Science.gov

Sample records for frp adhesive lap

  1. Analysis of adhesively bonded composite lap joints

    SciTech Connect

    Tong, L.; Kuruppu, M.; Kelly, D.

    1994-12-31

    A new nonlinear formulation is developed for the governing equations for the shear and peel stresses in adhesively bonded composite double lap joints. The new formulation allows arbitrary nonlinear stress-strain characteristics in both shear and peel behavior. The equations are numerically integrated using a shooting technique and Newton-Raphson method behind a user friendly interface. The failure loads are predicted by utilizing the maximum stress criterion, interlaminar delamination and the energy density failure criteria. Numerical examples are presented to demonstrate the effect of the nonlinear adhesive behavior on the stress distribution and predict the failure load and the associated mode.

  2. Adhesive-bonded scarf and stepped-lap joints

    NASA Technical Reports Server (NTRS)

    Hart-Smith, L. J.

    1973-01-01

    Continuum mechanics solutions are derived for the static load-carrying capacity of scarf and stepped-lap adhesive-bonded joints. The analyses account for adhesive plasticity and adherend stiffness imbalance and thermal mismatch. The scarf joint solutions include a simple algebraic formula which serves as a close lower bound, within a small fraction of a per cent of the true answer for most practical geometries and materials. Digital computer programs were developed and, for the stepped-lap joints, the critical adherend and adhesive stresses are computed for each step. The scarf joint solutions exhibit grossly different behavior from that for double-lap joints for long overlaps inasmuch as that the potential bond shear strength continues to increase with indefinitely long overlaps on the scarf joints. The stepped-lap joint solutions exhibit some characteristics of both the scarf and double-lap joints. The stepped-lap computer program handles arbitrary (different) step lengths and thickness and the solutions obtained have clarified potentially weak design details and the remedies. The program has been used effectively to optimize the joint proportions.

  3. Material characterization of structural adhesives in the lap shear mode

    NASA Technical Reports Server (NTRS)

    Sancaktar, E.; Schenck, S. C.

    1983-01-01

    A general method for characterizing structual adhesives in the bonded lap shear mode is proposed. Two approaches in the form of semiempirical and theoretical approaches are used. The semiempirical approach includes Ludwik's and Zhurkov's equations to describe respectively, the failure stresses in the constant strain rate and constant stress loading modes with the inclusion of the temperature effects. The theoretical approach is used to describe adhesive shear stress-strain behavior with the use of viscoelastic or nonlinear elastic constitutive equations. Two different model adhesives are used in the single lap shear mode with titanium adherends. These adhesives (one of which was developed at NASA Langley Research Center) are currently considered by NASA for possible aerospace applications. Use of different model adhesives helps in assessment of the generality of the method.

  4. Lap Shear Testing of Candidate Radiator Panel Adhesives

    NASA Technical Reports Server (NTRS)

    Ellis, David; Briggs, Maxwell; McGowan, Randy

    2013-01-01

    During testing of a subscale radiator section used to develop manufacturing techniques for a full-scale radiator panel, the adhesive bonds between the titanium heat pipes and the aluminum face sheets failed during installation and operation. Analysis revealed that the thermal expansion mismatch between the two metals resulted in relatively large shear stresses being developed even when operating the radiator at moderate temperatures. Lap shear testing of the adhesive used in the original joints demonstrated that the two-part epoxy adhesive fell far short of the strength required. A literature review resulted in several candidate adhesives being selected for lap shear joint testing at room temperature and 398 K, the nominal radiator operating temperature. The results showed that two-part epoxies cured at room and elevated temperatures generally did not perform well. Epoxy film adhesives cured at elevated temperatures, on the other hand, did very well with most being sufficiently strong to cause yielding in the titanium sheet used for the joints. The use of an epoxy primer generally improved the strength of the joint. Based upon these results, a new adhesive was selected for the second subscale radiator section.

  5. Numerical solutions for heat flow in adhesive lap joints

    NASA Technical Reports Server (NTRS)

    Howell, P. A.; Winfree, William P.

    1992-01-01

    The present formulation for the modeling of heat transfer in thin, adhesively bonded lap joints precludes difficulties associated with large aspect ratio grids required by standard FEM formulations. This quasi-static formulation also reduces the problem dimensionality (by one), thereby minimizing computational requirements. The solutions obtained are found to be in good agreement with both analytical solutions and solutions from standard FEM programs. The approach is noted to yield a more accurate representation of heat-flux changes between layers due to a disbond.

  6. Optimal tubular adhesive-bonded lap joint of the carbon fiber epoxy composite shaft

    NASA Astrophysics Data System (ADS)

    Kim, Ki S.; Kim, Won T.; Lee, Dai G.; Jun, Eui J.

    The effects of the adhesive thickness and the adherend surface roughness on the fatigue strength of a tubular adhesive-bonded single lap joint were investigated using fatigue test specimens whose adherends were made of S45C carbon steel. Results of fatigue tests showed that the optimal arithmetic surface roughness of the adherends is about 2 microns and the optimal adhesive thickness is about 0.15 mm. Using these values, the prototype torsional adhesive joints were manufactured for power transmission shafts of an automotive vehicle or a small helicopter, and static tests under torque were performed on a single-lap joint, a single-lap joint with scarf, a double-lap joint, and a double-lap joint with scarf. It was found that the double-lap joint was superior among the joints, in terms of torque capacity and manufacturing cost.

  7. Failure strength prediction for adhesively bonded single lap joints

    NASA Astrophysics Data System (ADS)

    Rahman, Niat Mahmud

    For adhesively bonded joint, failure strength depends on many factors such as material properties (both adhesive and adherend), specimen geometries, test environments, surface preparation procedures, etc. Failure occurs inside constitutive materials or along joint interfaces. Based on location, adhesively bonded failure mode can be classified as adhesive failure mode, cohesive failure mode and adherend failure mode. Failure mode directly affects the failure strength of joint. For last eight decades, researchers have developed analytical, empirical or semi-empirical methods capable of predicting failure strength for adhesively bonded joints generating either cohesive failure or adherend failure. Applicability of most of the methods is limited to particular cases. In this research, different failure modes for single lap joints (SLJs) were generated experimentally using epoxy based paste adhesive. Based on experimental data and analytical study, simplified failure prediction methods were developed for each failure mode. For adhesive failure mode, it is observed that peel stress distributions concur along interface near crack initiation points. All SLJs for this test endured consistent surface treatments. Geometric parameters of the joints were varied to study their effect on failure strength. Peel stress distributions were calculated using finite analysis (FEA). Based on peel stress distribution near crack initiation point, a failure model is proposed. Numerous analytical, empirical and semi-empirical models are available for predicting failure strengths of SLJs generating cohesive failures. However, most of the methods in the literature failed to capture failure behavior of SLJs having thickness of adhesive layer as variable. Cohesive failure mode was generated experimentally using aluminum as adherend and epoxy adhesive considering thickness of adhesive layers as variable within SLJs. Comparative study was performed among various methods. It was observed that

  8. Non destructive evaluation of adhesively bonded carbon fiber reinforced composite lap joints with varied bond quality

    NASA Astrophysics Data System (ADS)

    Vijayakumar, R. L.; Bhat, M. R.; Murthy, C. R. L.

    2012-05-01

    Structural adhesive bonding is widely used to execute assemblies in automobile and aerospace structures. The quality and reliability of these bonded joints must be ensured during service. In this context non destructive evaluation of these bonded structures play an important role. Evaluation of adhesively bonded composite single lap shear joints has been attempted through experimental approach. Series of tests, non-destructive as well as destructive were performed on different sets of carbon fiber reinforced polymer (CFRP) composite lap joint specimens with varied bond quality. Details of the experimental investigations carried out and the outcome are presented in this paper.

  9. Material characterization of structural adhesives in the lap shear mode. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Schenck, S. C.; Sancaktar, E.

    1983-01-01

    A general method for characterizing structural adhesives in the bonded lap shear mode is proposed. Two approaches in the form of semi-empirical and theoretical approaches are used. The semi-empirical approach includes Ludwik's and Zhurkov's equations to describe respectively, the failure stresses in the constant strain rate and constant stress loading modes with the inclusion of the temperature effects. The theoretical approach is used to describe adhesive shear stress-strain behavior with the use of viscoelastic or nonlinear elastic constitutive equations. Three different model adhesives are used in the simple lap shear mode with titanium adherends. These adhesives (one of which was developed at NASA Langley Research Center) are currently considered by NASA for possible aerospace applications. Use of different model adhesives helps in assessment of the generality of the method.

  10. Lap Shear and Impact Testing of Ochre and Beeswax in Experimental Middle Stone Age Compound Adhesives

    PubMed Central

    2016-01-01

    The production of compound adhesives using disparate ingredients is seen as some of the best evidence of advanced cognition outside of the use of symbolism. Previous field and laboratory testing of adhesives has shown the complexities involved in creating an effective Middle Stone Age glue using Acacia gum. However, it is currently unclear how efficient different adhesive recipes are, how much specific ingredients influence their performance, and how difficult it may have been for those ingredients to be combined to maximum effect. We conducted a series of laboratory-based lap shear and impact tests, following modern adhesion testing standards, to determine the efficacy of compound adhesives, with particular regard to the ingredient ratios. We tested rosin (colophony) and gum adhesives, containing additives of beeswax and ochre in varying ratios. During both lap shear and impact tests compound rosin adhesives performed better than single component rosin adhesives, and pure acacia gum was the strongest. The large difference in performance between each base adhesive and the significant changes in performance that occur due to relatively small changes in ingredient ratios lend further support to the notion that high levels of skill and knowledge were required to consistently produce the most effective adhesives. PMID:26983080

  11. Lap Shear and Impact Testing of Ochre and Beeswax in Experimental Middle Stone Age Compound Adhesives.

    PubMed

    Kozowyk, P R B; Langejans, G H J; Poulis, J A

    2016-01-01

    The production of compound adhesives using disparate ingredients is seen as some of the best evidence of advanced cognition outside of the use of symbolism. Previous field and laboratory testing of adhesives has shown the complexities involved in creating an effective Middle Stone Age glue using Acacia gum. However, it is currently unclear how efficient different adhesive recipes are, how much specific ingredients influence their performance, and how difficult it may have been for those ingredients to be combined to maximum effect. We conducted a series of laboratory-based lap shear and impact tests, following modern adhesion testing standards, to determine the efficacy of compound adhesives, with particular regard to the ingredient ratios. We tested rosin (colophony) and gum adhesives, containing additives of beeswax and ochre in varying ratios. During both lap shear and impact tests compound rosin adhesives performed better than single component rosin adhesives, and pure acacia gum was the strongest. The large difference in performance between each base adhesive and the significant changes in performance that occur due to relatively small changes in ingredient ratios lend further support to the notion that high levels of skill and knowledge were required to consistently produce the most effective adhesives. PMID:26983080

  12. Lap shear strength and healing capability of self-healing adhesive containing epoxy/mercaptan microcapsules

    NASA Astrophysics Data System (ADS)

    Ghazali, Habibah; Ye, Lin; Zhang, Ming-Qiu

    2016-03-01

    The aim of this work is to develop a self-healing polymeric adhesive formulation with epoxy/mercaptan microcapsules. Epoxy/mercaptan microcapsules were dispersed into a commercialize two-part epoxy adhesive for developing self-healing epoxy adhesive. The influence of different content of microcapsules on the shear strength and healing capability of epoxy adhesive were investigated using single-lap-joints with average thickness of adhesive layer of about 180 µm. This self-healing adhesive was used in bonding of 5000 series aluminum alloys adherents after mechanical and alkaline cleaning surface treatment. The adhesion strength was measured and presented as function of microcapsules loading. The results indicated that the virgin lap shear strength was increased by about 26% with addition of 3 wt% of self-healing microcapsules. 12% to 28% recovery of the shear strength is achieved after self-healing depending on the microcapsules content. Scanning electron microscopy was used to study fracture surface of the joints. The self-healing adhesives exhibit recovery of both cohesion and adhesion properties with room temperature healing.

  13. A Single-Lap Joint Adhesive Bonding Optimization Method Using Gradient and Genetic Algorithms

    NASA Technical Reports Server (NTRS)

    Smeltzer, Stanley S., III; Finckenor, Jeffrey L.

    1999-01-01

    A natural process for any engineer, scientist, educator, etc. is to seek the most efficient method for accomplishing a given task. In the case of structural design, an area that has a significant impact on the structural efficiency is joint design. Unless the structure is machined from a solid block of material, the individual components which compose the overall structure must be joined together. The method for joining a structure varies depending on the applied loads, material, assembly and disassembly requirements, service life, environment, etc. Using both metallic and fiber reinforced plastic materials limits the user to two methods or a combination of these methods for joining the components into one structure. The first is mechanical fastening and the second is adhesive bonding. Mechanical fastening is by far the most popular joining technique; however, in terms of structural efficiency, adhesive bonding provides a superior joint since the load is distributed uniformly across the joint. The purpose of this paper is to develop a method for optimizing single-lap joint adhesive bonded structures using both gradient and genetic algorithms and comparing the solution process for each method. The goal of the single-lap joint optimization is to find the most efficient structure that meets the imposed requirements while still remaining as lightweight, economical, and reliable as possible. For the single-lap joint, an optimum joint is determined by minimizing the weight of the overall joint based on constraints from adhesive strengths as well as empirically derived rules. The analytical solution of the sin-le-lap joint is determined using the classical Goland-Reissner technique for case 2 type adhesive joints. Joint weight minimization is achieved using a commercially available routine, Design Optimization Tool (DOT), for the gradient solution while an author developed method is used for the genetic algorithm solution. Results illustrate the critical design variables

  14. Multitechnique monitoring of fatigue damage in adhesively bonded composite lap-joints

    NASA Astrophysics Data System (ADS)

    Karpenko, Oleksii; Koricho, Ermias; Khomenko, Anton; Dib, Gerges; Haq, Mahmoodul; Udpa, Lalita

    2015-03-01

    The requirement for reduced structural weight has driven the development of adhesively bonded joints. However, a major issue preventing their full acceptance is the initiation of premature failure in the form of a disbond between adherends, mainly due to fatigue, manufacturing flaws or impact damage. This work presents the integrated approach for in-situ monitoring of degradation of the adhesive bond in the GFRP composite lap-joint using ultrasonic guided waves and dynamic measurements from strategically embedded FBG sensors. Guided waves are actuated with surface mounted piezoelectric elements and mode tuning is used to provide high sensitivity to the degradation of the adhesive layer parameters. Composite lap-joints are subjected to fatigue loading, and data from piezoceramic transducers are collected at regular intervals to evaluate the progression of damage. Results demonstrate that quasi-static loading affects guided wave measurements considerably, but FBG sensors can be used to monitor the applied load levels and residual strains in the adhesive bond. The proposed technique shows promise for determining the post-damage stiffness of adhesively bonded joints.

  15. Adhesive-bonded double-lap joints. [analytical solutions for static load carrying capacity

    NASA Technical Reports Server (NTRS)

    Hart-Smith, L. J.

    1973-01-01

    Explicit analytical solutions are derived for the static load carrying capacity of double-lap adhesive-bonded joints. The analyses extend the elastic solution Volkersen and cover adhesive plasticity, adherend stiffness imbalance and thermal mismatch between the adherends. Both elastic-plastic and bi-elastic adhesive representations lead to the explicit result that the influence of the adhesive on the maximum potential bond strength is defined uniquely by the strain energy in shear per unit area of bond. Failures induced by peel stresses at the ends of the joint are examined. This failure mode is particularly important for composite adherends. The explicit solutions are sufficiently simple to be used for design purposes

  16. Low frequency ultrasonic nondestructive inspection of aluminum/adhesive fuselage lap splices

    SciTech Connect

    Patton, T.

    1994-01-04

    This thesis is a collection of research efforts in ultrasonics, conducted at the Center for Aviation Systems Reliability located at Iowa State University, as part of the Federal Aviation Administration`s ``Aging Aircraft Program.`` The research was directed toward the development of an ultrasonic prototype to inspect the aluminum/adhesive fuselage lap splices found on 1970`s vintage Boeing passenger aircraft. The ultrasonic prototype consists of a normal incidence, low frequency inspection technique, and a scanning adapter that allows focused immersion transducers to be operated in a direct contact manner in any inspection orientation, including upside-down. The inspection technique uses a computer-controlled data acquisition system to produce a C-scan image of a radio frequency (RF) waveform created by a low frequency, broadband, focused beam transducer, driven with a spike voltage pulser. C-scans produced by this technique are color representations of the received signal`s peak-to-peak amplitude (voltage) taken over an (x, y) grid. Low frequency, in this context, refers to a wavelength that is greater than the lap splice`s layer thicknesses. With the low frequency technique, interface echoes of the lap splice are not resolved and gating of the signal is unnecessary; this in itself makes the technique simple to implement and saves considerable time in data acquisition. Along with the advantages in data acquisition, the low frequency technique is relatively insensitive to minor surface curvature and to ultrasonic interference effects caused by adhesive bondline thickness variations in the lap splice.

  17. Secreted Frizzled-related protein 1 (sFRP1) regulates spermatid adhesion in the testis via dephosphorylation of focal adhesion kinase and the nectin-3 adhesion protein complex

    PubMed Central

    Wong, Elissa W. P.; Lee, Will M.; Cheng, C. Yan

    2013-01-01

    Development of spermatozoa in adult mammalian testis during spermatogenesis involves extensive cell migration and differentiation. Spermatogonia that reside at the basal compartment of the seminiferous epithelium differentiate into more advanced germ cell types that migrate toward the apical compartment until elongated spermatids are released into the tubule lumen during spermiation. Apical ectoplasmic specialization (ES; a testis-specific anchoring junction) is the only cell junction that anchors and maintains the polarity of elongating/elongated spermatids (step 8–19 spermatids) in the epithelium. Little is known regarding the signaling pathways that trigger the disassembly of the apical ES at spermiation. Here, we show that secreted Frizzled-related protein 1 (sFRP1), a putative tumor suppressor gene that is frequently down-regulated in multiple carcinomas, is a crucial regulatory protein for spermiation. The expression of sFRP1 is tightly regulated in adult rat testis to control spermatid adhesion and sperm release at spermiation. Down-regulation of sFRP1 during testicular development was found to coincide with the onset of the first wave of spermiation at approximately age 45 d postpartum, implying that sFRP1 might be correlated with elongated spermatid adhesion conferred by the apical ES before spermiation. Indeed, administration of sFRP1 recombinant protein to the testis in vivo delayed spermiation, which was accompanied by down-regulation of phosphorylated (p)-focal adhesion kinase (FAK)-Tyr397 and retention of nectin-3 adhesion protein at the apical ES. To further investigate the functional relationship between p-FAK-Tyr397 and localization of nectin-3, we overexpressed sFRP1 using lentiviral vectors in the Sertoli-germ cell coculture system. Consistent with the in vivo findings, overexpression of sFRP1 induced down-regulation of p-FAK-Tyr397, leading to a decline in phosphorylation of nectin-3. In summary, this report highlights the critical role of sFRP

  18. Propagation of ultrasonic guided waves in lap-shear adhesive joints

    NASA Astrophysics Data System (ADS)

    Lanza di Scalea, Francesco; Rizzo, Piervincenzo; Marzani, Alessandro

    2004-07-01

    This paper deals with the propagation of ultrasonic guided waves in adhesively-bonded lap-shear joints. The topic is relevant to ultrasonic bond inspection in aerospace components. Specifically, the propagation of the lowest-order, antisymmetric a0 mode through the joint is examined. This mode can be easily generated and detected in the field due to the predominant out-of-plane displacements at the surface of the test piece. An important aspect is the mode conversion at the boundaries between the single-plate adherends and the multilayer overlap. The a0 strength of transmission is studied for three different bond states in aluminum joints, namely a fully cured adhesive bond, a poorly cured adhesive bond, and a slip bond. Theoretical predictions based on the Global Matrix Method indicate that the dispersive behavior of the guided waves in the multilayer overlap is highly dependent on bond state. Experimental tests of the joints are conducted by a hybrid, broadband laser/air-coupled ultrasonic setup in a through-transmission configuration. This system does not require any wet coupling and it can be moved flexibly across the test piece. The Gabor Wavelet transform is employed to extract energy transmission coefficients in the 100 kHz - 1.4 MHz range for the three different bond states examined. The cross-sectional mode shapes of the guided waves are shown to have a substantial role in the energy transfer through the joint. A rationale for the selection of the a0 excitation frequencies highly sensitive to bond state will be given.

  19. Comparison of Peritoneal Adhesion Formation in Bowel Retraction by Cotton Towels Versus the Silicone Lap Pak Device in a Rabbit Model

    PubMed Central

    Liu, Brian G.; Ruben, Dawn S.; Renz, Wolfgang; Santillan, Antonio; Kubisen, Steven J.; Harmon, John W.

    2011-01-01

    Objective: Manipulation of cotton operating room towels within the abdominal cavity in open abdominal surgery has been associated with the formation of peritoneal adhesions. In a rabbit model, the use of standard cotton operating room towels is compared to the Lap Pak, a silicone bowel-packing device, to determine the potential for reducing the risk of adhesions. Methods: Thirty rabbits were randomly assigned to 3 groups. The rabbits underwent a sham surgery with incision only (n = 10), placement of operating room towels (n = 10), or placement of a Lap Pak (n = 10). After 14 days, the rabbits were sacrificed and the peritoneal cavity explored for adhesions. The number, tenacity, ease of dissection, and density of adhesions were recorded, and the adhesions quantitatively graded using a Modified Hopkins Adhesion scoring system. Results: The operating room towel group had an average adhesion score of 2.5, and 8 (80%) rabbits developed adhesions. The sham group had an average adhesion score of 0.3 and one rabbit (10%) developed adhesions. The Lap Pak group had an average adhesion score of 0.2 and 1 rabbit (10%) developed adhesions. The frequency and severity of adhesions in the operating room towel group were significantly greater from that of the baseline sham group. There was no significant difference between the Lap Pak and sham groups. Conclusions: In this rabbit laparotomy model, the use of the Lap Pak to retract the bowels resulted in significantly fewer adhesions compared to cotton operating room towels. Lap Pak may be beneficial for bowel packing in general abdominal surgeries. PMID:22096614

  20. Effect of adhesive thickness and surface treatment on shear strength on single lap joint Al/CFRP using adhesive of epoxy/Al fine powder

    NASA Astrophysics Data System (ADS)

    Diharjo, Kuncoro; Anwar, Miftahul; Tarigan, Roy Aries P.; Rivai, Ahmad

    2016-02-01

    The objective of this study is to investigate the effect of adhesive thickness and surface treatment on the shear strength and failure type characteristic of single lap joint (SLJ) CFRP/Al using adhesive epoxy/Al-fine-powder. The CFRP was produced by using hand layup method for 30% of woven roving carbon fiber (w/w) and the resin used was bisphenolic. The adhesive was prepared using 12.5% of aluminum fine powder (w/w) in the epoxy adhesive. The powder was mixed by using a mixing machine at 60 rpm for 6 minutes, and then it was used to join the Al plate-2024 and CFRP. The start time to pressure for the joint process was 20 minutes after the application of adhesive on the both of adherends. The variables in this research are adhesive thickness (i.e. 0.2 mm, 0.4 mm, 0.6 mm, 0.8 mm and 1 mm) and surface treatment of adherends (i.e. acetone, chromate sulphuric acid, caustic etch and tucker's reagent). Before shear testing, all specimens were post-cured at 100 °C for 15 minutes. The result shows that the SLJ has the highest shear strength for 0.4 mm of adhesive thickness. When the adhesive thickness is more than 0.4 mm (0.6-1 mm), the shear strength decreases significantly. It might be caused by the property change of adhesive from ductile to brittle. The acetone surface treatment produces the best bonding between the adhesive and adherends (CFRP and Al-plate 2024), and the highest shear strength is 9.31 MPa. The surface treatment give the humidification effect of adherend surfaces by adhesive. The failure characteristic shows that the mixed failure of light-fiber-tear-failure and cohesive-failure are occurred on the high shear strength of SLJ, and the low shear strength commonly has the adhesive-failure type.

  1. Ultrasonic Guided Wave Inspection of Adhesive Joints: a Parametric Study for a Step-Lap Joint

    NASA Astrophysics Data System (ADS)

    Puthillath, Padma Kumar; Kannajosyula, Haraprasad; Lissenden, Cliff J.; Rose, Joseph L.

    2009-03-01

    Adhesively bonded joints are used to connect structural members in aircraft. When subject to loads and environmental conditions these joints undergo deterioration. Being load bearing members, it becomes critical to develop reliable and non-destructive methods for inspecting these adhesive joints. Ultrasonic guided waves, with their mode and frequency tuning possibilities, form an attractive tool for such inspections. Guided wave behavior as observed through dispersion phenomena is dependent on the waveguide dimensions. Since actual structural joints in aircraft involve adherends of different thicknesses and materials, and joints of varied overlap lengths, a robust inspection methodology needs to be tunable for all conditions. A parametric study showing the effect that some key joint parameters, that is the thickness of the adhesive, overlap length, and material parameters, have on the ultrasonic guided wave behavior is presented in this paper. In addition, the influence of defects like cohesive weakness, delamination and kissing bonds and their location on guided wave propagation is investigated. The transmission of ultrasonic guided wave energy is used as a guideline to select optimal conditions for joint inspection.

  2. Lapping slurry

    DOEpatents

    Simandl, R.F.; Upchurch, V.S.; Leitten, M.E.

    1999-01-05

    Improved lapping slurries provide for easier and more thorough cleaning of alumina work pieces, as well as inhibit corrosion of the lapping table and provide for easier cleaning of the lapping equipment. The unthickened lapping slurry comprises abrasive grains such as diamond abrasive dispersed in a carrier comprising water, glycerine, and triethanolamine. The thickened lapping slurry comprises abrasive grains such as diamond abrasive dispersed in a carrier comprising water, glycerine, triethanolamine, a water soluble silicate, and acid. 1 fig.

  3. Lapping slurry

    DOEpatents

    Simandl, Ronald F.; Upchurch, Victor S.; Leitten, Michael E.

    1999-01-01

    Improved lapping slurries provide for easier and more thorough cleaning of alumina workpieces, as well as inhibit corrosion of the lapping table and provide for easier cleaning of the lapping equipment. The unthickened lapping slurry comprises abrasive grains such as diamond abrasive dispersed in a carrier comprising water, glycerine, and triethanolamine. The thickened lapping slurry comprises abrasive grains such as diamond abrasive dispersed in a carrier comprising water, glycerine, triethanolamine, a water soluble silicate, and acid.

  4. Dynamic strain distribution measurement and crack detection of an adhesive-bonded single-lap joint under cyclic loading using embedded FBG

    NASA Astrophysics Data System (ADS)

    Ning, Xiaoguang; Murayama, Hideaki; Kageyama, Kazuro; Wada, Daichi; Kanai, Makoto; Ohsawa, Isamu; Igawa, Hirotaka

    2014-10-01

    In this study, the dynamic strain distribution measurement of an adhesive-bonded single-lap joint was carried out in a cyclic load test using a fiber Bragg grating (FBG) sensor embedded into the adhesive/adherend interface along the overlap length direction. Unidirectional carbon fiber reinforced plastic (CFRP) substrates were bonded by epoxy resin to form the joint, and the FBG sensor was embedded into the surface of one substrate during its curing. The measurement was carried out with a sampling rate of 5 Hz by the sensing system, based on the optical frequency domain reflectometry (OFDR) throughout the test. A finite element analysis (FEA) was performed for the measurement evaluation using a three-dimensional model, which included the embedded FBG sensor. The crack detection method, based on the longitudinal strain distribution measurement, was introduced and performed to estimate the cracks that occurred at the adhesive/adherend interface in the test.

  5. Measurement of longitudinal strain and estimation of peel stress in adhesive-bonded single-lap joint of CFRP adherend using embedded FBG sensor

    NASA Astrophysics Data System (ADS)

    Ning, X.; Murayama, H.; Kageyama, K.; Uzawa, K.; Wada, D.

    2012-04-01

    In this research, longitudinal strain and peel stress in adhesive-bonded single-lap joint of carbon fiber reinforced plastics (CFRP) were measured and estimated by embedded fiber Bragg grating (FBG) sensor. Two unidirectional CFRP substrates were bonded by epoxy to form a single-lap configuration. The distributed strain measurement system is used. It is based on optical frequency domain reflectometry (OFDR), which can provide measurement at an arbitrary position along FBG sensors with the high spatial resolution. The longitudinal strain was measured based on Bragg grating effect and the peel stress was estimated based on birefringence effect. Special manufacturing procedure was developed to ensure the embedded location of FBG sensor. A portion of the FBG sensor was embedded into one of CFRP adherends along fiber direction and another portion was kept free for temperature compensation. Photomicrograph of cross-section of specimen was taken to verify the sensor was embedded into proper location after adherend curing. The residual strain was monitored during specimen curing and adhesive joint bonding process. Tensile tests were carried out and longitudinal strain and peel stress of the bondline are measured and estimated by the embedded FBG sensor. A two-dimensional geometrically nonlinear finite element analysis was performed by ANSYS to evaluate the measurement precision.

  6. A Semi-Analytical Method for Determining the Energy Release Rate of Cracks in Adhesively-Bonded Single-Lap Composite Joints

    NASA Technical Reports Server (NTRS)

    Yang, Charles; Sun, Wenjun; Tomblin, John S.; Smeltzer, Stanley S., III

    2007-01-01

    A semi-analytical method for determining the strain energy release rate due to a prescribed interface crack in an adhesively-bonded, single-lap composite joint subjected to axial tension is presented. The field equations in terms of displacements within the joint are formulated by using first-order shear deformable, laminated plate theory together with kinematic relations and force equilibrium conditions. The stress distributions for the adherends and adhesive are determined after the appropriate boundary and loading conditions are applied and the equations for the field displacements are solved. Based on the adhesive stress distributions, the forces at the crack tip are obtained and the strain energy release rate of the crack is determined by using the virtual crack closure technique (VCCT). Additionally, the test specimen geometry from both the ASTM D3165 and D1002 test standards are utilized during the derivation of the field equations in order to correlate analytical models with future test results. The system of second-order differential field equations is solved to provide the adherend and adhesive stress response using the symbolic computation tool, Maple 9. Finite element analyses using J-integral as well as VCCT were performed to verify the developed analytical model. The finite element analyses were conducted using the commercial finite element analysis software ABAQUS. The results determined using the analytical method correlated well with the results from the finite element analyses.

  7. Nondestructive inspection in adhesive-bonded joint CFRP using pulsed phase thermography

    NASA Astrophysics Data System (ADS)

    Shin, P. H.; Webb, S. C.; Peters, K. J.

    2013-05-01

    Many forms of damages in fiber reinforcement polymer (FRP) composites are difficult to detect because they occurs in subsurface layers of the composites. One challenging need for inspection capabilities is in adhesively bonded joints between composite components, a common location of premature failure in aerospace structures. This paper investigates pulsed phase thermography (PPT) imaging of fatigue damage in these adhesively bonded joints. Simulated defects were created to calibrate parameters for fatigue loading conditions, PPT imaging parameters, and a damage sizing algorithm for carbon fiber reinforced polymer (CFRP) single lap joints. Afterwards, lap joint specimens were fabricated with varying quality of manufacturing. PPT imaging of the pristine specimens revealed defects such as air bubbles, adhesive thickness variations, and weak bonding surface between the laminate and adhesive. Next, fatigue testing was performed and acquired PPT imaging data identified fatigue induced damage prior to final failure cycles. After failure of each sample, those images were confirmed by visual inspections of failure surface.

  8. PLASMA POLYMER FILMS AS ADHESION PROMOTING PRIMERS FOR ALUMINUM. PART II: STRENGTH AND DURABILITY OF LAP JOINTS

    EPA Science Inventory

    Plasma polymerized hexamethyldisiloxane (HMDSO) films (~800 A in thickness) were deposited onto 6111-T4 aluminum substrates in radio frequency and microwave powered reactors and used as primers for structural adhesive bonding. Processing variables such as substrate pre-treatment,...

