolescence was hypothesized to predict subsequent risk taking behaviors 1.5 years later. Adolescent substance users (predominantly alcohol and marijuana, n=47) and demographically similar non-users (n=49) received diffusion tensor imaging at baseline (ages 16–19), and risk taking measures at both baseline and an 18-month follow-up (i.e., at ages 17–20). Brain regions of interest were: fornix, superior corona radiata, superior longitudinal fasciculus, and superior fronto-occipital fasciculus. In substance using youth (n=47), lower white matter integrity at baseline in the fornix and superior corona radiata predicted follow-up substance use (ΔR2 =10–12%, ps < .01), and baseline fornix integrity predicted follow-up delinquent behaviors (ΔR2 = 10%, p < .01) 1.5 years later. Poorer fronto-limbic white matter integrity was linked to a greater propensity for future risk taking behaviors among youth who initiated heavy substance use by mid-adolescence. Most notable were relationships between projection and limbic system fibers and future substance use frequency. Subcortical white matter coherence along with an imbalance between the maturation levels in cognitive control and reward systems may disadvantage the resistance to engage in risk taking behaviors during adolescence. PMID:22564204

  12. White matter integrity, substance use, and risk taking in adolescence.

    PubMed

    Jacobus, Joanna; Thayer, Rachel E; Trim, Ryan S; Bava, Sunita; Frank, Lawrence R; Tapert, Susan F

    2013-06-01

    White matter development is important for efficient communication between brain regions, higher order cognitive functioning, and complex behaviors. Adolescents have a higher propensity for engaging in risky behaviors, yet few studies have explored associations between white matter integrity and risk taking directly. Altered white matter integrity in mid-adolescence was hypothesized to predict subsequent risk taking behaviors 1.5 years later. Adolescent substance users (predominantly alcohol and marijuana, n = 47) and demographically similar nonusers (n = 49) received diffusion tensor imaging at baseline (ages 16-19), and risk taking measures at both baseline and an 18-month follow-up (i.e., at ages 17-20). Brain regions of interest were the fornix, superior corona radiata, superior longitudinal fasciculus, and superior fronto-occipital fasciculus. In substance-using youth (n = 47), lower white matter integrity at baseline in the fornix and superior corona radiata predicted follow-up substance use (ΔR2 = 10-12%, ps < .01), and baseline fornix integrity predicted follow-up delinquent behaviors (ΔR2 = 10%, p < .01) 1.5 years later. Poorer fronto-limbic white matter integrity was linked to a greater propensity for future risk taking behaviors among youth who initiated heavy substance use by mid-adolescence. Most notable were relationships between projection and limbic-system fibers and future substance-use frequency. Subcortical white matter coherence, along with an imbalance between the maturation levels in cognitive control and reward systems, may disadvantage the resistance to engage in risk taking behaviors during adolescence. 2013 APA, all rights reserved

  13. Lifelong Bilingualism Contributes to Cognitive Reserve against White Matter Integrity Declines in Aging

    PubMed Central

    Gold, Brian T.; Johnson, Nathan F.; Powell, David K.

    2013-01-01

    Recent evidence suggests that lifelong bilingualism may contribute to cognitive reserve (CR) in normal aging. However, there is currently no neuroimaging evidence to suggest that lifelong bilinguals can retain normal cognitive functioning in the face of age-related neurodegeneration. Here we explored this issue by comparing white matter (WM) integrity and gray matter (GM) volumetric patterns of older adult lifelong bilinguals (N = 20) and monolinguals (N = 20). The groups were matched on a range of relevant cognitive test scores and on the established CR variables of education, socioeconomic status and intelligence. Participants underwent high-resolution structural imaging for assessment of GM volume and diffusion tensor imaging (DTI) for assessment of WM integrity. Results indicated significantly lower microstructural integrity in the bilingual group in several WM tracts. In particular, compared to their monolingual peers, the bilingual group showed lower fractional anisotropy and/or higher radial diffusivity in the inferior longitudinal fasciculus/inferior fronto-occipital fasciculus bilaterally, the fornix, and multiple portions of the corpus callosum. There were no group differences in GM volume. Our results suggest that lifelong bilingualism contributes to CR against WM integrity declines in aging. PMID:24103400

  14. Emerging Structure–Function Relations in the Developing Face Processing System

    PubMed Central

    Suzanne Scherf, K.; Thomas, Cibu; Doyle, Jaime; Behrmann, Marlene

    2014-01-01

    To evaluate emerging structure–function relations in a neural circuit that mediates complex behavior, we investigated age-related differences among cortical regions that support face recognition behavior and the fiber tracts through which they transmit and receive signals using functional neuroimaging and diffusion tensor imaging. In a large sample of human participants (aged 6–23 years), we derived the microstructural and volumetric properties of the inferior longitudinal fasciculus (ILF), the inferior fronto-occipital fasciculus, and control tracts, using independently defined anatomical markers. We also determined the functional characteristics of core face- and place-selective regions that are distributed along the trajectory of the pathways of interest. We observed disproportionately large age-related differences in the volume, fractional anisotropy, and mean and radial, but not axial, diffusivities of the ILF. Critically, these differences in the structural properties of the ILF were tightly and specifically linked with an age-related increase in the size of a key face-selective functional region, the fusiform face area. This dynamic association between emerging structural and functional architecture in the developing brain may provide important clues about the mechanisms by which neural circuits become organized and optimized in the human cortex. PMID:23765156

  15. Analysis of alterations in white matter integrity of adult patients with comitant exotropia.

    PubMed

    Li, Dan; Li, Shenghong; Zeng, Xianjun

    2018-05-01

    Objective This study was performed to investigate structural abnormalities of the white matter in patients with comitant exotropia using the tract-based spatial statistics (TBSS) method. Methods Diffusion tensor imaging data from magnetic resonance images of the brain were collected from 20 patients with comitant exotropia and 20 age- and sex-matched healthy controls. The FMRIB Software Library was used to compute the diffusion measures, including fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD). These measures were obtained using voxel-wise statistics with threshold-free cluster enhancement. Results The FA values in the right inferior fronto-occipital fasciculus (IFO) and right inferior longitudinal fasciculus were significantly higher and the RD values in the bilateral IFO, forceps minor, left anterior corona radiata, and left anterior thalamic radiation were significantly lower in the comitant exotropia group than in the healthy controls. No significant differences in the MD or AD values were found between the two groups. Conclusions Alterations in FA and RD values may indicate the underlying neuropathologic mechanism of comitant exotropia. The TBSS method can be a useful tool to investigate neuronal tract participation in patients with this disease.

  16. The Ins and Outs of Meaning: Behavioral and Neuroanatomical Dissociation of Semantically-Driven Word Retrieval and Multimodal Semantic Recognition in Aphasia

    PubMed Central

    Mirman, Daniel; Zhang, Yongsheng; Wang, Ze; Coslett, H. Branch; Schwartz, Myrna F.

    2015-01-01

    Theories about the architecture of language processing differ with regard to whether verbal and nonverbal comprehension share a functional and neural substrate and how meaning extraction in comprehension relates to the ability to use meaning to drive verbal production. We (re-)evaluate data from 17 cognitive-linguistic performance measures of 99 participants with chronic aphasia using factor analysis to establish functional components and support vector regression-based lesion-symptom mapping to determine the neural correlates of deficits on these functional components. The results are highly consistent with our previous findings: production of semantic errors is behaviorally and neuroanatomically distinct from verbal and nonverbal comprehension. Semantic errors were most strongly associated with left ATL damage whereas deficits on tests of verbal and non-verbal semantic recognition were most strongly associated with damage to deep white matter underlying the frontal lobe at the confluence of multiple tracts, including the inferior fronto-occipital fasciculus, the uncinate fasciculus, and the anterior thalamic radiations. These results suggest that traditional views based on grey matter hub(s) for semantic processing are incomplete and that the role of white matter in semantic cognition has been underappreciated. PMID:25681739

  17. White matter microstructure and volitional motor activity in schizophrenia: A diffusion kurtosis imaging study.

    PubMed

    Docx, Lise; Emsell, Louise; Van Hecke, Wim; De Bondt, Timo; Parizel, Paul M; Sabbe, Bernard; Morrens, Manuel

    2017-02-28

    Avolition is a core feature of schizophrenia and may arise from altered brain connectivity. Here we used diffusion kurtosis imaging (DKI) to investigate the association between white matter (WM) microstructure and volitional motor activity. Multi-shell diffusion MRI and 24-h actigraphy data were obtained from 20 right-handed patients with schizophrenia and 16 right-handed age and gender matched healthy controls. We examined correlations between fractional anisotropy (FA), mean diffusivity (MD), mean kurtosis (MK), and motor activity level, as well as group differences in these measures. In the patient group, increasing motor activity level was positively correlated with MK in the inferior, medial and superior longitudinal fasciculus, the corpus callosum, the posterior fronto-occipital fasciculus and the posterior cingulum. This association was not found in control subjects or in DTI measures. These results show that a lack of volitional motor activity in schizophrenia is associated with potentially altered WM microstructure in posterior brain regions associated with cognitive function and motivation. This could reflect both illness related dysconnectivity which through altered cognition, manifests as reduced volitional motor activity, and/or the effects of reduced physical activity on brain WM. Copyright © 2016. Published by Elsevier B.V.

  18. Aging-Resilient Associations between the Arcuate Fasciculus and Vocabulary Knowledge: Microstructure or Morphology?

    PubMed Central

    Vaden, Kenneth I.; Cute, Stephanie L.; Yeatman, Jason D.; Dougherty, Robert F.

    2016-01-01

    Vocabulary knowledge is one of the few cognitive functions that is relatively preserved in older adults, but the reasons for this relative preservation have not been well delineated. We tested the hypothesis that individual differences in vocabulary knowledge are influenced by arcuate fasciculus macrostructure (i.e., shape and volume) properties that remain stable during the aging process, rather than white matter microstructure that demonstrates age-related declines. Vocabulary was not associated with age compared to pronounced age-related declines in cognitive processing speed across 106 healthy adults (19.92–88.29 years) who participated in this neuroimaging experiment. Fractional anisotropy in the left arcuate fasciculus was significantly related to individual variability in vocabulary. This effect was present despite marked age-related differences in a T1-weighted/T2-weighted ratio (T1w/T2w) estimate of myelin that were observed throughout the left arcuate fasciculus and associated with age-related differences in cognitive processing speed. However, atypical patterns of arcuate fasciculus morphology or macrostructure were associated with decreased vocabulary knowledge. These results suggest that deterioration of tissue in the arcuate fasciculus occurs with normal aging, while having limited impact on tract organization that underlies individual differences in the acquisition and retrieval of lexical and semantic information. SIGNIFICANCE STATEMENT Vocabulary knowledge is resilient to widespread age-related declines in brain structure that limit other cognitive functions. We tested the hypothesis that arcuate fasciculus morphology, which supports the development of reading skills that bolster vocabulary, could explain this relative preservation. We disentangled (1) the effects of age-related declines in arcuate microstructure (mean diffusivity; myelin content estimate) that predicted cognitive processing speed but not vocabulary, from (2) relatively stable

  19. Atypical Balance between Occipital and Fronto-Parietal Activation for Visual Shape Extraction in Dyslexia

    PubMed Central

    Zhang, Ying; Whitfield-Gabrieli, Susan; Christodoulou, Joanna A.; Gabrieli, John D. E.

    2013-01-01

    Reading requires the extraction of letter shapes from a complex background of text, and an impairment in visual shape extraction would cause difficulty in reading. To investigate the neural mechanisms of visual shape extraction in dyslexia, we used functional magnetic resonance imaging (fMRI) to examine brain activation while adults with or without dyslexia responded to the change of an arrow’s direction in a complex, relative to a simple, visual background. In comparison to adults with typical reading ability, adults with dyslexia exhibited opposite patterns of atypical activation: decreased activation in occipital visual areas associated with visual perception, and increased activation in frontal and parietal regions associated with visual attention. These findings indicate that dyslexia involves atypical brain organization for fundamental processes of visual shape extraction even when reading is not involved. Overengagement in higher-order association cortices, required to compensate for underengagment in lower-order visual cortices, may result in competition for top-down attentional resources helpful for fluent reading. PMID:23825653

  20. Sonographic evaluation of the greater occipital nerve in unilateral occipital neuralgia.

    PubMed

    Cho, John Chin-Suk; Haun, Daniel W; Kettner, Norman W

    2012-01-01

    Occipital neuralgia is a headache that may result from greater occipital nerve entrapment. Entrapped peripheral nerves typically have an increase in cross-sectional area. The purpose of this study was to measure the cross-sectional area and circumference of symptomatic and asymptomatic greater occipital nerves in patients with unilateral occipital neuralgia and to correlate the greater occipital nerve cross-sectional area with headache severity, sex, and body mass index. Both symptomatic and contralateral asymptomatic greater occipital nerve cross-sectional areas and circumferences were measured by a single examiner using sonography in 17 patients. The Wilcoxon signed rank test and Spearman rank order correlation coefficient were used to analyze the data. Significant differences between the cross-sectional areas and circumferences of the symptomatic and asymptomatic greater occipital nerves were noted (P < .001). No difference existed in cross-sectional area (P = .40) or circumference (P = .10) measurements of the nerves between male and female patients. A significant correlation existed between the body mass index and symptomatic (r = 0.424; P = .045) and asymptomatic (r = 0.443; P = .037) cross-sectional areas. There was no correlation shown between the cross-sectional area of the symptomatic nerve and the severity of Headache Impact Test 6 scores (r = -0.342; P = .179). We report sonographic evidence showing an increased cross-sectional area and circumference of the symptomatic greater occipital nerve in patients with unilateral occipital neuralgia.

  1. Longitudinal changes in microstructural white matter metrics in Alzheimer's disease.

    PubMed

    Mayo, Chantel D; Mazerolle, Erin L; Ritchie, Lesley; Fisk, John D; Gawryluk, Jodie R

    2017-01-01

    Alzheimer's disease (AD) is a progressive neurodegenerative disorder. Current avenues of AD research focus on pre-symptomatic biomarkers that will assist with early diagnosis of AD. The majority of magnetic resonance imaging (MRI) based biomarker research to date has focused on neuronal loss in grey matter and there is a paucity of research on white matter. Longitudinal DTI data from the Alzheimer's Disease Neuroimaging Initiative 2 database were used to examine 1) the within-group microstructural white matter changes in individuals with AD and healthy controls at baseline and year one; and 2) the between-group microstructural differences in individuals with AD and healthy controls at both time points. 1) Within-group: longitudinal Tract-Based Spatial Statistics revealed that individuals with AD and healthy controls both had widespread reduced fractional anisotropy (FA) and increased mean diffusivity (MD) with changes in the hippocampal cingulum exclusive to the AD group. 2) Between-group: relative to healthy controls, individuals with AD had lower FA and higher MD in the hippocampal cingulum, as well as the corpus callosum, internal and external capsule; corona radiata; posterior thalamic radiation; superior and inferior longitudinal fasciculus; fronto-occipital fasciculus; cingulate gyri; fornix; uncinate fasciculus; and tapetum. The current results indicate that sensitivity to white matter microstructure is a promising avenue for AD biomarker research. Additional longitudinal studies on both white and grey matter are warranted to further evaluate potential clinical utility.

  2. Cortico-Cortical, Cortico-Striatal, and Cortico-Thalamic White Matter Fiber Tracts Generated in the Macaque Brain via Dynamic Programming

    PubMed Central

    Lal, Rakesh M.; An, Michael; Poynton, Clare B.; Li, Muwei; Jiang, Hangyi; Oishi, Kenichi; Selemon, Lynn D.; Mori, Susumu; Miller, Michael I.

    2013-01-01

    Abstract Probabilistic methods have the potential to generate multiple and complex white matter fiber tracts in diffusion tensor imaging (DTI). Here, a method based on dynamic programming (DP) is introduced to reconstruct fibers pathways whose complex anatomical structures cannot be resolved beyond the resolution of standard DTI data. DP is based on optimizing a sequentially additive cost function derived from a Gaussian diffusion model whose covariance is defined by the diffusion tensor. DP is used to determine the optimal path between initial and terminal nodes by efficiently searching over all paths, connecting the nodes, and choosing the path in which the total probability is maximized. An ex vivo high-resolution scan of a macaque hemi-brain is used to demonstrate the advantages and limitations of DP. DP can generate fiber bundles between distant cortical areas (superior longitudinal fasciculi, arcuate fasciculus, uncinate fasciculus, and fronto-occipital fasciculus), neighboring cortical areas (dorsal and ventral banks of the principal sulcus), as well as cortical projections to the hippocampal formation (cingulum bundle), neostriatum (motor cortical projections to the putamen), thalamus (subcortical bundle), and hippocampal formation projections to the mammillary bodies via the fornix. Validation is established either by comparison with in vivo intracellular transport of horseradish peroxidase in another macaque monkey or by comparison with atlases. DP is able to generate known pathways, including crossing and kissing tracts. Thus, DP has the potential to enhance neuroimaging studies of cortical connectivity. PMID:23879573

  3. Cortical and subcortical mapping of language areas: correlation of functional MRI and tractography in a 3T scanner with intraoperative cortical and subcortical stimulation in patients with brain tumors located in eloquent areas.

    PubMed

    Jiménez de la Peña, M; Gil Robles, S; Recio Rodríguez, M; Ruiz Ocaña, C; Martínez de Vega, V

    2013-01-01

    To describe the detection of cortical areas and subcortical pathways involved in language observed in MRI activation studies and tractography in a 3T MRI scanner and to correlate the findings of these functional studies with direct intraoperative cortical and subcortical stimulation. We present a series of 14 patients with focal brain tumors adjacent to eloquent brain areas. All patients underwent neuropsychological evaluation before and after surgery. All patients underwent MRI examination including structural sequences, perfusion imaging, spectroscopy, functional imaging to determine activation of motor and language areas, and 3D tractography. All patients underwent cortical mapping through cortical and subcortical stimulation during the operation to resect the tumor. Postoperative follow-up studies were done 24 hours after surgery. The correlation of motor function and of the corticospinal tract determined by functional MRI and tractography with intraoperative mapping of cortical and subcortical motor areas was complete. The eloquent brain areas of language expression and reception were strongly correlated with intraoperative cortical mapping in all but two cases (a high grade infiltrating glioma and a low grade glioma located in the frontal lobe). 3D tractography identified the arcuate fasciculus, the lateral part of the superior longitudinal fasciculus, the subcallosal fasciculus, the inferior fronto-occipital fasciculus, and the optic radiations, which made it possible to mark the limits of the resection. The correlation with the subcortical mapping of the anatomic arrangement of the fasciculi with respect to the lesions was complete. The best treatment for brain tumors is maximum resection without associated deficits, so high quality functional studies are necessary for preoperative planning. Copyright © 2011 SERAM. Published by Elsevier Espana. All rights reserved.

  4. Occipital artery vasculitis not identified as a mechanism of occipital neuralgia-related chronic migraine headaches.

    PubMed

    Ducic, Ivica; Felder, John M; Janis, Jeffrey E

    2011-10-01

    Recent evidence has shown that some cases of occipital neuralgia are attributable to musculofascial compression of the greater occipital nerve and improve with neurolysis. A mechanical interaction at the intersection of the nerve and the occipital artery may also be capable of producing neuralgia, although that mechanism remains one theoretical possibility among several. The authors evaluated the possibility of unrecognized vasculitis of the occipital artery as a potential mechanism of occipital neuralgia arising from the occipital artery/greater occipital nerve junction. Twenty-five patients with preoperatively documented bilateral occipital neuralgia-related chronic headaches underwent peripheral nerve surgery with decompression of the greater occipital nerve bilaterally, including the area of its intersection with the occipital artery. In 15 patients, a 2-cm segment of the occipital artery was excised and submitted for pathologic evaluation. All patients were evaluated intraoperatively for evidence of arterially mediated greater occipital nerve compression, and the configuration of the nerve-vessel intersection was noted. None of the 15 specimens submitted for pathologic evaluation showed vasculitis. Intraoperatively, all 50 sites examined showed an intimate physical association between the occipital artery and greater occipital nerve. Surgical specimens from this first in vivo study provided no histologic evidence of vasculitis as a cause of greater occipital nerve irritation at the occipital artery/greater occipital nerve junction in patients with chronic headaches caused by occipital neuralgia. Based on these findings, mechanical (and not primary inflammatory) irritation of the nerve by the occipital artery remains an important theoretical cause for otherwise idiopathic cases. The authors have adopted an operative technique that includes physical separation of the nerve-artery intersection (in addition to musculofascial neurolysis) for a more thorough

  5. Surgery: Modified Pi with Triple-Bonnet Flap and Fronto-Orbital Advancement.

    PubMed

    Singh Raswan, Uday; Singh Chhiber, Sarbjit; Ramzan, Altaf Umar

    2017-01-01

    Craniosynostosis is the premature fusion of one or more of the cranial sutures and can occur as part of a syndrome or as an isolated defect. Pansynostosis is a rare form of craniosynostosis that involves premature fusion of all the cranial sutures (coronal, sagittal, metopic, and occipital). Particularly in cases of late presentation, there are heightened clinical concerns, both functional and aesthetic. In untreated cases of pansynostosis and increased intracranial pressure, optic nerve damage progresses to optic atrophy and then blindness. Cranial vault reconstruction is the standard surgical treatment. We attempt to highlight the importance of modifying the osteotomies and reshaping of the cranial vault based on individual requirements in order to achieve the best possible result and to prevent catastrophic blood loss. We present a case of modified pi with triple-bonnet flap and fronto-orbital advancement, an individual modification of the techniques of cranial vault reconstruction, in a patient with pansynostosis with optic atrophy. The technical variation can be applied to any case of pansynostosis requiring cranial vault reconstruction. © 2017 S. Karger AG, Basel.

  6. Intramuscular Lipoma-Induced Occipital Neuralgia on the Lesser Occipital Nerve.

    PubMed

    Han, Hyun Ho; Kim, Hak Soo; Rhie, Jong Won; Moon, Suk Ho

    2016-06-01

    Occipital neuralgia (ON) is commonly characterized by a neuralgiform headache accompanied by a paroxysmal burning sensation in the dermatome area of the greater, lesser, or third occipital nerve. The authors report a rare case of ON caused by an intramuscular lipoma originating from the lesser occipital nerve.A 52-year-old man presented with sharp pain in the left postauricular area with a 3 × 2-cm palpable mass. Computed tomography revealed a mass suspiciously resembling an intramuscular lipoma within splenius muscle. In the operation field, a protruding mass causing stretching of the lesser occipital nerve was found. After complete resection, the neuralgiform headache symptom had resolved and the intramuscular lipoma was confirmed through histopathology.Previous studies on the causes of ON have reported that variation in normal anatomic structures results in nerve compression. Occipital neuralgia, however, caused by intramuscular lipomas in splenius muscles have not been previously reported, and the dramatic resolution following surgery makes it an interesting case worth reporting.

  7. Occipital neuralgia: anatomic considerations.

    PubMed

    Cesmebasi, Alper; Muhleman, Mitchel A; Hulsberg, Paul; Gielecki, Jerzy; Matusz, Petru; Tubbs, R Shane; Loukas, Marios

    2015-01-01

    Occipital neuralgia is a debilitating disorder first described in 1821 as recurrent headaches localized in the occipital region. Other symptoms that have been associated with this condition include paroxysmal burning and aching pain in the distribution of the greater, lesser, or third occipital nerves. Several etiologies have been identified in the cause of occipital neuralgia and include, but are not limited to, trauma, fibrositis, myositis, fracture of the atlas, and compression of the C-2 nerve root, C1-2 arthrosis syndrome, atlantoaxial lateral mass osteoarthritis, hypertrophic cervical pachymeningitis, cervical cord tumor, Chiari malformation, and neurosyphilis. The management of occipital neuralgia can include conservative approaches and/or surgical interventions. Occipital neuralgia is a multifactorial problem where multiple anatomic areas/structures may be involved with this pathology. A review of these etiologies may provide guidance in better understanding occipital neuralgia. © 2014 Wiley Periodicals, Inc.

  8. Multimodal Neuroimaging of Fronto-limbic Structure and Function Associated with Suicide Attempts in Adolescents and Young Adults with Bipolar Disorder

    PubMed Central

    Johnston, Jennifer A. Y.; Wang, Fei; Liu, Jie; Blond, Benjamin N.; Wallace, Amanda; Liu, Jiacheng; Spencer, Linda; Cox Lippard, Elizabeth T.; Purves, Kirstin L.; Landeros-Weisenberger, Angeli; Hermes, Eric; Pittman, Brian; Zhang, Sheng; King, Robert; Martin, Andrés; Oquendo, Maria A.; Blumberg, Hilary P.

    2018-01-01

    Objective Bipolar disorder is associated with high risk for suicide behavior that often develops in adolescence/young adulthood. Elucidation of involved neural systems is critical for prevention. This study of adolescents/young adults with bipolar disorder with and without history of suicide attempts combines structural, diffusion tensor and functional magnetic resonance imaging methods to investigate implicated abnormalities in structural and functional connectivity within fronto-limbic systems. Method Participants with bipolar disorder included 26 with a prior suicide attempt and 42 without attempts. Regional gray matter volume, white matter integrity and functional connectivity during processing of emotional stimuli were compared between groups and differences were explored for relationships between imaging modalities and associations with suicide-related symptoms and behaviors. Results Compared to the non-attempter group, the attempter group showed reductions in gray matter volume in orbitofrontal cortex, hippocampus and cerebellum; white matter integrity in uncinate fasciculus, ventral frontal and right cerebellum regions; and amygdala functional connectivity to left ventral and right rostral prefrontal cortex (p<0.05, corrected). In exploratory analyses, among attempters, right rostral prefrontal connectivity was negatively correlated with suicidal ideation (p<0.05), and left ventral prefrontal connectivity was negatively correlated with attempt lethality (p<0.05). Conclusions Adolescent/young adult suicide attempters with bipolar disorder demonstrate less gray matter volume and decreased structural and functional connectivity in a ventral fronto-limbic neural system subserving emotion regulation. Among suicide attempters, reductions in amygdala-prefrontal functional connectivity may be associated with severity of suicide ideation and attempt lethality. PMID:28135845

  9. Identification of greater occipital nerve landmarks for the treatment of occipital neuralgia.

    PubMed

    Loukas, M; El-Sedfy, A; Tubbs, R S; Louis, R G; Wartmann, C H T; Curry, B; Jordan, R

    2006-11-01

    Important structures involved in the pathogenesis of occipital headache include the aponeurotic attachments of the trapezius and semispinalis capitis muscles to the occipital bone. The greater occipital nerve (GON) can become entrapped as it passes through these aponeuroses, causing symptoms of occipital neuralgia. The aim of this study was to identify topographic landmarks for accurate identification of GON, which might facilitate its anaesthetic blockade. The course and distribution of GON and its relation to the aponeuroses of the trapezius and semispinalis capitis were examined in 100 formalin-fixed adult cadavers. In addition, the relative position of the nerve on a horizontal line between the external occipital protuberance and the mastoid process, as well as between the mastoid processes was measured. The greater occipital nerve was found bilaterally in all specimens. It was located at a mean distance of 3.8 cm (range 1.5-7.5 cm) lateral to a vertical line through the external occipital protuberance and the spinous processes of the cervical vertebrae 2-7. It was also located approximately 41% of the distance along the intermastoid line (medial to a mastoid process) and 22% of the distance between the external occipital protuberance and the mastoid process. The location of GON for anaesthesia or any other neurosurgical procedure has been established as one thumb's breadth lateral to the external occipital protuberance (2 cm laterally) and approximately at the base of the thumb nail (2 cm inferior). This is the first study proposing the use of landmarks in relation to anthropometric measurements. On the basis of these observations we propose a target zone for local anaesthetic injection that is based on easily identifiable landmarks and suggest that injection at this target point could be of benefit in the relief of occipital neuralgia.

  10. Does the Left Inferior Longitudinal Fasciculus Play a Role in Language? A Brain Stimulation Study

    ERIC Educational Resources Information Center

    Mandonnet, Emmanuel; Nouet, Aurelien; Gatignol, Peggy; Capelle, Laurent; Duffau, Hugues

    2007-01-01

    Although advances in diffusion tensor imaging have enabled us to better study the anatomy of the inferior longitudinal fasciculus (ILF), its function remains poorly understood. Recently, it was suggested that the subcortical network subserving the language semantics could be constituted, in parallel with the inferior occipitofrontal fasciculus, by…

  11. Interpersonal traits of psychopathy linked to reduced integrity of the uncinate fasciculus

    PubMed Central

    Wolf, Richard C.; Pujara, Maia S.; Motzkin, Julian C.; Newman, Joseph P.; Kiehl, Kent A.; Decety, Jean; Kosson, David S.; Koenigs, Michael

    2015-01-01

    Psychopathy is a personality disorder characterized by callous lack of empathy, impulsive antisocial behavior, and criminal recidivism. Here we performed the largest diffusion tensor imaging (DTI) study of incarcerated criminal offenders to date (N = 147) to determine whether psychopathy severity is linked to the microstructural integrity of major white matter tracts in the brain. Consistent with the results of previous studies in smaller samples, we found that psychopathy was associated with reduced fractional anisotropy in the right uncinate fasciculus (the major white matter tract connecting ventral frontal and anterior temporal cortices). We found no such association in the left uncinate fasciculus or in adjacent frontal or temporal white matter tracts. Moreover, the right uncinate fasciculus finding was specifically related to the interpersonal features of psychopathy (glib superficial charm, grandiose sense of self-worth, pathological lying, manipulativeness), rather than the affective, antisocial, or lifestyle features. These results indicate a neural marker for this key dimension of psychopathic symptomatology. PMID:26219745

  12. Sex differences in white matter development during adolescence: a DTI study.

    PubMed

    Wang, Yingying; Adamson, Chris; Yuan, Weihong; Altaye, Mekibib; Rajagopal, Akila; Byars, Anna W; Holland, Scott K

    2012-10-10

    Adolescence is a complex transitional period in human development, composing physical maturation, cognitive and social behavioral changes. The objective of this study is to investigate sex differences in white matter development and the associations between intelligence and white matter microstructure in the adolescent brain using diffusion tensor imaging (DTI) and tract-based spatial statistics (TBSS). In a cohort of 16 typically-developing adolescents aged 13 to 17 years, longitudinal DTI data were recorded from each subject at two time points that were one year apart. We used TBSS to analyze the diffusion indices including fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD). Our results suggest that boys (13-18 years) continued to demonstrate white matter maturation, whereas girls appeared to reach mature levels earlier. In addition, we identified significant positive correlations between FA and full-scale intelligence quotient (IQ) in the right inferior fronto-occipital fasciculus when both sexes were looked at together. Only girls showed significant positive correlations between FA and verbal IQ in the left cortico-spinal tract and superior longitudinal fasciculus. The preliminary evidence presented in this study supports that boys and girls have different developmental trajectories in white matter microstructure. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Occipital Nerve Stimulation for the Treatment of Refractory Occipital Neuralgia: A Case Series.

    PubMed

    Keifer, Orion P; Diaz, Ashley; Campbell, Melissa; Bezchlibnyk, Yarema B; Boulis, Nicholas M

    2017-09-01

    Occipital neuralgia is a chronic pain syndrome characterized by sharp, shooting pains in the distribution of the occipital nerves. Although relatively rare, it associated with extremely debilitating symptoms that drastically affect a patient's quality of life. Furthermore, it is extremely difficult to treat as the symptoms are refractory to traditional treatments, including pharmacologic and procedural interventions. A few previous case studies have established the use of a neurostimulation of the occipital nerves to treat occipital neuralgia. The following expands on that literature by retrospectively reviewing the results of occipital nerve stimulation in a relatively large patient cohort (29 patients). A retrospective review of 29 patients undergoing occipital nerve stimulation for occipital neuralgia from 2012 to 2017 at a single institution with a single neurosurgeon. Of those 29 patients, 5 were repair or replacement of previous systems, 4 did not have benefit from trial stimulation, and 20 saw benefit to their trial stage of stimulation and went on to full implantation. Of those 20 patients, even with a history of failed procedures and pharmacological therapies, there was an overall success rate of 85%. The average preoperative 10-point pain score dropped from 7.4 ± 1.7 to a postoperative score of 2.9 ± 1.7. However, as with any peripheral nerve stimulation procedure, there were complications (4 patients), including infection, hardware erosion, loss of effect, and lead migration, which required revision or system removal. Despite complications, the results suggest, overall, that occipital nerve stimulation is a safe and effective procedure for refractory occipital neuralgia and should be in the neurosurgical repertoire for occipital neuralgia treatment. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Application of Normative Occipital Condyle-C1 Interval Measurements to Detect Atlanto-Occipital Injury in Children.

    PubMed

    Corcoran, B; Linscott, L L; Leach, J L; Vadivelu, S

    2016-05-01

    Prior studies have found that widening or asymmetry of the occipital condyle-C1 interval on CT is a sensitive and specific marker for atlanto-occipital dislocation. Previously reported abnormal occipital condyle-C1 interval values are not age-specific, possibly leading to false-positive findings in younger children, in whom this joint space is normally larger than that in adults. This study assesses the utility of applying age-specific normative occipital condyle-C1 interval ranges to documented cases of atlanto-occipital injury compared with previously reported abnormal cutoff values. Retrospective review of CT and MR imaging of 14 subjects with atlanto-occipital injury was performed, and occipital condyle-C1 interval measurements were made for each subject. Sensitivities and specificities of proposed occipital condyle-C1 interval cutoffs of 2 and 3 SDs above the mean and previously published occipital condyle-C1 interval cutoffs for atlanto-occipital injury were then calculated on the basis of occipital condyle-C1 interval measurements for each subject. An occipital condyle-C1 interval 2 SDs above the age-specific mean has a sensitivity of 50% and specificity of 89%-100%, depending on the age group. An occipital condyle-C1 interval 3 SDs above the age-specific mean has a sensitivity of 50% and a specificity of 95%-100%. A 4.0-mm occipital condyle-C1 interval has a sensitivity of 36% and a specificity of 100% in all age groups. A 2.5-mm occipital condyle-C1 interval has a sensitivity of 93% and a specificity of 18%-100%. Occipital condyle-C1 interval widening cutoffs used to establish atlanto-occipital injury lack both sensitivity and specificity in children and young teenagers. MR imaging is necessary to establish a diagnosis of atlanto-occipital injury in children and young teenagers when the appropriate mechanism of injury is present. © 2016 by American Journal of Neuroradiology.

  15. Headache Following Occipital Brain Lesion: A Case of Migraine Triggered by Occipital Spikes?

    PubMed

    Vollono, Catello; Mariotti, Paolo; Losurdo, Anna; Giannantoni, Nadia Mariagrazia; Mazzucchi, Edoardo; Valentini, Piero; De Rose, Paola; Della Marca, Giacomo

    2015-10-01

    This study describes the case of an 8-year-old boy who developed a genuine migraine after the surgical excision, from the right occipital lobe, of brain abscesses due to selective infestation of the cerebrum by Entamoeba histolytica. After the surgical treatment, the boy presented daily headaches with typical migraine features, including right-side parieto-temporal pain, nausea, vomiting, and photophobia. Electroencephalography (EEG) showed epileptiform discharges in the right occipital lobe, although he never presented seizures. Clinical and neurophysiological observations were performed, including video-EEG and polygraphic recordings. EEG showed "interictal" epileptiform discharges in the right occipital lobe. A prolonged video-EEG recording performed before, during, and after an acute attack ruled out ictal or postictal migraine. In this boy, an occipital lesion caused occipital epileptiform EEG discharges without seizures, probably prevented by the treatment. We speculate that occipital spikes, in turn, could have caused a chronic headache with features of migraine without aura. Occipital epileptiform discharges, even in absence of seizures, may trigger a genuine migraine, probably by means of either the trigeminovascular or brainstem system. © EEG and Clinical Neuroscience Society (ECNS) 2014.

  16. Three-Dimensional Anatomy of the White Matter Fibers of the Temporal Lobe: Surgical Implications.

    PubMed

    Pescatori, Lorenzo; Tropeano, Maria Pia; Manfreda, Andrea; Delfini, Roberto; Santoro, Antonio

    2017-04-01

    The aim of this work is to describe in detail the complex 3-dimensional organization of the white matter of the temporal lobe and discuss the surgical implications of the approaches to lesions located into the mesial temporal region and within the temporal horn and the atrium of the lateral ventricles. Sixteen human cerebral hemispheres fixed in a 10% formalin solution for at least 40 days were studied. After removal of the arachnoid membrane, the hemispheres were frozen at -15°C for at least 14 days, and the Klingler technique, which consists of the microscopic dissection and progressive identification of white matter fibers, was performed. The dissection allowed us to appreciate the topographical organization of the white matter of the temporal lobe identifying the most important association, projection, and commissural fasciculi. The dissection from the lateral side allowed the progressive visualization of the superior longitudinal fasciculus and its components, the extreme and external capsule, the uncinate fasciculus, the inferior fronto-occipital fasciculus, the anterior commissure, the internal capsule, and the optic radiations. The dissection was completed from the inferior and medial side for identification of the cingulum and the fornix. The complex 3-dimensional organization of the white matter substance of the temporal lobe is characterized by 2 main systems of boundaries: the sagittal stratum and the temporal stem. Their knowledge is essential for the appropriate treatment of pathologies localized in this region as demonstrated by the 2 clinical cases presented in this work. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Ultrasound-guided greater occipital nerve blocks and pulsed radiofrequency ablation for diagnosis and treatment of occipital neuralgia.

    PubMed

    Vanderhoek, Matthew David; Hoang, Hieu T; Goff, Brandon

    2013-09-01

    Occipital neuralgia is a condition manifested by chronic occipital headaches and is thought to be caused by irritation or trauma to the greater occipital nerve (GON). Treatment for occipital neuralgia includes medications, nerve blocks, and pulsed radiofrequency ablation (PRFA). Landmark-guided GON blocks are the mainstay in both the diagnosis and treatment of occipital neuralgia. Ultrasound is being utilized more and more in the chronic pain clinic to guide needle advancement when performing procedures; however, there are no reports of ultrasound used to guide a diagnostic block or PRFA of the GON. We report two cases in which ultrasound was used to guide diagnostic greater occipital nerve blocks and greater occipital nerve pulsed radiofrequency ablation for treatment of occipital neuralgia. Two patients with occipital headaches are presented. In Case 1, ultrasound was used to guide diagnostic blocks of the greater occipital nerves. In Case 2, ultrasound was utilized to guide placement of radiofrequency probes for pulsed radiofrequency ablation of the greater occipital nerves. Both patients reported immediate, significant pain relief, with continued pain relief for several months. Further study is needed to examine any difference in outcomes or morbidity between the traditional landmark method versus ultrasound-guided blocks and pulsed radiofrequency ablation of the greater occipital nerves.

  18. Ultrasound-Guided Greater Occipital Nerve Blocks and Pulsed Radiofrequency Ablation for Diagnosis and Treatment of Occipital Neuralgia

    PubMed Central

    VanderHoek, Matthew David; Hoang, Hieu T; Goff, Brandon

    2013-01-01

    Occipital neuralgia is a condition manifested by chronic occipital headaches and is thought to be caused by irritation or trauma to the greater occipital nerve (GON). Treatment for occipital neuralgia includes medications, nerve blocks, and pulsed radiofrequency ablation (PRFA). Landmark-guided GON blocks are the mainstay in both the diagnosis and treatment of occipital neuralgia. Ultrasound is being utilized more and more in the chronic pain clinic to guide needle advancement when performing procedures; however, there are no reports of ultrasound used to guide a diagnostic block or PRFA of the GON. We report two cases in which ultrasound was used to guide diagnostic greater occipital nerve blocks and greater occipital nerve pulsed radiofrequency ablation for treatment of occipital neuralgia. Two patients with occipital headaches are presented. In Case 1, ultrasound was used to guide diagnostic blocks of the greater occipital nerves. In Case 2, ultrasound was utilized to guide placement of radiofrequency probes for pulsed radiofrequency ablation of the greater occipital nerves. Both patients reported immediate, significant pain relief, with continued pain relief for several months. Further study is needed to examine any difference in outcomes or morbidity between the traditional landmark method versus ultrasound-guided blocks and pulsed radiofrequency ablation of the greater occipital nerves. PMID:24282778

  19. Uncinate fasciculus fractional anisotropy correlates with typical use of reappraisal in women but not men.

    PubMed

    Zuurbier, Lisette A; Nikolova, Yuliya S; Ahs, Fredrik; Hariri, Ahmad R

    2013-06-01

    Emotion regulation refers to strategies through which individuals influence their experience and expression of emotions. Two typical strategies are reappraisal, a cognitive strategy for reframing the context of an emotional experience, and suppression, a behavioral strategy for inhibiting emotional responses. Functional neuroimaging studies have revealed that regions of the prefrontal cortex modulate amygdala reactivity during both strategies, but relatively greater downregulation of the amygdala occurs during reappraisal. Moreover, these studies demonstrated that engagement of this modulatory circuitry varies as a function of gender. The uncinate fasciculus is a major structural pathway connecting regions of the anterior temporal lobe, including the amygdala to inferior frontal regions, especially the orbitofrontal cortex. The objective of the current study was to map variability in the structural integrity of the uncinate fasciculus onto individual differences in self-reported typical use of reappraisal and suppression. Diffusion tensor imaging was used in 194 young adults to derive regional fractional anisotropy values for the right and left uncinate fasciculus. All participants also completed the Emotion Regulation Questionnaire. In women but not men, self-reported typical reappraisal use was positively correlated with fractional anisotropy values in a region of the left uncinate fasciculus within the orbitofrontal cortex. In contrast, typical use of suppression was not significantly correlated with fractional anisotropy in any region of the uncinate fasciculus in either men or women. Our data suggest that in women typical reappraisal use is specifically related to the integrity of white matter pathways linking the amygdala and prefrontal cortex.

  20. UNCINATE FASCICULUS FRACTIONAL ANISOTROPY CORRELATES WITH TYPICAL USE OF REAPPRAISAL IN WOMEN BUT NOT MEN

    PubMed Central

    Zuurbier, Lisette A.; Nikolova, Yuliya S.; Ahs, Fredrik; Hariri, Ahmad R.

    2014-01-01

    Emotion regulation refers to strategies through which individuals influence their experience and expression of emotions. Two typical strategies are reappraisal, a cognitive strategy for reframing the context of an emotional experience, and suppression, a behavioral strategy for inhibiting emotional responses. Functional neuroimaging studies have revealed that regions of the prefrontal cortex modulate amygdala reactivity during both strategies, but relatively greater down-regulation of the amygdala occurs during reappraisal. Moreover, these studies demonstrated that engagement of this modulatory circuitry varies as a function of gender. The uncinate fasciculus is a major structural pathway connecting regions of the anterior temporal lobe, including the amygdala, to inferior frontal regions, especially the orbitofrontal cortex. The objective of the current study was to map variability in the structural integrity of the uncinate fasciculus onto individual differences in self-reported typical use of reappraisal and suppression. Diffusion tensor imaging was used in 194 young adults to derive regional fractional anisotropy values for the right and left uncinate fasciculus. All participants also completed the Emotion Regulation Questionnaire. In women but not men, self-reported typical reappraisal use was positively correlated with fractional anisotropy values in a region of the left uncinate fasciculus within the orbitofrontal cortex. In contrast, typical use of suppression was not significantly correlated with fractional anisotropy in any region of the uncinate fasciculus in either men or women. Our data suggest that in women typical reappraisal use is specifically related to the integrity of white matter pathways linking the amygdala and prefrontal cortex. PMID:23398586

  1. Can proximity of the occipital artery to the greater occipital nerve act as a cause of idiopathic greater occipital neuralgia? An anatomical and histological evaluation of the artery-nerve relationship.

    PubMed

    Shimizu, Satoru; Oka, Hidehiro; Osawa, Shigeyuki; Fukushima, Yutaka; Utsuki, Satoshi; Tanaka, Ryusui; Fujii, Kiyotaka

    2007-06-01

    The purpose of this study was to clarify whether proximity of the occipital artery to the greater occipital nerve can act as a cause of occipital neuralgia, analogous to the contribution of intracranial vessels due to compression in cranial nerve neuralgias, represented by trigeminal neuralgias due to compression of the trigeminal nerve root by adjacent arterial loops. Twenty-four suboccipital areas in cadaver heads were studied for anatomical relationships between the occipital artery and the greater occipital nerve, with histopathological assessment of the greater occipital nerve for signs of mechanical damage. The occipital artery and greater occipital nerve were found to cross each other in the nuchal subcutaneous layer, and the latter was constantly situated superficial to the former at the cross point. An indentation of the greater occipital nerve due to the occipital artery was observed at the cross point in all specimens. However, histopathological examination did not reveal any findings of damage to nerves, even in specimens with atherosclerosis of the occipital artery. Although the present study did not provide direct evidence that the occipital artery contributes to occipital neuralgia at the point of contact with the greater occipital nerve, the possibility still cannot be precluded, because the occipital artery may be palpable in areas corresponding to tenderness of the greater occipital nerve. Further studies, including clinical cases, are needed to clarify this issue.

  2. The Role of the Arcuate Fasciculus in Conduction Aphasia

    ERIC Educational Resources Information Center

    Bernal, Byron; Ardila, Alfredo

    2009-01-01

    In aphasia literature, it has been considered that a speech repetition defect represents the main constituent of conduction aphasia. Conduction aphasia has frequently been interpreted as a language impairment due to lesions of the arcuate fasciculus (AF) that disconnect receptive language areas from expressive ones. Modern neuroradiological…

  3. Pulsed radiofrequency for occipital neuralgia.

    PubMed

    Manolitsis, Nicholas; Elahi, Foad

    2014-01-01

    The clinical application of pulsed radiofrequency (PRF) by interventional pain physicians for a variety of chronic pain syndromes, including occipital neuralgia, is growing. As a minimally invasive percutaneous technique with none to minimal neurodestruction and a favorable side effect profile, use of PRF as an interventional neuromodulatory chronic pain treatment is appealing. Occipital neuralgia, also known as Arnold's neuralgia, is defined by the International Headache Society as a paroxysmal, shooting or stabbing pain in the greater, lesser, and/or third occipital nerve distributions. Pain intensity is often severe and debilitating, with an associated negative impact upon quality of life and function. Most cases of occipital neuralgia are idiopathic, with no clearly identifiable structural etiology. Treatment of occipital neuralgia poses inherent challenges as no criterion standard exists. Initially, conservative treatment options such as physical therapy and pharmacotherapy are routinely trialed. When occipital neuralgia is refractory to conservative measures, a number of interventional treatment options exist, including: local occipital nerve anesthetic and corticosteroid infiltration, botulinum toxin A injection, occipital nerve subcutaneous neurostimulation, and occipital nerve PRF. Of these, PRF has garnered significant interest as a potentially superior, safe, non-invasive treatment with long-term efficacy. The objective of this article is to provide a concise review of occipital neuralgia; and a concise, yet thorough, evidence-based review of the current literature concerning the use of PRF for occipital neuralgia. Review of published medical literature up through April 2013. The Center for Pain Medicine and Regional Anesthesia, the University of Iowa Hospitals and Clinics. A total of 3 clinical studies and one case report investigating the use of PRF for knee occipital neuralgia have been published worldwide. Statistically significant improvements in

  4. Cervical myelitis presenting as occipital neuralgia.

    PubMed

    Noh, Sang-Mi; Kang, Hyun Goo

    2018-07-01

    Occipital neuralgia is a common form of headache that is characterized by paroxysmal severe lancinating pain in the occipital nerve distribution. The exact pathophysiology is still not fully understood and occipital neuralgia often develops spontaneously. There are no specific guidelines for evaluation of patients with occipital neuralgia. Cervical spine, spinal cord and posterior neck muscle lesions can induce occipital neuralgia. Brain and spine imaging may be necessary in some cases, according to the nature of the headache or response to treatment. We report a case of cervical myelitis presenting as occipital neuralgia.

  5. Postoperative headache following acoustic neuroma resection: occipital nerve injuries are associated with a treatable occipital neuralgia.

    PubMed

    Ducic, Ivica; Felder, John M; Endara, Matthew

    2012-01-01

    To demonstrate that occipital nerve injury is associated with chronic postoperative headache in patients who have undergone acoustic neuroma excision and to determine whether occipital nerve excision is an effective treatment for these headaches. Few previous reports have discussed the role of occipital nerve injury in the pathogenesis of the postoperative headache noted to commonly occur following the retrosigmoid approach to acoustic neuroma resection. No studies have supported a direct etiologic link between the two. The authors report on a series of acoustic neuroma patients with postoperative headache presenting as occipital neuralgia who were found to have occipital nerve injuries and were treated for chronic headache by excision of the injured nerves. Records were reviewed to identify patients who had undergone surgical excision of the greater and lesser occipital nerves for refractory chronic postoperative headache following acoustic neuroma resection. Primary outcomes examined were change in migraine headache index, change in number of pain medications used, continued use of narcotics, patient satisfaction, and change in quality of life. Follow-up was in clinic and via telephone interview. Seven patients underwent excision of the greater and lesser occipital nerves. All met diagnostic criteria for occipital neuralgia and failed conservative management. Six of 7 patients experienced pain reduction of greater than 80% on the migraine index. Average pain medication use decreased from 6 to 2 per patient; 3 of 5 patients achieved independence from narcotics. Six patients experienced 80% or greater improvement in quality of life at an average follow-up of 32 months. There was one treatment failure. Occipital nerve neuroma or nerve entrapment was identified during surgery in all cases where treatment was successful but not in the treatment failure. In contradistinction to previous reports, we have identified a subset of patients in whom the syndrome of

  6. Inter-Individual Variation in Fronto-Temporal Connectivity Predicts the Ability to Learn Different Types of Associations

    PubMed Central

    Alm, Kylie H.; Rolheiser, Tyler; Olson, Ingrid R.

    2016-01-01

    The uncinate fasciculus connects portions of the anterior and medial temporal lobes to the lateral orbitofrontal cortex, so it has long been thought that this limbic fiber pathway plays an important role in episodic memory. Some types of episodic memory are impaired after damage to the uncinate, while others remain intact. Because of this, the specific role played by the uncinate fasciculus in episodic memory remains undetermined. In the present study, we tested the hypothesis that the uncinate fasciculus is involved in episodic memory tasks that have high competition between representations at retrieval. To test this hypothesis, healthy young adults performed three tasks: Experiment 1 in which they learned to associate names with faces through feedback provided at the end of each trial; Experiment 2 in which they learned to associate fractals with cued locations through feedback provided at the end of each trial; and Experiment 3 in which unique faces were remembered in a paradigm with low retrieval competition. Diffusion tensor imaging and deterministic tractography methods were used to extract measures of uncinate fasciculus microstructure. Results revealed that microstructural properties of the uncinate, but not a control tract, the inferior longitudinal fasciculus, significantly predicted individual differences in performance on the face-name and fractal-location tasks. However, no relationship was observed for simple face memory (Experiment 3). These findings suggest that the uncinate fasciculus may be important for adjudicating between competing memory representations at the time of episodic retrieval. PMID:26908315

  7. White matter abnormalities in major depressive disorder with melancholic and atypical features: A diffusion tensor imaging study.

    PubMed

    Ota, Miho; Noda, Takamasa; Sato, Noriko; Hattori, Kotaro; Hori, Hiroaki; Sasayama, Daimei; Teraishi, Toshiya; Nagashima, Anna; Obu, Satoko; Higuchi, Teruhiko; Kunugi, Hiroshi

    2015-06-01

    The DSM-IV recognizes some subtypes of major depressive disorder (MDD). It is known that the effectiveness of antidepressants differs among the MDD subtypes, and thus the differentiation of the subtypes is important. However, little is known as to structural brain changes in MDD with atypical features (aMDD) in comparison with MDD with melancholic features (mMDD), which prompted us to examine possible differences in white matter integrity assessed with diffusion tensor imaging (DTI) between these two subtypes. Subjects were 21 patients with mMDD, 24 with aMDD, and 37 age- and sex-matched healthy volunteers whose DTI data were obtained by 1.5 tesla magnetic resonance imaging. We compared fractional anisotropy and mean diffusivity value derived from DTI data on a voxel-by-voxel basis among the two diagnostic groups and healthy subjects. There were significant decreases of fractional anisotropy and increases of mean diffusivity in patients with MDD compared with healthy subjects in the corpus callosum, inferior fronto-occipital fasciculus, and left superior longitudinal fasciculus. However, we detected no significant difference in any brain region between mMDD and aMDD. Our results suggest that patients with MDD had reduced white matter integrity in some regions; however, there was no major difference between aMDD and mMDD. © 2014 The Authors. Psychiatry and Clinical Neurosciences © 2014 Japanese Society of Psychiatry and Neurology.

  8. Multisensory integration processing during olfactory-visual stimulation-An fMRI graph theoretical network analysis.

    PubMed

    Ripp, Isabelle; Zur Nieden, Anna-Nora; Blankenagel, Sonja; Franzmeier, Nicolai; Lundström, Johan N; Freiherr, Jessica

    2018-05-07

    In this study, we aimed to understand how whole-brain neural networks compute sensory information integration based on the olfactory and visual system. Task-related functional magnetic resonance imaging (fMRI) data was obtained during unimodal and bimodal sensory stimulation. Based on the identification of multisensory integration processing (MIP) specific hub-like network nodes analyzed with network-based statistics using region-of-interest based connectivity matrices, we conclude the following brain areas to be important for processing the presented bimodal sensory information: right precuneus connected contralaterally to the supramarginal gyrus for memory-related imagery and phonology retrieval, and the left middle occipital gyrus connected ipsilaterally to the inferior frontal gyrus via the inferior fronto-occipital fasciculus including functional aspects of working memory. Applied graph theory for quantification of the resulting complex network topologies indicates a significantly increased global efficiency and clustering coefficient in networks including aspects of MIP reflecting a simultaneous better integration and segregation. Graph theoretical analysis of positive and negative network correlations allowing for inferences about excitatory and inhibitory network architectures revealed-not significant, but very consistent-that MIP-specific neural networks are dominated by inhibitory relationships between brain regions involved in stimulus processing. © 2018 Wiley Periodicals, Inc.

  9. Left hemisphere fractional anisotropy increase in noise-induced tinnitus: a diffusion tensor imaging (DTI) study of white matter tracts in the brain.

    PubMed

    Benson, Randall R; Gattu, Ramtilak; Cacace, Anthony T

    2014-03-01

    Diffusion tensor imaging (DTI) is a contemporary neuroimaging modality used to study connectivity patterns and microstructure of white matter tracts in the brain. The use of DTI in the study of tinnitus is a relatively unexplored methodology with no studies focusing specifically on tinnitus induced by noise exposure. In this investigation, participants were two groups of adults matched for etiology, age, and degree of peripheral hearing loss, but differed by the presence or absence (+/-) of tinnitus. It is assumed that matching individuals on the basis of peripheral hearing loss, allows for differentiating changes in white matter microstructure due to hearing loss from changes due to the effects of chronic tinnitus. Alterations in white matter tracts, using the fractional anisotropy (FA) metric, which measures directional diffusion of water, were quantified using tract-based spatial statistics (TBSS) with additional details provided by in vivo probabilistic tractography. Our results indicate that 10 voxel clusters differentiated the two groups, including 9 with higher FA in the group with tinnitus. A decrease in FA was found for a single cluster in the group with tinnitus. However, seven of the 9 clusters with higher FA were in left hemisphere thalamic, frontal, and parietal white matter. These foci were localized to the anterior thalamic radiations and the inferior and superior longitudinal fasciculi. The two right-sided clusters with increased FA were located in the inferior fronto-occipital fasciculus and superior longitudinal fasciculus. The only decrease in FA for the tinnitus-positive group was found in the superior longitudinal fasciculus of the left parietal lobe. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Disconnection mechanism and regional cortical atrophy contribute to impaired processing of facial expressions and theory of mind in multiple sclerosis: a structural MRI study.

    PubMed

    Mike, Andrea; Strammer, Erzsebet; Aradi, Mihaly; Orsi, Gergely; Perlaki, Gabor; Hajnal, Andras; Sandor, Janos; Banati, Miklos; Illes, Eniko; Zaitsev, Alexander; Herold, Robert; Guttmann, Charles R G; Illes, Zsolt

    2013-01-01

    Successful socialization requires the ability of understanding of others' mental states. This ability called as mentalization (Theory of Mind) may become deficient and contribute to everyday life difficulties in multiple sclerosis. We aimed to explore the impact of brain pathology on mentalization performance in multiple sclerosis. Mentalization performance of 49 patients with multiple sclerosis was compared to 24 age- and gender matched healthy controls. T1- and T2-weighted three-dimensional brain MRI images were acquired at 3Tesla from patients with multiple sclerosis and 18 gender- and age matched healthy controls. We assessed overall brain cortical thickness in patients with multiple sclerosis and the scanned healthy controls, and measured the total and regional T1 and T2 white matter lesion volumes in patients with multiple sclerosis. Performances in tests of recognition of mental states and emotions from facial expressions and eye gazes correlated with both total T1-lesion load and regional T1-lesion load of association fiber tracts interconnecting cortical regions related to visual and emotion processing (genu and splenium of corpus callosum, right inferior longitudinal fasciculus, right inferior fronto-occipital fasciculus, uncinate fasciculus). Both of these tests showed correlations with specific cortical areas involved in emotion recognition from facial expressions (right and left fusiform face area, frontal eye filed), processing of emotions (right entorhinal cortex) and socially relevant information (left temporal pole). Thus, both disconnection mechanism due to white matter lesions and cortical thinning of specific brain areas may result in cognitive deficit in multiple sclerosis affecting emotion and mental state processing from facial expressions and contributing to everyday and social life difficulties of these patients.

  11. Regional neuronal network failure and cognition in late-onset sporadic Alzheimer disease.

    PubMed

    Carter, S F; Embleton, K V; Anton-Rodriguez, J M; Burns, A; Ralph, M A L; Herholz, K

    2014-06-01

    The severe cognitive deficits in Alzheimer disease are associated with structural lesions in gray and white matter in addition to changes in synaptic function. The current investigation studied the breakdown of the structure and function in regional networks involving the Papez circuit and extended neocortical association areas. Cortical volumetric and diffusion tensor imaging (3T MR imaging), positron-emission tomography with (18)F fluorodeoxyglucose on a high-resolution research tomograph, and comprehensive neuropsychological assessments were performed in patients with late-onset sporadic Alzheimer disease, those with mild cognitive impairment, and elderly healthy controls. Atrophy of the medial temporal lobes was the strongest and most consistent abnormality in patients with mild cognitive impairment and Alzheimer disease. Atrophy in the temporal, frontal, and parietal regions was most strongly related to episodic memory deficits, while deficits in semantic cognition were also strongly related to reductions of glucose metabolism in the posterior cingulate cortex and temporoparietal regions. Changes in fractional anisotropy within white matter tracts, particularly in the left cingulum bundle, uncinate fasciculus, superior longitudinal fasciculus, and inferior fronto-occipital fasciculus, were significantly associated with the cognitive deficits in multiple regression analyses. Posterior cingulate and orbitofrontal metabolic deficits appeared to be related to microstructural changes in projecting white matter tracts. Many lesioned network components within the Papez circuit and extended neocortical association areas were significantly associated with cognitive dysfunction in both mild cognitive impairment and late-onset sporadic Alzheimer disease. Hippocampal atrophy was the most prominent lesion, with associated impairment of the uncinate and cingulum white matter microstructures and hippocampal and posterior cingulate metabolic impairment. © 2014 by American

  12. Hemifacial Pain and Hemisensory Disturbance Referred from Occipital Neuralgia Caused by Pathological Vascular Contact of the Greater Occipital Nerve

    PubMed Central

    Choi, Jin-gyu

    2017-01-01

    Here we report a unique case of chronic occipital neuralgia caused by pathological vascular contact of the left greater occipital nerve. After 12 months of left-sided, unremitting occipital neuralgia, a hypesthesia and facial pain developed in the left hemiface. The decompression of the left greater occipital nerve from pathological contacts with the occipital artery resulted in immediate relief for hemifacial sensory change and facial pain, as well as chronic occipital neuralgia. Although referral of pain from the stimulation of occipital and cervical structures innervated by upper cervical nerves to the frontal head of V1 trigeminal distribution has been reported, the development of hemifacial sensory change associated with referred trigeminal pain from chronic occipital neuralgia is extremely rare. Chronic continuous and strong afferent input of occipital neuralgia caused by pathological vascular contact with the greater occipital nerve seemed to be associated with sensitization and hypersensitivity of the second-order neurons in the trigeminocervical complex, a population of neurons in the C2 dorsal horn characterized by receiving convergent input from dural and cervical structures. PMID:28331643

  13. Hemifacial Pain and Hemisensory Disturbance Referred from Occipital Neuralgia Caused by Pathological Vascular Contact of the Greater Occipital Nerve.

    PubMed

    Son, Byung-Chul; Choi, Jin-Gyu

    2017-01-01

    Here we report a unique case of chronic occipital neuralgia caused by pathological vascular contact of the left greater occipital nerve. After 12 months of left-sided, unremitting occipital neuralgia, a hypesthesia and facial pain developed in the left hemiface. The decompression of the left greater occipital nerve from pathological contacts with the occipital artery resulted in immediate relief for hemifacial sensory change and facial pain, as well as chronic occipital neuralgia. Although referral of pain from the stimulation of occipital and cervical structures innervated by upper cervical nerves to the frontal head of V1 trigeminal distribution has been reported, the development of hemifacial sensory change associated with referred trigeminal pain from chronic occipital neuralgia is extremely rare. Chronic continuous and strong afferent input of occipital neuralgia caused by pathological vascular contact with the greater occipital nerve seemed to be associated with sensitization and hypersensitivity of the second-order neurons in the trigeminocervical complex, a population of neurons in the C2 dorsal horn characterized by receiving convergent input from dural and cervical structures.

  14. Adverse effect profile of lidocaine injections for occipital nerve block in occipital neuralgia.

    PubMed

    Sahai-Srivastava, Soma; Subhani, Dawood

    2010-12-01

    To determine whether there are differences in the adverse effect profile between 1, 2 and 5% Lidocaine when used for occipital nerve blocks (ONB) in patients with occipital neuralgia. Occipital neuralgia is an uncommon cause of headaches. Little is known regarding the safety of Lidocaine injections for treatment in larger series of patients. Retrospective chart analysis of all ONB was performed at our headache clinic during a 6-year period on occipital neuralgia patients. 89 consecutive patients with occipital neuralgia underwent a total of 315 ONB. All the patients fulfilled the IHS criteria for Occipital Neuralgia. Demographic data were collected including age, gender, and ethnicity. The average age of this cohort was 53.25 years, and the majority of patients were females 69 (78%). Ethnicity of patients was diverse, with Caucasian 48(54%), Hispanics 31(35%), and others 10 (11%). 69 patients had 1%, 18 patients had 2% and 29 patient were given 5% Lidocaine. All Lidocaine injections were given with 20 mg Depo-medrol and the same injection technique and location were used for all the procedures. Eight patients (9%)had adverse effects to the Lidocaine and Depo-medrol injections, of which 5 received 5% and 3 received 1% Lidocaine. Majority of patients who had adverse effects were female 7(87%), and had received bilateral blocks (75%). ONB is a safe procedure with 1% Lidocaine; however, caution should be exerted with 5% in elderly patients, 70 or older, especially when administering bilateral injections.

  15. Fronto-limbic dysfunction in borderline personality disorder: a 18F-FDG positron emission tomography study.

    PubMed

    Salavert, José; Gasol, Miquel; Vieta, Eduard; Cervantes, Ana; Trampal, Carlos; Gispert, Juan Domingo

    2011-06-01

    Several functional neuroimaging studies have demonstrated abnormalities in fronto-limbic pathways when comparing borderline personality disorder (BPD) patients with controls. The present study aimed to evaluate regional cerebral metabolism in euthymic BPD patients with similar measured impulsivity levels by means of 18F-FDG PET during resting state and to compare them against a control group. The present study evaluates regional cerebral metabolism in 8 euthymic BPD patients with 18F-FDG PET during resting state as compared to 8 controls with similar socio-geographic characteristics. BPD patients presented a marked hypo-metabolism in frontal lobe and showed hyper-metabolism in motor cortex (paracentral lobules and post-central cortex), medial and anterior cingulus, occipital lobe, temporal pole, left superior parietal gyrus and right superior frontal gyrus. No significant differences appeared in basal ganglia or thalamus. Results reveal a dysfunction in patients' frontolimbic network during rest and provide further evidence for the importance of these regions in relation to BPD symptomatology. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Nurse-led treatment for occipital neuralgia.

    PubMed

    Pike, Denise; Amphlett, Alexander; Weatherby, Stuart

    Occipital neuralgia is a headache resulting from dysfunction of the occipital nerves. Medically resistant occipital neuralgia is treated by greater occipital nerve injection, which is traditionally performed by neurologists. A nurse-led clinic was developed to try to improve the service. Patient feedback showed that the clinic was positively perceived by patients, with most stating the nurse-led model was more efficient than the previous one, which had been led by consultants.

  17. Occipital-posterior cerebral artery bypass via the occipital interhemispheric approach

    PubMed Central

    Kazumata, Ken; Yokoyama, Yuka; Sugiyama, Taku; Asaoka, Katsuyuki

    2013-01-01

    Background: The unavailability of the superficial temporal artery (STA) and the location of lesions pose a more technically demanding challenge when compared with conventional STA-superior cerebellar or posterior cerebral artery (PCA) bypass in vascular reconstruction procedures. To describe a case series of patients with cerebrovascular lesions who were treated using an occipital artery (OA) to PCA bypass via the occipital interhemispheric approach. Methods: We retrospectively reviewed three consecutive cases of patients with cerebrovascular lesions who were treated using OA-PCA bypass. Results: OA-PCA bypass was performed via the occipital interhemispheric approach. This procedure included: (1) OA-PCA bypass (n = 1), and combined OA-posterior inferior cerebellar artery and OA-PCA saphenous vein interposition graft bypass (n = 1) in patients with vertebrobasilar ischemia; (2) OA-PCA radial artery interposition graft bypass in one patient with residual PCA aneurysm. Conclusions: OA-PCA bypass represents a useful alternative to conventional STA-SCA or PCA bypass. PMID:23956933

  18. Fronto-striatal contribution to lexical set-shifting.

    PubMed

    Simard, France; Joanette, Yves; Petrides, Michael; Jubault, Thomas; Madjar, Cécile; Monchi, Oury

    2011-05-01

    Fronto-striatal circuits in set-shifting have been examined in neuroimaging studies using the Wisconsin Card Sorting Task (WCST) that requires changing the classification rule for cards containing visual stimuli that differ in color, shape, and number. The present study examined whether this fronto-striatal contribution to the planning and execution of set-shifts is similar in a modified sorting task in which lexical rules are applied to word stimuli. Young healthy adults were scanned with functional magnetic resonance imaging while performing the newly developed lexical version of the WCST: the Wisconsin Word Sorting Task. Significant activation was found in a cortico-striatal loop that includes area 47/12 of the ventrolateral prefrontal cortex (PFC), and the caudate nucleus during the planning of a set-shift, and in another that includes the posterior PFC and the putamen during the execution of a set-shift. However, in the present lexical task, additional activation peaks were observed in area 45 of the ventrolateral PFC area during both matching periods. These results provide evidence that the functional contributions of the various fronto-striatal loops are not dependent on the modality of the information to be manipulated but rather on the specific executive processes required.

  19. Altered white matter microstructure is associated with social cognition and psychotic symptoms in 22q11.2 microdeletion syndrome

    PubMed Central

    Jalbrzikowski, Maria; Villalon-Reina, Julio E.; Karlsgodt, Katherine H.; Senturk, Damla; Chow, Carolyn; Thompson, Paul M.; Bearden, Carrie E.

    2014-01-01

    22q11.2 Microdeletion Syndrome (22q11DS) is a highly penetrant genetic mutation associated with a significantly increased risk for psychosis. Aberrant neurodevelopment may lead to inappropriate neural circuit formation and cerebral dysconnectivity in 22q11DS, which may contribute to symptom development. Here we examined: (1) differences between 22q11DS participants and typically developing controls in diffusion tensor imaging (DTI) measures within white matter tracts; (2) whether there is an altered age-related trajectory of white matter pathways in 22q11DS; and (3) relationships between DTI measures, social cognition task performance, and positive symptoms of psychosis in 22q11DS and typically developing controls. Sixty-four direction diffusion weighted imaging data were acquired on 65 participants (36 22q11DS, 29 controls). We examined differences between 22q11DS vs. controls in measures of fractional anisotropy (FA), axial diffusivity (AD), and radial diffusivity (RD), using both a voxel-based and region of interest approach. Social cognition domains assessed were: Theory of Mind and emotion recognition. Positive symptoms were assessed using the Structured Interview for Prodromal Syndromes. Compared to typically developing controls, 22q11DS participants showed significantly lower AD and RD in multiple white matter tracts, with effects of greatest magnitude for AD in the superior longitudinal fasciculus. Additionally, 22q11DS participants failed to show typical age-associated changes in FA and RD in the left inferior longitudinal fasciculus. Higher AD in the left inferior fronto-occipital fasciculus (IFO) and left uncinate fasciculus was associated with better social cognition in 22q11DS and controls. In contrast, greater severity of positive symptoms was associated with lower AD in bilateral regions of the IFO in 22q11DS. White matter microstructure in tracts relevant to social cognition is disrupted in 22q11DS, and may contribute to psychosis risk. PMID

  20. Occipital Neuralgia after Occipital Cervical Fusion to Treat an Unstable Jefferson Fracture

    PubMed Central

    Kong, Seong Ju; Park, Jin Hoon

    2012-01-01

    In this report we describe a patient with an unstable Jefferson fracture who was treated by occipitocervical fusion and later reported sustained postoperative occipital neuralgia. A 70-year-old male was admitted to our center with a Jefferson fracture induced by a car accident. Preoperative lateral X-ray revealed an atlanto-dens interval of 4.8mm and a C1 canal anterior-posterior diameter of 19.94mm. We performed fusion surgery from the occiput to C5 without decompression of C1. The patient reported sustained continuous pain throughout the following year despite strong analgesics. The pain dermatome was located mainly in the great occipital nerve territory and posterior neck. Magnetic resonance images revealed no evidence of cord compression, however a C1 lamina compressed dural sac and C2 root compression could not be excluded. We performed bilateral C2 root decompression via a C1 laminectomy. After decompression, bilateral C2 root redundancy was identified by palpation. After decompression surgery, pain was reduced. This case indicates that occipital neuralgia, suggesting the need for diagnostic block, should be considered in the differential diagnosis of patients with sustained occipital headache after occipitocervical fusion surgery. PMID:25983846

  1. Greater occipital nerve excision for occipital neuralgia refractory to nerve decompression.

    PubMed

    Ducic, Ivica; Felder, John M; Khan, Neelam; Youn, Sojin

    2014-02-01

    Patients who undergo occipital nerve decompression for treatment of migraine headaches due to occipital neuralgia have already exhausted medical options for treatment. When surgical decompression fails, it is unknown how best to help these patients. We examine our experience performing greater occipital nerve (GON) excision for pain relief in this select, refractory group of patients. A retrospective chart review supplemented by a follow-up survey was performed on all patients under the care of the senior author who had undergone GON excision after failing occipital nerve decompression. Headache severity was measured by the migraine headache index (MHI) and disability by the migraine disability assessment. Success rate was considered the percentage of patients who experienced a 50% or greater reduction in MHI at final follow-up. Seventy-one of 108 patients responded to the follow-up survey and were included in the study. Average follow-up was 33 months. The success rate of surgery was 70.4%; 41% of patients showed a 90% or greater decrease in MHI. The MHI changed, on average, from 146 to 49, for an average reduction of 63% (P < 0.001). Migraine disability assessment scores decreased by an average of 49% (P < 0.001). Multivariate analysis revealed that a diagnosis of cervicogenic headache was associated with failure of surgery. The most common adverse effect was bothersome numbness or hypersensitivity in the denervated area, occurring in up to 31% of patients. Excision of the GON is a valid option for pain relief in patients with occipital headaches refractory to both medical treatment and surgical decompression. Potential risks include failure in patients with cervicogenic headache and hypersensitivity of the denervated area. To provide the best outcome to these patients who have failed all previous medical and surgical treatments, a multidisciplinary team approach remains critical.

