Science.gov

Sample records for frost layer presence

  1. A Proposal of Evaluation of Frost Layer Thickness

    NASA Astrophysics Data System (ADS)

    Yotsumoto, Hiroyuki; Ishihara, Isao; Tanio, Kenichi; Matsumoto, Ryosuke

    The frosting is an unsteady phenomenon occurs simultaneously with heat and mass transfer. Both the heat and water vapor in the humid air reach the surface of the frost layer and transfer to the cold surface. The frost surface plays an important role as an interface of heat and mass transfer between air-flow and ice-air composite solid layer. However, since the frost layer surface consists of ice and air, and is rough and unsteady, any specific definition of the frost layer thickness is not found. This paper tried to give the definition. The frost layer thickness was measured by using a micro photo-sensing device combined with a light emitter and receiver traversing normal to the frost surface. During traversing the device, a peak response from the device indicates the vertical position corresponding to the maximum frost area exposed to the emitted light i.e. air around the frost inside the frost layer. This position is defined as the frost layer position and it could give an effective frost layer.

  2. Anti-fogging and anti-frosting behaviors of layer-by-layer assembled cellulose derivative thin film

    NASA Astrophysics Data System (ADS)

    Shibraen, Mahmoud H. M. A.; Yagoub, Hajo; Zhang, Xuejian; Xu, Jian; Yang, Shuguang

    2016-05-01

    Two cellulose derivatives, quaternized cellulose (QC) and carboxymethyl cellulose (CMC), were layer-by-layer (LbL) assembled to prepare a thin film. QC was also LbL assembled with two synthetic polyelectrolytes, poly(acrylic acid) (PAA) and poly(styrene sulfonate) (PSS), separately. The anti-fogging and anti-frosting properties of the assembled films were studied. QC/CMC thin film exhibits anti-fogging and anti-frosting behaviors, whereas QC/PAA and QC/PSS films do not have capacity for anti-fogging and anti-frosting. The anti-fogging and anti-frosting properties of QC/CMC film are attributed to that water molecules can be quickly adsorbed into the matrix of the film. The water adsorption of QC/CMC film was illustrated by the optical thickness increment.

  3. Frost-free North Polar Layers in the Good Old Summertime

    NASA Technical Reports Server (NTRS)

    2006-01-01

    17 October 2006 The middle portion of the northern summer season is the ideal time of year to capture relatively dust- and haze-free views of martian north polar terrain. This year, much more of the north polar cap has sublimed away than has been evident in previous northern summers going back to 1999, when Mars Global Surveyor (MGS) began the Mapping Phase of the mission. This MGS Mars Orbiter Camera (MOC) image shows a nearly ice-free view of layers exposed by erosion in the north polar region. The light-toned patches are remnants of water ice frost. The layers are generally considered by the Mars scientific community to be record of past depositions of ice and dust. This picture is located near 82.5oN, 118.6oW, and covers an area about 3 km by 10 km (1.9 by 6.2 miles). Sunlight illuminates the scene from the upper left; the image was acquired on 22 September 2006.

  4. Enhanced by Frost

    NASA Technical Reports Server (NTRS)

    2005-01-01

    30 September 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows outcrops of south polar layered terrain. Their appearance in this July 2005 springtime image is enhanced by bright patches of carbon dioxide frost. The frost is left over from the previous southern winter season; by summer, the frost would be gone.

    Location near: 84.6oS, 203.5oW Image width: width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Spring

  5. Frost on Mars Rover Opportunity

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Frost can form on surfaces if enough water is present and the temperature is sufficiently low. On each of NASA's Mars Exploration Rovers, the calibration target for the panoramic camera provides a good place to look for such events. A thin frost was observed by Opportunity's panoramic camera on the rover's 257th sol (Oct. 13, 2004) 11 minutes after sunrise (left image). The presence of the frost is most clearly seen on the post in the center of the target, particularly when compared with the unsegmented outer ring of the target, which is white. The post is normally black. For comparison, note the difference in appearance in the image on the right, taken about three hours later, after the frost had dissipated. Frost has not been observed at Spirit, where the amount of atmospheric water vapor is observed to be appreciably lower. Both images were taken through a filter centered at a wavelength of 440 nanometers (blue).

  6. Identifying and Mapping Seasonal Surface Water Frost with MGS TES

    NASA Astrophysics Data System (ADS)

    Bapst, J.; Bandfield, J. L.; Wood, S. E.

    2013-12-01

    The Thermal Emission Spectrometer (TES) visible/near-infrared and thermal infrared bolometers measured surface broadband albedo and temperature for more than three Mars years. As seasons progress on Mars, surface temperatures may fall below the frost point of volatiles in the atmosphere (namely, carbon dioxide and water). Systematic mapping of the spatial and temporal occurrence of these volatiles in the martian atmosphere, on the surface, and in the subsurface has shown their importance in understanding the climate of Mars. However, few studies have investigated seasonal surface water frost and its role in the global water cycle. We examine zonally-averaged TES daytime albedo, temperature, and water vapor abundance data [after Smith, 2004] to map the presence of surface water frost on Mars. Surface water frost occurs in the polar and mid latitudes, in regions with surface temperatures less than 220 K and above 150 K, and can significantly increase albedo relative to the bare surface. In the northern hemisphere water frost is most apparent in late fall/early winter, before the onset of carbon dioxide frost. Dust storms occurring near northern winter solstice affect albedo data and prevent us from putting a latitudinal lower limit on the water frost in the northern hemisphere. Regardless, seasonal water frost occurs at least as low as 48°N in Utopia Planitia, beginning at Ls=~230°, as observed by Viking Lander 2 [Svitek and Murray, 1990]. Daytime surface water frost was also observed at the Phoenix Lander site (68°N) beginning at Ls=~160° [Cull et al., 2010]. The timing of albedo variations observed by TES agree relatively well with lander observations of seasonal frost. Seasonal water frost is not detected during fall in the southern hemisphere. A potential explanation for this discrepancy, compared with frost detections in the north, is the disparity in atmospheric water vapor abundance between the two hemispheres. The frost point temperatures for water vapor

  7. Bioinspired Antifreeze Secreting Frost-Responsive Pagophobic Coatings

    NASA Astrophysics Data System (ADS)

    Sun, Xiaoda; Damle, Viraj; Rykaczewski, Konrad

    2014-11-01

    Prevention of ice and frost accumulation is of interest to transportation, power generation, and agriculture industries. Superhydrophobic and lubricant impregnated pagophobic coatings have been proposed, however, they both fail in frosting conditions. Inspired by functional liquid secretion in natural systems, such as toxin secretion by poison dart frost in response to predator presence, we developed frost-responsive antifreeze secreting pagophobic coatings. These are bi-layered coatings with an inner superhydrophilic ``dermis'' infused with antifreeze and an outer permeable superhydrophobic ``epidermis.'' The superhydrophobic epidermis separates the antifreeze from the environment and prevents ice accumulation by repelling impinging water droplets. In frosting conditions, the antifreeze is secreted from the dermis through pores in the epidermis either due to contact with condensed droplets or temporary switch of the epidermis wettability from hydrophobic to hydrophilic caused by surface icing. Here we demonstrate superior performance of this multifunctional coating in simulated frosting, freezing mist/fog, and freezing spray/rain conditions. KR acknowledges startup funding from ASU.

  8. Robert Frost on Writing.

    ERIC Educational Resources Information Center

    Barry, Elaine

    This book is a collection of Frost's letters, reviews, introductions, lectures, and interviews on writing dating back to 1913. It provides Frost's view of literature, and its relation to language and social order. Part one, "Frost as a Literary Critic," discusses the scope of Frost's criticism and Frost as both critical theorist and practical…

  9. Crushed aggregates for roads and their properties for frost protection

    NASA Astrophysics Data System (ADS)

    Kuznetsova, Elena; Willy Danielsen, Svein

    2015-04-01

    grain size distribution and allowable fines content. The presence of fines in these layers can modify their frost susceptibility and cause severe degradation, especially with recent trends in climate change leading to more freeze-thaw cycle events during the winter season (Konrad & Lemieux, 2005). A higher content of fines due to sub-base wear will increase moisture in the structure and the risk of subsequent frost heave. Guthrie and Hermansson (2003) showed by laboratory tests in a closed drainage system that retained water in a soil sample was sufficient to feed the frost heave. Even though the most severe frost heave in real pavements occurs when the material is in contact with free water (open drainage system) we wanted to study freezing behaviour in aggregate materials having initial water contents (closed drainage system). The study presented here is part of a larger research program to investigate the properties of crushed rock materials in relation to frost heaving in the frost protection layer. An important issue will be the resistivity for frost penetration due to presence of water and fine particles. Due to new requirements for allowed fines content, it's essential to investigate if increased amount of stones <0.063 mm together with increasing of water content in the frost protection layer, will not lead to more frost heave problems. The objective of the present study was to investigate the influence of fines on the freezing characteristics of well-graded crushed aggregate in a closed drainage system. The reason for it is the understanding of the behaviour of the aggregate material when there is no access for any other water resources besides existing in the pavement (ex., from rain-fall). At the same time we did some estimation of thermal conductivity and frost penetration depth for all tested material using different aggregate density and water content. Experiments were made by using greenstones (methamorphic basaltic lava), collected in Vassfjellet, area

  10. Frost Growth and Densification in Laminar Flow Over Flat Surfaces

    NASA Technical Reports Server (NTRS)

    Kandula, Max

    2011-01-01

    One-dimensional frost growth and densification in laminar flow over flat surfaces has been theoretically investigated. Improved representations of frost density and effective thermal conductivity applicable to a wide range of frost circumstances have been incorporated. The validity of the proposed model considering heat and mass diffusion in the frost layer is tested by a comparison of the predictions with data from various investigators for frost parameters including frost thickness, frost surface temperature, frost density and heat flux. The test conditions cover a range of wall temperature, air humidity ratio, air velocity, and air temperature, and the effect of these variables on the frost parameters has been exemplified. Satisfactory agreement is achieved between the model predictions and the various test data considered. The prevailing uncertainties concerning the role air velocity and air temperature on frost development have been elucidated. It is concluded that that for flat surfaces increases in air velocity have no appreciable effect on frost thickness but contribute to significant frost densification, while increase in air temperatures results in a slight increase the frost thickness and appreciable frost densification.

  11. Crushed aggregates for roads and their properties for frost protection

    NASA Astrophysics Data System (ADS)

    Kuznetsova, Elena; Willy Danielsen, Svein

    2015-04-01

    Crushed aggregates for roads and their properties for frost protection Elena Kuznetsova, NTNU and Svein Willy Danielsen, SINTEF With natural (fluvial, glaciofluvial) sand/gravel resources being rapidly depleted in many countries, the last decade has seen a significant trend towards using more alternative materials for construction purpose. In Norway the development and implementation of crushed aggregate technology has been the most important way to get around the problem with increased resource scarcity. Today Norway is one the European countries with the highest percentage of crushed/manufactured aggregates. A crushed product will reveal a different particle size distribution, a sharper, more angular particle shape, and not least - a significantly different mineral composition. The latter may often be characterised by more polymineral composition, and it will also much more depend on the local bedrock. When handled with care and knowledge, these differences can give the user a lot of new opportunities relating to materials design. Norwegian road construction practice has changed significantly during the last 40 years due to the replacement of gravel by crushed rock materials in the granular layers of the pavements. The use of non-processed rock materials from blasting was allowed in the subbase layer until 2012. This was a reason for a lot of problems with frost heaving due to inhomogeneity of this material, and in practice it was difficult to control the size of large stones. Since 2012 there is a requirement that rock materials for use in the subbase layer shall be crushed (Handbook N200, 2014). During the spring 2014 The Norwegian Public Roads Administration introduced a new handbook with requirements for roads construction in Norway, including new specifications for the frost protection layer. When pavements are constructed over moist and/or frost susceptible soils in cold and humid environments, the frost protection layer also becomes a very important part

  12. Frosted Chasma Boreale Dunes

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-390, 13 June 2003

    This is a Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) view of frost-covered sand dunes in Chasma Boreale in the early northern spring season. Dark spots, some of them with bright halos of re-precipitated frost, have formed as the dunes begin to defrost. Most of the frost is carbon dioxide which freezes out of the atmosphere during the cold martian polar winters. This picture is located near 84.7oN, 358.8oW, and is illuminated from the lower left.

  13. Polygons in Martian Frost

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-428, 21 July 2003

    This June 2003 Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a polygonal pattern developed in seasonal carbon dioxide frost in the martian southern hemisphere. The frost accumulated during the recent southern winter; it is now spring, and the carbon dioxide frost is subliming away. This image is located near 80.4oS, 200.2oW; it is illuminated by sunlight from the upper left, and covers an area 3 km (1.9 mi) across.

  14. A model for nocturnal frost formation on a wing section: Aircraft takeoff performance penalties

    NASA Technical Reports Server (NTRS)

    Dietenberger, M. A.

    1983-01-01

    The nocturnal frost formation on a wing section, to explain the hazard associated with frost during takeoff was investigated. A model of nocturnal frost formation on a wing section which predicts when the nocturnal frost will form and also its thickness and density as a function of time was developed. The aerodynamic penalities as related to the nocturnal frost formation properties were analyzed to determine how much the takeoff performance would be degraded by a specific frost layer. With an aircraft takeoff assuming equations representing a steady climbing flight, it is determined that a reduction in the maximum gross weight or a partial frost clearance and a reduction in the takeoff angle of attack is needed to neutralize drag and life penalities which are due to frost. Atmospheric conditions which produce the most hazardous frost buildup are determined.

  15. The control of carbon dioxide cryodeposits. [of frost for liquid hydrogen tankage thermal protection

    NASA Technical Reports Server (NTRS)

    Sharpe, E. L.

    1973-01-01

    An experimental study has been conducted to investigate the parameters affecting the cryodeposition of carbon dioxide frost. In the investigation carbon dioxide frost was cryodeposited from a helium-carbon dioxide mixture into a layer of fibrous insulation surrounding a cylindrical cryogenic tank. Results of the study indicated that not only did deposition occur on the frost surface but also within the frost layer. Over the range of variables investigated both the frost density and the mass of frost deposited were most sensitive to the time of deposition, the percent of carbon dioxide in the purge-gas mixture, and the thickness of the insulation. Frost density and mass of frost deposition were found to increase with time and percent carbon dioxide, and to decrease with increasing insulation thickness.

  16. Atmospheric response to soil-frost and snow in Alaska in March

    NASA Astrophysics Data System (ADS)

    Mölders, N.; Walsh, J. E.

    A hydro-thermodynamic soil-vegetation model including soil freezing/thawing (soil-frost) and snow-metamorphism has been integrated into the PennState/NCAR Mesoscale Meteorological Model MM5 in a two-way coupled mode. A hierarchy of simulations with and without the soil-frost module, each combined with and without the snow module, shows the influence of snow-cover and soil-frost on weather in Alaska. Herein the landscape is featured as it is typically by mesoscale models. Theoretical considerations suggest that organic soil types should be considered in mesoscale modeling because of their different thermal and hydrological behavior as compared to mineral soils. The Ludwig-Soret and Dufour effects are small, but increase appreciably during freezing/thawing and snow-melt. The snow and soil-frost processes have a demonstrable impact on the surface thermal and hydrological regimes and on the near-surface atmospheric conditions even on the short (synoptic) timescales. The presence of snow-cover results in a highly stable stratification. In cloud-free areas, the enhanced loss of radiant energy and cooling of the air over snow-cover lead to a positive feedback to relatively colder, drier conditions. In cloudy areas, a positive feedback to warmer, moister conditions develops over snow-cover. As the changes in atmospheric humidity and temperature caused by snow-cover propagate into the pressure field, sea level pressure is lower by more than 1hPa in the simulations with snow-cover. Although the effect of soil-frost alone is an order of magnitude smaller, the soil-frost snow system leads to an increase of the pressure difference to 1.2hPa. The changes in the pressure field alter wind speed and direction slightly. Soil-frost results in soil temperature differences of 2-5K in the upper soil layers, while snow results in differences of 3-10K. Soil-frost has a notably greater impact in cloud-free than cloudy areas. When a snow-cover is present, frozen soil enhances the insulating

  17. Frost on Mars

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image shows bluish-white frost seen on the Martian surface near NASA's Phoenix Mars Lander. The image was taken by the lander's Surface Stereo Imager on the 131st Martian day, or sol, of the mission (Oct. 7, 2008). Frost is expected to continue to appear in images as fall, then winter approach Mars' northern plains.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  18. Moisture performance analysis of EPS frost insulation

    SciTech Connect

    Ojanen, T.; Kokko, E.

    1997-11-01

    A horizontal layer of expanded polystyrene foam (EPS) is widely used as a frost insulation of building foundations in the Nordic countries. The performance properties of the insulation depend strongly on the moisture level of the material. Experimental methods are needed to produce samples for testing the material properties in realistic moisture conditions. The objective was to analyze the moisture loads and the wetting mechanisms of horizontal EPS frost insulation. Typical wetting tests, water immersion and diffusive water vapor absorption tests, were studied and the results were compared with the data from site investigations. Usually these tests give higher moisture contents of EPS than what are detected in drained frost insulation applications. Also the effect of different parameters, like the immersion depth and temperature gradient were studied. Special attention was paid to study the effect of diffusion on the wetting process. Numerical simulation showed that under real working conditions the long period diffusive moisture absorption in EPS frost insulation remained lower than 1% Vol. Moisture performance was determined experimentally as a function of the distance between the insulation and the free water level in the ground. The main moisture loads and the principles for good moisture performance of frost insulation are presented.

  19. Frost-covered dunes

    NASA Technical Reports Server (NTRS)

    1999-01-01

    MOC image of dunes in Chasma Boreale, a giant trough in the north polar cap. This September 1998 view shows dark sand emergent from beneath a veneer of bright frost left over from the northern winter that ended in July 1998.

  20. Tints, Shades and Frost

    ERIC Educational Resources Information Center

    Sterling, Joan

    2009-01-01

    This article describes a classroom art project inspired by the work of Robert Frost, one of the most acclaimed and beloved American poets of all time. Using tints and shades in a composition, this project demonstrates how quality literature may be incorporated into elementary art lessons in a very useful way, making art an important complement to…

  1. A frost formation model and its validation under various experimental conditions

    NASA Technical Reports Server (NTRS)

    Dietenberger, M. A.

    1982-01-01

    A numerical model that was used to calculate the frost properties for all regimes of frost growth is described. In the first regime of frost growth, the initial frost density and thickness was modeled from the theories of crystal growth. The 'frost point' temperature was modeled as a linear interpolation between the dew point temperature and the fog point temperature, based upon the nucleating capability of the particular condensing surfaces. For a second regime of frost growth, the diffusion model was adopted with the following enhancements: the generalized correlation of the water frost thermal conductivity was applied to practically all water frost layers being careful to ensure that the calculated heat and mass transfer coefficients agreed with experimental measurements of the same coefficients.

  2. Morning Frost on Martian Surface

    NASA Technical Reports Server (NTRS)

    2008-01-01

    A thin layer of water frost is visible on the ground around NASA's Phoenix Mars Lander in this image taken by the Surface Stereo Imager at 6 a.m. on Sol 79 (August 14, 2008), the 79th Martian day after landing. The frost begins to disappear shortly after 6 a.m. as the sun rises on the Phoenix landing site.

    The sun was about 22 degrees above the horizon when the image was taken, enhancing the detail of the polygons, troughs and rocks around the landing site.

    This view is looking east southeast with the lander's eastern solar panel visible in the bottom lefthand corner of the image. The rock in the foreground is informally named 'Quadlings' and the rock near center is informally called 'Winkies.'

    This false color image has been enhanced to show color variations.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  3. Micrometeorological conditions under different soil frost depths

    NASA Astrophysics Data System (ADS)

    Nemoto, M.; Hirota, T.; Iwata, Y.; Suzuki, S.; Hasegawa, S.

    2007-12-01

    Eastern Hokkaido, where is one of the largest agricultural production regions in Japan, is characterized by low air temperature and relatively thin snow covers resulting in soil frost over the winter. However, the soil frost depth has been significantly decreasing since late 1980's due to an insulation from the cold air by a thick snow cover developing in early winter. In the current study, soil water movement, soil temperature, and surface heat balance under different soil frost conditions were monitored to obtain a knowledge of changes in micrometeorological condition of the agricultural production systems in the Eastern Hokkaido associated with the decreasing soil frost depth in the region. A paired soil plot experiment was conducted from Nov. 2005 to May 2006, where the frost depth was artificially enhanced by removing snow for 24 days in the retreatment plot and the natural condition was maintained in the control plot. The soil in the experimental field was classified as Andisol with much porosity and high drainability. In each plot, water content and soil temperature were measured by TDR and thermocouple, respectively. The maximum soil-frost depth in the treatment and control plots resulted in 43.8 and 13.6ċm, respectively. Changes in snow water equivalent volume SWE) and snow depth were manually recorded. The difference of SWE just before melting snow was same. The day of snow disappearing was 18th April 2006 for both plots. The control plot with a thin frozen layer allowed infiltration of snow melt water, and water content at the lower subsoil increased accordance in snowmelting, whereas a thick frozen layer in the treatment plot impeded the infiltration resulting in waterlogging being observed on the soil surface. These differences in profile of water content and in developing soil frost depth results in more delay in increasing soil temperature at the deeper depth. At the surface, however, the difference in soil temperature was quickly disappeared, and

  4. A transient analysis of frost formation on a parallel plate evaporator

    SciTech Connect

    Martinez-Frias, J.; Aceves, S.M.; Hernandez-Guerrero, A.

    1996-12-31

    This paper presents the development of a transient model for evaluating frost formation on a parallel plate evaporator for heat pump applications. The model treats the frost layer as a porous substance, and applies the equations of conservation of mass, momentum and energy to calculate the growth and densification of the frost layer. Empirical correlations for thermal conductivity and tortuosity as a function of density are incorporated from previous studies. Frost growth is calculated as a function of time, Reynolds number, longitudinal location, plate temperature, and ambient air temperature and humidity. The main assumptions are: ideal gas behavior for air and water vapor, uniform frost density and thermal conductivity across the thickness of the frost layer; and quasi-steady conditions during the whole process. The mathematical model is validated by comparing the predicted values of frost thickness and frost density with results obtained in recent experimental studies. A good agreement was obtained in the comparison. The frost formation model calculates pressure drop and heat transfer resistance that result from the existence of the frost layer, and it can therefore be incorporated into a heat pump model to evaluate performance losses due to frosting as a function of weather conditions and time of operation since the last evaporator defrost.

  5. Polygons in Seasonal Frost

    NASA Technical Reports Server (NTRS)

    2004-01-01

    8 February 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a summertime scene in the south polar region of the red planet. A patch of bright frost--possibly water ice--is seen in the lower third of the image. Polygon patterns that have developed in the ice as it sublimes away can be seen; these are not evident in the defrosted surfaces, so they are thought to have formed in the frost. This image is located near 82.6oS, 352.5oW. Sunlight illuminates this scene from the upper left; the image covers an area 3 km (1.9 mi) wide.

  6. Frost in Charitum Montes

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-387, 10 June 2003

    This is a Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) wide angle view of the Charitum Montes, south of Argyre Planitia, in early June 2003. The seasonal south polar frost cap, composed of carbon dioxide, has been retreating southward through this area since spring began a month ago. The bright features toward the bottom of this picture are surfaces covered by frost. The picture is located near 57oS, 43oW. North is at the top, south is at the bottom. Sunlight illuminates the scene from the upper left. The area shown is about 217 km (135 miles) wide.

  7. Frost on Dunes

    NASA Technical Reports Server (NTRS)

    2005-01-01

    18 March 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows dark dunes on a crater floor during the southern spring. Some of the dunes have frost on their south-facing slopes.

    Location near: 52.3oS, 326.7oW Image width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Spring

  8. Frost Forecasting for Fruitgrowers

    NASA Technical Reports Server (NTRS)

    Martsolf, J. D.; Chen, E.

    1983-01-01

    Progress in forecasting from satellite data reviewed. University study found data from satellites displayed in color and used to predict frost are valuable aid to agriculture. Study evaluated scheme to use Earth-temperature data from Geostationary Operational Environmental Satellite in computer model that determines when and where freezing temperatures endanger developing fruit crops, such as apples, peaches and cherries in spring and citrus crops in winter.

  9. Water frost on Charon

    NASA Technical Reports Server (NTRS)

    Buie, Marc W.; Cruikshank, Dale P.; Lebofsky, Larry A.; Tedesco, Edward F.

    1987-01-01

    New spectra of the Pluto-Charon system taken just before and during a total eclipse of the satellite are presented. The spectrum of Charon extracted from the data reveals the signature of water ice. There is no evidence for any methane or ammonia frost on the surface of Charon. The significance of these findings for the evolution of the Pluto-Charon system are discussed.

  10. Polar frost formation on Ganymede

    NASA Technical Reports Server (NTRS)

    Johnson, R. E.

    1985-01-01

    Voyager photographs have shown the presence of polar frost on Ganymede, a satellite of Jupiter. A number of models have been proposed for the formation of this feature. The models are based on the transport of material from the equatorial to the polar regions. The present paper is concerned with a model regarding the origin and appearance of the Ganymede caps which does not depend on such a transport. The model is based on observations of the surficial changes produced by ion bombardment. It is pointed out that experiments on ion and electron bombardment of water ice at low temperatures have shown that these particles sputter significant quantities of water molecules. In addition, they also change the visual characteristics of the surface significantly. Ion bombardment competing with thermal reprocessing may be sufficient to explain the latitudinal differences observed on Ganymede.

  11. Winter Frost and Fog

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This somewhat oblique blue wide angle Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows the 174 km (108 mi) diameter crater, Terby, and its vicinity in December 2004. Located north of Hellas, this region can be covered with seasonal frost and ground-hugging fog, even in the afternoon, despite being north of 30oS. The subtle, wavy pattern is a manifestation of fog.

    Location near: 28oS, 286oW Illumination from: upper left Season: Southern Winter

  12. Sand Dunes with Frost

    NASA Technical Reports Server (NTRS)

    2004-01-01

    9 May 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a suite of frost-covered sand dunes in the north polar region of Mars in early spring, 2004. The dunes indicate wind transport of sand from left to right (west to east). These landforms are located near 78.1oN, 220.8oW. This picture is illuminated by sunlight from the lower left and covers an area about 3 km (1.9 mi) across.

  13. Seasonal Frost Changes on Mars

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Observations by NASA's 2001 Mars Odyssey spacecraft show a comparison of wintertime (left) and summertime (right) views of the north polar region of Mars in intermediate-energy, or epithermal, neutrons. The maps are based on data from the high-energy neutron detector, an instrument in Odyssey's gamma-ray spectrometer suite. Soil enriched by hydrogen is indicated by the purple and deep blue colors on the maps. Progressively smaller amounts of hydrogen are shown in the colors light blue, green, yellow and red. The hydrogen is believed to be in the form of water ice. In some areas, the abundance of water ice is estimated to be up to 90% by volume. In winter, much of the hydrogen is hidden beneath a layer of carbon dioxide frost (dry ice). In the summer, the hydrogen is revealed because the carbon dioxide frost has dissipated. A shaded-relief rendition of topography is superimposed on these maps for geographic reference.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. Investigators at Arizona State University in Tempe, the University of Arizona in Tucson, and NASA's Johnson Space Center, Houston, operate the science instruments. The gamma-ray spectrometer was provided by the University of Arizona in collaboration with the Russian Aviation and Space Agency and Institute for Space Research (IKI), which provided the high-energy neutron detector, and the Los Alamos National Laboratories, New Mexico, which provided the neutron spectrometer. Lockheed Martin Astronautics, Denver, is the prime contractor for the project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  14. Influences of surface hydrophilicity on frost formation on a vertical cold plate under natural convection conditions

    SciTech Connect

    Liu, Zhongliang; Zhang, Xinghua; Wang, Hongyan; Meng, Sheng; Cheng, Shuiyuan

    2007-07-15

    Surface hydrophilicity has a strong influence on frost nucleation according to phase transition theory. To study this effect, a close observation of frost formation and deposition processes on a vertical plate was made under free convection conditions. The formation and shape variation of frost crystals during the initial period are described and the frost thickness variation with time on both hydrophobic and plain copper cold surfaces are presented. The various influencing factors are discussed in depth. The mechanism of surface hydrophilicity influence on frost formation was analyzed theoretically. This revealed that increasing the contact angle can increase the potential barrier and restrain crystal nucleation and growth and thus frost deposition. The experimental results show that the initial water drops formed on a hydrophobic surface are smaller and remain in the liquid state for a longer time compared with ones formed on a plain copper surface. It is also observed that the frost layer deposited on a hydrophobic surface is loose and weak. Though the hydrophobic surface can retard frost formation to a certain extent and causes a looser frost layer, our experimental results show that it does not depress the growth of the frost layer. (author)

  15. Frost-free Dunes

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Context image for PIA03291 Frost-free Dunes

    These dark dunes are frost covered for most of the year. As southern summer draws to a close, the dunes have been completely defrosted.

    Image information: VIS instrument. Latitude -66.6N, Longitude 37.0E. 34 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  16. Seeing through Frost on Enceladus

    NASA Astrophysics Data System (ADS)

    Helfenstein, P.

    2012-12-01

    (cf. Spencer et al. 2009, In "Saturn after Cassini-Huygens", Springer-Verlag. 683-724; Helfenstein et al. 2010; American Geophysical Union, Fall Meeting 2010, abstract #P23C-04). More recent Cassini high-resolution imaging of the region over a wide range of illumination geometry reveals a systematic change in the appearance of the circular albedo features as the phase angle decreases from α=124° to α=31° -- the circular albedo features that are so clearly visible at large phase angles are completely masked at small phase angles. The decrease in the albedo contrast with decreasing phase angle is dramatic: The average albedo contrast between the circular P1 and P2 features diminishes from 27±3% at phase α=124° to only 1.3±0.2% at α=31°. A likely explanation for this photometric behavior is that it reveals a top layer of frost or snow that scatters light strongly at relatively small phase angles, but which becomes more transparent as phase angles increase allowing Cassini to see through to underlying features. It is also possible that the changing photometric contrasts arise from terrain-dependent differences in regolith properties like surface roughness or regolith grain-size.

  17. Modelling of frost formation and growth on microstuctured surface

    NASA Astrophysics Data System (ADS)

    Muntaha, Md. Ali; Haider, Md. Mushfique; Rahman, Md. Ashiqur

    2016-07-01

    Frost formation on heat exchangers is an undesirable phenomenon often encountered in different applications where the cold surface with a temperature below freezing point of water is exposed to humid air. The formation of frost on the heat transfer surface results in an increase in pressure drop and reduction in heat transfer, resulting in a reduction of the system efficiency. Many factors, including the temperature and moisture content of air, cold plate temperature, surface wettability etc., are known to affect frost formation and growth. In our present study, a model for frost growth on rectangular, periodic microgroove surfaces for a range of microgroove dimension (ten to hundreds of micron) is presented. The mathematical model is developed analytically by solving the governing heat and mass transfer equations with appropriate boundary conditions using the EES (Engineering Equation Solver) software. For temperature, a convective boundary condition at frost-air interface and a fixed cold plate surface temperature is used. Instead of considering the saturation or super-saturation models, density gradient at the surface is obtained by considering experimentally-found specified heat flux. The effect of surface wettability is incorporated by considering the distribution of condensed water droplets at the early stage of frost formation. Thickness, density and thermal conductivity of frost layer on the micro-grooved surfaces are found to vary with the dimension of the grooves. The variation of density and thickness of the frost layer on these micro-grooved surfaces under natural convection is numerally determined for a range of plate temperature and air temperature conditions and is compared with experimental results found in the open literature.

  18. Dunes with Frost

    NASA Technical Reports Server (NTRS)

    2004-01-01

    31 May 2004 Springtime for the martian northern hemisphere brings defrosting spots and patterns to the north polar dune fields. This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows an example located near 76.7oN, 250.4oW. In summer, these dunes would be darker than their surroundings. However, while they are still covered by frost, they are not any darker than the substrate across which the sand is slowly traveling. Dune movement in this case is dominated by winds that blow from the southwest (lower left) toward the northeast (upper right). The picure covers an area about 3 km (1.9 mi) across and is illuminated by sunlight from the lower left.

  19. Frost characteristics and heat transfer on a flat plate under freezer operating conditions: Part 2, Numerical modeling and comparison with data

    SciTech Connect

    Chen, H.; Besant, R.W.; Tao, Y.X.

    1999-07-01

    An existing numerical model for frost growth as a porous media is modified to include boundary conditions for a relatively high-density frost layer adjacent to a cold plate and turbulent airflow over a rough frost-air interface. Low-density frost grows on top of this high-density surface layer. Simulation results compare well with the data for selected test conditions where experimental uncertainty is small. When the experimental uncertainty is small, a validated physical/numerical model may be the best means of interpreting the physical nature of frost growth and extrapolating a limited database for frost growth.

  20. Seasonal Frost in Terra Sirenum

    NASA Technical Reports Server (NTRS)

    2006-01-01

    This image of the Terra Sirenum region of Mars was taken by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) at 0918 UTC (4:18 a.m. EST) on Nov. 25, 2006, near 38.9 degrees south latitude, 195.9 degrees east longitude. CRISM's image was taken in 544 colors covering 0.36-3.92 micrometers, and shows features as small as 18 meters (60 feet) across.

    At this time, Mars' southern hemisphere was experiencing mid-winter. During Martian southern winter, the southern polar cap is covered and surrounded by carbon dioxide frost and water frost. This is unlike Earth, whose frozen winter precipitation is made up of only one volatile -- water. The carbon dioxide frost evaporates, or sublimates, at a lower temperature than water frost. So, during spring, the carbon dioxide ice evaporates first and leaves a residue of water frost, which later sublimates as well.

    The image shown here covers part of a crater rim, which is illuminated from the upper left. North is at the top. The topography creates a cold microenvironment on the south side of the rim that is partially protected from solar illumination. That cold surface contains an outlier of the southern seasonal frost about 15 degrees of latitude closer to the equator than the average edge of the frost at this season.

    The top image was constructed from three infrared wavelengths that highlight the bluer color of frost than the background rock and soil. Note that the frost occurs both on sunlit and shaded surfaces on the south side of the rim. The shaded areas are still visible because they are illuminated indirectly by the Martian sky.