  9. The effects of molecular weight on the single lap shear creep and constant strain rate behavior of thermoplastic polyimidesulfone adhesive

    NASA Technical Reports Server (NTRS)

    Dembosky, Stanley K.; Sancaktar, Erol

    1985-01-01

    The bonded shear creep and constant strain rate behaviors of zero, one, and three percent endcapped thermoplastic polyimidesulfone adhesive were examined at room and elevated temperatures. Endcapping was accomplished by the addition of phthalic anhydrides. The primary objective was to determine the effects of molecular weight on the mechanical properties of the adhesive. Viscoelastic and nonlinear elastic constitutive equations were utilized to model the adhesive. Ludwik's and Crochet's relations were used to describe the experimental failure data. The effects of molecular weight changes on the above mentioned mechanical behavior were assessed. The viscoelastic Chase-Goldsmith and elastic nonlinear relations gave a good fit to the experimental stress strain behavior. Crochet's relations based on Maxwell and Chase-Goldsmith models were fit to delayed failure data. Ludwik's equations revealed negligible rate dependence. Ultimate stress levels and the safe levels for creep stresses were found to decrease as molecular weight was reduced.

  10. Bond of fiber reinforced plastic (FRP) rods to concrete

    SciTech Connect

    Al-Zahrani, M.M.; Nanni, A.; Al-Dulaijan, S.U.; Bakis, C.E.

    1996-11-01

    The bond behavior between FRP rods and concrete is one of the most important aspects to predicting the short- and long-term performance of FRP reinforced concrete structures including development and transfer length. In this research, the direct pull-out test was used to study the FRP/concrete bond behavior. This method allows measurement of the loaded- and free-end slip of the FRP rod and placement of a strain probe inside the rod to measure internal strain distribution in both axial and radial directions along the bonded length without affecting the FRP/concrete interface. Knowledge of strain distribution is necessary to study the load transfer mechanism between FRP rod and concrete. The scope of this paper include experimental results obtained with the direct pull-out test using 12.7 mm glass and carbon FRP rods with smooth and axisymmetrical deformed surfaces. The typical results are given as nominal bond and shear stress vs. free- and loaded-end slip. Experimental results obtained from strain probes used during pull-out tests are also presented as nominal bond and shear stress vs. strain. For smooth rods, friction is the main controlling factor. For deformed rods, bond tends to be controlled by strength and mechanical action of the axisymmetrical deformations rather than adhesion and friction. The strength of concrete appears to have no effect on the bond strength and failure mechanism of these particular machined FRP rods when concrete splitting is avoided.

  11. FRP : Strengthened RC Structures

    NASA Astrophysics Data System (ADS)

    Teng, J. G.; Chen, J. F.; Smith, S. T.; Lam, L.

    2002-01-01

    The strengthening of reinforced concrete (RC) structures using advanced fibre-reinforced polymer (FRP) composites, and in particular the behaviour of FRP-strengthened RC structures is a topic which has become very popular in recent years. This popularity has arisen due to the need to maintain and upgrade essential infrastructure in all parts of the world, combined with the well-known advantages of FRP composites, such as good corrosion resistance and ease for site handling due to their light weight. The continuous reduction in the material cost of FRP composites has also contributed to their popularity. While a great amount of research now exists in the published literature on this topic, it is scattered in various journals and conference proceedings. This book therefore provides the first ever comprehensive, state-of-the-art summary of the existing research on FRP strengthening of RC structures, with the emphasis being on structural behaviour and strength models. The main topics covered include: Bond behaviour Flexural and shear strengthening of beams Column strengthening Flexural strengthening of slabs. For each area, the methods of strengthening are discussed, followed by a description of behaviour and failure modes and then the presentation of rational design recommendations, for direct use in practical design of FRP strengthening measures. Researchers, practicing engineers, code writers and postgraduate students in structural engineering and construction materials, as well as consulting firms, government departments, professional bodies, contracting firms and FRP material suppliers will find this an invaluable resource.

  12. Dynamic response of RC beams strengthened with near surface mounted Carbon-FRP rods subjected to damage

    NASA Astrophysics Data System (ADS)

    Capozucca, R.; Blasi, M. G.; Corina, V.

    2015-07-01

    Near surface mounted (NSM) technique with fiber reinforced polymer (FRP) is becoming a common method in the strengthening of concrete beams. The availability of NSM FRP technique depends on many factors linked to materials and geometry - dimensions of the rods used, type of FRP material employed, rods’ surface configuration, groove size - and to adhesion between concrete and FRP rods. In this paper detection of damage is investigated measuring the natural frequency values of beam in the case of free-free ends. Damage was due both to reduction of adhesion between concrete and carbon-FRP rectangular and circular rods and cracking of concrete under static bending tests on beams. Comparison between experimental and theoretical frequency values evaluating frequency changes due to damage permits to monitor actual behaviour of RC beams strengthened by NSM CFRP rods.

  13. Dechlorination of Chloral Hydrate Is Influenced by the Biofilm Adhesin Protein LapA in Pseudomonas putida LF54

    PubMed Central

    Zhang, Wanjun; Huhe; Pan, Yuanbai; Toyofuku, Masanori; Nomura, Nobuhiko; Nakajima, Toshiaki

    2013-01-01

    LapA is the largest surface adhesion protein of Pseudomonas putida that initiates biofilm formation. Here, by using transposon insertion mutagenesis and a conditional lapA mutant, we demonstrate for the first time that LapA influences chloral hydrate (CH) dechlorination in P. putida LF54. PMID:23603683

  14. Adhesion

    MedlinePlus

    ... adhesions Ovarian cyst References Munireddy S, Kavalukas SL, Barbul A. Intra-abdominal healing: gastrointestinal tract and adhesions. Surg Clin N Am Kulaylat MN, Dayton, MT. Surgical complications. In: Townsend CM Jr, Beauchamp RD, Evers BM, Mattox KL, ...

  15. LAP5 and LAP6 encode anther-specific proteins with similarity to chalcone synthase essential for pollen exine development in Arabidopsis.

    PubMed

    Dobritsa, Anna A; Lei, Zhentian; Nishikawa, Shuh-Ichi; Urbanczyk-Wochniak, Ewa; Huhman, David V; Preuss, Daphne; Sumner, Lloyd W

    2010-07-01

    Pollen grains of land plants have evolved remarkably strong outer walls referred to as exine that protect pollen and interact with female stigma cells. Exine is composed of sporopollenin, and while the composition and synthesis of this biopolymer are not well understood, both fatty acids and phenolics are likely components. Here, we describe mutations in the Arabidopsis (Arabidopsis thaliana) LESS ADHESIVE POLLEN (LAP5) and LAP6 that affect exine development. Mutation of either gene results in abnormal exine patterning, whereas pollen of double mutants lacked exine deposition and subsequently collapsed, causing male sterility. LAP5 and LAP6 encode anther-specific proteins with homology to chalcone synthase, a key flavonoid biosynthesis enzyme. lap5 and lap6 mutations reduced the accumulation of flavonoid precursors and flavonoids in developing anthers, suggesting a role in the synthesis of phenolic constituents of sporopollenin. Our in vitro functional analysis of LAP5 and LAP6 using 4-coumaroyl-coenzyme A yielded bis-noryangonin (a commonly reported derailment product of chalcone synthase), while similar in vitro analyses using fatty acyl-coenzyme A as the substrate yielded medium-chain alkyl pyrones. Thus, in vitro assays indicate that LAP5 and LAP6 are multifunctional enzymes and may play a role in both the synthesis of pollen fatty acids and phenolics found in exine. Finally, the genetic interaction between LAP5 and an anther gene involved in fatty acid hydroxylation (CYP703A2) demonstrated that they act synergistically in exine production. PMID:20442277

  16. Pultrusion of smart FRP composites

    NASA Astrophysics Data System (ADS)

    Kalamkarov, Alexander L.; MacDonald, Douglas O.; Westhaver, Paul A. D.

    1997-06-01

    A laboratory scale pultrusion process has been developed to fabricate smart fiber reinforced plastic (FRP) materials. Microstructural analyses of the smart pultruded FRP was carried out using both an optical microscope and a Scanning Electron Microscope. The tensile properties and shear strength, i.e. modulus and strength, of pultruded carbon/vinylester and glass/vinylester rods were determined through mechanical testing. Testing was carried out on baseline pultruded samples, as well as those containing one and two embedded optical fibers. The pultruded carbon reinforced rods with and without optical fiber showed higher shear and tensile strength, as well as greater tensile modulus than did the glass fiber analogue. An embedded optical fiber did not have a significant effect upon the tensile properties of either glass or carbon pultruded FRP rod, but it slightly affected the shear strength of the glass fiber rods. Increased numbers of embedded optical fibers in the FRP rods had a more pronounced influence upon the shear strength. The interfaces between the resin matrix and the buffer coating on the optical fibers were examined and interpreted in terms of the coating's ability to resist high temperatures and its compatibility with resin matrix. Polyimide buffers proved to be superior to acrylate buffers.

  17. New primers for adhesive bonding of aluminum alloys

    NASA Technical Reports Server (NTRS)

    Burrell, B. W.; Port, W. S.

    1971-01-01

    Synthetic polypeptide adhesive primers are effective, with high temperature epoxy resins, at temperatures from 100 deg to 300 deg C. Lap-shear failure loads and lap-shear strength of both primers are discussed.

  18. Crack-induced debonding failure in fiber reinforced plastics (FRP) strengthened concrete beams: Experimental and theoretical analysis

    NASA Astrophysics Data System (ADS)

    Pan, Jinlong

    taper end on the crack-induced debonding behavior, finite element analysis is first conducted to investigate the stress distributions along the concrete/adhesive interface and along the FRP plate. An analytical model for debonding of tapered FRP plate is then developed. The analytical and FEM results are in good agreement with one another. Using the analytical model, the effect of the taper configuration and FRP bond length on debonding behavior has been studied. (Abstract shortened by UMI.)

  19. A review on strengthening steel beams using FRP under fatigue.

    PubMed

    Kamruzzaman, Mohamed; Jumaat, Mohd Zamin; Sulong, N H Ramli; Islam, A B M Saiful

    2014-01-01

    In recent decades, the application of fibre-reinforced polymer (FRP) composites for strengthening structural elements has become an efficient option to meet the increased cyclic loads or repair due to corrosion or fatigue cracking. Hence, the objective of this study is to explore the existing FRP reinforcing techniques to care for fatigue damaged structural steel elements. This study covers the surface treatment techniques, adhesive curing, and support conditions under cyclic loading including fatigue performance, crack propagation, and failure modes with finite element (FE) simulation of the steel bridge girders and structural elements. FRP strengthening composites delay initial cracking, reduce the crack growth rate, extend the fatigue life, and decrease the stiffness decay with residual deflection. Prestressed carbon fibre-reinforced polymer (CFRP) is the best strengthening option. End anchorage prevents debonding of the CRRP strips at the beam ends by reducing the local interfacial shear and peel stresses. Hybrid-joint, nanoadhesive, and carbon-flex can also be attractive for strengthening systems. PMID:25243221

  20. A Review on Strengthening Steel Beams Using FRP under Fatigue

    PubMed Central

    Jumaat, Mohd Zamin; Ramli Sulong, N. H.

    2014-01-01

    In recent decades, the application of fibre-reinforced polymer (FRP) composites for strengthening structural elements has become an efficient option to meet the increased cyclic loads or repair due to corrosion or fatigue cracking. Hence, the objective of this study is to explore the existing FRP reinforcing techniques to care for fatigue damaged structural steel elements. This study covers the surface treatment techniques, adhesive curing, and support conditions under cyclic loading including fatigue performance, crack propagation, and failure modes with finite element (FE) simulation of the steel bridge girders and structural elements. FRP strengthening composites delay initial cracking, reduce the crack growth rate, extend the fatigue life, and decrease the stiffness decay with residual deflection. Prestressed carbon fibre-reinforced polymer (CFRP) is the best strengthening option. End anchorage prevents debonding of the CRRP strips at the beam ends by reducing the local interfacial shear and peel stresses. Hybrid-joint, nanoadhesive, and carbon-flex can also be attractive for strengthening systems. PMID:25243221

  1. FRP equipment for treating waste incineration gases

    SciTech Connect

    Kelley, D.H. )

    1994-01-01

    Pollution control equipment made from fiberglass-reinforced plastic (FRP) has performed outstandingly in industrial waste incineration since the mid-1970s. This success has been due primarily to continuous improvement in FRP chemical and thermal resistance. Recent improvements, such as increased resistance to sodium hypochlorite and hydrogen fluoride and the ability to tolerate higher operating temperatures, are discussed in case histories.

  2. Flexibilized copolyimide adhesives

    NASA Technical Reports Server (NTRS)

    Progar, Donald J.; St.clair, Terry L.

    1988-01-01

    Two copolyimides, LARC-STPI and STPI-LARC-2, with flexible backbones were processed and characterized as adhesives. The processability and adhesive properties were compared to those of a commercially available form of LARC-TPI. Lap shear specimens were fabricated using adhesive tape prepared from each of the three polymers. Lap shear tests were performed at room temperature, 177 C, and 204 C before and after exposure to water-boil and to thermal aging at 204 C for up to 1000 hours. The three adhesive systems possess exceptional lap shear strengths at room temperature and elevated temperatures both before and after thermal exposure. LARC-STPI, because of its high glass transition temperature provided high lap shear strengths up to 260 C. After water-boil, LARC-TPI exhibited the highest lap shear strengths at room temperature and 177 C, whereas the LARC-STPI retained a higher percentage of its original strength when tested at 204 C. These flexible thermoplastic copolyimides show considerable potential as adhesives based on this study and because of the ease of preparation with low cost, commercially available materials.

  3. Review on failure prediction techniques of composite single lap joint

    NASA Astrophysics Data System (ADS)

    Ab Ghani A., F.; Rivai, Ahmad

    2016-03-01

    Adhesive bonding is the most appropriate joining method in construction of composite structures. The use of reliable design and prediction technique will produce better performance of bonded joints. Several papers from recent papers and journals have been reviewed and synthesized to understand the current state of the art in this area. It is done by studying the most relevant analytical solutions for composite adherends with start of reviewing the most fundamental ones involving beam/plate theory. It is then extended to review single lap joint non linearity and failure prediction and finally on the failure prediction on composite single lap joint. The review also encompasses the finite element modelling part as tool to predict the elastic response of composite single lap joint and failure prediction numerically.

  4. Deformations and strains in a thick adherend lap joint

    NASA Technical Reports Server (NTRS)

    Post, D.; Czarnek, R.; Wood, J. D.; Joh, D.

    1988-01-01

    Displacement fields in a thick adherend lap joint were measured by high-sensitivity moire interferometry. Contour maps of in-plane U and V displacements were obtained across adhesive and adherend surfaces. Loads ranged from a modest load to a near-failure load. Quantitative results are given for displacements and strains in the adhesive and along the adhesive/adherend boundary lines. The results show nearly constant shear strain in the adhesive, nonlinear strains as a function of load or average shear stress, and viscoelastic or time-dependent response. Longitudinal normal strains in the adhesive are nearly two orders of magnitude less than the shear strains. With its subwavelength displacement resolution and high spatial resolution, moire interferometry is especially well suited for deformation studies of adhesive joints.

  5. FRP debonding monitoring using OTDR techniques

    NASA Astrophysics Data System (ADS)

    Hou, Shuang; Cai, C. S. Steve; Ou, Jinping

    2009-07-01

    Debonding failure has been reported as the dominant failure mode for FRP strengthening in flexure. This paper explores a novel debonding monitoring method for FRP strengthened structures by means of OTDR-based fiber optic technology. Interface slip as a key factor in debonding failures will be measured through sensing optic fibers, which is instrumented in the interface between FRP and concrete in the direction perpendicular to the FRP filaments. Slip in the interface will induce power losses in the optic fiber signals at the intersection point of the FRP strip and the sensing optic fiber and the signal change will be detected through OTDR device. The FRP double shear tests and three-point bending tests were conducted to verify the effectiveness of the proposed monitoring method. It is found that the early bebonding can be detected before it causes the interface failure. The sensing optic fiber shows signal changes in the slip value at about 36~156 micrometer which is beyond sensing capacity of the conventional sensors. The tests results show that the proposed method is feasible in slip measurement with high sensitivity, and would be cost effective because of the low price of sensors used, which shows its potential of large-scale applications in civil infrastructures, especially for bridges.

  6. Global-Local Finite Element Analysis of Bonded Single-Lap Joints

    NASA Technical Reports Server (NTRS)

    Kilic, Bahattin; Madenci, Erdogan; Ambur, Damodar R.

    2004-01-01

    Adhesively bonded lap joints involve dissimilar material junctions and sharp changes in geometry, possibly leading to premature failure. Although the finite element method is well suited to model the bonded lap joints, traditional finite elements are incapable of correctly resolving the stress state at junctions of dissimilar materials because of the unbounded nature of the stresses. In order to facilitate the use of bonded lap joints in future structures, this study presents a finite element technique utilizing a global (special) element coupled with traditional elements. The global element includes the singular behavior at the junction of dissimilar materials with or without traction-free surfaces.

  7. Tubular lap joints for wind turbine applications

    SciTech Connect

    Reedy, E.D. Jr.; Guess, T.R.

    1990-01-01

    A combined analytical/experimental study of the strength of thick- walled, adhesively bonded PMMA-to-aluminum and E-glass/epoxy composite-to-aluminum tubular lap joints under axial load has been conducted. Test results include strength and failure mode data. Moreover, strain gages placed along the length of the outer tubular adherend characterize load transfer from one adherend to the other. The strain gage data indicate that load transfer is nonuniform and that the relatively compliant PMMA has the shorter load transfer length. Strains determined by a finite element analysis of the tested joints are in excellent agreement with those measured. Calculated bond stresses are highest in the region of observed failure, and extensive bond yielding is predicted in the E- glass/epoxy composite-to-aluminum joint prior to joint failure. 4 refs., 13 figs., 1 tab.

  8. Time-dependent behavior of RC beams strengthened with externally bonded FRP plates: interfacial stresses analysis

    NASA Astrophysics Data System (ADS)

    Benyoucef, S.; Tounsi, A.; Benrahou, K. H.; Adda Bedia, E. A.

    2007-12-01

    External bonding of fibre reinforced polymer (FRP) composites has becomes a popular technique for strengthening concrete structures all over the world. An important failure mode of such strengthened members is the debonding of the FRP plate from the concrete due to high interfacial stresses near the plate ends. For correctly installed FRP plate, failure will occur within the concrete. Accurate predictions of the interfacial stresses are prerequisite for designing against debonding failures. In particular, the interfacial stresses between a beam and soffit plate within the linear elastic range have been addressed by numerous analytical investigations. In this study, the time-dependent behavior of RC beams bonded with thin composite plate was investigated theoretically by including the effect of the adherend shear deformations. The time effects considered here are those that arise from shrinkage and creep deformations of the concrete. This paper presents an analytical model for the interfacial stresses between RC beam and a thin FRP plate bonded to its soffit. The influence of creep and shrinkage effect relative to the time of the casting and the time of the loading of the beams is taken into account. Numerical results from the present analysis are presented to illustrate the significance of time-dependent of adhesive stresses.

  9. Roles of Cyclic Di-GMP and the Gac System in Transcriptional Control of the Genes Coding for the Pseudomonas putida Adhesins LapA and LapF

    PubMed Central

    Martínez-Gil, Marta; Ramos-González, María Isabel

    2014-01-01

    LapA and LapF are large extracellular proteins that play a relevant role in biofilm formation by Pseudomonas putida. Current evidence favors a sequential model in which LapA is first required for the initial adhesion of individual bacteria to a surface, while LapF participates in later stages of biofilm development. In agreement with this model, lapF transcription was previously shown to take place at late times of growth and to respond to the stationary-phase sigma factor RpoS. We have now analyzed the transcription pattern of lapA and other regulatory elements that influence expression of both genes. The lapA promoter shows a transient peak of activation early during growth, with a second increase in stationary phase that is independent of RpoS. The same pattern is observed in biofilms although expression is not uniform in the population. Both lapA and lapF are under the control of the two-component regulatory system GacS/GacA, and their transcription also responds to the intracellular levels of the second messenger cyclic diguanylate (c-di-GMP), although in surprisingly reverse ways. Whereas expression from the lapA promoter increases with high levels of c-di-GMP, the opposite is true for lapF. The transcriptional regulator FleQ is required for the modulation of lapA expression by c-di-GMP but has a minor influence on lapF. This work represents a further step in our understanding of the regulatory interactions controlling biofilm formation in P. putida. PMID:24488315

  10. Infrared Scanning of FRP Composite Members

    NASA Astrophysics Data System (ADS)

    Halabe, U. B.; Bangalore, G.; GangaRao, H. V. S.; Klinkhachorn, P.

    2003-03-01

    Fiber Reinforced Polymer (FRP) composite is rapidly emerging as an alternative material for the infrastructure industry, and as a supplement to the conventional material such as steel, concrete, and timber. However, the long-term behavior of these materials has not been fully understood. In order to study the durability issues, it is important to develop a nondestructive evaluation (NDE) system for continuous monitoring of structural members built with FRP materials. This paper presents the results of an experimental study on delamination detection in FRP composite members using infrared thermography. Simulated delaminations of various sizes were inserted into several FRP box sections and deck sections during the pultrusion process to create subsurface defects. The defective specimens were then tested in the laboratory using infrared thermography to predict the location and planar extent of these subsurface delaminations. The infrared tests yielded good results, which indicate that the technique can be developed for long-term in-service monitoring of FRP structural members in the field environment.

  11. Nonlinear Analysis of Bonded Composite Single-LAP Joints

    NASA Technical Reports Server (NTRS)

    Oterkus, E.; Barut, A.; Madenci, E.; Smeltzer, S. S.; Ambur, D. R.

    2004-01-01

    This study presents a semi-analytical solution method to analyze the geometrically nonlinear response of bonded composite single-lap joints with tapered adherend edges under uniaxial tension. The solution method provides the transverse shear and normal stresses in the adhesive and in-plane stress resultants and bending moments in the adherends. The method utilizes the principle of virtual work in conjunction with von Karman s nonlinear plate theory to model the adherends and the shear lag model to represent the kinematics of the thin adhesive layer between the adherends. Furthermore, the method accounts for the bilinear elastic material behavior of the adhesive while maintaining a linear stress-strain relationship in the adherends. In order to account for the stiffness changes due to thickness variation of the adherends along the tapered edges, their in-plane and bending stiffness matrices are varied as a function of thickness along the tapered region. The combination of these complexities results in a system of nonlinear governing equilibrium equations. This approach represents a computationally efficient alternative to finite element method. Comparisons are made with corresponding results obtained from finite-element analysis. The results confirm the validity of the solution method. The numerical results present the effects of taper angle, adherend overlap length, and the bilinear adhesive material on the stress fields in the adherends, as well as the adhesive, of a single-lap joint

  12. Simulation of the FRP Product

    NASA Astrophysics Data System (ADS)

    Paugam, Ronan; Wooster, Martin; Johnston, Joshua; Gastellu-Etchegorry, Jean-Philippe

    2014-05-01

    Among the different alternative of remote sensing technologies for estimating global fire carbon emission, the thermally-based measures of fire radiative power (FRP; and its temporal integration, fire radiative energy or FRE) has the potential to capture the spatial and temporal variability of fire occurrence. It was shown that a strong linear relationship exists between the total amount of thermal radiant energy emitted by a fire over its lifetime (the FRE) and the amount of fuel burned. Since all vegetation is 50(±5)% carbon, it is therefore in theory a potentially simple matter to measure the FRE and estimate the carbon release. In a fire inventory like the Global Fire Assimilation System (GFAS), the total carbon emission is derived from a gridded FRE product forced by the MODIS observation, using Ct = β x FRE x Ef, where β is a conversion factor initially estimated from small scale experiment as β=0.368 and later derived for different bio dome by comparison with the Global Fire Emission Database (GFED). The sensitivities of the above equation to (i) different types of fire activity (ie, flaming, smoldering, torching), (ii) sensor view angles or (iii) soot/smoke absorption have not yet been well studied. The investigation of these types of sensitivity, and of the information content of thermal IR observations of actively burning fires in general, is one of the primary subjects of this study. Our approach is based on a combination of observational work and simulations conducted via the linkage of different fire models and the 3D radiative transfer (RT) model DART operating in the thermal domain. The radiation properties of a fire as seen from above its plume (e.g. space/air borne sensor) depend on the temperature distribution, the gas concentration (mainly CO2, H2O), and the amount, shape, distribution and optical properties of the soot particles in the flame (where they are emitting) and in the cooling plume (where they are mainly absorbing). While gas and

  13. Cashier/Checker Learning Activity Packets (LAPs).

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    Twenty-four learning activity packets (LAPs) are provided for six areas of instruction in a cashier/checker program. Section A, Orientation, contains an LAP on exploring the job of cashier-checker. Section B, Operations, has nine LAPs, including those on operating the cash register, issuing trading stamps, and completing the cash register balance…

  14. Additive manufacturing of tools for lapping glass

    NASA Astrophysics Data System (ADS)

    Williams, Wesley B.

    2013-09-01

    Additive manufacturing technologies have the ability to directly produce parts with complex geometries without the need for secondary processes, tooling or fixtures. This ability was used to produce concave lapping tools with a VFlash 3D printer from 3D Systems. The lapping tools were first designed in Creo Parametric with a defined constant radius and radial groove pattern. The models were converted to stereolithography files which the VFlash used in building the parts, layer by layer, from a UV curable resin. The tools were rotated at 60 rpm and used with 120 grit and 220 grit silicon carbide lapping paste to lap 0.750" diameter fused silica workpieces. The samples developed a matte appearance on the lapped surface that started as a ring at the edge of the workpiece and expanded to the center. This indicated that as material was removed, the workpiece radius was beginning to match the tool radius. The workpieces were then cleaned and lapped on a second tool (with equivalent geometry) using a 3000 grit corundum aluminum oxide lapping paste, until a near specular surface was achieved. By using lapping tools that have been additively manufactured, fused silica workpieces can be lapped to approach a specified convex geometry. This approach may enable more rapid lapping of near net shape workpieces that minimize the material removal required by subsequent polishing. This research may also enable development of new lapping tool geometry and groove patterns for improved loose abrasive finishing.

  15. Ultrasonic Evaluation of Thermal Degradation in Adhesive Bonds

    NASA Technical Reports Server (NTRS)

    Lih, Shyh-Shiuh; Mal, Ajit K.; Bar-Cohen, Yoseph

    1994-01-01

    The critical role played by adhesive bonds in lap joints is well known. A good knowledge of the mechanical properties of adhesive bonds in lap joints is a prerequisite to the design and reliable prediction of the performance of these bonded structures. Furthermore, the lap joint may be subject to high-temperature environments in service. Early detection of the degree of thermal degradation in adhesive bonds is required under these circumstances. A variety of ultrasonic nondestructive evaluation (NDE) techniques can be used to determine the thickness and the elastic moduli of adhesively bonded joints. In this paper we apply a previously developed technique based on the leaky Lamb wave (LLW) experiment to investigate the possibility of characterizing the thermal degradation of adhesive bonds in lap joints. The degradation of the adhesive bonds is determined through comparison between experimental data and theoretical calculations.

  16. How Tongue Size and Roughness Affect Lapping

    NASA Astrophysics Data System (ADS)

    Hubbard, M. J.; Hay, K. M.

    2012-10-01

    The biomechanics of domestic cat lapping (Felis catus) and domestic dog lapping (Canis familiaris) is currently under debate. Lapping mechanics in vertebrates with incomplete cheeks, such as cats and dogs, is a balance of inertia and the force of gravity likely optimized for ingestion and physical necessities. Physiology dictates vertebrate mass, which dictates vertebrate tongue size, which dictates lapping mechanics to achieve optimum liquid ingestion; with either touch lapping, scooping, or a hybrid lapping method. The physics of this optimized system then determines how high a column of liquid can be raised before it collapses due to gravity, and therefore, lapping frequency. Through tongue roughness model variation experiments it was found that pore-scale geometrical roughness does not appear to affect lapping or liquid uptake. Through tongue size model variation experiments it was found that there is a critical tongue radius in the range of 25 mm to 35 mm above which touch lapping is no longer an efficient way to uptake liquid. Vertebrates with incomplete cheeks may use a touch lapping method to ingest water if their tongue radius is less than this critical radius and use an alternative ingestion method if their tongue radius is larger.

  17. A critical examination of stresses in an elastic single lap joint

    NASA Technical Reports Server (NTRS)

    Cooper, P. A.; Sawyer, J. W.

    1979-01-01

    The results of an approximate nonlinear finite-element analysis of a single lap joint are presented and compared with the results of a linear finite-element analysis, and the geometric nonlinear effects caused by the load-path eccentricity on the adhesive stress distributions are determined. The results from finite-element, Goland-Reissner, and photoelastic analyses show that for a single lap joint the effect of the geometric nonlinear behavior of the joint has a sizable effect on the stresses in the adhesive. The Goland-Reissner analysis is sufficiently accurate in the prediction of stresses along the midsurface of the adhesive bond to be used for qualitative evaluation of the influence of geometric or material parametric variations. Detailed stress distributions in both the adherend and adhesive obtained from the finite-element analysis are presented to provide a basis for comparison with other solution techniques.

  18. Loose abrasive slurries for optical glass lapping

    SciTech Connect

    Neauport, Jerome; Destribats, Julie; Maunier, Cedric; Ambard, Chrystel; Cormont, Philippe; Pintault, B.; Rondeau, Olivier

    2010-10-20

    Loose abrasive lapping is widely used to prepare optical glass before its final polishing. We carried out a comparison of 20 different slurries from four different vendors. Slurry particle sizes and morphologies were measured. Fused silica samples were lapped with these different slurries on a single side polishing machine and characterized in terms of surface roughness and depth of subsurface damage (SSD). Effects of load, rotation speed, and slurry concentration during lapping on roughness, material removal rate, and SSD were investigated.

  19. Nonlinear micromechanics-based finite element analysis of the interfacial behaviour of FRP-strengthened reinforced concrete beams

    NASA Astrophysics Data System (ADS)

    Abd El Baky, Hussien

    --slip relation is developed considering the interaction between the interfacial normal and shear stress components along the bonded length. A new approach is proposed to describe the entire tau-s relationship based on three separate models. The first model captures the shear response of an orthotropic FRP laminate. The second model simulates the shear characteristics of an adhesive layer, while the third model represents the shear nonlinearity of a thin layer inside the concrete, referred to as the interfacial layer. The proposed bond--slip model reflects the geometrical and material characteristics of the FRP, concrete, and adhesive layers. Two-dimensional and three-dimensional nonlinear displacement-controlled finite element (FE) models are then developed to investigate the flexural and FRP/concrete interfacial responses of FRP-strengthened reinforced concrete beams. The three-dimensional finite element model is created to accommodate cases of beams having FRP anchorage systems. Discrete interface elements are proposed and used to simulate the FRP/concrete interfacial behaviour before and after cracking. The FE models are capable of simulating the various failure modes, including debonding of the FRP either at the plate end or at intermediate cracks. Particular attention is focused on the effect of crack initiation and propagation on the interfacial behaviour. This study leads to an accurate and refined interpretation of the plate-end and intermediate crack debonding failure mechanisms for FRP-strengthened beams with and without FRP anchorage systems. Finally, the FE models are used to conduct a parametric study to generalize the findings of the FE analysis. The variables under investigation include two material characteristics; namely, the concrete compressive strength and axial stiffness of the FRP laminates as well as three geometric properties; namely, the steel reinforcement ratio, the beam span length and the beam depth. The parametric study is followed by a statistical

  20. Acetylene-terminated polyimide adhesives

    NASA Technical Reports Server (NTRS)

    Hanky, A. O.; St. Clair, T. L.

    1983-01-01

    The nadic-encapped LARC-43 addition polyimide exhibits excellent flow, is easy to process, and can be utilized for short terms at temperatures up to 593 C. It retains good lap shear strength as an adhesive for titanium after aging in air up to 125 hours at 316 C; but lap shear strength degrades with longer exposures at that temperature. Thermid 600, an addition polyimide that is acetylene encapped, exhibits thermomechanical properties even after long term exposure in at air at 316 C. An inherent drawback of this system is that it has a narrow processing window. An acetylene encapped, addition polyimide which is a hybrid of these two systems was developed. It has good retention of strength after long term aging and is easily processed. The synthesis and characterization of various molecular weight oligomers of this system are discussed as well as the bonding, aging, and testing of lap shear adhesive samples. Previously announced in STAR as N83-18910

  1. Acetylene-terminated polyimide adhesives

    NASA Technical Reports Server (NTRS)

    Hanky, A. O.