  2. Vocabulary growth rate from preschool to school-age years is reflected in the connectivity of the arcuate fasciculus in 14-year-old children.

    PubMed

    Su, Mengmeng; Thiebaut de Schotten, Michel; Zhao, Jingjing; Song, Shuang; Zhou, Wei; Gong, Gaolang; McBride, Catherine; Ramus, Franck; Shu, Hua

    2018-02-06

    The acquisition of language involves the functional specialization of several cortical regions. Connectivity between these brain regions may also change with the development of language. Various studies have demonstrated that the arcuate fasciculus was essential for language function. Vocabulary learning is one of the most important skills in language acquisition. In the present longitudinal study, we explored the influence of vocabulary development on the anatomical properties of the arcuate fasciculus. Seventy-nine Chinese children participated in this study. Between age 4 and age 10, they were administered the same vocabulary task repeatedly. Following a previous study, children's vocabulary developmental trajectories were clustered into three subgroups (consistently good, catch-up, consistently poor). At age 14, diffusion tensor imaging data were collected. Using ROI-based tractography, the anterior, posterior and direct segments of the bilateral arcuate fasciculus were delineated in each child's native space. Group comparisons showed a significantly reduced fractional anisotropy in the left arcuate fasciculus of children in the consistently poor group, in particular in the posterior and direct segments of the arcuate fasciculus. No group differences were observed in the right hemisphere, nor in the left anterior segment. Further regression analyses showed that the rate of vocabulary development, rather than the initial vocabulary size, was a specific predictor of the left arcuate fasciculus connectivity. © 2018 John Wiley & Sons Ltd.

  3. Anatomical consideration of the occipital cutaneous nerves and artery for the safe treatment of occipital neuralgia.

    PubMed

    Shin, Kang-Jae; Kim, Hong-San; O, Jehoon; Kwon, Hyun-Jin; Yang, Hun-Mu

    2018-05-12

    There is no standardized approach to the greater occipital nerve (GON) block technique for treating occipital neuralgia. The aim of the present study was to validate the previously-suggested guidelines for conventional injection techniques and to provide navigational guidelines for safe GON block. The GON, lesser occipital nerve (LON) and occipital artery (OA) were carefully dissected in the occipital region of embalmed cadavers. Using a 3D digitizer, the GON, LON, and OA were observed on the two reference lines. The distances between the landmarks were recorded and statistically analyzed. On the superior nuchal line, the mean distances between the external occipital protuberance (EOP) and the most medial branch of the GON was 33.5 mm. The mean distance between the EOP and the most medial branch of the OA was 37.4 mm. On the EOP-mastoid process (MP) line, the GON was on the medial third and the LON the lateral third of the EOP-MP line. The safe injection points on the EOP-MP line are about 3 cm from the EOP, 1 cm inferior parallel to the EOP-MP line, and about 3 cm away from the MP. This article is protected by copyright. All rights reserved. © 2018 Wiley Periodicals, Inc.

  4. Disconnection as a mechanism for social cognition impairment in multiple sclerosis.

    PubMed

    Batista, Sonia; Alves, Carolina; d'Almeida, Otília C; Afonso, Ana; Félix-Morais, Ricardo; Pereira, João; Macário, Carmo; Sousa, Lívia; Castelo-Branco, Miguel; Santana, Isabel; Cunha, Luís

    2017-07-04

    To assess the contribution of microstructural normal-appearing white matter (NAWM) damage to social cognition impairment, specifically in the theory of mind (ToM), in multiple sclerosis (MS). We enrolled consecutively 60 patients with MS and 60 healthy controls (HC) matched on age, sex, and education level. All participants underwent ToM testing (Eyes Test, Videos Test) and 3T brain MRI including conventional and diffusion tensor imaging sequences. Tract-based spatial statistics (TBSS) were applied for whole-brain voxel-wise analysis of fractional anisotropy (FA) and mean diffusivity (MD) on NAWM. Patients with MS performed worse on both tasks of ToM compared to HC (Eyes Test 58.7 ± 13.8 vs 81.9 ± 10.4, p < 0.001, Hedges g -1.886; Videos Test 75.3 ± 9.3 vs 88.1 ± 7.1, p < 0.001, Hedges g -1.537). Performance on ToM tests was correlated with higher values of FA and lower values of MD across widespread white matter tracts. The largest effects (≥90% of voxels with statistical significance) for the Eyes Test were body and genu of corpus callosum, fornix, tapetum, uncinate fasciculus, and left inferior cerebellar peduncle, and for the Videos Test genu and splenium of corpus callosum, fornix, uncinate fasciculus, left tapetum, and right superior fronto-occipital fasciculus. These results indicate that a diffuse pattern of NAWM damage in MS contributes to social cognition impairment in the ToM domain, probably due to a mechanism of disconnection within the social brain network. Gray matter pathology is also expected to have an important role; thus further research is required to clarify the neural basis of social cognition impairment in MS. © 2017 American Academy of Neurology.

  5. White matter microstructural alterations in clinically isolated syndrome and multiple sclerosis.

    PubMed

    Huang, Jing; Liu, Yaou; Zhao, Tengda; Shu, Ni; Duan, Yunyun; Ren, Zhuoqiong; Sun, Zheng; Liu, Zheng; Chen, Hai; Dong, Huiqing; Li, Kuncheng

    2018-07-01

    This study aims to determine whether and how diffusion alteration occurs in the earliest stage of multiple sclerosis (MS) and the differences in diffusion metrics between CIS and MS by using the tract-based spatial statistics (TBSS) method based on diffusion tensor imaging (DTI). Thirty-six CIS patients (mean age ± SD: 34.0 years ± 12.6), 36 relapsing-remitting multiple sclerosis (RRMS) patients (mean age ± SD: 35.0 years ± 9.4) and 36 age- and gender-matched normal controls (NCs) were included in this study. Voxel-wise analyses were performed with TBSS using multiple diffusion metrics, including fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (λ 1 ) and radial diffusivity (λ 23 ). In the CIS patients, TBSS analyses revealed diffusion alterations in a few white matter (WM) regions including the anterior thalamic radiation, corticospinal tract, inferior fronto-occipital fasciculus, superior longitudinal fasciculus, body and splenium of the corpus callosum, internal capsule, external capsule, and cerebral peduncle. MS patients showed more widespread diffusion changes (decreased FA, increased λ 1 , λ 23 and MD) than CIS. Exploratory analyses also revealed the possible associations between WM diffusion metrics and clinical variables (Expanded Disability Status Scale and disease duration) in the patients. This study provided imaging evidence for DTI abnormalities in CIS and MS and suggested that DTI can improve our knowledge of the path physiology of CIS and MS and clinical progression. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Infiltrative cervical lesions causing symptomatic occipital neuralgia.

    PubMed

    Sierra-Hidalgo, F; Ruíz, J; Morales-Cartagena, A; Martínez-Salio, A; Serna, J de la; Hernández-Gallego, J

    2011-10-01

    Occipital neuralgia is a well-recognized cause of posterior head and neck pain that may associate mild sensory changes in the cutaneous distribution of the occipital nerves, lacking a recognizable local structural aetiology in most cases. Atypical clinical features or an abnormal neurological examination are alerts for a potential underlying cause of pain, although cases of clinically typical occipital neuralgia as isolated manifestation of lesions of the cervical spinal cord, cervical roots, or occipital nerves have been increasingly reported. We describe two cases (one with typical and another one with atypical clinical features) of occipital neuralgia secondary to paravertebral pyomyositis and vertebral relapse of multiple myeloma in patients with relevant medical history that aroused the possibility of an underlying structural lesion. We discuss the need for cranio-cervical magnetic resonance imaging in all patients with occipital neuralgia, even when typical clinical features are present and neurological examination is completely normal.

  7. White matter lesional predictors of chronic visual neglect: a longitudinal study

    PubMed Central

    Lunven, Marine; Thiebaut De Schotten, Michel; Bourlon, Clémence; Duret, Christophe; Migliaccio, Raffaella; Rode, Gilles

    2015-01-01

    Chronic visual neglect prevents brain-damaged patients from returning to an independent and active life. Detecting predictors of persistent neglect as early as possible after the stroke is therefore crucial to plan the relevant interventions. Neglect signs do not only depend on focal brain lesions, but also on dysfunction of large-scale brain networks connected by white matter bundles. We explored the relationship between markers of axonal degeneration occurring after the stroke and visual neglect chronicity. A group of 45 patients with unilateral strokes in the right hemisphere underwent cognitive testing for neglect twice, first at the subacute phase (<3 months after onset) and then at the chronic phase (>1 year). For each patient, magnetic resonance imaging including diffusion sequences was performed at least 4 months after the stroke. After masking each patient’s lesion, we used tract-based spatial statistics to obtain a voxel-wise statistical analysis of the fractional anisotropy data. Twenty-seven patients had signs of visual neglect at initial testing. Only 10 of these patients had recovered from neglect at follow-up. When compared with patients without neglect, the group including all subacute neglect patients had decreased fractional anisotropy in the second (II) and third (III) branches of the right superior longitudinal fasciculus, as well as in the splenium of the corpus callosum. The subgroup of chronic patients showed reduced fractional anisotropy in a portion the splenium, the forceps major, which provides interhemispheric communication between regions of the occipital lobe and of the superior parietal lobules. The severity of neglect correlated with fractional anisotropy values in superior longitudinal fasciculus II/III for subacute patients and in its caudal portion for chronic patients. Our results confirm a key role of fronto-parietal disconnection in the emergence and chronic persistence of neglect, and demonstrate an implication of caudal

  8. Music therapy modulates fronto-temporal activity in rest-EEG in depressed clients.

    PubMed

    Fachner, Jörg; Gold, Christian; Erkkilä, Jaakko

    2013-04-01

    Fronto-temporal areas process shared elements of speech and music. Improvisational psychodynamic music therapy (MT) utilizes verbal and musical reflection on emotions and images arising from clinical improvisation. Music listening is shifting frontal alpha asymmetries (FAA) in depression, and increases frontal midline theta (FMT). In a two-armed randomized controlled trial (RCT) with 79 depressed clients (with comorbid anxiety), we compared standard care (SC) versus MT added to SC at intake and after 3 months. We found that MT significantly reduced depression and anxiety symptoms. The purpose of this study is to test whether or not MT has an impact on anterior fronto-temporal resting state alpha and theta oscillations. Correlations between anterior EEG, Montgomery-Åsberg Depression Rating Scale (MADRS) and the Hospital Anxiety and Depression Scale-Anxiety Subscale (HADS-A), power spectral analysis (topography, means, asymmetry) and normative EEG database comparisons were explored. After 3 month of MT, lasting changes in resting EEG were observed, i.e., significant absolute power increases at left fronto-temporal alpha, but most distinct for theta (also at left fronto-central and right temporoparietal leads). MT differed to SC at F7-F8 (z scored FAA, p < .03) and T3-T4 (theta, p < .005) asymmetry scores, pointing towards decreased relative left-sided brain activity after MT; pre/post increased FMT and decreased HADS-A scores (r = .42, p < .05) indicate reduced anxiety after MT. Verbal reflection and improvising on emotions in MT may induce neural reorganization in fronto-temporal areas. Alpha and theta changes in fronto-temporal and temporoparietal areas indicate MT action and treatment effects on cortical activity in depression, suggesting an impact of MT on anxiety reduction.

  9. Occipital neuralgia evoked by facial herpes zoster infection.

    PubMed

    Kihara, Takeshi; Shimohama, Shun

    2006-01-01

    Occipital neuralgia is a pain syndrome which may usually be induced by spasms of the cervical muscles or trauma to the greater or lesser occipital nerves. We report a patient with occipital neuralgia followed by facial herpes lesion. A 74-year-old male experienced sudden-onset severe headache in the occipital area. The pain was localized to the distribution of the right side of the greater occipital nerve, and palpation of the right greater occipital nerve reproduces the pain. He was diagnosed with occipital neuralgia according to ICHD-II criteria. A few days later, the occipital pain was followed by reddening of the skin and the appearance, of varying size, of vesicles on the right side of his face (the maxillary nerve and the mandibular nerve region). This was diagnosed as herpes zoster. This case represents a combination of facial herpes lesions and pain in the C2 and C3 regions. The pain syndromes can be confusing, and the classic herpes zoster infection should be considered even when no skin lesions are established.

  10. Segregated Fronto-Cerebellar Circuits Revealed by Intrinsic Functional Connectivity

    PubMed Central

    Buckner, Randy L.

    2009-01-01

    Multiple, segregated fronto-cerebellar circuits have been characterized in nonhuman primates using transneuronal tracing techniques including those that target prefrontal areas. Here, we used functional connectivity MRI (fcMRI) in humans (n = 40) to identify 4 topographically distinct fronto-cerebellar circuits that target 1) motor cortex, 2) dorsolateral prefrontal cortex, 3) medial prefrontal cortex, and 4) anterior prefrontal cortex. All 4 circuits were replicated and dissociated in an independent data set (n = 40). Direct comparison of right- and left-seeded frontal regions revealed contralateral lateralization in the cerebellum for each of the segregated circuits. The presence of circuits that involve prefrontal regions confirms that the cerebellum participates in networks important to cognition including a specific fronto-cerebellar circuit that interacts with the default network. Overall, the extent of the cerebellum associated with prefrontal cortex included a large portion of the posterior hemispheres consistent with a prominent role of the cerebellum in nonmotor functions. We conclude by providing a provisional map of the topography of the cerebellum based on functional correlations with the frontal cortex. PMID:19592571

  11. Diffusion tensor tractography of the arcuate fasciculus in patients with brain tumors: Comparison between deterministic and probabilistic models

    PubMed Central

    Li, Zhixi; Peck, Kyung K.; Brennan, Nicole P.; Jenabi, Mehrnaz; Hsu, Meier; Zhang, Zhigang; Holodny, Andrei I.; Young, Robert J.

    2014-01-01

    Purpose The purpose of this study was to compare the deterministic and probabilistic tracking methods of diffusion tensor white matter fiber tractography in patients with brain tumors. Materials and Methods We identified 29 patients with left brain tumors <2 cm from the arcuate fasciculus who underwent pre-operative language fMRI and DTI. The arcuate fasciculus was reconstructed using a deterministic Fiber Assignment by Continuous Tracking (FACT) algorithm and a probabilistic method based on an extended Monte Carlo Random Walk algorithm. Tracking was controlled using two ROIs corresponding to Broca’s and Wernicke’s areas. Tracts in tumoraffected hemispheres were examined for extension between Broca’s and Wernicke’s areas, anterior-posterior length and volume, and compared with the normal contralateral tracts. Results Probabilistic tracts displayed more complete anterior extension to Broca’s area than did FACT tracts on the tumor-affected and normal sides (p < 0.0001). The median length ratio for tumor: normal sides was greater for probabilistic tracts than FACT tracts (p < 0.0001). The median tract volume ratio for tumor: normal sides was also greater for probabilistic tracts than FACT tracts (p = 0.01). Conclusion Probabilistic tractography reconstructs the arcuate fasciculus more completely and performs better through areas of tumor and/or edema. The FACT algorithm tends to underestimate the anterior-most fibers of the arcuate fasciculus, which are crossed by primary motor fibers. PMID:25328583

  12. Botulinum toxin occipital nerve block for the treatment of severe occipital neuralgia: a case series.

    PubMed

    Kapural, Leonardo; Stillman, Mark; Kapural, Miranda; McIntyre, Patrick; Guirgius, Maged; Mekhail, Nagy

    2007-12-01

    Persistent occipital neuralgia can produce severe headaches that are difficult to control by conservative or surgical approaches. We retrospectively describe a series of six patients with severe occipital neuralgia who received conservative and interventional therapies, including oral antidepressants, membrane stabilizers, opioids, and traditional occipital nerve blocks without significant relief. This group then underwent occipital nerve blocks using the botulinum toxin type A (BoNT-A) BOTOX Type A (Allergan, Inc., Irvine, CA, U.S.A.) 50 U for each block (100 U if bilateral). Significant decreases in pain Visual Analog Scale (VAS) scores and improvement in Pain Disability Index (PDI) were observed at four weeks follow-up in five out of six patients following BoNT-A occipital nerve block. The mean VAS score changed from 8 +/- 1.8 (median score of 8.5) to 2 +/- 2.7 (median score of 1), while PDI improved from 51.5 +/- 17.6 (median 56) to 19.5 +/- 21 (median 17.5) and the duration of the pain relief increased to an average of 16.3 +/- 3.2 weeks (median 16) from an average of 1.9 +/- 0.5 weeks (median 2) compared to diagnostic 0.5% bupivacaine block. Following block resolution, the average pain scores and PDI returned to similar levels as before BoNT-A block. In conclusion, BoNT-A occipital nerve blocks provided a much longer duration of analgesia than diagnostic local anesthetics. The functional capacity improvement measured by PDI was profound enough in the majority of the patients to allow patients to resume their regular daily activities for a period of time.

  13. Micro-surgical decompression for greater occipital neuralgia.

    PubMed

    Li, Fuyong; Ma, Yi; Zou, Jianjun; Li, Yanfeng; Wang, Bin; Huang, Haitao; Wang, Quancai; Li, Liang

    2012-01-01

    To evaluate the clinical effect of micro-surgical decompression of greater occipital nerve for greater occipital neuralgia (GON). 76 patients underwent surgical decompression of the great occipital nerve. A nerve block was tested before operation. The headache rapidly resolved after infiltration of 1% Lidocaine near the tender area of the nerve trunk. 89 procedures were performed for 76 patients. The mean follow up duration was 20 months (range 7-52 months). The headache symptoms of 68 (89.5%) patients were completely resolved, and another 5 (6.6%) patients were significantly relieved without the need for any further medical treatment. Three (3.9%) patients experienced recurrence of the disorder. All patients experienced hypoesthesia of the innervated area of the great occipital nerve. They recovered gradually within 1 to 6 months after surgery. Micro-surgical decompression of the greater occipital nerve is a safe and effective method for greater occipital neuralgia. We believe our findings support the notion that the technique should also be considered as the first-line procedure for GON.

  14. Damage to the anterior arcuate fasciculus predicts non-fluent speech production in aphasia.

    PubMed

    Fridriksson, Julius; Guo, Dazhou; Fillmore, Paul; Holland, Audrey; Rorden, Chris

    2013-11-01

    Non-fluent aphasia implies a relatively straightforward neurological condition characterized by limited speech output. However, it is an umbrella term for different underlying impairments affecting speech production. Several studies have sought the critical lesion location that gives rise to non-fluent aphasia. The results have been mixed but typically implicate anterior cortical regions such as Broca's area, the left anterior insula, and deep white matter regions. To provide a clearer picture of cortical damage in non-fluent aphasia, the current study examined brain damage that negatively influences speech fluency in patients with aphasia. It controlled for some basic speech and language comprehension factors in order to better isolate the contribution of different mechanisms to fluency, or its lack. Cortical damage was related to overall speech fluency, as estimated by clinical judgements using the Western Aphasia Battery speech fluency scale, diadochokinetic rate, rudimentary auditory language comprehension, and executive functioning (scores on a matrix reasoning test) in 64 patients with chronic left hemisphere stroke. A region of interest analysis that included brain regions typically implicated in speech and language processing revealed that non-fluency in aphasia is primarily predicted by damage to the anterior segment of the left arcuate fasciculus. An improved prediction model also included the left uncinate fasciculus, a white matter tract connecting the middle and anterior temporal lobe with frontal lobe regions, including the pars triangularis. Models that controlled for diadochokinetic rate, picture-word recognition, or executive functioning also revealed a strong relationship between anterior segment involvement and speech fluency. Whole brain analyses corroborated the findings from the region of interest analyses. An additional exploratory analysis revealed that involvement of the uncinate fasciculus adjudicated between Broca's and global aphasia

  15. Damage to the anterior arcuate fasciculus predicts non-fluent speech production in aphasia

    PubMed Central

    Guo, Dazhou; Fillmore, Paul; Holland, Audrey; Rorden, Chris

    2013-01-01

    Non-fluent aphasia implies a relatively straightforward neurological condition characterized by limited speech output. However, it is an umbrella term for different underlying impairments affecting speech production. Several studies have sought the critical lesion location that gives rise to non-fluent aphasia. The results have been mixed but typically implicate anterior cortical regions such as Broca’s area, the left anterior insula, and deep white matter regions. To provide a clearer picture of cortical damage in non-fluent aphasia, the current study examined brain damage that negatively influences speech fluency in patients with aphasia. It controlled for some basic speech and language comprehension factors in order to better isolate the contribution of different mechanisms to fluency, or its lack. Cortical damage was related to overall speech fluency, as estimated by clinical judgements using the Western Aphasia Battery speech fluency scale, diadochokinetic rate, rudimentary auditory language comprehension, and executive functioning (scores on a matrix reasoning test) in 64 patients with chronic left hemisphere stroke. A region of interest analysis that included brain regions typically implicated in speech and language processing revealed that non-fluency in aphasia is primarily predicted by damage to the anterior segment of the left arcuate fasciculus. An improved prediction model also included the left uncinate fasciculus, a white matter tract connecting the middle and anterior temporal lobe with frontal lobe regions, including the pars triangularis. Models that controlled for diadochokinetic rate, picture-word recognition, or executive functioning also revealed a strong relationship between anterior segment involvement and speech fluency. Whole brain analyses corroborated the findings from the region of interest analyses. An additional exploratory analysis revealed that involvement of the uncinate fasciculus adjudicated between Broca’s and global aphasia

  16. A Combined fMRI and DTI Examination of Functional Language Lateralization and Arcuate Fasciculus Structure: Effects of Degree versus Direction of Hand Preference

    ERIC Educational Resources Information Center

    Propper, Ruthe E.; O'Donnell, Lauren J.; Whalen, Stephen; Tie, Yanmei; Norton, Isaiah H.; Suarez, Ralph O.; Zollei, Lilla; Radmanesh, Alireza; Golby, Alexandra J.

    2010-01-01

    The present study examined the relationship between hand preference degree and direction, functional language lateralization in Broca's and Wernicke's areas, and structural measures of the arcuate fasciculus. Results revealed an effect of degree of hand preference on arcuate fasciculus structure, such that consistently-handed individuals,…

  17. Alterations of the occipital lobe in schizophrenia

    PubMed Central

    Tohid, Hassaan; Faizan, Muhammad; Faizan, Uzma

    2015-01-01

    The relationship of the occipital lobe of the brain with schizophrenia is not commonly studied; however, this topic is considered an essential subject matter among clinicians and scientists. We conducted this systematic review to elaborate the relationship in depth. We found that most schizophrenic patients show normal occipital anatomy and physiology, a minority showed dwindled values, and some demonstrated augmented function and structure. The findings are laborious to incorporate within single disease models that present the involvement of the occipital lobe in schizophrenia. Schizophrenia progresses clinically in the mid-twenties and thirties and its prognosis is inadequate. Changes in the volume, the gray matter, and the white matter in the occipital lobe are quite evident; however, the mechanism behind this involvement is not yet fully understood. Therefore, we recommend further research to explore the occipital lobe functions and volumes across the different stages of schizophrenia. PMID:26166588

  18. Idiopathic hypertrophic pachymeningitis presenting with occipital neuralgia.

    PubMed

    Auboire, Laurent; Boutemy, Jonathan; Constans, Jean Marc; Le Gallou, Thomas; Busson, Philippe; Bienvenu, Boris

    2015-03-01

    Although occipital neuralgia is usually caused by degenerative arthropathy, nearly 20 other aetiologies may lead to this condition. We present the first case report of hypertrophic pachymeningitis revealed by isolated occipital neuralgia. Idiopathic hypertrophic pachymeningitis is a plausible cause of occipital neuralgia and may present without cranial-nerve palsy. There is no consensus on the treatment for idiopathic hypertrophic pachymeningitis, but the usual approach is to start corticotherapy and then to add immunosuppressants. When occipital neuralgia is not clinically isolated or when a first-line treatment fails, another disease diagnosis should be considered. However, the cost effectiveness of extended investigations needs to be considered.

  19. Bidirectional iterative parcellation of diffusion weighted imaging data: Separating cortical regions connected by the arcuate fasciculus and extreme capsule

    PubMed Central

    Patterson, Dianne K.; Van Petten, Cyma; Beeson, Pélagie M.; Rapcsak, Steven Z.; Plante, Elena

    2014-01-01

    This paper introduces a Bidirectional Iterative Parcellation (BIP) procedure designed to identify the location and size of connected cortical regions (parcellations) at both ends of a white matter tract in diffusion weighted images. The procedure applies the FSL option “probabilistic tracking with classification targets” in a bidirectional and iterative manner. To assess the utility of BIP, we applied the procedure to the problem of parcellating a limited set of well-established gray matter seed regions associated with the dorsal (arcuate fasciculus/superior longitudinal fasciculus) and ventral (extreme capsule fiber system) white matter tracts in the language networks of 97 participants. These left hemisphere seed regions and the two white matter tracts, along with their right hemisphere homologues, provided an excellent test case for BIP because the resulting parcellations overlap and their connectivity via the arcuate fasciculi and extreme capsule fiber systems are well studied. The procedure yielded both confirmatory and novel findings. Specifically, BIP confirmed that each tract connects within the seed regions in unique, but expected ways. Novel findings included increasingly left-lateralized parcellations associated with the arcuate fasciculus/superior longitudinal fasciculus as a function of age and education. These results demonstrate that BIP is an easily implemented technique that successfully confirmed cortical connectivity patterns predicted in the literature, and has the potential to provide new insights regarding the architecture of the brain. PMID:25173414

  20. Altered white matter microstructure in adolescent substance users.

    PubMed

    Bava, Sunita; Frank, Lawrence R; McQueeny, Tim; Schweinsburg, Brian C; Schweinsburg, Alecia D; Tapert, Susan F

    2009-09-30

    Chronic marijuana use during adolescence is frequently comorbid with heavy alcohol consumption and associated with CNS alterations, yet the influence of early cannabis and alcohol use on microstructural white matter integrity is unclear. Building on evidence that cannabinoid receptors are present in myelin precursors and affect glial cell processing, and that excessive ethanol exposure is associated with persistently impaired myelination, we used diffusion tensor imaging (DTI) to characterize white matter integrity in heavy substance using and non-using adolescents. We evaluated 36 marijuana and alcohol-using (MJ+ALC) adolescents (ages 16-19) and 36 demographically similar non-using controls with DTI. The diffusion parameters fractional anisotropy (FA) and mean diffusivity (MD) were subjected to whole-brain voxelwise group comparisons using tract-based spatial statistics (Smith, S.M., Jenkinson, M., Johansen-Berg, H., Rueckert, D., Nichols, T.E., Mackay, C.E., Watkins, K.E., Ciccarelli, O., Cader, M.Z., Matthews, P.M., Behrens, T.E., 2006. Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. Neuroimage 31, 1487-1505). MJ+ALC teens had significantly lower FA than controls in 10 regions, including left superior longitudinal fasciculus (SLF), left postcentral gyrus, bilateral crus cerebri, and inferior frontal and temporal white matter tracts. These diminutions occurred in the context of increased FA in right occipital, internal capsule, and SLF regions. Changes in MD were less distributed, but increased MD was evident in the right occipital lobe, whereas the left inferior longitudinal fasciculus showed lower MD in MJ+ALC users. Findings suggest that fronto-parietal circuitry may be particularly impacted in adolescent users of the most prevalent intoxicants: marijuana and alcohol. Disruptions to white matter in this young group could indicate aberrant axonal and myelin maturation with resultant compromise of fiber integrity. Findings of

  1. Fronto-orbital feminization technique. A surgical strategy using fronto-orbital burring with or without eggshell technique to optimize the risk/benefit ratio.

    PubMed

    Villepelet, A; Jafari, A; Baujat, B

    2018-05-04

    The demand for facial feminization is increasing in transsexual patients. Masculine foreheads present extensive supraorbital bossing with a more acute glabellar angle, whereas female foreheads show softer features. The aim of this article is to describe our surgical technique for fronto-orbital feminization. The mask-lift technique is an upper face-lift. It provides rejuvenation by correcting collapsed features, and fronto-orbital feminization through burring of orbital rims and lateral canthopexies. Depending on the size of the frontal sinus and the thickness of its anterior wall, frontal remodeling is achieved using simple burring or by means of the eggshell technique. Orbital remodeling comprises a superolateral orbital opening, a reduction of ridges and a trough at the lateral orbital rim to support the lateral canthopexy. Frontal, corrugator and procerus myectomies, plus minimal scalp excision, complete the surgery. Our technique results in significant, natural-looking feminization. No complications were observed in our series of patients. The eggshell technique is an alternative to bone flap on over-pneumatized sinus. Fronto-orbital feminization fits into a wider surgical strategy. It can be associated to rhinoplasty, genioplasty, mandibular angle remodeling, face lift and laryngoplasty. Achieving facial feminization in 2 or 3 stages improves psychological and physiological tolerance. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  2. Diffusion tensor imaging depicting damage to the arcuate fasciculus in patients with conduction aphasia: a study of the Wernicke-Geschwind model.

    PubMed

    Zhang, Yumei; Wang, Chunxue; Zhao, Xingquan; Chen, Hongyan; Han, Zaizhu; Wang, Yongjun

    2010-09-01

    In contrast with disorders of comprehension and spontaneous expression, conduction aphasia is characterized by poor repetition, which is a hallmark of the syndrome. There are many theories on the repetition impairment of conduction aphasia. The disconnection theory suggests that a damaged in the arcuate fasciculus, which connects Broca's and Wernicke's area, is the cause of conduction aphasia. In this study, we examined the disconnection theory. We enrolled ten individuals with conduction aphasia and ten volunteers, and analysed their arcuate fasciculus using diffusion tensor imaging (DTI) and obtained fractional anisotropy (FA) values. Then, the results of the left hemisphere were compared with those of the right hemisphere, and the results of the conduction aphasia cases were compared with those of the volunteers. There were significant differences in the FA values between the left and right hemispheres of volunteers and conduction cases. In volunteers, there was an increase in fiber in the left hemisphere compared with the right hemisphere, whereas there was an increase in fiber in the right hemisphere compared with the left hemisphere in conduction aphasia patients. The results of diffusion tensor tractography suggested that the configuration of the arcuate fasciculus was different between conduction aphasia patients and volunteers, suggesting that there was damage to the arcuate fasciculus of conduction aphasia cases. The damage seen in the arcuate fasciculus of conduction aphasia cases in this study supports the Wernicke-Geschwind disconnection theory. A disconnection between Broca's area and Wernicke's area is likely to be one mechanism of conduction aphasia repetition impairment.

  3. Occipital peripheral nerve stimulation in the management of chronic intractable occipital neuralgia in a patient with neurofibromatosis type 1: a case report.

    PubMed

    Skaribas, Ioannis; Calvillo, Octavio; Delikanaki-Skaribas, Evangelia

    2011-05-10

    Occipital peripheral nerve stimulation is an interventional pain management therapy that provides beneficial results in the treatment of refractory chronic occipital neuralgia. Herein we present a first-of-its-kind case study of a patient with neurofibromatosis type 1 and bilateral occipital neuralgia treated with occipital peripheral nerve stimulation. A 42-year-old Caucasian woman presented with bilateral occipital neuralgia refractory to various conventional treatments, and she was referred for possible treatment with occipital peripheral nerve stimulation. She was found to be a suitable candidate for the procedure, and she underwent implantation of two octapolar stimulating leads and a rechargeable, programmable, implantable generator. The intensity, severity, and frequency of her symptoms resolved by more than 80%, but an infection developed at the implantation site two months after the procedure that required explantation and reimplantation of new stimulating leads three months later. To date she continues to experience symptom resolution of more than 60%. These results demonstrate the significance of peripheral nerve stimulation in the management of refractory occipital neuralgias in patients with neurofibromatosis type 1 and the possible role of neurofibromata in the development of occipital neuralgia in these patients.

  4. Occipital peripheral nerve stimulation in the management of chronic intractable occipital neuralgia in a patient with neurofibromatosis type 1: a case report

    PubMed Central

    2011-01-01

    Introduction Occipital peripheral nerve stimulation is an interventional pain management therapy that provides beneficial results in the treatment of refractory chronic occipital neuralgia. Herein we present a first-of-its-kind case study of a patient with neurofibromatosis type 1 and bilateral occipital neuralgia treated with occipital peripheral nerve stimulation. Case presentation A 42-year-old Caucasian woman presented with bilateral occipital neuralgia refractory to various conventional treatments, and she was referred for possible treatment with occipital peripheral nerve stimulation. She was found to be a suitable candidate for the procedure, and she underwent implantation of two octapolar stimulating leads and a rechargeable, programmable, implantable generator. The intensity, severity, and frequency of her symptoms resolved by more than 80%, but an infection developed at the implantation site two months after the procedure that required explantation and reimplantation of new stimulating leads three months later. To date she continues to experience symptom resolution of more than 60%. Conclusion These results demonstrate the significance of peripheral nerve stimulation in the management of refractory occipital neuralgias in patients with neurofibromatosis type 1 and the possible role of neurofibromata in the development of occipital neuralgia in these patients. PMID:21569290

  5. White matter microstructure within the superior longitudinal fasciculus modulates the degree of response conflict indexed by N2 in healthy adults.

    PubMed

    Gao, Shudan; Liu, Peng; Guo, Jialu; Zhu, Yuanqiang; Liu, Peng; Sun, Jinbo; Yang, Xuejuan; Qin, Wei

    2017-12-01

    Response conflict can be induced by priming multiple responses competing for control of action in trials. The N2 is one functionally-related cognitive control index for response conflict. And yet the underlying whiter matter neural substrates of inter-individual difference in conflict N2 remain unclear. So the aim of present study was to address the white matter microstructure of the N2 responsible for conflict by directly relating the amplitude cost of the event-related potential (ERP) N2 component to diffusion tensor imaging (DTI) indices in healthy subjects. Thirty healthy subjects underwent DTI scanning and electrophysiology recording during a modified Flanker task. N2 was a stimulus-locked negative ERP component. Fractional anisotropy (FA) was calculated based on DTI measures and was assumed to reflect the integrity of myelinate fiber bundles. Therefore, we tested the relationship between N2 amplitude and FA in brain white matter. Results showed that FA, an index for white matter characteristics, in the right superior longitudinal fasciculus (SLF) was significantly positively associated with N2 amplitude cost. The N2 amplitude cost also predicted response time (RT) cost in the Flanker task. Higher FA was associated with larger N2 amplitude cost, suggesting that changes in white matter integrity in the SLF may account for changes in efficient transmission of fronto-parietal modulatory conflict signals. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Unilateral occipital nerve stimulation for bilateral occipital neuralgia: a case report and literature review.

    PubMed

    Liu, Aijun; Jiao, Yongcheng; Ji, Huijun; Zhang, Zhiwen

    2017-01-01

    The aim of this study is to present a case of successful relief of bilateral occipital neuralgia (ON) using unilateral occipital nerve stimulation (ONS) and to discuss the possible underlying mechanisms. We present the case of a 59-year-old female patient with severe bilateral ON treated with unilateral ONS. We systematically reviewed previous studies of ONS for ON, discussing the possible mechanisms of ONS in the relief of ON. The patient reported complete pain relief after consistent unilateral ONS during the follow-up period. The underlying mechanisms may be linked to the relationship between pain and several brain regions, including the pons, midbrain, and periaqueductal gray. ONS is an effective and safe option for treating ON. Future studies will be required to clarify the mechanisms by which unilateral occipital stimulation provided relief for bilateral neuralgia in this case.

  7. Pediatric traumatic brain injury: language outcomes and their relationship to the arcuate fasciculus.

    PubMed

    Liégeois, Frédérique J; Mahony, Kate; Connelly, Alan; Pigdon, Lauren; Tournier, Jacques-Donald; Morgan, Angela T

    2013-12-01

    Pediatric traumatic brain injury (TBI) may result in long-lasting language impairments alongside dysarthria, a motor-speech disorder. Whether this co-morbidity is due to the functional links between speech and language networks, or to widespread damage affecting both motor and language tracts, remains unknown. Here we investigated language function and diffusion metrics (using diffusion-weighted tractography) within the arcuate fasciculus, the uncinate fasciculus, and the corpus callosum in 32 young people after TBI (approximately half with dysarthria) and age-matched healthy controls (n=17). Only participants with dysarthria showed impairments in language, affecting sentence formulation and semantic association. In the whole TBI group, sentence formulation was best predicted by combined corpus callosum and left arcuate volumes, suggesting this "dual blow" seriously reduces the potential for functional reorganisation. Word comprehension was predicted by fractional anisotropy in the right arcuate. The co-morbidity between dysarthria and language deficits therefore seems to be the consequence of multiple tract damage. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Decreased uncinate fasciculus tract integrity in male and female patients with PTSD: a diffusion tensor imaging study.

    PubMed

    Koch, Saskia B J; van Zuiden, Mirjam; Nawijn, Laura; Frijling, Jessie L; Veltman, Dick J; Olff, Miranda

    2017-09-01

    Posttraumatic stress disorder (PTSD) is a disabling psychiatric disorder that has been associated with lower white matter integrity of tracts connecting the prefrontal cortex with limbic regions. However, previous diffusion tensor imaging (DTI) findings have been inconsistent, showing high variability in the exact location and direction of effects. We performed probabilistic tractography of the bilateral uncinate fasciculus, cingulum and superior longitudinal fasciculus (both temporal and parietal projections) in male and female police officers with and without PTSD. We included 38 (21 men) police officers with and 39 (20 men) without PTSD in our analyses. Compared with trauma-exposed controls, patients with PTSD showed significantly higher mean diffusivity of the right uncinate fasciculus, the major white matter tract connecting the amygdala to the prefrontal cortex ( p = 0.012). No other significant between-group or group × sex differences were observed. Mean diffusivity of the right uncinate fasciculus was positively associated with anxiety symptoms ( r = 0.410, p = 0.013) in patients with PTSD as well as with amygdala activity ( r = 0.247, p = 0.038) and ventromedial prefrontal cortex (vmPFC) activity ( r = 0.283, p = 0.016) in all participants in response to happy and neutral faces. Our specific sample of trauma-exposed police officers limits the generalizability of our findings to other PTSD patient groups (e.g., civilian trauma). Patients with PTSD showed diminished structural connectivity between the amygdala and vmPFC, which was correlated with higher anxiety symptoms and increased functional activity of these brain regions. Our findings provide additional evidence for the prevailing neurocircuitry model of PTSD, postulating that ineffective communication between the amygdala and vmPFC underlies decreased top-down control over fear responses.

  9. A case of occipital neuralgia in the greater and lesser occipital nerves treated with neurectomy by using transcranial Doppler sonography: technical aspects.

    PubMed

    Jung, Sang Jin; Moon, Seong Keun; Kim, Tae Young; Eom, Ki Seong

    2011-03-01

    Occipital neuralgia is usually defined as paroxysmal stabbing pain in the greater or lesser occipital nerve (GON or LON) distribution. In occipital neuralgia patients, surgical considerations are carefully taken into account if medical management is ineffective. However, identification of the occipital artery by palpation in patients with thick necks or small occipital arteries can be technically difficult. Therefore, we established a new technique using transcranial Doppler (TCD) sonography for more accurate and rapid identification. The patient was a 64-year-old man who had undergone C1-C3 screw fixation and presented with intractable stabbing pain in the bilateral GON and LON distributions. In cases in which pain management was performed using medication, physical therapy, nerve block, or radiofrequency thermocoagulation, substantial pain relief was not consistently achieved, and recurrence of pain was reported. Therefore, we performed occipital neurectomy of the bilateral GON and LON by using TCD sonography, which helped detect the greater occipital artery easily. After the operation, the patient's headache disappeared gradually, although he had discontinued all medication except antidepressants. We believe that this new technique of occipital neurectomy via a small skin incision performed using TCD sonography is easy and reliable, has a short operative time, and provides rapid pain relief.

  10. A Case of Occipital Neuralgia in the Greater and Lesser Occipital Nerves Treated with Neurectomy by Using Transcranial Doppler Sonography: Technical Aspects

    PubMed Central

    Jung, Sang Jin; Moon, Seong Keun; Kim, Tae Young

    2011-01-01

    Occipital neuralgia is usually defined as paroxysmal stabbing pain in the greater or lesser occipital nerve (GON or LON) distribution. In occipital neuralgia patients, surgical considerations are carefully taken into account if medical management is ineffective. However, identification of the occipital artery by palpation in patients with thick necks or small occipital arteries can be technically difficult. Therefore, we established a new technique using transcranial Doppler (TCD) sonography for more accurate and rapid identification. The patient was a 64-year-old man who had undergone C1-C3 screw fixation and presented with intractable stabbing pain in the bilateral GON and LON distributions. In cases in which pain management was performed using medication, physical therapy, nerve block, or radiofrequency thermocoagulation, substantial pain relief was not consistently achieved, and recurrence of pain was reported. Therefore, we performed occipital neurectomy of the bilateral GON and LON by using TCD sonography, which helped detect the greater occipital artery easily. After the operation, the patient's headache disappeared gradually, although he had discontinued all medication except antidepressants. We believe that this new technique of occipital neurectomy via a small skin incision performed using TCD sonography is easy and reliable, has a short operative time, and provides rapid pain relief. PMID:21390179

  11. The 5-HTTLPR and BDNF polymorphisms moderate the association between uncinate fasciculus connectivity and antidepressants treatment response in major depression.

    PubMed

    Tatham, Erica L; Hall, Geoff B C; Clark, Darren; Foster, Jane; Ramasubbu, Rajamannar

    2017-03-01

    Symptom improvement in depression due to antidepressant treatment is highly variable and clinically unpredictable. Linking neuronal connectivity and genetic risk factors in predicting antidepressant response has clinical implications. Our investigation assessed whether indices of white matter integrity, serotonin transporter-linked polymorphism (5-HTTLPR) and brain-derived neurotrophic factor (BDNF) val66met polymorphism predicted magnitude of depression symptom change following antidepressant treatment. Fractional anisotropy (FA) was used as an indicator of white matter integrity and was assessed in the uncinate fasciculus and superior longitudinal fasciculus using tract-based spatial statistics (TBSS) and probabilistic tractography. Forty-six medication-free patients with major depressive disorder participated in a diffusion tensor imaging scan prior to completing an 8-week treatment regime with citalopram or quetiapine XR. Indexed improvements in Hamilton Depression Rating Scale score from baseline to 8-week endpoint were used as an indicator of depression improvement. Carriers of the BDNF met allele exhibited lower FA values in the left uncinate fasciculus relative to val/val individuals [F(1, 40) = 7.314, p = 0.009]. Probabilistic tractography identified that higher FA in the left uncinate fasciculus predicted percent change in depression severity, with BDNF moderating this association [F(3, 30) = 3.923, p = 0.018]. An interaction between FA in the right uncinate fasciculus and 5-HTTLPR also predicted percent change in depression severity [F(5, 25) = 5.315, p = 0.002]. Uncorrected TBSS results revealed significantly higher FA in hippocampal portions of the cingulum bundle in responders compared to non-responders (p = 0.016). The predictive value of prefrontal and amygdala/hippocampal WM connectivity on antidepressant treatment response may be influenced by 5-HTTLPR and BDNF polymorphisms in MDD.

  12. Helmet-Induced Occipital Neuralgia in a Military Aviator.

    PubMed

    Chalela, Julio A

    2018-04-01

    Headaches among military personnel are very common and headgear wear is a frequently identified culprit. Helmet wear may cause migrainous headaches, external compression headache, other primary cranial neuralgias, and occipital neuralgia. The clinical features and the response to treatment allow distinction between the different types of headaches. Headaches among aviators are particularly concerning as they may act as distractors while flying and the treatment options are often incompatible with flying status. A 24-yr-old door gunner presented with suboccipital pain associated with the wear of his helmet. He described the pain as a paroxysmal stabbing sensation coming in waves. The physical exam and history supported the diagnosis of primary occipital neuralgia. Systemic pharmacological options were discussed with the soldier, but rejected due to his need to remain in flying status. An occipital nerve block was performed with good clinical results, supporting the diagnosis of occipital neuralgia and allowing him to continue as mission qualified. Occipital neuralgia can be induced by helmet wear in military personnel. Occipital nerve block can be performed in the deployed setting, allowing the service member to remain mission capable and sparing him/her from systemic side effects.Chalela JA. Helmet-induced occipital neuralgia in a military aviator. Aerosp Med Hum Perform. 2018; 89(4):409-410.

  13. Unilateral occipital nerve stimulation for bilateral occipital neuralgia: a case report and literature review

    PubMed Central

    Liu, Aijun; Jiao, Yongcheng; Ji, Huijun; Zhang, Zhiwen

    2017-01-01

    Objectives The aim of this study is to present a case of successful relief of bilateral occipital neuralgia (ON) using unilateral occipital nerve stimulation (ONS) and to discuss the possible underlying mechanisms. Materials and methods We present the case of a 59-year-old female patient with severe bilateral ON treated with unilateral ONS. We systematically reviewed previous studies of ONS for ON, discussing the possible mechanisms of ONS in the relief of ON. Results The patient reported complete pain relief after consistent unilateral ONS during the follow-up period. The underlying mechanisms may be linked to the relationship between pain and several brain regions, including the pons, midbrain, and periaqueductal gray. Conclusion ONS is an effective and safe option for treating ON. Future studies will be required to clarify the mechanisms by which unilateral occipital stimulation provided relief for bilateral neuralgia in this case. PMID:28176938

  14. Differential susceptibility of white matter tracts to inflammatory mediators in schizophrenia: an integrated DTI study.

    PubMed

    Prasad, Konasale M; Upton, Catherine H; Nimgaonkar, Vishwajit L; Keshavan, Matcheri S

    2015-01-01

    The pathophysiological underpinnings of impaired anatomical and functional connectivity are not precisely known. Emerging data suggest that immune mediators may underlie such dysconnectivity. We examined anatomical brain connections using diffusion tensor imaging (DTI) data in relation to interleukin-6 (IL-6) and C-reactive protein (CRP) levels among early-course clinically stable schizophrenia subjects compared to healthy controls (HC). DTI data were acquired in 30 directions with 2 averages. Fractional anisotropy (FA) and radial diffusivity (RD) maps were separately processed using FSL4.1.9 and Tract-Based Spatial Statistics (TBSS). Threshold free cluster enhancements (TFCE) were examined employing familywise error (FWE) corrections for multiple testing within linear regression models including age, sex and socioeconomic status as covariates. IL-6 and CRP were assayed using highly sensitive and specific sandwich immunosorbent assays. The groups did not differ in age and sex as well as in the IL-6 and CRP levels. IL-6 levels were negatively correlated with the FA and positively correlated with RD among schizophrenia subjects but not HC. The voxel clusters that showed significant correlations were localized to the forceps major, the inferior longitudinal fasciculus and the inferior fronto-occipital fasciculus. CRP levels showed similar pattern except for lack of correlation with RD on any cluster that corresponded to the forceps major. Our results suggest that the IL-6 and CRP contribute to impaired anisotropy of water diffusion in selected pathways that have been previously associated with schizophrenia suggesting differential susceptibility of selected neural pathways to immune mediators. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Anatomical Properties of the Arcuate Fasciculus Predict Phonological and Reading Skills in Children

    ERIC Educational Resources Information Center

    Yeatman, Jason D.; Dougherty, Robert F.; Rykhlevskaia, Elena; Sherbondy, Anthony J.; Deutsch, Gayle K.; Wandell, Brian A.; Ben-Shachar, Michal

    2011-01-01

    For more than a century, neurologists have hypothesized that the arcuate fasciculus carries signals that are essential for language function; however, the relevance of the pathway for particular behaviors is highly controversial. The primary objective of this study was to use diffusion tensor imaging to examine the relationship between individual…

  16. Peripheral neurostimulation for control of intractable occipital neuralgia.

    PubMed

    Weiner, R L; Reed, K L

    1999-07-01

    Objective. To present a novel approach for treatment of intractable occipital neuralgia using percutaneous peripheral nerve electrostimulation techniques. Methods. Thirteen patients underwent 17 implant procedures for medically refractory occipital neuralgia. A subcutaneous electrode placed transversely at the level of C1 across the base of the occipital nerve trunk produced paresthesias and pain relief covering the regions of occipital nerve pain Results. With follow-up ranging from 1-½ to 6 years, 12 patients continue to report good to excellent response with greater than 50% pain control and requiring little or no additional medications. The 13th patient (first in the series) was subsequently explanted following symptom resolution. Conclusions. In patients with medically intractable occipital neuralgia, peripheral nerve electrostimulation subcutaneously at the level of C1 appears to be a reasonable alternative to more invasive surgical procedures following failure of more conservative therapies.

  17. Cooled radiofrequency ablation for bilateral greater occipital neuralgia.

    PubMed

    Vu, Tiffany; Chhatre, Akhil

    2014-01-01

    This report describes a case of bilateral greater occipital neuralgia treated with cooled radiofrequency ablation. The case is considered in relation to a review of greater occipital neuralgia, continuous thermal and pulsed radiofrequency ablation, and current medical literature on cooled radiofrequency ablation. In this case, a 35-year-old female with a 2.5-year history of chronic suboccipital bilateral headaches, described as constant, burning, and pulsating pain that started at the suboccipital region and radiated into her vertex. She was diagnosed with bilateral greater occipital neuralgia. She underwent cooled radiofrequency ablation of bilateral greater occipital nerves with minimal side effects and 75% pain reduction. Cooled radiofrequency ablation of the greater occipital nerve in challenging cases is an alternative to pulsed and continuous RFA to alleviate pain with less side effects and potential for long-term efficacy.

  18. Cooled Radiofrequency Ablation for Bilateral Greater Occipital Neuralgia

    PubMed Central

    Chhatre, Akhil

    2014-01-01

    This report describes a case of bilateral greater occipital neuralgia treated with cooled radiofrequency ablation. The case is considered in relation to a review of greater occipital neuralgia, continuous thermal and pulsed radiofrequency ablation, and current medical literature on cooled radiofrequency ablation. In this case, a 35-year-old female with a 2.5-year history of chronic suboccipital bilateral headaches, described as constant, burning, and pulsating pain that started at the suboccipital region and radiated into her vertex. She was diagnosed with bilateral greater occipital neuralgia. She underwent cooled radiofrequency ablation of bilateral greater occipital nerves with minimal side effects and 75% pain reduction. Cooled radiofrequency ablation of the greater occipital nerve in challenging cases is an alternative to pulsed and continuous RFA to alleviate pain with less side effects and potential for long-term efficacy. PMID:24716017

  19. Occipital Neuralgia Diagnosis and Treatment: The Role of Ultrasound.

    PubMed

    Narouze, Samer

    2016-04-01

    Occipital neuralgia is a form of neuropathic type of pain in the distribution of the greater, lesser, or third occipital nerves. Patients with intractable occipital neuralgia do not respond well to conservative treatment modalities. This group of patients represents a significant therapeutic challenge and may require interventional or invasive therapeutic approaches. Occipital neuralgia frequently occurs as a result of nerve entrapment or irritation by a tight muscle or vascular structure, or nerve trauma during whiplash injury. Although the entrapment theory is most commonly accepted, it lacks strong clinical evidence to support it. Accordingly, the available interventional approaches have been targeting the accessible part of the occipital nerve rather than the entrapped part. Bedside sonography is an excellent imaging modality for soft tissue structures. Ultrasound not only allows distinguishing normal from abnormal entrapped occipital nerves, it can identify the level and the cause of entrapment as well. Ultrasound guidance allows precise occipital nerve blocks and interventions at the level of the "specific" entrapment location rather than into the site of "presumed" entrapment. © 2016 American Headache Society.

  20. Decreased uncinate fasciculus tract integrity in male and female patients with PTSD: a diffusion tensor imaging study

    PubMed Central

    Koch, Saskia B.J.; van Zuiden, Mirjam; Nawijn, Laura; Frijling, Jessie L.; Veltman, Dick J.; Olff, Miranda

    2017-01-01

    Background Posttraumatic stress disorder (PTSD) is a disabling psychiatric disorder that has been associated with lower white matter integrity of tracts connecting the prefrontal cortex with limbic regions. However, previous diffusion tensor imaging (DTI) findings have been inconsistent, showing high variability in the exact location and direction of effects. Methods We performed probabilistic tractography of the bilateral uncinate fasciculus, cingulum and superior longitudinal fasciculus (both temporal and parietal projections) in male and female police officers with and without PTSD. Results We included 38 (21 men) police officers with and 39 (20 men) without PTSD in our analyses. Compared with trauma-exposed controls, patients with PTSD showed significantly higher mean diffusivity of the right uncinate fasciculus, the major white matter tract connecting the amygdala to the prefrontal cortex (p = 0.012). No other significant between-group or group × sex differences were observed. Mean diffusivity of the right uncinate fasciculus was positively associated with anxiety symptoms (r = 0.410, p = 0.013) in patients with PTSD as well as with amygdala activity (r = 0.247, p = 0.038) and ventromedial prefrontal cortex (vmPFC) activity (r = 0.283, p = 0.016) in all participants in response to happy and neutral faces. Limitations Our specific sample of trauma-exposed police officers limits the generalizability of our findings to other PTSD patient groups (e.g., civilian trauma). Conclusion Patients with PTSD showed diminished structural connectivity between the amygdala and vmPFC, which was correlated with higher anxiety symptoms and increased functional activity of these brain regions. Our findings provide additional evidence for the prevailing neurocircuitry model of PTSD, postulating that ineffective communication between the amygdala and vmPFC underlies decreased top–down control over fear responses. PMID:28452713

  1. Diffusion tensor MRI tractography reveals increased fractional anisotropy (FA) in arcuate fasciculus following music-cued motor training.

    PubMed

    Moore, Emma; Schaefer, Rebecca S; Bastin, Mark E; Roberts, Neil; Overy, Katie

    2017-08-01

    Auditory cues are frequently used to support movement learning and rehabilitation, but the neural basis of this behavioural effect is not yet clear. We investigated the microstructural neuroplasticity effects of adding musical cues to a motor learning task. We hypothesised that music-cued, left-handed motor training would increase fractional anisotropy (FA) in the contralateral arcuate fasciculus, a fibre tract connecting auditory, pre-motor and motor regions. Thirty right-handed participants were assigned to a motor learning condition either with (Music Group) or without (Control Group) musical cues. Participants completed 20minutes of training three times per week over four weeks. Diffusion tensor MRI and probabilistic neighbourhood tractography identified FA, axial (AD) and radial (RD) diffusivity before and after training. Results revealed that FA increased significantly in the right arcuate fasciculus of the Music group only, as hypothesised, with trends for AD to increase and RD to decrease, a pattern of results consistent with activity-dependent increases in myelination. No significant changes were found in the left ipsilateral arcuate fasciculus of either group. This is the first evidence that adding musical cues to movement learning can induce rapid microstructural change in white matter pathways in adults, with potential implications for therapeutic clinical practice. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Decreased occipital lobe metabolism by FDG-PET/CT

    PubMed Central

    Solnes, Lilja; Nalluri, Abhinav; Cohen, Jesse; Jones, Krystyna M.; Zan, Elcin; Javadi, Mehrbod S.; Venkatesan, Arun

    2017-01-01

    Objective: To compare brain metabolism patterns on fluorodeoxyglucose (FDG)-PET/CT in anti–NMDA receptor and other definite autoimmune encephalitis (AE) and to assess how these patterns differ between anti–NMDA receptor neurologic disability groups. Methods: Retrospective review of clinical data and initial dedicated brain FDG-PET/CT studies for neurology inpatients with definite AE, per published consensus criteria, treated at a single academic medical center over a 10-year period. Z-score maps of FDG-PET/CT were made using 3-dimensional stereotactic surface projections in comparison to age group–matched controls. Brain region mean Z scores with magnitudes ≥2.00 were interpreted as significant. Comparisons were made between anti–NMDA receptor and other definite AE patients as well as among patients with anti–NMDA receptor based on modified Rankin Scale (mRS) scores at the time of FDG-PET/CT. Results: The medial occipital lobes were markedly hypometabolic in 6 of 8 patients with anti–NMDA receptor encephalitis and as a group (Z = −4.02, interquartile range [IQR] 2.14) relative to those with definite AE (Z = −2.32, 1.46; p = 0.004). Among patients with anti–NMDA receptor encephalitis, the lateral and medial occipital lobes were markedly hypometabolic for patients with mRS 4–5 (lateral occipital lobe Z = −3.69, IQR 1; medial occipital lobe Z = −4.08, 1) compared with those with mRS 0–3 (lateral occipital lobe Z = −0.83, 2; p < 0.0005; medial occipital lobe Z = −1.07, 2; p = 0.001). Conclusions: Marked medial occipital lobe hypometabolism by dedicated brain FDG-PET/CT may serve as an early biomarker for discriminating anti–NMDA receptor encephalitis from other AE. Resolution of lateral and medial occipital hypometabolism may correlate with improved neurologic status in anti–NMDA receptor encephalitis. PMID:29159205

  3. Explicit memory and implicit memory in occipital lobe stroke patients.

    PubMed

    Gong, Liang; Wang, JiHua; Feng, Lei; Wang, MeiHong; Li, Xiu; Hu, JiaYun; Wang, Kai

    2015-03-01

    Occipital stroke patients mainly showed cortical blindness and unilateral vision loss; memory is generally reserved. Recent reports from neuroimaging show the occipital lobe may be involved in the processing of implicit memory (IM), especially the perception type of IM processing. In this study, we explored the explicit memory (EM) and IM damage in occipital lobe stroke patients. A total of 25 occipital strokes and 29 years of age, educational level equivalent healthy controls (HCs), evaluated by using immediate recall, delayed recall, recognition for EM tasks, picture identification, and category exemplar generation for IM tasks. There was no significant difference between occipital stroke patients and HCs in EM tasks and category exemplar generation task. In the picture identification task, occipital lobe stroke group score was poorer than HC group, the results were statistically significant, but in the pictures identify rate, occipital stroke patients and normal control group had no significant difference. The occipital stroke patients may have IM damage, primarily damage the perception type of IM priming effects, which was unrelated with their cortical blindness. Copyright © 2015 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  4. Neuralgias of the Head: Occipital Neuralgia

    PubMed Central

    2016-01-01

    Occipital neuralgia is defined by the International Headache Society as paroxysmal shooting or stabbing pain in the dermatomes of the greater or lesser occipital nerve. Various treatment methods exist, from medical treatment to open surgical procedures. Local injection with corticosteroid can improve symptoms, though generally only temporarily. More invasive procedures can be considered for cases that do not respond adequately to medical therapies or repeated injections. Radiofrequency lesioning of the greater occipital nerve can relieve symptoms, but there is a tendency for the pain to recur during follow-up. There also remains a substantial group of intractable patients that do not benefit from local injections and conventional procedures. Moreover, treatment of occipital neuralgia is sometimes challenging. More invasive procedures, such as C2 gangliotomy, C2 ganglionectomy, C2 to C3 rhizotomy, C2 to C3 root decompression, neurectomy, and neurolysis with or without sectioning of the inferior oblique muscle, are now rarely performed for medically refractory patients. Recently, a few reports have described positive results following peripheral nerve stimulation of the greater or lesser occipital nerve. Although this procedure is less invasive, the significance of the results is hampered by the small sample size and the lack of long-term data. Clinicians should always remember that destructive procedures carry grave risks: once an anatomic structure is destroyed, it cannot be easily recovered, if at all, and with any destructive procedure there is always the risk of the development of painful neuroma or causalgia, conditions that may be even harder to control than the original complaint. PMID:27051229

  5. Neuralgias of the Head: Occipital Neuralgia.

    PubMed

    Choi, Il; Jeon, Sang Ryong

    2016-04-01

    Occipital neuralgia is defined by the International Headache Society as paroxysmal shooting or stabbing pain in the dermatomes of the greater or lesser occipital nerve. Various treatment methods exist, from medical treatment to open surgical procedures. Local injection with corticosteroid can improve symptoms, though generally only temporarily. More invasive procedures can be considered for cases that do not respond adequately to medical therapies or repeated injections. Radiofrequency lesioning of the greater occipital nerve can relieve symptoms, but there is a tendency for the pain to recur during follow-up. There also remains a substantial group of intractable patients that do not benefit from local injections and conventional procedures. Moreover, treatment of occipital neuralgia is sometimes challenging. More invasive procedures, such as C2 gangliotomy, C2 ganglionectomy, C2 to C3 rhizotomy, C2 to C3 root decompression, neurectomy, and neurolysis with or without sectioning of the inferior oblique muscle, are now rarely performed for medically refractory patients. Recently, a few reports have described positive results following peripheral nerve stimulation of the greater or lesser occipital nerve. Although this procedure is less invasive, the significance of the results is hampered by the small sample size and the lack of long-term data. Clinicians should always remember that destructive procedures carry grave risks: once an anatomic structure is destroyed, it cannot be easily recovered, if at all, and with any destructive procedure there is always the risk of the development of painful neuroma or causalgia, conditions that may be even harder to control than the original complaint.

  6. Altered tract-specific white matter microstructure is related to poorer cognitive performance: The Rotterdam Study.

    PubMed

    Cremers, Lotte G M; de Groot, Marius; Hofman, Albert; Krestin, Gabriel P; van der Lugt, Aad; Niessen, Wiro J; Vernooij, Meike W; Ikram, M Arfan

    2016-03-01

    White matter microstructural integrity has been related to cognition. Yet, the potential role of specific white matter tracts on top of a global white matter effect remains unclear, especially when considering specific cognitive domains. Therefore, we determined the tract-specific effect of white matter microstructure on global cognition and specific cognitive domains. In 4400 nondemented and stroke-free participants (mean age 63.7 years, 55.5% women), we obtained diffusion magnetic resonance imaging parameters (fractional anisotropy and mean diffusivity) in 14 white matter tracts using probabilistic tractography and assessed cognitive performance with a cognitive test battery. Tract-specific white matter microstructure in all supratentorial tracts was associated with poorer global cognition. Lower fractional anisotropy in association tracts, primarily the inferior fronto-occipital fasciculus, and higher mean diffusivity in projection tracts, in particular the posterior thalamic radiation, most strongly related to poorer cognition. Altered white matter microstructure related to poorer information processing speed, executive functioning, and motor speed, but not to memory. Tract-specific microstructural changes may aid in better understanding the mechanism of cognitive impairment and neurodegenerative diseases. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Unilateral proptosis revealing a fronto-ethmoidal mucocele.

    PubMed

    Lajmi, Houda; Hmaied, Wassim; Ben Jalel, Wady; Ben Romdhane, Khaoula; Chelly, Zied; El Fekih, Lamia

    2017-06-01

    Backgroud: The fronto-ethmoidal mucocele is a benign condition leading commonly to limited eye movement or ocular pain but it could also induce visual acuity impairment by compressing the optic nerve Aim: To discuss, through a case report, different ophthalmologic manifestations of the fronto-ethmoidalmucocele. Reported case: A 46-years-old man with no general history consulted for a bilateral ocular redness and itching. He reported, however, a mild protrusion of his left globe evolving for oneyear. The clinical examination revealed a unilateral proptosis in the left eye with a discrete limitation of theadduction. A brain and orbital computer tomography (CT)and a magnetic resonance imaging(MRI)revealed a grade I exophthalmos caused by an oval formation of fluid density in the left anterior and posterior ethmoidal cells in addition to the frontal sinus,driving theeyeball and internal oculomotor muscles back and out.The patient was referred to otorhinolaryngology department for a precocious surgical management. The ophtalmologic manifestations of the disease depend on the location, the size of the formation and involvement of adjacent structures. The loss of vision and the apex syndrome due to the compressionof the ocular globe are the most serious complications.

  8. Cognitive Variability during Middle-Age: Possible Association with Neurodegeneration and Cognitive Reserve

    PubMed Central

    Ferreira, Daniel; Machado, Alejandra; Molina, Yaiza; Nieto, Antonieta; Correia, Rut; Westman, Eric; Barroso, José

    2017-01-01

    Objective: Increased variability in cognition with age has been argued as an indication of pathological processes. Focusing on early detection of neurodegenerative disorders, we investigated variability in cognition in healthy middle-aged adults. In order to understand possible determinants of this variability, we also investigated associations with cognitive reserve, neuroimaging markers, subjective memory complaints, depressive symptomatology, and gender. Method: Thirty-one 50 ± 2 years old individuals were investigated as target group and deviation was studied in comparison to a reference younger group of 30 individuals 40 ± 2 years old. Comprehensive neuropsychological and structural imaging protocols were collected. Brain regional volumes and cortical thickness were calculated with FreeSurfer, white matter hyperintensities with CASCADE, and mean diffusivity with FSL. Results: Across-individuals variability showed greater dispersion in lexical access, processing speed, executive functions, and memory. Variability in global cognition correlated with, reduced cortical thickness in the right parietal-temporal-occipital association cortex, and increased mean diffusivity in the cingulum bundle and right inferior fronto-occipital fasciculus. A trend was also observed for the correlation between global cognition and hippocampal volume and female gender. All these associations were influenced by cognitive reserve. No correlations were found with subjective memory complaints, white matter hyperintensities and depressive symptomatology. Across-domains and across-tasks variability was greater in several executive components and cognitive processing speed. Conclusion: Variability in cognition during middle-age is associated with neurodegeneration in the parietal–temporal–occipital association cortex and white matter tracts connecting this to the prefrontal dorsolateral cortex and the hippocampus. Moreover, this effect is influenced by cognitive reserve. Studying

  9. Abnormal fronto-striatal activation as a marker of threshold and subthreshold Bulimia Nervosa.

    PubMed

    Cyr, Marilyn; Yang, Xiao; Horga, Guillermo; Marsh, Rachel

    2018-04-01

    This study aimed to determine whether functional disturbances in fronto-striatal control circuits characterize adolescents with Bulimia Nervosa (BN) spectrum eating disorders regardless of clinical severity. FMRI was used to assess conflict-related brain activations during performance of a Simon task in two samples of adolescents with BN symptoms compared with healthy adolescents. The BN samples differed in the severity of their clinical presentation, illness duration and age. Multi-voxel pattern analyses (MVPAs) based on machine learning were used to determine whether patterns of fronto-striatal activation characterized adolescents with BN spectrum disorders regardless of clinical severity, and whether accurate classification of less symptomatic adolescents (subthreshold BN; SBN) could be achieved based on patterns of activation in adolescents who met DSM5 criteria for BN. MVPA classification analyses revealed that both BN and SBN adolescents could be accurately discriminated from healthy adolescents based on fronto-striatal activation. Notably, the patterns detected in more severely ill BN compared with healthy adolescents accurately discriminated less symptomatic SBN from healthy adolescents. Deficient activation of fronto-striatal circuits can characterize BN early in its course, when clinical presentations are less severe, perhaps pointing to circuit-based disturbances as useful biomarker or risk factor for the disorder, and a tool for understanding its developmental trajectory, as well as the development of early interventions. © 2018 Wiley Periodicals, Inc.

  10. Experience of Surgical Treatment for Occipital Migraine in Taiwan.

    PubMed

    Lin, Shang-Hsi; Lin, Huwang-Chi; Jeng, Chu-Hsu; Hsieh, Cheng-Han; Lin, Yu-Hsien; Chen, Cha-Chun

    2016-03-01

    Refractory migraine surgery developed since 2003 has excellent results over the past 10 years. According to the pioneer of migraine surgery, Dr. Bahman Guyuron, 5 major surgical classifications of migraines are described in the field of plastic surgery, namely, frontal migraine, temporal migraine, rhinogenic migraine, occipital migraine, and auriculotemporal migraine. In this study, we present the preliminary surgical results of the occipital migraine surgery. A total of 22 patients with simple occipital migraines came to our outpatient clinic for help from June 2014 to February 2015. Thirteen cases were excluded owing to ineligibility for operation or other reasons. The patients who concurrently experienced other types of migraines were precluded even if they received combined migraine surgery. Therefore, 9 simple occipital migraine cases were enrolled in this study. Migraine severity was evaluated by uniform questionnaires to identify the source of migraine. Neurolysis was performed under general anesthesia, with the patient in a prone position. Postoperative conditions were evaluated at the second, fourth, sixth, and eighth weeks by posttreatment questionnaires. Of all the 9 patients, 5 experienced single-sided migraines of greater occipital nerve origin (2 left-sided and 3 right-sided cases). Two patients had bilateral migraines of greater occipital nerve origin, and unilateral right lesser occipital nerve origin was noted in one patient. The last patient had right-sided migraines of greater and lesser occipital nerve origin. As a result in the follow-up, a response rate greater than 90% was documented, and complete resolution was observed in 2 patients. Drug doses were reduced more than 50% in the remaining patients. The overall efficacy of occipital migraine surgery in this study was 88.8% (8/9 cases). Some patients with migraine are good candidates for surgical resolution with appropriate and meticulous selection. Similar to what is observed in Western

  11. Voluntary saccade inhibition deficits correlate with extended white-matter cortico-basal atrophy in Huntington's disease.

    PubMed

    Vaca-Palomares, Israel; Coe, Brian C; Brien, Donald C; Munoz, Douglas P; Fernandez-Ruiz, Juan

    2017-01-01

    The ability to inhibit automatic versus voluntary saccade commands in demanding situations can be impaired in neurodegenerative diseases such as Huntington's disease (HD). These deficits could result from disruptions in the interaction between basal ganglia and the saccade control system. To investigate voluntary oculomotor control deficits related to the cortico-basal circuitry, we evaluated early HD patients using an interleaved pro- and anti-saccade task that requires flexible executive control to generate either an automatic response (look at a peripheral visual stimulus) or a voluntary response (look away from the stimulus in the opposite direction). The impairments of HD patients in this task are mainly attributed to degeneration in the striatal medium spiny neurons leading to an over-activation of the indirect-pathway thorough the basal ganglia. However, some studies have proposed that damage outside the indirect-pathway also contribute to executive and saccade deficits. We used the interleaved pro- and anti-saccade task to study voluntary saccade inhibition deficits, Voxel-based morphometry and Tract-based spatial statistic to map cortico-basal ganglia circuitry atrophy in HD. HD patients had voluntary saccade inhibition control deficits, including increased regular-latency anti-saccade errors and increased anticipatory saccades. These deficits correlated with white-matter atrophy in the inferior fronto-occipital fasciculus, anterior thalamic radiation, anterior corona radiata and superior longitudinal fasciculus. These findings suggest that cortico-basal ganglia white-matter atrophy in HD, disrupts the normal connectivity in a network controlling voluntary saccade inhibitory behavior beyond the indirect-pathway. This suggests that in vivo measures of white-matter atrophy can be a reliable marker of the progression of cognitive deficits in HD.

  12. Disrupted white matter connectivity underlying developmental dyslexia: A machine learning approach.

    PubMed

    Cui, Zaixu; Xia, Zhichao; Su, Mengmeng; Shu, Hua; Gong, Gaolang

    2016-04-01

    Developmental dyslexia has been hypothesized to result from multiple causes and exhibit multiple manifestations, implying a distributed multidimensional effect on human brain. The disruption of specific white-matter (WM) tracts/regions has been observed in dyslexic children. However, it remains unknown if developmental dyslexia affects the human brain WM in a multidimensional manner. Being a natural tool for evaluating this hypothesis, the multivariate machine learning approach was applied in this study to compare 28 school-aged dyslexic children with 33 age-matched controls. Structural magnetic resonance imaging (MRI) and diffusion tensor imaging were acquired to extract five multitype WM features at a regional level: white matter volume, fractional anisotropy, mean diffusivity, axial diffusivity, and radial diffusivity. A linear support vector machine (LSVM) classifier achieved an accuracy of 83.61% using these MRI features to distinguish dyslexic children from controls. Notably, the most discriminative features that contributed to the classification were primarily associated with WM regions within the putative reading network/system (e.g., the superior longitudinal fasciculus, inferior fronto-occipital fasciculus, thalamocortical projections, and corpus callosum), the limbic system (e.g., the cingulum and fornix), and the motor system (e.g., the cerebellar peduncle, corona radiata, and corticospinal tract). These results were well replicated using a logistic regression classifier. These findings provided direct evidence supporting a multidimensional effect of developmental dyslexia on WM connectivity of human brain, and highlighted the involvement of WM tracts/regions beyond the well-recognized reading system in dyslexia. Finally, the discriminating results demonstrated a potential of WM neuroimaging features as imaging markers for identifying dyslexic individuals. © 2016 Wiley Periodicals, Inc.