    The bottom image was constructed by measuring the depths of spectral absorption bands due to water frost and carbon dioxide frost, and displaying the results in image form. Blue shows strength of an absorption due to water frost near 1.50 micrometers, and green shows strength of an absorption due to carbon dioxide frost near 1.45 micrometers. Red shows

  1. Robert Frost: Teacher "Earner, Learner, Yearner."

    ERIC Educational Resources Information Center

    Vogel, Nancy Sue

    An account of Robert Frost's teaching, along with an assessment of it, are presented. Material consulted includes Frost's published letters, prose, and poetry; Lawrance Thompson's authorized biography; Lesley Frost's "New Hampshire's Child: The Derry Journals of Lesley Frost;" and additional sources such as films and periodicals, particularly…

  2. Modeling the effects of martian surface frost on ice table depth

    NASA Astrophysics Data System (ADS)

    Williams, K. E.; McKay, Christopher P.; Heldmann, J. L.

    2015-11-01

    Ground ice has been observed in small fresh craters in the vicinity of the Viking 2 lander site (48°N, 134°E). To explain these observations, current models for ground ice invoke levels of atmospheric water of 20 precipitable micrometers - higher than observations. However, surface frost has been observed at the Viking 2 site and surface water frost and snow have been shown to have a stabilizing effect on Antarctic subsurface ice. A snow or frost cover provides a source of humidity that should reduce the water vapor gradient and hence retard the sublimation loss from subsurface ice. We have modeled this effect for the Viking 2 landing site with combined ground ice and surface frost models. Our model is driven by atmospheric output fields from the NASA Ames Mars General Circulation Model (MGCM). Our modeling results show that the inclusion of a thin seasonal frost layer, present for a duration similar to that observed by the Viking Lander 2, produces ice table depths that are significantly shallower than a model that omits surface frost. When a maximum frost albedo of 0.35 was permitted, seasonal frost is present in our model from Ls = 182° to Ls = 16°, resulting in an ice table depth of 64 cm - which is 24 cm shallower than the frost-free scenario. The computed ice table depth is only slightly sensitive to the assumed maximum frost albedo or thickness in the model.

  3. Free MHD Shear Layers In The Presence Of Rotation And Magnetic Field

    SciTech Connect

    Spence, E. J.; Roach, A. H.; Edlund, E. M.; Sloboda, P.; Ji, H.

    2012-03-20

    We present an experimental and numerical study of hydrodynamic and magnetohydrodynamic free shear layers and their stability. We first examine the experimental measurement of globally unstable hydrodynamic shear layers in the presence of rotation, and their range of instability. These are compared to numerical simulations, which are used to explain the modification of the shear layer and thus the critical Rossby number for stability. Magnetic fields are then applied to these scenarios, and globally unstable magnetohydrodynamic shear layers generated. These too are compared to numerical simulations, showing behavior consistent with the hydrodynamic case and previously reported measurements.

  4. Experimental strategies for frost analysis

    NASA Astrophysics Data System (ADS)

    Janssen, Daniel D.

    An area of increasing importance in the field of refrigeration is the study of frosting and defrosting. Frosting poses a concern to many refrigeration systems, as frost growth both obstructs airflow through low temperature heat exchangers and increases heat transfer resistance. Drastic decreases in system efficiency result from the compounding of these problems, and because it is difficult to prevent the frosting process, refrigeration systems must be defrosted periodically to restore optimal operating conditions. A deeper understanding of the complex physical processes of frosting and defrosting will lead to more efficient refrigeration system designs; an idea which has driven a rise in frost growth research over recent decades. Although research has shown great progress, there remain significant challenges associated with predicting the frosting and defrosting processes accurately under wide ranges of conditions. The equations governing such behavior still remain insoluble by exact analytical methods. Numerical approaches have shown the most promising results, but are yet in an early stage of development. Most research has instead been concerned with developing correlations for frost properties and growth, though few are applicable to varying conditions. The most commonly used correlations are shown to have widely different results, perhaps owing to different experimental methods used to acquire data and a lack of deeper level analysis. A new thickness correlation is proposed which attempts to reconcile to some degree the gap between theory and application. Broader ranges of data are used for fitment which enables the application of the correlation to a wider range of conditions. To improve the consistency of results in frost research, it is suggested that new forms of data acquisition be explored. Proposed alternative methods utilize high magnification imaging equipment in combination with computer based measurements, which are shown to be capable of improving

  5. Can Ice Prevent Frost Growth?

    NASA Astrophysics Data System (ADS)

    Nath, Saurabh; Hansen, Ryan; Murphy, Kevin R.; Retterer, Scott; Collier, Patrick; Boreyko, Jonathan; Nature-Inspired Fluids; Interfaces Team; CenterNanophase Materials Sciences Team

    2015-11-01

    So-called icephobic surfaces that exhibit special wettability characteristics can delay the onset of ice nucleation in supercooled water. However, to date no icephobic surface has been able to passively prevent frost growth once ice nucleates. Here, we demonstrate that the growth rate of frost can be tuned and even halted with a chemically patterned surface that controls the spatial distribution of supercooled condensation. The success and speed of inter-droplet frost growth is found to depend upon two primary factors: the extent of spacing between hydrophilic regions where liquid nucleation occurs and the time allowed for condensation growth prior to the initial freezing event. Instead of delaying the onset of freezing, we initiate freezing as early as possible. This creates a ``dry zone'' where no frost and condensation can occur. The underlying mechanism behind the ``dry zone'' involves the saturation vapor pressure over ice that is lower than that over water at the same temperature, causing ice to behave like a passive humidity sink. Thus, quite remarkably it appears that ice itself may be the solution to the frosting problem.

  6. Accretion onto neutron stars with the presence of a double layer

    NASA Technical Reports Server (NTRS)

    Williams, A. C.; Weisskopf, M. C.; Elsner, R. F.; Darbro, W.; Sutherland, P. G.

    1987-01-01

    It is known, from laboratory experiments, that double layers will form in plasmas, usually in the presence of an electric current. It is argued that a double layer may be present in the accretion column of a neutron star in a binary system. It is suggested that the double layer may be the predominant deceleration mechanism for the accreting ions, especially for sources with X-ray luminosities of less than about 10 to the 37th erg/s. Previous models have involved either a collisionless shock or an assumed gradual deceleration of the accreting ions to thermalize the energy of the infalling matter.

  7. Accretion onto neutron stars with the presence of a double layer

    NASA Technical Reports Server (NTRS)

    Williams, A. C.; Weisskopf, M. C.; Elsner, R. F.; Darbro, W.; Sutherland, P. G.

    1986-01-01

    It is known from laboratory experiments that double layers can form in plasmas, usually in the presence of an electric current. It is argued that a double layer may be present in the accretion column of a neutron star in a binary system. It is suggested that the double layer may be the predominant deceleration mechanism for the accreting ions, especially for sources with X-ray luminosities of less than about 10 to the 37th erg/s. Previous models have involved either a collisionless shock or an assumed gradual deceleration of the accreting ions to thermalize the energy of the infalling matter.

  8. Stratocumulus to cumulus transition in the presence of elevated smoke layers

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Takanobu; Feingold, Graham; Kazil, Jan; McComiskey, Allison

    2015-12-01

    The transition from stratocumulus to cumulus clouds in the presence of elevated light-absorbing smoke layers is investigated with idealized large-eddy simulations. A smoke layer is placed 1 km above stratocumulus top and evolves with the cloud fields over the course of a 3 day simulation. The simulations presented vary the smoke-generated heating and the moisture content of the smoke layer. A control case without smoke is simulated for comparison. On day 2 of the transition, when still above cloud, smoke generates a more broken cloud field than the control case, depending weakly on the strength of the aerosol heating but strongly on the water vapor content in the smoke layer. Following nighttime recovery and contact with the stratocumulus, smoke hinders the transition by strengthening the inversion, limiting boundary layer deepening and reducing precipitation-related breakup. This modulation delays the transition, which may extend the stratocumulus deck westward, with concomitant implications for climate forcing.

  9. Device for determining frost depth and density

    NASA Technical Reports Server (NTRS)

    Huneidi, F.

    1983-01-01

    A hand held device having a forward open window portion adapted to be pushed downwardly into the frost on a surface, and a rear container portion adapted to receive the frost removed from the window area are described. A graph on a side of the container enables an observer to determine the density of the frost from certain measurements noted. The depth of the frost is noted from calibrated lines on the sides of the open window portion.

  10. Mixed layer formation and restratification in presence of mesoscale and submesoscale turbulence

    NASA Astrophysics Data System (ADS)

    Couvelard, X.; Dumas, F.; Garnier, V.; Ponte, A. L.; Talandier, C.; Treguier, A. M.

    2015-12-01

    Recent realistic high resolution modeling studies show a net increase of submesoscale activity in fall and winter when the mixed layer depth is at its maximum. This submesoscale activity increase is associated with a reduced deepening of the mixed layer. Both phenomena can be related to the development of mixed layer instabilities, which convert available potential energy into submesoscale eddy kinetic energy and contribute to a fast restratification by slumping the horizontal density gradient in the mixed layer. In the present work, the mixed layer formation and restratification were studied by uniformly cooling a fully turbulent zonal jet in a periodic channel at different resolutions, from eddy resolving (10 km) to submesoscale permitting (2 km). The effect of the submesoscale activity, highlighted by these different horizontal resolutions, was quantified in terms of mixed layer depth, restratification rate and buoyancy fluxes. Contrary to many idealized studies focusing on the restratification phase only, this study addresses a continuous event of mixed layer formation followed by its complete restratification. The robustness of the present results was established by ensemble simulations. The results show that, at higher resolution, when submesoscale starts to be resolved, the mixed layer formed during the surface cooling is significantly shallower and the total restratification is almost three times faster. Such differences between coarse and fine resolution models are consistent with the submesoscale upward buoyancy flux, which balances the convection during the formation phase and accelerates the restratification once the surface cooling is stopped. This submesoscale buoyancy flux is active even below the mixed layer. Our simulations show that mesoscale dynamics also cause restratification, but on longer time scales. Finally, the spatial distribution of the mixed layer depth is highly heterogeneous in the presence of submesoscale activity, prompting the

  11. Rossby wave resonance in the presence of a nonlinear critical layer

    NASA Astrophysics Data System (ADS)

    Ritchie, Harold

    1985-01-01

    The behavior of Rossby waves on a shear flow in the presence of a nonlinear critical layer is studied, with particular emphasis on the role played by the critical layer in a Rossby wave resonance mechanism. Previous steady analyses are extended to the resonant case and it is found that the forced wave dominates the solution, provided the flow configuration is not resonant for the higher harmonics induced by the critical layer. Numerical simulations for the forced initial value problem show that the solution evolves towards the analysed steady state when conditions are resonant for the forced wave, and demonstrate some of the complications that arise when they are resonant for higher harmonics. In relating the initial value and steady problems, it is argued that the time dependent solution does not require the large mean flow distortion that Haberman (1972) found to be necessary outside the critical layer in the steady case.

  12. Presence and function of a thick mucous layer rich in polysaccharides around Bacillus subtilis spores.

    PubMed

    Faille, Christine; Ronse, Annette; Dewailly, Etienne; Slomianny, Christian; Maes, Emmanuel; Krzewinski, Frédéric; Guerardel, Yann

    2014-01-01

    This study was designed to establish the presence and function of the mucous layer surrounding spores of Bacillus subtilis. First, an external layer of variable thickness and regularity was often observed on B. subtilis spores. Further analyses were performed on B. subtilis 98/7 spores surrounded by a thick layer. The mechanical removal of the layer did not affect their resistance to heat or their ability to germinate but rendered the spore less hydrophilic, more adherent to stainless steel, and more resistant to cleaning. This layer was mainly composed of 6-deoxyhexoses, ie rhamnose, 3-O-methyl-rhamnose and quinovose, but also of glucosamine and muramic lactam, known also to be a part of the bacterial peptidoglycan. The specific hydrolysis of the peptidoglycan using lysozyme altered the structure of the required mucous layer and affected the physico-chemical properties of the spores. Such an outermost mucous layer has also been seen on spores of B. licheniformis and B. clausii isolated from food environments. PMID:25115519

  13. Field measurements of frost penetration into a landfill cover that uses a paper sludge barrier

    SciTech Connect

    Moo-Young, H.K.; LaPlante, C.; Zimmie, T.F.; Quiroz, J.

    1999-07-01

    Frost penetration is a major environmental concern in landfill design. Freezing and thawing cycles may deteriorate the permeability of the liner or cap. In this study, the depth of frost penetration into a landfill cover that uses paper sludge as the impermeable barrier (the Hubbardston landfill in Massachusetts) was measured using a frost measurement system. A thermistor probe measured the temperature at various depths. Although temperature measurements are important, soil resistivity measurements are required to accurately predict the freezing level, since soil resistivity increases greatly upon freezing. A conductivity probe measured the half-bridge voltage between conductivity rings and a ground rod. Data were collected in data loggers. The data collected from 1992--1996 showed that the frost level did not penetrate the paper sludge capping layer. Heavy snow cover throughout the winters decreased the depth of frost penetration by insulating the landfill. The high water content in the sludge also contributed to the lack of freezing.

  14. Combating Frosting with Joule-Heated Liquid-Infused Superhydrophobic Coatings.

    PubMed

    Elsharkawy, Mohamed; Tortorella, Domenico; Kapatral, Shreyas; Megaridis, Constantine M

    2016-05-01

    Frost formation is omnipresent when suitable environmental conditions are met. A good portion of research on combating frost formation has revolved around the passive properties of superhydrophobic (SHPO) and slippery lubricant-impregnated porous (SLIP) surfaces. Despite much progress, the need for surfaces that can effectively combat frost formation over prolonged periods still remains. In this work, we report, for the first time, the use of electrically conductive SHPO/SLIP surfaces for active mitigation of frost formation. First, we demonstrate the failure of these surfaces to passively avert prolonged (several hours) frosting. Next, we make use of their electroconductive property for active Joule heating, which results in the removal of any formed frost. We study the role of the impregnating lubricant in the heat transfer across the interface, the surface, and the ambient. We show that, even though the thermal properties of the impregnating lubricant may vary drastically, the lubricant type does not noticeably affect the defrosting behavior of the surface. We attribute this outcome to the dominant thermal resistance of the thick frost layer formed on the cooled surface. We support this claim by drawing parallels between the present system and heat transfer through a one-dimensional (1D) composite medium, and solving the appropriate transient transport equations. Lastly, we propose periodic thermal defrosting for averting frost formation altogether. This methodology utilizes the coating's passive repellent capabilities, while eliminating the dominant effect of thick deposited frost layers. The periodic heating approach takes advantage of lubricants with higher thermal conductivities, which effectively enhance heat transfer through the porous multiphase surface that forms the first line of defense against frosting. PMID:27021948

  15. Electrical Resistivity and Ground Penetrating Radar Investigation of Presence and Extent of Hardpan Soil Layers

    NASA Astrophysics Data System (ADS)

    Thao, S. J.; Plattner, A.

    2015-12-01

    Farming in the San Joaquin Valley in central California is often impeded by a shallow rock-hard layer of consolidated soil commonly referred to as hardpan. To be able to successfully farm, this layer, if too shallow, needs to be removed either with explosives or heavy equipment. It is therefore of great value to obtain information about depth and presence of such a layer prior to agricultural operations. We tested the applicability of electrical resistivity tomography and ground penetrating radar in hardpan detection. On our test site of known hardpan depth (from trenching) and local absence (prior dynamiting to plant trees), we successfully recovered the known edge of a hardpan layer with both methods, ERT and GPR. The clay-rich soil significantly reduced the GPR penetration depth but we still managed to map the edges at a known gap where prior dynamiting had removed the hardpan. Electrical resistivity tomography with a dipole-dipole electrode configuration showed a clear conductive layer at expected depths with a clearly visible gap at the correct location. In our data analysis and representation we only used either freely available or in-house written software.

  16. Layer formation on metal surfaces in lead-bismuth at high temperatures in presence of zirconium

    NASA Astrophysics Data System (ADS)

    Loewen, Eric P.; Yount, Hannah J.; Volk, Kevin; Kumar, Arvind

    2003-09-01

    If the operating temperature lead-bismuth cooled fission reactor could be extended to 800 °C, they could produce hydrogen directly from water. A key issue for the deployment of this technology at these temperatures is the corrosion of the fuel cladding and structural materials by the lead-bismuth. Corrosion studies of several metals were performed to correlate the interaction layer formation rate as a function of time, temperature, and alloy compositions. The interaction layer is defined as the narrow band between the alloy substrate and the solidified lead-bismuth eutectic on the surface. Coupons of HT-9, 410, 316L, and F22 were tested at 550 and 650 °C for 1000 h inside a zirconium corrosion cell. The oxygen potential ranged from approximately 10 -22 to 10 -19 Pa. Analyses were performed on the coupons to determine the depth of the interaction layer and the composition, at each time step (100, 300, and 1000 h). The thickness of the interaction layer on F22 at 550 °C was 25.3 μm, the highest of all the alloys tested, whereas at 650 °C, the layer thickness was only 5.6 μm, the lowest of all the alloys tested. The growth of the interaction layer on F22 at 650 °C was suppressed, owing to the presence of Zr (at 1500 wppm) in the LBE. In the case of 316L, the interaction layers of 4.9 and 10.6 μm were formed at 550 and 650 °C, respectively.

  17. Unexpected presence of graminan- and levan-type fructans in the evergreen frost-hardy eudicot Pachysandra terminalis (Buxaceae): purification, cloning, and functional analysis of a 6-SST/6-SFT enzyme.

    PubMed

    Van den Ende, Wim; Coopman, Marlies; Clerens, Stefan; Vergauwen, Rudy; Le Roy, Katrien; Lammens, Willem; Van Laere, André

    2011-01-01

    About 15% of flowering plants accumulate fructans. Inulin-type fructans with β(2,1) fructosyl linkages typically accumulate in the core eudicot families (e.g. Asteraceae), while levan-type fructans with β(2,6) linkages and branched, graminan-type fructans with mixed linkages predominate in monocot families. Here, we describe the unexpected finding that graminan- and levan-type fructans, as typically occurring in wheat (Triticum aestivum) and barley (Hordeum vulgare), also accumulate in Pachysandra terminalis, an evergreen, frost-hardy basal eudicot species. Part of the complex graminan- and levan-type fructans as accumulating in vivo can be produced in vitro by a sucrose:fructan 6-fructosyltransferase (6-SFT) enzyme with inherent sucrose:sucrose 1-fructosyltransferase (1-SST) and fructan 6-exohydrolase side activities. This enzyme produces a series of cereal-like graminan- and levan-type fructans from sucrose as a single substrate. The 6-SST/6-SFT enzyme was fully purified by classic column chromatography. In-gel trypsin digestion led to reverse transcription-polymerase chain reaction-based cDNA cloning. The functionality of the 6-SST/6-SFT cDNA was demonstrated after heterologous expression in Pichia pastoris. Both the recombinant and native enzymes showed rather similar substrate specificity characteristics, including peculiar temperature-dependent inherent 1-SST and fructan 6-exohydrolase side activities. The finding that cereal-type fructans accumulate in a basal eudicot species further confirms the polyphyletic origin of fructan biosynthesis in nature. Our data suggest that the fructan syndrome in P. terminalis can be considered as a recent evolutionary event. Putative connections between abiotic stress and fructans are discussed. PMID:21037113

  18. Unexpected Presence of Graminan- and Levan-Type Fructans in the Evergreen Frost-Hardy Eudicot Pachysandra terminalis (Buxaceae): Purification, Cloning, and Functional Analysis of a 6-SST/6-SFT Enzyme1[W

    PubMed Central

    Van den Ende, Wim; Coopman, Marlies; Clerens, Stefan; Vergauwen, Rudy; Le Roy, Katrien; Lammens, Willem; Van Laere, André

    2011-01-01

    About 15% of flowering plants accumulate fructans. Inulin-type fructans with β(2,1) fructosyl linkages typically accumulate in the core eudicot families (e.g. Asteraceae), while levan-type fructans with β(2,6) linkages and branched, graminan-type fructans with mixed linkages predominate in monocot families. Here, we describe the unexpected finding that graminan- and levan-type fructans, as typically occurring in wheat (Triticum aestivum) and barley (Hordeum vulgare), also accumulate in Pachysandra terminalis, an evergreen, frost-hardy basal eudicot species. Part of the complex graminan- and levan-type fructans as accumulating in vivo can be produced in vitro by a sucrose:fructan 6-fructosyltransferase (6-SFT) enzyme with inherent sucrose:sucrose 1-fructosyltransferase (1-SST) and fructan 6-exohydrolase side activities. This enzyme produces a series of cereal-like graminan- and levan-type fructans from sucrose as a single substrate. The 6-SST/6-SFT enzyme was fully purified by classic column chromatography. In-gel trypsin digestion led to reverse transcription-polymerase chain reaction-based cDNA cloning. The functionality of the 6-SST/6-SFT cDNA was demonstrated after heterologous expression in Pichia pastoris. Both the recombinant and native enzymes showed rather similar substrate specificity characteristics, including peculiar temperature-dependent inherent 1-SST and fructan 6-exohydrolase side activities. The finding that cereal-type fructans accumulate in a basal eudicot species further confirms the polyphyletic origin of fructan biosynthesis in nature. Our data suggest that the fructan syndrome in P. terminalis can be considered as a recent evolutionary event. Putative connections between abiotic stress and fructans are discussed. PMID:21037113

  19. Winter frost at Viking Lander 2 site

    NASA Technical Reports Server (NTRS)

    Svitek, Thomas; Murray, Bruce

    1990-01-01

    This paper presents quantitative evidence for cold trapping (frost redeposition) at the Viking Lander 2 site. This evidence consists of the frost surface coverage and color transition, the timing of this transition, and the limited vertical mixing and horizontal water transport. It is argued that cold trapping must be a general property of seasonal frost and, therefore, must be considered in order to understand the evolution of the surface environment of Mars.

  20. Frost resistance in alpine woody plants.

    PubMed

    Neuner, Gilbert

    2014-01-01

    This report provides a brief review of key findings related to frost resistance in alpine woody plant species, summarizes data on their frost resistance, highlights the importance of freeze avoidance mechanisms, and indicates areas of future research. Freezing temperatures are possible throughout the whole growing period in the alpine life zone. Frost severity, comprised of both intensity and duration, becomes greater with increasing elevation and, there is also a greater probability, that small statured woody plants, may be insulated by snow cover. Several frost survival mechanisms have evolved in woody alpine plants in response to these environmental conditions. Examples of tolerance to extracellular freezing and freeze dehydration, life cycles that allow species to escape frost, and freeze avoidance mechanisms can all be found. Despite their specific adaption to the alpine environment, frost damage can occur in spring, while all alpine woody plants have a low risk of frost damage in winter. Experimental evidence indicates that premature deacclimation in Pinus cembra in the spring, and a limited ability of many species of alpine woody shrubs to rapidly reacclimate when they lose snow cover, resulting in reduced levels of frost resistance in the spring, may be particularly critical under the projected changes in climate. In this review, frost resistance and specific frost survival mechanisms of different organs (leaves, stems, vegetative and reproductive over-wintering buds, flowers, and fruits) and tissues are compared. The seasonal dynamics of frost resistance of leaves of trees, as opposed to woody shrubs, is also discussed. The ability of some tissues and organs to avoid freezing by supercooling, as visualized by high resolution infrared thermography, are also provided. Collectively, the report provides a review of the complex and diverse ways that woody plants survive in the frost dominated environment of the alpine life zone. PMID:25520725

  1. Frost resistance in alpine woody plants

    PubMed Central

    Neuner, Gilbert

    2014-01-01

    This report provides a brief review of key findings related to frost resistance in alpine woody plant species, summarizes data on their frost resistance, highlights the importance of freeze avoidance mechanisms, and indicates areas of future research. Freezing temperatures are possible throughout the whole growing period in the alpine life zone. Frost severity, comprised of both intensity and duration, becomes greater with increasing elevation and, there is also a greater probability, that small statured woody plants, may be insulated by snow cover. Several frost survival mechanisms have evolved in woody alpine plants in response to these environmental conditions. Examples of tolerance to extracellular freezing and freeze dehydration, life cycles that allow species to escape frost, and freeze avoidance mechanisms can all be found. Despite their specific adaption to the alpine environment, frost damage can occur in spring, while all alpine woody plants have a low risk of frost damage in winter. Experimental evidence indicates that premature deacclimation in Pinus cembra in the spring, and a limited ability of many species of alpine woody shrubs to rapidly reacclimate when they lose snow cover, resulting in reduced levels of frost resistance in the spring, may be particularly critical under the projected changes in climate. In this review, frost resistance and specific frost survival mechanisms of different organs (leaves, stems, vegetative and reproductive over-wintering buds, flowers, and fruits) and tissues are compared. The seasonal dynamics of frost resistance of leaves of trees, as opposed to woody shrubs, is also discussed. The ability of some tissues and organs to avoid freezing by supercooling, as visualized by high resolution infrared thermography, are also provided. Collectively, the report provides a review of the complex and diverse ways that woody plants survive in the frost dominated environment of the alpine life zone. PMID:25520725

  2. Nanoconfinement of water layers in lamellar structures prepared in the presence and absence of organic solvent.

    PubMed

    De, Dipanwita; Sajjan, Manas; Narayanan, Janaky; Bellare, Jayesh R; Datta, Anindya

    2013-02-21

    An attempt is made to draw a line of comparison between the extent of rigidity of the hydration layers bound to the interfacial region of lamellar structures of Aerosol OT (AOT, sodium bis(2-ethylhexyl) sulfosuccinate) in water, in the presence and absence of an organic solvent using POM, SAXS, cryo-TEM, and time-resolved fluorescence spectroscopy. These systems are ternary mixtures of AOT, water, and n-heptane containing lamellar structures in an aqueous layer at higher w(0) values (w(0) = 300 and 150) and a binary solution of 20 and 50% AOT in neat water (w/w). The solvation shells residing at the vicinity of these lamellar structures are monitored using two different coumarin probes (C153 and C500). It is intended to envisage a comparative solvation dynamics study of the restricted aqueous region confined in lamellar structures formed in ternary mixture and binary solution. Though steady state measurements show a similar microenvironment probed by the fluorophores in lamellar structures formed in the two different aqueous phases, temporal evolution of the solvent correlation function C(t) unveils the existence of lamellar structures with different degrees of confinement of water layers in these two systems. A slower relaxation of the restricted aqueous region in lamellar structures of binary solution signifies the presence of more rigid interfacially bound water layers at the lamellar interface than in the ternary mixture having a similar weight percentage of AOT in water. The present investigation concludes that the lamellar structures formed under two different conditions provide a similar hydrophobic environment with different extents of localized water populations at the lamellar interface as manifested by the solvent relaxation time in agreement with SAXS and cryo-TEM images. PMID:23240713

  3. Electron scattering in a graphene nanoribbon in the presence of ferromagnetic layer and Rashba interaction

    NASA Astrophysics Data System (ADS)

    Chuburin, Yu. P.

    2016-03-01

    We study the possibility to control the spin polarization and spin-dependent transport in a graphene sheet by considering a ferromagnetic layer in the presence of the Rashba spin-orbit interaction. Studying the scattering problem with the help of the Green function (which was found explicitly), we obtained simple analytical expressions for the spin dependent transmission probability. Using the small exchange parameter and Rashba coupling constant, we can obtain any degree of spin polarization, but in the case of a small interaction region, only for slow electrons.

  4. Air-sea boundary layer dynamics in the presence of mesoscale surface currents

    NASA Astrophysics Data System (ADS)

    Rooth, Claes; Xie, Lian

    1992-09-01

    In the presence of surface currents, a shear stress at the air-sea interface is induced by the surface currents. In the case of a unidirectional current, a quadratic stress law leads to a stress curl proportional to and opposing the surface current vorticity even with a uniform wind. This causes a spindown effect on the surface vorticity field at a rate proportional to the wind speed. In the steady state, or in slowly varying processes which can be treated as parametrically developing quasi-steady states, the surface-layer potential vorticity modulation causes upwelling and downwelling patterns associated with the surface-current vorticity. These effects are analyzed for an idealized jet current, and for a physical situation characteristic of a Gulf Stream boundary ring along the Florida Keys, where the induced transport patterns may be important for onshore transport of fish and spiny lobster larvae, as well as for onshore transport to the Florida Keys of general flotsam transported past them by the Gulf Stream. The spindown time scale (t*) for a 1.5-layer system is H/( ρ'cdVa) for a surface jet on the deformation radius scale (where H is the thickness of the surface layer, Va the surface wind speed, ρ' the air to water density ratio and cd the surface drag coefficient) and increases for large horizontal scales in proportion to the current width squared. For a typical wind speed of 5 m/s and a density normalized drag coefficient ρ'cd= 2 × 10-6, t* is on the order of 1 month for a 30-m surface layer. In the more general case of a stratified interior water column, the vorticity spindown directly affects only the potential vorticity of the surface layer and generally leads to subsurface velocity and vorticity maxima for mesoscale eddies and jets.

  5. Frost flowers growing in the Arctic ocean-atmosphere-sea ice-snow interface: 1. Chemical composition

    NASA Astrophysics Data System (ADS)

    Douglas, Thomas A.; Domine, Florent; Barret, Manuel; Anastasio, Cort; Beine, Harry J.; Bottenheim, Jan; Grannas, Amanda; Houdier, Stephan; Netcheva, Stoyka; Rowland, Glenn; Staebler, Ralf; Steffen, Alexandra

    2012-07-01

    Frost flowers, intricate featherlike crystals that grow on refreezing sea ice leads, have been implicated in lower atmospheric chemical reactions. Few studies have presented chemical composition information for frost flowers over time and many of the chemical species commonly associated with Polar tropospheric reactions have never been reported for frost flowers. We undertook this study on the sea ice north of Barrow, Alaska to quantify the major ion, stable oxygen and hydrogen isotope, alkalinity, light absorbance by soluble species, organochlorine, and aldehyde composition of seawater, brine, and frost flowers. For many of these chemical species we present the first measurements from brine or frost flowers. Results show that major ion and alkalinity concentrations, stable isotope values, and major chromophore (NO3- and H2O2) concentrations are controlled by fractionation from seawater and brine. The presence of these chemical species in present and future sea ice scenarios is somewhat predictable. However, aldehydes, organochlorine compounds, light absorbing species, and mercury (part 2 of this research and Sherman et al. (2012)) are deposited to frost flowers through less predictable processes that probably involve the atmosphere as a source. The present and future concentrations of these constituents in frost flowers may not be easily incorporated into future sea ice or lower atmospheric chemistry scenarios. Thinning of Arctic sea ice will likely present more open sea ice leads where young ice, brine, and frost flowers form. How these changing ice conditions will affect the interactions between ice, brine, frost flowers and the lower atmosphere is unknown.

  6. Mixed Layer Formation and Restratification in the Presence of Mesoscale and Submesoscale Turbulence

    NASA Astrophysics Data System (ADS)

    Couvelard, X.; Tréguier, A. M.; Dumas, F.; Garnier, V.; Ponte, A.

    2014-12-01

    Recent realistic high resolution modeling studies show a net increase of submesoscale activity in fall and winter when the Mixed Layer Depth (hereafter MLD) is at its maximum. This submesoscale activity is associated with the shallowing of the MLD when compared to similar model configurations at lower resolution. Both phenomena can be related to the development of Mixed Layer Instabilities (MLIs), which by slumping the horizontal density gradient in the mixed layer convert Available Potential Energy into submesoscale Eddy Kinetic Energy and contribute to a fast restratification. While parameterizations of the shallowing of the mixed layer by MLIs have been proposed they are based on idealized configurations and are not yet fully tested in realistically forced simulations. In the present work, the ML formation and restratification is studied by uniformly cooling a fully turbulent zonal jet in a periodic channel at different resolutions (eddy resolving (10km) to submesoscale permitting (2km)). The effect of horizontal resolution is quantified in terms of MLD, restratification rate, buoyancy fluxes, and conversion of Available Potential Energy in Eddy Kinetic Energy. At the highest resolution when submesoscale is active the MLD formed during the surface cooling is shallower by about 30% and the total restratification almost three times faster. Such differences between low and high resolution models are explained by the submesoscale vertical buoyancy flux which compensates the convection during the formation phase and accelerates the restratification once the surface cooling stops. These findings are robust and the uncertainties are quantified by ensemble experiments. The most common parameterization of MLIs has been implemented and tested in our coarse resolution configuration, leading as expected to a slightly faster restratification, but the shallowing of the MLD is not represented, suggesting a caveat in such parameterization in presence of strong convection.

  7. FROST CONTROL IN THE PACIFIC NORTHWEST

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The basic physics of frost protection in orchards and vineyard in the Pacific Northewest USA are presented. Various frost protection techniques are discussed and compared. Potential emerging technologies in cold temperature modification are also discussed for potential applications in New Zealand k...

  8. Robert Frost and the Poetry of Physics.

    ERIC Educational Resources Information Center

    Coletta, W. John; Tamres, David H.

    1992-01-01

    Examines five poems by Robert Frost that illustrate Frost's interest in science. The poems include allusions to renowned physicists, metaphoric descriptions of some famous physics experiments, explorations of complementarity as enunciated by Bohr, and poetic formulations of Heisenberg's uncertainty principle. (20 references) (MDH)

  9. Frost heave induced mechanics of buried pipelines

    SciTech Connect

    Selvadurai, A.P.S.; Shinde, S.B.

    1993-12-01

    This paper examines the problem of the flexural interaction between a long-distance buried pipeline embedded in a soil medium that experiences differential frost heave. The modeling takes into consideration the interaction at a transition zone between a frozen region and a frost-susceptible region that experiences a time-dependent growth of a frost bulb around the buried pipeline. The heave that accompanies the development of a frost bulb induces the soil-pipeline interaction process. The analysis focuses on the development of a computational scheme that addresses the three-dimensional nature of the soil-pipeline interaction problem, the creep susceptibility of the frozen region, and a prescribed time- and stress-dependent heave in an evolving frost bulb zone. The numerical results presented in the paper illustrate the influence of the heave process and the creep behavior of the frozen soil on the displacements and stresses in the buried pipeline.

  10. Galilean satellites - Identification of water frost.

    NASA Technical Reports Server (NTRS)

    Pilcher, C. B.; Mccord, T. B.; Ridgway, S. T.

