Science.gov

Sample records for ftable generation method

  1. Method of grid generation

    DOEpatents

    Barnette, Daniel W.

    2002-01-01

    The present invention provides a method of grid generation that uses the geometry of the problem space and the governing relations to generate a grid. The method can generate a grid with minimized discretization errors, and with minimal user interaction. The method of the present invention comprises assigning grid cell locations so that, when the governing relations are discretized using the grid, at least some of the discretization errors are substantially zero. Conventional grid generation is driven by the problem space geometry; grid generation according to the present invention is driven by problem space geometry and by governing relations. The present invention accordingly can provide two significant benefits: more efficient and accurate modeling since discretization errors are minimized, and reduced cost grid generation since less human interaction is required.

  2. Bismuth generator method

    DOEpatents

    Bray, L.A.; DesChane, J.R.

    1998-05-05

    A method is described for separating {sup 213}Bi from a solution of radionuclides wherein the solution contains a concentration of the chloride ions and hydrogen ions adjusted to allow the formation of a chloride complex. The solution is then brought into contact with an anion exchange resin, whereupon {sup 213}Bi is absorbed from the solution and adhered onto the anion exchange resin in the chloride complex. Other non-absorbing radionuclides such as {sup 225}Ra, {sup 225}Ac, and {sup 221}Fr, along with HCl are removed from the anion exchange resin with a scrub solution. The {sup 213}Bi is removed from the anion exchange resin by washing the anion exchange resin with a stripping solution free of chloride ions and with a reduced hydrogen ion concentration which breaks the chloride anionic complex, releasing the {sup 213}Bi as a cation. In a preferred embodiment of the present invention, the anion exchange resin is provided as a thin membrane, allowing for extremely rapid adherence and stripping of the {sup 213}Bi. A preferred stripping solution for purification of {sup 213}Bi for use in medical applications includes sodium acetate, pH 5.5. A protein conjugated with bifunctional chelating agents in vivo with the NaOAc receives the {sup 213}Bi as it is being released from the anion exchange resin. 10 figs.

  3. Bismuth generator method

    DOEpatents

    Bray, Lane Allan; DesChane, Jaquetta R.

    1998-01-01

    A method for separating .sup.213 Bi from a solution of radionuclides wherein the solution contains a concentration of the chloride ions and hydrogen ions adjusted to allow the formation of a chloride complex. The solution is then brought into contact with an anion exchange resin, whereupon .sup.213 Bi is absorbed from the solution and adhered onto the anion exchange resin in the chloride complex. Other non-absorbing radionuclides such as .sup.225 Ra, .sup.225 Ac, and .sup.221 Fr, along with HCl are removed from the anion exchange resin with a scrub solution. The .sup.213 Bi is removed from the anion exchange resin by washing the anion exchange resin with a stripping solution free of chloride ions and with a reduced hydrogen ion concentration which breaks the chloride anionic complex, releasing the .sup.213 Bi as a cation. In a preferred embodiment of the present invention, the anion exchange resin is provided as a thin membrane, allowing for extremely rapid adherence and stripping of the .sup.213 Bi. A preferred stripping solution for purification of .sup.213 Bi for use in medical applications includes sodium acetate, pH 5.5. A protein conjugated with bifunctional chelating agents in vivo with the NaOAc, to receive the .sup.213 Bi as it is being released from the anion exchange resin.

  4. Method of generating chemiluminescent light

    DOEpatents

    Spurlin, Stanford R.; Yeung, Edward S.

    1986-01-01

    A method of chemiluminescently determining a sulfide which is either hydrogen sulfide or methyl mercaptan by reacting the sulfide with chlorine dioxide at low pressure and under conditions which allow a longer reaction time in emission of a single photon for every two sulfide containing species, and thereafter, chemiluminescently detecting and determining the sulfide. The invention also relates not only to the detection method, but the novel chemical reaction that generates chemiluminescent light and a specifically designed chemiluminescence detection cell for the reaction.

  5. Method for generating surface plasma

    DOEpatents

    Miller, Paul A.; Aragon, Ben P.

    2003-05-27

    A method for generating a discharge plasma which covers a surface of a body in a gas at pressures from 0.01 Torr to atmospheric pressure, by applying a radio frequency power with frequencies between approximately 1 MHz and 10 GHz across a plurality of paired insulated conductors on the surface. At these frequencies, an arc-less, non-filamentary plasma can be generated to affect the drag characteristics of vehicles moving through the gas. The plasma can also be used as a source in plasma reactors for chemical reaction operations.

  6. Utility Solar Generation Valuation Methods

    SciTech Connect

    Hansen, Thomas N.; Dion, Phillip J.

    2009-06-30

    Tucson Electric Power (TEP) developed, tested and verified the results of a new and appropriate method for accurately evaluating the capacity credit of time variant solar generating sources and reviewed new methods to appropriately and fairly evaluate the value of solar generation to electric utilities. The project also reviewed general integrated approaches for adequately compensating owners of solar generation for their benefits to utilities. However, given the limited funding support and time duration of this project combined with the significant differences between utilities regarding rate structures, solar resource availability and coincidence of solar generation with peak load periods, it is well beyond the scope of this project to develop specific rate, rebate, and interconnection approaches to capture utility benefits for all possible utilities. The project developed computer software based evaluation method models to compare solar generation production data measured in very short term time increments called Sample Intervals over a typical utility Dispatch Cycle during an Evaluation Period against utility system load data. Ten second resolution generation production data from the SGSSS and actual one minute resolution TEP system load data for 2006 and 2007, along with data from the Pennington Street Garage 60 kW DC capacity solar unit installed in downtown Tucson will be applied to the model for testing and verification of the evaluation method. Data was provided by other utilities, but critical time periods of data were missing making results derived from that data inaccurate. The algorithms are based on previous analysis and review of specific 2005 and 2006 SGSSS production data. The model was built, tested and verified by in house TEP personnel. For this phase of the project, TEP communicated with, shared solar production data with and collaborated on the development of solar generation valuation tools with other utilities, including Arizona Public

  7. Method of generating chemiluminescent light

    DOEpatents

    Spurlin, S.R.; Yeung, E.S.

    1986-03-11

    A method of chemiluminescently determining a sulfide which is either hydrogen sulfide or methyl mercaptan by reacting the sulfide with chlorine dioxide at low pressure and under conditions which allow a longer reaction time in emission of a single photon for every two sulfide containing species, and thereafter, chemiluminescently detecting and determining the sulfide. The invention also relates not only to the detection method, but the novel chemical reaction that generates chemiluminescent light and a specifically designed chemiluminescence detection cell for the reaction. 4 figs.

  8. Reducing gas generators and methods for generating a reducing gas

    SciTech Connect

    Scotto, Mark Vincent; Perna, Mark Anthony

    2015-11-03

    One embodiment of the present invention is a unique reducing gas generator. Another embodiment is a unique method for generating a reducing gas. Other embodiments include apparatuses, systems, devices, hardware, methods, and combinations for generating reducing gas. Further embodiments, forms, features, aspects, benefits, and advantages of the present application will become apparent from the description and figures provided herewith.

  9. Power generation systems and methods

    NASA Technical Reports Server (NTRS)

    Jones, Jack A. (Inventor); Chao, Yi (Inventor)

    2011-01-01

    A power generation system includes a plurality of submerged mechanical devices. Each device includes a pump that can be powered, in operation, by mechanical energy to output a pressurized output liquid flow in a conduit. Main output conduits are connected with the device conduits to combine pressurized output flows output from the submerged mechanical devices into a lower number of pressurized flows. These flows are delivered to a location remote of the submerged mechanical devices for power generation.

  10. Apparatuses and methods for generating electric fields

    SciTech Connect

    Scott, Jill R; McJunkin, Timothy R; Tremblay, Paul L

    2013-08-06

    Apparatuses and methods relating to generating an electric field are disclosed. An electric field generator may include a semiconductive material configured in a physical shape substantially different from a shape of an electric field to be generated thereby. The electric field is generated when a voltage drop exists across the semiconductive material. A method for generating an electric field may include applying a voltage to a shaped semiconductive material to generate a complex, substantially nonlinear electric field. The shape of the complex, substantially nonlinear electric field may be configured for directing charged particles to a desired location. Other apparatuses and methods are disclosed.

  11. Method for protecting an electric generator

    DOEpatents

    Kuehnle, Barry W.; Roberts, Jeffrey B.; Folkers, Ralph W.

    2008-11-18

    A method for protecting an electrical generator which includes providing an electrical generator which is normally synchronously operated with an electrical power grid; providing a synchronizing signal from the electrical generator; establishing a reference signal; and electrically isolating the electrical generator from the electrical power grid if the synchronizing signal is not in phase with the reference signal.

  12. Microplasma generator and methods therefor

    DOEpatents

    Hopwood, Jeffrey A

    2015-04-14

    A low-temperature, atmospheric-pressure microplasma generator comprises at least one strip of metal on a dielectric substrate. A first end of the strip is connected to a ground plane and the second end of the strip is adjacent to a grounded electrode, with a gap being defined between the second end of the strip and the grounded electrode. High frequency power is supplied to the strip. The frequency is selected so that the length of the strip is an odd integer multiple of 1/4 of the wavelength traveling on the strip. A microplasma forms in the gap between the second end of the strip and the grounded electrode due to electric fields in that region. A microplasma generator array comprises a plurality of strongly-coupled resonant strips in close proximity to one another. At least one of the strips has an input for high-frequency electrical power. The remaining strips resonate due to coupling from the at least one powered strip. The array can provide a continuous line or ring of plasma. The microplasma generator can be used to alter the surface of a substrate, such as by adding material (deposition), removal of material (etching), or modifying surface chemistry.

  13. Method of generating a surface mesh

    DOEpatents

    Shepherd, Jason F.; Benzley, Steven; Grover, Benjamin T.

    2008-03-04

    A method and machine-readable medium provide a technique to generate and modify a quadrilateral finite element surface mesh using dual creation and modification. After generating a dual of a surface (mesh), a predetermined algorithm may be followed to generate and modify a surface mesh of quadrilateral elements. The predetermined algorithm may include the steps of generating two-dimensional cell regions in dual space, determining existing nodes in primal space, generating new nodes in the dual space, and connecting nodes to form the quadrilateral elements (faces) for the generated and modifiable surface mesh.

  14. Vapor generation methods for explosives detection research

    SciTech Connect

    Grate, Jay W.; Ewing, Robert G.; Atkinson, David A.

    2012-12-01

    The generation of calibrated vapor samples of explosives compounds remains a challenge due to the low vapor pressures of the explosives, adsorption of explosives on container and tubing walls, and the requirement to manage (typically) multiple temperature zones as the vapor is generated, diluted, and delivered. Methods that have been described to generate vapors can be classified as continuous or pulsed flow vapor generators. Vapor sources for continuous flow generators are typically explosives compounds supported on a solid support, or compounds contained in a permeation or diffusion device. Sources are held at elevated isothermal temperatures. Similar sources can be used for pulsed vapor generators; however, pulsed systems may also use injection of solutions onto heated surfaces with generation of both solvent and explosives vapors, transient peaks from a gas chromatograph, or vapors generated by s programmed thermal desorption. This article reviews vapor generator approaches with emphasis on the method of generating the vapors and on practical aspects of vapor dilution and handling. In addition, a gas chromatographic system with two ovens that is configurable with up to four heating ropes is proposed that could serve as a single integrated platform for explosives vapor generation and device testing. Issues related to standards, calibration, and safety are also discussed.

  15. Iterative method for generating correlated binary sequences

    NASA Astrophysics Data System (ADS)

    Usatenko, O. V.; Melnik, S. S.; Apostolov, S. S.; Makarov, N. M.; Krokhin, A. A.

    2014-11-01

    We propose an efficient iterative method for generating random correlated binary sequences with a prescribed correlation function. The method is based on consecutive linear modulations of an initially uncorrelated sequence into a correlated one. Each step of modulation increases the correlations until the desired level has been reached. The robustness and efficiency of the proposed algorithm are tested by generating sequences with inverse power-law correlations. The substantial increase in the strength of correlation in the iterative method with respect to single-step filtering generation is shown for all studied correlation functions. Our results can be used for design of disordered superlattices, waveguides, and surfaces with selective transport properties.

  16. Methods of Generating and Evaluating Hypertext.

    ERIC Educational Resources Information Center

    Blustein, James; Staveley, Mark S.

    2001-01-01

    Focuses on methods of generating and evaluating hypertext. Highlights include historical landmarks; nonlinearity; literary hypertext; models of hypertext; manual, automatic, and semi-automatic generation of hypertext; mathematical models for hypertext evaluation, including computing coverage and correlation; human factors in evaluation; and…

  17. Variational method for adaptive grid generation

    SciTech Connect

    Brackbill, J.U.

    1983-01-01

    A variational method for generating adaptive meshes is described. Functionals measuring smoothness, skewness, orientation, and the Jacobian are minimized to generate a mapping from a rectilinear domain in natural coordinate to an arbitrary domain in physical coordinates. From the mapping, a mesh is easily constructed. In using the method to adaptively zone computational problems, as few as one third the number of mesh points are required in each coordinate direction compared with a uniformly zoned mesh.

  18. Power generation method including membrane separation

    DOEpatents

    Lokhandwala, Kaaeid A.

    2000-01-01

    A method for generating electric power, such as at, or close to, natural gas fields. The method includes conditioning natural gas containing C.sub.3+ hydrocarbons and/or acid gas by means of a membrane separation step. This step creates a leaner, sweeter, drier gas, which is then used as combustion fuel to run a turbine, which is in turn used for power generation.

  19. Method of operating a thermoelectric generator

    SciTech Connect

    Reynolds, Michael G; Cowgill, Joshua D

    2013-11-05

    A method for operating a thermoelectric generator supplying a variable-load component includes commanding the variable-load component to operate at a first output and determining a first load current and a first load voltage to the variable-load component while operating at the commanded first output. The method also includes commanding the variable-load component to operate at a second output and determining a second load current and a second load voltage to the variable-load component while operating at the commanded second output. The method includes calculating a maximum power output of the thermoelectric generator from the determined first load current and voltage and the determined second load current and voltage, and commanding the variable-load component to operate at a third output. The commanded third output is configured to draw the calculated maximum power output from the thermoelectric generator.

  20. Plasma plume MHD power generator and method

    DOEpatents

    Hammer, J.H.

    1993-08-10

    A method is described of generating power at a situs exposed to the solar wind which comprises creating at separate sources at the situs discrete plasma plumes extending in opposed directions, providing electrical communication between the plumes at their source and interposing a desired electrical load in the said electrical communication between the plumes.

  1. Method and apparatus for thermal power generation

    DOEpatents

    Mangus, James D.

    1979-01-01

    A method and apparatus for power generation from a recirculating superheat-reheat circuit with multiple expansion stages which alleviates complex control systems and minimizes thermal cycling of system components, particularly the reheater. The invention includes preheating cold reheat fluid from the first expansion stage prior to its entering the reheater with fluid from the evaporator or drum component.

  2. Apparatus and method for thermal power generation

    DOEpatents

    Cohen, Paul; Redding, Arnold H.

    1978-01-01

    An improved thermal power plant and method of power generation which minimizes thermal stress and chemical impurity buildup in the vaporizing component, particularly beneficial under loss of normal feed fluid and startup conditions. The invention is particularly applicable to a liquid metal fast breeder reactor plant.

  3. Lexicon generation methods, lexicon generation devices, and lexicon generation articles of manufacture

    DOEpatents

    Carter, Richard J [Richland, WA; McCall, Jonathon D [West Richland, WA; Whitney, Paul D [Richland, WA; Gregory, Michelle L [Richland, WA; Turner, Alan E [Kennewick, WA; Hetzler, Elizabeth G [Kennewick, WA; White, Amanda M [Kennewick, WA; Posse, Christian [Seattle, WA; Nakamura, Grant C [Kennewick, WA

    2010-10-26

    Lexicon generation methods, computer implemented lexicon editing methods, lexicon generation devices, lexicon editors, and articles of manufacture are described according to some aspects. In one aspect, a lexicon generation method includes providing a seed vector indicative of occurrences of a plurality of seed terms within a plurality of text items, providing a plurality of content vectors indicative of occurrences of respective ones of a plurality of content terms within the text items, comparing individual ones of the content vectors with respect to the seed vector, and responsive to the comparing, selecting at least one of the content terms as a term of a lexicon usable in sentiment analysis of text.

  4. Plasma generators, reactor systems and related methods

    DOEpatents

    Kong, Peter C.; Pink, Robert J.; Lee, James E.

    2007-06-19

    A plasma generator, reactor and associated systems and methods are provided in accordance with the present invention. A plasma reactor may include multiple sections or modules which are removably coupled together to form a chamber. Associated with each section is an electrode set including three electrodes with each electrode being coupled to a single phase of a three-phase alternating current (AC) power supply. The electrodes are disposed about a longitudinal centerline of the chamber and are arranged to provide and extended arc and generate an extended body of plasma. The electrodes are displaceable relative to the longitudinal centerline of the chamber. A control system may be utilized so as to automatically displace the electrodes and define an electrode gap responsive to measure voltage or current levels of the associated power supply.

  5. Formal methods for test case generation

    NASA Technical Reports Server (NTRS)

    Rushby, John (Inventor); De Moura, Leonardo Mendonga (Inventor); Hamon, Gregoire (Inventor)

    2011-01-01

    The invention relates to the use of model checkers to generate efficient test sets for hardware and software systems. The method provides for extending existing tests to reach new coverage targets; searching *to* some or all of the uncovered targets in parallel; searching in parallel *from* some or all of the states reached in previous tests; and slicing the model relative to the current set of coverage targets. The invention provides efficient test case generation and test set formation. Deep regions of the state space can be reached within allotted time and memory. The approach has been applied to use of the model checkers of SRI's SAL system and to model-based designs developed in Stateflow. Stateflow models achieving complete state and transition coverage in a single test case are reported.

  6. Microscopic approach to the generator coordinate method

    SciTech Connect

    Haider, Q.; Gogny, D.; Weiss, M.S.

    1989-08-22

    In this paper, we solve different theoretical problems associated with the calculation of the kernel occurring in the Hill-Wheeler integral equations within the framework of generator coordinate method. In particular, we extend the Wick's theorem to nonorthogonal Bogoliubov states. Expressions for the overlap between Bogoliubov states and for the generalized density matrix are also derived. These expressions are valid even when using an incomplete basis, as in the case of actual calculations. Finally, the Hill-Wheeler formalism is developed for a finite range interaction and the Skyrme force, and evaluated for the latter. 20 refs., 1 fig., 4 tabs.

  7. Method for generating hydrogen for fuel cells

    DOEpatents

    Ahmed, Shabbir; Lee, Sheldon H. D.; Carter, John David; Krumpelt, Michael

    2004-03-30

    A method of producing a H.sub.2 rich gas stream includes supplying an O.sub.2 rich gas, steam, and fuel to an inner reforming zone of a fuel processor that includes a partial oxidation catalyst and a steam reforming catalyst or a combined partial oxidation and stream reforming catalyst. The method also includes contacting the O.sub.2 rich gas, steam, and fuel with the partial oxidation catalyst and the steam reforming catalyst or the combined partial oxidation and stream reforming catalyst in the inner reforming zone to generate a hot reformate stream. The method still further includes cooling the hot reformate stream in a cooling zone to produce a cooled reformate stream. Additionally, the method includes removing sulfur-containing compounds from the cooled reformate stream by contacting the cooled reformate stream with a sulfur removal agent. The method still further includes contacting the cooled reformate stream with a catalyst that converts water and carbon monoxide to carbon dioxide and H.sub.2 in a water-gas-shift zone to produce a final reformate stream in the fuel processor.

  8. Methods for generating and colonizing gnotobiotic zebrafish

    PubMed Central

    Pham, Linh N.; Kanther, Michelle; Semova, Ivana; Rawls, John F.

    2008-01-01

    Vertebrates are colonized at birth by complex and dynamic communities of microorganisms that can contribute significantly to host health and disease. The ability to raise animals in the absence of microorganisms has been a powerful tool for elucidating the relationships between animal hosts and their microbial residents. The optical transparency of the developing zebrafish and relative ease of generating germ-free zebrafish makes it an attractive model organism for gnotobiotic research. Here we provide a protocol for: generating zebrafish embryos; deriving and rearing germ-free zebrafish; and colonizing zebrafish with microorganisms. Using these methods, we typically obtain 80–90% sterility rates in our germ-free derivations with 90% survival in germ-free animals and 50–90% survival in colonized animals through larval stages. Obtaining embryos for derivation requires approximately 1–2 hours with a 3–8 hour incubation period prior to derivation. Derivation of germ-free animals takes 1–1.5 hours, and daily maintenance requires 1–2 hours. PMID:19008873

  9. Method and apparatus for generating acoustic energy

    DOEpatents

    Guerrero, Hector N.

    2002-01-01

    A method and apparatus for generating and emitting amplified coherent acoustic energy. A cylindrical transducer is mounted within a housing, the transducer having an acoustically open end and an acoustically closed end. The interior of the transducer is filled with an active medium which may include scattering nuclei. Excitation of the transducer produces radially directed acoustic energy in the active medium, which is converted by the dimensions of the transducer, the acoustically closed end thereof, and the scattering nuclei, to amplified coherent acoustic energy directed longitudinally within the transducer. The energy is emitted through the acoustically open end of the transducer. The emitted energy can be used for, among other things, effecting a chemical reaction or removing scale from the interior walls of containment vessels.

  10. Apparatus and method for generating mechanical waves

    DOEpatents

    Allensworth, D.L.; Chen, P.J.

    1982-10-25

    Mechanical waves are generated in a medium by subjecting an electromechanical element to an alternating electric field having a frequency which induces mechanical resonance therein and is below any electrical resonance frequency thereof.

  11. Apparatus and method for generating mechanical waves

    DOEpatents

    Allensworth, Dwight L.; Chen, Peter J.

    1985-01-01

    Mechanical waves are generated in a medium by subjecting an electromechanical element to an alternating electric field having a frequency which induces mechanical resonance therein and is below any electrical resonance frequency thereof.

  12. Methods for generating hydroelectric power development alternatives

    SciTech Connect

    Chang, Shoou-yuh; Liaw, Shu-liang; Sale, M.J.; Railsback, S.F.

    1989-01-01

    Hydropower development on large rivers can result in a number of environmental impacts, including potential reductions in dissolved oxygen (DO) concentrations. This study presents a methodology for generating different hydropower development alternatives for evaluation. This methodology employs a Streeter-Phelps model to simulate DO, and the Bounded Implicit Enumeration algorithm to solve an optimization model formulated to maximize hydroelectric energy production subject to acceptable DO limits. The upper Ohio River basin was used to illustrate the use and characteristics of the methodology. The results indicate that several alternatives which meet the specified DO constraints can be generated efficiently, meeting both power and environmental objectives. 17 refs., 2 figs., 1 tab.

  13. Digitally programmable signal generator and method

    DOEpatents

    Priatko, G.J.; Kaskey, J.A.

    1989-11-14

    Disclosed is a digitally programmable waveform generator for generating completely arbitrary digital or analog waveforms from very low frequencies to frequencies in the gigasample per second range. A memory array with multiple parallel outputs is addressed; then the parallel output data is latched into buffer storage from which it is serially multiplexed out at a data rate many times faster than the access time of the memory array itself. While data is being multiplexed out serially, the memory array is accessed with the next required address and presents its data to the buffer storage before the serial multiplexing of the last group of data is completed, allowing this new data to then be latched into the buffer storage for smooth continuous serial data output. In a preferred implementation, a plurality of these serial data outputs are paralleled to form the input to a digital to analog converter, providing a programmable analog output. 6 figs.

  14. Digitally programmable signal generator and method

    DOEpatents

    Priatko, Gordon J.; Kaskey, Jeffrey A.

    1989-01-01

    A digitally programmable waveform generator for generating completely arbitrary digital or analog waveforms from very low frequencies to frequencies in the gigasample per second range. A memory array with multiple parallel outputs is addressed; then the parallel output data is latched into buffer storage from which it is serially multiplexed out at a data rate many times faster than the access time of the memory array itself. While data is being multiplexed out serially, the memory array is accessed with the next required address and presents its data to the buffer storage before the serial multiplexing of the last group of data is completed, allowing this new data to then be latched into the buffer storage for smooth continuous serial data output. In a preferred implementation, a plurality of these serial data outputs are paralleled to form the input to a digital to analog converter, providing a programmable analog output.

  15. Plasma plume MHD power generator and method

    DOEpatents

    Hammer, James H.

    1993-01-01

    Highly-conducting plasma plumes are ejected across the interplanetary magnetic field from a situs that is moving relative to the solar wind, such as a spacecraft or an astral body, such as the moon, having no magnetosphere that excludes the solar wind. Discrete plasma plumes are generated by plasma guns at the situs extending in opposite directions to one another and at an angle, preferably orthogonal, to the magnetic field direction of the solar wind plasma. The opposed plumes are separately electrically connected to their source by a low impedance connection. The relative movement between the plasma plumes and the solar wind plasma creates a voltage drop across the plumes which is tapped by placing the desired electrical load between the electrical connections of the plumes to their sources. A portion of the energy produced may be used in generating the plasma plumes for sustained operation.

  16. A polygonal method for haptic force generation

    SciTech Connect

    Anderson, T. |

    1996-12-31

    Algorithms for computing forces and associated surface deformations (graphical and physical) are given, which, together with a force feedback device can be used to haptically display virtual objects. The Bendable Polygon algorithm, created at Sandia National Labs and the University of New Mexico, for visual rendering of computer generated surfaces is also presented. An implementation using the EIGEN virtual reality environment, and the PHANToM (Trademark) haptic interface, is reported together with suggestions for future research.

  17. A method for obtaining coefficients of compositional inverse generating functions

    NASA Astrophysics Data System (ADS)

    Kruchinin, Dmitry V.; Shablya, Yuriy V.; Kruchinin, Vladimir V.; Shelupanov, Alexander A.

    2016-06-01

    The aim of this paper is to show how to obtain expressions for coefficients of compositional inverse generating functions in explicit way. The method is based on the Lagrange inversion theorem and composita of generating functions. Also we give a method of obtaining expressions for coefficients of reciprocal generating functions and consider some examples.

  18. Entropy generation method to quantify thermal comfort

    NASA Technical Reports Server (NTRS)

    Boregowda, S. C.; Tiwari, S. N.; Chaturvedi, S. K.

    2001-01-01

    The present paper presents a thermodynamic approach to assess the quality of human-thermal environment interaction and quantify thermal comfort. The approach involves development of entropy generation term by applying second law of thermodynamics to the combined human-environment system. The entropy generation term combines both human thermal physiological responses and thermal environmental variables to provide an objective measure of thermal comfort. The original concepts and definitions form the basis for establishing the mathematical relationship between thermal comfort and entropy generation term. As a result of logic and deterministic approach, an Objective Thermal Comfort Index (OTCI) is defined and established as a function of entropy generation. In order to verify the entropy-based thermal comfort model, human thermal physiological responses due to changes in ambient conditions are simulated using a well established and validated human thermal model developed at the Institute of Environmental Research of Kansas State University (KSU). The finite element based KSU human thermal computer model is being utilized as a "Computational Environmental Chamber" to conduct series of simulations to examine the human thermal responses to different environmental conditions. The output from the simulation, which include human thermal responses and input data consisting of environmental conditions are fed into the thermal comfort model. Continuous monitoring of thermal comfort in comfortable and extreme environmental conditions is demonstrated. The Objective Thermal Comfort values obtained from the entropy-based model are validated against regression based Predicted Mean Vote (PMV) values. Using the corresponding air temperatures and vapor pressures that were used in the computer simulation in the regression equation generates the PMV values. The preliminary results indicate that the OTCI and PMV values correlate well under ideal conditions. However, an experimental study

  19. Method and system for radioisotope generation

    SciTech Connect

    Toth, James J.; Soderquist, Chuck Z.; Greenwood, Lawrence R.; Mattigod, Shas V.; Fryxell, Glen E.; O'Hara, Matthew J.

    2014-07-15

    A system and a process for producing selected isotopic daughter products from parent materials characterized by the steps of loading the parent material upon a sorbent having a functional group configured to selectively bind the parent material under designated conditions, generating the selected isotopic daughter products, and eluting said selected isotopic daughter products from the sorbent. In one embodiment, the process also includes the step of passing an eluent formed by the elution step through a second sorbent material that is configured to remove a preselected material from said eluent. In some applications a passage of the material through a third sorbent material after passage through the second sorbent material is also performed.

  20. Method and composition for generating nitrogen gas

    SciTech Connect

    Pietz, J.F.

    1988-01-26

    A solid composition is described for generating nitrogen gas substantially free of noxious and toxic impurities for inflating an air cushion in a vehicle passenger restraint system and capable of substantially fully inflating such cushion in the elapsed time between the occurrence of a primary collision of the vehicle with another object and secondary collisions occurring as a result thereof; comprising a mixture of alkali metal azide and at least a stoichiometric amount of a metal oxide selected from the group consisting of iron, titanium and copper oxides and mixtures thereof. The metal oxide is capable of reacting exothermically with the alkaki metal azide and wherein the metal of the oxide is lower in the electromotive series than the alkali metal of the azide and is a metal other than (the) an alkali metal.

  1. A method of billing third generation computer users

    NASA Technical Reports Server (NTRS)

    Anderson, P. N.; Hyter, D. R.

    1973-01-01

    A method is presented for charging users for the processing of their applications on third generation digital computer systems is presented. For background purposes, problems and goals in billing on third generation systems are discussed. Detailed formulas are derived based on expected utilization and computer component cost. These formulas are then applied to a specific computer system (UNIVAC 1108). The method, although possessing some weaknesses, is presented as a definite improvement over use of second generation billing methods.

  2. Structured adaptive grid generation using algebraic methods

    NASA Technical Reports Server (NTRS)

    Yang, Jiann-Cherng; Soni, Bharat K.; Roger, R. P.; Chan, Stephen C.

    1993-01-01

    The accuracy of the numerical algorithm depends not only on the formal order of approximation but also on the distribution of grid points in the computational domain. Grid adaptation is a procedure which allows optimal grid redistribution as the solution progresses. It offers the prospect of accurate flow field simulations without the use of an excessively timely, computationally expensive, grid. Grid adaptive schemes are divided into two basic categories: differential and algebraic. The differential method is based on a variational approach where a function which contains a measure of grid smoothness, orthogonality and volume variation is minimized by using a variational principle. This approach provided a solid mathematical basis for the adaptive method, but the Euler-Lagrange equations must be solved in addition to the original governing equations. On the other hand, the algebraic method requires much less computational effort, but the grid may not be smooth. The algebraic techniques are based on devising an algorithm where the grid movement is governed by estimates of the local error in the numerical solution. This is achieved by requiring the points in the large error regions to attract other points and points in the low error region to repel other points. The development of a fast, efficient, and robust algebraic adaptive algorithm for structured flow simulation applications is presented. This development is accomplished in a three step process. The first step is to define an adaptive weighting mesh (distribution mesh) on the basis of the equidistribution law applied to the flow field solution. The second, and probably the most crucial step, is to redistribute grid points in the computational domain according to the aforementioned weighting mesh. The third and the last step is to reevaluate the flow property by an appropriate search/interpolate scheme at the new grid locations. The adaptive weighting mesh provides the information on the desired concentration

  3. Fossil fuel combined cycle power generation method

    DOEpatents

    Labinov, Solomon D [Knoxville, TN; Armstrong, Timothy R [Clinton, TN; Judkins, Roddie R [Knoxville, TN

    2008-10-21

    A method for converting fuel energy to electricity includes the steps of converting a higher molecular weight gas into at least one mixed gas stream of lower average molecular weight including at least a first lower molecular weight gas and a second gas, the first and second gases being different gases, wherein the first lower molecular weight gas comprises H.sub.2 and the second gas comprises CO. The mixed gas is supplied to at least one turbine to produce electricity. The mixed gas stream is divided after the turbine into a first gas stream mainly comprising H.sub.2 and a second gas stream mainly comprising CO. The first and second gas streams are then electrochemically oxidized in separate fuel cells to produce electricity. A nuclear reactor can be used to supply at least a portion of the heat the required for the chemical conversion process.

  4. Method and system for storing and generating hydrogen

    NASA Technical Reports Server (NTRS)

    Kindler, Andrew (Inventor); Narayanan, Sri R. (Inventor); Huang, Yuhong (Inventor)

    2011-01-01

    A method and system for storing and generating hydrogen. The method comprises generating hydrogen and heat from the reaction of a metal or metal compound with water. The heat generated from this reaction may then be converted to other forms of energy such as by passing the heat through a thermal electric device to recover electrical energy for storage in a battery. In an alternative and preferred embodiment, the heat is used to drive additional reactions for generating more hydrogen and is preferably used to drive an endothermic dehydrogenation reaction resulting in increased hydrogen generation and consumption of the heat.

  5. Method to implement the CCD timing generator based on FPGA

    NASA Astrophysics Data System (ADS)

    Li, Binhua; Song, Qian; He, Chun; Jin, Jianhui; He, Lin

    2010-07-01

    With the advance of the PFPA technology, the design methodology of digital systems is changing. In recent years we develop a method to implement the CCD timing generator based on FPGA and VHDL. This paper presents the principles and implementation skills of the method. Taking a developed camera as an example, we introduce the structure, input and output clocks/signals of a timing generator implemented in the camera. The generator is composed of a top module and a bottom module. The bottom one is made up of 4 sub-modules which correspond to 4 different operation modes. The modules are implemented by 5 VHDL programs. Frame charts of the architecture of these programs are shown in the paper. We also describe implementation steps of the timing generator in Quartus II, and the interconnections between the generator and a Nios soft core processor which is the controller of this generator. Some test results are presented in the end.

  6. Unstructured viscous grid generation by advancing-front method

    NASA Technical Reports Server (NTRS)

    Pirzadeh, Shahyar

    1993-01-01

    A new method of generating unstructured triangular/tetrahedral grids with high-aspect-ratio cells is proposed. The method is based on new grid-marching strategy referred to as 'advancing-layers' for construction of highly stretched cells in the boundary layer and the conventional advancing-front technique for generation of regular, equilateral cells in the inviscid-flow region. Unlike the existing semi-structured viscous grid generation techniques, the new procedure relies on a totally unstructured advancing-front grid strategy resulting in a substantially enhanced grid flexibility and efficiency. The method is conceptually simple but powerful, capable of producing high quality viscous grids for complex configurations with ease. A number of two-dimensional, triangular grids are presented to demonstrate the methodology. The basic elements of the method, however, have been primarily designed with three-dimensional problems in mind, making it extendible for tetrahedral, viscous grid generation.

  7. Advancing-layers method for generation of unstructured viscous grids

    NASA Technical Reports Server (NTRS)

    Pirzadeh, Shahyar

    1993-01-01

    A novel approach for generating highly stretched grids which is based on a modified advancing-front technique and benefits from the generality, flexibility, and grid quality of the conventional advancing-front-based Euler grid generators is presented. The method is self-sufficient for the insertion of grid points in the boundary layer and beyond. Since it is based on a totally unstructured grid strategy, the method alleviates the difficulties stemming from the structural limitations of the prismatic techniques.

  8. A new method for generating a hollow Gaussian beam

    NASA Astrophysics Data System (ADS)

    Wei, Cun; Lu, Xingyuan; Wu, Gaofeng; Wang, Fei; Cai, Yangjian

    2014-04-01

    Hollow Gaussian beam (HGB) was introduced 10 years ago (Cai et al. in Opt Lett 28:1084, 2003). In this paper, we introduce a new method for generating a HGB through transforming a Laguerre-Gaussian beam with radial index 0 and azimuthal index l into a HGB with mode n = l/2. Furthermore, we report experimental generation of a HGB based on the proposed method, and we carry out experimental study of the focusing properties of the generated HGB. Our experimental results agree well with the theoretical predictions.

  9. Methods of attenuating wind turbine ac generator output variations

    NASA Technical Reports Server (NTRS)

    Gold, H.

    1978-01-01

    Wind speed variation, tower blockage and structural and inertial factors produce unsteady torque in wind turbines. Methods for modifying the turbine torque so that steady torque is delivered to the coupled ac generator are discussed. The method that may evolve will be influenced by the power use that develops and the trade-offs of cost, weight and complexity.

  10. Methods for prismatic/tetrahedral grid generation and adaptation

    NASA Astrophysics Data System (ADS)

    Kallinderis, Y.

    1995-10-01

    The present work involves generation of hybrid prismatic/tetrahedral grids for complex 3-D geometries including multi-body domains. The prisms cover the region close to each body's surface, while tetrahedra are created elsewhere. Two developments are presented for hybrid grid generation around complex 3-D geometries. The first is a new octree/advancing front type of method for generation of the tetrahedra of the hybrid mesh. The main feature of the present advancing front tetrahedra generator that is different from previous such methods is that it does not require the creation of a background mesh by the user for the determination of the grid-spacing and stretching parameters. These are determined via an automatically generated octree. The second development is a method for treating the narrow gaps in between different bodies in a multiply-connected domain. This method is applied to a two-element wing case. A High Speed Civil Transport (HSCT) type of aircraft geometry is considered. The generated hybrid grid required only 170 K tetrahedra instead of an estimated two million had a tetrahedral mesh been used in the prisms region as well. A solution adaptive scheme for viscous computations on hybrid grids is also presented. A hybrid grid adaptation scheme that employs both h-refinement and redistribution strategies is developed to provide optimum meshes for viscous flow computations. Grid refinement is a dual adaptation scheme that couples 3-D, isotropic division of tetrahedra and 2-D, directional division of prisms.

  11. System and method for key generation in security tokens

    DOEpatents

    Evans, Philip G.; Humble, Travis S.; Paul, Nathanael R.; Pooser, Raphael C.; Prowell, Stacy J.

    2015-10-27

    Functional randomness in security tokens (FRIST) may achieve improved security in two-factor authentication hardware tokens by improving on the algorithms used to securely generate random data. A system and method in one embodiment according to the present invention may allow for security of a token based on storage cost and computational security. This approach may enable communication where security is no longer based solely on onetime pads (OTPs) generated from a single cryptographic function (e.g., SHA-256).

  12. Method and apparatus for generating a natural crack

    DOEpatents

    Fulton, Fred J.; Honodel, Charles A.; Holman, William R.; Weingart, Richard C.

    1984-01-01

    A method and apparatus for generating a measurable natural crack includes forming a primary notch in the surface of a solid material. A non-sustained single pressure pulse is then generated in the vicinity of the primary notch, resulting in the formation of a shock wave which travels through the material. The shock wave creates a measurable natural crack within the material which extends from the primary notch. The natural crack formed possesses predictable geometry, location and orientation.

  13. Method and apparatus for generating a natural crack

    DOEpatents

    Fulton, F.J.; Honodel, C.A.; Holman, W.R.; Weingart, R.C.

    1982-05-06

    A method and apparatus for generating a measurable natural crack includes forming a primary notch in the surface of a solid material. A nonsustained single pressure pulse is then generated in the vicinity of the primary notch, reuslting in the formation of a shock wave which travels through the material. The shock wave creates a measurable natural crack within the material which extends from the primary notch. The natural crack formed possesses predictable geometry, location and orientation.

  14. Guided wave methods and apparatus for nonlinear frequency generation

    DOEpatents

    Durfee, III, Charles G.; Rundquist, Andrew; Kapteyn, Henry C.; Murnane, Margaret M.

    2000-01-01

    Methods and apparatus are disclosed for the nonlinear generation of sum and difference frequencies of electromagnetic radiation propagating in a nonlinear material. A waveguide having a waveguide cavity contains the nonlinear material. Phase matching of the nonlinear generation is obtained by adjusting a waveguide propagation constant, the refractive index of the nonlinear material, or the waveguide mode in which the radiation propagates. Phase matching can be achieved even in isotropic nonlinear materials. A short-wavelength radiation source uses phase-matched nonlinear generation in a waveguide to produce high harmonics of a pulsed laser.

  15. A Scenario Generation Method for Wind Power Ramp Events Forecasting

    SciTech Connect

    Cui, Ming-Jian; Ke, De-Ping; Sun, Yuan-Zhang; Gan, Di; Zhang, Jie; Hodge, Bri-Mathias

    2015-07-03

    Wind power ramp events (WPREs) have received increasing attention in recent years due to their significant impact on the reliability of power grid operations. In this paper, a novel WPRE forecasting method is proposed which is able to estimate the probability distributions of three important properties of the WPREs. To do so, a neural network (NN) is first proposed to model the wind power generation (WPG) as a stochastic process so that a number of scenarios of the future WPG can be generated (or predicted). Each possible scenario of the future WPG generated in this manner contains the ramping information, and the distributions of the designated WPRE properties can be stochastically derived based on the possible scenarios. Actual data from a wind power plant in the Bonneville Power Administration (BPA) was selected for testing the proposed ramp forecasting method. Results showed that the proposed method effectively forecasted the probability of ramp events.

  16. Isentropic compressive wave generator and method of making same

    DOEpatents

    Barker, L.M.

    An isentropic compressive wave generator and method of making same are disclosed. The wave generator comprises a disk or flat pillow member having component materials of different shock impedances formed in a configuration resulting in a smooth shock impedance gradient over the thickness thereof for interpositioning between an impactor member and a target specimen for producing a shock wave of a smooth predictable rise time. The method of making the pillow member comprises the reduction of the component materials to a powder form and forming the pillow member by sedimentation and compressive techniques.

  17. Simple method to generate and fabricate stochastic porous scaffolds.

    PubMed

    Yang, Nan; Gao, Lilan; Zhou, Kuntao

    2015-11-01

    Considerable effort has been made to generate regular porous structures (RPSs) using function-based methods, although little effort has been made for constructing stochastic porous structures (SPSs) using the same methods. In this short communication, we propose a straightforward method for SPS construction that is simple in terms of methodology and the operations used. Using our method, we can obtain a SPS with functionally graded, heterogeneous and interconnected pores, target pore size and porosity distributions, which are useful for applications in tissue engineering. The resulting SPS models can be directly fabricated using additive manufacturing (AM) techniques. PMID:26249613

  18. Methods for generating phosphorylation site-specific immunological reagents

    DOEpatents

    Anderson, Carl W.; Appella, Ettore; Sakaguchi, Kazuyasu

    2001-01-01

    The present invention provides methods for generating phosphorylation site-specific immunological reagents. More specifically, a phosphopeptide mimetic is incorporated into a polypeptide in place of a phosphorylated amino acid. The polypeptide is used as antigen by standard methods to generate either monoclonal or polyclonal antibodies which cross-react with the naturally phosphorylated polypeptide. The phosphopeptide mimetic preferably contains a non-hydrolyzable linkage from the appropriate carbon atom of the amino acid residue to a phosphate group. A preferred linkage is a CF.sub.2 group. Such a linkage is used to generate the phosphoserine mimetic F.sub.2 Pab, which is incorporated into a polypeptide sequence derived from p53 to produce antibodies which recognize a specific phosphorylation state of p53. A CF.sub.2 group linkage is also used to produce the phosphothreonine mimetic F.sub.2 Pmb, and to produce the phosphotyrosine mimetic, F.sub.2 Pmp.

  19. Decluttering Methods for Computer-Generated Graphic Displays

    NASA Technical Reports Server (NTRS)

    Schultz, E. Eugene, Jr.