  13. Intractable occipital neuralgia caused by an entrapment in the semispinalis capitis.

    PubMed

    Son, Byung-Chul; Kim, Deok-Ryeong; Lee, Sang-Won

    2013-09-01

    Occipital neuralgia is a rare pain syndrome characterized by periodic lancinating pain involving the occipital nerve complex. We present a unique case of entrapment of the greater occipital nerve (GON) within the semispinalis capitis, which was thought to be the cause of occipital neuralgia. A 66-year-old woman with refractory left occipital neuralgia revealed an abnormally low-loop of the left posterior inferior cerebellar artery on the magnetic resonance imaging, suggesting possible vascular compression of the upper cervical roots. During exploration, however, the GON was found to be entrapped at the perforation site of the semispinalis capitis. There was no other compression of the GON or of C1 and C2 dorsal roots in their intracranial course. Postoperatively, the patient experienced almost complete relief of typical neuralgic pain. Although occipital neuralgia has been reported to occur by stretching of the GON by inferior oblique muscle or C1-C2 arthrosis, peripheral compression in the transmuscular course of the GON in the semispinalis capitis as a cause of refractory occipital neuralgia has not been reported and this should be considered when assessing surgical options for refractory occipital neuralgia.

  14. Intractable Occipital Neuralgia Caused by an Entrapment in the Semispinalis Capitis

    PubMed Central

    Kim, Deok-ryeong; Lee, Sang-won

    2013-01-01

    Occipital neuralgia is a rare pain syndrome characterized by periodic lancinating pain involving the occipital nerve complex. We present a unique case of entrapment of the greater occipital nerve (GON) within the semispinalis capitis, which was thought to be the cause of occipital neuralgia. A 66-year-old woman with refractory left occipital neuralgia revealed an abnormally low-loop of the left posterior inferior cerebellar artery on the magnetic resonance imaging, suggesting possible vascular compression of the upper cervical roots. During exploration, however, the GON was found to be entrapped at the perforation site of the semispinalis capitis. There was no other compression of the GON or of C1 and C2 dorsal roots in their intracranial course. Postoperatively, the patient experienced almost complete relief of typical neuralgic pain. Although occipital neuralgia has been reported to occur by stretching of the GON by inferior oblique muscle or C1-C2 arthrosis, peripheral compression in the transmuscular course of the GON in the semispinalis capitis as a cause of refractory occipital neuralgia has not been reported and this should be considered when assessing surgical options for refractory occipital neuralgia. PMID:24278663

  15. Fronto-temporal white matter connectivity predicts reversal learning errors

    PubMed Central

    Alm, Kylie H.; Rolheiser, Tyler; Mohamed, Feroze B.; Olson, Ingrid R.

    2015-01-01

    Each day, we make hundreds of decisions. In some instances, these decisions are guided by our innate needs; in other instances they are guided by memory. Probabilistic reversal learning tasks exemplify the close relationship between decision making and memory, as subjects are exposed to repeated pairings of a stimulus choice with a reward or punishment outcome. After stimulus–outcome associations have been learned, the associated reward contingencies are reversed, and participants are not immediately aware of this reversal. Individual differences in the tendency to choose the previously rewarded stimulus reveal differences in the tendency to make poorly considered, inflexible choices. Lesion studies have strongly linked reversal learning performance to the functioning of the orbitofrontal cortex, the hippocampus, and in some instances, the amygdala. Here, we asked whether individual differences in the microstructure of the uncinate fasciculus, a white matter tract that connects anterior and medial temporal lobe regions to the orbitofrontal cortex, predict reversal learning performance. Diffusion tensor imaging and behavioral paradigms were used to examine this relationship in 33 healthy young adults. The results of tractography revealed a significant negative relationship between reversal learning performance and uncinate axial diffusivity, but no such relationship was demonstrated in a control tract, the inferior longitudinal fasciculus. Our findings suggest that the uncinate might serve to integrate associations stored in the anterior and medial temporal lobes with expectations about expected value based on feedback history, computed in the orbitofrontal cortex. PMID:26150776

  16. FRONTO-STRIATAL FUNCTIONAL CONNECTIVITY DURING RESPONSE INHIBITION IN ALCOHOL DEPENDENCE

    PubMed Central

    Courtney, Kelly E.; Ghahremani, Dara G.; Ray, Lara A.

    2013-01-01

    Poor response inhibition has been implicated in the development of alcohol dependence, yet little is known about how neural pathways underlying cognitive control are affected in this disorder. Moreover, endogenous opioid levels may impact the functionality of inhibitory control pathways. This study investigated the relationship between alcohol dependence severity and functional connectivity of fronto-striatal networks during response inhibition in an alcohol dependent sample. A secondary aim of this study was to test the moderating effect of a functional polymorphism (A118G) of the µ-opioid receptor (OPRM1) gene. Twenty individuals with alcohol dependence (6 females; 90% Caucasian; mean age = 29.4) who were prospectively genotyped on the OPRM1 gene underwent blood oxygen level-dependent (BOLD) functional magnetic resonance imaging (fMRI) while performing a Stop Signal Task (SST). The relationship between alcohol dependence severity and functional connectivity within fronto-striatal networks important for response inhibition was assessed using psychophysiological interaction (PPI) analyses. Analyses revealed greater alcohol dependence severity associated with weaker functional connectivity between the putamen and prefrontal regions (e.g., the anterior insula, anterior cingulate, and medial prefrontal cortex) during response inhibition. Further, the OPRM1 genotype was associated with differential response inhibition-related functional connectivity. This study demonstrates that individuals with more severe alcohol dependence exhibit less frontal connectivity with the striatum, a component of cognitive control networks important for response inhibition. These findings suggest that the fronto-striatal pathway underlying response inhibition is weakened as alcoholism progresses. PMID:23240858

  17. A simplified CT-guided approach for greater occipital nerve infiltration in the management of occipital neuralgia.

    PubMed

    Kastler, Adrian; Onana, Yannick; Comte, Alexandre; Attyé, Arnaud; Lajoie, Jean-Louis; Kastler, Bruno

    2015-08-01

    To evaluate the efficacy of a simplified CT-guided greater occipital nerve (GON) infiltration approach in the management of occipital neuralgia (ON). Local IRB approval was obtained and written informed consent was waived. Thirty three patients suffering from severe refractory ON who underwent a total of 37 CT-guided GON infiltrations were included between 2012 and 2014. GON infiltration was performed at the first bend of the GON, between the inferior obliqus capitis and semispinalis capitis muscles with local anaesthetics and cortivazol. Pain was evaluated via VAS scores. Clinical success was defined by pain relief greater than or equal to 50 % lasting for at least 3 months. The pre-procedure mean pain score was 8/10. Patients suffered from left GON neuralgia in 13 cases, right GON neuralgia in 16 cases and bilateral GON neuralgia in 4 cases. The clinical success rate was 86 %. In case of clinical success, the mean pain relief duration following the procedure was 9.16 months. Simplified CT-guided infiltration appears to be effective in managing refractory ON. With this technique, infiltration of the GON appears to be faster, technically easier and, therefore, safer compared with other previously described techniques. • Occipital neuralgia is a very painful and debilitating condition • GON infiltrations have been successful in the treatment of occipital neuralgia • This simplified technique presents a high efficacy rate with long-lasting pain relief • This infiltration technique does not require contrast media injection for pre-planning • GON infiltration at the first bend appears easier and safer.

  18. Tornwaldt's cyst presenting only as occipital headache: a case report.

    PubMed

    Cho, Hang S; Byeon, Hyung K; Kim, Jun-Hee; Kim, Kyung S

    2009-02-01

    Tornwaldt's cyst (sometimes called Thornwaldt's cyst) is a rare cause of occipital headache. Owing to the rare occurrence of occipital headache as a symptom of Tornwaldt's cyst, if the patient presented only with occipital headache, this clinical symptom may be falsely perceived as a sign of neurologic disease leading to time-consuming diagnostic examinations that delay the establishment of a correct diagnosis.

  19. Altered white matter development in children born very preterm.

    PubMed

    Young, Julia M; Vandewouw, Marlee M; Morgan, Benjamin R; Smith, Mary Lou; Sled, John G; Taylor, Margot J

    2018-06-01

    Children born very preterm (VPT) at less than 32 weeks' gestational age (GA) are prone to disrupted white matter maturation and impaired cognitive development. The aims of the present study were to identify differences in white matter microstructure and connectivity of children born VPT compared to term-born children, as well as relations between white matter measures with cognitive outcomes and early brain injury. Diffusion images and T1-weighted anatomical MR images were acquired along with developmental assessments in 31 VPT children (mean GA: 28.76 weeks) and 28 term-born children at 4 years of age. FSL's tract-based spatial statistics was used to create a cohort-specific template and mean fractional anisotropy (FA) skeleton that was applied to each child's DTI data. Whole brain deterministic tractography was performed and graph theoretical measures of connectivity were calculated based on the number of streamlines between cortical and subcortical nodes derived from the Desikan-Killiany atlas. Between-group analyses included FSL Randomise for voxel-wise statistics and permutation testing for connectivity analyses. Within-group analyses between FA values and graph measures with IQ, language and visual-motor scores as well as history of white matter injury (WMI) and germinal matrix/intraventricular haemorrhage (GMH/IVH) were performed. In the children born VPT, FA values within major white matter tracts were reduced compared to term-born children. Reduced measures of local strength, clustering coefficient, local and global efficiency were present in the children born VPT within nodes in the lateral frontal, middle and superior temporal, cingulate, precuneus and lateral occipital regions. Within-group analyses revealed associations in term-born children between FA, Verbal IQ, Performance IQ and Full scale IQ within regions of the superior longitudinal fasciculus, inferior fronto-occipital fasciculus, forceps minor and forceps major. No associations with outcome

  20. Randomized, double-blind, comparative-effectiveness study comparing pulsed radiofrequency to steroid injections for occipital neuralgia or migraine with occipital nerve tenderness.

    PubMed

    Cohen, Steven P; Peterlin, B Lee; Fulton, Larry; Neely, Edward T; Kurihara, Connie; Gupta, Anita; Mali, Jimmy; Fu, Diana C; Jacobs, Michael B; Plunkett, Anthony R; Verdun, Aubrey J; Stojanovic, Milan P; Hanling, Steven; Constantinescu, Octav; White, Ronald L; McLean, Brian C; Pasquina, Paul F; Zhao, Zirong

    2015-12-01

    Occipital neuralgia (ON) is characterized by lancinating pain and tenderness overlying the occipital nerves. Both steroid injections and pulsed radiofrequency (PRF) are used to treat ON, but few clinical trials have evaluated efficacy, and no study has compared treatments. We performed a multicenter, randomized, double-blind, comparative-effectiveness study in 81 participants with ON or migraine with occipital nerve tenderness whose aim was to determine which treatment is superior. Forty-two participants were randomized to receive local anesthetic and saline, and three 120 second cycles of PRF per targeted nerve, and 39 were randomized to receive local anesthetic mixed with deposteroid and 3 rounds of sham PRF. Patients, treating physicians, and evaluators were blinded to interventions. The PRF group experienced a greater reduction in the primary outcome measure, average occipital pain at 6 weeks (mean change from baseline -2.743 ± 2.487 vs -1.377 ± 1.970; P < 0.001), than the steroid group, which persisted through the 6-month follow-up. Comparable benefits favoring PRF were obtained for worst occipital pain through 3 months (mean change from baseline -1.925 ± 3.204 vs -0.541 ± 2.644; P = 0.043), and average overall headache pain through 6 weeks (mean change from baseline -2.738 ± 2.753 vs -1.120 ± 2.1; P = 0.037). Adverse events were similar between groups, and few significant differences were noted for nonpain outcomes. We conclude that although PRF can provide greater pain relief for ON and migraine with occipital nerve tenderness than steroid injections, the superior analgesia may not be accompanied by comparable improvement on other outcome measures.

  1. Randomized, double-blind, comparative-effectiveness study comparing pulsed radiofrequency to steroid injections for occipital neuralgia or migraine with occipital nerve tenderness

    PubMed Central

    Cohen, Steven P.; Peterlin, B. Lee; Fulton, Larry; Neely, Edward T.; Kurihara, Connie; Gupta, Anita; Mali, Jimmy; Fu, Diana C.; Jacobs, Michael B.; Plunkett, Anthony R.; Verdun, Aubrey J.; Stojanovic, Milan P.; Hanling, Steven; Constantinescu, Octav; White, Ronald L.; McLean, Brian C.; Pasquina, Paul F.; Zhao, Zirong

    2015-01-01

    Occipital neuralgia (ON) is characterized by lancinating pain and tenderness overlying the occipital nerves. Both steroid injections and pulsed radiofrequency (PRF) are used to treat ON, but few clinical trials have evaluated efficacy, and no study has compared treatments. We performed a multicenter, randomized, double-blind, comparative-effectiveness study in 81 participants with ON or migraine with occipital nerve tenderness whose aim was to determine which treatment is superior. Forty-two participants were randomized to receive local anesthetic and saline, and three 120 second cycles of PRF per targeted nerve, and 39 were randomized to receive local anesthetic mixed with deposteroid and 3 rounds of sham PRF. Patients, treating physicians, and evaluators were blinded to interventions. The PRF group experienced a greater reduction in the primary outcome measure, average occipital pain at 6 weeks (mean change from baseline −2.743 ± 2.487 vs −1.377 ± 1.970; P <0.001), than the steroid group, which persisted through the 6-month follow-up. Comparable benefits favoring PRF were obtained for worst occipital pain through 3 months (mean change from baseline−1.925 ± 3.204 vs−0.541 ± 2.644; P = 0.043), and average overall headache pain through 6 weeks (mean change from baseline −2.738 ± 2.753 vs −1.120 ± 2.1; P = 0.037). Adverse events were similar between groups, and few significant differences were noted for nonpain outcomes. We conclude that although PRF can provide greater pain relief for ON and migraine with occipital nerve tenderness than steroid injections, the superior analgesia may not be accompanied by comparable improvement on other outcome measures. PMID:26447705

  2. Prism adaptation enhances activity of intact fronto-parietal areas in both hemispheres in neglect patients.

    PubMed

    Saj, Arnaud; Cojan, Yann; Vocat, Roland; Luauté, Jacques; Vuilleumier, Patrik

    2013-01-01

    Unilateral spatial neglect involves a failure to report or orient to stimuli in the contralesional (left) space due to right brain damage, with severe handicap in everyday activities and poor rehabilitation outcome. Because behavioral studies suggest that prism adaptation may reduce spatial neglect, we investigated the neural mechanisms underlying prism effects on visuo-spatial processing in neglect patients. We used functional magnetic resonance imaging (fMRI) to examine the effect of (right-deviating) prisms on seven patients with left neglect, by comparing brain activity while they performed three different spatial tasks on the same visual stimuli (bisection, search, and memory), before and after a single prism-adaptation session. Following prism adaptation, fMRI data showed increased activation in bilateral parietal, frontal, and occipital cortex during bisection and visual search, but not during the memory task. These increases were associated with significant behavioral improvement in the same two tasks. Changes in neural activity and behavior were seen only after prism adaptation, but not attributable to mere task repetition. These results show for the first time the neural substrates underlying the therapeutic benefits of prism adaptation, and demonstrate that visuo-motor adaptation induced by prism exposure can restore activation in bilateral brain networks controlling spatial attention and awareness. This bilateral recruitment of fronto-parietal networks may counteract the pathological biases produced by unilateral right hemisphere damage, consistent with recent proposals that neglect may reflect lateralized deficits induced by bilateral hemispheric dysfunction. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Observing complex action sequences: The role of the fronto-parietal mirror neuron system.

    PubMed

    Molnar-Szakacs, Istvan; Kaplan, Jonas; Greenfield, Patricia M; Iacoboni, Marco

    2006-11-15

    A fronto-parietal mirror neuron network in the human brain supports the ability to represent and understand observed actions allowing us to successfully interact with others and our environment. Using functional magnetic resonance imaging (fMRI), we wanted to investigate the response of this network in adults during observation of hierarchically organized action sequences of varying complexity that emerge at different developmental stages. We hypothesized that fronto-parietal systems may play a role in coding the hierarchical structure of object-directed actions. The observation of all action sequences recruited a common bilateral network including the fronto-parietal mirror neuron system and occipito-temporal visual motion areas. Activity in mirror neuron areas varied according to the motoric complexity of the observed actions, but not according to the developmental sequence of action structures, possibly due to the fact that our subjects were all adults. These results suggest that the mirror neuron system provides a fairly accurate simulation process of observed actions, mimicking internally the level of motoric complexity. We also discuss the results in terms of the links between mirror neurons, language development and evolution.

  4. Clinical outcomes of pulsed radiofrequency neuromodulation for the treatment of occipital neuralgia.

    PubMed

    Choi, Hyuk Jai; Oh, In Ho; Choi, Seok Keun; Lim, Young Jin

    2012-05-01

    Occipital neuralgia is characterized by paroxysmal jabbing pain in the dermatomes of the greater or lesser occipital nerves caused by irritation of these nerves. Although several therapies have been reported, they have only temporary therapeutic effects. We report the results of pulsed radiofrequency treatment of the occipital nerve, which was used to treat occipital neuralgia. Patients were diagnosed with occipital neuralgia according to the International Classification of Headache Disorders classification criteria. We performed pulsed radiofrequency neuromodulation when patients presented with clinical findings suggestive occipital neuralgia with positive diagnostic block of the occipital nerves with local anesthetics. Patients were analyzed according to age, duration of symptoms, surgical results, complications and recurrence. Pain was measured every month after the procedure using the visual analog and total pain indexes. From 2010, ten patients were included in the study. The mean age was 52 years (34-70 years). The mean follow-up period was 7.5 months (6-10 months). Mean Visual Analog Scale and mean total pain index scores declined by 6.1 units and 192.1 units, respectively, during the follow-up period. No complications were reported. Pulsed radiofrequency neuromodulation of the occipital nerve is an effective treatment for occipital neuralgia. Further controlled prospective studies are necessary to evaluate the exact effects and long-term outcomes of this treatment method.

  5. Clinical Outcomes of Pulsed Radiofrequency Neuromodulation for the Treatment of Occipital Neuralgia

    PubMed Central

    Oh, In Ho; Choi, Seok Keun; Lim, Young Jin

    2012-01-01

    Objective Occipital neuralgia is characterized by paroxysmal jabbing pain in the dermatomes of the greater or lesser occipital nerves caused by irritation of these nerves. Although several therapies have been reported, they have only temporary therapeutic effects. We report the results of pulsed radiofrequency treatment of the occipital nerve, which was used to treat occipital neuralgia. Methods Patients were diagnosed with occipital neuralgia according to the International Classification of Headache Disorders classification criteria. We performed pulsed radiofrequency neuromodulation when patients presented with clinical findings suggestive occipital neuralgia with positive diagnostic block of the occipital nerves with local anesthetics. Patients were analyzed according to age, duration of symptoms, surgical results, complications and recurrence. Pain was measured every month after the procedure using the visual analog and total pain indexes. Results From 2010, ten patients were included in the study. The mean age was 52 years (34-70 years). The mean follow-up period was 7.5 months (6-10 months). Mean Visual Analog Scale and mean total pain index scores declined by 6.1 units and 192.1 units, respectively, during the follow-up period. No complications were reported. Conclusion Pulsed radiofrequency neuromodulation of the occipital nerve is an effective treatment for occipital neuralgia. Further controlled prospective studies are necessary to evaluate the exact effects and long-term outcomes of this treatment method. PMID:22792425

  6. White Matter Correlates of Auditory Comprehension Outcomes in Chronic Post-Stroke Aphasia

    PubMed Central

    Xing, Shihui; Lacey, Elizabeth H.; Skipper-Kallal, Laura M.; Zeng, Jinsheng; Turkeltaub, Peter E.

    2017-01-01

    Neuroimaging studies have shown that speech comprehension involves a number of widely distributed regions within the frontal and temporal lobes. We aimed to examine the differential contributions of white matter connectivity to auditory word and sentence comprehension in chronic post-stroke aphasia. Structural and diffusion MRI data were acquired on 40 patients with chronic post-stroke aphasia. A battery of auditory word and sentence comprehension tests were administered to all the patients. Tract-based spatial statistics were used to identify areas in which white matter integrity related to specific comprehension deficits. Relevant tracts were reconstructed using probabilistic tractography in healthy older participants, and the mean values of fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) of the entire tracts were examined in relation to comprehension scores. Anterior temporal white matter integrity loss and involvement of the uncinate fasciculus related to word-level comprehension deficits (RFA = 0.408, P = 0.012; RMD = −0.429, P = 0.008; RAD = −0.424, P = 0.009; RRD = −0.439, P = 0.007). Posterior temporal white matter integrity loss and involvement of the inferior longitudinal fasciculus related to sentence-level comprehension deficits (RFA = 0.382, P = 0.02; RMD = −0.461, P = 0.004; RAD = −0.457, P = 0.004; RRD = −0.453, P = 0.005). Loss of white matter integrity in the inferior fronto-occipital fasciculus related to both word- and sentence-level comprehension (word-level scores: RFA = 0.41, P = 0.012; RMD = −0.447, P = 0.006; RAD = −0.489, P = 0.002; RRD = −0.432, P = 0.008; sentence-level scores: RFA = 0.409, P = 0.012; RMD = −0.413, P = 0.011; RAD = −0.408, P = 0.012; RRD = −0.413, P = 0.011). Lesion overlap, but not white matter integrity, in the

  7. Giant occipital meningocele in an 8-year-old child with Dandy-Walker malformation.

    PubMed

    Talamonti, Giuseppe; Picano, Marco; Debernardi, Alberto; Bolzon, Moreno; Teruzzi, Mario; D'Aliberti, Giuseppe

    2011-01-01

    The possibility of an association between Dandy-Walker malformation and occipital meningocele is well-known. However, just an overall number of about 40 cases have been previously reported. Giant occipital meningocele has been described only in three newborns. Incidence, pathology, clinical presentation, and proper management of this association are still poorly defined. An 8-year-old boy with Dandy-Walker malformation and giant (25 cm in diameter) occipital meningocele is presented. This boy was born without any apparent occipital mass and harbored no other significant malformations including hydrocephalus. On admission, he was neurologically intact and the giant occipital mass presented partially calcified cyst walls. Treatment consisted of the excision of the occipital malformation, cranioplasty, and cysto-peritoneal shunt. Outcome was excellent. To the best of our knowledge, among the few reported patients with Dandy-Walker malformation associated to occipital meningocele, this is the oldest one and the one with the largest occipital meningocele; he is unique with calcified walls of the occipital meningocele and the only one who survived the repair of the giant malformation. In Dandy-Walker malformation, occipital meningocele may develop and grow regardless of hydrocephalus. Giant size may be reached and the cyst may become calcified. Surgical repair may warrant favorable outcome.

  8. Fronto-striatal circuits in response-inhibition: Relevance to addiction

    PubMed Central

    Morein-Zamir, Sharon; Robbins, Trevor W.

    2015-01-01

    Disruptions to inhibitory control are believed to contribute to multiple aspects of drug abuse, from preexisting vulnerability in at-risk individuals, through escalation to dependence, to promotion of relapse in chronic users. Paradigms investigating the suppression of actions have been investigated in animal and human research on drug addiction. Rodent research has focused largely on impulsive behaviors, often gauged by premature responding, as a viable model highlighting the relevant role of dopamine and other neurotransmitters primarily in the striatum. Human research on action inhibition in stimulant dependence has highlighted impaired performance and largely prefrontal cortical abnormalities as part of a broader pattern of cognitive abnormalities. Animal and human research implicate inhibitory difficulties mediated by fronto-striatal circuitry both preceding and as a result of excessive stimulus use. In this regard, response-inhibition has proven a useful cognitive function to gauge the integrity of fronto-striatal systems and their role in contributing to impulsive and compulsive features of drug dependence. This article is part of a Special Issue entitled SI:Addiction circuits. PMID:25218611

  9. Atlanto-occipital dislocation: Case report and discussion.

    PubMed

    Asfaw, Tehetena; Chow, Bernard; Frederiksen, Ryan A

    2011-01-01

    Traumatic atlanto-occipital dislocation is an uncommon injury that frequently results in either a fatal outcome or severe neurologic deficit. This diagnosis must be considered for any patients who may have had cervical spine damage after high trauma, even in the absence of neurologic signs, as there have been reports of cases without neurologic impairment. In addition to radiographic examination, including lateral cervical radiographs, supplemental imaging with CT or MRI may be required to confirm diagnosis in equivocal cases, and to help in evaluation of bone and nervous structures. Moreover, these modalities allow measurement of the magnitude of dislocation and aid in classification of type of dislocation, which helps guide management. A systematic approach to evaluating the cranio-cervical relationship is critical to identifying atlanto-occipital dislocation. This case report presents and discusses imaging findings that will assist in the diagnosis of atlanto-occipital dislocation.

  10. Response of cervicogenic headaches and occipital neuralgia to radiofrequency ablation of the C2 dorsal root ganglion and/or third occipital nerve.

    PubMed

    Hamer, John F; Purath, Traci A

    2014-03-01

    This article investigates the degree and duration of pain relief from cervicogenic headaches or occipital neuralgia following treatment with radiofrequency ablation of the C2 dorsal root ganglion and/or third occipital nerves. It also addresses the procedure's complication rate and patient's willingness to repeat the procedure if severe symptoms recur. This is a single-center retrospective observational study of 40 patients with refractory cervicogenic headaches and or occipital neuralgia. Patients were all referred by a headache specialty clinic for evaluation for radiofrequency ablation of the C2 dorsal root ganglion and/or third occipital nerves. After treatment, patients were followed for a minimum of 6 months to a year. Patient demographics and the results of radiofrequency ablation were recorded on the same day, after 3-4 days, and at 6 months to 1 year following treatment. Thirty-five percent of patients reported 100% pain relief and 70% reported 80% or greater pain relief. The mean duration of improvement is 22.35 weeks. Complication rate was 12-13%. 92.5% of patients reported they would undergo the procedure again if severe symptoms returned. Radiofrequency ablation of the C2 dorsal root ganglion and/or third occipital nerve can provide many months of greater than 50% pain relief in the vast majority of recipients with an expected length of symptom improvement of 5-6 months. © 2014 American Headache Society.

  11. Preliminary evidence of white matter abnormality in the uncinate fasciculus in generalized social anxiety disorder.

    PubMed

    Phan, K Luan; Orlichenko, Anton; Boyd, Erin; Angstadt, Mike; Coccaro, Emil F; Liberzon, Israel; Arfanakis, Konstantinos

    2009-10-01

    Individuals with generalized social anxiety disorder (GSAD) exhibit exaggerated amygdala reactivity to aversive social stimuli. These findings could be explained by microstructural abnormalities in white matter (WM) tracts that connect the amygdala and prefrontal cortex, which is known to modulate the amygdala's response to threat. The goal of this study was to investigate brain frontal WM abnormalities using diffusion tensor imaging (DTI) in patients with social anxiety disorder. A Turboprop DTI sequence was used to acquire diffusion tensor images in 30 patients with GSAD and 30 matched healthy control subjects. Fractional anisotropy, an index of axonal organization, within WM was quantified in individual subjects, and an automated voxel-based, whole-brain method was used to analyze group differences. Compared with healthy control subjects, patients had significantly lower fractional anisotropy localized to the right uncinate fasciculus WM near the orbitofrontal cortex. There were no areas of higher fractional anisotropy in patients than controls. These findings point to an abnormality in the uncinate fasciculus, the major WM tract connecting the frontal cortex to the amygdala and other limbic temporal regions, in GSAD, which could underlie the aberrant amygdala-prefrontal interactions resulting in dysfunctional social threat processing in this illness.

  12. Experimental trauma of occipital impacts.

    DOT National Transportation Integrated Search

    1974-03-01

    The paper presents clinical observations, physiological data and pathological findings that have been collected on a series of baboons exposed to controlled occipital impacts under local anesthesia. This acute experimental trauma study was accomplish...

  13. Positive reinforcement modulates fronto-limbic systems subserving emotional interference in adolescents.

    PubMed

    Ladouceur, Cecile D; Schlund, Michael W; Segreti, Anna-Maria

    2018-02-15

    Fronto-limbic systems play an important role in supporting resistance to emotional distraction to promote goal-directed behavior. Despite evidence that alterations in the functioning of these systems are implicated in developmental trajectories of psychopathology, most studies have been conducted in adults. This study examined the functioning of fronto-limbic systems subserving emotional interference in adolescents and whether differential reinforcement of correct responding can modulate these neural systems in ways that could promote resistance to emotional distraction. Fourteen healthy adolescents (ages 9-15) completed an emotional delayed working memory task during fMRI with emotional distracters (none, neutral, negative) while positive reinforcement (i.e., monetary reward) was provided for correct responses under some conditions. Adolescents showed slightly reduced behavioral performance and greater activation in amygdala and prefrontal cortical regions (ventrolateral, ventromedial, dorsolateral) on correct trials with negative distracters compared to those with no or neutral distracters. Positive reinforcement yielded an overall improvement in accuracy and reaction times and counteracted the effects of negative distracters as evidenced by significant reductions in activation in key fronto-limbic regions. The present findings extend results on emotional interference from adults to adolescents and suggest that positive reinforcement could be used to potentially promote insulation from emotional distraction. A challenge for the future will be to build upon these findings for constructing reinforcement-based attention training programs that could be used to reduce emotional attention biases in anxious youth. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Etiology and Treatment Modalities of Occipital Artery Aneurysms.

    PubMed

    Chaudhry, Nauman S; Gaynor, Brandon G; Hussain, Shahrose; Dernbach, Paul D; Aziz-Sultan, Mohammad A

    2017-06-01

    Aneurysms of the external carotid artery represent approximately 2% of cervical carotid aneurysms, with the majority being traumatic pseudoaneurysms. Given the paucity of literature available for guidance, the diagnosis, treatment, and follow-up of such lesions are completely individualized. We report an 83-year-old woman with an 8-week history of headache in the occipital region, transient episode of gait disturbance, and pulsatile tinnitus on the right. She had no history of trauma, surgery, autoimmune disease, or infection. Physical examination revealed a pulsatile mass tender to palpation in the right occipital scalp. The mass was surgically excised, and histopathological diagnosis of a true aneurysm was made. Postoperatively, the patient's symptoms resolved; however, 1 month after the procedure, she developed occipital neuralgia, which was successfully treated with a percutaneous nerve block. To the best of our knowledge, this is the second reported case of a true aneurysm of the occipital artery in a patient with no history of trauma. The clinical examination, diagnosis, and treatment are discussed and the literature is reviewed for previously reported cases. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Anomalous origins of the calcarine and parieto-occipital arteries.

    PubMed

    Madhavan, Karthik; Dlouhy, Brian J; Vogel, Timothy W; Policeni, Bruno A; Smoker, Wendy R K; Hasan, David M

    2010-10-01

    Understanding cerebrovascular anatomy and its variations is of utmost importance in treating vascular malformations. The two patients presented here demonstrate yet to be reported anomalous origins of the cortical branches of the posterior cerebral artery. In one patient, fetal calcarine arteries were identified arising from the internal carotid arteries bilaterally with no calcarine branches arising from the posterior circulation and the basilar artery giving rise to terminal parieto-occipital arteries. Additionally, with vertebral artery injections, we found the dominant arterial supply to the right parieto-occipital artery arose from the right internal carotid artery and right posterior communicating artery and the dominant arterial supply to the left parieto-occipital artery arose from the right vertebral artery. A second patient demonstrated anomalous origins of the calcarine and parietal occipital branches from the supraclinoid left internal carotid artery. Understanding this complex cerebrovascular anatomy is important in the endovascular treatment of cerebrovascular aneurysms and malformations. Published by Elsevier Ltd.

  16. White Matter Tract Integrity Predicts Visual Search Performance in Young and Older Adults

    PubMed Central

    Bennett, Ilana J.; Motes, Michael A.; Rao, Neena K.; Rypma, Bart

    2011-01-01

    Functional imaging research has identified fronto-parietal attention networks involved in visual search, with mixed evidence regarding whether different networks are engaged when the search target differs from distracters by a single (elementary) versus multiple (conjunction) features. Neural correlates of visual search, and their potential dissociation, were examined here using integrity of white matter connecting the fronto-parietal networks. The effect of aging on these brain-behavior relationships was also of interest. Younger and older adults performed a visual search task and underwent diffusion tensor imaging (DTI) to reconstruct two fronto-parietal (superior and inferior longitudinal fasciculus, SLF and ILF) and two midline (genu, splenium) white matter tracts. As expected, results revealed age-related declines in conjunction, but not elementary, search performance; and in ILF and genu tract integrity. Importantly, integrity of the SLF, ILF, and genu tracts predicted search performance (conjunction and elementary), with no significant age group differences in these relationships. Thus, integrity of white matter tracts connecting fronto-parietal attention networks contributes to search performance in younger and older adults. PMID:21402431

  17. [Effect of neurolysis on intractable greater occipital nerve neuralgia].

    PubMed

    Tian, Yunhu; Liu, Ya; Liu, Huancai

    2007-09-01

    To investigate the effect of neurolysis on intractable greater occipital nerve neuralgia. From March 1998 to August 2005, twenty-six patients suffering from intractable greater occipital nerve neuralgia were treated. There were 12 males and 14 females with an average age of 52 years (ranged 38-63 years). The disease course was 3-7 years. Sixteen cases had a long duration of work with bowing head, 5 cases symptoms appeared after trauma, and others had no identified causes. The visual analogue scales (VAS) scoring was 6.0 to 9.5, averaged 8. 6. Seven cases were treated by apocope of obliquus capitis inferior under general anaesthesia and 19 cases were treated by neurolysis of greater occipital nerve under local anaesthesia. The compression mass were examined. Symptoms ameliorated or disappeared in 26 cases immediately after operation. The wounds healed by first intention. The pathological results of the removal mass included lymph node (3 cases), neurilemmoma (2 cases) and scar (5 cases). The VAS scoring of 26 cases was 0 to 5 (average, 2) 3 days after operation. Twenty-three cases were followed up for 1 to 3 years. The VAS scoring of 23 cases was 0 to 4.5 ( average, 1.9) 1 months after operation. Only two cases recurred and the symptoms were ameliorated. Pain aggavated after tiredness and reliveed after oral anti-inflammatory analgesics in 6 cases. No relapse occurred in the others. The complete neurolysis of greater occipital nerve (including apocope of obliquus capitis inferior, release between the cucullaris and semispinalis) which make the greater occipital nerve goes without any compression is the key point to treat intractable greater occipital nerve neuralgia.

  18. True aneurysm of the proximal occipital artery: Case report.

    PubMed

    Illuminati, Giulio; Cannistrà, Marco; Pizzardi, Giulia; Pasqua, Rocco; Frezzotti, Francesca; Calio', Francesco G

    2018-01-01

    True aneurysms of the proximal occipital artery are rare, may cause neurological symptoms due to compression of the hypoglossal nerve and their resection may be technically demanding. The case of an aneurysm of the proximal occipital artery causing discomfort and tongue deviation by compression on the hypoglossal nerve is reported. Postoperative course after resection was followed by complete regression of symptoms. Surgical resection, as standard treatment of aneurysms of the occipital artery, with the eventual technical adjunct of intubation by the nose is effective in durably relieving symptoms and preventing aneurysm-related complication. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. 8. Occipital neuralgia.

    PubMed

    Vanelderen, Pascal; Lataster, Arno; Levy, Robert; Mekhail, Nagy; van Kleef, Maarten; Van Zundert, Jan

    2010-01-01

    Occipital neuralgia is defined as a paroxysmal shooting or stabbing pain in the dermatomes of the nervus occipitalis major and/or nervus occipitalis minor. The pain originates in the suboccipital region and radiates over the vertex. A suggestive history and clinical examination with short-term pain relief after infiltration with local anesthetic confirm the diagnosis. No data are available about the prevalence or incidence of this condition. Most often, trauma or irritation of the nervi occipitales causes the neuralgia. Imaging studies are necessary to exclude underlying pathological conditions. Initial therapy consists of a single infiltration of the culprit nervi occipitales with local anesthetic and corticosteroids (2 C+). The reported effects of botulinum toxin A injections are contradictory (2 C+/-). Should injection of local anesthetic and corticosteroids fail to provide lasting relief, pulsed radio-frequency treatment of the nervi occipitales can be considered (2 C+). There is no evidence to support pulsed radio-frequency treatment of the ganglion spinale C2 (dorsal root ganglion). As such, this should only be done in a clinical trial setting. Subcutaneous occipital nerve stimulation can be considered if prior therapy with corticosteroid infiltration or pulsed radio-frequency treatment failed or provided only short-term relief (2 C+).

  20. Disrupted White Matter Microstructure and Mood Disorders after Traumatic Brain Injury.

    PubMed

    Spitz, Gershon; Alway, Yvette; Gould, Kate Rachel; Ponsford, Jennie L

    2017-02-15

    Traumatic brain injury (TBI) is associated with an elevated frequency of mood disorders that may, in part, be explained by changes in white-matter microstructure. This study is the first to examine the relationship between mood disorders and white-matter pathology in a sample of patients with mild to severe TBI using a standardized psychiatric interview. This study reports on a sub-sample of 29 individuals recruited from a large prospective study that examined the evolution of psychiatric disorders following complicated, mild to severe TBI. Individuals with TBI were also compared with 23 healthy control participants. Individuals were invited to complete the Structured Clinical Interview for DSM-IV Disorders (SCID) to diagnose psychiatric disorders. Participants who developed a mood disorder within the first 3 years were categorized into a TBI-Mood group. Diffusion tensor tractography assessed white matter microstructure using atlas-based tract-averaged and along-tract approaches. Fractional anisotropy (FA) was used as the measure of white-matter microstructure. TBI participants with and without a mood disorder did not differ in regard to injury severity and other background factors. Nevertheless, TBI participants diagnosed with a mood disorder displayed significantly lower tract-averaged FA values for the right arcuate fasciculus (p = 0.011), right inferior longitudinal fasciculus (p = 0.009), and anterior segments I (p = 0.0004) and II (p = 0.007) of the corpus callosum, as well as the left (p = 0.014) and right (p = 0.015) fronto-occipital longitudinal fasciculi. The pattern of white matter disruption identified in the current study provides further support for a neurobiological basis of post-TBI mood disorders. Greater understanding of individuals' underlying neuropathology may enable better characterization and prediction of mood disorders. Integration of neuropathology may also inform the potential efficacy of pharmacological and

  1. Altered integrity of the right arcuate fasciculus as a trait marker of schizophrenia: a sibling study using tractography-based analysis of the whole brain.

    PubMed

    Wu, Chen-Hao; Hwang, Tzung-Jeng; Chen, Yu-Jen; Hsu, Yun-Chin; Lo, Yu-Chun; Liu, Chih-Min; Hwu, Hai-Gwo; Liu, Chen-Chung; Hsieh, Ming H; Chien, Yi Ling; Chen, Chung-Ming; Tseng, Wen-Yih Isaac

    2015-03-01

    Trait markers of schizophrenia aid the dissection of the heterogeneous phenotypes into distinct subtypes and facilitate the genetic underpinning of the disease. The microstructural integrity of the white matter tracts could serve as a trait marker of schizophrenia, and tractography-based analysis (TBA) is the current method of choice. Manual tractography is time-consuming and limits the analysis to preselected fiber tracts. Here, we sought to identify a trait marker of schizophrenia from among 74 fiber tracts across the whole brain using a novel automatic TBA method. Thirty-one patients with schizophrenia, 31 unaffected siblings and 31 healthy controls were recruited to undergo diffusion spectrum magnetic resonance imaging at 3T. Generalized fractional anisotropy (GFA), an index reflecting tract integrity, was computed for each tract and compared among the three groups. Ten tracts were found to exhibit significant differences between the groups with a linear, stepwise order from controls to siblings to patients; they included the right arcuate fasciculus, bilateral fornices, bilateral auditory tracts, left optic radiation, the genu of the corpus callosum, and the corpus callosum to the bilateral dorsolateral prefrontal cortices, bilateral temporal poles, and bilateral hippocampi. Posthoc between-group analyses revealed that the GFA of the right arcuate fasciculus was significantly decreased in both the patients and unaffected siblings compared to the controls. Furthermore, the GFA of the right arcuate fasciculus exhibited a trend toward positive symptom scores. In conclusion, the right arcuate fasciculus may be a candidate trait marker and deserves further study to verify any genetic association. © 2014 Wiley Periodicals, Inc.

  2. Ultrasound-Guided Intermediate Site Greater Occipital Nerve Infiltration: A Technical Feasibility Study.

    PubMed

    Zipfel, Jonathan; Kastler, Adrian; Tatu, Laurent; Behr, Julien; Kechidi, Rachid; Kastler, Bruno

    2016-01-01

    Two studies recently reported that computed tomography (CT) guided infiltration of the greater occipital nerve at its intermediate site allows a high efficacy rate with long-lasting pain relief following procedure in occipital neuralgia and in various craniofacial pain syndromes. The purpose of our study was to evaluate the technical feasibility and safety of ultrasound-guided intermediate site greater occipital nerve infiltration. Retrospective study. This study was conducted at the imaging department of a 1,409 bed university hospital. Local institutional review board approval was obtained and written consent was waived. In this retrospective study, 12 patients suffering from refractory occipital neuralgia or craniofacial pain syndromes were included between April and October 2014. They underwent a total of 21 ultrasound-guided infiltrations. Infiltration of the greater occipital nerve was performed at the intermediate site of the greater occipital nerve, at its first bend between obliqus capitis inferior and semispinalis capitis muscles with local anestetics and cortivazol. Technical success was defined as satisfactory diffusion of added iodinated contrast media in the fatty space between these muscles depicted on control CT scan. We also reported first data of immediate block test efficacy and initial clinical efficacy at 7 days, one month, and 3 months, defined by a decrease of at least 50% of visual analog scale (VAS) scores. Technical success rate was 95.24%. Patients suffered from right unilateral occipital neuralgia in 3 cases, left unilateral occipital neuralgia in 2 cases, bilateral occipital neuralgia in 2 cases, migraine in one case, cervicogenic headache in one case, tension-type headache in 2 cases, and cluster headache in one case. Block test efficacy was found in 93.3% (14/15) cases. Clinical efficacy was found in 80% of cases at 7 days, in 66.7% of cases at one month and in 60% of cases at 3 months. No major complications were noted. Some of the

  3. [Medial longitudinal fasciculus (MLF) syndrome in a patient with giant cell arteritis].

    PubMed

    Uenaka, Takeshi; Hamaguchi, Hirotoshi; Sekiguchi, Kenji; Kowa, Hisatomo; Kanda, Fumio; Toda, Tatsushi

    2015-01-01

    A 76-year-old female was referred to our department because of diplopia for two months and intermittent claudication for five months. She showed medial longitudinal fasciculus (MLF) syndrome. Brain MRI (T2WI) showed multiple infarctions in the right pontine tegmentum and left paramedian midbrain. A biopsy of superficial temporal artery showed the characteristic findings of glanulomatous inflammation indicative of giant cell arteritis. We thought the mechanism of this cerebral infarction as artery to artery embolization or intracranial arteritis. Treatment with oral prednisolone (1 mg/kg/day) improved her limb claudication and normalized serum C-reactive protein level.

  4. Novel use of narrow paddle electrodes for occipital nerve stimulation--technical note.

    PubMed

    Abhinav, Kumar; Park, Nicholas D; Prakash, Savithru K; Love-Jones, Sarah; Patel, Nikunj K

    2013-01-01

    Occipital nerve stimulation (ONS), an established treatment for medically intractable headache syndromes, has lead migration rates quoted up to 24%. In a series of patients with ideal characteristics for this treatment modality, we describe an operative technique for ONS involving the novel use of narrow paddle electrodes: "S8 Lamitrode" (St. Jude Medical [SJM], St. Paul, MN, USA). Five patients (occipital neuralgia [ON] = 4; chronic migraine [CM] = 1) were treated with ONS between 2010 and 2011. All patients had a successful trial of peripheral neurostimulation (Algotec Ltd, Crawley, UK) therapy. Operative technique involved the use of a park-bench position, allowing simultaneous exposure of the occipital and infraclavicular regions. Through a retromastoid/occipital incision just beneath the external occipital protruberance, exposing the extrafascial plane, the S8 Lamitrode is implanted to intersect both greater occipital nerves for bilateral pain or unilateral greater and lesser occipital nerves for unilateral ON or with significant component of the pain relating to the lesser occipital nerve. Over the median follow-up of 12 months, there were no episodes of lead migration or revision. There also was significant improvement in symptoms in all patients. This is the first reported use of S8 Lamitrode electrode for ONS. This narrow electrode is suited for this role leading to minimal trauma during surgical placement, facilitates resolution of problems with lead migration, and optimizes effect with stimulation focused more in direction of the occipital nerves without skin involvement. To date, the SJM Genesis neurostimulation system, with percutaneous electrodes only, is CE mark approved in Europe for peripheral nerve stimulation of the occipital nerves for the management of pain and disability for patients diagnosed with intractable CM. Further developments and studies are required for better devices to suit ONS, thereby avoiding frequently encountered

  5. Fronto-parietal coding of goal-directed actions performed by artificial agents.

    PubMed

    Kupferberg, Aleksandra; Iacoboni, Marco; Flanagin, Virginia; Huber, Markus; Kasparbauer, Anna; Baumgartner, Thomas; Hasler, Gregor; Schmidt, Florian; Borst, Christoph; Glasauer, Stefan

    2018-03-01

    With advances in technology, artificial agents such as humanoid robots will soon become a part of our daily lives. For safe and intuitive collaboration, it is important to understand the goals behind their motor actions. In humans, this process is mediated by changes in activity in fronto-parietal brain areas. The extent to which these areas are activated when observing artificial agents indicates the naturalness and easiness of interaction. Previous studies indicated that fronto-parietal activity does not depend on whether the agent is human or artificial. However, it is unknown whether this activity is modulated by observing grasping (self-related action) and pointing actions (other-related action) performed by an artificial agent depending on the action goal. Therefore, we designed an experiment in which subjects observed human and artificial agents perform pointing and grasping actions aimed at two different object categories suggesting different goals. We found a signal increase in the bilateral inferior parietal lobule and the premotor cortex when tool versus food items were pointed to or grasped by both agents, probably reflecting the association of hand actions with the functional use of tools. Our results show that goal attribution engages the fronto-parietal network not only for observing a human but also a robotic agent for both self-related and social actions. The debriefing after the experiment has shown that actions of human-like artificial agents can be perceived as being goal-directed. Therefore, humans will be able to interact with service robots intuitively in various domains such as education, healthcare, public service, and entertainment. © 2017 Wiley Periodicals, Inc.

  6. [Occipital neuralgia with visual obscurations: a case report].

    PubMed

    Selekler, Hamit Macit; Dündar, Gülmine; Kutlu, Ayşe

    2010-07-01

    Vertigo, dizziness and visual blurring have been reported in painful conditions in trigeminal innervation zones such as in idiopathic stabbing headache, supraorbital neuralgia or trigeminal nerve ophthalmic branch neuralgia. Although not common, pain in occipital neuralgia can spread through the anterior parts of the head. In this article, we present a case whose occipital neuralgiform paroxysms spread to the ipsilateral eye with simultaneous visual obscuration; the mechanisms of propagation and visual obscuration are discussed.

  7. Occipital pressure sores in two neonates.

    PubMed

    Liu, Yi; Xiao, Bin; Zhang, Cheng; Su, Zhihong

    2015-01-01

    The preference for a specific head shape can be influenced by people's culture, religious beliefs and race. Modern Chinese people prefer a "talented" head shape, which is rounded and has a long profile. To obtain their preferred head shape, some parents try to change their neonates' sleeping position. Due to these forced sleeping positions, positional skull deformities, such as plagiocephaly, may be present during the first few months of life. In this article, we report two neonatal cases, of Hui nationality and Dongxiang nationality, with occipital pressure sores that were caused by using hard objects as pillows with the intention of obtaining a flattened occiput. The pressure sores were deep to the occipital bone and needed surgical management. These pressure sores caused wounds that were repaired by local skin flaps, after debridement, and the use of external constraints from a dense sponge-made head frame for approximately two weeks. One case recovered with primary healing after surgical operation. The other case suffered from a disruption of the sutured wound, and a secondary operation was performed to cover the wound. These occipital pressure sores are avoidable by providing guidance to the parents in ethnic minorities' area regarding the prevention, diagnosis and management of positional skull deformity.

  8. Contribution of fronto-striatal regions to emotional valence and repetition under cognitive conflict.

    PubMed

    Chun, Ji-Won; Park, Hae-Jeong; Kim, Dai Jin; Kim, Eosu; Kim, Jae-Jin

    2017-07-01

    Conflict processing mediated by fronto-striatal regions may be influenced by emotional properties of stimuli. This study aimed to examine the effects of emotion repetition on cognitive control in a conflict-provoking situation. Twenty-one healthy subjects were scanned using functional magnetic resonance imaging while performing a sequential cognitive conflict task composed of emotional stimuli. The regional effects were analyzed according to the repetition or non-repetition of cognitive congruency and emotional valence between the preceding and current trials. Post-incongruence interference in error rate and reaction time was significantly smaller than post-congruence interference, particularly under repeated positive and non-repeated positive, respectively, and post-incongruence interference, compared to post-congruence interference, increased activity in the ACC, DLPFC, and striatum. ACC and DLPFC activities were significantly correlated with error rate or reaction time in some conditions, and fronto-striatal connections were related to the conflict processing heightened by negative emotion. These findings suggest that the repetition of emotional stimuli adaptively regulates cognitive control and the fronto-striatal circuit may engage in the conflict adaptation process induced by emotion repetition. Both repetition enhancement and repetition suppression of prefrontal activity may underlie the relationship between emotion and conflict adaptation. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Dermatoglyphic asymmetries and fronto-striatal dysfunction in young-adults reporting non-clinical psychosis

    PubMed Central

    Mittal, Vijay A.; Dean, Derek J.; Pelletier, Andrea

    2012-01-01

    Objective Growing evidence indicates that non-clinical psychotic-like experiences occur in otherwise healthy individuals, suggesting that psychosis may occur on a continuum. However, little is know about how the diathesis for formal psychosis maps on to individuals at the non-clinical side of this continuum. Our current understanding of the pathophysiology of schizophrenia implicates certain key factors such as early developmental abnormalities and fronto-striatal dysfunction. To date, no studies have examined these core factors in the context of non-clinical psychosis. Method A total of 221 young adults were assessed for distressing attenuated positive symptoms (DAPS), dermatoglyphic asymmetries (a marker of early developmental insult), and procedural memory (a proxy for fronto-striatal function). Results Participants reporting DAPS (n=16; 7.2%) and no-DAPS (n=205; 92.7%) were split into two groups. The DAPS group showed significantly elevated depression, elevated dermatoglyphic asymmetries, and a pattern of procedural learning consistent with other studies with formally psychotic patients. Conclusion The results indicate that the non-clinical side of the psychosis continuum also shares key vulnerability factors implicated in schizophrenia, suggesting that both early developmental disruption and abnormalities in fronto-striatal function are core aspects underlying the disorder. PMID:22519833

  10. Mechanisms mediating parallel action monitoring in fronto-striatal circuits.

    PubMed

    Beste, Christian; Ness, Vanessa; Lukas, Carsten; Hoffmann, Rainer; Stüwe, Sven; Falkenstein, Michael; Saft, Carsten

    2012-08-01

    Flexible response adaptation and the control of conflicting information play a pivotal role in daily life. Yet, little is known about the neuronal mechanisms mediating parallel control of these processes. We examined these mechanisms using a multi-methodological approach that integrated data from event-related potentials (ERPs) with structural MRI data and source localisation using sLORETA. Moreover, we calculated evoked wavelet oscillations. We applied this multi-methodological approach in healthy subjects and patients in a prodromal phase of a major basal ganglia disorder (i.e., Huntington's disease), to directly focus on fronto-striatal networks. Behavioural data indicated, especially the parallel execution of conflict monitoring and flexible response adaptation was modulated across the examined cohorts. When both processes do not co-incide a high integrity of fronto-striatal loops seems to be dispensable. The neurophysiological data suggests that conflict monitoring (reflected by the N2 ERP) and working memory processes (reflected by the P3 ERP) differentially contribute to this pattern of results. Flexible response adaptation under the constraint of high conflict processing affected the N2 and P3 ERP, as well as their delta frequency band oscillations. Yet, modulatory effects were strongest for the N2 ERP and evoked wavelet oscillations in this time range. The N2 ERPs were localized in the anterior cingulate cortex (BA32, BA24). Modulations of the P3 ERP were localized in parietal areas (BA7). In addition, MRI-determined caudate head volume predicted modulations in conflict monitoring, but not working memory processes. The results show how parallel conflict monitoring and flexible adaptation of action is mediated via fronto-striatal networks. While both, response monitoring and working memory processes seem to play a role, especially response selection processes and ACC-basal ganglia networks seem to be the driving force in mediating parallel conflict

  11. Dandy-Walker syndrome together with occipital encephalocele.

    PubMed

    Cakmak, A; Zeyrek, D; Cekin, A; Karazeybek, H

    2008-08-01

    Dandy-Walker malformation is an anomaly characterized by dysgenesis of the foramina of Magendie and Lushka in the upper 4(th) ventricle, hypoplasia of the cerebellar vermis and agenesis of the corpus callosum. Encephalocele is diagnosed from the calvarium defect, cerebrospinal fluid (CSF) and herniation of the meninges. It is the rarest neural tube defect. A 7 x 9 cm encephalocele was found on physical examination of a 6-day old baby boy patient. From cranial magnetic resonance, it was seen that the posterior fossa was enlarged with cysts and there was agenesis of the vermis. A connection was established between the ventricle and the development of cysts on the posterior fossa. These findings were evaluated as significant from the aspect of Dandy-Walker malformation. The extension of the bone defect in the left occipital area towards the posterior, and the cranio-caudal diameter reaching 9 cm was seen to be in accordance with encephalocele. It is rare for Dandy-Walker syndrome to occur together with occipital encephalocele. The authors present a case of Dandy-Walker syndrome together with occipital encephalocele.

  12. Gray and white matter changes and their relation to illness trajectory in first episode psychosis.

    PubMed

    Keymer-Gausset, Alejandro; Alonso-Solís, Anna; Corripio, Iluminada; Sauras-Quetcuti, Rosa B; Pomarol-Clotet, Edith; Canales-Rodriguez, Erick J; Grasa-Bello, Eva; Álvarez, Enric; Portella, Maria J

    2018-03-01

    Previous works have studied structural brain characteristics in first-episode psychosis (FEP), but few have focused on the relation between brain differences and illness trajectories. The aim of this study is to analyze gray and white matter changes in FEP patients and their relation with one-year clinical outcomes. A sample of 41 FEP patients and 41 healthy controls (HC), matched by age and educational level was scanned with a 3T MRI during the first month of illness onset. One year later, patients were assigned to two illness trajectories (schizophrenia and non-schizophrenia). Voxel-based morphometry (VBM) was used for gray matter and Tract-based spatial statistics (TBSS) was used for white matter data analysis. VBM revealed significant and widespread bilateral gray matter density differences between FEP and HC groups in areas that included the right insular Cortex, the inferior frontal gyrus and orbito-frontal cortices, and segments of the occipital cortex. TBSS showed a significant lower fractional anisotropy (FA) in 8 clusters that included segments of the anterior thalamic radiation, the left body and forceps minor of corpus callosum, the right anterior segment of the inferior fronto-occipital fasciculus and the anterior segments of the cingulum. The sub-groups comparison revealed significant lower FA in the schizophrenia sub-group in two clusters: the anterior thalamic radiation and the anterior segment of left cingulum. These findings are coherent with previous morphology studies. The results suggest that gray and white matter abnormalities are present at early stages of the disease, and white matter differences may distinguish different illness prognosis. Copyright © 2018 Elsevier B.V. and ECNP. All rights reserved.

  13. Preliminary Evidence of White Matter Abnormality in the Uncinate Fasciculus in Generalized Social Anxiety Disorder

    PubMed Central

    Phan, K. Luan; Orlichenko, Anton; Boyd, Erin; Angstadt, Mike; Coccaro, Emil F.; Liberzon, Israel; Arfanakis, Konstantinos

    2009-01-01

    Background Individuals with generalized social anxiety disorder (GSAD) exhibit exaggerated amygdala reactivity to aversive social stimuli. These findings could be explained by microstructural abnormalities in white matter (WM) tracts that connect the amygdala and prefrontal cortex, which is known to modulate the amygdala’s response to threat. The goal of this study was to investigate brain frontal WM abnormalities by using diffusion tensor imaging (DTI) in patients with social anxiety disorder. Method A Turboprop DTI sequence was used to acquire diffusion tensor images in thirty patients with GSAD and thirty matched healthy controls. Fractional anisotropy, an index of axonal organization, within WM was quantified in individual subjects and an automated voxel-based, whole-brain method was used to analyze group differences. Results Compared to healthy controls, patients had significantly lower fractional anisotropy localized to the right uncinate fasciculus WM near the orbitofrontal cortex. There were no areas of higher fractional anisotropy in patients than controls. Conclusions These findings point to an abnormality in the uncinate fasciculus, the major WM tract connecting the frontal cortex to the amygdala and other limbic temporal regions, in GSAD which could underlie the aberrant amygdala-prefrontal interactions resulting in dysfunctional social threat processing in this illness. PMID:19362707

  14. Low message sensation health promotion videos are better remembered and activate areas of the brain associated with memory encoding.

    PubMed

    Seelig, David; Wang, An-Li; Jagannathan, Kanchana; Jaganathan, Kanchana; Loughead, James W; Blady, Shira J; Childress, Anna Rose; Romer, Daniel; Langleben, Daniel D

    2014-01-01

    Greater sensory stimulation in advertising has been postulated to facilitate attention and persuasion. For this reason, video ads promoting health behaviors are often designed to be high in "message sensation value" (MSV), a standardized measure of sensory intensity of the audiovisual and content features of an ad. However, our previous functional Magnetic Resonance Imaging (fMRI) study showed that low MSV ads were better remembered and produced more prefrontal and temporal and less occipital cortex activation, suggesting that high MSV may divert cognitive resources from processing ad content. The present study aimed to determine whether these findings from anti-smoking ads generalize to other public health topics, such as safe sex. Thirty-nine healthy adults viewed high- and low MSV ads promoting safer sex through condom use, during an fMRI session. Recognition memory of the ads was tested immediately and 3 weeks after the session. We found that low MSV condom ads were better remembered than the high MSV ads at both time points and replicated the fMRI patterns previously reported for the anti-smoking ads. Occipital and superior temporal activation was negatively related to the attitudes favoring condom use (see Condom Attitudes Scale, Methods and Materials section). Psychophysiological interaction (PPI) analysis of the relation between occipital and fronto-temporal (middle temporal and inferior frontal gyri) cortices revealed weaker negative interactions between occipital and fronto-temporal cortices during viewing of the low MSV that high MSV ads. These findings confirm that the low MSV video health messages are better remembered than the high MSV messages and that this effect generalizes across public health domains. The greater engagement of the prefrontal and fronto-temporal cortices by low MSV ads and the greater occipital activation by high MSV ads suggest that that the "attention-grabbing" high MSV format could impede the learning and retention of public

  15. Occipital neuralgia: possible failure of surgical treatment - case report.

    PubMed

    Andrychowski, Jarosław; Czernicki, Zbigniew; Netczuk, Tomasz; Taraszewska, Anna; Dabrowski, Piotr; Rakasz, Lukasz; Budohoski, Karol

    2009-01-01

    Surgical intervention in severe cases of occipital neuralgia should be considered if pharmacological and local nerve blocking treatment fail. The literature suggests two types of interventions: surgical decompression of the greater occipital nerve (GON) from the entrapment site, as a less invasive approach, and neurotomy of the nerve trunk, which results in ipsilateral sensation deficits in the GON innervated area of the skull. Due to anatomical variations in the division of the GON trunk, typical neurotomy above the line of the trapezius muscle aponeurosis (TMA) may not result in full recovery. The present study discusses a case of a female treated with GON decompression as a result of occipital neuralgia unresponsive to pharmacotherapy, who thereafter was qualified for two consecutive neurotomies due to severe relapse of pain.

  16. Parkinsonism is associated to fronto-caudate disconnectivity and cognition in schizophrenia.

    PubMed

    Molina, Vicente; Lubeiro, Alba; Blanco, Jorge; Blanco, José A; Rodríguez, Margarita; Rodríguez-Campos, Alicia; de Luis-García, Rodrigo

    2018-07-30

    The present work studies the possible relation of parkinsonism and fronto-caudate dysconnectivity, as well as its relation to cognition in schizophrenia patients. We assessed parkinsonism using Simpson-Angus scale and prefronto-caudate connectivity using diffusion magnetic resonance in 22 schizophrenia patients (11 first-episodes) and 14 healthy controls. Fractional anisotropy was calculated for the white matter tracts directly linking rostral middle prefrontal (RMPF) and superior medial prefrontal (SMPF) regions with caudate nucleus. Cognition was assessed using the Brief Assessment of Cognition in Schizophrenia Scale (BACS). Total parkinsonism scores were negatively related to fractional anisotropy in the right SMPF-caudate tract in patients, which was also found in the first-episode patients alone, but not in controls. Parkinsonism was also inversely associated in patients to performance in social cognition, verbal memory, working memory and performance speed tests. In conclusion, our data support the involvement of fronto-striatal dysconnectivity in parkinsonism in schizophrenia. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. The course of the greater occipital nerve in the suboccipital region: a proposal for setting landmarks for local anesthesia in patients with occipital neuralgia.

    PubMed

    Natsis, K; Baraliakos, X; Appell, H J; Tsikaras, P; Gigis, I; Koebke, J

    2006-05-01

    The anatomical relationships of the greater occipital nerve (GON) to the semispinalis capitis muscle (SCM) and the trapezius muscle aponeurosis (TMA) were examined to identify topographic landmarks for use in anesthetic blockade of the GON in occipital neuralgia. The course and the diameter of the GON were studied in 40 cadavers (29 females, 11 males), and the points where it pierced the SCM and the TMA were identified. The course of the GON did not differ between males and females. A left-right difference was detected in the site of the GON in the TMA region but not in the SCM region. The nerve became wider towards the periphery. This may be relevant to entrapment of the nerve in the development of occipital neuralgia. In three cases, the GON split into two branches before piercing the TMA and reunited after having passed the TMA, and it pierced the obliquus capitis inferior muscle in another three cases. The GON and the lesser occipital nerve reunited at the level of the occiput in 80% of the specimens. The occiput and the nuchal midline are useful topographic landmarks to guide anesthetic blockade of the GON for diagnosis and therapy of occipital neuralgia. The infiltration is probably best aimed at the site where the SCM is pierced by the GON.

  18. Functional alterations of fronto-limbic circuit and default mode network systems in first-episode, drug-naïve patients with major depressive disorder: A meta-analysis of resting-state fMRI data.

    PubMed

    Zhong, Xue; Pu, Weidan; Yao, Shuqiao

    2016-12-01

    The neurobiological mechanisms of depression are increasingly being explored through resting-state brain imaging studies. However, resting-state fMRI findings have varied, perhaps because of differences between study populations, which included the disorder course and medication use. The aim of our study was to integrate studies of resting-state fMRI and explore the alterations of abnormal brain activity in first-episode, drug-naïve patients with major depressive disorder. Relevant imaging reports in English were searched, retrieved, selected and subjected to analysis by activation likelihood estimation, a coordinate-based meta-analysis technique (final sample, 31 studies). Coordinates extracted from the original reports were assigned to two categories based on effect directionality. Compared with healthy controls, the first-episode, medication-naïve major depressive disorder patients showed decreased brain activity in the dorsolateral prefrontal cortex, superior temporal gyrus, posterior precuneus, and posterior cingulate, as well as in visual areas within the occipital lobe, lingual gyrus, and fusiform gyrus, and increased activity in the putamen and anterior precuneus. Not every study that has reported relevant data met the inclusion criteria. Resting-state functional alterations were located mainly in the fronto-limbic system, including the dorsolateral prefrontal cortex and putamen, and in the default mode network, namely the precuneus and superior/middle temporal gyrus. Abnormal functional alterations of the fronto-limbic circuit and default mode network may be characteristic of first-episode, drug-naïve major depressive disorder patients. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Visual interhemispheric communication and callosal connections of the occipital lobes.

    PubMed

    Berlucchi, Giovanni

    2014-07-01

    Callosal connections of the occipital lobes, coursing in the splenium of the corpus callosum, have long been thought to be crucial for interactions between the cerebral hemispheres in vision in both experimental animals and humans. Yet the callosal connections of the temporal and parietal lobes appear to have more important roles than those of the occipital callosal connections in at least some high-order interhemispheric visual functions. The partial intermixing and overlap of temporal, parietal and occipital callosal connections within the splenium has made it difficult to attribute the effects of splenial pathological lesions or experimental sections to splenial components specifically related to select cortical areas. The present review describes some current contributions from the modern techniques for the tracking of commissural fibers within the living human brain to the tentative assignation of specific visual functions to specific callosal tracts, either occipital or extraoccipital. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Botulinum toxin type-A (BOTOX) in the treatment of occipital neuralgia: a pilot study.

    PubMed

    Taylor, Martin; Silva, Sachin; Cottrell, Constance

    2008-01-01

    To determine the efficacy of occipital nerve blocks using reconstituted botulinum toxin type-A (BTX-A) in providing significant and prolonged pain relief in chronic occipital neuralgia. Occipital neuralgia is a unilateral or bilateral radiating pain with paresthesias commonly manifesting as paroxysmal episodes and involving the occipital and parietal regions. Common causes of occipital neuralgia include irritation or injury to the divisions of the occipital nerve, myofascial spasm, and focal entrapment of the occipital nerve. Treatment options include medication therapy, occipital nerve blocks, and surgical techniques. BTX-A, which has shown promise in relief of other headache types, may prove a viable therapeutic option for occipital neuralgia pain. Botulinum toxin type-A (reconstituted in 3 cc of saline) was injected into regions traversed by the greater and lesser occipital nerve in 6 subjects diagnosed with occipital neuralgia. Subjects were instructed to report their daily pain level (on a visual analog pain scale), their ability to perform daily activities (on several quality of life instruments) and their daily pain medication usage (based on a self-reported log), 2 weeks prior to the injection therapy and 12 weeks following injection therapy. Data were analyzed for significant variation from baseline values. The dull/aching and pin/needles types of pain reported by the subjects did not show a statistically significant improvement during the trial period. The sharp/shooting type of pain, however, showed improvement during most of the trial period except weeks 3-4 and 5-6. The quality of life measures exhibited some improvement. The headache-specific quality of life measure showed significant improvement by 6 weeks which continued through week 12. The general health- and depression-related measures showed no statistical improvement. No significant reduction in pain medication usage was demonstrated. Our results indicate that BTX-A improved the sharp

  1. Exogenous vs. endogenous attention: Shifting the balance of fronto-parietal activity.

    PubMed

    Meyer, Kristin N; Du, Feng; Parks, Emily; Hopfinger, Joseph B

    2018-03-01

    Despite behavioral and electrophysiological evidence for dissociations between endogenous (voluntary) and exogenous (reflexive) attention, fMRI results have yet to consistently and clearly differentiate neural activation patterns between these two types of attention. This study specifically aimed to determine whether activity in the dorsal fronto-parietal network differed between endogenous and exogenous conditions. Participants performed a visual discrimination task in endogenous and exogenous attention conditions while undergoing fMRI scanning. Analyses revealed robust and bilateral activation throughout the dorsal fronto-parietal network for each condition, in line with many previous results. In order to investigate possible differences in the balance of neural activity within this network with greater sensitivity, a priori regions of interest (ROIs) were selected for analysis, centered on the frontal eye fields (FEF) and intraparietal sulcus (IPS) regions identified in previous studies. The results revealed a significant interaction between region, condition, and hemisphere. Specifically, in the left hemisphere, frontal areas were more active than parietal areas, but only during endogenous attention. Activity in the right hemisphere, in contrast, remained relatively consistent for these regions across conditions. Analysis of this activity over time indicates that this left-hemispheric regional imbalance is present within the FEF early, at 3-6.5 s post-stimulus presentation, whereas a regional imbalance in the exogenous condition is not evident until 6.5-8 s post-stimulus presentation. Overall, our results provide new evidence that although the dorsal fronto-parietal network is indeed associated with both types of attentional orienting, regions of the network are differentially engaged over time and across hemispheres depending on the type of attention. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Fronto-temporal connectivity predicts cognitive empathy deficits and experiential negative symptoms in schizophrenia.

    PubMed

    Abram, Samantha V; Wisner, Krista M; Fox, Jaclyn M; Barch, Deanna M; Wang, Lei; Csernansky, John G; MacDonald, Angus W; Smith, Matthew J

    2017-03-01

    Impaired cognitive empathy is a core social cognitive deficit in schizophrenia associated with negative symptoms and social functioning. Cognitive empathy and negative symptoms have also been linked to medial prefrontal and temporal brain networks. While shared behavioral and neural underpinnings are suspected for cognitive empathy and negative symptoms, research is needed to test these hypotheses. In two studies, we evaluated whether resting-state functional connectivity between data-driven networks, or components (referred to as, inter-component connectivity), predicted cognitive empathy and experiential and expressive negative symptoms in schizophrenia subjects. Study 1: We examined associations between cognitive empathy and medial prefrontal and temporal inter-component connectivity at rest using a group-matched schizophrenia and control sample. We then assessed whether inter-component connectivity metrics associated with cognitive empathy were also related to negative symptoms. Study 2: We sought to replicate the connectivity-symptom associations observed in Study 1 using an independent schizophrenia sample. Study 1 results revealed that while the groups did not differ in average inter-component connectivity, a medial-fronto-temporal metric and an orbito-fronto-temporal metric were related to cognitive empathy. Moreover, the medial-fronto-temporal metric was associated with experiential negative symptoms in both schizophrenia samples. These findings support recent models that link social cognition and negative symptoms in schizophrenia. Hum Brain Mapp 38:1111-1124, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  3. Complete occipitalization of the atlas with bilateral external auditory canal atresia.

    PubMed

    Dolenšek, Janez; Cvetko, Erika; Snoj, Žiga; Meznaric, Marija

    2017-09-01

    Fusion of the atlas with the occipital bone is a rare congenital dysplasia known as occipitalization of the atlas, occipitocervical synostosis, assimilation of the atlas, or atlanto-occipital fusion. It is a component of the paraxial mesodermal maldevelopment and commonly associated with other dysplasias of the craniovertebral junction. External auditory canal atresia or external aural atresia is a rare congenital absence of the external auditory canal. It occurs as the consequence of the maldevelopment of the first pharyngeal cleft due to defects of cranial neural crest cells migration and/or differentiation. It is commonly associated with the dysplasias of the structures derived from the first and second pharyngeal arches including microtia. We present the coexistence of the occipitalization of the atlas and congenital aural atresia, an uncommon combination of the paraxial mesodermal maldevelopment, and defects of cranial neural crest cells. The association is most probably syndromic as minimal diagnostic criteria for the oculoariculovertebral spectrum are fulfilled. From the clinical point of view, it is important to be aware that patients with microtia must obtain also appropriate diagnostic imaging studies of the craniovetebral junction due to eventual concomitant occipitalization of the atlas and frequently associated C1-C2 instability.