    1972-01-01

    Water frost absorptions have been detected in the infrared reflectivities of Jupiter's Galilean satellites JII (Europa) and JIII (Ganymede). We have determined the percentage of frost-covered surface area to be 50 to 100 percent for JII, 20 to 65 percent for JIII, and possibly 5 to 25 percent for JIV (Callisto). The leading side of JIII has 20 percent more frost cover than the trailing side, which explains the visible geometric albedo differences between the two sides. The reflectivity of the material underlying the frost on JII, JIII, and JIV resembles that of silicates. The surface of JI (Io) may be covered by frost particles much smaller than those on JII and JIII.

  11. Shock induced Richtmyer-Meshkov instability in the presence of a wall boundary layer

    NASA Astrophysics Data System (ADS)

    Jourdan, G.; Billiotte, M.; Houas, L.

    1996-06-01

    An experimental investigation on gaseous mixing zones originated from the Richtmyer-Meshkov instability has been undertaken in a square cross section shock tube. Mass concentration fields, of one of the two mixing constituents, have been determined within the mixing zone when the shock wave passes from the heavy gas to the light one, from one gas to an other of close density, and from the light gas to the heavy one. Results have been obtained before and after the coming back of the reflected shock wave. The diagnostic method is based on the infrared absorption of one of the two constituents of the mixing zone. It is shown that the mixing zone is strongly deformed by the wall boundary layer. The consequence is the presence of strong gradients of concentration in the direction perpendicular to the shock wave propagation. Finally, it is pointed out that the mixing goes more homogeneous when the Atwood number tends to zero.

  12. Frost flowers on young Arctic sea ice: The climatic, chemical, and microbial significance of an emerging ice type

    NASA Astrophysics Data System (ADS)

    Barber, D. G.; Ehn, J. K.; Pućko, M.; Rysgaard, S.; Deming, J. W.; Bowman, J. S.; Papakyriakou, T.; Galley, R. J.; Søgaard, D. H.

    2014-10-01

    Ongoing changes in Arctic sea ice are increasing the spatial and temporal range of young sea ice types over which frost flowers can occur, yet the significance of frost flowers to ocean-sea ice-atmosphere exchange processes remains poorly understood. Frost flowers form when moisture from seawater becomes available to a cold atmosphere and surface winds are low, allowing for supersaturation of the near-surface boundary layer. Ice grown in a pond cut in young ice at the mouth of Young Sound, NE Greenland, in March 2012, showed that expanding frost flower clusters began forming as soon as the ice formed. The new ice and frost flowers dramatically changed the radiative and thermal environment. The frost flowers were about 5°C colder than the brine surface, with an approximately linear temperature gradient from their base to their upper tips. Salinity and δ18O values indicated that frost flowers primarily originated from the surface brine skim. Ikaite crystals were observed to form within an hour in both frost flowers and the thin pond ice. Average ikaite concentrations were 1013 µmol kg-1 in frost flowers and 1061 µmol kg-1 in the surface slush layer. Chamber flux measurements confirmed an efflux of CO2 at the brine-wetted sea ice surface, in line with expectations from the brine chemistry. Bacteria concentrations generally increased with salinity in frost flowers and the surface slush layer. Bacterial densities and taxa indicated that a selective process occurred at the ice surface and confirmed the general pattern of primary oceanic origin versus negligible atmospheric deposition.

  13. Frost-ring chronologies as dendroclimatic proxies of boreal environments

    NASA Astrophysics Data System (ADS)

    Payette, Serge; Delwaide, Ann; Simard, Martin

    2010-01-01

    Frost rings are formed in tree stems when growing-season frosts affect immature wood cells, producing collapsed cells within annual tree rings. Open boreal forests are most susceptible to record growing-season frost because they lack the greenhouse effect commonly observed in closed forests. Here we present a novel method to construct regional frost-ring chronologies in lichen-black spruce woodlands of the boreal forest zone. Because the ability of trees to form frost rings depends on several factors (including bark thickness and ring width), we used two models to produce a Frost Composite Index based on a frost susceptibility window of cambial age <30 years. The frost-ring chronology showed alternating periods of high and low frost activity that were highly consistent within and among sites. Reconstruction of growing-season frost activity may be used as dendroclimatic proxies of climate variability and may give insights into future risks of frost damage in a warming climate.

  14. Elevated Bacterial Abundance in Laboratory-Grown and Naturally Occurring Frost Flowers Under Late Winter Conditions

    NASA Astrophysics Data System (ADS)

    Bowman, J. S.; Deming, J. W.

    2009-12-01

    .0001). The presence of elevated numbers of bacteria in frost flowers may have implications for the previously observed chemical reactions that take place in them, especially if microbial activity can be shown to occur in this unique low temperature, low water activity microbial habitat.

  15. Io - Longtudinal distribution of sulfur dioxide frost

    NASA Technical Reports Server (NTRS)

    Nelson, R. M.; Lane, A. L.; Matson, D. L.; Fanale, F. P.; Nash, D. B.; Johnson, T. V.

    1980-01-01

    A longitudinal variation in the distribution of SO2 frost on Io is examined. Twenty spectra of Io (0.26 to 0.33 micrometer) are presented and a strong ultraviolet absorption is found shortward of 0.33 micrometer. The abundance of frost is greatest at orbital longitudes 72 to 137 degrees. Longitudes 250 to 323 degrees are least abundant in SO2. Comparisons are made with a Voyager color relief map, which suggest that SO2 frost is in greatest concentration in the white areas of Io and other sulfurous materials are in greatest concentration in the red areas.

  16. Evolution of symmetric reconnection layer in the presence of parallel shear flow

    SciTech Connect

    Lu Haoyu; Cao Jinbin

    2011-07-15

    The development of the structure of symmetric reconnection layer in the presence of a shear flow parallel to the antiparallel magnetic field component is studied by using a set of one-dimensional (1D) magnetohydrodynamic (MHD) equations. The Riemann problem is simulated through a second-order conservative TVD (total variation diminishing) scheme, in conjunction with Roe's averages for the Riemann problem. The simulation results indicate that besides the MHD shocks and expansion waves, there exist some new small-scale structures in the reconnection layer. For the case of zero initial guide magnetic field (i.e., B{sub y0} = 0), a pair of intermediate shock and slow shock (SS) is formed in the presence of the parallel shear flow. The critical velocity of initial shear flow V{sub zc} is just the Alfven velocity in the inflow region. As V{sub z{infinity}} increases to the value larger than V{sub zc}, a new slow expansion wave appears in the position of SS in the case V{sub z{infinity}} < V{sub zc}, and one of the current densities drops to zero. As plasma {beta} increases, the out-flow region is widened. For B{sub y0} {ne} 0, a pair of SSs and an additional pair of time-dependent intermediate shocks (TDISs) are found to be present. Similar to the case of B{sub y0} = 0, there exists a critical velocity of initial shear flow V{sub zc}. The value of V{sub zc} is, however, smaller than the Alfven velocity of the inflow region. As plasma {beta} increases, the velocities of SS and TDIS increase, and the out-flow region is widened. However, the velocity of downstream SS increases even faster, making the distance between SS and TDIS smaller. Consequently, the interaction between SS and TDIS in the case of high plasma {beta} influences the property of direction rotation of magnetic field across TDIS. Thereby, a wedge in the hodogram of tangential magnetic field comes into being. When {beta}{yields}{infinity}, TDISs disappear and the guide magnetic field becomes constant.

  17. Extension of Humidity Standards to Frost Point

    NASA Astrophysics Data System (ADS)

    Choi, B. I.; Lee, S.-W.; Kim, J. C.; Woo, S. B.

    2015-08-01

    The KRISS low frost-point humidity generator which has been operated by the two-temperature method in the frost-point range from to since 2006 is reformed to a two-temperature, two-pressure type, in order to extend the calibration capability to a frost point of . The temperature and pressure of the saturator were controlled to and 1 MPa, respectively. The water-vapor mole ratio generated by the upgraded humidity generator reached . The uncertainty of the generator was estimated by calculations as well as a series of experiments including the stability of the generated frost point, the saturation efficiency with a varied gas flow rate, and the change of water-vapor mole ratio in the tubing line. The standard uncertainty of the generator is less than at the frost point of and is increased to at the frost point of . The increase in uncertainty is mainly due to the water adsorption/desorption on the internal surface of tubing from the saturator to the hygrometer.

  18. Frost streaks in the south polar cap of Mars

    NASA Technical Reports Server (NTRS)

    Thomas, P.; Veverka, J.; Campos-Marquetti, R.

    1979-01-01

    Viking Orbiter images of the annual south polar cap on Mars exhibit elongated bright features that are associated with craters and resemble wind streaks observed elsewhere on Mars. The study focuses on the well-documented frost streaks. The discussion covers the morphology of frost streaks, occurrence, seasonal behavior, thickness of frost in streak deposits, wind patterns inferred from frost streaks and other eolian features in the south polar region, formation of frost streaks, and other locales of preferential frost accumulation. The form and seasonal behavior of the bright elongated albedo markings which extend from the rims of many craters in the south polar cap suggest that they are accumulations of CO2 frost in the lee of craters. The frost streaks appear in the fall, increasing in length but not changing in direction during fall and winter. The frost streaks indicate a prograde circulation pattern of near-surface winds around the pole. Other details are also presented.

  19. Frost halos from supercooled water droplets

    PubMed Central

    Jung, Stefan; Tiwari, Manish K.; Poulikakos, Dimos

    2012-01-01

    Water freezing on solid surfaces is ubiquitous in nature. Even though icing/frosting impairs the performance and safety in many processes, its mechanism remains inadequately understood. Changing atmospheric conditions, surface properties, the complexity of icing physics, and the unorthodox behavior of water are the primary factors that make icing and frost formation intriguing and difficult to predict. In addition to its unquestioned scientific and practical importance, unraveling the frosting mechanism under different conditions is a prerequisite to develop “icephobic” surfaces, which may avoid ice formation and contamination. In this work we demonstrate that evaporation from a freezing supercooled sessile droplet, which starts explosively due to the sudden latent heat released upon recalescent freezing, generates a condensation halo around the droplet, which crystallizes and drastically affects the surface behavior. The process involves simultaneous multiple phase transitions and may also spread icing by initiating sequential freezing of neighboring droplets in the form of a domino effect and frost propagation. Experiments under controlled humidity conditions using substrates differing up to three orders of magnitude in thermal conductivity establish that a delicate balance between heat diffusion and vapor transport determines the final expanse of the frozen condensate halo, which, in turn, controls frost formation and propagation. PMID:23012410

  20. An experimental investigation of the effect of hydrophobicity on the rate of frost growth in laminar channel flows

    SciTech Connect

    Dyer, J.M.; Storey, B.D.; Hoke, J.L.; Jacobi, A.M.; Georgiadis, J.G.

    2000-07-01

    An experimental investigation of the effect of the substrate on frost growth rate is presented. Measurements of frost height as a function of time are presented for a flat, bare, horizontally oriented aluminum substrate and four coated substrates, two hydrophilic and two hydrophobic. The average frost growth rate on the hydrophilic coated aluminum substrate is 13% higher than the control substrate, while the frost growth rate on the hydrophilic kapton substrate is 4% higher. Frost grows on the hydrophobic substrates at a rate 19% and 3% lower than the reference substrate for the polytetrafluoroethylene (PTFE) coated steel and PTFE tape, respectively. Differences in the receding and advancing contact angles for these substrates do not fully explain the difference in growth rates. Differences in initial water deposition, freezing, and frost growth on hydrophilic and hydrophobic substrates are examined using confocal microscopy. On the basis of the microscopic observations, the authors hypothesize that the water coverage on the substrate before and after freezing can affect the thermal resistance of the mature frost layer. Differences in thermal resistance, in turn, affect the growth rate.

  1. Wing laminar boundary layer in the presence of a propeller slipstream

    NASA Technical Reports Server (NTRS)

    Miley, S. J.; Howard, R. M.; Holmes, B. J.

    1986-01-01

    The effects of a propeller slipstream on the wing laminar boundary layer are being investigated. Hot-wire velocity sensor measurements have been performed in flight and in a wind tunnel. It is shown that the boundary layer cycles between a laminar state and a turbulent state at the propeller blade passage rate. The cyclic length of the turbulent state increases with decreasing laminar stability. Analyses of the time varying velocity profiles show the turbulent state to lie in a transition region between fully laminar and fully turbulent. The observed cyclic boundary layer has characteristics similar to relaminarizing flow and laminar flow with external turbulence.

  2. Laminar-specific distribution of zinc: evidence for presence of layer IV in forelimb motor cortex in the rat.

    PubMed

    Alaverdashvili, Mariam; Hackett, Mark J; Pickering, Ingrid J; Paterson, Phyllis G

    2014-12-01

    The rat is the most widely studied pre-clinical model system of various neurological and neurodegenerative disorders affecting hand function. Although brain injury to the forelimb region of the motor cortex in rats mostly induces behavioral abnormalities in motor control of hand movements, behavioral deficits in the sensory-motor domain are also observed. This questions the prevailing view that cortical layer IV, a recipient of sensory information from the thalamus, is absent in rat motor cortex. Because zinc-containing neurons are generally not found in pathways that run from the thalamus, an absence of zinc (Zn) in a cortical layer would be suggestive of sensory input from the thalamus. To test this hypothesis, we used synchrotron micro X-ray fluorescence imaging to measure Zn distribution across cortical layers. Zn maps revealed a heterogeneous layered Zn distribution in primary and secondary motor cortices of the forelimb region in the adult rat. Two wider bands with elevated Zn content were separated by a narrow band having reduced Zn content, and this was evident in two rat strains. The Zn distribution pattern was comparable to that in sensorimotor cortex, which is known to contain a well demarcated layer IV. Juxtaposition of Zn maps and the images of brain stained for Nissl bodies revealed a "Zn valley" in primary motor cortex, apparently starting at the ventral border of pyramidal layer III and ending at the close vicinity of layer V. This finding indicates the presence of a conspicuous cortical layer between layers III and V, i.e. layer IV, the presence of which previously has been disputed. The results have implications for the use of rat models to investigate human brain function and neuropathology, such as after stroke. The presence of layer IV in the forelimb region of the motor cortex suggests that therapeutic interventions used in rat models of motor cortex injury should target functional abnormalities in both motor and sensory domains. The finding

  3. Laminar-specific distribution of zinc: Evidence for presence of layer IV in forelimb motor cortex in the rat

    PubMed Central

    Alaverdashvili, Mariam; Hackett, Mark J.; Pickering, Ingrid J.; Paterson, Phyllis G.

    2015-01-01

    The rat is the most widely studied pre-clinical model system of various neurological and neurodegenerative disorders affecting hand function. Although brain injury to the forelimb region of the motor cortex in rats mostly induces behavioral abnormalities in motor control of hand movements, behavioral deficits in the sensory-motor domain are also observed. This questions the prevailing view that cortical layer IV, a recipient of sensory information from the thalamus, is absent in rat motor cortex. Because zinc-containing neurons are generally not found in pathways that run from the thalamus, an absence of zinc (Zn) in a cortical layer would be suggestive of sensory input from the thalamus. To test this hypothesis, we used synchrotron micro X-ray fluorescence imaging to measure Zn distribution across cortical layers. Zn maps revealed a heterogeneous layered Zn distribution in primary and secondary motor cortices of the forelimb region in the adult rat. Two wider bands with elevated Zn content were separated by a narrow band having reduced Zn content, and this was evident in two rat strains. The Zn distribution pattern was comparable to that in sensorimotor cortex, which is known to contain a well demarcated layer IV. Juxtaposition of Zn maps and the images of brain stained for Nissl bodies revealed a “Zn valley” in primary motor cortex, apparently starting at the ventral border of pyramidal layer III and ending at the close vicinity of layer V. This finding indicates the presence of a conspicuous cortical layer between layers III and V, i.e. layer IV, the presence of which previously has been disputed. The results have implications for the use of rat models to investigate human brain function and neuropathology, such as after stroke. The presence of layer IV in the forelimb region of the motor cortex suggests that therapeutic interventions used in rat models of motor cortex injury should target functional abnormalities in both motor and sensory domains. The

  4. Two layer asymptotic model for the wave propagation in the presence of vorticity

    NASA Astrophysics Data System (ADS)

    Kazakova, M. Yu; Noble, P.

    2016-06-01

    In the present study, we consider the system of two layers of the immiscible constant density fluids which are modeled by the full Euler equations. The domain of the flow is infinite in the horizontal directions and delimited above by a free surface. Bottom topography is taken into account. This is a simple model of the wave propagation in the ocean where the upper layer corresponds to the (thin) layer of fluid above the thermocline whereas the lower layer is under the thermocline. Though even this simple framework is computationally too expensive and mathematically too complicated to describe efficiently propagation of waves in the ocean. Modeling assumption such as shallowness, vanishing vorticity and hydrostatic pressure are usually made to get the bi-layer shallow water models that are mathematically more manageable. Though, they cannot describe correctly the propagation of both internal and free surface waves and dispersive/non hydrostatic must be added. Our goal is to consider the regime of medium to large vorticities in shallow water flow. We present the derivation of the model for internal and surface wave propagation in the case of constant and general vorticities in each layer. The model reduces to the classical Green-Naghdi equations in the case of vanishing vorticities.

  5. Effect of sodium monofluorophosphate treatment on microstructure and frost salt scaling durability of slag cement paste

    SciTech Connect

    Copuroglu, O. . E-mail: o.copuroglu@citg.tudelft.nl; Fraaij, A.L.A.; Bijen, J.M.J.M.

    2006-08-15

    Sodium-monofluorophosphate (Na-MFP) is currently in use as a surface applied corrosion inhibitor in the concrete industry. Its basic mechanism is to protect the passive layer of the reinforcement steel against disruption due to carbonation. Carbonation is known as the most detrimental environmental effect on blast furnace slag cement (BFSC) concrete with respect to frost salt scaling. In this paper the effect of Na-MFP on the microstructure and frost salt scaling resistance of carbonated BFSC paste is presented. The results of electron microscopy, mercury intrusion porosimetry (MIP) and X-ray diffraction (XRD) are discussed. It is found that the treatment modifies the microstructure and improves the resistance of carbonated BFSC paste against frost salt attack.

  6. Design of UMTRA covers to mitigate the effect of frost penetration

    SciTech Connect

    Banani, A.M.; Claire, R.F.

    1994-03-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project, contracted by the US Department of Energy (DOE), requires construction of disposal cells for residual radioactive materials from abandoned uranium mill tailings. A disposal cell consists of contaminated material placed within a stabilized embankment with a top cover. The embankment and cover should be effective for up to 1000 years, to the extent reasonably achievable, and in any case for at least 200 years. The embankment cover usually consists of a radon/infiltration barrier, a frost barrier and erosion protection layer consisting of bedding and riprap layers. The radon/infiltration barrier and frost barrier are two important elements of the cover systems. A radon/infiltration barrier is designed to reduce the radon emissions from the contaminated materials and to limit the surface water infiltration into the contaminated material. However, a radon/infiltration barrier has to be protected from repeated freeze-thaw cycles to prevent an increase in permeability. Frost penetration depth is site specific and depends on local climatic conditions and soil properties of the cover system. However, placing a frost barrier is not only very costly but also reduces the disposal capacity of the embankment. Recent laboratory test results indicate that freeze-thaw cycles do not significantly effect the permeability of compacted sand-bentonite mixtures. Therefore, radon/infiltration barriers using sand-bentonite mixtures may not require frost barriers for protection against the effects of freeze-thaw. In this paper the design of UMTRA covers is briefly explained; the criteria to determine a 200 year freeze event, and the frost penetration depth are discussed. The results of freeze-thaw permeability tests on compacted clay and sand-bentonite mixtures are also presented.

  7. Enhanced interlayer trapping of a tetracycline antibiotic within montmorillonite layers in the presence of Ca and Mg.

    PubMed

    Aristilde, Ludmilla; Lanson, Bruno; Miéhé-Brendlé, Jocelyne; Marichal, Claire; Charlet, Laurent

    2016-02-15

    The formation of a ternary antibiotic-metal-clay complex is hypothesized as the primary adsorption mechanism responsible for the increased adsorption of tetracycline antibiotics on smectites in the presence of divalent metal cations under circumneutral and higher pH conditions. To evaluate this hypothesis, we conducted a spectroscopic investigation of oxytetracycline (OTC) interacting with Na-montmorillonite in the presence and absence of Ca or Mg salts at pH 6 and pH 8. Despite a two-fold increase in OTC adsorbed in the presence of Ca or Mg, both solid-state nuclear magnetic resonance and infrared signatures of the OTC functional groups involved in metal complexation implied that the formation of an inner-sphere ternary complexation was not significant in stabilizing the adsorbate structures. The spectroscopic data further indicated that the positively-charged amino group mediated the OTC adsorption both in the absence and presence of the divalent metal cations. Focusing on the experiments with Mg, X-ray diffraction analysis revealed that the metal-promoted adsorption was coupled with an increased intercalation of OTC within the montmorillonite layers. The resulting interstratified clay layers were characterized by simulating X-ray diffraction of theoretical stacking compositions using molecular dynamics-optimized montmorillonite layers with and without OTC. The simulations uncovered the evolution of segregated interstratification patterns that demonstrated how increased access to smectite interlayers in the presence of the divalent metal cations enhanced adsorption of OTC. Our findings suggest that specific aqueous structures of the clay crystallites in response to the co-presence of Mg and OTC in solution served as precursors to the interlayer trapping of the antibiotic species. Elucidation of these structures is needed for further insights on how aqueous chemistry influences the role of smectite clay minerals in trapping organic molecules in natural and

  8. Measurements of thermal infrared spectral reflectance of frost, snow, and ice

    NASA Technical Reports Server (NTRS)

    Salisbury, John W.; D'Aria, Dana M.; Wald, Andrew

    1994-01-01

    Because much of Earth's surface is covered by frost, snow, and ice, the spectral emissivities of these materials are a significant input to radiation balance calculations in global atmospheric circulation and climate change models. Until now, however, spectral emissivities of frost and snow have been calculated from the optical constants of ice. We have measured directional hemispherical reflectance spectra of frost, snow, and ice from which emissivities can be predicted using Kirchhoff's law (e = 1-R). These measured spectra show that contrary to conclusions about the emissivity of snow drawn from previously calculated spectra, snow emissivity departs significantly from blackbody behavior in the 8-14 micrometer region of the spectrum; snow emissivity decreases with both increasing particle size and increasing density due to packing or grain welding; while snow emissivity increases due to the presence of meltwater.

  9. A Gentle Frost: Poet Helen Frost Talks about the Healing Power of Poetry and Her Latest Novel

    ERIC Educational Resources Information Center

    Margolis, Rick

    2006-01-01

    This article presents an interview with poet Helen Frost. Frost talked about how poetry can help at-risk children. She also related the challenges she faced when she wrote her latest book titled "The Braid."

  10. Insulator (Heat and Frost). Occupational Analyses Series.

    ERIC Educational Resources Information Center

    McRory, Aline; Ally, Mohamed

    This analysis covers tasks performed by an insulator, an occupational title some provinces and territories of Canada have also identified as heat and frost insulator. A guide to analysis discusses development, structure, and validation method; scope of the occupation; trends; and safety. To facilitate understanding the nature of the occupation,…

  11. Robert Frost and the American College.

    ERIC Educational Resources Information Center

    Newdick, Robert S.

    1999-01-01

    The life and works of poet Robert Frost are examined for insights into his philosophy concerning higher education, particularly formal education, his own style of teaching, perceptions of the teacher's role within and outside the classroom, and the relationship between student and teacher. (Originally published in 1936) (MSE)

  12. Robert Frost: Rural New England Teacher.

    ERIC Educational Resources Information Center

    Hiss, Sheila M.

    1989-01-01

    Examines Robert Frost's teaching career, which lasted from 1893 to 1912. Discusses his extreme dislike of teaching, resulting in nervous exhaustion on several occasions, and his teaching innovations, which involved students writing about their own experiences and ideas, and reading aloud for expression and the sound of language. (SV)

  13. Autumn Frost, North Polar Sand Dunes

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Autumn in the martian northern hemisphere began around August 1, 1999. Almost as soon as northern fall began, the Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) started documenting the arrival of autumn frost--a precursor to the cold winter that will arrive in late December 1999. The first features to become covered by frost were the sand dunes that surround the north polar ice cap. The dunes seen here would normally appear very dark--almost black--except when covered by frost. Why the dunes begin to frost sooner than the surrounding surfaces is a mystery: perhaps the dunes contain water vapor that emerges from the sand during the day and condenses again at night. This picture shows dunes near 74.7oN, 61.4oW at a resolution of about 7.3 meters (24 feet) per pixel. The area covered is about 3 km (1.9 mi) across and is illuminated from the upper right. The picture appears to be somewhat fuzzy and grainy because the dunes here are seen through the thin haze of the gathering north polar winter hood (i.e., clouds).

  14. Latest results from FROST at Jefferson Lab

    SciTech Connect

    Ritchie, Barry G.

    2014-06-01

    The spectrum of broad and overlapping nucleon excitations can be greatly clarified by use of a polarized photon beam incident on a polarized target in meson photoproduction experiments. At Jefferson Lab, a program of such measurements has made use of the Jefferson Lab FROzen Spin Target (FROST). An overview of preliminary results are presented.

  15. Local predictions of frost, fog, and low clouds

    NASA Astrophysics Data System (ADS)

    Liechti, O.

    2010-09-01

    An operational chain of nested numerical weather prediction models has been extended with a two-dimensional boundary layer model in order to produce short-term and local predictions of frost and low visibility. For an experimental period of six months the topographical boundary layer model TBM has been coupled to the operational COSMO-2 model of MeteoSwiss for the hydrological catchment of the Glatt river (ZH, Switzerland). Eight daily COSMO-2 runs covering 24 hours each have been completed by hourly runs of the boundary layer model TBM which assimilates local observations. Verifications of the COSMO-2/TBM runs document a remarkable quality and level of sophistication in the simulation of nocturnal boundary layers for a substantial range of low visibility conditions caused by radiative mist developing into fog and low stratus. In the topographical boundary layer model TBM the subscale processes governing the nocturnal cooling (long wave radiative transfer, condensation, deposition, sedimentation, vertical mixing, and wind) have been tuned for a five day period with a variety of weather and visibility conditions. Simulations of numerous other nights with reduced visibility have successfully been verified with visibility, radiation, and temperature observed at Zurich airport. Apparently the subscale processes relevant for nocturnal cooling are represented in the topographical boundary layer model TBM and have been tuned for practical application. Calm nights after days with well mixed convective boundary layers have been simulated most precisely and consistently. With TBM the development of initially stable near ground layers into mist, fog, and finally mixed low stratus is obtained with remarkable temporal and spatial precision. Cases of marked low-level inversions with stratus, either persisting or hardly dissipating during the day, have been simulated less consistently. A sensitivity of the simulations to the external forcings from the COSMO-2 and the assimilated

  16. Distribution of Sulfur Dioxide Frost on Io

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Sulfur dioxide, normally a gas at room temperatures, is known to exist on Io's surface as a frost, condensing there from the hot gases emanating from the Io volcanoes. However, the deposition patterns and relation of the frost distribution to the volcanic activity is unknown, since prior measurements lacked the spatial resolution to accurately map the surface frost.

    The Galileo Near Infrared Mapping Spectrometer (NIMS) obtained relatively high spatial and spectral resolution images during the C3 orbit, and the characteristic infrared absorptions of sulfur dioxide frost appearing in the spectra were used to produce the SO2 frost map shown on the right. The comparison image on the left (from 1979 Voyager measurements) shows the same view and indicates the surface brightness as seen in visible light.

    The frost map shows maximum SO2 concentration as white, lesser amounts as blue coloration, and areas with little or no SO2 as black. The resolution of this map is about 120 km (75 miles), which spans the latitude range 120 W to 270 W.

    It is interesting to compare this frost distribution with regions of volcanic activity. Volcanic hotspots identified from NIMS and SSI images occur in many of the dark - low SO2 - areas, a reasonable finding since sulfur dioxide would not condense on such hot regions. The Pele region (to the lower left), N. Colchis hot spots (upper center) and S. Volund (upper right) are good examples of hot spot areas depleted in sulfur dioxide. Much of the rest of this hemisphere of Io has varying amounts of sulfur dioxide present. The most sulfur dioxide-rich area is Colchis Regio, the white area to the right of center.

    Of particular interest is the dark area to the south of Colchis Regio. From the study of other NIMS images, it is seen that this region does not have any large, obvious hotspots. However, it is depleted in sulfur dioxide.

    The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science

  17. Spin waves in exchange-coupled double layers in the presence of spin torques

    NASA Astrophysics Data System (ADS)

    Baláž, Pavel; Barnaś, Józef

    2015-03-01

    Spin-wave spectra of a double magnetic layer are calculated theoretically in the macroscopic limit. Magnetic dynamics is described in terms of the Landau-Lifshitz-Gilbert equation, and both static (of the Ruderman-Kittel-Kasuya-Yosida type) and dynamic (via spin pumping) interlayer couplings are taken into account. The influence of spin pumping and spin transfer torque on the spin-wave spectra (frequency and damping factor) has been studied for both parallel and antiparallel magnetic configurations. The spin-wave spectrum in the parallel magnetic state is reciprocal, while in the antiparallel configuration it is nonreciprocal. In both cases, a substantial reduction of the spin-wave lifetimes due to spin pumping to the nonmagnetic metallic layers has been found. In the parallel configuration, this reduction appears mainly for optical modes, while in the antiparallel configuration, it is remarkable for all modes. In turn, the spin torque due to spin current flowing from a metallic layer, created for instance by the spin Hall effect, gives rise to significant changes in the damping factors as well, but these modifications depend on the sign of spin current. For one spin current orientation, the spin-wave damping becomes reduced and may disappear for some modes at a specific threshold value of the spin current, indicating magnetic instability in the system due to spin transfer torque. For the opposite spin current, the damping is enhanced, which indicates stabilization of the corresponding magnetic state.

  18. Water content and matric potential of soil under different soil frost conditions

    NASA Astrophysics Data System (ADS)

    Suzuki, S.; Iwata, Y.; Hiirota, T.; Hasegawa, S.; Arima, J.

    2006-12-01

    treatment plot was 17 times greater than that in the control plot at maximum. The control plot with a thin frozen layer allowed infiltration of snow melt water, water content at the lower subsoil increased, and the hydraulic gradient changed to downward immediately after snow melting occurred, whereas a thick frozen layer in the treatment plot impeded the infiltration resulting in waterlogging being observed on the soil surface, which may induce surface runoff. Consequently, the results suggest that the resent decreasing soil frost depth inhibits lower subsoil from drying and facilitates infiltration of snow melt water.

  19. Multiple receiver wind profiling techniques for the boundary layer in the presence of hydro-meteors

    NASA Astrophysics Data System (ADS)

    Van Baelen, Joel; Hirsch, Lutz; Prada, Claire

    1997-11-01

    A UHF boundary layer wind profiler has been operated in a multiple receiver mode. The data sets collected are used to estimate the horizontal wind using different multiple receiver analysis techniques performed in the time and frequency domains. Those results are also compared with simultaneous Doppler beam swinging measurements. The particularity of the data sets used for this inter-comparison is that they were recorded while hydro-meteors were present in the boundary layer. The large mean fall speed and the broad fall velocity distribution of rain drops causes a much more rapid decay of diffraction patterns than in the case of scattering by snow flakes or micro turbulence. Therefore, analysis methods which do not account for the effect of the decay of the diffraction patterns show an over-estimation of the wind velocity, and do so in a different way whether snow or rain is present. To the contrary, algorithms that account for the effect of diffraction pattern decay appear to reasonably estimate the actual horizontal wind and compare well with the Doppler measurements.

  20. A Two-Layer Model for Superposed Electrified Maxwell Fluids in Presence of Heat Transfer

    NASA Astrophysics Data System (ADS)

    Kadry, Zakaria; Magdy, A. Sirwah; Sameh, A. Alkharashi

    2011-06-01

    Based on a modified-Darcy—Maxwell model, two-dimensional, incompressible and heat transfer flow of two bounded layers, through electrified Maxwell fluids in porous media is performed. The driving force for the instability under an electric field, is an electrostatic force exerted on the free charges accumulated at the dividing interface. Normal mode analysis is considered to study the linear stability of the disturbances layers. The solutions of the linearized equations of motion with the boundary conditions lead to an implicit dispersion relation between the growth rate and wave number. These equations are parameterized by Weber number, Reynolds number, Marangoni number, dimensionless conductivities, and dimensionless electric potentials. The case of long waves interfacial stability has been studied. The stability criteria are performed theoretically in which stability diagrams are obtained. In the limiting cases, some previously published results can be considered as particular cases of our results. It is found that the Reynolds number plays a destabilizing role in the stability criteria, while the damping influence is observed for the increasing of Marangoni number and Maxwell relaxation time.

  1. Bridge Frost Prediction by Heat and Mass Transfer Methods

    NASA Astrophysics Data System (ADS)

    Greenfield, Tina M.; Takle, Eugene S.

    2006-03-01

    Frost on roadways and bridges can present hazardous conditions to motorists, particularly when it occurs in patches or on bridges when adjacent roadways are clear of frost. To minimize materials costs, vehicle corrosion, and negative environmental impacts, frost-suppression chemicals should be applied only when, where, and in the appropriate amounts needed to maintain roadways in a safe condition for motorists. Accurate forecasts of frost onset times, frost intensity, and frost disappearance (e.g., melting or sublimation) are needed to help roadway maintenance personnel decide when, where, and how much frost-suppression chemical to use. A finite-difference algorithm (BridgeT) has been developed that simulates vertical heat transfer in a bridge based on evolving meteorological conditions at its top and bottom as supplied by a weather forecast model. BridgeT simulates bridge temperatures at numerous points within the bridge (including its upper and lower surface) at each time step of the weather forecast model and calculates volume per unit area (i.e., depth) of deposited, melted, or sublimed frost. This model produces forecasts of bridge surface temperature, frost depth, and bridge condition (i.e., dry, wet, icy/snowy). Bridge frost predictions and bridge surface temperature are compared with observed and measured values to assess BridgeT's skill in forecasting bridge frost and associated conditions.