    1986-01-01

    Symbol simplification and contrasting enhance viewer's ability to detect particular symbol. Report describes experiments designed to indicate how various decluttering methods affect viewer's abilities to distinguish essential from nonessential features on computer-generated graphic displays. Results indicate partial removal of nonessential graphic features through symbol simplification effective in decluttering as total removal of nonessential graphic features.

  20. First Generation College Student Leadership Potential: A Mixed Methods Analysis

    ERIC Educational Resources Information Center

    Hojan-Clark, Jane M.

    2010-01-01

    This mixed methods research compared the leadership potential of traditionally aged first generation college students to that of college students whose parents are college educated. A college education provides advantages to those who can obtain it (Baum & Payea, 2004; Black Issues in Higher Education, 2005; Education and the Value of Knowledge,…

  1. QUANTIFICATION OF MUNICIPAL DISPOSAL METHODS FOR INDUSTRIALLY GENERATED HAZARDOUS WASTES

    EPA Science Inventory

    Estimations of the amounts of industrial hazardous wastes being disposed of according to various methods of disposal were generated for significant portions of the five following SIC codes: 28, Chemical and Allied Products; 29, Petroleum Refining and Related Industries; 30, Rubbe...

  2. A Transfer Voltage Simulation Method for Generator Step Up Transformers

    NASA Astrophysics Data System (ADS)

    Funabashi, Toshihisa; Sugimoto, Toshirou; Ueda, Toshiaki; Ametani, Akihiro

    It has been found from measurements for 13 sets of GSU transformers that a transfer voltage of a generator step-up (GSU) transformer involves one dominant oscillation frequency. The frequency can be estimated from the inductance and capacitance values of the GSU transformer low-voltage-side. This observation has led to a new method for simulating a GSU transformer transfer voltage. The method is based on the EMTP TRANSFORMER model, but stray capacitances are added. The leakage inductance and the magnetizing resistance are modified using approximate curves for their frequency characteristics determined from the measured results. The new method is validated in comparison with the measured results.

  3. Seismic wave generation systems and methods for cased wells

    DOEpatents

    Minto, James; Sorrells, Martin H; Owen, Thomas E.; Schroeder, Edgar C.

    2011-03-29

    A vibration source (10) includes an armature bar (12) having a major length dimension, and a driver (20A) positioned about the armature bar. The driver (20A) is movably coupled to the armature bar (12), and includes an electromagnet (40). During operation the electromagnet (40) is activated such that the driver (20A) moves with respect to the armature bar (12) and a vibratory signal is generated in the armature bar. A described method for generating a vibratory signal in an object includes positioning the vibration source (10) in an opening of the object, coupling the armature bar (12) to a surface of the object within the opening, and activating the electromagnet (40) of the driver (20A) such that the driver moves with respect to the armature bar (12) and a vibratory signal is generated in the armature bar and the object.

  4. System, method and apparatus for generating phrases from a database

    NASA Technical Reports Server (NTRS)

    McGreevy, Michael W. (Inventor)

    2004-01-01

    A phrase generation is a method of generating sequences of terms, such as phrases, that may occur within a database of subsets containing sequences of terms, such as text. A database is provided and a relational model of the database is created. A query is then input. The query includes a term or a sequence of terms or multiple individual terms or multiple sequences of terms or combinations thereof. Next, several sequences of terms that are contextually related to the query are assembled from contextual relations in the model of the database. The sequences of terms are then sorted and output. Phrase generation can also be an iterative process used to produce sequences of terms from a relational model of a database.

  5. Graphical method for profiling hob mill that generate cycloid worms

    NASA Astrophysics Data System (ADS)

    Teodor, V.; Berbinschi, S.; Baroiu, N.; Oancea, N.

    2015-11-01

    The hob mill for generating ordered curls of cycloid surface with non involute profiles may be profiled based on the fundamental theorems of surface enveloping - Olivier - as surface reciprocally enveloping with point like contact. In this paper, is proposed a methodology based on a complementary theorem of the surface enveloping in a graphical expression developed in a graphical design environment - CATIA. The graphical method presented in this paper is developed in two stages: determining of the rack gear model based on the solid model of the surface to be generated, using an original algorithm, following this, based on 3D modelling is determined the solid model of the primary peripheral surface of the hob mill. An application for a cycloid worm is presented - a central screw of helical pumps. In order to prove the quality of method, the analytical and graphical solutions are comparatively presented.

  6. Advanced numerical methods in mesh generation and mesh adaptation

    SciTech Connect

    Lipnikov, Konstantine; Danilov, A; Vassilevski, Y; Agonzal, A

    2010-01-01

    Numerical solution of partial differential equations requires appropriate meshes, efficient solvers and robust and reliable error estimates. Generation of high-quality meshes for complex engineering models is a non-trivial task. This task is made more difficult when the mesh has to be adapted to a problem solution. This article is focused on a synergistic approach to the mesh generation and mesh adaptation, where best properties of various mesh generation methods are combined to build efficiently simplicial meshes. First, the advancing front technique (AFT) is combined with the incremental Delaunay triangulation (DT) to build an initial mesh. Second, the metric-based mesh adaptation (MBA) method is employed to improve quality of the generated mesh and/or to adapt it to a problem solution. We demonstrate with numerical experiments that combination of all three methods is required for robust meshing of complex engineering models. The key to successful mesh generation is the high-quality of the triangles in the initial front. We use a black-box technique to improve surface meshes exported from an unattainable CAD system. The initial surface mesh is refined into a shape-regular triangulation which approximates the boundary with the same accuracy as the CAD mesh. The DT method adds robustness to the AFT. The resulting mesh is topologically correct but may contain a few slivers. The MBA uses seven local operations to modify the mesh topology. It improves significantly the mesh quality. The MBA method is also used to adapt the mesh to a problem solution to minimize computational resources required for solving the problem. The MBA has a solid theoretical background. In the first two experiments, we consider the convection-diffusion and elasticity problems. We demonstrate the optimal reduction rate of the discretization error on a sequence of adaptive strongly anisotropic meshes. The key element of the MBA method is construction of a tensor metric from hierarchical edge

  7. Generational differences of baccalaureate nursing students' preferred teaching methods and faculty use of teaching methods

    NASA Astrophysics Data System (ADS)

    Delahoyde, Theresa

    Nursing education is experiencing a generational phenomenon with student enrollment spanning three generations. Classrooms of the 21st century include the occasional Baby Boomer and a large number of Generation X and Generation Y students. Each of these generations has its own unique set of characteristics that have been shaped by values, trends, behaviors, and events in society. These generational characteristics create vast opportunities to learn, as well as challenges. One such challenge is the use of teaching methods that are congruent with nursing student preferences. Although there is a wide range of studies conducted on student learning styles within the nursing education field, there is little research on the preferred teaching methods of nursing students. The purpose of this quantitative, descriptive study was to compare the preferred teaching methods of multi-generational baccalaureate nursing students with faculty use of teaching methods. The research study included 367 participants; 38 nursing faculty and 329 nursing students from five different colleges within the Midwest region. The results of the two-tailed t-test found four statistically significant findings between Generation X and Y students and their preferred teaching methods including; lecture, listening to the professor lecture versus working in groups; actively participating in group discussion; and the importance of participating in group assignments. The results of the Analysis of Variance (ANOVA) found seventeen statistically significant findings between levels of students (freshmen/sophomores, juniors, & seniors) and their preferred teaching methods. Lecture was found to be the most frequently used teaching method by faculty as well as the most preferred teaching method by students. Overall, the support for a variety of teaching methods was also found in the analysis of data.

  8. Ortho Image and DTM Generation with Intelligent Methods

    NASA Astrophysics Data System (ADS)

    Bagheri, H.; Sadeghian, S.

    2013-10-01

    Nowadays the artificial intelligent algorithms has considered in GIS and remote sensing. Genetic algorithm and artificial neural network are two intelligent methods that are used for optimizing of image processing programs such as edge extraction and etc. these algorithms are very useful for solving of complex program. In this paper, the ability and application of genetic algorithm and artificial neural network in geospatial production process like geometric modelling of satellite images for ortho photo generation and height interpolation in raster Digital Terrain Model production process is discussed. In first, the geometric potential of Ikonos-2 and Worldview-2 with rational functions, 2D & 3D polynomials were tested. Also comprehensive experiments have been carried out to evaluate the viability of the genetic algorithm for optimization of rational function, 2D & 3D polynomials. Considering the quality of Ground Control Points, the accuracy (RMSE) with genetic algorithm and 3D polynomials method for Ikonos-2 Geo image was 0.508 pixel sizes and the accuracy (RMSE) with GA algorithm and rational function method for Worldview-2 image was 0.930 pixel sizes. For more another optimization artificial intelligent methods, neural networks were used. With the use of perceptron network in Worldview-2 image, a result of 0.84 pixel sizes with 4 neurons in middle layer was gained. The final conclusion was that with artificial intelligent algorithms it is possible to optimize the existing models and have better results than usual ones. Finally the artificial intelligence methods, like genetic algorithms as well as neural networks, were examined on sample data for optimizing interpolation and for generating Digital Terrain Models. The results then were compared with existing conventional methods and it appeared that these methods have a high capacity in heights interpolation and that using these networks for interpolating and optimizing the weighting methods based on inverse

  9. A method for generating high resolution satellite image time series

    NASA Astrophysics Data System (ADS)

    Guo, Tao

    2014-10-01

    There is an increasing demand for satellite remote sensing data with both high spatial and temporal resolution in many applications. But it still is a challenge to simultaneously improve spatial resolution and temporal frequency due to the technical limits of current satellite observation systems. To this end, much R&D efforts have been ongoing for years and lead to some successes roughly in two aspects, one includes super resolution, pan-sharpen etc. methods which can effectively enhance the spatial resolution and generate good visual effects, but hardly preserve spectral signatures and result in inadequate analytical value, on the other hand, time interpolation is a straight forward method to increase temporal frequency, however it increase little informative contents in fact. In this paper we presented a novel method to simulate high resolution time series data by combing low resolution time series data and a very small number of high resolution data only. Our method starts with a pair of high and low resolution data set, and then a spatial registration is done by introducing LDA model to map high and low resolution pixels correspondingly. Afterwards, temporal change information is captured through a comparison of low resolution time series data, and then projected onto the high resolution data plane and assigned to each high resolution pixel according to the predefined temporal change patterns of each type of ground objects. Finally the simulated high resolution data is generated. A preliminary experiment shows that our method can simulate a high resolution data with a reasonable accuracy. The contribution of our method is to enable timely monitoring of temporal changes through analysis of time sequence of low resolution images only, and usage of costly high resolution data can be reduces as much as possible, and it presents a highly effective way to build up an economically operational monitoring solution for agriculture, forest, land use investigation

  10. System and method for generating motion corrected tomographic images

    DOEpatents

    Gleason, Shaun S.; Goddard, Jr., James S.

    2012-05-01

    A method and related system for generating motion corrected tomographic images includes the steps of illuminating a region of interest (ROI) to be imaged being part of an unrestrained live subject and having at least three spaced apart optical markers thereon. Simultaneous images are acquired from a first and a second camera of the markers from different angles. Motion data comprising 3D position and orientation of the markers relative to an initial reference position is then calculated. Motion corrected tomographic data obtained from the ROI using the motion data is then obtained, where motion corrected tomographic images obtained therefrom.

  11. Electrical motor/generator drive apparatus and method

    SciTech Connect

    Su, Gui Jia

    2013-02-12

    The present disclosure includes electrical motor/generator drive systems and methods that significantly reduce inverter direct-current (DC) bus ripple currents and thus the volume and cost of a capacitor. The drive methodology is based on a segmented drive system that does not add switches or passive components but involves reconfiguring inverter switches and motor stator winding connections in a way that allows the formation of multiple, independent drive units and the use of simple alternated switching and optimized Pulse Width Modulation (PWM) schemes to eliminate or significantly reduce the capacitor ripple current.

  12. Method and apparatus for automated, modular, biomass power generation

    DOEpatents

    Diebold, James P.; Lilley, Arthur; Browne, Kingsbury III; Walt, Robb Ray; Duncan, Dustin; Walker, Michael; Steele, John; Fields, Michael; Smith, Trevor

    2011-03-22

    Method and apparatus for generating a low tar, renewable fuel gas from biomass and using it in other energy conversion devices, many of which were designed for use with gaseous and liquid fossil fuels. An automated, downdraft gasifier incorporates extensive air injection into the char bed to maintain the conditions that promote the destruction of residual tars. The resulting fuel gas and entrained char and ash are cooled in a special heat exchanger, and then continuously cleaned in a filter prior to usage in standalone as well as networked power systems.

  13. Method and apparatus for automated, modular, biomass power generation

    DOEpatents

    Diebold, James P; Lilley, Arthur; Browne, III, Kingsbury; Walt, Robb Ray; Duncan, Dustin; Walker, Michael; Steele, John; Fields, Michael; Smith, Trevor

    2013-11-05

    Method and apparatus for generating a low tar, renewable fuel gas from biomass and using it in other energy conversion devices, many of which were designed for use with gaseous and liquid fossil fuels. An automated, downdraft gasifier incorporates extensive air injection into the char bed to maintain the conditions that promote the destruction of residual tars. The resulting fuel gas and entrained char and ash are cooled in a special heat exchanger, and then continuously cleaned in a filter prior to usage in standalone as well as networked power systems.

  14. Unconstrained paving and plastering method for generating finite element meshes

    DOEpatents

    Staten, Matthew L.; Owen, Steven J.; Blacker, Teddy D.; Kerr, Robert

    2010-03-02

    Computer software for and a method of generating a conformal all quadrilateral or hexahedral mesh comprising selecting an object with unmeshed boundaries and performing the following while unmeshed voids are larger than twice a desired element size and unrecognizable as either a midpoint subdividable or pave-and-sweepable polyhedra: selecting a front to advance; based on sizes of fronts and angles with adjacent fronts, determining which adjacent fronts should be advanced with the selected front; advancing the fronts; detecting proximities with other nearby fronts; resolving any found proximities; forming quadrilaterals or unconstrained columns of hexahedra where two layers cross; and establishing hexahedral elements where three layers cross.

  15. Fuel processor and method for generating hydrogen for fuel cells

    DOEpatents

    Ahmed, Shabbir; Lee, Sheldon H. D.; Carter, John David; Krumpelt, Michael; Myers, Deborah J.

    2009-07-21

    A method of producing a H.sub.2 rich gas stream includes supplying an O.sub.2 rich gas, steam, and fuel to an inner reforming zone of a fuel processor that includes a partial oxidation catalyst and a steam reforming catalyst or a combined partial oxidation and stream reforming catalyst. The method also includes contacting the O.sub.2 rich gas, steam, and fuel with the partial oxidation catalyst and the steam reforming catalyst or the combined partial oxidation and stream reforming catalyst in the inner reforming zone to generate a hot reformate stream. The method still further includes cooling the hot reformate stream in a cooling zone to produce a cooled reformate stream. Additionally, the method includes removing sulfur-containing compounds from the cooled reformate stream by contacting the cooled reformate stream with a sulfur removal agent. The method still further includes contacting the cooled reformate stream with a catalyst that converts water and carbon monoxide to carbon dioxide and H.sub.2 in a water-gas-shift zone to produce a final reformate stream in the fuel processor.

  16. Next Generation Nuclear Plant Methods Technical Program Plan -- PLN-2498

    SciTech Connect

    Richard R. Schultz; Abderrafi M. Ougouag; David W. Nigg; Hans D. Gougar; Richard W. Johnson; William K. Terry; Chang H. Oh; Donald W. McEligot; Gary W. Johnsen; Glenn E. McCreery; Woo Y. Yoon; James W. Sterbentz; J. Steve Herring; Temitope A. Taiwo; Thomas Y. C. Wei; William D. Pointer; Won S. Yang; Michael T. Farmer; Hussein S. Khalil; Madeline A. Feltus

    2010-09-01

    One of the great challenges of designing and licensing the Very High Temperature Reactor (VHTR) is to confirm that the intended VHTR analysis tools can be used confidently to make decisions and to assure all that the reactor systems are safe and meet the performance objectives of the Generation IV Program. The research and development (R&D) projects defined in the Next Generation Nuclear Plant (NGNP) Design Methods Development and Validation Program will ensure that the tools used to perform the required calculations and analyses can be trusted. The Methods R&D tasks are designed to ensure that the calculational envelope of the tools used to analyze the VHTR reactor systems encompasses, or is larger than, the operational and transient envelope of the VHTR itself. The Methods R&D focuses on the development of tools to assess the neutronic and thermal fluid behavior of the plant. The fuel behavior and fission product transport models are discussed in the Advanced Gas Reactor (AGR) program plan. Various stress analysis and mechanical design tools will also need to be developed and validated and will ultimately also be included in the Methods R&D Program Plan. The calculational envelope of the neutronics and thermal-fluids software tools intended to be used on the NGNP is defined by the scenarios and phenomena that these tools can calculate with confidence. The software tools can only be used confidently when the results they produce have been shown to be in reasonable agreement with first-principle results, thought-problems, and data that describe the “highly ranked” phenomena inherent in all operational conditions and important accident scenarios for the VHTR.

  17. Next Generation Nuclear Plant Methods Technical Program Plan

    SciTech Connect

    Richard R. Schultz; Abderrafi M. Ougouag; David W. Nigg; Hans D. Gougar; Richard W. Johnson; William K. Terry; Chang H. Oh; Donald W. McEligot; Gary W. Johnsen; Glenn E. McCreery; Woo Y. Yoon; James W. Sterbentz; J. Steve Herring; Temitope A. Taiwo; Thomas Y. C. Wei; William D. Pointer; Won S. Yang; Michael T. Farmer; Hussein S. Khalil; Madeline A. Feltus

    2007-01-01

    One of the great challenges of designing and licensing the Very High Temperature Reactor (VHTR) is to confirm that the intended VHTR analysis tools can be used confidently to make decisions and to assure all that the reactor systems are safe and meet the performance objectives of the Generation IV Program. The research and development (R&D) projects defined in the Next Generation Nuclear Plant (NGNP) Design Methods Development and Validation Program will ensure that the tools used to perform the required calculations and analyses can be trusted. The Methods R&D tasks are designed to ensure that the calculational envelope of the tools used to analyze the VHTR reactor systems encompasses, or is larger than, the operational and transient envelope of the VHTR itself. The Methods R&D focuses on the development of tools to assess the neutronic and thermal fluid behavior of the plant. The fuel behavior and fission product transport models are discussed in the Advanced Gas Reactor (AGR) program plan. Various stress analysis and mechanical design tools will also need to be developed and validated and will ultimately also be included in the Methods R&D Program Plan. The calculational envelope of the neutronics and thermal-fluids software tools intended to be used on the NGNP is defined by the scenarios and phenomena that these tools can calculate with confidence. The software tools can only be used confidently when the results they produce have been shown to be in reasonable agreement with first-principle results, thought-problems, and data that describe the “highly ranked” phenomena inherent in all operational conditions and important accident scenarios for the VHTR.

  18. Next Generation Nuclear Plant Methods Technical Program Plan

    SciTech Connect

    Richard R. Schultz; Abderrafi M. Ougouag; David W. Nigg; Hans D. Gougar; Richard W. Johnson; William K. Terry; Chang H. Oh; Donald W. McEligot; Gary W. Johnsen; Glenn E. McCreery; Woo Y. Yoon; James W. Sterbentz; J. Steve Herring; Temitope A. Taiwo; Thomas Y. C. Wei; William D. Pointer; Won S. Yang; Michael T. Farmer; Hussein S. Khalil; Madeline A. Feltus

    2010-12-01

    One of the great challenges of designing and licensing the Very High Temperature Reactor (VHTR) is to confirm that the intended VHTR analysis tools can be used confidently to make decisions and to assure all that the reactor systems are safe and meet the performance objectives of the Generation IV Program. The research and development (R&D) projects defined in the Next Generation Nuclear Plant (NGNP) Design Methods Development and Validation Program will ensure that the tools used to perform the required calculations and analyses can be trusted. The Methods R&D tasks are designed to ensure that the calculational envelope of the tools used to analyze the VHTR reactor systems encompasses, or is larger than, the operational and transient envelope of the VHTR itself. The Methods R&D focuses on the development of tools to assess the neutronic and thermal fluid behavior of the plant. The fuel behavior and fission product transport models are discussed in the Advanced Gas Reactor (AGR) program plan. Various stress analysis and mechanical design tools will also need to be developed and validated and will ultimately also be included in the Methods R&D Program Plan. The calculational envelope of the neutronics and thermal-fluids software tools intended to be used on the NGNP is defined by the scenarios and phenomena that these tools can calculate with confidence. The software tools can only be used confidently when the results they produce have been shown to be in reasonable agreement with first-principle results, thought-problems, and data that describe the “highly ranked” phenomena inherent in all operational conditions and important accident scenarios for the VHTR.

  19. Generative Method to Discover Genetically Driven Image Biomarkers

    PubMed Central

    Saeedi, Ardavan; Cho, Michael; Estepar, Raul San Jose; Golland, Polina

    2015-01-01

    We present a generative probabilistic approach to discovery of disease subtypes determined by the genetic variants. In many diseases, multiple types of pathology may present simultaneously in a patient, making quantification of the disease challenging. Our method seeks common co-occurring image and genetic patterns in a population as a way to model these two different data types jointly. We assume that each patient is a mixture of multiple disease subtypes and use the joint generative model of image and genetic markers to identify disease subtypes guided by known genetic influences. Our model is based on a variant of the so-called topic models that uncover the latent structure in a collection of data. We derive an efficient variational inference algorithm to extract patterns of co-occurrence and to quantify the presence of heterogeneous disease processes in each patient. We evaluate the method on simulated data and illustrate its use in the context of Chronic Obstructive Pulmonary Disease (COPD) to characterize the relationship between image and genetic signatures of COPD subtypes in a large patient cohort. PMID:26221665

  20. Explosion protection methods for the power generation industry. Evaluating the hazard and reviewing explosion protection methods

    SciTech Connect

    Nixon, C.I.

    1998-07-01

    Handling carbonaceous fuels such as coal presents explosion hazards to the Power Generation Industry. This paper discusses the nature of explosions. It also provides a basis for hazard evaluation and discusses the various methods available for explosion protection. These methods include deflagration relief venting, deflagration suppression, deflagration isolation, containment and inerting. Process equipment protected by these methods include mills, cyclones, silos, hoppers and dust collectors.

  1. Methods in virus diagnostics: from ELISA to next generation sequencing.

    PubMed

    Boonham, Neil; Kreuze, Jan; Winter, Stephan; van der Vlugt, René; Bergervoet, Jan; Tomlinson, Jenny; Mumford, Rick

    2014-06-24

    Despite the seemingly continuous development of newer and ever more elaborate methods for detecting and identifying viruses, very few of these new methods get adopted for routine use in testing laboratories, often despite the many and varied claimed advantages they possess. To understand why the rate of uptake of new technologies is so low, requires a strong understanding of what makes a good routine diagnostic tool to begin. This can be done by looking at the two most successfully established plant virus detection methods: enzyme-linked immunosorbant assay (ELISA) and more recently introduced real-time polymerase chain reaction (PCR). By examining the characteristics of this pair of technologies, it becomes clear that they share many benefits, such as an industry standard format and high levels of repeatability and reproducibility. These combine to make methods that are accessible to testing labs, which are easy to establish and robust in their use, even with new and inexperienced users. Hence, to ensure the establishment of new techniques it is necessary to not only provide benefits not found with ELISA or real-time PCR, but also to provide a platform that is easy to establish and use. In plant virus diagnostics, recent developments can be clustered into three core areas: (1) techniques that can be performed in the field or resource poor locations (e.g., loop-mediated isothermal amplification LAMP); (2) multiplex methods that are able to detect many viruses in a single test (e.g., Luminex bead arrays); and (3) methods suited to virus discovery (e.g., next generation sequencing, NGS). Field based methods are not new, with Lateral Flow Devices (LFDs) for the detection being available for a number of years now. However, the widespread uptake of this technology remains poor. LAMP does offer significant advantages over LFDs, in terms of sensitivity and generic application, but still faces challenges in terms of establishment. It is likely that the main barrier to the

  2. Comparison of DNA Quantification Methods for Next Generation Sequencing

    PubMed Central

    Robin, Jérôme D.; Ludlow, Andrew T.; LaRanger, Ryan; Wright, Woodring E.; Shay, Jerry W.

    2016-01-01

    Next Generation Sequencing (NGS) is a powerful tool that depends on loading a precise amount of DNA onto a flowcell. NGS strategies have expanded our ability to investigate genomic phenomena by referencing mutations in cancer and diseases through large-scale genotyping, developing methods to map rare chromatin interactions (4C; 5C and Hi-C) and identifying chromatin features associated with regulatory elements (ChIP-seq, Bis-Seq, ChiA-PET). While many methods are available for DNA library quantification, there is no unambiguous gold standard. Most techniques use PCR to amplify DNA libraries to obtain sufficient quantities for optical density measurement. However, increased PCR cycles can distort the library’s heterogeneity and prevent the detection of rare variants. In this analysis, we compared new digital PCR technologies (droplet digital PCR; ddPCR, ddPCR-Tail) with standard methods for the titration of NGS libraries. DdPCR-Tail is comparable to qPCR and fluorometry (QuBit) and allows sensitive quantification by analysis of barcode repartition after sequencing of multiplexed samples. This study provides a direct comparison between quantification methods throughout a complete sequencing experiment and provides the impetus to use ddPCR-based quantification for improvement of NGS quality. PMID:27048884

  3. Comparison of DNA Quantification Methods for Next Generation Sequencing.

    PubMed

    Robin, Jérôme D; Ludlow, Andrew T; LaRanger, Ryan; Wright, Woodring E; Shay, Jerry W

    2016-01-01

    Next Generation Sequencing (NGS) is a powerful tool that depends on loading a precise amount of DNA onto a flowcell. NGS strategies have expanded our ability to investigate genomic phenomena by referencing mutations in cancer and diseases through large-scale genotyping, developing methods to map rare chromatin interactions (4C; 5C and Hi-C) and identifying chromatin features associated with regulatory elements (ChIP-seq, Bis-Seq, ChiA-PET). While many methods are available for DNA library quantification, there is no unambiguous gold standard. Most techniques use PCR to amplify DNA libraries to obtain sufficient quantities for optical density measurement. However, increased PCR cycles can distort the library's heterogeneity and prevent the detection of rare variants. In this analysis, we compared new digital PCR technologies (droplet digital PCR; ddPCR, ddPCR-Tail) with standard methods for the titration of NGS libraries. DdPCR-Tail is comparable to qPCR and fluorometry (QuBit) and allows sensitive quantification by analysis of barcode repartition after sequencing of multiplexed samples. This study provides a direct comparison between quantification methods throughout a complete sequencing experiment and provides the impetus to use ddPCR-based quantification for improvement of NGS quality. PMID:27048884

  4. A finite volume method for numerical grid generation

    NASA Astrophysics Data System (ADS)

    Beale, S. B.

    1999-07-01

    A novel method to generate body-fitted grids based on the direct solution for three scalar functions is derived. The solution for scalar variables , and is obtained with a conventional finite volume method based on a physical space formulation. The grid is adapted or re-zoned to eliminate the residual error between the current solution and the desired solution, by means of an implicit grid-correction procedure. The scalar variables are re-mapped and the process is reiterated until convergence is obtained. Calculations are performed for a variety of problems by assuming combined Dirichlet-Neumann and pure Dirichlet boundary conditions involving the use of transcendental control functions, as well as functions designed to effect grid control automatically on the basis of boundary values. The use of dimensional analysis to build stable exponential functions and other control functions is demonstrated. Automatic procedures are implemented: one based on a finite difference approximation to the Cristoffel terms assuming local-boundary orthogonality, and another designed to procure boundary orthogonality. The performance of the new scheme is shown to be comparable with that of conventional inverse methods when calculations are performed on benchmark problems through the application of point-by-point and whole-field solution schemes. Advantages and disadvantages of the present method are critically appraised. Copyright

  5. Method of generating electricity using an endothermic coal gasifier and MHD generator

    DOEpatents

    Marchant, David D.; Lytle, John M.

    1982-01-01

    A system and method of generating electrical power wherein a mixture of carbonaceous material and water is heated to initiate and sustain the endothermic reaction of carbon and water thereby providing a gasified stream containing carbon monoxide, hydrogen and nitrogen and waste streams of hydrogen sulfide and ash. The gasified stream and an ionizing seed material and pressurized air from a preheater go to a burner for producing ionized combustion gases having a temperature of about 5000.degree. to about 6000.degree. F. which are accelerated to a velocity of about 1000 meters per second and passed through an MHD generator to generate DC power and thereafter through a diffuser to reduce the velocity. The gases from the diffuser go to an afterburner and from there in heat exchange relationship with the gasifier to provide heat to sustain the endothermic reaction of carbon and water and with the preheater to preheat the air prior to combustion with the gasified stream. Energy from the afterburner can also be used to energize other parts of the system.

  6. Method of generating electricity using an endothermic coal gasifier and MHD generator

    SciTech Connect

    Lytle, J.M.; Marchant, D.D.

    1982-08-17

    A system and method of generating electrical power wherein a mixture of carbonaceous material and water is heated to initiate and sustain the endothermic reaction of carbon and water thereby providing a gasified stream containing carbon monoxide, hydrogen and nitrogen and waste streams of hydrogen sulfide and ash. The gasified stream and an ionizing seed material and pressurized air from a preheater go to a burner for producing ionized combustion gases having a temperature of about 5000* to about 6000* F which are accelerated to a velocity of about 1000 meters per second and passed through an MHD generator to generate dc power and thereafter through a diffuser to reduce the velocity. The gases from the diffuser go to an afterburner and from there in heat exchange relationship with the gasifier to provide heat to sustain the endothermic reaction of carbon and water and with the preheater to preheat the air prior to combustion with the gasified stream. Energy from the afterburner can also be used to energize other parts of the system.

  7. Method of generating electricity using an endothermic coal gasifier and MHD generator

    SciTech Connect

    Marchant, D.D.; Lytle, J.M.

    1980-08-12

    A system and method of generating electrical power is described wherein a mixture of carbonaceous material and water is heated to initiate and sustain the endothermic reaction of carbon and water thereby providing a gasified stream containing carbon monoxide, hydrogen and nitrogen and waste streams of hydrogen sulfide and ash. The gasified stream and an ionizing seed material and pressurized air from a preheater go to a burner for producing ionized combustion gases having a temperature of about 5000 to about 6000/sup 0/F which are accelerated to a velocity of about 1000 meters per second and passed through an MHD generator to generate DC power and thereafter through a diffuser to reduce the velocity. The gases from the diffuser go to an afterburner and from there in heat exchange relationship with the gasifier to provide heat to sustain the endothermic reaction of carbon and water and with the preheater to preheat the air prior to combustion with the gasified stream. Energy from the afterburner can also be used to energize other parts of the system.

  8. Determination of feature generation methods for PTZ camera object tracking

    NASA Astrophysics Data System (ADS)

    Doyle, Daniel D.; Black, Jonathan T.

    2012-06-01

    Object detection and tracking using computer vision (CV) techniques have been widely applied to sensor fusion applications. Many papers continue to be written that speed up performance and increase learning of artificially intelligent systems through improved algorithms, workload distribution, and information fusion. Military application of real-time tracking systems is becoming more and more complex with an ever increasing need of fusion and CV techniques to actively track and control dynamic systems. Examples include the use of metrology systems for tracking and measuring micro air vehicles (MAVs) and autonomous navigation systems for controlling MAVs. This paper seeks to contribute to the determination of select tracking algorithms that best track a moving object using a pan/tilt/zoom (PTZ) camera applicable to both of the examples presented. The select feature generation algorithms compared in this paper are the trained Scale-Invariant Feature Transform (SIFT) and Speeded Up Robust Features (SURF), the Mixture of Gaussians (MoG) background subtraction method, the Lucas- Kanade optical flow method (2000) and the Farneback optical flow method (2003). The matching algorithm used in this paper for the trained feature generation algorithms is the Fast Library for Approximate Nearest Neighbors (FLANN). The BSD licensed OpenCV library is used extensively to demonstrate the viability of each algorithm and its performance. Initial testing is performed on a sequence of images using a stationary camera. Further testing is performed on a sequence of images such that the PTZ camera is moving in order to capture the moving object. Comparisons are made based upon accuracy, speed and memory.

  9. A new method to generate dust with astrophysical properties

    SciTech Connect

    Hansen, J F; van Breugel, W; Bringa, E M; Graham, G A; Remington, B A; Taylor, E A; Tielens, A G

    2010-04-21

    In interstellar and interplanetary space, the size distribution and composition of dust grains play an important role. For example, dust grains determine optical and ultraviolet extinction levels in astronomical observations, dominate the cooling rate of our Galaxy, and sets the thermal balance and radiative cooling rates in molecular clouds, which are the birth place of stars. Dust grains are also a source of damage and failure to space hardware and thus present a hazard to space flight. To model the size distribution and composition of dust grains, and their effect in the above scenarios, it is vital to understand the mechanism of dust-shock interaction. We demonstrate a new experiment which employs a laser to subject dust grains to pressure spikes similar to those of colliding astrophysical dust, and which accelerates the grains to astrophysical velocities. The new method generates much larger data sets than earlier methods; we show how large quantities (thousands) of grains are accelerated at once, rather than accelerating individual grains, as is the case of earlier methods using electric fields.

  10. Method for generating a plasma wave to accelerate electrons

    DOEpatents

    Umstadter, D.; Esarey, E.; Kim, J.K.

    1997-06-10

    The invention provides a method and apparatus for generating large amplitude nonlinear plasma waves, driven by an optimized train of independently adjustable, intense laser pulses. In the method, optimal pulse widths, interpulse spacing, and intensity profiles of each pulse are determined for each pulse in a series of pulses. A resonant region of the plasma wave phase space is found where the plasma wave is driven most efficiently by the laser pulses. The accelerator system of the invention comprises several parts: the laser system, with its pulse-shaping subsystem; the electron gun system, also called beam source, which preferably comprises photo cathode electron source and RF-LINAC accelerator; electron photo-cathode triggering system; the electron diagnostics; and the feedback system between the electron diagnostics and the laser system. The system also includes plasma source including vacuum chamber, magnetic lens, and magnetic field means. The laser system produces a train of pulses that has been optimized to maximize the axial electric field amplitude of the plasma wave, and thus the electron acceleration, using the method of the invention. 21 figs.

  11. Method for generating a plasma wave to accelerate electrons

    DOEpatents

    Umstadter, Donald; Esarey, Eric; Kim, Joon K.

    1997-01-01

    The invention provides a method and apparatus for generating large amplitude nonlinear plasma waves, driven by an optimized train of independently adjustable, intense laser pulses. In the method, optimal pulse widths, interpulse spacing, and intensity profiles of each pulse are determined for each pulse in a series of pulses. A resonant region of the plasma wave phase space is found where the plasma wave is driven most efficiently by the laser pulses. The accelerator system of the invention comprises several parts: the laser system, with its pulse-shaping subsystem; the electron gun system, also called beam source, which preferably comprises photo cathode electron source and RF-LINAC accelerator; electron photo-cathode triggering system; the electron diagnostics; and the feedback system between the electron diagnostics and the laser system. The system also includes plasma source including vacuum chamber, magnetic lens, and magnetic field means. The laser system produces a train of pulses that has been optimized to maximize the axial electric field amplitude of the plasma wave, and thus the electron acceleration, using the method of the invention.

  12. Scalable methods for representing, characterizing, and generating large graphs.

    SciTech Connect

    Grace, Matthew D.; Dunlavy, Daniel M.; Ray, Jaideep; Pinar, Ali; Hendrickson, Bruce Alan; Phillips, Cynthia Ann; Kolda, Tamara Gibson

    2010-07-01

    Goal - design methods to characterize and identify a low dimensional representation of graphs. Impact - enabling predictive simulation; monitoring dynamics on graphs; and sampling and recovering network structure from limited observations. Areas to explore are: (1) Enabling technologies - develop novel algorithms and tailor existing ones for complex networks; (2) Modeling and generation - Identify the right parameters for graph representation and develop algorithms to compute these parameters and generate graphs from these parameters; and (3) Comparison - Given two graphs how do we tell they are similar? Some conclusions are: (1) A bad metric can make anything look good; (2) A metric that is based an edge-by edge prediction will suffer from the skewed distribution of present and absent edges; (3) The dominant signal is the sparsity, edges only add a noise on top of the signal, the real signal, structure of the graph is often lost behind the dominant signal; and (4) Proposed alternative: comparison based on carefully chosen set of features, it is more efficient, sensitive to selection of features, finding independent set of features is an important area, and keep an eye on us for some important results.

  13. A method for generating double-ring-shaped vector beams

    NASA Astrophysics Data System (ADS)

    Huan, Chen; Xiao-Hui, Ling; Zhi-Hong, Chen; Qian-Guang, Li; Hao, Lv; Hua-Qing, Yu; Xu-Nong, Yi

    2016-07-01

    We propose a method for generating double-ring-shaped vector beams. A step phase introduced by a spatial light modulator (SLM) first makes the incident laser beam have a nodal cycle. This phase is dynamic in nature because it depends on the optical length. Then a Pancharatnam–Berry phase (PBP) optical element is used to manipulate the local polarization of the optical field by modulating the geometric phase. The experimental results show that this scheme can effectively create double-ring-shaped vector beams. It provides much greater flexibility to manipulate the phase and polarization by simultaneously modulating the dynamic and the geometric phases. Project supported by the National Natural Science Foundation of China (Grant No. 11547017), the Hubei Engineering University Research Foundation, China (Grant No. z2014001), and the Natural Science Foundation of Hubei Province, China (Grant No. 2014CFB578).

  14. Method and apparatus for second-rank tensor generation

    NASA Technical Reports Server (NTRS)

    Liu, Hua-Kuang (Inventor)

    1991-01-01

    A method and apparatus are disclosed for generation of second-rank tensors using a photorefractive crystal to perform the outer-product between two vectors via four-wave mixing, thereby taking 2n input data to a control n squared output data points. Two orthogonal amplitude modulated coherent vector beams x and y are expanded and then parallel sides of the photorefractive crystal in exact opposition. A beamsplitter is used to direct a coherent pumping beam onto the crystal at an appropriate angle so as to produce a conjugate beam that is the matrix product of the vector beam that propagates in the exact opposite direction from the pumping beam. The conjugate beam thus separated is the tensor output xy (sup T).

  15. Thermoelectric generator cooling system and method of control

    SciTech Connect

    Prior, Gregory P; Meisner, Gregory P; Glassford, Daniel B

    2012-10-16

    An apparatus is provided that includes a thermoelectric generator and an exhaust gas system operatively connected to the thermoelectric generator to heat a portion of the thermoelectric generator with exhaust gas flow through the thermoelectric generator. A coolant system is operatively connected to the thermoelectric generator to cool another portion of the thermoelectric generator with coolant flow through the thermoelectric generator. At least one valve is controllable to cause the coolant flow through the thermoelectric generator in a direction that opposes a direction of the exhaust gas flow under a first set of operating conditions and to cause the coolant flow through the thermoelectric generator in the direction of exhaust gas flow under a second set of operating conditions.

  16. Methods and apparatus for cooling wind turbine generators

    DOEpatents

    Salamah, Samir A.; Gadre, Aniruddha Dattatraya; Garg, Jivtesh; Bagepalli, Bharat Sampathkumaran; Jansen, Patrick Lee; Carl, Jr., Ralph James

    2008-10-28

    A wind turbine generator includes a stator having a core and a plurality of stator windings circumferentially spaced about a generator longitudinal axis. A rotor is rotatable about the generator longitudinal axis, and the rotor includes a plurality of magnetic elements coupled to the rotor and cooperating with the stator windings. The magnetic elements are configured to generate a magnetic field and the stator windings are configured to interact with the magnetic field to generate a voltage in the stator windings. A heat pipe assembly thermally engaging one of the stator and the rotor to dissipate heat generated in the stator or rotor.

  17. Capacitive charge generation apparatus and method for testing circuits

    DOEpatents

    Cole, Jr., Edward I.; Peterson, Kenneth A.; Barton, Daniel L.

    1998-01-01

    An electron beam apparatus and method for testing a circuit. The electron beam apparatus comprises an electron beam incident on an outer surface of an insulating layer overlying one or more electrical conductors of the circuit for generating a time varying or alternating current electrical potential on the surface; and a measurement unit connected to the circuit for measuring an electrical signal capacitively coupled to the electrical conductors to identify and map a conduction state of each of the electrical conductors, with or without an electrical bias signal being applied to the circuit. The electron beam apparatus can further include a secondary electron detector for forming a secondary electron image for registration with a map of the conduction state of the electrical conductors. The apparatus and method are useful for failure analysis or qualification testing to determine the presence of any open-circuits or short-circuits, and to verify the continuity or integrity of electrical conductors buried below an insulating layer thickness of 1-100 .mu.m or more without damaging or breaking down the insulating layer. The types of electrical circuits that can be tested include integrated circuits, multi-chip modules, printed circuit boards and flexible printed circuits.

  18. Method of generating hydrogen by catalytic decomposition of water

    DOEpatents

    Balachandran, Uthamalingam; Dorris, Stephen E.; Bose, Arun C.; Stiegel, Gary J.; Lee, Tae-Hyun

    2002-01-01

    A method for producing hydrogen includes providing a feed stream comprising water; contacting at least one proton conducting membrane adapted to interact with the feed stream; splitting the water into hydrogen and oxygen at a predetermined temperature; and separating the hydrogen from the oxygen. Preferably the proton conducting membrane comprises a proton conductor and a second phase material. Preferable proton conductors suitable for use in a proton conducting membrane include a lanthanide element, a Group VIA element and a Group IA or Group IIA element such as barium, strontium, or combinations of these elements. More preferred proton conductors include yttrium. Preferable second phase materials include platinum, palladium, nickel, cobalt, chromium, manganese, vanadium, silver, gold, copper, rhodium, ruthenium, niobium, zirconium, tantalum, and combinations of these. More preferably second phase materials suitable for use in a proton conducting membrane include nickel, palladium, and combinations of these. The method for generating hydrogen is preferably preformed in the range between about 600.degree. C. and 1,700.degree. C.

  19. Capacitive charge generation apparatus and method for testing circuits

    DOEpatents

    Cole, E.I. Jr.; Peterson, K.A.; Barton, D.L.

    1998-07-14

    An electron beam apparatus and method for testing a circuit are disclosed. The electron beam apparatus comprises an electron beam incident on an outer surface of an insulating layer overlying one or more electrical conductors of the circuit for generating a time varying or alternating current electrical potential on the surface; and a measurement unit connected to the circuit for measuring an electrical signal capacitively coupled to the electrical conductors to identify and map a conduction state of each of the electrical conductors, with or without an electrical bias signal being applied to the circuit. The electron beam apparatus can further include a secondary electron detector for forming a secondary electron image for registration with a map of the conduction state of the electrical conductors. The apparatus and method are useful for failure analysis or qualification testing to determine the presence of any open-circuits or short-circuits, and to verify the continuity or integrity of electrical conductors buried below an insulating layer thickness of 1-100 {micro}m or more without damaging or breaking down the insulating layer. The types of electrical circuits that can be tested include integrated circuits, multi-chip modules, printed circuit boards and flexible printed circuits. 7 figs.