  4. Cerebral grey, white matter and csf in never-medicated, first-episode schizophrenia.

    PubMed

    Chua, Siew E; Cheung, Charlton; Cheung, Vinci; Tsang, Jack T K; Chen, Eric Y H; Wong, Jason C H; Cheung, Jason P Y; Yip, Lawrance; Tai, Kin-Shing; Suckling, John; McAlonan, Gráinne M

    2007-01-01

    We report the first voxel-based morphometric (VBM) study to examine cerebral grey and white matter and cerebrospinal fluid (CSF) using computational morphometry in never-medicated, first-episode psychosis (FEP). Region-of-interest (ROI) analysis was also performed blind to group membership. 26 never-medicated individuals with FEP (23 with DSM-IV schizophrenia) and 38 healthy controls had MRI brain scans. Groups were balanced for age, sex, handedness, ethnicity, paternal socio-economic status, and height. Healthy controls were recruited from the local community by advertisement. Grey matter, white matter, and CSF: global brain volume ratios were significantly smaller in patients. Patients had significantly less grey matter volume in L and R caudate nuclei, cingulate gyri, parahippocampal gyri, superior temporal gyri, cerebellum and R thalamus, prefrontal cortex. They also had significantly less white matter volume in the R anterior limb of the internal capsule fronto-occipital fasciculus and L and R fornices, and significantly greater CSF volume especially in the R lateral ventricle. Excluding the 3 subjects with brief psychotic disorder did not alter our results. Our data suggest that fronto-temporal and subcortical-limbic circuits are morphologically abnormal in never-medicated, schizophrenia. ROI analysis comparing the schizophrenia group (n=23) with the healthy controls (n=38) confirmed caudate volumes were significantly smaller bilaterally by 11%, and lateral ventricular volume was significantly larger on the right by 26% in the patients. Caudate nuclei and lateral ventricular volume measurements were uncorrelated (Pearson correlation coefficient 0.30, p=0.10), ruling out the possibility of segmentation artefact. Ratio of lateral ventricle to caudate volume was bilaterally significantly increased (p<0.005, 2-tailed), which could represent an early biomarker in first-episode, never-medicated schizophrenia.

  5. Greater occipital nerve neuralgia caused by pathological arterial contact: treatment by surgical decompression.

    PubMed

    Cornely, Christiane; Fischer, Marius; Ingianni, Giulio; Isenmann, Stefan

    2011-04-01

    Occipital nerve neuralgia is a rare cause of severe headache, and may be difficult to treat. We report the case of a patient with occipital nerve neuralgia caused by pathological contact of the nerve with the occipital artery. The pain was refractory to medical treatment. Surgical decompression yielded complete remission. © 2010 American Headache Society.

  6. Activity in the fronto-parietal network indicates numerical inductive reasoning beyond calculation: An fMRI study combined with a cognitive model

    PubMed Central

    Liang, Peipeng; Jia, Xiuqin; Taatgen, Niels A.; Borst, Jelmer P.; Li, Kuncheng

    2016-01-01

    Numerical inductive reasoning refers to the process of identifying and extrapolating the rule involved in numeric materials. It is associated with calculation, and shares the common activation of the fronto-parietal regions with calculation, which suggests that numerical inductive reasoning may correspond to a general calculation process. However, compared with calculation, rule identification is critical and unique to reasoning. Previous studies have established the central role of the fronto-parietal network for relational integration during rule identification in numerical inductive reasoning. The current question of interest is whether numerical inductive reasoning exclusively corresponds to calculation or operates beyond calculation, and whether it is possible to distinguish between them based on the activity pattern in the fronto-parietal network. To directly address this issue, three types of problems were created: numerical inductive reasoning, calculation, and perceptual judgment. Our results showed that the fronto-parietal network was more active in numerical inductive reasoning which requires more exchanges between intermediate representations and long-term declarative knowledge during rule identification. These results survived even after controlling for the covariates of response time and error rate. A computational cognitive model was developed using the cognitive architecture ACT-R to account for the behavioral results and brain activity in the fronto-parietal network. PMID:27193284

  7. Activity in the fronto-parietal network indicates numerical inductive reasoning beyond calculation: An fMRI study combined with a cognitive model.

    PubMed

    Liang, Peipeng; Jia, Xiuqin; Taatgen, Niels A; Borst, Jelmer P; Li, Kuncheng

    2016-05-19

    Numerical inductive reasoning refers to the process of identifying and extrapolating the rule involved in numeric materials. It is associated with calculation, and shares the common activation of the fronto-parietal regions with calculation, which suggests that numerical inductive reasoning may correspond to a general calculation process. However, compared with calculation, rule identification is critical and unique to reasoning. Previous studies have established the central role of the fronto-parietal network for relational integration during rule identification in numerical inductive reasoning. The current question of interest is whether numerical inductive reasoning exclusively corresponds to calculation or operates beyond calculation, and whether it is possible to distinguish between them based on the activity pattern in the fronto-parietal network. To directly address this issue, three types of problems were created: numerical inductive reasoning, calculation, and perceptual judgment. Our results showed that the fronto-parietal network was more active in numerical inductive reasoning which requires more exchanges between intermediate representations and long-term declarative knowledge during rule identification. These results survived even after controlling for the covariates of response time and error rate. A computational cognitive model was developed using the cognitive architecture ACT-R to account for the behavioral results and brain activity in the fronto-parietal network.

  8. Post-traumatic transient cortical blindness in a child with occipital bone fracture.

    PubMed

    Ng, Rachel H C

    2016-12-01

    Cortical blindness as sequelae of trauma has been reported in literature but mostly in the setting of occipital cortex or visual tract damages. We present a case of transient cortical blindness in a child following a closed head injury with a non-displaced occipital bone fracture and underlying occipital lobe contusion. We discuss the pathophysiology behind Post-traumatic transient cortical blindness, relevant investigations, and current management. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. [Percutaneous electrical nerve stimulation of peripheral nerve for the intractable occipital neuralgia].

    PubMed

    Shaladi, Ali; Crestani, Francesco; Saltari, Rita; Piva, Bruno

    2008-06-01

    Occipital neuralgia is characterized by pain paroxysm occurring within distribution of the greater or lesser occipital nerves. The pain may radiates from the rear head toward the ipso-lateral frontal or retro-orbital regions of head. Though known causes include head injuries, direct occipital nerve trauma, neuroma formation or upper cervical root compression, most people have no demonstrable lesion. A sample of 8 patients (5 females, 3 males) aging 63,5 years on the average with occipital neuralgia has been recruited. The occipital neuralgic pain had presented since 4, 6 years and they had been treated by pharmacological therapy without benefit. Some result has been obtained by blocking of the grand occipital nerve so that the patients seemed to be suitable for subcutaneous peripheral neurostimulation. The pain was evaluated by VAS and SVR scales before treatment (TO) and after three and twelve months (T1, T2). During the follow up period 7 patients have been monitored for a whole year while one patient was followed only for 3 months in that some complications have presented. In the other 7 patients pain paroxysms have interrupted and trigger point disappeared with a VAS and SVR reduction of about 71% and 60%, respectively. Our experience demonstrates a sound efficacy of such a technique for patients having occipital neuralgia resistant to pharmacological therapies even if action mechanisms have not yet clearly explained. Some hypothesis exist and we think it might negatively affect the neurogenic inflammation that surely acts in pain maintaining.

  10. Fluoroscopy and Sonographic Guided Injection of Obliquus Capitis Inferior Muscle in an Intractable Occipital Neuralgia

    PubMed Central

    Kim, Ok Sun; Jeong, Seung Min; Ro, Ji Young; Kim, Duck Kyoung; Koh, Young Cho; Ko, Young Sin; Lim, So Dug; Kim, Hae Kyoung

    2010-01-01

    Occipital neuralgia is a form of headache that involves the posterior occiput in the greater or lesser occipital nerve distribution. Pain can be severe and persistent with conservative treatment. We present a case of intractable occipital neuralgia that conventional therapeutic modalities failed to ameliorate. We speculate that, in this case, the cause of headache could be the greater occipital nerve entrapment by the obliquus capitis inferior muscle. After steroid and local anesthetic injection into obliquus capitis inferior muscles under fluoroscopic and sonographic guidance, the visual analogue scale was decreased from 9-10/10 to 1-2/10 for 2-3 weeks. The patient eventually got both greater occipital neurectomy and partial resection of obliquus capitis inferior muscles due to the short term effect of the injection. The successful steroid and local anesthetic injection for this occipital neuralgia shows that the refractory headache was caused by entrapment of greater occipital nerves by obliquus capitis inferior muscles. PMID:20552081

  11. The von Economo neurons in fronto-insular and anterior cingulate cortex

    PubMed Central

    Allman, John M.; Tetreault, Nicole A.; Hakeem, Atiya Y.; Manaye, Kebreten F.; Semendeferi, Katerina; Erwin, Joseph M.; Park, Soyoung; Goubert, Virginie; Hof, Patrick R.

    2011-01-01

    The von Economo neurons (VENs) are large bipolar neurons located in fronto-insular cortex (FI) and anterior limbic area (LA) in great apes and humans but not in other primates. Our stereological counts of VENs in FI and LA show them to be more numerous in humans than in apes. In humans, small numbers of VENs appear the 36th week post conception, with numbers increasing during the first eight months after birth. There are significantly more VENs in the right hemisphere in postnatal brains; this may be related to asymmetries in the autonomic nervous system. VENs are also present in elephants and whales and may be a specialization related to very large brain size. The large size and simple dendritic structure of these projection neurons suggest that they rapidly send basic information from FI and LA to other parts of the brain, while slower neighboring pyramids send more detailed information. Selective destruction of VENs in early stages of fronto-temporal dementia implies that they are involved in empathy, social awareness, and self-control, consistent with evidence from functional imaging. PMID:21534993

  12. Developmental abnormalities of the occipital bone in human chondrodystrophies (achondroplasia and thanatophoric dwarfism).

    PubMed

    Marin-Padilla, M; Marin-Padilla, T M

    1977-01-01

    Specific developmental malformations have been demonstrated in the occipital bone of two chondrodysplastic disorders (achondroplasia and thanatophoric dwarfism). Analysis of these malformations indicates that the occipital bone is primary affected in these disorders. In both cases, the endochondral-derived components of the occipital bone (the basioccipital, the two lateral parts, and the planum nuchale of the squama occipitalis) have failed to grow properly and are smaller and shorter than normal. On the other hand, the planum occipitalis of the squama, which derives from intramembranous ossification, is unaffected. In addition, the nature of these abnormalities indicates that the occipital synchondroses, together with the epiphyseal plates of other bones, are primarily affected in these two chondrodysplasias. The components of the occipital bone formed between the affected synchondroses failed to grow normally. The resulting malformation of the occipital bone is undoubtedly the cause of the shortening of the posterior cerebral fossa and of the considerable narrowing of the foramen magnum often described in these chondrodysplasias. It is postulated that growth disturbances between the affected occipital bone and the unaffected central nervous system results in the inadequacy of the posterior cerebral fossa and the foramen magnum to accommodate the growing brain. Consequently, compression of the brain at the posterior cerebral fossa or the foramen magnum levels could occur and thus lead to neurologic complications such as hydrocephalus and compression of the brain stem. It is suggested that the surgical removal of the fused posterior border of the lateral parts of the occipital bone (partial nuchalectomy) for the purpose of enlarging the narrow foramen magnum may be indicated in those chondrodysplastic children who develop these types of neurologic complications.

  13. Occipital condyle syndrome secondary to bone metastases from rectal cancer.

    PubMed

    Marruecos, J; Conill, C; Valduvieco, I; Vargas, M; Berenguer, J; Maurel, J

    2008-01-01

    Skull-base metastases are very unfrequent. Occipital condyle syndrome (OCS) is usually underdiagnosed. Until now few cases have been reported in the literature. We present a 71-year-old woman with metastatic rectum adenocarcinoma, with right occipital headache and ipsilateral hypoglossal palsy, diagnosed by computed tomography and magnetic resonance imaging of OCS due to a skull-base metastasis and treated with radiation therapy.

  14. Occipital neuralgia associates with high cervical spinal cord lesions in idiopathic inflammatory demyelinating disease.

    PubMed

    Kissoon, Narayan R; Watson, James C; Boes, Christopher J; Kantarci, Orhun H

    2018-01-01

    Background The association of trigeminal neuralgia with pontine lesions has been well documented in multiple sclerosis, and we tested the hypothesis that occipital neuralgia in multiple sclerosis is associated with high cervical spinal cord lesions. Methods We retrospectively reviewed the records of 29 patients diagnosed with both occipital neuralgia and demyelinating disease by a neurologist from January 2001 to December 2014. We collected data on demographics, clinical findings, presence of C2-3 demyelinating lesions, and treatment responses. Results The patients with both occipital neuralgia and multiple sclerosis were typically female (76%) and had a later onset (age > 40) of occipital neuralgia (72%). Eighteen patients (64%) had the presence of C2-3 lesions and the majority had unilateral symptoms (83%) or episodic pain (78%). All patients with documented sensory loss (3/3) had C2-3 lesions. Most patients with progressive multiple sclerosis (6/8) had C2-3 lesions. Of the eight patients with C2-3 lesions and imaging at onset of occipital neuralgia, five (62.5%) had evidence of active demyelination. None of the patients with progressive multiple sclerosis (3/3) responded to occipital nerve blocks or high dose intravenous steroids, whereas all of the other phenotypes with long term follow-up (eight patients) had good responses. Conclusions A cervical spine MRI should be considered in all patients presenting with occipital neuralgia. In patients with multiple sclerosis, clinical features in occipital neuralgia that were predictive of the presence of a C2-3 lesion were unilateral episodic symptoms, sensory loss, later onset of occipital neuralgia, and progressive multiple sclerosis phenotype. Clinical phenotype predicted response to treatment.

  15. Cervical facet arthropathy and occipital neuralgia: headache culprits.

    PubMed

    Hoppenfeld, J D

    2010-12-01

    Cervicogenic headache (CH) is pain referred from the neck. Two common causes are cervical facet arthropathy and occipital neuralgia. Clinical diagnosis is difficult because of the overlying features between primary headaches such as migraine, tension-type headache, and CH. Interventional pain physicians have focused on supporting the clinical diagnosis of CH with confirmatory blocks. The treatment of cervical facet arthropathy as the source of CH is best approached with a multidimensional plan focusing on physical therapy and/or manual therapy. The effective management of occipital neuralgia remains challenging, but both injections and neuromodulation are promising options.

  16. Occipital GABA correlates with cognitive failures in daily life.

    PubMed

    Sandberg, Kristian; Blicher, Jakob Udby; Dong, Mia Yuan; Rees, Geraint; Near, Jamie; Kanai, Ryota

    2014-02-15

    The brain has limited capacity, and so selective attention enhances relevant incoming information while suppressing irrelevant information. This process is not always successful, and the frequency of such cognitive failures varies to a large extent between individuals. Here we hypothesised that individual differences in cognitive failures might be reflected in inhibitory processing in the sensory cortex. To test this hypothesis, we measured GABA in human visual cortex using MR spectroscopy and found a negative correlation between occipital GABA (GABA+/Cr ratio) and cognitive failures as measured by an established cognitive failures questionnaire (CFQ). For a second site in parietal cortex, no correlation between CFQ score and GABA+/Cr ratio was found, thus establishing the regional specificity of the link between occipital GABA and cognitive failures. We further found that grey matter volume in the left superior parietal lobule (SPL) correlated with cognitive failures independently from the impact of occipital GABA and together, occipital GABA and SPL grey matter volume statistically explained around 50% of the individual variability in daily cognitive failures. We speculate that the amount of GABA in sensory areas may reflect the potential capacity to selectively suppress irrelevant information already at the sensory level, or alternatively that GABA influences the specificity of neural representations in visual cortex thus improving the effectiveness of successful attentional modulation. © 2013. Published by Elsevier Inc. All rights reserved.

  17. White Matter Microstructure in Superior Longitudinal Fasciculus Associated with Spatial Working Memory Performance in Children

    ERIC Educational Resources Information Center

    Vestergaard, Martin; Madsen, Kathrine Skak; Baare, William F. C.; Skimminge, Arnold; Ejersbo, Lisser Rye; Ramsoy, Thomas Z.; Gerlach, Christian; Akeson, Per; Paulson, Olaf B.; Jernigan, Terry L.

    2011-01-01

    During childhood and adolescence, ongoing white matter maturation in the fronto-parietal cortices and connecting fiber tracts is measurable with diffusion-weighted imaging. Important questions remain, however, about the links between these changes and developing cognitive functions. Spatial working memory (SWM) performance improves significantly…

  18. Fronto-orbital reconstruction using polymethyl methacrylate implant

    PubMed Central

    Ghosh, Samiran; Pramanick, Debolina; Ray, Amit; Burman, Richi; Saha, Ashistaru

    2017-01-01

    The objective of this article is to show a case of fronto-orbital reconstruction with prefabricated polymethyl methacrylate prosthesis. A 35-year-old male with alleged history of trauma following road traffic accident 3 months back reported with unaesthetic scar and deformity in right supraorbital region to us. As there was no functional deformity, the management was aimed at correcting the contour and esthetic only. The correction was achieved by overlaying the defect with a polymethyl methacrylate implant fabricated over a three-dimensional stereolithographically printed rapidly prototyped model. Postoperative phase was uneventful and esthetic outcome was satisfactory. The patient after 4-year follow-up reported with no discomfort and definite improvement in facial contour. PMID:29386820

  19. Fronto-orbital reconstruction using polymethyl methacrylate implant.

    PubMed

    Ghosh, Samiran; Pramanick, Debolina; Ray, Amit; Burman, Richi; Saha, Ashistaru

    2017-01-01

    The objective of this article is to show a case of fronto-orbital reconstruction with prefabricated polymethyl methacrylate prosthesis. A 35-year-old male with alleged history of trauma following road traffic accident 3 months back reported with unaesthetic scar and deformity in right supraorbital region to us. As there was no functional deformity, the management was aimed at correcting the contour and esthetic only. The correction was achieved by overlaying the defect with a polymethyl methacrylate implant fabricated over a three-dimensional stereolithographically printed rapidly prototyped model. Postoperative phase was uneventful and esthetic outcome was satisfactory. The patient after 4-year follow-up reported with no discomfort and definite improvement in facial contour.

  20. Long term prognosis of symptomatic occipital lobe epilepsy secondary to neonatal hypoglycemia.

    PubMed

    Montassir, Hesham; Maegaki, Yoshihiro; Ohno, Kousaku; Ogura, Kaeko

    2010-02-01

    To report on long-term clinical course in patients with symptomatic occipital lobe epilepsy secondary to neonatal hypoglycemia. Six patients with neonatal hypoglycemia and symptomatic occipital lobe epilepsy were studied in our hospital through reviewing their medical records retrospectively. The median onset age of epilepsy was 2 years 8 months and median follow-up period was 12 years and 4 months. Initial seizure types were generalized convulsions in 4 patients, hemiconvulsion in 1, and infantile spasms in 1. Ictal manifestations of main seizures were identical to occipital lobe seizures, such as eye deviation, eye blinking, ictal vomiting, and visual hallucination. Seizure frequency was maximum during infancy and early childhood and decreased thereafter with no seizure in 2 patients, a few seizures a year in 3, and once a month in 1. All patients had status epilepticus in the early course of epilepsy. EEGs showed parieto-occipital spikes in all patients. MRI revealed cortical atrophy and T2 prolongation parieto-occipitally in 4 patients, hippocampal atrophy in 1, and unremarkable in 1. This study indicates that epilepsy secondary to neonatal hypoglycemia is intractable during infancy and early childhood with frequent status epilepticus but tends to decrease in older age.

  1. Intracranial spectral amplitude dynamics of perceptual suppression in fronto-insular, occipito-temporal, and primary visual cortex

    PubMed Central

    Vidal, Juan R.; Perrone-Bertolotti, Marcela; Kahane, Philippe; Lachaux, Jean-Philippe

    2015-01-01

    If conscious perception requires global information integration across active distant brain networks, how does the loss of conscious perception affect neural processing in these distant networks? Pioneering studies on perceptual suppression (PS) described specific local neural network responses in primary visual cortex, thalamus and lateral prefrontal cortex of the macaque brain. Yet the neural effects of PS have rarely been studied with intracerebral recordings outside these cortices and simultaneously across distant brain areas. Here, we combined (1) a novel experimental paradigm in which we produced a similar perceptual disappearance and also re-appearance by using visual adaptation with transient contrast changes, with (2) electrophysiological observations from human intracranial electrodes sampling wide brain areas. We focused on broadband high-frequency (50–150 Hz, i.e., gamma) and low-frequency (8–24 Hz) neural activity amplitude modulations related to target visibility and invisibility. We report that low-frequency amplitude modulations reflected stimulus visibility in a larger ensemble of recording sites as compared to broadband gamma responses, across distinct brain regions including occipital, temporal and frontal cortices. Moreover, the dynamics of the broadband gamma response distinguished stimulus visibility from stimulus invisibility earlier in anterior insula and inferior frontal gyrus than in temporal regions, suggesting a possible role of fronto-insular cortices in top–down processing for conscious perception. Finally, we report that in primary visual cortex only low-frequency amplitude modulations correlated directly with perceptual status. Interestingly, in this sensory area broadband gamma was not modulated during PS but became positively modulated after 300 ms when stimuli were rendered visible again, suggesting that local networks could be ignited by top–down influences during conscious perception. PMID:25642199

  2. Blindness alters the microstructure of the ventral but not the dorsal visual stream.

    PubMed

    Reislev, Nina L; Kupers, Ron; Siebner, Hartwig R; Ptito, Maurice; Dyrby, Tim B

    2016-07-01

    Visual deprivation from birth leads to reorganisation of the brain through cross-modal plasticity. Although there is a general agreement that the primary afferent visual pathways are altered in congenitally blind individuals, our knowledge about microstructural changes within the higher-order visual streams, and how this is affected by onset of blindness, remains scant. We used diffusion tensor imaging and tractography to investigate microstructural features in the dorsal (superior longitudinal fasciculus) and ventral (inferior longitudinal and inferior fronto-occipital fasciculi) visual pathways in 12 congenitally blind, 15 late blind and 15 normal sighted controls. We also studied six prematurely born individuals with normal vision to control for the effects of prematurity on brain connectivity. Our data revealed a reduction in fractional anisotropy in the ventral but not the dorsal visual stream for both congenitally and late blind individuals. Prematurely born individuals, with normal vision, did not differ from normal sighted controls, born at term. Our data suggest that although the visual streams are structurally developing without normal visual input from the eyes, blindness selectively affects the microstructure of the ventral visual stream regardless of the time of onset. We suggest that the decreased fractional anisotropy of the ventral stream in the two groups of blind subjects is the combined result of both degenerative and cross-modal compensatory processes, affecting normal white matter development.

  3. Structural white matter differences underlying heterogeneous learning abilities after TBI.

    PubMed

    Chiou, Kathy S; Genova, Helen M; Chiaravalloti, Nancy D

    2016-12-01

    The existence of learning deficits after traumatic brain injury (TBI) is generally accepted; however, our understanding of the structural brain mechanisms underlying learning impairment after TBI is limited. Furthermore, our understanding of learning after TBI is often at risk for overgeneralization, as research often overlooks within sample heterogeneity in learning abilities. The present study examined differences in white matter integrity in a sample of adults with moderate to severe TBI who differed in learning abilities. Adults with moderate to severe TBI were grouped into learners and non-learners based upon achievement of the learning criterion of the open-trial Selective Reminding Test (SRT). Diffusion tensor imaging (DTI) was used to identify white matter differences between the learners and non-learners. Adults with TBI who were able to meet the learning criterion had greater white matter integrity (as indicated by higher fractional anisotropy [FA] values) in the right anterior thalamic radiation, forceps minor, inferior fronto-occipital fasciculus, and forceps minor than non-learners. The results of the study suggest that differences in white matter integrity may explain the observed heterogeneity in learning ability after moderate to severe TBI. This also supports emerging evidence for the involvement of the thalamus in higher order cognition, and the role of thalamo-cortical tracts in connecting functional networks associated with learning.

  4. Fronto-limbic effective connectivity as possible predictor of antidepressant response to SSRI administration.

    PubMed

    Vai, Benedetta; Bulgarelli, Chiara; Godlewska, Beata R; Cowen, Philip J; Benedetti, Francesco; Harmer, Catherine J

    2016-12-01

    The timely selection of the optimal treatment for depressed patients is critical to improve remission rates. The detection of pre-treatment variables able to predict differential treatment response may provide novel approaches for treatment selection. Selective serotonin reuptake inhibitors (SSRIs) modulate the fronto-limbic functional response and connectivity, an effect preceding the overt clinical antidepressant effects. Here we investigated whether the cortico-limbic connectivity associated with emotional bias measured before SSRI administration predicts the efficacy of antidepressant treatment in MDD patients. fMRI and Dynamic Causal Modeling (DCM) were combined to study if effective connectivity might differentiate healthy controls (HC) and patients affected by major depression who later responded (RMDD, n=21), or failed to respond (nRMDD, n=12), to 6 weeks of escitalopram administration. Sixteen DCMs exploring connectivity between anterior cingulate cortex (ACC), ventrolateral prefrontal cortex (VLPFC), Amygdala (Amy), and fusiform gyrus (FG) were constructed. Analyses revealed that nRMDD had reduced endogenous connectivity from Amy to VLPFC and to ACC, with an increased connectivity and modulation of the ACC to Amy connectivity when processing of fearful emotional stimuli compared to HC. RMDD and HC did not significantly differ among themselves. Pre-treatment effective connectivity in fronto-limbic circuitry could be an important factor affecting antidepressant response, and highlight the mechanisms which may be involved in recovery from depression. These results suggest that fronto-limbic connectivity might provide a neural biomarker to predict the clinical outcome to SSRIs administration in major depression. Copyright © 2016 Elsevier B.V. and ECNP. All rights reserved.

  5. Subcallosal Cingulate Connectivity in Anorexia Nervosa Patients Differs From Healthy Controls: A Multi-tensor Tractography Study.

    PubMed

    Hayes, Dave J; Lipsman, Nir; Chen, David Q; Woodside, D Blake; Davis, Karen D; Lozano, Andres M; Hodaie, Mojgan

    2015-01-01

    Anorexia nervosa is characterized by extreme low body weight and alterations in affective processing. The subcallosal cingulate regulates affect through wide-spread white matter connections and is implicated in the pathophysiology of anorexia nervosa. We examined whether those with treatment refractory anorexia nervosa undergoing deep brain stimulation (DBS) of the subcallosal white matter (SCC) show: (1) altered anatomical SCC connectivity compared to healthy controls, (2) white matter microstructural changes, and (3) microstructural changes associated with clinically-measured affect. Diffusion magnetic resonance imaging (dMRI) and deterministic multi-tensor tractography were used to compare anatomical connectivity and microstructure in SCC-associated white matter tracts. Eight women with treatment-refractory anorexia nervosa were compared to 8 age- and sex-matched healthy controls. Anorexia nervosa patients also completed affect-related clinical assessments presurgically and 12 months post-surgery. (1) Higher (e.g., left parieto-occipital cortices) and lower (e.g., thalamus) connectivity in those with anorexia nervosa compared to controls. (2) Decreases in fractional anisotropy, and alterations in axial and radial diffusivities, in the left fornix crus, anterior limb of the internal capsule (ALIC), right anterior cingulum and left inferior fronto-occipital fasciculus. (3) Correlations between dMRI metrics and clinical assessments, such as low pre-surgical left fornix and right ALIC fractional anisotropy being related to post-DBS improvements in quality-of-life and depressive symptoms, respectively. We identified widely-distributed differences in SCC connectivity in anorexia nervosa patients consistent with heterogenous clinical disruptions, although these results should be considered with caution given the low number of subjects. Future studies should further explore the use of affect-related connectivity and behavioral assessments to assist with DBS target

  6. Indications and outcomes for surgical treatment of patients with chronic migraine headaches caused by occipital neuralgia.

    PubMed

    Ducic, Ivica; Hartmann, Emily C; Larson, Ethan E

    2009-05-01

    Occipital neuralgia is a headache syndrome characterized by paroxysmal headaches localizing to the posterior scalp. The critical diagnostic feature is symptomatic response to local anesthetic blockade of the greater or lesser occipital nerve. Further characterization is debated in the literature regarding the diagnosis and optimal management of this condition. The authors present the largest reported series of surgical neurolysis of the greater occipital nerve in the management of occipital neuralgia. A retrospective chart review was conducted to identify 206 consecutive patients undergoing neurolysis of the greater or, less commonly, excision of the greater and/or lesser occipital nerves. A detailed description of the procedure is presented, as is the algorithm for patient selection and timing of surgery. Preoperative and postoperative visual analogue pain scores and migraine headache indices were measured. Success was defined as a reduction in pain of 50 percent or greater. Of 206 patients, 190 underwent greater occipital nerve neurolysis (171 bilateral). Twelve patients underwent greater and lesser occipital nerve excision, whereas four underwent lesser occipital nerve excision alone. The authors found that 80.5 percent of patients experienced at least 50 percent pain relief and 43.4 percent of patients experienced complete relief of headache. Mean preoperative pain score was 7.9 +/- 1.4. Mean postoperative pain was 1.9 +/- 1.8. Minimum duration of follow-up was 12 months. There were two minor complications. Neurolysis of the greater occipital nerve appears to provide safe, durable pain relief in the majority of selected patients with chronic headaches caused by occipital neuralgia.

  7. Vascular compression as a potential cause of occipital neuralgia: a case report.

    PubMed

    White, J B; Atkinson, P P; Cloft, H J; Atkinson, J L D

    2008-01-01

    Vascular compression is a well-established cause of cranial nerve neuralgic syndromes. A unique case is presented that demonstrates that vascular compression may be a possible cause of occipital neuralgia. A 48-year-old woman with refractory left occipital neuralgia revealed on magnetic resonance imaging and computed tomographic imaging of the upper cervical spine an atypically low loop of the left posterior inferior cerebellar artery (PICA), clearly indenting the dorsal upper cervical roots. During surgery, the PICA loop was interdigitated with the C1 and C2 dorsal roots. Microvascular decompression alone has never been described for occipital neuralgia, despite the strong clinical correlation in this case. Therefore, both sectioning the dorsal roots of C2 and microvascular decompression of the PICA loop were performed. Postoperatively, the patient experienced complete cure of her neuralgia. Vascular compression as a cause of refractory occipital neuralgia should be considered when assessing surgical options.

  8. Relationships between changes in Sustained Fronto-Striatal Connectivity and Positive Affect with Antidepressant Treatment in Major Depression

    PubMed Central

    Heller, Aaron S.; Johnstone, Tom; Light, Sharee; Peterson, Michael J.; Kolden, Gregory G.; Kalin, Ned H.; Davidson, Richard J.

    2012-01-01

    Objective Deficits in positive affect and their neural bases have been associated with major depression. However, whether reductions in positive affect result solely from an overall reduction in nucleus accumbens activity and fronto-striatal connectivity or the additional inability to sustain engagement over time of this network is unknown. Accordingly, we sought to determine whether treatment-induced changes in the ability to sustain nucleus accumbens activity and fronto-striatal connectivity during the regulation of positive affect are associated with gains in positive affect. Method Using fMRI, we assessed the ability to sustain activity in reward-related networks when attempting to increase positive emotion during performance of an emotion regulation paradigm in 21 depressed patients prior to, and after 2 months of antidepressant treatment. 14 healthy control subjects were scanned over the same interval. Results After 2 months of treatment, self-reported positive affect increased. Those patients demonstrating the largest increases in sustained nucleus accumbens activity over the 2 months were those demonstrating the largest increases in positive affect. In addition, those patients demonstrating the largest increases in sustained fronto-striatal connectivity were also those demonstrating the largest increases in positive affect when controlling for negative affect. Healthy controls showed none of these associations. Conclusions Treatment induced changes in the sustained engagement of fronto-striatal circuitry tracks the experience of positive emotion in daily life. Studies examining reduced positive affect in a variety of psychiatric disorders might benefit from examining the temporal dynamics of brain activity when attempting to understand changes in daily positive affect. PMID:23223803

  9. The association of children's mathematic abilities with both adults' cognitive abilities and intrinsic fronto-parietal networks is altered in preterm-born individuals.

    PubMed

    Bäuml, J G; Meng, C; Daamen, M; Baumann, N; Busch, B; Bartmann, P; Wolke, D; Boecker, H; Wohlschläger, A; Sorg, C; Jaekel, Julia

    2017-03-01

    Mathematic abilities in childhood are highly predictive for long-term neurocognitive outcomes. Preterm-born individuals have an increased risk for both persistent cognitive impairments and long-term changes in macroscopic brain organization. We hypothesized that the association of childhood mathematic abilities with both adulthood general cognitive abilities and associated fronto-parietal intrinsic networks is altered after preterm delivery. 72 preterm- and 71 term-born individuals underwent standardized mathematic and IQ testing at 8 years and resting-state fMRI and full-scale IQ testing at 26 years of age. Outcome measure for intrinsic networks was intrinsic functional connectivity (iFC). Controlling for IQ at age eight, mathematic abilities in childhood were significantly stronger positively associated with adults' IQ in preterm compared with term-born individuals. In preterm-born individuals, the association of children's mathematic abilities and adults' fronto-parietal iFC was altered. Likewise, fronto-parietal iFC was distinctively linked with preterm- and term-born adults' IQ. Results provide evidence that preterm birth alters the link of mathematic abilities in childhood and general cognitive abilities and fronto-parietal intrinsic networks in adulthood. Data suggest a distinct functional role of intrinsic fronto-parietal networks for preterm individuals with respect to mathematic abilities and that these networks together with associated children's mathematic abilities may represent potential neurocognitive targets for early intervention.

  10. Low Message Sensation Health Promotion Videos Are Better Remembered and Activate Areas of the Brain Associated with Memory Encoding

    PubMed Central

    Jaganathan, Kanchana; Loughead, James W.; Blady, Shira J.; Childress, Anna Rose; Romer, Daniel; Langleben, Daniel D.

    2014-01-01

    Greater sensory stimulation in advertising has been postulated to facilitate attention and persuasion. For this reason, video ads promoting health behaviors are often designed to be high in “message sensation value” (MSV), a standardized measure of sensory intensity of the audiovisual and content features of an ad. However, our previous functional Magnetic Resonance Imaging (fMRI) study showed that low MSV ads were better remembered and produced more prefrontal and temporal and less occipital cortex activation, suggesting that high MSV may divert cognitive resources from processing ad content. The present study aimed to determine whether these findings from anti-smoking ads generalize to other public health topics, such as safe sex. Thirty-nine healthy adults viewed high- and low MSV ads promoting safer sex through condom use, during an fMRI session. Recognition memory of the ads was tested immediately and 3 weeks after the session. We found that low MSV condom ads were better remembered than the high MSV ads at both time points and replicated the fMRI patterns previously reported for the anti-smoking ads. Occipital and superior temporal activation was negatively related to the attitudes favoring condom use (see Condom Attitudes Scale, Methods and Materials section). Psychophysiological interaction (PPI) analysis of the relation between occipital and fronto-temporal (middle temporal and inferior frontal gyri) cortices revealed weaker negative interactions between occipital and fronto-temporal cortices during viewing of the low MSV that high MSV ads. These findings confirm that the low MSV video health messages are better remembered than the high MSV messages and that this effect generalizes across public health domains. The greater engagement of the prefrontal and fronto-temporal cortices by low MSV ads and the greater occipital activation by high MSV ads suggest that that the “attention-grabbing” high MSV format could impede the learning and retention of

  11. Occipital Neuralgia as the Only Presenting Symptom of Foramen Magnum Meningioma

    PubMed Central

    Yang, Seung-Yeob; Koo, Joon-Bum; Jeong, Sang-Wuk

    2009-01-01

    Background Occipital neuralgia (ON) is a condition characterized by a paroxysmal stabbing pain in the area of the greater or lesser occipital nerves; it is usually regarded by clinicians as idiopathic. Some have suggested that ON can be induced by trauma or injury of the occipital nerves or their roots, but tumor has rarely been reported as a cause of ON. Case Report We report herein a case of foramen magnum meningioma in a 55-year-old woman who presented with ON triggered by head motion as the only symptom without any signs of myelopathy. Conclusions This case indicates that it is important to consider the underlying causes of ON. Precise neurologic and radiological evaluations such as cervical spine magnetic resonance imaging are needed. PMID:20076803

  12. Familial neuralgia of occipital and intermedius nerves in a Chinese family.

    PubMed

    Wang, Yu; Yu, Chuan-Yong; Huang, Lin; Riederer, Franz; Ettlin, Dominik

    2011-08-01

    Cranial nerve neuralgia usually occurs sporadically. Nonetheless, familial cases of trigeminal neuralgia are not uncommon with a reported incidence of 1-2%, suggestive of an autosomal dominant inheritance. In contrast, familial occipital neuralgia is rarely reported with only one report in the literature. We present a Chinese family with five cases of occipital and nervus intermedius neuralgia alone or in combination in three generations. All persons afflicted with occipital neuralgia have suffered from paroxysmal 'electric wave'-like pain for years. In the first generation, the father (index patient) was affected, in the second generation all his three daughters (with two sons spared) and in the third generation a daughter's male offspring is affected. This familial pattern suggests an X-linked dominant or an autosomal dominant inheritance mode.

  13. Fronto-Parietal gray matter and white matter efficiency differentially predict intelligence in males and females.

    PubMed

    Ryman, Sephira G; Yeo, Ronald A; Witkiewitz, Katie; Vakhtin, Andrei A; van den Heuvel, Martijn; de Reus, Marcel; Flores, Ranee A; Wertz, Christopher R; Jung, Rex E

    2016-11-01

    While there are minimal sex differences in overall intelligence, males, on average, have larger total brain volume and corresponding regional brain volumes compared to females, measures that are consistently related to intelligence. Limited research has examined which other brain characteristics may differentially contribute to intelligence in females to facilitate equal performance on intelligence measures. Recent reports of sex differences in the neural characteristics of the brain further highlight the need to differentiate how the structural neural characteristics relate to intellectual ability in males and females. The current study utilized a graph network approach in conjunction with structural equation modeling to examine potential sex differences in the relationship between white matter efficiency, fronto-parietal gray matter volume, and general cognitive ability (GCA). Participants were healthy adults (n = 244) who completed a battery of cognitive testing and underwent structural neuroimaging. Results indicated that in males, a latent factor of fronto-parietal gray matter was significantly related to GCA when controlling for total gray matter volume. In females, white matter efficiency and total gray matter volume were significantly related to GCA, with no specificity of the fronto-parietal gray matter factor over and above total gray matter volume. This work highlights that different neural characteristics across males and females may contribute to performance on intelligence measures. Hum Brain Mapp 37:4006-4016, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  14. [Treatment of Occipital Neuralgia by Electroacupuncture Combined with Neural Mobilization].

    PubMed

    Wang, Yan; Guo, Zi-Nan; Yang, Zhen; Wang, Shun

    2018-03-25

    To observe the effect of electroacupuncture (EA) combined with neural mobilization (NM) in the treatment of occipital neuralgia. A total of 62 occipital neuralgia patients were randomized into EA group (19 cases), NM group (22 cases) and EA+NM group (21 cases). EA was applied at acupoint-pairs as Yuzhen (BL 9)- Tianzhu (BL 10), Fengchi (GB 20)- Wangu (GB 12), etc. NM intervention consisted of occipital muscle group mobilization, C 2 spinous process mobilization, cervical joint passive movement management mobilization, etc., was performed at the impaired cervical spine segment. The two methods were used in combination for patients in the EA+NM group. All the treatment was given once a day for 2 weeks. Before and after treatment, the visual analogue scale (VAS) and the 6-point (1-6 points) behavioral rating scale (BRS-6) of headache were used to assess the severity of pain. The therapeutic effect was evaluated according to the "Criteria for Diagnosis and Cure-Improvement of Clinical Conditions" formulated by State Administration of Traditional Chinese Medicine of the People's Republic of China in 1994. After treatment, both VAS and BRS-6 scores were significantly lower than those before treatment in each of the three groups ( P <0.05), and were significantly lower in the EA+NM group than in the simple EA and simple NM groups ( P <0.01, P <0.05). The total effective rates were 78.95% (15/19) in the EA group, 68.18% (15/22) in the NM group, and 90.48% (19/21) in the EA+NM group, with an obviously better therapeutic effect being in the EA+NM group relevant to each of the other two treatment groups ( P <0.05). EA, NM and EA combined with NM can improve symptoms of patients with occipital neuralgia, and EA+NM has a synergic analgesic effect for occipital neuralgia.

  15. Primary Occipital Ewing's Sarcoma with Subsequent Spinal Seeding.

    PubMed

    Alqahtani, Ali; Amer, Roaa; Bakhsh, Eman

    2017-01-01

    Ewing's sarcoma is a primary bone cancer that mainly affects the long bones. This malignancy is particularly common in pediatric patients. Primary cranial involvement accounts for 1% of cases, with occipital involvement considered extremely rare. In this case study, primary occipital Ewing's sarcoma with a posterior fossa mass and subsequent relapse resulting in spinal seeding is reported. A 3-year-old patient presented with a 1-year history of left-sided headaches, localized over the occipital bone with progressive torticollis. Computed tomography (CT) imaging showed a mass in the left posterior fossa compressing the brainstem. The patient then underwent surgical excision followed by adjuvant chemoradiation therapy. Two years later, the patient presented with severe lower back pain and urinary incontinence. Whole-spine magnetic resonance imaging (MRI) showed cerebrospinal fluid (CSF) seeding from the L5 to the S4 vertebrae. Primary cranial Ewing's sarcoma is considered in the differential diagnosis of children with extra-axial posterior fossa mass associated with destructive permeative bone lesions. Although primary cranial Ewing's sarcoma typically has good prognosis, our patient developed metastasis in the lower spine. Therefore, with CNS Ewing's sarcoma, screening of the entire neural axis should be taken into consideration for early detection of CSF seeding metastasis in order to decrease the associated morbidity and mortality.

  16. Right hemisphere dominance during spatial selective attention and target detection occurs outside the dorsal fronto-parietal network

    PubMed Central

    Shulman, Gordon L.; Pope, Daniel L. W.; Astafiev, Serguei V.; McAvoy, Mark P.; Snyder, Abraham Z.; Corbetta, Maurizio

    2010-01-01

    Spatial selective attention is widely considered to be right hemisphere dominant. Previous functional magnetic resonance imaging (fMRI) studies, however, have reported bilateral blood-oxygenation-level-dependent (BOLD) responses in dorsal fronto-parietal regions during anticipatory shifts of attention to a location (Kastner et al., 1999; Corbetta et al., 2000; Hopfinger et al., 2000). Right-lateralized activity has mainly been reported in ventral fronto-parietal regions for shifts of attention to an unattended target stimulus (Arrington et al., 2000; Corbetta et al., 2000). However, clear conclusions cannot be drawn from these studies because hemispheric asymmetries were not assessed using direct voxel-wise comparisons of activity in left and right hemispheres. Here, we used this technique to measure hemispheric asymmetries during shifts of spatial attention evoked by a peripheral cue stimulus and during target detection at the cued location. Stimulus-driven shifts of spatial attention in both visual fields evoked right-hemisphere dominant activity in temporo-parietal junction (TPJ). Target detection at the attended location produced a more widespread right hemisphere dominance in frontal, parietal, and temporal cortex, including the TPJ region asymmetrically activated during shifts of spatial attention. However, hemispheric asymmetries were not observed during either shifts of attention or target detection in the dorsal fronto-parietal regions (anterior precuneus, medial intraparietal sulcus, frontal eye fields) that showed the most robust activations for shifts of attention. Therefore, right hemisphere dominance during stimulus-driven shifts of spatial attention and target detection reflects asymmetries in cortical regions that are largely distinct from the dorsal fronto-parietal network involved in the control of selective attention. PMID:20219998

  17. Brief communication: timing of spheno-occipital closure in modern Western Australians.

    PubMed

    Franklin, Daniel; Flavel, Ambika

    2014-01-01

    The spheno-occipital synchondrosis is a craniofacial growth centre between the occipital and sphenoid bones-its ossification persists into adolescence, which for the skeletal biologist, means it has potential application for estimating subadult age. Based on previous research the timing of spheno-occipital fusion is widely variable between and within populations, with reports of complete fusion in individuals as young as 11 years of age and nonfusion in adults. The aim of this study is, therefore, to examine this structure in a mixed sex sample of Western Australian individuals that developmentally span late childhood to adulthood. The objective is to develop statistically quantified age estimation standards based on scoring the degree of spheno-occipital fusion. The sample comprises multidetector computed tomography (MDCT) scans of 312 individuals (169 male; 143 female) between 5 and 25 years of age. Each MDCT scan is visualized in a standardized sagittal plane using three-dimensional oblique multiplanar reformatting. Fusion status is scored according to a four-stage system. Transition analysis is used to calculate age ranges for each defined stage and determine the mean age for transition between an unfused, fusing and fused status. The maximum likelihood estimates for the transition from open to fusing in the endocranial half is 14.44 years (male) and 11.42 years (female); transition from fusion in the ectocranial half to complete fusion is 16.16 years (male) and 13.62 years (female). This study affirms the potential value of assessing the degree of fusion in the spheno-occipital synchondrosis as an indicator of skeletal age. Copyright © 2013 Wiley Periodicals, Inc.

  18. Modelling dynamic fronto-parietal behaviour during minimally invasive surgery--a Markovian trip distribution approach.

    PubMed

    Leff, Daniel Richard; Orihuela-Espina, Felipe; Leong, Julian; Darzi, Ara; Yang, Guang-Zhong

    2008-01-01

    Learning to perform Minimally Invasive Surgery (MIS) requires considerable attention, concentration and spatial ability. Theoretically, this leads to activation in executive control (prefrontal) and visuospatial (parietal) centres of the brain. A novel approach is presented in this paper for analysing the flow of fronto-parietal haemodynamic behaviour and the associated variability between subjects. Serially acquired functional Near Infrared Spectroscopy (fNIRS) data from fourteen laparoscopic novices at different stages of learning is projected into a low-dimensional 'geospace', where sequentially acquired data is mapped to different locations. A trip distribution matrix based on consecutive directed trips between locations in the geospace reveals confluent fronto-parietal haemodynamic changes and a gravity model is applied to populate this matrix. To model global convergence in haemodynamic behaviour, a Markov chain is constructed and by comparing sequential haemodynamic distributions to the Markov's stationary distribution, inter-subject variability in learning an MIS task can be identified.

  19. Atypical Activations of Fronto-Cerebellar Regions During Forethought in Parents of Children With ADHD.

    PubMed

    Rapin, Lucile; Poissant, Hélène; Mendrek, Adrianna

    2017-10-01

    Although several studies suggest heritability of ADHD, only a few investigations of possible associations between people at risk and neural abnormalities in ADHD exist. In this study, we tested whether parents of children with ADHD would show atypical patterns of cerebral activations during forethought, a feature of working memory. Using Functional Magnetic Resonance Imaging (fMRI), we compared 12 parents of children with ADHD and 9 parents of control children during a forethought task. Parents of children with ADHD exhibited significantly increased neural activations in the posterior lobes of the cerebellum and in the left inferior frontal gyrus, relative to parents of control children. These findings are consistent with previous reports in children and suggest the fronto-cerebellar circuit's abnormalities during forethought in parents of children with ADHD. Future studies of people at risk of ADHD are needed to fully understand the extent of the fronto-cerebellar heritability.

  20. 'For the benefit of the people': the Dutch translation of the Fasciculus medicinae, Antwerp 1512.

    PubMed

    Coppens, Christian

    2009-01-01

    The article deals with the Dutch translation of the Fasciculus medicinae based on the Latin edition, Venice 1495, with the famous woodcuts created in 1494 for the Italian translation of the original Latin edition of 1491. The woodcuts are compared with the Venetian model. New features in the Antwerp edition include the Skeleton and the Zodiac Man, bot originally based on German models. The text also deals with other woodcuts in the Low Countries based on these Venetian illustrations. The Appendices provide a short title catalog of all the editions and translations based on the Venetian edition and a stemma.

  1. Acute Biphasic Effects of Ayahuasca

    PubMed Central

    Schenberg, Eduardo Ekman; Alexandre, João Felipe Morel; Filev, Renato; Cravo, Andre Mascioli; Sato, João Ricardo; Muthukumaraswamy, Suresh D.; Yonamine, Maurício; Waguespack, Marian; Lomnicka, Izabela; Barker, Steven A.; da Silveira, Dartiu Xavier

    2015-01-01

    Ritual use of ayahuasca, an amazonian Amerindian medicine turned sacrament in syncretic religions in Brazil, is rapidly growing around the world. Because of this internationalization, a comprehensive understanding of the pharmacological mechanisms of action of the brew and the neural correlates of the modified states of consciousness it induces is important. Employing a combination of electroencephalogram (EEG) recordings and quantification of ayahuasca's compounds and their metabolites in the systemic circulation we found ayahuasca to induce a biphasic effect in the brain. This effect was composed of reduced power in the alpha band (8–13 Hz) after 50 minutes from ingestion of the brew and increased slow- and fast-gamma power (30–50 and 50–100 Hz, respectively) between 75 and 125 minutes. Alpha power reductions were mostly located at left parieto-occipital cortex, slow-gamma power increase was observed at left centro-parieto-occipital, left fronto-temporal and right frontal cortices while fast-gamma increases were significant at left centro-parieto-occipital, left fronto-temporal, right frontal and right parieto-occipital cortices. These effects were significantly associated with circulating levels of ayahuasca’s chemical compounds, mostly N,N-dimethyltryptamine (DMT), harmine, harmaline and tetrahydroharmine and some of their metabolites. An interpretation based on a cognitive and emotional framework relevant to the ritual use of ayahuasca, as well as it's potential therapeutic effects is offered. PMID:26421727

  2. Acute Biphasic Effects of Ayahuasca.

    PubMed

    Schenberg, Eduardo Ekman; Alexandre, João Felipe Morel; Filev, Renato; Cravo, Andre Mascioli; Sato, João Ricardo; Muthukumaraswamy, Suresh D; Yonamine, Maurício; Waguespack, Marian; Lomnicka, Izabela; Barker, Steven A; da Silveira, Dartiu Xavier

    2015-01-01

    Ritual use of ayahuasca, an amazonian Amerindian medicine turned sacrament in syncretic religions in Brazil, is rapidly growing around the world. Because of this internationalization, a comprehensive understanding of the pharmacological mechanisms of action of the brew and the neural correlates of the modified states of consciousness it induces is important. Employing a combination of electroencephalogram (EEG) recordings and quantification of ayahuasca's compounds and their metabolites in the systemic circulation we found ayahuasca to induce a biphasic effect in the brain. This effect was composed of reduced power in the alpha band (8-13 Hz) after 50 minutes from ingestion of the brew and increased slow- and fast-gamma power (30-50 and 50-100 Hz, respectively) between 75 and 125 minutes. Alpha power reductions were mostly located at left parieto-occipital cortex, slow-gamma power increase was observed at left centro-parieto-occipital, left fronto-temporal and right frontal cortices while fast-gamma increases were significant at left centro-parieto-occipital, left fronto-temporal, right frontal and right parieto-occipital cortices. These effects were significantly associated with circulating levels of ayahuasca's chemical compounds, mostly N,N-dimethyltryptamine (DMT), harmine, harmaline and tetrahydroharmine and some of their metabolites. An interpretation based on a cognitive and emotional framework relevant to the ritual use of ayahuasca, as well as it's potential therapeutic effects is offered.

  3. [Occipital neuralgia: clinical and therapeutic characteristics of a series of 14 patients].

    PubMed

    Pedraza, María Isabel; Ruiz, Marina; Rodríguez, Cristina; Muñoz, Irene; Barón, Johanna; Mulero, Patricia; Herrero-Velázquez, Sonia; Guerrero-Peral, Ángel L

    2013-09-01

    INTRODUCTION. Occipital neuralgia is a pain in the distribution of the occipital nerves, accompanied by hypersensitivity to touch in the corresponding territory. AIMS. We present the occipital neuralgia series from the specialised headache unit at a tertiary hospital and analyse its clinical characteristics and its response to therapy. PATIENTS AND METHODS. Variables were collected from the cases of occipital neuralgia diagnosed in the above-mentioned headache unit between January 2008 and April 2013. RESULTS. A series of 14 patients (10 females, 4 males) with occipital neuralgia was obtained out of a total of 2338 (0.59%). Age at onset of the clinical signs and symptoms: 53.4 ± 20.3 years (range: 17-81 years) and time elapsed to diagnosis was 35.5 ± 58.8 months (range: 1-230 months). An intracranial or cervical pathology was ruled out by suitable means in each case. Baseline pain of a generally oppressive nature and an intensity of 5.3 ± 1.3 (4-8) on the verbal analogue scale was observed in 13 of them (92.8%). Eleven (78.5%) presented exacerbations, generally stabbing pains, a variable frequency (4.6 ± 7 a day) and an intensity of 7.8 ± 1.7 (range: 4-10) on the verbal analogue scale. Anaesthetic blockade was not performed in four of them (two due to a remitting pattern and two following the patient's wishes); in the others, blockade was carried out and was completely effective for between two and seven months. Four cases had previously received preventive treatment (amitriptyline in three and gabapentin in one), with no response. CONCLUSIONS. In this series from a specialised headache unit, occipital neuralgia is an infrequent condition that mainly affects patients over 50 years of age. Given its poor response to preventive treatment, the full prolonged response to anaesthetic blockades must be taken into account.

  4. Right Occipital Cortex Activation Correlates with Superior Odor Processing Performance in the Early Blind

    PubMed Central

    Grandin, Cécile B.; Dricot, Laurence; Plaza, Paula; Lerens, Elodie; Rombaux, Philippe; De Volder, Anne G.

    2013-01-01

    Using functional magnetic resonance imaging (fMRI) in ten early blind humans, we found robust occipital activation during two odor-processing tasks (discrimination or categorization of fruit and flower odors), as well as during control auditory-verbal conditions (discrimination or categorization of fruit and flower names). We also found evidence for reorganization and specialization of the ventral part of the occipital cortex, with dissociation according to stimulus modality: the right fusiform gyrus was most activated during olfactory conditions while part of the left ventral lateral occipital complex showed a preference for auditory-verbal processing. Only little occipital activation was found in sighted subjects, but the same right-olfactory/left-auditory-verbal hemispheric lateralization was found overall in their brain. This difference between the groups was mirrored by superior performance of the blind in various odor-processing tasks. Moreover, the level of right fusiform gyrus activation during the olfactory conditions was highly correlated with individual scores in a variety of odor recognition tests, indicating that the additional occipital activation may play a functional role in odor processing. PMID:23967263

  5. The neuropsychopharmacology of fronto-executive function: monoaminergic modulation.

    PubMed

    Robbins, T W; Arnsten, A F T

    2009-01-01

    We review the modulatory effects of the catecholamine neurotransmitters noradrenaline and dopamine on prefrontal cortical function. The effects of pharmacologic manipulations of these systems, sometimes in comparison with the indoleamine serotonin (5-HT), on performance on a variety of tasks that tap working memory, attentional-set formation and shifting, reversal learning, and response inhibition are compared in rodents, nonhuman primates, and humans using, in a behavioral context, several techniques ranging from microiontophoresis and single-cell electrophysiological recording to pharmacologic functional magnetic resonance imaging. Dissociable effects of drugs and neurotoxins affecting these monoamine systems suggest new ways of conceptualizing state-dependent fronto-executive functions, with implications for understanding the molecular genetic basis of mental illness and its treatment.

  6. Transarticular screw fixation of C1-2 for the treatment of arthropathy-associated occipital neuralgia.

    PubMed

    Pakzaban, Peyman

    2011-02-01

    Two patients with occipital neuralgia due to severe arthropathy of the C1-2 facet joint were treated using atlantoaxial fusion with transarticular screws without decompression of the C-2 nerve root. Both patients experienced immediate postoperative relief of occipital neuralgia. The resultant motion elimination at C1-2 eradicated not only the movement-evoked pain, but also the paroxysms of true occipital neuralgia occurring at rest. A possible pathophysiological explanation for this improvement is presented in the context of the ignition theory of neuralgic pain. This represents the first report of C1-2 transarticular screw fixation for the treatment of arthropathy-associated occipital neuralgia.

  7. [Scalp neuralgia and headache elicited by cranial superficial anatomical causes: supraorbital neuralgia, occipital neuralgia, and post-craniotomy headache].

    PubMed

    Shimizu, Satoru

    2014-01-01

    Most scalp neuralgias are supraorbital or occipital. Although they have been considered idiopathic, recent studies revealed that some were attributable to mechanical irritation with the peripheral nerve of the scalp by superficial anatomical cranial structures. Supraorbital neuralgia involves entrapment of the supraorbital nerve by the facial muscle, and occipital neuralgia involves entrapment of occipital nerves, mainly the greater occipital nerve, by the semispinalis capitis muscle. Contact between the occipital artery and the greater occipital nerve in the scalp may also be causative. Decompression surgery to address these neuralgias has been reported. As headache after craniotomy is the result of iatrogenic injury to the peripheral nerve of the scalp, post-craniotomy headache should be considered as a differential diagnosis.

  8. Distinct loci of lexical and semantic access deficits in aphasia: Evidence from voxel-based lesion-symptom mapping and diffusion tensor imaging.

    PubMed

    Harvey, Denise Y; Schnur, Tatiana T

    2015-06-01

    Naming pictures and matching words to pictures belonging to the same semantic category negatively affects language production and comprehension. By most accounts, semantic interference arises when accessing lexical representations in naming (e.g., Damian, Vigliocco, & Levelt, 2001) and semantic representations in comprehension (e.g., Forde & Humphreys, 1997). Further, damage to the left inferior frontal gyrus (LIFG), a region implicated in cognitive control, results in increasing semantic interference when items repeat across cycles in both language production and comprehension (Jefferies, Baker, Doran, & Lambon Ralph, 2007). This generates the prediction that the LIFG via white matter connections supports resolution of semantic interference arising from different loci (lexical vs semantic) in the temporal lobe. However, it remains unclear whether the cognitive and neural mechanisms that resolve semantic interference are the same across tasks. Thus, we examined which gray matter structures [using whole brain and region of interest (ROI) approaches] and white matter connections (using deterministic tractography) when damaged impact semantic interference and its increase across cycles when repeatedly producing and understanding words in 15 speakers with varying lexical-semantic deficits from left hemisphere stroke. We found that damage to distinct brain regions, the posterior versus anterior temporal lobe, was associated with semantic interference (collapsed across cycles) in naming and comprehension, respectively. Further, those with LIFG damage compared to those without exhibited marginally larger increases in semantic interference across cycles in naming but not comprehension. Lastly, the inferior fronto-occipital fasciculus, connecting the LIFG with posterior temporal lobe, related to semantic interference in naming, whereas the inferior longitudinal fasciculus (ILF), connecting posterior with anterior temporal regions related to semantic interference in

  9. Magnetic Resonance Imaging Measures of Brain Structure to Predict Antidepressant Treatment Outcome in Major Depressive Disorder.

    PubMed

    Korgaonkar, Mayuresh S; Rekshan, William; Gordon, Evian; Rush, A John; Williams, Leanne M; Blasey, Christine; Grieve, Stuart M

    2015-01-01

    Less than 50% of patients with Major Depressive Disorder (MDD) reach symptomatic remission with their initial antidepressant medication (ADM). There are currently no objective measures with which to reliably predict which individuals will achieve remission to ADMs. 157 participants with MDD from the International Study to Predict Optimized Treatment in Depression (iSPOT-D) underwent baseline MRIs and completed eight weeks of treatment with escitalopram, sertraline or venlafaxine-ER. A score at week 8 of 7 or less on the 17 item Hamilton Rating Scale for Depression defined remission. Receiver Operator Characteristics (ROC) analysis using the first 50% participants was performed to define decision trees of baseline MRI volumetric and connectivity (fractional anisotropy) measures that differentiated non-remitters from remitters with maximal sensitivity and specificity. These decision trees were tested for replication in the remaining participants. Overall, 35% of all participants achieved remission. ROC analyses identified two decision trees that predicted a high probability of non-remission and that were replicated: 1. Left middle frontal volume < 14 · 8 mL & right angular gyrus volume > 6 · 3 mL identified 55% of non-remitters with 85% accuracy; and 2. Fractional anisotropy values in the left cingulum bundle < 0 · 63, right superior fronto-occipital fasciculus < 0 · 54 and right superior longitudinal fasciculus < 0 · 50 identified 15% of the non-remitters with 84% accuracy. All participants who met criteria for both decision trees were correctly identified as non-remitters. Pretreatment MRI measures seem to reliably identify a subset of patients who do not remit with a first step medication that includes one of these commonly used medications. Findings are consistent with a neuroanatomical basis for non-remission in depressed patients. Brain Resource Ltd is the sponsor for the iSPOT-D study (NCT00693849).

  10. Altered Structural and Functional Connectivity in Late Preterm Preadolescence: An Anatomic Seed-Based Study of Resting State Networks Related to the Posteromedial and Lateral Parietal Cortex

    PubMed Central

    Degnan, Andrew J.; Wisnowski, Jessica L.; Choi, SoYoung; Ceschin, Rafael; Bhushan, Chitresh; Leahy, Richard M.; Corby, Patricia; Schmithorst, Vincent J.; Panigrahy, Ashok

    2015-01-01

    Objective Late preterm birth confers increased risk of developmental delay, academic difficulties and social deficits. The late third trimester may represent a critical period of development of neural networks including the default mode network (DMN), which is essential to normal cognition. Our objective is to identify functional and structural connectivity differences in the posteromedial cortex related to late preterm birth. Methods Thirty-eight preadolescents (ages 9–13; 19 born in the late preterm period (≥32 weeks gestational age) and 19 at term) without access to advanced neonatal care were recruited from a low socioeconomic status community in Brazil. Participants underwent neurocognitive testing, 3-dimensional T1-weighted imaging, diffusion-weighted imaging and resting state functional MRI (RS-fMRI). Seed-based probabilistic diffusion tractography and RS-fMRI analyses were performed using unilateral seeds within the posterior DMN (posterior cingulate cortex, precuneus) and lateral parietal DMN (superior marginal and angular gyri). Results Late preterm children demonstrated increased functional connectivity within the posterior default mode networks and increased anti-correlation with the central-executive network when seeded from the posteromedial cortex (PMC). Key differences were demonstrated between PMC components with increased anti-correlation with the salience network seen only with posterior cingulate cortex seeding but not with precuneus seeding. Probabilistic tractography showed increased streamlines within the right inferior longitudinal fasciculus and inferior fronto-occipital fasciculus within late preterm children while decreased intrahemispheric streamlines were also observed. No significant differences in neurocognitive testing were demonstrated between groups. Conclusion Late preterm preadolescence is associated with altered functional connectivity from the PMC and lateral parietal cortex to known distributed functional cortical networks

  11. Altered Structural and Functional Connectivity in Late Preterm Preadolescence: An Anatomic Seed-Based Study of Resting State Networks Related to the Posteromedial and Lateral Parietal Cortex.

    PubMed

    Degnan, Andrew J; Wisnowski, Jessica L; Choi, SoYoung; Ceschin, Rafael; Bhushan, Chitresh; Leahy, Richard M; Corby, Patricia; Schmithorst, Vincent J; Panigrahy, Ashok

    2015-01-01

    Late preterm birth confers increased risk of developmental delay, academic difficulties and social deficits. The late third trimester may represent a critical period of development of neural networks including the default mode network (DMN), which is essential to normal cognition. Our objective is to identify functional and structural connectivity differences in the posteromedial cortex related to late preterm birth. Thirty-eight preadolescents (ages 9-13; 19 born in the late preterm period (≥32 weeks gestational age) and 19 at term) without access to advanced neonatal care were recruited from a low socioeconomic status community in Brazil. Participants underwent neurocognitive testing, 3-dimensional T1-weighted imaging, diffusion-weighted imaging and resting state functional MRI (RS-fMRI). Seed-based probabilistic diffusion tractography and RS-fMRI analyses were performed using unilateral seeds within the posterior DMN (posterior cingulate cortex, precuneus) and lateral parietal DMN (superior marginal and angular gyri). Late preterm children demonstrated increased functional connectivity within the posterior default mode networks and increased anti-correlation with the central-executive network when seeded from the posteromedial cortex (PMC). Key differences were demonstrated between PMC components with increased anti-correlation with the salience network seen only with posterior cingulate cortex seeding but not with precuneus seeding. Probabilistic tractography showed increased streamlines within the right inferior longitudinal fasciculus and inferior fronto-occipital fasciculus within late preterm children while decreased intrahemispheric streamlines were also observed. No significant differences in neurocognitive testing were demonstrated between groups. Late preterm preadolescence is associated with altered functional connectivity from the PMC and lateral parietal cortex to known distributed functional cortical networks despite no significant executive

  12. Development of a model for occipital fixation--validation of an analogue bone material.

    PubMed

    Mullett, H; O'Donnell, T; Felle, P; O'Rourke, K; FitzPatrick, D

    2002-01-01

    Several implant systems may be used to fuse the skull to the upper cervical spine (occipitocervical fusion). Current biomechanical evaluation is restricted by the limitations of human cadaveric specimens. This paper describes the design and validation of a synthetic testing model of the occipital bone. Data from thickness measurement and pull-out strength testing of a series of human cadaveric skulls was used in the design of a high-density rigid polyurethane foam model. The synthetic occipital model demonstrated repeatable and consistent morphological and biomechanical properties. The model provides a standardized environment for evaluation of occipital implants.

  13. Forty-two cases of greater occipital neuralgia treated by acupuncture plus acupoint-injection.

    PubMed

    Pan, Changqing; Tan, Guangbo

    2008-09-01

    To observe the therapeutic effect of acupuncture plus acupoint-injection on greater occipital neuralgia. The 84 cases of greater occipital neuralgia were randomly divided into two groups, with 42 cases in the treatment group treated by acupuncture plus acupoint-injection, and 42 cases in the control group treated with oral administration of carbamazepine. The total effective rate was 92.8% in the treatment group and 71.4% in the control group. The difference in the total effective rate was significant (P < 0.05) between the two groups. Acupuncture plus acupoint-injection is effective for greater occipital neuralgia, better than the routine western medication.

  14. Age determination by spheno-occipital synchondrosis fusion in Central Indian population.

    PubMed

    Pate, Rajeshwar Sambhaji; Tingne, Chaitanya Vidyadhar; Dixit, Pradeep Gangadhar

    2018-02-01

    The spheno occipital suture synchondrosis is a vital contributor to adolescent and adult age estimation in that it can provide an upper or lower age bound depending on its state of fusion. The present study evaluates the utility of the spheno-occipital suture fusion in age estimation of the Central Indian population. The sample includes 198 (117 males and 81 females) cadavers aged between 8 to 26 years. Grading was done using Mitra-Akhlaghi Scale as - Open, Semi closed and Closed. Our study demonstrates that a significant linear correlation exists between the age of an individual and spheno-occipital suture closure for both the sexes and observation of the degree of fusion of this single suture allows the prediction of age in mature individuals. Copyright © 2018 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  15. Aerobic Exercise Intervention Alters Executive Function and White Matter Integrity in Deaf Children: A Randomized Controlled Study

    PubMed Central

    Xiong, Xuan; Zhu, Li-Na; Dong, Xiao-xiao; Wang, Wei; Yan, Jun

    2018-01-01

    This study examined the effects of an 11-week aerobic exercise intervention on executive function (EF) and white matter integrity (WMI). In total, 28 deaf children (aged 9–13 years) were randomly assigned to either an 11-week exercise intervention or the control group. All the children had behavioral assessment and diffusion tensor imaging prior to and following the exercise intervention. The behavioral performance results demonstrated that EF was enhanced by exercise. Relative to the control group, WMI of the exercise intervention group showed (1) lower fractional anisotropy (FA) in the pontine crossing tract (PCT) and right cingulum (hippocampus) (CH), genu of the corpus callosum (gCC), right inferior cerebellar peduncle (ICP), left superior corona radiata (SCR), and left superior frontooccipital fasciculus (SFOF); (2) higher mean diffusivity (MD) in the gCC, right CH, right inferior frontooccipital fasciculus (IFOF), and left anterior limb of the internal capsule (ALIC); and (3) lower MD in the left ICP and left tapetum (TAP). Furthermore, the lower FA in gCC showed a significant negative correlation with improvement in behavioral performance, but the correlation was not significant after FDR correction. These results suggest that exercise can effectively improve deaf children's EF and reshape the WMI in deaf children. The improved EF by exercise is not related to a reshaping of WMI, but more studies on the relationship between EF and WMI by exercise may be needed. PMID:29853843

  16. Dorsal surgical stabilisation using tension bands for treatment of traumatic atlanto-occipital instability in a cat.

    PubMed

    Vedrine, B; Maurin, M P

    2017-12-01

    An atlanto-occipital instability secondary to a dog bite was diagnosed in a 4-year-old Persian cat. Dorsal stabilisation of the instability was made with two OrthoFiber prostheses (Securos), which were used as tension bands between the nuchal crests of the occipital bone and the spinous process of the axis. Total recovery was achieved 4 days after surgery. Normal alignment of the atlanto-occipital joint was observed on survey radiographs taken 6 weeks post-surgery. Although the right loop had failed, the alignment was still normal and no neurological after-effects could be identified. Dorsal divergent tension bands between the nuchal crests of the occipital bone and the spinous process of the axis can be used to stabilise traumatic atlanto-occipital instability. © 2017 Australian Veterinary Association.

  17. [Endoscopically assisted fronto-orbitary correction in trigonocephaly].

    PubMed

    Hinojosa, J; Esparza, J; García-Recuero, I; Romance, A

    2007-01-01

    The development of multidisciplinar Units for Craneofacial Surgery has led to a considerable decrease in morbidity even in the cases of more complex craniofacial syndromes. The use of minimally invasive techniques for the correction of some of these malformations allows the surgeon to minimize the incidence of complications by means of a decrease in the surgical time, blood salvage and shortening of postoperative hospitalization in comparison to conventional craniofacial techniques. Simple and milder craniosynostosis are best approached by these techniques and render the best results. Different osteotomies resembling standard fronto-orbital remodelling besides simple suturectomies and the use of postoperative cranial orthesis may improve the final aesthetic appearence. In endoscopic treatment of trigonocephaly the use of preauricular incisions achieves complete pterional resection, lower lateral orbital osteotomies and successful precoronal frontal osteotomies to obtain long lasting and satisfactory outcomes.

  18. Cervico-occipital meningioma in a 5-year-old child: a case report.

    PubMed

    Ben Nsir, Atef; Boubaker, Adnene; Jemel, Hafedh

    2014-01-01

    Childhood meningiomas are scarce in clinical practice with an incidence ranging from 0.4 to 4.6% of all pediatric central nervous system (CNS) tumors. Cervico-occipital meningiomas account for 3.7% of childhood meningiomas and are slightly more frequent in male. A 5-year-old female presented with febrile posterior cervico-occipital pain for 3 weeks. She was diagnosed with meningitis and treated for a similar period with adapted antibiotics. The pain persisted even after treatment. Magnetic resonance imaging revealed an enhancing subdural extra medullary mass of the cervico occipital junction, developing around the left vertebral artery. The characteristics of the lesion were strongly suggestive of a neuroma. Surgical removal of the tumor aiming the decompression of the spinal cord and nerve roots was performed with a surprising discovery: The tumor was tightly attached to the dura at the entry of the left vertebral artery. The resection was total and only a thin part close to the artery was left. The pathological findings confirmed the diagnosis of meningothelial meningioma. Meningioma should be considered in the differential diagnosis of contrast enhancing subdural extra medullary lesions of the cervico-occipital junction in children.

  19. Dynamic Changes in Phase-Amplitude Coupling Facilitate Spatial Attention Control in Fronto-Parietal Cortex

    PubMed Central

    Szczepanski, Sara M.; Crone, Nathan E.; Kuperman, Rachel A.; Auguste, Kurtis I.; Parvizi, Josef; Knight, Robert T.

    2014-01-01

    Attention is a core cognitive mechanism that allows the brain to allocate limited resources depending on current task demands. A number of frontal and posterior parietal cortical areas, referred to collectively as the fronto-parietal attentional control network, are engaged during attentional allocation in both humans and non-human primates. Numerous studies have examined this network in the human brain using various neuroimaging and scalp electrophysiological techniques. However, little is known about how these frontal and parietal areas interact dynamically to produce behavior on a fine temporal (sub-second) and spatial (sub-centimeter) scale. We addressed how human fronto-parietal regions control visuospatial attention on a fine spatiotemporal scale by recording electrocorticography (ECoG) signals measured directly from subdural electrode arrays that were implanted in patients undergoing intracranial monitoring for localization of epileptic foci. Subjects (n = 8) performed a spatial-cuing task, in which they allocated visuospatial attention to either the right or left visual field and detected the appearance of a target. We found increases in high gamma (HG) power (70–250 Hz) time-locked to trial onset that remained elevated throughout the attentional allocation period over frontal, parietal, and visual areas. These HG power increases were modulated by the phase of the ongoing delta/theta (2–5 Hz) oscillation during attentional allocation. Critically, we found that the strength of this delta/theta phase-HG amplitude coupling predicted reaction times to detected targets on a trial-by-trial basis. These results highlight the role of delta/theta phase-HG amplitude coupling as a mechanism for sub-second facilitation and coordination within human fronto-parietal cortex that is guided by momentary attentional demands. PMID:25157678

  20. Early Math Achievement and Functional Connectivity in the Fronto-Parietal Network

    PubMed Central

    Emerson, Robert W.; Cantlon, Jessica F.