    1983-01-01

    The nadic-encapped LARC-13 addition polyimide exhibits excellent flow, is easy to process, and can be utilized for short terms at temperatures up to 593 C. It retains good lap shear strength as an adhesive for titanium after aging in air up to 125 hours at 316 C; but lap shear strength degrades with longer exposures at that temperature. Thermid 600, an addition polyimide that is acetylene encapped, exhibits thermomechanical properties even after long term exposure in at air at 316 C. An inherent drawback of this system is that it has a narrow processing window. An acetylene encapped, addition polyimide which is a hybrid of these two systems was developed. It has good retention of strength after long term aging and is easily processed. The synthesis and characterization of various molecular weight oligomers of this system are discussed as well as the bonding, aging, and testing of lap shear adhesive samples.

  2. Gas permeation and performance of an FRP cryostat

    NASA Astrophysics Data System (ADS)

    Okada, Toichi; Nishijima, Shigehiro; Fujioka, Kouji; Kuraoka, Yasurou

    The causes of degradation in the vacuum within an FRP cryostat, a device useful in aerospace engineering because of its light weight, were studied experimentally from a materials science standpoint. It was found that gas diffusion practically does not occur at cryogenic temperatures. When gas permeation is induced at low temperatures, the main result is a gas leak due to a crack caused by thermal shock or thermal contraction. Reducing the bubbles in the FRP material during its manufacture should increase its crack resistance. Gas diffusion is a problem at room temperature because the helium gas diffusion rate is large considering the degree of vacuum. Increasing the glass content decreases the diffusion rate. Outgassing from FRP consists mainly of water from the FRP material. Baking reduces the water content in the FRP and increases its suitability for cryostats.

  3. Shear Strength Prediction of RC Beams Wrapped with Frp

    NASA Astrophysics Data System (ADS)

    Wang, Suyan; Zhou, Yingwu; Li, Hongnan

    During past decades, substantial studies on the external bonding of fiber reinforced polymer (FRP) strips to deficient reinforced concrete (RC) beams have been carried out for the well-known superior properties of the FRP. Several shear prediction models have been established by using the effective strain of the FRP or introducing an ultimate stress discount coefficient. And the latest design concept is the use of stress distribution factor. In this paper, an equivalent effective strain model of the FRP is presented, which contains the concepts of maximum strain, stress distribution factor and critical shear crack angle influences. To develop a simple and accurate approach for such equivalent effective strain, major influenced factors are investigated and analyzed by the statistical independent hypothetic tests on a database of 128 RC beams wrapped by the FRP. Finally, a simple and rational shear design proposal is given, which is more accurate than the existing models using the above database.

  4. Atomic force and super-resolution microscopy support a role for LapA as a cell-surface biofilm adhesin of Pseudomonas fluorescens

    PubMed Central

    Ivanov, Ivan E.; Boyd, Chelsea D.; Newell, Peter D.; Schwartz, Mary E.; Turnbull, Lynne; Johnson, Michael S.; Whitchurch, Cynthia B.; O’Toole, George A.; Camesano, Terri A.

    2012-01-01

    Pseudomonas fluorescence Pf0-1 requires the large repeat protein LapA for stable surface attachment. This study presents direct evidence that LapA is a cell-surface-localized adhesin. Atomic force microscopy (AFM) revealed a significant twofold reduction in adhesion force for mutants lacking the LapA protein on the cell surface compared to the wild-type strain. Deletion of lapG, a gene encoding a periplasmic cysteine protease that functions to release LapA from the cell surface, resulted in a twofold increase in the force of adhesion. Three-dimensional structured illumination microscopy (3D-SIM) revealed the presence of the LapA protein on the cell surface, consistent with its role as an adhesin. The protein is only visualized in the cytoplasm for a mutant of the ABC transporter responsible for translocating LapA to the cell surface. Together, these data highlight the power of combining the use of AFM and 3D-SIM with genetic studies to demonstrate that LapA, a member of a large group of RTX-like repeat proteins, is a cell-surface adhesin. PMID:23064158

  5. Nonlinear FE simulations of structural behavior parameters of reinforced concrete beam with epoxy-bonded FRP

    NASA Astrophysics Data System (ADS)

    Sasmal, Saptarshi; Kalidoss, S.

    2015-05-01

    In the present study, investigations on fiber-reinforced plastic (FRP) plated-reinforced concrete (RC) beam are carried out. Numerical investigations are performed by using a nonlinear finite element analysis by incorporating cracking and crushing of concrete. The numerical models developed in the present study are validated with the results obtained from the experiment under monotonic load using the servo-hydraulic actuator in displacement control mode. Further, the validated numerical models are used to evaluate the influence of different parameters. It is found from the investigations that increase in the elastic modulus of adhesive layer and CFRP laminate increases the interfacial stresses whereas increase in laminate modulus decreases the displacement and reinforcement strain of the beam. It is also observed that increase in the adhesive layer can largely reduce the interfacial stresses, whereas increase in laminate thickness increases it. However, increase in laminate thickness decreases the displacement and reinforcement strain of the beam significantly. It is mention worthy that increase in laminate length reduces the interfacial stresses, whereas CFRP width change does not affect the interfacial stresses. The study will be useful for the design and practicing engineers for arriving at the FRP-based strengthening schemes for RC structures judiciously.

  6. Quadruple Lap Shear Processing Evaluation

    NASA Technical Reports Server (NTRS)

    Thornton, Tony N.; McCool, A. (Technical Monitor)

    2000-01-01

    The Thiokol, Science and Engineering Huntsville Operations (SEHO) Laboratory has previously experienced significant levels of variation in testing Quadruple Lap Shear (QLS) specimens. The QLS test is used at Thiokol / Utah for the qualification of Reusable Solid Rocket Motor (RSRM) nozzle flex bearing materials. A test was conducted to verify that process changes instituted by SEHO personnel effectively reduced variability, even with normal processing variables introduced. A test matrix was designed to progress in a series of steps; the first establishing a baseline, then introducing additional solvents or other variables. Variables included normal test plan delay times, pre-bond solvent hand-wipes and contaminants. Each condition tested utilized standard QLS hardware bonded with natural rubber, two separate technicians and three replicates. This paper will report the results and conclusions of this investigation.

  7. Time-temperature effect in adhesively bonded joints

    NASA Technical Reports Server (NTRS)

    Delale, F.; Erdogan, F.

    1981-01-01

    The viscoelastic analysis of an adhesively bonded lap joint was reconsidered. The adherends are approximated by essentially Reissner plates and the adhesive is linearly viscoelastic. The hereditary integrals are used to model the adhesive. A linear integral differential equations system for the shear and the tensile stress in the adhesive is applied. The equations have constant coefficients and are solved by using Laplace transforms. It is shown that if the temperature variation in time can be approximated by a piecewise constant function, then the method of Laplace transforms can be used to solve the problem. A numerical example is given for a single lap joint under various loading conditions.

  8. Development of a nondestructive evaluation method for FRP bridge decks

    NASA Astrophysics Data System (ADS)

    Brown, Jeff; Fox, Terra

    2010-05-01

    Open steel grids are typically used on bridges to minimize the weight of the bridge deck and wearing surface. These grids, however, require frequent maintenance and exhibit other durability concerns related to fatigue cracking and corrosion. Bridge decks constructed from composite materials, such as a Fiber-reinforced Polymer (FRP), are strong and lightweight; they also offer improved rideability, reduced noise levels, less maintenance, and are relatively easy to install compared to steel grids. This research is aimed at developing an inspection protocol for FRP bridge decks using Infrared thermography. The finite element method was used to simulate the heat transfer process and determine optimal heating and data acquisition parameters that will be used to inspect FRP bridge decks in the field. It was demonstrated that thermal imaging could successfully identify features of the FRP bridge deck to depths of 1.7 cm using a phase analysis process.

  9. Nonlinear Finite Element Analysis of FRP Strengthened Reinforced Concrete Beams

    NASA Astrophysics Data System (ADS)

    Sasmal, S.; Kalidoss, S.; Srinivas, V.

    2012-12-01

    This paper focuses on nonlinear analysis of parent and fiber reinforced polymer (FRP) strengthened reinforced concrete (RC) beam using general purpose finite element software, ANSYS. Further, it is aimed to investigate the suitability of different elements available in ANSYS library to represent FRP, epoxy and interface. 3-D structural RC solid element has been used to model concrete and truss element is employed for modeling the reinforcements. FRP has been modelled using 3-D membrane element and layered element with number of layers, epoxy is modelled using eight node brick element, and eight node layered solid shell is used to mathematically represent the concrete-FRP interface behavior. Initially, the validation of the numerical model for the efficacy of different elements (SOLID65 for concrete and LINK8 for reinforcement) and material models is carried out on the experimental beam reported in literature. The validated model, elements and material properties is used to evaluate the load-displacement and load-strain response behavior and crack patterns of the FRP strengthened RC beams. The numerical results indicated that significant improvement in the displacement in the strengthened RC beams with the advancement of cracks. The study shows that FRP with shell elements is recommended when single layer of FRP is used. When multi layered FRP is used, solid layered element can be a reasonably good choice whereas the epoxy matrix with linear solid element does not need further complicated model. Interfacial element makes the analysis minimally improved at the cost of complicated modeling issues and considerable computation time. Hence, for nonlinear analysis of usual strengthened structures, unless it is specifically required for, interface element may not be required and a full contact can be assumed at interface.

  10. LAPS Grid generation and adaptation

    NASA Astrophysics Data System (ADS)

    Pagliantini, Cecilia; Delzanno, Gia Luca; Guo, Zehua; Srinivasan, Bhuvana; Tang, Xianzhu; Chacon, Luis

    2011-10-01

    LAPS uses a common-data framework in which a general purpose grid generation and adaptation package in toroidal and simply connected domains is implemented. The initial focus is on implementing the Winslow/Laplace-Beltrami method for generating non-overlapping block structured grids. This is to be followed by a grid adaptation scheme based on Monge-Kantorovich optimal transport method [Delzanno et al., J. Comput. Phys,227 (2008), 9841-9864], that equidistributes application-specified error. As an initial set of applications, we will lay out grids for an axisymmetric mirror, a field reversed configuration, and an entire poloidal cross section of a tokamak plasma reconstructed from a CMOD experimental shot. These grids will then be used for computing the plasma equilibrium and transport in accompanying presentations. A key issue for Monge-Kantorovich grid optimization is the choice of error or monitor function for equi-distribution. We will compare the Operator Recovery Error Source Detector (ORESD) [Lapenta, Int. J. Num. Meth. Eng,59 (2004) 2065-2087], the Tau method and a strategy based on the grid coarsening [Zhang et al., AIAA J,39 (2001) 1706-1715] to find an ``optimal'' grid. Work supported by DOE OFES.

  11. A Diagram for Evaluating Delamination of GFRP/Stainless-steel Adhesive Joints by Using Stress Singularity Parameters

    NASA Astrophysics Data System (ADS)

    Iwasa, Masaaki

    Static tests on double-lap and T-type adhesive joints were performed. We developed a device that applies contact pressure to glass-fiber reinforced plastics/stainless-steel double-lap adhesive joints. The device contains a bolt with which a strain gauge is bonded for controlling contact pressure. Using this device, we investigated the effect of contact pressure on the delamination strength of double-lap adhesive joints. We applied tensile shear loading to double-lap adhesive joints under contact pressure to their adhesive interfaces. We found that the delamination strength of the double-lap adhesive joints increased with increasing contact pressure. On the contrary, when we applied compressive shear stress to them, the delamination strength stayed constant. Therefore the delamination strength of double-lap adhesive joints is dominated by normal stress when contact pressure under tensile shear loading is applied. On the other hand, it was dominated by shear stress when contact pressure under compressive shear loading was applied. Then stress singularity parameters for double-lap and T-type adhesive joints were performed by the FEM. Stress distributions near the bonding edge could be expressed by the stress singularity parameters. Finally, a delamination evaluation diagram using stress singularity parameters was developed. This diagram enables us to evaluate the delamination strength of adhesive joints.

  12. Viscoelastic analysis of adhesively bonded joints

    NASA Technical Reports Server (NTRS)

    Delale, F.; Erdogan, F.

    1981-01-01

    In this paper an adhesively bonded lap joint is analyzed by assuming that the adherends are elastic and the adhesive is linearly viscoelastic. After formulating the general problem a specific example for two identical adherends bonded through a three parameter viscoelastic solid adhesive is considered. The standard Laplace transform technique is used to solve the problem. The stress distribution in the adhesive layer is calculated for three different external loads namely, membrane loading, bending, and transverse shear loading. The results indicate that the peak value of the normal stress in the adhesive is not only consistently higher than the corresponding shear stress but also decays slower.

  13. Viscoelastic analysis of adhesively bonded joints

    NASA Technical Reports Server (NTRS)

    Delale, F.; Erdogan, F.

    1980-01-01

    An adhesively bonded lap joint is analyzed by assuming that the adherends are elastic and the adhesive is linearly viscoelastic. After formulating the general problem a specific example for two identical adherends bonded through a three parameter viscoelastic solid adhesive is considered. The standard Laplace transform technique is used to solve the problem. The stress distribution in the adhesive layer is calculated for three different external loads, namely, membrane loading, bending, and transverse shear loading. The results indicate that the peak value of the normal stress in the adhesive is not only consistently higher than the corresponding shear stress but also decays slower.

  14. Secreted Frizzled-Related Protein 2 (sFRP2) Functions as a Melanogenic Stimulator; the Role of sFRP2 in UV-Induced Hyperpigmentary Disorders.

    PubMed

    Kim, Misun; Han, Jae Ho; Kim, Jang-Hee; Park, Tae Jun; Kang, Hee Young

    2016-01-01

    In this study, we found that secreted frizzled-related protein 2 (sFRP2) is overexpressed in the hyperpigmentary skin of melasma and solar lentigo and in acutely UV-irradiated skin. To investigate the effect of sFRP2 on melanogenesis, normal human melanocytes were infected with sFRP2-lentivirus or sh-sFRP2. It was found that sFRP2 stimulates melanogenesis through microphthalmia-associated transcription factor and/or tyrosinase upregulation via β-catenin signaling. The stimulatory action of sFRP2 in pigmentation was further confirmed in melanocytes cocultured with fibroblasts and in ex vivo cultured skin. The findings suggest that sFRP2 functions as a melanogenic stimulator and that it plays a role in the development of UV-induced hyperpigmentary disorders. PMID:26763443

  15. FRP/steel composite damage acoustic emission monitoring and analysis

    NASA Astrophysics Data System (ADS)

    Li, Dongsheng; Chen, Zhi

    2015-04-01

    FRP is a new material with good mechanical properties, such as high strength of extension, low density, good corrosion resistance and anti-fatigue. FRP and steel composite has gotten a wide range of applications in civil engineering because of its good performance. As the FRP/steel composite get more and more widely used, the monitor of its damage is also getting more important. To monitor this composite, acoustic emission (AE) is a good choice. In this study, we prepare four identical specimens to conduct our test. During the testing process, the AE character parameters and mechanics properties were obtained. Damaged properties of FRP/steel composite were analyzed through acoustic emission (AE) signals. By the growing trend of AE accumulated energy, the severity of the damage made on FRP/steel composite was estimated. The AE sentry function has been successfully used to study damage progression and fracture emerge release rate of composite laminates. This technique combines the cumulative AE energy with strain energy of the material rather than analyzes the AE information and mechanical separately.

  16. A two-dimensional stress analysis of single lap joints subjected to external bending moments

    SciTech Connect

    Sawa, Toshiyuki; Nakano, Katsuyuki; Toratani, Hiroshi

    1995-11-01

    The stress distribution of single lap adhesive joints subjected to external bending moments are analyzed as a three-body contact problem by using a two-dimensional theory of elasticity. In the analysis, two similar adherends and an adhesive are replaced by finite strips, respectively. In the numerical calculations, the effects of the ratio of Young;s modulus of adherends to that of adhesive and the adhesive thickness on the stress distribution at the interface are examined. As the results, it is seen that the stress singularity causes at the edges of the interfaces and the peel stress at the edges of the interface increases with a decrease of Young`s modulus of the adherends. In addition, photoelastic experiments are carried out. A fairly good agreement is seen between the analytical and the experimental results.

  17. Cyclic debonding of adhesively bonded composites

    NASA Technical Reports Server (NTRS)

    Mall, S.; Johnson, W. S.; Everett, R. A., Jr.

    1982-01-01

    The fatigue behavior of a simple composite to composite bonded joint was analyzed. The cracked lap shear specimen subjected to constant amplitude cyclic loading was studied. Two specimen geometries were tested for each bonded system: (1) a strap adherend of 16 plies bonded to a lap adherend of 8 plies; and (2) a strap adherend of 8 plies bonded to a lap adherend of 16 plies. In all specimens the fatigue failure was in the form of cyclic debonding with some 0 deg fiber pull off from the strap adherend. The debond always grew in the region of adhesive that had the highest mode (peel) loading and that region was close to the adhesive strap interface.

  18. Mechanical properties of adhesive systems at cryogenic and other temperatures

    NASA Technical Reports Server (NTRS)

    Staton, W. L.; Klich, P. J.; Cockrell, C. E.

    1982-01-01

    This paper presents a summary of the National Transonic Facility (NTF) fan blade adhesive characterization tests. Data was obtained at -300 F, room temperature (RT) and 200 F. The adhesive characterization data was acquired using specimens fabricated from materials orientated to simulate the lay up of the fan blades. Specimen fabrication, characterization tests, test equipment, test data, results and concluding remarks are reported. Adhesive test results are presented for specimens of the following types: lap shear, double lap shear, butt, short beam shear, flexure, and differential strain.

  19. 49 CFR 230.30 - Lap-joint seam boilers.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Lap-joint seam boilers. 230.30 Section 230.30..., DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Inspection and Repair § 230.30 Lap-joint seam boilers. Every boiler having lap-joint longitudinal...

  20. 49 CFR 230.30 - Lap-joint seam boilers.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Lap-joint seam boilers. 230.30 Section 230.30... Inspection and Repair § 230.30 Lap-joint seam boilers. Every boiler having lap-joint longitudinal seams... annual inspection so that an inspection of the entire joint, inside and out, can be made, taking...

  1. 49 CFR 230.30 - Lap-joint seam boilers.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Lap-joint seam boilers. 230.30 Section 230.30... Inspection and Repair § 230.30 Lap-joint seam boilers. Every boiler having lap-joint longitudinal seams... annual inspection so that an inspection of the entire joint, inside and out, can be made, taking...

  2. 49 CFR 230.30 - Lap-joint seam boilers.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Lap-joint seam boilers. 230.30 Section 230.30... Inspection and Repair § 230.30 Lap-joint seam boilers. Every boiler having lap-joint longitudinal seams... annual inspection so that an inspection of the entire joint, inside and out, can be made, taking...

  3. 49 CFR 230.30 - Lap-joint seam boilers.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Lap-joint seam boilers. 230.30 Section 230.30... Inspection and Repair § 230.30 Lap-joint seam boilers. Every boiler having lap-joint longitudinal seams... annual inspection so that an inspection of the entire joint, inside and out, can be made, taking...

  4. AE measurements for evaluation of defects in FRP pressure vessels

    SciTech Connect

    Kawahara, Masanori; Takatsu, Takashi

    1995-11-01

    AE (acoustic emission) measurement was conducted in a series of pressuring tests of FRP pressure vessels in order to examine its applicability to the safety evaluation of vessels. Tested vessels were commercial FRP pressure vessels fabricated by filament winding of high strength glass fibers, impregnated epoxy resin, on a Al alloy liner. At the final stage of fabrication, they were subjected to autofrettage, an overpressuring treatment to produce compressive residual stresses in metal liner. AE measurement results showed a strong Kaiser`s effect and high felicity ratios. In a virgin vessel, very few AE signals were detected below the autofrettage pressure. Vessels containing artificial defects showed distinct increase in AE signals at the level of test pressure. AE origin map were obtained by triangular-zone calculation. Discussions are directed, in particular, to the selection of threshold and to the applicability of AE measurement to the in-service inspection of FRP pressure vessel.

  5. Evaluation of a high temperature adhesive for fabricating graphite/PMR-15 polyimide structures

    NASA Technical Reports Server (NTRS)

    Hill, S. G.; Cushman, J. B.

    1985-01-01

    Tests are conducted to measure shear strength, shear modulus and flatwise tensile strength of the A7F (amide-imide modified LARC-13) adhesive system. An investigation is also conducted to determine the effect of geometric material parameters, and elevated temperature on the static strength of standard joints. Single-lap and double-lap composite joints, and single, double and step lap composite to metal joints are characterized. A series of advanced joints consisting of preformed adherends, adherends with scalloped edges and joints with hybrid interface plies are tested and compared to baseline single and double-lap designs.

  6. High Temperature Adhesives for Bonding Kapton

    NASA Technical Reports Server (NTRS)

    Stclair, A. K.; Slemp, W. S.; Stclair, T. L.

    1978-01-01

    Experimental polyimide resins were developed and evaluated as potential high temperature adhesives for bonding Kapton polyimide film. Lap shear strengths of Kapton/Kapton bonds were obtained as a function of test temperature, adherend thickness, and long term aging at 575K (575 F) in vacuum. Glass transition temperatures of the polyimide/Kapton bondlines were monitored by thermomechanical analysis.

  7. Fatigue strength of a single lap joint SPR-bonded

    SciTech Connect

    Di Franco, G.; Fratini, L.; Pasta, A.

    2011-05-04

    In the last years, hybrid joints, meaning with this the joints which consist in combining a traditional mechanical joint to a layer of adhesive, are gradually attracting the attention of various sectors of the construction of vehicles and transportation industries, for their better performance compared to just mechanical joints (self-piercing riveting SPR, riveting, and so on) or just to bonded joints.The paper investigates the fatigue behavior of a single lap joint self-piercing riveted (SPR) and bonded throughout fatigue tests. The considered geometric configuration allowed the use of two rivets placed longitudinally; an epoxy resin was used as adhesive. In the first part of the work static characterization of the joints was carried out through tensile tests. Then fatigue tests were made with the application of different levels of load. The fatigue curves were also obtained at the varying the distance between the two rivets in order to better assess the joint strength for a given length of overlap.

  8. 76 FR 63316 - Prospective Grant of Exclusive License: Secreted Frizzled Related Protein-1 (sFRP-1) and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-12

    ... Related Protein-1 (sFRP-1) and derivatives thereof and their Use In Therapeutic Applications AGENCY... exclusive license relates to a protein designated secreted Frizzled Related Protein-1 (sFRP-1). sFRP-1, also known as SARP-2 (Secreted Apoptosis Related Protein-2). The IP covers various sFRP-1 compositions...

  9. Advances in the analysis and design of adhesive-bonded joints in composite aerospace structures

    NASA Technical Reports Server (NTRS)

    Hart-Smith, L. J.

    1974-01-01

    Several aspects of adhesive-bonded joint analysis and design are presented from the reference of size of structure or load intensity. This integrates the individual characterizations of double-lap, single-lap, stepped-lap, tapered-lap and scarf joints. The paper includes an overview of bonded joint selection from the standpoints of design, fabrication, and processing, each bearing in mind the influence of such considerations on the strength of the joint. A case study is presented of the optimization of a specific relatively thick titanium-to-graphite epoxy stepped-lap joint, using the digital computer analysis program A4EG. The factors accounted for are adhesive plasticity, adherend stiffness imbalance, adherend thermal mismatch, and change of material properties within the range of temperature environment and with load direction. The strength increases obtainable by refining the initial design are demonstrated.

  10. Pseudomonas putida Fis Binds to the lapF Promoter In Vitro and Represses the Expression of LapF

    PubMed Central

    Lahesaare, Andrio; Moor, Hanna; Kivisaar, Maia; Teras, Riho

    2014-01-01

    The biofilm matrix of the rhizospheric bacterium Pseudomonas putida consists mainly of a proteinaceous component. The two largest P. putida proteins, adhesins LapA and LapF, are involved in biofilm development but prevail in different developmental stages of the biofilm matrix. LapA is abundant in the initial stage of biofilm formation whereas LapF is found in the mature biofilm. Although the transcriptional regulation of the adhesins is not exhaustively studied, some factors that can be involved in their regulation have been described. For example, RpoS, the major stress response sigma factor, activates, and Fis represses LapF expression. This study focused on the LapF expression control by Fis. Indeed, using DNase I footprint analysis a Fis binding site Fis-F2 was located 150 bp upstream of the lapF gene coding sequence. The mapped 5′ end of the lapF mRNA localized the promoter to the same region, overlapping with the Fis binding site Fis-F2. Monitoring the lapF promoter activity by a β-galactosidase assay revealed that Fis overexpression causes a 4-fold decrease in the transcriptional activity. Furthermore, mutations that diminished Fis binding to the Fis-F2 site abolished the repression of the lapF promoter. Thus, these data suggest that Fis is involved in the biofilm regulation via repression of LapF expression. PMID:25545773

  11. Evaluation of FRP Bars Performance under High Temperature

    NASA Astrophysics Data System (ADS)

    Kashwani, Ghanim A.; Al-Tamimi, Adil K.

    Fiber reinforced polymer bars are increasingly used in the construction industry. Strength, durability and stability are the main criteria for selection and design of FRP. However in case of exposure to high temperature, the change in the material properties affects the overall structure performance. Extensive materials evaluation and numerical modeling are needed to determine any repair/demolish recommendations. FRP bar is one of the main choices for high corrosion resistance in sever environmental conditions. However, FRP materials lose their strength and stiffness at early stage due to high temperature. Many investigations have been carried out on the performance of FRP bond strength exposed to high temperature. In this paper, two different groups of Glass fiber reinforced polymer (GFRP) specimens were tested to determine the effect of the high temperature. Tensile test was applied on all specimens with three different speed rates where the critical temperature for this experiment was 350 °C. From the results and the graphs, the effects of the temperature were explained and analyzed. It showed a reduction of 32% in the tensile strength due to high temperature exposure and an increase in its ductility.

  12. FRP bolted flanged connections -- Modern design and fabrication methods

    SciTech Connect

    Blach, A.E.; Sun, L.

    1995-11-01

    Bolted flanged connections for fiber reinforced plastic (FRP) pipes and pressure vessels are of great importance for any user of FRP material in fluid containment applications. At present, no dimensional standards or design rules exist for FRP flanges. Most often, flanges are fabricated to dimensional standards for metallic flanges without questioning their applicability to FRP materials. This paper discusses simplified and exact design methods for composite flanges, based on isotropic material design and on laminate theory design. Both, exact and simplified methods are included. Results of various design methods are then compared with experimental results from strain gage measurements on test pressure vessels. Methods of flange fabrication such as hand lay-up, injection molding, filament winding, and others, are discussed for their relative merits in pressure vessel and piping applications. Both, integral and bonded flanges are covered as applicable to the various methods of fabrication, also the economic implications of these methods. Also treated are the problems of gasket selection, bolting and overbolting, gasket stresses, and leakage of flanged connections.

  13. CENTURY INDUSTRIAL PRODUCTS FRP-100 WET SCRUBBER EVALUATION

    EPA Science Inventory

    The report gives results of a field test evaluation of the performance of the Century Industrial Products FRP-100 wet scrubber installed on a lightweight aggregate kiln. Inlet/outlet tests for particle size distribution with cascade impactors and extractive sampling with an elect...

  14. Flexible backbone aromatic polyimide adhesives

    NASA Technical Reports Server (NTRS)

    Progar, Donald J.; St.clair, Terry L.

    1988-01-01

    Continuing research at Langley Research Center on the synthesis and development of new inexpensive flexible aromatic polyimides as adhesives has resulted in a material identified as LARC-F-SO2 with similarities to polyimidesulfone, PISO2, and other flexible backbone polyimides recently reported by Progar and St. Clair. Also prepared and evaluated was an endcapped version of PISO2. These two polymers were compared with LARC-TPI and LARC-STPI, polyimides research in our laboratory and reported in the literature. The adhesive evaluation, primarily based on lap shear strength (LSS) tests at RT, 177 C and 204 C, involved preparing adhesive tapes, conducting bonding studies and exposing lap shear specimens to 204 C air for up to 1000 hrs and to a 72-hour water boil. The type of adhesive failure as well as the Tg was determined for the fractured specimens. The results indicate that LARC-TPI provides the highest LSSs. LARC-F-SO2, LARC-TPI and LARC-STPI all retain their strengths after thermal exposure for 1000 hrs and PISO2 retains greater than 80 percent of its control strengths. After a 72-hr water boil exposure, most of the four adhesive systems showed reduced strengths for all test temperatures although still retaining a high percentage of their original strength (greater than 60 percent) except for one case. The predominant failure type was cohesive with no significant change in the Tgs.

  15. Flexible backbone aromatic polyimide adhesives

    NASA Technical Reports Server (NTRS)

    Progar, Donald J.; St. Clair, Terry L.

    1989-01-01

    Continuing research at Langley Research Center on the synthesis and development of new inexpensive flexible aromatic polyimides as adhesives has resulted in a material identified as LARC-F-SO2 with similarities to polyimidesulfone, PISO2, and other flexible backbone polyimides recently reported by Progar and St. Clair. Also prepared and evaluated was an endcapped version of PISO2. These two polymers were compared with LARC-TPI and LARC-STPI, polyimides research in our laboratory and reported in the literature. The adhesive evaluation, primarily based on lap shear strength (LSS) tests at RT, 177 C and 204 C, involved preparing adhesive tapes, conducting bonding studies and exposing lap shear specimens to 204 C air for up to 1000 hrs and to a 72-hour water boil. The type of adhesive failure as well as the Tg was determined for the fractured specimens. The results indicate that LARC-TPI provides the highest LSSs. LARC-F-SO2, LARC-TPI and LARC-STPI all retain their strengths after thermal exposure for 1000 hrs and PISO2 retains greater than 80 percent of its control strengths. After a 72-hr water boil exposure, most of the four adhesive systems showed reduced strengths for all test temperatures although still retaining a high percentage of their original strength (greater than 60 percent) except for one case. The predominant failure type was cohesive with no significant change in the Tgs.

  16. The peel test in experimental adhesive fracture mechanics

    NASA Technical Reports Server (NTRS)

    Anderson, G. P.; Devries, K. L.; Williams, M. L.

    1974-01-01

    Several testing methods have been proposed for obtaining critical energy release rate or adhesive fracture energy in bond systems. These tests include blister, cone, lap shear, and peel tests. Peel tests have been used for many years to compare relative strengths of different adhesives, different surface preparation techniques, etc. The present work demonstrates the potential use of the peel test for obtaining adhesive fracture energy values.

  17. A Pleiotropic Regulator, Frp, Affects Exopolysaccharide Synthesis, Biofilm Formation, and Competence Development in Streptococcus mutans

    PubMed Central

    Wang, Bing; Kuramitsu, Howard K.