  2. Nonlinear Marangoni waves in a two-layer film in the presence of gravity

    NASA Astrophysics Data System (ADS)

    Nepomnyashchy, Alexander; Simanovskii, Ilya

    2012-03-01

    Longwave Marangoni convection in two-layer films under the action of gravity is considered. The analysis is carried out in the lubrication approximation. A linear stability analysis reveals the existence of monotonic and oscillatory instability modes, depending on the way of heating and the value of the Biot number. Numerical simulations are performed in the case of an oscillatory instability, which takes place by heating from above. Periodic boundary conditions are applied on the boundaries of the computational region. A sequence of nonlinear wavy regimes, which develop by the increase of the Galileo number, is studied. That sequence includes three-dimensional and two-dimensional structures. The multistability of wavy patterns with different spatial periods has been revealed.

  3. Ubiquitous presence of gluconeogenic regulatory enzyme, fructose-1,6-bisphosphatase, within layers of rat retina

    PubMed Central

    Mamczur, Piotr; Mazurek, Jakub

    2010-01-01

    To shed some light on gluconeogenesis in mammalian retina, we have focused on fructose-1,6-bisphosphatase (FBPase), a regulatory enzyme of the process. The abundance of the enzyme within the layers of the rat retina suggests that, in mammals in contrast to amphibia, gluconeogenesis is not restricted to one specific cell of the retina. We propose that FBPase, in addition to its gluconeogenic role, participates in the protection of the retina against reactive oxygen species. Additionally, the nuclear localization of FBPase and of its binding partner, aldolase, in the retinal cells expressing the proliferation marker Ki-67 indicates that these two gluconeogenic enzymes are involved in non-enzymatic nuclear processes. Electronic supplementary material The online version of this article (doi:10.1007/s00441-010-1008-2) contains supplementary material, which is available to authorized users. PMID:20614135

  4. Transition along a finite-length cylinder in the presence of a thin boundary layer

    NASA Astrophysics Data System (ADS)

    Wang, Hanfeng; Peng, Si; Zhou, Yu; He, Xuhui

    2016-05-01

    This work aims to investigate experimentally the transition of the aerodynamic forces on a cantilevered circular cylinder immersed in a thin boundary layer whose thickness is comparable to the cylinder diameter d. The aspect ratio H/ d of the cylinder is 5, where H is the cylinder height. The Reynolds number Re, based on the freestream velocity ( U ∞ ) and d, is varied from 0.68 × 105 to 6.12 × 105, covering the subcritical, critical and supercritical regimes. It has been found that the flow transition is non-uniform along the cylinder span, taking place at a smaller Re near the cylinder free end than near the base. Furthermore, the sectional drag coefficient of the cantilevered cylinder is smaller relative to that of a two-dimensional cylinder in the subcritical regime, but larger than the later in the supercritical regime. The sectional lift coefficient is not zero in the critical regime, with its maximum near the free end reaching almost four times of that near the base.

  5. Tail-ion transport and Knudsen layer formation in the presence of magnetic fields

    NASA Astrophysics Data System (ADS)

    Schmit, Paul; Molvig, Kim

    2013-10-01

    The impact of magnetic fields on Knudsen layer formation in ICF-relevant plasma is investigated for the first time. Magnetic fields change the energy scaling of the ion diffusivity in a way that eliminates the preferential losses of fast ions compared to thermal ions. Simple threshold criteria give conditions such that the restoration of the ion tail distribution is sufficient to recover much of the lost fusion reactivity. The tail-ion kinetic equations are solved for hot fuel bounded by a cold, nonreacting wall using a numerical stochastic differential equation solver, and the modified fusion reactivities are calculated. We find that modest magnetic fields too weak to magnetize thermal ions are still sufficient to restore much of the lost reactivity, consistent with the threshold conditions. We also find that the Maxwell-averaged fusion reactivities are recovered more fully in cylindrical targets compared to spherical targets. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  6. Ice-frosted crater tops on Ganymede

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Scientists believe that water-ice frosts are the likely cause for the brightening seen around the circular rims of these craters located at a high northern latitude (57 degrees) on Jupiter's moon Ganymede in this image taken by NASA's Galileo spacecraft on September 6, 1996. The image, just recently radioed to Earth from the spacecraft, shows the same kind of bright, high-latitude surface areas as those first seen by the Voyager spacecraft in 1979, but at higher resolution (this image spans about 18 kilometers or 11 miles on a side). Even though the Sun is shining from the south, the north-facing walls of the ridges and craters are brighter than the walls facing the Sun. This is interpreted to mean that the very bright north-facing slopes are covered with surface water-ice frosts, and that these frosts preferentially accumulate in such high-latitude locations. Galileo scientists say that at the high resolution seen in Galileo images, the high-latitude brightness seen by Voyager is partly attributable to frosts forming on cooler, north-facing slopes.

    The right-hand side of the image is dominated by a north-south line of impact craters; the smallest ones at the top are about 2 kilometers (1.2 miles) in diameter and the large one at the bottom is about 5 kilometers (about 3 miles) in diameter. Ganymede is the largest moon in the solar system, larger than the planet Mercury and nearly the size of Mars.

    The Jet Propulsion Laboratory, Pasadena, CA, manages the mission for NASA's Office of Space Science, Washington, DC. This image and other images and data received from Galileo are posted on the Galileo mission home page on the World Wide Web at http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at http://www.jpl.nasa.gov/galileo/sepo

  7. Kinetic Alfven wave in the presence of kappa distribution function in plasma sheet boundary layer

    SciTech Connect

    Shrivastava, G. Ahirwar, G.; Shrivastava, J.

    2015-07-31

    The particle aspect approach is adopted to investigate the trajectories of charged particles in the electromagnetic field of kinetic Alfven wave. Expressions are found for the dispersion relation, damping/growth rate and associated currents in the presence of kappa distribution function. Kinetic effect of electrons and ions are included to study kinetic Alfven wave because both are important in the transition region. It is found that the ratio β of electron thermal energy density to magnetic field energy density and the ratio of ion to electron thermal temperature (T{sub i}/T{sub e}), and kappa distribution function affect the dispersion relation, damping/growth rate and associated currents in both cases(warm and cold electron limit).The treatment of kinetic Alfven wave instability is based on assumption that the plasma consist of resonant and non resonant particles. The resonant particles participate in an energy exchange process, whereas the non resonant particles support the oscillatory motion of the wave.

  8. GTD analysis of airborne antennas radiating in the presence of lossy dielectric layers

    NASA Technical Reports Server (NTRS)

    Rojas-Teran, R. G.; Burnside, W. D.

    1981-01-01

    The patterns of monopole or aperture antennas mounted on a perfectly conducting convex surface radiating in the presence of a dielectric or metal plate are computed. The geometrical theory of diffraction is used to analyze the radiating system and extended here to include diffraction by flat dielectric slabs. Modified edge diffraction coefficients valid for wedges whose walls are lossy or lossless thin dielectric or perfectly conducting plates are developed. The width of the dielectric plates cannot exceed a quarter of a wavelength in free space, and the interior angle of the wedge is assumed to be close to 0 deg or 180 deg. Systematic methods for computing the individual components of the total high frequency field are discussed. The accuracy of the solutions is demonstrated by comparisons with measured results, where a 2 lambda by 4 lambda prolate spheroid is used as the convex surface. A jump or kink appears in the calculated pattern when higher order terms that are important are not included in the final solution. The most immediate application of the results presented here is in the modelling of structures such as aircraft which are composed of nonmetallic parts that play a significant role in the pattern.

  9. Evolution of the planetary boundary layer in the presence of fog and plume

    NASA Astrophysics Data System (ADS)

    Wang, Longlong; Stanič, Samo; Gregorič, Asta; Bergant, Klemen; Mole, Maruška; Vučković, Marko

    2016-04-01

    Vipava valley (100 m a.s.l.), enclosed between the Trnovski gozd ridge (1500 m a.s.l.) and Karst plateau (500 m a.s.l.), is in autumn and winter months in stable weather conditions exposed to relatively large aerosol loading, often exceeding daily PM10 limit of 50 μg/m3. Using an infra-red Mie scattering lidar in the center of the valley (Ajdovščina, 45.93° N, 13.91° E) as the main detection tool, planetary boundary layer (PBL) and backscatter coefficient profiles were investigated in November and December 2015. Wind speeds in the observed period remained below 1 m/s. Backscatter coefficients were obtained using the Klett method. In this period, foggy weather, prevailing in the morning, on certain days cleared during the day. The fog was frequently mixed with aerosols, emitted from local biomass burning sources and traffic within the valley. Fog is an indicator of constant PBL height during the day, as it generally evolves only in periods with stable weather and temperature inversion in orographically enclosed areas. We investigated the evolution of the PBL in the case of fog and plume. In the first case, PBL height remained constant at about 200 to 300 m while in the second case it followed the typical daily evolution pattern and increased during the morning. In both cases lidar backscatter coefficients within the PBL were found to be increased for a factor of 0.5 to 2 with respect to clear weather conditions. In the periods of elevated aerosol loading in Ajdovščina observed by lidar, elevated PM10 concentrations in Nova Gorica, 20 km away along the valley, were also detected as expected, due to similar local aerosol sources throughout the valley.

  10. Method and apparatus for detecting the presence and thickness of carbon and oxide layers on EUV reflective surfaces

    DOEpatents

    Malinowski, Michael E.

    2005-01-25

    The characteristics of radiation that is reflected from carbon deposits and oxidation formations on highly reflective surfaces such as Mo/Si mirrors can be quantified and employed to detect and measure the presence of such impurities on optics. Specifically, it has been shown that carbon deposits on a Mo/Si multilayer mirror decreases the intensity of reflected HeNe laser (632.8 nm) light. In contrast, oxide layers formed on the mirror should cause an increase in HeNe power reflection. Both static measurements and real-time monitoring of carbon and oxide surface impurities on optical elements in lithography tools should be achievable.

  11. Winter Frosted Dunes in Kaiser Crater

    NASA Technical Reports Server (NTRS)

    2001-01-01

    As the Mars Global Surveyor Primary Mission draws to an end, the southern hemisphere of Mars is in the depths of winter. At high latitudes, it is dark most, if not all, of the day. Even at middle latitudes, the sun shines only thinly through a veil of water and carbon dioxide ice clouds, and the ground is so cold that carbon dioxide frosts have formed. Kaiser Crater (47oS, 340oW) is one such place. At a latitude comparable to Seattle, Washington, Duluth, Minnesota, or Helena, Montana, Kaiser Crater is studied primarily because of the sand dune field found within the confines of its walls (lower center of the Mars Orbiter Camera image, above). The normally dark-gray or blue-black sand can be seen in this image to be shaded with light-toned frost. Other parts of the crater are also frosted. Kaiser Crater and its dunes were the subject of an earlier presentation of results. Close-up pictures of these and other dunes in the region show details of their snow-cover, including small avalanches. The two Mars Global Surveyor Mars Orbiter Camera images that comprise this color view (M23-01751 and M23-01752) were acquired on January 26, 2001.

  12. The periglacial engine of mountain erosion - Part 1: Rates of frost cracking and frost creep

    NASA Astrophysics Data System (ADS)

    Andersen, J. L.; Egholm, D. L.; Knudsen, M. F.; Jansen, J. D.; Nielsen, S. B.

    2015-04-01

    With accelerating climate cooling in the late Cenozoic, glacial and periglacial erosion became more widespread on the surface of the Earth. The resultant shift in erosion patterns significantly changed the large-scale morphology of many mountain ranges worldwide. Whereas the glacial fingerprint is easily distinguished by its characteristic fjords and U-shaped valleys, the periglacial fingerprint is more subtle but potentially prevailing in some landscape settings. Previous models have advocated a frost-driven control on debris production on steep headwalls and glacial valley sides. Here we investigate the important role that periglacial processes also play in less steep parts of mountain landscapes. Understanding the influences of frost-driven processes in low-relief areas requires a focus on the consequences of an accreting soil-mantle, which characterizes such surfaces. In this paper, we present a new model that quantifies two key physical processes: frost cracking and frost creep, as a function of both temperature and sediment thickness. Our results yield new insights to how climate and sediment transport properties combine to scale the intensity of periglacial processes. The thickness of the soil-mantle strongly modulates the relation between climate and the intensity of mechanical weathering and sediment flux. Our results also point to an offset between the conditions that promote frost cracking and those that promote frost creep, indicating that a stable climate can only provide optimal conditions for one of those processes at a time. Finally, quantifying these relations also opens the possibility of including periglacial processes in large-scale, long-term landscape evolution models, as demonstrated in a companion paper.

  13. The periglacial engine of mountain erosion - Part 1: Rates of frost cracking and frost creep

    NASA Astrophysics Data System (ADS)

    Andersen, J. L.; Egholm, D. L.; Knudsen, M. F.; Jansen, J. D.; Nielsen, S. B.

    2015-10-01

    With accelerating climate cooling in the late Cenozoic, glacial and periglacial erosion became more widespread on the surface of the Earth. The resultant shift in erosion patterns significantly changed the large-scale morphology of many mountain ranges worldwide. Whereas the glacial fingerprint is easily distinguished by its characteristic fjords and U-shaped valleys, the periglacial fingerprint is more subtle but potentially prevails in some mid- to high-latitude landscapes. Previous models have advocated a frost-driven control on debris production at steep headwalls and glacial valley sides. Here we investigate the important role that periglacial processes also play in less steep parts of mountain landscapes. Understanding the influences of frost-driven processes in low-relief areas requires a focus on the consequences of an accreting soil mantle, which characterises such surfaces. We present a new model that quantifies two key physical processes: frost cracking and frost creep, as a function of both temperature and sediment thickness. Our results yield new insights into how climate and sediment transport properties combine to scale the intensity of periglacial processes. The thickness of the soil mantle strongly modulates the relation between climate and the intensity of mechanical weathering and sediment flux. Our results also point to an offset between the conditions that promote frost cracking and those that promote frost creep, indicating that a stable climate can provide optimal conditions for only one of those processes at a time. Finally, quantifying these relations also opens up the possibility of including periglacial processes in large-scale, long-term landscape evolution models, as demonstrated in a companion paper.

  14. 3D Dynamics of the Near-Surface Layer of the Ocean in the Presence of Freshwater Influx

    NASA Astrophysics Data System (ADS)

    Dean, C.; Soloviev, A.

    2015-12-01

    Freshwater inflow due to convective rains or river runoff produces lenses of freshened water in the near surface layer of the ocean. These lenses are localized in space and typically involve both salinity and temperature anomalies. Due to significant density anomalies, strong pressure gradients develop, which result in lateral spreading of freshwater lenses in a form resembling gravity currents. Gravity currents inherently involve three-dimensional dynamics. The gravity current head can include the Kelvin-Helmholtz billows with vertical density inversions. In this work, we have conducted a series of numerical experiments using computational fluid dynamics tools. These numerical simulations were designed to elucidate the relationship between vertical mixing and horizontal advection of salinity under various environmental conditions and potential impact on the pollution transport including oil spills. The near-surface data from the field experiments in the Gulf of Mexico during the SCOPE experiment were available for validation of numerical simulations. In particular, we observed a freshwater layer within a few-meter depth range and, in some cases, a density inversion at the edge of the freshwater lens, which is consistent with the results of numerical simulations. In conclusion, we discuss applicability of these results to the interpretation of Aquarius and SMOS sea surface salinity satellite measurements. The results of this study indicate that 3D dynamics of the near-surface layer of the ocean are essential in the presence of freshwater inflow.

  15. Algorithm for Estimating the Plume Centerline Temperature and Ceiling Jet Temperature in the Presence of a Hot Upper Layer

    NASA Technical Reports Server (NTRS)

    Davis, William D.; Notarianni, Kathy A.; Tapper, Phillip Z.

    1998-01-01

    The experiments were designed to provide insight into the behavior of jet fuel fires in aircraft hangars and to study the impact of these fires on the design and operation of a variety of fire protection systems. As a result, the test series included small fires designed to investigate the operation of UV/IR detectors and smoke detectors as well as large fires which were used to investigate the operation of ceiling mounted heat detectors and sprinklers. The impact of the presence or absence of draft curtains was also studied in the 15 m hangar. It is shown that in order to predict the plume centerline temperature within experimental uncertainty, the entrainment of the upper layer gas must be modeled. For large fires, the impact of a changing radiation fraction must also be included in the calculation. The dependence of the radial temperature profile of the ceiling jet as a function of layer development is demonstrated and a ceiling jet temperature algorithm which includes the impact of a growing layer is developed.

  16. Discovery of a widespread low-latitude diurnal CO2 frost cycle on Mars

    NASA Astrophysics Data System (ADS)

    Piqueux, Sylvain; Kleinböhl, Armin; Hayne, Paul O.; Heavens, Nicholas G.; Kass, David M.; McCleese, Daniel J.; Schofield, John T.; Shirley, James H.

    2016-07-01

    While the detection of CO2 ice has only been reported outside the Martian polar regions at very high elevation (i.e., Elysium, Olympus Mons, and the Tharsis Montes), nighttime surface observations by the Mars Climate Sounder on board the Mars Reconnaissance Orbiter document the widespread occurrence of atmospherically corrected ground temperatures consistent with the presence of extensive carbon dioxide frost deposits in the dusty low thermal inertia units at middle/low latitudes. Thermal infrared emissivities, interpreted in conjunction with mass balance modeling, suggest micrometer size CO2 ice crystals forming optically thin layers never exceeding a few hundreds of microns in thickness (i.e., 10-2 kg m-2) locally, which is insufficient to generate a measurable diurnal pressure cycle (<<0.1% of the Martian atmosphere). Atmospheric temperatures at middle/low latitudes are not consistent with precipitation of CO2 ice, suggesting that condensation occurs on the surface. The recurring growth and sublimation of CO2 ice on Martian dusty terrains may be an important process preventing soil induration and promoting dynamic phenomena (soil avalanching and fluidization and regolith gardening), maintaining a reservoir of micrometer size dust particles that are mobile and available for lifting. The discovery of this diurnal CO2 cycle represents an important step forward in our understanding of the way the Martian atmosphere interacts with the surface.

  17. Frost weathering microstructures on quartz grains as paleoenvironmental indicators in Western Iberia mountain environments (Serra da Estrela, Portugal)

    NASA Astrophysics Data System (ADS)

    Nieuwendam, Alexandre; Woronko, Barbara; Vieira, Gonçalo

    2016-04-01

    Cailleux analysis (1942) with modifications from Mycielska-Dowgiallo and Woronko (1998) and scanning electron microscope (SEM) following Mahaney (2002) were performed on quartz grains from vertical slope deposits profiles. Other analyses include granulometric composition. The degree of weathering (ST) of single grains was determined by identifying frost-weathering microstructures. The frost action index (FAI) is the average value of the ST for a given sample. The FAI value varies between 0 and 3, and the higher the value, the more intensive the frost weathering (Woronko and Hoch, 2011). The effects of frost weathering comprise several microstructures, such as, breakage blocks and conchoidal fractures and scaling. Chemical weathering effects were also seen, like solution pits, solution crevasses and amorphous precipitation. The values of FAI index of the sediments from the slope deposits vary between 0.6 and 2.05. Samples with a FAI higher than 1.3 indicate that frost weathering occurred for a longer period and was more intense where the dominant microstructures are breakage blocks registered within microdepressions and microfissures. The samples that have a FAI below 1.3, frost weathering was less intense and for a shorter period, with less frequent freeze-thaw cycles and the dominant microstructures are small conchoidal fractures. The values of the FAI in sediments from the slope deposits reveal changes along the vertical profiles. The maximum value of frost-weathering intensity imprinted on quartz grains were observed in sediments near the base of the slope deposits, and this could be attributed to the effects of seasonal freezing and thawing, as well as to the influence of short term temperature changes. The lower frost-weathering intensity was observed in the near-surface layers probably because they were exposed to frost weathering for a shorter time. References Cailleux A. 1942. Les actiones éoliennes périglaciaires en Europe. Mémoires de la Société G

  18. Transition Components of the Frost Center, a Model Program Background: The Frost Center and Its Students.

    ERIC Educational Resources Information Center

    Mosso, Janet L.

    The Frost Center (Rockville, Maryland) is a private, nonprofit school and therapeutic day program that serves adolescents with emotional, learning, and behavioral disabilities and their families. Approximately two-thirds of each student's day is spent in academic classes, acquiring the skills and behavior necessary for a return to a less…

  19. Geophysical Implications of Enceladus' CO2 Frost

    NASA Astrophysics Data System (ADS)

    Matson, D.; Davies, A. G.; Johnson, T. V.; Castillo, J. C.; Lunine, J. I.

    2013-12-01

    CO2 frost has been reported on the surface of Enceladus [1]. We suggest that the frost originated from shallow gas pockets below the surface. These pockets are a natural consequence of the ocean water circulation hypothesis [2]. They are different from the plume chambers [3] and would constitute a previously unrecognized structure in the surface. The oceanic circulation uses gas bubbles to make seawater buoyant and bring up water, chemicals, and heat from a warm ocean at depth [2]. The ocean water rises through the icy crust and near the surface it spreads out laterally beneath a relatively thin ice cap, following the pattern indicated by the thermal anomalies identified in Cassini data [4,5]. Topography on the bottom of this cap ice is conducive to the formation of gas pockets. As the ocean water flows horizontally, the gas bubbles in it continue to rise vertically. Even though their vertical migration may be slow and even if the flow is relatively turbulent, some bubbles reach recesses in the bottom of the ice cap and, over time, pop and form gas pockets. The gas pockets are envisioned as being ruptured by the regular fissuring of ice in the South Polar Region. Hurford et al. [6] have modelled the tidally controlled openings of rifts in the SPR. If one of these rifts reaches a gas pocket, CO2 gas may come to the surface. The tortuosity and other properties of its route will determine if it vents as a seep or a jet. If enough gas is vented and the molecules in the transient cloud have many collisions, some of them will be scattered to the surface and freeze. It was noted by Brown, et al. [1] that the frost deposits may not be permanent and that an active replenishment processes might be necessary. Studies of CO2 frost on Iapetus suggest that migration can be significant [7]. This work was performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract to NASA. al., Science 311, 1425-1428, 2006. [2] Matson D. L. et al., Icarus 221, 53

  20. A Satellite Frost Forecasting System for Florida

    NASA Technical Reports Server (NTRS)

    Martsolf, J. D.

    1981-01-01

    Since the first of two minicomputers that are the main components of the satellite frost forecast system was delivered in 1977, the system has evolved appreciably. A geostationary operational environmental satellite (GOES) system provides the satellite data. The freeze of January 12-14, 1981, was documented with increasing interest in potential of such systems. Satellite data is now acquired digitally rather than by redigitizing the GOES-Tap transmissions. Data acquisition is now automated, i.e., the computers are programmed to operate the system with little, if any, operation intervention.

  1. The distribution of water frost on Charon

    NASA Technical Reports Server (NTRS)

    Buie, Marc W.; Shriver, Scott K.

    1994-01-01

    We present high-spatial-resolution imaging observations of the Pluto-Charon system taken with ProtoCAM on the Infrared Telescope Facility (IRTF). Our dataset consists of measurements from eight nights at widely separated rotational longitudes and covering five wavelengths -- standard J, H, and K, plus two special narrow band filters at 1.5 and 1.75 microns. The relative flux contributions of Pluto and Charon were extracted, when possible, by fitting a two-source Gaussian image model to the observed images. At K, we find the Charon-Pluto magnitude difference to be on average 1.8 mag, somewhat less than the value of 2.2 mag found by Bosh et al. (1992). The average differential magnitude at 1.5 and 1.75 microns is 2.0 and 1.6, respectively. The larger magnitude difference at 1.5 microns is due to a water-frost absorption band on the surface of Charon. Our observations are consistent with a surface of Charon dominated by water frost at all longitudes.

  2. Radiative budget in the presence of multi-layered aerosol structures in the framework of AMMA SOP-0

    NASA Astrophysics Data System (ADS)

    Raut, J.-C.; Chazette, P.

    2008-07-01

    This paper presents radiative transfer calculations performed over Niamey in the UV-Visible range over the period 26th January 1st February during the African Multidisciplinary Monsoon Analysis (AMMA) international program. Climatic effects of aerosols along the vertical column have required an accurate determination of their optical properties, which are presented in for a variety of instrumented platforms: Ultralight aircraft, Facility for Airborne Atmospheric Measurements (FAAM) research aircraft, AERONET station. Measurements highlighted the presence of a multi-layered structure of mineral dust located below and biomass-burning particles in the more elevated layers. Radiative forcing was affected by both the scattering and absorption effects governed by the aerosol complex refractive index (ACRI). The best agreement between our results and AERONET optical thicknesses, ground-based extinction measurements and NO2 photolysis rate coefficient was found using the synergy between all the instrumented platforms. The corresponding averaged ACRI were 1.53 (±0.04) 0.047i (±0.006) and 1.52 (±0.04) 0.008i (±0.001) for biomass-burning and mineral dust aerosols, respectively. Biomass-burning aerosols were characterized by single-scattering albedo ranging from 0.78 to 0.82 and asymmetry parameter ranging from 0.71 to 0.73. For dust aerosols, single-scattering albedo (asymmetry parameter) ranged from 0.9 to 0.92 (0.73 to 0.75). The solar energy depletion at the surface is shown to be ~ -21.2 (±1.7) W/m2 as a daily average. At the TOA, the radiative forcing appeared slightly negative but very close to zero (~ -1.4 W/m2). The corresponding atmospheric radiative forcing was found to be ~19.8 (±2.3) W/m2. Mineral dust located below a more absorbing layer act as an increase in surface reflectivity of ~3 4%. The radiative forcing is also shown to be highly sensitivity the optical features of the different aerosol layers (ACRI, optical thickness and aerosol vertical

  3. Radiative budget in the presence of multi-layered aerosol structures in the framework of AMMA SOP-0

    NASA Astrophysics Data System (ADS)

    Raut, J.-C.; Chazette, P.

    2008-11-01

    This paper presents radiative transfer calculations performed over Niamey in the UV-Visible range over the period 26th January 1st February 2006 during the African Multidisciplinary Monsoon Analysis (AMMA) international program. Climatic effects of aerosols along the vertical column have required an accurate determination of their optical properties, which are presented here for a variety of instrumented platforms: Ultralight aircraft, Facility for Airborne Atmospheric Measurements (FAAM) research aircraft, AERONET station. Measurements highlighted the presence of a multi-layered structure of mineral dust located below and biomass-burning particles in the more elevated layers. Radiative forcing was affected by both the scattering and absorption effects governed by the aerosol complex refractive index (ACRI). The best agreement between our results and AERONET optical thicknesses, ground-based extinction measurements and NO2 photolysis rate coefficient was found using the synergy between all the instrumented platforms. The corresponding averaged ACRI at 355 nm were 1.53 (±0.04) -0.047i (±0.006) and 1.52 (±0.04) -0.008i (±0.001) for biomass-burning and mineral dust aerosols, respectively. Biomass-burning aerosols were characterized by single-scattering albedo ranging from 0.78 to 0.82 and asymmetry parameter ranging from 0.71 to 0.73. For dust aerosols, single-scattering albedo (asymmetry parameter) ranged from 0.9 to 0.92 (0.73 to 0.75). The solar energy depletion at the surface is shown to be ~-21.2 (±1.7) W/m2 as a daily average. At the TOA, the radiative forcing appeared slightly negative but very close to zero (~-1.4 W/m2). The corresponding atmospheric radiative forcing was found to be ~19.8 (±2.3) W/m2. Mineral dust located below a more absorbing layer act as an increase in surface reflectivity of ~3 4%. The radiative forcing is also shown to be highly sensitive to the optical features of the different aerosol layers (ACRI, optical thickness and aerosol

  4. Frost Collection Presented to University of the Incarnate Word

    ERIC Educational Resources Information Center

    Childhood Education, 2004

    2004-01-01

    On April 21, 2004, the Joe L. Frost Children's Play and Play Environments Research Collection was dedicated at the J.E. and L.E. Mabee Library at the University of the Incarnate Word, San Antonio, Texas. This brief article describes the collection and Frost's plans for the future.

  5. Grammatical Categories in Robert Frost's Blank Verse: A Quantitative Analysis.

    ERIC Educational Resources Information Center

    Lyford, Roland Hazen

    Structural linguistic techniques were utilized to categorize the grammatical elements employed by Robert Frost in 46 blank-verse poems. Nineteen main grammatical categories and 26 verb sub-categories based on distinctive selection criteria were devised to examine the range and distribution of Frost's grammatical patterns. Five control poems by E.…

  6. Simulated frost effects on cool-season grass carbohydrate levels

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Anecdotal observations suggest increased incidences of metabolic problems in horses on pasture after a frost. The speculation is that frost increases the level of nonstructural carbohydrates (NSC) in cool-season grasses, which have been implicated in horse metabolic problems (e.g., laminitis). We co...

  7. Frost formation on an airfoil: A mathematical model 1

    NASA Technical Reports Server (NTRS)

    Dietenberger, M.; Kumar, P.; Luers, J.

    1979-01-01

    A computer model to predict the frost formation process on a flat plate was developed for application to most environmental conditions under which frost occurs. The model was analytically based on a generalized frost thermal conductivity expression, on frost density and thickness rate equations, and on modified heat and mass transfer coefficients designed to fit the available experimental data. The broad experimental ranges reflected by the extremes in ambient humidities, wall temperatures, and convective flow properties in the various publications which were examined served to severely test the flexibility of the model. An efficient numerical integration scheme was developed to solve for the frost surface temperature, density, and thickness under the changing environmental conditions. The comparison of results with experimental data was very encouraging.

  8. Controlling condensation and frost growth with chemical micropatterns

    DOE PAGESBeta

    Boreyko, Jonathan B.; Hansen, Ryan R.; Murphy, Kevin R.; Nath, Saurabh; Retterer, Scott T.; Collier, C. Patrick

    2016-01-22

    Frost growth on chilled hydrophobic surfaces is an inter-droplet phenomenon, where frozen droplets harvest water from supercooled liquid droplets to grow ice bridges that propagate across the surface in a chain reaction. To date, no surface has been able to passively prevent the in-plane growth of frost across the population of supercooled condensate. Here, we demonstrate that when the nucleation sites for supercooled condensate are properly controlled with chemical micropatterns, the speed of frost growth can be slowed and even halted entirely. This stoppage of frost growth is attributed to the large interdroplet separation between condensate upon the onset ofmore » freezing, which was controlled by the pitch of the chemical patterns and by deliberately triggering an early freezing event. Lastly, these findings reveal that frost growth can be passively suppressed by designing surfaces to spatially control nucleation sites and/or temporally control the onset of freezing events.« less

  9. Transmission line corona losses under hoar frost conditions

    SciTech Connect

    Lahti, K.; Nousiainen, K.; Lahtinen, M.

    1997-04-01

    Transmission line corona losses under hoar frost conditions were studied in the climate room of the high voltage laboratory of Tampere University of Technology. The measurements were performed using a coaxial measurement arrangement with different bundle and conductor types. The effects of conductor and bundle type, temperature, applied voltage and hoar frost thickness on corona losses were investigated. A two-conductor bundle had corona losses about 2.5--5 times higher than a three-conductor bundle. Relatively thin hoar frosts were used in the tests. Even the thinnest hoar frost resulted in remarkable corona losses and the losses were very sensitive to changes in the hoar frost thickness. The ambient temperature had a strong influence on the measured losses.

  10. A Laboratory Study of the Effect of Frost Flowers on C Band Radar Backscatter from Sea Ice

    NASA Technical Reports Server (NTRS)

    Nghiem, S. V.; Martin, S.; Perovich, D. K.; Kwok, R.; Drucker, R.; Gow, A. J.

    1997-01-01

    C band images of Arctic sea ice taken by the ERS 1 synthetic aperture radar show transitory regions of enhanced radar backscatter from young sea ice. Published field observations associate this increase with frost flower growth and the capture of blowing snow by the flowers. To investigate the first part of this phenomenon, we carried out a laboratory experiment on the response of C band radar backscatter to frost flowers growing on the surface of newly formed saline ice. The experiment took place in a 5 m by 7 m by 1.2 m deep saline water pool located in a two-story indoor refrigerated facility at the Cold Regions Research and Engineering Laboratory. Sodium chloride ice was grown in this pool at an air temperature of -28 C. The frost flowers first appeared on the ice surface as dendrites and then changed to needles as the ice sheet grew thicker and the surface temperatures became colder. The frost flowers reached to a height of 10-15 mm, and beneath each cluster of frost flowers a slush layer formed to a thickness of approximately 4 mm. Far-field radar measurements of the backscatter from the ice were made at incident angles from 20 to 40 deg and at approximately 6-hour intervals throughout the 3-day period of the experiment. A backscatter minimum occurred early in the flower growth at the time coincident with an abrupt doubling in the ice surface salinity. Once the full flower coverage was achieved, we removed first the crystal flowers and then the slush layer from the ice surface. The results for these cases show that the crystals have little impact on the backscatter, while the underlying slush patches yield a backscatter increase of 3-5 dB over that of bare ice. The laboratory results suggest that this relative backscatter increase of approximately 5 dB can be used as an index to mark the full area coverage of frost flowers.