  20. Genetic markers, genotyping methods & next generation sequencing in Mycobacterium tuberculosis

    PubMed Central

    Desikan, Srinidhi; Narayanan, Sujatha

    2015-01-01

    Molecular epidemiology (ME) is one of the main areas in tuberculosis research which is widely used to study the transmission epidemics and outbreaks of tubercle bacilli. It exploits the presence of various polymorphisms in the genome of the bacteria that can be widely used as genetic markers. Many DNA typing methods apply these genetic markers to differentiate various strains and to study the evolutionary relationships between them. The three widely used genotyping tools to differentiate Mycobacterium tuberculosis strains are IS6110 restriction fragment length polymorphism (RFLP), spacer oligotyping (Spoligotyping), and mycobacterial interspersed repeat units - variable number of tandem repeats (MIRU-VNTR). A new prospect towards ME was introduced with the development of whole genome sequencing (WGS) and the next generation sequencing (NGS) methods, where the entire genome is sequenced that not only helps in pointing out minute differences between the various sequences but also saves time and the cost. NGS is also found to be useful in identifying single nucleotide polymorphisms (SNPs), comparative genomics and also various aspects about transmission dynamics. These techniques enable the identification of mycobacterial strains and also facilitate the study of their phylogenetic and evolutionary traits. PMID:26205019

  1. A method of PSF generation for 3D brightfield deconvolution.

    PubMed

    Tadrous, P J

    2010-02-01

    This paper addresses the problem of 3D deconvolution of through focus widefield microscope datasets (Z-stacks). One of the most difficult stages in brightfield deconvolution is finding the point spread function. A theoretically calculated point spread function (called a 'synthetic PSF' in this paper) requires foreknowledge of many system parameters and still gives only approximate results. A point spread function measured from a sub-resolution bead suffers from low signal-to-noise ratio, compounded in the brightfield setting (by contrast to fluorescence) by absorptive, refractive and dispersal effects. This paper describes a method of point spread function estimation based on measurements of a Z-stack through a thin sample. This Z-stack is deconvolved by an idealized point spread function derived from the same Z-stack to yield a point spread function of high signal-to-noise ratio that is also inherently tailored to the imaging system. The theory is validated by a practical experiment comparing the non-blind 3D deconvolution of the yeast Saccharomyces cerevisiae with the point spread function generated using the method presented in this paper (called the 'extracted PSF') to a synthetic point spread function. Restoration of both high- and low-contrast brightfield structures is achieved with fewer artefacts using the extracted point spread function obtained with this method. Furthermore the deconvolution progresses further (more iterations are allowed before the error function reaches its nadir) with the extracted point spread function compared to the synthetic point spread function indicating that the extracted point spread function is a better fit to the brightfield deconvolution model than the synthetic point spread function. PMID:20096049

  2. Finite volume methods for submarine debris flows and generated waves

    NASA Astrophysics Data System (ADS)

    Kim, Jihwan; Løvholt, Finn; Issler, Dieter

    2016-04-01

    Submarine landslides can impose great danger to the underwater structures and generate destructive tsunamis. Submarine debris flows often behave like visco-plastic materials, and the Herschel-Bulkley rheological model is known to be appropriate for describing the motion. In this work, we develop numerical schemes for the visco-plastic debris flows using finite volume methods in Eulerian coordinates with two horizontal dimensions. We provide parameter sensitivity analysis and demonstrate how common ad-hoc assumptions such as including a minimum shear layer depth influence the modeling of the landslide dynamics. Hydrodynamic resistance forces, hydroplaning, and remolding are all crucial terms for underwater landslides, and are hence added into the numerical formulation. The landslide deformation is coupled to the water column and simulated in the Clawpack framework. For the propagation of the tsunamis, the shallow water equations and the Boussinesq-type equations are employed to observe how important the wave dispersion is. Finally, two cases in central Norway, i.e. the subaerial quick clay landslide at Byneset in 2012, and the submerged tsunamigenic Statland landslide in 2014, are both presented for validation. The research leading to these results has received funding from the Research Council of Norway under grant number 231252 (Project TsunamiLand) and the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement 603839 (Project ASTARTE).

  3. Application of the multigrid method to grid generation

    NASA Technical Reports Server (NTRS)

    Ohring, S.

    1980-01-01

    The multigrid method (MGM), used to numerically solve the pair of nonlinear elliptic equations commonly used to generate two dimensional boundary-fitted coordinate systems is discussed. Two different geometries are considered: one involving a coordinate system fitted about a circle and the other selected for an impinging jet flow problem. Two different relaxation schemes are tried: one is successive point overrelaxation and the other is a four-color scheme vectorizeable to take advantage of a parallel processor computer for greater computational speed. Results using MGM are compared with those using SOR (doing successive overrelaxations with the corresponding relaxation scheme on the fine grid only). It is found that MGM becomes significantly more effective than SOR as more accuracy is demanded and as more corrective grids, or more grid points, are used. For the accuracy required, it is found that MGM is two to three times faster than SOR in computing time. With the four-color relaxation scheme as applied to the impinging jet problem, the advantage of MGM over SOR is not as great. This may be due to the effect of a poor initial guess on MGM for this problem.

  4. A Novel Coarsening Method for Scalable and Efficient Mesh Generation

    SciTech Connect

    Yoo, A; Hysom, D; Gunney, B

    2010-12-02

    matrix-vector multiplication can be performed locally on each processor and hence to minimize communication. Furthermore, a good graph partitioning scheme ensures the equal amount of computation performed on each processor. Graph partitioning is a well known NP-complete problem, and thus the most commonly used graph partitioning algorithms employ some forms of heuristics. These algorithms vary in terms of their complexity, partition generation time, and the quality of partitions, and they tend to trade off these factors. A significant challenge we are currently facing at the Lawrence Livermore National Laboratory is how to partition very large meshes on massive-size distributed memory machines like IBM BlueGene/P, where scalability becomes a big issue. For example, we have found that the ParMetis, a very popular graph partitioning tool, can only scale to 16K processors. An ideal graph partitioning method on such an environment should be fast and scale to very large meshes, while producing high quality partitions. This is an extremely challenging task, as to scale to that level, the partitioning algorithm should be simple and be able to produce partitions that minimize inter-processor communications and balance the load imposed on the processors. Our goals in this work are two-fold: (1) To develop a new scalable graph partitioning method with good load balancing and communication reduction capability. (2) To study the performance of the proposed partitioning method on very large parallel machines using actual data sets and compare the performance to that of existing methods. The proposed method achieves the desired scalability by reducing the mesh size. For this, it coarsens an input mesh into a smaller size mesh by coalescing the vertices and edges of the original mesh into a set of mega-vertices and mega-edges. A new coarsening method called brick algorithm is developed in this research. In the brick algorithm, the zones in a given mesh are first grouped into fixed size

  5. System and method for generating a relationship network

    DOEpatents

    Franks, Kasian; Myers, Cornelia A.; Podowski, Raf M.

    2011-07-26

    A computer-implemented system and process for generating a relationship network is disclosed. The system provides a set of data items to be related and generates variable length data vectors to represent the relationships between the terms within each data item. The system can be used to generate a relationship network for documents, images, or any other type of file. This relationship network can then be queried to discover the relationships between terms within the set of data items.

  6. System and method for generating a relationship network

    DOEpatents

    Franks, Kasian; Myers, Cornelia A; Podowski, Raf M

    2015-05-05

    A computer-implemented system and process for generating a relationship network is disclosed. The system provides a set of data items to be related and generates variable length data vectors to represent the relationships between the terms within each data item. The system can be used to generate a relationship network for documents, images, or any other type of file. This relationship network can then be queried to discover the relationships between terms within the set of data items.

  7. Steam drive recovery method utilizing a downhole steam generator

    SciTech Connect

    Snavely, E. S.; Hopkins, D. N.

    1984-09-18

    Viscous oil is recovered from a subterranean, viscous oil-containing formation by a steam flooding technique wherein steam is generated in a downhole steam generator located in an injection well by spontaneous combustion of a pressurized mixture of a water-soluble fuel such as sugars and alcohols dissolved in water and substantially pure oxygen. The generated mixture of steam and combustion gases pass through the formation, displacing oil and reducing the oil's viscosity and the mobilized oil is produced from the formation via a spaced-apart production well.

  8. Steam drive oil recovery method utilizing a downhole steam generator

    SciTech Connect

    Nopkins, D. N.; Snavely, E. S.

    1984-10-23

    Viscous oil is recovered from a subterranean, viscous oil-containing formation by a steam flooding technique wherein steam is generated in a downhole steam generator located in an injection well by spontaneous combustion of a pressurized mixture of a water-soluble fuel such as sugars and alcohols dissolved in water or a stable hydrocarbon fuel-in-water emulsion and substantially pure oxygen. The generated mixture of steam and combustion gases pass through the formation, displacing oil and reducing the oil's viscosity and the mobilized oil is produced from the formation via a spaced-apart production well.

  9. A grid spacing control technique for algebraic grid generation methods

    NASA Technical Reports Server (NTRS)

    Smith, R. E.; Kudlinski, R. A.; Everton, E. L.

    1982-01-01

    A technique which controls the spacing of grid points in algebraically defined coordinate transformations is described. The technique is based on the generation of control functions which map a uniformly distributed computational grid onto parametric variables defining the physical grid. The control functions are smoothed cubic splines. Sets of control points are input for each coordinate directions to outline the control functions. Smoothed cubic spline functions are then generated to approximate the input data. The technique works best in an interactive graphics environment where control inputs and grid displays are nearly instantaneous. The technique is illustrated with the two-boundary grid generation algorithm.

  10. Method and apparatus for generating low energy nuclear particles

    DOEpatents

    Powell, J.R.; Reich, M.; Ludewig, H.; Todosow, M.

    1999-02-09

    A particle accelerator generates an input particle beam having an initial energy level above a threshold for generating secondary nuclear particles. A thin target is rotated in the path of the input beam for undergoing nuclear reactions to generate the secondary particles and correspondingly decrease energy of the input beam to about the threshold. The target produces low energy secondary particles and is effectively cooled by radiation and conduction. A neutron scatterer and a neutron filter are also used for preferentially degrading the secondary particles into a lower energy range if desired. 18 figs.

  11. Method and apparatus for generating low energy nuclear particles

    DOEpatents

    Powell, James R.; Reich, Morris; Ludewig, Hans; Todosow, Michael

    1999-02-09

    A particle accelerator (12) generates an input particle beam having an initial energy level above a threshold for generating secondary nuclear particles. A thin target (14) is rotated in the path of the input beam for undergoing nuclear reactions to generate the secondary particles and correspondingly decrease energy of the input beam to about the threshold. The target (14) produces low energy secondary particles and is effectively cooled by radiation and conduction. A neutron scatterer (44) and a neutron filter (42) are also used for preferentially degrading the secondary particles into a lower energy range if desired.

  12. Thermoelectric generator and method for the fabrication thereof

    DOEpatents

    Benson, David K.; Tracy, C. Edwin

    1987-01-01

    A thermoelectric generator using semiconductor elements for responding to a temperature gradient to produce electrical energy with all of the semiconductor elements being of the same type is disclosed. A continuous process for forming substrates on which the semiconductor elements and superstrates are deposited and a process for forming the semiconductor elements on the substrates are also disclosed. The substrates with the semiconductor elements thereon are combined with superstrates to form modules for use thermoelectric generators.

  13. Cold weather hydrogen generation system and method of operation

    DOEpatents

    Dreier, Ken Wayne; Kowalski, Michael Thomas; Porter, Stephen Charles; Chow, Oscar Ken; Borland, Nicholas Paul; Goyette, Stephen Arthur

    2010-12-14

    A system for providing hydrogen gas is provided. The system includes a hydrogen generator that produces gas from water. One or more heat generation devices are arranged to provide heating of the enclosure during different modes of operation to prevent freezing of components. A plurality of temperature sensors are arranged and coupled to a controller to selectively activate a heat source if the temperature of the component is less than a predetermined temperature.

  14. Method For Flood Hydrograph Generation For Hydrological Dam Safety Assessment

    NASA Astrophysics Data System (ADS)

    Lohr, H.; Mueller, A.

    In a system of three serially connected reservoirs built at the beginning of the last century, the hydrological safety of the dams was analysed. Part of the study was the generation of a large sample of flood hydrographs. The generation of flood hydrographs is a stochastic procedure. A large number of events were computed with Monte-Carlo-simulation techniques by randomly draw- ing values from parameter distribution functions derived from a a large sample of measured values. It is required that the sample generated has the same statistical prop- erties as the underlying sample. In the specific case it was necessary to analyse the measured runoff to the reservoir-system at three significant inflow locations with dis- charge gages. To describe the start, maximum and shape of measured extreme flood hydrographs, parameters were identified, which define the mathematical functions chosen for generation. For these parameters distributions and correlations between the parameters could be found. Based on these parameters and correlation functions 10000 flood hydrographs (equivalent to 10000 years) were generated by randomly drawing parameters from the distribution functions assuring that cross correlation was observed. Based on regional extreme values of precipitation the plausibility of the hydrographs generated was checked for violation of physically defined limits of the rainfall runoff coefficient. The generated flood sample was then used as inflow bound- ary conditions to simulate the reservoir system with the operation model TALSIM 2.0 (see www.talsim.de). This procedure provides a distribution function of maximum reservoir levels as a basis of assessing the probability of failure of a dam structure. The probabilistic approach contains less uncertainty concerning inflow conditions. Although in the first step fixed initial conditions for reservoir levels were assumed, it can be coupled with distribution functions of lake levels if these vary widely during dominant

  15. Advanced materials and methods for next generation spintronics

    NASA Astrophysics Data System (ADS)

    Siegel, Gene Phillip

    The modern age is filled with ever-advancing electronic devices. The contents of this dissertation continue the desire for faster, smaller, better electronics. Specifically, this dissertation addresses a field known as "spintronics", electronic devices based on an electron's spin, not just its charge. The field of spintronics originated in 1990 when Datta and Das first proposed a "spin transistor" that would function by passing a spin polarized current from a magnetic electrode into a semiconductor channel. The spins in the channel could then be manipulated by applying an electrical voltage across the gate of the device. However, it has since been found that a great amount of scattering occurs at the ferromagnet/semiconductor interface due to the large impedance mismatch that exists between the two materials. Because of this, there were three updated versions of the spintronic transistor that were proposed to improve spin injection: one that used a ferromagnetic semiconductor electrode, one that added a tunnel barrier between the ferromagnet and semiconductor, and one that utilized a ferromagnetic tunnel barrier which would act like a spin filter. It was next proposed that it may be possible to achieve a "pure spin current", or a spin current with no concurrent electric current (i.e., no net flow of electrons). One such method that was discovered is the spin Seebeck effect, which was discovered in 2008 by Uchida et al., in which a thermal gradient in a magnetic material generates a spin current which can be injected into adjacent material as a pure spin current. The first section of this dissertation addresses this spin Seebeck effect (SSE). The goal was to create such a device that both performs better than previously reported devices and is capable of operating without the aid of an external magnetic field. We were successful in this endeavor. The trick to achieving both of these goals was found to be in the roughness of the magnetic layer. A rougher magnetic

  16. Wind turbine/generator set and method of making same

    DOEpatents

    Bevington, Christopher M.; Bywaters, Garrett L.; Coleman, Clint C.; Costin, Daniel P.; Danforth, William L.; Lynch, Jonathan A.; Rolland, Robert H.

    2013-06-04

    A wind turbine comprising an electrical generator that includes a rotor assembly. A wind rotor that includes a wind rotor hub is directly coupled to the rotor assembly via a simplified connection. The wind rotor and generator rotor assembly are rotatably mounted on a central spindle via a bearing assembly. The wind rotor hub includes an opening having a diameter larger than the outside diameter of the central spindle adjacent the bearing assembly so as to allow access to the bearing assembly from a cavity inside the wind rotor hub. The spindle is attached to a turret supported by a tower. Each of the spindle, turret and tower has an interior cavity that permits personnel to traverse therethrough to the cavity of the wind rotor hub. The wind turbine further includes a frictional braking system for slowing, stopping or keeping stopped the rotation of the wind rotor and rotor assembly.

  17. Halftoning method for the generation of motion stimuli

    NASA Technical Reports Server (NTRS)

    Mulligan, Jeffrey B.; Stone, Leland S.

    1989-01-01

    This paper describes a novel computer-graphic technique for the generation of a broad class of motion stimuli for vision research, which uses color table animation in conjunction with a single base image. Using this technique, contrast and temporal frequency can be varied with a negligible amount of computation, once a single-base image is produced. Since only two-bit planes are needed to display a single drifting grating, an eight-bit/pixel display can be used to generate four-component plaids, in which each component of the plaid has independently programmable contrast and temporal frequency. Because the contrast and temporal frequencies of the various components are mutually independent, a large number of two-dimensional stimulus motions can be produced from a single image file.

  18. Method for changing removable bearing for a wind turbine generator

    DOEpatents

    Bagepalli, Bharat Sampathkumaran; Jansen, Patrick Lee; Gadre, Aniruddha Dattatraya

    2008-04-22

    A wind generator having removable change-out bearings includes a rotor and a stator, locking bolts configured to lock the rotor and stator, a removable bearing sub-assembly having at least one shrunk-on bearing installed, and removable mounting bolts configured to engage the bearing sub-assembly and to allow the removable bearing sub-assembly to be removed when the removable mounting bolts are removed.

  19. Methods for generating or increasing revenues from crops

    DOEpatents

    Copenhaver, Gregory P.; Keith, Kevin; Preuss, Daphne

    2007-03-20

    The present invention provides methods of doing business and providing services. For example, methods of increasing the revenue of crops are provided. To this end, the method includes the use of a nucleic acid sequences of plant centromeres. This will permit construction of stably inherited recombinant DNA constructs and mini chromosomes which can serve as vectors for the construction of transgenic plant and animal cells.

  20. 40 CFR 799.6756 - TSCA partition coefficient (n-octanol/water), generator column method.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    .../water), generator column method. 799.6756 Section 799.6756 Protection of Environment ENVIRONMENTAL... coefficient (n-octanol/water), generator column method. (a) Scope—(1) Applicability. This section is intended... liquid chromatographic (DCCLC) technique, a technique commonly referred to as the generator column...

  1. 40 CFR 799.6756 - TSCA partition coefficient (n-octanol/water), generator column method.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .../water), generator column method. 799.6756 Section 799.6756 Protection of Environment ENVIRONMENTAL... coefficient (n-octanol/water), generator column method. (a) Scope—(1) Applicability. This section is intended... liquid chromatographic (DCCLC) technique, a technique commonly referred to as the generator column...

  2. 40 CFR 799.6756 - TSCA partition coefficient (n-octanol/water), generator column method.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .../water), generator column method. 799.6756 Section 799.6756 Protection of Environment ENVIRONMENTAL... coefficient (n-octanol/water), generator column method. (a) Scope—(1) Applicability. This section is intended... liquid chromatographic (DCCLC) technique, a technique commonly referred to as the generator column...

  3. A User Study on Tactile Graphic Generation Methods

    ERIC Educational Resources Information Center

    Krufka, S. E.; Barner, K. E.

    2006-01-01

    Methods to automatically convert graphics into tactile representations have been recently investigated, creating either raised-line or relief images. In particular, we briefly review one raised-line method where important features are emphasized. This paper focuses primarily on the effects of such emphasis and on comparing both raised-line and…

  4. A simple method for generating multitissue blocks without special equipment.

    PubMed

    Miettinen, Markku

    2012-07-01

    The idea of multitumor block to expedite simultaneous analysis of multiple tissue specimens was pioneered by Battifora, and several variations have been published since then. More recently, microarray technology has been introduced to allow placement of up to several hundreds specimens in 1 block using manual or automated sampling devices. This paper reports a manual technique for preparation of a multitissue block. Generation of such blocks requires no special equipment, and flexible block design is possible depending on nature of available material and desired sample size. The first step is dissection of cubical or rectangular samples from paraffin blocks or processed tissue with a razor blade or scalpel. The tissue pieces can be tattooed on cut surface with a permanent marker to facilitate orientation and identification. This marking is preserved during embedding until the block is cut. If a "deep" block is desired, the tissue can be turned 90 degree to provide a greater vertical depth. For embedding, the pieces are laid in paraffin bath in desired order, and when completely melted, they are placed into a deep embedding mold and organized in multiple rows (5 to 10 pieces/row). Scaffolding and control tissue pieces (eg, placental liver or intestinal tissue) can be added as desired. Horizontal or vertical empty space should be preserved to allow for more effective separation of ribbons upon cutting, preventing unnecessary sacrifice of sections. Such blocks can accommodate 30 to 60 cases depending on the tissue size, and they can potentially generate up to several hundreds of sections. This technique is especially suitable when abundant tissue is available, for example, generating blocks containing libraries of normal tissues or defined tumors for antibody screening or tumor immunophenotyping. PMID:22495380

  5. Method and apparatus for automatically generating airfoil performance tables

    NASA Technical Reports Server (NTRS)

    van Dam, Cornelis P. (Inventor); Mayda, Edward A. (Inventor); Strawn, Roger Clayton (Inventor)

    2006-01-01

    One embodiment of the present invention provides a system that facilitates automatically generating a performance table for an object, wherein the object is subject to fluid flow. The system operates by first receiving a description of the object and testing parameters for the object. The system executes a flow solver using the testing parameters and the description of the object to produce an output. Next, the system determines if the output of the flow solver indicates negative density or pressure. If not, the system analyzes the output to determine if the output is converging. If converging, the system writes the output to the performance table for the object.

  6. Study on predicative evaluation method of noise generated by engine

    SciTech Connect

    Hirakawa, Nobuo; Mihara, Akira; Suwa, Junichi

    1995-12-31

    The engine noise accounts for a relatively large percentage among the noises generated by a motorcycle. Among the Parts of the engine, the cover is important in design as well as a source of the engine noise, being at the end of the vibration transfer path. This paper clarifies that the natural frequency of the cover with a flat surface clearly affects its vibration and noise radiation and by a modal analysis of its vibration characteristics. In addition, the authors confirmed that the calculated value of the radiated noise from the cover agrees well with the measured value.

  7. Decluttering methods for high density computer-generated graphic displays

    NASA Technical Reports Server (NTRS)

    Schultz, E. E., Jr.; Nichols, D. A.; Curran, P. S.

    1985-01-01

    Several decluttering methods were compared with respect to the speed and accuracy of user performance which resulted. The presence of a map background was also manipulated. Partial removal of nonessential graphic features through symbol simplification was as effective a decluttering technique as was total removal of nonessential graphic features. The presence of a map background interacted with decluttering conditions when response time was the dependent measure. Results indicate that the effectiveness of decluttering methods depends upon the degree to which each method makes essential graphic information distinctive from nonessential information. Practical implications are discussed.

  8. Ionospheric Method of Detecting Tsunami-Generating Earthquakes.

    ERIC Educational Resources Information Center

    Najita, Kazutoshi; Yuen, Paul C.

    1978-01-01

    Reviews the earthquake phenomenon and its possible relation to ionospheric disturbances. Discusses the basic physical principles involved and the methods upon which instrumentation is being developed for possible use in a tsunami disaster warning system. (GA)

  9. Method of generating hydrogen gas from sodium borohydride

    DOEpatents

    Kravitz, Stanley H.; Hecht, Andrew M.; Sylwester, Alan P.; Bell, Nelson S.

    2007-12-11

    A compact solid source of hydrogen gas, where the gas is generated by contacting water with micro-disperse particles of sodium borohydride in the presence of a catalyst, such as cobalt or ruthenium. The micro-disperse particles can have a substantially uniform diameter of 1-10 microns, and preferably about 3-5 microns. Ruthenium or cobalt catalytic nanoparticles can be incorporated in the micro-disperse particles of sodium borohydride, which allows a rapid and complete reaction to occur without the problems associated with caking and scaling of the surface by the reactant product sodium metaborate. A closed loop water management system can be used to recycle wastewater from a PEM fuel cell to supply water for reacting with the micro-disperse particles of sodium borohydride in a compact hydrogen gas generator. Capillary forces can wick water from a water reservoir into a packed bed of micro-disperse fuel particles, eliminating the need for using an active pump.

  10. Generation IV PR and PP Methods and Applications

    SciTech Connect

    Bari,R.A.

    2008-10-13

    This paper presents an evaluation methodology for proliferation resistance and physical protection (PR&PP) of Generation IV nuclear energy systems (NESs). For a proposed NES design, the methodology defines a set of challenges, analyzes system response to these challenges, and assesses outcomes. The challenges to the NES are the threats posed by potential actors (proliferant States or sub-national adversaries). The characteristics of Generation IV systems, both technical and institutional, are used to evaluate the response of the system and determine its resistance against proliferation threats and robustness against sabotage and terrorism threats. The outcomes of the system response are expressed in terms of six measures for PR and three measures for PP, which are the high-level PR&PP characteristics of the NES. The methodology is organized to allow evaluations to be performed at the earliest stages of system design and to become more detailed and more representative as design progresses. Uncertainty of results are recognized and incorporated into the evaluation at all stages. The results are intended for three types of users: system designers, program policy makers, and external stakeholders. Particular current relevant activities will be discussed in this regard. The methodology has been illustrated in a series of demonstration and case studies and these will be summarized in the paper.

  11. Modern Methods for fast generation of digital holograms

    NASA Astrophysics Data System (ADS)

    Tsang, P. W. M.; Liu, J. P.; Cheung, K. W. K.; Poon, T.-C.

    2010-06-01

    With the advancement of computers, digital holography (DH) has become an area of interest that has gained much popularity. Research findings derived from this technology enables holograms representing three dimensional (3-D) scenes to be acquired with optical means, or generated with numerical computation. In both cases, the holograms are in the form of numerical data that can be recorded, transmitted, and processed with digital techniques. On top of that, the availability of high capacity digital storage and wide-band communication technologies also cast light on the emergence of real time video holographic systems, enabling animated 3-D contents to be encoded as holographic data, and distributed via existing medium. At present, development in DH has reached a reasonable degree of maturity, but at the same time the heavy computation involved also imposes difficulty in practical applications. In this paper, a summary on a number of successful accomplishments that have been made recently in overcoming this problem is presented. Subsequently, we shall propose an economical framework that is suitable for real time generation and transmission of holographic video signals over existing distribution media. The proposed framework includes an aspect of extending the depth range of the object scene, which is important for the display of large-scale objects. [Figure not available: see fulltext.

  12. Efficient molecular surface generation using level-set methods.

    PubMed

    Can, Tolga; Chen, Chao-I; Wang, Yuan-Fang

    2006-12-01

    Molecules interact through their surface residues. Calculation of the molecular surface of a protein structure is thus an important step for a detailed functional analysis. One of the main considerations in comparing existing methods for molecular surface computations is their speed. Most of the methods that produce satisfying results for small molecules fail to do so for large complexes. In this article, we present a level-set-based approach to compute and visualize a molecular surface at a desired resolution. The emerging level-set methods have been used for computing evolving boundaries in several application areas from fluid mechanics to computer vision. Our method provides a uniform framework for computing solvent-accessible, solvent-excluded surfaces and interior cavities. The computation is carried out very efficiently even for very large molecular complexes with tens of thousands of atoms. We compared our method to some of the most widely used molecular visualization tools (Swiss-PDBViewer, PyMol, and Chimera) and our results show that we can calculate and display a molecular surface 1.5-3.14 times faster on average than all three of the compared programs. Furthermore, we demonstrate that our method is able to detect all of the interior inaccessible cavities that can accommodate one or more water molecules. PMID:16621636

  13. Efficient and Robust Cartesian Mesh Generation for Building-Cube Method

    NASA Astrophysics Data System (ADS)

    Ishida, Takashi; Takahashi, Shun; Nakahashi, Kazuhiro

    In this study, an efficient and robust Cartesian mesh generation method for Building-Cube Method (BCM) is proposed. It can handle “dirty” geometry data whose surface has cracks, overlaps, and reverse of triangle. BCM mesh generation is implemented by two procedures; cube generation and cell generation in each cube. The cell generation procedure in this study is managed in each cube individually, and parallelized by OpenMP. Efficiency of the parallelized BCM mesh generation is demonstrated for several three-dimensional test cases using a multi-core PC.

  14. Color computer-generated hologram generation using the random phase-free method and color space conversion.

    PubMed

    Shimobaba, Tomoyoshi; Makowski, Michał; Nagahama, Yuki; Endo, Yutaka; Hirayama, Ryuji; Hiyama, Daisuke; Hasegawa, Satoki; Sano, Marie; Kakue, Takashi; Oikawa, Minoru; Sugie, Takashige; Takada, Naoki; Ito, Tomoyoshi

    2016-05-20

    We propose two calculation methods of generating color computer-generated holograms (CGHs) with the random phase-free method and color space conversion in order to improve the image quality and accelerate the calculation. The random phase-free method improves the image quality in monochrome CGH, but it is not performed in color CGH. We first aimed to improve the image quality of color CGH using the random phase-free method and then to accelerate the color CGH generation with a combination of the random phase-free method and color space conversion method, which accelerates the color CGH calculation due to down-sampling of the color components converted by color space conversion. To overcome the problem of image quality degradation that occurs due to the down-sampling of random phases, the combination of the random phase-free method and color space conversion method improves the quality of reconstructed images and accelerates the color CGH calculation. We demonstrated the effectiveness of the proposed method in simulation, and in this paper discuss its application to lensless zoomable holographic projection. PMID:27411145

  15. System and method for generating current by selective electron heating

    DOEpatents

    Fisch, Nathaniel J.; Boozer, Allen H.

    1984-01-01

    A system for the generation of toroidal current in a plasma which is prepared in a toroidal magnetic field. The system utilizes the injection of high-frequency waves into the plasma by means of waveguides. The wave frequency and polarization are chosen such that when the waveguides are tilted in a predetermined fashion, the wave energy is absorbed preferentially by electrons traveling in one toroidal direction. The absorption of energy in this manner produces a toroidal electric current even when the injected waves themselves do not have substantial toroidal momentum. This current can be continuously maintained at modest cost in power and may be used to confine the plasma. The system can operate efficiently on fusion grade tokamak plasmas.

  16. New methods of generation of ultrashort laser pulses for ranging

    NASA Technical Reports Server (NTRS)

    Jelinkova, Helena; Hamal, Karel; Kubecek, V.; Prochazka, Ivan

    1993-01-01

    To reach the millimeter satellite laser ranging accuracy, the goal for nineties, new laser ranging techniques have to be applied. To increase the laser ranging precision, the application of the ultrashort laser pulses in connection with the new signal detection and processing techniques, is inevitable. The two wavelength laser ranging is one of the ways to measure the atmospheric dispersion to improve the existing atmospheric correction models and hence, to increase the overall system ranging accuracy to the desired value. We are presenting a review of several nonstandard techniques of ultrashort laser pulses generation, which may be utilized for laser ranging: compression of the nanosecond pulses using stimulated Brillouin and Raman backscattering; compression of the mode-locked pulses using Raman backscattering; passive mode-locking technique with nonlinear mirror; and passive mode-locking technique with the negative feedback.

  17. Method and apparatus for generating electric power by waves

    SciTech Connect

    Watabe, T.; Dote, Y.; Kondo, H.; Matsuda, T.; Takagi, M.; Yano, K.

    1984-12-25

    At least one caisson which is part or all of a breakwater forms a water chamber therein whose closure is a pendulum having a natural period in rocking or oscillating the same as a period of stationary wave surges caused in the water chamber by rocking movement of the pendulum owing to wave force impinging against the pendulum. At least one double-acting piston and cylinder assembly is connected to the pendulum, so that when a piston of the assembly is reciprocatively moved by the pendulum, pressure difference between cylinder chambers on both sides of the piston of the assembly controls a change-over valve which in turn controls hydraulic pressure discharged from the cylinder chambers to be supplied to a plurality of hydraulic motors respectively having accumulators of a type wherein accumulated pressure and volume of the hydraulic liquid are proportional to each other, whereby driving a common generator alternately by the hydraulic motors.

  18. Method and Apparatus for Generating Flight-Optimizing Trajectories

    NASA Technical Reports Server (NTRS)

    Ballin, Mark G. (Inventor); Wing, David J. (Inventor)

    2015-01-01

    An apparatus for generating flight-optimizing trajectories for a first aircraft includes a receiver capable of receiving second trajectory information associated with at least one second aircraft. The apparatus also includes a traffic aware planner (TAP) module operably connected to the receiver to receive the second trajectory information. The apparatus also includes at least one internal input device on board the first aircraft to receive first trajectory information associated with the first aircraft and a TAP application capable of calculating an optimal trajectory for the first aircraft based at least on the first trajectory information and the second trajectory information. The optimal trajectory at least avoids conflicts between the first trajectory information and the second trajectory information.

  19. Method and apparatus for generating microshells of refractory materials

    NASA Technical Reports Server (NTRS)

    Lee, Mark C. (Inventor); Schilling, Christopher (Inventor); Ladner, Jr., George O. (Inventor); Wang, Taylor G. (Inventor)

    1987-01-01

    A system is described for forming accurately spherical and centered fluid-filled shells, especially of high melting temperature material. Material which is to form the shells is placed in a solid form in a container, and the material is rapidly heated to a molten temperature to avoid recrystallization and the possible generation of unwanted microbubbles in the melt. Immediately after the molten shells are formed, they drop through a drop tower whose upper end is heated along a distance of at least one foot to provide time for dissipation of surface waves on the shells while they cool to a highly viscous, or just above melting temperature so that the bubble within the shell will not rise and become off centered. The rest of the tower is cryogenically cooled to cool the shell to a solid state.

  20. Alternative method for steam generation for thermal oxidation of silicon

    NASA Astrophysics Data System (ADS)

    Spiegelman, Jeffrey J.

    2010-02-01

    Thermal oxidation of silicon is an important process step in MEMS device fabrication. Thicker oxide layers are often used as structural components and can take days or weeks to grow, causing high gas costs, maintenance issues, and a process bottleneck. Pyrolytic steam, which is generated from hydrogen and oxygen combustion, was the default process, but has serious drawbacks: cost, safety, particles, permitting, reduced growth rate, rapid hydrogen consumption, component breakdown and limited steam flow rates. Results from data collected over a 24 month period by a MEMS manufacturer supports replacement of pyrolytic torches with RASIRC Steamer technology to reduce process cycle time and enable expansion previously limited by local hydrogen permitting. Data was gathered to determine whether Steamers can meet or exceed pyrolytic torch performance. The RASIRC Steamer uses de-ionized water as its steam source, eliminating dependence on hydrogen and oxygen. A non-porous hydrophilic membrane selectively allows water vapor to pass. All other molecules are greatly restricted, so contaminants in water such as dissolved gases, ions, total organic compounds (TOC), particles, and metals can be removed in the steam phase. The MEMS manufacturer improved growth rate by 7% over the growth range from 1μm to 3.5μm. Over a four month period, wafer uniformity, refractive index, wafer stress, and etch rate were tracked with no significant difference found. The elimination of hydrogen generated a four-month return on investment (ROI). Mean time between failure (MTBF) was increased from 3 weeks to 32 weeks based on three Steamers operating over eight months.

  1. 40 CFR 799.6756 - TSCA partition coefficient (n-octanol/water), generator column method.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .../water), generator column method. 799.6756 Section 799.6756 Protection of Environment ENVIRONMENTAL... coefficient (n-octanol/water), generator column method. (a) Scope—(1) Applicability. This section is intended... tissue. (v) This section describes a method for determining the Kow based on the dynamic coupled...

  2. 40 CFR 799.6756 - TSCA partition coefficient (n-octanol/water), generator column method.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .../water), generator column method. 799.6756 Section 799.6756 Protection of Environment ENVIRONMENTAL... coefficient (n-octanol/water), generator column method. (a) Scope—(1) Applicability. This section is intended... tissue. (v) This section describes a method for determining the Kow based on the dynamic coupled...

  3. Reality Research Methods: An Innovative Teaching Strategy for Generation Y

    ERIC Educational Resources Information Center

    van Eeden-Moorefield, Brad; Walsh, Christine

    2010-01-01

    Those who teach research methods courses may struggle to engage students who are anxious or apprehensive about taking the course. Thus, it becomes the obligation of the instructor to develop innovative approaches so that students overcome their apprehension, learn the material, and, it is hoped, develop a passion for research. The authors present…

  4. Method of inhibiting dislocation generation in silicon dendritic webs

    DOEpatents

    Spitznagel, John A.; Seidensticker, Raymond G.; McHugh, James P.

    1990-11-20

    A method of tailoring the heat balance of the outer edge of the dendrites adjacent the meniscus to produce thinner, smoother dendrites, which have substantially less dislocation sources contiguous with the dendrites, by changing the view factor to reduce radiation cooling or by irradiating the dendrites with light from a quartz lamp or a laser to raise the temperature of the dendrites.

  5. Methods and devices for generation of broadband pulsed radiation

    DOEpatents

    Borguet, Eric; Isaienko, Oleksandr

    2013-05-14

    Methods and apparatus for non-collinear optical parametric ampliffication (NOPA) are provided. Broadband phase matching is achieved with a non-collinear geometry and a divergent signal seed to provide bandwidth gain. A chirp may be introduced into the pump pulse such that the white light seed is amplified in a broad spectral region.

  6. High temperature adhesive silicone foam composition, foam generating system and method of generating foam

    DOEpatents

    Mead, Judith W.; Montoya, Orelio J.; Rand, Peter B.; Willan, Vernon O.

    1984-01-01

    Access to a space is impeded by generation of a sticky foam from a silicone polymer and a low boiling solvent such as a halogenated hydrocarbon. In a preferred aspect, the formulation is polydimethylsiloxane gel mixed with F502 Freon as a solvent and blowing agent, and pressurized with CO.sub.2 in a vessel to about 250 PSI, whereby when the vessel is opened, a sticky and solvent resistant foam is deployed. The foam is deployable, over a wide range of temperatures, adhering to wet surfaces as well as dry, is stable over long periods of time and does not propagate flame or lose adhesive properties during an externally supported burn.

  7. Externally pressurized porous cylinder for multiple surface aerosol generation and method of generation

    DOEpatents

    Apel, Charles T.; Layman, Lawrence R.; Gallimore, David L.

    1988-01-01

    A nebulizer for generating aerosol having small droplet sizes and high efficiency at low sample introduction rates. The nebulizer has a cylindrical gas permeable active surface. A sleeve is disposed around the cylinder and gas is provided from the sleeve to the interior of the cylinder formed by the active surface. In operation, a liquid is provided to the inside of the gas permeable surface. The gas contacts the wetted surface and forms small bubbles which burst to form an aerosol. Those bubbles which are large are carried by momentum to another part of the cylinder where they are renebulized. This process continues until the entire sample is nebulized into aerosol sized droplets.

  8. Systems and methods for generation of hydrogen peroxide vapor

    DOEpatents

    Love, Adam H; Eckels, Joel Del; Vu, Alexander K; Alcaraz, Armando; Reynolds, John G

    2014-12-02

    A system according to one embodiment includes a moisture trap for drying air; at least one of a first container and a second container; and a mechanism for at least one of: bubbling dried air from the moisture trap through a hydrogen peroxide solution in the first container for producing a hydrogen peroxide vapor, and passing dried air from the moisture trap into a headspace above a hydrogen peroxide solution in the second container for producing a hydrogen peroxide vapor. A method according one embodiment includes at least one of bubbling dried air through a hydrogen peroxide solution in a container for producing a first hydrogen peroxide vapor, and passing dried air from the moisture trap into a headspace above the hydrogen peroxide solution in a container for producing a second hydrogen peroxide vapor. Additional systems and methods are also presented.

  9. Automatic generation of hypergeometric identities by the beta integral method

    NASA Astrophysics Data System (ADS)

    Krattenthaler, C.; Srinivasa Rao, K.

    2003-11-01

    In this article, hypergeometric identities (or transformations) for p+1Fp-series and for Kampe de Feriet series of unit arguments are derived systematically from known transformations of hypergeometric series and products of hypergeometric series, respectively, using the beta integral method in an automated manner, based on the Mathematica package HYP. As a result, we obtain some known and some identities which seem to not have been recorded before in literature.

  10. A method for generating pulmonary neutrophilia using aerosolized lipopolysaccharide.

    PubMed

    Roos, Abraham B; Berg, Tove; Ahlgren, Kerstin M; Grunewald, Johan; Nord, Magnus

    2014-01-01

    Acute lung injury (ALI) is a severe disease characterized by alveolar neutrophilia, with limited treatment options and high mortality. Experimental models of ALI are key in enhancing our understanding of disease pathogenesis. Lipopolysaccharide (LPS) derived from gram positive bacteria induces neutrophilic inflammation in the airways and lung parenchyma of mice. Efficient pulmonary delivery of compounds such as LPS is, however, difficult to achieve. In the approach described here, pulmonary delivery in mice is achieved by challenge to aerosolized Pseudomonas aeruginosa LPS. Dissolved LPS was aerosolized by a nebulizer connected to compressed air. Mice were exposed to a continuous flow of LPS aerosol in a Plexiglas box for 10 min, followed by 2 min conditioning after the aerosol was discontinued. Tracheal intubation and subsequent bronchoalveolar lavage, followed by formalin perfusion was next performed, which allows for characterization of the sterile pulmonary inflammation. Aerosolized LPS generates a pulmonary inflammation characterized by alveolar neutrophilia, detected in bronchoalveolar lavage and by histological assessment. This technique can be set up at a small cost with few appliances, and requires minimal training and expertise. The exposure system can thus be routinely performed at any laboratory, with the potential to enhance our understanding of lung pathology. PMID:25548888

  11. Externally pressurized porous cylinder for multiple surface aerosol generation and method of generation

    DOEpatents

    Apel, C.T.; Layman, L.R.; Gallimore, D.L.

    1988-05-10

    A nebulizer is described for generating aerosol having small droplet sizes and high efficiency at low sample introduction rates. The nebulizer has a cylindrical gas permeable active surface. A sleeve is disposed around the cylinder and gas is provided from the sleeve to the interior of the cylinder formed by the active surface. In operation, a liquid is provided to the inside of the gas permeable surface. The gas contacts the wetted surface and forms small bubbles which burst to form an aerosol. Those bubbles which are large are carried by momentum to another part of the cylinder where they are renebulized. This process continues until the entire sample is nebulized into aerosol sized droplets. 2 figs.

  12. Electrochemical methods for generation of a biological proton motive force

    DOEpatents

    Zeikus, Joseph Gregory; Shin, Hyoun S.; Jain, Mahendra K.

    2008-12-02

    Disclosed are methods using neutral red to mediate the interconversion of chemical and electrical energy. Electrically reduced neutral red has been found to promote cell growth and formation of reduced products by reversibly increasing the ratio of the reduced:oxidized forms of NAD(H) or NADP(H). Electrically reduced neutral red is able to serve as the sole source of reducing power for microbial cell growth. Neutral red is also able to promote conversion of chemical energy to electrical energy by facilitating the transfer of electrons from microbial reducing power to a fuel cell cathode.

  13. Photo-voltaic power generating means and methods

    DOEpatents

    Kroger, Ferdinand A.; Rod, Robert L.; Panicker, M. P. Ramachandra

    1983-08-23

    A photo-voltaic power cell based on a photoelectric semiconductor compound and the method of using and making the same. The semiconductor compound in the photo-voltaic power cell of the present invention can be electrolytically formed at a cathode in an electrolytic solution by causing discharge or decomposition of ions or molecules of a non-metallic component with deposition of the non-metallic component on the cathode and simultaneously providing ions of a metal component which discharge and combine with the non-metallic component at the cathode thereby forming the semiconductor compound film material thereon. By stoichiometrically adjusting the amounts of the components, or otherwise by introducing dopants into the desired amounts, an N-type layer can be formed and thereafter a P-type layer can be formed with a junction therebetween. The invention is effective in producing homojunction semiconductor materials and heterojunction semiconductor materials. The present invention also provides a method of using three electrodes in order to form the semiconductor compound material on one of these electrodes. Various examples are given for manufacturing different photo-voltaic cells in accordance with the present invention.