    2006-01-01

    Exopolysaccharide synthesis, biofilm formation, and competence are important physiologic functions and virulence factors for Streptococcus mutans. In this study, we report the role of Frp, a transcriptional regulator, on the regulation of these traits crucial to pathogenesis. An Frp-deficient mutant showed decreased transcription of several genes important in virulence, including those encoding fructosyltransferase (Ftf), glucosyltransferase B (GtfB), and GtfC, by reverse transcription and quantitative real-time PCR. Expression of Ftf was decreased in the frp mutant, as assessed by Western blotting as well as by the activity assays. Frp deficiency also inhibited the production of GtfB in the presence of glucose and sucrose as well as the production of GtfC in the presence of glucose. As a consequence of the effects on GtfB and -C, sucrose-induced biofilm formation was decreased in the frp mutant. The expression of competence mediated by the competence-signaling peptide (CSP) system, as assessed by comC gene transcription, was attenuated in the frp mutant. As a result, the transformation efficiency was decreased in the frp mutant but was partially restored by adding synthetic CSP. Transcription of the frp gene was significantly increased in the frp mutant under all conditions tested, indicating that frp transcription is autoregulated. Furthermore, complementation of the frp gene in the frp mutant restored transcription of the affected genes to levels similar to those in the wild-type strain. These results suggest that Frp is a novel pleiotropic effector of multiple cellular functions and is involved in the modulation of exopolysaccharide synthesis, sucrose-dependent biofilm formation, and competence development. PMID:16861645

  18. Monitoring of fatigue damage in composite lap-joints using guided waves and FBG sensors

    NASA Astrophysics Data System (ADS)

    Karpenko, Oleksii; Khomenko, Anton; Koricho, Ermias; Haq, Mahmoodul; Udpa, Lalita

    2016-02-01

    Adhesive bonding is being increasingly employed in many applications as it offers possibility of light-weighting and efficient multi-material joining along with reduction in time and cost of manufacturing. However, failure initiation and progression in critical components like joints, specifically in fatigue loading is not well understood, which necessitates reliable NDE and SHM techniques to ensure structural integrity. In this work, concurrent guided wave (GW) and fiber Bragg grating (FBG) sensor measurements were used to monitor fatigue damage in adhesively bonded composite lap-joints. In the present set-up, one FBG sensor was strategically embedded in the adhesive bond-line of a lap-joint, while two other FBGs were bonded on the surface of the adherends. Full spectral responses of FBG sensors were collected and compared at specific intervals of fatigue loading. In parallel, guided waves were actuated and sensed using PZT wafers mounted on the composite adherends. Experimental results demonstrated that time-of-flight (ToF) of the fundamental modes transmitted through the bond-line and spectral response of FBG sensors were sensitive to fatigue loading and damage. Combination of guided wave and FBG measurements provided the desired redundancy and synergy in the data to evaluate the degradation in bond-line properties. Measurements taken in the presence of continuously applied load replicated the in-situ/service conditions. The approach shows promise in understanding the behavior of bonded joints subjected to complex loading.

  19. Homologs of the LapD-LapG c-di-GMP Effector System Control Biofilm Formation by Bordetella bronchiseptica

    PubMed Central

    Ambrosis, Nicolás; Boyd, Chelsea D.; O´Toole, George A.; Fernández, Julieta; Sisti, Federico

    2016-01-01

    Biofilm formation is important for infection by many pathogens. Bordetella bronchiseptica causes respiratory tract infections in mammals and forms biofilm structures in nasal epithelium of infected mice. We previously demonstrated that cyclic di-GMP is involved in biofilm formation in B. bronchiseptica. In the present work, based on their previously reported function in Pseudomonas fluorescens, we identified three genes in the B. bronchiseptica genome likely involved in c-di-GMP-dependent biofilm formation: brtA, lapD and lapG. Genetic analysis confirmed a role for BrtA, LapD and LapG in biofilm formation using microtiter plate assays, as well as scanning electron and fluorescent microscopy to analyze the phenotypes of mutants lacking these proteins. In vitro and in vivo studies showed that the protease LapG of B. bronchiseptica cleaves the N-terminal domain of BrtA, as well as the LapA protein of P. fluorescens, indicating functional conservation between these species. Furthermore, while BrtA and LapG appear to have little or no impact on colonization in a mouse model of infection, a B. bronchiseptica strain lacking the LapG protease has a significantly higher rate of inducing a severe disease outcome compared to the wild type. These findings support a role for c-di-GMP acting through BrtA/LapD/LapG to modulate biofilm formation, as well as impact pathogenesis, by B. bronchiseptica PMID:27380521

  20. A study on the diamond lapping direction determination

    NASA Astrophysics Data System (ADS)

    Yang, Ning; Zong, WenJun; Li, ZengQiang; Sun, Tao

    2014-08-01

    The anisotropy of material removal rate for diamond gives a method to control the lapping rate of diamond specimen, i.e. changing the lapping direction. This requires comprehension on the relationship of the material removal rate and the lapping direction for diamond. This paper provides a method to figure out the diamond lapping direction. By preprocessing a straight edge formed by lapping a surface intersects with the required machining surface, the diamond lapping direction can be figured out under the Confocal Scanning Laser Microscope only if the crystal directions of the two surfaces are determined at first. The advantage of our method is that there is no need to consider the position and posture of the diamond specimen fixed on the holder.

  1. Dogs lap using acceleration-driven open pumping.

    PubMed

    Gart, Sean; Socha, John J; Vlachos, Pavlos P; Jung, Sunghwan

    2015-12-29

    Dogs lap because they have incomplete cheeks and cannot suck. When lapping, a dog's tongue pulls a liquid column from the bath, suggesting that the hydrodynamics of column formation are critical to understanding how dogs drink. We measured lapping in 19 dogs and used the results to generate a physical model of the tongue's interaction with the air-fluid interface. These experiments help to explain how dogs exploit the fluid dynamics of the generated column. The results demonstrate that effects of acceleration govern lapping frequency, which suggests that dogs curl the tongue to create a larger liquid column. Comparing lapping in dogs and cats reveals that, despite similar morphology, these carnivores lap in different physical regimes: an unsteady inertial regime for dogs and steady inertial regime for cats. PMID:26668382

  2. Dogs lap using acceleration-driven open pumping

    PubMed Central

    Gart, Sean; Socha, John J.; Vlachos, Pavlos P.; Jung, Sunghwan

    2015-01-01

    Dogs lap because they have incomplete cheeks and cannot suck. When lapping, a dog’s tongue pulls a liquid column from the bath, suggesting that the hydrodynamics of column formation are critical to understanding how dogs drink. We measured lapping in 19 dogs and used the results to generate a physical model of the tongue’s interaction with the air–fluid interface. These experiments help to explain how dogs exploit the fluid dynamics of the generated column. The results demonstrate that effects of acceleration govern lapping frequency, which suggests that dogs curl the tongue to create a larger liquid column. Comparing lapping in dogs and cats reveals that, despite similar morphology, these carnivores lap in different physical regimes: an unsteady inertial regime for dogs and steady inertial regime for cats. PMID:26668382

  3. Systematic Construction of Real Lapped Tight Frame Transforms

    PubMed Central

    Sandryhaila, Aliaksei; Chebira, Amina; Milo, Christina; Kovčcević, Jelena; Püschel, Markus

    2010-01-01

    We present a constructive algorithm for the design of real lapped equal-norm tight frame transforms. These transforms can be efficiently implemented through filter banks and have recently been proposed as a redundant counterpart to lapped orthogonal transforms, as well as an infinite-dimensional counterpart to harmonic tight frames. The proposed construction consists of two parts: First, we design a large class of new real lapped orthogonal transforms derived from submatrices of the discrete Fourier transform. Then, we seed these to obtain real lapped tight frame transforms corresponding to tight, equal-norm frames. We identify those frames that are maximally robust to erasures, and show that our construction leads to a large class of new lapped orthogonal transforms as well as new lapped tight frame transforms. PMID:20607116

  4. New design deforming controlling system of the active stressed lap

    NASA Astrophysics Data System (ADS)

    Ying, Li; Wang, Daxing

    2008-07-01

    A 450mm diameter active stressed lap has been developed in NIAOT by 2003. We design a new lap in 2007. This paper puts on emphases on introducing the new deforming control system of the lap. Aiming at the control characteristic of the lap, a new kind of digital deforming controller is designed. The controller consists of 3 parts: computer signal disposing, motor driving and force sensor signal disposing. Intelligent numeral PID method is applied in the controller instead of traditional PID. In the end, the result of new deformation are given.

  5. Weld bonding of titanium with polyimide adhesives

    NASA Technical Reports Server (NTRS)

    Vaughan, R. W.; Sheppard, C. H.; Orell, M. K.

    1975-01-01

    A conductive adhesive primer and a capillary flow adhesive were developed for weld bonding titanium alloy joints. Both formulations contained ingredients considered to be non-carcinogenic. Lap-shear joint test specimens and stringer-stiffened panels were weld bonded using a capillary flow process to apply the adhesive. Static property information was generated for weld bonded joints over the temperature range of 219K (-65 F) to 561K (550 F). The capillary flow process was demonstrated to produce weld bonded joints of equal strength to the weld through weld bonding process developed previously.

  6. A method for certification of FRP piping fabricators for ASME B31.3 systems

    SciTech Connect

    Andersen, K.D.

    1996-07-01

    Cost-effective FRP piping is often the material of choice for transport of corrosive chemicals. Plant Managers and Engineers have great concern about the integrity of FRP piping joints and the safety of these systems. A specification requirement, in the bid documents, that all fabricators be Certified by the FRP piping manufacturer is a method to promote successful fabrication. A method is proposed, which is in accordance with ASME B31.3 Piping Code, to train and certify fabricators.

  7. Diamond machine tool face lapping machine

    DOEpatents

    Yetter, H.H.

    1985-05-06

    An apparatus for shaping, sharpening and polishing diamond-tipped single-point machine tools. The isolation of a rotating grinding wheel from its driving apparatus using an air bearing and causing the tool to be shaped, polished or sharpened to be moved across the surface of the grinding wheel so that it does not remain at one radius for more than a single rotation of the grinding wheel has been found to readily result in machine tools of a quality which can only be obtained by the most tedious and costly processing procedures, and previously unattainable by simple lapping techniques.

  8. Modulated lapped transforms in image coding

    NASA Astrophysics Data System (ADS)

    de Queiroz, Ricardo L.; Rao, K. R.

    1994-05-01

    The class of modulated lapped transforms (MLT) with extended overlap is investigated in image coding. The finite-length-signals implementation using symmetric extensions is introduced and human visual sensitivity arrays are computed. Theoretical comparisons with other popular transforms are carried and simulations are made using intraframe coders. Emphasis is given in transmission over packet networks assuming high rate of data losses. The MLT with overlap factor 2 is shown to be superior in all our tests with bonus features such as greater robustness against block losses.

  9. Bending behavior of lapped plastic ehv cables

    SciTech Connect

    Morgan, G H; Muller, A C

    1980-01-01

    One of the factors delaying the development of lapped polymeric cables has been their reputed poor bending characteristics. Complementary programs were begun at BNL several years ago to mathematically model the bending of synthetic tape cables and to develop novel plastic tapes designed to have moduli more favorable to bending. A series of bend tests was recently completed to evaluate the bending performance of several tapes developed for use in experimental superconducting cables. The program is discussed and the results of the bend tests are summarized.

  10. Consider FRP linings instead of replacing storage tank bottoms

    SciTech Connect

    LeBleu, J.B. ); Hummel, B. )

    1995-03-01

    If a storage tank bottom is corroding quickly, it must either be replaced, or a thick-filmed, fiberglass reinforced plastic (FRP) lining must be applied to the existing tank bottom. Replacing a tank bottom can be a costly and time-consuming process. Proper selection and application of an FRP lining system with a 60 to 65-mil thickness can save time, money and prevent internal corrosion of the steel tank bottom for 10 to 20 years. Average corrosion rate of carbon steel storage tanks in crude oil service at ambient temperatures is more than 1 mil per year. Corrosion occurs even more quickly when a layer of water containing corrosive compounds such as salt and sediment settles to the bottom of a crude oil tank. Installing a thick fiber glass-reinforced lining system involves applying a primer, putty, catalyzed resin with a glass mat and a sealcoat. After the tank has been pumped dry and the surface properly prepared, the entire process takes substantially less than the downtime and costs associated with replacing the entire tank bottom. The paper describes the application of a FRP lining system, testing and metal repairs, and the use of catalyzed resin and glass mats.

  11. Rapid adhesive bonding concepts

    NASA Technical Reports Server (NTRS)

    Stein, B. A.; Tyeryar, J. R.; Hodges, W. T.

    1984-01-01

    Adhesive bonding in the aerospace industry typically utilizes autoclaves or presses which have considerable thermal mass. As a consequence, the rates of heatup and cooldown of the bonded parts are limited and the total time and cost of the bonding process is often relatively high. Many of the adhesives themselves do not inherently require long processing times. Bonding could be performed rapidly if the heat was concentrated in the bond lines or at least in the adherends. Rapid adhesive bonding concepts were developed to utilize induction heating techniques to provide heat directly to the bond line and/or adherends without heating the entire structure, supports, and fixtures of a bonding assembly. Bonding times for specimens are cut by a factor of 10 to 100 compared to standard press bonding. The development of rapid adhesive bonding for lap shear specimens (per ASTM D1003 and D3163), for aerospace panel bonding, and for field repair needs of metallic and advanced fiber reinforced polymeric matrix composite structures are reviewed.

  12. Isolation and Characterization of the Neutral Leucine Aminopeptidase (LapN) of Tomato1

    PubMed Central

    Tu, Chao-Jung; Park, Sang-Youl; Walling, Linda L.

    2003-01-01

    Tomatoes (Lycopersicon esculentum) express two forms of leucine aminopeptidase (LAP-A and LAP-N) and two LAP-like proteins. The relatedness of LAP-N and LAP-A was determined using affinity-purified antibodies to four LAP-A protein domains. Antibodies to epitopes in the most N-terminal region were able to discriminate between LAP-A and LAP-N, whereas antibodies recognizing central and COOH-terminal regions recognized both LAP polypeptides. Two-dimensional immunoblots showed that LAP-N and the LAP-like proteins were detected in all vegetative (leaves, stems, roots, and cotyledons) and reproductive (pistils, sepals, petals, stamens, and floral buds) organs examined, whereas LAP-A exhibited a distinct expression program. LapN was a single-copy gene encoding a rare-class transcript. A full-length LapN cDNA clone was isolated, and the deduced sequence had 77% peptide sequence identity with the wound-induced LAP-A. Comparison of LAP-N with other plant LAPs identified 28 signature residues that classified LAP proteins as LAP-N or LAP-A like. Overexpression of a His6-LAP-N fusion protein in Escherichia coli demonstrated distinct differences in His6-LAP-N and His6-LAP-A activities. Similar to LapA, the LapN RNA encoded a precursor protein with a molecular mass of 60 kD. The 5-kD presequence had features similar to plastid transit peptides, and processing of the LAP-N presequence could generate the mature 55-kD LAP-N. Unlike LapA, the LapN transcript contained a second in-frame ATG, and utilization of this potential initiation codon would yield a 55-kD LAP-N protein. The localization of LAP-N could be controlled by the balance of translational initiation site utilization and LAP-N preprotein processing. PMID:12746529

  13. Learning Activity Package, Chemistry I, (LAP) Study 29.

    ERIC Educational Resources Information Center

    Jones, Naomi

    Presented is a Learning Activity Package (LAP) study concerned with carbon and its compounds. This LAP in chemistry includes a rationale for studying the chemical element of carbon, a list of student objectives (stated in behavioral terms), of activities (reading, laboratory experiments, model construction, etc.), a two-page worksheet, a…

  14. How dogs lap: open pumping driven by acceleration

    NASA Astrophysics Data System (ADS)

    Gart, Sean; Socha, John; Vlachos, Pavlos; Jung, Sunghwan

    2015-11-01

    Dogs drink by lapping because they have incomplete cheeks and cannot suck fluids into the mouth. When lapping, a dog's tongue pulls a liquid column from a bath, which is then swallowed, suggesting that the hydrodynamics of column formation are critical to understanding how dogs drink. We measured the kinematics of lapping from nineteen dogs and used the results to generate a physical model of the tongue's interaction with the air-fluid interface. These experiments with an accelerating rod help to explain how dogs exploit the fluid dynamics of the generated column. The results suggest that effects of acceleration govern lapping frequency, and that dogs curl the tongue ventrally (backwards) and time their bite on the column to increase fluid intake per lap. Comparing lapping in dogs and cats reveals that though they both lap with the same frequency scaling with respect to body mass and have similar morphology, these carnivores lap in different physical regimes: a high-acceleration regime for dogs and a low-acceleration regime for cats.

  15. Design Document: KWIC Module; L.A.P. Version I.

    ERIC Educational Resources Information Center

    Porch, Ann

    The Language Analysis Package (LAP) was developed by the Southwest Regional Laboratory (SWRL) to assist researchers in the analysis of language usage. The function of the KWIC (Keyword-in Context or Concordance) Module of the LAP is to produce keyword listings from the input text being analyzed. Such listings will contain location information…

  16. A novel addition polyimide adhesive

    NASA Technical Reports Server (NTRS)

    St.clair, T. L.; Progar, D. J.

    1981-01-01

    An addition polyimide adhesive, LARC 13, was developed which shows promise for bonding both titanium and composites for applications which require service temperatures in excess of 533 K. The LARC 13 is based on an oligomeric bis nadimide containing a meta linked aromatic diamine. The adhesive melts prior to polymerization due to its oligomeric nature, thereby allowing it to be processed at 344 kPa or less. Therefore, LARC 13 is ideal for the bonding of honeycomb sandwich structures. After melting, the resin thermosets during the cure of the nadic endcaps to a highly crosslinked system. Few volatiles are evolved, thus allowing large enclosed structures to be bonded. Preparation of the adhesive as well as bonding, aging, and testing of lap shear and honeycomb samples are discussed.

  17. Experimental study on lapping of micro groove with controlled force

    NASA Astrophysics Data System (ADS)

    Ding, Fei; Wang, Bo; Li, Guo; Che, Lin; Mao, Xing

    2014-08-01

    Precision parts with complicated microstructures have been in increasing demand in the field of inertial navigation systems and structured molds. Micro milling is a direct operation to manufacture the micro structure but it will induce unexpected tool marks and deterioration layer. A novel lapping method based on controlled force is proposed as the final finishing process. The method offers efficient position determination strategy for the structure and is capable to monitor the lapping condition. In the paper, processing method and the developed lapping apparatus was firstly introduced. Then, the individual influence on finished surface of several processing parameters including abrasive size, amount of feed and lapping trajectory are investigated. Results show that the deterioration layer was successfully removed with different slurries without diminution of its original form accuracy. Lapping efficiency is also taken into account in the choosing of parameters. The formative mechanism of parallel scratches observed in experiments is analyzed and verified.

  18. Effects of Temperature and Forming Speed on Plastic Bending of Adhesively Bonded Sheet Metals

    NASA Astrophysics Data System (ADS)

    Takiguchi, Michihiro; Yoshida, Tetsuya; Yoshida, Fusahito

    This paper deals with the temperature and rate-dependent elasto-viscoplasticity behaviour of a highly ductile acrylic adhesive and its effect on plastic bending of adhesively bonded sheet metals. Tensile lap shear tests of aluminium single-lap joints were performed at various temperature of 10-40°C at several tensile speeds. Based on the experimental results, a new constitutive model of temperature and rate-dependent elasto-viscoplasticity of the adhesive is presented. From V-bending experiments and the corresponding numerical simulation, it was found that the gull-wing bend is suppressed by high-speed forming at a lower temperature.

  19. The effects of inherent flaws on the time and rate dependent failure of adhesively bonded joints

    NASA Technical Reports Server (NTRS)

    Sancaktar, E.; Padgilwar, S.

    1982-01-01

    Inherent flaws, as well as the effects of rate and time, are shown by tests on viscoelastic adhesive-bonded single lap joints to be as critical in joint failure as environmental and stress concentration effects, with random inherent flaws and loading rate changes resulting in an up to 40% reduction in joint strength. It is also found that the asymptotic creep stress, below which no delayed failure may occur, may under creep loading be as much as 45% less than maximum adhesive strength. Attention is given to test results for the case of titanium-LARC-3 adhesive single-lap specimens.

  20. Adhesive evaluation of new polyimides

    NASA Technical Reports Server (NTRS)

    Stclair, Terry L.; Progar, Donald J.

    1987-01-01

    During the past 10 to 15 years, the Materials Division at NASA Langley Research Center (LaRC) has developed several novel high temperature polyimide adhesives for anticipated needs of the aerospace industry. These developments have resulted from fundamental studies of structure-property relationships in polyimides. Recent research at LaRC has involved the synthesis and evaluation of copolyimides which incorporate both flexibilizing bridging groups and meta-linked benzene rings. The purpose was to develop systems based on low cost, readily available monomers. Two of these copolyimides evaluated as adhesives for bonding titanium alloy, Ti(6Al-4V), are identified as LARC-STPI and STPI-LARC-2. Lap shear strength (LSS) measurements were used to determine the strength and durability of the adhesive materials. LSS results are presented for LARC-TPI and LARC-STPI lap shear specimens thermally exposed in air at 232 C for up to 5000 hrs. LARC-TPI was shown to perform better than the copolymer LARC-STPI which exhibited poor thermooxidative performance possibly due to the amines used which would tend to oxidize easier than the benzophenone system in LARC-TPI.

  1. 46 CFR 160.035-12 - Additional preapproval tests required for F.R.P. lifeboats.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 6 2011-10-01 2011-10-01 false Additional preapproval tests required for F.R.P... Merchant Vessels § 160.035-12 Additional preapproval tests required for F.R.P. lifeboats. (a) General... p.s.i. of air pressure both before and after the tests described in paragraphs (b)(1) through (6)...

  2. Identification of a Novel Human LAP1 Isoform That Is Regulated by Protein Phosphorylation

    PubMed Central

    Santos, Mariana; Domingues, Sara C.; Costa, Patrícia; Muller, Thorsten; Galozzi, Sara; Marcus, Katrin; da Cruz e Silva, Edgar F.; da Cruz e Silva, Odete A.; Rebelo, Sandra

    2014-01-01

    Lamina associated polypeptide 1 (LAP1) is an integral protein of the inner nuclear membrane that is ubiquitously expressed. LAP1 binds to lamins and chromatin, probably contributing to the maintenance of the nuclear envelope architecture. Moreover, LAP1 also interacts with torsinA and emerin, proteins involved in DYT1 dystonia and X-linked Emery-Dreifuss muscular dystrophy disorder, respectively. Given its relevance to human pathological conditions, it is important to better understand the functional diversity of LAP1 proteins. In rat, the LAP1 gene (TOR1AIP1) undergoes alternative splicing to originate three LAP1 isoforms (LAP1A, B and C). However, it remains unclear if the same occurs with the human TOR1AIP1 gene, since only the LAP1B isoform had thus far been identified in human cells. In silico analysis suggested that, across different species, potential new LAP1 isoforms could be generated by alternative splicing. Using shRNA to induce LAP1 knockdown and HPLC-mass spectrometry analysis the presence of two isoforms in human cells was described and validated: LAP1B and LAP1C; the latter is putatively N-terminal truncated. LAP1B and LAP1C expression profiles appear to be dependent on the specific tissues analyzed and in cultured cells LAP1C was the major isoform detected. Moreover, LAP1B and LAP1C expression increased during neuronal maturation, suggesting that LAP1 is relevant in this process. Both isoforms were found to be post-translationally modified by phosphorylation and methionine oxidation and two LAP1B/LAP1C residues were shown to be dephosphorylated by PP1. This study permitted the identification of the novel human LAP1C isoform and partially unraveled the molecular basis of LAP1 regulation. PMID:25461922

  3. Development of ductile hybrid fiber reinforced polymer (D-H-FRP) reinforcement for concrete structures

    NASA Astrophysics Data System (ADS)

    Somboonsong, Win

    The corrosion of steel rebars has been the major cause of the reinforced concrete deterioration in transportation structures and port facilities. Currently, the Federal Highway Administration (FHWA) spends annually $31 billion for maintaining and repairing highways and highway bridges. The study reported herein represents the work done in developing a new type of reinforcement called Ductile Hybrid Fiber Reinforced Polymer or D-H-FRP using non-corrosive fiber materials. Unlike the previous FRP reinforcements that fail in a brittle manner, the D-H-FRP bars exhibit the stress-strain curves that are suitable for concrete reinforcement. The D-H-FRP stress-strain curves are linearly elastic with a definite yield point followed by plastic deformation and strain hardening resembling that of mild steel. In addition, the D-H-FRP reinforcement has integrated ribs required for concrete bond. The desirable mechanical properties of D-H-FRP reinforcement are obtained from the integrated design based on the material hybrid and geometric hybrid concepts. Using these concepts, the properties can be tailored to meet the specific design requirements. An analytical model was developed to predict the D-H-FRP stress-strain curves with different combination of fiber materials and geometric configuration. This model was used to optimize the design of D-H-FRP bars. An in-line braiding-pultrusion manufacturing process was developed at Drexel University to produce high quality D-H-FRP reinforcement in diameters that can be used in concrete structures. A series of experiments were carried out to test D-H-FRP reinforcement as well as their individual components in monotonic and cyclic tensile tests. Using the results from the tensile tests and fracture analysis, the stress-strain behavior of the D-H-FRP reinforcement was fully characterized and explained. Two series of concrete beams reinforced with D-H-FRP bars were studied. The D-H-FRP beam test results were then compared with companion

  4. Investigation of rectangular concrete columns reinforced or prestressed with fiber reinforced polymer (FRP) bars or tendons

    NASA Astrophysics Data System (ADS)

    Choo, Ching Chiaw

    Fiber reinforced polymer (FRP) composites have been increasingly used in concrete construction. This research focused on the behavior of concrete columns reinforced with FRP bars, or prestressed with FRP tendons. The methodology was based the ultimate strength approach where stress and strain compatibility conditions and material constitutive laws were applied. Axial strength-moment (P-M) interaction relations of reinforced or prestressed concrete columns with FRP, a linearly-elastic material, were examined. The analytical results identified the possibility of premature compression and/or brittle-tension failure occurring in FRP reinforced and prestressed concrete columns where sudden and explosive type failures were expected. These failures were related to the rupture of FRP rebars or tendons in compression and/or in tension prior to concrete reaching its ultimate strain and strength. The study also concluded that brittle-tension failure was more likely to occur due to the low ultimate tensile strain of FRP bars or tendons as compared to steel. In addition, the failures were more prevalent when long term effects such as creep and shrinkage of concrete, and creep rupture of FRP were considered. Barring FRP failure, concrete columns reinforced with FRP, in some instances, gained significant moment resistance. As expected the strength interaction of slender steel or FRP reinforced concrete columns were dependent more on column length rather than material differences between steel and FRP. Current ACI minimum reinforcement ratio for steel (rhomin) reinforced concrete columns may not be adequate for use in FRP reinforced concrete columns. Design aids were developed in this study to determine the minimum reinforcement ratio (rhof,min) required for rectangular reinforced concrete columns by averting brittle-tension failure to a failure controlled by concrete crushing which in nature was a less catastrophic and more gradual type failure. The proposed method using rhof

  5. Deformations and strains in adhesive joints by moire interferometry

    NASA Technical Reports Server (NTRS)

    Post, D.; Czarnek, R.; Wood, J.; John, D.; Lubowinski, S.

    1984-01-01

    Displacement fields in a thick adherend lap joint and a cracked lap shear specimen were measured by high sensitivity moire interferometry. Contour maps of in-plane U and V displacements were obtained across adhesive and adherent surfaces. Loading sequences ranged from modest loads to near-failure loads. Quantitative results are given for displacements and certain strains in the adhesive and along the adhesive/adherend boundary lines. The results show nonlinear displacements and strains as a function of loads or stresses and they show viscoelastic or time-dependent response. Moire interferometry is an excellent method for experimental studies of adhesive joint performance. Subwavelength displacement resolution of a few micro-inches, and spatial resolution corresponding to 1600 fringes/inch (64 fringes/mm), were obtained in these studies. The whole-field contour maps offer insights not available from local measurements made by high sensitivity gages.

  6. Flaw Tolerance In Lap Shear Brazed Joints. Part 2

    NASA Technical Reports Server (NTRS)

    Wang, Len; Flom, Yury

    2003-01-01

    This paper presents results of the second part of an on-going effort to gain better understanding of defect tolerance in braze joints. In the first part of this three-part series, we mechanically tested and modeled the strength of the lap joints as a function of the overlap distance. A failure criterion was established based on the zone damage theory, which predicts the dependence of the lap joint shear strength on the overlap distance, based on the critical size of a finite damage zone or an overloaded region in the joint. In this second part of the study, we experimentally verified the applicability of the damage zone criterion on prediction of the shear strength of the lap joint and introduced controlled flaws into the lap joints. The purpose of the study was to evaluate the lap joint strength as a function of flaw size and its location through mechanical testing and nonlinear finite element analysis (FEA) employing damage zone criterion for definition of failure. The results obtained from the second part of the investigation confirmed that the failure of the ductile lap shear brazed joints occurs when the damage zone reaches approximately 10% of the overlap width. The same failure criterion was applicable to the lap joints containing flaws.

  7. The use of FRP in flue gas desulfurization

    SciTech Connect

    Kamody, J.F.

    1995-11-01

    New federal laws and evolving regulations over the last few years have led to significant applications in such areas as flue gas desulfurization (FGD) as well as underground and aboveground bulk storage tanks. Conformance to the new environmental regulations represents very serious corrosion problems to metals and other materials traditionally used in these applications. FRP offers solutions to these problems and invites more creativity and participation by the industry to even further extend its use. Although each of these markets deserves special attention, the focus herein is placed on FGD.

  8. Addition polyimide adhesives containing ATBN and silicone elastomers

    NASA Technical Reports Server (NTRS)

    Saint Clair, A. K.; Saint Clair, T. L.

    1981-01-01

    A study was conducted to determine the effects of added elastomers on the thermal stability, adhesive strength, and fracture toughness of LARC-13, a high-temperature addition polyimide adhesive. Various butadiene/acrylonitrile and silicon elastomers were incorporated into the polyimide resin either as physical polyblends, or by chemically reacting the elastomers with the polyimide backbone. Adhesive single lap-shear and T-peel strengths were measured before and after ageing at elevated temperature. A tapered double-cantilever beam specimen was used to determine the fracture toughness of the elastomer-modified polyimide adhesives.

  9. Status of high-temperature laminating resins and adhesives

    NASA Technical Reports Server (NTRS)

    Hergenrother, P. M.; Johnston, N. J.

    1980-01-01

    High-temperature polymers now being developed as adhesives and composite matrices are reviewed, including aromatic polyimides, polybenzimidazoles, polyphenylquinoxalines, nadic end-capped imide oligomers, maleimide end-capped oligomers, and acetylene-terminated imide oligomers. The mechanical properties of laminates based on these resins are reported together with preliminary test results on the adhesive properties for titanium-to-titanium and composite-to-composite lap shear specimens.

  10. Nondestructive inspection of CFRP adhesively bonded joints using embedded FBG sensors

    NASA Astrophysics Data System (ADS)

    Webb, S.; Shin, P.; Peters, K.; Selfridge, R.; Schultz, S.

    2013-05-01

    One challenging need for inspection capabilities is in adhesively bonded joints between composite components, a common location of premature failure in aerospace structures. In this work we demonstrate that dynamic, full spectral scanning of FBG sensors embedded in the adhesive bond can identify changes in bond quality through the measurement of non-linear dynamics of the joint. Eighteen lap joint specimens were fabricated with varying manufacturing quality. Ten samples also included fiber Bragg grating (FBG) sensors embedded in the adhesive bond for real-time inspection during a simulated flight condition of these single-lap joints. Prior to testing, pulse phase thermography imaging of the pristine specimens revealed defects such as air bubbles, adhesive thickness variations, and weak bonding surface between the laminate and adhesive. The lap joint specimens were then subjected to fatigue loading, with regular interrogation of the FBG sensors at selected load cycle intervals. The FBG data was collected during vibration loading of the lap joint to represent an in-flight environment. Changes in the lap joint dynamic response, including the transition to non-linear responses, were measured from both the full-spectral and peak wavelength FBG data. These changes were correlated to initial manufacturing defects and the progression of fatigue-induced damage independently measured with pulse phase imaging and visual inspections of the failure surfaces.

  11. New mathematical model for error reduction of stressed lap

    NASA Astrophysics Data System (ADS)

    Zhao, Pu; Yang, Shuming; Sun, Lin; Shi, Xinyu; Liu, Tao; Jiang, Zhuangde

    2016-05-01

    Stressed lap, compared to traditional polishing methods, has high processing efficiency. However, this method has disadvantages in processing nonsymmetric surface errors. A basic-function method is proposed to calculate parameters for a stressed-lap polishing system. It aims to minimize residual errors and is based on a matrix and nonlinear optimization algorithm. The results show that residual root-mean-square could be >15% after one process for classical trefoil error. The surface period errors close to the lap diameter were removed efficiently, up to 50% material removal.