  11. Mechanism of frost damage to concrete

    NASA Astrophysics Data System (ADS)

    Sun, Zhenhua

    We studied several topics that are important to explain the mechanisms of frost damage to concrete, including the volume change of concrete during freezing, the role of air voids in protecting concrete from frost damage, the pore structure of concrete, and the nucleation and propagation of ice in concrete. By combining calorimetric measurements with dilatometry, we were able to calculate the contributions of thermal expansion, pore pressure, and crystallization pressure of ice to the strain observed in a mortar during freezing/thawing cycles. Air-entrained mortars contract upon freezing due to the cryo-suction effect, while non-air-entrained mortars expand primarily due to hydraulic pressure. Based on the theory originally proposed by Powers and Helmuth, we show that the poromechanical calculations account quantitatively for the contraction of samples with air entrainment, which is shown to quantitatively account for a reduction of salt scaling damage based on the glue-spall theory. The method of thermoporometry (TPM) that we used to study the pore structure of concrete is also discussed. In a study of ice propagation inside concrete, we re-examined experiments by Helmuth [Proc. 4th Int. Cong. Chem. Cement, NBS Monog. 43, Vol. II (National Bureau of Standards, Washington, D.C., 1962) pp. 855--869] from which he concluded that ice grows in the pores of cement paste under heat-flow control, and that the internal temperature rises to the melting point given by the Gibbs-Thomson equation. Using experimental and computational methods, we find that his conclusions are correct, but the growth rates he reports are misleading. Our experiment reveals the true growth rate, which is about three times smaller than found by Helmuth. The dendritic morphology explains how fast constant growth rates can occur when the interior temperature of the sample is very near the melting point: the temperature at the tip of the dendrite is a few degrees below the melting point, but the liquid

  12. Evaluation of Apical Leakage in Root Canals Obturated with Three Different Sealers in Presence or Absence of Smear Layer

    PubMed Central

    Mokhtari, Hadi; Shahi, Shahriar; Janani, Maryam; Reyhani, Mohammad Frough; Mokhtari Zonouzi, Hamid Reza; Rahimi, Saeed; Sadr Kheradmand, Hamid Reza

    2015-01-01

    Introduction: Microleakage can result in failure of endodontic treatment. An important characteristic of endodontic sealer is sealing ability. The aim of this experimental study was to compare the apical leakage of teeth obturated with gutta-percha and three different sealers (resin- and zinc oxide eugenol-based) with/without smear layer (SL). Materials and Methods: In this study, 100 single-rooted teeth were used after cutting off their crowns. Cleaning and shaping was carried out with step-back technique and the samples were randomly divided into three groups (n=30) which were then divided into two subgroups (n=15) according to the presence/absence of SL. Two negative and positive control groups (n=5) were also prepared. In the various groups, the canals were obturated with gutta-percha and either of the test sealers (AH-26, Adseal or Endofill). The samples were submerged in India ink for 72 h. Then they were longitudinally sectioned and observed under a stereomicroscope at 20× magnification. Data were analyzed with descriptive statistical methods and one-way ANOVA. The significance level was set at 0.05. Results: The mean penetration length of dye in AH-26, Adseal and Endofill samples were 2.53, 2.76 and 3.03 mm, respectively. The differences between three groups were not significant (P>0.05); also, the mean dye penetration in AH-26, Adseal and Endofill samples in presence or absence of the SL was not significantly different. Conclusion: AH-26, Adseal and Endofill were similarly effective in prevention of apical microleakage. Differences in the mean dye penetration between the groups with/without the SL were not statistically significant. PMID:25834599

  13. Frosted Branch Angiitis in Pediatric Dyskeratosis Congenita

    PubMed Central

    Zheng, Xiao-Yu; Xu, Jia; Li, Wei; Li, Si-Si; Shi, Cai-Ping; Zhao, Zheng-Yan; Mao, Jian-Hua; Chen, Xi

    2016-01-01

    Abstract Dyskeratosis congenita (DC) is an inherited bone marrow failure syndrome, usually presented with abnormal skin pigmentation, nail dystrophy, and oral leukoplakia. The main cause of mortality in DC is immunodeficiency and vital infection. DC involves multisystem, but retinal involvements are rare. Herein, we report an unusual case of pediatric DC suffering from frosted branch angiitis (FBA) after recovery of mycoplasma pneumonia. Cytomegalovirus infection and cytokine changes were found relevant to the onset of FBA. Despite corticosteroids, antiviral medication, and hematopoietic stem cell transplantation, the patient ended in poor vision with optic atrophy. This case implies that pediatricians should be aware of FBA as a rare retinal manifestation in children with DC and bone marrow failure. Cytomegalovirus may be one of the common causes and cytokines could be triggering factors. PMID:27015183

  14. A case of frosted branch angiitis.

    PubMed

    Watanabe, Y; Takeda, N; Adachi-Usami, E

    1987-07-01

    We report a case of frosted branch angiitis in a 16-year-old-girl. She noted a sudden and severe visual disturbance in both eyes, without other systemic symptoms. Diffuse retinal oedema and unusual sheathing of retinal veins were characteristic in both fundi. Fluorescein angiography showed no occlusion of the sheathed retinal veins, but some paravenous extravasation of dye was found in the late phase. With high doses of systemic corticosteroids her fundi and visual acuity improved greatly, though the vessels continued to show severe narrowing. At three months the pattern visually evoked cortical potentials were found to be normal, while flash electroretinograms were absent. No systemic abnormality has been found to explain the aetiology of this condition. PMID:3651369

  15. On turbulence modulation due to the presence of sediment in the bottom boundary layer - a numerical investigation

    NASA Astrophysics Data System (ADS)

    Hsu, T.; Yu, X.; Ozdemir, C. E.; Balachandar, S.

    2013-05-01

    One of the most intriguing issues in fine sediment transport, including turbidity currents, tidal-driven transport and wave-driven transport, is that the presence of sediments may lead to attenuation of flow turbulence. Depending on the level of turbulence suppression, it may lead to the formation of lutocline (a sharp negative sediment concentration) and an enhanced gravity flow; or it may cause catastrophic collapse of turbulence and sediment deposition. Through laboratory observations and numerical simulations, prior studies have established that these transitions can be caused by various degree of sediment-induced stable density stratification. However, when sediment concentration becomes larger, inter-particle (or inter-floc) interactions may lead to enhanced viscosity through rheological stress and its role on turbulence modulation is unclear. Through turbulence-resolving simulations, this study further investigates turbulence suppression due to enhanced effective viscosity via two simple Newtonian rheological closures in a steady channel flow and in an oscillatory bottom boundary layer. Assuming a small Stokes number, the Equilibrium approximation to the Eulerian two-phase flow equations is adopted. The resulting simplified equations are solved with a high-accuracy hybrid spectral-compact finite difference scheme in an idealized channel. The numerical approach extends an earlier pseudo-spectral model for direct numerical simulation (DNS) of turbulent flows with a sixth-order compact finite difference scheme in the wall-normal direction on Chebyshev grid points. The compact finite difference scheme allows easy implementation of concentration-dependent viscosity. Simulation results reveal that when rheological stress is incorporated, the enhanced effective viscosity can further attenuate flow turbulence in addition to the well-known sediment-induced stable density stratification. Through the enhanced viscosity, velocity gradient very near the bed is

  16. Presence-absence sequential sampling plan for northern fowl mite, Ornithonyssus sylviarum (Acari: Macronyssidae), on caged-layer hens.

    PubMed

    Harris, M A; Brewer, M J; Meyer, J A

    2000-04-01

    Caged-layer hens were scored as infested or uninfested by visual examination of the vent region, and the number of northern fowl mite, Ornithonyssus sylviarum (Canestrini & Fanzago), per hen was estimated. The proportion infested and average number of mites per hen were shown to have a highly significant, positive relationship (r = 0.936). Sampling among houses within a flock, and rows and sections within houses were analyzed to determine the reliability of sampling a representative portion of a flock. Low- and moderate-tolerance treatment thresholds, based on percentage of hens infested with mites, were developed from sampling 1 wk before and 1 wk after acaricide treatments determined necessary by the producer. These thresholds were used to compare a fixed (single) sampling plan, a curtailed procedure of the fixed sampling plan, and a sequential sampling plan based on a sequential probability ratio test, by sampling 174 hens (the maximum number needed for the single sampling plan). The sequential sampling plan required fewer hen examinations on average to reach a treatment decision than did the other plans, depending on the infestation tolerance limits. Using a low tolerance approach in which infestations below 15% are considered noneconomic (safe threshold) and infestations above 25% are considered economically important (action threshold), as few as 5 hens required examination to reach a treatment decision. Sequential sampling plan graphs are presented for 2 tolerance threshold scenarios (a 15% safe-threshold paired with a 25% action threshold and a 35% safe-threshold paired with a 45% action threshold). These sequential sampling plans using presence absence assessments should greatly facilitate monitoring and treatment decisions for this important pest. PMID:10826212

  17. Application of Satellite SAR Imagery in Mapping the Active Layer of Arctic Permafrost

    NASA Technical Reports Server (NTRS)

    Zhang, Ting-Jun; Li, Shu-Sun

    2003-01-01

    The objective of this project is to map the spatial variation of the active layer over the arctic permafrost in terms of two parameters: (i) timing and duration of thaw period and (ii) differential frost heave and thaw settlement of the active layer. To achieve this goal, remote sensing, numerical modeling, and related field measurements are required. Tasks for the University of Colorado team are to: (i) determine the timing of snow disappearance in spring through changes in surface albedo (ii) simulate the freezing and thawing processes of the active layer and (iii) simulate the impact of snow cover on permafrost presence.

  18. One: Microphysics of frost metamorphism: Applications to Triton and Mars. Two: A global analysis of the ozone deficit in the upper stratosphere and lower mesosphere. Three: The diabatic circulation in the stratosphere as diagnosed from Microwave Limb Sounder data

    SciTech Connect

    Eluszkiewicz, J.B.

    1993-01-01

    The present thesis is devoted to two broad subjects, planetary frost metamorphism and the terrestrial middle atmosphere, and consists of three papers. Paper 1 considers frost metamorphism on the surfaces of Triton and Mars. Based on an analysis of the microphysical processes involved in the pressureless sintering, it is concluded that fine-grained nitrogen and carbon dioxide frosts can undergo seasonal metamorphism into semitransparent layers on the surface of Triton and in the Martian seasonal polar caps, respectively. The presence of such layers explains a host of facts about Triton's surface and about the Martian seasonal caps. Paper 2 is devoted to elucidating a long-standing issue in the terrestrial middle atmosphere chemistry, the so-called 'ozone deficit problem.' Based on an analysis of data acquired by the Limb Infrared Monitor of the Stratosphere (LIMS) instrument between October 1978 and May 1979, it is concluded that current photochemical models systematically underestimate observed ozone abundances in the upper stratosphere and lower mesosphere. Three modifications to the accepted photochemical scheme, capable of providing a global solution to this problem, are proposed and discussed. Paper 3 differs from the other two in that it reports on results from an ongoing research effort. It considers the diabatic circulation in the stratosphere and lower mesosphere, using ozone and temperature measurements acquired by the Microwave Limb Sounder (MLS) instrument onboard the Upper Atmosphere Research Satellite (UARS). The present study extends past analyses of the diabatic circulation by considering a full annual cycle, November 1991-November 1992, and by taking advantage of the high vertical resolution of MLS data. In the tropical upper stratosphere and lower mesosphere, a semiannual oscillation (SAO) is observed in the computed circulation, with the region of downwelling reaching maximum spatial extent approximately 1 month before the equinox.

  19. Study of Potential Sub-Micrometer-Thick Frost Events and Soil Water Content at Gale Crater

    NASA Astrophysics Data System (ADS)

    Martinez, G.; Fischer, E.; Renno, N. O.; De La Torre Juarez, M.; Meslin, P. Y.; Kemppinen, O.; Genzer, M.; Harri, A. M.; Ramos, M.; Borlina, C.; Schröder, S.; Gómez-Elvira, J.

    2014-12-01

    We analyze the highest confidence measurements of relative humidity [1] and ground temperature [2] to identify potential frost events at the surface of Gale Crater during the first 600 sols of the MSL mission. We find that between 4 and 6 am on sols 533, 535, 555, 557, 559 and 560 the ground temperature falls below the calculated frost point. Order-of-magnitude estimate for the thickness of the frost layer indicates that it is of the order of micrometers or less. Additionally, we analyze the relation between water vapor pressure and ground temperature to provide additional constraints on potential frost events and to quantify the exchange of adsorbed water between the surface and the atmosphere. Adsorbed water could be forced into liquid-like state at the of Gale because van der Waals forces between water ice molecules and mineral surfaces reduces the freezing point [3]. This form of liquid water is relevant to habitability because microorganisms could survive in liquid-like adsorbed water [4].References: [1] Harri, Ari-Matti et al., Mars Science Laboratory Relative Humidity Observations - Initial Results (2014), JGR (in press). [2] Martínez, G. M. et al., Surface Energy Budget and Thermal Inertia at Gale Crater: Calculations from Ground-Based Measurements (2014), JGR (in press). [3] Möhlmann, D., The influence of van der Waals forces on the state of water in the shallow subsurface of Mars (2008), Icarus 195 (1), 131-139. [4] Rivkina, E. M. et al., Metabolic activity of permafrost bacteria below the freezing point (2000), Appl. Environ. Microbiol., 66(8), 3230-3233.

  20. Synoptic analysis of frost days in Zanjan Province of Iran

    NASA Astrophysics Data System (ADS)

    Alijani, B.; Tagiloo, M.

    2010-09-01

    As a general rule it is accepted that every change in the environment is controlled by the changes in the pressure patterns or varying synoptic systems. We are witnessing intensive floods, damaging cold waves, or highly polluted air every year, all of which are related to some extent to the pressure patterns such as intensive cyclones or subsiding anticyclones. The frost days are one of these environmental conditions that are caused by these pressure patterns especially in the case of synoptic frosts. The Zanjan province of Iran with mountainous nature and higher elevations is one of the frost prone regions in the country. Most of the years this region suffers from intensive and damaging frosts such as the one occurred in December 2006 and January 2007. In order to advise planners and users, and lower the damages of such frosts, this study tried to analyze the synoptic origin of the December 2006 frost. To achieve the objective of the study the frost days of the province during months December 2006 and January 2007 were selected. During these months all of the four stations of the Province ( Zanjan, Khorramdarreh, Khodabandeh, and Mahneshan) had experienced sub-zero temperatures. The daily zero GMT surface and 500 hPa. maps of the region were extracted from the National Center of Environmental Protection (NCEP) site for the selected days. The pressure patterns of both levels were analyzed and assigned into different groups. The results showed that the main synoptic patterns responsible for the frosts of the region are the Caspian trough, Siberian high pressure, moving western anticyclones, upper level blockings, and cut off lows. When the Caspian Sea trough deepens it brings the westerly anticyclones to the area. Under its eastward displacement, the Siberian High develops and sends its ridges towards the study region. Some times the upper level blocking of the Siberian area brings the cold air masses to the study region. In general, the development and displacement

  1. A case of frosted branch angiitis in an immunocompromised child.

    PubMed

    Alexander, Janet Leath; Miller, Marijean

    2015-02-01

    Frosted branch angiitis is a rare vascular reaction believed to be a nonspecific immune response to an infective, neoplastic, or idiopathic insult. The clinical presentation is characteristic and typically affects children and younger adults, and the prognosis is good. We report a case of frosted branch angiitis during immune recovery in a 2-year-old boy with Langerhans cell histiocytosis on systemic immunosuppressive therapy. PMID:25727593

  2. Spring frost vulnerability of sweet cherries under controlled conditions

    NASA Astrophysics Data System (ADS)

    Matzneller, Philipp; Götz, Klaus-P.; Chmielewski, Frank-M.

    2016-01-01

    Spring frost is a significant production hazard in nearly all temperate fruit-growing regions. Sweet cherries are among the first fruit varieties starting their development in spring and therefore highly susceptible to late frost. Temperatures at which injuries are likely to occur are widely published, but their origin and determination methods are not well documented. In this study, a standardized method was used to investigate critical frost temperatures for the sweet cherry cultivar `Summit' under controlled conditions. Twigs were sampled at four development stages ("side green," "green tip," "open cluster," "full bloom") and subjected to three frost temperatures (-2.5, -5.0, -10.0 °C). The main advantage of this method, compared to other approaches, was that the exposition period and the time interval required to reach the target temperature were always constant (2 h). Furthermore, then, the twigs were placed in a climate chamber until full bloom, before the examination of the flowers and not further developed buds started. For the first two sampling stages (side green, green tip), the number of buds found in open cluster, "first white," and full bloom at the evaluation date decreased with the strength of the frost treatment. The flower organs showed different levels of cold hardiness and became more vulnerable in more advanced development stages. In this paper, we developed four empirical functions which allow calculating possible frost damages on sweet cherry buds or flowers at the investigated development stages. These equations can help farmers to estimate possible frost damages on cherry buds due to frost events. However, it is necessary to validate the critical temperatures obtained in laboratory with some field observations.

  3. Delayed Frost Growth on Jumping-Drop Superhydrophobic Surfaces

    SciTech Connect

    Boreyko, Jonathan B; Collier, Pat

    2013-01-01

    Self-propelled jumping drops are continuously removed from a condensing superhydrophobic surface to enable a micrometric steady-state drop size. Here, we report that subcooled condensate on a chilled superhydrophobic surface are able to repeatedly jump off the surface before heterogeneous ice nucleation occurs. Frost still forms on the superhydrophobic surface due to ice nucleation at neighboring edge defects, which eventually spreads over the entire surface via an inter-drop frost wave. The growth of this inter-drop frost front is shown to be up to three times slower on the superhydrophobic surface compared to a control hydrophobic surface, due to the jumping-drop effect dynamically minimizing the average drop size and surface coverage of the condensate. A simple scaling model is developed to relate the success and speed of inter-drop ice bridging to the drop size distribution. While other reports of condensation frosting on superhydrophobic surfaces have focused exclusively on liquid-solid ice nucleation for isolated drops, these findings reveal that the growth of frost is an inter-drop phenomenon that is strongly coupled to the wettability and drop size distribution of the surface. A jumping-drop superhydrophobic condenser was found to be superior to a conventional dropwise condenser in two respects: preventing heterogeneous ice nucleation by continuously removing subcooled condensate, and delaying frost growth by minimizing the success of interdrop ice bridge formation.

  4. Coagulation of particles in Saturn's rings - Measurements of the cohesive force of water frost

    SciTech Connect

    Hatzes, A.P.; Bridges, F.; Lin, D.N.C.; Sachtjen, S. McDonald Observatory, Austin, TX )

    1991-01-01

    Experimental data are presented on the sticking force of water ice particles which are indicative of the role that the cohesive properties of such particles could play in the dynamics of Saturn ring particles. Sticking forces are dependent on particle impact velocities; a Velcro model is devised to describe the surface structure involved in sticking. The data indicate that below the critical impact velocity of about 0.03 cm/sec, particle cohesion always occurs. Due to the optical depth of micron-sized grains in the Saturn rings, particles are hypothesized to be coated with a layer of frost which will render cohesion an important ring-dynamics process. 14 refs.

  5. Coagulation of particles in Saturn's rings - Measurements of the cohesive force of water frost

    NASA Technical Reports Server (NTRS)

    Hatzes, A. P.; Bridges, F.; Lin, D. N. C.; Sachtjen, S.

    1991-01-01

    Experimental data are presented on the sticking force of water ice particles which are indicative of the role that the cohesive properties of such particles could play in the dynamics of Saturn ring particles. Sticking forces are dependent on particle impact velocities; a 'Velcro' model is devised to describe the surface structure involved in sticking. The data indicate that below the critical impact velocity of about 0.03 cm/sec, particle cohesion always occurs. Due to the optical depth of micron-sized grains in the Saturn rings, particles are hypothesized to be coated with a layer of frost which will render cohesion an important ring-dynamics process.

  6. Parameterization of large-scale turbulent diffusion in the presence of both well-mixed and weakly mixed patchy layers

    NASA Astrophysics Data System (ADS)

    Osman, M. K.; Hocking, W. K.; Tarasick, D. W.

    2016-06-01

    Vertical diffusion and mixing of tracers in the upper troposphere and lower stratosphere (UTLS) are not uniform, but primarily occur due to patches of turbulence that are intermittent in time and space. The effective diffusivity of regions of patchy turbulence is related to statistical parameters describing the morphology of turbulent events, such as lifetime, number, width, depth and local diffusivity (i.e., diffusivity within the turbulent patch) of the patches. While this has been recognized in the literature, the primary focus has been on well-mixed layers, with few exceptions. In such cases the local diffusivity is irrelevant, but this is not true for weakly and partially mixed layers. Here, we use both theory and numerical simulations to consider the impact of intermediate and weakly mixed layers, in addition to well-mixed layers. Previous approaches have considered only one dimension (vertical), and only a small number of layers (often one at each time step), and have examined mixing of constituents. We consider a two-dimensional case, with multiple layers (10 and more, up to hundreds and even thousands), having well-defined, non-infinite, lengths and depths. We then provide new formulas to describe cases involving well-mixed layers which supersede earlier expressions. In addition, we look in detail at layers that are not well mixed, and, as an interesting variation on previous models, our procedure is based on tracking the dispersion of individual particles, which is quite different to the earlier approaches which looked at mixing of constituents. We develop an expression which allows determination of the degree of mixing, and show that layers used in some previous models were in fact not well mixed and so produced erroneous results. We then develop a generalized model based on two dimensional random-walk theory employing Rayleigh distributions which allows us to develop a universal formula for diffusion rates for multiple two-dimensional layers with

  7. Control of boundary layer transition location and plate vibration in the presence of an external acoustic field

    NASA Technical Reports Server (NTRS)

    Maestrello, L.; Grosveld, F. W.

    1991-01-01

    The experiment is aimed at controlling the boundary layer transition location and the plate vibration when excited by a flow and an upstream sound source. Sound has been found to affect the flow at the leading edge and the response of a flexible plate in a boundary layer. Because the sound induces early transition, the panel vibration is acoustically coupled to the turbulent boundary layer by the upstream radiation. Localized surface heating at the leading edge delays the transition location downstream of the flexible plate. The response of the plate excited by a turbulent boundary layer (without sound) shows that the plate is forced to vibrate at different frequencies and with different amplitudes as the flow velocity changes indicating that the plate is driven by the convective waves of the boundary layer. The acoustic disturbances induced by the upstream sound dominate the response of the plate when the boundary layer is either turbulent or laminar. Active vibration control was used to reduce the sound induced displacement amplitude of the plate.

  8. On the Effective Thermal Conductivity of Frost Considering Mass Diffusion and Eddy Convection

    NASA Technical Reports Server (NTRS)

    Kandula, Max

    2010-01-01

    A physical model for the effective thermal conductivity of water frost is proposed for application to the full range of frost density. The proposed model builds on the Zehner-Schlunder one-dimensional formulation for porous media appropriate for solid-to-fluid thermal conductivity ratios less than about 1000. By superposing the effects of mass diffusion and eddy convection on stagnant conduction in the fluid, the total effective thermal conductivity of frost is shown to be satisfactorily described. It is shown that the effects of vapor diffusion and eddy convection on the frost conductivity are of the same order. The results also point out that idealization of the frost structure by cylindrical inclusions offers a better representation of the effective conductivity of frost as compared to spherical inclusions. Satisfactory agreement between the theory and the measurements for the effective thermal conductivity of frost is demonstrated for a wide range of frost density and frost temperature.

  9. (abstract) A Polarimetric Model for Effects of Brine Infiltrated Snow Cover and Frost Flowers on Sea Ice Backscatter

    NASA Technical Reports Server (NTRS)

    Nghiem, S. V.; Kwok, R.; Yueh, S. H.

    1995-01-01

    A polarimetric scattering model is developed to study effects of snow cover and frost flowers with brine infiltration on thin sea ice. Leads containing thin sea ice in the Artic icepack are important to heat exchange with the atmosphere and salt flux into the upper ocean. Surface characteristics of thin sea ice in leads are dominated by the formation of frost flowers with high salinity. In many cases, the thin sea ice layer is covered by snow, which wicks up brine from sea ice due to capillary force. Snow and frost flowers have a significant impact on polarimetric signatures of thin ice, which needs to be studied for accessing the retrieval of geophysical parameters such as ice thickness. Frost flowers or snow layer is modeled with a heterogeneous mixture consisting of randomly oriented ellipsoids and brine infiltration in an air background. Ice crystals are characterized with three different axial lengths to depict the nonspherical shape. Under the covering multispecies medium, the columinar sea-ice layer is an inhomogeneous anisotropic medium composed of ellipsoidal brine inclusions preferentially oriented in the vertical direction in an ice background. The underlying medium is homogeneous sea water. This configuration is described with layered inhomogeneous media containing multiple species of scatterers. The species are allowed to have different size, shape, and permittivity. The strong permittivity fluctuation theory is extended to account for the multispecies in the derivation of effective permittivities with distributions of scatterer orientations characterized by Eulerian rotation angles. Polarimetric backscattering coefficients are obtained consistently with the same physical description used in the effective permittivity calculation. The mulitspecies model allows the inclusion of high-permittivity species to study effects of brine infiltrated snow cover and frost flowers on thin ice. The results suggest that the frost cover with a rough interface

  10. Transient convective structures in a cooled water layer in the presence of a drift flow and a surfactant

    NASA Astrophysics Data System (ADS)

    Reutov, V. P.; Rybushkina, G. V.

    2016-02-01

    The paper is concerned with three-dimensional convective structures arising in a water layer cooled from above and covered by an adsorbed insoluble surfactant. The water is subjected to a laminar drift flow produced by tangential stresses on a free surface. The surface diffusion of the surfactant are taken into account within the approximation of a nondeformable flat surface. After appropriate reformulation of standard equations governing gravity-capillary convection and surfactant concentration, the problem is solved numerically using a pseudospectral method employed in our previous work. Development of the convective structures with increasing Reynolds number, surfactant film elasticity, and layer thickness is studied. The minimal layer thickness is chosen taking into account the results of relevant laboratory experiments. The cell-to-roll transition is revealed in the thin layer with increasing Reynolds number. The role of dissipation due to the surfactant film is elucidated by comparison with purely gravitational convection. The turbulent convection arising in a thicker layer subjected to a laminar shear flow is examined. Disordered streets containing elongated cells and swirl-like motions are revealed. Images of the surface temperature and the perturbed surfactant concentration are compared.

  11. Push-out bond strength of gutta-percha with a new bioceramic sealer in the presence or absence of smear layer.

    PubMed

    Shokouhinejad, Noushin; Gorjestani, Hedayat; Nasseh, Allen Ali; Hoseini, Atefeh; Mohammadi, Maryam; Shamshiri, Ahmad Reza

    2013-12-01

    The purpose of this study was to compare the bond strength of a new bioceramic sealer (EndoSequence BC Sealer) and AH Plus in the presence or absence of smear layer. Extracted single-rooted human teeth were prepared and randomly divided into four groups. In groups 1 and 3, the root canals were finally irrigated with 5.25% NaOCl and smear layer was not removed, but in groups 2 and 4, the root canals were finally irrigated with 17% EDTA followed by 5.25% NaOCl in order to remove the smear layer. In groups 1 and 2, the root canals were obturated with gutta-percha/AH Plus, but in groups 3 and 4, obturation was performed with gutta-percha/EndoSequence BC Sealer. Push-out bond strength and failure modes were evaluated. The bond strength of gutta-percha/AH Plus and gutta-percha/EndoSequence BC Sealer was not significantly different (P = 0.89). The presence or absence of smear layer did not significantly affect the bond strength of filling materials (P = 0.69). The mode of bond failure was mainly cohesive for all groups. In conclusion, the bond strength of the new bioceramic sealer was equal to that of AH Plus with or without the smear layer. PMID:24279654

  12. Generation and development of small-amplitude disturbances in a laminar boundary layer in the presence of an acoustic field

    NASA Technical Reports Server (NTRS)

    Kachanov, Y. S.; Kozlov, V. V.; Levchenko, V. Y.

    1985-01-01

    A low-turbulence subsonic wind tunnel was used to study the influence of acoustic disturbances on the development of small sinusoidal oscillations (Tollmien-Schlichting waves) which constitute the initial phase of turbulent transition. It is found that acoustic waves propagating opposite to the flow generate vibrations of the model (plate) in the flow. Neither the plate vibrations nor the acoustic field itself have any appreciable influence on the stability of the laminar boundary layer. The influence of an acoustic field on laminar boundary layer disturbances is limited to the generation of Tollmien-Schlichting waves at the leading-edge of the plate.

  13. The New KRISS Low Frost-Point Humidity Generator

    NASA Astrophysics Data System (ADS)

    Choi, B. I.; Nham, H. S.; Woo, S. B.; Kim, J. C.; Kwon, S. Y.

    2008-10-01

    A new low frost-point humidity generator (LFPG) has been designed, and its performance has been tested, in order to extend the calibration capabilities to the low frost-point range at KRISS. The water vapor gas mixture is generated by saturating air with water vapor over a surface of an ice-coated saturator under the conditions of constant temperature and pressure. This LFPG covers a range of frost point from - 99 °C to - 40 °C. The temperature of the saturator, which is controlled by thermoelectric devices and a two-stage mechanical refrigeration system, is stable within 5 mK, and the difference between the saturator temperature and the frost point generated at the saturator outlet is less than 20 mK. This stability is achieved by using oxygen-free high-conductivity copper materials as the saturator body, and applying a precision PID temperature control system. The performance of this new LFPG system is compared with the KRISS standard two-temperature generator in the frost-point range ( - 80 to - 40) °C, and its performance is tested with a quartz crystal microbalance (QCM), which was built at KRISS, to - 91 °C.

  14. Low frost-point humidity generator. [calibration facility

    NASA Technical Reports Server (NTRS)

    Greenspan, L.

    1973-01-01

    A low frost-point humidity generator has been developed at NBS to provide a capability for calibration, testing, and research at very low levels of water vapor content in such gases as atmospheric air, carbon dioxide and nitrogen. The generator produces frost points from -30 to -100 C at ambient pressures from 500 to 200,000 pascals (0.005 to 2 atm.). This is equivalent to mixing ratios of 4 micrograms to 51 grams of water vapor per kilogram of dry air and to vapor pressures of .0014 to 38 pascals. The generated test gas can be fed to a test chamber with independent temperature control between +25 and -100 C. The uncertainty of the frost point in the test chamber is estimated not to exceed 0.05 deg C.

  15. The role of phenology in assessing risks of frost damage

    NASA Astrophysics Data System (ADS)

    Menzel, Annette; Estrella, Nicole

    2013-04-01

    Climate warming in temperate regions has been shown to lengthen the summer growing season, both at the spring and autumn side, and shorten the winter season. Spring phenology, e.g. bud burst and leafing, is mainly triggered by forcing temperatures in order to maximize growing season during favorable conditions. Winter chilling and / or photoperiodic requirements prevent too early plant development related to a higher risk of damage by late spring frosts. The questions how risks of late spring frosts have been altered in the past and will change under future warming are discussed controversially in the current literature. In this paper we will take this classical example of vegetation - atmosphere interaction to demonstrate that traits of the species studied, the (partially) neglected status of the vegetation and regional climatic conditions may account for these differences reported. We suggest a methodology based on extreme value theory (EVT) to assess the frost risks and present results for continental Europe.

  16. Frost-weathering on Mars - Experimental evidence for peroxide formation

    NASA Technical Reports Server (NTRS)

    Huguenin, R. L.; Miller, K. J.; Harwood, W. S.

    1979-01-01

    The weathering of silicates by frost is investigated in relation to the formation of surface peroxides to which Viking biology experiment results have been attributed. Samples of the minerals olivine and pyroxene were exposed to water vapor at -11 to -22 C and resultant gas evolution and pH were monitored. Experiments reveal the formation of an acidic oxidant upon interaction of the mineral and H2O frost at subfreezing temperatures, which chemical indicators have suggested to be chemisorbed hydrogen peroxide. A model for the formation of chemisorbed peroxide based on the chemical reduction of the mineral by surface frost is proposed, and it is predicted that the perioxide would decay at high temperatures to H2O and adsorbed O, consistent with the long-term storage and sterilization behavior of the soil oxidants observed in the Viking Gas Exchange and Labeled Release experiments.

  17. FROST - FREEDOM OPERATIONS SIMULATION TEST VERSION 1.0

    NASA Technical Reports Server (NTRS)

    Deshpande, G. K.

    1994-01-01

    The Space Station Freedom Information System processes and transmits data between the space station and the station controllers and payload operators on the ground. Components of the system include flight hardware, communications satellites, software and ground facilities. FROST simulates operation of the SSF Information System, tracking every data packet from generation to destination for both uplinks and downlinks. This program collects various statistics concerning the SSF Information System operation and provides reports of these at user-specified intervals. Additionally, FROST has graphical display capability to enhance interpretation of these statistics. FROST models each of the components of the SSF Information System as an object, to which packets are generated, received, processed, transmitted, and/or dumped. The user must provide the information system design with specified parameters and inter-connections among objects. To aid this process, FROST supplies an example SSF Information System for simulation, but this example must be copied before it is changed and used for further simulation. Once specified, system architecture and parameters are put into the input file, named the Test Configuration Definition (TCD) file. Alternative system designs can then be simulated simply by editing the TCD file. Within this file the user can define new objects, alter object parameters, redefine paths, redefine generation rates and windows, and redefine object interconnections. At present, FROST does not model every feature of the SSF Information System, but it is capable of simulating many of the system's important functions. To generate data messages, which can come from any object, FROST defines "windows" to specify when, what kind, and how much of that data is generated. All messages are classified by priority as either (1)emergency (2)quick look (3)telemetry or (4)payload data. These messages are processed by all objects according to priority. That is, all priority

  18. Frost sensor for use in defrost controls for refrigeration

    DOEpatents

    French, Patrick D.; Butz, James R.; Veatch, Bradley D.; O'Connor, Michael W.

    2002-01-01

    An apparatus and method for measuring the total thermal resistance to heat flow from the air to the evaporative cooler fins of a refrigeration system. The apparatus is a frost sensor that measures the reduction in heat flow due to the added thermal resistance of ice (reduced conduction) as well as the reduction in heat flow due to the blockage of airflow (reduced convection) from excessive ice formation. The sensor triggers a defrost cycle when needed, instead of on a timed interval. The invention is also a method for control of frost in a system that transfers heat from air to a refrigerant along a thermal path. The method involves measuring the thermal conductivity of the thermal path from the air to the refrigerant, recognizing a reduction in thermal conductivity due to the thermal insulation effect of the frost and due to the loss of airflow from excessive ice formation; and controlling the defrosting of the system.

  19. A forecasting system using the parabolic equation: Application to surface-to-air propagation in the presence of elevated layers

    NASA Astrophysics Data System (ADS)

    Craig, K. H.; Levy, M. F.

    1989-09-01

    The parabolic equation approach to clear-air propagation modeling overcomes many of the difficulties associated with ray and mode theory methods. A parabolic equation model was implemented on a PC based system using a transputer to carry out the computationally intensive numerical integrations. The model was used from VHF to millimetric frequencies and applied to evaporation duct and elevated duct problems. The latter are important for surface-to-air propagation and were difficult to solve because of the complicated structure of the layers. A case study of an elevated duct caused by anticyclonic subsidence shows the importance of up-to-date meteorological data from a wide geographical area. A full-wave calculation of the wideband properties of the propagation channel illustrates the possibilities opened up by the new model. The frequency selective effects can be large, and are sensitive to the small-scale structure of the ducting layers.

  20. Effect of surface waves on the characteristics of a linear phased array in the presence of a dielectric layer

    NASA Astrophysics Data System (ADS)

    Kniazev, S. T.; Panchenko, B. A.