    2011-01-01

    In this study we test the hypothesis that the functional connectivity of the frontal and parietal regions that children recruit during a basic numerical task (matching Arabic numerals to arrays of dots) is predictive of their math test scores (TEMA-3; Ginsburg 2003). Specifically, we tested 4- to 11-year-old children on a matching task during fMRI to localize a fronto-parietal network that responds more strongly during numerical matching than matching faces, words, or shapes. We then tested the functional connectivity between those regions during an independent task: natural viewing of an educational video that included math topics. Using this novel natural viewing method, we found that the connectivity between frontal and parietal regions during task-independent free-viewing of educational material is correlated with children's basic number matching ability, as well as their scores on the standardized test of mathematical ability (the TEMA). The correlation between children's mathematics scores and fronto-parietal connectivity is math-specific in the sense that it is independent of children's verbal IQ scores. Moreover, a control network, selective for faces, showed no correlation with mathematics performance. Finally, brain regions that correlate with subjects’ overall response times in the matching task do not account for our number- and math-related effects. We suggest that the functional intersection of number-related frontal and parietal regions is math-specific. PMID:22682903

  1. The Intramuscular Course of the Greater Occipital Nerve: Novel Findings with Potential Implications for Operative Interventions and Occipital Neuralgia

    PubMed Central

    Tubbs, R. Shane; Watanabe, Koichi; Loukas, Marios; Cohen-Gadol, Aaron A.

    2014-01-01

    Background: A better understanding of the etiologies of occipital neuralgia would help the clinician treat patients with this debilitating condition. Since few studies have examined the muscular course of the greater occipital nerve (GON), this study was performed. Methods: Thirty adult cadaveric sides underwent dissection of the posterior occiput with special attention to the intramuscular course of the GON. Nerves were typed based on their muscular course. Results: The GON traveled through the trapezius (type I; n = 5, 16.7%) or its aponeurosis (type II; n = 15, 83.3%) to become subcutaneous. Variations in the subtrapezius muscular course were found in 10 (33%) sides. In two (6.7%) sides, the GON traveled through the lower edge of the inferior capitis oblique muscle (subtype a). On five (16.7%) sides, the GON coursed through a tendinous band of the semispinalis capitis, not through its muscular fibers (subtype b). On three (10%) sides the GON bypassed the semispinalis capitis muscle to travel between its most medial fibers and the nuchal ligament (subtype c). For subtypes, eight were type II courses (through the aponeurosis of the trapezius), and two were type I courses (through the trapezius muscle). The authors identified two type IIa courses, four type IIb courses, and two type IIc courses. Type I courses included one type Ib and one type Ic courses. Conclusions: Variations in the muscular course of the GON were common. Future studies correlating these findings with the anatomy in patients with occipital neuralgia may elucidate nerve courses vulnerable to nerve compression. This enhanced classification scheme describes the morphology in this region and allows more specific communications about GON variations. PMID:25422783

  2. Selective functional integration between anterior temporal and distinct fronto-mesolimbic regions during guilt and indignation

    PubMed Central

    Green, Sophie; Lambon Ralph, Matthew A.; Moll, Jorge; Stamatakis, Emmanuel A.; Grafman, Jordan; Zahn, Roland

    2010-01-01

    It has been hypothesized that the experience of different moral sentiments such as guilt and indignation is underpinned by activation in temporal and fronto-mesolimbic regions and that functional integration between these regions is necessary for the differentiated experience of these moral sentiments. A recent fMRI study revealed that the right superior anterior temporal lobe (ATL) was activated irrespective of the context of moral feelings (guilt or indignation). This region has been associated with context-independent conceptual social knowledge which allows us to make fine-grained differentiations between qualities of social behaviours (e.g. “critical” and “faultfinding”). This knowledge is required to make emotional evaluations of social behaviour. In contrast to the context-independent activation of the ATL, there were context-dependent activations within different fronto-mesolimbic regions for guilt and indignation. However, it is unknown whether functional integration occurs between these regions and whether regional patterns of integration are distinctive for the experience of different moral sentiments. Here, we used fMRI and psychophysiological interaction analysis, an established measure of functional integration to investigate this issue. We found selective functional integration between the right superior ATL and a subgenual cingulate region during the experience of guilt and between the right superior ATL and the lateral orbitofrontal cortex for indignation. Our data provide the first evidence for functional integration of conceptual social knowledge representations in the right superior ATL with representations of different feeling contexts in fronto-mesolimbic regions. We speculate that this functional architecture allows for the conceptually differentiated experience of moral sentiments in healthy individuals. PMID:20493953

  3. Neuronal populations in the occipital cortex of the blind synchronize to the temporal dynamics of speech

    PubMed Central

    Van Ackeren, Markus Johannes; Barbero, Francesca M; Mattioni, Stefania; Bottini, Roberto

    2018-01-01

    The occipital cortex of early blind individuals (EB) activates during speech processing, challenging the notion of a hard-wired neurobiology of language. But, at what stage of speech processing do occipital regions participate in EB? Here we demonstrate that parieto-occipital regions in EB enhance their synchronization to acoustic fluctuations in human speech in the theta-range (corresponding to syllabic rate), irrespective of speech intelligibility. Crucially, enhanced synchronization to the intelligibility of speech was selectively observed in primary visual cortex in EB, suggesting that this region is at the interface between speech perception and comprehension. Moreover, EB showed overall enhanced functional connectivity between temporal and occipital cortices that are sensitive to speech intelligibility and altered directionality when compared to the sighted group. These findings suggest that the occipital cortex of the blind adopts an architecture that allows the tracking of speech material, and therefore does not fully abstract from the reorganized sensory inputs it receives. PMID:29338838

  4. Connectomic Insights into Topologically Centralized Network Edges and Relevant Motifs in the Human Brain

    PubMed Central

    Xia, Mingrui; Lin, Qixiang; Bi, Yanchao; He, Yong

    2016-01-01

    White matter (WM) tracts serve as important material substrates for information transfer across brain regions. However, the topological roles of WM tracts in global brain communications and their underlying microstructural basis remain poorly understood. Here, we employed diffusion magnetic resonance imaging and graph-theoretical approaches to identify the pivotal WM connections in human whole-brain networks and further investigated their wiring substrates (including WM microstructural organization and physical consumption) and topological contributions to the brain's network backbone. We found that the pivotal WM connections with highly topological-edge centrality were primarily distributed in several long-range cortico-cortical connections (including the corpus callosum, cingulum and inferior fronto-occipital fasciculus) and some projection tracts linking subcortical regions. These pivotal WM connections exhibited high levels of microstructural organization indicated by diffusion measures (the fractional anisotropy, the mean diffusivity and the axial diffusivity) and greater physical consumption indicated by streamline lengths, and contributed significantly to the brain's hubs and the rich-club structure. Network motif analysis further revealed their heavy participations in the organization of communication blocks, especially in routes involving inter-hemispheric heterotopic and extremely remote intra-hemispheric systems. Computational simulation models indicated the sharp decrease of global network integrity when attacking these highly centralized edges. Together, our results demonstrated high building-cost consumption and substantial communication capacity contributions for pivotal WM connections, which deepens our understanding of the topological mechanisms that govern the organization of human connectomes. PMID:27148015

  5. Microstructural abnormalities in white and gray matter in obese adolescents with and without type 2 diabetes.

    PubMed

    Nouwen, Arie; Chambers, Alison; Chechlacz, Magdalena; Higgs, Suzanne; Blissett, Jacqueline; Barrett, Timothy G; Allen, Harriet A

    2017-01-01

    In adults, type 2 diabetes and obesity have been associated with structural brain changes, even in the absence of dementia. Some evidence suggested similar changes in adolescents with type 2 diabetes but comparisons with a non-obese control group have been lacking. The aim of the current study was to examine differences in microstructure of gray and white matter between adolescents with type 2 diabetes, obese adolescents and healthy weight adolescents. Magnetic resonance imaging data were collected from 15 adolescents with type 2 diabetes, 21 obese adolescents and 22 healthy weight controls. Volumetric differences in the gray matter between the three groups were examined using voxel based morphology, while tract based spatial statistics was used to examine differences in the microstructure of the white matter. Adolescents with type 2 diabetes and obese adolescents had reduced gray matter volume in the right hippocampus, left putamen and caudate, bilateral amygdala and left thalamus compared to healthy weight controls. Type 2 diabetes was also associated with significant regional changes in fractional anisotropy within the corpus callosum, fornix, left inferior fronto-occipital fasciculus, left uncinate, left internal and external capsule. Fractional anisotropy reductions within these tracts were explained by increased radial diffusivity, which may suggest demyelination of white matter tracts. Mean diffusivity and axial diffusivity did not differ between the groups. Our data shows that adolescent obesity alone results in reduced gray matter volume and that adolescent type 2 diabetes is associated with both white and gray matter abnormalities.

  6. Cross-Modal Recruitment of Auditory and Orofacial Areas During Sign Language in a Deaf Subject.

    PubMed

    Martino, Juan; Velasquez, Carlos; Vázquez-Bourgon, Javier; de Lucas, Enrique Marco; Gomez, Elsa

    2017-09-01

    Modern sign languages used by deaf people are fully expressive, natural human languages that are perceived visually and produced manually. The literature contains little data concerning human brain organization in conditions of deficient sensory information such as deafness. A deaf-mute patient underwent surgery of a left temporoinsular low-grade glioma. The patient underwent awake surgery with intraoperative electrical stimulation mapping, allowing direct study of the cortical and subcortical organization of sign language. We found a similar distribution of language sites to what has been reported in mapping studies of patients with oral language, including 1) speech perception areas inducing anomias and alexias close to the auditory cortex (at the posterior portion of the superior temporal gyrus and supramarginal gyrus); 2) speech production areas inducing speech arrest (anarthria) at the ventral premotor cortex, close to the lip motor area and away from the hand motor area; and 3) subcortical stimulation-induced semantic paraphasias at the inferior fronto-occipital fasciculus at the temporal isthmus. The intraoperative setup for sign language mapping with intraoperative electrical stimulation in deaf-mute patients is similar to the setup described in patients with oral language. To elucidate the type of language errors, a sign language interpreter in close interaction with the neuropsychologist is necessary. Sign language is perceived visually and produced manually; however, this case revealed a cross-modal recruitment of auditory and orofacial motor areas. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Connectomic Insights into Topologically Centralized Network Edges and Relevant Motifs in the Human Brain.

    PubMed

    Xia, Mingrui; Lin, Qixiang; Bi, Yanchao; He, Yong

    2016-01-01

    White matter (WM) tracts serve as important material substrates for information transfer across brain regions. However, the topological roles of WM tracts in global brain communications and their underlying microstructural basis remain poorly understood. Here, we employed diffusion magnetic resonance imaging and graph-theoretical approaches to identify the pivotal WM connections in human whole-brain networks and further investigated their wiring substrates (including WM microstructural organization and physical consumption) and topological contributions to the brain's network backbone. We found that the pivotal WM connections with highly topological-edge centrality were primarily distributed in several long-range cortico-cortical connections (including the corpus callosum, cingulum and inferior fronto-occipital fasciculus) and some projection tracts linking subcortical regions. These pivotal WM connections exhibited high levels of microstructural organization indicated by diffusion measures (the fractional anisotropy, the mean diffusivity and the axial diffusivity) and greater physical consumption indicated by streamline lengths, and contributed significantly to the brain's hubs and the rich-club structure. Network motif analysis further revealed their heavy participations in the organization of communication blocks, especially in routes involving inter-hemispheric heterotopic and extremely remote intra-hemispheric systems. Computational simulation models indicated the sharp decrease of global network integrity when attacking these highly centralized edges. Together, our results demonstrated high building-cost consumption and substantial communication capacity contributions for pivotal WM connections, which deepens our understanding of the topological mechanisms that govern the organization of human connectomes.

  8. Neuregulin-1 genotype is associated with structural differences in the normal human brain.

    PubMed

    Barnes, Anna; Isohanni, Matti; Barnett, Jennifer H; Pietiläinen, Olli; Veijola, Juha; Miettunen, Jouko; Paunio, Tiina; Tanskanen, Päivikki; Ridler, Khanum; Suckling, John; Bullmore, Edward T; Jones, Peter B; Murray, Graham K

    2012-02-01

    The human neuregulin-1 (NRG-1) gene is highly expressed in the brain, is implicated in numerous functions associated with neuronal development, and is a leading candidate gene for schizophrenia. The T allele of SNP8NRG243177, part of a risk haplotype for schizophrenia, has been previously associated with decreases in white matter in the right anterior internal capsule and the left anterior thalamic radiation. To our knowledge no studies have described the effects of SNP8NRG243177 on grey matter volume at a voxelwise level. We assessed associations between this SNP and brain structure in 79 general population volunteers from the Northern Finland 1966 Birth Cohort (NFBC 1966). We show, for the first time, that genetic variation in SNP8NRG243177 is associated with variation in frontal brain structure in both grey and white matter. T allele carriers showed decreased grey matter volume in several frontal gyri, including inferior, middle and superior frontal gyri and the anterior cingulate gyrus, as well as decreased white matter volume in the regions of the genu and body of the corpus callosum, anterior and superior corona radiata, anterior limb of the internal capsule and external capsule regions traversed by major white matter tracts of the anterior thalamic radiation, and the inferior fronto-occipital fasciculus. These results suggest that this genetic variant may mediate risk for schizophrenia, in part, through its effect on brain structure in these regions. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Long-term occipital nerve stimulation for drug-resistant chronic cluster headache.

    PubMed

    Leone, Massimo; Proietti Cecchini, Alberto; Messina, Giuseppe; Franzini, Angelo

    2017-07-01

    Introduction Chronic cluster headache is rare and some of these patients become drug-resistant. Occipital nerve stimulation has been successfully employed in open studies to treat chronic drug-resistant cluster headache. Data from large group of occipital nerve stimulation-treated chronic cluster headache patients with long duration follow-up are advantageous. Patients and methods Efficacy of occipital nerve stimulation has been evaluated in an experimental monocentric open-label study including 35 chronic drug-resistant cluster headache patients (mean age 42 years; 30 men; mean illness duration: 6.7 years). The primary end-point was a reduction in number of daily attacks. Results After a median follow-up of 6.1 years (range 1.6-10.7), 20 (66.7%) patients were responders (≥50% reduction in headache number per day): 12 (40%) responders showed a stable condition characterized by sporadic attacks, five responders had a 60-80% reduction in headache number per day and in the remaining three responders chronic cluster headache was transformed in episodic cluster headache. Ten (33.3%) patients were non-responders; half of these have been responders for a long period (mean 14.6 months; range 2-48 months). Battery depletion (21 patients 70%) and electrode migration (six patients - 20%) were the most frequent adverse events. Conclusions Occipital nerve stimulation efficacy is confirmed in chronic drug-resistant cluster headaches even after an exceptional long-term follow-up. Tolerance can occur years after improvement.

  10. Is the term "fasciculus opticus cerebralis" more justifiable than the term "optic nerve"?

    PubMed

    Vojniković, Bojo; Bajek, Snjezana; Bajek, Goran; Strenja-Linić, Ines; Grubesić, Aron

    2013-04-01

    The terminology of the optic nerve had already been changed three times, since 1895 until 1955 when the term "nervus opticus" was introduced in the "Terminologia Anatomica". Following our study we claim that, from the aspect of phylogenetic evolution of binocular vision development as well as optical embryogenesis where opticus is evidently presented as a product of diencephalic structures, the addition of the term "nervus" to opticus is not adequate and justified. From the clinical aspect the term "nervus opticus" is also inadequate, both as a "nerve" that has no functional regenerative properties, unlike other cranial nerves, as well as from a pedagogical and didactical aspect of educating future physicians. We suggest that the term "Fasciculus Opticus Cerebralis" should be used as it much better explains the origin as well as its affiliation to the central nervous system.

  11. Modified skin incision for avoiding the lesser occipital nerve and occipital artery during retrosigmoid craniotomy: potential applications for enhancing operative working distance and angles while minimizing the risk of postoperative neuralgias and intraoperative hemorrhage.

    PubMed

    Tubbs, R Shane; Fries, Fabian N; Kulwin, Charles; Mortazavi, Martin M; Loukas, Marios; Cohen-Gadol, Aaron A

    2016-10-01

    Chronic postoperative neuralgias and headache following retrosigmoid craniotomy can be uncomfortable for the patient. We aimed to better elucidate the regional nerve anatomy in an effort to minimize this postoperative complication. Ten adult cadaveric heads (20 sides) were dissected to observe the relationship between the lesser occipital nerve and a traditional linear versus modified U incision during retrosigmoid craniotomy. Additionally, the relationship between these incisions and the occipital artery were observed. The lesser occipital nerve was found to have two types of course. Type I nerves (60%) remained close to the posterior border of the sternocleidomastoid muscle and some crossed anteriorly over the sternocleidomastoid muscle near the mastoid process. Type II nerves (40%) left the posterior border of the sternocleidomastoid muscle and swung medially (up to 4.5cm posterior to the posterior border of the sternocleidomastoid muscle) as they ascended over the occiput. The lesser occipital nerve was near a midpoint of a line between the external occipital protuberance and mastoid process in all specimens with the type II nerve configuration. Based on our findings, the inverted U incision would be less likely to injure the type II nerves but would necessarily cross over type I nerves, especially more cranially on the nerve at the apex of the incision. As the more traditional linear incision would most likely transect the type I nerves and more so near their trunk, the U incision may be the overall better choice in avoiding neural and occipital artery injury during retrosigmoid approaches. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Selective functional integration between anterior temporal and distinct fronto-mesolimbic regions during guilt and indignation.

    PubMed

    Green, Sophie; Ralph, Matthew A Lambon; Moll, Jorge; Stamatakis, Emmanuel A; Grafman, Jordan; Zahn, Roland

    2010-10-01

    It has been hypothesized that the experience of different moral sentiments such as guilt and indignation is underpinned by activation in temporal and fronto-mesolimbic regions and that functional integration between these regions is necessary for the differentiated experience of these moral sentiments. A recent fMRI study revealed that the right superior anterior temporal lobe (ATL) was activated irrespective of the context of moral feelings (guilt or indignation). This region has been associated with context-independent conceptual social knowledge which allows us to make fine-grained differentiations between qualities of social behaviours (e.g. "critical" and "faultfinding"). This knowledge is required to make emotional evaluations of social behaviour. In contrast to the context-independent activation of the ATL, there were context-dependent activations within different fronto-mesolimbic regions for guilt and indignation. However, it is unknown whether functional integration occurs between these regions and whether regional patterns of integration are distinctive for the experience of different moral sentiments. Here, we used fMRI and psychophysiological interaction analysis, an established measure of functional integration to investigate this issue. We found selective functional integration between the right superior ATL and a subgenual cingulate region during the experience of guilt and between the right superior ATL and the lateral orbitofrontal cortex for indignation. Our data provide the first evidence for functional integration of conceptual social knowledge representations in the right superior ATL with representations of different feeling contexts in fronto-mesolimbic regions. We speculate that this functional architecture allows for the conceptually differentiated experience of moral sentiments in healthy individuals. Copyright 2010 Elsevier Inc. All rights reserved.

  13. Individual differences in children's global motion sensitivity correlate with TBSS-based measures of the superior longitudinal fasciculus.

    PubMed

    Braddick, Oliver; Atkinson, Janette; Akshoomoff, Natacha; Newman, Erik; Curley, Lauren B; Gonzalez, Marybel Robledo; Brown, Timothy; Dale, Anders; Jernigan, Terry

    2017-12-01

    Reduced global motion sensitivity, relative to global static form sensitivity, has been found in children with many neurodevelopmental disorders, leading to the "dorsal stream vulnerability" hypothesis (Braddick et al., 2003). Individual differences in typically developing children's global motion thresholds have been shown to be associated with variations in specific parietal cortical areas (Braddick et al., 2016). Here, in 125 children aged 5-12years, we relate individual differences in global motion and form coherence thresholds to fractional anisotropy (FA) in the superior longitudinal fasciculus (SLF), a major fibre tract communicating between parietal lobe and anterior cortical areas. We find a positive correlation between FA of the right SLF and individual children's sensitivity to global motion coherence, while FA of the left SLF shows a negative correlation. Further analysis of parietal cortical area data shows that this is also asymmetrical, showing a stronger association with global motion sensitivity in the left hemisphere. None of these associations hold for an analogous measure of global form sensitivity. We conclude that a complex pattern of structural asymmetry, including the parietal lobe and the superior longitudinal fasciculus, is specifically linked to the development of sensitivity to global visual motion. This pattern suggests that individual differences in motion sensitivity are primarily linked to parietal brain areas interacting with frontal systems in making decisions on integrated motion signals, rather than in the extra-striate visual areas that perform the initial integration. The basis of motion processing deficits in neurodevelopmental disorders may depend on these same structures. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Autism spectrum disorder: does neuroimaging support the DSM-5 proposal for a symptom dyad? A systematic review of functional magnetic resonance imaging and diffusion tensor imaging studies.

    PubMed

    Pina-Camacho, Laura; Villero, Sonia; Fraguas, David; Boada, Leticia; Janssen, Joost; Navas-Sánchez, Francisco J; Mayoral, Maria; Llorente, Cloe; Arango, Celso; Parellada, Mara

    2012-07-01

    A systematic review of 208 studies comprising functional magnetic resonance imaging and diffusion tensor imaging data in patients with 'autism spectrum disorder' (ASD) was conducted, in order to determine whether these data support the forthcoming DSM-5 proposal of a social communication and behavioral symptom dyad. Studies consistently reported abnormal function and structure of fronto-temporal and limbic networks with social and pragmatic language deficits, of temporo-parieto-occipital networks with syntactic-semantic language deficits, and of fronto-striato-cerebellar networks with repetitive behaviors and restricted interests in ASD patients. Therefore, this review partially supports the DSM-5 proposal for the ASD dyad.

  15. Diffusion Tensor Imaging Studies on Arcuate Fasciculus in Stroke Patients: A Review

    PubMed Central

    Jang, Sung Ho

    2013-01-01

    Aphasia is one of the most common and devastating sequelae of stroke. The arcuate fasciculus (AF), an important neural tract for language function, connects Broca’s and Wernicke’s areas. In this review article, previous diffusion tensor imaging (DTI) studies on the AF in stroke patients were reviewed with regard to the usefulness for diagnosis (seven studies), prediction of prognosis (two studies), and recovery of aphasia (three studies). Although scant studies on this topic have been conducted in stroke patients, DTI for the AF appears to provide useful information on the presence or severity of injury of the AF, prognosis prediction of aphasia, and recovery mechanisms of aphasia in stroke patients. Therefore, further DTI studies on these topics should be encouraged, especially studies on prognosis prediction and recovery mechanisms of aphasia. In addition, research on other neural tracts known to be involved in aphasia as well as the AF in both hemispheres should be encouraged. PMID:24198780

  16. Interpersonal traits of psychopathy linked to reduced integrity of the uncinate fasciculus.

    PubMed

    Wolf, Richard C; Pujara, Maia S; Motzkin, Julian C; Newman, Joseph P; Kiehl, Kent A; Decety, Jean; Kosson, David S; Koenigs, Michael

    2015-10-01

    Psychopathy is a personality disorder characterized by callous lack of empathy, impulsive antisocial behavior, and criminal recidivism. Here, we performed the largest diffusion tensor imaging (DTI) study of incarcerated criminal offenders to date (N = 147) to determine whether psychopathy severity is linked to the microstructural integrity of major white matter tracts in the brain. Consistent with the results of previous studies in smaller samples, we found that psychopathy was associated with reduced fractional anisotropy in the right uncinate fasciculus (UF; the major white matter tract connecting ventral frontal and anterior temporal cortices). We found no such association in the left UF or in adjacent frontal or temporal white matter tracts. Moreover, the right UF finding was specifically related to the interpersonal features of psychopathy (glib superficial charm, grandiose sense of self-worth, pathological lying, manipulativeness), rather than the affective, antisocial, or lifestyle features. These results indicate a neural marker for this key dimension of psychopathic symptomatology. © 2015 Wiley Periodicals, Inc.

  17. Peripheral nerve stimulation for occipital neuralgia: surgical leads.

    PubMed

    Kapural, Leonardo; Sable, James

    2011-01-01

    Peripheral nerve stimulation (PNS) has been used for the treatment of various neuropathic pain disorders, including occipital neuralgia, for the patients who failed less-invasive therapeutic approaches. Several different mechanisms of pain relief were proposed when PNS is used to treat occipital neuralgia and clinical studies using various types of electrical leads suggested largely positive clinical responses in patients with mostly refractory, severe neuropathic pain. With advancements in cylindrical lead design for PNS and placement/implantation techniques, there are very few clear indications where 'paddle' (surgical) leads could be advantageous. Those include patients who experienced repeated migration of cylindrical lead as paddle lead may provide greater stability, who are experiencing unpleasant recruitment of surrounding muscle and/or motor nerve stimulation and for cases where skin erosions were caused by a cylindrical lead. However, disregarding the type of lead used, multiple clinical advantages of this minimally invasive, easily reversible approach include relatively low morbidity and a high treatment efficacy. Copyright © 2011 S. Karger AG, Basel.

  18. Pulsed radiofrequency for the treatment of occipital neuralgia: a prospective study with 6 months of follow-up.

    PubMed

    Vanelderen, Pascal; Rouwette, Tom; De Vooght, Pieter; Puylaert, Martine; Heylen, René; Vissers, Kris; Van Zundert, Jan

    2010-01-01

    Occipital neuralgia is a paroxysmal nonthrobbing, stabbing pain in the area of the greater or lesser occipital nerve caused by irritation of these nerves. Although several therapies have been reported, no criterion standard has emerged. This study reports on the results of a prospective trial with 6 months of follow-up in which pulsed radiofrequency treatment of the greater and/or lesser occipital nerve was used to treat this neuralgia. Patients presenting with clinical findings suggestive of occipital neuralgia and a positive test block of the occipital nerves with 2 mL of local anesthetic underwent a pulsed radiofrequency procedure of the culprit nerves. Mean scores for pain, quality of life, and medication intake were measured 1, 2, and 6 months after the procedure. Pain was measured by the visual analog and Likert scales, quality of life was measured by a modified brief pain questionnaire, and medication intake was measured by a Medication Quantification Scale. During a 29-month period, 19 patients were included in the study. Mean visual analog scale and median Medication Quantification Scale scores declined by 3.6 units (P = 0.002) and 8 units (P = 0.006), respectively, during 6 months. Approximately 52.6% of patients reported a score of 6 (pain improved substantially) or higher on the Likert scale after 6 months. No complications were reported. Pulsed radiofrequency treatment of the greater and/or lesser occipital nerve is a promising treatment of occipital neuralgia. This study warrants further placebo-controlled trials.

  19. The Functional Organisation of the Fronto-Temporal Language System: Evidence from Syntactic and Semantic Ambiguity

    ERIC Educational Resources Information Center

    Rodd, Jennifer M.; Longe, Olivia A.; Randall, Billi; Tyler, Lorraine K.

    2010-01-01

    Spoken language comprehension is known to involve a large left-dominant network of fronto-temporal brain regions, but there is still little consensus about how the syntactic and semantic aspects of language are processed within this network. In an fMRI study, volunteers heard spoken sentences that contained either syntactic or semantic ambiguities…

  20. The transverse occipital ligament: anatomy and potential functional significance.

    PubMed

    Tubbs, R Shane; Griessenauer, Christoph J; McDaniel, Jenny Gober; Burns, Amanda M; Kumbla, Anjali; Cohen-Gadol, Aaron A

    2010-03-01

    Knowledge of the anatomy of ligaments that bind the craniocervical junction is important for treating patients with lesions of this region. Although the anatomy and function of these ligaments have been well described, those of the transverse occipital ligament (TOL) have remained enigmatic. To describe the anatomy and functions of the transverse occipital ligament. Via a posterior approach, 9 cadaveric specimens underwent dissection of the craniocervical junction with special attention to the presence and anatomy of the TOL. The TOL was identified in 77.8% of the specimens. The ligament was found to be rectangular with fibers running horizontally between the lateral aspects of the foramen magnum. The attachment of each ligament near the occipital condyle was consistent, and each ligament was found superior to the transverse portion of the cruciform ligament and inserted just posterior to the lateral attachment sites of the alar ligaments. The average width, length, and thickness of the TOL was 0.34, 1.94, and 0.13 cm, respectively. The TOL in some specimens also had connections to the alar and transverse ligaments. The TOL was found in the majority of our specimens. The possible functions of this ligament when attached to the alar ligaments include providing additional support to these structures in stabilizing lateral bending, flexion, and axial rotation of the head. Knowledge of this ligament may aid in further understanding craniocervical stability and help in differentiating normal from pathology via imaging modalities.

  1. Occipital Neuralgia from C2 Cavernous Malformation

    PubMed Central

    Ha, Sang-woo; Choi, Jin-gyu; Son, Byung-chul

    2018-01-01

    A unique case is presented of chronic occipital neuralgia (ON) caused by cavernous malformation (CM) in the intramedullary C2 spinal cord and subsequent pain relief and remodeling of allodynic pain following dorsal root rhizotomy. A 53-year-old male presented with a 30-year history of chronic allodynic, paroxysmal lancinating pain in the greater and lesser occipital nerves. Typically, the pain was aggravated with neck extension and head movement. Magnetic resonance imaging showed a CM in the right posterolateral side of the intramedullary C2 cord. Considering potential risks associated with removal of the lesion, intradural C1-3 dorsal root rhizotomy with dentate ligament resection was performed. The paroxysmal lancinating pain of ON was significantly alleviated, and the remodeling of the extent of allodynic pain was noted after C1-3 dorsal root rhizotomy. These changes gradually occurred during the second postoperative month, and this effect was maintained for 24 months postoperatively. Significant reduction in chronic allodynic pain of secondary ON caused by cervicomedullary CM involving central sensitization in the trigeminocervical complex was observed with reduction of irritating, afferent input with C1-C3 dorsal root rhizotomy. PMID:29682056

  2. Occipital Neuralgia from C2 Cavernous Malformation.

    PubMed

    Ha, Sang-Woo; Choi, Jin-Gyu; Son, Byung-Chul

    2018-01-01

    A unique case is presented of chronic occipital neuralgia (ON) caused by cavernous malformation (CM) in the intramedullary C2 spinal cord and subsequent pain relief and remodeling of allodynic pain following dorsal root rhizotomy. A 53-year-old male presented with a 30-year history of chronic allodynic, paroxysmal lancinating pain in the greater and lesser occipital nerves. Typically, the pain was aggravated with neck extension and head movement. Magnetic resonance imaging showed a CM in the right posterolateral side of the intramedullary C2 cord. Considering potential risks associated with removal of the lesion, intradural C1-3 dorsal root rhizotomy with dentate ligament resection was performed. The paroxysmal lancinating pain of ON was significantly alleviated, and the remodeling of the extent of allodynic pain was noted after C1-3 dorsal root rhizotomy. These changes gradually occurred during the second postoperative month, and this effect was maintained for 24 months postoperatively. Significant reduction in chronic allodynic pain of secondary ON caused by cervicomedullary CM involving central sensitization in the trigeminocervical complex was observed with reduction of irritating, afferent input with C1-C3 dorsal root rhizotomy.

  3. Right Fronto-Temporal EEG can Differentiate the Affective Responses to Award-Winning Advertisements.

    PubMed

    Wang, Regina W Y; Huarng, Shy-Peih; Chuang, Shang-Wen

    2018-04-01

    Affective engineering aims to improve service/product design by translating the customer's psychological feelings. Award-winning advertisements (AAs) were selected on the basis of the professional standards that consider creativity as a prerequisite. However, it is unknown if AA is related to satisfactory advertising performance among customers or only to the experts' viewpoints towards the advertisements. This issue in the field of affective engineering and design merits in-depth evaluation. We recruited 30 subjects and performed an electroencephalography (EEG) experiment while watching AAs and non-AAs (NAAs). The event-related potential (ERP) data showed that AAs evoked larger positive potentials 250-1400 [Formula: see text]ms after stimulus onset, particularly in the right fronto-temporal regions. The behavioral results were consistent with the professional recognition given to AAs by experts. The perceived levels of creativity and "product-like" quality were higher for the AAs than for the NAAs. Event-related spectral perturbation (ERSP) analysis further revealed statistically significant differences in the theta, alpha, beta, and gamma band activity in the right fronto-temporal regions between the AAs and NAAs. Our results confirm that EEG features from the time/frequency domains can differentiate affective responses to AAs at a neural circuit level, and provide scientific evidence to support the identification of AAs.

  4. Fronto-Striatal Glutamate in Autism Spectrum Disorder and Obsessive Compulsive Disorder.

    PubMed

    Naaijen, Jilly; Zwiers, Marcel P; Amiri, Houshang; Williams, Steven C R; Durston, Sarah; Oranje, Bob; Brandeis, Daniel; Boecker-Schlier, Regina; Ruf, Matthias; Wolf, Isabella; Banaschewski, Tobias; Glennon, Jeffrey C; Franke, Barbara; Buitelaar, Jan K; Lythgoe, David J

    2017-11-01

    Autism spectrum disorders (ASDs) and obsessive compulsive disorder (OCD) are often comorbid with the overlap based on compulsive behaviors. Although previous studies suggest glutamatergic deficits in fronto-striatal brain areas in both disorders, this is the first study to directly compare the glutamate concentrations across the two disorders with those in healthy control participants using both categorical and dimensional approaches. In the current multi-center study (four centers), we used proton magnetic resonance spectroscopy in 51 children with ASD, 29 with OCD, and 53 healthy controls (aged 8-13 years) to investigate glutamate (Glu) concentrations in two regions of the fronto-striatal circuit: midline anterior cingulate cortex (ACC) and left dorsal striatum. Spectra were processed with Linear Combination Model. Group comparisons were performed with one-way analyses of variance including sex, medication use, and scanner site as covariates. In addition, a dimensional analysis was performed, linking glutamate with a continuous measure of compulsivity across disorders. There was a main group effect for ACC glutamate (p=0.019). Contrast analyses showed increased glutamate both in children with ASD and OCD compared with controls (p=0.007), but no differences between the two disorders (p=0.770). Dimensional analyses revealed a positive correlation between compulsive behavior (measured with the Repetitive Behavior Scale) and ACC glutamate (rho=0.24, p=0.03). These findings were robust across sites. No differences were found in the striatum. The current findings confirm overlap between ASD and OCD in terms of glutamate involvement. Glutamate concentration in ACC seems to be associated with the severity of compulsive behavior.

  5. Alexia for Braille following bilateral occipital stroke in an early blind woman.

    PubMed

    Hamilton, R; Keenan, J P; Catala, M; Pascual-Leone, A

    2000-02-07

    Recent functional imaging and neurophysiologic studies indicate that the occipital cortex may play a role in Braille reading in congenitally and early blind subjects. We report on a woman blind from birth who sustained bilateral occipital damage following an ischemic stroke. Prior to the stroke, the patient was a proficient Braille reader. Following the stroke, she was no longer able to read Braille yet her somatosensory perception appeared otherwise to be unchanged. This case supports the emerging evidence for the recruitment of striate and prestriate cortex for Braille reading in early blind subjects.

  6. Long-term outcome and prognostic factors after C2 ganglion decompression in 68 consecutive patients with intractable occipital neuralgia.

    PubMed

    Choi, Kyu-Sun; Ko, Yong; Kim, Young-Soo; Yi, Hyeong-Joong

    2015-01-01

    Occipital neuralgia is a rare cause of severe headache characterized by paroxysmal shooting or stabbing pain in the distribution of the greater occipital or lesser occipital nerve. In cases of intractable occipital neuralgia, a definite cause has not been uncovered, so various types of treatment have been applied. The aim of this study is to evaluate the prognostic factors, safety, and long-term clinical efficacy of second cervical (C2) ganglion decompression for intractable occipital neuralgia. Retrospective analysis was performed in 68 patients with medically refractory occipital neuralgia who underwent C2 ganglion decompression. Factors based on patients' demography, pre- and postoperative headache severity/characteristics, medication use, and postoperative complications were investigated. Therapeutic success was defined as pain relief by at least 50 % without ongoing medication. The visual analog scale (VAS) score was significantly reduced between the preoperative and most recent follow-up period. One year later, excellent or good results were achieved in 57 patients (83.9 %), but poor in 11 patients (16.1 %). The long-term outcome after 5 years was only slightly less than the 1-year outcome; 47 of the 68 patients (69.1 %) obtained therapeutic success. Longer duration of headache (over 13 years; p = 0.029) and presence of retro-orbital/frontal radiation (p = 0.040) were significantly associated with poor prognosis. In the current study, C2 ganglion decompression provided durable, adequate pain relief with minimal complications in patients suffering from intractable occipital neuralgia. Due to the minimally invasive and nondestructive nature of this surgical procedure, C2 ganglion decompression is recommended as an initial surgical treatment option for intractable occipital neuralgia before attempting occipital nerve stimulation. However, further study is required to manage the pain recurrence associated with longstanding nerve injury.

  7. An anatomical study of the transversus nuchae muscle: Application to better understanding occipital neuralgia.

    PubMed

    Watanabe, Koichi; Saga, Tsuyoshi; Iwanaga, Joe; Tabira, Yoko; Yamaki, Koh-Ichi

    2017-01-01

    The transversus nuchae muscle appears inconsistently in the occipital region. It has gained attention as one of the muscles composing the superficial musculoaponeurotic system (SMAS). The purpose of this study was to clarify its detailed anatomical features. We examined 124 sides of 62 cadavers. The transversus nuchae muscle was identified when present and examined after it had been completely exposed. We also examined its relationship to the occipital cutaneous nerves.The transversus nuchae muscle was detected in 40 sides (40/124, 32.2%) of 26 cadavers; it was present bilaterally in 14 and unilaterally in 12. It originated from the external occipital protuberance; 43% of the observed muscles inserted around the mastoid process, and 58% curved upward around the mastoid process and became the uppermost bundle of the platysma. In one case, an additional bundle originated from the lower posterior border of the sternocleidomastoid muscle and coursed obliquely upward along with platysma. Ninety percent of the muscles ran below the sling through which the greater occipital nerve passed; 65% of the lesser occipital nerves ran deep to the muscle, and 55% of the great auricular nerves ran superficial to it. Our observations clarify the unique anatomical features of the transversus nuchae muscle. We found that it occurs at a rate similar to that described in previous reports, but its arrangement is variable. Further investigations will be performed to clarify its innervation and other anatomical features. Clin. Anat. 30:32-38, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  8. Charles Bonnet Syndrome in a Patient With Right Medial Occipital Lobe Infarction: Epileptic or Deafferentation Phenomenon?

    PubMed

    Kumral, Emre; Uluakay, Arzu; Dönmez, İlknur

    2015-07-01

    Charles Bonnet syndrome (CBS) is an uncommon disorder characterized by complex and recurrent visual hallucinations in patients with visual pathway pathologic defects. To describe a patient who experienced complex visual hallucinations following infarction in the right occipital lobe and epileptic seizure who was diagnosed as having CBS. A 65-year-old man presented acute ischemic stroke caused by artery to artery embolism involving the right occipital lobe. Following ischemic stroke, complex visual hallucinations in the left visual field not associated with loss of consciousness or delusion developed in the patient. Hallucinations persisted for >1 month and during hallucination, no electrographic seizures were recorded through 24 hours of videoelectroencephalographic monitoring. CBS may develop in a patient with occipital lobe infarction following an embolic event. CBS associated with medial occipital lobe infarction and epilepsy may coexist and reflects the abnormal functioning of an integrated neuronal network.

  9. Fronto-ethmoidal Osteoma with Secondary Intradural Mucocele Extension causing Frontal Lobe Syndrome and Pneumocephalus: Case Report and Review of the Literature.

    PubMed

    Maria, Licci; Christian, Zweifel; Jürgen, Hench; Raphael, Guzman; Jehuda, Soleman

    2018-04-18

    Paranasal sinus osteoma is a common, asymptomatic, histologically benign, and slow-growing tumor. However, it can give rise to secondary pathologies such as a mucocele in about 50% of the cases. Rarely, intracranial and orbital extension is present leading to rhinoliquorrhea, pneumocephalus, or neurological and visual impairment, which might be potentially life-threatening. A 49-year old man presented with an acute frontal lobe syndrome and rhinoliquorrhea. Cranial magnetic resonance tomography showed a suspected fronto-ethmoidal osteoma with a mucocele expanding intradurally, into the left frontal lobe. It was accompanied by pneumocephalus and showed communication with the left lateral ventricle. Through a bifrontal craniotomy in toto resection of the fronto-ethmoidal bony tumor and the intradural mucocele was performed, while thereafter the frontal sinus was cranialized using a pedunculated periosteal flap. Postoperative recovery was uneventful with complete resolvement of the tension pneumocephalus and the rhinoliquorrhea, and led to an improvement of the frontal lobe syndrome. We present a rare case of pneumocephalus caused by a fronto-ethmoidal osteoma associated with an intradural mucocele. A review of the literature, focusing on the surgical strategies in such cases, is provided. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Relevance of Spectral Cues for Auditory Spatial Processing in the Occipital Cortex of the Blind

    PubMed Central

    Voss, Patrice; Lepore, Franco; Gougoux, Frédéric; Zatorre, Robert J.

    2011-01-01

    We have previously shown that some blind individuals can localize sounds more accurately than their sighted counterparts when one ear is obstructed, and that this ability is strongly associated with occipital cortex activity. Given that spectral cues are important for monaurally localizing sounds when one ear is obstructed, and that blind individuals are more sensitive to small spectral differences, we hypothesized that enhanced use of spectral cues via occipital cortex mechanisms could explain the better performance of blind individuals in monaural localization. Using positron-emission tomography (PET), we scanned blind and sighted persons as they discriminated between sounds originating from a single spatial position, but with different spectral profiles that simulated different spatial positions based on head-related transfer functions. We show here that a sub-group of early blind individuals showing superior monaural sound localization abilities performed significantly better than any other group on this spectral discrimination task. For all groups, performance was best for stimuli simulating peripheral positions, consistent with the notion that spectral cues are more helpful for discriminating peripheral sources. PET results showed that all blind groups showed cerebral blood flow increases in the occipital cortex; but this was also the case in the sighted group. A voxel-wise covariation analysis showed that more occipital recruitment was associated with better performance across all blind subjects but not the sighted. An inter-regional covariation analysis showed that the occipital activity in the blind covaried with that of several frontal and parietal regions known for their role in auditory spatial processing. Overall, these results support the notion that the superior ability of a sub-group of early-blind individuals to localize sounds is mediated by their superior ability to use spectral cues, and that this ability is subserved by cortical processing in

  11. Targeted transcranial theta-burst stimulation alters fronto-insular network and prefrontal GABA.

    PubMed

    Iwabuchi, Sarina J; Raschke, Felix; Auer, Dorothee P; Liddle, Peter F; Lankappa, Sudheer T; Palaniyappan, Lena

    2017-02-01

    Repetitive transcranial magnetic stimulation (rTMS) has been used worldwide to treat depression. However, the exact physiological effects are not well understood. Pathophysiology of depression involves crucial limbic structures (e.g. insula), and it is still not clear if these structures can be modulated through neurostimulation of surface regions (e.g. dorsolateral prefrontal cortex, DLPFC), and whether rTMS-induced excitatory/inhibitory transmission alterations relate to fronto-limbic connectivity changes. Therefore, we sought proof-of-concept for neuromodulation of insula via prefrontal intermittent theta-burst stimulation (iTBS), and how these effects relate to GABAergic and glutamatergic systems. In 27 healthy controls, we employed a single-blind crossover randomised-controlled trial comparing placebo and real iTBS using resting-state functional MRI and magnetic resonance spectroscopy. Granger causal analysis was seeded from right anterior insula (rAI) to locate individualized left DLPFC rTMS targets. Effective connectivity coefficients within rAI and DLPFC were calculated, and levels of GABA/Glx, GABA/Cr and Glx/Cr in DLPFC and anterior cingulate voxels were also measured. ITBS significantly dampened fronto-insular connectivity and reduced GABA/Glx in both voxels. GABA/Glx had a significant mediating effect on iTBS-induced changes in DLPFC-to-rAI connectivity. We demonstrate modulation of the rAI using targeted iTBS through alterations of excitatory/inhibitory interactions, which may underlie therapeutic effects of rTMS, offering promise for rTMS treatment optimization. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Antecedent occipital alpha band activity predicts the impact of oculomotor events in perceptual switching

    PubMed Central

    Nakatani, Hironori; van Leeuwen, Cees

    2013-01-01

    Oculomotor events such as blinks and saccades transiently interrupt the visual input and, even though this mostly goes undetected, these brief interruptions could still influence the percept. In particular, both blinking and saccades facilitate switching in ambiguous figures such as the Necker cube. To investigate the neural state antecedent to these oculomotor events during the perception of an ambiguous figure, we measured the human scalp electroencephalogram (EEG). When blinking led to perceptual switching, antecedent occipital alpha band activity exhibited a transient increase in amplitude. When a saccade led to switching, a series of transient increases and decreases in amplitude was observed in the antecedent occipital alpha band activity. Our results suggest that the state of occipital alpha band activity predicts the impact of oculomotor events on the percept. PMID:23745106

  13. TMS of the occipital cortex induces tactile sensations in the fingers of blind Braille readers.

    PubMed

    Ptito, M; Fumal, A; de Noordhout, A Martens; Schoenen, J; Gjedde, A; Kupers, R

    2008-01-01

    Various non-visual inputs produce cross-modal responses in the visual cortex of early blind subjects. In order to determine the qualitative experience associated with these occipital activations, we systematically stimulated the entire occipital cortex using single pulse transcranial magnetic stimulation (TMS) in early blind subjects and in blindfolded seeing controls. Whereas blindfolded seeing controls reported only phosphenes following occipital cortex stimulation, some of the blind subjects reported tactile sensations in the fingers that were somatotopically organized onto the visual cortex. The number of cortical sites inducing tactile sensations appeared to be related to the number of hours of Braille reading per day, Braille reading speed and dexterity. These data, taken in conjunction with previous anatomical, behavioural and functional imaging results, suggest the presence of a polysynaptic cortical pathway between the somatosensory cortex and the visual cortex in early blind subjects. These results also add new evidence that the activity of the occipital lobe in the blind takes its qualitative expression from the character of its new input source, therefore supporting the cortical deference hypothesis.

  14. Spatio-temporal source cluster analysis reveals fronto-temporal auditory change processing differences within a shared autistic and schizotypal trait phenotype.

    PubMed

    Ford, Talitha C; Woods, Will; Crewther, David P

    2017-01-01

    Social Disorganisation (SD) is a shared autistic and schizotypal phenotype that is present in the subclinical population. Auditory processing deficits, particularly in mismatch negativity/field (MMN/F) have been reported across both spectrum disorders. This study investigates differences in MMN/F cortical spatio-temporal source activity between higher and lower quintiles of the SD spectrum. Sixteen low (9 female) and 19 high (9 female) SD subclinical adults (18-40years) underwent magnetoencephalography (MEG) during an MMF paradigm where standard tones (50ms) were interrupted by infrequent duration deviants (100ms). Spatio-temporal source cluster analysis with permutation testing revealed no difference between the groups in source activation to the standard tone. To the deviant tone however, there was significantly reduced right hemisphere fronto-temporal and insular cortex activation for the high SD group ( p = 0.038). The MMF, as a product of the cortical response to the deviant minus that to the standard, did not differ significantly between the high and low Social Disorganisation groups. These data demonstrate a deficit in right fronto-temporal processing of an auditory change for those with more of the shared SD phenotype, indicating that right fronto-temporal auditory processing may be associated with psychosocial functioning.

  15. Development of the uncinate fasciculus: Implications for theory and developmental disorders.

    PubMed

    Olson, Ingrid R; Von Der Heide, Rebecca J; Alm, Kylie H; Vyas, Govinda

    2015-08-01

    The uncinate fasciculus (UF) is a long-range white matter tract that connects limbic regions in the temporal lobe to the frontal lobe. The UF is one of the latest developing tracts, and continues maturing into the third decade of life. As such, individual differences in the maturational profile of the UF may serve to explain differences in behavior. Indeed, atypical macrostructure and microstructure of the UF have been reported in numerous studies of individuals with developmental and psychiatric disorders such as social deprivation and maltreatment, autism spectrum disorders, conduct disorder, risk taking, and substance abuse. The present review evaluates what we currently know about the UF's developmental trajectory and reviews the literature relating UF abnormalities to specific disorders. Additionally, we take a dimensional approach and critically examine symptoms and behavioral impairments that have been demonstrated to cluster with UF aberrations, in an effort to relate these impairments to our speculations regarding the functionality of the UF. We suggest that developmental disorders with core problems relating to memory retrieval, reward and valuation computation, and impulsive decision making may be linked to aberrations in uncinate microstructure. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Psychopathic traits modulate microstructural integrity of right uncinate fasciculus in a community population.

    PubMed

    Sobhani, Mona; Baker, Laura; Martins, Bradford; Tuvblad, Catherine; Aziz-Zadeh, Lisa

    2015-01-01

    Individuals with psychopathy possess emotional and behavioral abnormalities. Two neural regions, involved in behavioral control and emotion regulation, are often implicated: amygdala and ventromedial prefrontal cortex (VMPFC). Recently, in studies using adult criminal populations, reductions in microstructural integrity of the white matter connections (i.e., uncinate fasciculus (UF)) between these two neural regions have been discovered in criminals with psychopathy, supporting the notion of neural dysfunction in the amygdala-VMPFC circuit. Here, a young adult, community sample is used to assess whether psychopathic traits modulate microstructural integrity of UF, and whether this relationship is dependent upon levels of trait anxiety, which is sometimes used to distinguish subtypes of psychopathy. Results reveal a negative association between psychopathic traits and microstructural integrity of UF, supporting previous findings. However, no moderation of the relationship by trait anxiety was discovered. Findings provide further support for the notion of altered amygdala-VMPFC connectivity in association with higher psychopathic traits.

  17. Occipital Nerve Stimulation for the Treatment of Patients With Medically Refractory Occipital Neuralgia: Congress of Neurological Surgeons Systematic Review and Evidence-Based Guideline.

    PubMed

    Sweet, Jennifer A; Mitchell, Laura S; Narouze, Samer; Sharan, Ashwini D; Falowski, Steven M; Schwalb, Jason M; Machado, Andre; Rosenow, Joshua M; Petersen, Erika A; Hayek, Salim M; Arle, Jeffrey E; Pilitsis, Julie G

    2015-09-01

    Occipital neuralgia (ON) is a disorder characterized by sharp, electrical, paroxysmal pain, originating from the occiput and extending along the posterior scalp, in the distribution of the greater, lesser, and/or third occipital nerve. Occipital nerve stimulation (ONS) constitutes a promising therapy for medically refractory ON because it is reversible with minimal side effects and has shown continued efficacy with long-term follow-up. To conduct a systematic literature review and provide treatment recommendations for the use of ONS for the treatment of patients with medically refractory ON. A systematic literature search was conducted using the PubMed database and the Cochrane Library to locate articles published between 1966 and April 2014 using MeSH headings and keywords relevant to ONS as a means to treat ON. A second literature search was conducted using the PubMed database and the Cochrane Library to locate articles published between 1966 and June 2014 using MeSH headings and keywords relevant to interventions that predict response to ONS in ON. The strength of evidence of each article that underwent full text review and the resulting strength of recommendation were graded according to the guidelines development methodology of the American Association of Neurological Surgeons/Congress of Neurological Surgeons Joint Guidelines Committee. Nine studies met the criteria for inclusion in this guideline. All articles provided Class III Level evidence. Based on the data derived from this systematic literature review, the following Level III recommendation can be made: the use of ONS is a treatment option for patients with medically refractory ON.

  18. Effects of subjective preference of colors on attention-related occipital theta oscillations.

    PubMed

    Kawasaki, Masahiro; Yamaguchi, Yoko

    2012-01-02

    Human daily behaviors are often affected by subjective preferences. Studies have shown that physical responses are affected by unconscious preferences before conscious decision making. Accordingly, attention-related neural activities could be influenced by unconscious preferences. However, few neurological data exist on the relationship between visual attention and subjective preference. To address this issue, we focused on lateralization during visual attention and investigated the effects of subjective color preferences on visual attention-related brain activities. We recorded electroencephalograph (EEG) data during a preference judgment task that required 19 participants to choose their preferred color from 2 colors simultaneously presented to the right and left hemifields. In addition, to identify oscillatory activity during visual attention, we conducted a control experiment in which the participants focused on either the right or the left color without stating their preference. The EEG results showed enhanced theta (4-6 Hz) and decreased alpha (10-12 Hz) activities in the right and left occipital electrodes when the participants focused on the color in the opposite hemifield. Occipital theta synchronizations also increased contralaterally to the hemifield to which the preferred color was presented, whereas the alpha desynchronizations showed no lateralization. The contralateral occipital theta activity lasted longer than the ipsilateral occipital theta activity. Interestingly, theta lateralization was observed even when the preferred color was presented to the unattended side in the control experiment, revealing the strength of the preference-related theta-modulation effect irrespective of visual attention. These results indicate that subjective preferences modulate visual attention-related brain activities. Crown Copyright © 2011. Published by Elsevier Inc. All rights reserved.

  19. Coherent Activity in Bilateral Parieto-Occipital Cortices during P300-BCI Operation.

    PubMed

    Takano, Kouji; Ora, Hiroki; Sekihara, Kensuke; Iwaki, Sunao; Kansaku, Kenji

    2014-01-01

    The visual P300 brain-computer interface (BCI), a popular system for electroencephalography (EEG)-based BCI, uses the P300 event-related potential to select an icon arranged in a flicker matrix. In earlier studies, we used green/blue (GB) luminance and chromatic changes in the P300-BCI system and reported that this luminance and chromatic flicker matrix was associated with better performance and greater subject comfort compared with the conventional white/gray (WG) luminance flicker matrix. To highlight areas involved in improved P300-BCI performance, we used simultaneous EEG-fMRI recordings and showed enhanced activities in bilateral and right lateralized parieto-occipital areas. Here, to capture coherent activities of the areas during P300-BCI, we collected whole-head 306-channel magnetoencephalography data. When comparing functional connectivity between the right and left parieto-occipital channels, significantly greater functional connectivity in the alpha band was observed under the GB flicker matrix condition than under the WG flicker matrix condition. Current sources were estimated with a narrow-band adaptive spatial filter, and mean imaginary coherence was computed in the alpha band. Significantly greater coherence was observed in the right posterior parietal cortex under the GB than under the WG condition. Re-analysis of previous EEG-based P300-BCI data showed significant correlations between the power of the coherence of the bilateral parieto-occipital cortices and their performance accuracy. These results suggest that coherent activity in the bilateral parieto-occipital cortices plays a significant role in effectively driving the P300-BCI.

  20. Frontal–Occipital Connectivity During Visual Search

    PubMed Central

    Pantazatos, Spiro P.; Yanagihara, Ted K.; Zhang, Xian; Meitzler, Thomas

    2012-01-01

    Abstract Although expectation- and attention-related interactions between ventral and medial prefrontal cortex and stimulus category-selective visual regions have been identified during visual detection and discrimination, it is not known if similar neural mechanisms apply to other tasks such as visual search. The current work tested the hypothesis that high-level frontal regions, previously implicated in expectation and visual imagery of object categories, interact with visual regions associated with object recognition during visual search. Using functional magnetic resonance imaging, subjects searched for a specific object that varied in size and location within a complex natural scene. A model-free, spatial-independent component analysis isolated multiple task-related components, one of which included visual cortex, as well as a cluster within ventromedial prefrontal cortex (vmPFC), consistent with the engagement of both top-down and bottom-up processes. Analyses of psychophysiological interactions showed increased functional connectivity between vmPFC and object-sensitive lateral occipital cortex (LOC), and results from dynamic causal modeling and Bayesian Model Selection suggested bidirectional connections between vmPFC and LOC that were positively modulated by the task. Using image-guided diffusion-tensor imaging, functionally seeded, probabilistic white-matter tracts between vmPFC and LOC, which presumably underlie this effective interconnectivity, were also observed. These connectivity findings extend previous models of visual search processes to include specific frontal–occipital neuronal interactions during a natural and complex search task. PMID:22708993

  1. The arcuate fasciculus and the disconnection theme in language and aphasia: History and current state

    PubMed Central

    Catani, Marco; Mesulam, Marsel

    2009-01-01

    Few themes have been more central to neurological models of aphasia than the disconnection paradigm and the role of the arcuate fasciculus. Introduced by luminaries of 19th Century neurology and resurrected by the charismatic work of Norman Geschwind, the disconnection theme has triggered spectacular advances of modern understanding of language and aphasia. But the disconnection paradigm had alternate fortunes, ranging from irrational exuberance to benign neglect, and its followers have not always shared the same view on its functional consequences and anatomical correlates. Our goal in this paper is, first, to survey the 19th Century roots of the connectionist approach to aphasia and, second, to describe emerging imaging technologies based on diffusion tensor imaging (DTI) that promise to consolidate and expand the disconnection approach to language and its disorders. PMID:18614162

  2. The arcuate fasciculus and the disconnection theme in language and aphasia: history and current state.

    PubMed

    Catani, Marco; Mesulam, Marsel

    2008-09-01

    Few themes have been more central to neurological models of aphasia than the disconnection paradigm and the role of the arcuate fasciculus. Introduced by luminaries of 19th Century neurology and resurrected by the charismatic work of Norman Geschwind, the disconnection theme has triggered spectacular advances of modern understanding of language and aphasia. But the disconnection paradigm had alternate fortunes, ranging from irrational exuberance to benign neglect, and its followers have not always shared the same view on its functional consequences and anatomical correlates. Our goal in this paper is, first, to survey the 19th Century roots of the connectionist approach to aphasia and, second, to describe emerging imaging technologies based on diffusion tensor imaging (DTI) that promise to consolidate and expand the disconnection approach to language and its disorders.

  3. Reduced functional connectivity of fronto-parietal sustained attention networks in severe childhood abuse

    PubMed Central

    Mehta, Mitul A.; Chatzieffraimidou, Antonia; Curtis, Charles; Xu, Xiaohui; Breen, Gerome; Simmons, Andrew; Mirza, Kah; Rubia, Katya

    2017-01-01

    Childhood maltreatment is associated with attention deficits. We examined the effect of childhood abuse and abuse-by-gene (5-HTTLPR, MAOA, FKBP5) interaction on functional brain connectivity during sustained attention in medication/drug-free adolescents. Functional connectivity was compared, using generalised psychophysiological interaction (gPPI) analysis of functional magnetic resonance imaging (fMRI) data, between 21 age-and gender-matched adolescents exposed to severe childhood abuse and 27 healthy controls, while they performed a parametrically modulated vigilance task requiring target detection with a progressively increasing load of sustained attention. Behaviourally, participants exposed to childhood abuse had increased omission errors compared to healthy controls. During the most challenging attention condition abused participants relative to controls exhibited reduced connectivity, with a left-hemispheric bias, in typical fronto-parietal attention networks, including dorsolateral, rostromedial and inferior prefrontal and inferior parietal regions. Abuse-related connectivity abnormalities were exacerbated in individuals homozygous for the risky C-allele of the single nucleotide polymorphism rs3800373 of the FK506 Binding Protein 5 (FKBP5) gene. Findings suggest that childhood abuse is associated with decreased functional connectivity in fronto-parietal attention networks and that the FKBP5 genotype moderates neurobiological vulnerability to abuse. These findings represent a first step towards the delineation of abuse-related neurofunctional connectivity abnormalities, which hopefully will facilitate the development of specific treatment strategies for victims of childhood maltreatment. PMID:29190830

  4. Combined diffusion-weighted and functional magnetic resonance imaging reveals a temporal-occipital network involved in auditory-visual object processing

    PubMed Central

    Beer, Anton L.; Plank, Tina; Meyer, Georg; Greenlee, Mark W.

    2013-01-01

    Functional magnetic resonance imaging (MRI) showed that the superior temporal and occipital cortex are involved in multisensory integration. Probabilistic fiber tracking based on diffusion-weighted MRI suggests that multisensory processing is supported by white matter connections between auditory cortex and the temporal and occipital lobe. Here, we present a combined functional MRI and probabilistic fiber tracking study that reveals multisensory processing mechanisms that remained undetected by either technique alone. Ten healthy participants passively observed visually presented lip or body movements, heard speech or body action sounds, or were exposed to a combination of both. Bimodal stimulation engaged a temporal-occipital brain network including the multisensory superior temporal sulcus (msSTS), the lateral superior temporal gyrus (lSTG), and the extrastriate body area (EBA). A region-of-interest (ROI) analysis showed multisensory interactions (e.g., subadditive responses to bimodal compared to unimodal stimuli) in the msSTS, the lSTG, and the EBA region. Moreover, sounds elicited responses in the medial occipital cortex. Probabilistic tracking revealed white matter tracts between the auditory cortex and the medial occipital cortex, the inferior occipital cortex (IOC), and the superior temporal sulcus (STS). However, STS terminations of auditory cortex tracts showed limited overlap with the msSTS region. Instead, msSTS was connected to primary sensory regions via intermediate nodes in the temporal and occipital cortex. Similarly, the lSTG and EBA regions showed limited direct white matter connections but instead were connected via intermediate nodes. Our results suggest that multisensory processing in the STS is mediated by separate brain areas that form a distinct network in the lateral temporal and inferior occipital cortex. PMID:23407860

  5. Sex differences in effective fronto-limbic connectivity during negative emotion processing.

    PubMed

    Lungu, Ovidiu; Potvin, Stéphane; Tikàsz, Andràs; Mendrek, Adrianna

    2015-12-01

    In view of the greater prevalence of depression and anxiety disorders in women than in men, functional magnetic resonance imaging (fMRI) studies have examined sex-differences in brain activations during emotion processing. Comparatively, sex-differences in brain connectivity received little attention, despite evidence for important fronto-limbic connections during emotion processing across sexes. Here, we investigated sex-differences in fronto-limbic connectivity during negative emotion processing. Forty-six healthy individuals (25 women, 21 men) viewed negative, positive and neutral images during an fMRI session. Effective connectivity between significantly activated regions was examined using Granger causality and psychophysical interaction analyses. Sex steroid hormones and feminine-masculine traits were also measured. Subjective ratings of negative emotional images were higher in women than in men. Across sexes, significant activations were observed in the dorso-medial prefrontal cortex (dmPFC) and the right amygdala. Granger connectivity from right amygdala was significantly greater than that from dmPFC during the 'high negative' condition, an effect driven by men. Magnitude of this effect correlated negatively with highly negative image ratings and feminine traits and positively with testosterone levels. These results highlight critical sex differences in brain connectivity during negative emotion processing and point to the fact that both biological (sex steroid hormones) and psychosocial (gender role and identity) variables contribute to them. As the dmPFC is involved in social cognition and action planning, and the amygdala-in threat detection, the connectivity results suggest that compared to women, men have a more evaluative, rather than purely affective, brain response during negative emotion processing. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Normal Development and Measurements of the Occipital Condyle-C1 Interval in Children and Young Adults.

    PubMed

    Smith, P; Linscott, L L; Vadivelu, S; Zhang, B; Leach, J L

    2016-05-01

    Widening of the occipital condyle-C1 interval is the most specific and sensitive means of detecting atlanto-occipital dislocation. Recent studies attempting to define normal measurements of the condyle-C1 interval in children have varied substantially. This study was performed to test the null hypothesis that condyle-C1 interval morphology and joint measurements do not change as a function of age. Imaging review of subjects undergoing CT of the upper cervical spine for reasons unrelated to trauma or developmental abnormality was performed. Four equidistant measurements were obtained for each bilateral condyle-C1 interval on sagittal and coronal images. The cohort was divided into 7 age groups to calculate the mean, SD, and 95% CIs for the average condyle-C1 interval in both planes. The prevalence of a medial occipital condyle notch was calculated. Two hundred forty-eight joints were measured in 124 subjects with an age range of 2 days to 22 years. The condyle-C1 interval varies substantially by age. Average coronal measurements are larger and more variable than sagittal measurements. The medial occipital condyle notch is most prevalent from 1 to 12 years and is uncommon in older adolescents and young adults. The condyle-C1 interval increases during the first several years of life, is largest in the 2- to 4-year age range, and then decreases through late childhood and adolescence. A single threshold value to detect atlanto-occipital dissociation may not be sensitive and specific for all age groups. Application of this normative data to documented cases of atlanto-occipital injury is needed to determine clinical utility. © 2016 by American Journal of Neuroradiology.

  7. Increased resting state functional connectivity in the fronto-parietal and default mode network in anorexia nervosa

    PubMed Central

    Boehm, Ilka; Geisler, Daniel; King, Joseph A.; Ritschel, Franziska; Seidel, Maria; Deza Araujo, Yacila; Petermann, Juliane; Lohmeier, Heidi; Weiss, Jessika; Walter, Martin; Roessner, Veit; Ehrlich, Stefan

    2014-01-01

    The etiology of anorexia nervosa (AN) is poorly understood. Results from functional brain imaging studies investigating the neural profile of AN using cognitive and emotional task paradigms are difficult to reconcile. Task-related imaging studies often require a high level of compliance and can only partially explore the distributed nature and complexity of brain function. In this study, resting state functional connectivity imaging was used to investigate well-characterized brain networks potentially relevant to understand the neural mechanisms underlying the symptomatology and etiology of AN. Resting state functional magnetic resonance imaging data was obtained from 35 unmedicated female acute AN patients and 35 closely matched healthy controls female participants (HC) and decomposed using spatial group independent component analyses (ICA). Using validated templates, we identified components covering the fronto-parietal “control” network, the default mode network (DMN), the salience network, the visual and the sensory-motor network. Group comparison revealed an increased functional connectivity between the angular gyrus and the other parts of the fronto-parietal network in patients with AN in comparison to HC. Connectivity of the angular gyrus was positively associated with self-reported persistence in HC. In the DMN, AN patients also showed an increased functional connectivity strength in the anterior insula in comparison to HC. Anterior insula connectivity was associated with self-reported problems with interoceptive awareness. This study, with one of the largest sample to date, shows that acute AN is associated with abnormal brain connectivity in two major resting state networks (RSN). The finding of an increased functional connectivity in the fronto-parietal network adds novel support for the notion of AN as a disorder of excessive cognitive control, whereas the elevated functional connectivity of the anterior insula with the DMN may reflect the high

  8. Right fronto-limbic atrophy is associated with reduced empathy in refractory unilateral mesial temporal lobe epilepsy.

    PubMed

    Toller, Gianina; Adhimoolam, Babu; Rankin, Katherine P; Huppertz, Hans-Jürgen; Kurthen, Martin; Jokeit, Hennric

    2015-11-01

    Refractory mesial temporal lobe epilepsy (MTLE) is the most frequent focal epilepsy and is often accompanied by deficits in social cognition including emotion recognition, theory of mind, and empathy. Consistent with the neuronal networks that are crucial for normal social-cognitive processing, these impairments have been associated with functional changes in fronto-temporal regions. However, although atrophy in unilateral MTLE also affects regions of the temporal and frontal lobes that underlie social cognition, little is known about the structural correlates of social-cognitive deficits in refractory MTLE. In the present study, a psychometrically validated empathy questionnaire was combined with whole-brain voxel-based morphometry (VBM) to investigate the relationship between self-reported affective and cognitive empathy and gray matter volume in 55 subjects (13 patients with right MTLE, 9 patients with left MTLE, and 33 healthy controls). Consistent with the brain regions underlying social cognition, our results show that lower affective and cognitive empathy was associated with smaller volume in predominantly right fronto-limbic regions, including the right hippocampus, parahippocampal gyrus, thalamus, fusiform gyrus, inferior temporal gyrus, dorsomedial and dorsolateral prefrontal cortices, and in the bilateral midbrain. The only region that was associated with both affective and cognitive empathy was the right mesial temporal lobe. These findings indicate that patients with right MTLE are at increased risk for reduced empathy towards others' internal states and they shed new light on the structural correlates of impaired social cognition frequently accompanying refractory MTLE. In line with previous evidence from patients with neurodegenerative disease and stroke, the present study suggests that empathy depends upon the integrity of right fronto-limbic and brainstem regions and highlights the importance of the right mesial temporal lobe and midbrain

  9. Arcuate fasciculus laterality by diffusion tensor imaging correlates with language laterality by functional MRI in preadolescent children.

    PubMed

    Sreedharan, Ruma Madhu; Menon, Amitha C; James, Jija S; Kesavadas, Chandrasekharan; Thomas, Sanjeev V

    2015-03-01

    Language lateralization is unique to humans. Functional MRI (fMRI) and diffusion tensor imaging (DTI) enable the study of language areas and white matter fibers involved in language, respectively. The objective of this study was to correlate arcuate fasciculus (AF) laterality by diffusion tensor imaging with that by fMRI in preadolescent children which has not yet been reported. Ten children between 8 and 12 years were subjected to fMRI and DTI imaging using Siemens 1.5 T MRI. Two language fMRI paradigms--visual verb generation and word pair task--were used. Analysis was done using SPM8 software. In DTI, the fiber volume of the arcuate fasciculus (AFV) and fractional anisotropy (FA) was measured. The fMRI Laterality Index (fMRI-LI) and DTI Laterality Index (DTI-LI) were calculated and their correlation assessed using the Pearson Correlation Index. Of ten children, mean age 10.6 years, eight showed left lateralization while bilateral language lateralization was seen in two. AFV by DTI was more on the left side in seven of the eight children who had left lateralization by fMRI. DTI could not trace the AF in one child. Of the two with bilateral language lateralization on fMRI, one showed larger AFV on the right side while the other did not show any asymmetry. There was a significant correlation (p < 0.02) between fMRI-LI and DTI-LI. Group mean of AFV by DTI was higher on the left side (2659.89 ± 654.75 mm(3)) as compared to the right (1824.11 ± 582.81 mm(3)) (p < 0.01). Like fMRI, DTI also reveals language laterality in children with a high degree of correlation between the two imaging modalities.

  10. False Memories for Shape Activate the Lateral Occipital Complex

    ERIC Educational Resources Information Center

    Karanian, Jessica M.; Slotnick, Scott D.

    2017-01-01

    Previous functional magnetic resonance imaging evidence has shown that false memories arise from higher-level conscious processing regions rather than lower-level sensory processing regions. In the present study, we assessed whether the lateral occipital complex (LOC)--a lower-level conscious shape processing region--was associated with false…

  11. Benign Occipital Epilepsies of Childhood: Clinical Features and Genetics

    ERIC Educational Resources Information Center

    Taylor, Isabella; Berkovic, Samuel F.; Kivity, Sara; Scheffer, Ingrid E.

    2008-01-01

    The early and late benign occipital epilepsies of childhood (BOEC) are described as two discrete electro-clinical syndromes, eponymously known as Panayiotopoulos and Gastaut syndromes. Our aim was to explore the clinical features, classification and clinical genetics of these syndromes using twin and multiplex family studies to determine whether…

  12. An fMRI investigation of the fronto-striatal learning system in women who exhibit eating disorder behaviors

    PubMed Central

    Celone, Kim A.; Thompson-Brenner, Heather; Ross, Robert S.; Pratt, Elizabeth M.; Stern, Chantal E.