  12. Machine Shop I. Learning Activity Packets (LAPs). Section A--Orientation.

    ERIC Educational Resources Information Center

    Oklahoma State Board of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This document contains two learning activity packets (LAPs) for the "orientation and safety" instructional area of a Machine Shop I course. The two LAPs cover the following topics: orientation and general shop safety. Each LAP contains a cover sheet that describes its purpose, an introduction, and the tasks included in the LAP; learning steps…

  13. Machine Shop I. Learning Activity Packets (LAPs). Section C--Hand and Bench Work.

    ERIC Educational Resources Information Center

    Oklahoma State Board of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This document contains two learning activity packets (LAPs) for the "hand and bench work" instructional area of a Machine Shop I course. The two LAPs cover the following topics: hand and bench work and pedestal grinder. Each LAP contains a cover sheet that describes its purpose, an introduction, and the tasks included in the LAP; learning steps…

  14. Machine Shop I. Learning Activity Packets (LAPs). Section D--Power Saws and Drilling Machines.

    ERIC Educational Resources Information Center

    Oklahoma State Board of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This document contains two learning activity packets (LAPs) for the "power saws and drilling machines" instructional area of a Machine Shop I course. The two LAPs cover the following topics: power saws and drill press. Each LAP contains a cover sheet that describes its purpose, an introduction, and the tasks included in the LAP; learning steps…

  15. Heat shock protein 60 acts as a receptor for the Listeria adhesion protein in Caco-2 cells.

    PubMed

    Wampler, Jennifer L; Kim, Kwang-Pyo; Jaradat, Ziad; Bhunia, Arun K

    2004-02-01

    The 104-kDa Listeria adhesion protein (LAP) in Listeria monocytogenes is involved in binding to various mammalian cell lines. However, the receptor that interacts with LAP in eukaryotic cells is unknown. In this study, scanning immunoelectron microscopy qualitatively demonstrated greater binding capacity of wild-type (WT) L. monocytogenes strain (F4244) than a LAP-deficient mutant strain (KB208) to Caco-2 cells. The goal of this study was identification of the host cell receptor for LAP. Using a Western blot ligand overlay assay, we identified a protein of 58 kDa to be the putative receptor for LAP from Caco-2 cells. N-terminal sequencing and subsequent database search identified this protein as heat shock protein 60 (Hsp60). Modified immunoseparation with protein A-Sepharose beads bound to the LAP-specific monoclonal antibody H7 (MAb-H7) and a sequential incubation with LAP preparation and Caco-2 lysate confirmed the receptor to be the same 58-kDa protein. Western blot analysis with anti-Hsp60 MAb of whole-cell adhesion between Caco-2 and WT also revealed the receptor protein to be a 58-kDa protein, thus corroborating the identification of Hsp60 as a host cell receptor for LAP. Furthermore, the anti-Hsp60 antibody also caused approximately 74% reduction in binding of L. monocytogenes WT to Caco-2 cells, whereas a control antibody, C11E9, had no effect on binding. The adhesion mechanism of L. monocytogenes to eukaryotic cells is a complex process, and identification of Hsp60 as a receptor for LAP adds to the list of previously discovered ligand-receptor modules that are essential to achieve successful adhesion. PMID:14742538

  16. Evaluation of adhesives for adhering carbon/epoxy composites to various metallic substrates

    SciTech Connect

    Bonk, R.B.; Osterndorf, J.F.; Ambrosio, A.M.; Pettenger, B.L.

    1996-12-31

    The strength properties of composite matrix resins and adhesive are dependent on time, temperature, environment, and stress factors. All of these conditions combine to influence the properties of adhesives and composites in ways that are not yet fully known or quantifiable. Therefore, it is important to know the service conditions that structural adhesive bonded composite joints will encounter prior to fielding. This paper details an evaluation of five epoxy adhesives used to adhere a carbon/epoxy composite to 7075-T6 aluminum, 4340 steel and aluminum coated steel. Test results indicate that certain paste adhesives are capable of better lap-shear and peel performance than film adhesives, especially at elevated temperatures.

  17. Styrene vapor control systems in FRP yacht plants

    SciTech Connect

    Todd, W.F.

    1985-01-01

    The production of large (greater than 25-ft) fiber-reinforced plastic (FRP) yachts has presented problems of styrene exposure in excess of the Occupational Safety and Health Administration permissible exposure level (OSHA PEL) of 100 ppm. Also, the National Institute for Occupational Safety and Health (NIOSH) is currently recommending a 10-hour workshift, 40-hour workweek time weighted average (TWA) of 50 ppm for styrene. Meeting this challenge will require a system of engineering, work practice, personal protective equipment, and monitoring control measures. NIOSH has performed a study of the engineering controls in three FRP yacht plants. Work practices and the use of personal protective equipment (PPE) were also considered in the evaluation. The three systems evaluated included a dilution system, a local ventilation system, and a push-pull ventilation system. The cost of constructing and operating these systems was not evaluated in this study. Study results indicated that each type of ventilation system can meet the present PEL of 100 ppm styrene; however, it is not certain that these systems can meet a lower PEL of 50 ppm styrene.

  18. Styrene vapor control systems in FRP yacht plants.

    PubMed

    Todd, W F

    1985-01-01

    The production of large (greater than 25-ft) fiber-reinforced plastic (FRP) yachts has presented problems of styrene exposure in excess of the Occupational Safety and Health Administration permissible exposure level (OSHA PEL) of 100 ppm. Also, the National Institute for Occupational Safety and Health (NIOSH) is currently recommending a 10-hour workshift, 40-hour workweek time weighted average (TWA) of 50 ppm for styrene. Meeting this challenge will require a system of engineering, work practice, personal protective equipment, and monitoring control measures. NIOSH has performed a study of the engineering controls in three FRP yacht plants. Work practices and the use of personal protective equipment (PPE) were also considered in the evaluation. The three systems evaluated included a dilution system, a local ventilation system, and a push-pull ventilation system. The cost of constructing and operating these systems was not evaluated in this study. Study results indicated that each type of ventilation system can meet the present PEL of 100 ppm styrene; however, it is not certain that these systems can meet a lower PEL of 50 ppm styrene. PMID:4050803

  19. INTERIOR OF WEST SPAN LOOKING WEST (SHADOW OF VERTICAL LAPS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR OF WEST SPAN LOOKING WEST (SHADOW OF VERTICAL LAPS PLACED ON ZONE III; ASPHALT ZONE IX) - Honey Run Bridge, Spanning Butte Creek, bypassed section of Honey Run Road (originally Carr Hill Road), Paradise, Butte County, CA

  20. FRICTION STIR LAP WELDING OF ALUMINUM - POLYMER USING SCRIBE TECHNOLOGY

    SciTech Connect

    Upadhyay, Piyush; Hovanski, Yuri; Fifield, Leonard S.; Simmons, Kevin L.

    2015-02-16

    Friction Stir Scribe (FSS) technology is a relatively new variant of Friction Stir Welding (FSW) which enables lap joining of dissimilar material with very different melting points and different high temperature flow behaviors. The cutter scribe attached at the tip of FSW tool pin effectively cuts the high melting point material such that a mechanically interlocking feature is created between the dissimilar materials. The geometric shape of this interlocking feature determines the shear strength attained by the lap joint. This work presents first use of scribe technology in joining polymers to aluminum alloy. Details of the several runs of scribe welding performed in lap joining of ~3.175mm thick polymers including HDPE, filled and unfilled Nylon 66 to 2mm thick AA5182 are presented. The effect of scribe geometry and length on weld interlocking features is presented along with lap shear strength evaluations.

  1. Towards a better understanding of the mechanisms controlling the durability of FRP composites in concrete

    NASA Astrophysics Data System (ADS)

    Kamal, Abu Sayed Md

    Wide adoption by the construction industry of Fibre Reinforced Polymer (FRP) rebars - a relatively recent construction material that offers numerous advantages of corrosion resistance, higher strength, lighter weight, etc. over conventional reinforcing materials for concrete, such as steel - is at least partially impeded due to a lack of an effective long term in-service performance prediction model and relatively high initial costs. A reliable service life prediction model for FRP composites in concrete depends on a clear understanding of the transport mechanisms of potentially harmful chemical species into the FRP composites and their subsequent contribution to any potentially active degradation mechanism(s). To identify which mechanisms control the degradation of Glass Fibre Reinforced Polymers (GFRP) in alkaline environments, GFRP rebars were immersed into simulated concrete pore solutions and subjected to accelerated ageing tests (Phase 1). The conditioned samples were analyzed by various electron microscopy (SEM, EDS) and spectroscopic methods (FTIR). Analyses of these tests revealed that fibre-matrix debonding took place in few samples exposed to 75 °C (the highest temperature considered in this study), and tested after one year, despite the fact that the glass fibres and polymer matrix remained essentially intact and that no penetration of alkalis into the GFRP rebars was observed. Hence, this study shows that the Vinyl Ester (VE) polymer matrix used acts as an effective semi-permeable membrane by allowing the penetration of water while blocking alkali ions. The findings showing that most of the damage seems to be confined to the fibre-matrix interphase (or interface), under the considered test conditions, stimulated an investigation on the effects of sizing on the strength retention and water up-take of GFRP rebars in Phase 2 of the testing program. In order to study the effects of sizing on the properties of GFRP rebars, GFRP custom plane sheets with

  2. Study on fabrication of smart FRP-OFBG composite laminates and their sensing properties

    NASA Astrophysics Data System (ADS)

    Wang, Yanlei; Zhou, Zhi; Ou, Jinping

    2007-01-01

    Fiber reinforced polymer (FRP) has gained much attention in civil engineering due to its high strength-to-weight and stiffness-to-weight ratios, corrosion resistance and good fatigue resistance. Optical Fiber Bragg Grating (OFBG) is now widely accepted as smart sensor due to its advantages of electric-magnetic resistance, small size, distributed sensing, durability, and so on. Combined the FRP with OFBG, new kind of smart FRP-OFBG composite laminates was developed. Fabrication method of the smart composite laminates was introduced in this paper. The study presented the basic principle of OFBG sensors. Then the strain and temperature sensing properties of the proposed smart FRP-OFBG composite laminates were experimentally studied on material test system and under hot water, respectively. The experimental results indicate the strain sensing properties of the smart FRP-OFBG composite laminates are nearly the same as that of bare OFBG, however, the temperature sensing abilities of the smart FRP-OFBG composite laminates are improved and the sensitivity coefficient is nearly 3.2 times as much as that of bare OFBG. The strain and temperature sensing precisions of the smart FRP-OFBG composite laminates are 1 μ\\Vegr and 0.03 °C, respectively. The smart FRYOFBG composite laminates are very proper for application in civil engineering.

  3. Experimental study on seismic behavior of circular RC columns strengthened with pre-stressed FRP strips

    NASA Astrophysics Data System (ADS)

    Zhou, Changdong; Lu, Xilin; Li, Hui; Tian, Teng

    2013-12-01

    Bonding fiber reinforced polymer (FRP) has been commonly used to improve the seismic behavior of circular reinforced concrete (RC) columns in engineering practice. However, FRP jackets have a significant stress hysteresis effect in this strengthening method, and pre-tensioning the FRP can overcome this problem. This paper presents test results of 25 circular RC columns strengthened with pre-stressed FRP strips under low cyclic loading. The pre-stressing of the FRP strips, types of FRP strips and longitudinal reinforcement, axial load ratio, pre-damage degree and surface treatments of the specimens are considered as the primary factors in the tests. According to the failure modes and hysteresis curves of the specimens, these factors are analyzed to investigate their effect on bearing capacity, ductility, hysteretic behavior, energy dissipation capacity and other important seismic behaviors. The results show that the initial lateral confined stress provided by pre-stressed FRP strips can effectively inhibit the emergence and development of diagonal shear cracks, and change the failure modes of specimens from brittle shear failure to bending or bending-shear failure with better ductility. As a result, the bearing capacity, ductility, energy dissipation capacity and deformation capacity of the strengthened specimens are all significantly improved.

  4. Accelerated Testing for Long-Term Durability of Various FRP Laminates for Marine Use

    NASA Astrophysics Data System (ADS)

    Miyano, Yasushi; Nakada, Masayuki

    The prediction of long-term fatigue life of various FRP laminates combined with resins, fibers and fabrics for marine use under temperature and water environments were performed by our developed accelerated testing methodology based on the time-temperature superposition principle (TTSP). The base material of five kinds of FRP laminates employed in this study was plain fabric CFRP laminates T300 carbon fibers/vinylester (T300/VE). The first selection of FRP laminate to T300/VE was the combinations of different fabrics, that is flat yarn plain fabric T700 carbon fibers/vinylester (T700/VE-F) and multi-axial knitted T700 carbon fibers/vinylester (T700/VE-K) for marine use and the second selection of FRP laminates to T300/VE was the combinations with different fibers and matrix resin, that is plain fabric T300 carbon fibers/epoxy (T300/EP) and plain fabric E-glass fibers/vinylester (E-glass/VE). These five kinds of FRP laminates were prepared under three water absorption conditions of Dry, Wet and Wet C Dry after molding. The three-point bending constant strain rate (CSR) tests for these FRP laminates at three conditions of water absorption were carried out at various temperatures and strain rates. Furthermore, the three-point bending fatigue tests for these specimens were carried out at various temperatures and frequencies. The flexural CSR and fatigue strengths of these five kinds of FRP laminates strongly depend on water absorption as well as time and temperature. The mater curves of fatigue strength as well as CSR strength for these FRP laminates at three water absorption conditions are constructed by using the test data based on TTSP. It is possible to predict the long term fatigue life for these FRP laminates under an arbitrary temperature and water absorption conditions by using the master curves.

  5. Temperature Effects on Adhesive Bond Strengths and Modulus for Commonly Used Spacecraft Structural Adhesives

    NASA Technical Reports Server (NTRS)

    Ojeda, Cassandra E.; Oakes, Eric J.; Hill, Jennifer R.; Aldi, Dominic; Forsberg, Gustaf A.

    2011-01-01

    A study was performed to observe how changes in temperature and substrate material affected the strength and modulus of an adhesive bondline. Seven different adhesives commonly used in aerospace bonded structures were tested. Aluminum, titanium and Invar adherends were cleaned and primed, then bonded using the manufacturer's recommendations. Following surface preparation, the coupons were bonded with the adhesives. The single lap shear coupons were then pull tested per ASTM D 1002 Standard Test Method for Apparent Shear Strength of Single- Lap-Joint over a temperature range from -150 deg C up to +150 deg C. The ultimate strength was calculated and the resulting data were converted into B-basis design allowables. Average and Bbasis results were compared. Results obtained using aluminum adherends are reported. The effects of using different adherend materials and temperature were also studied and will be reported in a subsequent paper. Dynamic Mechanical Analysis (DMA) was used to study variations in adhesive modulus with temperature. This work resulted in a highly useful database for comparing adhesive performance over a wide range of temperatures, and has facilitated selection of the appropriate adhesive for spacecraft structure applications.

  6. STPI/LARC: A 200 deg C polyimide adhesive

    NASA Technical Reports Server (NTRS)

    Progar, D. J.; St.clair, T. L.

    1985-01-01

    A copolyimide, STPI/LARC, was prepared from the reaction of 3,3'4'benzophenonetetracarboxylic dianhydride (BTDA), equimolar quantities of m-phenylenediamine and 4,4'-oxydianiline, and a small amount of phthalic anhydride to control the molecular weight. The processability and adhesive properties of STPI/LARC were compared to those of a commercially available form of LARC-TPI. LARC-TPI, a thermoplastic polyimide, from the reaction of BTDA and 3,3'-diaminobenzophenone, had previously shown promise as a high temperature structural adhesive. Lap shear specimens were fabricated using adhesive tape prepared from each of the two polymers. Lap shear tests were performed at room temperature, 177 C, and 204 C before and after exposure to a 72-hour water-boil and to aging at 204 C.

  7. Flaw Tolerance in Lap Shear Brazed Joints. Part 1

    NASA Technical Reports Server (NTRS)

    Flom, Yury; Wang, Li-Qin

    2003-01-01

    Furnace brazing is a joining process used in the aerospace and other industries to produce strong permanent and hermetic structural joints. As in any joining process, brazed joints have various imperfections and defects. At the present time, our understanding of the influence of the internal defects on the strength of the brazed joints is not adequate. The goal of this 3-part investigation is to better understand the properties and failure mechanisms of the brazed joints containing defects. This study focuses on the behavior of the brazed lap shear joints because of their importance in manufacturing aerospace structures. In Part 1, an average shear strength capability and failure modes of the single lap joints are explored. Stainless steel specimens brazed with pure silver are tested in accordance with the AWS C3.2 standard. Comparison of the failure loads and the ultimate shear strength with the Finite Element Analysis (FEA) of the same specimens as a function of the overlap widths shows excellent correlation between the experimental and calculated values for the defect-free lap joints. A damage zone criterion is shown to work quite well in understanding the failure of the braze joints. In Part 2, the findings of the Part 1 will be verified on the larger test specimens. Also, various flaws will be introduced in the test specimens to simulate lack of braze coverage in the lap joints. Mechanical testing and FEA will be performed on these joints to verify that behavior of the flawed ductile lap joints is similar to joints with a reduced braze area. Finally, in Part 3, the results obtained in Parts 1 and 2 will be applied to the actual brazed structure to evaluate the load-carrying capability of a structural lap joint containing discontinuities. In addition, a simplified engineering procedure will be offered for the laboratory testing of the lap shear specimens.

  8. Shear Strength of Single Lap Joint Aluminium-Thermoplastic Natural Rubber (Al-TPNR) Laminated Composite

    NASA Astrophysics Data System (ADS)

    Muzakkar, M. Z.; Ahmad, S.; Yarmo, M. A.; Jalar, A.; Bijarimi, M.

    2013-04-01

    In this work, we studied the effect of surface treatment on the aluminium surface and a coupling agent to improve adhesion between aluminium with organic polymer. Thermoplastic natural rubber (TPNR) matrix was prepared by melt blending of natural rubber (NR), liquid natural rubber (LNR) compatibilizer, linear low density polyethylene (LLDPE) and polyethylene grafted maleic anhydride (PE-g-MAH). The PEgMAH concentration used was varied from 0% - 25%. In addition, the aluminium surface was pre-treated with 3-glycidoxy propyl trimethoxy silane (3-GPS) to enhance the mechanical properties of laminated composite. It was found that the shear strength of single lap joint Al-TPNR laminated composite showing an increasing trend as a function of PE-g-MAH contents for the 3-GPS surface treated aluminium. Moreover, the scanning electron microscope (SEM) revealed that the strength improvement was associated with the chemical state of the compound involved.

  9. Stress analysis of the cracked lap shear specimens: An ASTM round robin

    NASA Technical Reports Server (NTRS)

    Johnson, W. S.

    1986-01-01

    This ASTM Round Robin was conducted to evaluate the state of the art in stress analysis of adhesively bonded joint specimens. Specifically, the participants were asked to calculate the strain-energy-release rate for two different geometry cracked lap shear (CLS) specimens at four different debond lengths. The various analytical techniques consisted of 2- and 3-dimensional finite element analysis, beam theory, plate theory, and a combination of beam theory and finite element analysis. The results were examined in terms of the total strain-energy-release rate and the mode I to mode II ratio as a function of debond length for each specimen geometry. These results basically clustered into two groups: geometric linear or geometric nonlinear analysis. The geometric nonlinear analysis is required to properly analyze the CLS specimens. The 3-D finite element analysis gave indications of edge closure plus some mode III loading. Each participant described his analytical technique and results. Nine laboratories participated.

  10. Use of two-dimensional transmission photoelastic models to study stresses in double-lap bolted joints: Load transfer and stresses in the inner lap

    NASA Technical Reports Server (NTRS)

    Hyer, M. W.

    1980-01-01

    The determination of the stress distribution in the inner lap of double-lap, double-bolt joints using photoelastic models of the joint is discussed. The principal idea is to fabricate the inner lap of a photoelastic material and to use a photoelastically sensitive material for the two outer laps. With this setup, polarized light transmitted through the stressed model responds principally to the stressed inner lap. The model geometry, the procedures for making and testing the model, and test results are described.

  11. LSA SAF Meteosat FRP products - Part 1: Algorithms, product contents, and analysis

    NASA Astrophysics Data System (ADS)

    Wooster, M. J.; Roberts, G.; Freeborn, P. H.; Xu, W.; Govaerts, Y.; Beeby, R.; He, J.; Lattanzio, A.; Fisher, D.; Mullen, R.

    2015-11-01

    Characterizing changes in landscape fire activity at better than hourly temporal resolution is achievable using thermal observations of actively burning fires made from geostationary Earth Observation (EO) satellites. Over the last decade or more, a series of research and/or operational "active fire" products have been developed from geostationary EO data, often with the aim of supporting biomass burning fuel consumption and trace gas and aerosol emission calculations. Such Fire Radiative Power (FRP) products are generated operationally from Meteosat by the Land Surface Analysis Satellite Applications Facility (LSA SAF) and are available freely every 15 min in both near-real-time and archived form. These products map the location of actively burning fires and characterize their rates of thermal radiative energy release (FRP), which is believed proportional to rates of biomass consumption and smoke emission. The FRP-PIXEL product contains the full spatio-temporal resolution FRP data set derivable from the SEVIRI (Spinning Enhanced Visible and Infrared Imager) imager onboard Meteosat at a 3 km spatial sampling distance (decreasing away from the west African sub-satellite point), whilst the FRP-GRID product is an hourly summary at 5° grid resolution that includes simple bias adjustments for meteorological cloud cover and regional underestimation of FRP caused primarily by underdetection of low FRP fires. Here we describe the enhanced geostationary Fire Thermal Anomaly (FTA) detection algorithm used to deliver these products and detail the methods used to generate the atmospherically corrected FRP and per-pixel uncertainty metrics. Using SEVIRI scene simulations and real SEVIRI data, including from a period of Meteosat-8 "special operations", we describe certain sensor and data pre-processing characteristics that influence SEVIRI's active fire detection and FRP measurement capability, and use these to specify parameters in the FTA algorithm and to make recommendations

  12. Non-destructive evaluation of metal-to-metal adhesive joints using vibration analysis: experimental results

    NASA Astrophysics Data System (ADS)

    Pandurangan, Pradeep; Buckner, Gregory D.

    2006-03-01

    Vibration based non-destructive evaluation shows promise for damage detection in metal-to-metal adhesive joints. This research investigates an experimental technique to diagnose damage in single-lap adhesive joints subject to cyclical tensile loading. Vibration analysis reveals that damage can be correlated with changes in identified modal damping ratios. Constant amplitude forcing functions are employed to eliminate amplitude-dependent nonlinearities in the dynamic response profiles. Damping estimates obtained from time-domain analyses correlate well with damage magnitudes. Finite element modal analysis of the lap joints supports the experimental results.

  13. Experimental testing of a self-sensing FRP-concrete composite beam using FBG sensors

    NASA Astrophysics Data System (ADS)

    Wang, Yanlei; Hao, Qingduo; Ou, Jinping

    2009-03-01

    A new kind of self-sensing fiber reinforced polymer (FRP)-concrete composite beam, which consists of a FRP box beam combined with a thin layer of concrete in the compression zone, was developed by using two embedded FBG sensors in the top and bottom flanges of FRP box beam at mid-span section along longitudinal direction, respectively. The flexural behavior of the proposed self-sensing FRP-concrete composite beam was experimentally studied in four-point bending. The longitudinal strains of the composite beam were recorded using the embedded FBG sensors as well as the surfacebonded electric resistance strain gauges. Test results indicate that the FBG sensors can faithfully record the longitudinal strain of the composite beam in tension at bottom flange of the FRP box beam or in compression at top flange over the entire load range, as compared with the surface-bonded strain gauges. The proposed self-sensing FRP-concrete composite beam can monitor its longitudinal strains in serviceability limit state as well as in strength limit state, and will has wide applications for long-term monitoring in civil engineering.

  14. Experimental investigation of smart FRP-concrete composite beam with embedded FBG sensors

    NASA Astrophysics Data System (ADS)

    Wang, Yanlei; Hao, Qingduo; Zhou, Zhi; Ou, Jinping

    2007-07-01

    Fiber Bragg grating (FBG) sensor is broadly accepted as a structural health monitoring device for fiber reinforced polymer (FRP) materials by either embedding into or bonding onto the structures. A new kind of smart FRP-concrete composite beam was developed by using embedded FBG sensors. Firstly, fabrication process of the smart FRP-concrete composite beam was introduced. Subsequently, FRP laminates with embedded FBG sensors, which have the same stacking sequences as that of the smart composite beam, were fabricated and tested on material test system to determine the strain sensitivity coefficients of the smart composite beams. Finally, the proposed smart FRP-concrete composite beam was tested in 4-point bending to verify the operation of FBG sensors embedded in the smart beam. The experimental results indicate the strain sensing property of the laminates with embedding FBG sensors is nearly the same as that of bare FBG sensor, and the output of embedded FBG sensors in the smart beam agrees well with that of surface-bonded strain gauges over the entire load range. The proposed smart FRP-concrete composite beam can reveal the true internal strain of itself in its service life and will have wide applications for long-term monitoring in civil engineering.

  15. Geometrically nonlinear analysis of adhesively bonded joints

    NASA Technical Reports Server (NTRS)

    Dattaguru, B.; Everett, R. A., Jr.; Whitcomb, J. D.; Johnson, W. S.

    1982-01-01

    A geometrically nonlinear finite element analysis of cohesive failure in typical joints is presented. Cracked-lap-shear joints were chosen for analysis. Results obtained from linear and nonlinear analysis show that nonlinear effects, due to large rotations, significantly affect the calculated mode 1, crack opening, and mode 2, inplane shear, strain-energy-release rates. The ratio of the mode 1 to mode 2 strain-energy-relase rates (G1/G2) was found to be strongly affected by he adhesive modulus and the adherend thickness. The ratios between 0.2 and 0.8 can be obtained by varying adherend thickness and using either a single or double cracked-lap-shear specimen configuration. Debond growth rate data, together with the analysis, indicate that mode 1 strain-energy-release rate governs debond growth. Results from the present analysis agree well with experimentally measured joint opening displacements.

  16. Lap time optimisation of a racing go-kart

    NASA Astrophysics Data System (ADS)

    Lot, Roberto; Dal Bianco, Nicola

    2016-02-01

    The minimum lap time optimal control problem has been solved for a go-kart model. The symbolic algebra software Maple has been used to derive equations of motion and an indirect method has been adopted to solve the optimal control problem. Simulation has been successfully performed on a full track lap with a multibody model endowed with seven degrees of freedom. Geometrical and mechanical characteristics of a real kart have been measured by a lab test to feed the mathematical model. Telemetry recorded in an entire lap by a professional driver has been compared to simulation results in order to validate the model. After the reliability of the optimal control model was proved, the simulation has been used to study the peculiar dynamics of go-karts and focus to tyre slippage dynamics, which is highly affected by the lack of differential.

  17. Novel virtual Lap-Band simulator could promote patient safety.

    PubMed

    De, Suvranu; Ahn, Woojin; Lee, Doo Yong; Jones, Daniel B

    2008-01-01

    This paper presents, for the first time, a physics-based modeling technique for the Lap-Band (Inamed Health) used in laparoscopic gastric banding (LAGB) operations for treating the morbidly obese. A virtual LAGB simulator can help train medical students as well as surgeons who embark at learning this relatively new operation. The Lap-Band has different thickness and curvature along the centerline, and therefore leads to different deformation behaviors. A hybrid modeling strategy is therefore adopted to successfully replicate its dynamics. A mass-spring model, used to model the less stiff part, is coupled to a quasi-static articulated link model for the more stiff and inextensible part. The virtual Lap-Band model has been implemented into a complete graphics-haptics-physics-based system with two PHANToM Omni devices (from Sensible Technologies) being used for real-time bimanual interaction with force feedback. PMID:18391265

  18. Severe suppression of Frzb/sFRP3 transcription in osteogenic sarcoma.

    PubMed

    Mandal, Deendayal; Srivastava, Alok; Mahlum, Eric; Desai, Dinakar; Maran, Avudaiappan; Yaszemski, Michael; Jalal, Syed M; Gitelis, Steven; Bertoni, Franco; Damron, Tim; Irwin, Ronald; O'connor, Mary; Schwartz, Herbert; Bolander, Mark E; Sarkar, Gobinda

    2007-01-15

    Deciphering the molecular basis of cancer is critical for developing novel diagnostic and therapeutic strategies. To better understand the early molecular events involving osteogenic sarcoma (OGS), we have initiated a program to identify potential tumor suppressor genes. Expression profiling of total RNA from ten normal bone cell lines and eleven OGS-derived cell lines by microarray showed 135-fold lower expression of FRZB/sFRP3 mRNA in OGS cells compared to bone cells; this down-regulation of Frzb/sFRP3 mRNA expression was found to be serum-independent. Subsequently, fourteen OGS biopsy specimens showed nine-fold down-regulation of Frzb/sFRP3 mRNA expression compared to expression in eight normal bone specimens as determined by microarray. FRZB /sFRP3 protein level was also found to be at a very low level in 4/4 OGS cell lines examined. Quantitation by RT-PCR indicated approximately 70% and approximately 90% loss of Frzb/sFRP3 mRNA expression in OGS biopsy specimens and OGS-derived cell lines respectively, compared to expression in bone (p<0.0001). Hybridization experiments of a cDNA microarray containing paired normal and tumor specimens from nineteen different organs did not show any significant difference in the level of Frzb/sFRP3 mRNA expression between the normal and the corresponding tumor tissues. Exogenous expression of FRZB/sFRP3 mRNA in two OGS-derived cell lines lacking endogenous expression of the mRNA produced abundant mRNA from the exogenous gene, eliminating degradation as a possibility for very low level of FRZB/sFRP3 mRNA in OGS specimens. Results from PCR-based experiments suggest that the FRZB/sFRP3 gene is not deleted in OGS cell lines, however, karyotyping shows gross abnormalities involving chromosome 2 (location of the FRZB gene) in five of twelve OGS-derived cell lines. Together, these data suggest a tumor-suppressive potential for FRZB/sFRP3 in OGS. PMID:17079093

  19. TbFRP, a novel FYVE-domain containing phosphoinositide-binding Ras-like GTPase from trypanosomes

    PubMed Central

    Adung’a, Vincent O.; Field, Mark C.

    2013-01-01

    Ras-like small GTPases are regulatory proteins that control multiple aspects of cellular function, and are particularly prevalent in vesicular transport. A proportion of GTPase paralogs appear restricted to certain eukaryote lineages, suggesting roles specific to a restricted lineage, and hence potentially reflecting adaptation to individual lifestyles or ecological niche. Here we describe the role of a GTPase, TbFRP, a FYVE domain N-terminally fused to a Ras-like GTPase, originally identified in Trypanosoma brucei. As FYVE-domains specifically bind phosphoinositol 3-phosphate (PI3P), which associates with endosomes, we suggest that TbFRP may unite phosphoinositide and small G protein endosomal signaling in trypanosomatids. TbFRP orthologs are present throughout the Euglenazoa suggesting that FRP has functions throughout the group. We show that the FYVE domain of TbFRP is functional in PI3P-dependent membrane targeting and localizes at the endosomal region. Further, while TbFRP is apparently non-essential, knockdown and immunochemical evidence indicates that TbFRP is rapidly cleaved upon synthesis, releasing the GTPase and FYVE-domains. Finally, TbFRP expression at both mRNA and protein levels is cell density-dependent. Together, these data suggest that TbFRP is an endocytic GTPase with a highly unusual mechanism of action that involves proteolysis of the nascent protein and membrane targeting via PI3P. PMID:23220323

  20. Characterization studies on the additives mixed L-arginine phosphate monohydrate (LAP) crystals

    NASA Astrophysics Data System (ADS)

    Haja Hameed, A. S.; Karthikeyan, C.; Ravi, G.; Rohani, S.