    A Green-function approach is taken to the determination of the surface-wave spectrum for a phased array with a dielectric layer, taking into account the relationship between bulk and surface waves. Numerical results are presented on the radiation characteristics of a linear phased array consisting of strip dipoles. Dipole input admittance and bulk-wave admittance are determined as a function of phasing angle.

  1. Far-infrared spectra of CO2 clathrate hydrate frosts

    NASA Technical Reports Server (NTRS)

    Landry, J. C.; England, A. W.

    1993-01-01

    As a product of our interest in remote sensing of planetary ices, frost samples of CO2 clathrate hydrate were grown by depositing water vapor on a cooled surface and pressurizing the resulting water frost with CO2 gas. At pressures above the dissociation pressure of the clathrate, the samples exhibit an absorption peak at 75 cm (sup -1). At pressures below the dissociation pressure, the peak disappears. Since the free CO2 molecule does not have rotational or vibrational absorption in this region, the absorption is attributed to a CO2 rattling mode within a clathrate cage.

  2. Correlation of Water Frost Porosity in Laminar Flow over Flat Surfaces

    NASA Technical Reports Server (NTRS)

    Kandula, Max

    2011-01-01

    A dimensionless correlation has been proposed for water frost porosity expressing its dependence on frost surface temperature and Reynolds number for laminar forced flow over a flat surface. The correlation is presented in terms of a dimensionless frost surface temperature scaled with the cold plate temperature, and the freezing temperature. The flow Reynolds number is scaled with reference to the critical Reynolds number for laminar-turbulent transition. The proposed correlation agrees satisfactorily with the simultaneous measurements of frost density and frost surface temperature covering a range of plate temperature, ambient air velocity, humidity, and temperature. It is revealed that the frost porosity depends primarily on the frost surface and the plate temperatures and the flow Reynolds number, and is only weakly dependent on the relative humidity. The results also point out the general character of frost porosity displaying a decrease with an increase in flow Reynolds number.

  3. Stability analysis of boundary layer flow due to the presence of a small hole on a surface.

    PubMed

    Fernandez-Feria, R

    2002-03-01

    A linear, temporal, and viscous stability analysis of the boundary layer induced on a solid plane by a three-dimensional potential sink flow is considered. The flow is inviscidly (neutrally) stable. For axisymmetric perturbations, one can analyze separately the stability of those perturbations with a purely circumferential motion, and those with no azimuthal velocity. The first ones are shown to be always stable, a result that is found analytically. The second ones become unstable in a range of (high) Reynolds numbers that depends on the radial wave number. Finally, it is shown that all nonaxisymmetric perturbations are linearly stable. PMID:11909244

  4. A Laboratory Study of the Effect of Frost Flowers on C Band Radar Backscatter from Sea Ice

    NASA Technical Reports Server (NTRS)

    Nghiem, S. V.; Martin, S.; Perovich, D. K.; Kwok, R.; Drucker, R.; Gow, A. J.

    1997-01-01

    C band images of Arctic sea ice taken by the ERS 1 synthetic aperture radar show transitory regions of enhanced radar backscatter from young sea ice. Published field observations associate this increase with frost flower growth and the capture of blowing snow by the flowers. To investigate the first part of this phenomenon, we carried out a laboratory experiment on the response of C band radar backscatter to frost flowers growing on the surface of newly formed saline ice. The experiment took place in a 5 m by 7 m by 1.2 m deep saline water pool located in a two-story indoor refrigerated facility at the Cold Regions Research and Engineering Laboratory. Sodium chloride ice was grown in this pool at an air temperature of -28 C. The frost flowers first appeared on the ice surface as dendrites and then changed to needles as the ice sheet grew thicker and the surface temperatures became colder. The frost flowers reached to a height of 10-15 mm, and beneath each cluster of frost flowers a slush layer formed to a thickness of approximately 4 mm. Far-field radar measurements of the backscatter from the ice were made at incident angles from 20 C to 40 C and at approximately 6-hour intervals throughout the 3-day period of the experiment. A backscatter minimum occurred early in the flower growth at the time coincident with an abrupt doubling in the ice surface salinity. Once the full flower coverage was achieved, we removed first the crystal flowers and then the slush layer from the ice surface. The results for these cases show that the crystals have little impact on the backscatter, while the underlying slush patches yield a backscatter increase of 3-5 dB over that o f bare ice. The laboratory results suggest that this relative backscatter increase of approximately 5 dB can be used as an index to mark the full areal coverage of frost flowers.

  5. Measurement of frost characteristics on heat exchanger fins. Part 2: Data and analysis

    SciTech Connect

    Chen, H.; Thomas, L.; Besant, R.W.

    1999-07-01

    Part 1 of this paper described the frost growth test facility and instrumentation. In Part 2, results are presented for typical operating conditions with frost growth on heat exchanger fins. Typical data are presented for frost height distributions on fins, increase in pressure loss for airflow through a finned test section, frost mass accumulation on fins, and heat rate. Special attention is given to the uncertainty in each of these measurements and calculations.

  6. Enhanced winter soil frost reduces methane emission during the subsequent growing season in a boreal peatland.

    PubMed

    Zhao, Junbin; Peichl, Matthias; Nilsson, Mats B

    2016-02-01

    Winter climate change may result in reduced snow cover and could, consequently, alter the soil frost regime and biogeochemical processes underlying the exchange of methane (CH4 ) in boreal peatlands. In this study, we investigated the short-term (1-3 years) vs. long-term (11 years) effects of intensified winter soil frost (induced by experimental snow exclusion) on CH4 exchange during the following growing season in a boreal peatland. In the first 3 years (2004-2006), lower CH4 emissions in the treatment plots relative to the control coincided with delayed soil temperature increase in the treatment plots at the beginning of the growing season (May). After 11 treatment years (in 2014), CH4 emissions were lower in the treatment plots relative to the control over the entire growing season, resulting in a reduction in total growing season CH4 emission by 27%. From May to July 2014, reduced sedge leaf area coincided with lower CH4 emissions in the treatment plots compared to the control. From July to August, lower dissolved organic carbon concentrations in the pore water of the treatment plots explained 72% of the differences in CH4 emission between control and treatment. In addition, greater Sphagnum moss growth in the treatment plots resulted in a larger distance between the moss surface and the water table (i.e., increasing the oxic layer) which may have enhanced the CH4 oxidation potential in the treatment plots relative to the control in 2014. The differences in vegetation might also explain the lower temperature sensitivity of CH4 emission observed in the treatment plots relative to the control. Overall, this study suggests that greater soil frost, associated with future winter climate change, might substantially reduce the growing season CH4 emission in boreal peatlands through altering vegetation dynamics and subsequently causing vegetation-mediated effects on CH4 exchange. PMID:26452333

  7. Seasonally active frost-dust avalanches on a north polar scarp of Mars captured by HiRISE

    USGS Publications Warehouse

    Russell, P.; Thomas, N.; Byrne, S.; Herkenhoff, K.; Fishbaugh, K.; Bridges, N.; Okubo, C.; Milazzo, M.; Daubar, I.; Hansen, C.; McEwen, A.

    2008-01-01

    North-polar temporal monitoring by the High Resolution Imaging Science Experiment (HiRISE) orbiting Mars has discovered new, dramatic examples that Mars1 CO2-dominated seasonal volatile cycle is not limited to quiet deposition and sublimation of frost. In early northern martian spring, 2008, HiRISE captured several cases of CO2 frost and dust cascading down a steep, polar scarp in discrete clouds. Analysis of morphology and process reveals these events to be similar to terrestrial powder avalanches, sluffs, and falls of loose, dry snow. Potential material sources and initiating mechanisms are discussed in the context of the Martian polar spring environment and of additional, active, aeolian processes observed on the plateau above the scarp. The scarp events are identified as a trigger for mass wasting of bright, fractured layers within the basal unit, and may indirectly influence the retreat rate of steep polar scarps in competing ways. Copyright 2008 by the American Geophysical Union.

  8. Lessons in the Conversation That We Are: Robert Frost's "Death of the Hired Man."

    ERIC Educational Resources Information Center

    Jost, Walter

    1996-01-01

    Looks at Robert Frost's "The Death of the Hired Man" as a "representative anecdote" for Frost's work, which, taken as a whole, shows readers how to lose themselves among the overlooked places and turnings, the topics and tropes, that make up Frost's rhetorical home, the place of everyday human talk and gossip. (TB)

  9. Two methods for assessing frost tolerance in flowers of highbush blueberry cultivars

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sensitivity of blueberry flowers to freezing temperatures differs among cultivars and stages of bud development. Also, the frost testing technique and the duration at lethal temperature can have a dramatic effect on bud injury. Artificial frost tests should duplicate the types of spring frosts in ...

  10. Long term spatial and temporal trends in frost day indices in Kansas, USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Frost day indices such as number of frost days (nFDs), frost free days (nFFDs), last spring freeze (LSF), first fall freeze (FFF), and growing-season length (GSL), were calculated using daily minimum air temperature (Tmin) values from 23 centennial weather stations spread across Kansas during four t...

  11. Increasing the frost resistance of facade glazed tiles

    SciTech Connect

    Egerev, V.M.; Zotov, S.N.; Romanova, G.P.

    1986-09-01

    The authors investigate the protective properties of a coating of boron oxides and zirconium oxides applied as a glaze to ceramic tiles by conducting a series of tests to determine the frost resistance, the propensity to absorb water, the moisture expansion coefficient, the fracture behavior, and the effect of thermal cycling on the oxides. Results are graphed and tabulated.

  12. Genetic architecture of winter hardiness and frost tolerance in triticale.

    PubMed

    Liu, Wenxin; Maurer, Hans Peter; Li, Guoliang; Tucker, Matthew R; Gowda, Manje; Weissmann, Elmar A; Hahn, Volker; Würschum, Tobias

    2014-01-01

    Abiotic stress experienced by autumn-sown crops during winter is of great economic importance as it can have a severe negative impact on yield. In this study, we investigated the genetic architecture of winter hardiness and frost tolerance in triticale. To this end, we used a large mapping population of 647 DH lines phenotyped for both traits in combination with genome-wide marker data. Employing multiple-line cross QTL mapping, we identified nine main effect QTL for winter hardiness and frost tolerance of which six were overlapping between both traits. Three major QTL were identified on chromosomes 5A, 1B and 5R. In addition, an epistasis scan revealed the contribution of epistasis to the genetic architecture of winter hardiness and frost tolerance in triticale. Taken together, our results show that winter hardiness and frost tolerance are complex traits that can be improved by phenotypic selection, but also that genomic approaches hold potential for a knowledge-based improvement of these important traits in elite triticale germplasm. PMID:24927281

  13. Heritability of frost-seeded red clover establishment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the colder parts of the United States, in late winter after disappearance of snow cover, red clover (Trifolium pratense) is often broadcast seeded into forage legume-depleted grass pastures to increase pasture forage quality. This method of establishment is referred to as frost seeding. However...

  14. Peach fruit set and buttoning after spring frost

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A spring frost occurred on 29 Mar. 2015 at the USDA-ARS Byron station after three weeks of blooming when most fruitlets were forming. Due to severe fruitlet drop, the overall fruit set on a scale of 0-9 was substantially reduced, from 5.61 averaged in 2014 to 2.61 in 2015. In addition, buttons (abno...

  15. A Multiscale simulation method for ice crystallization and frost growth

    NASA Astrophysics Data System (ADS)

    Yazdani, Miad

    2015-11-01

    Formation of ice crystals and frost is associated with physical mechanisms at immensely separated scales. The primary focus of this work is on crystallization and frost growth on a cold plate exposed to the humid air. The nucleation is addressed through Gibbs energy barrier method based on the interfacial energy of crystal and condensate as well as the ambient and surface conditions. The supercooled crystallization of ice crystals is simulated through a phase-field based method where the variation of degree of surface tension anisotropy and its mode in the fluid medium is represented statistically. In addition, the mesoscale width of the interface is quantified asymptotically which serves as a length-scale criterion into a so-called ``Adaptive'' AMR (AAMR) algorithm to tie the grid resolution at the interface to local physical properties. Moreover, due to the exposure of crystal to humid air, a secondary non-equilibrium growth process contributes to the formation of frost at the tip of the crystal. A Monte-Carlo implementation of Diffusion Limited Aggregation method addresses the formation of frost during the crystallization. Finally, a virtual boundary based Immersed Boundary Method (IBM) is adapted to address the interaction of ice crystal with convective air during its growth.

  16. Inhibition of Condensation Frosting by Arrays of Hygroscopic Antifreeze Drops.

    PubMed

    Sun, Xiaoda; Damle, Viraj G; Uppal, Aastha; Linder, Rubin; Chandrashekar, Sriram; Mohan, Ajay R; Rykaczewski, Konrad

    2015-12-29

    The formation of frost and ice can have negative impacts on travel and a variety of industrial processes and is typically addressed by dispensing antifreeze substances such as salts and glycols. Despite the popularity of this anti-icing approach, some of the intricate underlying physical mechanisms are just being unraveled. For example, recent studies have shown that in addition to suppressing ice formation within its own volume, an individual salt saturated water microdroplet forms a region of inhibited condensation and condensation frosting (RIC) in its surrounding area. This occurs because salt saturated water, like most antifreeze substances, is hygroscopic and has water vapor pressure at its surface lower than water saturation pressure at the substrate. Here, we demonstrate that for macroscopic drops of propylene glycol and salt saturated water, the absolute RIC size can remain essentially unchanged for several hours. Utilizing this observation, we demonstrate that frost formation can be completely inhibited in-between microscopic and macroscopic arrays of propylene glycol and salt saturated water drops with spacing (S) smaller than twice the radius of the RIC (δ). Furthermore, by characterizing condensation frosting dynamics around various hygroscopic drop arrays, we demonstrate that they can delay complete frosting over of the samples 1.6 to 10 times longer than films of the liquids with equivalent volume. The significant delay in onset of ice nucleation achieved by dispensing propylene glycol in drops rather than in films is likely due to uniform dilution of the drops driven by thermocapillary flow. This transport mode is absent in the films, leading to faster dilution, and with that facilitated homogeneous nucleation, near the liquid-air interface. PMID:26651017

  17. On Localized Vapor Pressure Gradients Governing Condensation and Frost Phenomena.

    PubMed

    Nath, Saurabh; Boreyko, Jonathan B

    2016-08-23

    Interdroplet vapor pressure gradients are the driving mechanism for several phase-change phenomena such as condensation dry zones, interdroplet ice bridging, dry zones around ice, and frost halos. Despite the fundamental nature of the underlying pressure gradients, the majority of studies on these emerging phenomena have been primarily empirical. Using classical nucleation theory and Becker-Döring embryo formation kinetics, here we calculate the pressure field for all possible modes of condensation and desublimation in order to gain fundamental insight into how pressure gradients govern the behavior of dry zones, condensation frosting, and frost halos. Our findings reveal that in a variety of phase-change systems the thermodynamically favorable mode of nucleation can switch between condensation and desublimation depending upon the temperature and wettability of the surface. The calculated pressure field is used to model the length of a dry zone around liquid or ice droplets over a broad parameter space. The long-standing question of whether the vapor pressure at the interface of growing frost is saturated or supersaturated is resolved by considering the kinetics of interdroplet ice bridging. Finally, on the basis of theoretical calculations, we propose that there exists a new mode of frost halo that is yet to be experimentally observed; a bimodal phase map is developed, demonstrating its dependence on the temperature and wettability of the underlying substrate. We hope that the model and predictions contained herein will assist future efforts to exploit localized vapor pressure gradients for the design of spatially controlled or antifrosting phase-change systems. PMID:27463696

  18. Layered Slope

    NASA Technical Reports Server (NTRS)

    2005-01-01

    28 August 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a frost-covered slope in the south polar region of Mars. The layered nature of the terrain in the south polar region is evident in a series of irregular, somewhat stair-stepped bands that run across the image.

    Location near: 84.3oS, 27.2oW Image width: width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Spring

  19. Single kaolinite nanometer layers prepared by an in situ polymerization-exfoliation process in the presence of ionic liquids.

    PubMed

    Letaief, Sadok; Leclercq, Jérôme; Liu, Yun; Detellier, Christian

    2011-12-20

    A simple chemical route for the exfoliation of kaolinite in the presence of polymerizable ionic liquids and the resulting obtainment of exfoliated nanocomposites is reported. The exfoliation was achieved using three different ionic liquids structurally bearing a vinyl group: 1-methyl-3-(4-vinylbenzyl)imidazolium chloride salt (IL_1), 1-methyl-1-(4-vinylbenzyl)pyrrolidinium chloride (IL_2), and 1-methyl-3-vinyl imidazolium iodide (IL_3) and a urea-kaolinite intercalate as precursor. The reaction was done in one step by an in situ polymerization-exfoliation process. (13)C CP/MAS NMR spectra confirmed the spontaneous polymerization of the ionic liquid during the exfoliation process to afford atactic polystyrene derivatives in the case of IL_1 and IL_2. The amount of organic material in the exfoliated nanocomposite was close to 30% as shown by thermal gravimetric analysis. This amount is small in comparison to the amount obtained when the exfoliation was done using sodium polyacrylate (Letaief and Detellier, Langmuir2009, 25, 10975). XRD as well as SEM analysis confirmed a total exfoliation of the kaolinite when the reaction was done using urea kaolinite, whereas a microcomposite, made predominantly of kaolinite platelet aggregates dispersed in the polymeric matrix, was formed when dimethylsulfoxide kaolinite was used as the precursor. PMID:22073925

  20. Identification and frequency of atmospheric circulation patterns causing spring frost in the northern French vineyards using the objective version of the Hess-Brezowsky classification

    NASA Astrophysics Data System (ADS)

    Quénol, H.; Planchon, O.; Wahl, L.

    2009-04-01

    Easterly circulations (10% at Colmar ; 37% at Saumur). Because of the location of Saumur in western France and relatively close to the Atlantic Ocean (about 140 km), frost-producing weather patterns are especially associated with atmospheric circulations and air-masses which cause widespread frost conditions in the whole northern Half of France (NE & E circulation types). The combined effects of the continentality and the topographical features of the Upper Rhine Graben (Alsace: Colmar) and Saône Graben (eastern Burgundy: Dijon) explain the high ratios of frost days associated with Westerly and Southerly circulations at the weather stations of Dijon and Colmar (respectively 57% and 40%). The shallow and low-level layer of cold air, which develop in the eastern France grabens during frost-producing weather patterns, can persist a few days after a change in circulation type. The relatively warm air associated with a cyclonic Southerly or Westerly circulation flows over the low-layer cold air. Therefore, frost can occur during several days with cyclonic Southerly or Westerly circulation types. The areas of Reims and Saumur are more directly exposed to the Southerly and Westerly circulations, therefore these two weather stations are quickly subjected to a milder weather. The results about hard frost days occurring at least at one of the four reference weather stations show that 74% of these days are associated with Northerly and Easterly circulations, i.e. mostly anticyclonic weather patterns with cold air advections from northern or eastern Europe. The low frequency of Westerly and Southerly circulations (11%) confirms that these circulation types have not a cooling effect. Depending on the weather station, the ratio of hard frost days associated with Northern and Eastern circulation types is between 70 and 85%, while the ratio of hard frost days associated with Westerly and Southerly circulations is less than 10%. Hard frost days associated with Westerly and Southerly

  1. Water frost and ice - The near-infrared spectral reflectance 0.65-2.5 microns. [observed on natural satellites and other solar system objects

    NASA Technical Reports Server (NTRS)

    Clark, R. N.

    1981-01-01

    The spectral reflectance of water frost and frost on ice as a function of temperature and grain size is presented with 1-1/2% spectral resolution in the 0.65- to 2.5-micron wavelength region. The well-known 2.0-, 1.65-, and 1.5-micron solid water absorption bands are precisely defined along with the little studied 1.25-micron band and the previously unidentified (in reflectance) 1.04-, 0.90-, and 0.81-micron absorption bands. The 1.5-microns band complex is quantitatively analyzed using a nonlinear least squares algorithm to resolve the band into four Gaussian components as a function of grain size and temperature. It is found that the 1.65-micron component, which was thought to be a good temperature sensor, is highly grain-size dependent and poorly suited to temperature sensing. Another Gaussian component appears to show a dependence of width on grain size while being independent of temperature. The relative apparent band depths are different for frost layers on ice than for thick layers of frost and may explain the apparent band depths seen in many planetary reflectance spectra.

  2. Frost trends and their estimated impact on yield in the Australian wheatbelt.

    PubMed

    Zheng, Bangyou; Chapman, Scott C; Christopher, Jack T; Frederiks, Troy M; Chenu, Karine

    2015-06-01

    Radiant spring frosts occurring during reproductive developmental stages can result in catastrophic yield loss for wheat producers. To better understand the spatial and temporal variability of frost, the occurrence and impact of frost events on rain-fed wheat production was estimated across the Australian wheatbelt for 1957-2013 using a 0.05 ° gridded weather data set. Simulated yield outcomes at 60 key locations were compared with those for virtual genotypes with different levels of frost tolerance. Over the last six decades, more frost events, later last frost day, and a significant increase in frost impact on yield were found in certain regions of the Australian wheatbelt, in particular in the South-East and West. Increasing trends in frost-related yield losses were simulated in regions where no significant trend of frost occurrence was observed, due to higher mean temperatures accelerating crop development and causing sensitive post-heading stages to occur earlier, during the frost risk period. Simulations indicated that with frost-tolerant lines the mean national yield could be improved by up to 20% through (i) reduced frost damage (~10% improvement) and (ii) the ability to use earlier sowing dates (adding a further 10% improvement). In the simulations, genotypes with an improved frost tolerance to temperatures 1 °C lower than the current 0 °C reference provided substantial benefit in most cropping regions, while greater tolerance (to 3 °C lower temperatures) brought further benefits in the East. The results indicate that breeding for improved reproductive frost tolerance should remain a priority for the Australian wheat industry, despite warming climates. PMID:25922479

  3. Frost trends and their estimated impact on yield in the Australian wheatbelt

    PubMed Central

    Zheng, Bangyou; Chapman, Scott C.; Christopher, Jack T.; Frederiks, Troy M.; Chenu, Karine

    2015-01-01

    Radiant spring frosts occurring during reproductive developmental stages can result in catastrophic yield loss for wheat producers. To better understand the spatial and temporal variability of frost, the occurrence and impact of frost events on rain-fed wheat production was estimated across the Australian wheatbelt for 1957–2013 using a 0.05 ° gridded weather data set. Simulated yield outcomes at 60 key locations were compared with those for virtual genotypes with different levels of frost tolerance. Over the last six decades, more frost events, later last frost day, and a significant increase in frost impact on yield were found in certain regions of the Australian wheatbelt, in particular in the South-East and West. Increasing trends in frost-related yield losses were simulated in regions where no significant trend of frost occurrence was observed, due to higher mean temperatures accelerating crop development and causing sensitive post-heading stages to occur earlier, during the frost risk period. Simulations indicated that with frost-tolerant lines the mean national yield could be improved by up to 20% through (i) reduced frost damage (~10% improvement) and (ii) the ability to use earlier sowing dates (adding a further 10% improvement). In the simulations, genotypes with an improved frost tolerance to temperatures 1 °C lower than the current 0 °C reference provided substantial benefit in most cropping regions, while greater tolerance (to 3 °C lower temperatures) brought further benefits in the East. The results indicate that breeding for improved reproductive frost tolerance should remain a priority for the Australian wheat industry, despite warming climates. PMID:25922479

  4. Controlling condensation and frost growth with chemical micropatterns

    PubMed Central

    Boreyko, Jonathan B.; Hansen, Ryan R.; Murphy, Kevin R.; Nath, Saurabh; Retterer, Scott T.; Collier, C. Patrick

    2016-01-01

    In-plane frost growth on chilled hydrophobic surfaces is an inter-droplet phenomenon, where frozen droplets harvest water from neighboring supercooled liquid droplets to grow ice bridges that propagate across the surface in a chain reaction. To date, no surface has been able to passively prevent the in-plane growth of ice bridges across the population of supercooled condensate. Here, we demonstrate that when the separation between adjacent nucleation sites for supercooled condensate is properly controlled with chemical micropatterns prior to freezing, inter-droplet ice bridging can be slowed and even halted entirely. Since the edge-to-edge separation between adjacent supercooled droplets decreases with growth time, deliberately triggering an early freezing event to minimize the size of nascent condensation was also necessary. These findings reveal that inter-droplet frost growth can be passively suppressed by designing surfaces to spatially control nucleation sites and by temporally controlling the onset of freezing events. PMID:26796663

  5. Controlling condensation and frost growth with chemical micropatterns

    NASA Astrophysics Data System (ADS)

    Boreyko, Jonathan B.; Hansen, Ryan R.; Murphy, Kevin R.; Nath, Saurabh; Retterer, Scott T.; Collier, C. Patrick

    2016-01-01

    In-plane frost growth on chilled hydrophobic surfaces is an inter-droplet phenomenon, where frozen droplets harvest water from neighboring supercooled liquid droplets to grow ice bridges that propagate across the surface in a chain reaction. To date, no surface has been able to passively prevent the in-plane growth of ice bridges across the population of supercooled condensate. Here, we demonstrate that when the separation between adjacent nucleation sites for supercooled condensate is properly controlled with chemical micropatterns prior to freezing, inter-droplet ice bridging can be slowed and even halted entirely. Since the edge-to-edge separation between adjacent supercooled droplets decreases with growth time, deliberately triggering an early freezing event to minimize the size of nascent condensation was also necessary. These findings reveal that inter-droplet frost growth can be passively suppressed by designing surfaces to spatially control nucleation sites and by temporally controlling the onset of freezing events.

  6. Large quasi-circular features beneath frost on Triton

    NASA Technical Reports Server (NTRS)

    Helfenstein, Paul; Veverka, Joseph; Mccarthy, Derek; Lee, Pascal; Hillier, John

    1992-01-01

    Specially processed Voyager 2 images of Neptune's largest moon, Triton, reveal three large quasi-circular features ranging in diameter from 280 to 935 km within Triton's equatorial region. The largest of these features contains a central irregularly shaped area of comparatively low albedo about 380 km in diameter, surrounded by crudely concentric annuli of higher albedo materials. None of the features exhibit significant topographic expression, and all appear to be primarily albedo markings. The features are located within a broad equatorial band of anomalously transparent frost that renders them nearly invisible at the large phase angles (alpha greater than 90 deg) at which Voyager obtained its highest resolution coverage of Triton. The features can be discerned at smaller phase angles (alpha = 66 deg) at which the frost only partially masks underlying albedo contrasts. The origin of the features is uncertain but may have involved regional cryovolcanic activity.

  7. H2O frost point detection on Mars

    NASA Technical Reports Server (NTRS)

    Ryan, J. A.; Sharman, R. D.

    1981-01-01

    The Viking Mars landers contain meteorological instrumentation to measure wind, temperature, and pressure but not atmospheric water content. The landings occurred during local summer, and it was observed that the nocturnal temperature decrease at sensor height (1.6 m) did not exhibit a uniform behavior at either site. It was expected that the rate of decrease would gradually slow, leveling off near sunrise. Instead, a leveling occurred several hours earlier. Temperature subsequently began a more rapid decrease which slowed by sunrise. This suggested that the temperature sensors may be detecting the frost point of water vapor. Analysis of alternative hypotheses demonstrates that none of these are viable candidates. The frost point interpretation is consistent with other lander and orbiter observations, with terrestrial experience, and with modeling of Mars' atmospheric behavior. It thus appears that the meteorology experiment can help provide a basis toward understanding the distribution and dynamics of Martian water vapor.

  8. An unusual case of frost bite autoamputation of toes

    PubMed Central

    Wani, Adil Hafeez; Mohsin, Mir; Darzi, Mohammed Ashraf; Zaroo, Mohammed Inam; Bashir, Sheikh Adil; Zargar, Haroon Rashid; Rasool , Altaf; Bijli, Mohammed Akram; Dar, Hameedullah; Farooq, Peerzada Omar; Ahmed, Sheikh Tariq

    2008-01-01

    Background We report a case of a 15 year old young female who suffered autoamputation of left mid foot and four digits of right foot following repeated application of snow to relieve the pain in her frost bitten feet. Case presentation The sociodemographic background, cause, resulting injury and subsequent management are discussed. Conclusion Such injuries are relatively rare but awareness of the risk of this type of injury is important. PMID:19077326

  9. Prolonged Soil Frost Affects Hydraulics and Phenology of Apple Trees.

    PubMed

    Beikircher, Barbara; Mittmann, Claudia; Mayr, Stefan

    2016-01-01

    Restoration of an adequate water supply in spring is a prerequisite for survival of angiosperm trees in temperate regions. Trees must re-establish access to soil water and recover xylem functionality. We thus hypothesized that prolonged soil frost impairs recovery and affects hydraulics and phenology of Malus domestica var. 'Golden Delicious.' To test this hypothesis, over two consecutive winters the soil around some trees was insulated to prolong soil frosting, From mid-winter to early summer, the level of native embolism, the water and starch contents of wood, bark and buds were quantified at regular intervals and findings correlated with various phenological parameters, xylogenesis and fine root growth. The findings confirm that prolonged soil frost affects tree hydraulics and phenology but the severity of the effect depends on the climatic conditions. In both study years, percentage loss of hydraulic conductivity (PLC) decreased from about 70% at the end of winter to about 10% in May. Thereby, xylem refilling strongly coincided with a decrease of starch in wood and bark. Also treated trees were able to restore their hydraulic system by May but, in the warm spring of 2012, xylem refilling, the increases in water content and starch depolymerization were delayed. In contrast, in the cold spring of 2013 only small differences between control and treated trees were observed. Prolongation of soil frost also led to a delay in phenology, xylogenesis, and fine root growth. We conclude that reduced water uptake from frozen or cold soils impairs refilling and thus negatively impacts tree hydraulics and growth of apple trees in spring. Under unfavorable circumstances, this may cause severe winter damage or even dieback. PMID:27379146

  10. Prolonged Soil Frost Affects Hydraulics and Phenology of Apple Trees

    PubMed Central

    Beikircher, Barbara; Mittmann, Claudia; Mayr, Stefan

    2016-01-01

    Restoration of an adequate water supply in spring is a prerequisite for survival of angiosperm trees in temperate regions. Trees must re-establish access to soil water and recover xylem functionality. We thus hypothesized that prolonged soil frost impairs recovery and affects hydraulics and phenology of Malus domestica var. ‘Golden Delicious.’ To test this hypothesis, over two consecutive winters the soil around some trees was insulated to prolong soil frosting, From mid-winter to early summer, the level of native embolism, the water and starch contents of wood, bark and buds were quantified at regular intervals and findings correlated with various phenological parameters, xylogenesis and fine root growth. The findings confirm that prolonged soil frost affects tree hydraulics and phenology but the severity of the effect depends on the climatic conditions. In both study years, percentage loss of hydraulic conductivity (PLC) decreased from about 70% at the end of winter to about 10% in May. Thereby, xylem refilling strongly coincided with a decrease of starch in wood and bark. Also treated trees were able to restore their hydraulic system by May but, in the warm spring of 2012, xylem refilling, the increases in water content and starch depolymerization were delayed. In contrast, in the cold spring of 2013 only small differences between control and treated trees were observed. Prolongation of soil frost also led to a delay in phenology, xylogenesis, and fine root growth. We conclude that reduced water uptake from frozen or cold soils impairs refilling and thus negatively impacts tree hydraulics and growth of apple trees in spring. Under unfavorable circumstances, this may cause severe winter damage or even dieback. PMID:27379146

  11. Chemical frost weathering of olivine: Experimental study and implications

    NASA Technical Reports Server (NTRS)

    Harris, S. L.; Huguenin, R. L.

    1987-01-01

    New experimental results are reported on the frost weathering of olivine. After first weathering, a decrease in Fe sup 2(+)M(2) absorption bands were noted. This decrease is related to the protonation of O(+) in the mineral. It is contented that this reaction may result in the regolith storage of 100 to 1000 m of H(sub 2) over the history of Mars.

  12. Mars south polar spring and summer behavior observed by TES: seasonal cap evolution controlled by frost grain size

    USGS Publications Warehouse

    Kieffer, Hugh H.; Titus, Timothy N.; Mullins, Kevin F.; Christensen, Philip R.

    2000-01-01

    Thermal Emission Spectrometer (TES) observations of the recession phase of Mars' south polar cap are used to quantitatively map this recession in both thermal and visual appearance. Geographically nonuniform behavior interior to the cap is characterized by defining several small regions which exemplify the range of behavior. For most of the cap, while temperatures remain near the CO2 frost point, albedos slowly increase with the seasonal rise of the Sun, then drop rapidly as frost patches disappear over a period of ∼20 days. A “Cryptic” region remains dark and mottled throughout its cold period. TES observations are compared with first-order theoretical spectra of solid CO2 frost with admixtures of dust and H2O. The TES spectra indicate that the Cryptic region has much larger grained solid CO2 than the rest of the cap and that the solid CO2 here may be in the form of a slab. The Mountains of Mitchel remain cold and bright well after other areas at comparable latitude, apparently as a result of unusually small size of the CO2 frost grains; we found little evidence for a significant presence of H2O. Although CO2 grain size may be the major difference between these regions, incorporated dust is also required to match the observations; a self-cleaning process carries away the smaller dust grains. Comparisons with Viking observations indicate little difference in the seasonal cycle 12 Martian years later. The observed radiation balance indicates CO2 sublimation budgets of up to 1250 kg m−2. Regional atmospheric dust is common; localized dust clouds are seen near the edge of the cap prior to the onset of a regional dust storm and interior to the cap during the storm.

  13. Frost Induces Respiration and Accelerates Carbon Depletion in Trees.

    PubMed

    Sperling, Or; Earles, J Mason; Secchi, Francesca; Godfrey, Jessie; Zwieniecki, Maciej A

    2015-01-01

    Cellular respiration depletes stored carbohydrates during extended periods of limited photosynthesis, e.g. winter dormancy or drought. As respiration rate is largely a function of temperature, the thermal conditions during such periods may affect non-structural carbohydrate (NSC) availability and, ultimately, recovery. Here, we surveyed stem responses to temperature changes in 15 woody species. For two species with divergent respirational response to frost, P. integerrima and P. trichocarpa, we also examined corresponding changes in NSC levels. Finally, we simulated respiration-induced NSC depletion using historical temperature data for the western US. We report a novel finding that tree stems significantly increase respiration in response to near freezing temperatures. We observed this excess respiration in 13 of 15 species, deviating 10% to 170% over values predicted by the Arrhenius equation. Excess respiration persisted at temperatures above 0 °C during warming and reoccurred over multiple frost-warming cycles. A large adjustment of NSCs accompanied excess respiration in P. integerrima, whereas P. trichocarpa neither excessively respired nor adjusted NSCs. Over the course of the years included in our model, frost-induced respiration accelerated stem NSC consumption by 8.4 mg (glucose eq.) cm(-3) yr(-1) on average in the western US, a level of depletion that may continue to significantly affect spring NSC availability. This novel finding revises the current paradigm of low temperature respiration kinetics. PMID:26629819

  14. Morning Frost in Trench Dug by Phoenix, Sol 113

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image from the Surface Stereo Imager on NASA's Phoenix Mars Lander shows morning frost inside the 'Snow White' trench dug by the lander, in addition to subsurface ice exposed by use of a rasp on the floor of the trench.