  14. Photo-voltaic power generating means and methods

    DOEpatents

    Kroger, Ferdinand A.; Rod, Robert L.; Panicker, Ramachandra M. P.; Knaster, Mark B.

    1984-01-10

    A photo-voltaic power cell based on a photoelectric semiconductor compound and the method of using and making the same. The semiconductor compound in the photo-voltaic power cell of the present invention can be electrolytically formed at a cathode in an electrolytic solution by causing discharge or decomposition of ions or molecules of a non-metallic component with deposition of the non-metallic component on the cathode and simultaneously providing ions of a metal component which discharge and combine with the non-metallic component at the cathode thereby forming the semiconductor compound film material thereon. By stoichiometrically adjusting the amounts of the components, or otherwise by introducing dopants into the desired amounts, an N-type layer can be formed and thereafter a P-type layer can be formed with a junction therebetween. The invention is effective in producing homojunction semiconductor materials and heterojunction semiconductor materials. The present invention also provides a method of using three electrodes in order to form the semiconductor compound material on one of these electrodes. Various examples are given for manufacturing different photo-voltaic cells in accordance with the present invention.

  15. 40 CFR 799.6786 - TSCA water solubility: Generator column method.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 33 2013-07-01 2013-07-01 false TSCA water solubility: Generator...: Generator column method. (a) Scope—(1) Applicability. This section is intended to meet the testing... the saturated solutions produced by the generator column. After extraction onto a...

  16. 40 CFR 799.6786 - TSCA water solubility: Generator column method.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 32 2014-07-01 2014-07-01 false TSCA water solubility: Generator...: Generator column method. (a) Scope—(1) Applicability. This section is intended to meet the testing... the saturated solutions produced by the generator column. After extraction onto a...

  17. 40 CFR 799.6786 - TSCA water solubility: Generator column method.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 33 2012-07-01 2012-07-01 false TSCA water solubility: Generator...: Generator column method. (a) Scope—(1) Applicability. This section is intended to meet the testing... the saturated solutions produced by the generator column. After extraction onto a...

  18. Review of sonic-boom generation theory and prediction methods.

    NASA Technical Reports Server (NTRS)

    Carlson, H. W.; Maglieri, D. J.

    1972-01-01

    The prediction techniques reviedi he present paper permit the calculation of sonic booms produced by rather complex conventional supersonic aircraft designs performing level nonaccelerated flight in a quiet atmosphere. Basic concepts of supersonic flow analysis, for representation of an airplane as a linear distribution of disturbances and for determination of the resultant pressure field complete with shocks, are outlined. Numerical techniques for implementation of the theory are discussed briefly, and examples of the correlation of theory with experimental data from wind tunnel and flight tests are presented. Special attention is given to presentation of a simplified method for rapid 'first-cut' estimation of farfield bow-shock overpressure. Finally, some problems encountered in attempts at applying the prediction techniques for the nearfield at high supersonic Mach numbers are recognized, and the need for further refinement of present techniques or the development of new systems is discussed.

  19. Unique Method for Generating Design Earthquake Time Histories

    SciTech Connect

    R. E. Spears

    2008-07-01

    A method has been developed which takes a seed earthquake time history and modifies it to produce given design response spectra. It is a multi-step process with an initial scaling step and then multiple refinement steps. It is unique in the fact that both the acceleration and displacement response spectra are considered when performing the fit (which primarily improves the low frequency acceleration response spectrum accuracy). Additionally, no matrix inversion is needed. The features include encouraging the code acceleration, velocity, and displacement ratios and attempting to fit the pseudo velocity response spectrum. Also, “smoothing” is done to transition the modified time history to the seed time history at its start and end. This is done in the time history regions below a cumulative energy of 5% and above a cumulative energy of 95%. Finally, the modified acceleration, velocity, and displacement time histories are adjusted to start and end with an amplitude of zero (using Fourier transform techniques for integration).

  20. Unique Method for Generating Design Earthquake Time History Seeds

    SciTech Connect

    R. E. Spears

    2008-07-01

    A method has been developed which takes a single seed earthquake time history and produces multiple similar seed earthquake time histories. These new time histories possess important frequency and cumulative energy attributes of the original while having a correlation less than 30% (per the ASCE/SEI 43-05 Section 2.4 [1]). They are produced by taking the fast Fourier transform of the original seed. The averaged amplitudes are then pared with random phase angles and the inverse fast Fourier transform is taken to produce a new time history. The average amplitude through time is then adjusted to encourage a similar cumulative energy curve. Next, the displacement is modified to approximate the original curve using Fourier techniques. Finally, the correlation is checked to ensure it is less than 30%. This process does not guarantee that the correlation will be less than 30% for all of a given set of new curves. It does provide a simple tool where a few additional iterations of the process should produce a set of seed earthquake time histories meeting the correlation criteria.

  1. Online Optimization Method for Operation of Generators in a Micro Grid

    NASA Astrophysics Data System (ADS)

    Hayashi, Yasuhiro; Miyamoto, Hideki; Matsuki, Junya; Iizuka, Toshio; Azuma, Hitoshi

    Recently a lot of studies and developments about distributed generator such as photovoltaic generation system, wind turbine generation system and fuel cell have been performed under the background of the global environment issues and deregulation of the electricity market, and the technique of these distributed generators have progressed. Especially, micro grid which consists of several distributed generators, loads and storage battery is expected as one of the new operation system of distributed generator. However, since precipitous load fluctuation occurs in micro grid for the reason of its smaller capacity compared with conventional power system, high-accuracy load forecasting and control scheme to balance of supply and demand are needed. Namely, it is necessary to improve the precision of operation in micro grid by observing load fluctuation and correcting start-stop schedule and output of generators online. But it is not easy to determine the operation schedule of each generator in short time, because the problem to determine start-up, shut-down and output of each generator in micro grid is a mixed integer programming problem. In this paper, the authors propose an online optimization method for the optimal operation schedule of generators in micro grid. The proposed method is based on enumeration method and particle swarm optimization (PSO). In the proposed method, after picking up all unit commitment patterns of each generators satisfied with minimum up time and minimum down time constraint by using enumeration method, optimal schedule and output of generators are determined under the other operational constraints by using PSO. Numerical simulation is carried out for a micro grid model with five generators and photovoltaic generation system in order to examine the validity of the proposed method.

  2. Domain Decomposition By the Advancing-Partition Method for Parallel Unstructured Grid Generation

    NASA Technical Reports Server (NTRS)

    Pirzadeh, Shahyar Z.; Zagaris, George

    2009-01-01

    A new method of domain decomposition has been developed for generating unstructured grids in subdomains either sequentially or using multiple computers in parallel. Domain decomposition is a crucial and challenging step for parallel grid generation. Prior methods are generally based on auxiliary, complex, and computationally intensive operations for defining partition interfaces and usually produce grids of lower quality than those generated in single domains. The new technique, referred to as "Advancing Partition," is based on the Advancing-Front method, which partitions a domain as part of the volume mesh generation in a consistent and "natural" way. The benefits of this approach are: 1) the process of domain decomposition is highly automated, 2) partitioning of domain does not compromise the quality of the generated grids, and 3) the computational overhead for domain decomposition is minimal. The new method has been implemented in NASA's unstructured grid generation code VGRID.

  3. Generating Non-normal Data for Simulation of Structural Equation Models Using Mattson's Method.

    ERIC Educational Resources Information Center

    Reinartz, Werner J.; Echambadi, Raj; Cin, Wynne W.

    2002-01-01

    Tested empirically the applicability of a method developed by S. Mattson for generating data on latent variables with controlled skewness and kurtosis of the observed variables. Monte Carlo simulation results suggest that Mattson's method appears to be a good approach to generate data with defined levels of skewness and kurtosis. (SLD)

  4. An improved path flux analysis with multi generations method for mechanism reduction

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Gou, Xiaolong

    2016-03-01

    An improved path flux analysis with a multi generations (IMPFA) method is proposed to eliminate unimportant species and reactions, and to generate skeletal mechanisms. The production and consumption path fluxes of each species at multiple reaction paths are calculated and analysed to identify the importance of the species and of the elementary reactions. On the basis of the indexes of each reaction path of the first, second, and third generations, the improved path flux analysis with two generations (IMPFA2) and improved path flux analysis with three generations (IMPFA3) are used to generate skeletal mechanisms that contain different numbers of species. The skeletal mechanisms are validated in the case of homogeneous autoignition and perfectly stirred reactor of methane and n-decane/air mixtures. Simulation results of the skeletal mechanisms generated by IMPFA2 and IMPFA3 are compared with those obtained by path flux analysis (PFA) with two and three generations, respectively. The comparisons of ignition delay times, final temperatures, and temperature dependence on flow residence time show that the skeletal mechanisms generated by the present IMPFA method are more accurate than those obtained by the PFA method, with almost the same number of species under a range of initial conditions. By considering the accuracy and computational efficiency, when using the IMPFA (or PFA) method, three generations may be the best choice for the reduction of large-scale detailed chemistry.

  5. Analysis of the Two-Fraction Method for Generating Primitive Pythagoras Triples

    ERIC Educational Resources Information Center

    Babajee, Diyashvir Kreetee Rajiv

    2012-01-01

    Finding methods for generating Pythagorean triples have been of great interest to Mathematicians since the Babylonians (from 1900 to 1600 BC). One of these methods is the less known two-fraction method which works for any two fractions whose product is 2. In this work, we analyse the method and show that it can be obtained from the fact that the…

  6. An Efficient Functional Test Generation Method For Processors Using Genetic Algorithms

    NASA Astrophysics Data System (ADS)

    Hudec, Ján; Gramatová, Elena

    2015-07-01

    The paper presents a new functional test generation method for processors testing based on genetic algorithms and evolutionary strategies. The tests are generated over an instruction set architecture and a processor description. Such functional tests belong to the software-oriented testing. Quality of the tests is evaluated by code coverage of the processor description using simulation. The presented test generation method uses VHDL models of processors and the professional simulator ModelSim. The rules, parameters and fitness functions were defined for various genetic algorithms used in automatic test generation. Functionality and effectiveness were evaluated using the RISC type processor DP32.

  7. Interactive design of laser electrodes using elliptic grid generation and semidirect/marching methods

    NASA Astrophysics Data System (ADS)

    Roache, P. J.

    1982-08-01

    A computational effort to develop computer codes for rapidly and accurately modeling the electric fields within laser cavities is described. Semidirect/marching methods are used both for the generation of two dimensional boundary fitted grids using the elliptic generating equation approach, and for the solution of electric field problems in those coordinate systems. The efficiency of the semidirect/marching methods makes possible interactive design of the laser electrodes using a modest computer. Also described are techniques for high order accuracy, a method for precise grid control at interior points, and applications to the elliptic grid generation problem of computer symbolic manipulation.

  8. Log-Cubic Method for Generation of Soil Particle Size Distribution Curve

    PubMed Central

    2013-01-01

    Particle size distribution (PSD) is a fundamental physical property of soils. Traditionally, the PSD curve was generated by hand from limited data of particle size analysis, which is subjective and may lead to significant uncertainty in the freehand PSD curve and graphically estimated cumulative particle percentages. To overcome these problems, a log-cubic method was proposed for the generation of PSD curve based on a monotone piecewise cubic interpolation method. The log-cubic method and commonly used log-linear and log-spline methods were evaluated by the leave-one-out cross-validation method for 394 soil samples extracted from UNSODA database. Mean error and root mean square error of the cross-validation show that the log-cubic method outperforms two other methods. What is more important, PSD curve generated by the log-cubic method meets essential requirements of a PSD curve, that is, passing through all measured data and being both smooth and monotone. The proposed log-cubic method provides an objective and reliable way to generate a PSD curve from limited soil particle analysis data. This method and the generated PSD curve can be used in the conversion of different soil texture schemes, assessment of grading pattern, and estimation of soil hydraulic parameters and erodibility factor. PMID:23766698

  9. On the applications of algebraic grid generation methods based on transfinite interpolation

    NASA Technical Reports Server (NTRS)

    Nguyen, Hung Lee

    1989-01-01

    Algebraic grid generation methods based on transfinite interpolation called the two-boundary and four-boundary methods are applied for generating grids with highly complex boundaries. These methods yield grid point distributions that allow for accurate application to regions of sharp gradients in the physical domain or time-dependent problems with small length scale phenomena. Algebraic grids are derived using the two-boundary and four-boundary methods for applications in both two- and three-dimensional domains. Grids are developed for distinctly different geometrical problems and the two-boundary and four-boundary methods are demonstrated to be applicable to a wide class of geometries.

  10. 40 CFR 799.6786 - TSCA water solubility: Generator column method.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... column method. 799.6786 Section 799.6786 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY...: Generator column method. (a) Scope—(1) Applicability. This section is intended to meet the testing... paragraph (c)(3)(ii)(B)(1) of this section when the HPLC method is used. Saturated solution is a solution...

  11. A method of generating scratched look calligraphy characters using mathematical morphology

    NASA Astrophysics Data System (ADS)

    Li, Wei; Hagiwara, Ichiro; Yasui, Takao; Chen, Hu-Awei

    2003-10-01

    We propose a method to generate scratched look calligraphy characters by mathematical morphology, and it can decide on the number of times of thinning computation and the structuring element and also can know whether the sizes of generated calligraphy characters are same as the original one in theory. By different changed structuring elements, we can get various scratched look calligraphy characters.

  12. Mixed Methods Case Study of Generational Patterns in Responses to Shame and Guilt

    ERIC Educational Resources Information Center

    Ng, Tony

    2013-01-01

    Moral socialization and moral learning are antecedents of moral motivation. As many as 4 generations interact in workplace and education settings; hence, a deeper understanding of the moral motivation of members of those generations is needed. The purpose of this convergent mixed methods case study was to understand the moral motivation of 5…

  13. Inculcation Method of Character Education Based on Personality Types Classification in Realizing Indonesia Golden Generation

    ERIC Educational Resources Information Center

    Sunarto, M. J. Dewiyani; Sagirani, Tri

    2014-01-01

    "The rise of Indonesia Golden Generation" is the theme of National Education Day in 2012. In an effort to create a golden generation; education must be interpreted as a complex problem, in particular the cultivation of character education that was originally using indoctrination method. Given the shifting of the changing times,…

  14. Orthodontic forces generated by a simulated archwire appliance evaluated by the finite element method.

    PubMed

    Fotos, P G; Spyrakos, C C; Bernard, D O

    1990-01-01

    The finite element method has been used to determine the stress distribution generated by the initial placement of a simulated preset bracket-type orthodontic appliance utilizing titanium-nickel alloy archwire. PMID:2256565

  15. Method for generating a highly reactive plasma for exhaust gas aftertreatment and enhanced catalyst reactivity

    DOEpatents

    Whealton, John H.; Hanson, Gregory R.; Storey, John M.; Raridon, Richard J.; Armfield, Jeffrey S.; Bigelow, Timothy S.; Graves, Ronald L.

    2001-01-01

    A method for non-thermal plasma aftertreatment of exhaust gases the method comprising the steps of providing short risetime (about 40 ps), high frequency (about 5G hz), high power bursts of low-duty factor microwaves sufficient to generate a dielectric barrier discharge and passing a gas to treated through the discharge so as to cause dissociative reduction of the exhaust gases. The invention also includes a reactor for generating the non-thermal plasma.

  16. Photonic methods of millimeter-wave generation based on Brillouin fiber laser

    NASA Astrophysics Data System (ADS)

    Al-Dabbagh, R. K.; Al-Raweshidy, H. S.

    2016-05-01

    In optical communication link, generation and delivering millimeter-wave (mm-waves) in radio over fiber (RoF) systems has limitation due to fiber non-linearity effects. To solve this problem, photonic methods of mm-wave generation based on characterizations of Brillouin fiber laser are proposed in this work for the first time. Three novel photonic approaches for mm-wave generation methods based on Brillouin fiber laser and phase modulator are proposed and demonstrated by simulation. According to our theoretical analysis and simulation, mm-waves with frequency up to 80 GHz and good signal to noise ratio (SNR) up to 90 dB are generated by new and cost effective methods of generation that make them suitable for applications of the fifth generation (5G) networks. The proposed configurations increase the stability and the quality of the mm-wave generation system by using a single laser source as a pump wave and the fiber non-linearity effects are reduced. A key advantage of this research is that proposed a number of very simple generation methods and cost effective which only use standard components of optical telecommunications. Stimulated Brillouin Scattering (SBS) effect that exists in the optical fiber is studied with the characterization of phase modulator. An all optically stable mm-wave carriers are achieved successfully in the three different methods with different frequencies from 20 GHz up to 80 GHz. Simulation results show that all these carriers have low phase noise, good SNR ranging between 60 and 90 dB and tuning capability in comparison with previous methods reported. This makes them suitable for mm-wave transmission in RoF systems to transmit data in the next generation networks.

  17. An Efficient Method for Generation of Transgenic Rats Avoiding Embryo Manipulation.

    PubMed

    Pradhan, Bhola Shankar; Majumdar, Subeer S

    2016-01-01

    Although rats are preferred over mice as an animal model, transgenic animals are generated predominantly using mouse embryos. There are limitations in the generation of transgenic rat by embryo manipulation. Unlike mouse embryos, most of the rat embryos do not survive after male pronuclear DNA injection which reduces the efficiency of generation of transgenic rat by this method. More importantly, this method requires hundreds of eggs collected by killing several females for insertion of transgene to generate transgenic rat. To this end, we developed a noninvasive and deathless technique for generation of transgenic rats by integrating transgene into the genome of the spermatogonial cells by testicular injection of DNA followed by electroporation. After standardization of this technique using EGFP as a transgene, a transgenic disease model displaying alpha thalassemia was successfully generated using rats. This efficient method will ease the generation of transgenic rats without killing the lives of rats while simultaneously reducing the number of rats used for generation of transgenic animal. PMID:27111419

  18. Numerical Study of Multigrid Methods with Various Smoothers for the Elliptical Grid Generation Equations

    NASA Technical Reports Server (NTRS)

    Golik, W. L.

    1996-01-01

    A robust solver for the elliptic grid generation equations is sought via a numerical study. The system of PDEs is discretized with finite differences, and multigrid methods are applied to the resulting nonlinear algebraic equations. Multigrid iterations are compared with respect to the robustness and efficiency. Different smoothers are tried to improve the convergence of iterations. The methods are applied to four 2D grid generation problems over a wide range of grid distortions. The results of the study help to select smoothing schemes and the overall multigrid procedures for elliptic grid generation.

  19. A Method for Load Frequency Control using Battery in Power System with Highly Penetrated Photovoltaic Generation

    NASA Astrophysics Data System (ADS)

    Nagoya, Hiroyuki; Komami, Shintaro; Ogimoto, Kazuhiko

    It is generally believed that a large amount of battery system will be needed to store surplus electric energy due to high penetration of renewable energy (RE) such as photovoltaic generation (PV). Since main objective of high penetration of REs is to reduce amount of CO2 emission, reducing kWh output of thermal generation that does emit large amount of CO2 in power system should be considered sufficiently. However, thermal generation takes a important role in load frequency control (LFC) of power system. Therefore, if LFC could be done with battery and hydro generation, kWh output of thermal generation would be reduced significantly. This paper presents a method for LFC using battery in power system with highly penetrated PVs. Assessment of the effect of the proposed method would be made considering mutual smoothing effect of highly penetrated PVs.

  20. DNA shuffling method for generating highly recombined genes and evolved enzymes.

    PubMed

    Coco, W M; Levinson, W E; Crist, M J; Hektor, H J; Darzins, A; Pienkos, P T; Squires, C H; Monticello, D J

    2001-04-01

    We introduce a method of in vitro recombination or "DNA shuffling" to generate libraries of evolved enzymes. The approach relies on the ordering, trimming, and joining of randomly cleaved parental DNA fragments annealed to a transient polynucleotide scaffold. We generated chimeric libraries averaging 14.0 crossovers per gene, a several-fold higher level of recombination than observed for other methods. We also observed an unprecedented four crossovers per gene in regions of 10 or fewer bases of sequence identity. These properties allow generation of chimeras unavailable by other methods. We detected no unshuffled parental clones or duplicated "sibling" chimeras, and relatively few inactive clones. We demonstrated the method by molecular breeding of a monooxygenase for increased rate and extent of biodesulfurization on complex substrates, as well as for 20-fold faster conversion of a nonnatural substrate. This method represents a conceptually distinct and improved alternative to sexual PCR for gene family shuffling. PMID:11283594

  1. Generations.

    PubMed

    Chambers, David W

    2005-01-01

    Groups naturally promote their strengths and prefer values and rules that give them an identity and an advantage. This shows up as generational tensions across cohorts who share common experiences, including common elders. Dramatic cultural events in America since 1925 can help create an understanding of the differing value structures of the Silents, the Boomers, Gen Xers, and the Millennials. Differences in how these generations see motivation and values, fundamental reality, relations with others, and work are presented, as are some applications of these differences to the dental profession. PMID:16623137

  2. A parallel multiple path tracing method based on OptiX for infrared image generation

    NASA Astrophysics Data System (ADS)

    Wang, Hao; Wang, Xia; Liu, Li; Long, Teng; Wu, Zimu

    2015-12-01

    Infrared image generation technology is being widely used in infrared imaging system performance evaluation, battlefield environment simulation and military personnel training, which require a more physically accurate and efficient method for infrared scene simulation. A parallel multiple path tracing method based on OptiX was proposed to solve the problem, which can not only increase computational efficiency compared to serial ray tracing using CPU, but also produce relatively accurate results. First, the flaws of current ray tracing methods in infrared simulation were analyzed and thus a multiple path tracing method based on OptiX was developed. Furthermore, the Monte Carlo integration was employed to solve the radiation transfer equation, in which the importance sampling method was applied to accelerate the integral convergent rate. After that, the framework of the simulation platform and its sensor effects simulation diagram were given. Finally, the results showed that the method could generate relatively accurate radiation images if a precise importance sampling method was available.

  3. Addressing Next Generation Science Standards: A Method for Supporting Classroom Teachers

    ERIC Educational Resources Information Center

    Pellien, Tamara; Rothenburger, Lisa

    2014-01-01

    The Next Generation Science Standards (NGSS) will define science education for the foreseeable future, yet many educators struggle to see the bridge between current practice and future practices. The inquiry-based methods used by Extension professionals (Kress, 2006) can serve as a guide for classroom educators. Described herein is a method of…

  4. Method for generating high-energy and high repetition rate laser pulses from CW amplifiers

    DOEpatents

    Zhang, Shukui

    2013-06-18

    A method for obtaining high-energy, high repetition rate laser pulses simultaneously using continuous wave (CW) amplifiers is described. The method provides for generating micro-joule level energy in pico-second laser pulses at Mega-hertz repetition rates.

  5. New generation methods for spur, helical, and spiral-bevel gears

    NASA Technical Reports Server (NTRS)

    Litvin, F. L.; Tsung, W.-J.; Coy, J. J.; Handschuh, R. F.; Tsay, C.-B. P.

    1986-01-01

    New methods for generating spur, helical, and spiral-bevel gears are proposed. These methods provide the gears with conjugate gear tooth surfaces, localized bearing contact, and reduced sensitivity to gear misalignment. Computer programs have been developed for simulating gear meshing and bearing contact.

  6. Generator-Absorber heat exchange transfer apparatus and method using an intermediate liquor

    DOEpatents

    Phillips, Benjamin A.; Zawacki, Thomas S.

    1996-11-05

    Numerous embodiments and related methods for generator-absorber heat exchange (GAX) are disclosed, particularly for absorption heat pump systems. Such embodiments and related methods use the working solution of the absorption system for the heat transfer medium where the working solution has an intermediate liquor concentration.

  7. Evaluation Of Methods To Measure Hydrogen Generation Rate In A Shielded Cell Environment And A Method Recommendation

    SciTech Connect

    Stone, M. E.

    2012-11-07

    The purpose of this document is to describe the current state of the art for determination of hydrogen generation rates of radioactive slurries and solutions to provide a basis for design, fabrication, testing, and implementation of a measurement method for Hydrogen Generation Rate (HGR) during qualification of waste feeds for the Hanford Waste Treatment and Immobilization Plant (WTP). The HGR measurement will be performed on samples of the Low Activity Waste (LAW) and High Level Waste (HLW) staged waste feeds for the WTP as well as on samples from selected unit operations testing during the qualification program. SRNL has performed a review of techniques utilized to measure HGR of high level radioactive waste slurries, evaluated the Hanford 222-S Laboratory method for measurement of hydrogen, and reviewed the hydrogen generation rate models for Hanford waste.Based on the literature review, method evaluation, and SRNL experience with measuring hydrogen generation rate, SRNL recommends that a continuous flow system with online gas analysis be used as the HGR measurement method during waste qualification.

  8. Method of generating and measuring static small force using down-slope component of gravity

    NASA Astrophysics Data System (ADS)

    Fujii, Yusaku

    2007-06-01

    A method of generating and measuring static small forces at the micro-Newton level is proposed. In the method, the down-slope component of gravity acting on a mass on an inclined plane is used as a static force. To realize a linear motion of the mass with a small friction, an aerostatic linear bearing is used. The forces acting on the mass, such as the down-slope component of gravity and the dynamic frictional force, are determined by the levitation mass method. In an experiment, a static small force of approximately 183μN is generated and measured with a standard uncertainty of approximately 2μN.

  9. Specialized CFD Grid Generation Methods for Near-Field Sonic Boom Prediction

    NASA Technical Reports Server (NTRS)

    Park, Michael A.; Campbell, Richard L.; Elmiligui, Alaa; Cliff, Susan E.; Nayani, Sudheer N.

    2014-01-01

    Ongoing interest in analysis and design of low sonic boom supersonic transports re- quires accurate and ecient Computational Fluid Dynamics (CFD) tools. Specialized grid generation techniques are employed to predict near- eld acoustic signatures of these con- gurations. A fundamental examination of grid properties is performed including grid alignment with ow characteristics and element type. The issues a ecting the robustness of cylindrical surface extrusion are illustrated. This study will compare three methods in the extrusion family of grid generation methods that produce grids aligned with the freestream Mach angle. These methods are applied to con gurations from the First AIAA Sonic Boom Prediction Workshop.

  10. An algebraic homotopy method for generating quasi-three-dimensional grids for high-speed configurations

    NASA Technical Reports Server (NTRS)

    Moitra, Anutosh

    1989-01-01

    A fast and versatile procedure for algebraically generating boundary conforming computational grids for use with finite-volume Euler flow solvers is presented. A semi-analytic homotopic procedure is used to generate the grids. Grids generated in two-dimensional planes are stacked to produce quasi-three-dimensional grid systems. The body surface and outer boundary are described in terms of surface parameters. An interpolation scheme is used to blend between the body surface and the outer boundary in order to determine the field points. The method, albeit developed for analytically generated body geometries is equally applicable to other classes of geometries. The method can be used for both internal and external flow configurations, the only constraint being that the body geometries be specified in two-dimensional cross-sections stationed along the longitudinal axis of the configuration. Techniques for controlling various grid parameters, e.g., clustering and orthogonality are described. Techniques for treating problems arising in algebraic grid generation for geometries with sharp corners are addressed. A set of representative grid systems generated by this method is included. Results of flow computations using these grids are presented for validation of the effectiveness of the method.

  11. Pipe crack identification based on finite element method of second generation wavelets

    NASA Astrophysics Data System (ADS)

    Ye, Junjie; He, Yumin; Chen, Xuefeng; Zhai, Zhi; Wang, Youming; He, Zhengjia

    2010-02-01

    In this paper, a new method is presented to identify crack location and size, which is based on stress intensity factor suitable for pipe structure and finite element method of second generation wavelets (SGW-FEM). Pipe structure is dispersed into a series of nested thin-walled pipes. By making use of stress intensity factor of the thin-walled pipe, a new calculation method of crack equivalent stiffness is proposed to solve the stress intensity factor of the pipe structure. On this basis, finite element method of second generation wavelets is used to establish the dynamic model of cracked pipe. Then we combine forward problem with inverse problem in order to establish quantitative identification method of the crack based on frequency change, which provides a non-destructive testing technology with vibration for the pipe structure. The efficiency of the proposed method is verified by experiments.

  12. Scenario generation for stochastic optimization problems via the sparse grid method

    SciTech Connect

    Chen, Michael; Mehrotra, Sanjay; Papp, David

    2015-04-19

    We study the use of sparse grids in the scenario generation (or discretization) problem in stochastic programming problems where the uncertainty is modeled using a continuous multivariate distribution. We show that, under a regularity assumption on the random function involved, the sequence of optimal objective function values of the sparse grid approximations converges to the true optimal objective function values as the number of scenarios increases. The rate of convergence is also established. We treat separately the special case when the underlying distribution is an affine transform of a product of univariate distributions, and show how the sparse grid method can be adapted to the distribution by the use of quadrature formulas tailored to the distribution. We numerically compare the performance of the sparse grid method using different quadrature rules with classic quasi-Monte Carlo (QMC) methods, optimal rank-one lattice rules, and Monte Carlo (MC) scenario generation, using a series of utility maximization problems with up to 160 random variables. The results show that the sparse grid method is very efficient, especially if the integrand is sufficiently smooth. In such problems the sparse grid scenario generation method is found to need several orders of magnitude fewer scenarios than MC and QMC scenario generation to achieve the same accuracy. As a result, it is indicated that the method scales well with the dimension of the distribution--especially when the underlying distribution is an affine transform of a product of univariate distributions, in which case the method appears scalable to thousands of random variables.

  13. Application of Element Balance Method to Evaluate the Quantity and Period of Biogas Generation

    NASA Astrophysics Data System (ADS)

    LU, Shuangfang; LIU, Shaojun; SHEN, Jianian; XUE, Haitao; XU, Qingxia; HU, Huiting; WANG, Min

    The period of biogenic gas generation plays a very important role in its accumulation, but till now there is no creditable and effective method to appraise it at home and abroad. It is a material balance process of organic elements during organic matter evolution, regardless of the mechanisms of biogenic gas. In this article, the element balance method is explored and established to appraise biogenic gas, which is demarcated and applied according to the abundant analyzed data in Songliao basin. Results indicate that the depth of biogenic gas generation is possibly shallower than 800 m; the biogas-generated quantity of source rock in this area is about 285.0 × 10 12 m 3. And the main period of biogenic gas generation occurs before the end of Nenjiang period.

  14. Device and method for generating a beam of acoustic energy from a borehole, and applications thereof

    DOEpatents

    Vu, Cung Khac; Sinha, Dipen N.; Pantea, Cristian; Nihei, Kurt T.; Schmitt, Denis P.; Skelt, Chirstopher

    2013-10-15

    In some aspects of the invention, a method of generating a beam of acoustic energy in a borehole is disclosed. The method includes generating a first acoustic wave at a first frequency; generating a second acoustic wave at a second frequency different than the first frequency, wherein the first acoustic wave and second acoustic wave are generated by at least one transducer carried by a tool located within the borehole; transmitting the first and the second acoustic waves into an acoustically non-linear medium, wherein the composition of the non-linear medium produces a collimated beam by a non-linear mixing of the first and second acoustic waves, wherein the collimated beam has a frequency based upon a difference between the first frequency range and the second frequency, and wherein the non-linear medium has a velocity of sound between 100 m/s and 800 m/s.

  15. Electrode assemblies, plasma apparatuses and systems including electrode assemblies, and methods for generating plasma

    DOEpatents

    Kong, Peter C; Grandy, Jon D; Detering, Brent A; Zuck, Larry D

    2013-09-17

    Electrode assemblies for plasma reactors include a structure or device for constraining an arc endpoint to a selected area or region on an electrode. In some embodiments, the structure or device may comprise one or more insulating members covering a portion of an electrode. In additional embodiments, the structure or device may provide a magnetic field configured to control a location of an arc endpoint on the electrode. Plasma generating modules, apparatus, and systems include such electrode assemblies. Methods for generating a plasma include covering at least a portion of a surface of an electrode with an electrically insulating member to constrain a location of an arc endpoint on the electrode. Additional methods for generating a plasma include generating a magnetic field to constrain a location of an arc endpoint on an electrode.

  16. Device and method for generating a beam of acoustic energy from a borehole, and applications thereof

    SciTech Connect

    Vu, Cung Khac; Sinha, Dipen N; Pantea, Cristian; Nihei, Kurt T; Schmitt, Denis P; Skelt, Christopher

    2013-10-01

    In some aspects of the invention, a method of generating a beam of acoustic energy in a borehole is disclosed. The method includes generating a first acoustic wave at a first frequency; generating a second acoustic wave at a second frequency different than the first frequency, wherein the first acoustic wave and second acoustic wave are generated by at least one transducer carried by a tool located within the borehole; transmitting the first and the second acoustic waves into an acoustically non-linear medium, wherein the composition of the non-linear medium produces a collimated beam by a non-linear mixing of the first and second acoustic waves, wherein the collimated beam has a frequency based upon a difference between the first frequency and the second frequency; and transmitting the collimated beam through a diverging acoustic lens to compensate for a refractive effect caused by the curvature of the borehole.

  17. Domain decomposition by the advancing-partition method for parallel unstructured grid generation

    NASA Technical Reports Server (NTRS)

    Pirzadeh, Shahyar Z. (Inventor); Banihashemi, legal representative, Soheila (Inventor)

    2012-01-01

    In a method for domain decomposition for generating unstructured grids, a surface mesh is generated for a spatial domain. A location of a partition plane dividing the domain into two sections is determined. Triangular faces on the surface mesh that intersect the partition plane are identified. A partition grid of tetrahedral cells, dividing the domain into two sub-domains, is generated using a marching process in which a front comprises only faces of new cells which intersect the partition plane. The partition grid is generated until no active faces remain on the front. Triangular faces on each side of the partition plane are collected into two separate subsets. Each subset of triangular faces is renumbered locally and a local/global mapping is created for each sub-domain. A volume grid is generated for each sub-domain. The partition grid and volume grids are then merged using the local-global mapping.

  18. Integrated circuit test-port architecture and method and apparatus of test-port generation

    DOEpatents

    Teifel, John

    2016-04-12

    A method and apparatus are provided for generating RTL code for a test-port interface of an integrated circuit. In an embodiment, a test-port table is provided as input data. A computer automatically parses the test-port table into data structures and analyzes it to determine input, output, local, and output-enable port names. The computer generates address-detect and test-enable logic constructed from combinational functions. The computer generates one-hot multiplexer logic for at least some of the output ports. The one-hot multiplexer logic for each port is generated so as to enable the port to toggle between data signals and test signals. The computer then completes the generation of the RTL code.

  19. Method and apparatus for lead-unity-lag electric power generation system

    NASA Technical Reports Server (NTRS)

    Ganev, Evgeni (Inventor); Warr, William (Inventor); Salam, Mohamed (Arif) (Inventor)

    2013-01-01

    A method employing a lead-unity-lag adjustment on a power generation system is disclosed. The method may include calculating a unity power factor point and adjusting system parameters to shift a power factor angle to substantially match an operating power angle creating a new unity power factor point. The method may then define operation parameters for a high reactance permanent magnet machine based on the adjusted power level.

  20. Method and apparatus for optimizing operation of a power generating plant using artificial intelligence techniques

    SciTech Connect

    Wroblewski, David; Katrompas, Alexander M.; Parikh, Neel J.

    2009-09-01

    A method and apparatus for optimizing the operation of a power generating plant using artificial intelligence techniques. One or more decisions D are determined for at least one consecutive time increment, where at least one of the decisions D is associated with a discrete variable for the operation of a power plant device in the power generating plant. In an illustrated embodiment, the power plant device is a soot cleaning device associated with a boiler.

  1. Developing a Method to Generate Indoorgml Data from the Omni-Directional Image

    NASA Astrophysics Data System (ADS)

    Kim, M.; Lee, J.

    2015-10-01

    Recently, many applications for indoor space are developed. The most realistic way to service an indoor space application is on the omni-directional image so far. Due to limitations of positioning technology and indoor space modelling, however, indoor navigation service can't be implemented properly. In 2014, IndoorGML is approved as an OGC's standard. This is an indoor space data model which is for the indoor navigation service. Nevertheless, the IndoorGML is defined, there is no method to generate the IndoorGML data except manually. This paper is aimed to propose a method to generate the IndoorGML data semi-automatically from the omni-directional image. In this paper, image segmentation and classification method are adopted to generate the IndoorGML data. The edge detection method is used to extract the features from the image. After doing the edge detection method, image classification method with ROI is adopted to find the features that we want. The following step is to convert the extracted area to the point which is regarded as state and connect to shooting point's state. This is the IndoorGML data at the shooting point. It can be expanded to the floor's IndoorGML data by connecting the each shooting points after repeating the process. Also, IndoorGML data of building can be generated by connecting the floor's IndoorGML data. The proposed method is adopted at the testbed, and the IndoorGML data is generated. By using the generated IndoorGML data, it can be applied to the various applications for indoor space information service.

  2. Communication systems, transceivers, and methods for generating data based on channel characteristics

    DOEpatents

    Forman, Michael A; Young, Derek

    2012-09-18

    Examples of methods for generating data based on a communications channel are described. In one such example, a processing unit may generate a first vector representation based in part on at least two characteristics of a communications channel. A constellation having at least two dimensions may be addressed with the first vector representation to identify a first symbol associated with the first vector representation. The constellation represents a plurality of regions, each region associated with a respective symbol. The symbol may be used to generate data, which may stored in an electronic storage medium and used as a cryptographic key or a spreading code or hopping sequence in a modulation technique.

  3. A method of computer aided design with self-generative models in NX Siemens environment

    NASA Astrophysics Data System (ADS)

    Grabowik, C.; Kalinowski, K.; Kempa, W.; Paprocka, I.

    2015-11-01

    Currently in CAD/CAE/CAM systems it is possible to create 3D design virtual models which are able to capture certain amount of knowledge. These models are especially useful in an automation of routine design tasks. These models are known as self-generative or auto generative and they can behave in an intelligent way. The main difference between the auto generative and fully parametric models consists in the auto generative models ability to self-organizing. In this case design model self-organizing means that aside from the possibility of making of automatic changes of model quantitative features these models possess knowledge how these changes should be made. Moreover they are able to change quality features according to specific knowledge. In spite of undoubted good points of self-generative models they are not so often used in design constructional process which is mainly caused by usually great complexity of these models. This complexity makes the process of self-generative time and labour consuming. It also needs a quite great investment outlays. The creation process of self-generative model consists of the three stages it is knowledge and information acquisition, model type selection and model implementation. In this paper methods of the computer aided design with self-generative models in NX Siemens CAD/CAE/CAM software are presented. There are the five methods of self-generative models preparation in NX with: parametric relations model, part families, GRIP language application, knowledge fusion and OPEN API mechanism. In the paper examples of each type of the self-generative model are presented. These methods make the constructional design process much faster. It is suggested to prepare this kind of self-generative models when there is a need of design variants creation. The conducted research on assessing the usefulness of elaborated models showed that they are highly recommended in case of routine tasks automation. But it is still difficult to distinguish

  4. Random fields generation on the GPU with the spectral turning bands method

    NASA Astrophysics Data System (ADS)

    Hunger, L.; Cosenza, B.; Kimeswenger, S.; Fahringer, T.

    2014-08-01

    Random field (RF) generation algorithms are of paramount importance for many scientific domains, such as astrophysics, geostatistics, computer graphics and many others. Some examples are the generation of initial conditions for cosmological simulations or hydrodynamical turbulence driving. In the latter a new random field is needed every time-step. Current approaches commonly make use of 3D FFT (Fast Fourier Transform) and require the whole generated field to be stored in memory. Moreover, they are limited to regular rectilinear meshes and need an extra processing step to support non-regular meshes. In this paper, we introduce TBARF (Turning BAnd Random Fields), a RF generation algorithm based on the turning band method that is optimized for massively parallel hardware such as GPUs. Our algorithm replaces the 3D FFT with a lower order, one-dimensional FFT followed by a projection step, and is further optimized with loop unrolling and blocking. We show that TBARF can easily generate RF on non-regular (non uniform) meshes and can afford mesh sizes bigger than the available GPU memory by using a streaming, out-of-core approach. TBARF is 2 to 5 times faster than the traditional methods when generating RFs with more than 16M cells. It can also generate RF on non-regular meshes, and has been successfully applied to two real case scenarios: planetary nebulae and cosmological simulations.

  5. Two methods for estimating limits to large-scale wind power generation.

    PubMed

    Miller, Lee M; Brunsell, Nathaniel A; Mechem, David B; Gans, Fabian; Monaghan, Andrew J; Vautard, Robert; Keith, David W; Kleidon, Axel

    2015-09-01

    Wind turbines remove kinetic energy from the atmospheric flow, which reduces wind speeds and limits generation rates of large wind farms. These interactions can be approximated using a vertical kinetic energy (VKE) flux method, which predicts that the maximum power generation potential is 26% of the instantaneous downward transport of kinetic energy using the preturbine climatology. We compare the energy flux method to the Weather Research and Forecasting (WRF) regional atmospheric model equipped with a wind turbine parameterization over a 10(5) km2 region in the central United States. The WRF simulations yield a maximum generation of 1.1 We⋅m(-2), whereas the VKE method predicts the time series while underestimating the maximum generation rate by about 50%. Because VKE derives the generation limit from the preturbine climatology, potential changes in the vertical kinetic energy flux from the free atmosphere are not considered. Such changes are important at night when WRF estimates are about twice the VKE value because wind turbines interact with the decoupled nocturnal low-level jet in this region. Daytime estimates agree better to 20% because the wind turbines induce comparatively small changes to the downward kinetic energy flux. This combination of downward transport limits and wind speed reductions explains why large-scale wind power generation in windy regions is limited to about 1 We⋅m(-2), with VKE capturing this combination in a comparatively simple way. PMID:26305925

  6. Two methods for estimating limits to large-scale wind power generation

    PubMed Central

    Miller, Lee M.; Brunsell, Nathaniel A.; Mechem, David B.; Gans, Fabian; Monaghan, Andrew J.; Vautard, Robert; Keith, David W.; Kleidon, Axel

    2015-01-01

    Wind turbines remove kinetic energy from the atmospheric flow, which reduces wind speeds and limits generation rates of large wind farms. These interactions can be approximated using a vertical kinetic energy (VKE) flux method, which predicts that the maximum power generation potential is 26% of the instantaneous downward transport of kinetic energy using the preturbine climatology. We compare the energy flux method to the Weather Research and Forecasting (WRF) regional atmospheric model equipped with a wind turbine parameterization over a 105 km2 region in the central United States. The WRF simulations yield a maximum generation of 1.1 We⋅m−2, whereas the VKE method predicts the time series while underestimating the maximum generation rate by about 50%. Because VKE derives the generation limit from the preturbine climatology, potential changes in the vertical kinetic energy flux from the free atmosphere are not considered. Such changes are important at night when WRF estimates are about twice the VKE value because wind turbines interact with the decoupled nocturnal low-level jet in this region. Daytime estimates agree better to 20% because the wind turbines induce comparatively small changes to the downward kinetic energy flux. This combination of downward transport limits and wind speed reductions explains why large-scale wind power generation in windy regions is limited to about 1 We⋅m−2, with VKE capturing this combination in a comparatively simple way. PMID:26305925

  7. An FRIT Method for Disturbance Attenuation Using Input-Output Data Generated from Disturbance Responses

    NASA Astrophysics Data System (ADS)

    Masuda, Shiro; Takeda, Kyohei

    This paper considers controller parameters tuning method for regulator problems using FRIT method. The FRIT method for regulator problems tunes the control parameters so that the disturbance response follows the reference model output. The paper tries to give a method for estimating disturbances for an FRIT method using input-output data generated by disturbances. The proposed method assumes that the disturbance is an impulse-type signal, but its magnitude is unknown, and estimates the magnitude of the disturbance, while it obtains the control parameters simultaneously. Hence, the proposed method gives an FRIT method for regulator problems by only using one-shot input-output data for unknown impulse-type distrubances. The efficiency of the proposed method can be shown through a numerical example.