    2011-04-01

    L-arginine phosphate monohydrate (LAP), potassium thiocyanate (KSCN) mixed LAP (LAP:KSCN) and sodium sulfite (Na 2SO 3) mixed LAP (LAP:Na 2SO 3) single crystals were grown by slow cooling technique. The effect of microbial contamination and coloration on the growth solutions was studied. The crystalline powders of the grown crystals were examined by X-ray diffraction and the lattice parameters of the crystals were estimated. From the FTIR spectroscopic analysis, various functional group frequencies associated with the crystals were assigned. Vickers microhardness studies were done on {1 0 0} faces for pure and additives mixed LAP crystals. From the preliminary surface second harmonic generation (SHG) results, it was found that the SHG intensity at (1 0 0) face of LAP:KSCN crystal was much stronger than that of pure LAP.

  1. Abdominal Adhesions

    MedlinePlus

    ... Abdominal Adhesions 1 Ward BC, Panitch A. Abdominal adhesions: current and novel therapies. Journal of Surgical Research. 2011;165(1):91– ... are abdominal adhesions and intestinal obstructions ... generally do not require treatment. Surgery is the only way to treat abdominal ...

  2. Effects of bearing surfaces on lap joint energy dissipation

    SciTech Connect

    Kess, H. R.; Rosnow, N. J.; Sidle, B. C.

    2001-01-01

    Energy is dissipated in mechanical systems in several forms. The major contributor to damping in bolted lap joints is friction, and the level of damping is a function of stress distribution in the bearing surfaces. This study examines the effects of bearing surface configuration on lap joint energy dissipation. The examination is carried out through the analysis of experimental results in a nonlinear framework. Then finite element models are constructed in a nonlinear framework to simulate the results. The experimental data were analyzed using piecewise linear log decrement. Phenomenological and non-phenomenological mathematical models were used to simulate joint behavior. Numerical results of experiments and analyses are presented.

  3. Seam-Tracking for Friction Stir Welded Lap Joints

    NASA Astrophysics Data System (ADS)

    Fleming, Paul A.; Hendricks, Christopher E.; Cook, George E.; Wilkes, D. M.; Strauss, Alvin M.; Lammlein, David H.

    2010-11-01

    This article presents a method for automatic seam-tracking in friction stir welding (FSW) of lap joints. In this method, tracking is accomplished by weaving the FSW tool back-and-forth perpendicular to the direction of travel during welding and monitoring force and torque signals. Research demonstrates the ability of this method to automatically track weld seam positions. Additionally, tensile and S-bend test result comparisons demonstrate that weaving most likely does not reduce weld quality. Finally, benefits of this weave-based method to FSW of lap joints are discussed and methods for incorporating it into existing friction stir welding control algorithms (such as axial load control) are examined.

  4. Adhesive evaluation of water-soluble LARC-TPI

    NASA Technical Reports Server (NTRS)

    Progar, Donald J.; Pike, Roscoe A.

    1987-01-01

    The water-soluble polyimide, identified as TPI(MTC)/H2O, was evaluated as a high temperature thermoplastic adhesive for bonding Ti-6Al-4V and comparing those results primarily with results reported in earlier work with the polyamic-acid/diglyme material. The lap shear strength test was the primary test performed to evaluate the adhesive before (controls) and after thermal exposure in air at 204 C for up to 5000 hours and after a 72 hour water-boil exposure. Lap shear strengths were determined at RT, 177, 204, and 232 C. The adhesive was also characterized after fracture by determining the glass transition temperature as well as defining the mode of failure by visual observation. In general, the results indicate that the TPI(MTC)/H2O retains high lap shear strengths after thermal exposure but had reduced strengths after the water-boil exposure. All failures were cohesive. The TPI(MTC)/H2O compared very well with previous data reported for the standard polyamic-acid/diglyme LARC-TPI results, and therefore, shows promise as a water-soluble adhesive for use in various applications.

  5. Behaviour of concrete beams reinforced withFRP prestressed concrete prisms

    NASA Astrophysics Data System (ADS)

    Svecova, Dagmar

    The use of fibre reinforced plastics (FRP) to reinforce concrete is gaining acceptance. However, due to the relatively low modulus of FRP, in comparison to steel, such structures may, if sufficient amount of reinforcement is not used, suffer from large deformations and wide cracks. FRP is generally more suited for prestressing. Since it is not feasible to prestress all concrete structures to eliminate the large deflections of FRP reinforced concrete flexural members, researchers are focusing on other strategies. A simple method for avoiding excessive deflections is to provide sufficiently high amount of FRP reinforcement to limit its stress (strain) to acceptable levels under service loads. This approach will not be able to take advantage of the high strength of FRP and will be generally uneconomical. The current investigation focuses on the feasibility of an alternative strategy. This thesis deals with the flexural and shear behaviour of concrete beams reinforced with FRP prestressed concrete prisms. FRP prestressed concrete prisms (PCP) are new reinforcing bars, made by pretensioning FRP and embedding it in high strength grout/concrete. The purpose of the research is to investigate the feasibility of using such pretensioned rebars, and their effect on the flexural and shear behaviour of reinforced concrete beams over the entire loading range. Due to the prestress in the prisms, deflection of concrete beams reinforced with this product is substantially reduced, and is comparable to similarly steel reinforced beams. The thesis comprises both theoretical and experimental investigations. In the experimental part, nine beams reinforced with FRP prestressed concrete prisms, and two companion beams, one steel and one FRP reinforced were tested. All the beams were designed to carry the same ultimate moment. Excellent flexural and shear behaviour of beams reinforced with higher prestressed prisms is reported. When comparing deflections of three beams designed to have the

  6. Auto Mechanics I. Learning Activity Packets (LAPs). Section C--Engine.

    ERIC Educational Resources Information Center

    Oklahoma State Board of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This document contains five learning activity packets (LAPs) that outline the study activities for the "engine" instructional area for an Auto Mechanics I course. The five LAPs cover the following topics: basic engine principles, cooling system, engine lubrication system, exhaust system, and fuel system. Each LAP contains a cover sheet that…

  7. Auto Mechanics I. Learning Activity Packets (LAPs). Section D--Suspension.

    ERIC Educational Resources Information Center

    Oklahoma State Board of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This document contains six learning activity packets (LAPs) that outline the study activities for the "suspension" instructional area for an Auto Mechanics I course. The six LAPs cover the following topics: wheel bearings, tires and wheels, wheel balancing, suspension system, steering system, and wheel alignment. Each LAP contains a cover sheet…

  8. Auto Mechanics I. Learning Activity Packets (LAPs). Section B--Measuring.

    ERIC Educational Resources Information Center

    Oklahoma State Board of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This document contains three learning activity packets (LAPs) that outline the study activities for the instructional area of measuring for an Auto Mechanics I course. The three LAPs cover the following topics: rules, the outside micrometer, and the inside micrometer. Each LAP contains a cover sheet that describes its purpose, an introduction, and…

  9. Adhesive evaluation of thin films of LARC-TPI and LARC-TPI with 5 mol % ODA

    NASA Technical Reports Server (NTRS)

    Progar, D. J.

    1986-01-01

    A commercially available LARC-TPI film and an experimentally prepared film of LARC-TPI with 5 mol % of 4,4'-oxydianiline (ODA), designated as LARC-TPI/ODA in the report, supplied by Mitsui Toatsu Chemicals, Incorporated (MTCI), Japan, were evaluated as thermoplastic adhesive films for bonding Ti-6Al-4V. The LARC-TPI/ODA had been shown by MTCI to possess more flow than thermoplastic LARC-TPI and was, therefore, evaluated and compared to the LARC-TPI. Lap shear strength was used to evaluate the materials as adhesives. They were characterized after fracture by determining the glass transition temperature, Tg. The mode of failure was also reported. Thermal exposure at 204C for 500 and 1000 hrs and a 72-hour water-boil were conducted on lap shear specimens prepared with the two adhesive films. Lap shear tests were conducted at RT, 177C, 204C, and 232C before and after exposures.

  10. Learning Activity Package, Algebra 124, LAPs 46-55.

    ERIC Educational Resources Information Center

    Holland, Bill

    A series of 10 teacher-prepared Learning Activity Packages (LAPs) in advanced algebra and trigonometry, these units cover absolute value, inequalities, exponents, radicals, and complex numbers; functions; higher degree equations and the derivative; the trigonometric functions; graphs and applications of the trigonometric functions; sequences and…

  11. Design Document: Content Module; L.A.P. Version I.

    ERIC Educational Resources Information Center

    Porch, Ann; Lang, Pat

    A series of computer programs and routines designed to assist researchers in the analysis of language usage was developed by the Southwest Regional Laboratory (SWRL). This document is one of a series that describes design specifications for the individual modules which comprise the Language Analysis Package (LAP). The Content Module functions as a…

  12. Learning Activity Package, Physical Science 92, LAPs 1-9.

    ERIC Educational Resources Information Center

    Williams, G. J.

    This set of nine teacher-prepared Learning Activity Packages (LAPs) for individualized instruction in physical science covers the topics of scientific equipment and procedures; measure of time, length, area, and volume; water; oxygen and oxidation; atmospheric pressure; motion; machines; carbon; and light and sound. Each unit contains a rationale…

  13. Insights: A LAP on Moles: Teaching an Important Concept.

    ERIC Educational Resources Information Center

    Ihde, John

    1985-01-01

    Describes a learning activity packet (LAP) designed to help students understand the basic concept of the mole as a chemical unit; know relationships between the mole and atomic weights in the periodic table; and solve basic conversion problems involving moles, atoms, and molecules. (JN)

  14. Constitutive Modeling and Numerical Simulation of Frp Confined Concrete Specimens

    NASA Astrophysics Data System (ADS)

    Smitha, Gopinath; Ramachandramurthy, Avadhanam; Nagesh, Ranganatha Iyer; Shahulhameed, Eduvammal Kunhimoideen

    2014-09-01

    Fiber-reinforced polymer (FRP) composites are generally used for the seismic retrofit of concrete members to enhance their strength and ductility. In the present work, the confining effect of Carbon Fiber-Reinforced Polymer (CFRP) composite layers has been investigated by numerical simulation. The numerical simulation has been carried out using nonlinear finite element analysis (FEA) to predict the response behaviour of CFRP-wrapped concrete cylinders. The nonlinear behaviour of concrete in compression and the linear elastic behaviour of CFRP has been modeled using an appropriate constitutive relationship. A cohesive model has been developed for modeling the interface between the concrete and CFRP. The interaction and damage failure criteria between the concrete to the cohesive element and the cohesive element to the CFRP has also been accounted for in the modeling. The response behaviour of the wrapped concrete specimen has been compared with the proposed interface model and with a perfectly bonded condition. The results obtained from the present study showed good agreement with the experimental load-displacement response and the failure pattern in the literature. Further, a sensitivity analysis has been carried out to study the effect of the number of layers of CFRP on the concrete specimens. It has been observed that wrapping with two layers was found to be the optimum, beyond which the response becomes flexible but with a higher load-carrying capacity

  15. Design and behavior of reinforced concrete beams strengthened with fiber-reinforced plastics (FRP)

    NASA Astrophysics Data System (ADS)

    El-Mihilmy, Mahmoud Tharwat

    A comprehensive investigation of the design and behavior of reinforced concrete beams strengthened with externally bonded FRP laminates has been conducted. The study has confirmed the applicability of the strain compatibility method for calculating the increased ultimate moment capacity of the repaired beams. An upper limit to the amount of FRP that can be added to a specific structure was recommended to ensure ductile behavior. Design charts to facilitate calculations of the ultimate moment capacity for reinforced concrete beams strengthened with FRP laminates were developed. The results of a subsequent parametric investigation indicate that strengthening reinforced concrete beams with FRP laminates can enhance their ultimate capacity by as much as three times the original strength, especially for beams with a low steel ratio. It was also determined that, increasing the concrete compressive strength and the FRP modulus of elasticity increases the beam ultimate flexural capacity significantly; however, the repaired beams are less ductile than the pre-repaired concrete beams. During the course of the study, it had been noticed that the current ACI recommended method for calculating deflections for ordinary reinforced concrete beams does not render an accurate estimate for reinforced concrete beams strengthened with FRP laminates. A simplified equation for predicting the deflection of reinforced concrete beams repaired with FRP was developed and verified with comparisons to experimental results. The effectiveness of strengthening an existing bridge with externally bonded FRP laminates was investigated through comprehensive static and dynamic finite element analyses. The results of these analyses correlate well with field load test results. The repaired girders exhibited an average reduction in reinforcing steel stresses of 11 percent and an average reduction in midspan girder deflections of 9 percent. The results of the study also indicated that existing methods for

  16. Distributed Long-Gauge Optical Fiber Sensors Based Self-Sensing FRP Bar for Concrete Structure.

    PubMed

    Tang, Yongsheng; Wu, Zhishen

    2016-01-01

    Brillouin scattering-based distributed optical fiber (OF) sensing technique presents advantages for concrete structure monitoring. However, the existence of spatial resolution greatly decreases strain measurement accuracy especially around cracks. Meanwhile, the brittle feature of OF also hinders its further application. In this paper, the distributed OF sensor was firstly proposed as long-gauge sensor to improve strain measurement accuracy. Then, a new type of self-sensing fiber reinforced polymer (FRP) bar was developed by embedding the packaged long-gauge OF sensors into FRP bar, followed by experimental studies on strain sensing, temperature sensing and basic mechanical properties. The results confirmed the superior strain sensing properties, namely satisfied accuracy, repeatability and linearity, as well as excellent mechanical performance. At the same time, the temperature sensing property was not influenced by the long-gauge package, making temperature compensation easy. Furthermore, the bonding performance between self-sensing FRP bar and concrete was investigated to study its influence on the sensing. Lastly, the sensing performance was further verified with static experiments of concrete beam reinforced with the proposed self-sensing FRP bar. Therefore, the self-sensing FRP bar has potential applications for long-term structural health monitoring (SHM) as embedded sensors as well as reinforcing materials for concrete structures. PMID:26927110

  17. Load-induced debonding of FRP composites applied to reinforced concrete

    NASA Astrophysics Data System (ADS)

    Blok, Joel; Brown, Jeff

    2009-05-01

    Fiber-reinforced polymer (FRP) composites are widely used to increase the flexural and shear capacity of reinforced concrete (RC) elements. One potential disadvantage is that strengthened surfaces are no longer visible and cracks or delaminations that result from excessive loading or fatigue may go undetected. This research investigated thermal imaging techniques for monitoring and evaluating load-induced delamination of FRP composites applied to small scale RC beams. Two beams (3.5 in x 4.5 in x 58 in) were loaded monotonically to failure. Infrared thermography (IRT) inspections were performed at various load levels through failure using a composite phase imaging technique. Two similar beams were tested in fatigue and periodic IRT inspections were performed at 50,000-cycle intervals. Individual phase values for each pixel were designated as "well-bonded", "suspect" or "unbonded" to indicate the quality of FRP bond. Suspect areas included regions of excess thickened-epoxy tack-coat and smaller installation defects in the unloaded specimens. The long-term objective of this research is to develop a practical framework for conducting quantitative IRT inspections of FRP composites applied to RC and incorporating these results into acceptance criteria for new installations and predictions for the remaining service life of in-service FRP systems. This method may also offer insight into the necessity for repairs to in-service systems.

  18. Distributed Long-Gauge Optical Fiber Sensors Based Self-Sensing FRP Bar for Concrete Structure

    PubMed Central

    Tang, Yongsheng; Wu, Zhishen

    2016-01-01

    Brillouin scattering-based distributed optical fiber (OF) sensing technique presents advantages for concrete structure monitoring. However, the existence of spatial resolution greatly decreases strain measurement accuracy especially around cracks. Meanwhile, the brittle feature of OF also hinders its further application. In this paper, the distributed OF sensor was firstly proposed as long-gauge sensor to improve strain measurement accuracy. Then, a new type of self-sensing fiber reinforced polymer (FRP) bar was developed by embedding the packaged long-gauge OF sensors into FRP bar, followed by experimental studies on strain sensing, temperature sensing and basic mechanical properties. The results confirmed the superior strain sensing properties, namely satisfied accuracy, repeatability and linearity, as well as excellent mechanical performance. At the same time, the temperature sensing property was not influenced by the long-gauge package, making temperature compensation easy. Furthermore, the bonding performance between self-sensing FRP bar and concrete was investigated to study its influence on the sensing. Lastly, the sensing performance was further verified with static experiments of concrete beam reinforced with the proposed self-sensing FRP bar. Therefore, the self-sensing FRP bar has potential applications for long-term structural health monitoring (SHM) as embedded sensors as well as reinforcing materials for concrete structures. PMID:26927110

  19. Secreted Frizzled related protein-4 (sFRP4) promotes epidermal differentiation and apoptosis

    SciTech Connect

    Maganga, Richard; Giles, Natalie; Adcroft, Katharine; Unni, Ambili; Keeney, Diane; Wood, Fiona; Fear, Mark Dharmarajan, Arunasalam

    2008-12-12

    The skin provides vital protection from infection and dehydration. Maintenance of the skin is through a constant program of proliferation, differentiation and apoptosis of epidermal cells, whereby proliferating cells in the basal layer differentiating to form the keratinized, anucleated stratum corneum. The WNT signalling pathway is known to be important in the skin. WNT signalling has been shown to be important both in epidermal development and in the maintenance and cycling of hair follicles and epidermal stem cells. However, the precise role for this pathway in epidermal differentiation remains unknown. We investigated the role of the WNT signalling inhibitor sFRP4 in epidermal differentiation. sFRP4 is expressed in both normal skin and keratinocytes in culture. Expression of sFRP4 mRNA and protein increases with keratinocyte differentiation and apoptosis, whilst exposure of keratinocytes to exogenous sFRP4 promotes apoptosis and expression of the terminal differentiation marker Involucrin. These data suggest sFRP4 promotes epidermal differentiation.

  20. An investigation into the impact of cryogenic environment on mechanical stresses in FRP composites

    NASA Astrophysics Data System (ADS)

    Fifo, O.; Basu, B.

    2015-07-01

    Fibre reinforced polymer (FRP) composites are fast becoming a highly utilised engineering material for high performance applications due to their light weight and high strength. Carbon fibre and other high strength fibres are commonly used in design of aerospace structures, wind turbine blades, etc. and potentially for propellant tanks of launch vehicles. For the aforementioned fields of application, stability of the material is essential over a wide range of temperature particularly for structures in hostile environments. Many studies have been conducted, experimentally, over the last decade to investigate the mechanical behaviour of FRP materials at varying subzero temperature. Likewise, tests on aging and cycling effect (room to low temperature) on the mechanical response of FRP have been reported. However, a relatively lesser focused area has been the mechanical behaviour of FRP composites under cryogenic environment. This article reports a finite element method of investigating the changes in the mechanical characteristics of an FRP material when temperature based analysis falls below zero. The simulated tests are carried out using a finite element package with close material properties used in the cited literatures. Tensile test was conducted and the results indicate that the mechanical responses agree with those reported in the literature sited.

  1. Evaluation of adhesive materials used on the Long Duration Exposure Facility

    NASA Technical Reports Server (NTRS)

    Dursch, H. W.; Keough, B. K.; Pippin, H. G.

    1995-01-01

    The adhesive and adhesive-like materials flown on LDEF included epoxies and silicones (including lap shear specimens), conformal coatings, potting compounds, and several tapes and transfer films. With the exception of the lap shear specimens, these materials were used in the fabrication and assembly of the experiments such as bonding thermal control surfaces to other hardware and holding individual specimens in place, similar to applications on other spacecraft. Typically, the adhesives were not exposed to solar radiation or atomic oxygen. Only one adhesive system was used in a structural application. This report documents all results of the Materials and Systems SIG investigation into the effect of long term low Earth orbit (LEO) exposure of these materials. Results of this investigation show that if the material was shielded from exposure to LDEF's external environment, the 69 month exposure to LEO had, in most cases, minimal effect on the material.

  2. Evaluation of adhesive materials used on the Long Duration Exposure Facility. Report, October 1989-January 1995

    SciTech Connect

    Dursch, H.W.; Keough, B.K.; Pippin, H.G.

    1995-03-01

    The adhesive and adhesive-like materials flown on LDEF included epoxies and silicones (including lap shear specimens), conformal coatings, potting compounds, and several tapes and transfer films. With the exception of the lap shear specimens, these materials were used in the fabrication and assembly of the experiments such as bonding thermal control surfaces to other hardware and holding individual specimens in place, similar to applications on other spacecraft. Typically, the adhesives were not exposed to solar radiation or atomic oxygen. Only one adhesive system was used in a structural application. This report documents all results of the Materials and Systems SIG investigation into the effect of long term low Earth orbit (LEO) exposure of these materials. Results of this investigation show that if the material was shielded from exposure to LDEF`s external environment, the 69 month exposure to LEO had, in most cases, minimal effect on the material.

  3. High-temperature adhesives for bonding polyimide film. [bonding Kapton film for solar sails

    NASA Technical Reports Server (NTRS)

    St.clair, A. K.; Slemp, W. S.; St.clair, T. L.

    1980-01-01

    Experimental polyimide resins were developed and evaluated as potential high temperature adhesives for bonding Kapton polyimide film. Lap shear strengths of Kapton/Kapton bonds were obtained as a function of test temperature, adherend thickness, and long term aging at 575 K (575 F) in vacuum. Glass transition temperatures of the polyimide/"Kapton" bondlines were monitored by thermomechanical analysis.

  4. Evaluation of high temperature structural adhesives for extended service. [supersonic cruise aircraft research

    NASA Technical Reports Server (NTRS)

    Hill, S. G.

    1981-01-01

    Eight different Ti-6Al-4V surface treatments were investigated for each of 10 candidate resins. Primers (two for each resin) were studied for appropriate cure and thickness and initial evaluation of bond joints began using various combinations of the adhesive resins and surface treatments. Surface failure areas of bonded titanium coupons were analyzed by electron microscopy and surface chemical analysis techniques. Results of surface characterization and failure analysis are described for lap shear bond joints occurring with adhesive systems consisting of: (1) LARC-13 adhesive, Pasa jell surface treatment; (2) LARC-13 adhesive, 10 volt CAA treatment; (3) PPQ adhesive, 10 volt CAA treatment; and (4) PPQ adhesive, 5 volt CAA treatment. The failure analysis concentrated on the 10,000 hr 505K (450 F) exposed specimens which exhibited adhesive failure. Environmental exposure data being generated on the PPQ-10 volt CAA and the LARC-TPI-10 volt CAA adhesive systems is included.

  5. Electrostatic adhesion for added functionality of composite structures

    NASA Astrophysics Data System (ADS)

    Heath, Callum J. C.; Bond, Ian P.; Potter, Kevin D.

    2016-02-01

    Electrostatic adhesion can be used as a means of reversible attachment. The incorporation of electrostatic adhesion into fibre reinforced polymer (FRP) composite structures could provide significant value added functionality. Imparting large potential differences (∼2 kV) across electrodes generates an attractive force, thus providing a means of attachment. This could be used as a reversible latching mechanism or as a means of controllable internal connectivity. Varying the connectivity for discrete elements of a substructure of a given design allows for control of internal load paths and moment of area of the cross section. This could facilitate variable stiffness (both in bending and torsion). Using a combination of existing fabrication techniques, functional electrodes have been integrated within a FRP. Copper polyimide thin film laminate material has been both co-cured with carbon fibre reinforced epoxy and bonded to PVC closed cell foam core material to provide a range of structural configurations with integrated electrodes. The ability of such integrated devices to confer variations in global bending stiffness of basic beam structures is investigated. Through the application of 4 kV across integrated electrostatic adhesive devices, a 112% increase in flexural stiffness has been demonstrated for a composite sandwich structure.

  6. Perspectives Of Employment Of Pultruded FRP Structural Elements In Seismic Engineering Field

    SciTech Connect

    Russo, Salvatore; Silvestri, Mirko

    2008-07-08

    Today the employment of FRP material in structural engineering is in common use, with excellent results in term of applications especially as reinforcement of existing structures. This success is related to the very reduced weight of FRP material, to its performance in term of strength and durability and thanks to the easy use in technical application. There is a modern way to use this material disguised as structural pultruded element (with weight equal to 1600-1800 kg/m{sup 3}) in new constructions, local reinforcements and in other seismic applications. Actually the international technical and scientific literature in form of draft, recommendations and researches on this topic is very rich also taking into account Italian contribution. Some interesting applications of all FRP structures in seismic engineering field are showed in this research in real terms and in form of capability.

  7. Non-linear heterogeneous FE approach for FRP strengthened masonry arches

    NASA Astrophysics Data System (ADS)

    Bertolesi, Elisa; Milani, Gabriele; Fedele, Roberto

    2015-12-01

    A fast and reliable non-linear heterogeneous FE approach specifically conceived for the analysis of FRP-reinforced masonry arches is presented. The approach proposed relies into the reduction of mortar joints to interfaces exhibiting a non-linear holonomic behavior, with a discretization of bricks by means of four-noded elastic elements. The FRP reinforcement is modeled by means of truss elements with elastic-brittle behavior, where the peak tensile strength is estimated by means of a consolidated approach provided by the Italian guidelines CNR-DT200 on masonry strengthening with fiber materials, where the delamination of the strip from the support is taken into account. The model is validated against some recent experimental results relying into circular masonry arches reinforced at both the intrados and the extrados. Some sensitivity analyses are conducted varying the peak tensile strength of the trusses representing the FRP reinforcement.

  8. Qualification of room-temperature-curing structural adhesives for use on JPL spacecraft

    NASA Technical Reports Server (NTRS)

    Carpenter, Alain; O'Donnell, Tim

    1989-01-01

    An evaluation is made of the comparative advantages of numerous room temperature-cure structural primers and adhesives applicable to spacecraft structures. The EA 9394 adhesive and BR 127 primer were chosen for use in all primary structure bonding on the Galileo spacecraft, in virtue of adequate room-temperature lap shear and peel strengths and superior mechanical properties above 200 F. EA 9394 also offers superior work life, shelf-life, and storage properties, by comparison with the EA 934 alternative.

  9. Secreted Frizzled-related protein-2 (sFRP2) augments canonical Wnt3a-induced signaling

    SciTech Connect

    Marschall, Zofia von; Fisher, Larry W.

    2010-09-24

    Research highlights: {yields} sFRP2 enhances the Wnt3a-induced {beta}-catenin stabilization and its nuclear translocation. {yields} sFRP2 enhances LRP6 phosphorylation and Wnt3a/{beta}-catenin transcriptional reporter activity. {yields} Dickkopf-1 (DKK1) fully antagonizes both Wnt3a/sFRP2-induced LRP6 phosphorylation and transcriptional activity. {yields} sFRP2 enhances expression of genes known to be regulated by Wnt3a signaling. -- Abstract: Secreted Frizzled-related proteins (sFRP) are involved in embryonic development as well as pathological conditions including bone and myocardial disorders and cancer. Because of their sequence homology with the Wnt-binding domain of Frizzled, they have generally been considered antagonists of canonical Wnt signaling. However, additional activities of various sFRPs including both synergism and mimicry of Wnt signaling as well as functions other than modulation of Wnt signaling have been reported. Using human embryonic kidney cells (HEK293A), we found that sFRP2 enhanced Wnt3a-dependent phosphorylation of LRP6 as well as both cytosolic {beta}-catenin levels and its nuclear translocation. While addition of recombinant sFRP2 had no activity by itself, Top/Fop luciferase reporter assays showed a dose-dependent increase of Wnt3a-mediated transcriptional activity. sFRP2 enhancement of Wnt3a signaling was abolished by treatment with the Wnt antagonist, Dickkopf-1 (DKK1). Wnt-signaling pathway qPCR arrays showed that sFRP2 enhanced the Wnt3a-mediated transcriptional up-regulation of several genes regulated by Wnt3a including its antagonists, DKK1, and Naked cuticle-1 homolog (NKD1). These results support sFRP2's role as an enhancer of Wnt/{beta}-catenin signaling, a result with biological impact for both normal development and diverse pathologies such as tumorigenesis.

  10. Structural Features of the Pseudomonas fluorescens Biofilm Adhesin LapA Required for LapG-Dependent Cleavage, Biofilm Formation, and Cell Surface Localization

    PubMed Central

    Boyd, Chelsea D.; Smith, T. Jarrod; El-Kirat-Chatel, Sofiane; Newell, Peter D.; Dufrêne, Yves F.

    2014-01-01

    The localization of the LapA protein to the cell surface is a key step required by Pseudomonas fluorescens Pf0-1 to irreversibly attach to a surface and form a biofilm. LapA is a member of a diverse family of predicted bacterial adhesins, and although lacking a high degree of sequence similarity, family members do share common predicted domains. Here, using mutational analysis, we determine the significance of each domain feature of LapA in relation to its export and localization to the cell surface and function in biofilm formation. Our previous work showed that the N terminus of LapA is required for cleavage by the periplasmic cysteine protease LapG and release of the adhesin from the cell surface under conditions unfavorable for biofilm formation. We define an additional critical region of the N terminus of LapA required for LapG proteolysis. Furthermore, our results suggest that the domains within the C terminus of LapA are not absolutely required for biofilm formation, export, or localization to the cell surface, with the exception of the type I secretion signal, which is required for LapA export and cell surface localization. In contrast, deletion of the central repetitive region of LapA, consisting of 37 repeats of 100 amino acids, results in an inability to form a biofilm. We also used single-molecule atomic force microscopy to further characterize the role of these domains in biofilm formation on hydrophobic and hydrophilic surfaces. These studies represent the first detailed analysis of the domains of the LapA family of biofilm adhesin proteins. PMID:24837291

  11. Abdominal Adhesions

    MedlinePlus

    ... Adhesions 1 Ward BC, Panitch A. Abdominal adhesions: current and novel therapies. Journal of Surgical Research. 2011;165(1):91–111. Seek Help for ... and how to participate, visit the NIH Clinical Research Trials and You website ... Foundation for Functional Gastrointestinal Disorders 700 West Virginia ...

  12. Identification of bolted lap joints parameters in assembled structures

    NASA Astrophysics Data System (ADS)

    Ahmadian, Hamid; Jalali, Hassan

    2007-02-01

    Bolted lap joints have significant influence on the dynamical behaviour of the assembled structures due to creation of strong local flexibility and damping. In modelling the dynamical behaviour of assembled structures the joint interface model must be represented accurately. A nonlinear model for bolted lap joints and interfaces is proposed capable of representing the dominant physics involved in the joint such as micro/macro-slip. The joint interface is modelled using a combination of linear and nonlinear springs and a damper to simulate the damping effects of the joint. An estimate of the response of the structure with a nonlinear model for the bolted joint under external excitations is obtained using the method of multiple scales. The parameters of the model, i.e. the spring constants and the damper coefficient, are functions of normal and tangential stresses at the joint interface and are identified by minimizing the difference between the model predictions and the experimentally measured data.

  13. FRICTION-STIR-LAP-WELDS OF AA6111 ALUMINUM ALLOY

    SciTech Connect

    Yadava, Manasij; Mishra, Rajiv S.; Chen, Y. L.; Gayden, X.; Grant, Glenn J.

    2007-01-09

    Lap joints of 1 mm thick AA6111 aluminum sheets were made by friction stir welding, using robotic and conventional machines. Welds were made for advancing as well as retreating side loading. Thinning in welds was quantified. Lap shear test of welds was conducted in as-welded and paint-baked conditions. Conventional machine welds showed less thinning and better strength than robotic machine welds. Process forces in conventional machine welding were higher. Paint bake treatment improved the weld strength; but the improvement varied with process parameters. Advancing side loaded welds achieved higher strength than the retreating side loaded welds. Fracture location was found to occur on the loaded side of the weld and along the thinning defect.

  14. The impact of lubricants on the precision lapping process.

    PubMed

    Jiang, Xionghua; Chen, Zhenxing; Wolfram, Joy; Wei, Zhongxian; Shen, Yuqiu; Yang, Zhizhou

    2014-12-01

    The impact of lubricants on pole-tip recession and surface morphology of hard disk drive heads in the precision lapping process was investigated with atomic force microscopy, scanning electron microscopy, and auger electron spectroscopy. In particular, the effects of deionized water, hydrocarbon oil, ethanediol, isopropanol, and ethanol lubricants were evaluated. The results reveal that proper selection of lubricant is critical for achieving optimal performance in the lapping process. A mixture of 68% hydrocarbon oil, 30% isopropanol, and 2% octadecenoic acid was found to yield the most favorable results, displaying a writer shield recession, first shield of reader recession, and surface roughness of 0.423, 0.581, and 0.242 nm, respectively. PMID:25387606

  15. Preparation and properties of silane-endcapped polyimide adhesives

    NASA Technical Reports Server (NTRS)

    Maudgal, S.; St. Clair, T. L.