    The camera took this image at about 9 a.m. local solar time during the 113th Martian day of the mission (Sept. 18, 2008). Bright material near and below the four-by-four set of rasp holes in the upper half of the image is water-ice exposed by rasping and scraping in the trench earlier the same morning. Other bright material especially around the edges of the trench, is frost. Earlier in the mission, when the sun stayed above the horizon all night, morning frost was not evident in the trench.

    This image is presented in approximately true color.

    The trench is 4 to 5 centimeters (about 2 inches) deep, about 23 centimeters (9 inches) wide.

    Phoenix landed on a Martian arctic plain on May 25, 2008. The mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is led by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development was by Lockheed Martin Space Systems, Denver.

  15. Frost Induces Respiration and Accelerates Carbon Depletion in Trees

    PubMed Central

    Sperling, Or; Earles, J. Mason; Secchi, Francesca; Godfrey, Jessie; Zwieniecki, Maciej A.

    2015-01-01

    Cellular respiration depletes stored carbohydrates during extended periods of limited photosynthesis, e.g. winter dormancy or drought. As respiration rate is largely a function of temperature, the thermal conditions during such periods may affect non-structural carbohydrate (NSC) availability and, ultimately, recovery. Here, we surveyed stem responses to temperature changes in 15 woody species. For two species with divergent respirational response to frost, P. integerrima and P. trichocarpa, we also examined corresponding changes in NSC levels. Finally, we simulated respiration-induced NSC depletion using historical temperature data for the western US. We report a novel finding that tree stems significantly increase respiration in response to near freezing temperatures. We observed this excess respiration in 13 of 15 species, deviating 10% to 170% over values predicted by the Arrhenius equation. Excess respiration persisted at temperatures above 0°C during warming and reoccurred over multiple frost-warming cycles. A large adjustment of NSCs accompanied excess respiration in P. integerrima, whereas P. trichocarpa neither excessively respired nor adjusted NSCs. Over the course of the years included in our model, frost-induced respiration accelerated stem NSC consumption by 8.4 mg (glucose eq.) cm-3 yr-1 on average in the western US, a level of depletion that may continue to significantly affect spring NSC availability. This novel finding revises the current paradigm of low temperature respiration kinetics. PMID:26629819

  16. Effects of environmental factors and management practices on microclimate, winter physiology, and frost resistance in trees.

    PubMed

    Charrier, Guillaume; Ngao, Jérôme; Saudreau, Marc; Améglio, Thierry

    2015-01-01

    Freezing stress is one of the most important limiting factors determining the ecological distribution and production of tree species. Assessment of frost risk is, therefore, critical for forestry, fruit production, and horticulture. Frost risk is substantial when hazard (i.e., exposure to damaging freezing temperatures) intersects with vulnerability (i.e., frost sensitivity). Based on a large number of studies on frost resistance and frost occurrence, we highlight the complex interactive roles of environmental conditions, carbohydrates, and water status in frost risk development. To supersede the classical empirical relations used to model frost hardiness, we propose an integrated ecophysiologically-based framework of frost risk assessment. This framework details the individual or interactive roles of these factors, and how they are distributed in time and space at the individual-tree level (within-crown and across organs). Based on this general framework, we are able to highlight factors by which different environmental conditions (e.g., temperature, light, flood, and drought), and management practices (pruning, thinning, girdling, sheltering, water aspersion, irrigation, and fertilization) influence frost sensitivity and frost exposure of trees. PMID:25972877

  17. Effects of environmental factors and management practices on microclimate, winter physiology, and frost resistance in trees

    PubMed Central

    Charrier, Guillaume; Ngao, Jérôme; Saudreau, Marc; Améglio, Thierry

    2015-01-01

    Freezing stress is one of the most important limiting factors determining the ecological distribution and production of tree species. Assessment of frost risk is, therefore, critical for forestry, fruit production, and horticulture. Frost risk is substantial when hazard (i.e., exposure to damaging freezing temperatures) intersects with vulnerability (i.e., frost sensitivity). Based on a large number of studies on frost resistance and frost occurrence, we highlight the complex interactive roles of environmental conditions, carbohydrates, and water status in frost risk development. To supersede the classical empirical relations used to model frost hardiness, we propose an integrated ecophysiologically-based framework of frost risk assessment. This framework details the individual or interactive roles of these factors, and how they are distributed in time and space at the individual-tree level (within-crown and across organs). Based on this general framework, we are able to highlight factors by which different environmental conditions (e.g., temperature, light, flood, and drought), and management practices (pruning, thinning, girdling, sheltering, water aspersion, irrigation, and fertilization) influence frost sensitivity and frost exposure of trees. PMID:25972877

  18. Presence of all Three Allotropes of Impact-Diamonds in the Younger Dryas Onset Layer (YDB) Across N America and NW Europe

    NASA Astrophysics Data System (ADS)

    West, A.; Kennett, J. P.; Kennett, D. J.; Que Hee, S. S.; Wolbach, W. S.; Stich, A.; Bunch, T. E.; Wittke, J. H.; Mercer, C.; Sellers, M.; Culleton, B. J.; Erlandson, J. M.; Johnson, J. R.; Stafford, T. W.; Weaver, J. C.; West, G.

    2008-12-01

    We report the discovery of all three diamond allotropes (cubic diamond, lonsdaleite, and n-diamond) in an extraterrestrial (ET) impact layer (the YDB), dating to the Younger Dryas onset at 12.9 ka. YDB diamonds are distributed broadly across N America and NW Europe at 15 sites spanning 9,000 km or 23 percent of Earth's circumference. N-diamonds and lonsdaleite, or hexagonal diamond, do not co-occur with terrestrial diamonds, but are found in meteorites. Lonsdaleite is found on Earth only in association with known ET impacts, and thus, is a definitive impact indicator. The diamonds were identified by transmission electron microscopy (TEM) using selected area diffraction (SAED), which display reflections corresponding to the following lattice planar spacings definitive of diamond: (1) cubic: 2.06, 1.26, 1.07, and 0.89 A; (2) lonsdaleite: 2.184, 1.261, 1.092, and 0.826 A; and (3) n-diamond: 2.06, 1.26, 1.07, and 0.89 A, plus "forbidden" reflections of 1.78, 1.04, and 0.796 A. Nanodiamonds are rounded to highly angular, and range in size from 1 to 1700 nm with most between 1 and 50 nm. Concentrations are up to 3700 ppb, equaling more than 1 billion diamonds per cm3 of sediment (comparable to K/T levels of 3600 ppb). No diamonds were detected above or below the YDB layer at any site tested. These diamonds could not have formed from volcanic activity, because they combust at temperatures above 500° C in the presence of atmospheric levels of oxygen, and micrometeoritic diamonds are similarly destroyed. Also, the diamonds could not have accumulated from the constant rain of micrometeoritic debris, because multi-billions occur in YDB layer samples, but yet none have been found in non-YDB strata dating from 55,000 RCYBP to present. YDB diamonds are associated with abundance peaks in magnetic spherules, carbon spherules, soot, and iridium, which can peak in impact layers of known ET events, such as the K/T and the 1908 airburst at Tunguska, Siberia. Furthermore, a high

  19. Influence of Salt Stress on Growth and Frost Resistance of Three Winter Cereals

    NASA Astrophysics Data System (ADS)

    Matuszak-Slamani, Renata; Brzóstowicz, Aleksander

    2015-04-01

    This paper presents results of a study on the influence of 0-150 mmol NaCl dm-3 Hoagland solution on growth, chlorophyll content, photosynthesis and frost resistance of seedlings of three winter cereals: wheat - cv. Almari, rye - cv. Amilo, and triticale - cv. Tornado. Sodium chloride at 25 mmol dm-3 caused better growth of wheat shoots and roots, both of fresh and dry matter. Higher concentrations of NaCl in the medium decreased the biomass of the tested seedlings. The influence of NaCl on the chlorophyll content in the seedlings varied. The conductometry method showed that the resistance of the cell walls of wheat and rye to low temperature decreased in the presence of NaCl in the growth medium. Luminescence has shown that seedlings that grew in NaCl-containing medium indicated an impediment of electron flow at a lower temperature than the control plants.

  20. Unsteady MHD boundary layer stagnation point flow with heat and mass transfer in nanofluid in the presence of mass fluid suction and thermal radiation

    NASA Astrophysics Data System (ADS)

    Salem, A. M.; Ismail, Galal; Fathy, Rania

    2015-06-01

    The unsteady boundary layer stagnation point flow of heat and mass transfer in a nanofluid with magnetic field and thermal radiation is theoretically investigated. The resulting governing equations are nondimensionalized and are transformed using a similarity transformation and then solved numerically by the shooting method. Comparison with the previously published work is presented and the results are found to be in good agreement. The effects of unsteadiness parameter A , solid volume fraction , magnetic field M, radiation parameter R, Schmidit number Sc and suction parameter w on the fluid flow, heat and mass transfer characteristic are discussed. Dual similarity solutions for the velocity, temperature and concentration profiles are obtained for some negative values of the unsteadiness parameter. It is found that the critical values of A for which the dual solution exists depend on the values of solid volume fraction parameter in the presence of the Schmidit number. Also, the magnetic field parameter as well as the mass fluid suction widen the range of A for which the solution exists. The results also indicate that momentum, thermal and concentration boundary layer thickness for the first solution are thinner than that of the second solution.

  1. SO2 frost - UV-visible reflectivity and Io surface coverage

    NASA Technical Reports Server (NTRS)

    Nash, D. B.; Fanale, F. P.; Nelson, R. M.

    1980-01-01

    The reflectance spectrum in the range 0.24-0.85 microns of SO2 frost is measured in light of the discovery of SO2 gas in the atmosphere of Io and the possible discovery of the frost on its surface. Frost deposits up to 1.5 mm thick were grown in vacuum at 130 K and bi-directional reflectance spectra were obtained. Typical SO2 frost is found to exhibit very low reflectivity (2-5%) at 0.30 microns, rising steeply at 0.32 microns to attain a maximum reflectivity (75-80%) at 4.0 microns and uniformly high reflectivity throughout the visible and near infrared. Comparison with the full disk spectrum of Io reveals that no more than 20% of the surface can be covered with optically thick SO2 frost. Combinations of surface materials including SO2 frost which can produce the observed spectrum are indicated.

  2. Ice/frost/debris assessment for space shuttle Mission STS-32 (61-C)

    NASA Technical Reports Server (NTRS)

    Stevenson, Charles G.; Katnik, Gregory N.; Speece, Robert F.

    1986-01-01

    An Ice/Frost/Debris assessment was conducted for Space Shuttle Mission STS-32 (61-C). This assessment begins with debris inspections of the flight elements and launch facilities before and after launch. Ice/Frost formations are calculated during cryogenic loading of the external tank followed by an on-pad assessment of the Shuttle vehicle and pad at T-3 hours in the countdown. High speed films are reviewed after launch to identify Ice/Frost/Debris sources and investigate potential vehicle damage. The Ice/Frost/Debris conditions and their effects on the Space Shuttle are documented.

  3. Experimental assessment on the frost sensitivity during leaf development of juvenile Fagus sylvatica L.

    NASA Astrophysics Data System (ADS)

    Estrella, Nicole; Menzel, Annette

    2014-05-01

    Late frost events in spring shape species distribution as well as reduce productivity. Till now, it is still not clear if future warming will lead to more frequent / stronger / more harmful frost damages in forestry and agriculture or not. Since the variability of extremes is increasing it seems that the risk of late frost damages in many regions may not decrease, even if the mean air temperature in general is increasing. A late frost event is only harmful if plants have initiated their leaf / flower development. Closed buds are usually very frost tolerant. However, once leaves develop after mild and warm spring periods, the new tissue is especially sensitive to freezing temperatures. Therefore not only the date of the last frost but also the weather history of the late winter / early spring determines if a frost event might result in frost damage or not. Tissue sensitivity to frost varies among species, but even within species there might be differences in frost tolerance during the different stages in leaf development. We set up an experiment to identify the frost risk in connection with the developmental stage of the leaves of juvenile beech. In order to vary the timing of frost events, we placed 1-year old potted beech trees 7times overnight in a climate chamber, in which the air temperature was cooled down to - 3° for five hours. For each tree the phenological stages were observed before and after the frost, the percent of damage was estimated after two days; additionally phenology of the damaged plants was observed weekly to document the recovery of their damage till May 23, 2013. Only about 30% of the plants were damaged. In general it can be stated if damage occurred it was a severe damage, only very few plants sustained little damage. We observed dependence on the date of the freezing event, rather than on specific phenological phases - the later the frost was applied the more plants were damaged. Damaged plants recovered relatively rapidly from the frost

  4. Martian Seasonal CO2 Frost Indicating Decameter-Scale Variability in Buried Water Ice

    NASA Astrophysics Data System (ADS)

    Mellon, M. T.; Hansen, C. J.; Cull, S.; Arvidson, R. E.; Searls, M.

    2011-12-01

    Several new lines of evidence indicate that subsurface water ice (ground ice) on Mars is more complexly distributed, and in variable concentrations, than had been previously envisioned. Understanding the current distribution of ground ice is a fundamental part of understanding how this ice was emplaced and the recent past climate conditions under which icy deposits formed and subsequently evolved. In this work we examine the seasonal defrosting of CO2 observed by HiRISE as an indicator of decameter-scale ground-ice heterogeneity. It is well known that CO2 dry ice accumulates on the martian surface in winter. The amount of dry ice and the time it spends on the ground depends strongly on surface properties. A readily observable attribute is the "crocus date", the season (Ls) when CO2 completely sublimates, exposing the soil surface. Many factors can affect the crocus date, but perhaps most important are the properties of CO2 frost and of the surface soil. We examine HiRISE observations, spanning more than a martian year, for decameter-scale patterns of CO2 frost and the crocus date. Year-to-year repeatability of CO2 ice patterns, both in polygon troughs and decameter-size patches, along with a lack of topography nor aeolian redistribution, suggests that differences in the surface substrate is the root cause for these patterns. In addition, only CO2 slab ice (solid, non-porous dry ice) is indicated throughout the observed seasons and at all spatial scales (down to meter scale), as evidenced by albedo (HiRISE and TES) and IR spectra (CRISM). In addition, the low emissivity and high albedo of fine-grained particulate CO2 frost would result in a crocus date much earlier than even the earliest observed. We present two scenarios of substrate differences which explain the observations: (i) the ice-table depth varies away from atmospheric equilibrium, such that a thicker "dry-soil" layer occurs in disequilibrium where the CO2 ice lingers longest; and (ii) the H2O

  5. Nowcasting in the FROST-2014 Sochi Olympic project

    NASA Astrophysics Data System (ADS)

    Bica, Benedikt; Wang, Yong; Joe, Paul; Isaac, George; Kiktev, Dmitry; Bocharnikov, Nikolai

    2013-04-01

    FROST (Forecast and Research: the Olympic Sochi Testbed) 2014 is a WMO WWRP international project aimed at development, implementation, and demonstration of capabilities of short-range numerical weather prediction and nowcasting technologies for mountainous terrain in winter season. Sharp weather contrasts and high spatial and temporal variability are typical for the region of the Sochi-2014 Olympics. Steep mountainous terrain and an intricate mixture of maritime sub-tropical and Alpine environments make weather forecasting in this region extremely challenging. Goals of the FROST-2014 project: • To develop a comprehensive information resource of Alpine winter weather observations; • To improve and exploit: o Nowcasting systems of high impact weather phenomena (precipitation type and intensity, snow levels, visibility, wind speed, direction and gusts) in complex terrain; o High-resolution deterministic and ensemble mesoscale forecasts in winter complex terrain environment; • To improve the understanding of physics of high impact weather phenomena in the region; • To deliver forecasts (Nowcasts) to Olympic weather forecasters and decision makers and assess benefits of forecast improvement. 46 Automatic Meteorological Stations (AMS) were installed in the Olympic region by Roshydromet, by owners of sport venues and by the Megafon corporation, provider of mobile communication services. The time resolution of AMS observations does not exceed 10 minutes. For a subset of the stations it is even equal to 1 min. Data flow from the new dual polarization Doppler weather radar WRM200 in Sochi was organized at the end of 2012. Temperature/humidity and wind profilers and two Micro Rain Radars (MRR) will supplement the network. Nowcasting potential of NWP models participating in the project (COSMO, GEM, WRF, AROME, HARMONIE) is to be assessed for direct and post-processed (e.g. Kalman filter, 1-D model, MOS) model forecasts. Besides the meso-scale models, the specialized

  6. Linking the Presence of Surfactant Associated Bacteria on the Sea Surface and in the Near Surface Layer of the Ocean to Satellite Imagery

    NASA Astrophysics Data System (ADS)

    Hamilton, Bryan; Dean, Cayla; Kurata, Naoko; Soloviev, Alex; Tartar, Aurelien; Shivji, Mahmood; Perrie, William; Lehner, Susanne

    2015-04-01

    Several genera of bacteria residing on the sea surface and in the near-surface layer of the ocean have been found to be involved in the production and decay of surfactants. Under low wind speed conditions, these surfactants can suppress short gravity capillary waves at the sea surface and form natural sea slicks. These features can be observed with both airborne and satellite-based synthetic aperture radar (SAR). We have developed a new method for sampling the sea surface microlayer that has reduced contamination from the boat and during lab handling of samples. Using this new method, a series of experiments have been conducted to establish a connection between the presence of surfactant-associated bacteria in the upper layer of the ocean and sea slicks. DNA analysis of in situ samples taken during a RADARSAT-2 satellite overpass in the Straits of Florida during the 2010 Deepwater Horizon oil spill showed a higher abundance of surfactant-associated bacterial genera in the slick area as compared to the non-slick area. These genera were found to be more abundant in the subsurface water samples collected as compared to samples taken from the sea surface. The experiment was repeated in the Straits of Florida in September 2013 and was coordinated with TerraSAR-X satellite overpasses. The observations suggest that the surfactants contributing to sea slick formation are produced by marine bacteria in the organic matter-rich water column and move to the sea surface by diffusion or advection. Thus, within a range of wind-wave conditions, the organic materials present in the water column (such as dissolved oil spills) can be monitored with SAR satellite imagery. In situ sampling was also performed in the Gulf of Mexico in December 2013 during RADARSAT-2 and TerraSAR-X satellite overpasses. Areas near natural oil seeps identified from archived TerraSAR-X imagery were targeted for in situ sampling. A number of samples from this location have been analyzed to determine the

  7. A search for transient water frost at the lunar poles using LOLA

    NASA Astrophysics Data System (ADS)

    Lemelin, M.; Lucey, P. G.; Song, E.; Paige, D. A.; Greenhagen, B. T.; Siegler, M. A.; Hayne, P. O.; Mazarico, E.; Neumann, G.; Smith, D. E.; Zuber, M. T.

    2014-12-01

    The possibility of lunar polar ice has been considered since suggested by Harold Urey in the 1950's, and has likely been directly detected at the north pole of Mercury by MESSENGER. That detection was based on the presence of reflectance anomalies seen by the Mercury Laser Altimeter that occurred only where models of the surface temperature allow long-duration preservation of water ice against sublimation (Paige et al., 2013; Neumann et al., 2013). Similar characteristics are seen at the poles of the Moon, though the higher lunar albedo complicates the detection. In this study we seek evidence for transient water frost on polar surfaces using data from the Lunar Orbiter Laser Altimeter. The Lunar Orbiter Laser Altimeter (LOLA) measures the backscattered energy of the returning altimetric laser pulse at its wavelength of 1064 nm, and these data are used to map the reflectivity of the Moon at zero-phase angle with a photometrically uniform data set. Global maps have been produced at 4 pixels per degree (about 8 km at the equator) and 2 km resolution within 20° latitude of each pole. The zero-phase geometry is insensitive to lunar topography and enables the characterization of subtle variations in lunar albedo, even at high latitudes where such measurements are not possible with the Sun as the illumination source. We are currently searching the data set for evidence of transient surface frost by looking for changes in reflectance as a function of temperature based on the Diviner radiometer measurements and models. Thus far one candidate region has been identified, and we are refining the calibration to ensure that this and other detections are reliable.

  8. Frost characteristics and heat transfer on a flat plate under freezer operating conditions: Part 1, Experimentation and correlations

    SciTech Connect

    Mao, Y.; Besant, R.W.; Chen, H.

    1999-07-01

    An experimental investigation of frost growth on a flat, cold surface supplied by subfreezing, turbulent, humid, parallel flow of air is presented. The operating conditions are typical of many commercial freezers. A test loop was constructed to perform the tests, and the frost height, frost mass concentration, and cold surface heat flux were measured using specially designed and calibrated instrumentation. Twenty tests were done for steady operating conditions, each starting with no initial frost accumulation, and were run for two to six hours giving 480 data samples. Measured results show that the frost characteristics differ significantly with frost growth data taken previously for room temperature airflow. Depending on the temperature of the cold plate and the relative humidity of the subfreezing supply air, the frost could appear to be either smooth or rough. Smooth frost, which occurred at warmer plate temperatures and lower supply air relative humidities, gave rise to frost growth that was much thinner and denser than that for the rough, thick, low-density frost. Frost growth characteristics are correlated as a function of five independent variables (time, distance from the leading edge, cold plate temperature ratio, humidity ratio, and Reynolds number). These correlations are presented separately for the full data set, the rough frost data, and the smooth frost data.

  9. Ice barriers promote supercooling and prevent frost injury in reproductive buds, flowers and fruits of alpine dwarf shrubs throughout the summer.

    PubMed

    Kuprian, Edith; Briceño, Verónica F; Wagner, Johanna; Neuner, Gilbert

    2014-10-01

    Over-wintering reproductive buds of many woody plants survive frost by supercooling. The bud tissues are isolated from acropetally advancing ice by the presence of ice barriers that restrict ice growth. Plants living in alpine environments also face the risk of ice formation in summer months. Little knowledge exists, how reproductive structures of woody alpine plants are protected from frost injury during episodic summer frosts. In order to address this question, frost resistance of three common dwarf shrubs, Calluna vulgaris, Empetrum hermaphroditum and Loiseleuria procumbens was measured and ice formation and propagation were monitored in twigs bearing reproductive shoots during various stages of reproductive development (bud, anthesis, and fruit) throughout the alpine summer. Results indicated that, in the investigated species, ice barriers were present at all reproductive stages, isolating the reproductive shoots from ice advancing from the subtending vegetative shoot. Additionally, in the reproductive stems ice nucleating agents that are active at warm, sub-zero temperatures, were absent. The ice barriers were 100% effective, with the exception of L. procumbens, where in 13% of the total observations, the ice barrier failed. The ice barriers were localized at the base of the pedicel, at the anatomical junction of the vegetative and reproductive shoot. There, structural aspects of the tissue impede or prevent ice from advancing from the frozen stem into the pedicel of the reproductive shoot. Under the experimental conditions used in this study, ice nucleation initially occurred in the stem of the vegetative shoot at species-specific mean temperatures in the range of -4.7 to -5.8 °C. Reproductive shoots, however, remained supercooled and ice free down to a range of -7.2 to -18.2 °C or even below -22 °C, the lowest temperature applied in the study. This level of supercooling is sufficient to prevent freezing of reproductive structures at the lowest air

  10. Ice barriers promote supercooling and prevent frost injury in reproductive buds, flowers and fruits of alpine dwarf shrubs throughout the summer☆

    PubMed Central

    Kuprian, Edith; Briceño, Verónica F.; Wagner, Johanna; Neuner, Gilbert

    2014-01-01

    Over-wintering reproductive buds of many woody plants survive frost by supercooling. The bud tissues are isolated from acropetally advancing ice by the presence of ice barriers that restrict ice growth. Plants living in alpine environments also face the risk of ice formation in summer months. Little knowledge exists, how reproductive structures of woody alpine plants are protected from frost injury during episodic summer frosts. In order to address this question, frost resistance of three common dwarf shrubs, Calluna vulgaris, Empetrum hermaphroditum and Loiseleuria procumbens was measured and ice formation and propagation were monitored in twigs bearing reproductive shoots during various stages of reproductive development (bud, anthesis, and fruit) throughout the alpine summer. Results indicated that, in the investigated species, ice barriers were present at all reproductive stages, isolating the reproductive shoots from ice advancing from the subtending vegetative shoot. Additionally, in the reproductive stems ice nucleating agents that are active at warm, sub-zero temperatures, were absent. The ice barriers were 100% effective, with the exception of L. procumbens, where in 13% of the total observations, the ice barrier failed. The ice barriers were localized at the base of the pedicel, at the anatomical junction of the vegetative and reproductive shoot. There, structural aspects of the tissue impede or prevent ice from advancing from the frozen stem into the pedicel of the reproductive shoot. Under the experimental conditions used in this study, ice nucleation initially occurred in the stem of the vegetative shoot at species-specific mean temperatures in the range of −4.7 to −5.8 °C. Reproductive shoots, however, remained supercooled and ice free down to a range of −7.2 to −18.2 °C or even below −22 °C, the lowest temperature applied in the study. This level of supercooling is sufficient to prevent freezing of reproductive structures at the

  11. Polar Dunes In Summer Exhibit Frost Patches, Wind Streaks

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Mars Global Surveyor passes over the north polar region of the red planet twelve times each day, offering many opportunities to observe how the polar cap frosts and dunes are changing as the days goby. Right now it is summer in the north. This picture, taken the second week of April 1999, shows darks and dunes and remnant patches of bright frost left over from the winter that ended in July 1998. Dark streaks indicate recent movement of sand. The picture covers an area only 1.4 kilometers (0.9 miles)across and is illuminated from the upper right.

    Malin Space Science Systems and the California Institute of Technology built the MOC using spare hardware from the Mars Observer mission. MSSS operates the camera from its facilities in San Diego, CA. The Jet Propulsion Laboratory's Mars Surveyor Operations Project operates the Mars Global Surveyor spacecraft with its industrial partner, Lockheed Martin Astronautics, from facilities in Pasadena, CA and Denver, CO.

  12. Past and future changes in frost day indices on Catskill Mountain Region of New York

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Changes in frost indices in the New York’s Catskill Mountains region, the location of water supply reservoirs for New York City, have potentially important implications. Frost day is defined as a day with Tmin < 0ºC. The objective of this study was to investigate past and predicted changes in minimu...

  13. Robert Frost as Teacher. A Poet's Interpretation of the Teacher's Task.

    ERIC Educational Resources Information Center

    Larson, Mildred

    1979-01-01

    Robert Frost's method of teaching is explained. He saw all education as self-education, not something a teacher can give a student. Frost believed freedom to be a necessity and his method gives the student much freedom while also placing a heavy burden of responsibility on him. (Article originally published in 1951.) (AF)

  14. Making a case for breeding frost tolerant potatoes adapted to Andean Highlands especially the Altiplano

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although cultivated potatoes are sensitive to mild frost (severely damaged at air temperatures below -2 or -3 C) limited progress has been made in developing frost hardy cultivars. This may be due to the fact that most potato crop grown in North America and Europe has minimal risk to be subjected to...

  15. Experimental study of frost heaving force based on transient shock response using piezoceramic sensors

    NASA Astrophysics Data System (ADS)

    Wang, Ruolin; Peng, Tongxiao; Wang, Ming L.

    2016-04-01

    In seasonally frozen soil regions, the frost heaving problem made it difficult to monitor or evaluate the pile safety for long term. So far, no mature tool can be utilized to monitor the frost heaving force, which was unevenly distributed along the pile. In this paper, a piezoceramic sensing based transient excitation response approach was proposed to monitor the frost heaving force in real time. Freeze-thaw cycles can result in great changes of soil engineering properties, including the frost heaving force. So, the freeze-thaw cycle was repeated fourth to study its effect. In the experiment, transient horizontal shock on the top of the pile will be detected by the 6 PZT sensors glued on the pile. The signal data received by the 6 PZT sensors can be used to illustrate the frost heaving force distribution along the pile. Moisture content effect is also one of the important reasons that cause the variation of soil mechanical properties. So three different moisture content (6%, 12%, 18%) testing soil were used in this experiment to detect the variance of the frost heaving force. An energy indicator was developed to quantitatively evaluate the frost heaving force applied on the pile. The experimental results showed that the proposed method was effective in monitoring the uneven distribution of frost heaving force along the pile.

  16. Past and future changes in frost day indices on Catskill Mountains region of New York

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Changes in frost indices in New York's Catskill Mountains region, the location of water supply reservoirs for New York City, have potentially important implications. Frost day is defined as a day with Tmin < 0 deg C. The objective of this study was to investigate past and predicted changes in minimu...

  17. Activating the Microscale Edge Effect in a Hierarchical Surface for Frosting Suppression and Defrosting Promotion

    PubMed Central

    Chen, Xuemei; Ma, Ruiyuan; Zhou, Hongbo; Zhou, Xiaofeng; Che, Lufeng; Yao, Shuhuai; Wang, Zuankai

    2013-01-01

    Despite extensive progress, current icephobic materials are limited by the breakdown of their icephobicity in the condensation frosting environment. In particular, the frost formation over the entire surface is inevitable as a result of undesired inter-droplet freezing wave propagation initiated by the sample edges. Moreover, the frost formation directly results in an increased frost adhesion, posing severe challenges for the subsequent defrosting process. Here, we report a hierarchical surface which allows for interdroplet freezing wave propagation suppression and efficient frost removal. The enhanced performances are mainly owing to the activation of the microscale edge effect in the hierarchical surface, which increases the energy barrier for ice bridging as well as engendering the liquid lubrication during the defrosting process. We believe the concept of harnessing the surface morphology to achieve superior performances in two opposite phase transition processes might shed new light on the development of novel materials for various applications. PMID:23981909

  18. Computations on frost damage to Scots pine under climatic warming in boreal conditions

    SciTech Connect

    Kellomaeki, S.; Haenninen, H.; Kolstroem, M.

    1995-02-01

    To investigate the risk of frost damage to Scots pine (Pinus sylvestris L.) in northern regions under climatic warming, a submodel for such damage to trees was included in a forest ecosystem model of the gap type. An annual growth multiplier describing the effects of frost was calculated with the help of simulated daily frost hardiness and daily minimum temperature. The annual growth multiplier was used in the main ecosystem model when simulating the development of a tree stand using a time step of one year. Simulations of the growth and development of Scots pine stands in southern Finland (61{degrees} N) under an elevating temperature indicated that climatic warming could increase the risk of frost damage due to premature onset of growth during warm spells in the late winter and early spring. Risk of frost damage implies uncertainty in yield expectations from boreal forest ecosystems in the event of climatic warming. 38 refs., 9 figs., 4 tabs.

  19. Analysis of likely Frost Events and day-to-night Variability in near-surface Water Vapor at Gale

    NASA Astrophysics Data System (ADS)

    Martinez, G.; Fischer, E.; Renno, N. O.; Sebastian, E.; Kemppinen, O.; Bridges, N.; Borlina, C.; Meslin, P. Y.; Genzer, M.; Harri, A. M.; Vicente-Retortillo, A.; de la Torre-Juárez, M.; Ramos, M.; Gomez, F.; Gomez-Elvira, J.

    2015-12-01

    We analyze REMS simultaneous measurements of relative humidity and ground temperature with the highest confidence to identify frost events at Gale crater during the first 1000 sols of the MSL mission. The relative humidity sensor has recently been recalibrated (June 2015), providing relative humidity values slightly lower than those in the previous release (Dec 2014). Here we only use relative humidity data obtained with the latest recalibration parameters. We find that the most likely frost events occurred at four different locations: Dingo Gap during sols 529-535, an unnamed place during sols 554-560, Kimberley during sols 609-617, and an unnamed place during sols 673-676. At these four locations, the terrain features thermal inertia of ~200 SI units, a value much lower than that of 365 ± 50 SI units obtained from satellite measurements at the landing ellipse. We estimate a maximum thickness of the frost layer likely developed at these four locations of the order of tenths of μm, with the precipitable water content (PWC) showing values of a few pr-μm. Since water vapor pressure values derived from REMS measurements present high uncertainties during the daytime, the day-to-night variability in the near-surface water content at Gale cannot be analyzed using only REMS products. By comparing the nighttime PWC values obtained from REMS with the daytime PWC values obtained from satellite, we estimate a day-to-night ratio of the near-surface water vapor pressure at Gale of about 5.