    2013-01-01

    In the present study, we sought to examine whether the fronto-striatal learning system, which has been implicated in bulimia nervosa, would demonstrate altered BOLD activity during probabilistic category learning in women who met subthreshold criteria for bulimia nervosa (Sub-BN). Sub-BN, which falls within the clinical category of Eating Disorder Not Otherwise Specified (EDNOS), is comprised of individuals who demonstrate recurrent binge eating, efforts to minimize their caloric intake and caloric retention, and elevated levels of concern about shape, weight, and/or eating, but just fail to meet the diagnostic threshold for bulimia nervosa (BN). fMRI data were collected from eighteen women with subthreshold-BN (Sub-BN) and nineteen healthy control women group-matched for age, education and body mass index (MC) during the weather prediction task. Sub-BN participants demonstrated increased caudate nucleus and dorsolateral prefrontal cortex (DLPFC) activation during the learning of probabilistic categories. Though the two subject groups did not differ in behavioral performance, over the course of learning, Sub-BN participants showed a dynamic pattern of brain activity differences when compared to matched control participants. Regions implicated in episodic memory, including the medial temporal lobe (MTL), retrosplenial cortex, middle frontal gyrus, and anterior and posterior cingulate cortex showed decreased activity in the Sub-BN participants compared to MCs during early learning which was followed by increased involvement of the DLPFC during later learning. These findings demonstrate that women with Sub-BN demonstrate differences in fronto-striatal learning system activity, as well as a distinct functional pattern between fronto-striatal and MTL learning systems during the course of implicit probabilistic category learning. PMID:21419229

  13. Retinotopic patterns of background connectivity between V1 and fronto-parietal cortex are modulated by task demands

    PubMed Central

    Griffis, Joseph C.; Elkhetali, Abdurahman S.; Burge, Wesley K.; Chen, Richard H.; Visscher, Kristina M.

    2015-01-01

    Attention facilitates the processing of task-relevant visual information and suppresses interference from task-irrelevant information. Modulations of neural activity in visual cortex depend on attention, and likely result from signals originating in fronto-parietal and cingulo-opercular regions of cortex. Here, we tested the hypothesis that attentional facilitation of visual processing is accomplished in part by changes in how brain networks involved in attentional control interact with sectors of V1 that represent different retinal eccentricities. We measured the strength of background connectivity between fronto-parietal and cingulo-opercular regions with different eccentricity sectors in V1 using functional MRI data that were collected while participants performed tasks involving attention to either a centrally presented visual stimulus or a simultaneously presented auditory stimulus. We found that when the visual stimulus was attended, background connectivity between V1 and the left frontal eye fields (FEF), left intraparietal sulcus (IPS), and right IPS varied strongly across different eccentricity sectors in V1 so that foveal sectors were more strongly connected than peripheral sectors. This retinotopic gradient was weaker when the visual stimulus was ignored, indicating that it was driven by attentional effects. Greater task-driven differences between foveal and peripheral sectors in background connectivity to these regions were associated with better performance on the visual task and faster response times on correct trials. These findings are consistent with the notion that attention drives the configuration of task-specific functional pathways that enable the prioritized processing of task-relevant visual information, and show that the prioritization of visual information by attentional processes may be encoded in the retinotopic gradient of connectivty between V1 and fronto-parietal regions. PMID:26106320

  14. Cortical connectivity in fronto-temporal focal epilepsy from EEG analysis: A study via graph theory.

    PubMed

    Vecchio, Fabrizio; Miraglia, Francesca; Curcio, Giuseppe; Della Marca, Giacomo; Vollono, Catello; Mazzucchi, Edoardo; Bramanti, Placido; Rossini, Paolo Maria

    2015-06-01

    It is believed that effective connectivity and optimal network structure are essential for proper information processing in the brain. Indeed, functional abnormalities of the brain are found to be associated with pathological changes in connectivity and network structures. The aim of the present study was to explore the interictal network properties of EEG signals from temporal lobe structures in the context of fronto-temporal lobe epilepsy. To complete this aim, the graph characteristics of the EEG data of 17 patients suffering from focal epilepsy of the fronto-temporal type, recorded during interictal periods, were examined and compared in terms of the affected versus the unaffected hemispheres. EEG connectivity analysis was performed using eLORETA software in 15 fronto-temporal regions (Brodmann Areas BAs 8, 9, 10, 11, 20, 21, 22, 37, 38, 41, 42, 44, 45, 46, 47) on both affected and unaffected hemispheres. The evaluation of the graph analysis parameters, such as 'global' (characteristic path length) and 'local' connectivity (clustering coefficient) showed a statistically significant interaction among side (affected and unaffected hemisphere) and Band (delta, theta, alpha, beta, gamma). Duncan post hoc testing showed an increase of the path length in the alpha band in the affected hemisphere with respect to the unaffected one, as evaluated by an inter-hemispheric marker. The affected hemisphere also showed higher values of local connectivity in the alpha band. In general, an increase of local and global graph theory parameters in the alpha band was found in the affected hemisphere. It was also demonstrated that these effects were more evident in drug-free patients than in those undergoing pharmacological therapy. The increased measures in the affected hemisphere of both functional local segregation and global integration could result from the combination of overlapping mechanisms, including reactive neuroplastic changes seeking to maintain constant integration

  15. Fronto-Parietal Subnetworks Flexibility Compensates For Cognitive Decline Due To Mental Fatigue.

    PubMed

    Taya, Fumihiko; Dimitriadis, Stavros I; Dragomir, Andrei; Lim, Julian; Sun, Yu; Wong, Kian Foong; Thakor, Nitish V; Bezerianos, Anastasios

    2018-04-24

    Fronto-parietal subnetworks were revealed to compensate for cognitive decline due to mental fatigue by community structure analysis. Here, we investigate changes in topology of subnetworks of resting-state fMRI networks due to mental fatigue induced by prolonged performance of a cognitively demanding task, and their associations with cognitive decline. As it is well established that brain networks have modular organization, community structure analyses can provide valuable information about mesoscale network organization and serve as a bridge between standard fMRI approaches and brain connectomics that quantify the topology of whole brain networks. We developed inter- and intramodule network metrics to quantify topological characteristics of subnetworks, based on our hypothesis that mental fatigue would impact on functional relationships of subnetworks. Functional networks were constructed with wavelet correlation and a data-driven thresholding scheme based on orthogonal minimum spanning trees, which allowed detection of communities with weak connections. A change from pre- to posttask runs was found for the intermodule density between the frontal and the temporal subnetworks. Seven inter- or intramodule network metrics, mostly at the frontal or the parietal subnetworks, showed significant predictive power of individual cognitive decline, while the network metrics for the whole network were less effective in the predictions. Our results suggest that the control-type fronto-parietal networks have a flexible topological architecture to compensate for declining cognitive ability due to mental fatigue. This community structure analysis provides valuable insight into connectivity dynamics under different cognitive states including mental fatigue. © 2018 Wiley Periodicals, Inc.

  16. Neurofibromatosis Type 1: Transcatheter Arterial Embolization for Ruptured Occipital Arterial Aneurysms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kanematsu, Masayuki; Kato, Hiroki; Kondo, Hiroshi

    Two cases of ruptured aneurysms in the posterior cervical regions associated with type-1 neurofibromatosis treated by transcatheter embolization are reported. Patients presented with acute onset of swelling and pain in the affected areas. Emergently performed contrast-enhanced CT demonstrated aneurysms and large hematomas widespread in the posterior cervical regions. Angiography revealed aneurysms and extravasations of the occipital artery. Patients were successfully treated by percutaneous transcatheter arterial microcoil embolization. Transcatheter arterial embolization therapy was found to be an effective method for treating aneurysmal rupture in the posterior cervical regions occurring in association with type-1 neurofibromatosis. A literature review revealed that rupture ofmore » an occipital arterial aneurysm, in the setting of neurofibromatosis type 1, has not been reported previously.« less

  17. Occipital Intraosseous Hemangioma over Torcula: Unusual Presentation with Raised Intracranial Pressure.

    PubMed

    Rao, K V L N; Beniwal, Manish; Vazhayil, Vikas; Somanna, Sampath; Yasha, T C

    2017-12-01

    Hemangiomas of the bone are benign, uncommon, slow-growing lesions accounting for <1.0% of all bony neoplasms. Intraosseous occipital hemangiomas are rare, and occipital hemangiomas presenting with features of raised intracranial tension are, with only 2 cases reported to date. In this case report, we describe the unique case of a 30-year-old male patient presenting with raised intracranial pressure due to venous obstruction at the torcula. The patient underwent excision of the lesion and became symptom free. Although these are benign lesions, they can have a varied clinical presentation. An understanding of the different clinical presentations and surgical nuances in excising such tumors can lead to early diagnosis and good patient outcome. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Shared genetic variance between obesity and white matter integrity in Mexican Americans.

    PubMed

    Spieker, Elena A; Kochunov, Peter; Rowland, Laura M; Sprooten, Emma; Winkler, Anderson M; Olvera, Rene L; Almasy, Laura; Duggirala, Ravi; Fox, Peter T; Blangero, John; Glahn, David C; Curran, Joanne E

    2015-01-01

    Obesity is a chronic metabolic disorder that may also lead to reduced white matter integrity, potentially due to shared genetic risk factors. Genetic correlation analyses were conducted in a large cohort of Mexican American families in San Antonio (N = 761, 58% females, ages 18-81 years; 41.3 ± 14.5) from the Genetics of Brain Structure and Function Study. Shared genetic variance was calculated between measures of adiposity [(body mass index (BMI; kg/m(2)) and waist circumference (WC; in)] and whole-brain and regional measurements of cerebral white matter integrity (fractional anisotropy). Whole-brain average and regional fractional anisotropy values for 10 major white matter tracts were calculated from high angular resolution diffusion tensor imaging data (DTI; 1.7 × 1.7 × 3 mm; 55 directions). Additive genetic factors explained intersubject variance in BMI (heritability, h (2) = 0.58), WC (h (2) = 0.57), and FA (h (2) = 0.49). FA shared significant portions of genetic variance with BMI in the genu (ρG = -0.25), body (ρG = -0.30), and splenium (ρG = -0.26) of the corpus callosum, internal capsule (ρG = -0.29), and thalamic radiation (ρG = -0.31) (all p's = 0.043). The strongest evidence of shared variance was between BMI/WC and FA in the superior fronto-occipital fasciculus (ρG = -0.39, p = 0.020; ρG = -0.39, p = 0.030), which highlights region-specific variation in neural correlates of obesity. This may suggest that increase in obesity and reduced white matter integrity share common genetic risk factors.

  19. Spaceflight Effect on White Matter Structural Integrity

    NASA Technical Reports Server (NTRS)

    Lee, Jessica K.; Kopplemans, Vincent; Paternack, Ofer; Bloomberg, Jacob J.; Mulavara, Ajitkumar P.; Seidler, Rachael D.

    2017-01-01

    Recent reports of elevated brain white matter hyperintensity (WMH) counts and volume in postflight astronaut MRIs suggest that further examination of spaceflight's impact on the microstructure of brain white matter is warranted. To this end, retrospective longitudinal diffusion-weighted MRI scans obtained from 15 astronauts were evaluated. In light of the recent reports of microgravity-induced cephalad fluid shift and gray matter atrophy seen in astronauts, we applied a technique to estimate diffusion tensor imaging (DTI) metrics corrected for free water contamination. This approach enabled the analysis of white matter tissue-specific alterations that are unrelated to fluid shifts, occurring from before spaceflight to after landing. After spaceflight, decreased fractional anisotropy (FA) values were detected in an area encompassing the superior and inferior longitudinal fasciculi and the inferior fronto-occipital fasciculus. Increased radial diffusivity (RD) and decreased axial diffusivity (AD) were also detected within overlapping regions. In addition, FA values in the corticospinal tract decreased and RD measures in the precentral gyrus white matter increased from before to after flight. The results show disrupted structural connectivity of white matter in tracts involved in visuospatial processing, vestibular function, and movement control as a result of spaceflight. The findings may help us understand the structural underpinnings of the extensive spaceflight-induced sensorimotor remodeling. Prospective longitudinal assessment of the white matter integrity in astronauts is needed to characterize the evolution of white matter microstructural changes associated with spaceflight, their behavioral consequences, and the time course of recovery. Supported by a grant from the National Space Biomedical Research Institute, NASA NCC 9-58.

  20. White matter microstructure in a genetically defined group at increased risk of autism symptoms, and a comparison with idiopathic autism: an exploratory study.

    PubMed

    Goddard, Marcia N; van Rijn, Sophie; Rombouts, Serge A R B; Swaab, Hanna

    2016-12-01

    Klinefelter syndrome (47,XXY) is associated with physical, behavioral, and cognitive consequences. Deviations in brain structure and function have been reported, but structural characteristics of white matter have barely been assessed. This exploratory diffusion tensor imaging study assessed white matter microstructure in boys with 47,XXY compared with non-clinical, male controls. Additionally, both similarities and differences between 47,XXY and autism spectrum disorders (ASD) have been reported in cognition, behavior and neural architecture. To further investigate these brain-behavior pathways, white matter microstructure in boys with 47,XXY was compared to that of boys with ASD. Fractional anisotropy (FA), radial diffusivity (Dr), axial diffusivity (Da), and mean diffusivity (MD) were assessed in 47,XXY (n = 9), ASD (n = 18), and controls (n = 14), using tract-based spatial statistics. Compared with controls, boys with 47,XXY have reduced FA, coupled with reduced Da, in the corpus callosum. Boys with 47,XXY also have reduced Dr. in the left anterior corona radiata and sagittal striatum compared with controls. Compared with boys with ASD, boys with 47,XXY show reduced Da in the right inferior fronto-occipital fasciculus. Although this study is preliminary considering the small sample size, reduced white matter integrity in the corpus callosum may be a contributing factor in the cognitive and behavioral problems associated with 47,XXY. In addition, the differences in white matter microstructure between 47,XXY and ASD may be important for our understanding of the mechanisms that are fundamental to behavioral outcome in social dysfunction, and may be targeted through intervention.

  1. Identifying the brain regions associated with acute spasticity in patients diagnosed with an ischemic stroke.

    PubMed

    Barlow, Susan J

    2016-06-01

    Spasticity is a common impairment found in patients that have been diagnosed with a stroke. Little is known about the pathophysiology of spasticity at the level of the brain. This retrospective study was performed to identify an association between the area of the brain affected by an ischemic stroke and the presence of acute spasticity. Physical and occupational therapy assessments from all patients (n = 441) that had suffered a stroke and were admitted into a local hospital over a 4-year period were screened for inclusion in this study. Subjects that fit the inclusion criteria were grouped according to the presence (n = 42) or absence (n = 129) of acute spasticity by the Modified Ashworth Scale score given during the hospital admission assessment. Magnetic resonance images from 20 subjects in the spasticity group and 52 from the control group were then compared using lesion density plots and voxel-based lesion-symptom mapping. An association of acute spasticity with the gray matter regions of the insula, basal ganglia, and thalamus was found in this study. White matter tracts including the pontine crossing tract, corticospinal tract, internal capsule, corona radiata, external capsule, and the superior fronto-occipital fasciculus were also found to be significantly associated with acute spasticity. This is the first study to describe an association between a region of the brain affected by an infarct and the presence of acute spasticity. Understanding the regions associated with acute spasticity will aid in understanding the pathophysiology of this musculoskeletal impairment at the level of the brain.

  2. Cerebral correlates of visuospatial neglect: a direct cerebral stimulation study.

    PubMed

    Vallar, Giuseppe; Bello, Lorenzo; Bricolo, Emanuela; Castellano, Antonella; Casarotti, Alessandra; Falini, Andrea; Riva, Marco; Fava, Enrica; Papagno, Costanza

    2014-04-01

    To assess the role of the superior longitudinal fascicle, the inferior fronto-occipital fascicle, and the posterior parietal lobe in visuospatial attention in humans during awake brain surgery. Seven patients with hemispheric gliomas (six in the right hemisphere) entered the study. During surgery in asleep/awake anesthesia, guided by Diffusion Tensor Imaging Fiber Tractography, visuospatial neglect was assessed during direct electrical stimulation by computerized line bisection. A rightward deviation, indicating left visuospatial neglect, was induced in six of seven patients by stimulation of the parietofrontal connections, in a location consistent with the trajectory of the second branch of the superior longitudinal fascicle. Stimulation of the medial and dorsal white matter of the superior parietal lobule (corresponding to the first branch of the superior longitudinal fascicle), of the ventral and lateral white matter of the supramarginal gyrus (corresponding to the third branch of the superior longitudinal fascicle), and of the inferior occipitofrontal fasciculus, was largely ineffective. Stimulation of the superior parietal lobule (Brodmann's area 7) caused a marked rightward deviation in all of the six assessed patients, while stimulation of Brodmann's areas 5 and 19 was ineffective. The parietofrontal connections of the dorso-lateral fibers of the superior longitudinal fascicle (i.e., the second branch of the fascicle), and the posterior superior parietal lobe (Brodmann's area 7) are involved in the orientation of spatial attention. Spatial neglect should be assessed systematically during awake brain surgery, particularly when the right parietal lobe may be involved by the neurosurgical procedure. Copyright © 2013 Wiley Periodicals, Inc.

  3. White Matter Tract Integrity in Alzheimer's Disease vs. Late Onset Bipolar Disorder and Its Correlation with Systemic Inflammation and Oxidative Stress Biomarkers.

    PubMed

    Besga, Ariadna; Chyzhyk, Darya; Gonzalez-Ortega, Itxaso; Echeveste, Jon; Graña-Lecuona, Marina; Graña, Manuel; Gonzalez-Pinto, Ana

    2017-01-01

    Background: Late Onset Bipolar Disorder (LOBD) is the development of Bipolar Disorder (BD) at an age above 50 years old. It is often difficult to differentiate from other aging dementias, such as Alzheimer's Disease (AD), because they share cognitive and behavioral impairment symptoms. Objectives: We look for WM tract voxel clusters showing significant differences when comparing of AD vs. LOBD, and its correlations with systemic blood plasma biomarkers (inflammatory, neurotrophic factors, and oxidative stress). Materials: A sample of healthy controls (HC) ( n = 19), AD patients ( n = 35), and LOBD patients ( n = 24) was recruited at the Alava University Hospital. Blood plasma samples were obtained at recruitment time and analyzed to extract the inflammatory, oxidative stress, and neurotrophic factors. Several modalities of MRI were acquired for each subject, Methods: Fractional anisotropy (FA) coefficients are obtained from diffusion weighted imaging (DWI). Tract based spatial statistics (TBSS) finds FA skeleton clusters of WM tract voxels showing significant differences for all possible contrasts between HC, AD, and LOBD. An ANOVA F -test over all contrasts is carried out. Results of F -test are used to mask TBSS detected clusters for the AD > LOBD and LOBD > AD contrast to select the image clusters used for correlation analysis. Finally, Pearson's correlation coefficients between FA values at cluster sites and systemic blood plasma biomarker values are computed. Results: The TBSS contrasts with by ANOVA F -test has identified strongly significant clusters in the forceps minor, inferior longitudinal fasciculus, inferior fronto-occipital fasciculus, and cingulum gyrus. The correlation analysis of these tract clusters found strong negative correlation of AD with the nerve growth factor (NGF) and brain derived neurotrophic factor (BDNF) blood biomarkers. Negative correlation of AD and positive correlation of LOBD with inflammation biomarker IL6 was also found

  4. Benign childhood epilepsy with occipital paroxysms: neuropsychological findings.

    PubMed

    Germanò, Eva; Gagliano, Antonella; Magazù, Angela; Sferro, Caterina; Calarese, Tiziana; Mannarino, Erminia; Calamoneri, Filippo

    2005-05-01

    Benign childhood epilepsy with occipital paroxysms is classified among childhood benign partial epilepsies. The absence of neurological and neuropsychological deficits has long been considered as a prerequisite for a diagnosis of benign childhood partial epilepsy. Much evidence has been reported in literature in the latest years suggesting a neuropsychological impairment in this type of epilepsy, particularly in the type with Rolandic paroxysms. The present work examines the neuropsychological profiles of a sample of subjects affected by the early-onset benign childhood occipital seizures (EBOS) described by Panayotopulos. The patient group included 22 children (14 males and 8 females; mean age 10.1+/-3.3 years) diagnosed as having EBOS. The patients were examined with a set of tests investigating neuropsychological functions: memory, attention, perceptive, motor, linguistic and academic (reading, writing, arithmetic) abilities. The same instruments have been given to a homogeneous control group as regards sex, age, level of education and socio-economic background. None of the subjects affected by EBOS showed intellectual deficit (mean IQ in Wechsler Full Scale 91.7; S.D. 8.9). Results show a widespread cognitive dysfunction in the context of a focal epileptogenic process in EBOS. In particular, children with EBOS show a significant occurrence of specific learning disabilities (SLD) and other subtle neuropsychological deficits. We found selective dysfunctions relating to perceptive-visual attentional ability (p<0.05), verbal and visual-spatial memory abilities (p<0.01), visual perception and visual-motor integration global abilities (p<0.01), manual dexterity tasks (p<0.05), some language tasks (p<0.05), reading and writing abilities (p<0.01) and arithmetic ability (p<0.01). The presence of cognitive dysfunctions in subjects with EBOS supports the hypothesis that epilepsy itself plays a role in the development of neuropsychological impairment. Supported by other

  5. Missed Total Occlusion Due to the Occipital Artery Arising from the Internal Carotid Artery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ustunsoz, Bahri, E-mail: bustunsoz2000@yahoo.com; Gumus, Burcak; Koksal, Ali

    2007-02-15

    A 56-year-old man was referred for digital subtraction angiography (DSA) with an ultrasound diagnosis of right proximal internal carotid artery (ICA) stenosis for possible carotid artery stenting. DSA revealed total occlusion of the ICA and an occipital artery arising from the stump and simulating continuation of the ICA. An ascending pharyngeal artery also arose from the same occipital artery. This case is of interest because this is a rare variation besides being a cause of misdiagnosis at carotid ultrasound.

  6. Rate of Hanger Reflex Occurrence: Unexpected Head Rotation on Fronto-temporal Head Compression

    PubMed Central

    ASAHI, Takashi; SATO, Michi; KAJIMOTO, Hiroyuki; KOH, Masaki; KASHIWAZAKI, Daina; KURODA, Satoshi

    When the head is encircled with a wire clothes hanger and the unilateral fronto-temporal region is compressed, the head rotates unexpectedly. As the mechanism is unclear, however, we have temporarily named this phenomenon as the “hanger reflex.” We previously reported a case wherein this phenomenon was applied to treat cervical dystonia. Because little is known about this phenomenon, we determined how often this phenomenon is observed in healthy subjects. Study participants were 120 healthy Japanese adults (60 men and 60 women) aged 19–65 years. A wire clothes hanger was applied to each subject’s head. The longer side of the hanger was attached over the volunteer’s fronto-temporal regions on both sides of the head in succession (i.e., two applications per volunteer). We evaluated whether the subjects felt the sensation of head rotation by using a questionnaire. The sensation of head rotation was observed in 95.8% of subjects. There were five non-responders (4.2%). In 85.4% of the trials, head rotation was observed in the direction that coincided with the side compressed by the hanger. There were no differences in responses between genders. The incident rate of the hanger reflex was remarkably high and most likely represents a prevalent phenomenon in humans. The mechanism underlying the reflex remains unknown. Further research should be performed to elucidate the underlying causes of the hanger reflex, which represents a potential treatment for cervical dystonia. PMID:26119894

  7. Morphometric Evaluation of Occipital Condyles: Defining Optimal Trajectories and Safe Screw Lengths for Occipital Condyle-Based Occipitocervical Fixation in Indian Population.

    PubMed

    Bosco, Aju; Venugopal, Prakash; Shetty, Ajoy Prasad; Shanmuganathan, Rajasekaran; Kanna, Rishi Mugesh

    2018-04-01

    Computed tomographic (CT) morphometric analysis. To assess the feasibility and safety of occipital condyle (OC)-based occipitocervical fixation (OCF) in Indians and to define anatomical zones and screw lengths for safe screw placement. Limitations of occipital squama-based OCF has led to development of two novel OC-based OCF techniques. Morphometric analysis was performed on the OCs of 70 Indian adults. The feasibility of placing a 3.5-mm-diameter screw into OCs was investigated. Safe trajectories and screw lengths for OC screws and C0-C1 transarticular screws without hypoglossal canal or atlantooccipital joint compromise were estimated. The average screw length and safe sagittal and medial angulations for OC screws were 19.9±2.3 mm, ≤6.4°±2.4° cranially, and 31.1°±3° medially, respectively. An OC screw could not be accommodated by 27% of the population. The safe sagittal angles and screw lengths for C0-C1 transarticular screw insertion (48.9°±5.7° cranial, 26.7±2.9 mm for junctional entry technique; 36.7°±4.6° cranial, 31.6±2.7 mm for caudal C1 arch entry technique, respectively) were significantly different than those in other populations. The risk of vertebral artery injury was high for the caudal C1 arch entry technique. Screw placement was uncertain in 48% of Indians due to the presence of aberrant anatomy. There were significant differences in the metrics of OC-based OCF between Indian and other populations. Because of the smaller occipital squama dimensions in Indians, OC-based OCF techniques may have a higher application rate and could be a viable alternative/salvage option in selected cases. Preoperative CT, including three-dimensional-CT-angiography (to delineate vertebral artery course), is imperative to avoid complications resulting from aberrant bony and vascular anatomy. Our data can serve as a valuable reference guide in placing these screws safely under fluoroscopic guidance.

  8. Morphometric Evaluation of Occipital Condyles: Defining Optimal Trajectories and Safe Screw Lengths for Occipital Condyle-Based Occipitocervical Fixation in Indian Population

    PubMed Central

    Bosco, Aju; Venugopal, Prakash; Shanmuganathan, Rajasekaran; Kanna, Rishi Mugesh

    2018-01-01

    Study Design Computed tomographic (CT) morphometric analysis. Purpose To assess the feasibility and safety of occipital condyle (OC)-based occipitocervical fixation (OCF) in Indians and to define anatomical zones and screw lengths for safe screw placement. Overview of Literature Limitations of occipital squama-based OCF has led to development of two novel OC-based OCF techniques. Methods Morphometric analysis was performed on the OCs of 70 Indian adults. The feasibility of placing a 3.5-mm-diameter screw into OCs was investigated. Safe trajectories and screw lengths for OC screws and C0–C1 transarticular screws without hypoglossal canal or atlantooccipital joint compromise were estimated. Results The average screw length and safe sagittal and medial angulations for OC screws were 19.9±2.3 mm, ≤6.4°±2.4° cranially, and 31.1°±3° medially, respectively. An OC screw could not be accommodated by 27% of the population. The safe sagittal angles and screw lengths for C0–C1 transarticular screw insertion (48.9°±5.7° cranial, 26.7±2.9 mm for junctional entry technique; 36.7°±4.6° cranial, 31.6±2.7 mm for caudal C1 arch entry technique, respectively) were significantly different than those in other populations. The risk of vertebral artery injury was high for the caudal C1 arch entry technique. Screw placement was uncertain in 48% of Indians due to the presence of aberrant anatomy. Conclusions There were significant differences in the metrics of OC-based OCF between Indian and other populations. Because of the smaller occipital squama dimensions in Indians, OC-based OCF techniques may have a higher application rate and could be a viable alternative/salvage option in selected cases. Preoperative CT, including three-dimensional-CT-angiography (to delineate vertebral artery course), is imperative to avoid complications resulting from aberrant bony and vascular anatomy. Our data can serve as a valuable reference guide in placing these screws safely under

  9. Nummular headache in a patient with ipsilateral occipital neuralgia--a case report.

    PubMed

    Iwanowski, Piotr; Kozubski, Wojciech; Losy, Jacek

    2014-01-01

    Nummular headache (NH) is a rarely recognized primary headache, the diagnostic criteria of which are contained in the appendix to the 2nd edition of the International Classification of Headache Disorders (code A13.7.1). We present the case of a 61-year-old female who suffers, regardless of NH, from right-sided occipital neuralgia. The applied treatment - gabapentin and mianserin - had no effect. Injection of bupivacaine twice to the right occipital region resulted in neuralgia resolution up to three months, with no effect on NH. This confirms the independence of two above mentioned head pain conditions. Copyright © 2014 Polish Neurological Society. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  10. What is said or how it is said makes a difference: role of the right fronto-parietal operculum in emotional prosody as revealed by repetitive TMS.

    PubMed

    van Rijn, Sophie; Aleman, André; van Diessen, Eric; Berckmoes, Celine; Vingerhoets, Guy; Kahn, René S

    2005-06-01

    Emotional signals in spoken language can be conveyed by semantic as well as prosodic cues. We investigated the role of the fronto-parietal operculum, a somatosensory area where the lips, tongue and jaw are represented, in the right hemisphere to detection of emotion in prosody vs. semantics. A total of 14 healthy volunteers participated in the present experiment, which involved transcranial magnetic stimulation (TMS) in combination with frameless stereotaxy. As predicted, compared with sham stimulation, TMS over the right fronto-parietal operculum differentially affected the reaction times for detection of emotional prosody vs. emotional semantics, showing that there is a dissociation at a neuroanatomical level. Detection of withdrawal emotions (fear and sadness) in prosody was delayed significantly by TMS. No effects of TMS were observed for approach emotions (happiness and anger). We propose that the right fronto-parietal operculum is not globally involved in emotion evaluation, but sensitive to specific forms of emotional discrimination and emotion types.

  11. Economic Evaluation of “Pulse Dose” Radiofrequency in the Treatment of Occipital Neuralgia Headache

    PubMed Central

    Giovannini, Vittoria; Pusateri, Rachele; Russo, Viera; Viscardi, Daniela; Palomba, Rosa

    2012-01-01

    Headache occipital neuralgia is an example of pain-disease for which treatment both pharmacological protocols and invasive methods are used. Among the latter, the RF (Radiofrequency) pulse-dose has been of interest for the prospects of analgesic efficacy, safety and patient compliance, although at the moment only data concerning the pulsed RF and not the RF pulse-dose, that represents its evolution, are discussed in scientific literature. The purpose of this study is a “simple” economic evaluation of this method in headache occipital neuralgia. PMID:23905049

  12. Occipital MEG Activity in the Early Time Range (<300 ms) Predicts Graded Changes in Perceptual Consciousness.

    PubMed

    Andersen, Lau M; Pedersen, Michael N; Sandberg, Kristian; Overgaard, Morten

    2016-06-01

    Two electrophysiological components have been extensively investigated as candidate neural correlates of perceptual consciousness: An early, occipitally realized component occurring 130-320 ms after stimulus onset and a late, frontally realized component occurring 320-510 ms after stimulus onset. Recent studies have suggested that the late component may not be uniquely related to perceptual consciousness, but also to sensory expectations, task associations, and selective attention. We conducted a magnetoencephalographic study; using multivariate analysis, we compared classification accuracies when decoding perceptual consciousness from the 2 components using sources from occipital and frontal lobes. We found that occipital sources during the early time range were significantly more accurate in decoding perceptual consciousness than frontal sources during both the early and late time ranges. These results are the first of its kind where the predictive values of the 2 components are quantitatively compared, and they provide further evidence for the primary importance of occipital sources in realizing perceptual consciousness. The results have important consequences for current theories of perceptual consciousness, especially theories emphasizing the role of frontal sources. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  13. Hypoglycemia-occipital syndrome: a specific neurologic syndrome following neonatal hypoglycemia?

    PubMed

    Karimzadeh, Parvaneh; Tabarestani, Sepideh; Ghofrani, Mohammad

    2011-02-01

    This study attempted to elaborate the existence of a specific neurologic pattern observed in children who experienced neonatal hypoglycemia. Twenty-seven patients with seizure and history of neonatal hypoglycemia were compared with 28 children suffering from idiopathic occipital epilepsy. In both groups the most common type of seizure activities included eye movements and impaired consciousness responding well to treatment; however, ictal vomiting was more common in controls. Subjects were in epileptic and nonepileptic groups. Ninety percent of cases showed abnormal signal of the posterior head region on magnetic resonance imaging (MRI). A large number showed posterior abnormalities on electroencephalography (EEG). Visual loss with abnormal visual evoked potential was the most frequent visual finding. Fifty-five percent showed mild psychomotor retardation. This study demonstrates that neonatal hypoglycemia can induce a syndrome with a specific clinical spectrum consisting of epilepsy, visual disturbances, and psychomotor retardation. Hypoglycemia-occipital syndrome is an entity without statistically significant semiologic differences from the idiopathic type.

  14. Segregation and persistence of form in the lateral occipital complex.

    PubMed

    Ferber, Susanne; Humphrey, G Keith; Vilis, Tutis

    2005-01-01

    While the lateral occipital complex (LOC) has been shown to be implicated in object recognition, it is unclear whether this brain area is responsive to low-level stimulus-driven features or high-level representational processes. We used scrambled shape-from-motion displays to disambiguate the presence of contours from figure-ground segregation and to measure the strength of the binding process for shapes without contours. We found persisting brain activation in the LOC for scrambled displays after the motion stopped indicating that this brain area subserves and maintains figure-ground segregation processes, a low-level function in the object processing hierarchy. In our second experiment, we found that the figure-ground segregation process has some form of spatial constancy indicating top-down influences. The persisting activation after the motion stops suggests an intermediate role in object recognition processes for this brain area and might provide further evidence for the idea that the lateral occipital complex subserves mnemonic functions mediating between iconic and short-term memory.

  15. Atlantoaxial Chordoma in Two Patients with Occipital Neuralgia and Cervicalgia.

    PubMed

    Kim, Won Seop; Park, Jong Taek; Lee, Young Bok; Park, Woo Young

    2014-09-01

    Chordoma arises from cellular remnants of the notochord. It is the most common primary malignancy of the spine in adults. Approximately 50% of chordomas arise from the sacrococcygeal area with other areas of the spine giving rise to another 15% of chordomas. Following complete resection, patients can expect a 5-year survival rate of 85%. Chordoma has a recurrence rate of 40%, which leads to a less favorable prognosis. Here, we report two cases of chordoma presenting with occipital neuralgia and cervicalgia. The first patient presented with a C1-C2 chordoma. He rejected surgical intervention and ultimately died of respiratory failure. The second patient had an atlantoaxial chordoma and underwent surgery because of continued occipital neuralgia and cervicalgia despite nerve block. This patient has remained symptom-free since his operation. The presented cases show that the patients' willingness to participate in treatment can lead to appropriate and aggressive management of cancer pain, resulting in better outcomes in cancer treatment.

  16. Atlantoaxial Chordoma in Two Patients with Occipital Neuralgia and Cervicalgia

    PubMed Central

    Kim, Won Seop; Park, Jong Taek; Lee, Young Bok; Park, Woo Young

    2014-01-01

    Chordoma arises from cellular remnants of the notochord. It is the most common primary malignancy of the spine in adults. Approximately 50% of chordomas arise from the sacrococcygeal area with other areas of the spine giving rise to another 15% of chordomas. Following complete resection, patients can expect a 5-year survival rate of 85%. Chordoma has a recurrence rate of 40%, which leads to a less favorable prognosis. Here, we report two cases of chordoma presenting with occipital neuralgia and cervicalgia. The first patient presented with a C1–C2 chordoma. He rejected surgical intervention and ultimately died of respiratory failure. The second patient had an atlantoaxial chordoma and underwent surgery because of continued occipital neuralgia and cervicalgia despite nerve block. This patient has remained symptom-free since his operation. The presented cases show that the patients’ willingness to participate in treatment can lead to appropriate and aggressive management of cancer pain, resulting in better outcomes in cancer treatment. PMID:26064862

  17. Occipital Neuralgia in Chiari I Malformation: Two Different Events or Two Different Faces of the Same Event?

    PubMed

    Tondo, Giacomo; De Marchi, Fabiola; Mittino, Daniela; Cantello, Roberto

    2017-11-29

    Occipital neuralgia (ON) is characterized by severe pain in the occipital region due to an irritation of the occipital nerves. Traumatic injuries, mass or vascular compression, and infective and inflammatory processes could cause ON. The dislocation of a nerve/muscle/tendon, as can happen in malformations such as the Chiari I malformation (CIM), also can be responsible. Usually, headaches associated with CIM and ON are distinguishable based on specific features of pain. However, the diagnosis is not easy in some cases, especially if a clear medical history cannot be accurately collected. Determining if the pain is related to ON rather than to CIM is important because the treatments may be different.

  18. Occipital Neuralgia in Chiari I Malformation: Two Different Events or Two Different Faces of the Same Event?

    PubMed Central

    De Marchi, Fabiola; Mittino, Daniela; Cantello, Roberto

    2017-01-01

    Occipital neuralgia (ON) is characterized by severe pain in the occipital region due to an irritation of the occipital nerves. Traumatic injuries, mass or vascular compression, and infective and inflammatory processes could cause ON. The dislocation of a nerve/muscle/tendon, as can happen in malformations such as the Chiari I malformation (CIM), also can be responsible. Usually, headaches associated with CIM and ON are distinguishable based on specific features of pain. However, the diagnosis is not easy in some cases, especially if a clear medical history cannot be accurately collected. Determining if the pain is related to ON rather than to CIM is important because the treatments may be different. PMID:29392103

  19. Spatial attention improves reliability of fMRI retinotopic mapping signals in occipital and parietal cortex

    PubMed Central

    Bressler, David W.; Silver, Michael A.

    2010-01-01

    Spatial attention improves visual perception and increases the amplitude of neural responses in visual cortex. In addition, spatial attention tasks and fMRI have been used to discover topographic visual field representations in regions outside visual cortex. We therefore hypothesized that requiring subjects to attend to a retinotopic mapping stimulus would facilitate the characterization of visual field representations in a number of cortical areas. In our study, subjects attended either a central fixation point or a wedge-shaped stimulus that rotated about the fixation point. Response reliability was assessed by computing coherence between the fMRI time series and a sinusoid with the same frequency as the rotating wedge stimulus. When subjects attended to the rotating wedge instead of ignoring it, the reliability of retinotopic mapping signals increased by approximately 50% in early visual cortical areas (V1, V2, V3, V3A/B, V4) and ventral occipital cortex (VO1) and by approximately 75% in lateral occipital (LO1, LO2) and posterior parietal (IPS0, IPS1 and IPS2) cortical areas. Additionally, one 5-minute run of retinotopic mapping in the attention-to-wedge condition produced responses as reliable as the average of three to five (early visual cortex) or more than five (lateral occipital, ventral occipital, and posterior parietal cortex) attention-to-fixation runs. These results demonstrate that allocating attention to the retinotopic mapping stimulus substantially reduces the amount of scanning time needed to determine the visual field representations in occipital and parietal topographic cortical areas. Attention significantly increased response reliability in every cortical area we examined and may therefore be a general mechanism for improving the fidelity of neural representations of sensory stimuli at multiple levels of the cortical processing hierarchy. PMID:20600961

  20. Mapping the connectivity underlying multimodal (verbal and non-verbal) semantic processing: a brain electrostimulation study.

    PubMed

    Moritz-Gasser, Sylvie; Herbet, Guillaume; Duffau, Hugues

    2013-08-01

    Accessing the meaning of words, objects, people and facts is a human ability, made possible thanks to semantic processing. Although studies concerning its cortical organization are proficient, the subcortical connectivity underlying this semantic network received less attention. We used intraoperative direct electrostimulation, which mimics a transient virtual lesion during brain surgery for glioma in eight awaken patients, to map the anatomical white matter substrate subserving the semantic system. Patients performed a picture naming task and a non-verbal semantic association test during the electrical mapping. Direct electrostimulation of the inferior fronto-occipital fascicle, a poorly known ventral association pathway which runs throughout the brain, induced in all cases semantic disturbances. These transient disorders were highly reproducible, and concerned verbal as well as non-verbal output. Our results highlight for the first time the essential role of the left inferior fronto-occipital fascicle in multimodal (and not only in verbal) semantic processing. On the basis of these original findings, and in the lights of phylogenetic considerations regarding this fascicle, we suggest its possible implication in the monitoring of the human level of consciousness related to semantic memory, namely noetic consciousness. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. When the left brain is not right the right brain may be left: report of personal experience of occipital hemianopia

    PubMed Central

    Cole, M.

    1999-01-01

    OBJECTIVES—To make a personal report of a hemianopia due to an occipital infarct, sustained by a professor of neurology.
METHODS—Verbatim observation of neurological phenomena recorded during the acute illness.
RESULTS—Hemianopia, visual hallucinations, and non-occipital deficits without extraoccipital lesions on MRI, are described and discussed.
CONCLUSIONS—Hemianopia, due to an occipital infarct, without alexia, is not a disability which precludes a normal professional career. Neurorehabilitation has not been necessary.

 PMID:10406983

  2. A previously undescribed autosomal recessive multiple congenital anomalies/mental retardation (MCA/MR) syndrome with fronto-nasal dysostosis, cleft lip/palate, limb hypoplasia, and postaxial poly-syndactyly: acro-fronto-facio-nasal dysostosis syndrome.

    PubMed

    Richieri-Costa, A; Colletto, G M; Gollop, T R; Masiero, D

    1985-04-01

    We describe two sibs born to a consanguineous couple. Among other clinical findings both have mental retardation, short stature, facial and skeletal abnormalities characterized by hypertelorism, broad notched nasal tip, cleft lip/palate, campto-brachy-poly-syndactyly, fibular hypoplasia, and marked anomalies of foot structures. Facial signs of the reported patients resemble those present in the fronto-nasal "dysplasia" syndrome; however, the whole clinical picture in the present patients suggests a true MCA/MR syndrome, most likely inherited as an autosomal recessive trait. Clinical and genetic aspects of the present family are discussed.

  3. Spheno-Occipital Synchondrosis Fusion Correlates with Cervical Vertebrae Maturation.

    PubMed

    Fernández-Pérez, María José; Alarcón, José Antonio; McNamara, James A; Velasco-Torres, Miguel; Benavides, Erika; Galindo-Moreno, Pablo; Catena, Andrés

    2016-01-01

    The aim of this study was to determine the relationship between the closure stage of the spheno-occipital synchondrosis and the maturational stage of the cervical vertebrae (CVM) in growing and young adult subjects using cone beam computed tomography (CBCT). CBCT images with an extended field of view obtained from 315 participants (148 females and 167 males; mean age 15.6 ±7.3 years; range 6 to 23 years) were analyzed. The fusion status of the synchondrosis was determined using a five-stage scoring system; the vertebral maturational status was evaluated using a six-stage stratification (CVM method). Ordinal regression was used to study the ability of the synchondrosis stage to predict the vertebral maturation stage. Vertebrae and synchondrosis had a strong significant correlation (r = 0.89) that essential was similar for females (r = 0.88) and males (r = 0.89). CVM stage could be accurately predicted from synchondrosis stage by ordinal regression models. Prediction equations of the vertebral stage using synchondrosis stage, sex and biological age as predictors were developed. Thus this investigation demonstrated that the stage of spheno-occipital synchondrosis, as determined in CBCT images, is a reasonable indicator of growth maturation.

  4. Spheno-Occipital Synchondrosis Fusion Correlates with Cervical Vertebrae Maturation

    PubMed Central

    Fernández-Pérez, María José; McNamara, James A.; Velasco-Torres, Miguel; Benavides, Erika; Galindo-Moreno, Pablo; Catena, Andrés

    2016-01-01

    The aim of this study was to determine the relationship between the closure stage of the spheno-occipital synchondrosis and the maturational stage of the cervical vertebrae (CVM) in growing and young adult subjects using cone beam computed tomography (CBCT). CBCT images with an extended field of view obtained from 315 participants (148 females and 167 males; mean age 15.6 ±7.3 years; range 6 to 23 years) were analyzed. The fusion status of the synchondrosis was determined using a five-stage scoring system; the vertebral maturational status was evaluated using a six-stage stratification (CVM method). Ordinal regression was used to study the ability of the synchondrosis stage to predict the vertebral maturation stage. Vertebrae and synchondrosis had a strong significant correlation (r = 0.89) that essential was similar for females (r = 0.88) and males (r = 0.89). CVM stage could be accurately predicted from synchondrosis stage by ordinal regression models. Prediction equations of the vertebral stage using synchondrosis stage, sex and biological age as predictors were developed. Thus this investigation demonstrated that the stage of spheno-occipital synchondrosis, as determined in CBCT images, is a reasonable indicator of growth maturation. PMID:27513752

  5. The treatment of occipital neuralgia: Review of 111 cases.

    PubMed

    Finiels, P-J; Batifol, D

    2016-10-01

    To present the current treatment options for occipital neuralgia based on a retrospective series of 111 patients, who were offered one or more treatment methods, not mutually exclusive. All patients, who previously had their diagnosis confirmed by undergoing an anesthetic nerve block (0.25mL bupivacaine/2mL cortivazol), were treated by radiofrequency denaturation in 78 cases, injection of botulinum toxin in 37 cases and implantation of a nerve stimulation system in 5 cases. Two serious complications (1 death, 1 permanent hemiplegia) were observed after radiofrequency denaturation, the other methods did not result in any significant complications. Radiofrequency denaturation resulted in 89.4% of good and very good results beyond 6 months, as compared to 80% for the botulinum toxin and 80% after nerve stimulation, no other significant difference occurred between the three techniques, with reservations about the reliability of interpretation for the small sample size in the case of nerve stimulation. If radiofrequency denaturation seems to remain the leading treatment for occipital neuralgia, in terms of innocuousness and production costs, botulinum toxin could, in principle, represent the preferred initial treatment for this type of pathology. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  6. Decoding the content of visual short-term memory under distraction in occipital and parietal areas.

    PubMed

    Bettencourt, Katherine C; Xu, Yaoda

    2016-01-01

    Recent studies have provided conflicting accounts regarding where in the human brain visual short-term memory (VSTM) content is stored, with strong univariate fMRI responses being reported in superior intraparietal sulcus (IPS), but robust multivariate decoding being reported in occipital cortex. Given the continuous influx of information in everyday vision, VSTM storage under distraction is often required. We found that neither distractor presence nor predictability during the memory delay affected behavioral performance. Similarly, superior IPS exhibited consistent decoding of VSTM content across all distractor manipulations and had multivariate responses that closely tracked behavioral VSTM performance. However, occipital decoding of VSTM content was substantially modulated by distractor presence and predictability. Furthermore, we found no effect of target-distractor similarity on VSTM behavioral performance, further challenging the role of sensory regions in VSTM storage. Overall, consistent with previous univariate findings, our results indicate that superior IPS, but not occipital cortex, has a central role in VSTM storage.

  7. OCCIPITAL SOURCES OF RESTING STATE ALPHA RHYTHMS ARE RELATED TO LOCAL GRAY MATTER DENSITY IN SUBJECTS WITH AMNESIC MILD COGNITIVE IMPAIRMENT AND ALZHEIMER’S DISEASE

    PubMed Central

    Claudio, Babiloni; Claudio, Del Percio; Marina, Boccardi; Roberta, Lizio; Susanna, Lopez; Filippo, Carducci; Nicola, Marzano; Andrea, Soricelli; Raffaele, Ferri; Ivano, Triggiani Antonio; Annapaola, Prestia; Serenella, Salinari; Rasser Paul, E; Erol, Basar; Francesco, Famà; Flavio, Nobili; Görsev, Yener; Durusu, Emek-Savaş Derya; Gesualdo, Loreto; Ciro, Mundi; Thompson Paul, M; Rossini Paolo, M.; Frisoni Giovanni, B

    2014-01-01

    Occipital sources of resting state electroencephalographic (EEG) alpha rhythms are abnormal, at the group level, in patients with amnesic mild cognitive impairment (MCI) and Alzheimer’s disease (AD). Here we evaluated the hypothesis that amplitude of these occipital sources is related to neurodegeneration in occipital lobe as measured by magnetic resonance imaging (MRI). Resting-state eyes-closed EEG rhythms were recorded in 45 healthy elderly (Nold), 100 MCI, and 90 AD subjects. Neurodegeneration of occipital lobe was indexed by weighted averages of gray matter density (GMD), estimated from structural MRIs. EEG rhythms of interest were alpha 1 (8–10.5 Hz) and alpha 2 (10.5–13 Hz). EEG cortical sources were estimated by low resolution brain electromagnetic tomography (LORETA). Results showed a positive correlation between occipital GMD and amplitude of occipital alpha 1 sources in Nold, MCI and AD subjects as a whole group (r=0.3, p=0.000004, N=235). Furthermore, there was a positive correlation between amplitude of occipital alpha 1 sources and cognitive status as revealed by Mini Mental State Evaluation (MMSE) score across all subjects (r=0.38, p=0.000001, N=235). Finally, amplitude of occipital alpha 1 sources allowed a moderate classification of individual Nold and AD subjects (sensitivity: 87.8%; specificity: 66.7%; area under the Receiver Operating Characteristic (ROC) curve: 0.81). These results suggest that the amplitude of occipital sources of resting state alpha rhythms is related to AD neurodegeneration in occipital lobe along pathological aging. PMID:25442118

  8. Correlation between white matter damage and gray matter lesions in multiple sclerosis patients.

    PubMed

    Han, Xue-Mei; Tian, Hong-Ji; Han, Zheng; Zhang, Ce; Liu, Ying; Gu, Jie-Bing; Bakshi, Rohit; Cao, Xia

    2017-05-01

    We observed the characteristics of white matter fibers and gray matter in multiple sclerosis patients, to identify changes in diffusion tensor imaging fractional anisotropy values following white matter fiber injury. We analyzed the correlation between fractional anisotropy values and changes in whole-brain gray matter volume. The participants included 20 patients with relapsing-remitting multiple sclerosis and 20 healthy volunteers as controls. All subjects underwent head magnetic resonance imaging and diffusion tensor imaging. Our results revealed that fractional anisotropy values decreased and gray matter volumes were reduced in the genu and splenium of corpus callosum, left anterior thalamic radiation, hippocampus, uncinate fasciculus, right corticospinal tract, bilateral cingulate gyri, and inferior longitudinal fasciculus in multiple sclerosis patients. Gray matter volumes were significantly different between the two groups in the right frontal lobe (superior frontal, middle frontal, precentral, and orbital gyri), right parietal lobe (postcentral and inferior parietal gyri), right temporal lobe (caudate nucleus), right occipital lobe (middle occipital gyrus), right insula, right parahippocampal gyrus, and left cingulate gyrus. The voxel sizes of atrophic gray matter positively correlated with fractional anisotropy values in white matter association fibers in the patient group. These findings suggest that white matter fiber bundles are extensively injured in multiple sclerosis patients. The main areas of gray matter atrophy in multiple sclerosis are the frontal lobe, parietal lobe, caudate nucleus, parahippocampal gyrus, and cingulate gyrus. Gray matter atrophy is strongly associated with white matter injury in multiple sclerosis patients, particularly with injury to association fibers.

  9. Multimodal Magnetic Resonance Imaging Study of Treatment-Naïve Adults with Attention-Deficit/Hyperactivity Disorder

    PubMed Central

    Chaim, Tiffany M.; Zhang, Tianhao; Zanetti, Marcus V.; da Silva, Maria Aparecida; Louzã, Mário R.; Doshi, Jimit; Serpa, Mauricio H.; Duran, Fabio L. S.; Caetano, Sheila C.; Davatzikos, Christos; Busatto, Geraldo F.

    2014-01-01

    Background Attention-Deficit/Hiperactivity Disorder (ADHD) is a prevalent disorder, but its neuroanatomical circuitry is still relatively understudied, especially in the adult population. The few morphometric magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI) studies available to date have found heterogeneous results. This may be at least partly attributable to some well-known technical limitations of the conventional voxel-based methods usually employed to analyze such neuroimaging data. Moreover, there is a great paucity of imaging studies of adult ADHD to date that have excluded patients with history of use of stimulant medication. Methods A newly validated method named optimally-discriminative voxel-based analysis (ODVBA) was applied to multimodal (structural and DTI) MRI data acquired from 22 treatment-naïve ADHD adults and 19 age- and gender-matched healthy controls (HC). Results Regarding DTI data, we found higher fractional anisotropy in ADHD relative to HC encompassing the white matter (WM) of the bilateral superior frontal gyrus, right middle frontal left gyrus, left postcentral gyrus, bilateral cingulate gyrus, bilateral middle temporal gyrus and right superior temporal gyrus; reductions in trace (a measure of diffusivity) in ADHD relative to HC were also found in fronto-striatal-parieto-occipital circuits, including the right superior frontal gyrus and bilateral middle frontal gyrus, right precentral gyrus, left middle occipital gyrus and bilateral cingulate gyrus, as well as the left body and right splenium of the corpus callosum, right superior corona radiata, and right superior longitudinal and fronto-occipital fasciculi. Volumetric abnormalities in ADHD subjects were found only at a trend level of significance, including reduced gray matter (GM) in the right angular gyrus, and increased GM in the right supplementary motor area and superior frontal gyrus. Conclusions Our results suggest that adult ADHD is associated with

  10. Altered fronto-striatal functions in the Gdi1-null mouse model of X-linked Intellectual Disability.

    PubMed

    Morè, Lorenzo; Künnecke, Basil; Yekhlef, Latefa; Bruns, Andreas; Marte, Antonella; Fedele, Ernesto; Bianchi, Veronica; Taverna, Stefano; Gatti, Silvia; D'Adamo, Patrizia

    2017-03-06

    RAB-GDP dissociation inhibitor 1 (GDI1) loss-of-function mutations are responsible for a form of non-specific X-linked Intellectual Disability (XLID) where the only clinical feature is cognitive impairment. GDI1 patients are impaired in specific aspects of executive functions and conditioned response, which are controlled by fronto-striatal circuitries. Previous molecular and behavioral characterization of the Gdi1-null mouse revealed alterations in the total number/distribution of hippocampal and cortical synaptic vesicles as well as hippocampal short-term synaptic plasticity, and memory deficits. In this study, we employed cognitive protocols with high translational validity to human condition that target the functionality of cortico-striatal circuitry such as attention and stimulus selection ability with progressive degree of complexity. We previously showed that Gdi1-null mice are impaired in some hippocampus-dependent forms of associative learning assessed by aversive procedures. Here, using appetitive-conditioning procedures we further investigated associative learning deficits sustained by the fronto-striatal system. We report that Gdi1-null mice are impaired in attention and associative learning processes, which are a key part of the cognitive impairment observed in XLID patients. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Antipsychotics reverse abnormal EEG complexity in drug-naïve schizophrenia: A multiscale entropy analysis

    PubMed Central

    Takahashi, Tetsuya; Cho, Raymond Y.; Mizuno, Tomoyuki; Kikuchi, Mitsuru; Murata, Tetsuhito; Takahashi, Koichi; Wada, Yuji

    2010-01-01

    Multiscale entropy (MSE) analysis is a novel entropy-based approach for measuring dynamical complexity in physiological systems over a range of temporal scales. To evaluate this analytic approach as an aid to elucidating the pathophysiologic mechanisms in schizophrenia, we examined MSE in EEG activity in drug-naïve schizophrenia subjects pre- and post-treatment with antipsychotics in comparison with traditional EEG analysis. We recorded eyes-closed resting state EEG from frontal, temporal, parietal and occipital regions in drug-naïve 22 schizophrenia and 24 age-matched healthy control subjects. Fifteen patients were re-evaluated within 2–8 weeks after the initiation of antipsychotic treatment. For each participant, MSE was calculated on one continuous 60 second epoch for each experimental session. Schizophrenia subjects showed significantly higher complexity at higher time scales (lower frequencies), than that of healthy controls in fronto-centro-temporal, but not in parieto-occipital regions. Post-treatment, this higher complexity decreased to healthy control subject levels selectively in fronto-central regions, while the increased complexity in temporal sites remained higher. Comparative power analysis identified spectral slowing in frontal regions in pre-treatment schizophrenia subjects, consistent with previous findings, whereas no antipsychotic treatment effect was observed. In summary, multiscale entropy measures identified abnormal dynamical EEG signal complexity in anterior brain areas in schizophrenia that normalized selectively in fronto-central areas with antipsychotic treatment. These findings show that entropy-based analytic methods may serve as a novel approach for characterizing and understanding abnormal cortical dynamics in schizophrenia, and elucidating the therapeutic mechanisms of antipsychotics. PMID:20149880

  12. Flash visual evoked potentials are not specific enough to identify parieto-occipital lobe involvement in term neonates after significant hypoglycaemia.

    PubMed

    Hu, Liyuan; Gu, Qiufang; Zhu, Zhen; Yang, Chenhao; Chen, Chao; Cao, Yun; Zhou, Wenhao

    2014-08-01

    Hypoglycaemia is a significant problem in high-risk neonates and predominant parieto-occipital lobe involvement has been observed after severe hypoglycaemic insult. We explored the use of flash visual evoked potentials (FVEP) in detecting parieto-occipital lobe involvement after significant hypoglycaemia. Full-term neonates (n = 15) who underwent FVEP from January 2008 to May 2013 were compared with infants (n = 11) without hypoglycaemia or parietal-occipital lobe injury. Significant hypoglycaemia was defined as being symptomatic or needing steroids, glucagon or a glucose infusion rate of ≥12 mg/kg/min. The hypoglycaemia group exhibited delayed latency of the first positive waveform on FVEP. The initial detected time for hypoglycaemia was later in the eight subjects with seizures (median 51-h-old) than those without (median 22-h-old) (P = 0.003). Magnetic resonance imaging showed that 80% of the hypoglycaemia group exhibited occipital-lobe injuries, and they were more likely to exhibit abnormal FVEP morphology (P = 0.007) than the controls. FVEP exhibited 100% sensitivity, but only 25% specificity, for detecting injuries to the parieto-occipital lobes. Flash visual evoked potential (FVEP) was sensitive, but not sufficiently specific, in identifying parieto-occipital lobe injuries among term neonates exposed to significant hypoglycaemia. Larger studies exploring the potential role of FVEP in neonatal hypoglycaemia are required. ©2014 Foundation Acta Paediatrica. Published by John Wiley & Sons Ltd.

  13. Faciobrachial dystonic seizures result from fronto-temporo-basalganglial network involvement.

    PubMed

    Iyer, Rajesh Shankar; Ramakrishnan, T C R; Karunakaran; Shinto, Ajit; Kamaleshwaran, Koramadai Karuppuswamy

    2017-01-01

    •Faciobrachial dystonic seizures (FBDS) are caused by autoantibodies to leucine-rich glioma-inactivated1 proteins, a component of the voltage-gated potassium channel complex (VGKC-complex) and precede the clinical presentation of limbic encephalitis.•The exact pathophysiology of FBDS is not known and whether they are seizures or movement disorder is still debated.•We suggest the fronto-temporo-basal ganglia network involving the medial frontal and temporal regions along with the corpus striatum and substantia nigra being responsible for the clinical phenomenon of FBDS.•The varied clinical, electrical and imaging features of FBDS in our cases and in the literature are best explained by involvement of this network.•Entrainment from any part of this network will result in similar clinical expression of FBDS, whereas other electro-clinical associations and duration depends on the extent of involvement of the network.

  14. Comparison between piezosurgery and conventional osteotomy in cranioplasty with fronto-orbital advancement.

    PubMed

    Martini, Markus; Röhrig, Andreas; Reich, Rudolf Hermann; Messing-Jünger, Martina

    2017-03-01

    Cranioplasty of patients with craniosynostosis requires rapid, precise and gentle osteotomy of the skull to avoid complications and benefit the healing process. The aim of this prospective clinical study was to compare two different methods of osteotomy. Piezosurgery and conventional osteotomy were compared using an oscillating saw and high speed drill while performing cranioplasties with fronto-orbital advancement. Thirty-four children who required cranioplasty with fronto-orbital advancement were recruited consecutively. The operations were conducted using piezosurgery or a conventional surgical technique, alternately. Operative time, blood count, CRP and transfusion rate, as well as soft tissue injuries, postoperative edema, pain development and secondary bone healing were investigated. The average age of patients was 9.7 months. The following indications for craniosynostosis were surgically corrected: trigonocephaly (23), anterior plagiocephaly (8), brachycephaly (1), and syndromic craniosynostosis (2). Piezosurgery was utilized in 18 cases. There were no group differences with regard to the incidence of soft tissue injuries (dura, periorbita), pain, swelling, blood loss or bony integration. The duration of osteotomy was significantly longer in the piezosurgery group, leading to slightly increased blood loss, while the postoperative CRP increase was higher using the conventional method. The piezosurgery method is a comparatively safe surgical method for conducting osteotomy during cranioplasty. With regard to soft tissue protection and postoperative clinical course, the same procedural precautions and controls are necessary as those needed for conventional methods. The osteotomy duration is considerably longer using piezosurgery, although it is accompanied by lower initial postoperative CRP values. Copyright © 2016 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  15. Outcomes of greater occipital nerve injections in pediatric patients with chronic primary headache disorders.

    PubMed

    Gelfand, Amy A; Reider, Amanda C; Goadsby, Peter J

    2014-02-01

    Chronic migraine is common in pediatrics and generally disabling. In adults, infiltration of the area around the greater occipital nerve can provide short- to medium-term benefit in some patients. This study reports the efficacy of greater occipital nerve infiltrations in pediatric patients with chronic primary headache disorders. Retrospective chart review of patients <18 years with a chronic primary headache disorder undergoing a first-time injection. Infiltrations were unilateral and consisted of a mixture of methylprednisolone acetate, adjusted for weight, and lidocaine 2%. Forty-six patients were treated. Thirty-five (76%) had chronic migraine, 9 (20%) new daily persistent headache (NDPH), and 2 (4%) a chronic trigeminal autonomic cephalalgia. Medication overuse was present in 26%. Ages ranged from 7 to 17 years. Follow-up data were available for 40 (87%). Overall, 53% (21/40) benefitted, and 52% (11/21) benefitted significantly. Benefit onset ranged from 0 to 14 days, mean 4.7 (SD 4.3), with mean benefit duration of 5.4 (SD 4.9) weeks. In chronic migraine, 62% (18/29) benefitted, and 56% (10/18) significantly benefitted. In NDPH, 33% (3/9) benefitted; 33% (n = 1) significantly. Neither child with a chronic trigeminal autonomic cephalalgia benefitted. In logistic regression modeling, medication overuse, age, sex, and sensory change in the distribution of the infiltrated nerve did not predict outcome. There were no serious side effects. Greater occipital nerve injections benefitted 53% of pediatric patients with chronic primary headache disorders. Efficacy appeared greater in chronic migraine than NDPH. Given the benign side effect profile, a greater occipital nerve infiltration seems appropriate before more aggressive approaches. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Outcomes of Greater Occipital Nerve Injections in Pediatric Patients with Chronic Primary Headache Disorders

    PubMed Central

    Gelfand, Amy A.; Reider, Amanda C.; Goadsby, Peter J.

    2014-01-01

    Background Chronic migraine is common in pediatrics and generally disabling. In adults, infiltration of the area around the greater occipital nerve can provide short to medium term benefit in some patients. This study reports the efficacy of greater occipital nerve infiltrations in pediatric patients with chronic primary headache disorders. Methods Retrospective chart review of patients <18 years with a chronic primary headache disorder undergoing a first-time injection. Infiltrations were unilateral and consisted of a mixture of methylprednisolone acetate, adjusted for weight, and lidocaine 2%. Results Forty-six patients were treated. Thirty-five (76%) had chronic migraine, nine (20%) New Daily Persistent Headache (NDPH), and two (4%) a chronic trigeminal autonomic cephalalgia. Medication overuse was present in 26%. Ages ranged from 7–17 years. Follow-up data were available for 40 (87%). Overall, 53% (21/40) benefitted, 52% (11/21) significantly. Benefit onset ranged from 0–14 days, mean 4.7(SD 4.3), with mean benefit duration of 5.4(SD 4.9) weeks. In chronic migraine, 62% (18/29) benefitted, 56% (10/18) significantly. In NDPH, 33% (3/9) benefitted; 33% (n=1) significantly. Neither child with a chronic trigeminal autonomic cephalalgia benefitted. In logistic regression modeling, medication overuse, age, sex, and sensory change in the distribution of the infiltrated nerve did not predict outcome. There were no serious side effects. Conclusions Greater occipital nerve injections benefitted 53% of pediatric patients with chronic primary headache disorders. Efficacy appeared higher in chronic migraine than NDPH. Given the benign side effect profile, a greater occipital nerve infiltration prior to more aggressive approaches seems appropriate. PMID:24268688

  17. Benign occipital unicameral bone cyst causing lower cranial nerve palsies complicated by iophendylate arachnoiditis

    PubMed Central

    Bradley, W. G.; Kalbag, R. M.; Ramani, P. S.; Tomlinson, B. E.

    1974-01-01

    A 20 year old girl presented with a history of neck and occipital pain for six weeks, which was found to be due to a unicameral bone cyst of the left occipital condylar region. The differential diagnosis of bone cysts in the skull is discussed. Six months after the operation, the patient again presented with backache due to adhesive arachnoiditis. The latter was believed to have arisen as a result of a combination of spinal infective meningitis and intrathecal ethyl iodophenyl undecylate (iophendylate, Myodil, Pantopaque). The nature of meningeal reactions to iophendylate and the part played by intrathecal corticosteroids in relieving the arachnoiditis in the present case are discussed. Images

  18. Backward masked fearful faces enhance contralateral occipital cortical activity for visual targets within the spotlight of attention

    PubMed Central

    Reinke, Karen S.; LaMontagne, Pamela J.; Habib, Reza

    2011-01-01

    Spatial attention has been argued to be adaptive by enhancing the processing of visual stimuli within the ‘spotlight of attention’. We previously reported that crude threat cues (backward masked fearful faces) facilitate spatial attention through a network of brain regions consisting of the amygdala, anterior cingulate and contralateral visual cortex. However, results from previous functional magnetic resonance imaging (fMRI) dot-probe studies have been inconclusive regarding a fearful face-elicited contralateral modulation of visual targets. Here, we tested the hypothesis that the capture of spatial attention by crude threat cues would facilitate processing of subsequently presented visual stimuli within the masked fearful face-elicited ‘spotlight of attention’ in the contralateral visual cortex. Participants performed a backward masked fearful face dot-probe task while brain activity was measured with fMRI. Masked fearful face left visual field trials enhanced activity for spatially congruent targets in the right superior occipital gyrus, fusiform gyrus and lateral occipital complex, while masked fearful face right visual field trials enhanced activity in the left middle occipital gyrus. These data indicate that crude threat elicited spatial attention enhances the processing of subsequent visual stimuli in contralateral occipital cortex, which may occur by lowering neural activation thresholds in this retinotopic location. PMID:20702500

  19. Possible roles for fronto-striatal circuits in reading disorder

    PubMed Central

    Hancock, Roeland; Richlan, Fabio; Hoeft, Fumiko

    2016-01-01

    Several studies have reported hyperactivation in frontal and striatal regions in individuals with reading disorder (RD) during reading-related tasks. Hyperactivation in these regions is typically interpreted as a form of neural compensation and related to articulatory processing. Fronto-striatal hyperactivation in RD can however, also arise from fundamental impairment in reading related processes, such as phonological processing and implicit sequence learning relevant to early language acquisition. We review current evidence for the compensation hypothesis in RD and apply large-scale reverse inference to investigate anatomical overlap between hyperactivation regions and neural systems for articulation, phonological processing, implicit sequence learning. We found anatomical convergence between hyperactivation regions and regions supporting articulation, consistent with the proposed compensatory role of these regions, and low convergence with phonological and implicit sequence learning regions. Although the application of large-scale reverse inference to decode function in a clinical population should be interpreted cautiously, our findings suggest future lines of research that may clarify the functional significance of hyperactivation in RD. PMID:27826071

  20. Acute-Onset Severe Occipital Neuralgia Associated With High Cervical Lesion in Patients With Neuromyelitis Optica Spectrum Disorder.

    PubMed

    Hayashi, Yuichi; Koumura, Akihiro; Yamada, Megumi; Kimura, Akio; Shibata, Toshirou; Inuzuka, Takashi

    2017-07-01

    To address occipital neuralgia in patients with neuromyelitis optica spectrum disorder (NMOSD). NMOSD is an inflammatory demyelinating disease that commonly presents with pain; however, headache symptoms have received little attention. We presented three cases of NMOSD in which the patients experienced acute-onset, severe, and steroid-responsive occipital neuralgia. All patients provided consent to use their demographic and imaging data retrospectively. In all three cases, MRI revealed a new high-intensity area in the cervical cord at the C1-C3 level of the spine, which was diminished in two of the three cases after corticosteroid pulse therapy. Our cases support the recognition of NMOSD as a cause of secondary headache. As patients with NMOSD experience severe occipital neuralgia, a relapse should be considered and a cervical MRI should be performed. © 2017 American Headache Society.

  1. Night sleep influences white matter microstructure in bipolar depression.

    PubMed

    Benedetti, Francesco; Melloni, Elisa M T; Dallaspezia, Sara; Bollettini, Irene; Locatelli, Clara; Poletti, Sara; Colombo, Cristina

    2017-08-15

    Alteration of circadian rhythms and sleep disruption are prominent trait-like features of bipolar disorder (BD). Diffusion tensor imaging (DTI) measures suggest a widespread alteration of white matter (WM) microstructure in patients with BD. Sleep promotes myelination and oligodendrocyte precursor cells proliferation. We hypothesized a possible association between DTI measures of WM microstructure and sleep quantity measures in BD. We studied 69 inpatients affected by a depressive episode in course of type I BD. We used whole brain tract-based spatial statistics on DTI measures of WM microstructure: axial, radial, and mean diffusivity (AD, RD, MD), and fractional anisotropy (FA). Self-assessed measures of time asleep (TA) and total sleep time (TST) were extracted from the Pittsburgh Sleep Quality Index (PSQI). Actigraphic recordings were performed on a subsample of 23 patients. We observed a positive correlation of DTI measures of FA with actigraphic measures of TA and TST, and with PSQI measure of TA. DTI measures of RD inversely associated with actigraphic measure of TA, and with PSQI measures of TA and TST. Several WM tracts were involved, including corpus callosum, cyngulate gyrus, uncinate fasciculus, left superior and inferior longitudinal and fronto-occipital fasciculi, thalamic radiation, corona radiata, retrolenticular part of internal capsule and corticospinal tract. The study is correlational in nature, and no conclusion about a causal connection can be drawn. Reduced FA with increased RD and MD indicate higher water diffusivity associated with less organized myelin and/or axonal structures. Our findings suggest an association between sleep disruption and these measures of brain microstructure in specific tracts contributing to the functional connectivity in BD. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Shared genetic variance between obesity and white matter integrity in Mexican Americans

    PubMed Central

    Spieker, Elena A.; Kochunov, Peter; Rowland, Laura M.; Sprooten, Emma; Winkler, Anderson M.; Olvera, Rene L.; Almasy, Laura; Duggirala, Ravi; Fox, Peter T.; Blangero, John; Glahn, David C.; Curran, Joanne E.

    2015-01-01

    Obesity is a chronic metabolic disorder that may also lead to reduced white matter integrity, potentially due to shared genetic risk factors. Genetic correlation analyses were conducted in a large cohort of Mexican American families in San Antonio (N = 761, 58% females, ages 18–81 years; 41.3 ± 14.5) from the Genetics of Brain Structure and Function Study. Shared genetic variance was calculated between measures of adiposity [(body mass index (BMI; kg/m2) and waist circumference (WC; in)] and whole-brain and regional measurements of cerebral white matter integrity (fractional anisotropy). Whole-brain average and regional fractional anisotropy values for 10 major white matter tracts were calculated from high angular resolution diffusion tensor imaging data (DTI; 1.7 × 1.7 × 3 mm; 55 directions). Additive genetic factors explained intersubject variance in BMI (heritability, h2 = 0.58), WC (h2 = 0.57), and FA (h2 = 0.49). FA shared significant portions of genetic variance with BMI in the genu (ρG = −0.25), body (ρG = −0.30), and splenium (ρG = −0.26) of the corpus callosum, internal capsule (ρG = −0.29), and thalamic radiation (ρG = −0.31) (all p's = 0.043). The strongest evidence of shared variance was between BMI/WC and FA in the superior fronto-occipital fasciculus (ρG = −0.39, p = 0.020; ρG = −0.39, p = 0.030), which highlights region-specific variation in neural correlates of obesity. This may suggest that increase in obesity and reduced white matter integrity share common genetic risk factors. PMID:25763009

  3. Brain networks in posterior cortical atrophy: a single case tractography study and literature review.

    PubMed

    Migliaccio, Raffaella; Agosta, Federica; Toba, Monica N; Samri, Dalila; Corlier, Fabian; de Souza, Leonardo C; Chupin, Marie; Sharman, Michael; Gorno-Tempini, Maria L; Dubois, Bruno; Filippi, Massimo; Bartolomeo, Paolo

    2012-01-01

    Posterior cortical atrophy (PCA) is rare neurodegenerative dementia, clinically characterized by a progressive decline in higher-visual object and space processing. After a brief review of the literature on the neuroimaging in PCA, here we present a study of the brain structural connectivity in a patient with PCA and progressive isolated visual and visuo-motor signs. Clinical and cognitive data were acquired in a 58-years-old patient (woman, right-handed, disease duration 18 months). Brain structural and diffusion tensor (DT) magnetic resonance imaging (MRI) were obtained. A voxel-based morphometry (VBM) study was performed to explore the pattern of gray matter (GM) atrophy, and a fully automatic segmentation was assessed to obtain the hippocampal volumes. DT MRI-based tractography was used to assess the integrity of long-range white matter (WM) pathways in the patient and in six sex- and age-matched healthy subjects. This PCA patient had a clinical syndrome characterized by left visual neglect, optic ataxia, and left limb apraxia, as well as mild visuo-spatial episodic memory impairment. VBM study showed bilateral posterior GM atrophy with right predominance; DT MRI tractography demonstrated WM damage to the right hemisphere only, including the superior and inferior longitudinal fasciculi and the inferior fronto-occipital fasciculus, as compared to age-matched controls. The homologous left-hemisphere tracts were spared. No difference was found between left and right hippocampal volumes. These data suggest that selective visuo-spatial deficits typical of PCA might not result from cortical damage alone, but by a right-lateralized network-level dysfunction including WM damage along the major visual pathways. Copyright © 2011 Elsevier Srl. All rights reserved.