  8. Some advanced parametric methods for assessing waveform distortion in a smart grid with renewable generation

    NASA Astrophysics Data System (ADS)

    Alfieri, Luisa

    2015-12-01

    Power quality (PQ) disturbances are becoming an important issue in smart grids (SGs) due to the significant economic consequences that they can generate on sensible loads. However, SGs include several distributed energy resources (DERs) that can be interconnected to the grid with static converters, which lead to a reduction of the PQ levels. Among DERs, wind turbines and photovoltaic systems are expected to be used extensively due to the forecasted reduction in investment costs and other economic incentives. These systems can introduce significant time-varying voltage and current waveform distortions that require advanced spectral analysis methods to be used. This paper provides an application of advanced parametric methods for assessing waveform distortions in SGs with dispersed generation. In particular, the Standard International Electrotechnical Committee (IEC) method, some parametric methods (such as Prony and Estimation of Signal Parameters by Rotational Invariance Technique (ESPRIT)), and some hybrid methods are critically compared on the basis of their accuracy and the computational effort required.

  9. Isentropic compressive wave generator impact pillow and method of making same

    DOEpatents

    Barker, Lynn M.

    1985-01-01

    An isentropic compressive wave generator and method of making same. The w generator comprises a disk or flat "pillow" member having component materials of different shock impedances formed in a configuration resulting in a smooth shock impedance gradient over the thickness thereof for interpositioning between an impactor member and a target specimen for producing a shock wave of a smooth predictable rise time. The method of making the pillow member comprises the reduction of the component materials to a powder form and forming the pillow member by sedimentation and compressive techniques.

  10. DEVELOPMENT OF ANALYTICAL METHODS FOR DETERMINING SUPPRESSOR CONCENTRATION IN THE MCU NEXT GENERATION SOLVENT (NGS)

    SciTech Connect

    Taylor-Pashow, K.; Fondeur, F.; White, T.; Diprete, D.; Milliken, C.

    2013-07-31

    Savannah River National Laboratory (SRNL) was tasked with identifying and developing at least one, but preferably two methods for quantifying the suppressor in the Next Generation Solvent (NGS) system. The suppressor is a guanidine derivative, N,N',N"-tris(3,7-dimethyloctyl)guanidine (TiDG). A list of 10 possible methods was generated, and screening experiments were performed for 8 of the 10 methods. After completion of the screening experiments, the non-aqueous acid-base titration was determined to be the most promising, and was selected for further development as the primary method. {sup 1}H NMR also showed promising results from the screening experiments, and this method was selected for further development as the secondary method. Other methods, including {sup 36}Cl radiocounting and ion chromatography, also showed promise; however, due to the similarity to the primary method (titration) and the inability to differentiate between TiDG and TOA (tri-n-ocytlamine) in the blended solvent, {sup 1}H NMR was selected over these methods. Analysis of radioactive samples obtained from real waste ESS (extraction, scrub, strip) testing using the titration method showed good results. Based on these results, the titration method was selected as the method of choice for TiDG measurement. {sup 1}H NMR has been selected as the secondary (back-up) method, and additional work is planned to further develop this method and to verify the method using radioactive samples. Procedures for analyzing radioactive samples of both pure NGS and blended solvent were developed and issued for the both methods.

  11. Development of Closed-Loop Simulation Methods for a Next-Generation Terminal Area Automation System

    NASA Technical Reports Server (NTRS)

    Robinson, John E., III; Isaacson, Douglas R.

    2002-01-01

    A next-generation air traffic decision support tool, known as the Active Final Approach Spacing Tool (aFAST), will generate heading, speed and altitude commands to achieve more precise separation of aircraft in the terminal area. The techniques used to analyze the performance of earlier generation decision support tools are not adequate to analyze the performance of aFAST. This paper summarizes the development of a new and innovative fully closed-loop testing method for aFAST. This method, called trajectory feedback testing, closes each aircraft's control loop inside of the aFAST scheduling algorithm. Validation of trajectory feedback testing by examination of the variation of aircraft time-of-arrival predictions between schedule updates and the variation of aircraft excess separation distances between simulation runs is presented.

  12. Revised methods for few-group cross sections generation in the Serpent Monte Carlo code

    SciTech Connect

    Fridman, E.; Leppaenen, J.

    2012-07-01

    This paper presents new calculation methods, recently implemented in the Serpent Monte Carlo code, and related to the production of homogenized few-group constants for deterministic 3D core analysis. The new methods fall under three topics: 1) Improved treatment of neutron-multiplying scattering reactions, 2) Group constant generation in reflectors and other non-fissile regions and 3) Homogenization in leakage-corrected criticality spectrum. The methodology is demonstrated by a numerical example, comparing a deterministic nodal diffusion calculation using Serpent-generated cross sections to a reference full-core Monte Carlo simulation. It is concluded that the new methodology improves the results of the deterministic calculation, and paves the way for Monte Carlo based group constant generation. (authors)

  13. Apparatus and method for recharging a string a avalanche transistors within a pulse generator

    DOEpatents

    Fulkerson, E. Stephen

    2000-01-01

    An apparatus and method for recharging a string of avalanche transistors within a pulse generator is disclosed. A plurality of amplification stages are connected in series. Each stage includes an avalanche transistor and a capacitor. A trigger signal, causes the apparatus to generate a very high voltage pulse of a very brief duration which discharges the capacitors. Charge resistors inject current into the string of avalanche transistors at various points, recharging the capacitors. The method of the present invention includes the steps of supplying current to charge resistors from a power supply; using the charge resistors to charge capacitors connected to a set of serially connected avalanche transistors; triggering the avalanche transistors; generating a high-voltage pulse from the charge stored in the capacitors; and recharging the capacitors through the charge resistors.

  14. Spatial distortion elimination in integral Fourier holography with intermediate projection views generation method

    NASA Astrophysics Data System (ADS)

    Yang, Chen; Xiao, Xiao; Wang, Xiaorui; Javidi, Bahram

    2014-06-01

    In integral holography, the reconstructed 3D image quality is affected by lenses positional errors in micro-lens array. We analyzed the spatial distortion effects in reconstructed 3D integral Fourier holographic image which are caused by misarrangements of elemental lenses in micro-lens array. Then, an intermediate projection views generation method is used to eliminate the spatial distortion effects in reconstruction. This method provides a solution to adjust the lens-array manufactured errors in realistic integral holographic imaging.

  15. Method and apparatus for generating radiation utilizing DC to AC conversion with a conductive front

    DOEpatents

    Dawson, John M.; Mori, Warren B.; Lai, Chih-Hsiang; Katsouleas, Thomas C.

    1998-01-01

    Method and apparatus for generating radiation of high power, variable duration and broad tunability over several orders of magnitude from a laser-ionized gas-filled capacitor array. The method and apparatus convert a DC electric field pattern into a coherent electromagnetic wave train when a relativistic ionization front passes between the capacitor plates. The frequency and duration of the radiation is controlled by the gas pressure and capacitor spacing.

  16. Method and apparatus for generating radiation utilizing DC to AC conversion with a conductive front

    DOEpatents

    Dawson, J.M.; Mori, W.B.; Lai, C.H.; Katsouleas, T.C.

    1998-07-14

    Method and apparatus ar disclosed for generating radiation of high power, variable duration and broad tunability over several orders of magnitude from a laser-ionized gas-filled capacitor array. The method and apparatus convert a DC electric field pattern into a coherent electromagnetic wave train when a relativistic ionization front passes between the capacitor plates. The frequency and duration of the radiation is controlled by the gas pressure and capacitor spacing. 4 figs.

  17. A method for efficient fractional sample delay generation for real-time frequency-domain beamformers

    SciTech Connect

    Breeding, J.E.; Karnowski, T.P.

    1995-07-01

    This paper presents an efficient method for fractional delay filter generation for frequency-domain beamformers. A common misunderstanding regarding frequency-domain beamforming is that any fractional time shift can be achieved using the delay property of the discrete Fourier transform (DFT). Blind application of the DFT delay property introduces circular convolution errors that may adversely affect the beam`s time series. The method presented avoids these errors while enabling real-time processing.

  18. Simple method for measuring acid generation quantum efficiency at 193 nm

    NASA Astrophysics Data System (ADS)

    Szmanda, Charles R.; Kavanagh, Robert J.; Bohland, John F.; Cameron, James F.; Trefonas, Peter, III; Blacksmith, Robert F.

    1999-06-01

    Traditional methods of measuring the Dill C Parameter involve monitoring the absorbance of a resist as a function of exposure. In chemically amplified resist, absorbance changes with exposure are small and frequently have little correlation to the amount of photoacid generated.

  19. Analysis and modeling of localized heat generation by tumor-targeted nanoparticles (Monte Carlo methods)

    NASA Astrophysics Data System (ADS)

    Sanattalab, Ehsan; SalmanOgli, Ahmad; Piskin, Erhan

    2016-04-01

    We investigated the tumor-targeted nanoparticles that influence heat generation. We suppose that all nanoparticles are fully functionalized and can find the target using active targeting methods. Unlike the commonly used methods, such as chemotherapy and radiotherapy, the treatment procedure proposed in this study is purely noninvasive, which is considered to be a significant merit. It is found that the localized heat generation due to targeted nanoparticles is significantly higher than other areas. By engineering the optical properties of nanoparticles, including scattering, absorption coefficients, and asymmetry factor (cosine scattering angle), the heat generated in the tumor's area reaches to such critical state that can burn the targeted tumor. The amount of heat generated by inserting smart agents, due to the surface Plasmon resonance, will be remarkably high. The light-matter interactions and trajectory of incident photon upon targeted tissues are simulated by MIE theory and Monte Carlo method, respectively. Monte Carlo method is a statistical one by which we can accurately probe the photon trajectories into a simulation area.

  20. Pharmacophore-Map-Pick: A Method to Generate Pharmacophore Models for All Human GPCRs.

    PubMed

    Dai, Shao-Xing; Li, Gong-Hua; Gao, Yue-Dong; Huang, Jing-Fei

    2016-02-01

    GPCR-based drug discovery is hindered by a lack of effective screening methods for most GPCRs that have neither ligands nor high-quality structures. With the aim to identify lead molecules for these GPCRs, we developed a new method called Pharmacophore-Map-Pick to generate pharmacophore models for all human GPCRs. The model of ADRB2 generated using this method not only predicts the binding mode of ADRB2-ligands correctly but also performs well in virtual screening. Findings also demonstrate that this method is powerful for generating high-quality pharmacophore models. The average enrichment for the pharmacophore models of the 15 targets in different GPCR families reached 15-fold at 0.5 % false-positive rate. Therefore, the pharmacophore models can be applied in virtual screening directly with no requirement for any ligand information or shape constraints. A total of 2386 pharmacophore models for 819 different GPCRs (99 % coverage (819/825)) were generated and are available at http://bsb.kiz.ac.cn/GPCRPMD. PMID:27491793

  1. On the grid generation methods in harmonic mapping on plane and curved surfaces

    NASA Technical Reports Server (NTRS)

    Sritharan, S. S.; Smith, P. W.

    1984-01-01

    Harmonic grid generation methods for multiply connected plane regions and regions on curved surfaces are discussed. In particular, using a general formulation on an analytic Riemannian manifold, it is proved that these mappings are globally one-to-one and onto.

  2. From FASTQ to Function: In Silico Methods for Processing Next-Generation Sequencing Data.

    PubMed

    Preston, Mark D; Stabler, Richard A

    2016-01-01

    This chapter presents a method to process C. difficile whole-genome next-generation sequencing data straight from the sequencer. Quality control processing and de novo assembly of these data enable downstream analyses such as gene annotation and in silico multi-locus strain-type identification. PMID:27507331

  3. EVALUATION OF STATIONARY SOURCE PARTICULATE MEASUREMENT METHODS. VOLUME II. OIL-FIRED STEAM GENERATORS

    EPA Science Inventory

    An experimental study was conducted to determine the reliability of the Method 5 procedure for providing particulate emission data from an oil-fired steam generator. The study was concerned with determining whether any 'false' particulate resulted from the collection process of f...

  4. A comparison between different fractal grid generation methods coupled with lattice Boltzmann approach

    NASA Astrophysics Data System (ADS)

    Chiappini, D.; Donno, A.

    2016-06-01

    In this paper we present a comparison of three different grids generated with a fractal method and used for fluid dynamic simulations through a kinetic approach. We start from the theoretical element definition and we introduce some optimizations in order to fulfil requirements. The study is performed with analysing results both in terms of friction factor at different Reynolds regimes and streamlines paths.

  5. Next Generation Science Standards: A National Mixed-Methods Study on Teacher Readiness

    ERIC Educational Resources Information Center

    Haag, Susan; Megowan, Colleen

    2015-01-01

    Next Generation Science Standards (NGSS) science and engineering practices are ways of eliciting the reasoning and applying foundational ideas in science. As research has revealed barriers to states and schools adopting the NGSS, this mixed-methods study attempts to identify characteristics of professional development (PD) that will support NGSS…

  6. Next generation sequencers: methods and applications in food-borne pathogens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Next generation sequencers are able to produce millions of short sequence reads in a high-throughput, low-cost way. The emergence of these technologies has not only facilitated genome sequencing but also started to change the landscape of life sciences. This chapter will survey their methods and app...

  7. A Comparison of Diary Method Variations for Enlightening Form Generation in the Design Process

    ERIC Educational Resources Information Center

    Babapour, Maral; Rehammar, Bjorn; Rahe, Ulrike

    2012-01-01

    This paper presents two studies in which an empirical approach was taken to understand and explain form generation and decisions taken in the design process. In particular, the activities addressing aesthetic aspects when exteriorising form ideas in the design process have been the focus of the present study. Diary methods were the starting point…

  8. Automatic data generation scheme for finite-element method /FEDGE/ - Computer program

    NASA Technical Reports Server (NTRS)

    Akyuz, F.

    1970-01-01

    Algorithm provides for automatic input data preparation for the analysis of continuous domains in the fields of structural analysis, heat transfer, and fluid mechanics. The computer program utilizes the natural coordinate systems concept and the finite element method for data generation.

  9. Spur gears: Optimal geometry, methods for generation and Tooth Contact Analysis (TCA) program

    NASA Technical Reports Server (NTRS)

    Litvin, Faydor L.; Zhang, Jiao

    1988-01-01

    The contents of this report include the following: (1) development of optimal geometry for crowned spur gears; (2) methods for their generation; and (3) tooth contact analysis (TCA) computer programs for the analysis of meshing and bearing contact on the crowned spur gears. The method developed for synthesis is used for the determination of the optimal geometry for crowned pinion surface and is directed to reduce the sensitivity of the gears to misalignment, localize the bearing contact, and guarantee the favorable shape and low level of the transmission errors. A new method for the generation of the crowned pinion surface has been proposed. This method is based on application of the tool with a surface of revolution that slightly deviates from a regular cone surface. The tool can be used as a grinding wheel or as a shaver. The crowned pinion surface can also be generated by a generating plane whose motion is provided by an automatic grinding machine controlled by a computer. The TCA program simulates the meshing and bearing contact of the misaligned gears. The transmission errors are also determined.

  10. Modeling the spatial shape of nondiffracting beams: Experimental generation of Frozen Waves via holographic method

    NASA Astrophysics Data System (ADS)

    Vieira, Tárcio A.; Zamboni-Rached, Michel; Gesualdi, Marcos R. R.

    2014-03-01

    In this paper we experimentally implement the spatial shape modeling of nondiffracting optical beams via computer generated holograms reconstructed optically by spatial light modulators. The results reported here are an experimental confirmation of the so-called Frozen Wave method, developed a few years ago. Optical beams of this type have potential applications in optical tweezers, medicine, atom guiding, remote sensing, etc.

  11. Maximum Power Point Tracking with Dichotomy and Gradient Method for Automobile Exhaust Thermoelectric Generators

    NASA Astrophysics Data System (ADS)

    Fang, W.; Quan, S. H.; Xie, C. J.; Tang, X. F.; Wang, L. L.; Huang, L.

    2016-03-01

    In this study, a direct-current/direct-current (DC/DC) converter with maximum power point tracking (MPPT) is developed to down-convert the high voltage DC output from a thermoelectric generator to the lower voltage required to charge batteries. To improve the tracking accuracy and speed of the converter, a novel MPPT control scheme characterized by an aggregated dichotomy and gradient (ADG) method is proposed. In the first stage, the dichotomy algorithm is used as a fast search method to find the approximate region of the maximum power point. The gradient method is then applied for rapid and accurate tracking of the maximum power point. To validate the proposed MPPT method, a test bench composed of an automobile exhaust thermoelectric generator was constructed for harvesting the automotive exhaust heat energy. Steady-state and transient tracking experiments under five different load conditions were carried out using a DC/DC converter with the proposed ADG and with three traditional methods. The experimental results show that the ADG method can track the maximum power within 140 ms with a 1.1% error rate when the engine operates at 3300 rpm@71 NM, which is superior to the performance of the single dichotomy method, the single gradient method and the perturbation and observation method from the viewpoint of improved tracking accuracy and speed.

  12. Efficient algorithm for generating spectra using line-by-lne methods

    SciTech Connect

    Sonnad, V; iglesias, C A

    2010-11-01

    A method is presented for efficient generation of spectra using line-by-line approaches. The only approximation is replacing the line shape function with an interpolation procedure, which makes the method independent of the line profile functional form. The resulting computational savings for large number of lines is proportional to the number of frequency points in the spectral range. Therefore, for large-scale problems the method can provide speedups of two orders of magnitude or more. A method was presented to generate line-by-line spectra efficiently. The first step was to replace the explicit calculation of the profile by the Newton divided-differences interpolating polynomial. The second step is to accumulate the lines effectively reducing their number to the number of frequency points. The final step is recognizing the resulting expression as a convolution and amenable to FFT methods. The reduction in computational effort for a configuration-to-configuration transition array with large number of lines is proportional to the number of frequency points. The method involves no approximations except for replacing the explicit profile evaluation by interpolation. Specifically, the line accumulation and convolution are exact given the interpolation procedure. Furthermore, the interpolation makes the method independent of the line profile functional form contrary to other schemes using FFT methods to generate line-by-line spectra but relying on the analytic form of the profile Fourier transform. Finally, the method relies on a uniform frequency mesh. For non-uniform frequency meshes, however, the method can be applied by using a suitable temporary uniform mesh and the results interpolated onto the final mesh with little additional cost.

  13. A Method for Generation of Bone Marrow-Derived Macrophages from Cryopreserved Mouse Bone Marrow Cells

    PubMed Central

    Lima, Djalma S.; Zamboni, Dario S.

    2010-01-01

    The broad use of transgenic and gene-targeted mice has established bone marrow-derived macrophages (BMDM) as important mammalian host cells for investigation of the macrophages biology. Over the last decade, extensive research has been done to determine how to freeze and store viable hematopoietic human cells; however, there is no information regarding generation of BMDM from frozen murine bone marrow (BM) cells. Here, we establish a highly efficient protocol to freeze murine BM cells and further generate BMDM. Cryopreserved murine BM cells maintain their potential for BMDM differentiation for more than 6 years. We compared BMDM obtained from fresh and frozen BM cells and found that both are similarly able to trigger the expression of CD80 and CD86 in response to LPS or infection with the intracellular bacteria Legionella pneumophila. Additionally, BMDM obtained from fresh or frozen BM cells equally restrict or support the intracellular multiplication of pathogens such as L. pneumophila and the protozoan parasite Leishmania (L.) amazonensis. Although further investigation are required to support the use of the method for generation of dendritic cells, preliminary experiments indicate that bone marrow-derived dendritic cells can also be generated from cryopreserved BM cells. Overall, the method described and validated herein represents a technical advance as it allows ready and easy generation of BMDM from a stock of frozen BM cells. PMID:21179419

  14. An automated method for generating analogic signals that embody the Markov kinetics of model ionic channels.

    PubMed

    Luchian, Tudor

    2005-08-30

    In this work we present an automated method for generating electrical signals which reflect the kinetics of ionic channels that have custom-tailored intermediate sub-states and intermediate reaction constants. The concept of our virtual single-channel waveform generator makes use of two software platforms, one for the numerical generation of single channel traces stemming from a pre-defined model and another for the digital-to-analog conversion of such numerical generated single channel traces. This technique of continuous generation and recording of the activity of a model ionic channel provides an efficient protocol to teach neophytes in the field of single-channel electrophysiology about its major phenomenological facets. Random analogic signals generated by using our technique can be successfully employed in a number of applications, such us: assisted learning of the single-molecule kinetic investigation via electrical recordings, impedance spectroscopy, the evaluation of linear frequency response of neurons and the study of stochastic resonance of ion channels. PMID:16054511

  15. A Rapid and Improved Method to Generate Recombinant Dengue Virus Vaccine Candidates.

    PubMed

    Govindarajan, Dhanasekaran; Guan, Liming; Meschino, Steven; Fridman, Arthur; Bagchi, Ansu; Pak, Irene; Meulen, Jan Ter; Casimiro, Danilo R; Bett, Andrew J

    2016-01-01

    Dengue is one of the most important mosquito-borne infections accounting for severe morbidity and mortality worldwide. Recently, the tetravalent chimeric live attenuated Dengue vaccine Dengvaxia® was approved for use in several dengue endemic countries. In general, live attenuated vaccines (LAV) are very efficacious and offer long-lasting immunity against virus-induced disease. Rationally designed LAVs can be generated through reverse genetics technology, a method of generating infectious recombinant viruses from full length cDNA contained in bacterial plasmids. In vitro transcribed (IVT) viral RNA from these infectious clones is transfected into susceptible cells to generate recombinant virus. However, the generation of full-length dengue virus cDNA clones can be difficult due to the genetic instability of viral sequences in bacterial plasmids. To circumvent the need for a single plasmid containing a full length cDNA, in vitro ligation of two or three cDNA fragments contained in separate plasmids can be used to generate a full-length dengue viral cDNA template. However, in vitro ligation of multiple fragments often yields low quality template for IVT reactions, resulting in inconsistent low yield RNA. These technical difficulties make recombinant virus recovery less efficient. In this study, we describe a simple, rapid and efficient method of using LONG-PCR to recover recombinant chimeric Yellow fever dengue (CYD) viruses as potential dengue vaccine candidates. Using this method, we were able to efficiently generate several viable recombinant viruses without introducing any artificial mutations into the viral genomes. We believe that the techniques reported here will enable rapid and efficient recovery of recombinant flaviviruses for evaluation as vaccine candidates and, be applicable to the recovery of other RNA viruses. PMID:27008550

  16. A Rapid and Improved Method to Generate Recombinant Dengue Virus Vaccine Candidates

    PubMed Central

    Govindarajan, Dhanasekaran; Guan, Liming; Meschino, Steven; Fridman, Arthur; Bagchi, Ansu; Pak, Irene; ter Meulen, Jan; Casimiro, Danilo R.; Bett, Andrew J.

    2016-01-01

    Dengue is one of the most important mosquito-borne infections accounting for severe morbidity and mortality worldwide. Recently, the tetravalent chimeric live attenuated Dengue vaccine Dengvaxia® was approved for use in several dengue endemic countries. In general, live attenuated vaccines (LAV) are very efficacious and offer long-lasting immunity against virus-induced disease. Rationally designed LAVs can be generated through reverse genetics technology, a method of generating infectious recombinant viruses from full length cDNA contained in bacterial plasmids. In vitro transcribed (IVT) viral RNA from these infectious clones is transfected into susceptible cells to generate recombinant virus. However, the generation of full-length dengue virus cDNA clones can be difficult due to the genetic instability of viral sequences in bacterial plasmids. To circumvent the need for a single plasmid containing a full length cDNA, in vitro ligation of two or three cDNA fragments contained in separate plasmids can be used to generate a full-length dengue viral cDNA template. However, in vitro ligation of multiple fragments often yields low quality template for IVT reactions, resulting in inconsistent low yield RNA. These technical difficulties make recombinant virus recovery less efficient. In this study, we describe a simple, rapid and efficient method of using LONG-PCR to recover recombinant chimeric Yellow fever dengue (CYD) viruses as potential dengue vaccine candidates. Using this method, we were able to efficiently generate several viable recombinant viruses without introducing any artificial mutations into the viral genomes. We believe that the techniques reported here will enable rapid and efficient recovery of recombinant flaviviruses for evaluation as vaccine candidates and, be applicable to the recovery of other RNA viruses. PMID:27008550

  17. Method of generating and measuring static small force using down-slope component of gravity.

    PubMed

    Fujii, Yusaku

    2007-06-01

    A method of generating and measuring static small forces at the micro-Newton level is proposed. In the method, the down-slope component of gravity acting on a mass on an inclined plane is used as a static force. To realize a linear motion of the mass with a small friction, an aerostatic linear bearing is used. The forces acting on the mass, such as the down-slope component of gravity and the dynamic frictional force, are determined by the levitation mass method. In an experiment, a static small force of approximately 183 microN is generated and measured with a standard uncertainty of approximately 2 microN. PMID:17614648

  18. Determination of optical field generated by a microlens using digital holographic method

    NASA Astrophysics Data System (ADS)

    Kozacki, T.; Józwik, M.; Jóźwicki, R.

    2009-09-01

    In the paper, application of the digital holographic method for full field characterization of the beam generated by microlenses is considered. For this goal, the laboratory setup was designed based on Mach-Zehnder interferometry with the additional reference channel. The beam generated by a microlens was imaged by an afocal system and intensity distributions or interferograms (holograms) were registered by CCD camera. The digital holography using one image allows us to determine microlens parameters, i.e., focal length, aberrations, and shape. The optimum conditions to determine the surface shape of a microlens using holographic method have been found. We compare obtained results with geometrical and interferometric measurements. We show the advantage of digital holography for a shape microlens determination (improved accuracy), aberrations, and focal length (characterization facility). Through optimum refocusing, the digital holography gives more precise shape. The paper is accompanied with computer simulations and the experimental measurement data for geometrical, interferometric, and holographic methods.

  19. Gas-generator pressurization system experimental development method of the LV propellant tanks

    NASA Astrophysics Data System (ADS)

    Logvinenko, A.

    2009-01-01

    The approved efficient method of experimental development is given in the example of accumulated experience in the gas-generator pressurization system development of the LV propellant tanks. To the present time, acceptable calculated methods has not been created from complexity of thermo-mass-transfer processes. Therefore, under the development of similar systems the main attention is centered to its ground experimental development which requires special benches, corresponding competent structures, great time and material expenditure. The approved method of gas-generator pressurization system experimental development is proposed. It is based on the energy analysis of influenced factors and selection of its limit-possible operation modes. Practical use is allowed to decrease significantly the test volume, to decrease material expenditure and time for pressurization system experimental development under complex assurance of its optimal main characteristics.

  20. Variational method for the minimization of entropy generation in solar cells

    SciTech Connect

    Smit, Sjoerd; Kessels, W. M. M.

    2015-04-07

    In this work, a method is presented to extend traditional solar cell simulation tools to make it possible to calculate the most efficient design of practical solar cells. The method is based on the theory of nonequilibrium thermodynamics, which is used to derive an expression for the local entropy generation rate in the solar cell, making it possible to quantify all free energy losses on the same scale. The framework of non-equilibrium thermodynamics can therefore be combined with the calculus of variations and existing solar cell models to minimize the total entropy generation rate in the cell to find the most optimal design. The variational method is illustrated by applying it to a homojunction solar cell. The optimization results in a set of differential algebraic equations, which determine the optimal shape of the doping profile for given recombination and transport models.

  1. Pulsed arrays: A new method of flaw detection by generating a frequency dependent angle of propagation

    NASA Astrophysics Data System (ADS)

    Hill, S. J.; Dixon, S. M.

    2012-05-01

    A new method of using an array of generation sources, pulsed simultaneously to generate a wavefront with a frequency dependant angle of propagation, has been developed. If pulsed arrays are used to generate a wave with a frequency dependent angle of propagation, the angle at which the wave was launched can be identified by measuring the frequency of the detected wave. In an isotropic material this means that it is possible use a second transducer to locate the position of the scatterer, whereas with a conventional single element generator method, it can only be located onto an ellipse. In addition to an increased scan speed, the resolution of detection should also be improved. A theoretical framework is put forward to explain how the wavefront is created from the superposition of the waves from the individual elements, and how the frequency varies along the wavefront. Finite element models and experimental measurements were also carried out, and both agreed with the analytic model. This method will have applications within NDE, but could also extend to sonar and radar techniques.

  2. Steam drive oil recovery method utilizing a downhole steam generator and anti clay-swelling agent

    SciTech Connect

    Hopkins, D.N.; Snavely, E.S.

    1986-03-11

    This patent describes a method of recovering viscous oil from a subterranean, permeable, viscous oil-containing formation, the formation being penetrated by at least one injection well and at least one spaced-apart production well, the wells in fluid communication with a substantial portion of the formation. The method consists of injecting a stable hydrocarbon fuel-in-water emulsion containing an anti clay-swelling agent under pressure into a downhole steam generator in the injection well; injecting substantially pure oxygen into the steam generator under pressure via the injection well which contacts the pressurized hydrocarbon fuel-in-water emulsion containing an anti clay-swelling agent in the steam generator thereby effecting spontaneous combustion of the hydrocarbon fuel to generate a mixture of steam and combustion gases that pass through the formation, displacing oil and reducing the oil's viscosity; and recovering fluids including oil from the formation via the production well. Or the method can continue injecting the pressurized mixture of hydrocarbon fuel-in-water emulsion and substantially pure oxygen for a predetermined period of time; and thereafter, discontinuing fluid injection of step (d) and opening the well to production so that fluids including oil are recovered from the formation.

  3. An improved method for computer generation of three-dimensional digital holography

    NASA Astrophysics Data System (ADS)

    Hu, Yanlei; Ma, Jianqiang; Chen, Yuhang; Li, Jiawen; Huang, Wenhao; Chu, Jiaru

    2013-12-01

    A novel method is proposed for designing optimized three-dimensional computer-generated holograms (CGHs). A series of spherical wave factors are introduced into the conventional optimal rotation angle (ORA) algorithm to achieve a varying amount of defocus along the optical axis, and the distraction terms are minimized during the iterative process. Both numerical simulation and experimental reconstructions are presented to demonstrate that this method is able to yield excellent multilayer patterns with high uniformity and signal-to-noise ratio (SNR). This method is significant for applications in laser 3D printing and multilayer data recording.

  4. Comparison of methods for acid quantification: impact of resist components on acid-generating efficiency

    NASA Astrophysics Data System (ADS)

    Cameron, James F.; Fradkin, Leslie; Moore, Kathryn; Pohlers, Gerd

    2000-06-01

    Chemically amplified deep UV (CA-DUV) positive resists are the enabling materials for manufacture of devices at and below 0.18 micrometer design rules in the semiconductor industry. CA-DUV resists are typically based on a combination of an acid labile polymer and a photoacid generator (PAG). Upon UV exposure, a catalytic amount of a strong Bronsted acid is released and is subsequently used in a post-exposure bake step to deprotect the acid labile polymer. Deprotection transforms the acid labile polymer into a base soluble polymer and ultimately enables positive tone image development in dilute aqueous base. As CA-DUV resist systems continue to mature and are used in increasingly demanding situations, it is critical to develop a fundamental understanding of how robust these materials are. One of the most important factors to quantify is how much acid is photogenerated in these systems at key exposure doses. For the purpose of quantifying photoacid generation several methods have been devised. These include spectrophotometric methods, ion conductivity methods and most recently an acid-base type titration similar to the standard addition method. This paper compares many of these techniques. First, comparisons between the most commonly used acid sensitive dye, tetrabromophenol blue sodium salt (TBPB) and a less common acid sensitive dye, Rhodamine B base (RB) are made in several resist systems. Second, the novel acid-base type titration based on the standard addition method is compared to the spectrophotometric titration method. During these studies, the make up of the resist system is probed as follows: the photoacid generator and resist additives are varied to understand the impact of each of these resist components on the acid generation process.

  5. Scenario generation for stochastic optimization problems via the sparse grid method

    DOE PAGESBeta

    Chen, Michael; Mehrotra, Sanjay; Papp, David

    2015-04-19

    We study the use of sparse grids in the scenario generation (or discretization) problem in stochastic programming problems where the uncertainty is modeled using a continuous multivariate distribution. We show that, under a regularity assumption on the random function involved, the sequence of optimal objective function values of the sparse grid approximations converges to the true optimal objective function values as the number of scenarios increases. The rate of convergence is also established. We treat separately the special case when the underlying distribution is an affine transform of a product of univariate distributions, and show how the sparse grid methodmore » can be adapted to the distribution by the use of quadrature formulas tailored to the distribution. We numerically compare the performance of the sparse grid method using different quadrature rules with classic quasi-Monte Carlo (QMC) methods, optimal rank-one lattice rules, and Monte Carlo (MC) scenario generation, using a series of utility maximization problems with up to 160 random variables. The results show that the sparse grid method is very efficient, especially if the integrand is sufficiently smooth. In such problems the sparse grid scenario generation method is found to need several orders of magnitude fewer scenarios than MC and QMC scenario generation to achieve the same accuracy. As a result, it is indicated that the method scales well with the dimension of the distribution--especially when the underlying distribution is an affine transform of a product of univariate distributions, in which case the method appears scalable to thousands of random variables.« less

  6. Evaluation of geospatial methods to generate subnational HIV prevalence estimates for local level planning

    PubMed Central

    2016-01-01

    Objective: There is evidence of substantial subnational variation in the HIV epidemic. However, robust spatial HIV data are often only available at high levels of geographic aggregation and not at the finer resolution needed for decision making. Therefore, spatial analysis methods that leverage available data to provide local estimates of HIV prevalence may be useful. Such methods exist but have not been formally compared when applied to HIV. Design/methods: Six candidate methods – including those used by the Joint United Nations Programme on HIV/AIDS to generate maps and a Bayesian geostatistical approach applied to other diseases – were used to generate maps and subnational estimates of HIV prevalence across three countries using cluster level data from household surveys. Two approaches were used to assess the accuracy of predictions: internal validation, whereby a proportion of input data is held back (test dataset) to challenge predictions; and comparison with location-specific data from household surveys in earlier years. Results: Each of the methods can generate usefully accurate predictions of prevalence at unsampled locations, with the magnitude of the error in predictions similar across approaches. However, the Bayesian geostatistical approach consistently gave marginally the strongest statistical performance across countries and validation procedures. Conclusions: Available methods may be able to furnish estimates of HIV prevalence at finer spatial scales than the data currently allow. The subnational variation revealed can be integrated into planning to ensure responsiveness to the spatial features of the epidemic. The Bayesian geostatistical approach is a promising strategy for integrating HIV data to generate robust local estimates. PMID:26919737

  7. Size distributions of micro-bubbles generated by a pressurized dissolution method

    NASA Astrophysics Data System (ADS)

    Taya, C.; Maeda, Y.; Hosokawa, S.; Tomiyama, A.; Ito, Y.

    2012-03-01

    Size of micro-bubbles is widely distributed in the range of one to several hundreds micrometers and depends on generation methods, flow conditions and elapsed times after the bubble generation. Although a size distribution of micro-bubbles should be taken into account to improve accuracy in numerical simulations of flows with micro-bubbles, a variety of the size distribution makes it difficult to introduce the size distribution in the simulations. On the other hand, several models such as the Rosin-Rammler equation and the Nukiyama-Tanazawa equation have been proposed to represent the size distribution of particles or droplets. Applicability of these models to the size distribution of micro-bubbles has not been examined yet. In this study, we therefore measure size distribution of micro-bubbles generated by a pressurized dissolution method by using a phase Doppler anemometry (PDA), and investigate the applicability of the available models to the size distributions of micro-bubbles. Experimental apparatus consists of a pressurized tank in which air is dissolved in liquid under high pressure condition, a decompression nozzle in which micro-bubbles are generated due to pressure reduction, a rectangular duct and an upper tank. Experiments are conducted for several liquid volumetric fluxes in the decompression nozzle. Measurements are carried out at the downstream region of the decompression nozzle and in the upper tank. The experimental results indicate that (1) the Nukiyama-Tanasawa equation well represents the size distribution of micro-bubbles generated by the pressurized dissolution method, whereas the Rosin-Rammler equation fails in the representation, (2) the bubble size distribution of micro-bubbles can be evaluated by using the Nukiyama-Tanasawa equation without individual bubble diameters, when mean bubble diameter and skewness of the bubble distribution are given, and (3) an evaluation method of visibility based on the bubble size distribution and bubble

  8. Hydrogen generation systems and methods utilizing sodium silicide and sodium silica gel materials

    DOEpatents

    Wallace, Andrew P.; Melack, John M.; Lefenfeld, Michael

    2015-08-11

    Systems, devices, and methods combine thermally stable reactant materials and aqueous solutions to generate hydrogen and a non-toxic liquid by-product. The reactant materials can sodium silicide or sodium silica gel. The hydrogen generation devices are used in fuels cells and other industrial applications. One system combines cooling, pumping, water storage, and other devices to sense and control reactions between reactant materials and aqueous solutions to generate hydrogen. Springs and other pressurization mechanisms pressurize and deliver an aqueous solution to the reaction. A check valve and other pressure regulation mechanisms regulate the pressure of the aqueous solution delivered to the reactant fuel material in the reactor based upon characteristics of the pressurization mechanisms and can regulate the pressure of the delivered aqueous solution as a steady decay associated with the pressurization force. The pressure regulation mechanism can also prevent hydrogen gas from deflecting the pressure regulation mechanism.

  9. A three-dimensional grid generation method for gas-turbine combustor flow computations

    NASA Astrophysics Data System (ADS)

    Shyy, Wei; Braaten, Mark E.; Sober, Janet S.

    1987-02-01

    A special-purpose code suitable for generating a curvilinear nonorthogonal grid system for gas-turbine combustor flow computations has been produced. The code is capable of handling an arbitrary number of dilution holes with any radii as well as film-cooling slots on the top and bottom surfaces. A zonal approach has been developed to handle the fast length scale variations imposed by the geometric constraints and to minimize the overall computational efforts needed to generate the grids. The code combines partial differential equation and algebraic interpolation methods to generate the grid system. The salient features of the grid characteristics are discussed. Also included are sample results of a 3-D turbulent combusting flow field calculated on the grid system produced by this methodology.

  10. Systems, methods and apparatus for generation and verification of policies in autonomic computing systems

    NASA Technical Reports Server (NTRS)

    Hinchey, Michael G. (Inventor); Rash, James L. (Inventor); Truszkowski, Walter F. (Inventor); Rouff, Christopher A. (Inventor); Sterritt, Roy (Inventor); Gracanin, Denis (Inventor)

    2011-01-01

    Described herein is a method that produces fully (mathematically) tractable development of policies for autonomic systems from requirements through to code generation. This method is illustrated through an example showing how user formulated policies can be translated into a formal mode which can then be converted to code. The requirements-based programming method described provides faster, higher quality development and maintenance of autonomic systems based on user formulation of policies.Further, the systems, methods and apparatus described herein provide a way of analyzing policies for autonomic systems and facilities the generation of provably correct implementations automatically, which in turn provides reduced development time, reduced testing requirements, guarantees of correctness of the implementation with respect to the policies specified at the outset, and provides a higher degree of confidence that the policies are both complete and reasonable. The ability to specify the policy for the management of a system and then automatically generate an equivalent implementation greatly improves the quality of software, the survivability of future missions, in particular when the system will operate untended in very remote environments, and greatly reduces development lead times and costs.

  11. Method for generating spatial and temporal synthetic hourly rainfall in the Valley of Mexico

    NASA Astrophysics Data System (ADS)

    Mendoza-Resendiz, Alejandro; Arganis-Juarez, Maritza; Dominguez-Mora, Ramon; Echavarria, Bernardo

    2013-10-01

    Hydrological risk analyses require a dense pluviometer network and a long period of records with an adequate time resolution; usually pluviometer networks have short periods of simultaneous records, so it is required to extend the number of records by means of synthetically generated rainfall events. This paper describes the development and implementation of a method based on a daily rainfall disaggregation for generating synthetic rainfall events distributed spatially and temporally. It uses the information recorded in 49 rain-gauge stations in the network of the basin of the Valley of Mexico during the rainy season from 1988 to 2006. Within various methods found in the literature, we consider that this one provides a greater simplicity for a practical implementation. The tests carried out showed that rainfall events generated with this method properly reproduce the statistical parameters of the historical records, including those that are not implicitly incorporated in the model, as is the case of the synthetic hourly rainfall, whose statistical values are virtually identical to the historical ones despite that the proposed method only uses the probability distribution of maximum daily rainfall.

  12. Modeling, mesh generation, and adaptive numerical methods for partial differential equations

    SciTech Connect

    Babuska, I.; Henshaw, W.D.; Oliger, J.E.; Flaherty, J.E.; Hopcroft, J.E.; Tezduyar, T.

    1995-12-31

    Mesh generation is one of the most time consuming aspects of computational solutions of problems involving partial differential equations. It is, furthermore, no longer acceptable to compute solutions without proper verification that specified accuracy criteria are being satisfied. Mesh generation must be related to the solution through computable estimates of discretization errors. Thus, an iterative process of alternate mesh and solution generation evolves in an adaptive manner with the end result that the solution is computed to prescribed specifications in an optimal, or at least efficient, manner. While mesh generation and adaptive strategies are becoming available, major computational challenges remain. One, in particular, involves moving boundaries and interfaces, such as free-surface flows and fluid-structure interactions. A 3-week program was held from July 5 to July 23, 1993 with 173 participants and 66 keynote, invited, and contributed presentations. This volume represents written versions of 21 of these lectures. These proceedings are organized roughly in order of their presentation at the workshop. Thus, the initial papers are concerned with geometry and mesh generation and discuss the representation of physical objects and surfaces on a computer and techniques to use this data to generate, principally, unstructured meshes of tetrahedral or hexahedral elements. The remainder of the papers cover adaptive strategies, error estimation, and applications. Several submissions deal with high-order p- and hp-refinement methods where mesh refinement/coarsening (h-refinement) is combined with local variation of method order (p-refinement). Combinations of mathematically verified and physically motivated approaches to error estimation are represented. Applications center on fluid mechanics. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  13. A method for generating virtual unfolded view of colon using spring model

    NASA Astrophysics Data System (ADS)

    Oda, Masahiro; Hayashi, Yuichiro; Kitasaka, Takayuki; Mori, Kensaku; Suenaga, Yasuhito

    2006-03-01

    Recently, virtual colonoscopy (VC) has received attention as a new colon diagnostic method based on the development of imaging devices. VC is considered a less invasive inspection and reduces diagnosing time. However, because the colon has many folds and its shape is long and convoluted, a physician has to repeatedly change viewpoints and viewing directions many times. We previously proposed a new computer aided diagnosis system for the colon that provided virtual unfolded (VU) and virtual endoscopic (VE) views of the colon. This system enables physicians to observe a large area of the colonic wall on a VU view synchronized with a VE view. Thus a suspicious area on a VU view can be observed in more detail on a VE view. We generated VU views by controlling the ray directions of volume rendering. This method had a problem: rays intersected at the curved areas of the colon because the rays were cast perpendicular to the central path of the colon. Ray intersections caused spurious holes in the VU views. In this paper, we present a method that reduces ray intersections by employing a model that allocates springs between planes perpendicular to the central path. Then plane directions are modified by the spring forces to minimize the total length of the springs. In a drawing process, a VU view is generated by casting rays along the planes. We applied the method to abdominal CT images. Experimental results showed that the method can reduce spurious holes on VU views more than the previous method.