  20. Managing potato biodiversity to cope with frost risk in the high Andes: a modeling perspective.

    PubMed

    Condori, Bruno; Hijmans, Robert J; Ledent, Jean Francois; Quiroz, Roberto

    2014-01-01

    Austral summer frosts in the Andean highlands are ubiquitous throughout the crop cycle, causing yield losses. In spite of the existing warming trend, climate change models forecast high variability, including freezing temperatures. As the potato center of origin, the region has a rich biodiversity which includes a set of frost resistant genotypes. Four contrasting potato genotypes--representing genetic variability--were considered in the present study: two species of frost resistant native potatoes (the bitter Solanum juzepczukii, var. Luki, and the non-bitter Solanum ajanhuiri, var. Ajanhuiri) and two commercial frost susceptible genotypes (Solanum tuberosum ssp. tuberosum var. Alpha and Solanum tuberosum ssp. andigenum var. Gendarme). The objective of the study was to conduct a comparative growth analysis of four genotypes and modeling their agronomic response under frost events. It included assessing their performance under Andean contrasting agroecological conditions. Independent subsets of data from four field experiments were used to parameterize, calibrate and validate a potato growth model. The validated model was used to ascertain the importance of biodiversity, represented by the four genotypes tested, as constituents of germplasm mixtures in single plots used by local farmers, a coping strategy in the face of climate variability. Also scenarios with a frost routine incorporated in the model were constructed. Luki and Ajanhuiri were the most frost resistant varieties whereas Alpha was the most susceptible. Luki and Ajanhuiri, as monoculture, outperformed the yield obtained with the mixtures under severe frosts. These results highlight the role played by local frost tolerant varieties, and featured the management importance--e.g. clean seed, strategic watering--to attain the yields reported in our experiments. The mixtures of local and introduced potatoes can thus not only provide the products demanded by the markets but also reduce the impact of frosts

  1. Managing Potato Biodiversity to Cope with Frost Risk in the High Andes: A Modeling Perspective

    PubMed Central

    Condori, Bruno; Hijmans, Robert J.; Ledent, Jean Francois; Quiroz, Roberto

    2014-01-01

    Austral summer frosts in the Andean highlands are ubiquitous throughout the crop cycle, causing yield losses. In spite of the existing warming trend, climate change models forecast high variability, including freezing temperatures. As the potato center of origin, the region has a rich biodiversity which includes a set of frost resistant genotypes. Four contrasting potato genotypes –representing genetic variability- were considered in the present study: two species of frost resistant native potatoes (the bitter Solanum juzepczukii, var. Luki, and the non-bitter Solanum ajanhuiri, var. Ajanhuiri) and two commercial frost susceptible genotypes (Solanum tuberosum ssp. tuberosum var. Alpha and Solanum tuberosum ssp. andigenum var. Gendarme). The objective of the study was to conduct a comparative growth analysis of four genotypes and modeling their agronomic response under frost events. It included assessing their performance under Andean contrasting agroecological conditions. Independent subsets of data from four field experiments were used to parameterize, calibrate and validate a potato growth model. The validated model was used to ascertain the importance of biodiversity, represented by the four genotypes tested, as constituents of germplasm mixtures in single plots used by local farmers, a coping strategy in the face of climate variability. Also scenarios with a frost routine incorporated in the model were constructed. Luki and Ajanhuiri were the most frost resistant varieties whereas Alpha was the most susceptible. Luki and Ajanhuiri, as monoculture, outperformed the yield obtained with the mixtures under severe frosts. These results highlight the role played by local frost tolerant varieties, and featured the management importance –e.g. clean seed, strategic watering- to attain the yields reported in our experiments. The mixtures of local and introduced potatoes can thus not only provide the products demanded by the markets but also reduce the impact of

  2. Frosted Branch Angiitis in Pediatric Dyskeratosis Congenita: A Case Report.

    PubMed

    Zheng, Xiao-Yu; Xu, Jia; Li, Wei; Li, Si-Si; Shi, Cai-Ping; Zhao, Zheng-Yan; Mao, Jian-Hua; Chen, Xi

    2016-03-01

    Dyskeratosis congenita (DC) is an inherited bone marrow failure syndrome, usually presented with abnormal skin pigmentation, nail dystrophy, and oral leukoplakia. The main cause of mortality in DC is immunodeficiency and vital infection. DC involves multisystem, but retinal involvements are rare.Herein, we report an unusual case of pediatric DC suffering from frosted branch angiitis (FBA) after recovery of mycoplasma pneumonia. Cytomegalovirus infection and cytokine changes were found relevant to the onset of FBA. Despite corticosteroids, antiviral medication, and hematopoietic stem cell transplantation, the patient ended in poor vision with optic atrophy.This case implies that pediatricians should be aware of FBA as a rare retinal manifestation in children with DC and bone marrow failure. Cytomegalovirus may be one of the common causes and cytokines could be triggering factors. PMID:27015183

  3. A search for frosts in Comet Bowell /1980b/

    NASA Technical Reports Server (NTRS)

    Campins, H.; Lebofsky, L. A.; Rieke, G. H.; Lebofsky, M. J.

    1982-01-01

    Infrared observations of Comet Bowell represent the first search for frost signatures in a comet beyond 2 AU from the sun. Broad- and narrowband photometry has been obtained as well as CVF spectrophotometry of this comet and there is no evidence for absorption features in the spectral area between 1.25 and 2.3 microns. Models of the coma have been generated which constrain the volatile content of the grains an; are in agreement with the observed albedo. The darkness of the coma particles at large heliocentric distances indicates a low albedo nucleus as well. Brightness variations during the observing period seem to indicate an active nucleus at 4.5 AU from the sun.

  4. Helicity Asymmetry in gamma p -> pi+ n with FROST

    SciTech Connect

    Steffen Strauch

    2012-04-01

    The main objective of the FROST experiment at Jefferson Lab is the study of baryon resonances. The polarization observable E for the reaction gamma p to pi+n has been measured as part of this program. A circularly polarized tagged photon beam with energies from 0.35 to 2.35 GeV was incident on a longitudinally polarized frozen-spin butanol target. The final-state pions were detected with the CEBAF Large Acceptance Spectrometer. Preliminary polarization data agree fairly well with present SAID and MAID partial-wave analyses at low photon energies. In most of the covered energy range, however, significant deviations are observed. These discrepancies underline the crucial importance of polarization observables to further constrain these analyses.

  5. Seasonal frost conditions in different periglacial landforms in the Eastern Pyrenees from 2003 to 2015

    NASA Astrophysics Data System (ADS)

    Salvador-Franch, Ferran; Salvà-Catarineu, Montserrat; Oliva, Marc; Gómez-Ortiz, Antonio

    2016-04-01

    Glaciers shaped the headwaters and valley floors in the Eastern Pyrenees during the Last Glaciation at elevations above 2100-2200 m. Since the deglaciation of these areas, periglacial processes have generated a wide range of periglacial landforms, such as rock glaciers, patterned ground and debris slopes. The role of soil temperatures is decisive for the degree of activity of periglacial processes: cryoturbation, solifluction, frost weathering, etc. Nowadays, periglacial processes in the Eastern Pyrenees are driven by a seasonal frozen layer extending 5-7 months. In general, at 2100 m the seasonal frost reaches 20 cm depth, while at 2700 m reaches 50 cm depth. However, soil temperatures, and thus, periglacial processes are strongly controlled by the large interannual variability of the snow cover. With the purpose of understanding the rhythm and intensity of soil freezing/thawing in 2003 we set up several monitoring sites along a vertical transect from the valley floors (1100 m) to the high plateaus (2700 m) across the southern slope of the Puigpedrós massif (2914 m), in the Eastern Pyrenees. The monitoring of soil temperatures has been conducted from 2003 to 2015 in different periglacial landforms using UTL and Hobo loggers. These loggers were installed at depths of 5, 20 and 50 cm at five sites: Calmquerdós (2730 m), Malniu (2230 m), La Feixa (2150 m), Meranges (1600 m) and Das (1097 m). Air temperatures used as reference come from two automatic stations of the Catalan Meteorological Survey in Malniu and Das, and with two loggers installed in La Feixa and Meranges. No permafrost regime was detected in none of the sites. Data shows evidence of the control of snow cover on the depth of the frozen layer and on the number of freeze-thaw cycles. Air temperatures at 2000-2200 m show a mean of 150 freeze-thaw cycles per year. In La Feixa, with very thin snow cover, only 67 cycles are recorded at 5 cm depth and 5 cycles at 50 cm depth. In Malniu, located at a higher

  6. Early Spring, Severe Frost Events, and Drought Induce Rapid Carbon Loss in High Elevation Meadows

    PubMed Central

    Arnold, Chelsea; Ghezzehei, Teamrat A.; Berhe, Asmeret Asefaw

    2014-01-01

    By the end of the 20th century, the onset of spring in the Sierra Nevada mountain range of California has been occurring on average three weeks earlier than historic records. Superimposed on this trend is an increase in the presence of highly anomalous “extreme” years, where spring arrives either significantly late or early. The timing of the onset of continuous snowpack coupled to the date at which the snowmelt season is initiated play an important role in the development and sustainability of mountain ecosystems. In this study, we assess the impact of extreme winter precipitation variation on aboveground net primary productivity and soil respiration over three years (2011 to 2013). We found that the duration of snow cover, particularly the timing of the onset of a continuous snowpack and presence of early spring frost events contributed to a dramatic change in ecosystem processes. We found an average 100% increase in soil respiration in 2012 and 2103, compared to 2011, and an average 39% decline in aboveground net primary productivity observed over the same time period. The overall growing season length increased by 57 days in 2012 and 61 days in 2013. These results demonstrate the dependency of these keystone ecosystems on a stable climate and indicate that even small changes in climate can potentially alter their resiliency. PMID:25207640

  7. Early spring, severe frost events, and drought induce rapid carbon loss in high elevation meadows.

    PubMed

    Arnold, Chelsea; Ghezzehei, Teamrat A; Berhe, Asmeret Asefaw

    2014-01-01

    By the end of the 20th century, the onset of spring in the Sierra Nevada mountain range of California has been occurring on average three weeks earlier than historic records. Superimposed on this trend is an increase in the presence of highly anomalous "extreme" years, where spring arrives either significantly late or early. The timing of the onset of continuous snowpack coupled to the date at which the snowmelt season is initiated play an important role in the development and sustainability of mountain ecosystems. In this study, we assess the impact of extreme winter precipitation variation on aboveground net primary productivity and soil respiration over three years (2011 to 2013). We found that the duration of snow cover, particularly the timing of the onset of a continuous snowpack and presence of early spring frost events contributed to a dramatic change in ecosystem processes. We found an average 100% increase in soil respiration in 2012 and 2103, compared to 2011, and an average 39% decline in aboveground net primary productivity observed over the same time period. The overall growing season length increased by 57 days in 2012 and 61 days in 2013. These results demonstrate the dependency of these keystone ecosystems on a stable climate and indicate that even small changes in climate can potentially alter their resiliency. PMID:25207640

  8. Seasonal frost effects on the dynamic behavior of a twenty-story office building

    USGS Publications Warehouse

    Yang, Z.; Dutta, U.; Xiong, F.; Biswas, N.; Benz, H.

    2008-01-01

    Studies have shown that seasonal frost can significantly affect the seismic behavior of a bridge foundation system in cold regions. However, little information could be found regarding seasonal frost effects on the dynamic behavior of buildings. Based on the analysis of building vibration data recorded by a permanent strong-motion instrumentation system, the objective of this paper is to show that seasonal frost can impact the building dynamic behavior and the magnitude of impact may be different for different structures. Ambient noise and seismic data recorded on a twenty-story steel-frame building have been analyzed to examine the building dynamic characteristics in relationship to the seasonal frost and other variables including ground shaking intensity. Subsequently, Finite Element modeling of the foundation-soil system and the building superstructure was conducted to verify the seasonal frost effects. The Finite Element modeling was later extended to a reinforced-concrete (RC) type building assumed to exist at a similar site as the steel-frame building. Results show that the seasonal frost has great impact on the foundation stiffness in the horizontal direction and a clear influence on the building dynamic behavior. If other conditions remain the same, the effects of seasonal frost on structural dynamic behavior may be much more prominent for RC-type buildings than for steel-frame buildings. ?? 2007 Elsevier B.V. All rights reserved.

  9. Measurement of frost characteristics on heat exchanger fins. Part 1: Test facility and instrumentation

    SciTech Connect

    Thomas, L.; Chen, H.; Besant, R.W.

    1999-07-01

    A special test facility was developed to characterize frost growing on heat exchanger fins where the cold surfaces and the air supply conditions were similar to those experienced in freezers, i.e., cold surface temperatures ranging from {minus}35 C to {minus}40 C, air supply temperatures from {minus}10 C to {minus}20 C, and 80% to 100% relative humidity (RH). This test facility included a test section with removable fins to measure the frost height and mass concentration. Frost height on heat exchanger fins was measured using a new automated laser scanning system to measure the height of frost and its distribution on selected fins. The increase in air pressure loss resulting from frost growth on the fins was measured directly in the test loop. The frost mass accumulation distribution was measured for each test using special pre-etched fins that could be easily subdivided and weighed. The total heat rate was measured using a heat flux meter. These frost-measuring instruments were calibrated and the uncertainty of each is stated.

  10. Modeling of frost crystal growth over a flat plate using artificial neural networks and fractal geometries

    NASA Astrophysics Data System (ADS)

    Tahavvor, Ali Reza

    2016-06-01

    In the present study artificial neural network and fractal geometry are used to predict frost thickness and density on a cold flat plate having constant surface temperature under forced convection for different ambient conditions. These methods are very applicable in this area because phase changes such as melting and solidification are simulated by conventional methods but frost formation is a most complicated phase change phenomenon consists of coupled heat and mass transfer. Therefore conventional mathematical techniques cannot capture the effects of all parameters on its growth and development because this process influenced by many factors and it is a time dependent process. Therefore, in this work soft computing method such as artificial neural network and fractal geometry are used to do this manner. The databases for modeling are generated from the experimental measurements. First, multilayer perceptron network is used and it is found that the back-propagation algorithm with Levenberg-Marquardt learning rule is the best choice to estimate frost growth properties due to accurate and faster training procedure. Second, fractal geometry based on the Von-Koch curve is used to model frost growth procedure especially in frost thickness and density. Comparison is performed between experimental measurements and soft computing methods. Results show that soft computing methods can be used more efficiently to determine frost properties over a flat plate. Based on the developed models, wide range of frost formation over flat plates can be determined for various conditions.

  11. Habitat characteristics of adult frosted elfins (Callophrys irus) in sandplain communities of southeastern Massachusetts, USA

    USGS Publications Warehouse

    Albanese, G.; Vickery, P.D.; Sievert, P.R.

    2007-01-01

    Changes to land use and disturbance frequency threaten disturbance-dependent Lepidoptera within sandplain habitats of the northeastern United States. The frosted elfin (Callophrys irus) is a rare and declining monophagous butterfly that is found in xeric open habitats maintained by disturbance. We surveyed potential habitat for adult frosted elfins at four sites containing frosted elfin populations in southeastern Massachusetts, United States. Based on the survey data, we used kernel density estimation to establish separate adult frosted elfin density classes, and then used regression tree analysis to describe the relationship between density and habitat features. Adult frosted elfin density was greatest when the host plant, wild indigo (Baptisia tinctoria), density was >2.6 plants/m2 and tree canopy cover was <29%. Frosted elfin density was inversely related to tree cover and declined when the density of wild indigo was <2.6 plants/m2 and shrub cover was ???16%. Even small quantities of non-native shrub cover negatively affected elfin densities. This effect was more pronounced when native herbaceous cover was <36%. Our results indicate that management for frosted elfins should aim to increase both wild indigo density and native herbaceous cover and limit native tree and shrub cover in open sandplain habitats. Elimination of non-native shrub cover is also recommended because of the negative effects of even low non-native shrub cover on frosted elfin densities. The maintenance of patches of early successional sandplain habitat with the combination of low tree and shrub cover, high host plant densities, and the absence of non-native shrubs appears essential for frosted elfin persistence, but may also be beneficial for a number of other rare sandplain insects and plant species. ?? 2006 Elsevier Ltd. All rights reserved.

  12. A freeze-thaw test to determine the frost susceptibility of soils

    NASA Astrophysics Data System (ADS)

    Chamberlain, Edwin J.

    1987-01-01

    A freezing test for determining the frost susceptibility of soils is presented to supplant the standard CRREL freezing test currently specified by the Corps of Engineers. This test reduces the time required to determine the frost susceptibility of a soil in half. It also allows for the determination of both the frost heave and thaw weakening susceptibilities and considers the effects of the freeze-thaw cycling. The freeze test eliminates much of the variability in test results caused by the human element by completely automating the temperature control and data observations.

  13. Ice/frost/debris assessment for space shuttle mission STS-27R, December 2, 1988

    NASA Technical Reports Server (NTRS)

    Katnik, Gregory N.; Higginbotham, Scott A.

    1989-01-01

    An Ice/Frost/Debris assessment was conducted for Space Shuttle Mission STS-27R. Debris inspections of the flight elements and launch pad are performed before and after launch. Ice/frost conditions are assessed by the use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by an on-pad visual inspection. High speed photography is viewed after launch to identify ice/debris sources and evaluate potential vehicle damage. The Ice/Frost/Debris conditions of Mission STS-27R and their effect on the Space Shuttle Program are documented.

  14. Ice/frost/debris assessment for space shuttle mission STS-26R

    NASA Technical Reports Server (NTRS)

    Stevenson, Charles G.; Katnik, Gregory N.; Higginbotham, Scott A.

    1988-01-01

    An Ice/Frost/Debris Assessment was conducted for Space Shuttle Mission STS-26R. Debris inspections of the flight elements and launch pad are performed before and after launch. Ice/Frost conditions are assessed by use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by an on-pad visual inspection. High speed photography is viewed after launch to identify ice/debris sources and evaluate potential vehicle damage. The Ice/Frost/Debris conditions of Mission 26R and their effect on the Space Shuttle Program is documented.

  15. Stability of polar frosts in spherical bowl-shaped craters on the moon, Mercury, and Mars

    NASA Technical Reports Server (NTRS)

    Ingersoll, Andrew P.; Svitek, Tomas; Murray, Bruce C.

    1992-01-01

    A model of spherical bowl-shaped craters is described and applied to the moon, Mercury, and Mars. The maximum temperature of permanently shadowed areas are calculated using estimates of the depth/diameter ratios of typical lunar bowl-shaped craters and assuming a saturated surface in which the craters are completely overlapping. For Mars, two cases are considered: water frost in radiative equilibrium and subliming CO2 frost in vapor equilibrium. Energy budgets and temperatures are used to determine whether a craterlike depression loses mass faster or slower than a flat horizontal surface. This reveals qualitatively whether the frost surface becomes rougher or smoother as it sublimes.

  16. Backscattering from frost on icy satellites in the outer solar system

    NASA Technical Reports Server (NTRS)

    Verbiscer, Anne; Helfenstein, Paul; Veverka, Joseph

    1990-01-01

    Two extreme models are presented of how frost and ice might be intermixed on a typical satellite surface: areal and intimate mixing. Applying such models to selected representative satellite data, it is found that the frost component of the surfaces of these outer satellites must itself be backscattering, unlike its terrestrial counterpart. The difference may arise because frost particles can have much more complex internal textures under the low-temperature and low-gravity conditions of the outer satellites than is the case on earth.

  17. KSC ice/frost/debris assessment for space shuttle mission STS-29R

    NASA Technical Reports Server (NTRS)

    Stevenson, Charles G.; Katnik, Gregory N.; Higginbotham, Scott A.

    1989-01-01

    An ice/frost/debris assessment was conducted for Space Shuttle Mission STS-29R. Debris inspections of the flight elements and launch pad are performed before and after launch. Ice/frost conditions on the external tank are assessed by the use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by an on-pad visual inspection. High speed photography is analyzed after launch to identify ice/debris sources and evaluate potential vehicle damage. The ice/frost/debris conditions of Mission STS-29R and their effect on the Space Shuttle Program are documented.

  18. KSC ice/frost/debris assessment for Space Shuttle Mission STS-30R

    NASA Technical Reports Server (NTRS)

    Stevenson, Charles G.; Katnik, Gregory N.; Higginbotham, Scott A.

    1989-01-01

    An ice/frost/debris assessment was conducted for Space Shuttle Mission STS-30R. Debris inspections of the flight elements and launch pad are performed before and after launch. Ice/frost conditions on the external tank are assessed by the use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by an on-pad visual inspection. High speed photography is analyzed after launch to identify ice/debris sources and evaluate potential vehicle damage. The ice/frost/debris conditions of Mission STS-30R and their overall effect on the Space Shuttle Program is documented.

  19. Effect of Soil Frost on Snow-melt runoff Generation: Stable Isotope Study in Drained Peatlands

    NASA Astrophysics Data System (ADS)

    Eskelinen, Riku; Ronkanen, Anna-Kaisa; Marttila, Hannu; Kløve, Bjørn

    2013-04-01

    In this study, we analysed stable isotopes and water quality of runoff water collected daily from two different peatland drainage areas with automated samplers from March 2012 to October 2012, located in Northern Finland. In addition we collected weekly snow samples for stable isotope analysis. Our primary aim was to find out how different land use types, i) peat extraction area and ii) peatland forestry, are affecting the flow paths and runoff water quality during the snow melt period. Results show that there is a clear difference in δO18 signal between these systems. The peatland forestry area is located at groundwater dominated area which can be seen as a flat line when δO18 values of all samples are plotted. Samples taken at the peat extraction area show a clear response to the snowmelt event. Most likely this difference is caused by different soil frost conditions. Quantity of the groundwater at the forestry area prevents the soil from freezing during winter, therefore water originating from melting snow is able to infiltrate to the peat soil and push pre-event water into the drainage system. This observation is also visible in water quality of runoff water as high peak in colour during the snow melt period. Contrary, the peat extraction area behaves in opposite way. Melting water from snow is not able to infiltrate to ditches but instead will rapidly move on the frozen soil surface as a Hortonian overland flow. Because the soil is frozen, moving water is not able to leach humic substances from soil layers or erode particulate matter from the soil surface. These observations can be used to develop water quality protection policies for drained peatland areas. In Northern areas, where freezing of soil during winter is common it is not crucial to emphasize water protection during spring snowmelt, as frozen soil helps to maintain the runoff water quality at reasonable levels. In the areas where ground frost is rarer the impact of purifying runoff water in spring

  20. CO_2 Frost Halos on the South Polar Residual Cap of Mars

    NASA Astrophysics Data System (ADS)

    Becerra, P.; Byrne, S.; HiRISE Team

    2012-03-01

    We present observational analysis, and a numerical model to explain the formation of bright CO_2 frost halos seen by HiRISE on the edges of scarps and "swiss cheese" features in the south polar residual cap of Mars.

  1. Mariner 9 observations of the south polar cap of Mars - Evidence for residual CO2 frost

    NASA Technical Reports Server (NTRS)

    Paige, D. A.; Herkenhoff, K. E.; Murray, B. C.

    1990-01-01

    The first spacecraft observations of the south residual polar cap of Mars were obtained by the Mariner 9 orbiter during the Martian southern summer season, 1971-1972. Analyses of Viking orbiter observations obtained 3 Mars years later have shown that residual carbon dioxide frost was present at the south polar cap in 1977. In this study, Mariner 9 infrared interferometer spectrometer spectra and television camera images are used in conjuction with multispectral thermal emission models to constrain the temperatures of dark bare ground and bright frost regions within the south residual cap. The results provide strong evidence that carbon dioxide frost was present throughout the summer season despite the fact that the residual frost deposits observed by Mariner 9 were less extensive than those observed by Viking.

  2. Energy-effective frost-free coatings based on superhydrophobic aligned nanocones.

    PubMed

    Xu, Qian; Li, Juan; Tian, Jian; Zhu, Jie; Gao, Xuefeng

    2014-06-25

    We demonstrate the feasibility of superhydrophobic aligned nanocones as energy-effective frost-free coatings. Exemplified by Co(OH)2 nanocone films with condensed microdrop self-removal ability, their edge and whole-surface frosting time can be delayed to about 10 and 150 min, respectively. By using a Teflon gasket to shield edges, the samples can keep frost-free state over 90 min. Further, the lasting frost-free state can be realized by intermittent weak airflow heating, which is energy-effective in contrast to usual high-power heating for defrosting flat surfaces. These findings are significant to develop antifrosting nanotechnologies for energy-effective heat exchangers such as heat pumps and refrigerators. PMID:24912381

  3. Laboratory studies of the diffuse reflectance spectra of frosts and minerals occurring on astronomical objects

    NASA Technical Reports Server (NTRS)

    Glaser, F. M.

    1978-01-01

    A vacuum monochromator was integrated into the system and optics chosen to increase data collection in the infrared spectral region. Using a InSb detector, good reflectance data was obtained to 5.5 micron from a variety of samples including magnesium oxide, barium sulfate, water frost and Bloedite. Magnesium oxide was found to be a poorer reflector than the barium sulfate throughout the visible and near infrared region. The barium sulfate material was shown to be a Lambert reflector in the visible region and over an angular range of 60 deg. Several samples of water frost were prepared and in reflectance measured from 0.3 micron to 5.5 microm. The fine grained frosts were better reflectors than the coarse grained frosts, usually by 20 percent or more, over the entire spectral range. The minerals Bloedite and sulfur were also investigated further.

  4. Reconstructing patterns of temperature, phenology, and frost damage over 124 years: spring damage risk is increasing.

    PubMed

    Augspurger, Carol K

    2013-01-01

    Climate change, with both warmer spring temperatures and greater temperature fluctuations, has altered phenologies, possibly leading to greater risk of spring frost damage to temperate deciduous woody plants. Phenological observations of 20 woody species from 1993 to 2012 in Trelease Woods, Champaign County, Illinois, USA, were used to identify years with frost damage to vegetative and reproductive phases. Local temperature records were used in combination with the phenological observations to determine what combinations of the two were associated with damage. Finally, a long-term temperature record (1889-1992) was evaluated to determine if the frequency of frost damage has risen in recent decades. Frost < or = -1.7 degrees C occurred after bud-break in 14 of the 20 years of observation. Frost damage occurred in five years in the interior and in three additional years at only the forest edge. The degree of damage varied with species, life stage, tissue (vegetative or reproductive), and phenological phase. Common features associated with the occurrence of damage to interior plants were (1) a period of unusual warm temperatures in March, followed by (2) a frost event in April with a minimum temperature < or = -6.1 degrees C with (3) a period of 16-33 days between the extremes. In the long-term record, 10 of 124 years met these conditions, but the yearly probability of frost damage increased significantly, from 0.03 during 1889-1979 to 0.21 during 1980-2012. When the criteria were "softened" to < or = -1.7 degrees C in April and an interval of 16-37 days, 31 of 124 years met the conditions, and the yearly damage probability increased significantly to 0.19 for 1889-1979 and 0.42 for 1980-2012. In this forest, the combination of warming trends and temperature variability (extremes) associated with climate change is having ecologically important effects, making previously rare frost damage events more common. PMID:23600239

  5. Preparation of frost atlas using different interpolation methods in a semiarid region of south of Iran

    NASA Astrophysics Data System (ADS)

    Didari, Shohre; Zand-Parsa, Shahrokh; Sepaskhah, Ali Reza; Kamgar-Haghighi, Ali Akbar; Khalili, Davar

    2012-04-01

    In this research, suitability of different kriging and inverse distance weighted ( IDW) methods in estimating occurrence date of frost was evaluated. Data included minimum daily air temperature values from 27 meteorological stations of Fars province in southern Iran from 18 to 45 years. Data ranges of 0 to -1.5, -1.5 to -3 and below -3°C were considered as mild, moderate and severe frost intensities, respectively. Starting with the first day of autumn, iso-occurrence days for the frost intensities and occurrence probabilities (25%, 50%, 75% and 90%) were estimated using ordinary kriging, cokriging, residual kriging type 1 ( RK1), residual kriging type 2 ( RK2), universal kriging and IDW methods. In these models, the errors of estimated frost intensities at different probabilities were lowest in the RK2 model, but lack of establishment of spatial structure due to long distance between stations caused the predictions not to be acceptable in some cases. In a proposed method (modified inverse distance weighted, MIDW), the trend between the first and last days of frost occurrence with earth elevation was removed, and the reminder values were estimated by ( IDW) method. Although, the errors for estimated frost dates by MIDW and RK2 methods were the same, but the MIDW method did not have the spatial establishment shortcoming. Furthermore, the simplicity and practicality of the MIDW method makes it a reasonable selection.

  6. Frost resistance of concrete surfaces coated with waterproofing materials

    NASA Astrophysics Data System (ADS)

    Klovas, A.; Dauksys, M.; Ciuprovaite, G.

    2015-03-01

    Present research lays emphasis on the problem of concrete surface exposed to aggressive surrounding quality. The test was conducted with concrete surfaces coated with different waterproofing materials exposed in solution of 3 % of sodium sulphate. Research was performed according to LST EN 1338:2003 standard requirements. Technological properties of concrete mixture as well as physical-mechanical properties of formed concrete specimens were established. The resistance of concrete to freezing - thawing cycles was prognosticated according to the porosity parameters established by the kinetic of water absorption. Five different waterproofing materials (coatings) such as liquid bitumen-rubber based, elastic fiber-strengthened, silane-siloxane based emulsion, mineral binder based and liquid rubber (caoutchouc) based coatings were used. Losses by mass of coating materials and specimens surface fractures were calculated based on the results of frost resistance test. Open code program "ImageJ" was used for visual analysis of concrete specimens. Based on the results, aggressive surrounding did not influence specimens coated with elastic, fibre-strengthened, mineral materials. On the other hand, specimens coated with liquid rubber (caoutchouc) based material were greatly influenced by aggressive surrounding. The biggest losses of specimen surface concrete (fractures) were obtained with silane-siloxane based emulsion coating. Generally, specimens coated with waterproofing materials were less influenced by aggressive surrounding compared with those without.

  7. One-pot synthesis of polypyrrole film on an aluminum oxide layer by electropolymerization in the presence of ammonium borodisalicylate in acetonitrile

    NASA Astrophysics Data System (ADS)

    Toita, Sadamu; Inoue, Kenzo

    This paper describes how one-pot preparation of polypyrrole (PPy) on Al 2O 3 layer in an aluminum solid capacitor could be achieved by electropolymerization of pyrrole (Py) in acetonitrile with small amounts of water, using ammonium borodisalicylate (ABS) as a new electrolyte. The effects of monomer and electrolyte concentrations, current density, and polymerization temperature on the PPy formation on Al 2O 3 layer in aluminum solid are also discussed. Polymerization occurred smoothly to give PPy on the Al 2O 3 layer under the following conditions: [ammonium borodisalicylate] = 0.02 M, [Py] = 0.1 M, and polymerization temperature = -42 °C, current density = 10 mA cm -2. The normalized capacitance, the C p/ C 0 value of capacitor fabricated, reached more than 0.9, indicating that the porosity and surface of the Al 2O 3 layer are filled up and covered with PPy. The Raman spectra of the PPy film showed that the peak assignable to C dbnd C backbone stretching shifted to a lower wave number of 1585 cm -1. This indicates formation of the film with well-conjugated C dbnd C backbone. The SEM micrograph of PPy on Al 2O 3 layer showed a closely packed globular morphology. These results indicate that the new electrolyte, ABS, has an excellent ability to form PPy film directly on Al 2O 3 surface by electropolymerization.

  8. Statistical Evaluation of Potential Damage to the Al(OH)3 Layer on nTiO2 Particles in the Presence of Swimming Pool and Seawater

    EPA Science Inventory

    Nanosized TiO2 particles (nTiO2) are usually coated with an Al(OH)3 layer when used in sunscreen to shield against the harmful effects of free radicals that are generated when these particles are exposed to UV radiation. Therefore, it is vital to ...

  9. [Comparison of red edge parameters of winter wheat canopy under late frost stress].

    PubMed

    Wu, Yong-feng; Hu, Xin; Lü, Guo-hua; Ren, De-chao; Jiang, Wei-guo; Song, Ji-qing

    2014-08-01

    In the present study, late frost experiments were implemented under a range of subfreezing temperatures (-1 - -9 degrees C) by using a field movable climate chamber (FMCC) and a cold climate chamber, respectively. Based on the spectra of winter wheat canopy measured at noon on the first day after the frost experiments, red edge parameters REP, Dr, SDr, Dr(min), Dr/Dr(min) and Dr/SDr were extracted using maximum first derivative spectrum method (FD), linear four-point interpolation method (FPI), polynomial fitting method (POLY), inverted Gaussian fitting method (IG) and linear extrapolation technique (LE), respectively. The capacity of the red edge parameters to detect late frost stress was explicated from the aspects of the early, sensitivity and stability through correlation analysis, linear regression modeling and fluctuation analysis. The result indicates that except for REP calculated from FPI and IG method in Experiment 1, REP from the other methods was correlated with frost temperatures (P < 0.05). Thereinto, significant levels (P) of POLY and LE methods all reached 0.01. Except for POLY method in Experiment 2, Dr/SDr from the other methods were all significantly correlated with frost temperatures (P < 0.01). REP showed a trend to shift to short-wave band with decreasing temperatures. The lower the temperature, the more obvious the trend is. Of all the REP, REP calculated by LE method had the highest correlation with frost temperatures which indicated that LE method is the best for REP extraction. In Experiment 1 and 2, only Dr(min) and Dr/Dr(min), calculated by FD method simultaneously achieved the requirements for the early (their correlations with frost temperatures showed a significant level P < 0.01), sensitivity (abso- lute value of the slope of fluctuation coefficient is greater than 2.0) and stability (their correlations with frost temperatures al- ways keep a consistent direction). Dr/SDr calculated from FD and IG methods always had a low sensitivity

  10. [Comparison of red edge parameters of winter wheat canopy under late frost stress].

    PubMed

    Wu, Yong-feng; Hu, Xin; Lü, Guo-hua; Ren, De-chao; Jiang, Wei-guo; Song, Ji-qing

    2014-08-01

    In the present study, late frost experiments were implemented under a range of subfreezing temperatures (-1 - -9 degrees C) by using a field movable climate chamber (FMCC) and a cold climate chamber, respectively. Based on the spectra of winter wheat canopy measured at noon on the first day after the frost experiments, red edge parameters REP, Dr, SDr, Dr(min), Dr/Dr(min) and Dr/SDr were extracted using maximum first derivative spectrum method (FD), linear four-point interpolation method (FPI), polynomial fitting method (POLY), inverted Gaussian fitting method (IG) and linear extrapolation technique (LE), respectively. The capacity of the red edge parameters to detect late frost stress was explicated from the aspects of the early, sensitivity and stability through correlation analysis, linear regression modeling and fluctuation analysis. The result indicates that except for REP calculated from FPI and IG method in Experiment 1, REP from the other methods was correlated with frost temperatures (P < 0.05). Thereinto, significant levels (P) of POLY and LE methods all reached 0.01. Except for POLY method in Experiment 2, Dr/SDr from the other methods were all significantly correlated with frost temperatures (P < 0.01). REP showed a trend to shift to short-wave band with decreasing temperatures. The lower the temperature, the more obvious the trend is. Of all the REP, REP calculated by LE method had the highest correlation with frost temperatures which indicated that LE method is the best for REP extraction. In Experiment 1 and 2, only Dr(min) and Dr/Dr(min), calculated by FD method simultaneously achieved the requirements for the early (their correlations with frost temperatures showed a significant level P < 0.01), sensitivity (abso- lute value of the slope of fluctuation coefficient is greater than 2.0) and stability (their correlations with frost temperatures al- ways keep a consistent direction). Dr/SDr calculated from FD and IG methods always had a low sensitivity