  4. Brain Structural Correlates of Subclinical Obsessive-Compulsive Symptoms in Healthy Children.

    PubMed

    Suñol, Maria; Contreras-Rodríguez, Oren; Macià, Dídac; Martínez-Vilavella, Gerard; Martínez-Zalacaín, Ignacio; Subirà, Marta; Pujol, Jesús; Sunyer, Jordi; Soriano-Mas, Carles

    2018-01-01

    Subclinical obsessive-compulsive (OC) symptoms are frequently observed in children and have been reported to predict a subsequent diagnosis of OC disorder (OCD). Therefore, identifying the putative neurobiological signatures of such risk is crucial, because it would allow for the characterization of the underpinnings of OCD without the interfering effects of chronicity, medication, or comorbidities, especially when interpreted within the context of OCD clinical heterogeneity and taking into account normal neurodevelopmental changes. The present study aimed to identify the brain volumetric features associated with subclinical OC symptoms and the potential modulatory effects of sex and age in a large sample of healthy children. Two hundred fifty-five healthy children were assessed using the Obsessive-Compulsive Inventory-Child Version and underwent a brain structural magnetic resonance examination. The relation between total and symptom-specific scores and regional gray and white matter (GM and WM) volumes was evaluated. Participants were grouped according to sex and age (younger versus older) to assess the effect of these factors on symptom-brain morphometry associations. Ordering symptoms were negatively related to GM volumes in the ventral caudate. Hoarding symptoms were positively associated with GM and WM volumes in the left inferior frontal gyrus, and obsessing symptoms correlated negatively with GM and WM volumes in the right temporal pole. Doubt-checking symptoms correlated positively with WM volumes in the right inferior fronto-occipital fasciculus and the corpus callosum. Sex and age modulated some of these associations. Subclinical OC symptoms are associated with specific brain volumetric features, which could be considered potential neural signatures of increased risk for OCD. Copyright © 2017 American Academy of Child and Adolescent Psychiatry. Published by Elsevier Inc. All rights reserved.

  5. Gray-white matter and cerebrospinal fluid volume differences in children with Specific Language Impairment and/or Reading Disability.

    PubMed

    Girbau-Massana, Dolors; Garcia-Marti, Gracian; Marti-Bonmati, Luis; Schwartz, Richard G

    2014-04-01

    We studied gray-white matter and cerebrospinal fluid (CSF) alterations that may be critical for language, through an optimized voxel-based morphometry evaluation in children with Specific Language Impairment (SLI), compared to Typical Language Development (TLD). Ten children with SLI (8;5-10;9) and 14 children with TLD (8;2-11;8) participated. They received a comprehensive language and reading test battery. We also analyzed a subgroup of six children with SLI+RD (Reading Disability). Brain images from 3-Tesla MRIs were analyzed with intelligence, age, gender, and total intracranial volume as covariates. Children with SLI or SLI+RD exhibited a significant lower overall gray matter volume than children with TLD. Particularly, children with SLI showed a significantly lower volume of gray matter compared to children with TLD in the right postcentral parietal gyrus (BA4), and left and right medial occipital gyri (BA19). The group with SLI also exhibited a significantly greater volume of gray matter in the right superior occipital gyrus (BA19), which may reflect a brain reorganization to compensate for their lower volumes at medial occipital gyri. Children with SLI+RD, compared to children with TLD, showed a significantly lower volume of: (a) gray matter in the right postcentral parietal gyrus; and (b) white matter in the right inferior longitudinal fasciculus (RILF), which interconnects the temporal and occipital lobes. Children with TLD exhibited a significantly lower CSF volume than children with SLI and children with SLI+RD respectively, who had somewhat smaller volumes of gray matter allowing for more CSF volume. The significant lower gray matter volume at the right postcentral parietal gyrus and greater cerebrospinal fluid volume may prove to be unique markers for SLI. We discuss the association of poor knowledge/visual representations and language input to brain development. Our comorbid study showed that a significant lower volume of white matter in the right

  6. Occipital cortical proton MRS at 4 Tesla in human moderate MDMA polydrug users

    PubMed Central

    Cowan, Ronald L.; Bolo, Nicolas R.; Dietrich, Mary; Haga, Erica; Lukas, Scott E.; Renshaw, Perry F.

    2007-01-01

    The recreational drug MDMA (3,4, methylenedioxymethamphetamine; sold under the street name of Ecstasy) is toxic to serotonergic axons in some animal models of MDMA administration. In humans, MDMA use is associated with alterations in markers of brain function that are pronounced in occipital cortex. Among neuroimaging methods, magnetic resonance spectroscopy (MRS) studies of brain metabolites N-acetylaspartate (NAA) and myoinositol (MI) at a field strength of 1.5 Tesla (T) reveal inconsistent results in MDMA users. Because higher field strength proton MRS has theoretical advantages over lower field strengths, we used proton MRS at 4.0 T to study absolute concentrations of occipital cortical NAA and MI in a cohort of moderate MDMA users (n = 9) versus non-MDMA using (n = 7) controls. Mean NAA in non-MDMA users was 10.47 mM (± 2.51), versus 9.83 mM (± 1.94) in MDMA users. Mean MI in non-MDMA users was 7.43 mM (± 1.68), versus 6.57 mM (± 1.59) in MDMA users. There were no statistical differences in absolute metabolite levels for NAA and MI in occipital cortex of MDMA users and controls. These findings are not supportive of MDMA-induced alterations in NAA or MI levels in this small sample of moderate MDMA users. Limitations to this study suggest caution in the interpretation of these results. PMID:17574394

  7. Occipital cortical proton MRS at 4 Tesla in human moderate MDMA polydrug users.

    PubMed

    Cowan, Ronald L; Bolo, Nicolas R; Dietrich, Mary; Haga, Erica; Lukas, Scott E; Renshaw, Perry F

    2007-08-15

    The recreational drug MDMA (3,4, methylenedioxymethamphetamine; sold under the street name of Ecstasy) is toxic to serotonergic axons in some animal models of MDMA administration. In humans, MDMA use is associated with alterations in markers of brain function that are pronounced in occipital cortex. Among neuroimaging methods, magnetic resonance spectroscopy (MRS) studies of brain metabolites N-acetylaspartate (NAA) and myoinositol (MI) at a field strength of 1.5 Tesla (T) reveal inconsistent results in MDMA users. Because higher field strength proton MRS has theoretical advantages over lower field strengths, we used proton MRS at 4.0 T to study absolute concentrations of occipital cortical NAA and MI in a cohort of moderate MDMA users (n=9) versus non-MDMA using (n=7) controls. Mean NAA in non-MDMA users was 10.47 mM (+/-2.51), versus 9.83 mM (+/-1.94) in MDMA users. Mean MI in non-MDMA users was 7.43 mM (+/-.68), versus 6.57 mM (+/-1.59) in MDMA users. There were no statistical differences in absolute metabolite levels for NAA and MI in occipital cortex of MDMA users and controls. These findings are not supportive of MDMA-induced alterations in NAA or MI levels in this small sample of moderate MDMA users. Limitations to this study suggest caution in the interpretation of these results.

  8. Surprise disrupts cognition via a fronto-basal ganglia suppressive mechanism

    PubMed Central

    Wessel, Jan R.; Jenkinson, Ned; Brittain, John-Stuart; Voets, Sarah H. E. M.; Aziz, Tipu Z.; Aron, Adam R.

    2016-01-01

    Surprising events markedly affect behaviour and cognition, yet the underlying mechanism is unclear. Surprise recruits a brain mechanism that globally suppresses motor activity, ostensibly via the subthalamic nucleus (STN) of the basal ganglia. Here, we tested whether this suppressive mechanism extends beyond skeletomotor suppression and also affects cognition (here, verbal working memory, WM). We recorded scalp-EEG (electrophysiology) in healthy participants and STN local field potentials in Parkinson's patients during a task in which surprise disrupted WM. For scalp-EEG, surprising events engage the same independent neural signal component that indexes action stopping in a stop-signal task. Importantly, the degree of this recruitment mediates surprise-related WM decrements. Intracranially, STN activity is also increased post surprise, especially when WM is interrupted. These results suggest that surprise interrupts cognition via the same fronto-basal ganglia mechanism that interrupts action. This motivates a new neural theory of how cognition is interrupted, and how distraction arises after surprising events. PMID:27088156

  9. Decreased occipital cortical glutamate levels in response to successful cognitive-behavioral therapy and pharmacotherapy for major depressive disorder.

    PubMed

    Abdallah, Chadi G; Niciu, Mark J; Fenton, Lisa R; Fasula, Madonna K; Jiang, Lihong; Black, Anne; Rothman, Douglas L; Mason, Graeme F; Sanacora, Gerard

    2014-01-01

    Previous studies have demonstrated that antidepressant medication and electroconvulsive therapy increase occipital cortical γ-aminobutyric acid (GABA) in major depressive disorder (MDD), but a small pilot study failed to show a similar effect of cognitive-behavioral therapy (CBT) on occipital GABA. In light of these findings we sought to determine if baseline GABA levels predict treatment response and to broaden the analysis to other metabolites and neurotransmitters in this larger study. A total of 40 MDD outpatients received baseline proton magnetic resonance spectroscopy (1H-MRS), and 30 subjects completed both pre- and post-CBT 1H-MRS; 9 CBT nonresponders completed an open-label medication phase followed by an additional/3rd 1H-MRS. The magnitude of treatment response was correlated with occipital amino acid neurotransmitter levels. Baseline GABA did not predict treatment outcome. Furthermore, there was no significant effect of CBT on GABA levels. However, we found a significant group × time interaction (F1, 28 = 6.30, p = 0.02), demonstrating reduced glutamate in CBT responders, with no significant glutamate change in CBT nonresponders. These findings corroborate the lack of effect of successful CBT on occipital cortical GABA levels in a larger sample. A reduction in glutamate levels following treatment, on the other hand, correlated with successful CBT and antidepressant medication response. Based on this finding and other reports, decreased occipital glutamate may be an antidepressant response biomarker. Healthy control comparator and nonintervention groups may shed light on the sensitivity and specificity of these results.

  10. Involuntary orienting of attention to a sound desynchronizes the occipital alpha rhythm and improves visual perception.

    PubMed

    Feng, Wenfeng; Störmer, Viola S; Martinez, Antigona; McDonald, John J; Hillyard, Steven A

    2017-04-15

    Directing attention voluntarily to the location of a visual target results in an amplitude reduction (desynchronization) of the occipital alpha rhythm (8-14Hz), which is predictive of improved perceptual processing of the target. Here we investigated whether modulations of the occipital alpha rhythm triggered by the involuntary orienting of attention to a salient but spatially non-predictive sound would similarly influence perception of a subsequent visual target. Target discrimination was more accurate when a sound preceded the target at the same location (validly cued trials) than when the sound was on the side opposite to the target (invalidly cued trials). This behavioral effect was accompanied by a sound-induced desynchronization of the alpha rhythm over the lateral occipital scalp. The magnitude of alpha desynchronization over the hemisphere contralateral to the sound predicted correct discriminations of validly cued targets but not of invalidly cued targets. These results support the conclusion that cue-induced alpha desynchronization over the occipital cortex is a manifestation of a general priming mechanism that improves visual processing and that this mechanism can be activated either by the voluntary or involuntary orienting of attention. Further, the observed pattern of alpha modulations preceding correct and incorrect discriminations of valid and invalid targets suggests that involuntary orienting to the non-predictive sound has a rapid and purely facilitatory influence on processing targets on the cued side, with no inhibitory influence on targets on the opposite side. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Concordant Occipital and Supraorbital Neurostimulation Therapy for Hemiplegic Migraine; Initial Experience; A Case Series

    PubMed Central

    Will, Kelly R.; Conidi, Frank; Bulger, Robert

    2015-01-01

    Introduction Hemiplegic migraine is a particularly severe form of the disease that often evolves to a debilitating chronic illness that is resistant to commonly available therapies. Peripheral neurostimulation has been found to be a beneficial therapy for some patients among several diagnostic classes of migraine, but its potential has not been specifically evaluated for hemiplegic migraine. Materials and Methods Four patients with hemiplegic migraine were treated with concordant, combined occipital and supraorbital neurostimulation over periods ranging 6–92 months. The clinical indicators followed included assessments of headache frequency and severity, frequency of hemiplegic episodes, functional impairment, medication usage, and patient satisfaction. Results All reported a positive therapeutic response, as their average headache frequency decreased by 92% (30 to 2.5 headache days/month); Visual Analog Score by 44% (9.5 to 5.3); frequency of hemiplegic episodes by 96% (7.5 to 0.25 hemiplegic episodes/month); headache medication usage by 96% (6 to 0.25 daily medications); and Migraine Disability Assessment score by 98% (249 to 6). All were satisfied and would recommend the therapy, and all preferred combined occipital–supraorbital neurostimulation to occipital neurostimulation alone. Conclusions Concordant combined occipital and supraorbital neurostimulation may provide effective therapy for both the pain and motor aura in some patients with hemiplegic migraine. PMID:25688595

  12. Occipital alopecia following cardiopulmonary bypass.

    PubMed

    Lwason, N W; Mills, N L; Ochsner, J L

    1976-03-01

    Postoperative alopecia is a minor complication of surgery but a cosmetic disaster to the patient. Over a 3 year period, 60 cases of occipital alopecia were discovered in patients following open-heart surgery and 5 cases on other surgical services. In contrast to previous reports, 29 patients had alopecia one year later, presumed to be permanent. Extensive operations, with prolonged recovery and elective overnight mechanical ventilation, were common to all. Retrospective analysis and prospective studies clearly demonstrated that localized scalp pressure was the cause of the alopecia and that the duration of pressure determined the extent of the damage. Moving the patient's head at regular intervals during operation and recovery eliminated the alopecia. The type of head rest used did not modify the development of alopecia. Electrical injury and the use of heparin, hypothermia, electrocautery, or hypotension were eliminated as possible causes. Conclusive evidence correlating periperative events with the formation of pressure sores in man has not been previously reported.

  13. Occipital and Cingulate Hypometabolism are Significantly Under-Reported on 18-Fluorodeoxyglucose Positron Emission Tomography Scans of Patients with Lewy Body Dementia.

    PubMed

    Hamed, Moath; Schraml, Frank; Wilson, Jeffrey; Galvin, James; Sabbagh, Marwan N

    2018-01-01

    To determine whether occipital and cingulate hypometabolism is being under-reported or missed on 18-fluorodeoxyglucose positron emission tomography (FDG-PET) CT scans in patients with Dementia with Lewy Bodies (DLB). Recent studies have reported higher sensitivity and specificity for occipital and cingulate hypometabolism on FDG-PET of DLB patients. This retrospective chart review looked at regions of interest (ROI's) in FDG-PET CT scan reports in 35 consecutive patients with a clinical diagnosis of probable, possible, or definite DLB as defined by the latest DLB Consortium Report. ROI's consisting of glucose hypometabolism in frontal, parietal, temporal, occipital, and cingulate areas were tabulated and charted separately by the authors from the reports. A blinded Nuclear medicine physician read the images independently and marked ROI's separately. A Cohen's Kappa coefficient statistic was calculated to determine agreement between the reports and the blinded reads. On the radiology reports, 25.71% and 17.14% of patients reported occipital and cingulate hypometabolism respectively. Independent reads demonstrated significant disagreement with the proportion of occipital and cingulate hypometabolism being reported on initial reads: 91.43% and 85.71% respectively. Cohen's Kappa statistic determinations demonstrated significant agreement only with parietal hypometabolism (p<0.05). Occipital and cingulate hypometabolism is under-reported and missed frequently on clinical interpretations of FDG-PET scans of patients with DLB, but the frequency of hypometabolism is even higher than previously reported. Further studies with more statistical power and receiver operating characteristic analyses are needed to delineate the sensitivity and specificity of these in vivo biomarkers.

  14. Treatment of intractable chronic cluster headache by occipital nerve stimulation: a cohort of 51 patients.

    PubMed

    Miller, S; Watkins, L; Matharu, M

    2017-02-01

    Chronic cluster headache is a rare, highly disabling primary headache condition. When medically intractable, occipital nerve stimulation can offer effective treatment. Open-label series have provided data on small cohorts only. We analyzed 51 subjects to evaluate the long-term outcomes of highly intractable chronic cluster headache with occipital nerve stimulation. Patients with intractable chronic cluster headache were implanted with occipital nerve stimulators during the period 2007-2014. The primary endpoint was improvement in daily attack frequency. Secondary endpoints included attack severity, attack duration, quality-of-life measures, headache disability scores and adverse events. We studied 51 patients [35 males; mean age at implant 47.78 (range 31-70) years; mean follow-up 39.17 (range 2-81) months]. Nineteen patients had other chronic headache types in addition in chronic cluster headache. At final follow-up, there was a 46.1% improvement in attack frequency (P < 0001) across all patients, 49.5% (P < 0.001) in those with cluster headache alone and 40.3% (P = 0.036) in those with multiple phenotypes. There were no significant differences in response in those with or without multiple headache types. The overall response rate (defined as at least a 50% improvement in attack frequency) was 52.9%. Significant reductions were also seen in attack duration and severity. Improvements were noted in headache disability scores and quality-of-life measures. Triptan use of responders dropped by 62.56%, resulting in significant cost savings. Adverse event rates were highly favorable. Occipital nerve stimulation appears to be a safe and efficacious treatment for highly intractable chronic cluster headache even after a mean follow-up of over 3 years. © 2016 EAN.

  15. Lower white matter microstructure in the superior longitudinal fasciculus is associated with increased response time variability in adults with attention-deficit/ hyperactivity disorder.

    PubMed

    Wolfers, Thomas; Onnink, A Marten H; Zwiers, Marcel P; Arias-Vasquez, Alejandro; Hoogman, Martine; Mostert, Jeanette C; Kan, Cornelis C; Slaats-Willemse, Dorine; Buitelaar, Jan K; Franke, Barbara

    2015-09-01

    Response time variability (RTV) is consistently increased in patients with attention-deficit/hyperactivity disorder (ADHD). A right-hemispheric frontoparietal attention network model has been implicated in these patients. The 3 main connecting fibre tracts in this network, the superior longitudinal fasciculus (SLF), inferior longitudinal fasciculus (ILF) and the cingulum bundle (CB), show microstructural abnormalities in patients with ADHD. We hypothesized that the microstructural integrity of the 3 white matter tracts of this network are associated with ADHD and RTV. We examined RTV in adults with ADHD by modelling the reaction time distribution as an exponentially modified Gaussian (ex-Gaussian) function with the parameters μ, σ and τ, the latter of which has been attributed to lapses of attention. We assessed adults with ADHD and healthy controls using a sustained attention task. Diffusion tensor imaging-derived fractional anisotropy (FA) values were determined to quantify bilateral microstructural integrity of the tracts of interest. We included 100 adults with ADHD and 96 controls in our study. Increased τ was associated with ADHD diagnosis and was linked to symptoms of inattention. An inverse correlation of τ with mean FA was seen in the right SLF of patients with ADHD, but no direct association between the mean FA of the 6 regions of interest with ADHD could be observed. Regions of interest were defined a priori based on the attentional network model for ADHD and thus we might have missed effects in other networks. This study suggests that reduced microstructural integrity of the right SLF is associated with elevated τ in patients with ADHD.

  16. Effects of sensitivity to life stress on uncinate fasciculus segments in early adolescence

    PubMed Central

    King, Lucy S.; Leong, Josiah K.; Colich, Natalie L.; Humphreys, Kathryn L.; Ordaz, Sarah J.; Gotlib, Ian H.

    2017-01-01

    Abstract Previous research suggests that exposure to early life stress (ELS) affects the structural integrity of the uncinate fasciculus (UF), a frontolimbic white matter tract that undergoes protracted development throughout adolescence. Adolescence is an important transitional period characterized by the emergence of internalizing psychopathology such as anxiety, particularly in individuals with high levels of stress sensitivity. We examined the relations among sensitivity to ELS, structural integrity of the UF, and anxiety symptoms in 104 early adolescents. We conducted structured interviews to assess exposure to ELS and obtained subjective and objective ratings of stress severity, from which we derived an index of ELS sensitivity. We also acquired diffusion MRI and conducted deterministic tractography to visualize UF trajectories and to compute measures of structural integrity from three distinct segments of the UF: frontal, insular, temporal. We found that higher sensitivity to ELS predicted both reduced fractional anisotropy in right frontal UF and higher levels of anxiety symptoms. These findings suggest that fibers in frontal UF, which are still developing throughout adolescence, are most vulnerable to the effects of heightened sensitivity to ELS, and that reduced structural integrity of frontal UF may underlie the relation between early stress and subsequent internalizing psychopathology. PMID:28460088

  17. Biofidelic neck influences head kinematics of parietal and occipital impacts following short falls in infants.

    PubMed

    Sullivan, Sarah; Coats, Brittany; Margulies, Susan S

    2015-09-01

    Falls are a major cause of traumatic head injury in children. Understanding head kinematics during low height falls is essential for evaluating injury risk and designing mitigating strategies. Typically, these measurements are made with commercial anthropomorphic infant surrogates, but these surrogates are designed based on adult biomechanical data. In this study, we improve upon the state-of-the-art anthropomorphic testing devices by incorporating new infant cadaver neck bending and tensile data. We then measure head kinematics following head-first falls onto 4 impact surfaces from 3 fall heights with occipital and parietal head impact locations. The biofidelic skull compliance and neck properties of the improved infant surrogate significantly influenced the measured kinematic loads, decreasing the measured impact force and peak angular accelerations, lowering the expected injury risk. Occipital and parietal impacts exhibited distinct kinematic responses in primary head rotation direction and the magnitude of the rotational velocities and accelerations, with larger angular velocities as the head rebounded after occipital impacts. Further evaluations of injury risk due to short falls should take into account the impact surface and head impact location, in addition to the fall height. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Biofidelic neck influences head kinematics of parietal and occipital impacts following short falls in infants

    PubMed Central

    Sullivan, Sarah; Coats, Brittany; Margulies, Susan S.

    2015-01-01

    Falls are a major cause of traumatic head injury in children. Understanding head kinematics during low height falls is essential for evaluating injury risk and designing mitigating strategies. Typically, these measurements are made with commercial anthropomorphic infant surrogates, but these surrogates are designed based on adult biomechanical data. In this study, we improve upon the state-of-the-art anthropomorphic testing devices by incorporating new infant cadaver neck bending and tensile data. We then measure head kinematics following head-first falls onto 4 impact surfaces from 3 fall heights with occipital and parietal head impact locations. The biofidelic skull compliance and neck properties of the improved infant surrogate significantly influenced the measured kinematic loads, decreasing the measured impact force and peak angular accelerations, lowering the expected injury risk. Occipital and parietal impacts exhibited distinct kinematic responses in primary head rotation direction and the magnitude of the rotational velocities and accelerations, with larger angular velocities as the head rebounded after occipital impacts. Further evaluations of injury risk due to short falls should take into account the impact surface and head impact location, in addition to the fall height. PMID:26072183

  19. Condylar Joint Fusion and Stabilization (by Screws and Plates) in Nontraumatic Atlanto-Occipital Dislocation: Technical Report of 2 Cases.

    PubMed

    Chowdhury, Forhad H; Haque, Mohammod Raziul; Alam, Sarwar Murshed; Khaled Chowdhury, S M Noman; Khan, Shamsul Islam; Goel, Atul

    2017-11-01

    Nontraumatic spontaneous atlanto-occipital dislocation (AOD) is rare. In this report, we discuss the technical steps of condylar joint fusion and stabilization (by screws and plates) in nontraumatic AOD. To the best of our knowledge, it is the first report of such techniques. A young girl and a young man with progressive quadriparesis due to nontraumatic spontaneous atlanto-occipital dislocation were managed by microsurgical reduction, fusion, and stabilization of the joint by occipital condylar and C1 lateral mass screw and plate fixation after mobilization of vertebral artery. In both cases, condylar joints fixation and fusion were done successfully. Condylar joint stabilization and fusion may be a good or alternative option for AOD. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Sub-occipital craniectomy in a lion (Panthera leo) with occipital bone malformation and hypovitaminosis A.

    PubMed

    Shamir, Merav H; Shilo, Yael; Fridman, Alon; Chai, Orit; Reifen, Ram; Miara, Limor

    2008-09-01

    Neurologic dysfunction accompanied by malformation of both the skull and the cervical vertebrae has been previously described in lions kept in captivity worldwide, and this dysfunction and malformation were most often related to vitamin A deficiency. Diagnosis of the bone malformation and its effects on the neural tissue was until recently limited to postmortem examination, with characteristic thickening of the bones of the cranial vault, cerebellar herniation, compression of the foramen magnum, and enlargement of the lateral ventricles. For some mildly affected lion cubs with neurologic signs, improvement was reported with excessive vitamin A supplementation. However, definitive diagnosis was only available for those that eventually died or were euthanized. This case documents the antemortem diagnosis of the disease using computed tomographic imaging and liver biopsy. While conservative treatment failed, suboccipital craniectomy removed the thickened occipital bone and was demonstrated to be a successful surgical intervention that can be used to treat more severely affected lions.

  1. Orienting Auditory Spatial Attention Engages Frontal Eye Fields and Medial Occipital Cortex in Congenitally Blind Humans

    PubMed Central

    Garg, Arun; Schwartz, Daniel; Stevens, Alexander A.

    2007-01-01

    What happens in vision related cortical areas when congenitally blind (CB) individuals orient attention to spatial locations? Previous neuroimaging of sighted individuals has found overlapping activation in a network of frontoparietal areas including frontal eye-fields (FEF), during both overt (with eye movement) and covert (without eye movement) shifts of spatial attention. Since voluntary eye movement planning seems irrelevant in CB, their FEF neurons should be recruited for alternative functions if their attentional role in sighted individuals is only due to eye movement planning. Recent neuroimaging of the blind has also reported activation in medial occipital areas, normally associated with visual processing, during a diverse set of non-visual tasks, but their response to attentional shifts remains poorly understood. Here, we used event-related fMRI to explore FEF and medial occipital areas in CB individuals and sighted controls with eyes closed (SC) performing a covert attention orienting task, using endogenous verbal cues and spatialized auditory targets. We found robust stimulus-locked FEF activation of all CB subjects, similar but stronger than in SC, suggesting that FEF plays a role in endogenous orienting of covert spatial attention even in individuals in whom voluntary eye movements are irrelevant. We also found robust activation in bilateral medial occipital cortex in CB but not in SC subjects. The response decreased below baseline following endogenous verbal cues but increased following auditory targets, suggesting that the medial occipital area in CB does not directly engage during cued orienting of attention but may be recruited for processing of spatialized auditory targets. PMID:17397882

  2. Diffusion tensor imaging--arcuate fasciculus and the importance for the neurosurgeon.

    PubMed

    Hana, Ardian; Dooms, Georges; Boecher-Schwarz, Hans; Hertel, Frank

    2015-05-01

    Tumors in eloquent areas of the brain like Broca or Wernicke might have disastrous consequences for patients. We intended to visualize the arcuate fasciculus (AF) and to demonstrate his relation with the corticospinal tract and the visual pathway using diffusion tensor imaging (DTI). We depicted between 2012 and 2014 the AF in 71 patients. Men and women of all ages were included. Eleven patients had postoperative controls also. We used a 3DT1-sequence for the navigation. Furthermore T2- and DTI-sequences were performed. The FOV was 200 × 200 mm(2), slice thickness 2mm, and an acquisition matrix of 96 × 96 yielding nearly isotropic voxels of 2 × 2 × 2 mm. 3-Tesla-MRI was carried out strictly axial using 32 gradient directions and one b0-image. We used Echo-Planar-Imaging (EPI) and ASSET parallel imaging with an acceleration factor of 2. b-Value was 800 s/mm(2). Additional scanning time was less than 9 min. AF was portrayed in 63 patients bilaterally. In one glioblastoma patient it was impossible to visualize the left AF and in seven other patients we could not portray the right one. The lesions affected AF by disrupting or displacing the fibers. DTI might be a useful tool to portray AF. It is time-saving and can be used to preserve morbidity in patients with lesions in eloquent brain areas. It might give deeper insights of the white matter and the reorganization of AF-fibers postoperatively. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Ultrasound-guided bilateral greater occipital nerve block for the treatment of post-dural puncture headache

    PubMed Central

    Akyol, Fethi; Binici, Orhan; Kuyrukluyildiz, Ufuk; Karabakan, Guldane

    2015-01-01

    Background and Objective: Post-dural puncture headache (PDPH) is one of the complications frequently observed after spinal or epidural anesthesia with dural penetration. For PDPH patients who do not respond to conservative medical treatment, alternative treatments such as bilateral occipital nerve block should be considered.In this study the efficacy of bilateral occipital nerve block was retrospectively evaluated in patients with post-dural puncture headache. Methods: Ultrasound-guided bilateral occipital nerve block was administrated in 21 patients who developed PDPH after spinal anesthesia, but did not respond to conservative medical treatment within 48 hours between January 2012 and February 2014. The study was conducted at Erzincan University Faculty of Medicine Gazi Mengucek Education and Research Hospital Results: Mean Visual Analog Scale (VAS) pain scores at 10 minutes and 6, 10, 15 and 24 hours after the block were significantly improved compared to the patients with a pre-block VAS score between 4 and 6 as well as patients with a pre-block VAS score between 7 and 9 (p<0.01). After 24 hours of the block applied, VAS pain score dropped to 1 for all 12 patients who had a pre-block VAS score between 4 and 6. Whereas, VAS score decreased to 2 at 24 hours after the block in only one of the patients with a pre-block VAS between 7 and 9. For the patients with a pre-block VAS score between 7 and 9, there was no significant improvement in the mean VAS score 24 hours after the block. Conclusions: For patients with PDPH and a pre-block VAS score between 4 and 6 who do not respond to conservative medical treatment, an ultrasound-guided bilateral occipital nerve block may be effective. PMID:25878625

  4. Relation between aphasia and arcuate fasciculus in chronic stroke patients

    PubMed Central

    2014-01-01

    Background The role of the arcuate fasciculus (AF) in the dominant hemisphere in stroke patients with aphasia has not been clearly elucidated. We investigated the relation between language function and diffusion tensor tractography (DTT) findings for the left AF in chronic stroke patients with aphasia. Method Twenty five consecutive right-handed stroke patients with aphasia following lesions in the left hemisphere were recruited for this study. The aphasia quotient (AQ) of Korean-Western Aphasia Battery was used for assessment of language function. We measured values of fractional anisotropy (FA), apparent diffusion coefficient (ADC), voxel number of the left AF. We classified patients into three groups: type A - the left AF was not reconstructed, type B - the left AF was discontinued between Wernicke’s and Broca’s areas, and type C – the left AF was preserved around the stroke lesion. Results Moderate positive correlation was observed between AQ and voxel number of the left AF (r = 0.471, p < 0.05). However, no correlation was observed between AQ and FA (r = 0.275, p > 0.05) and ADC values (r = -0.286, p > 0.05). Significant differences in AQ scores were observed between the three types (p < 0.05); the AQ score of type C was higher than those of type A and B, and that of type B was also higher than that of type A (p < 0.05). Conclusion According to our findings, the remaining volume of the left AF, irrespective of directionality and diffusivity, showed moderate positive correlation with language function in chronic stroke patients with aphasia. Discontinuation or non-construction of the left AF was also an important factor for language function. PMID:24607148

  5. Occipital Condyle Syndrome: A Red Flag for Malignancy. Comprehensive Literature Review and New Case Report.

    PubMed

    Rodríguez-Pardo, Jorge; Lara-Lara, Manuel; Sanz-Cuesta, Borja E; Fuentes, Blanca; Díez-Tejedor, Exuperio

    2017-05-01

    To perform a literature review of the epidemiology, clinical presentation, diagnostic evaluation, and clinical course of occipital condyle syndrome, including a new case report. Occipital condyle syndrome (OCS) is a rare clinical syndrome, consisting of unilateral occipital headache accompanied by ipsilateral hypoglossal palsy. This headache typically radiates to the temporal region, and is triggered by contralateral head rotation. It is usually associated with skull base metastasis, often unrevealed in basic neuroimaging studies. OCS might be the first manifestation of malignancy, and its unfamiliarity can lead to a delay in the diagnosis. We performed a systematic literature review using PubMed and Embase for OCS, along with a new case report. A total of 35 cases (mean age 59 years, range 25-77), 24 (70%) men, presented typical unilateral headache followed by ipsilateral hypoglossal palsy from 0 to 150 days after headache presentation. In 16 patients (46%), initial neuroimaging studies were normal. OCS was due to skull base metastasis in 32 cases (91%). In 18 patients (51%), OCS was the first symptom of disease. OCS represents a warning sign and requires an exhaustive search for underlying neoplasm. An appropriate clinical evaluation can lead to an earlier diagnosis in patients with consistent headache. © 2016 American Headache Society.

  6. Improvement in clinical outcomes after dry needling in a patient with occipital neuralgia.

    PubMed

    Bond, Bryan M; Kinslow, Christopher

    2015-06-01

    The primary purpose of this case report is to outline the diagnosis, intervention and clinical outcome of a patient presenting with occipital neuralgia. Upon initial presentation, the patient described a four-year history of stabbing neck pain and headaches. After providing informed consent, the patient underwent a total of four dry needling (DN) sessions over a two-week duration. During each of the treatment sessions, needles were inserted into the trapezii and suboccipital muscles. Post-intervention, the patient reported a 32-point change in her neck disability index score along with a 28-point change in her headache disability index score. Thus, it appears that subsequent four sessions of DN over two weeks, our patient experienced meaningful improvement in her neck pain and headaches. To the best of our knowledge, this is the first case report describing DN to successfully improve clinical outcomes in a patient diagnosed with occipital neuralgia.

  7. Dissociation between Conceptual and Perceptual Implicit Memory: Evidence from Patients with Frontal and Occipital Lobe Lesions

    PubMed Central

    Gong, Liang; Wang, JiHua; Yang, XuDong; Feng, Lei; Li, Xiu; Gu, Cui; Wang, MeiHong; Hu, JiaYun; Cheng, Huaidong

    2016-01-01

    The latest neuroimaging studies about implicit memory (IM) have revealed that different IM types may be processed by different parts of the brain. However, studies have rarely examined what subtypes of IM processes are affected in patients with various brain injuries. Twenty patients with frontal lobe injury, 25 patients with occipital lobe injury, and 29 healthy controls (HC) were recruited for the study. Two subtypes of IM were investigated by using structurally parallel perceptual (picture identification task) and conceptual (category exemplar generation task) IM tests in the three groups, as well as explicit memory (EM) tests. The results indicated that the priming of conceptual IM and EM tasks in patients with frontal lobe injury was poorer than that observed in HC, while perceptual IM was identical between the two groups. By contrast, the priming of perceptual IM in patients with occipital lobe injury was poorer than that in HC, whereas the priming of conceptual IM and EM was similar to that in HC. This double dissociation between perceptual and conceptual IM across the brain areas implies that occipital lobes may participate in perceptual IM, while frontal lobes may be involved in processing conceptual memory. PMID:26793093

  8. Does shape discrimination by the mouth activate the parietal and occipital lobes? - near-infrared spectroscopy study.

    PubMed

    Kagawa, Tomonori; Narita, Noriyuki; Iwaki, Sunao; Kawasaki, Shingo; Kamiya, Kazunobu; Minakuchi, Shunsuke

    2014-01-01

    A cross-modal association between somatosensory tactile sensation and parietal and occipital activities during Braille reading was initially discovered in tests with blind subjects, with sighted and blindfolded healthy subjects used as controls. However, the neural background of oral stereognosis remains unclear. In the present study, we investigated whether the parietal and occipital cortices are activated during shape discrimination by the mouth using functional near-infrared spectroscopy (fNIRS). Following presentation of the test piece shape, a sham discrimination trial without the test pieces induced posterior parietal lobe (BA7), extrastriate cortex (BA18, BA19), and striate cortex (BA17) activation as compared with the rest session, while shape discrimination of the test pieces markedly activated those areas as compared with the rest session. Furthermore, shape discrimination of the test pieces specifically activated the posterior parietal cortex (precuneus/BA7), extrastriate cortex (BA18, 19), and striate cortex (BA17), as compared with sham sessions without a test piece. We concluded that oral tactile sensation is recognized through tactile/visual cross-modal substrates in the parietal and occipital cortices during shape discrimination by the mouth.

  9. Lower white matter microstructure in the superior longitudinal fasciculus is associated with increased response time variability in adults with attention-deficit/hyperactivity disorder

    PubMed Central

    Wolfers, Thomas; Onnink, A. Marten H.; Zwiers, Marcel P.; Arias-Vasquez, Alejandro; Hoogman, Martine; Mostert, Jeanette C.; Kan, Cornelis C.; Slaats-Willemse, Dorine; Buitelaar, Jan K.; Franke, Barbara

    2015-01-01

    Background Response time variability (RTV) is consistently increased in patients with attention-deficit/hyperactivity disorder (ADHD). A right-hemispheric frontoparietal attention network model has been implicated in these patients. The 3 main connecting fibre tracts in this network, the superior longitudinal fasciculus (SLF), inferior longitudinal fasciculus (ILF) and the cingulum bundle (CB), show microstructural abnormalities in patients with ADHD. We hypothesized that the microstructural integrity of the 3 white matter tracts of this network are associated with ADHD and RTV. Methods We examined RTV in adults with ADHD by modelling the reaction time distribution as an exponentially modified Gaussian (ex-Gaussian) function with the parameters μ, σ and τ, the latter of which has been attributed to lapses of attention. We assessed adults with ADHD and healthy controls using a sustained attention task. Diffusion tensor imaging–derived fractional anisotropy (FA) values were determined to quantify bilateral microstructural integrity of the tracts of interest. Results We included 100 adults with ADHD and 96 controls in our study. Increased τ was associated with ADHD diagnosis and was linked to symptoms of inattention. An inverse correlation of τ with mean FA was seen in the right SLF of patients with ADHD, but no direct association between the mean FA of the 6 regions of interest with ADHD could be observed. Limitations Regions of interest were defined a priori based on the attentional network model for ADHD and thus we might have missed effects in other networks. Conclusion This study suggests that reduced microstructural integrity of the right SLF is associated with elevated τ in patients with ADHD. PMID:26079698

  10. Multimodal imaging of language reorganization in patients with left temporal lobe epilepsy.

    PubMed

    Chang, Yu-Hsuan A; Kemmotsu, Nobuko; Leyden, Kelly M; Kucukboyaci, N Erkut; Iragui, Vicente J; Tecoma, Evelyn S; Kansal, Leena; Norman, Marc A; Compton, Rachelle; Ehrlich, Tobin J; Uttarwar, Vedang S; Reyes, Anny; Paul, Brianna M; McDonald, Carrie R

    2017-07-01

    This study explored the relationships among multimodal imaging, clinical features, and language impairment in patients with left temporal lobe epilepsy (LTLE). Fourteen patients with LTLE and 26 controls underwent structural MRI, functional MRI, diffusion tensor imaging, and neuropsychological language tasks. Laterality indices were calculated for each imaging modality and a principal component (PC) was derived from language measures. Correlations were performed among imaging measures, as well as to the language PC. In controls, better language performance was associated with stronger left-lateralized temporo-parietal and temporo-occipital activations. In LTLE, better language performance was associated with stronger right-lateralized inferior frontal, temporo-parietal, and temporo-occipital activations. These right-lateralized activations in LTLE were associated with right-lateralized arcuate fasciculus fractional anisotropy. These data suggest that interhemispheric language reorganization in LTLE is associated with alterations to perisylvian white matter. These concurrent structural and functional shifts from left to right may help to mitigate language impairment in LTLE. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Heritability of the limbic networks

    PubMed Central

    Kawadler, Jamie M.; Dell'Acqua, Flavio; Rijsdijk, Frühling V.; Kane, Fergus; Picchioni, Marco; McGuire, Philip; Toulopoulou, Timothea; Georgiades, Anna; Kalidindi, Sridevi; Kravariti, Eugenia; Murray, Robin M.; Murphy, Declan G.; Craig, Michael C.; Catani, Marco

    2016-01-01

    Individual differences in cognitive ability and social behaviour are influenced by the variability in the structure and function of the limbic system. A strong heritability of the limbic cortex has been previously reported, but little is known about how genetic factors influence specific limbic networks. We used diffusion tensor imaging tractography to investigate heritability of different limbic tracts in 52 monozygotic and 34 dizygotic healthy adult twins. We explored the connections that contribute to the activity of three distinct functional limbic networks, namely the dorsal cingulum (‘medial default-mode network’), the ventral cingulum and the fornix (‘hippocampal-diencephalic-retrosplenial network’) and the uncinate fasciculus (‘temporo-amygdala-orbitofrontal network’). Genetic and environmental variances were mapped for multiple tract-specific measures that reflect different aspects of the underlying anatomy. We report the highest heritability for the uncinate fasciculus, a tract that underpins emotion processing, semantic cognition, and social behaviour. High to moderate genetic and shared environmental effects were found for pathways important for social behaviour and memory, for example, fornix, dorsal and ventral cingulum. These findings indicate that within the limbic system inheritance of specific traits may rely on the anatomy of distinct networks and is higher for fronto-temporal pathways dedicated to complex social behaviour and emotional processing. PMID:26714573

  12. Resting-state EEG power and coherence vary between migraine phases.

    PubMed

    Cao, Zehong; Lin, Chin-Teng; Chuang, Chun-Hsiang; Lai, Kuan-Lin; Yang, Albert C; Fuh, Jong-Ling; Wang, Shuu-Jiun

    2016-12-01

    Migraine is characterized by a series of phases (inter-ictal, pre-ictal, ictal, and post-ictal). It is of great interest whether resting-state electroencephalography (EEG) is differentiable between these phases. We compared resting-state EEG energy intensity and effective connectivity in different migraine phases using EEG power and coherence analyses in patients with migraine without aura as compared with healthy controls (HCs). EEG power and isolated effective coherence of delta (1-3.5 Hz), theta (4-7.5 Hz), alpha (8-12.5 Hz), and beta (13-30 Hz) bands were calculated in the frontal, central, temporal, parietal, and occipital regions. Fifty patients with episodic migraine (1-5 headache days/month) and 20 HCs completed the study. Patients were classified into inter-ictal, pre-ictal, ictal, and post-ictal phases (n = 22, 12, 8, 8, respectively), using 36-h criteria. Compared to HCs, inter-ictal and ictal patients, but not pre- or post-ictal patients, had lower EEG power and coherence, except for a higher effective connectivity in fronto-occipital network in inter-ictal patients (p < .05). Compared to data obtained from the inter-ictal group, EEG power and coherence were increased in the pre-ictal group, with the exception of a lower effective connectivity in fronto-occipital network (p < .05). Inter-ictal and ictal patients had decreased EEG power and coherence relative to HCs, which were "normalized" in the pre-ictal or post-ictal groups. Resting-state EEG power density and effective connectivity differ between migraine phases and provide an insight into the complex neurophysiology of migraine.

  13. Whole-brain structural connectivity in dyskinetic cerebral palsy and its association with motor and cognitive function.

    PubMed

    Ballester-Plané, Júlia; Schmidt, Ruben; Laporta-Hoyos, Olga; Junqué, Carme; Vázquez, Élida; Delgado, Ignacio; Zubiaurre-Elorza, Leire; Macaya, Alfons; Póo, Pilar; Toro, Esther; de Reus, Marcel A; van den Heuvel, Martijn P; Pueyo, Roser

    2017-09-01

    Dyskinetic cerebral palsy (CP) has long been associated with basal ganglia and thalamus lesions. Recent evidence further points at white matter (WM) damage. This study aims to identify altered WM pathways in dyskinetic CP from a standardized, connectome-based approach, and to assess structure-function relationship in WM pathways for clinical outcomes. Individual connectome maps of 25 subjects with dyskinetic CP and 24 healthy controls were obtained combining a structural parcellation scheme with whole-brain deterministic tractography. Graph theoretical metrics and the network-based statistic were applied to compare groups and to correlate WM state with motor and cognitive performance. Results showed a widespread reduction of WM volume in CP subjects compared to controls and a more localized decrease in degree (number of links per node) and fractional anisotropy (FA), comprising parieto-occipital regions and the hippocampus. However, supramarginal gyrus showed a significantly higher degree. At the network level, CP subjects showed a bilateral pathway with reduced FA, comprising sensorimotor, intraparietal and fronto-parietal connections. Gross and fine motor functions correlated with FA in a pathway comprising the sensorimotor system, but gross motor also correlated with prefrontal, temporal and occipital connections. Intelligence correlated with FA in a network with fronto-striatal and parieto-frontal connections, and visuoperception was related to right occipital connections. These findings demonstrate a disruption in structural brain connectivity in dyskinetic CP, revealing general involvement of posterior brain regions with relative preservation of prefrontal areas. We identified pathways in which WM integrity is related to clinical features, including but not limited to the sensorimotor system. Hum Brain Mapp 38:4594-4612, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  14. Recruitment of Occipital Cortex during Sensory Substitution Training Linked to Subjective Experience of Seeing in People with Blindness

    PubMed Central

    Ortiz, Tomás; Poch, Joaquín; Santos, Juan M.; Requena, Carmen; Martínez, Ana M.; Ortiz-Terán, Laura; Turrero, Agustín; Barcia, Juan; Nogales, Ramón; Calvo, Agustín; Martínez, José M.; Córdoba, José L.; Pascual-Leone, Alvaro

    2011-01-01

    Over three months of intensive training with a tactile stimulation device, 18 blind and 10 blindfolded seeing subjects improved in their ability to identify geometric figures by touch. Seven blind subjects spontaneously reported ‘visual qualia’, the subjective sensation of seeing flashes of light congruent with tactile stimuli. In the latter subjects tactile stimulation evoked activation of occipital cortex on electroencephalography (EEG). None of the blind subjects who failed to experience visual qualia, despite identical tactile stimulation training, showed EEG recruitment of occipital cortex. None of the blindfolded seeing humans reported visual-like sensations during tactile stimulation. These findings support the notion that the conscious experience of seeing is linked to the activation of occipital brain regions in people with blindness. Moreover, the findings indicate that provision of visual information can be achieved through non-visual sensory modalities which may help to minimize the disability of blind individuals, affording them some degree of object recognition and navigation aid. PMID:21853098

  15. The anatomy of extended limbic pathways in Asperger syndrome: a preliminary diffusion tensor imaging tractography study.

    PubMed

    Pugliese, Luca; Catani, Marco; Ameis, Stephanie; Dell'Acqua, Flavio; Thiebaut de Schotten, Michel; Murphy, Clodagh; Robertson, Dene; Deeley, Quinton; Daly, Eileen; Murphy, Declan G M

    2009-08-15

    It has been suggested that people with autistic spectrum disorder (ASD) have altered development (and connectivity) of limbic circuits. However, direct evidence of anatomical differences specific to white matter pathways underlying social behaviour and emotions in ASD is lacking. We used Diffusion Tensor Imaging Tractography to compare, in vivo, the microstructural integrity and age-related differences in the extended limbic pathways between subjects with Asperger syndrome and healthy controls. Twenty-four males with Asperger syndrome (mean age 23+/-12 years, age range: 9-54 years) and 42 age-matched male controls (mean age 25+/-10 years, age range: 9-54 years) were studied. We quantified tract-specific diffusivity measurements as indirect indexes of microstructural integrity (e.g. fractional anisotropy, FA; mean diffusivity, MD) and tract volume (e.g. number of streamlines) of the main limbic tracts. The dissected limbic pathways included the inferior longitudinal fasciculus, inferior frontal occipital fasciculus, uncinate, cingulum and fornix. There were no significant between-group differences in FA and MD. However, compared to healthy controls, individuals with Asperger syndrome had a significantly higher number of streamlines in the right (p=.003) and left (p=.03) cingulum, and in the right (p=.03) and left (p=.04) inferior longitudinal fasciculus. In contrast, people with Asperger syndrome had a significantly lower number of streamlines in the right uncinate (p=.02). Within each group there were significant age-related differences in MD and number of streamlines, but not FA. However, the only significant age-related between-group difference was in mean diffusivity of the left uncinate fasciculus (Z(obs)=2.05) (p=.02). Our preliminary findings suggest that people with Asperger syndrome have significant differences in the anatomy, and maturation, of some (but not all) limbic tracts.

  16. Benign fibrous histiocytoma of the fronto-temporo-parietal region: a case report and review of the literature

    PubMed Central

    Chen, Hongxu; Li, Pengcheng; Liu, Zhiyong; Xu, Jianguo; Hui, Xuhui

    2015-01-01

    Primary benign fibrous histiocytoma (BFH) at the skull is extremely rare. Here we report a case of a 22-year-old man presented with a 1-year history of progressive enlargement subcutaneous mass on the right side of the fronto-temporo-parietal region without symptoms. The tumor was radical resected through craniotomy and the bone defect was repaired by pre-plasticity titanium mesh. Histopathologic examination confirmed a benign fibrous histiocytoma, and no signs of tumor recurrence were detected at 3-year follow-up. PMID:26823894

  17. Distinct contributions of the fornix and inferior longitudinal fasciculus to episodic and semantic autobiographical memory.

    PubMed

    Hodgetts, Carl J; Postans, Mark; Warne, Naomi; Varnava, Alice; Lawrence, Andrew D; Graham, Kim S

    2017-09-01

    Autobiographical memory (AM) is multifaceted, incorporating the vivid retrieval of contextual detail (episodic AM), together with semantic knowledge that infuses meaning and coherence into past events (semantic AM). While neuropsychological evidence highlights a role for the hippocampus and anterior temporal lobe (ATL) in episodic and semantic AM, respectively, it is unclear whether these constitute dissociable large-scale AM networks. We used high angular resolution diffusion-weighted imaging and constrained spherical deconvolution-based tractography to assess white matter microstructure in 27 healthy young adult participants who were asked to recall past experiences using word cues. Inter-individual variation in the microstructure of the fornix (the main hippocampal input/output pathway) related to the amount of episodic, but not semantic, detail in AMs - independent of memory age. Conversely, microstructure of the inferior longitudinal fasciculus, linking occipitotemporal regions with ATL, correlated with semantic, but not episodic, AMs. Further, these significant correlations remained when controlling for hippocampal and ATL grey matter volume, respectively. This striking correlational double dissociation supports the view that distinct, large-scale distributed brain circuits underpin context and concepts in AM. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. The effect of sex and handedness on white matter anisotropy: a diffusion tensor magnetic resonance imaging study.

    PubMed

    Powell, J L; Parkes, L; Kemp, G J; Sluming, V; Barrick, T R; García-Fiñana, M

    2012-04-05

    Diffusion tensor magnetic resonance imaging provides a way of assessing the asymmetry of white matter (WM) connectivity, the degree of anisotropic diffusion within a given voxel being a marker of coherently bundled myelinated fibers. Voxel-based statistical analysis was performed on fractional anisotropy (FA) images of 42 right- and 40 left-handers, to assess differences in underlying WM anisotropy and FA asymmetry across the whole brain. Right-handers show greater anisotropy than left-handers in the uncinate fasciculus (UF) within the limbic lobe, and WM underlying prefrontal cortex, medial and inferior frontal gyri. Significantly greater leftward FA asymmetry in cerebellum posterior lobe is seen in left- than right-handers, and males show significantly greater rightward (right-greater-than-left) FA asymmetry in regions of middle occipital lobe, medial temporal gyrus, and a region of the superior longitudinal fasciculus underlying the supramarginal gyrus. Leftward (left-greater-than-right) anisotropy is found in regions of the arcuate fasciculus (AF), UF, and WM underlying pars triangularis in both handedness groups, with right-handers alone showing additional leftward FA asymmetry along the length of the superior temporal gyrus. Overall results indicate that although both handedness groups show anisotropy in similar WM regions, greater anisotropy is observed in right-handers compared with left-handers. The largest differences in FA asymmetry are found between males and females, suggesting a greater effect of sex than handedness on FA asymmetry. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

  19. Plasticity of white matter connectivity in phonetics experts.

    PubMed

    Vandermosten, Maaike; Price, Cathy J; Golestani, Narly

    2016-09-01

    Phonetics experts are highly trained to analyze and transcribe speech, both with respect to faster changing, phonetic features, and to more slowly changing, prosodic features. Previously we reported that, compared to non-phoneticians, phoneticians had greater local brain volume in bilateral auditory cortices and the left pars opercularis of Broca's area, with training-related differences in the grey-matter volume of the left pars opercularis in the phoneticians group (Golestani et al. 2011). In the present study, we used diffusion MRI to examine white matter microstructure, indexed by fractional anisotropy, in (1) the long segment of arcuate fasciculus (AF_long), which is a well-known language tract that connects Broca's area, including left pars opercularis, to the temporal cortex, and in (2) the fibers arising from the auditory cortices. Most of these auditory fibers belong to three validated language tracts, namely to the AF_long, the posterior segment of the arcuate fasciculus and the middle longitudinal fasciculus. We found training-related differences in phoneticians in left AF_long, as well as group differences relative to non-experts in the auditory fibers (including the auditory fibers belonging to the left AF_long). Taken together, the results of both studies suggest that grey matter structural plasticity arising from phonetic transcription training in Broca's area is accompanied by changes to the white matter fibers connecting this very region to the temporal cortex. Our findings suggest expertise-related changes in white matter fibers connecting fronto-temporal functional hubs that are important for phonetic processing. Further studies can pursue this hypothesis by examining the dynamics of these expertise related grey and white matter changes as they arise during phonetic training.

  20. Structural connectivity of right frontal hyperactive areas scales with stuttering severity

    PubMed Central

    Neef, Nicole E; Bütfering, Christoph; Schmidt-Samoa, Carsten; Friederici, Angela D; Paulus, Walter; Sommer, Martin

    2018-01-01

    Abstract A neuronal sign of persistent developmental stuttering is the magnified coactivation of right frontal brain regions during speech production. Whether and how stuttering severity relates to the connection strength of these hyperactive right frontal areas to other brain areas is an open question. Scrutinizing such brain–behaviour and structure–function relationships aims at disentangling suspected underlying neuronal mechanisms of stuttering. Here, we acquired diffusion-weighted and functional images from 31 adults who stutter and 34 matched control participants. Using a newly developed structural connectivity measure, we calculated voxel-wise correlations between connection strength and stuttering severity within tract volumes that originated from functionally hyperactive right frontal regions. Correlation analyses revealed that with increasing speech motor deficits the connection strength increased in the right frontal aslant tract, the right anterior thalamic radiation, and in U-shaped projections underneath the right precentral sulcus. In contrast, with decreasing speech motor deficits connection strength increased in the right uncinate fasciculus. Additional group comparisons of whole-brain white matter skeletons replicated the previously reported reduction of fractional anisotropy in the left and right superior longitudinal fasciculus as well as at the junction of right frontal aslant tract and right superior longitudinal fasciculus in adults who stutter compared to control participants. Overall, our investigation suggests that right fronto-temporal networks play a compensatory role as a fluency enhancing mechanism. In contrast, the increased connection strength within subcortical-cortical pathways may be implied in an overly active global response suppression mechanism in stuttering. Altogether, this combined functional MRI–diffusion tensor imaging study disentangles different networks involved in the neuronal underpinnings of the speech motor

  1. Early dynamics of white matter deficits in children developing dyslexia.

    PubMed

    Vanderauwera, Jolijn; Wouters, Jan; Vandermosten, Maaike; Ghesquière, Pol

    2017-10-01

    Neural anomalies have been demonstrated in dyslexia. Recent studies in pre-readers at risk for dyslexia and in pre-readers developing poor reading suggest that these anomalies might be a cause of their reading impairment. Our study goes one step further by exploring the neurodevelopmental trajectory of white matter anomalies in pre-readers with and without a familial risk for dyslexia (n=61) of whom a strictly selected sample develops dyslexia later on (n=15). We collected longitudinal diffusion MRI and behavioural data until grade 3. The results provide evidence that children with dyslexia exhibit pre-reading white matter anomalies in left and right long segment of the arcuate fasciculus (AF), with predictive power of the left segment above traditional cognitive measures and familial risk. Whereas white matter differences in the left AF seem most strongly related to the development of dyslexia, differences in the left IFOF and in the right AF seem driven by both familial risk and later reading ability. Moreover, differences in the left AF appeared to be dynamic. This study supports and expands recent insights into the neural basis of dyslexia, pointing towards pre-reading anomalies related to dyslexia, as well as underpinning the dynamic character of white matter. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Improvement in clinical outcomes after dry needling in a patient with occipital neuralgia

    PubMed Central

    Bond, Bryan M.; Kinslow, Christopher

    2015-01-01

    The primary purpose of this case report is to outline the diagnosis, intervention and clinical outcome of a patient presenting with occipital neuralgia. Upon initial presentation, the patient described a four-year history of stabbing neck pain and headaches. After providing informed consent, the patient underwent a total of four dry needling (DN) sessions over a two-week duration. During each of the treatment sessions, needles were inserted into the trapezii and suboccipital muscles. Post-intervention, the patient reported a 32-point change in her neck disability index score along with a 28-point change in her headache disability index score. Thus, it appears that subsequent four sessions of DN over two weeks, our patient experienced meaningful improvement in her neck pain and headaches. To the best of our knowledge, this is the first case report describing DN to successfully improve clinical outcomes in a patient diagnosed with occipital neuralgia. PMID:26136602

  3. Reduced frontal cortical thickness and increased caudate volume within fronto-striatal circuits in young adult smokers.

    PubMed

    Li, Yangding; Yuan, Kai; Cai, Chenxi; Feng, Dan; Yin, Junsen; Bi, Yanzhi; Shi, Sha; Yu, Dahua; Jin, Chenwang; von Deneen, Karen M; Qin, Wei; Tian, Jie

    2015-06-01

    Smoking during early adulthood results in neurophysiological and brain structural changes that may promote nicotine dependence later in life. Previous studies have revealed the important roles of fronto-striatal circuits in the pathology of nicotine dependence; however, few studies have focused on both cortical thickness and subcortical striatal volume differences between young adult smokers and nonsmokers. Twenty-seven young male adult smokers and 22 age-, education- and gender-matched nonsmokers were recruited in the present study. The cortical thickness and striatal volume differences of young adult smokers and age-matched nonsmokers were investigated in the present study and then correlated with pack-years and Fagerström Test for Nicotine Dependence (FTND). The following results were obtained: (1) young adult smokers showed significant cortical thinning in the frontal cortex (left caudal anterior cingulate cortex (ACC), right lateral orbitofrontal cortex (OFC)), left insula, left middle temporal gyrus, right inferior parietal lobule, and right parahippocampus; (2) in regards to subcortical striatal volume, the volume of the right caudate was larger in young adult smokers than nonsmokers; and (3) the cortical thickness of the right dorsolateral prefrontal cortex (DLPFC) and OFC were associated with nicotine dependence severity (FTND) and cumulative amount of nicotine intake (pack-years) in smokers, respectively. This study revealed reduced frontal cortical thickness and increased caudate volume in the fronto-striatal circuits in young adult smokers compared to nonsmokers. These deficits suggest an imbalance between cognitive control (reduced protection factors) and reward drive behaviours (increased risk factors) associated with nicotine addiction and relapse. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  4. Midfrontal Theta and Posterior Parietal Alpha Band Oscillations Support Conflict Resolution in a Masked Affective Priming Task.

    PubMed

    Jiang, Jun; Bailey, Kira; Xiao, Xiao

    2018-01-01

    Past attempts to characterize the neural mechanisms of affective priming have conceptualized it in terms of classic cognitive conflict, but have not examined the neural oscillatory mechanisms of subliminal affective priming. Using behavioral and electroencephalogram (EEG) time frequency (TF) analysis, the current study examines the oscillatory dynamics of unconsciously triggered conflict in an emotional facial expressions version of the masked affective priming task. The results demonstrate that the power dynamics of conflict are characterized by increased midfrontal theta activity and suppressed parieto-occipital alpha activity. Across-subject and within-trial correlation analyses further confirmed this pattern. Phase synchrony and Granger causality analyses (GCAs) revealed that the fronto-parietal network was involved in unconscious conflict detection and resolution. Our findings support a response conflict account of affective priming, and reveal the role of the fronto-parietal network in unconscious conflict control.

  5. Non-invasive electric current stimulation for restoration of vision after unilateral occipital stroke.

    PubMed

    Gall, Carolin; Silvennoinen, Katri; Granata, Giuseppe; de Rossi, Francesca; Vecchio, Fabrizio; Brösel, Doreen; Bola, Michał; Sailer, Michael; Waleszczyk, Wioletta J; Rossini, Paolo M; Tatlisumak, Turgut; Sabel, Bernhard A

    2015-07-01

    Occipital stroke often leads to visual field loss, for which no effective treatment exists. Little is known about the potential of non-invasive electric current stimulation to ameliorate visual functions in patients suffering from unilateral occipital stroke. One reason is the traditional thinking that visual field loss after brain lesions is permanent. Since evidence is available documenting vision restoration by means of vision training or non-invasive electric current stimulation future studies should also consider investigating recovery processes after visual cortical strokes. Here, protocols of repetitive transorbital alternating current stimulation (rtACS) and transcranial direct current stimulation (tDCS) are presented and the European consortium for restoration of vision (REVIS) is introduced. Within the consortium different stimulation approaches will be applied to patients with unilateral occipital strokes resulting in homonymous hemianopic visual field defects. The aim of the study is to evaluate effects of current stimulation of the brain on vision parameters, vision-related quality of life, and physiological parameters that allow concluding about the mechanisms of vision restoration. These include EEG-spectra and coherence measures, and visual evoked potentials. The design of stimulation protocols involves an appropriate sham-stimulation condition and sufficient follow-up periods to test whether the effects are stable. This is the first application of non-invasive current stimulation for vision rehabilitation in stroke-related visual field deficits. Positive results of the trials could have far-reaching implications for clinical practice. The ability of non-invasive electrical current brain stimulation to modulate the activity of neuronal networks may have implications for stroke rehabilitation also in the visual domain. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Identification and individualized prediction of clinical phenotypes in bipolar disorders using neurocognitive data, neuroimaging scans and machine learning.

    PubMed

    Wu, Mon-Ju; Mwangi, Benson; Bauer, Isabelle E; Passos, Ives C; Sanches, Marsal; Zunta-Soares, Giovana B; Meyer, Thomas D; Hasan, Khader M; Soares, Jair C

    2017-01-15

    Diagnosis, clinical management and research of psychiatric disorders remain subjective - largely guided by historically developed categories which may not effectively capture underlying pathophysiological mechanisms of dysfunction. Here, we report a novel approach of identifying and validating distinct and biologically meaningful clinical phenotypes of bipolar disorders using both unsupervised and supervised machine learning techniques. First, neurocognitive data were analyzed using an unsupervised machine learning approach and two distinct clinical phenotypes identified namely; phenotype I and phenotype II. Second, diffusion weighted imaging scans were pre-processed using the tract-based spatial statistics (TBSS) method and 'skeletonized' white matter fractional anisotropy (FA) and mean diffusivity (MD) maps extracted. The 'skeletonized' white matter FA and MD maps were entered into the Elastic Net machine learning algorithm to distinguish individual subjects' phenotypic labels (e.g. phenotype I vs. phenotype II). This calculation was performed to ascertain whether the identified clinical phenotypes were biologically distinct. Original neurocognitive measurements distinguished individual subjects' phenotypic labels with 94% accuracy (sensitivity=92%, specificity=97%). TBSS derived FA and MD measurements predicted individual subjects' phenotypic labels with 76% and 65% accuracy respectively. In addition, individual subjects belonging to phenotypes I and II were distinguished from healthy controls with 57% and 92% accuracy respectively. Neurocognitive task variables identified as most relevant in distinguishing phenotypic labels included; Affective Go/No-Go (AGN), Cambridge Gambling Task (CGT) coupled with inferior fronto-occipital fasciculus and callosal white matter pathways. These results suggest that there may exist two biologically distinct clinical phenotypes in bipolar disorders which can be identified from healthy controls with high accuracy and at an

  7. DTI measures identify mild and moderate TBI cases among patients with complex health problems: A receiver operating characteristic analysis of U.S. veterans.

    PubMed

    Main, Keith L; Soman, Salil; Pestilli, Franco; Furst, Ansgar; Noda, Art; Hernandez, Beatriz; Kong, Jennifer; Cheng, Jauhtai; Fairchild, Jennifer K; Taylor, Joy; Yesavage, Jerome; Wesson Ashford, J; Kraemer, Helena; Adamson, Maheen M

    2017-01-01

    Standard MRI methods are often inadequate for identifying mild traumatic brain injury (TBI). Advances in diffusion tensor imaging now provide potential biomarkers of TBI among white matter fascicles (tracts). However, it is still unclear which tracts are most pertinent to TBI diagnosis. This study ranked fiber tracts on their ability to discriminate patients with and without TBI. We acquired diffusion tensor imaging data from military veterans admitted to a polytrauma clinic (Overall n  = 109; Age: M  = 47.2, SD  = 11.3; Male: 88%; TBI: 67%). TBI diagnosis was based on self-report and neurological examination. Fiber tractography analysis produced 20 fiber tracts per patient. Each tract yielded four clinically relevant measures (fractional anisotropy, mean diffusivity, radial diffusivity, and axial diffusivity). We applied receiver operating characteristic (ROC) analyses to identify the most diagnostic tract for each measure. The analyses produced an optimal cutpoint for each tract. We then used kappa coefficients to rate the agreement of each cutpoint with the neurologist's diagnosis. The tract with the highest kappa was most diagnostic. As a check on the ROC results, we performed a stepwise logistic regression on each measure using all 20 tracts as predictors. We also bootstrapped the ROC analyses to compute the 95% confidence intervals for sensitivity, specificity, and the highest kappa coefficients. The ROC analyses identified two fiber tracts as most diagnostic of TBI: the left cingulum (LCG) and the left inferior fronto-occipital fasciculus (LIF). Like ROC, logistic regression identified LCG as most predictive for the FA measure but identified the right anterior thalamic tract (RAT) for the MD, RD, and AD measures. These findings are potentially relevant to the development of TBI biomarkers. Our methods also demonstrate how ROC analysis may be used to identify clinically relevant variables in the TBI population.

  8. Cytokine Response, Tract-Specific Fractional Anisotropy, and Brain Morphometry in Post-Stroke Cognitive Impairment.

    PubMed

    Kulesh, Aleksey; Drobakha, Viktor; Kuklina, Elena; Nekrasova, Irina; Shestakov, Vladimir

    2018-07-01

    Post-stroke cognitive impairment is a clinically heterogeneous condition and its types have a different course and prognosis. The aim of the present study is to address the roles of inflammation, white matter pathology, and brain atrophy in different neuropsychological types of cognitive impairment in the acute period of ischemic stroke. In 92 patients, we performed an assessment of the cognitive status and measured concentrations of cytokines (interleukin [IL]-1β, IL-6, tumor necrosis factor-alpha, IL-10) in liquor and serum, as well as a number of magnetic resonance imaging (MRI) morphometric parameters and fractional anisotropy. The control group consisted of 14 individuals without cerebrovascular disease. All patients had a higher level of IL-10 in serum than the control group. Patients with dysexecutive cognitive impairment had a higher concentration of IL-1β and IL-10 in liquor, IL-6 level in serum, and a lower fractional anisotropy of the ipsilateral thalamus than patients with normal cognition. Patients with mixed cognitive impairment were characterized by a lower fractional anisotropy of contralateral fronto-occipital fasciculus, compared with patients with dysexecutive cognitive impairment. Patients with both dysexecutive and mixed cognitive deficit had a wide area of leukoaraiosis and a reduced fractional anisotropy of the contralateral cingulum, compared with patients without cognitive impairment. Also, we found numerous correlations between cognitive status and levels of cytokines, MRI morphometric parameters, and fractional anisotropy of certain regions of the brain. The concentrations of cytokines in serum and cerebrospinal fluid studied in combination with MRI morphometric parameters and fractional anisotropy appear to be informative biomarkers of clinical types of post-stroke cognitive impairment. Copyright © 2018 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  9. Anatomy of the inferior petro-occipital vein and its relation to the base of the skull: application to surgical and endovascular procedures of the skull base.

    PubMed

    Tubbs, R Shane; Watanabe, Koichi; Loukas, Marios; Cohen-Gadol, Aaron A

    2014-07-01

    Although the inferior petro-occipital vein has been recently used for vascular access to the cavernous sinus, few detailed descriptions of its anatomy are in the literature. We aimed to investigate the morphology and relationships of this vessel. Twelve latex-injected cadaveric heads (24 sides) were dissected to identify the inferior petro-occipital vein and anatomic details documented. The petro-occipital vein was identified on 83.3% of sides. Generally this vein united the internal carotid venous plexus to the superior jugular bulb. However, on 10% of sides, the anterior part of this vein communicated directly with the cavernous sinus, and on 15%, the posterior vein drained into the inferior petrosal sinus at its termination into the superior jugular bulb. The petro-occipital vein was separated from the overlying inferior petrosal sinus by a thin plate of bone. On 40% of sides, small venous connections were found between these two venous structures. The vein was usually larger if a nondominant transverse sinus was present. The overlying inferior petrosal sinus was smaller in diameter when an underlying inferior petro-occipital vein was present. On 20% of sides, the posterior aspect of the vein communicated with the hypoglossal canal veins. On three sides, diploic veins from the clivus drained into the inferior petro-occipital vein. The inferior petro-occipital vein is present in most humans. This primarily extracranial vessel communicates with intracranial venous sinuses and should be considered an emissary vein. Knowledge of this vessel's exact anatomy may be useful to cranial base surgeons and endovascular specialists. Copyright © 2013 Wiley Periodicals, Inc.

  10. Does Shape Discrimination by the Mouth Activate the Parietal and Occipital Lobes? – Near-Infrared Spectroscopy Study

    PubMed Central

    Kagawa, Tomonori; Narita, Noriyuki; Iwaki, Sunao; Kawasaki, Shingo; Kamiya, Kazunobu; Minakuchi, Shunsuke

    2014-01-01

    A cross-modal association between somatosensory tactile sensation and parietal and occipital activities during Braille reading was initially discovered in tests with blind subjects, with sighted and blindfolded healthy subjects used as controls. However, the neural background of oral stereognosis remains unclear. In the present study, we investigated whether the parietal and occipital cortices are activated during shape discrimination by the mouth using functional near-infrared spectroscopy (fNIRS). Following presentation of the test piece shape, a sham discrimination trial without the test pieces induced posterior parietal lobe (BA7), extrastriate cortex (BA18, BA19), and striate cortex (BA17) activation as compared with the rest session, while shape discrimination of the test pieces markedly activated those areas as compared with the rest session. Furthermore, shape discrimination of the test pieces specifically activated the posterior parietal cortex (precuneus/BA7), extrastriate cortex (BA18, 19), and striate cortex (BA17), as compared with sham sessions without a test piece. We concluded that oral tactile sensation is recognized through tactile/visual cross-modal substrates in the parietal and occipital cortices during shape discrimination by the mouth. PMID:25299397

  11. Occipital neuralgia secondary to unilateral atlantoaxial osteoarthritis: Case report and review of the literature.

    PubMed

    Guha, Daipayan; Mohanty, Chandan; Tator, Charles H; Shamji, Mohammed F

    2015-01-01

    Atlantoaxial osteoarthritis (AAOA), either in isolation or in the context of generalized peripheral or spinal arthritis, presents most commonly with neck pain and limitation of cervical rotational range of motion. Occipital neuralgia (ON) is only rarely attributed to AAOA, as fewer than 30 cases are described in the literature. A 64-year-old female presented with progressive incapacitating cervicalgia and occipital headaches, refractory to medications, and local anesthetic blocks. Computed tomography and magnetic resonance imaging studies documented advanced unilateral atlantoaxial arthrosis with osteophytic compression that dorsally displaced the associated C2 nerve root. Surgical decompression and atlantoaxial fusion achieved rapid and complete relief of neuralgia. Ultimately, postoperative spinal imaging revealed osseous union. Atlantoaxial arthrosis must be considered in the differential diagnosis of ON. Surgical treatment is effective for managing refractory cases. Intraoperative neuronavigation is also a useful adjunct to guide instrumentation and the intraoperative extent of bony decompression.