  14. Device and method for generating a beam of acoustic energy from a borehole, and applications thereof

    DOEpatents

    Vu, Cung Khac; Sinha, Dipen N; Pantea, Cristian; Nihei, Kurt T; Schmitt, Denis P; Skelt, Christopher

    2013-10-01

    In some aspects of the invention, a method of generating a beam of acoustic energy in a borehole is disclosed. The method includes generating a first broad-band acoustic pulse at a first broad-band frequency range having a first central frequency and a first bandwidth spread; generating a second broad-band acoustic pulse at a second broad-band frequency range different than the first frequency range having a second central frequency and a second bandwidth spread, wherein the first acoustic pulse and second acoustic pulse are generated by at least one transducer arranged on a tool located within the borehole; and transmitting the first and the second broad-band acoustic pulses into an acoustically non-linear medium, wherein the composition of the non-linear medium produces a collimated pulse by a non-linear mixing of the first and second acoustic pulses, wherein the collimated pulse has a frequency equal to the difference in frequencies between the first central frequency and the second central frequency and a bandwidth spread equal to the sum of the first bandwidth spread and the second bandwidth spread.

  15. Discretization error estimation and exact solution generation using the method of nearby problems.

    SciTech Connect

    Sinclair, Andrew J.; Raju, Anil; Kurzen, Matthew J.; Roy, Christopher John; Phillips, Tyrone S.

    2011-10-01

    The Method of Nearby Problems (MNP), a form of defect correction, is examined as a method for generating exact solutions to partial differential equations and as a discretization error estimator. For generating exact solutions, four-dimensional spline fitting procedures were developed and implemented into a MATLAB code for generating spline fits on structured domains with arbitrary levels of continuity between spline zones. For discretization error estimation, MNP/defect correction only requires a single additional numerical solution on the same grid (as compared to Richardson extrapolation which requires additional numerical solutions on systematically-refined grids). When used for error estimation, it was found that continuity between spline zones was not required. A number of cases were examined including 1D and 2D Burgers equation, the 2D compressible Euler equations, and the 2D incompressible Navier-Stokes equations. The discretization error estimation results compared favorably to Richardson extrapolation and had the advantage of only requiring a single grid to be generated.

  16. Methods and evaluations of MRI content-adaptive finite element mesh generation for bioelectromagnetic problems

    NASA Astrophysics Data System (ADS)

    Lee, W. H.; Kim, T.-S.; Cho, M. H.; Ahn, Y. B.; Lee, S. Y.

    2006-12-01

    In studying bioelectromagnetic problems, finite element analysis (FEA) offers several advantages over conventional methods such as the boundary element method. It allows truly volumetric analysis and incorporation of material properties such as anisotropic conductivity. For FEA, mesh generation is the first critical requirement and there exist many different approaches. However, conventional approaches offered by commercial packages and various algorithms do not generate content-adaptive meshes (cMeshes), resulting in numerous nodes and elements in modelling the conducting domain, and thereby increasing computational load and demand. In this work, we present efficient content-adaptive mesh generation schemes for complex biological volumes of MR images. The presented methodology is fully automatic and generates FE meshes that are adaptive to the geometrical contents of MR images, allowing optimal representation of conducting domain for FEA. We have also evaluated the effect of cMeshes on FEA in three dimensions by comparing the forward solutions from various cMesh head models to the solutions from the reference FE head model in which fine and equidistant FEs constitute the model. The results show that there is a significant gain in computation time with minor loss in numerical accuracy. We believe that cMeshes should be useful in the FEA of bioelectromagnetic problems.

  17. Method of delivering lunar generated fluid to earth orbit using an external tank

    NASA Technical Reports Server (NTRS)

    Butterfield, Ansel J. (Inventor); Goslee, John W. (Inventor)

    1992-01-01

    A method and apparatus are provided for delivering lunar generated fluid to Earth orbit from lunar orbit. Transport takes place in an external tank of a shuttle which has been suitably outfitted in Earth orbit for reusable travel between Earth orbit and a lunar orbit. The outfitting of the external tank includes the adding of an engine, an electrical system, a communication system, a guidance system, an aerobraking device, and a plurality of interconnected fluid storage tanks to the hydrogen and oxygen tanks of the external tank. The external tank is then propelled to lunar orbit the first time using Earth-based propellant. In lunar orbit, the storage tanks are filled with the lunar generated fluid with the remainder tank volumes filled with lunar generated liquid oxygen and hydrogen which serve as propellants for returning the tank to Earth orbit where the fluid is off-loaded. The remaining lunar generated oxygen and hydrogen is then sufficient to return the external tank to lunar orbit so that a subsequent cycle of fluid delivery is repeated. A space station in a higher Earth orbit is preferably used to outfit the external tank, and a lunar node in lunar orbit is used to store and transfer the fluid and liquid oxygen and hydrogen to the external tank. The lunar generated fluid is preferably .sup.3 He.

  18. On the pinned field image binarization for signature generation in image ownership verification method

    NASA Astrophysics Data System (ADS)

    Lee, Mn-Ta; Chang, Hsuan Ting

    2011-12-01

    The issue of pinned field image binarization for signature generation in the ownership verification of the protected image is investigated. The pinned field explores the texture information of the protected image and can be employed to enhance the watermark robustness. In the proposed method, four optimization schemes are utilized to determine the threshold values for transforming the pinned field into a binary feature image, which is then utilized to generate an effective signature image. Experimental results show that the utilization of optimization schemes can significantly improve the signature robustness from the previous method (Lee and Chang, Opt. Eng. 49(9), 097005, 2010). While considering both the watermark retrieval rate and the computation speed, the genetic algorithm is strongly recommended. In addition, compared with Chang and Lin's scheme (J. Syst. Softw. 81(7), 1118-1129, 2008), the proposed scheme also has better performance.

  19. Test case set generation method on MC/DC based on binary tree

    NASA Astrophysics Data System (ADS)

    Wang, Jun-jie; Zhang, Bo; Chen, Yuan

    2013-03-01

    Exploring efficient, reliable test case design methods has been tester pursuit of the goal. Along with the aerospace software logic complexity of improving and software scale enlarging, this requirement also gets more compelling. Test case design techniques suited for MC/DC improved test case design efficiency, increase the test coverage. It is suitable to test the software that logical relationship is complicated comparatively. Some software test tools provide the function to calculate the test coverage. And it can assess the test cases whether on the MC/DC or not. But the software tester needs the reverse thinking. The paper puts forward that design the test case by Unique-cause and Masking approach. And it proposes automatic generation method of test case on MC/DC. It improved the efficiency and correctness of generation the test case set on DC/DC.

  20. A method of generating a linear frequency sweep in the microwave band

    NASA Astrophysics Data System (ADS)

    Hua, Li

    1989-02-01

    This article describes a method for generating a linear frequency sweep of more than 300 MHz in the band of 0.5 to 2.5 GHz using a phase-locked loop and a design of microwave voltage-controlled oscillator using a short-circuited transmission line and a varactor diode as the tuned circuit. The result of linearity measurements on the system is presented.

  1. A new field method to characterise the runoff generation potential of burned hillslopes

    NASA Astrophysics Data System (ADS)

    Sheridan, Gary; Lane, Patrick; Langhans, Christoph

    2016-04-01

    The prediction of post fire runoff generation is critical for the estimation of post fire erosion processes and rates. Typical field measures for determining infiltration model parameters include ring infiltrometers, tension infiltrometers, rainfall simulators and natural runoff plots. However predicting the runoff generating potential of post-fire hillslopes is difficult due to the high spatial variability of soil properties relative to the size of the measurement method, the poorly understood relationship between water repellence and runoff generation, known scaling issues with all the above hydraulic measurements, and logistical limitations for measurements in remote environments. In this study we tested a new field method for characterizing surface runoff generation potential that overcomes these limitations and is quick, simple and cheap to apply in the field. The new field method involves the manual application of a 40mm depth of Brilliant Blue FCF food dye along a 10cm wide and 5m long transect along the contour under slightly-ponded conditions. After 24 hours the transect is excavated to a depth of 10cm and the percentage dyed area within the soil profile recorded manually. The dyed area is an index of infiltration potential of the soil during intense rainfall events, and captures both spatial variability and water repellence effects. The dye measurements were made adjacent to long term instrumented post fire rainfall-runoff plots on 7 contrasting soil types over a 6 month period, and the results show surprisingly strong correlations (r2 = 0.9) between the runoff-ratio from the plots and the dyed area. The results are used to develop an initial conceptual model that links the dye index with an infiltration model and parameters suited to burnt hillslopes. The capacity of this method to provide a simple, and reliable indicator of post fire runoff potential from different fire severities, soil types and treatments is explored in this presentation.

  2. Method and tool for generating and managing image quality allocations through the design and development process

    NASA Astrophysics Data System (ADS)

    Sparks, Andrew W.; Olson, Craig; Theisen, Michael J.; Addiego, Chris J.; Hutchins, Tiffany G.; Goodman, Timothy D.

    2016-05-01

    Performance models for infrared imaging systems require image quality parameters; optical design engineers need image quality design goals; systems engineers develop image quality allocations to test imaging systems against. It is a challenge to maintain consistency and traceability amongst the various expressions of image quality. We present a method and parametric tool for generating and managing expressions of image quality during the system modeling, requirements specification, design, and testing phases of an imaging system design and development project.

  3. ConfGen: a conformational search method for efficient generation of bioactive conformers.

    PubMed

    Watts, K Shawn; Dalal, Pranav; Murphy, Robert B; Sherman, Woody; Friesner, Rich A; Shelley, John C

    2010-04-26

    We describe the methodology, parametrization, and application of a conformational search method, called ConfGen, designed to efficiently generate bioactive conformers. We define efficiency as the ability to generate a bioactive conformation within a small total number of conformations using a reasonable amount of computer time. The method combines physics-based force field calculations with empirically derived heuristics designed to achieve efficient searching and prioritization of the ligand's conformational space. While many parameter settings are supported, four modes spanning a range of speed and quality trades-offs are defined and characterized. The validation set used to test the method is composed of ligands from 667 crystal structures covering a broad array of target and ligand classes. With the fastest mode, ConfGen uses an average of 0.5 s per ligand and generates only 14.3 conformers per ligand, at least one of which lies within 2.0 A root-mean-squared deviation of the crystal structure for 96% of the ligands. The most computationally intensive mode raises this recovery rate to 99%, while taking 8 s per ligand. Combining multiple search modes to "fill-in" holes in the conformation space or energy minimizing using an all-atom force field each lead to improvements in the recovery rates at higher resolutions. Overall, ConfGen is at least as good as competing programs at high resolution and demonstrates higher efficiency at resolutions sufficient for many downstream applications, such as pharmacophore modeling. PMID:20373803

  4. Remembrance of phases past: An autoregressive method for generating realistic atmospheres in simulations

    NASA Astrophysics Data System (ADS)

    Srinath, Srikar; Poyneer, Lisa A.; Rudy, Alexander R.; Ammons, S. M.

    2014-08-01

    The advent of expensive, large-aperture telescopes and complex adaptive optics (AO) systems has strengthened the need for detailed simulation of such systems from the top of the atmosphere to control algorithms. The credibility of any simulation is underpinned by the quality of the atmosphere model used for introducing phase variations into the incident photons. Hitherto, simulations which incorporate wind layers have relied upon phase screen generation methods that tax the computation and memory capacities of the platforms on which they run. This places limits on parameters of a simulation, such as exposure time or resolution, thus compromising its utility. As aperture sizes and fields of view increase the problem will only get worse. We present an autoregressive method for evolving atmospheric phase that is efficient in its use of computation resources and allows for variability in the power contained in frozen flow or stochastic components of the atmosphere. Users have the flexibility of generating atmosphere datacubes in advance of runs where memory constraints allow to save on computation time or of computing the phase at each time step for long exposure times. Preliminary tests of model atmospheres generated using this method show power spectral density and rms phase in accordance with established metrics for Kolmogorov models.

  5. Comparison of Two Methods for Composite Score Generation in Dry Eye Syndrome

    PubMed Central

    See, Craig; Bilonick, Richard A.; Feuer, William; Galor, Anat

    2013-01-01

    Purpose. To compare two methods of composite score generation in dry eye syndrome (DES). Methods. Male patients seen in the Miami Veterans Affairs eye clinic with normal eyelid, corneal, and conjunctival anatomy were recruited to participate in the study. Patients filled out the Dry Eye Questionnaire 5 (DEQ5) and underwent measurement of tear film parameters. DES severity scores were generated by independent component analysis (ICA) and latent class analysis (LCA). Results. A total of 247 men were included in the study. Mean age was 69 years (SD 9). Using ICA analysis, osmolarity was found to carry the largest weight, followed by eyelid vascularity and meibomian orifice plugging. Conjunctival injection and tear breakup time (TBUT) carried the lowest weights. Using LCA analysis, TBUT was found to be best at discriminating healthy from diseased eyes, followed closely by Schirmer's test. DEQ5, eyelid vascularity, and conjunctival injection were the poorest at discrimination. The adjusted correlation coefficient between the two generated composite scores was 0.63, indicating that the shared variance was less than 40%. Conclusions. Both ICA and LCA produced composite scores for dry eye severity, with weak to moderate agreement; however, agreement for the relative importance of single diagnostic tests was poor between the two methods. PMID:23942971

  6. Validation of Vortex-Lattice Method for Loads on Wings in Lift-Generated Wakes

    NASA Technical Reports Server (NTRS)

    Rossow, Vernon J.

    1995-01-01

    A study is described that evaluates the accuracy of vortex-lattice methods when they are used to compute the loads induced on aircraft as they encounter lift-generated wakes. The evaluation is accomplished by the use of measurements made in the 80 by 120 ft Wind Tunnel of the lift, rolling moment, and downwash in the wake of three configurations of a model of a subsonic transport aircraft. The downwash measurements are used as input for a vortex-lattice code in order to compute the lift and rolling moment induced on wings that have a span of 0.186, 0.510, or 1.022 times the span of the wake-generating model. Comparison of the computed results with the measured lift and rolling-moment distributions the vortex-lattice method is very reliable as long as the span of the encountering or following wing is less than about 0.2 of the generator span. As the span of the following wing increases above 0.2, the vortex-lattice method continues to correctly predict the trends and nature of the induced loads, but it overpredicts the magnitude of the loads by increasing amounts.

  7. Hierarchical Methods for the Generation, Publication and Visualization of Huge Astronomical Data Cube Surveys

    NASA Astrophysics Data System (ADS)

    Fernique, P.; Allen, M.; Boch, T.; Bonnarel, F.; Oberto, A.

    2015-09-01

    The CDS has developed and validated new methods to generate, publish and display huge astronomical image data cubes based on the Hierarchical Progressive Survey (HiPS) framework. Data cubes with two spatial dimensions and an additional spectral or temporal dimension can be mapped onto HEALPix grids at different resolutions, which supports zooming and panning of the data across the sky with the ability to explore the third dimension of the cube. These methods are successfully applied to different sorts of cube data, and surveys of cube data.

  8. Method for generating a highly reactive plasma for exhaust gas aftertreatment and enhanced catalyst reactivity

    DOEpatents

    Whealton, John H.; Hanson, Gregory R.; Storey, John M.; Raridon, Richard J.; Armfield, Jeffrey S.; Bigelow, Timothy S.; Graves, Ronald L.

    2002-01-01

    A method for non-thermal plasma aftertreatment of exhaust gases the method comprising the steps of providing short risetime, high frequency, high power bursts of low-duty factor microwaves sufficient to generate a plasma discharge and passing a gas to be treated through the discharge so as to cause dissociative reduction of the exhaust gases and enhanced catalyst reactivity through application of the pulsed microwave fields directly to the catalyst material sufficient to cause a polarizability catastrophe and enhanced heating of the metal crystallite particles of the catalyst, and in the presence or absence of the plasma. The invention also includes a reactor for aftertreatment of exhaust gases.

  9. Method for generation of spiral bevel gears with conjugate gear tooth surfaces

    NASA Technical Reports Server (NTRS)

    Litvin, F. L.; Coy, J. J.; Heine, C.; Tsung, Wei-Jiung

    1987-01-01

    A method for generation of spiral bevel gears is proposed that provides conjugate gear tooth surfaces. This method is based on a new principle for the performance of parallel motion of a straight line that slides along two mating ellipses with related dimensions and parameters of orientation. The parallel motion of the straight line, that is, the contact normal, is performed parallel to the line which passes through the foci of symmetry of the related ellipses. The manufacturing of gears can be performed with the existing Gleason's equipment.

  10. Simple method for the generation of multiple homogeneous field volumes inside the bore of superconducting magnets

    PubMed Central

    Chou, Ching-Yu; Ferrage, Fabien; Aubert, Guy; Sakellariou, Dimitris

    2015-01-01

    Standard Magnetic Resonance magnets produce a single homogeneous field volume, where the analysis is performed. Nonetheless, several modern applications could benefit from the generation of multiple homogeneous field volumes along the axis and inside the bore of the magnet. In this communication, we propose a straightforward method using a combination of ring structures of permanent magnets in order to cancel the gradient of the stray field in a series of distinct volumes. These concepts were demonstrated numerically on an experimentally measured magnetic field profile. We discuss advantages and limitations of our method and present the key steps required for an experimental validation. PMID:26182891

  11. Distributed processing method for arbitrary view generation in camera sensor network

    NASA Astrophysics Data System (ADS)

    Tehrani, Mehrdad P.; Fujii, Toshiaki; Tanimoto, Masayuki

    2003-05-01

    Camera sensor network as a new advent of technology is a network that each sensor node can capture video signals, process and communicate them with other nodes. The processing task in this network is to generate arbitrary view, which can be requested from central node or user. To avoid unnecessary communication between nodes in camera sensor network and speed up the processing time, we have distributed the processing tasks between nodes. In this method, each sensor node processes part of interpolation algorithm to generate the interpolated image with local communication between nodes. The processing task in camera sensor network is ray-space interpolation, which is an object independent method and based on MSE minimization by using adaptive filtering. Two methods were proposed for distributing processing tasks, which are Fully Image Shared Decentralized Processing (FIS-DP), and Partially Image Shared Decentralized Processing (PIS-DP), to share image data locally. Comparison of the proposed methods with Centralized Processing (CP) method shows that PIS-DP has the highest processing speed after FIS-DP, and CP has the lowest processing speed. Communication rate of CP and PIS-DP is almost same and better than FIS-DP. So, PIS-DP is recommended because of its better performance than CP and FIS-DP.

  12. Improved Sequence Tag Generation Method for Peptide Identification in Tandem Mass Spectrometry

    PubMed Central

    Cao, Xia; Nesvizhskii, Alexey I.

    2013-01-01

    The sequence tag-based peptide identification methods are a promising alternative to the traditional database search approach. However, a more comprehensive analysis, optimization, and comparison with established methods are necessary before these methods can gain widespread use in the proteomics community. Using the InsPecT open source code base (Tanner et al., Anal Chem. 2005, 77:4626–39), we present an improved sequence tag generation method that directly incorporates multi-charged fragment ion peaks present in many tandem mass spectra of higher charge states. We also investigate the performance of sequence tagging under different settings using control datasets generated on five different types of mass spectrometers, as well as using a complex phosphopeptide-enriched sample. We also demonstrate that additional modeling of InsPecT search scores using a semi-parametric approach incorporating the accuracy of the precursor ion mass measurement provides additional improvement in the ability to discriminate between correct and incorrect peptide identifications. The overall superior performance of the sequence tag-based peptide identification method is demonstrated by comparison with a commonly used SEQUEST/PeptideProphet approach. PMID:18785767

  13. Structured background grids for generation of unstructured grids by advancing front method

    NASA Technical Reports Server (NTRS)

    Pirzadeh, Shahyar

    1991-01-01

    A new method of background grid construction is introduced for generation of unstructured tetrahedral grids using the advancing-front technique. Unlike the conventional triangular/tetrahedral background grids which are difficult to construct and usually inadequate in performance, the new method exploits the simplicity of uniform Cartesian meshes and provides grids of better quality. The approach is analogous to solving a steady-state heat conduction problem with discrete heat sources. The spacing parameters of grid points are distributed over the nodes of a Cartesian background grid by interpolating from a few prescribed sources and solving a Poisson equation. To increase the control over the grid point distribution, a directional clustering approach is used. The new method is convenient to use and provides better grid quality and flexibility. Sample results are presented to demonstrate the power of the method.

  14. A novel method for detecting second harmonic ultrasonic components generated from fastened bolts

    NASA Astrophysics Data System (ADS)

    Fukuda, Makoto; Imano, Kazuhiko

    2012-09-01

    This study examines the use of ultrasonic second harmonic components in the quality control of bolt-fastened structures. An improved method for detecting the second harmonic components, from a bolt fastened with a nut, using the transmission method is constructed. A hexagon head iron bolt (12-mm diameter and 25-mm long) was used in the experiments. The bolt was fastened using a digital torque wrench. The second harmonic component increased by approximately 20 dB before and after the bolt was fastened. The sources of second harmonic components were contact acoustic nonlinearity in the screw thread interfaces of the bolt-nut and were the plastic deformation in the bolt with fastening bolt. This result was improved by approximately 10 dB compared with previous our method. Consequently, usefulness of the novel method for detecting second harmonic ultrasonic components generated from fastened bolt was confirmed.

  15. Computer-generated holograms by multiple wavefront recording plane method with occlusion culling.

    PubMed

    Symeonidou, Athanasia; Blinder, David; Munteanu, Adrian; Schelkens, Peter

    2015-08-24

    We propose a novel fast method for full parallax computer-generated holograms with occlusion processing, suitable for volumetric data such as point clouds. A novel light wave propagation strategy relying on the sequential use of the wavefront recording plane method is proposed, which employs look-up tables in order to reduce the computational complexity in the calculation of the fields. Also, a novel technique for occlusion culling with little additional computation cost is introduced. Additionally, the method adheres a Gaussian distribution to the individual points in order to improve visual quality. Performance tests show that for a full-parallax high-definition CGH a speedup factor of more than 2,500 compared to the ray-tracing method can be achieved without hardware acceleration. PMID:26368189

  16. Retrospective analysis showing the water method increased adenoma detection rate - a hypothesis generating observation.

    PubMed

    Leung, Joseph W; Do, Lynne D; Siao-Salera, Rodelei M; Ngo, Catherine; Parikh, Dhavan A; Mann, Surinder K; Leung, Felix W

    2011-01-01

    BACKGROUND: A water method developed to attenuate discomfort during colonoscopy enhanced cecal intubation in unsedated patients. Serendipitously a numerically increased adenoma detection rate (ADR) was noted. OBJECTIVE: To explore databases of sedated patients examined by the air and water methods to identify hypothesis-generating findings. DESIGN: Retrospective analysis. SETTING: VA endoscopy center. PATIENTS: creening colonoscopy. INTERVENTIONS: From 1/2000-6/2006 the air method was used - judicious air insufflation to permit visualization of the lumen to aid colonoscope insertion and water spray for washing mucosal surfaces. From 6/2006-11/2009 the water method was adopted - warm water infusion in lieu of air insufflation and suction removal of residual air to aid colonoscope insertion. During colonoscope withdrawal adequate air was insufflated to distend the colonic lumen for inspection, biopsy and polypectomy in a similar fashion in both periods. Main outcome measurements: ADR. RESULTS: The air (n=683) vs. water (n=495) method comparisons revealed significant differences in overall ADR 26.8% (183 of 683) vs. 34.9% (173 of 495) and ADR of adenomas >9 mm, 7.2% vs. 13.7%, respectively (both P<0.05, Fisher's exact test). LIMITATIONS: Non-randomized data susceptible to bias by unmeasured parameters unrelated to the methods. CONCLUSION: Confirmation of the serendipitous observation of an impact of the water method on ADR provides impetus to call for randomized controlled trials to test hypotheses related to the water method as an approach to improving adenoma detection. Because of recent concerns over missed lesions during colonoscopy, the provocative hypothesis-generating observations warrant presentation. PMID:21686105

  17. Method and apparatus for steam mixing a nuclear fueled electricity generation system

    DOEpatents

    Tsiklauri, Georgi V.; Durst, Bruce M.

    1996-01-01

    A method and apparatus for improving the efficiency and performance of a nuclear electrical generation system that comprises the addition of steam handling equipment to an existing plant that results in a surprising increase in plant performance. More particularly, a gas turbine electrical generation system with heat recovery boiler is installed along with a micro-jet high pressure and a low pressure mixer superheater. Depending upon plant characteristics, the existing moisture separator reheater (MSR) can be either augmented or done away with. The instant invention enables a reduction in T.sub.hot without a derating of the reactor unit, and improves efficiency of the plant's electrical conversion cycle. Coupled with this advantage is a possible extension of the plant's fuel cycle length due to an increased electrical conversion efficiency. The reduction in T.sub.hot further allows for a surprising extension of steam generator life. An additional advantage is the reduction in erosion/corrosion of secondary system components including turbine blades and diaphragms. The gas turbine generator used in the instant invention can also replace or augment existing peak or emergency power needs. Another benefit of the instant invention is the extension of plant life and the reduction of downtime due to refueling.

  18. a Method of Generating Panoramic Street Strip Image Map with Mobile Mapping System

    NASA Astrophysics Data System (ADS)

    Tianen, Chen; Yamamoto, Kohei; Tachibana, Kikuo

    2016-06-01

    This paper explores a method of generating panoramic street strip image map which is called as "Pano-Street" here and contains both sides, ground surface and overhead part of a street with a sequence of 360° panoramic images captured with Point Grey's Ladybug3 mounted on the top of Mitsubishi MMS-X 220 at 2m intervals along the streets in urban environment. On-board GPS/IMU, speedometer and post sequence image analysis technology such as bundle adjustment provided much more accuracy level position and attitude data for these panoramic images, and laser data. The principle for generating panoramic street strip image map is similar to that of the traditional aero ortho-images. A special 3D DEM(3D-Mesh called here) was firstly generated with laser data, the depth map generated from dense image matching with the sequence of 360° panoramic images, or the existing GIS spatial data along the MMS trajectory, then all 360° panoramic images were projected and stitched on the 3D-Mesh with the position and attitude data. This makes it possible to make large scale panoramic street strip image maps for most types of cities, and provides another kind of street view way to view the 360° scene along the street by avoiding the switch of image bubbles like Google Street View and Bing Maps Streetside.

  19. Method and apparatus for improving the performance of a nuclear power electrical generation system

    DOEpatents

    Tsiklauri, Georgi V.; Durst, Bruce M.

    1995-01-01

    A method and apparatus for improving the efficiency and performance a of nuclear electrical generation system that comprises the addition of steam handling equipment to an existing plant that results in a surprising increase in plant performance. More particularly, a gas turbine electrical generation system with heat recovery boiler is installed along with a high pressure and a low pressure mixer superheater. Depending upon plant characteristics, the existing moisture separator reheater (MSR) can be either augmented or done away with. The instant invention enables a reduction in T.sub.hot without a derating of the reactor unit, and improves efficiency of the plant's electrical conversion cycle. Coupled with this advantage is a possible extension of the plant's fuel cycle length due to an increased electrical conversion efficiency. The reduction in T.sub.hot further allows for a surprising extension of steam generator life. An additional advantage is the reduction in erosion/corrosion of secondary system components including turbine blades and diaphragms. The gas turbine generator used in the instant invention can also replace or augment existing peak or emergency power needs.

  20. Grid generation and flow solution method for Euler equations on unstructured grids

    NASA Technical Reports Server (NTRS)

    Anderson, W. Kyle

    1992-01-01

    A grid generation and flow solution algorithm for the Euler equations on unstructured grids is presented. The grid generation scheme, which uses Delaunay triangulation, generates the field points for the mesh based on cell aspect ratios and allows clustering of grid points near solid surfaces. The flow solution method is an implicit algorithm in which the linear set of equations arising at each time step is solved using a Gauss-Seidel procedure that is completely vectorizable. Also, a study is conducted to examine the number of subiterations required for good convergence of the overall algorithm. Grid generation results are shown in two dimensions for an NACA 0012 airfoil as well as a two element configuration. Flow solution results are shown for a two dimensional flow over the NACA 0012 airfoil and for a two element configuration in which the solution was obtained through an adaptation procedure and compared with an exact solution. Preliminary three dimensional results also are shown in which the subsonic flow over a business jet is computed.

  1. A grid generation and flow solution method for the Euler equations on unstructured grids

    NASA Technical Reports Server (NTRS)

    Anderson, W. Kyle

    1994-01-01

    A grid generation and flow solution algorithm for the Euler equations on unstructured grids is presented. The grid generation scheme utilizes Delaunay triangulation and self-generates the field points for the mesh based on cell aspect ratios and allows for clustering near solid surfaces. The flow solution method is an implicit algorithm in which the linear set of equations arising at each time step is solved using a Gauss Seidel procedure which is completely vectorizable. In addition, a study is conducted to examine the number of subiterations required for good convergence of the overall algorithm. Grid generation results are shown in two dimensions for a National Advisory Committee for Aeronautics (NACA) 0012 airfoil as well as a two-element configuration. Flow solution results are shown for two-dimensional flow over the NACA 0012 airfoil and for a two-element configuration in which the solution has been obtained through an adaptation procedure and compared to an exact solution. Preliminary three-dimensional results are also shown in which subsonic flow over a business jet is computed.

  2. A grid generation and flow solution method for the Euler equations on unstructured grids

    SciTech Connect

    Anderson, W.K. )

    1994-01-01

    A grid generation and flow solution algorithm for the Euler equations on unstructured grids is presented. The grid generation scheme utilizes Delaunay triangulation and self-generates the field points for the mesh based on cell aspect ratios and allows for clustering near solid surfaces. The flow solution method is an implicit algorithm in which the linear set or equations arising at each time step is solved using a Gauss Seidel procedure which is completely vectorizable. In addition, a study is conducted to examine the number of subiterations required for good convergence of the overall algorithm. Grid generation results are shown in two dimensions for a NACA 0012 airfoil as well as two-element configuration. Flow solution results are shown for two-dimensional flow over the NACA 0012 airfoil and for a two-element configuration in which the solution has been obtained through an adaptation procedure and compared to an exact solution. Preliminary three-dimensional results are also shown in which subsonic flow over a business jet is computed. 31 refs. 30 figs.

  3. A method for generating unfolded views of the stomach based on volumetric image deformation

    NASA Astrophysics Data System (ADS)

    Mori, Kensaku; Oka, Hiroki; Kitasaka, Takayuki; Suenaga, Yasuhito

    2005-04-01

    This paper presents a method for virtually generating unfolded views of the stomach using volumetric image deformation. When we observe an organ with a large cavity in it, such as the stomach or the colon, by using a virtual endoscopy system, many changes of viewpoint and view direction are required. If virtually unfolded views of a target organ could be generated, doctors could easily diagnose the organ's inner walls only by one or a several views. In the proposed method, we extract a stomach wall region from a 3-D abdominal CT images and the obtained region is shrunken. For every voxel of the shrunken image, we allocate a hexahedron. In the deformation process, nodes and springs are allocated on the vertices, edges, and diagonals of each hexahedron. Neighboring hexahedrons share nodes and springs, except for the hexahedrons on the cutting line that a user specifies. The hexahedrons are deformed by adding forces that direct the nodes to the stretching plane to the nodes existing on the cutting line. The hexahedrons are deformed using iterative deformation calculation. By using the geometrical relations between hexahedrons before and after deformation, a volumetric image in which the stomach region is unfolded. Finally, the unfolded views are obtained by visualizing the reconstructed volume can be constructed. We applied the proposed method to eleven cases of 3-D abdominal CT images. The results show that the proposed method can accurately reproduce folds and lesions on the stomach.

  4. Occlusion culling and calculation for a computer generated hologram using spatial frequency index method

    NASA Astrophysics Data System (ADS)

    Zhao, Kai; Huang, Yingqing; Yan, Xingpeng; Jiang, Xiaoyu

    2015-10-01

    A spatial frequency index method is proposed to cull occlusion and generate a hologram. Object points with the same spatial frequency are put into a set for their mutual occlusion. The hidden surfaces of the three-dimensional (3D) scene are quickly removed through culling the object points that are furthest from the hologram plane in the set. The phases of plane wave, which are only interrelated with the spatial frequencies, are precomputed and stored in a table. According to the spatial frequency of the object points, the phases of plane wave for generating fringes are obtained directly from the table. Three 3D scenes are chosen to verify the spatial frequency index method. Both numerical simulation and optical reconstruction are performed. Experimental results demonstrate that the proposed method can cull the hidden surfaces of the 3D scene correctly. The occlusion effect of the 3D scene can be well reproduced. The computational speed is better than that obtained using conventional methods but is still time-consuming.

  5. Intergenerational Mobility in the Post-1965 Immigration Era: Estimates By An Immigrant Generation Cohort Method

    PubMed Central

    PARK, JULIE; MYERS, DOWELL

    2010-01-01

    The new second generation of the post-1965 immigration era is observed as children with their parents in 1980 and again as adults 25 years later. Intergenerational mobility is assessed for both men and women in four major racial/ethnic groups, both in regard to children’s status attainment relative to parents and with regard to the rising societal standards proxied by native-born non-Hispanic whites. A profile of intergenerational mobility is prepared using multiple indicators of status attainment: high school and college completion, upper white-collar occupation, poverty, and homeownership. The immigrant generation cohort method we introduce accounts for four distinct temporal dimensions of immigrant progress, clarifying inconsistencies in the literature and highlighting differences in mobility between racial/ethnic groups and with respect to different outcome measures. The immigrant generation cohort method consistently finds greater intergenerational mobility than suggested by alternative approaches. Our analysis also shows that the intergenerational progress of women is greater than that of men and provides a more complete record of immigrant mobility overall. Findings for individual racial/ethnic groups accord with some expectations in the literature and contradict others. PMID:20608102

  6. A sparse grid based method for generative dimensionality reduction of high-dimensional data

    NASA Astrophysics Data System (ADS)

    Bohn, Bastian; Garcke, Jochen; Griebel, Michael

    2016-03-01

    Generative dimensionality reduction methods play an important role in machine learning applications because they construct an explicit mapping from a low-dimensional space to the high-dimensional data space. We discuss a general framework to describe generative dimensionality reduction methods, where the main focus lies on a regularized principal manifold learning variant. Since most generative dimensionality reduction algorithms exploit the representer theorem for reproducing kernel Hilbert spaces, their computational costs grow at least quadratically in the number n of data. Instead, we introduce a grid-based discretization approach which automatically scales just linearly in n. To circumvent the curse of dimensionality of full tensor product grids, we use the concept of sparse grids. Furthermore, in real-world applications, some embedding directions are usually more important than others and it is reasonable to refine the underlying discretization space only in these directions. To this end, we employ a dimension-adaptive algorithm which is based on the ANOVA (analysis of variance) decomposition of a function. In particular, the reconstruction error is used to measure the quality of an embedding. As an application, the study of large simulation data from an engineering application in the automotive industry (car crash simulation) is performed.

  7. Applications of automatic mesh generation and adaptive methods in computational medicine

    SciTech Connect

    Schmidt, J.A.; Macleod, R.S.; Johnson, C.R.; Eason, J.C.

    1995-12-31

    Important problems in Computational Medicine exist that can benefit from the implementation of adaptive mesh refinement techniques. Biological systems are so inherently complex that only efficient models running on state of the art hardware can begin to simulate reality. To tackle the complex geometries associated with medical applications we present a general purpose mesh generation scheme based upon the Delaunay tessellation algorithm and an iterative point generator. In addition, automatic, two- and three-dimensional adaptive mesh refinement methods are presented that are derived from local and global estimates of the finite element error. Mesh generation and adaptive refinement techniques are utilized to obtain accurate approximations of bioelectric fields within anatomically correct models of the heart and human thorax. Specifically, we explore the simulation of cardiac defibrillation and the general forward and inverse problems in electrocardiography (ECG). Comparisons between uniform and adaptive refinement techniques are made to highlight the computational efficiency and accuracy of adaptive methods in the solution of field problems in computational medicine.

  8. Direct-substitution method for studying second harmonic generation in arbitrary optical superlattices

    NASA Astrophysics Data System (ADS)

    Chen, Ying; Yang, Xiangbo

    In this paper, we present the direct-substitution (DS) method to study the second-harmonic generation (SHG) in arbitrary one-dimensional optical superlattices (OS). Applying this method to Fibonacci and generalized Fibonacci systems, we obtain the relative intensity of SHG and compare them with previous works. We confirmed the validity of the proposed DS method by comparing our results of SHG in quasiperiodic Fibonacci OS with previous works using analytical Fourier transform method. Furthermore, the three-dimension SHG spectra obtained by DS method present the properties of SHG in Fibonacci OS more distinctly. What's more important, the DS method demands very few limits and can be used to compute directly and conveniently the intensity of SHG in arbitrary OS where the quasi-phase-matching (QPM) can be achieved. It shows that the DS method is powerful for the calculation of electric field and intensity of SHG and can help experimentalists conveniently to estimate the distributions of SHG in any designed polarized systems.

  9. A column-generation-based method for multi-criteria direct aperture optimization

    NASA Astrophysics Data System (ADS)

    Salari, Ehsan; Unkelbach, Jan

    2013-02-01

    Navigation-based multi-criteria optimization has been introduced to radiotherapy planning in order to allow the interactive exploration of trade-offs between conflicting clinical goals. However, this has been mainly applied to fluence map optimization. The subsequent leaf sequencing step may cause dose discrepancy, leading to human iteration loops in the treatment planning process that multi-criteria methods were meant to avoid. To circumvent this issue, this paper investigates the application of direct aperture optimization methods in the context of multi-criteria optimization. We develop a solution method to directly obtain a collection of apertures that can adequately span the entire Pareto surface. To that end, we extend the column generation method for direct aperture optimization to a multi-criteria setting in which apertures that can improve the entire Pareto surface are sequentially identified and added to the treatment plan. Our proposed solution method can be embedded in a navigation-based multi-criteria optimization framework, in which the treatment planner explores the trade-off between treatment objectives directly in the space of deliverable apertures. Our solution method is demonstrated for a paraspinal case where the trade-off between target coverage and spinal-cord sparing is studied. The computational results validate that our proposed method obtains a balanced approximation of the Pareto surface over a wide range of clinically relevant plans.

  10. A Column-generation-based Method for Multi-criteria Direct Aperture Optimization

    PubMed Central

    Salari, Ehsan; Unkelbach, Jan

    2013-01-01

    Navigation-based multi-criteria optimization has been introduced to radiotherapy planning in order to allow the interactive exploration of trade-offs between conflicting clinical goals. However, this has been mainly applied to fluence map optimization. The subsequent leaf sequencing step may cause dose discrepancy, leading to human iteration loops in the treatment planning process that multi-criteria methods were meant to avoid. To circumvent this issue, this paper investigates the application of direct aperture optimization methods in the context of multi-criteria optimization. We develop a solution method to directly obtain a collection of apertures that can adequately span the entire Pareto surface. To that end, we extend the column generation method for direct aperture optimization to a multi-criteria setting in which apertures that can improve the entire Pareto surface are sequentially identified and added to the aperture collection. Our proposed solution method can be embedded in a navigation-based multi-criteria optimization framework, in which the treatment planner explores the trade-off between treatment objectives directly in the space of deliverable apertures. Our solution method is demonstrated for a paraspinal case where the trade-off between target coverage and spinal-cord sparing is studied. The computational results validate that our proposed method obtains a balanced approximation of the Pareto surface over a wide range of clinically relevant plans. PMID:23318527

  11. Studies on Aspirin Crystals Generated by a Modified Vapor Diffusion Method.

    PubMed

    Mittal, Amit; Malhotra, Deepak; Jain, Preeti; Kalia, Anupama; Shunmugaperumal, Tamilvanan

    2016-08-01

    The objectives of the current investigation were (1) to study the influence of selected two different non-solvents (diethylether and dichloromethane) on the drug crystal formation of a model drug, aspirin (ASP-I) by the modified vapor diffusion method and (2) to characterize and compare the generated crystals (ASP-II and ASP-III) using different analytical techniques with that of unprocessed ASP-I. When compared to the classical vapor diffusion method which consumes about 15 days to generate drug crystals, the modified method needs only 12 h to get the same. Fourier transform-infrared spectroscopy (FT-IR) reveals that the internal structures of ASP-II and ASP-III crystals were identical when compared with ASP-I. Although the drug crystals showed a close similarity in X-ray diffraction patterns, the difference in the relative intensities of some of the diffraction peaks (especially at 2θ values of around 7.7 and 15.5) could be attributed to the crystal habit or crystal size modification. Similarly, the differential scanning calorimetry (DSC) study speculates that only the crystal habit modifications might occur but without involving any change in internal structure of the generated drug polymorphic form I. This is further substantiated from the scanning electron microscopy (SEM) pictures that indicated the formation of platy shape for the ASP-II crystals and needle shape for the ASP-III crystals. In addition, the observed slow dissolution of ASP crystals should indicate polymorph form I formation. Thus, the modified vapor diffusion method could routinely be used to screen and legally secure all possible forms of other drug entities too. PMID:26729528

  12. The generation of NGF-secreting primary rat monocytes: A comparison of different transfer methods

    PubMed Central

    Hohsfield, Lindsay A.; Geley, Stephan; Reindl, Markus; Humpel, Christian

    2013-01-01

    Nerve growth factor (NGF), a member of the neurotrophin family, is responsible for the maintenance and survival of cholinergic neurons in the basal forebrain. The degeneration of cholinergic neurons and reduced acetycholine levels are hallmarks of Alzheimer's disease (AD) as well as associated with learning and memory deficits. Thus far, NGF has proven the most potent neuroprotective molecule against cholinergic neurodegeneration. However, delivery of this factor into the brain remains difficult. Recent studies have begun to elucidate the potential use of monocytes as vehicles for therapeutic delivery into the brain. In this study, we employed different transfection and transduction methods to generate NGF-secreting primary rat monocytes. Specifically, we compared five methods for generating NGF-secreting monocytes: (1) cationic lipid-mediated transfection (Effectene and FuGene), (2) classical electroporation, (3) nucleofection, (4) protein delivery (Bioporter) and (5) lentiviral vectors. Here, we report that classical transfection methods (lipid-mediated transfection, electroporation, nucleofection) are inefficient tools for proper gene transfer into primary rat monocytes. We demonstrate that lentiviral infection and Bioporter can successfully transduce/load primary rat monocytes and produce effective NGF secretion. Furthermore, our results indicate that NGF is bioactive and that Bioporter-loaded monocytes do not appear to exhibit any functional disruptions (i.e. in their ability to differentiate and phagocytose beta-amyloid). Taken together, our results show that primary monocytes can be effectively loaded or transduced with NGF and provides information on the most effective method for generating NGF-secreting primary rat monocytes. This study also provides a basis for further development of primary monocytes as therapeutic delivery vehicles to the diseased AD brain. PMID:23474426

  13. Fungal spore fragmentation as a function of airflow rates and fungal generation methods

    NASA Astrophysics Data System (ADS)

    Kanaani, Hussein; Hargreaves, Megan; Ristovski, Zoran; Morawska, Lidia

    The aim of this study was to characterise and quantify the fungal fragment propagules derived and released from several fungal species ( Penicillium, Aspergillus niger and Cladosporium cladosporioides) using different generation methods and different air velocities over the colonies. Real time fungal spore fragmentation was investigated using an Ultraviolet Aerodynamic Particle Sizer (UVASP) and a Scanning Mobility Particle Sizer (SMPS). The study showed that there were significant differences ( p < 0.01) in the fragmentation percentage between different air velocities for the three generation methods, namely the direct, the fan and the fungal spore source strength tester (FSSST) methods. The percentage of fragmentation also proved to be dependent on fungal species. The study found that there was no fragmentation for any of the fungal species at an air velocity ≤0.4 m s -1 for any method of generation. Fluorescent signals, as well as mathematical determination also showed that the fungal fragments were derived from spores. Correlation analysis showed that the number of released fragments measured by the UVAPS under controlled conditions can be predicted on the basis of the number of spores, for Penicillium and A. niger, but not for C. cladosporioides. The fluorescence percentage of fragment samples was found to be significantly different to that of non-fragment samples ( p < 0.0001) and the fragment sample fluorescence was always less than that of the non-fragment samples. Size distribution and concentration of fungal fragment particles were investigated qualitatively and quantitatively, by both UVAPS and SMPS, and it was found that the UVAPS was more sensitive than the SMPS for measuring small sample concentrations, whilethe results obtained from the UVAPS and SMAS were not identical for the same samples.