    1984-01-01

    Silane-endcapped polyimide high temperature adhesive formulations were prepared by reacting anhydride-terminated poly(amic acid), obtained from benzophenonetetracarboxylic dianhydride and a diamine (3,3'-, 3,4'- or 4,4'-diaminodiphenylmethane and 3,3', 3,4'- or 4,4'-diaminobenzophenone) with varying amounts of gama-aminopropyltriethoxysilane in dimethylacetamide. Resin properties were evaluated by torsional braid analysis and thermogravimetric analysis. Lap shear strengths of some of the adhesive bonds were determined at room temperature and at 177 C before and after ageing at 200 C for 2500 h and after boiling in water for 72 h.

  16. Residual Strength Analyses of Riveted Lap-Splice Joints

    NASA Technical Reports Server (NTRS)

    Seshadri, B. R.; Newman, J. C., Jr.

    2000-01-01

    The objective of this paper was to analyze the crack-linkup behavior in riveted-stiffened lap-splice joint panels with small multiple-site damage (MSD) cracks at several adjacent rivet holes. Analyses are based on the STAGS (STructural Analysis of General Shells) code with the critical crack-tip-opening angle (CTOA) fracture criterion. To account for high constraint around a crack front, the "plane strain core" option in STAGS was used. The importance of modeling rivet flexibility with fastener elements that accurately model load transfer across the joint is discussed. Fastener holes are not modeled but rivet connectivity is accounted for by attaching rivets to the sheet on one side of the cracks that simulated both the rivet diameter and MSD cracks. Residual strength analyses made on 2024-T3 alloy (1.6-mm thick) riveted-lap-splice joints with a lead crack and various size MSD cracks were compared with test data from Boeing Airplane Company. Analyses were conducted for both restrained and unrestrained buckling conditions. Comparison of results from these analyses and results from lap-splice-joint test panels, which were partially restrained against buckling indicate that the test results were bounded by the failure loads predicted by the analyses with restrained and unrestrained conditions.

  17. Investigation into Interface Lifting Within FSW Lap Welds

    SciTech Connect

    K. S. Miller; C. R. Tolle; D. E. Clark; C. I. Nichol; T. R. McJunkin; H. B. Smartt

    2008-06-01

    Friction stir welding (FSW) is rapidly penetrating the welding market in many materials and applications, particularly in aluminum alloys for transportation applications. As this expansion outside the research laboratory continues, fitness for service issues will arise, and process control and NDE methods will become important determinants of continued growth. The present paper describes research into FSW weld nugget flaw detection within aluminum alloy lap welds. We present results for two types of FSW tool designs: a smooth pin tool and a threaded pin tool. We show that under certain process parameters (as monitored during welding with a rotating dynamometer that measures x, y, z, and torque forces) and tooling designs, FSW lap welds allow significant nonbonded interface lifting of the lap joint, while forming a metallurgical bond only within the pin region of the weld nugget. These lifted joints are often held very tightly together even though unbonded, and might be expected to pass cursory NDE while representing a substantial compromise in joint mechanical properties. The phenomenon is investigated here via radiographic and ultrasonic NDE techniques, with a copper foil marking insert (as described elsewhere) and by the tensile testing of joints. As one would expect, these results show that tool design and process parameters significantly affect plactic flow and this lifted interface. NDE and mechanical strength ramifications of this defect are discussed.

  18. Interface transferring mechanism and error modification of FRP-OFBG strain sensor based on standard linear viscoelastic model

    NASA Astrophysics Data System (ADS)

    Li, Jilong; Zhou, Zhi; Ou, Jinping

    2006-03-01

    This paper presents the interface transferring mechanism and error modification of the Fiber Reinforced Polymer-Optical Fiber Bragg Grating (FRP-OFBG) sensing tendons, which including GFRP (Glass Fiber Reinforced Polymer) and CFRP (Carbon Fiber Reinforced Polymer), using standard linear viscoelastic model. The optical fiber is made up of glass, quartz or plastic, et al, which creep strain is very small at room temperature. So the tensile creep compliance of optical fiber is independent of time at room temperature. On the other hand, the FRP (GFRP or CFRP) is composed of a kind of polymeric matrix (epoxy resins or the others) with glass, carbon or aramid fibers, which shear creep strain is dependent of time at room temperature. Hence, the standard linear viscoelastic model is employed to describe the shear creep compliance of FRP along the fiber direction. The expression of interface strain transferring mechanism of FRP-OFBG sensors is derived based on the linear viscoelastic theory and the analytic solution of the error rate is given by the inverse Laplace transform. The effects of FRP viscoelasticity on the error rate of FRP-OFBG sensing tendons are included in the above expression. And the transient and steady-state error modified coefficient of FRP-OFBG sensors are obtained using initial value and final value theorems. Finally, a calculated example is given to explain the correct of theoretical prediction.

  19. Downregulation of sFRP-2 by epigenetic silencing activates the β-catenin/Wnt signaling pathway in esophageal basaloid squamous cell carcinoma.

    PubMed

    Saito, Tsuyoshi; Mitomi, Hiroyuki; Imamhasan, Abdukadir; Hayashi, Takuo; Mitani, Keiko; Takahashi, Michiko; Kajiyama, Yoshiaki; Yao, Takashi

    2014-02-01

    Basaloid squamous cell carcinoma (BSCC) of the esophagus is a rare variant of typical squamous cell carcinoma (SCC) associated with poor survival. A characteristic feature is nuclear accumulation of β-catenin, without a mutation of the gene. We studied the methylation status of Wnt antagonist genes, such as secreted frizzled-related protein (sFRP) gene family members, Wnt inhibitory factor-1 (WIF-1), Dickkopf-1 (Dkk-1), and human Dapper protein-1 (HDPR-1), and alterations of the APC, Axin1, and Axin2 genes in 30 cases of esophageal BSCC. β-catenin and sFRP (sFRP-1, sFRP-2, sFRP-4, sFRP-5) protein expression was examined by immunohistochemistry. APC, Axin1, and Axin2 gene mutations were detected in 3, 2, and 2 cases, respectively, and 6 cases (20 %) harbored at least 1 alteration in these genes. Methylation of the sFRP-2 promoter region was observed in all cases, and methylation was frequent in sFRP-1 and sFRP-5, but infrequent in Dkk-1, WIF-1, sFRP-4, and HDPR-1. sFRP-2 expression was almost completely absent in 25 cases (83 %), consistent with the methylation status. Nuclear accumulation of β-catenin was observed in all cases. sFRP-5 expression was associated with a low nuclear β-catenin labeling index. These results show that sFRP-2 is a target gene of hypermethylation in esophageal BSCC and suggest that sFRP-2 might contribute to BSCC tumorigenesis through the Wnt/β-catenin signaling pathway. PMID:24464051

  20. Fabrication of micro nickel/diamond abrasive pellet array lapping tools using a LIGA-like technology

    NASA Astrophysics Data System (ADS)

    Luo, Sheng-Yih; Yu, Tsung-Han; Hu, Yuh-Chung

    2007-06-01

    A manufacturing process of micro nickel/diamond abrasive pellet array lapping tools using a LIGA-like technology is reported here. The thickness of JSR THB-151N resist coated on an aluminum alloy substrate for micro lithography can reach up to 110 µm. During the lithography, different geometrical photomasks were used to create specific design patterns of the resist mold on the substrate. Micro roots, made by electrolytic machining on the substrate with guidance of the resist mold, can improve the adhesion of micro nickel abrasive pellets electroplated on the substrate. During the composite electroforming, the desired hardness of the nickel matrix inside the micro diamond abrasive pellets can be obtained by the addition of leveling and stress reducing agents. At moderate blade agitation and ultrasonic oscillation, higher concentration and more uniform dispersion of diamond powders deposited in the nickel matrix can be achieved. With these optimal experiment conditions of this fabrication process, the production of micro nickel/diamond abrasive pellet array lapping tools is demonstrated.

  1. Reliability model for ductile hybrid FRP rebar using randomly dispersed chopped fibers

    NASA Astrophysics Data System (ADS)

    Behnam, Bashar Ramzi

    Fiber reinforced polymer composites or simply FRP composites have become more attractive to civil engineers in the last two decades due to their unique mechanical properties. However, there are many obstacles such as low elasticity modulus, non-ductile behavior, high cost of the fibers, high manufacturing costs, and absence of rigorous characterization of the uncertainties of the mechanical properties that restrict the use of these composites. However, when FRP composites are used to develop reinforcing rebars in concrete structural members to replace the conventional steel, a huge benefit can be achieved since FRP materials don't corrode. Two FRP rebar models are proposed that make use of multiple types of fibers to achieve ductility, and chopped fibers are used to reduce the manufacturing costs. In order to reach the most optimum fractional volume of each type of fiber, to minimize the cost of the proposed rebars, and to achieve a safe design by considering uncertainties in the materials and geometry of sections, appropriate material resistance factors have been developed, and a Reliability Based Design Optimization (RBDO), has been conducted for the proposed schemes.

  2. Experimental testing of a smart FRP-concrete composite bridge superstructure

    NASA Astrophysics Data System (ADS)

    Wang, Yanlei; Hao, Qingduo; Ou, Jinping

    2010-04-01

    A new kind of smart fiber reinforced polymer (FRP)-concrete composite bridge superstructure, which consists of two bridge decks and each bridge deck is comprised of four FRP box sections combined with a thin layer of concrete in the compression zone, was developed by using eight embedded FBG sensors in the top and bottom flanges of the FRP box sections at mid-span section of one bridge deck along longitudinal direction, respectively. The flexural behavior of the proposed smart composite bridge superstructure was experimentally studied in four-point loading. The longitudinal strains of the composite bridge superstructure were recorded using the embedded FBG sensors as well as the surfacebonded electric resistance strain gauges. Test results indicate that the FBG sensors can faithfully record the longitudinal strain of the composite bridge superstructure in tension at bottom flange of the FRP box sections or in compression at top flange over the entire loading range, as compared with the surface-bonded strain gauges. The proposed smart FRPconcrete composite bridge superstructure can monitor its longitudinal strains in serviceability limit state as well as in strength limit state, and will has wide applications for long-term monitoring in civil engineering.

  3. In-situ monitoring of curing and ageing effects in FRP plates using embedded FBG sensors

    NASA Astrophysics Data System (ADS)

    Xian, Guijun; Wang, Chuan; Li, Hui

    2010-04-01

    In recent years, fiber reinforced polymer (FRP) composites have been widely applied in civil engineering for retrofitting or renewal of existing structures. Since FRP composite may degrade when exposed to severe outdoor environments, a serious concern has been raised on its long term durability. In the present study, fiber Bragg grating (FBG) sensors were embedded in glass-, carbon- and basalt-fiber reinforced epoxy based FRP plates with wet lay-up technology, to in-situ monitor the stain changes in FRPs during the curing, and water immersion and freeze-thaw ageing processes. The study demonstrates that the curing of epoxy resin brings in a slight tension strain (e.g., 10 ~ 30 μɛ) along the fiber direction and a high contraction (e.g., ~ 1100μɛ) in the direction perpendicular to the fibers, mainly due to the resin shrinkage. The cured FRP strips were then subjected to distilled water immersion at 80oC and freeze-thaw cycles from -30°C to 30°C. Remarkable strain changes of FRPs due to the variation of the temperatures during freeze-thaw cycles indicate the potential property degradation from fatigue. The maximum strain change is dependent on the fiber types and directions to the fiber. Based on the monitored strain values with temperature change and water uptake content, CTE (coefficient of thermal expansion) and CME (coefficient of moisture expansion) are exactly determined for the FRPs.

  4. Crack detection and fatigue related delamination in FRP composites applied to concrete

    NASA Astrophysics Data System (ADS)

    Brown, Jeff; Baker, Rebecca; Kallemeyn, Lisa; Zendler, Andrew

    2008-03-01

    Reinforced concrete beams are designed to allow minor concrete cracking in the tension zone. The severity of cracking in a beam element is a good indicator of how well a structure is performing and whether or not repairs are needed to prevent structural failure. FRP composites are commonly used to increase the flexural and shear capacity of RC beam elements, but one potential disadvantage of this method is that strengthened surfaces are no longer visible and cracks or delaminations that result from excessive loading or fatigue may go undetected. This research investigated thermal imaging techniques for detecting load induced cracking in the concrete substrate and delamination of FRP strengthening systems applied to reinforced concrete (RC). One small-scale RC beam (5 in. x 6 in. x 60 in.) was strengthened with FRP and loaded to failure monotonically. An infrared thermography inspection was performed after failure. A second strengthened beam was loaded cyclically for 1,750,000 cycles to investigate how fatigue might affect substrate cracking and delamination growth throughout the service-life of a repaired element. No changes were observed in the FRP bond during/after the cyclic loading. The thermal imaging component of this research included pixel normalization to enhance detectability and characterization of this specific type of damage.

  5. Effect of residual strain on sensing property of FRP-OFBG smart rebar

    NASA Astrophysics Data System (ADS)

    Zhang, Zhichun; Zhou, Zhi; Wang, Chuan; Ou, Jinping

    2007-04-01

    FRP-OFBG smart rebar is the smart structure material, which is the integration of good mechanical property and sensing performance. And FRP-OFBG rebar can be widely used in civil engineering health monitoring. But in the smart rebar application procedure, there is large residual strain exiting in FBG in smart rebar, and multiple-peaked to FBG reflection spectrum, which affect the sensing performance of smart rebar. In this paper, it's theoretically analyzed using FBG to measure the residual strain in FRP after fabrication; In smart rebar pultrusion fabrication processing, the strain and temperature were monitored by two connecting FBGs. It's analyzed FRP fabrication processing through monitoring data; To the multiple-peaked smart rebar, which caused by nonuniform residual strain distributing along FBG length, post thermal treatment was done. The result proved that thermal treatment can improve the spectrum of smart rebar and remove the multiple-peaked phenomenon of smart rebar. But the thermal treatment can't relief the residual strain, and further research about how long will the residual strain recovery at room temperature must be done.

  6. Fibre Reinforced Polymers (FRP) as Reinforcement for Concrete According to German Approvals

    NASA Astrophysics Data System (ADS)

    Alex, R.

    2015-11-01

    This article demonstrates the possibility of the application of joint principles to develop test programs for national approval or European Technical Assessments of FRP reinforcement for concrete. The limits of different systems are shown, which until now have been approved in Germany.

  7. ASSESSMENT OF STYRENE EMISSION CONTROLS FOR FRP/C AND BOAT BUILDING INDUSTRIES

    EPA Science Inventory

    The report gives results of an evaluation of several conventional and novel emission control technologies that have been used or could be used to treat styrene emissions from open molding processes in fiberglass-reinforced plastics/composites (FRP/C) and fiberglass boat building ...

  8. ADDENDUM TO ASSESSMENT OF STYRENE EMISSION CONTROLS FOR FRP/C AND BOAT BUILDING INDUSTRIES

    EPA Science Inventory

    This report is an addendum to a 1996 report, Assessment of Styrene Emission Controls for FRP/C and Boat Building Industries. It presents additional evaluation of the biological treatment of styrene emissions, Dow Chemical Company's Sorbathene solvent vapor recovery system, Occupa...

  9. Evaluation of Fiber Optic Strain Measurement System for Monitoring FRP Bridge Decks

    NASA Astrophysics Data System (ADS)

    Klinkhachorn, P.; Lonkar, G. M.; Halabe, Udaya B.; GangaRao, H. V. S.

    2005-04-01

    The use of Fiber Optic sensors for structural monitoring applications has attained popularity among researchers and practitioners recently due to their immense advantages. This paper discusses a continuous structural monitoring technique using surface mounted and embedded fiber optic strain sensors to measure the strain in FRP bridge decks. An Extrinsic Fabry-Perot Interferometric (EFPI) strain sensor was selected for evaluation as it offers a good compromise between accuracy and cost considerations. This EFPI strain sensor, along with a conventional strain gauge, was surface mounted on a FRP bridge decks. The decks were then subjected to an accelerated aging test in an environmental chamber and the performance of both the strain sensors was recorded for a performance comparison. The results from the seven months of accelerated aging that is equivalent to 10 years of actual life show that the strain gauge sensor and the EFPI Fiber Optic sensor are still in working condition. The EFPI fiber optic sensor detects minute and sudden changes in strain more effectively than the strain gauge sensor. Placement in the environmental chamber did not affect the EFPI sensor's performance and is an indication of its applicability to field structural monitoring for lengthy periods of time. The second part is a preliminary work where a fiber optic sensor was embedded inside a FRP plate during the pultrusion process. This shows the feasibility of manufacturing FRP bridge decks with embedded fiber optic sensors.

  10. Vibrational characteristics of FRP-bonded concrete interfacial defects in a low frequency regime

    NASA Astrophysics Data System (ADS)

    Cheng, Tin Kei; Lau, Denvid

    2014-04-01

    As externally bonded fiber-reinforced polymer (FRP) is a critical load-bearing component of strengthened or retrofitted civil infrastructures, the betterment of structural health monitoring (SHM) methodology for such composites is imperative. Henceforth the vibrational characteristics of near surface interfacial defects involving delamination and trapped air pockets at the FRP-concrete interface are investigated in this study using a finite element approach. Intuitively, due to its lower interfacial stiffness compared with an intact interface, a damaged region is expected to have a set of resonance frequencies different from an intact region when excited by acoustic waves. It has been observed that, when excited acoustically, both the vibrational amplitudes and frequency peaks in the response spectrum of the defects demonstrate a significant deviation from an intact FRP-bonded region. For a thin sheet of FRP bonded to concrete with sizable interfacial defects, the fundamental mode under free vibration is shown to be relatively low, in the order of kHz. Due to the low resonance frequencies of the defects, the use of low-cost equipment for interfacial defect detection via response spectrum analysis is highly feasible.

  11. Verification of surface preparation for adhesive bonding

    NASA Technical Reports Server (NTRS)

    Myers, Rodney S.

    1995-01-01

    A survey of solid rocket booster (SRB) production operations identified potential contaminants which might adversely affect bonding operations. Lap shear tests quantified these contaminants' effects on adhesive strength. The most potent contaminants were selected for additional studies on SRB thermal protection system (TPS) bonding processes. Test panels were prepared with predetermined levels of contamination, visually inspected using white and black light, then bonded with three different TPS materials over the unremoved contamination. Bond test data showed that white and black light inspections are adequate inspection methods for TPS bonding operations. Extreme levels of contamination (higher than expected on flight hardware) had an insignificant effect on TPS bond strengths because of the apparent insensitivity of the adhesive system to contamination effects, and the comparatively weak cohesive strength of the TPS materials.

  12. Guanidine-phosphate non-covalent interaction in LAP crystal growth solution evidenced from spectroscopy studies

    NASA Astrophysics Data System (ADS)

    Wang, L.; Zhang, G. H.; Wang, X. Q.; Zhu, L. Y.; Xu, D.

    2015-09-01

    The similar L-arginine molecule aggregation has been found in L-arginine (LA) and L-arginine phosphate monohydrate (LAP) aqueous solutions. The special fluorescence emission at 380 nm of LA aggregates in LAP solution has been found, compared with the emission of LA solution at 415 nm, which has an obvious blue shift. By comparing the fluorescence spectra of several solutions for L-arginine and L-lysine salts, the interaction between phosphate and guanidine in LAP solution was considered to be the cause of its special fluorescence emission. Meanwhile, when LAP molecule formed in solution, the fluorescence emission wavelength and the UV absorption intensity at 296 nm of L-arginine solutions have mutated. Therefore, the group interaction involved by guanidine has changed the fluorescence properties of L-arginine aggregates in LAP solution, indicating that the specific interaction between phosphate and guanidine exists in LAP molecule.

  13. Stresses in adhesively bonded joints - A closed-form solution

    NASA Technical Reports Server (NTRS)

    Delale, F.; Erdogan, F.; Aydinoglu, M. N.

    1981-01-01

    The general plane strain problem of adhesively bonded structures consisting of two different, orthotropic adherends is considered, under the assumption that adherend thicknesses are constant and small in relation to the lateral dimensions of the bonded region, so that they may be treated as plates. The problem is reduced to a system of differential equations for the adhesive stresses which is solved in closed form, with a single lap joint and a stiffened plate under various loading conditions being considered as examples. It is found that the plate theory used in the analysis not only predicts the correct trend for adhesive stresses but gives surprisingly accurate results, the solution being obtained by assuming linear stress-strain relations for the adhesive.

  14. High-temperature Adhesive Development and Evaluation

    NASA Technical Reports Server (NTRS)

    Hendricks, C. L.; Hale, J. N.

    1985-01-01

    High-temperature adhesive systems are evaluated for short and long-term stability at temperatures ranging from 232C to 427C. The resins selected for characterization include: NASA Langley developed polyphenylquinoxaline (PPQ), and commercially available polyimides (PI). The primary method of bond testing is single lap shear. The PPQ candidates are evaluated on 6A1-4V titanium adherends with chromic acid anodize and phosphate fluoride etch surface preparations. The remaining adhesives are evaluated on 15-5 PH stainless steel with a sulfuric acid anodize surface preparation. Preliminary data indicate that the PPQ adhesives tested have stability to 3000 hours at 450F with chromic acid anodize surface preparation. Additional studies are continuing to attempt to improve the PPQ's high-performance by formulating adhesive films with a boron filler and utilizing the phosphate fluoride surface preparation on titanium. Evaluation of the polyimide candidates on stainless-steel adherends indicates that the FM-35 (American Cyanamid), PMR-15 (U.S. Polymeric/Ferro), TRW partially fluorinated polyimide and NR 150B2S6X (DuPont) adhesives show sufficient promise to justify additional testing.

  15. Parametric Study of Shear Strength of Concrete Beams Reinforced with FRP Bars

    NASA Astrophysics Data System (ADS)

    Thomas, Job; Ramadass, S.

    2016-06-01

    Fibre Reinforced Polymer (FRP) bars are being widely used as internal reinforcement in structural elements in the last decade. The corrosion resistance of FRP bars qualifies its use in severe and marine exposure conditions in structures. A total of eight concrete beams longitudinally reinforced with FRP bars were cast and tested over shear span to depth ratio of 0.5 and 1.75. The shear strength test data of 188 beams published in various literatures were also used. The model originally proposed by Indian Standard Code of practice for the prediction of shear strength of concrete beams reinforced with steel bars IS:456 (Plain and reinforced concrete, code of practice, fourth revision. Bureau of Indian Standards, New Delhi, 2000) is considered and a modification to account for the influence of the FRP bars is proposed based on regression analysis. Out of the 196 test data, 110 test data is used for the regression analysis and 86 test data is used for the validation of the model. In addition, the shear strength of 86 test data accounted for the validation is assessed using eleven models proposed by various researchers. The proposed model accounts for compressive strength of concrete (f ck ), modulus of elasticity of FRP rebar (E f ), longitudinal reinforcement ratio (ρ f ), shear span to depth ratio (a/d) and size effect of beams. The predicted shear strength of beams using the proposed model and 11 models proposed by other researchers is compared with the corresponding experimental results. The mean of predicted shear strength to the experimental shear strength for the 86 beams accounted for the validation of the proposed model is found to be 0.93. The result of the statistical analysis indicates that the prediction based on the proposed model corroborates with the corresponding experimental data.

  16. LSA SAF Meteosat FRP Products: Part 2 - Evaluation and demonstration of use in the Copernicus Atmosphere Monitoring Service (CAMS)

    NASA Astrophysics Data System (ADS)

    Roberts, G.; Wooster, M. J.; Xu, W.; Freeborn, P. H.; Morcrette, J.-J.; Jones, L.; Benedetti, A.; Kaiser, J.

    2015-06-01

    Characterising the dynamics of landscape scale wildfires at very high temporal resolutions is best achieved using observations from Earth Observation (EO) sensors mounted onboard geostationary satellites. As a result, a number of operational active fire products have been developed from the data of such sensors. An example of which are the Fire Radiative Power (FRP) products, the FRP-PIXEL and FRP-GRID products, generated by the Land Surface Analysis Satellite Applications Facility (LSA SAF) from imagery collected by the Spinning Enhanced Visible and Infrared Imager (SEVIRI) on-board the Meteosat Second Generation (MSG) series of geostationary EO satellites. The processing chain developed to deliver these FRP products detects SEVIRI pixels containing actively burning fires and characterises their FRP output across four geographic regions covering Europe, part of South America and northern and southern Africa. The FRP-PIXEL product contains the highest spatial and temporal resolution FRP dataset, whilst the FRP-GRID product contains a spatio-temporal summary that includes bias adjustments for cloud cover and the non-detection of low FRP fire pixels. Here we evaluate these two products against active fire data collected by the Moderate Resolution Imaging Spectroradiometer (MODIS), and compare the results to those for three alternative active fire products derived from SEVIRI imagery. The FRP-PIXEL product is shown to detect a substantially greater number of active fire pixels than do alternative SEVIRI-based products, and comparison to MODIS on a per-fire basis indicates a strong agreement and low bias in terms of FRP values. However, low FRP fire pixels remain undetected by SEVIRI, with errors of active fire pixel detection commission and omission compared to MODIS ranging between 9-13 and 65-77% respectively in Africa. Higher errors of omission result in greater underestimation of regional FRP totals relative to those derived from simultaneously collected MODIS

  17. LSA SAF Meteosat FRP products - Part 2: Evaluation and demonstration for use in the Copernicus Atmosphere Monitoring Service (CAMS)

    NASA Astrophysics Data System (ADS)

    Roberts, G.; Wooster, M. J.; Xu, W.; Freeborn, P. H.; Morcrette, J.-J.; Jones, L.; Benedetti, A.; Jiangping, H.; Fisher, D.; Kaiser, J. W.

    2015-11-01

    Characterising the dynamics of landscape-scale wildfires at very high temporal resolutions is best achieved using observations from Earth Observation (EO) sensors mounted onboard geostationary satellites. As a result, a number of operational active fire products have been developed from the data of such sensors. An example of which are the Fire Radiative Power (FRP) products, the FRP-PIXEL and FRP-GRID products, generated by the Land Surface Analysis Satellite Applications Facility (LSA SAF) from imagery collected by the Spinning Enhanced Visible and Infrared Imager (SEVIRI) onboard the Meteosat Second Generation (MSG) series of geostationary EO satellites. The processing chain developed to deliver these FRP products detects SEVIRI pixels containing actively burning fires and characterises their FRP output across four geographic regions covering Europe, part of South America and Northern and Southern Africa. The FRP-PIXEL product contains the highest spatial and temporal resolution FRP data set, whilst the FRP-GRID product contains a spatio-temporal summary that includes bias adjustments for cloud cover and the non-detection of low FRP fire pixels. Here we evaluate these two products against active fire data collected by the Moderate Resolution Imaging Spectroradiometer (MODIS) and compare the results to those for three alternative active fire products derived from SEVIRI imagery. The FRP-PIXEL product is shown to detect a substantially greater number of active fire pixels than do alternative SEVIRI-based products, and comparison to MODIS on a per-fire basis indicates a strong agreement and low bias in terms of FRP values. However, low FRP fire pixels remain undetected by SEVIRI, with errors of active fire pixel detection commission and omission compared to MODIS ranging between 9-13 % and 65-77 % respectively in Africa. Higher errors of omission result in greater underestimation of regional FRP totals relative to those derived from simultaneously collected MODIS

  18. System integration and demonstration of adhesive bonded high temperature aluminum alloys for aerospace structure, phase 2

    NASA Technical Reports Server (NTRS)

    Falcone, Anthony; Laakso, John H.

    1993-01-01

    Adhesive bonding materials and processes were evaluated for assembly of future high-temperature aluminum alloy structural components such as may be used in high-speed civil transport aircraft and space launch vehicles. A number of candidate high-temperature adhesives were selected and screening tests were conducted using single lap shear specimens. The selected adhesives were then used to bond sandwich (titanium core) test specimens, adhesive toughness test specimens, and isothermally aged lap shear specimens. Moderate-to-high lap shear strengths were obtained from bonded high-temperature aluminum and silicon carbide particulate-reinforced (SiC(sub p)) aluminum specimens. Shear strengths typically exceeded 3500 to 4000 lb/in(sup 2) and flatwise tensile strengths exceeded 750 lb/in(sup 2) even at elevated temperatures (300 F) using a bismaleimide adhesive. All faceskin-to-core bonds displayed excellent tear strength. The existing production phosphoric acid anodize surface preparation process developed at Boeing was used, and gave good performance with all of the aluminum and silicon carbide particulate-reinforced aluminum alloys investigated. The results of this program support using bonded assemblies of high-temperature aluminum components in applications where bonding is often used (e.g., secondary structures and tear stoppers).

  19. Mussel-inspired soft-tissue adhesive based on poly(diol citrate) with catechol functionality.

    PubMed

    Ji, Yali; Ji, Ting; Liang, Kai; Zhu, Lei

    2016-02-01

    Marine mussels tightly adhering to various underwater surfaces inspires human to design adhesives for wet tissue adhesion in surgeries. Characterization of mussel adhesive plaques describes a matrix of proteins containing 3,4-dihydroxyphenylalanine (DOPA), which provides strong adhesion in aquatic conditions. Several synthetic polymer systems have been developed based on this DOPA chemistry. Herein, a citrate-based tissue adhesives (POEC-d) was prepared by a facile one-pot melt polycondensation of two diols including 1,8-octanediol and poly(ethylene oxide) (PEO), citric acid (CA) and dopamine, and the effects of hydrophilic and soft PEO on the properties of adhesives were studied. It was found that the obtained adhesives exhibited water-soluble when the mole ratio of PEO to 1,8-octanediol was 70%, and the equilibrium swelling percentage of cured adhesive was about 144%, and degradation rate was in the range of 1-2 weeks. The cured adhesives demonstrated soft rubber-like behavior. The lap shear adhesion strength measured by bonding wet pig skin was in the range of 21.7-33.7 kPa, which was higher than that of commercial fibrin glue (9-15 kPa). The cytotoxicity tests showed the POEC-d adhesives had a low cytotoxicity. Our results supports that POEC-d adhesives, which combined strong wet adhesion with good biodegradability, acceptable swelling ratio, good elasticity and low cytotoxicity, have potentials in surgeries where surgical tissue adhesives, sealants, and hemostatic agents are used. PMID:26704547

  20. Mechanical Behavior of Lithium-Ion Batteries and Fatigue Behavior of Ultrasonic Weld-Bonded Lap-Shear Specimens of Dissimilar Magnesium and Steel Sheets

    NASA Astrophysics Data System (ADS)

    Lai, Wei-Jen

    The mechanical behaviors of LiFePO4 battery cell and module specimens under in-plane constrained compression were investigated for simulations of battery cells, modules and packs under crush conditions. The experimental stress-strain curves were correlated to the deformation patterns of battery cell and module specimens. Analytical solutions were developed to estimate the buckling stresses and to provide a theoretical basis for future design of representative volume element cell and module specimens. A physical kinematics model for formation of kinks and shear bands in battery cells was developed to explain the deformation mechanism for layered battery cells under in-plane constrained compression. A small-scale module constrained punch indentation test was also conducted to benchmark the computational results. The computational results indicate that macro homogenized material models can be used to simulate battery modules under crush conditions. Fatigue behavior and failure modes of ultrasonic spot welds in lap-shear specimens of magnesium and steel sheets with and without adhesive were investigated. For ultrasonic spot welded lap-shear specimens, the failure mode changes from the partial nugget pullout mode under low-cycle loading conditions to the kinked crack failure mode under high-cycle loading conditions. For adhesive-bonded and weld-bonded lap-shear specimens, the test results show the near interface cohesive failure mode and the kinked crack failure mode under low-cycle and high-cycle loading conditions, respectively. Next, the analytical effective stress intensity factor solutions for main cracks in lap-shear specimens of three dissimilar sheets under plane strain conditions were developed and the solutions agreed well with the computational results. The analytical effective stress intensity factor solutions for kinked cracks were compared with the computational results at small kink lengths. The results indicate that the computational results approach to

  1. Iron-dependent transcription of the frpB gene of Helicobacter pylori is controlled by the Fur repressor protein.

    PubMed

    Delany, I; Pacheco, A B; Spohn, G; Rappuoli, R; Scarlato, V

    2001-08-01

    We have overexpressed and purified the Helicobacter pylori Fur protein and analyzed its interaction with the intergenic regions of divergent genes involved in iron uptake (frpB and ceuE) and oxygen radical detoxification (katA and tsaA). DNase I footprint analysis showed that Fur binds specifically to a high-affinity site overlapping the P(frpB) promoter and to low-affinity sites located upstream from promoters within both the frpB-katA and ceuE-tsaA intergenic regions. Construction of an isogenic fur mutant indicated that Fur regulates transcription from the P(frpB) promoter in response to iron. In contrast, no effect by either Fur or iron was observed for the other promoters. PMID:11466300

  2. Parameter studies on impact in a lap joint

    NASA Astrophysics Data System (ADS)

    Rahmani, Amir M.; Ervin, Elizabeth K.