  12. Pilot study of EEG in neonates born to mothers with gestational diabetes mellitus.

    PubMed

    Léveillé-, Pauline; Hamel, Mathieu; Ardilouze, Jean-Luc; Pasquier, Jean-Charles; Deacon, Charles; Whittingstall, Kevin; Plourde, Mélanie

    2018-05-01

    The goal was to evaluate whether there was neurodevelopmental deficits in newborns born to mothers with gestational diabetes mellitus (GDM) compared to control newborns born to healthy mothers. Forty-six pregnant women (21 controls and 25 GDM) were recruited. Electroencephalogram (EEG) was recorded in the newborns within 48 h after birth. The EEG signal was quantitatively analyzed using power spectral density (PSD); coherence between hemispheres was calculated in paired channels of frontal, temporal, central and occipital regions. The left centro-occipital PSD in control newborns was 12% higher than in GDM newborns (p = 0.036) but was not significant after adjustment for gestational age. While coherence was higher in the frontal regions compared to the occipital regions (p < 0.001), there was no difference between the groups for the fronto-temporal, frontal-central, centro-occipital and tempo-occipital regions. Our results support that EEG differences between groups were mainly modified by gestational age and less by GDM status of the mothers. However, there is a need to confirm this result with a higher number of mother-newborns. Quantitative EEG in GDM newborns within 48 h after birth is feasible. This study emphasizes the importance of controlling blood glucose during GDM to protect infant brain development. Copyright © 2018 ISDN. Published by Elsevier Ltd. All rights reserved.

  13. [Transient charles bonnet syndrome after excision of a right occipital meningioma: a case report].

    PubMed

    Arai, Takao; Hasegawa, Yuzuru; Tanaka, Toshihide; Kato, Naoki; Watanabe, Mitsuyoshi; Nakamura, Aya; Murayama, Yuichi

    2014-05-01

    Charles Bonnet syndrome is a condition characterized by visual hallucinations. These simple or complex visual hallucinations are more common in elderly individuals with impaired peripheral vision. The current report describes a case of transient Charles Bonnet syndrome appearing after the removal of a meningioma. The patient was a 61-year-old man who already had impaired visual acuity due to diabetic retinopathy. Brain MRI revealed a cystic tumor severely compressing the right occipital lobe. Starting on day 2 postoperatively, the patient was troubled by recurring visual hallucinations involving people, flowers, pictures, and familiar settings(the train and a coffee shop). These continued for 3.5 months. This period roughly coincided with the time for the occipital lobe to recover from the compression caused by the tumor, a fact that was confirmed by several MRI scans. ¹²³I-IMP SPECT performed 1 month after the surgical operation showed an area of hypoperfusion in the right parieto-occipital lobe. Based on the patient's clinical course and MRI findings, the mechanism of onset of visual hallucinations in this patient was put forward. The release of pressure in the brain by tumor removal and subsequent recovery changed the blood flow to the brain. This triggered visual hallucinations in the patient, who was already predisposed to developing Charles Bonnet syndrome because of diabetic retinopathy. This case is interesting since it indicates that central neurological factors, as well as visual deficits, may induce the appearance of visual hallucinations in Charles Bonnet syndrome.

  14. The effects of Dalmane /flurazepam hydrochloride/ on human EEG characteristics.

    NASA Technical Reports Server (NTRS)

    Frost, J. D., Jr.; Carrie, J. R. G.; Borda, R. P.; Kellaway, P.

    1973-01-01

    Evaluation of the changes in the waking EEGs of six healthy male subjects who received 30 mg daily oral doses of flurazepam hydrochloride for two weeks. A placebo was then substituted for flurazepam for another two weeks. An increase in beta activity with a maximum in fronto-central leads was observed during the test period. A small increase in the mean wavelength of the alpha and theta activities in the central-occipital derivations was also apparent in the subjects during the period.

  15. Prenatal ultrasound and MRI findings of temporal and occipital lobe dysplasia in a twin with achondroplasia.

    PubMed

    Pugash, D; Lehman, A M; Langlois, S

    2014-09-01

    Thanatophoric dysplasia, hypochondroplasia and achondroplasia are all caused by FGFR3 (fibroblast growth factor receptor 3) mutations. Neuropathological findings of temporal lobe dysplasia are found in thanatophoric dysplasia, and temporal and occipital lobe abnormalities have been described recently in brain imaging studies of children with hypochondroplasia. We describe twins discordant for achondroplasia, in one of whom the prenatal diagnosis was based on ultrasound and fetal MRI documentation of temporal and occipital lobe abnormalities characteristic of hypochondroplasia, in addition to the finding of short long bones. Despite the intracranial findings suggestive of hypochondroplasia, achondroplasia was confirmed following postnatal clinical and genetic testing. These intracranial abnormalities have not been previously described in a fetus with achondroplasia. Copyright © 2014 ISUOG. Published by John Wiley & Sons Ltd.

  16. Development of a selective left-hemispheric fronto-temporal network for processing syntactic complexity in language comprehension.

    PubMed

    Xiao, Yaqiong; Friederici, Angela D; Margulies, Daniel S; Brauer, Jens

    2016-03-01

    The development of language comprehension abilities in childhood is closely related to the maturation of the brain, especially the ability to process syntactically complex sentences. Recent studies proposed that the fronto-temporal connection within left perisylvian regions, supporting the processing of syntactically complex sentences, is still immature at preschool age. In the current study, resting state functional magnetic resonance imaging data were acquired from typically developing 5-year-old children and adults to shed further light on the brain functional development. Children additionally performed a behavioral syntactic comprehension test outside the scanner. The amplitude of low-frequency fluctuations was analyzed in order to identify the functional correlation networks of language-relevant brain regions. Results showed an intrahemispheric correlation between left inferior frontal gyrus (IFG) and left posterior superior temporal sulcus (pSTS) in adults, whereas an interhemispheric correlation between left IFG and its right-hemispheric homolog was predominant in children. Correlation analysis between resting-state functional connectivity and sentence processing performance in 5-year-olds revealed that local connectivity within the left IFG is associated with competence of processing syntactically simple canonical sentences, while long-range connectivity between IFG and pSTS in left hemisphere is associated with competence of processing syntactically relatively more complex non-canonical sentences. The present developmental data suggest that a selective left fronto-temporal connectivity network for processing complex syntax is already in functional connection at the age of 5 years when measured in a non-task situation. The correlational findings provide new insight into the relationship between intrinsic functional connectivity and syntactic language abilities in preschool children. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights

  17. Stereotactic topography of the greater and third occipital nerves and its clinical implication.

    PubMed

    Kim, Hong-San; Shin, Kang-Jae; O, Jehoon; Kwon, Hyun-Jin; Lee, Minho; Yang, Hun-Mu

    2018-01-17

    This study aimed to provide topographic information of the greater occipital (GON) and third occipital (3ON) nerves, with the three-dimensional locations of their emerging points on the back muscles (60 sides, 30 cadavers) and their spatial relationship with muscle layers, using a 3D digitizer (Microscribe G2X, Immersion Corp, San Jose CA, USA). With reference to the external occipital protuberance (EOP), GON pierced the trapezius at a point 22.6 ± 7.4 mm lateral and 16.3 ± 5.9 mm inferior and the semispinalis capitis (SSC) at a point 13.1 ± 6.0 mm lateral and 27.7 ± 9.9 mm inferior. With the same reference, 3ON pierced, the trapezius at a point 12.9 ± 9.3 mm lateral and 44.2 ± 21.4 mm inferior, the splenius capitis at a point 10.0 ± 5.3 mm lateral and 59.2 ± 19.8 mm inferior, and SSC at a point 11.5 ± 9.9 mm lateral and 61.4 ± 15.3 mm inferior. Additionally, GON arose, winding up the obliquus capitis inferior, with the winding point located 52.3 ± 11.7 mm inferior to EOP and 30.2 ± 8.9 mm lateral to the midsagittal line. Knowing the course of GON and 3ON, from their emergence between vertebrae to the subcutaneous layer, is necessary for reliable nerve detection and precise analgesic injections. Moreover, stereotactic measurement using the 3D digitizer seems useful and accurate for neurovascular structure study.

  18. Bulbar symptoms and episodic aphonia associated with atlanto-occipital subluxation in ankylosing spondylitis

    PubMed Central

    Davidson, Robin I.; Tyler, H. Richard

    1974-01-01

    A patient with intermittent aphonia associated with atlanto-occipital subluxation due to ankylosing spondylitis is presented and discussed. The only other case from the literature is reviewed and compared with our patient, where symptoms and signs of episodic low bulbar disease, presumably due to intermittent vascular insufficiency, were relieved by external bracing. Images PMID:4844136

  19. Occipital neuralgia secondary to unilateral atlantoaxial osteoarthritis: Case report and review of the literature

    PubMed Central

    Guha, Daipayan; Mohanty, Chandan; Tator, Charles H.; Shamji, Mohammed F.

    2015-01-01

    Background: Atlantoaxial osteoarthritis (AAOA), either in isolation or in the context of generalized peripheral or spinal arthritis, presents most commonly with neck pain and limitation of cervical rotational range of motion. Occipital neuralgia (ON) is only rarely attributed to AAOA, as fewer than 30 cases are described in the literature. Case Description: A 64-year-old female presented with progressive incapacitating cervicalgia and occipital headaches, refractory to medications, and local anesthetic blocks. Computed tomography and magnetic resonance imaging studies documented advanced unilateral atlantoaxial arthrosis with osteophytic compression that dorsally displaced the associated C2 nerve root. Surgical decompression and atlantoaxial fusion achieved rapid and complete relief of neuralgia. Ultimately, postoperative spinal imaging revealed osseous union. Conclusions: Atlantoaxial arthrosis must be considered in the differential diagnosis of ON. Surgical treatment is effective for managing refractory cases. Intraoperative neuronavigation is also a useful adjunct to guide instrumentation and the intraoperative extent of bony decompression. PMID:26759731

  20. Modified C1 lateral mass screw insertion using a high entry point to avoid postoperative occipital neuralgia.

    PubMed

    Lee, Sun-Ho; Kim, Eun-Sang; Eoh, Whan

    2013-01-01

    For the past decade, a screw-rod construct has been used commonly to stabilize the atlantoaxial joint, but the insertion of the screw through the C1 lateral mass (LM) can cause several complications. We evaluated whether using a higher screw entry point for C1 lateral mass (LM) fixation than in the standard procedure could prevent screw-induced occipital neuralgia. We enrolled 12 consecutive patients who underwent bilateral C1 LM fixation, with the modified screw insertion point at the junction of the C1 posterior arch and the midpoint of the posterior inferior portion of the C1 LM. We measured postoperative clinical and radiological parameters and recorded intraoperative complications, postoperative neurological deficits and the occurrence of occipital neuralgia. Postoperative plain radiographs were used to check for malpositioning of the screw or failure of the construct. Four patients underwent atlantoaxial stabilization for a transverse ligament injury or a C1 or C2 fracture, six patients for os odontoideum, and two patients for C2 metastasis. No patient experienced vertebral artery injury or cerebrospinal fluid leak, and all had minimal blood loss. No patient suffered significant occipital neuralgia, although one patient developed mild, transient unilateral neuralgia. There was also no radiographic evidence of construct failure. Twenty screws were positioned correctly through the intended entry points, but three screws were placed inferiorly (that is, below the arch), and one screw was inserted too medially. When performing C1-C2 fixation using the standard (Harms) construct, surgeons should be aware of the possible development of occipital neuralgia. A higher entry point may prevent this complication; therefore, we recommend that the screw should be inserted into the arch of C1 if it can be accommodated. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. White matter tracts in first-episode psychosis: A DTI tractography study of the uncinate fasciculus

    PubMed Central

    Price, Gary; Cercignani, Mara; Parker, Geoffrey J.M.; Altmann, Daniel R.; Barnes, Thomas R.E.; Barker, Gareth J.; Joyce, Eileen M.; Ron, Maria A.

    2008-01-01

    A model of disconnectivity involving abnormalities in the cortex and connecting white matter pathways may explain the symptoms and cognitive abnormalities of schizophrenia. Recently, diffusion imaging tractography has made it possible to study white matter pathways in detail, and we present here a study of patients with first-episode psychosis using this technique. We studied the uncinate fasciculus (UF), the largest white matter tract that connects the frontal and temporal lobes, two brain regions significantly implicated in schizophrenia. Nineteen patients with first-episode schizophrenia and 23 controls were studied using a probabilistic tractography algorithm (PICo). Fractional anisotropy (FA) and probability of connection were obtained for every voxel in the tract, and the group means and distributions of these variables were compared. The spread of the FA distribution in the upper tail, as measured by the squared coefficient of variance (SCV), was reduced in the left UF in the patient group, indicating that the number of voxels with high FA values was reduced in the core of the tract and suggesting the presence of changes in fibre alignment and tract coherence in the patient group. The SCV of FA was lower in females across both groups and there was no correlation between the SCV of FA and clinical ratings. PMID:17988894

  2. Recovery of injured Broca's portion of arcuate fasciculus in the dominant hemisphere in a patient with traumatic brain injury.

    PubMed

    Jang, Sung Ho; Ha, Ji Wan; Kim, Hyun Young; Seo, You Sung

    2017-12-01

    Recovery of injured AF in patients with traumatic brain injury (TBI) has not been reported. In this study, we report on a patient with TBI who recovered from an injury to Broca's portion of AF in the dominant hemisphere, diagnosed by diffusion tensor tractography (DTT). A 28-year-old right-handed male patient suffered head trauma resulting from sliding while riding a motorcycle. He was diagnosed with a traumatic contusional hemorrhage in the left frontal lobe, subarachnoid hemorrhage, and subdural hemorrhage in the left fronto-temporal lobe. He underwent craniectomy on the left fronto-temporal area, and hematoma removal for the subdural hemorrhage in the neurosurgery department of a university hospital. Two weeks after the injury, he was transferred to the rehabilitation department of another university hospital. He showed severe aphasia and brain MRI showed leukomalactic lesion in the left frontal lobe. The result WAB for the patient showed severe aphasia, with an aphasia quotient of 45.3 percentile. However, his aphasia improved rapidly by 9 months with an aphasia quotient at the 100.0 percentile. 2-week DTT detected discontinuity in the subcortical white matter at the branch to Broca's area of left AF. By contrast, on 9-month DTT, the discontinued portion of left AF was elongated to the left Broca's area. Recovery of injured Broca's portion of AF in the dominant hemisphere along with excellent improvement of aphasia was demonstrated in a patient with TBI. This study has important implications in brain rehabilitation because the mechanism of recovery from aphasia following TBI has not been elucidated. Copyright © 2017 The Authors. Published by Wolters Kluwer Health, Inc. All rights reserved.

  3. Neural synchrony examined with magnetoencephalography (MEG) during eye gaze processing in autism spectrum disorders: preliminary findings

    PubMed Central

    2014-01-01

    Background Gaze processing deficits are a seminal, early, and enduring behavioral deficit in autism spectrum disorder (ASD); however, a comprehensive characterization of the neural processes mediating abnormal gaze processing in ASD has yet to be conducted. Methods This study investigated whole-brain patterns of neural synchrony during passive viewing of direct and averted eye gaze in ASD adolescents and young adults (M Age  = 16.6) compared to neurotypicals (NT) (M Age  = 17.5) while undergoing magnetoencephalography. Coherence between each pair of 54 brain regions within each of three frequency bands (low frequency (0 to 15 Hz), beta (15 to 30 Hz), and low gamma (30 to 45 Hz)) was calculated. Results Significantly higher coherence and synchronization in posterior brain regions (temporo-parietal-occipital) across all frequencies was evident in ASD, particularly within the low 0 to 15 Hz frequency range. Higher coherence in fronto-temporo-parietal regions was noted in NT. A significantly higher number of low frequency cross-hemispheric synchronous connections and a near absence of right intra-hemispheric coherence in the beta frequency band were noted in ASD. Significantly higher low frequency coherent activity in bilateral temporo-parieto-occipital cortical regions and higher gamma band coherence in right temporo-parieto-occipital brain regions during averted gaze was related to more severe symptomology as reported on the Autism Diagnostic Interview-Revised (ADI-R). Conclusions The preliminary results suggest a pattern of aberrant connectivity that includes higher low frequency synchronization in posterior cortical regions, lack of long-range right hemispheric beta and gamma coherence, and decreased coherence in fronto-temporo-parietal regions necessary for orienting to shifts in eye gaze in ASD; a critical behavior essential for social communication. PMID:24976870

  4. A review on functional and structural brain connectivity in numerical cognition

    PubMed Central

    Moeller, Korbinian; Willmes, Klaus; Klein, Elise

    2015-01-01

    Only recently has the complex anatomo-functional system underlying numerical cognition become accessible to evaluation in the living brain. We identified 27 studies investigating brain connectivity in numerical cognition. Despite considerable heterogeneity regarding methodological approaches, populations investigated, and assessment procedures implemented, the results provided largely converging evidence regarding the underlying brain connectivity involved in numerical cognition. Analyses of both functional/effective as well as structural connectivity have consistently corroborated the assumption that numerical cognition is subserved by a fronto-parietal network including (intra)parietal as well as (pre)frontal cortex sites. Evaluation of structural connectivity has indicated the involvement of fronto-parietal association fibers encompassing the superior longitudinal fasciculus dorsally and the external capsule/extreme capsule system ventrally. Additionally, commissural fibers seem to connect the bilateral intraparietal sulci when number magnitude information is processed. Finally, the identification of projection fibers such as the superior corona radiata indicates connections between cortex and basal ganglia as well as the thalamus in numerical cognition. Studies on functional/effective connectivity further indicated a specific role of the hippocampus. These specifications of brain connectivity augment the triple-code model of number processing and calculation with respect to how gray matter areas associated with specific number-related representations may work together. PMID:26029075

  5. 1H magnetic resonance spectroscopy evidence for occipital involvement in treatment-naive paediatric obsessive-compulsive disorder.

    PubMed

    Ljungberg, Maria; Nilsson, Marie K L; Melin, Karin; Jönsson, Lars; Carlsson, Arvid; Carlsson, Åsa; Forssell-Aronsson, Eva; Ivarsson, Tord; Carlsson, Maria; Starck, Göran

    2017-06-01

    Obsessive-compulsive disorder (OCD) is a chronic psychiatric disorder leading to considerable distress and disability. Therapies are effective in a majority of paediatric patients, however, many only get partial response. It is therefore important to study the underlying pathophysiology of the disorder. 1H magnetic resonance spectroscopy (MRS) was used to study the concentration of brain metabolites in four different locations (cingulate gyrus and sulcus, occipital cortex, thalamus and right caudate nucleus). Treatment-naive children and adolescents with OCD (13 subjects) were compared with a group of healthy age- and gender-matched subjects (11 subjects). Multivariate analyses were performed on the concentration values. No separation between controls and patients was found. However, a correlation between metabolite concentrations and symptom severity as measured with the Children's Yale-Brown Obsessive-Compulsive Scale (CY-BOCS) was found. Strongest was the correlation with the CY-BOCS obsession subscore and aspartate and choline in the caudate nucleus (positively correlated with obsessions), lipids at 2 and 0.9 ppm in thalamus, and occipital glutamate+glutamine, N-acetylaspartate and myo-inosytol (negatively correlated with obsessions). The observed correlations between 1H MRS and CY-BOCS in treatment-naive patients further supports an occipital involvement in OCD. The results are consistent with our previous study on adult OCD patients. The 1H MRS data were not supportive of a separation between the patient and control groups.

  6. Emotional face expression modulates occipital-frontal effective connectivity during memory formation in a bottom-up fashion.

    PubMed

    Xiu, Daiming; Geiger, Maximilian J; Klaver, Peter

    2015-01-01

    This study investigated the role of bottom-up and top-down neural mechanisms in the processing of emotional face expression during memory formation. Functional brain imaging data was acquired during incidental learning of positive ("happy"), neutral and negative ("angry" or "fearful") faces. Dynamic Causal Modeling (DCM) was applied on the functional magnetic resonance imaging (fMRI) data to characterize effective connectivity within a brain network involving face perception (inferior occipital gyrus and fusiform gyrus) and successful memory formation related areas (hippocampus, superior parietal lobule, amygdala, and orbitofrontal cortex). The bottom-up models assumed processing of emotional face expression along feed forward pathways to the orbitofrontal cortex. The top-down models assumed that the orbitofrontal cortex processed emotional valence and mediated connections to the hippocampus. A subsequent recognition memory test showed an effect of negative emotion on the response bias, but not on memory performance. Our DCM findings showed that the bottom-up model family of effective connectivity best explained the data across all subjects and specified that emotion affected most bottom-up connections to the orbitofrontal cortex, especially from the occipital visual cortex and superior parietal lobule. Of those pathways to the orbitofrontal cortex the connection from the inferior occipital gyrus correlated with memory performance independently of valence. We suggest that bottom-up neural mechanisms support effects of emotional face expression and memory formation in a parallel and partially overlapping fashion.

  7. tDCS Modulates Visual Gamma Oscillations and Basal Alpha Activity in Occipital Cortices: Evidence from MEG.

    PubMed

    Wilson, Tony W; McDermott, Timothy J; Mills, Mackenzie S; Coolidge, Nathan M; Heinrichs-Graham, Elizabeth

    2018-05-01

    Transcranial direct-current stimulation (tDCS) is now a widely used method for modulating the human brain, but the resulting physiological effects are not understood. Recent studies have combined magnetoencephalography (MEG) with simultaneous tDCS to evaluate online changes in occipital alpha and gamma oscillations, but no study to date has quantified the offline (i.e., after tDCS) alterations in these responses. Thirty-five healthy adults received active or sham anodal tDCS to the occipital cortices, and then completed a visual stimulation paradigm during MEG that is known to elicit robust gamma and alpha oscillations. The resulting MEG data were imaged and peak voxel time series were extracted to evaluate tDCS effects. We found that tDCS to the occipital increased the amplitude of local gamma oscillations, and basal alpha levels during the baseline. tDCS was also associated with network-level effects, including increased gamma oscillations in the prefrontal cortex, parietal, and other visual attention regions. Finally, although tDCS did not modulate peak gamma frequency, this variable was inversely correlated with gamma amplitude, which is consistent with a GABA-gamma link. In conclusion, tDCS alters gamma oscillations and basal alpha levels. The net offline effects on gamma activity are consistent with the view that anodal tDCS decreases local GABA.

  8. Disorders of emotional processing in amyotrophic lateral sclerosis.

    PubMed

    Sedda, Anna

    2014-12-01

    Amyotrophic lateral sclerosis (ALS) is a degenerative brain disease characterized by motor, behavioural and cognitive deficits. Only recently, emotional processing disorders have been shown in this disease. The interest in affective processing in ALS is growing given that basic emotion impairments could impact copying strategies and mood. Studies explore both basic emotion recognition and social cognition. Results are congruent on arousal and valence detection impairments, independently from the stimulus modality (verbal or visual). Further, recognition of facial expressions of anger, sadness and disgust is impaired in ALS, even when cognition is preserved. Clinical features such as type of onset and severity of the disease could be the cause of the heterogeneity in emotional deficits profiles between patients. Finally, a study employing diffusion tensor imaging showed that emotional dysfunctions in ALS are related to right hemispheric connective bundles impairments, involving the inferior longitudinal fasciculus and the inferior frontal occipital fasciculus. Research on emotional processing in ALS is still in its infancy and results are mixed. Future research including more detailed clinical profiles of patients and measures of brain connectivity will provide useful information to understand heterogeneity of results in ALS.

  9. Early (N170/M170) Face-Sensitivity Despite Right Lateral Occipital Brain Damage in Acquired Prosopagnosia

    PubMed Central

    Prieto, Esther Alonso; Caharel, Stéphanie; Henson, Richard; Rossion, Bruno

    2011-01-01

    Compared to objects, pictures of faces elicit a larger early electromagnetic response at occipito-temporal sites on the human scalp, with an onset of 130 ms and a peak at about 170 ms. This N170 face effect is larger in the right than the left hemisphere and has been associated with the early categorization of the stimulus as a face. Here we tested whether this effect can be observed in the absence of some of the visual areas showing a preferential response to faces as typically identified in neuroimaging. Event-related potentials were recorded in response to faces, cars, and their phase-scrambled versions in a well-known brain-damaged case of prosopagnosia (PS). Despite the patient’s right inferior occipital gyrus lesion encompassing the most posterior cortical area showing preferential response to faces (“occipital face area”), we identified an early face-sensitive component over the right occipito-temporal hemisphere of the patient that was identified as the N170. A second experiment supported this conclusion, showing the typical N170 increase of latency and amplitude in response to inverted faces. In contrast, there was no N170 in the left hemisphere, where PS has a lesion to the middle fusiform gyrus and shows no evidence of face-preferential response in neuroimaging (no left “fusiform face area”). These results were replicated by a magnetoencephalographic investigation of the patient, disclosing a M170 component only in the right hemisphere. These observations indicate that face-preferential activation in the inferior occipital cortex is not necessary to elicit early visual responses associated with face perception (N170/M170) on the human scalp. These results further suggest that when the right inferior occipital cortex is damaged, the integrity of the middle fusiform gyrus and/or the superior temporal sulcus – two areas showing face-preferential responses in the patient’s right hemisphere – might be necessary to generate the N170 effect

  10. Practical considerations of linear accelerator-based frameless extracranial radiosurgery for treatment of occipital neuralgia for nonsurgical candidates.

    PubMed

    Denton, Travis R; Shields, Lisa B E; Howe, Jonathan N; Shanks, Todd S; Spalding, Aaron C

    2017-07-01

    Occipital neuralgia generally responds to medical or invasive procedures. Repeated invasive procedures generate increasing complications and are often contraindicated. Stereotactic radiosurgery (SRS) has not been reported as a treatment option largely due to the extracranial nature of the target as opposed to the similar, more established trigeminal neuralgia. A dedicated phantom study was conducted to determine the optimum imaging studies, fusion matrices, and treatment planning parameters to target the C2 dorsal root ganglion which forms the occipital nerve. The conditions created from the phantom were applied to a patient with medically and surgically refractory occipital neuralgia. A dose of 80 Gy in one fraction was prescribed to the C2 occipital dorsal root ganglion. The phantom study resulted in a treatment achieved with an average translational magnitude of correction of 1.35 mm with an acceptable tolerance of 0.5 mm and an average rotational magnitude of correction of 0.4° with an acceptable tolerance of 1.0°. For the patient, the spinal cord was 12.0 mm at its closest distance to the isocenter and received a maximum dose of 3.36 Gy, a dose to 0.35 cc of 1.84 Gy, and a dose to 1.2 cc of 0.79 Gy. The brain maximum dose was 2.20 Gy. Treatment time was 59 min for 18, 323 MUs. Imaging was performed prior to each arc delivery resulting in 21 imaging sessions. The average deviation magnitude requiring a positional or rotational correction was 0.96 ± 0.25 mm, 0.8 ± 0.41°, whereas the average deviation magnitude deemed within tolerance was 0.41 ± 0.12 mm, 0.57 ± 0.28°. Dedicated quality assurance of the treatment planning and delivery is necessary for safe and accurate SRS to the cervical spine dorsal root ganglion. With additional prospective study, linear accelerator-based frameless radiosurgery can provide an accurate, noninvasive alternative for treating occipital neuralgia where an invasive procedure is contraindicated. © 2017

  11. Sign language aphasia due to left occipital lesion in a deaf signer.

    PubMed

    Saito, Kozue; Otsuki, Mika; Ueno, Satoshi

    2007-10-02

    Localization of sign language production and comprehension in deaf people has been described as similar to that of spoken language aphasia. However, sign language employs a visuospatial modality through visual information. We present the first report of a deaf signer who showed substantial sign language aphasia with severe impairment in word production due to a left occipital lesion. This case may indicate the possibility of other localizations of plasticity.

  12. Structural connectivity of right frontal hyperactive areas scales with stuttering severity.

    PubMed

    Neef, Nicole E; Anwander, Alfred; Bütfering, Christoph; Schmidt-Samoa, Carsten; Friederici, Angela D; Paulus, Walter; Sommer, Martin

    2018-01-01

    A neuronal sign of persistent developmental stuttering is the magnified coactivation of right frontal brain regions during speech production. Whether and how stuttering severity relates to the connection strength of these hyperactive right frontal areas to other brain areas is an open question. Scrutinizing such brain-behaviour and structure-function relationships aims at disentangling suspected underlying neuronal mechanisms of stuttering. Here, we acquired diffusion-weighted and functional images from 31 adults who stutter and 34 matched control participants. Using a newly developed structural connectivity measure, we calculated voxel-wise correlations between connection strength and stuttering severity within tract volumes that originated from functionally hyperactive right frontal regions. Correlation analyses revealed that with increasing speech motor deficits the connection strength increased in the right frontal aslant tract, the right anterior thalamic radiation, and in U-shaped projections underneath the right precentral sulcus. In contrast, with decreasing speech motor deficits connection strength increased in the right uncinate fasciculus. Additional group comparisons of whole-brain white matter skeletons replicated the previously reported reduction of fractional anisotropy in the left and right superior longitudinal fasciculus as well as at the junction of right frontal aslant tract and right superior longitudinal fasciculus in adults who stutter compared to control participants. Overall, our investigation suggests that right fronto-temporal networks play a compensatory role as a fluency enhancing mechanism. In contrast, the increased connection strength within subcortical-cortical pathways may be implied in an overly active global response suppression mechanism in stuttering. Altogether, this combined functional MRI-diffusion tensor imaging study disentangles different networks involved in the neuronal underpinnings of the speech motor deficit in

  13. Fronto-Parietal Network Reconfiguration Supports the Development of Reasoning Ability

    PubMed Central

    Wendelken, Carter; Ferrer, Emilio; Whitaker, Kirstie J.; Bunge, Silvia A.

    2016-01-01

    The goal of this fMRI study was to examine how well developmental improvements in reasoning ability can be explained by changes in functional connectivity between specific nodes in prefrontal and parietal cortices. To this end, we examined connectivity within the lateral fronto-parietal network (LFPN) and its relation to reasoning ability in 132 children and adolescents aged 6–18 years, 56 of whom were scanned twice over the course of 1.5 years. Developmental changes in strength of connections within the LFPN were most prominent in late childhood and early adolescence. Reasoning ability was related to functional connectivity between left rostrolateral prefrontal cortex (RLPFC) and inferior parietal lobule (IPL), but only among 12–18-year olds. For 9–11-year olds, reasoning ability was most strongly related to connectivity between left and right RLPFC; this relationship was mediated by working memory. For 6–8-year olds, significant relationships between connectivity and performance were not observed; in this group, processing speed was the primary mediator of improvement in reasoning ability. We conclude that different connections best support reasoning at different points in development and that RLPFC-IPL connectivity becomes an important predictor of reasoning during adolescence. PMID:25824536

  14. Understanding the pathophysiology of reflex epilepsy using simultaneous EEG-fMRI.

    PubMed

    Sandhya, Manglore; Bharath, Rose Dawn; Panda, Rajanikant; Chandra, S R; Kumar, Naveen; George, Lija; Thamodharan, A; Gupta, Arun Kumar; Satishchandra, P

    2014-03-01

    Measuring neuro-haemodynamic correlates in the brain of epilepsy patients using EEG-fMRI has opened new avenues in clinical neuroscience, as these are two complementary methods for understanding brain function. In this study, we investigated three patients with drug-resistant reflex epilepsy using EEG-fMRI. Different types of reflex epilepsy such as eating, startle myoclonus, and hot water epilepsy were included in the study. The analysis of EEG-fMRI data was based on the visual identification of interictal epileptiform discharges on scalp EEG. The convolution of onset time and duration of these epilepsy spikes was estimated, and using these condition-specific effects in a general linear model approach, we evaluated activation of fMRI. Patients with startle myoclonus epilepsy experienced epilepsy in response to sudden sound or touch, in association with increased delta and theta activity with a spike-and-slow-wave pattern of interictal epileptiform discharges on EEG and fronto-parietal network activation pattern on SPECT and EEG-fMRI. Eating epilepsy was triggered by sight or smell of food and fronto-temporal discharges were noted on video-EEG (VEEG). Similarly, fronto-temporo-parietal involvement was noted on SPECT and EEG-fMRI. Hot water epilepsy was triggered by contact with hot water either in the bath or by hand immersion, and VEEG showed fronto-parietal involvement. SPECT and EEG fMRI revealed a similar fronto-parietal-occipital involvement. From these results, we conclude that continuous EEG recording can improve the modelling of BOLD changes related to interictal epileptic activity and this can thus be used to understand the neuro-haemodynamic substrates involved in reflex epilepsy.

  15. Neural dynamics during repetitive visual stimulation

    NASA Astrophysics Data System (ADS)

    Tsoneva, Tsvetomira; Garcia-Molina, Gary; Desain, Peter

    2015-12-01

    Objective. Steady-state visual evoked potentials (SSVEPs), the brain responses to repetitive visual stimulation (RVS), are widely utilized in neuroscience. Their high signal-to-noise ratio and ability to entrain oscillatory brain activity are beneficial for their applications in brain-computer interfaces, investigation of neural processes underlying brain rhythmic activity (steady-state topography) and probing the causal role of brain rhythms in cognition and emotion. This paper aims at analyzing the space and time EEG dynamics in response to RVS at the frequency of stimulation and ongoing rhythms in the delta, theta, alpha, beta, and gamma bands. Approach.We used electroencephalography (EEG) to study the oscillatory brain dynamics during RVS at 10 frequencies in the gamma band (40-60 Hz). We collected an extensive EEG data set from 32 participants and analyzed the RVS evoked and induced responses in the time-frequency domain. Main results. Stable SSVEP over parieto-occipital sites was observed at each of the fundamental frequencies and their harmonics and sub-harmonics. Both the strength and the spatial propagation of the SSVEP response seem sensitive to stimulus frequency. The SSVEP was more localized around the parieto-occipital sites for higher frequencies (>54 Hz) and spread to fronto-central locations for lower frequencies. We observed a strong negative correlation between stimulation frequency and relative power change at that frequency, the first harmonic and the sub-harmonic components over occipital sites. Interestingly, over parietal sites for sub-harmonics a positive correlation of relative power change and stimulation frequency was found. A number of distinct patterns in delta (1-4 Hz), theta (4-8 Hz), alpha (8-12 Hz) and beta (15-30 Hz) bands were also observed. The transient response, from 0 to about 300 ms after stimulation onset, was accompanied by increase in delta and theta power over fronto-central and occipital sites, which returned to baseline

  16. Sharp Curvature of Frontal Lobe White Matter Pathways in Children with Autism Spectrum Disorder: Tract-Based Morphometry Analysis

    PubMed Central

    Jeong, Jeong-Won; Kumar, Ajay; Sundaram, Senthil K.; Chugani, Harry T.; Chugani, Diane C.

    2013-01-01

    Background and Purpose As we had previously observed geometrical changes of frontal lobe association pathways in children with autism spectrum disorder (ASD), in the present study we analyzed the curvature of these white matter pathways using an objective tract based morphometry (TBM) analysis. Materials and Methods Diffusion tensor imaging (DTI) was performed in 32 children with ASD and 14 children with typical development. Curvature, fractional anisotropy (FA), axial diffusivity (AD), and radial diffusivity (RD) of bilateral arcuate fasciculus (AF), uncinate fasciculus (UF), and genu of corpus callosum (gCC) were investigated using the TBM group analysis assessed by False Discovery Rate p-value (PFDR) for multiple comparisons. Results Significantly higher curvatures were found in children with ASD especially at the parieto-temporal junction for AF (left: PFDR < 0.001; right: PFDR < 0.01), at the fronto-temporal junction for UF (left: PFDR < 0.005; right: PFDR < 0.03), and at the midline of the gCC (PFDR < 0.0001). RD was significantly higher in children with ASD at the same bending regions of AF (left: PFDR < 0.03, right: PFDR < 0.02), UF (left: PFDR < 0.04), and gCC (PFDR < 0.01). Conclusion Higher curvature and curvature dependent RD changes in children with ASD may be the result of higher density of thinner axons in these frontal lobe tracts. PMID:21757519

  17. The white matter of the human cerebrum: Part I The occipital lobe by Heinrich Sachs

    PubMed Central

    Forkel, Stephanie J.; Mahmood, Sajedha; Vergani, Francesco; Catani, Marco

    2015-01-01

    This is the first complete translation of Heinrich Sachs' outstanding white matter atlas dedicated to the occipital lobe. This work is accompanied by a prologue by Prof Carl Wernicke who for many years was Sachs' mentor in Breslau and enthusiastically supported his work. PMID:25527430

  18. The Plasticity of the Superior Longitudinal Fasciculus as a Function of Musical Expertise: A Diffusion Tensor Imaging Study

    PubMed Central

    Oechslin, Mathias S.; Imfeld, Adrian; Loenneker, Thomas; Meyer, Martin; Jäncke, Lutz

    2009-01-01

    Previous neuroimaging studies have demonstrated that musical expertise leads to functional alterations in language processing. We utilized diffusion tensor imaging (DTI) to investigate white matter plasticity in musicians with absolute pitch (AP), relative pitch and non-musicians. Using DTI, we analysed the fractional anisotropy (FA) of the superior longitudinal fasciculus (SLF), which is considered the most primary pathway for processing and production of speech and music. In association with different levels of musical expertise, we found that AP is characterized by a greater left than right asymmetry of FA in core fibres of the SLF. A voxel-based analysis revealed three clusters within the left hemisphere SLF that showed significant positive correlations with error rates only for AP-musicians in an AP-test, but not for musicians without AP. We therefore conclude that the SLF architecture in AP musicians is related to AP acuity. In order to reconcile our observations with general aspects of development of fibre bundles, we introduce the Pioneer Axon Thesis, a theoretical approach to formalize axonal arrangements of major white matter pathways. PMID:20161812

  19. Alcohol-induced impairment of inhibitory control is linked to attenuated brain responses in right fronto-temporal cortex

    PubMed Central

    Gan, Gabriela; Guevara, Alvaro; Marxen, Michael; Neumann, Maike; Jünger, Elisabeth; Kobiella, Andrea; Mennigen, Eva; Pilhatsch, Maximilian; Schwarz, Daniel; Zimmermann, Ulrich S.; Smolka, Michael N.

    2014-01-01

    Background A self-enhancing loop between impaired inhibitory control under alcohol and alcohol consumption has been proposed as a possible mechanism underlying dysfunctional drinking in susceptible people. However, the neural underpinnings of alcohol-induced impairment of inhibitory control are widely unknown. Methods We measured inhibitory control in fifty young adults with a stop-signal task (SST) during functional magnetic resonance imaging (fMRI). In a single-blind placebo-controlled cross-over design, all participants performed the SST once under alcohol with a breath alcohol concentration (BrAC) of 0.6 g/kg, and once under placebo. In addition, alcohol consumption was assessed using a free-access alcohol self-administration (ASA) paradigm in the same participants. Results Inhibitory control was robustly decreased under alcohol compared to placebo indicated by longer stop-signal reaction times (SSRTs). On the neural level, impaired inhibitory control under alcohol was associated with attenuated brain responses in the right fronto-temporal portion of the inhibition network that supports the attentional capture of infrequent stop-signals, and subsequent updating of action plans from response execution to inhibition. Furthermore, the extent of alcohol-induced impairment of inhibitory control predicted free-access alcohol consumption. Conclusion We suggest that during inhibitory control alcohol affects cognitive processes preceding actual motor inhibition. Under alcohol, decreased brain responses in right fronto-temporal areas might slow down the attentional capture of infrequent stop-signals and subsequent updating of action plans which leads to impaired inhibitory control. In turn, pronounced alcohol-induced impairment of inhibitory control may enhance alcohol consumption in young adults which might promote future alcohol problems. PMID:24560581

  20. Alcohol-induced impairment of inhibitory control is linked to attenuated brain responses in right fronto-temporal cortex.

    PubMed

    Gan, Gabriela; Guevara, Alvaro; Marxen, Michael; Neumann, Maike; Jünger, Elisabeth; Kobiella, Andrea; Mennigen, Eva; Pilhatsch, Maximilian; Schwarz, Daniel; Zimmermann, Ulrich S; Smolka, Michael N

    2014-11-01

    A self-enhancing loop between impaired inhibitory control under alcohol and alcohol consumption has been proposed as a possible mechanism underlying dysfunctional drinking in susceptible people. However, the neural underpinnings of alcohol-induced impairment of inhibitory control are widely unknown. We measured inhibitory control in 50 young adults with a stop-signal task during functional magnetic resonance imaging. In a single-blind placebo-controlled cross-over design, all participants performed the stop-signal task once under alcohol with a breath alcohol concentration of .6 g/kg and once under placebo. In addition, alcohol consumption was assessed with a free-access alcohol self-administration paradigm in the same participants. Inhibitory control was robustly decreased under alcohol compared with placebo, indicated by longer stop-signal reaction times. On the neural level, impaired inhibitory control under alcohol was associated with attenuated brain responses in the right fronto-temporal portion of the inhibition network that supports the attentional capture of infrequent stop-signals and subsequent updating of action plans from response execution to inhibition. Furthermore, the extent of alcohol-induced impairment of inhibitory control predicted free-access alcohol consumption. We suggest that during inhibitory control alcohol affects cognitive processes preceding actual motor inhibition. Under alcohol, decreased brain responses in right fronto-temporal areas might slow down the attentional capture of infrequent stop-signals and subsequent updating of action plans, which leads to impaired inhibitory control. In turn, pronounced alcohol-induced impairment of inhibitory control might enhance alcohol consumption in young adults, which might promote future alcohol problems. Copyright © 2014 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  1. C1-C2 instability with severe occipital headache in the setting of vertebral artery facet complex erosion.

    PubMed

    Taher, Fadi; Bokums, Kristaps; Aichmair, Alexander; Hughes, Alexander P

    2014-05-01

    An exact understanding of patient vertebral artery anatomy is essential to safely place screws at the atlanto-axial level in posterior arthrodesis. We aim to report a case of erosion of the left vertebral artery into the C1-C2 facet complex with resultant rotatory and lateral listhesis presenting with severe occipital headache. This represents a novel etiology for this diagnosis and our report illustrates technical considerations when instrumenting the C1-C2 segment. We report a case of severe occipital headache due to C1-C2 instability with resultant left C2 nerve compression in the setting of erosion of the vertebral artery into the C1-C2 facet complex. A 68-year-old woman presented with a 12-month history of progressively debilitating headache and neck pain with atlanto-axial instability. Computed tomography (CT) angiography demonstrated erosion of the left vertebral artery into the left C1-C2 facet complex. In addition, the tortuous vertebral arteries had eroded into the C2 pedicles, eliminating the possibility for posterior pedicle screw placement. The patient underwent posterior arthrodesis of C1-C2 utilizing bilateral lateral mass fixation into C1 and bilateral trans-laminar fixation into C2 with resolution of all preoperative complaints. This study constitutes the first report of a tortuous vertebral artery causing the partial destruction of a C1-C2 facet complex, as well as instability, with the clinical presentation of severe occipital headache. It hereby presents a novel etiology for both the development of C1-C2 segment instability as well as the development of occipital headache. Careful evaluation of such lesions utilizing CT angiography is important when formulating a surgical plan.

  2. Primary visual cortex in neandertals as revealed from the occipital remains from the El Sidrón site, with emphasis on the new SD-2300 specimen.

    PubMed

    García-Tabernero, Antonio; Peña-Melián, Angel; Rosas, Antonio

    2018-07-01

    The comparative analysis of the endocranial surface of the El Sidrón new occipital fragment SD-2300 shows meaningful differences in the configuration of the occipital pole region between neandertals and anatomically modern humans (AMH). The particular asymmetries found in neandertals in the venous sinus drainage and the petalial patterns are recognizable in this new specimen as well. In addition, the supra- and infracalcarine fossae of the occipital pole region appear to deviate obliquely from the mid-line when compared with sapiens. Due to the excellent preservation conditions of SD-2300, the main sulci and gyri of the occipital pole area have been identified, this degree of detail being uncommon in a fossil specimen; in general, the gyrification pattern is similar to AMH, but with some notable differences. Particularly interesting is the description of the lunate and the calcarine sulci. The lunate sulcus is located close to the occipital pole, in a similar posterior position to in other Homo species. Regarding the calcarine sulcus, there are significant differences in the primary visual cortex, with the V1 area, or Brodmann area 17, being larger in Homo neanderthalensis than in Homo sapiens. This may lead to greater visual acuity in neandertals than in sapiens. © 2018 Anatomical Society.

  3. Ventral Fronto-Temporal Pathway Supporting Cognitive Control of Episodic Memory Retrieval

    PubMed Central

    Barredo, Jennifer; Öztekin, Ilke; Badre, David

    2015-01-01

    Achieving our goals often requires guiding access to relevant information from memory. Such goal-directed retrieval requires interactions between systems supporting cognitive control, including ventrolateral prefrontal cortex (VLPFC), and those supporting declarative memory, such as the medial temporal lobes (MTL). However, the pathways by which VLPFC interacts with MTL during retrieval are underspecified. Prior neuroanatomical evidence suggests that a polysynaptic ventral fronto-temporal pathway may support VLPFC–MTL interactions. To test this hypothesis, human participants were scanned using fMRI during performance of a source-monitoring task. The strength of source information was varied via repetition during encoding. Single encoding events should produce a weaker memory trace, thus recovering source information about these items should demand greater cognitive control. Results demonstrated that cortical targets along the ventral path—anterior VLPFC, temporal pole, anterior parahippocampus, and hippocampus—exhibited increases in univariate BOLD response correlated with increases in controlled retrieval demand, independent of factors related to response selection. Further, a functional connectivity analysis indicated that these regions functionally couple and are distinguishable from a dorsal pathway related to response selection demands. These data support a ventral retrieval pathway linking PFC and MTL. PMID:24177990

  4. Ophthalmologic Outcomes Following Fronto-Orbital Advancement for Unicoronal Craniosynostosis.

    PubMed

    Gencarelli, John R; Murphy, Amanda; Samargandi, Osama A; Bezuhly, Michael

    2016-10-01

    Unicoronal craniosynostosis predisposes to ophthalmologic abnormalities such as strabismus, astigmatism, and amblyopia. The authors explored the ophthalmologic outcomes following fronto-orbital advancement (FOA). A systematic search of PubMed, Embase, and the Cochrane Library was conducted. Included studies reported postoperative rates of strabismus, astigmatism, and/or amblyopia. Two independent reviewers performed screening and extracted data including preoperative rates, laterality and severity of findings, need for ocular surgery, and timing of FOA. Methodologic quality was assessed using the Methodologic Index for Non-Randomized Studies scale and American Society of Plastic Surgeons Evidence Rating Scale for Therapeutic Studies. A total of 231 abstracts were screened. Sixteen articles were eligible for qualitative synthesis including 13 case series and 3 retrospective comparative studies. Nine studies contained both preoperative and postoperative data, but for strabismus only. Postoperative prevalence of strabismus was 19% to 100%. Rates increased in 4 studies and decreased in 3. Incidences of new and resolved cases of strabismus were 0% to 60% and 0% to 33%, respectively. Twenty-five percent to 100% of patients required strabismus surgery. Postoperative rates of astigmatism were 15% to 92%. Fourteen percent to 41% had clinically significant anisometropia, predisposing to amblyopia. The postoperative prevalence of amblyopia was 3% to 56%. In summary, FOA does not appear to reduce rates of strabismus, astigmatism, or amblyopia. In addition, surgery carries the risk of iatrogenic strabismus. Earlier intervention and endoscopic techniques may reduce prevalence and severity, but additional research is required.

  5. The Neural Substrates of Cognitive Control Deficits in Autism Spectrum Disorders

    PubMed Central

    Solomon, Marjorie; Ozonoff, Sally; Ursu, Stefan; Ravizza, Susan; Cummings, Neil; Ly, Stanford; Carter, Cameron

    2009-01-01

    Executive functions deficits are among the most frequently reported symptoms of autism spectrum disorders (ASDs), however, there have been few functional magnetic resonance imaging (fMRI) studies that investigate the neural substrates of executive functions deficits in ASDs, and only one in adolescents. The current study examined cognitive control –the ability to maintain task context online to support adaptive functioning in the face of response competition—in 22 adolescents aged 12–18 with autism spectrum disorders and 23 age, gender, and IQ matched typically developing subjects. During the cue phase of the task, where subjects must maintain information online to overcome a prepotent response tendency, typically developing subjects recruited significantly more anterior frontal (BA 10), parietal (BA 7, 40), and occipital regions (BA 18) for high control trials (25% of trials) versus low control trials (75% of trials). Both groups showed similar activation for low control cues, however the ASD group exhibited significantly less activation for high control cues. Functional connectivity analysis using time series correlation, factor analysis, and beta series correlation methods provided convergent evidence that the ASD group exhibited lower levels of functional connectivity and less network integration between frontal, parietal, and occipital regions. In the typically developing group, fronto-parietal connectivity was related to lower error rates on high control trials. In the autism group, reduced fronto-parietal connectivity was related to attention deficit hyperactivity disorder symptoms. PMID:19410583

  6. A prospective study of diffusion weighted magnetic resonance imaging abnormalities in patients with cluster of seizures and status epilepticus.

    PubMed

    Jabeen, S A; Cherukuri, Pavankumar; Mridula, Rukmini; Harshavardhana, K R; Gaddamanugu, Padmaja; Sarva, Sailaja; Meena, A K; Borgohain, Rupam; Jyotsna Rani, Y

    2017-04-01

    To study the frequency, imaging characteristics, and clinical predictors for development of periictal diffusion weighted MRI abnormalities. We prospectively analyzed electro clinical and imaging characteristic of adult patients with cluster of seizures or status epilepticus between November 2013 and November 2015, in whom the diffusion weighted imaging was done within 24h after the end of last seizure (clinical or electrographic). There were thirty patients who fulfilled the inclusion and exclusion criteria. Twenty patients (66%) had periictal MRI abnormalities. Nine patients (34%) did not have any MRI abnormality. All the patients with PMA had abnormalities on diffusion weighted imaging (DWI). Hippocampal abnormalities were seen in nine (53%), perisylvian in two (11.7%), thalamic in five (30%), splenium involvement in two (11.7%) and cortical involvement (temporo-occipital, parieto-occipital, temporo-parietal, fronto-parietal and fronto-temporal) in sixteen (94.1%) patients. Complete reversal of DWI changes was noted in sixteen (80%) patients and four (20%) patients showed partial resolution of MRI abnormalities. Mean duration of seizures was significantly higher among patients with PMA (59.11+20.97h) compared to those without MRI changes (27.33+9.33h) (p<0.001). Diffusion abnormalities on MRI are common in patients with cluster of seizures and status epilepticus and were highly concordant with clinical semiology and EEG activity. Patients with longer duration of seizures/status were more likely to have PMA. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Alfred Walter Campbell and the visual functions of the occipital cortex.

    PubMed

    Macmillan, Malcolm

    2014-07-01

    In his pioneering cytoarchitectonic studies of the human brain, Alfred Walter Campbell identified two structurally different areas in the occipital lobes and assigned two different kinds of visual functions to them. The first area, the visuosensory, was essentially on the mesial surface of the calcarine fissure. It was the terminus of nervous impulses generated in the retina and was where simple visual sensations arose. The second area, the visuopsychic, which surrounded or invested the first, was where sensations were interpreted and elaborated into visual perceptions. I argue that Campbell's distinction between the two areas was the starting point for the eventual differentiation of areas V1-V5. After a brief outline of Campbell's early life and education in Australia and of his Scottish medical education and early work as a pathologist at the Lancashire County Lunatic Asylum at Rainhill near Liverpool, I summarise his work on the human brain. In describing the structures he identified in the occipital lobes, I analyse the similarities and differences between them and the related structures identified by Joseph Shaw Bolton. I conclude by proposing some reasons for how that work came to be overshadowed by the later studies of Brodmann and for the more general lack of recognition given Campbell and his work. Those reasons include the effect of the controversies precipitated by Campbell's alliance with Charles Sherrington over the functions of the sensory and motor cortices. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Recovery of injured arcuate fasciculus in the dominant hemisphere in a patient with an intracerebral hemorrhage.

    PubMed

    Jang, Sung Ho; Lee, Han Do

    2014-12-01

    This study reports on a patient with an intracerebral hemorrhage who showed recovery of an injured arcuate fasciculus (AF) in the dominant hemisphere, using follow-up diffusion tensor tractography. A 43-year-old right-handed man presented with severe aphasia and hemiparesis resulting from a spontaneous intracerebral hemorrhage in the left parietotemporal lobes. The patient showed severe aphasia at 1 month after onset, with an aphasia quotient of 5% on the Korean-Western Aphasia Battery. He underwent comprehensive rehabilitative therapy until 22 months after onset and his aphasia showed improvement, with an aphasia quotient of 58% on the Korean-Western Aphasia Battery. On 1-month diffusion tensor tractography, only the thin ascending part of the left AF from the Wernicke area remained. In contrast, on 16-month diffusion tensor tractography, the injured left AF was thickened and elongated to around the left Broca area; however, discontinuation of the left AF was observed around the left Broca area, and this continuation was elongated to the left Broca area on 22-month diffusion tensor tractography. This study reports on a patient who showed recovery from injury of the left AF along with improvement of aphasia. Recovery of the injured AF in the dominant hemisphere appears to be one of the mechanisms for recovery from aphasia.

  9. Microstructure of frontoparietal connections predicts individual resistance to sleep deprivation.

    PubMed

    Cui, Jiaolong; Tkachenko, Olga; Gogel, Hannah; Kipman, Maia; Preer, Lily A; Weber, Mareen; Divatia, Shreya C; Demers, Lauren A; Olson, Elizabeth A; Buchholz, Jennifer L; Bark, John S; Rosso, Isabelle M; Rauch, Scott L; Killgore, William D S

    2015-02-01

    Sleep deprivation (SD) can degrade cognitive functioning, but growing evidence suggests that there are large individual differences in the vulnerability to this effect. Some evidence suggests that baseline differences in the responsiveness of a fronto-parietal attention system that is activated during working memory (WM) tasks may be associated with the ability to sustain vigilance during sleep deprivation. However, the neurocircuitry underlying this network remains virtually unexplored. In this study, we employed diffusion tensor imaging (DTI) to investigate the association between the microstructure of the axonal pathway connecting the frontal and parietal regions--i.e., the superior longitudinal fasciculus (SLF)--and individual resistance to SD. Thirty healthy participants (15 males) aged 20-43 years underwent functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI) at rested wakefulness prior to a 28-hour period of SD. Task-related fronto-parietal fMRI activation clusters during a Sternberg WM Task were localized and used as seed regions for probabilistic fiber tractography. DTI metrics, including fractional anisotropy, mean diffusivity, axial and radial diffusivity were measured in the SLF. The psychomotor vigilance test (PVT) was used to evaluate resistance to SD. We found that activation in the left inferior parietal lobule (IPL) and dorsolateral prefrontal cortex (DLPFC) positively correlated with resistance. Higher fractional anisotropy of the left SLF comprising the primary axons connecting IPL and DLPFC was also associated with better resistance. These findings suggest that individual differences in resistance to SD are associated with the functional responsiveness of a fronto-parietal attention system and the microstructural properties of the axonal interconnections. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Inattention Predicts Increased Thickness of Left Occipital Cortex in Men with Attention-Deficit/Hyperactivity Disorder.

    PubMed

    Sörös, Peter; Bachmann, Katharina; Lam, Alexandra P; Kanat, Manuela; Hoxhaj, Eliza; Matthies, Swantje; Feige, Bernd; Müller, Helge H O; Thiel, Christiane; Philipsen, Alexandra

    2017-01-01

    Attention-deficit/hyperactivity disorder (ADHD) in adulthood is a serious and frequent psychiatric disorder with the core symptoms inattention, impulsivity, and hyperactivity. The principal aim of this study was to investigate associations between brain morphology, i.e., cortical thickness and volumes of subcortical gray matter, and individual symptom severity in adult ADHD. Surface-based brain morphometry was performed in 35 women and 29 men with ADHD using FreeSurfer. Linear regressions were calculated between cortical thickness and the volumes of subcortical gray matter and the inattention, hyperactivity, and impulsivity subscales of the Conners Adult ADHD Rating Scales (CAARS). Two separate analyses were performed. For the first analysis, age was included as additional regressor. For the second analysis, both age and severity of depression were included as additional regressors. Study participants were recruited between June 2012 and January 2014. Linear regression identified an area in the left occipital cortex of men, covering parts of the middle occipital sulcus and gyrus, in which the score on the CAARS inattention subscale predicted increased mean cortical thickness [ F (1,27) = 26.27, p  < 0.001, adjusted R 2  = 0.4744]. No significant associations were found between cortical thickness and the scores on CAARS subscales in women. No significant associations were found between the volumes of subcortical gray matter and the scores on CAARS subscales, neither in men nor in women. These results remained stable when severity of depression was included as additional regressor, together with age. Increased cortical thickness in the left occipital cortex may represent a mechanism to compensate for dysfunctional attentional networks in male adult ADHD patients.

  11. Cryoablation for the treatment of occipital neuralgia.

    PubMed

    Kim, Chong H; Hu, Wayne; Gao, Jeff; Dragan, Kristin; Whealton, Thomas; Julian, Christina

    2015-01-01

    Treatment of occipital neuralgia (ON) can be complex, though many treatment options exist. Cryoablation (CA) is an interventional modality that has been used successfully in chronic neuropathic conditions and is one such option. To study and evaluate the efficacy and safety of cryoablation for treatment of ON. Retrospective evaluation. Academic university-based pain management center. All patients received local anesthetic injections for ON. Patients with greater than or equal to 50% relief and less than 2 week duration of relief were treated with CA. Thirty-eight patients with an average age of 49.6 years were included. Of the 38 patients, 20 were treated for unilateral greater ON, 10 for unilateral greater and lesser ON, and 8 for bilateral greater ON. There were 10 men and 28 women, with an average age of 45.2 years and 51.1 years, respectively. The average relief for all local anesthetic injections was 71.2%, 58.3% for patients who reported 50 - 74% relief (Group 1) and 82.75% for patients who reported greater than 75% relief (Group 2). The average improvement of pain relief with CA was 57.9% with an average duration of 6.1 months overall. Group 1 reported an average of 45.2% relief for an average of 4.1 months with CA. In comparison, Group 2 reported an average of 70.5% relief for 8.1 months. The percentage of relief (P = 0.007) and duration of relief (P = 0.0006) was significantly improved in those reporting at least 75% relief of pain with local anesthetic injections (Group 2 vs Group 1). Though no significance in improvement from CA was found in men, significance was seen in women with at least 75% benefit with local anesthetic injections in terms of duration (P = 0.03) and percentage (P = 0.001) of pain relief with CA. The average pain score prior to CA was 8 (0 - 10 visual analog scale, VAS), this improved to 4.2, improvement of 3.8 following CA at 6 months (P = 0.03). Of the 38 patients, 3 (7.8%) adverse effects were seen. Two patients reported post

  12. Massive cortico-subcortical ischemic stroke with a consecutive hemorrhagic event: a case report.

    PubMed

    Pirici, D; Ion, Daniela Adriana; Mogoantă, L; Mărgăritescu, Otilia; Pirici, Ionica; Foarfă, Camelia; Tudorică, Valerica; Panduru, N M; Coconu, Marieta; Checheriţă, I A

    2011-01-01

    We report a case of a 78-year-old woman with a large cerebral infarction probably due to athermanous embolism following atrial fibrillation. The patient, known with atrial fibrillation, high blood pressure and heart failure, complained of headache and motor impairment on the left side of the body. CT imaging revealed a subacute ischemic lesion in the right fronto-occipital lobes, and an old ischemic lesion in the right fronto-parietal lobes. Anticoagulant treatment was conducted with careful monitoring of the coagulability status. After almost three weeks, suddenly the patient became comatose and died shortly after. Macroscopic and microscopic examination confirmed the cortico-subcortical ischemic lesions, but also identified a fresh hemorrhagic site in pons, distant from the initial lesion sites. An immunohistochemical study identified blood vessels in the ischemic sites completely isolated from any glial support. This is a rare case of a large cerebral infarction with a pontine hemorrhagic event.

  13. Factoring the brain signatures of anesthesia concentration and level of arousal across individuals.

    PubMed

    Barttfeld, Pablo; Bekinschtein, Tristan A; Salles, Alejo; Stamatakis, Emmanuel A; Adapa, Ram; Menon, David K; Sigman, Mariano

    2015-01-01

    Combining resting-state functional magnetic resonance imaging (fMRI) connectivity and behavioral analysis during sedation, we factored out general effects of the anesthetic drug propofol and a specific index of conscious report, participants' level of responsiveness. The factorial analysis shows that increasing concentration of propofol in blood specifically decreases the connectivity strength of fronto-parietal cortical loops. In contrast, loss of responsiveness is indexed by a functional disconnection between the thalamus and the frontal cortex, balanced by an increase in connectivity strength of the thalamus to the occipital and temporal regions of the cortex.

  14. Fronto-Parietal Network Reconfiguration Supports the Development of Reasoning Ability.

    PubMed

    Wendelken, Carter; Ferrer, Emilio; Whitaker, Kirstie J; Bunge, Silvia A

    2016-05-01

    The goal of this fMRI study was to examine how well developmental improvements in reasoning ability can be explained by changes in functional connectivity between specific nodes in prefrontal and parietal cortices. To this end, we examined connectivity within the lateral fronto-parietal network (LFPN) and its relation to reasoning ability in 132 children and adolescents aged 6-18 years, 56 of whom were scanned twice over the course of 1.5 years. Developmental changes in strength of connections within the LFPN were most prominent in late childhood and early adolescence. Reasoning ability was related to functional connectivity between left rostrolateral prefrontal cortex (RLPFC) and inferior parietal lobule (IPL), but only among 12-18-year olds. For 9-11-year olds, reasoning ability was most strongly related to connectivity between left and right RLPFC; this relationship was mediated by working memory. For 6-8-year olds, significant relationships between connectivity and performance were not observed; in this group, processing speed was the primary mediator of improvement in reasoning ability. We conclude that different connections best support reasoning at different points in development and that RLPFC-IPL connectivity becomes an important predictor of reasoning during adolescence. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  15. Spatiotemporal commonalities of fronto-parietal activation in attentional orienting triggered by supraliminal and subliminal gaze cues: An event-related potential study.

    PubMed

    Uono, Shota; Sato, Wataru; Sawada, Reiko; Kochiyama, Takanori; Toichi, Motomi

    2018-05-04

    Eye gaze triggers attentional shifts with and without conscious awareness. It remains unclear whether the spatiotemporal patterns of electric neural activity are the same for conscious and unconscious attentional shifts. Thus, the present study recorded event-related potentials (ERPs) and evaluated the neural activation involved in attentional orienting induced by subliminal and supraliminal gaze cues. Nonpredictive gaze cues were presented in the central field of vision, and participants were asked to detect a subsequent peripheral target. The mean reaction time was shorter for congruent gaze cues than for incongruent gaze cues under both presentation conditions, indicating that both types of cues reliably trigger attentional orienting. The ERP analysis revealed that averted versus straight gaze induced greater negative deflection in the bilateral fronto-central and temporal regions between 278 and 344 ms under both supraliminal and subliminal presentation conditions. Supraliminal cues, irrespective of gaze direction, induced a greater negative amplitude than did subliminal cues at the right posterior cortices at a peak of approximately 170 ms and in the 200-300 ms. These results suggest that similar spatial and temporal fronto-parietal activity is involved in attentional orienting triggered by both supraliminal and subliminal gaze cues, although inputs from different visual processing routes (cortical and subcortical regions) may trigger activity in the attentional network. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Fronto-limbic dysfunction in response to facial emotion in borderline personality disorder: an event-related fMRI study.

    PubMed

    Minzenberg, Michael J; Fan, Jin; New, Antonia S; Tang, Cheuk Y; Siever, Larry J

    2007-08-15

    Clinical hallmarks of borderline personality disorder (BPD) include social and emotional dysregulation. We tested a model of fronto-limbic dysfunction in facial emotion processing in BPD. Groups of 12 unmedicated adults with BPD by DSM-IV and 12 demographically-matched healthy controls (HC) viewed facial expressions (Conditions) of neutral emotion, fear and anger, and made gender discriminations during rapid event-related functional magnetic resonance imaging (fMRI). Analysis of variance of Region of Interest signal change revealed a statistically significant effect of the Group-by-Region-by-Condition interaction. This was due to the BPD group exhibiting a significantly larger magnitude of deactivation (relative to HC) in the bilateral rostral/subgenual anterior cingulate cortex (ACC) to fear and in the left ACC to fear minus neutral; and significantly greater activation in the right amygdala to fear minus neutral. There were no significant between-group differences in ROI signal change in response to anger. In voxel-wise analyses constrained within these ROIs, the BPD group exhibited significant changes in the fear minus neutral contrast, with relatively less activation in the bilateral rostral/subgenual ACC, and greater activation in the right amygdala. In the anger minus neutral contrast this pattern was reversed, with the BPD group showing greater activation in the bilateral rostral/subgenual ACC and less activation in the bilateral amygdala. We conclude that adults with BPD exhibit changes in fronto-limbic activity in the processing of fear stimuli, with exaggerated amygdala response and impaired emotion-modulation of ACC activity. The neural substrates underlying processing of anger may also be altered. These changes may represent an expression of the volumetric and serotonergic deficits observed in these brain areas in BPD.

  17. No changes in parieto-occipital alpha during neural phase locking to visual quasi-periodic theta-, alpha-, and beta-band stimulation.

    PubMed

    Keitel, Christian; Benwell, Christopher S Y; Thut, Gregor; Gross, Joachim

    2018-05-08

    Recent studies have probed the role of the parieto-occipital alpha rhythm (8 - 12 Hz) in human visual perception through attempts to drive its neural generators. To that end, paradigms have used high-intensity strictly-periodic visual stimulation that created strong predictions about future stimulus occurrences and repeatedly demonstrated perceptual consequences in line with an entrainment of parieto-occipital alpha. Our study, in turn, examined the case of alpha entrainment by non-predictive low-intensity quasi-periodic visual stimulation within theta- (4 - 7 Hz), alpha- (8 - 13 Hz) and beta (14 - 20 Hz) frequency bands, i.e. a class of stimuli that resemble the temporal characteristics of naturally occurring visual input more closely. We have previously reported substantial neural phase-locking in EEG recording during all three stimulation conditions. Here, we studied to what extent this phase-locking reflected an entrainment of intrinsic alpha rhythms in the same dataset. Specifically, we tested whether quasi-periodic visual stimulation affected several properties of parieto-occipital alpha generators. Speaking against an entrainment of intrinsic alpha rhythms by non-predictive low-intensity quasi-periodic visual stimulation, we found none of these properties to show differences between stimulation frequency bands. In particular, alpha band generators did not show increased sensitivity to alpha band stimulation and Bayesian inference corroborated evidence against an influence of stimulation frequency. Our results set boundary conditions for when and how to expect effects of entrainment of alpha generators and suggest that the parieto-occipital alpha rhythm may be more inert to external influences than previously thought. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  18. Paroxysmal occipital discharges suppressed by eye opening: spectrum of clinical and imaging features at a tertiary care center in India.

    PubMed

    Kaul, Bhavna; Shukla, Garima; Goyal, Vinay; Srivastava, Achal; Behari, Madhuri

    2012-01-01

    Paroxysmal occipital discharges (PODs) demonstrating the phenomena of fixation-off sensitivity have classically been described in childhood epilepsies with occipital paroxysms. We attempted to delineate the demographic, clinical and imaging characteristics of patients whose interictal electroencephalograms (EEGs) showed occipital discharges with fixation-off sensitivity at our center. During the period between 2003 and 2005, patients whose interictal EEGs showed PODs were included in the study. A detailed history, clinical examination and EEG findings along with imaging characteristics were analyzed. Of the 9,104 interictal EEGs screened during the study period, 11 patients (6 females and 5 males) aged between 5 and 17 years were identified to have PODs with fixation-off sensitivity. Five had history of generalized tonic-clonic seizures. Three patients could be classified under Panayiotopoulos syndrome; the remaining 8 (72.2%) patients had symptomatic epilepsy. This study suggests that the phenomenon of fixation-off sensitivity is found not only in patients of idiopathic focal epilepsies, but also in a substantial number of patients of symptomatic epilepsy. The high proportion of symptomatic epilepsy with phenomenon of fixation-off sensitivity may be related to the referral pattern.

  19. Activation of the occipital cortex and deactivation of the default mode network during working memory in the early blind.

    PubMed

    Park, Hae-Jeong; Chun, Ji-Won; Park, Bumhee; Park, Haeil; Kim, Joong Il; Lee, Jong Doo; Kim, Jae-Jin

    2011-05-01

    Although blind people heavily depend on working memory to manage daily life without visual information, it is not clear yet whether their working memory processing involves functional reorganization of the memory-related cortical network. To explore functional reorganization of the cortical network that supports various types of working memory processes in the early blind, we investigated activation differences between 2-back tasks and 0-back tasks using fMRI in 10 congenitally blind subjects and 10 sighted subjects. We used three types of stimulus sequences: words for a verbal task, pitches for a non-verbal task, and sound locations for a spatial task. When compared to the sighted, the blind showed additional activations in the occipital lobe for all types of stimulus sequences for working memory and more significant deactivation in the posterior cingulate cortex of the default mode network. The blind had increased effective connectivity from the default mode network to the left parieto-frontal network and from the occipital cortex to the right parieto-frontal network during the 2-back tasks than the 0-back tasks. These findings suggest not only cortical plasticity of the occipital cortex but also reorganization of the cortical network for the executive control of working memory.

  20. Abnormal activation of the occipital lobes during emotion picture processing in major depressive disorder patients

    PubMed Central

    Li, Jianying; Xu, Cheng; Cao, Xiaohua; Gao, Qiang; Wang, Yan; Wang, Yanfang; Peng, Juyi; Zhang, Kerang

    2013-01-01

    A large number of studies have demonstrated that depression patients have cognitive dysfunction. With recently developed brain functional imaging, studies have focused on changes in brain function to investigate cognitive changes. However, there is still controversy regarding abnormalities in brain functions or correlation between cognitive impairment and brain function changes. Thus, it is important to design an emotion-related task for research into brain function changes. We selected positive, neutral, and negative pictures from the International Affective Picture System. Patients with major depressive disorder were asked to judge emotion pictures. In addition, functional MRI was performed to synchronously record behavior data and imaging data. Results showed that the total correct rate for recognizing pictures was lower in patients compared with normal controls. Moreover, the consistency for recognizing pictures for depressed patients was worse than normal controls, and they frequently recognized positive pictures as negative pictures. The consistency for recognizing pictures was negatively correlated with the Hamilton Depression Rating Scale. Functional MRI suggested that the activation of some areas in the frontal lobe, temporal lobe, parietal lobe, limbic lobe, and cerebellum was enhanced, but that the activation of some areas in the frontal lobe, parietal lobe and occipital lobe was weakened while the patients were watching positive and neutral pictures compared with normal controls. The activation of some areas in the frontal lobe, temporal lobe, parietal lobe, and limbic lobe was enhanced, but the activation of some areas in the occipital lobe were weakened while the patients were watching the negative pictures compared with normal controls. These findings indicate that patients with major depressive disorder have negative cognitive disorder and extensive brain dysfunction. Thus, reduced activation of the occipital lobe may be an initiating factor for