  14. A Novel Videography Method for Generating Crack-Extension Resistance Curves in Small Bone Samples

    PubMed Central

    Katsamenis, Orestis L.; Jenkins, Thomas; Quinci, Federico; Michopoulou, Sofia; Sinclair, Ian; Thurner, Philipp J.

    2013-01-01

    Assessment of bone quality is an emerging solution for quantifying the effects of bone pathology or treatment. Perhaps one of the most important parameters characterising bone quality is the toughness behaviour of bone. Particularly, fracture toughness, is becoming a popular means for evaluating bone quality. The method is moving from a single value approach that models bone as a linear-elastic material (using the stress intensity factor, K) towards full crack extension resistance curves (R-curves) using a non-linear model (the strain energy release rate in J-R curves). However, for explanted human bone or small animal bones, there are difficulties in measuring crack-extension resistance curves due to size constraints at the millimetre and sub-millimetre scale. This research proposes a novel “whitening front tracking” method that uses videography to generate full fracture resistance curves in small bone samples where crack propagation cannot typically be observed. Here we present this method on sharp edge notched samples (<1 mm×1 mm×Length) prepared from four human femora tested in three-point bending. Each sample was loaded in a mechanical tester with the crack propagation recorded using videography and analysed using an algorithm to track the whitening (damage) zone. Using the “whitening front tracking” method, full R-curves and J-R curves could be generated for these samples. The curves for this antiplane longitudinal orientation were similar to those found in the literature, being between the published longitudinal and transverse orientations. The proposed technique shows the ability to generate full “crack” extension resistance curves by tracking the whitening front propagation to overcome the small size limitations and the single value approach. PMID:23405186

  15. A method for generating numerical pilot opinion ratings using the optimal pilot model

    NASA Technical Reports Server (NTRS)

    Hess, R. A.

    1976-01-01

    A method for generating numerical pilot opinion ratings using the optimal pilot model is introduced. The method is contained in a rating hypothesis which states that the numerical rating which a human pilot assigns to a specific vehicle and task can be directly related to the numerical value of the index of performance resulting from the optimal pilot modeling procedure as applied to that vehicle and task. The hypothesis is tested using the data from four piloted simulations. The results indicate that the hypothesis is reasonable, but that the predictive capability of the method is a strong function of the accuracy of the pilot model itself. This accuracy is, in turn, dependent upon the parameters which define the optimal modeling problem. A procedure for specifying the parameters for the optimal pilot model in the absence of experimental data is suggested.

  16. Systematic method of generating new integrable systems via inverse Miura maps

    SciTech Connect

    Tsuchida, Takayuki

    2011-05-15

    We provide a new natural interpretation of the Lax representation for an integrable system; that is, the spectral problem is the linearized form of a Miura transformation between the original system and a modified version of it. On the basis of this interpretation, we formulate a systematic method of identifying modified integrable systems that can be mapped to a given integrable system by Miura transformations. Thus, this method can be used to generate new integrable systems from known systems through inverse Miura maps; it can be applied to both continuous and discrete systems in 1 + 1 dimensions as well as in 2 + 1 dimensions. The effectiveness of the method is illustrated using examples such as the nonlinear Schroedinger (NLS) system, the Zakharov-Ito system (two-component KdV), the three-wave interaction system, the Yajima-Oikawa system, the Ablowitz-Ladik lattice (integrable space-discrete NLS), and two (2 + 1)-dimensional NLS systems.

  17. A simple and direct method for generating travelling wave solutions for nonlinear equations

    SciTech Connect

    Bazeia, D. Das, Ashok; Silva, A.

    2008-05-15

    We propose a simple and direct method for generating travelling wave solutions for nonlinear integrable equations. We illustrate how nontrivial solutions for the KdV, the mKdV and the Boussinesq equations can be obtained from simple solutions of linear equations. We describe how using this method, a soliton solution of the KdV equation can yield soliton solutions for the mKdV as well as the Boussinesq equations. Similarly, starting with cnoidal solutions of the KdV equation, we can obtain the corresponding solutions for the mKdV as well as the Boussinesq equations. Simple solutions of linear equations can also lead to cnoidal solutions of nonlinear systems. Finally, we propose and solve some new families of KdV equations and show how soliton solutions are also obtained for the higher order equations of the KdV hierarchy using this method.

  18. A semi-automatic method for positioning a femoral bone reconstruction for strict view generation.

    PubMed

    Milano, Federico; Ritacco, Lucas; Gomez, Adrian; Gonzalez Bernaldo de Quiros, Fernan; Risk, Marcelo

    2010-01-01

    In this paper we present a semi-automatic method for femoral bone positioning after 3D image reconstruction from Computed Tomography images. This serves as grounding for the definition of strict axial, longitudinal and anterior-posterior views, overcoming the problem of patient positioning biases in 2D femoral bone measuring methods. After the bone reconstruction is aligned to a standard reference frame, new tomographic slices can be generated, on which unbiased measures may be taken. This could allow not only accurate inter-patient comparisons but also intra-patient comparisons, i.e., comparisons of images of the same patient taken at different times. This method could enable medical doctors to diagnose and follow up several bone deformities more easily. PMID:21096490

  19. Accurate calculation of computer-generated holograms using angular-spectrum layer-oriented method.

    PubMed

    Zhao, Yan; Cao, Liangcai; Zhang, Hao; Kong, Dezhao; Jin, Guofan

    2015-10-01

    Fast calculation and correct depth cue are crucial issues in the calculation of computer-generated hologram (CGH) for high quality three-dimensional (3-D) display. An angular-spectrum based algorithm for layer-oriented CGH is proposed. Angular spectra from each layer are synthesized as a layer-corresponded sub-hologram based on the fast Fourier transform without paraxial approximation. The proposed method can avoid the huge computational cost of the point-oriented method and yield accurate predictions of the whole diffracted field compared with other layer-oriented methods. CGHs of versatile formats of 3-D digital scenes, including computed tomography and 3-D digital models, are demonstrated with precise depth performance and advanced image quality. PMID:26480062

  20. Multiscale characterization method for line edge roughness based on redundant second generation wavelet transform

    SciTech Connect

    Wang Fei; Zhao Xuezeng; Li Ning

    2010-10-15

    We introduce a multiscale characterization method for line edge roughness (LER) based on redundant second generation wavelet transform. This method involves decomposing LER characteristics into independent bands with different spatial frequency components at different scales, and analyzing the reconstructed signals to work out the roughness exponent, the spatial frequency distribution characteristics, as well as the rms value. The effect of noise can be predicted using detailed signals in the minimum space of scale. This method was applied to numerical profiles for validation. Results show that according to the line edge profiles with similar amplitudes, the roughness exponent R can effectively reflect the degree of irregularity of LER and intuitively provide information on LER spatial frequency distribution.

  1. Power dissipated measurement of an ultrasonic generator in a viscous medium by flowmetric method.

    PubMed

    Mancier, Valérie; Leclercq, Didier

    2008-09-01

    A new flowmetric method of the power dissipated by an ultrasound generator in an aqueous medium has been developed in previous works and described in a preceding paper [V. Mancier, D. Leclercq, Ultrasonics Sonochemistry 14 (2007) 99-106]. The works presented here are an enlargement of this method to a high viscosity liquid (glycerol) for which the classical calorimetric measurements are rather difficult. As expected, it is shown that the dissipated power increases with the medium viscosity. It was also found that this flowmetric method gives good results for various quantities of liquid and positioning of the sonotrode in the tank. Moreover, the important variation of viscosity due to the heating of the liquid during experiments does not disturb flow measurements. PMID:18472294

  2. A Microbiome DNA Enrichment Method for Next-Generation Sequencing Sample Preparation.

    PubMed

    Yigit, Erbay; Feehery, George R; Langhorst, Bradley W; Stewart, Fiona J; Dimalanta, Eileen T; Pradhan, Sriharsa; Slatko, Barton; Gardner, Andrew F; McFarland, James; Sumner, Christine; Davis, Theodore B

    2016-01-01

    "Microbiome" is used to describe the communities of microorganisms and their genes in a particular environment, including communities in association with a eukaryotic host or part of a host. One challenge in microbiome analysis concerns the presence of host DNA in samples. Removal of host DNA before sequencing results in greater sequence depth of the intended microbiome target population. This unit describes a novel method of microbial DNA enrichment in which methylated host DNA such as human genomic DNA is selectively bound and separated from microbial DNA before next-generation sequencing (NGS) library construction. This microbiome enrichment technique yields a higher fraction of microbial sequencing reads and improved read quality resulting in a reduced cost of downstream data generation and analysis. © 2016 by John Wiley & Sons, Inc. PMID:27366894

  3. Systems and methods that generate height map models for efficient three dimensional reconstruction from depth information

    DOEpatents

    Frahm, Jan-Michael; Pollefeys, Marc Andre Leon; Gallup, David Robert

    2015-12-08

    Methods of generating a three dimensional representation of an object in a reference plane from a depth map including distances from a reference point to pixels in an image of the object taken from a reference point. Weights are assigned to respective voxels in a three dimensional grid along rays extending from the reference point through the pixels in the image based on the distances in the depth map from the reference point to the respective pixels, and a height map including an array of height values in the reference plane is formed based on the assigned weights. An n-layer height map may be constructed by generating a probabilistic occupancy grid for the voxels and forming an n-dimensional height map comprising an array of layer height values in the reference plane based on the probabilistic occupancy grid.

  4. Comparison of entropy generation and conventional design methods for heat exchangers

    NASA Astrophysics Data System (ADS)

    Herbein, David S.

    1987-06-01

    The design of heat exchangers traditionally focuses on the known constraints of the problem such as inlet and outlet temperatures, flow rates, and pressure drops. This leads mainly to a sizing problem where the designer must select surfaces, flow configuration, and materials to meet the minimum design objectives. An alternate approach based on an acceptable level of thermodynamic irreversibility (entropy generation) has been proposed. When the entropy generation level has been set, the geometric parameters of the heat exchanger can be determined. The design of a plate-fin type, gas-to-gas recuperator for a regenerative open Brayton cycle has been used as a demonstrative device. The resulting heat exchanger designs are then examined to determine what caused the differences and why either method should be preferred over the other.

  5. Feasibility study consisting of a review of contour generation methods from stereograms

    NASA Technical Reports Server (NTRS)

    Kim, C. J.; Wyant, J. C.

    1980-01-01

    A review of techniques for obtaining contour information from stereo pairs is given. Photogrammetric principles including a description of stereoscopic vision are presented. The use of conventional contour generation methods, such as the photogrammetric plotting technique, electronic correlator, and digital correlator are described. Coherent optical techniques for contour generation are discussed and compared to the electronic correlator. The optical techniques are divided into two categories: (1) image plane operation and (2) frequency plane operation. The description of image plane correlators are further divided into three categories: (1) image to image correlator, (2) interferometric correlator, and (3) positive negative transparencies. The frequency plane correlators are divided into two categories: (1) correlation of Fourier transforms, and (2) filtering techniques.

  6. Physical methods for generating and decoding neural activity in Hirudo verbana

    NASA Astrophysics Data System (ADS)

    Migliori, Benjamin John

    The interface between living nervous systems and hardware is an excellent proving ground for precision experimental methods and information classification systems. Nervous systems are complex (104 -- 10 15(!) connections), fragile, and highly active in intricate, constantly evolving patterns. However, despite the conveniently electrical nature of neural transmission, the interface between nervous systems and hardware poses significant experimental difficulties. As the desire for direct interfaces with neural signals continues to expand, the need for methods of generating and measuring neural activity with high spatiotemporal precision has become increasingly critical. In this thesis, I describe advances I have made in the ability to modify, generate, measure, and understand neural signals both in- and ex-vivo. I focus on methods developed for transmitting and extracting signals in the intact nervous system of Hirudo verbana (the medicinal leech), an animal with a minimally complex nervous system (10000 neurons distributed in packets along a nerve cord) that exhibits a diverse array of behaviors. To introduce artificial activity patterns, I developed a photothermal activation system in which a highly focused laser is used to irradiate carbon microparticles in contact with target neurons. The resulting local temperature increase generates an electrical current that forces the target neuron to fire neural signals, thereby providing a unique neural input mechanism. These neural signals can potentially be used to alter behavioral choice or generate specific behavioral output, and can be used endogenously in many animal models. I also describe new tools developed to expand the application of this method. In complement to this input system, I describe a new method of analyzing neural output signals involved in long-range coordination of behaviors. Leech behavioral signals are propagated between neural packets as electrical pulses in the nerve connective, a bundle of

  7. Quinones as photosensitizer for photodynamic therapy: ROS generation, mechanism and detection methods.

    PubMed

    Rajendran, M

    2016-03-01

    Photodynamic therapy (PDT) is based on the dye-sensitized photooxidation of biological matter in the target tissue, and utilizes light activated drugs for the treatment of a wide variety of malignancies. Quinones and porphyrins moiety are available naturally and involved in the biological process. Quinone metabolites perform a variety of key functions in plants which includes pathogen protection, oxidative phosphorylation, and redox signaling. Quinones and porphyrin are biologically accessible and will not create any allergic effects. In the field of photodynamic therapy, porphyrin derivatives are widely used, because it absorb in the photodynamic therapy window region (600-900 nm). Hence, researchers synthesize drugs based on porphyrin structure. Benzoquinone and its simple polycyclic derivatives such as naphthaquinone and anthraquinones absorb at lower wavelength region (300-400 nm), which is lower than porphyrin. Hence they are not involved in PDT studies. However, higher polycyclic quinones absorb in the photodynamic therapy window region (600-900 nm), because of its conjugation and can be used as PDT agents. Redox cycling has been proposed as a possible mechanism of action for many quinone species. Quinones are involved in the photodynamic as well as enzymatic generation of reactive oxygen species (ROS). Generations of ROS may be measured by optical, phosphorescence and EPR methods. The photodynamically generated ROS are also involved in many biological events. The photo-induced DNA cleavage by quinones correlates with the ROS generating efficiencies of the quinones. In this review basic reactions involving photodynamic generation of ROS by quinones and their biological applications were discussed. PMID:26241780

  8. Autofocus methods of whole slide imaging systems and the introduction of a second-generation independent dual sensor scanning method

    PubMed Central

    Montalto, Michael C.; McKay, Richard R.; Filkins, Robert J.

    2011-01-01

    Accurate focusing is a critical challenge of whole slide imaging, primarily due to inherent tissue topography variability. Traditional line scanning and tile-based scanning systems are limited in their ability to acquire a high degree of focus points while still maintaining high throughput. This review examines limitations with first-generation whole slide scanning systems and explores a novel approach that employs continuous autofocus, referred to as independent dual sensor scanning. This “second-generation” concept decouples image acquisition from focusing, allowing for rapid scanning while maintaining continuous accurate focus. The technical concepts, merits, and limitations of this method are explained and compared to that of a traditional whole slide scanning system. PMID:22059145

  9. Method of computer generation and projection recording of microholograms for holographic memory systems: mathematical modelling and experimental implementation

    SciTech Connect

    Betin, A Yu; Bobrinev, V I; Evtikhiev, N N; Zherdev, A Yu; Zlokazov, E Yu; Lushnikov, D S; Markin, V V; Odinokov, S B; Starikov, S N; Starikov, R S

    2013-01-31

    A method of computer generation and projection recording of microholograms for holographic memory systems is presented; the results of mathematical modelling and experimental implementation of the method are demonstrated. (holographic memory)

  10. Generator-absorber-heat exchange heat transfer apparatus and method and use thereof in a heat pump

    DOEpatents

    Phillips, Benjamin A.; Zawacki, Thomas S.; Marsala, Joseph

    1994-11-29

    Numerous embodiments and related methods for generator-absorber heat exchange (GAX) are disclosed, particularly for absorption heat pump systems. Such embodiments and related methods use the working solution of the absorption system for the heat transfer medium.

  11. Comparison of Sample Preparation Methods Used for the Next-Generation Sequencing of Mycobacterium tuberculosis

    PubMed Central

    Tyler, Andrea D.; Christianson, Sara; Knox, Natalie C.; Mabon, Philip; Wolfe, Joyce; Van Domselaar, Gary; Graham, Morag R.; Sharma, Meenu K.

    2016-01-01

    The advent and widespread application of next-generation sequencing (NGS) technologies to the study of microbial genomes has led to a substantial increase in the number of studies in which whole genome sequencing (WGS) is applied to the analysis of microbial genomic epidemiology. However, microorganisms such as Mycobacterium tuberculosis (MTB) present unique problems for sequencing and downstream analysis based on their unique physiology and the composition of their genomes. In this study, we compare the quality of sequence data generated using the Nextera and TruSeq isolate preparation kits for library construction prior to Illumina sequencing-by-synthesis. Our results confirm that MTB NGS data quality is highly dependent on the purity of the DNA sample submitted for sequencing and its guanine-cytosine content (or GC-content). Our data additionally demonstrate that the choice of library preparation method plays an important role in mitigating downstream sequencing quality issues. Importantly for MTB, the Illumina TruSeq library preparation kit produces more uniform data quality than the Nextera XT method, regardless of the quality of the input DNA. Furthermore, specific genomic sequence motifs are commonly missed by the Nextera XT method, as are regions of especially high GC-content relative to the rest of the MTB genome. As coverage bias is highly undesirable, this study illustrates the importance of appropriate protocol selection when performing NGS studies in order to ensure that sound inferences can be made regarding mycobacterial genomes. PMID:26849565

  12. A Method for Generating Natural and User-Defined Sniffing Patterns in Anesthetized or Reduced Preparations

    PubMed Central

    Carey, Ryan M.; Wachowiak, Matt

    2009-01-01

    Sniffing has long been thought to play a critical role in shaping neural responses to odorants at multiple levels of the nervous system. However, it has been difficult to systematically examine how particular parameters of sniffing behavior shape odorant-evoked activity, in large part because of the complexity of sniffing behavior and the difficulty in reproducing this behavior in an anesthetized or reduced preparation. Here we present a method for generating naturalistic sniffing patterns in such preparations. The method involves a nasal ventilator whose movement is controlled by an analog command voltage. The command signal may consist of intranasal pressure transients recorded from awake rats and mice or user-defined waveforms. This “sniff playback” device generates intranasal pressure and airflow transients in anesthetized animals that approximate those recorded from the awake animal and are reproducible across trials and across preparations. The device accurately reproduces command waveforms over an amplitude range of approximately 1 log unit and up to frequencies of approximately 12 Hz. Further, odorant-evoked neural activity imaged during sniff playback appears similar to that seen in awake animals. This method should prove useful in investigating how the parameters of odorant sampling shape neural responses in a variety of experimental settings. PMID:18791186

  13. Comparison of Sample Preparation Methods Used for the Next-Generation Sequencing of Mycobacterium tuberculosis.

    PubMed

    Tyler, Andrea D; Christianson, Sara; Knox, Natalie C; Mabon, Philip; Wolfe, Joyce; Van Domselaar, Gary; Graham, Morag R; Sharma, Meenu K

    2016-01-01

    The advent and widespread application of next-generation sequencing (NGS) technologies to the study of microbial genomes has led to a substantial increase in the number of studies in which whole genome sequencing (WGS) is applied to the analysis of microbial genomic epidemiology. However, microorganisms such as Mycobacterium tuberculosis (MTB) present unique problems for sequencing and downstream analysis based on their unique physiology and the composition of their genomes. In this study, we compare the quality of sequence data generated using the Nextera and TruSeq isolate preparation kits for library construction prior to Illumina sequencing-by-synthesis. Our results confirm that MTB NGS data quality is highly dependent on the purity of the DNA sample submitted for sequencing and its guanine-cytosine content (or GC-content). Our data additionally demonstrate that the choice of library preparation method plays an important role in mitigating downstream sequencing quality issues. Importantly for MTB, the Illumina TruSeq library preparation kit produces more uniform data quality than the Nextera XT method, regardless of the quality of the input DNA. Furthermore, specific genomic sequence motifs are commonly missed by the Nextera XT method, as are regions of especially high GC-content relative to the rest of the MTB genome. As coverage bias is highly undesirable, this study illustrates the importance of appropriate protocol selection when performing NGS studies in order to ensure that sound inferences can be made regarding mycobacterial genomes. PMID:26849565

  14. Thermodynamic method for generating random stress distributions on an earthquake fault

    USGS Publications Warehouse

    Barall, Michael; Harris, Ruth A.

    2012-01-01

    This report presents a new method for generating random stress distributions on an earthquake fault, suitable for use as initial conditions in a dynamic rupture simulation. The method employs concepts from thermodynamics and statistical mechanics. A pattern of fault slip is considered to be analogous to a micro-state of a thermodynamic system. The energy of the micro-state is taken to be the elastic energy stored in the surrounding medium. Then, the Boltzmann distribution gives the probability of a given pattern of fault slip and stress. We show how to decompose the system into independent degrees of freedom, which makes it computationally feasible to select a random state. However, due to the equipartition theorem, straightforward application of the Boltzmann distribution leads to a divergence which predicts infinite stress. To avoid equipartition, we show that the finite strength of the fault acts to restrict the possible states of the system. By analyzing a set of earthquake scaling relations, we derive a new formula for the expected power spectral density of the stress distribution, which allows us to construct a computer algorithm free of infinities. We then present a new technique for controlling the extent of the rupture by generating a random stress distribution thousands of times larger than the fault surface, and selecting a portion which, by chance, has a positive stress perturbation of the desired size. Finally, we present a new two-stage nucleation method that combines a small zone of forced rupture with a larger zone of reduced fracture energy.

  15. The fluid dynamic approach to equidistribution methods for grid generation and adaptation

    SciTech Connect

    Delzanno, Gian Luca; Finn, John M

    2009-01-01

    The equidistribution methods based on L{sub p} Monge-Kantorovich optimization [Finn and Delzanno, submitted to SISC, 2009] and on the deformation [Moser, 1965; Dacorogna and Moser, 1990, Liao and Anderson, 1992] method are analyzed primarily in the context of grid generation. It is shown that the first class of methods can be obtained from a fluid dynamic formulation based on time-dependent equations for the mass density and the momentum density, arising from a variational principle. In this context, deformation methods arise from a fluid formulation by making a specific assumption on the time evolution of the density (but with some degree of freedom for the momentum density). In general, deformation methods do not arise from a variational principle. However, it is possible to prescribe an optimal deformation method, related to L{sub 1} Monge-Kantorovich optimization, by making a further assumption on the momentum density. Some applications of the L{sub p} fluid dynamic formulation to imaging are also explored.

  16. Determination Method for Optimal Installation of Active Filters in Distribution Network with Distributed Generation

    NASA Astrophysics Data System (ADS)

    Kawasaki, Shoji; Hayashi, Yasuhiro; Matsuki, Junya; Kikuya, Hirotaka; Hojo, Masahide

    Recently, the harmonic troubles in a distribution network are worried in the background of the increase of the connection of distributed generation (DG) and the spread of the power electronics equipments. As one of the strategies, control the harmonic voltage by installing an active filter (AF) has been researched. In this paper, the authors propose a computation method to determine the optimal allocations, gains and installation number of AFs so as to minimize the maximum value of voltage total harmonic distortion (THD) for a distribution network with DGs. The developed method is based on particle swarm optimization (PSO) which is one of the nonlinear optimization methods. Especially, in this paper, the case where the harmonic voltage or the harmonic current in a distribution network is assumed by connecting many DGs through the inverters, and the authors propose a determination method of the optimal allocation and gain of AF that has the harmonic restrictive effect in the whole distribution network. Moreover, the authors propose also about a determination method of the necessary minimum installation number of AFs, by taking into consideration also about the case where the target value of harmonic suppression cannot be reached, by one set only of AF. In order to verify the validity and effectiveness of the proposed method, the numerical simulations are carried out by using an analytical model of distribution network with DGs.

  17. Validation of Vortex-Lattice Method for loads on wings in lift-generated wakes

    NASA Technical Reports Server (NTRS)

    Rossow, J.

    1994-01-01

    A study is described that evaluates the accuracy of vortex-lattice methods when they are used to compute the loads induced on aircraft as they encounter lift-generated wakes. The evaluation is accomplished by use of measurements made in the 80- by 120-foot wind tunnel of the lift, rolling-moment, and downwash in the wake of three configurations of a model of a subsonic transport aircraft. The downwash measurements are used as input for a vortex-lattice code in order to compute the lift and rolling moment induced on wings that have a span of 0.186, 0.510, or 1.022 times the span of the wake-generating model. Comparison of the computed results with the measured lift and rolling moment distributions are used to determine the accuracy of the vortex-lattice code. It was found that the vortex-lattice method is very reliable as long as the span of the encountering of following wing is less than about 0.2 of the generator span. As the span of the following wing increases above 0.2, the vortex-lattice method continues to correctly predict the trends and nature of the induced loads, but it overpredicts the magnitude of the loads by increasing amounts. The increase in deviation of the computed from the measured loads with size of the following wing is attributed to the increase in distortion of the structure of the vortex wake as it approaches and passes the larger following wings.

  18. Generation of hybrid human immunodeficiency virus utilizing the cotransfection method and analysis of cellular tropism.

    PubMed Central

    Velpandi, A; Nagashunmugam, T; Murthy, S; Cartas, M; Monken, C; Srinivasan, A

    1991-01-01

    Human immunodeficiency viruses (HIV) isolated from infected individuals show tremendous genetic and biologic diversity. To delineate the genetic determinants underlying specific biologic characteristics, such as rate of replication, cytopathic effects, and ability to infect macrophages and T4 lymphoid cells, generation of hybrid HIV using viruses which exhibit distinct biologic features is essential. To develop methods for generating hybrid HIV, we constructed truncated HIV proviral DNA plasmids. Upon digestion with restriction enzymes, these plasmid DNAs were cotransfected into human rhabdomyosarcoma cells to generate hybrid HIV. The hybrid HIVs derived by this method were infectious upon transmission to both phytohemagglutinin-stimulated peripheral blood lymphocytes and established human leukemic T-cell lines. The virus derived from molecular clone pHXB2 (HIVHTLV-III) productively infected CEMx174 cells. On the other hand, molecular clone pARV (HIVSF2)-derived virus did not show productive infection of CEMx174 cells when used as a cell-free virus. The hybrid HIV containing the 3' end of the genome from pARV and the 5' end of the genome from pHXB2 was effective in infecting CEMx174 cells, but the converse hybrid containing 5' pARV and 3' pHXB2 was not effective in infecting CEMx174 cells. These results suggest that differences in the genes outside of env and nef play a role in the ability of the virus to infect a certain cell type. The intracellular ligation method should be useful in the analysis of related and unrelated HIV-1 isolates with common restriction enzyme cleavage sites. Images PMID:1678438

  19. Applicability Comparison of Methods for Acid Generation Assessment of Rock Samples

    NASA Astrophysics Data System (ADS)

    Oh, Chamteut; Ji, Sangwoo; Yim, Giljae; Cheong, Youngwook

    2014-05-01

    Minerals including various forms of sulfur could generate AMD (Acid Mine Drainage) or ARD (Acid Rock Drainage), which can have serious effects on the ecosystem and even on human when exposed to air and/or water. To minimize the hazards by acid drainage, it is necessary to assess in advance the acid generation possibility of rocks and estimate the amount of acid generation. Because of its relatively simple and effective experiment procedure, the method of combining the results of ABA (Acid Base Accounting) and NAG (Net Acid Generation) tests have been commonly used in determining acid drainage conditions. The simplicity and effectiveness of the above method however, are derived from massive assumptions of simplified chemical reactions and this often leads to results of classifying the samples as UC (Uncertain) which would then require additional experimental or field data to reclassify them properly. This paper therefore, attempts to find the reasons that cause samples to be classified as UC and suggest new series of experiments where samples can be reclassified appropriately. Study precedents on evaluating potential acid generation and neutralization capacity were reviewed and as a result three individual experiments were selected in the light of applicability and compatibility of minimizing unnecessary influence among other experiments. The proposed experiments include sulfur speciation, ABCC (Acid Buffering Characteristic Curve), and Modified NAG which are all improved versions of existing experiments of Total S, ANC (Acid Neutralizing Capacity), and NAG respectively. To assure the applicability of the experiments, 36 samples from 19 sites with diverse geologies, field properties, and weathering conditions were collected. The samples were then subject to existing experiments and as a result, 14 samples which either were classified as UC or could be used as a comparison group had been selected. Afterwards, the selected samples were used to conduct the suggested

  20. Method of making compost and spawned compost, mushroom spawn and generating methane gas

    SciTech Connect

    Stoller, B.B.

    1981-04-28

    Newly designed ribbon-type mixers provide an improved method for making composts, aerating composts, growing mushroom spawn, generating methane gas, and filling conveyors in the mushroom-growing industry. The mixers may be the double-ribbon type for purely mixing operations or the single-ribbon type for moving the material from one place to another. Both types can operate under pressure. In preparing compost for mushroom growing, operators can first use the airtight mixers for a preliminary anaerobic fermentation to produce methane, then by changing the atmosphere to an oxidizing one, complete the compost preparation under the necessary aerobic conditions.

  1. Magnetic filter apparatus and method for generating cold plasma in semicoductor processing

    DOEpatents

    Vella, Michael C.

    1996-01-01

    Disclosed herein is a system and method for providing a plasma flood having a low electron temperature to a semiconductor target region during an ion implantation process. The plasma generator providing the plasma is coupled to a magnetic filter which allows ions and low energy electrons to pass therethrough while retaining captive the primary or high energy electrons. The ions and low energy electrons form a "cold plasma" which is diffused in the region of the process surface while the ion implantation process takes place.

  2. Magnetic filter apparatus and method for generating cold plasma in semiconductor processing

    DOEpatents

    Vella, M.C.

    1996-08-13

    Disclosed herein is a system and method for providing a plasma flood having a low electron temperature to a semiconductor target region during an ion implantation process. The plasma generator providing the plasma is coupled to a magnetic filter which allows ions and low energy electrons to pass therethrough while retaining captive the primary or high energy electrons. The ions and low energy electrons form a ``cold plasma`` which is diffused in the region of the process surface while the ion implantation process takes place. 15 figs.

  3. Spatial frequency sampling look-up table method for computer-generated hologram

    NASA Astrophysics Data System (ADS)

    Zhao, Kai; Huang, Yingqing; Jiang, Xiaoyu; Yan, Xingpeng

    2016-04-01

    A spatial frequency sampling look-up table method is proposed to generate a hologram. The three-dimensional (3-D) scene is sampled as several intensity images by computer rendering. Each object point on the rendered images has a defined spatial frequency. The basis terms for calculating fringe patterns are precomputed and stored in a table to improve the calculation speed. Both numerical simulations and optical experiments are performed. The results show that the proposed approach can easily realize color reconstructions of a 3-D scene with a low computation cost. The occlusion effects and depth information are all provided accurately.

  4. Photochemical method for generating superoxide radicals (O.sub.2.sup.-) in aqueous solutions

    DOEpatents

    Holroyd, Richard A.; Bielski, Benon H. J.

    1980-01-01

    A photochemical method and apparatus for generating superoxide radicals (ub.2.sup.-) in an aqueous solution by means of a vacuum-ultraviolet lamp of simple design. The lamp is a microwave powered rare gas device that emits far-ultraviolet light. The lamp includes an inner loop of high purity quartz tubing through which flows an oxygen-saturated sodium formate solution. The inner loop is designed so that the solution is subjected to an intense flux of far-ultraviolet light. This causes the solution to photodecompose and form the product radical (O.sub.2.sup.-).

  5. Optical Device, System, and Method of Generating High Angular Momentum Beams

    NASA Technical Reports Server (NTRS)

    Savchenkov, Anatoliy A. (Inventor); Matsko, Andrey B. (Inventor); Strekalov, Dmitry V. (Inventor); Grudinin, Ivan S. (Inventor); Maleki, Lute (Inventor)

    2009-01-01

    An optical device, optical system, and method of generating optical beams having high angular momenta are provided. The optical device includes a whispering gallery mode resonator defining a resonator radius and an elongated wavegWde having a length defined between a first end and a second end of the waveguide. The waveguide defines a waveguide radius which increases at least along a portion of the length of the waveguide in a direction from the first end to the second end. The waveguide radius at the first end of the waveguide is smaller than the resonator radius and the resonator is integrally formed with the first end of the waveguide.

  6. Method and apparatus for generating power utilizing pressure-retarded osmosis

    SciTech Connect

    Loeb, S.

    1980-03-18

    A method and apparatus are described for generating power utilizing pressure-retarded osmosis, in which a concentrated solution at a high hydraulic pressure is passed along one face of a semi-permeable membrane, and a dilute solution at a low hydraulic pressure is passed along the opposite face of the membrane to effect, by pressure-retarded-osmosis, the passage of at least a part of the dilute solution through the membrane forming a pressurized mixed solution. The potential energy stored in the pressurized mixed solution is converted to useful energy by depressurizing and repressurizing only the dilute solution.

  7. Investigations in the problem of pion condensation using generator co-ordinate methods

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, P.; Da Providencia, J.

    1981-11-01

    Pion condensation in neutron matter has been investigated using the generator coordinate method and a simple p-wave interaction. The assumption of a condensed mode corresponding to one pion momentum (determined variationally) helps evaluate all the necessary matrix elements exactly. The technique of charge projection from a coherent state of negative pions is discussed, and calculations have been carried out for the cases of average charge conservation, charge projection before variation and for a charge conserving trial function. The ground-state energies and the lowest excitations of the system are obtained from numerical solutions of the Hill-Wheeler equation.

  8. Generator-absorber-heat exchange heat transfer apparatus and method and use thereof in a heat pump

    DOEpatents

    Phillips, Benjamin A.; Zawacki, Thomas S.

    1998-07-21

    Numerous embodiments and related methods for generator-absorber heat exchange (GAX) are disclosed, particularly for absorption heat pump systems. Such embodiments and related methods use, as the heat transfer medium, the working fluid of the absorption system taken from the generator at a location where the working fluid has a rich liquor concentration.

  9. Generator-absorber-heat exchange heat transfer apparatus and method and use thereof in a heat pump

    DOEpatents

    Phillips, B.A.; Zawacki, T.S.

    1998-07-21

    Numerous embodiments and related methods for generator-absorber heat exchange (GAX) are disclosed, particularly for absorption heat pump systems. Such embodiments and related methods use, as the heat transfer medium, the working fluid of the absorption system taken from the generator at a location where the working fluid has a rich liquor concentration. 5 figs.

  10. A nonparametric stochastic method for generating daily climate-adjusted streamflows

    NASA Astrophysics Data System (ADS)

    Stagge, J. H.; Moglen, G. E.

    2013-10-01

    A daily stochastic streamflow generation model is presented, which successfully replicates statistics of the historical streamflow record and can produce climate-adjusted daily time series. A monthly climate model relates general circulation model (GCM)-scale climate indicators to discrete climate-streamflow states, which in turn control parameters in a daily streamflow generation model. Daily flow is generated by a two-state (increasing/decreasing) Markov chain, with rising limb increments randomly sampled from a Weibull distribution and the falling limb modeled as exponential recession. When applied to the Potomac River, a 38,000 km2 basin in the Mid-Atlantic United States, the model reproduces the daily, monthly, and annual distribution and dynamics of the historical streamflow record, including extreme low flows. This method can be used as part of water resources planning, vulnerability, and adaptation studies and offers the advantage of a parsimonious model, requiring only a sufficiently long historical streamflow record and large-scale climate data. Simulation of Potomac streamflows subject to the Special Report on Emissions Scenarios (SRES) A1b, A2, and B1 emission scenarios predict a slight increase in mean annual flows over the next century, with the majority of this increase occurring during the winter and early spring. Conversely, mean summer flows are projected to decrease due to climate change, caused by a shift to shorter, more sporadic rain events. Date of the minimum annual flow is projected to shift 2-5 days earlier by the 2070-2099 period.

  11. System and method for generating a deselect mapping for a focal plane array

    SciTech Connect

    Bixler, Jay V; Brandt, Timothy G; Conger, James L; Lawson, Janice K

    2013-05-21

    A method for generating a deselect mapping for a focal plane array according to one embodiment includes gathering a data set for a focal plane array when exposed to light or radiation from a first known target; analyzing the data set for determining which pixels or subpixels of the focal plane array to add to a deselect mapping; adding the pixels or subpixels to the deselect mapping based on the analysis; and storing the deselect mapping. A method for gathering data using a focal plane array according to another embodiment includes deselecting pixels or subpixels based on a deselect mapping; gathering a data set using pixels or subpixels in a focal plane array that are not deselected upon exposure thereof to light or radiation from a target of interest; and outputting the data set.

  12. A method for numerical relativity: Simulation of axisymmetric gravitational collapse and gravitational radiation generation

    NASA Astrophysics Data System (ADS)

    Evans, C. R., II

    A method is presented which allows fully self-consistent numerical simulation of asymptotically flat axisymmetric nonrotating general relativistic systems. These techniques have been developed to model and understand resulting relativistic effects in gravitational core collapse and gravitational radiation generation. Both vacuum (Brill) spacetimes and matter-filled configurations can be treated. The (3 + 1) decomposition of Arnowitt, Deser and Misner is used to write general relativity in a dynamical form. The conformal approach, including the transverse-traceless decomposition of extrinsic curvature due to York, is used to solve the initial value problem. In addition, these techniques are extended to provide a fully constrained evolution scheme. Several new boundary conditions, applied at large but finite radius, are derived for the elliptic constraint equations. This method uses a simplifying three-gauge, placing the metric in quasi-isotropic form.

  13. Method of controlling temperature of a thermoelectric generator in an exhaust system

    DOEpatents

    Prior, Gregory P; Reynolds, Michael G; Cowgill, Joshua D

    2013-05-21

    A method of controlling the temperature of a thermoelectric generator (TEG) in an exhaust system of an engine is provided. The method includes determining the temperature of the heated side of the TEG, determining exhaust gas flow rate through the TEG, and determining the exhaust gas temperature through the TEG. A rate of change in temperature of the heated side of the TEG is predicted based on the determined temperature, the determined exhaust gas flow rate, and the determined exhaust gas temperature through the TEG. Using the predicted rate of change of temperature of the heated side, exhaust gas flow rate through the TEG is calculated that will result in a maximum temperature of the heated side of the TEG less than a predetermined critical temperature given the predicted rate of change in temperature of the heated side of the TEG. A corresponding apparatus is provided.

  14. Computationally efficient autoregressive method for generating phase screens with frozen flow and turbulence in optical simulations.

    PubMed

    Srinath, Srikar; Poyneer, Lisa A; Rudy, Alexander R; Ammons, S Mark

    2015-12-28

    We present a sample-based, autoregressive (AR) method for the generation and time evolution of atmospheric phase screens that is computationally efficient and uses a single parameter per Fourier mode to vary the power contained in the frozen flow and stochastic components. We address limitations of Fourier-based methods such as screen periodicity and low spatial frequency power content. Comparisons of adaptive optics (AO) simulator performance when fed AR phase screens and translating phase screens reveal significantly elevated residual closed-loop temporal power for small increases in added stochastic content at each time step, thus displaying the importance of properly modeling atmospheric "boiling". We present preliminary evidence that our model fits to AO telemetry are better reflections of real conditions than the pure frozen flow assumption. PMID:26831998

  15. A Novel and Simple Method for Rapid Generation of Recombinant Porcine Adenoviral Vectors for Transgene Expression

    PubMed Central

    Ma, Jing; Wang, Wenbin; Zhang, Lu; Tikoo, Suresh K.; Yang, Zengqi

    2015-01-01

    Many human (different serotypes) and nonhuman adenovirus vectors are being used for gene delivery. However, the current system for isolating recombinant adenoviral vectors is either time-consuming or expensive, especially for the generation of recombinant non-human adenoviral vectors. We herein report a new and simple cloning approach for the rapid generation of a porcine adenovirus (PAdV-3) vector which shows promise for gene transfer to human cells and evasion of human adenovirus type 5 (HAdV-5) immunity. Based on the final cloning plasmid, pFPAV3-CcdB-Cm, and our modified SLiCE strategy (SLiCE cloning and lethal CcdB screening), the process for generating recombinant PAdV-3 plasmids required only one step in 3 days, with a cloning efficiency as high as 620±49.56 clones/ng and zero background (100% accuracy). The recombinant PAdV-3 plasmids could be successfully rescued in porcine retinal pigment epithelium cells (VR1BL), which constitutively express the HAdV-5 E1 and PAdV-3 E1B 55k genes, and the foreign genes were highly expressed at 24 h after transduction into swine testicle (ST) cells. In conclusion, this strategy for generating recombinant PAdV-3 vectors based on our modified SLiCE cloning system was rapid and cost-efficient, which could be used as universal cloning method for modification the other regions of PAdV-3 genome as well as other adenoviral genomes. PMID:26011074

  16. Next Generation Nuclear Plant Methods Research and Development Technical Program Plan -- PLN-2498

    SciTech Connect

    Richard R. Schultz; Abderrafi M. Ougouag; David W. Nigg; Hans D. Gougar; Richard W. Johnson; William K. Terry; Chang H. Oh; Donald W. McEligot; Gary W. Johnsen; Glenn E. McCreery; Woo Y. Yoon; James W. Sterbentz; J. Steve Herring; Temitope A. Taiwo; Thomas Y. C. Wei; William D. Pointer; Won S. Yang; Michael T. Farmer; Hussein S. Khalil; Madeline A. Feltus

    2008-09-01

    One of the great challenges of designing and licensing the Very High Temperature Reactor (VHTR) is to confirm that the intended VHTR analysis tools can be used confidently to make decisions and to assure all that the reactor systems are safe and meet the performance objectives of the Generation IV Program. The research and development (R&D) projects defined in the Next Generation Nuclear Plant (NGNP) Design Methods Development and Validation Program will ensure that the tools used to perform the required calculations and analyses can be trusted. The Methods R&D tasks are designed to ensure that the calculational envelope of the tools used to analyze the VHTR reactor systems encompasses, or is larger than, the operational and transient envelope of the VHTR itself. The Methods R&D focuses on the development of tools to assess the neutronic and thermal fluid behavior of the plant. The fuel behavior and fission product transport models are discussed in the Advanced Gas Reactor (AGR) program plan. Various stress analysis and mechanical design tools will also need to be developed and validated and will ultimately also be included in the Methods R&D Program Plan. The calculational envelope of the neutronics and thermal-fluids software tools intended to be used on the NGNP is defined by the scenarios and phenomena that these tools can calculate with confidence. The software tools can only be used confidently when the results they produce have been shown to be in reasonable agreement with first-principle results, thought-problems, and data that describe the “highly ranked” phenomena inherent in all operational conditions and important accident scenarios for the VHTR.