    2015-03-01

    To represent a loose lap joint, a beam impacting four springs with gaps is modeled. Modal analysis with base excitation is solved, and time histories of contact points are closely monitored. Using the impulse during steady state response, six influential parameters are studied: damping ratio, contact stiffness, intermediate contact position, gap, excitation amplitude and beam height. For all parameters, the system response is highly controlled by modes with two contacting springs. Each parameter's effect on system response is presented including unstable regions, unique trend behaviours result. Recommendations for structural designers are also noted.

  3. Polyimide adhesives

    NASA Technical Reports Server (NTRS)

    Progar, D. J.; Bell, V. L.; Saintclair, T. L. (Inventor)

    1974-01-01

    A process of preparing aromatic polyamide-acids for use as adhesives is described. An equimolar quantity of an aromatic dianhydride is added to a stirred solution of an aromatic diamine in a water or alcohol-miscible ether solvent to obtain a viscous polymer solution. The polymeric-acid intermediate polymer does not become insoluble but directly forms a smooth viscous polymer solution. These polyamic-acid polymers are converted, by heating in the range of 200-300 C and with pressure, to form polyimides with excellent adhesive properties.

  4. Estrogen-inducible sFRP5 inhibits early B-lymphopoiesis in vivo, but not during pregnancy.

    PubMed

    Yokota, Takafumi; Oritani, Kenji; Sudo, Takao; Ishibashi, Tomohiko; Doi, Yukiko; Habuchi, Yoko; Ichii, Michiko; Fukushima, Kentaro; Okuzaki, Daisuke; Tomizuka, Kazuma; Yamawaki, Kengo; Kakitani, Makoto; Shimono, Akihiko; Morii, Eiichi; Kincade, Paul W; Kanakura, Yuzuru

    2015-05-01

    Mammals have evolved to protect their offspring during early fetal development. Elaborated mechanisms induce tolerance in the maternal immune system for the fetus. Female hormones, mainly estrogen, play a role in suppressing maternal lymphopoiesis. However, the molecular mechanisms involved in the maternal immune tolerance are largely unknown. Here, we show that estrogen-induced soluble Frizzled-related proteins (sFRPs), and particularly sFRP5, suppress B-lymphopoiesis in vivo in transgenic mice. Mice overexpressing sFRP5 had fewer B-lymphocytes in the peripheral blood and spleen. High levels of sFRP5 inhibited early B-cell differentiation in the bone marrow (BM), resulting in the accumulation of cells with a common lymphoid progenitor (CLP) phenotype. Conversely, sFRP5 deficiency reduced the number of hematopoietic stem cells (HSCs) and primitive lymphoid progenitors in the BM, particularly when estrogen was administered. Furthermore, a significant reduction in CLPs and B-lineage-committed progenitors was observed in the BM of sfrp5-null pregnant females. We concluded that, although high sFRP5 expression inhibits B-lymphopoiesis in vivo, physiologically, it contributes to the preservation of very primitive lymphopoietic progenitors, including HSCs, under high estrogen levels. Thus, sFRP5 regulates early lympho-hematopoiesis in the maternal BM, but the maternal-fetal immune tolerance still involves other molecular mechanisms that remain to be uncovered. PMID:25676235

  5. Auto Mechanics I. Learning Activity Packets (LAPs). Section A--Orientation and Safety.

    ERIC Educational Resources Information Center

    Oklahoma State Board of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This document contains seven learning activity packets (LAPs) that outline the study activities for the orientation and safety instructional area for an Auto Mechanics I course. The seven LAPs cover the following topics: orientation, safety, hand tools, arc welding, oxyacetylene cutting, oxyacetylene fusion welding, and oxyacetylene braze welding.…

  6. Learning Activity Package, Biology 102, (LAP) Studies 1, 3, and 4.

    ERIC Educational Resources Information Center

    Rhoden, Bruce

    Included are three Learning Activity Package (LAP) studies for use in high school biology: Everything has a Place (Grouping and the Diversity of Life), Energy Relations, and Reproduction. Each LAP contains a rationale for teaching the material included, student objectives (stated in behavioral terms), a list of related resources (books,…

  7. Machine Shop I. Learning Activity Packets (LAPs). Section B--Basic and Related Technology.

    ERIC Educational Resources Information Center

    Oklahoma State Board of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This document contains eight learning activity packets (LAPs) for the "basic and related technology" instructional area of a Machine Shop I course. The eight LAPs cover the following topics: basic mathematics, blueprints, rules, micrometer measuring tools, Vernier measuring tools, dial indicators, gaging and inspection tools, and materials and…

  8. Improvement of transformer core magnetic properties using the step-lap design

    NASA Astrophysics Data System (ADS)

    Valkovic, Z.; Rezic, A.

    1992-07-01

    Magnetic properties of the step-lap joints have been investigated experimentally on two three-phase three-leg transformer cores. Using the step-lap joint design, a reduction of the total core loss of 2 to 4.4% and of the exciting power of 31 to 37% has been obtained.

  9. Large-Scale Advanced Prop-Fan (LAP)

    NASA Technical Reports Server (NTRS)

    Degeorge, C. L.

    1988-01-01

    In recent years, considerable attention has been directed toward improving aircraft fuel efficiency. Analytical studies and research with wind tunnel models have demonstrated that the high inherent efficiency of low speed turboprop propulsion systems may now be extended to the Mach .8 flight regime of today's commercial airliners. This can be accomplished with a propeller, employing a large number of thin highly swept blades. The term Prop-Fan has been coined to describe such a propulsion system. In 1983 the NASA-Lewis Research Center contracted with Hamilton Standard to design, build and test a near full scale Prop-Fan, designated the Large Scale Advanced Prop-Fan (LAP). This report provides a detailed description of the LAP program. The assumptions and analytical procedures used in the design of Prop-Fan system components are discussed in detail. The manufacturing techniques used in the fabrication of the Prop-Fan are presented. Each of the tests run during the course of the program are also discussed and the major conclusions derived from them stated.

  10. Edge effect modeling and experiments on active lap processing.

    PubMed

    Liu, Haitao; Wu, Fan; Zeng, Zhige; Fan, Bin; Wan, Yongjian

    2014-05-01

    Edge effect is regarded as one of the most difficult technical issues for fabricating large primary mirrors, especially for large polishing tools. Computer controlled active lap (CCAL) uses a large size pad (e.g., 1/3 to 1/5 workpiece diameters) to grind and polish the primary mirror. Edge effect also exists in the CCAL process in our previous fabrication. In this paper the material removal rules when edge effects happen (i.e. edge tool influence functions (TIFs)) are obtained through experiments, which are carried out on a Φ1090-mm circular flat mirror with a 375-mm-diameter lap. Two methods are proposed to model the edge TIFs for CCAL. One is adopting the pressure distribution which is calculated based on the finite element analysis method. The other is building up a parametric equivalent pressure model to fit the removed material curve directly. Experimental results show that these two methods both effectively model the edge TIF of CCAL. PMID:24921777

  11. Ultrasonic guided wave inspection of Inconel 625 brazed lap joints

    NASA Astrophysics Data System (ADS)

    Comot, Pierre; Bocher, Philippe; Belanger, Pierre

    2016-04-01

    The aerospace industry has been investigating the use of brazing for structural joints, as a mean of reducing cost and weight. There therefore is a need for a rapid, robust, and cost-effective non-destructive testing method for evaluating the structural integrity of the joints. The mechanical strength of brazed joints depends mainly on the amount of brittle phases in their microstructure. Ultrasonic guided waves offer the possibility of detecting brittle phases in joints using spatio-temporal measurements. Moreover, they offer the opportunity to inspect complex shape joints. This study focused on the development of a technique based on ultrasonic guided waves for the inspection of Inconel 625 lap joints brazed with BNi-2 filler metal. A finite element model of a lap joint was used to optimize the inspection parameters and assess the feasibility of detecting the amount of brittle phases in the joint. A finite element parametric study simulating the input signal shape, the center frequency, and the excitation direction was performed. The simulations showed that the ultrasonic guided wave energy transmitted through, and reflected from, the joints was proportional to the amount of brittle phases in the joint.

  12. Generic element formulation for modelling bolted lap joints

    NASA Astrophysics Data System (ADS)

    Ahmadian, Hamid; Jalali, Hassan

    2007-07-01

    Joints have significant effects on the dynamic response of the assembled structures due to existence of two non-linear mechanisms in their interface, namely slipping and slapping. These mechanisms affect the structural response by adding considerable damping into the structure and lowering the natural frequencies due to the stiffness softening. Neglecting these effects in modelling of joints produces errors in predictions of the structure responses. In this paper, a non-linear generic element formulation is developed for modelling bolted lap joints. The generic element is formed by satisfying all conditions that are known for a joint interface and hence providing a non-linear parametric formulation for the families of allowable joint models. Dynamic response of the developed model for the assembled structure including the generic joint interface element is obtained using the incremental harmonic balance (IHB) method. The generic parameters of the joint are identified by minimising the difference between the model response obtained from IHB method and the observed behaviour of the structure. The procedure is demonstrated by modelling an actual structure containing a single lap bolted joint in the middle. The frequency responses of the structure around the first two resonance frequencies are measured by exciting the structure using a sinusoidal force at each individual frequency. The measured responses are compared with the predictions of the model containing a parametric generic joint element. The parameters of the joint interface model are successfully identified by minimising the difference between the measured responses and the model predictions.

  13. Melanin targets LC3-associated phagocytosis (LAP): A novel pathogenetic mechanism in fungal disease.

    PubMed

    Chamilos, Georgios; Akoumianaki, Tonia; Kyrmizi, Irene; Brakhage, Axel; Beauvais, Anne; Latge, Jean-Paul

    2016-05-01

    Intracellular swelling of conidia of the major human airborne fungal pathogen Aspergillus fumigatus results in surface exposure of immunostimulatory pathogen-associated molecular patterns (PAMPs) and triggers activation of a specialized autophagy pathway called LC3-associated phagocytosis (LAP) to promote fungal killing. We have recently discovered that, apart from PAMPs exposure, cell wall melanin removal during germination of A. fumigatus is a prerequisite for activation of LAP. Importantly, melanin promotes fungal pathogenicity via targeting LAP, as a melanin-deficient A. fumigatus mutant restores its virulence upon conditional inactivation of Atg5 in hematopoietic cells of mice. Mechanistically, fungal cell wall melanin selectively excludes the CYBA/p22phox subunit of NADPH oxidase from the phagosome to inhibit LAP, without interfering with signaling regulating cytokine responses. Notably, inhibition of LAP is a general property of melanin pigments, a finding with broad physiological implications. PMID:27028978

  14. Luminance measurement to evaluate the damage of notched FRP plates in static load

    SciTech Connect

    Hyakutake, H.; Yamamoto, T.

    1995-11-01

    The validity of the damage criterion for notched FRP plates based on the concept of severity near the notch root is subjected to further experimental scrutiny. An experimental program is presented which examines the effect of notch geometry on the damage near the notch root of FRP plates. This is accomplished by obtaining experimental data on the notched specimens of a glass cloth/epoxy laminate for a wide range of notch geometries in tension and bending. The process of initiation and growth of damage near the notch root was measured by means of the luminance measurement technique with a CCD camera. The experiment shows that the growth of damage zone near the notch root was governed predominantly by both the notch-root radius and the maximum elastic stress at the notch root, while it was independent of notch depth and type of loading. On the basis of the concept of severity, the experimental results can be clearly elucidated.

  15. The Teacher's Lap--A Site of Emotional Well-Being for the Younger Children in Day-Care Groups

    ERIC Educational Resources Information Center

    Hännikäinen, Maritta

    2015-01-01

    This study focuses on a particular relationship between teachers and one- to three-year-old children: the child in the teacher's lap. When, in what situations, does this happen? Who are the children in the teacher's lap? Why are they there? How do children express emotional well-being when in the teacher's lap? Relational, sociocultural and…

  16. Disbond detection with piezoelectric wafer active sensors in RC structures strengthened with FRP composite overlays

    NASA Astrophysics Data System (ADS)

    Giurgiutiu, Victor; Harries, Kent; Petrou, Michael; Bost, Joel; Quattlebaum, Josh B.

    2003-12-01

    The capability of embedded piezoelectric wafer active sensors (PWAS) to perform in-situ nondestructive evaluation (NDE) for structural health monitoring (SHM) of reinforced concrete (RC) structures strengthened with fiber reinforced polymer (FRP) composite overlays is explored. First, the disbond detection method were developed on coupon specimens consisting of concrete blocks covered with an FRP composite layer. It was found that the presence of a disbond crack drastically changes the electromechanical (E/M) impedance spectrum measured at the PWAS terminals. The spectral changes depend on the distance between the PWAS and the crack tip. Second, large scale experiments were conducted on a RC beam strengthened with carbon fiber reinforced polymer (CFRP) composite overlay. The beam was subject to an accelerated fatigue load regime in a three-point bending configuration up to a total of 807,415 cycles. During these fatigue tests, the CFRP overlay experienced disbonding beginning at about 500,000 cycles. The PWAS were able to detect the disbonding before it could be reliably seen by visual inspection. Good correlation between the PWAS readings and the position and extent of disbond damage was observed. These preliminary results demonstrate the potential of PWAS technology for SHM of RC structures strengthened with FRP composite overlays.

  17. C/EBPβ-LAP*/LAP Expression Is Mediated by RSK/eIF4B-Dependent Signalling and Boosted by Increased Protein Stability in Models of Monocytic Differentiation

    PubMed Central

    Christmann, Martin; Friesenhagen, Judith; Westphal, Andreas; Pietsch, Daniel; Brand, Korbinian

    2015-01-01

    The transcription factor C/EBPβ plays a key role in monocytic differentiation and inflammation. Its small isoform LIP is associated with proliferation at early premonocytic developmental stages and regulated via mTOR-dependent signalling. During later stages of (pre)monocytic differentiation there is a considerable increase in the large C/EBPβ isoforms LAP*/LAP which inhibit proliferation thus supporting terminal differentiation. Here, we showed in different models of monocytic differentiation that this dramatic increase in the LAP*/LAP protein and LAP/LIP ratio was accompanied by an only modest/retarded mRNA increase suggesting an important role for (post)translational mechanisms. We found that LAP*/LAP formation was induced via MEK/RSK-dependent cascades, whereas mTOR/S6K1 were not involved. Remarkably, LAP*/LAP expression was dependent on phosphorylated eIF4B, an acceleratory protein of RNA helicase eIF4A. PKR inhibition reduced the expression of eIF4B and C/EBPβ in an eIF2α-independent manner. Furthermore, under our conditions a marked stabilisation of LAP*/LAP protein occurred, accompanied by reduced chymotrypsin-like proteasome/calpain activities and increased calpastatin levels. Our study elucidates new signalling pathways inducing LAP*/LAP expression and indicates new alternative PKR functions in monocytes. The switch from mTOR- to RSK-mediated signalling to orchestrate eIF4B-dependent LAP*/LAP translation, accompanied by increased protein stability but only small mRNA changes, may be a prototypical example for the regulation of protein expression during selected processes of differentiation/proliferation. PMID:26646662

  18. Evaluation of high temperature structural adhesives for extended service

    NASA Technical Reports Server (NTRS)

    Hill, S. G.; Hendricks, C. L.

    1983-01-01

    The preliminary evaluation of crosslinked polyphenyl quinoxaline (X-PPQ), LARC-TPI, ethyl terminated polysulfone (ETPS), and crosslinked polyimide (X-PI) as adhesives is presented. Lap shear strength stability under thermal, combined thermal/humidity, and stressed and unstressed Skydrol exposure was determined. The X-PPQ, LARC-TPI, and X-PI exhibited good adhesive performance at 505K (450 F) after 1000 hours at 505K. These three polymers also performed well after exposure to combined elevated temperature/high humidity, as well as, to Skydrol while under stress. The ETPS exhibited good ambient temperature adhesive properties, but performed poorly under all other exposure conditions, presumably due to inadequate chain extension and crosslinking.

  19. An examination of faying surface fretting in single lap splices

    NASA Astrophysics Data System (ADS)

    Brown, Adam

    While fretting damage in mechanically fastened joints is widely acknowledged as a common source of crack nucleation, little work is available in the open literature on the role that fretting damage plays in the fatigue life of a riveted joint. To expand on the limited knowledge available, a study was undertaken on fretting fatigue in thin-sheet riveted fuselage lap joints. In joints constructed out of 1 mm thick 2024-T3 aluminum sheet the rivet forming load was found to have a significant effect on the location of fretting damage and crack nucleation. This effect was observed for splices riveted with machine countersunk and with universal rivets. The shift in the location of peak fretting damage and crack nucleation with changing rivet forming loads was investigated through numerical and experimental methods. A predictive model based on the critical plane Smith-Watson-Topper strain life equation was applied to the complex geometry of the single lap splice and was shown to be effective in predicting the fretting fatigue life as well as the location of fretting-induced crack nucleation. Basing this model on an explicit finite element simulation allowed for the inclusion of compressive residual stresses generated during rivet forming. Key to the proper functionality of the predictive model was to have a validated finite element model from which results for the stress and strain field in the loaded component could be obtained. In addition to the predictive model, a series of splice coupon and simplified geometry fretting fatigue tests were performed. The tests showed that, at higher rivet forming loads, crack nucleation is on the faying surface away from the hole edge and that the type of surface condition is important to the fretting fatigue life of the splice. The discovery of this variation with surface treatment at high rivet forming loads is important as more research is showing the benefit of using load-controlled rivet forming and higher rivet forming loads in

  20. Diabetic Osteopenia by Decreased β-Catenin Signaling Is Partly Induced by Epigenetic Derepression of sFRP-4 Gene

    PubMed Central

    Mori, Kiyoshi; Kitazawa, Riko; Kondo, Takeshi; Mori, Michiko; Hamada, Yasuhiro; Nishida, Michiru; Minami, Yasuhiro; Haraguchi, Ryuma; Takahashi, Yutaka; Kitazawa, Sohei

    2014-01-01

    In diabetics, methylglyoxal (MG), a glucose-derived metabolite, plays a noxious role by inducing oxidative stress, which causes and exacerbates a series of complications including low-turnover osteoporosis. In the present study, while MG treatment of mouse bone marrow stroma-derived ST2 cells rapidly suppressed the expression of osteotrophic Wnt-targeted genes, including that of osteoprotegerin (OPG, a decoy receptor of the receptor activator of NF-kappaB ligand (RANKL)), it significantly enhanced that of secreted Frizzled-related protein 4 (sFRP-4, a soluble inhibitor of Wnts). On the assumption that upregulated sFRP-4 is a trigger that downregulates Wnt-related genes, we sought out the molecular mechanism whereby oxidative stress enhanced the sFRP-4 gene. Sodium bisulfite sequencing revealed that the sFRP-4 gene was highly methylated around the sFRP-4 gene basic promoter region, but was not altered by MG treatment. Electrophoretic gel motility shift assay showed that two continuous CpG loci located five bases upstream of the TATA-box were, when methylated, a target of methyl CpG binding protein 2 (MeCP2) that was sequestered upon induction of 8-hydroxy-2-deoxyguanosine, a biomarker of oxidative damage to DNA. These in vitro data suggest that MG-derived oxidative stress (not CpG demethylation) epigenetically and rapidly derepress sFRP-4 gene expression. We speculate that under persistent oxidative stress, as in diabetes and during aging, osteopenia and ultimately low-turnover osteoporosis become evident partly due to osteoblastic inactivation by suppressed Wnt signaling of mainly canonical pathways through the derepression of sFRP-4 gene expression. PMID:25036934

  1. Diabetic osteopenia by decreased β-catenin signaling is partly induced by epigenetic derepression of sFRP-4 gene.

    PubMed

    Mori, Kiyoshi; Kitazawa, Riko; Kondo, Takeshi; Mori, Michiko; Hamada, Yasuhiro; Nishida, Michiru; Minami, Yasuhiro; Haraguchi, Ryuma; Takahashi, Yutaka; Kitazawa, Sohei

    2014-01-01

    In diabetics, methylglyoxal (MG), a glucose-derived metabolite, plays a noxious role by inducing oxidative stress, which causes and exacerbates a series of complications including low-turnover osteoporosis. In the present study, while MG treatment of mouse bone marrow stroma-derived ST2 cells rapidly suppressed the expression of osteotrophic Wnt-targeted genes, including that of osteoprotegerin (OPG, a decoy receptor of the receptor activator of NF-kappaB ligand (RANKL)), it significantly enhanced that of secreted Frizzled-related protein 4 (sFRP-4, a soluble inhibitor of Wnts). On the assumption that upregulated sFRP-4 is a trigger that downregulates Wnt-related genes, we sought out the molecular mechanism whereby oxidative stress enhanced the sFRP-4 gene. Sodium bisulfite sequencing revealed that the sFRP-4 gene was highly methylated around the sFRP-4 gene basic promoter region, but was not altered by MG treatment. Electrophoretic gel motility shift assay showed that two continuous CpG loci located five bases upstream of the TATA-box were, when methylated, a target of methyl CpG binding protein 2 (MeCP2) that was sequestered upon induction of 8-hydroxy-2-deoxyguanosine, a biomarker of oxidative damage to DNA. These in vitro data suggest that MG-derived oxidative stress (not CpG demethylation) epigenetically and rapidly derepress sFRP-4 gene expression. We speculate that under persistent oxidative stress, as in diabetes and during aging, osteopenia and ultimately low-turnover osteoporosis become evident partly due to osteoblastic inactivation by suppressed Wnt signaling of mainly canonical pathways through the derepression of sFRP-4 gene expression. PMID:25036934

  2. Biomimetic-inspired joining of composite with metal structures: A survey of natural joints and application to single lap joints

    NASA Astrophysics Data System (ADS)

    Avgoulas, Evangelos Ioannis; Sutcliffe, Michael P. F.

    2014-03-01

    Joining composites with metal parts leads, inevitably, to high stress concentrations because of the material property mismatch. Since joining composite to metal is required in many high performance structures, there is a need to develop a new multifunctional approach to meet this challenge. This paper uses the biomimetics approach to help develop solutions to this problem. Nature has found many ingenious ways of joining dissimilar materials and making robust attachments, alleviating potential stress concentrations. A literature survey of natural joint systems has been carried out, identifying and analysing different natural joint methods from a mechanical perspective. A taxonomy table was developed based on the different methods/functions that nature successfully uses to attach dissimilar tissues (materials). This table is used to understand common themes or approaches used in nature for different joint configurations and functionalities. One of the key characteristics that nature uses to joint dissimilar materials is a transitional zone of stiffness in the insertion site. Several biomimetic-inspired metal-to-composite (steel-to-CFRP), adhesively bonded, Single Lap Joints (SLJs) were numerically investigated using a finite element analysis. The proposed solutions offer a transitional zone of stiffness of one joint part to reduce the material stiffness mismatch at the joint. An optimisation procedure was used to identify the variation in material stiffness which minimises potential failure of the joint. It was found that the proposed biomimetic SLJs reduce the asymmetry of the stress distribution along the adhesive area.

  3. Large-Scale Advanced Prop-Fan (LAP) blade design

    NASA Technical Reports Server (NTRS)

    Violette, John A.; Sullivan, William E.; Turnberg, Jay E.

    1984-01-01

    This report covers the design analysis of a very thin, highly swept, propeller blade to be used in the Large-Scale Advanced Prop-Fan (LAP) test program. The report includes: design requirements and goals, a description of the blade configuration which meets requirements, a description of the analytical methods utilized/developed to demonstrate compliance with the requirements, and the results of these analyses. The methods described include: finite element modeling, predicted aerodynamic loads and their application to the blade, steady state and vibratory response analyses, blade resonant frequencies and mode shapes, bird impact analysis, and predictions of stalled and unstalled flutter phenomena. Summarized results include deflections, retention loads, stress/strength comparisons, foreign object damage resistance, resonant frequencies and critical speed margins, resonant vibratory mode shapes, calculated boundaries of stalled and unstalled flutter, and aerodynamic and acoustic performance calculations.

  4. Testing composite-to-metal tubular lap joints

    SciTech Connect

    Guess, T.R.; Reedy, E.D. Jr.; Slavin, A.M.

    1993-11-01

    Procedures were developed to fabricate, nondestructively evaluate, and mechanically test composite-to-metal tubular joints. The axially loaded tubular lap joint specimen consisted of two metal tubes bonded within each end of a fiberglass composite tube. Joint specimens with both tapered and untapered aluminum adherends and a plain weave E-glass/epoxy composite were tested in tension, compression, and flexure. Other specimens with tapered and untapered steel adherends and a triaxially reinforced E-glass/epoxy composite were tested in tension and compression. Test results include joint strength and failure mode data. A finite element analysis of the axially loaded joints explains the effect of adherend geometry and material properties on measured joint strength. The flexural specimen was also analyzed; calculated surface strains are in good agreement with measured values, and joint failure occurs in the region of calculated peak peel stress.

  5. Testing composite-to-metal tubular lap joints

    NASA Astrophysics Data System (ADS)

    Guess, T. R.; Reedy, E. D., Jr.; Slavin, A. M.

    Procedures were developed to fabricate, nondestructively evaluate, and mechanically test composite-to-metal tubular joints. The axially loaded tubular lap joint specimen consisted of two metal tubes bonded within each end of a fiberglass composite tube. Joint specimens with both tapered and untapered aluminum adherends and a plain weave E-glass/epoxy composite were tested in tension, compression, and flexure. Other specimens with tapered and untapered steel adherends and a triaxially reinforced E-glass/epoxy composite were tested in tension and compression. Test results include joint strength and failure mode data. A finite element analysis of the axially loaded joints explains the effect of adherend geometry and material properties on measured joint strength. The flexural specimen was also analyzed; calculated surface strains are in good agreement with measured values, and joint failure occurs in the region of calculated peak peel stress.

  6. The performance of epoxy adhesives on clean and oil-contaminated metal substrates

    SciTech Connect

    Hong, Shinn-Gwo.

    1992-01-01

    The performance of a two part epoxy adhesive cured using amidoamines on clean and oil-contaminated cold-rolled steel (CRS) and electrogalvanized steel (EGS), was studied using a screening test, a lap-shear test and a modified Boeing wedge test. X-ray photoelectron spectroscopy (XPS), Attenuated total reflection (ATR) and reflection absorption infrared spectroscopy (RAIR) were used to analyze the failure and fracture surfaces. The XPS results indicated that epoxy adhesives prepared using amidoamine curing agents with low amine numbers were able to displace the oil from the CRS and EGS surface, but adhesives prepared with amidoamine curing agents with high amine numbers were not. However, it was also shown that the pure curing agents could displace the oil from CRS and EGS surfaces based on thermodynamic calculations; this was confirmed by a simple XPS experiment. From ATR analysis, it was determined that the oil was effectively absorbed as deep as 2.0 microns into the CA-1 cured adhesive from the CRS surface. The oil was mostly present in the first 0.3 microns thick layer of adhesives near the CRS surface. The oil was mostly present in the first 0.3 microns thick layer of adhesives near the CRS surface for CA-2 and CA-3 cured adhesives. The effectiveness of the oil-displacing behavior of the adhesive systems used was related to the amounts of curing agents used, the diffusion rates of oil into the adhesives and, most importantly, the curing rates of the adhesives. The results from lap-shear and wedge tests showed that durable and strong bonds on oiled CRS and EGS surfaces were obtained using amidoamine curing agents with relatively low amine numbers and by blending silane coupling agents into the adhesives.

  7. Lamina Associated Polypeptide 1 (LAP1) Interactome and Its Functional Features

    PubMed Central

    Serrano, Joana B.; da Cruz e Silva, Odete A. B.; Rebelo, Sandra

    2016-01-01

    Lamina-associated polypeptide 1 (LAP1) is a type II transmembrane protein of the inner nuclear membrane encoded by the human gene TOR1AIP1. LAP1 is involved in maintaining the nuclear envelope structure and appears be involved in the positioning of lamins and chromatin. To date, LAP1’s precise function has not been fully elucidated but analysis of its interacting proteins will permit unraveling putative associations to specific cellular pathways and cellular processes. By assessing public databases it was possible to identify the LAP1 interactome, and this was curated. In total, 41 interactions were identified. Several functionally relevant proteins, such as TRF2, TERF2IP, RIF1, ATM, MAD2L1 and MAD2L1BP were identified and these support the putative functions proposed for LAP1. Furthermore, by making use of the Ingenuity Pathways Analysis tool and submitting the LAP1 interactors, the top two canonical pathways were “Telomerase signalling” and “Telomere Extension by Telomerase” and the top functions “Cell Morphology”, “Cellular Assembly and Organization” and “DNA Replication, Recombination, and Repair”. Once again, putative LAP1 functions are reinforced but novel functions are emerging. PMID:26784240

  8. SEM/XPS analysis of fractured adhesively bonded graphite fibre-reinforced polyimide composites

    NASA Technical Reports Server (NTRS)

    Devilbiss, T. A.; Messick, D. L.; Wightman, J. P.; Progar, D. J.

    1985-01-01

    The surfaces of the graphite fiber-reinforced polyimide composites presently pretreated prior to bonding with polyimide adhesive contained variable amounts of a fluoropolymer, as determined by X-ray photoelectron spectroscopy. Lap shear strengths were determined for unaged samples and for those aged over 500- and 1000-hour periods at 177 and 232 C. Unaged sample lap strengths, which were the highest obtained, exhibited no variation with surface pretreatment, but a significant decrease is noted with increasing aging temperature. These thermally aged samples, however, had increased surface fluorine concentration, while a minimal concentration was found in unaged samples. SEM demonstrated a progressive shift from cohesive to adhesive failure for elevated temperature-aged composites.

  9. Use of two-dimensional transmission photoelastic models to study stresses in double-lap bolted joints

    NASA Technical Reports Server (NTRS)

    Hyer, M. W.; Liu, D. H.

    1981-01-01

    The stress distribution in two hole connectors in a double lap joint configuration was studied. The following steps are described: (1) fabrication of photoelastic models of double lap double hole joints designed to determine the stresses in the inner lap; (2) assessment of the effects of joint geometry on the stresses in the inner lap; and (3) quantification of differences in the stresses near the two holes. The two holes were on the centerline of the joint and the joints were loaded in tension, parallel to the centerline. Acrylic slip fit pins through the holes served as fasteners. Two dimensional transmission photoelastic models were fabricated by using transparent acrylic outer laps and a photoelastic model material for the inner laps. It is concluded that the photoelastic fringe patterns which are visible when the models are loaded are due almost entirely to stresses in the inner lap.

  10. Electromechanical behaviour of REBCO tape lap splices under transverse compressive loading

    NASA Astrophysics Data System (ADS)

    Grether, A.; Scheuerlein, C.; Ballarino, A.; Bottura, L.

    2016-07-01

    We have studied the influence of transverse compressive stress on the resistance and critical current (I c ) of soldered REBCO tape lap splices. Internal contact resistances dominate the overall REBCO lap splice resistances. Application of transverse compressive stress up to 250 MPa during the resistance measurements does not alter the resistance and I c of the soldered REBCO splices that were studied. The resistance of unsoldered REBCO tape lap splices depends strongly on the contact pressure. At a transverse compressive stress of 100 MPa, to which Roebel cables are typically exposed in high field magnets, the crossover splice contact resistance is comparable to the internal tape resistances.