  17. Endoscopic laser-induced steam generator: a new method of treatment for early gastric cancer

    NASA Astrophysics Data System (ADS)

    Hayashi, Takuya; Arai, Tsunenori; Tajiri, Hisao; Nogami, Yashiroh; Hino, Kunihiko; Kikuchi, Makoto

    1996-05-01

    The minimum invasive endoscopic treatment for early gastric cancer has been popular in Japan. The endoscopic mucosal resection and laser coagulation by Nd:YAG laser irradiation has been the popular treatment method in this field. However, the submucosal cancer has not been successfully treated by these methods. To treat the submucosal cancer endoscopically, we developed a new coagulation therapy using hot steam generated by Nd:YAG laser. The steam of which temperature was over 10 deg. in Celsius was generated by the laser power of 30 W with 5 ml/min. of saline. The steam was emitted to canine gastric wall under laparotomy or endoscopy for 50 s respectively. Follow up endoscopy was performed on 3, 7, 14, 28 days after the treatment. Histological examination was studied on 7, 28 days, and just after the emission. In the acute observation, the submucosal layer was totally coagulated. On the 7th day, ulceration with white coat was seen. The mucosal defect, submucosal coagulation, and marked edema without muscle degeneration were found by the histological study. On the 14th day, the ulcer advanced in the scar stage. On the 28th day, it completely healed into white scar with mucosal regeneration and mucosal muscle thickening. We could obtain reproducible coagulation up to deep submucosal layer with large area in a short operation time. Moreover there were no degeneration of proper muscle. This treatment effectiveness could be easily controlled by the steam temperature and emission duration. We think that this method can be applied to early gastric cancer including the submucosal cancer, in particular poor risk case for operation. Further study should be done to apply this method to clinical therapy.

  18. Method to Generate Full-Span Ice Shape on Swept Wing Using Icing Tunnel Data

    NASA Technical Reports Server (NTRS)

    Lee, Sam; Camello, Stephanie

    2015-01-01

    There is a collaborative research program by NASA, FAA, ONERA, and university partners to improve the fidelity of experimental and computational simulation methods for swept-wing ice accretion formulations and resultant aerodynamic effects on large transport aircraft. This research utilizes a 65 scale Common Research Model as the baseline configuration. In order to generate the ice shapes for the aerodynamic testing, ice-accretion testing will be conducted in the NASA Icing Research Tunnel utilizing hybrid model from the 20, 64, and 83 spanwise locations. The models will have full-scale leading edges with truncated chord in order to fit the IRT test section. The ice shapes from the IRT tests will be digitized using a commercially available articulated-arm 3D laser scanning system. The methodology to acquire 3D ice shapes using a laser scanner was developed and validated in a previous research effort. Each of these models will yield a 1.5ft span of ice than can be used. However, a full-span ice accretion will require 75 ft span of ice. This means there will be large gaps between these spanwise ice sections that must be filled, while maintaining all of the important aerodynamic features. A method was developed to generate a full-span ice shape from the three 1.5 ft span ice shapes from the three models.

  19. Molecular characterization and comparison of shale oils generated by different pyrolysis methods

    USGS Publications Warehouse

    Birdwell, Justin E.; Jin, Jang Mi; Kim, Sunghwan

    2012-01-01

    Shale oils generated using different laboratory pyrolysis methods have been studied using standard oil characterization methods as well as Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) with electrospray ionization (ESI) and atmospheric photoionization (APPI) to assess differences in molecular composition. The pyrolysis oils were generated from samples of the Mahogany zone oil shale of the Eocene Green River Formation collected from outcrops in the Piceance Basin, Colorado, using three pyrolysis systems under conditions relevant to surface and in situ retorting approaches. Significant variations were observed in the shale oils, particularly the degree of conjugation of the constituent molecules and the distribution of nitrogen-containing compound classes. Comparison of FT-ICR MS results to other oil characteristics, such as specific gravity; saturate, aromatic, resin, asphaltene (SARA) distribution; and carbon number distribution determined by gas chromatography, indicated correspondence between higher average double bond equivalence (DBE) values and increasing asphaltene content. The results show that, based on the shale oil DBE distributions, highly conjugated species are enriched in samples produced under low pressure, high temperature conditions, and under high pressure, moderate temperature conditions in the presence of water. We also report, for the first time in any petroleum-like substance, the presence of N4 class compounds based on FT-ICR MS data. Using double bond equivalence and carbon number distributions, structures for the N4 class and other nitrogen-containing compounds are proposed.

  20. A method of generating atmospheric turbulence with a liquid crystal spatial light modulator

    NASA Astrophysics Data System (ADS)

    Wilcox, Christopher C.; Santiago, Freddie; Martinez, Ty; Andrews, Jonathan R.; Restaino, Sergio R.; Corley, Melissa; Teare, Scott W.; Agrawal, Brij N.

    2010-08-01

    The Naval Research Laboratory has developed a new method for generating atmospheric turbulence and a testbed that simulates its aberrations far more inexpensively and with greater fidelity using a Liquid Crystal (LC) Spatial Light Modulator (SLM) than many other methods. This system allows the simulation of atmospheric seeing conditions ranging from very poor to very good and different algorithms may be easily employed on the device for comparison. These simulations can be dynamically generated and modified very quickly and easily. In addition, many models for simulating turbulence often neglect temporal transitions along with different seeing conditions. Using the statistically independent set of Karhunen-Loeve polynomials in conjunction with Kolmogorov statistics in this model provides an accurate spatial and temporal model for simulating turbulence. An added benefit to using a LC SLM is its low cost; and multiple devices can be used to simulate multiple layers of turbulence in a laboratory environment. Current testing with using multiple LC SLMs is under investigation at the Naval Research Laboratory and the Naval Postgraduate School.

  1. A method for generating large datasets of organ geometries for radiotherapy treatment planning studies

    PubMed Central

    Hu, Nan; Cerviño, Laura; Segars, Paul; Lewis, John; Shan, Jinlu; Jiang, Steve; Zheng, Xiaolin; Wang, Ge

    2014-01-01

    Background With the rapidly increasing application of adaptive radiotherapy, large datasets of organ geometries based on the patient’s anatomy are desired to support clinical application or research work, such as image segmentation, re-planning, and organ deformation analysis. Sometimes only limited datasets are available in clinical practice. In this study, we propose a new method to generate large datasets of organ geometries to be utilized in adaptive radiotherapy. Methods Given a training dataset of organ shapes derived from daily cone-beam CT, we align them into a common coordinate frame and select one of the training surfaces as reference surface. A statistical shape model of organs was constructed, based on the establishment of point correspondence between surfaces and non-uniform rational B-spline (NURBS) representation. A principal component analysis is performed on the sampled surface points to capture the major variation modes of each organ. Results A set of principal components and their respective coefficients, which represent organ surface deformation, were obtained, and a statistical analysis of the coefficients was performed. New sets of statistically equivalent coefficients can be constructed and assigned to the principal components, resulting in a larger geometry dataset for the patient’s organs. Conclusions These generated organ geometries are realistic and statistically representative. PMID:25435856

  2. A New Method to Generate Micron-Sized AerosolS With Narrow Size Distribution

    NASA Astrophysics Data System (ADS)

    Gañón-Calvo, Alfonso; Barrero, Antonio

    1996-11-01

    Aerosols in the micron-size range with a remarkable monodisperse size distribution can be generated from the breaking up process of a capillary microjet. The size of the main droplets and satellites depend on the jet diameter, d_j, as well as the flow rate, Q, and liquid properties which eventually determine the jet`s breaking up. Therefore, the generation and control of capillary microjets is essential to produce sprays of small droplets with narrow size histograms. Electrosprays has been up to now one of the most successful techniques to produce monodisperse micron-size aerosols. As an alternative, we report here a new method, aerospray, to generate capillary micro jets which can compete against the electrospray for the production of aerosols of small droplets with very narrow size distribution. The method is outlined in the following. Liquid coming out from the exit of a capillary needle is sucked by means of a high speed gas stream (usually air) which flows throughout a hole separating two chambers at different pressures. Under certain parametric conditions of liquid properties, liquid and air flow rates, and geometric characteristics (needle and hole diameters, distance from the needle to the hole, etc), the liquid forms a steady capillary microjet of very small diameter which is speeded up an stabilized by the action of the viscous stresses at the gas liquid interface. The jet passes through the hole and goes out the outside chamber where eventually breaks up into microdroplets by varicose instabilities. Measurements from Laser-Doppler PDA Analizer of these aerosprays show that both the droplet size and its standard deviation are comparable to those obtained by electrospray techniques. On the other hand, using the aerospray, the standard deviation of the resulting droplet size distribution is of the order of those that can be obtained by ultrasonic atomization but the mean diameters can be more than one order of magnitude smaller.

  3. A new method to generate a high-resolution global distribution map of lake chlorophyll

    USGS Publications Warehouse

    Sayers, Michael J; Grimm, Amanda G.; Shuchman, Robert A.; Deines, Andrew M.; Bunnell, David B.; Raymer, Zachary B; Rogers, Mark W.; Woelmer, Whitney; Bennion, David; Brooks, Colin N.; Whitley, Matthew A.; Warner, David M.; Mychek-Londer, Justin G.

    2015-01-01

    A new method was developed, evaluated, and applied to generate a global dataset of growing-season chlorophyll-a (chl) concentrations in 2011 for freshwater lakes. Chl observations from freshwater lakes are valuable for estimating lake productivity as well as assessing the role that these lakes play in carbon budgets. The standard 4 km NASA OceanColor L3 chlorophyll concentration products generated from MODIS and MERIS sensor data are not sufficiently representative of global chl values because these can only resolve larger lakes, which generally have lower chl concentrations than lakes of smaller surface area. Our new methodology utilizes the 300 m-resolution MERIS full-resolution full-swath (FRS) global dataset as input and does not rely on the land mask used to generate standard NASA products, which masks many lakes that are otherwise resolvable in MERIS imagery. The new method produced chl concentration values for 78,938 and 1,074 lakes in the northern and southern hemispheres, respectively. The mean chl for lakes visible in the MERIS composite was 19.2 ± 19.2, the median was 13.3, and the interquartile range was 3.90–28.6 mg m−3. The accuracy of the MERIS-derived values was assessed by comparison with temporally near-coincident and globally distributed in situmeasurements from the literature (n = 185, RMSE = 9.39, R2 = 0.72). This represents the first global-scale dataset of satellite-derived chl estimates for medium to large lakes.

  4. Time Resolved Temperature Measurement of Hypervelocity Impact Generated Plasma Using a Global Optimization Method

    NASA Astrophysics Data System (ADS)

    Hew, Y. M.; Linscott, I.; Close, S.

    2015-12-01

    Meteoroids and orbital debris, collectively referred to as hypervelocity impactors, travel between 7 and 72 km/s in free space. Upon their impact onto the spacecraft, the energy conversion from kinetic to ionization/vaporization occurs within a very brief timescale and results in a small and dense expanding plasma with a very strong optical flash. The radio frequency (RF) emission produced by this plasma can potentially lead to electrical anomalies within the spacecraft. In addition, space weather, such as solar activity and background plasma, can establish spacecraft conditions which can exaggerate the damages done by these impacts. During the impact, a very strong impact flash will be generated. Through the studying of this emission spectrum of the impact, we hope to study the impact generated gas cloud/plasma properties. The impact flash emitted from a ground-based hypervelocity impact test is long expected by many scientists to contain the characteristics of the impact generated plasma, such as plasma temperature and density. This paper presents a method for the time-resolved plasma temperature estimation using three-color visible band photometry data with a global pattern search optimization method. The equilibrium temperature of the plasma can be estimated using an optical model which accounts for both the line emission and continuum emission from the plasma. Using a global pattern search based optimizer, the model can isolate the contribution of the continuum emission versus the line emission from the plasma. The plasma temperature can thus be estimated. Prior to the optimization step, a Gaussian process is also applied to extract the optical emission signal out of the noisy background. The resultant temperature and line-to-continuum emission weighting factor are consistent with the spectrum of the impactor material and current literature.

  5. High temperature adhesive silicone foam composition, foam generating system and method of generating foam. [For access denial

    DOEpatents

    Mead, J.W.; Montoya, O.J.; Rand, P.B.; Willan, V.O.

    1983-12-21

    Access to a space is impeded by generation of a sticky foam from a silicone polymer and a low boiling solvent such as a halogenated hydrocarbon. In a preferred aspect, the formulation is polydimethylsiloxane gel mixed with F502 Freon as a solvent and blowing agent, and pressurized with CO/sub 2/ in a vessel to about 250 PSI, whereby when the vessel is opened, a sticky and solvent resistant foam is deployed. The foam is deployable, over a wide range of temperatures, adhering to wet surfaces as well as dry, is stable over long periods of time and does not propagate flame or lose adhesive properties during an externally supported burn.

  6. A plane wave generation method by wave number domain point focusing.

    PubMed

    Chang, Ji-Ho; Choi, Jung-Woo; Kim, Yang-Hann

    2010-11-01

    A method for generation of a wave-field that is a plane wave is described. This method uses an array of loudspeakers phased so that the field in the wave-number domain is nearly concentrated at a point, this point being at the wave-number vector of the desired plane wave. The method described here for such a wave-number concentration makes use of an expansion in spherical harmonics, and requires a relatively small number of measurement points for a good approximate achievement of a plane wave. The measurement points are on a spherical surface surrounding the array of loudspeakers. The input signals for the individual loudspeakers can be derived without a matrix inversion or without explicit assumptions about the loudspeakers. The mathematical development involves spherical harmonics and three-dimensional Fourier transforms. Some numerical examples are given, with various assumptions concerning the nature of the loudspeakers, that support the premise that the method described in the present paper may be useful in applications. PMID:21110571

  7. An Automatic 3D Mesh Generation Method for Domains with Multiple Materials.

    PubMed

    Zhang, Yongjie; Hughes, Thomas J R; Bajaj, Chandrajit L

    2010-01-01

    This paper describes an automatic and efficient approach to construct unstructured tetrahedral and hexahedral meshes for a composite domain made up of heterogeneous materials. The boundaries of these material regions form non-manifold surfaces. In earlier papers, we developed an octree-based isocontouring method to construct unstructured 3D meshes for a single-material (homogeneous) domain with manifold boundary. In this paper, we introduce the notion of a material change edge and use it to identify the interface between two or several different materials. A novel method to calculate the minimizer point for a cell shared by more than two materials is provided, which forms a non-manifold node on the boundary. We then mesh all the material regions simultaneously and automatically while conforming to their boundaries directly from volumetric data. Both material change edges and interior edges are analyzed to construct tetrahedral meshes, and interior grid points are analyzed for proper hexahedral mesh construction. Finally, edge-contraction and smoothing methods are used to improve the quality of tetrahedral meshes, and a combination of pillowing, geometric flow and optimization techniques is used for hexahedral mesh quality improvement. The shrink set of pillowing schemes is defined automatically as the boundary of each material region. Several application results of our multi-material mesh generation method are also provided. PMID:20161555

  8. HLA genotyping in the clinical laboratory: comparison of next-generation sequencing methods.

    PubMed

    Profaizer, T; Lázár-Molnár, E; Close, D W; Delgado, J C; Kumánovics, A

    2016-07-01

    Implementation of human leukocyte antigen (HLA) genotyping by next-generation sequencing (NGS) in the clinical lab brings new challenges to the laboratories performing this testing. With the advent of commercially available HLA-NGS typing kits, labs must make numerous decisions concerning capital equipment and address labor considerations. Therefore, careful and unbiased evaluation of available methods is imperative. In this report, we compared our in-house developed HLA NGS typing with two commercially available kits from Illumina and Omixon using 10 International Histocompatibility Working Group (IHWG) and 36 clinical samples. Although all three methods employ long range polymerase chain reaction (PCR) and have been developed on the Illumina MiSeq platform, the methodologies for library preparation show significant variations. There was 100% typing concordance between all three methods at the first field when a HLA type could be assigned. Overall, HLA typing by NGS using in-house or commercially available methods is now feasible in clinical laboratories. However, technical variables such as hands-on time and indexing strategies are sufficiently different among these approaches to impact the workflow of the clinical laboratory. PMID:27524804

  9. Modeling technology innovation: How science, engineering, and industry methods can combine to generate beneficial socioeconomic impacts

    PubMed Central

    2012-01-01

    Background Government-sponsored science, technology, and innovation (STI) programs support the socioeconomic aspects of public policies, in addition to expanding the knowledge base. For example, beneficial healthcare services and devices are expected to result from investments in research and development (R&D) programs, which assume a causal link to commercial innovation. Such programs are increasingly held accountable for evidence of impact—that is, innovative goods and services resulting from R&D activity. However, the absence of comprehensive models and metrics skews evidence gathering toward bibliometrics about research outputs (published discoveries), with less focus on transfer metrics about development outputs (patented prototypes) and almost none on econometrics related to production outputs (commercial innovations). This disparity is particularly problematic for the expressed intent of such programs, as most measurable socioeconomic benefits result from the last category of outputs. Methods This paper proposes a conceptual framework integrating all three knowledge-generating methods into a logic model, useful for planning, obtaining, and measuring the intended beneficial impacts through the implementation of knowledge in practice. Additionally, the integration of the Context-Input-Process-Product (CIPP) model of evaluation proactively builds relevance into STI policies and programs while sustaining rigor. Results The resulting logic model framework explicitly traces the progress of knowledge from inputs, following it through the three knowledge-generating processes and their respective knowledge outputs (discovery, invention, innovation), as it generates the intended socio-beneficial impacts. It is a hybrid model for generating technology-based innovations, where best practices in new product development merge with a widely accepted knowledge-translation approach. Given the emphasis on evidence-based practice in the medical and health fields and

  10. Incorporating operational flexibility into electric generation planning Impacts and methods for system design and policy analysis

    NASA Astrophysics Data System (ADS)

    Palmintier, Bryan S.

    This dissertation demonstrates how flexibility in hourly electricity operations can impact long-term planning and analysis for future power systems, particularly those with substantial variable renewables (e.g., wind) or strict carbon policies. Operational flexibility describes a power system's ability to respond to predictable and unexpected changes in generation or demand. Planning and policy models have traditionally not directly captured the technical operating constraints that determine operational flexibility. However, as demonstrated in this dissertation, this capability becomes increasingly important with the greater flexibility required by significant renewables (>= 20%) and the decreased flexibility inherent in some low-carbon generation technologies. Incorporating flexibility can significantly change optimal generation and energy mixes, lower system costs, improve policy impact estimates, and enable system designs capable of meeting strict regulatory targets. Methodologically, this work presents a new clustered formulation that tractably combines a range of normally distinct power system models, from hourly unit-commitment operations to long-term generation planning. This formulation groups similar generators into clusters to reduce problem size, while still retaining the individual unit constraints required to accurately capture operating reserves and other flexibility drivers. In comparisons against traditional unit commitment formulations, errors were generally less than 1% while run times decreased by several orders of magnitude (e.g., 5000x). Extensive numerical simulations, using a realistic Texas-based power system show that ignoring flexibility can underestimate carbon emissions by 50% or result in significant load and wind shedding to meet environmental regulations. Contributions of this dissertation include: 1. Demonstrating that operational flexibility can have an important impact on power system planning, and describing when and how these

  11. A new method to extract stable feature points based on self-generated simulation images

    NASA Astrophysics Data System (ADS)

    Long, Fei; Zhou, Bin; Ming, Delie; Tian, Jinwen

    2015-10-01

    Recently, image processing has got a lot of attention in the field of photogrammetry, medical image processing, etc. Matching two or more images of the same scene taken at different times, by different cameras, or from different viewpoints, is a popular and important problem. Feature extraction plays an important part in image matching. Traditional SIFT detectors reject the unstable points by eliminating the low contrast and edge response points. The disadvantage is the need to set the threshold manually. The main idea of this paper is to get the stable extremums by machine learning algorithm. Firstly we use ASIFT approach coupled with the light changes and blur to generate multi-view simulated images, which make up the set of the simulated images of the original image. According to the way of generating simulated images set, affine transformation of each generated image is also known. Instead of the traditional matching process which contain the unstable RANSAC method to get the affine transformation, this approach is more stable and accurate. Secondly we calculate the stability value of the feature points by the set of image with its affine transformation. Then we get the different feature properties of the feature point, such as DOG features, scales, edge point density, etc. Those two form the training set while stability value is the dependent variable and feature property is the independent variable. At last, a process of training by Rank-SVM is taken. We will get a weight vector. In use, based on the feature properties of each points and weight vector calculated by training, we get the sort value of each feature point which refers to the stability value, then we sort the feature points. In conclusion, we applied our algorithm and the original SIFT detectors to test as a comparison. While in different view changes, blurs, illuminations, it comes as no surprise that experimental results show that our algorithm is more efficient.

  12. Dose Equivalents for Second-Generation Antipsychotics: The Minimum Effective Dose Method

    PubMed Central

    Leucht, Stefan

    2014-01-01

    Background: Clinicians need to know the right antipsychotic dose for optimized treatment, and the concept of dose equivalence is important for many clinical and scientific purposes. Methods: We refined a method presented in 2003, which was based on the minimum effective doses found in fixed-dose studies. We operationalized the selection process, updated the original findings, and expanded them by systematically searching more recent literature and by including 13 second-generation antipsychotics. To qualify for the minimum effective dose, a dose had to be significantly more efficacious than placebo in the primary outcome of at least one randomized, double-blind, fixed-dose trial. In a sensitivity analysis, 2 positive trials were required. The minimum effective doses identified were subsequently used to derive olanzapine, risperidone, haloperidol, and chlorpromazine equivalents. Results: We reviewed 73 included studies. The minimum effective daily doses/olanzapine equivalents based on our primary approach were: aripiprazole 10 mg/1.33, asenapine 10 mg/1.33, clozapine 300 mg/40, haloperidol 4 mg/0.53, iloperidone 8 mg/1.07, lurasidone 40 mg/5.33, olanzapine 7.5 mg/1, paliperidone 3 mg/0.4, quetiapine 150 mg/20, risperidone 2 mg/0.27, sertindole 12 mg/1.60, and ziprasidone 40 mg/5.33. For amisulpride and zotepine, reliable estimates could not be derived. Conclusions: This method for determining antipsychotic dose equivalence entails an operationalized and evidence-based approach that can be applied to the various antipsychotic drugs. As a limitation, the results are not applicable to specific populations such as first-episode or refractory patients. We recommend that alternative methods also be updated in order to minimize further differences between the methods and risk of subsequent bias. PMID:24493852

  13. Calculation reduction method for color digital holography and computer-generated hologram using color space conversion

    NASA Astrophysics Data System (ADS)

    Shimobaba, Tomoyoshi; Nagahama, Yuki; Kakue, Takashi; Takada, Naoki; Okada, Naohisa; Endo, Yutaka; Hirayama, Ryuji; Hiyama, Daisuke; Ito, Tomoyoshi

    2014-02-01

    A calculation reduction method for color digital holography (DH) and computer-generated holograms (CGHs) using color space conversion is reported. Color DH and color CGHs are generally calculated on RGB space. We calculate color DH and CGHs in other color spaces for accelerating the calculation (e.g., YCbCr color space). In YCbCr color space, a RGB image or RGB hologram is converted to the luminance component (Y), blue-difference chroma (Cb), and red-difference chroma (Cr) components. In terms of the human eye, although the negligible difference of the luminance component is well recognized, the difference of the other components is not. In this method, the luminance component is normal sampled and the chroma components are down-sampled. The down-sampling allows us to accelerate the calculation of the color DH and CGHs. We compute diffraction calculations from the components, and then we convert the diffracted results in YCbCr color space to RGB color space. The proposed method, which is possible to accelerate the calculations up to a factor of 3 in theory, accelerates the calculation over two times faster than the ones in RGB color space.

  14. A body-force based method to generate supersonic equilibrium turbulent boundary layer profiles

    NASA Astrophysics Data System (ADS)

    Waindim, M.; Gaitonde, D. V.

    2016-01-01

    We further develop a simple counterflow body force-based approach to generate an equilibrium spatially developing turbulent boundary layer suitable for Direct Numerical Simulations (DNS) or Large Eddy Simulations (LES) of viscous-inviscid interactions. The force essentially induces a small separated region in an incoming specified laminar boundary layer. The resulting unstable shear layer then transitions and breaks down to yield the desired unsteady profile. The effects of wall thermal conditions are explored to demonstrate the capability of the method for both fixed wall and adiabatic wall conditions. We then describe an efficient method to select parameters that ensure transition by examining precursor signatures using generalized stability variables. These precursors are shown to be evident in a computational domain spanning only a small region around the trip and can also be detected using 2D simulations. Finally, the method is tested for different Mach numbers ranging from 1.7 to 2.9, with emphasis on flow field surveys, Reynolds stresses, and energy spectra. These results provide guidance on boundary conditions for desired boundary layer thickness at each Mach number. The consequences of using a much lower Reynolds number in computation relative to experiment are evident at the higher Mach number, where a self sustaining turbulent boundary layer is more difficult to obtain.

  15. Spectral analysis method and sample generation for real time visualization of speech

    NASA Astrophysics Data System (ADS)

    Hobohm, Klaus

    A method for translating speech signals into optical models, characterized by high sound discrimination and learnability and designed to provide to deaf persons a feedback towards control of their way of speaking, is presented. Important properties of speech production and perception processes and organs involved in these mechanisms are recalled in order to define requirements for speech visualization. It is established that the spectral representation of time, frequency and amplitude resolution of hearing must be fair and continuous variations of acoustic parameters of speech signal must be depicted by a continuous variation of images. A color table was developed for dynamic illustration and sonograms were generated with five spectral analysis methods such as Fourier transformations and linear prediction coding. For evaluating sonogram quality, test persons had to recognize consonant/vocal/consonant words and an optimized analysis method was achieved with a fast Fourier transformation and a postprocessor. A hardware concept of a real time speech visualization system, based on multiprocessor technology in a personal computer, is presented.

  16. A Novel Gaze Tracking Method Based on the Generation of Virtual Calibration Points

    PubMed Central

    Lee, Ji Woo; Heo, Hwan; Park, Kang Ryoung

    2013-01-01

    Most conventional gaze-tracking systems require that users look at many points during the initial calibration stage, which is inconvenient for them. To avoid this requirement, we propose a new gaze-tracking method with four important characteristics. First, our gaze-tracking system uses a large screen located at a distance from the user, who wears a lightweight device. Second, our system requires that users look at only four calibration points during the initial calibration stage, during which four pupil centers are noted. Third, five additional points (virtual pupil centers) are generated with a multilayer perceptron using the four actual points (detected pupil centers) as inputs. Fourth, when a user gazes at a large screen, the shape defined by the positions of the four pupil centers is a distorted quadrangle because of the nonlinear movement of the human eyeball. The gaze-detection accuracy is reduced if we map the pupil movement area onto the screen area using a single transform function. We overcame this problem by calculating the gaze position based on multi-geometric transforms using the five virtual points and the four actual points. Experiment results show that the accuracy of the proposed method is better than that of other methods. PMID:23959241

  17. A general method for generating bathymetric data for hydrodynamic computer models

    USGS Publications Warehouse

    Burau, J.R.; Cheng, R.T.

    1989-01-01

    To generate water depth data from randomly distributed bathymetric data for numerical hydrodymamic models, raw input data from field surveys, water depth data digitized from nautical charts, or a combination of the two are sorted to given an ordered data set on which a search algorithm is used to isolate data for interpolation. Water depths at locations required by hydrodynamic models are interpolated from the bathymetric data base using linear or cubic shape functions used in the finite-element method. The bathymetric database organization and preprocessing, the search algorithm used in finding the bounding points for interpolation, the mathematics of the interpolation formulae, and the features of the automatic generation of water depths at hydrodynamic model grid points are included in the analysis. This report includes documentation of two computer programs which are used to: (1) organize the input bathymetric data; and (2) to interpolate depths for hydrodynamic models. An example of computer program operation is drawn from a realistic application to the San Francisco Bay estuarine system. (Author 's abstract)

  18. Acoustic methods for high-throughput protein crystal mounting at next-generation macromolecular crystallographic beamlines.

    PubMed

    Roessler, Christian G; Kuczewski, Anthony; Stearns, Richard; Ellson, Richard; Olechno, Joseph; Orville, Allen M; Allaire, Marc; Soares, Alexei S; Héroux, Annie

    2013-09-01

    To take full advantage of advanced data collection techniques and high beam flux at next-generation macromolecular crystallography beamlines, rapid and reliable methods will be needed to mount and align many samples per second. One approach is to use an acoustic ejector to eject crystal-containing droplets onto a solid X-ray transparent surface, which can then be positioned and rotated for data collection. Proof-of-concept experiments were conducted at the National Synchrotron Light Source on thermolysin crystals acoustically ejected onto a polyimide `conveyor belt'. Small wedges of data were collected on each crystal, and a complete dataset was assembled from a well diffracting subset of these crystals. Future developments and implementation will focus on achieving ejection and translation of single droplets at a rate of over one hundred per second. PMID:23955046

  19. Non-destructive research methods applied on materials for the new generation of nuclear reactors

    NASA Astrophysics Data System (ADS)

    Bartošová, I.; Slugeň, V.; Veterníková, J.; Sojak, S.; Petriska, M.; Bouhaddane, A.

    2014-06-01

    The paper is aimed on non-destructive experimental techniques applied on materials for the new generation of nuclear reactors (GEN IV). With the development of these reactors, also materials have to be developed in order to guarantee high standard properties needed for construction. These properties are high temperature resistance, radiation resistance and resistance to other negative effects. Nevertheless the changes in their mechanical properties should be only minimal. Materials, that fulfil these requirements, are analysed in this work. The ferritic-martensitic (FM) steels and ODS steels are studied in details. Microstructural defects, which can occur in structural materials and can be also accumulated during irradiation due to neutron flux or alpha, beta and gamma radiation, were analysed using different spectroscopic methods as positron annihilation spectroscopy and Barkhausen noise, which were applied for measurements of three different FM steels (T91, P91 and E97) as well as one ODS steel (ODS Eurofer).

  20. A method for generating volumetric fault zone grids for pillar gridded reservoir models

    NASA Astrophysics Data System (ADS)

    Qu, Dongfang; Røe, Per; Tveranger, Jan

    2015-08-01

    The internal structure and petrophysical property distribution of fault zones are commonly exceedingly complex compared to the surrounding host rock from which they are derived. This in turn produces highly complex fluid flow patterns which affect petroleum migration and trapping as well as reservoir behavior during production and injection. Detailed rendering and forecasting of fluid flow inside fault zones require high-resolution, explicit models of fault zone structure and properties. A fundamental requirement for achieving this is the ability to create volumetric grids in which modeling of fault zone structures and properties can be performed. Answering this need, a method for generating volumetric fault zone grids which can be seamlessly integrated into existing standard reservoir modeling tools is presented. The algorithm has been tested on a wide range of fault configurations of varying complexity, providing flexible modeling grids which in turn can be populated with fault zone structures and properties.

  1. Novel methods for improvement of a Penning ion source for neutron generator applications

    SciTech Connect

    Sy, A.; Ji, Q.; Persaud, A.; Waldmann, O.; Schenkel, T.

    2012-02-15

    Penning ion source performance for neutron generator applications is characterized by the atomic ion fraction and beam current density, providing two paths by which source performance can be improved for increased neutron yields. We have fabricated a Penning ion source to investigate novel methods for improving source performance, including optimization of wall materials and electrode geometry, advanced magnetic confinement, and integration of field emitter arrays for electron injection. Effects of several electrode geometries on discharge characteristics and extracted ion current were studied. Additional magnetic confinement resulted in a factor of two increase in beam current density. First results indicate unchanged proton fraction and increased beam current density due to electron injection from carbon nanofiber arrays.

  2. Symplectic tracking through straight three dimensional fields by a method of generating functions

    NASA Astrophysics Data System (ADS)

    Titze, M.; Bahrdt, J.; Wüstefeld, G.

    2016-01-01

    For simulating single-particle trajectories, the derivation of final coordinates from known initial coordinates through arbitrary electromagnetic fields is of key interest in accelerator physics. We address this task in the case of straight stationary magnetic fields, using generating functions via a perturbative ansatz for the corresponding Hamilton-Jacobi equation. Such an approach is always symplectic, independent of the expansion order. We set up the Hamiltonian by static fields, represented by Fourier series, and outline this approach for the correct and complete set of 3D-multipole fields. Different types of multipoles can be treated with the same formalism, combining them with a specific table of Fourier coefficients characterizing their fields. The resulting particle-tracking routine maps the multipole in a single step. Results are compared with analytical estimations and high-resolution integration methods.

  3. Model predictive control system and method for integrated gasification combined cycle power generation

    DOEpatents

    Kumar, Aditya; Shi, Ruijie; Kumar, Rajeeva; Dokucu, Mustafa

    2013-04-09

    Control system and method for controlling an integrated gasification combined cycle (IGCC) plant are provided. The system may include a controller coupled to a dynamic model of the plant to process a prediction of plant performance and determine a control strategy for the IGCC plant over a time horizon subject to plant constraints. The control strategy may include control functionality to meet a tracking objective and control functionality to meet an optimization objective. The control strategy may be configured to prioritize the tracking objective over the optimization objective based on a coordinate transformation, such as an orthogonal or quasi-orthogonal projection. A plurality of plant control knobs may be set in accordance with the control strategy to generate a sequence of coordinated multivariable control inputs to meet the tracking objective and the optimization objective subject to the prioritization resulting from the coordinate transformation.

  4. System and method for generating and/or screening potential metal-organic frameworks

    DOEpatents

    Wilmer, Christopher E; Leaf, Michael; Snurr, Randall Q; Farha, Omar K; Hupp, Joseph T

    2015-04-21

    A system and method for systematically generating potential metal-organic framework (MOFs) structures given an input library of building blocks is provided herein. One or more material properties of the potential MOFs are evaluated using computational simulations. A range of material properties (surface area, pore volume, pore size distribution, powder x-ray diffraction pattern, methane adsorption capability, and the like) can be estimated, and in doing so, illuminate unidentified structure-property relationships that may only have been recognized by taking a global view of MOF structures. In addition to identifying structure-property relationships, this systematic approach to identify the MOFs of interest is used to identify one or more MOFs that may be useful for high pressure methane storage.

  5. System and method for generating and/or screening potential metal-organic frameworks

    DOEpatents

    Wilmer, Christopher E; Leaf, Michael; Snurr, Randall Q; Farha, Omar K; Hupp, Joseph T

    2014-12-02

    A system and method for systematically generating potential metal-organic framework (MOFs) structures given an input library of building blocks is provided herein. One or more material properties of the potential MOFs are evaluated using computational simulations. A range of material properties (surface area, pore volume, pore size distribution, powder x-ray diffraction pattern, methane adsorption capability, and the like) can be estimated, and in doing so, illuminate unidentified structure-property relationships that may only have been recognized by taking a global view of MOF structures. In addition to identifying structure-property relationships, this systematic approach to identify the MOFs of interest is used to identify one or more MOFs that may be useful for high pressure methane storage.

  6. A Laplacian Equation Method for Numerical Generation of Boundary-Fitted 3D Orthogonal Grids

    NASA Astrophysics Data System (ADS)

    Theodoropoulos, T.; Bergeles, G. C.

    1989-06-01

    A sethod for generating boundary fitted orthogonal curvilinear grids in 3-dimensional space is described. The mapping between the curvilinear coordinates and the Cartesian coordinates is provided by a set of Laplace equations which, expressed in curvilinear coordinates, involve the components of the metric tensor and are therefore non-linear and coupled. An iterative algorithm is described, which achieves a numerical solution. Grids appropriate for the calculation of flow fields over complex topography or in complex flow passages as those found in turbomachinery, and for other engineering applications can be constructed using the proposed method. Various examples are presented and plotted in perspective, and data for the assessment of the properties of the resulting meshes is provided.

  7. Variable cooling circuit for thermoelectric generator and engine and method of control

    DOEpatents

    Prior, Gregory P

    2012-10-30

    An apparatus is provided that includes an engine, an exhaust system, and a thermoelectric generator (TEG) operatively connected to the exhaust system and configured to allow exhaust gas flow therethrough. A first radiator is operatively connected to the engine. An openable and closable engine valve is configured to open to permit coolant to circulate through the engine and the first radiator when coolant temperature is greater than a predetermined minimum coolant temperature. A first and a second valve are controllable to route cooling fluid from the TEG to the engine through coolant passages under a first set of operating conditions to establish a first cooling circuit, and from the TEG to a second radiator through at least some other coolant passages under a second set of operating conditions to establish a second cooling circuit. A method of controlling a cooling circuit is also provided.

  8. A method to evaluate the generation area of local wave climate

    NASA Astrophysics Data System (ADS)

    Perez, Jorge; Mendez, Fernando; Menendez, Melisa

    2013-04-01

    The description of wave conditions at a local scale is of paramount importance for off-shore and coastal engineering applications (maritime works, ship design and route definition, offshore structures design, harbours operability). However, wave characteristics at a specific location cannot be fully understood studying only information of such location. They are the integrated result of the dynamics of the ocean surface over an area of influence. The goal of this work is to provide a methodology to easily characterize the area of influence of any particular ocean location in the world. The method is based on a global scale analysis using both geographic and oceanographic criteria. The geographic criterion relies on the realistic assumption that deep water waves travel along great circle paths, taking into account the spherical shape of the Earth. This allows limiting the study area by neglecting energy that cannot reach a target point, as its path is blocked by land. The oceanographic criterion is applied to global wave reanalysis data (Reguero et al., 2012), considering different spectral parameters such as mean direction, directional spread, wave energy period and energy flux, and taking into account in its specific location, the fraction of energy of the directional sector that travels towards the target point. A better understanding of the spatial generation and propagation area and an estimation of the time span the waves take to arrive to the target point is obtained. We have applied the methodology worldwide to obtain detailed maps of the relative importance of different oceanic areas to the climate of any location. Results show important spatial patterns that cannot be inferred from local parameters and validation with different climate analysis of other authors (Izaguirre et al., 2012; Alves et al., 2006) confirm the robustness of the method. This methodology facilitates enormously the study of wave generation area that induces local wave climate.

  9. Stepwise Threshold Clustering: A New Method for Genotyping MHC Loci Using Next-Generation Sequencing Technology

    PubMed Central

    Stutz, William E.; Bolnick, Daniel I.

    2014-01-01

    Genes of the vertebrate major histocompatibility complex (MHC) are of great interest to biologists because of their important role in immunity and disease, and their extremely high levels of genetic diversity. Next generation sequencing (NGS) technologies are quickly becoming the method of choice for high-throughput genotyping of multi-locus templates like MHC in non-model organisms.Previous approaches to genotyping MHC genes using NGS technologies suffer from two problems:1) a “gray zone” where low frequency alleles and high frequency artifacts can be difficult to disentangle and 2) a similar sequence problem, where very similar alleles can be difficult to distinguish as two distinct alleles. Here were present a new method for genotyping MHC loci – Stepwise Threshold Clustering (STC) – that addresses these problems by taking full advantage of the increase in sequence data provided by NGS technologies. Unlike previous approaches for genotyping MHC with NGS data that attempt to classify individual sequences as alleles or artifacts, STC uses a quasi-Dirichlet clustering algorithm to cluster similar sequences at increasing levels of sequence similarity. By applying frequency and similarity based criteria to clusters rather than individual sequences, STC is able to successfully identify clusters of sequences that correspond to individual or similar alleles present in the genomes of individual samples. Furthermore, STC does not require duplicate runs of all samples, increasing the number of samples that can be genotyped in a given project. We show how the STC method works using a single sample library. We then apply STC to 295 threespine stickleback (Gasterosteus aculeatus) samples from four populations and show that neighboring populations differ significantly in MHC allele pools. We show that STC is a reliable, accurate, efficient, and flexible method for genotyping MHC that will be of use to biologists interested in a variety of downstream applications. PMID

  10. A piezoelectric-based infinite stiffness generation method for strain-type load sensors

    NASA Astrophysics Data System (ADS)

    Zhang, Shuwen; Shao, Shubao; Chen, Jie; Xu, Minglong

    2015-11-01

    Under certain application conditions like nanoindentation technology and the mechanical property measurement of soft materials, the elastic deformation of strain-type load sensors affects their displacement measurement accuracy. In this work, a piezoelectric-based infinite stiffness generation method for strain-type load sensors that compensates for this elastic deformation is presented. The piezoelectric material-based deformation compensation method is proposed. An Hottinger Baldwin Messtechnik GmbH (HBM) Z30A/50N load sensor acts as the foundation of the method presented in this work. The piezoelectric stack is selected based on its size, maximum deformation value, blocking force and stiffness. Then, a clamping and fixing structure is designed to integrate the HBM sensor with the piezoelectric stack. The clamping and fixing structure, piezoelectric stack and HBM load sensor comprise the sensing part of the enhanced load sensor. The load-deformation curve and the voltage-deformation curve of the enhanced load sensor are then investigated experimentally. Because a hysteresis effect exists in the piezoelectric structure, the relationship between the control signal and the deformation value of the piezoelectric material is nonlinear. The hysteresis characteristic in a quasi-static condition is studied and fitted using a quadratic polynomial, and its coefficients are analyzed to enable control signal prediction. Applied arithmetic based on current theory and the fitted data is developed to predict the control signal. Finally, the experimental effects of the proposed method are presented. It is shown that when a quasi-static load is exerted on this enhanced strain-type load sensor, the deformation is reduced and the equivalent stiffness appears to be almost infinite.

  11. Conditionals by inversion provide a universal method for the generation of conditional alleles

    PubMed Central

    Economides, Aris N.; Frendewey, David; Yang, Peter; Dominguez, Melissa G.; Dore, Anthony T.; Lobov, Ivan B.; Persaud, Trikaldarshi; Rojas, Jose; McClain, Joyce; Lengyel, Peter; Droguett, Gustavo; Chernomorsky, Rostislav; Stevens, Sean; Auerbach, Wojtek; DeChiara, Thomas M.; Pouyemirou, William; Cruz, Joseph M.; Feeley, Kieran; Mellis, Ian A.; Yasenchack, Jason; Hatsell, Sarah J.; Xie, LiQin; Latres, Esther; Huang, Lily; Zhang, Yuhong; Pefanis, Evangelos; Skokos, Dimitris; Deckelbaum, Ron A.; Croll, Susan D.; Davis, Samuel; Valenzuela, David M.; Gale, Nicholas W.; Murphy, Andrew J.; Yancopoulos, George D.

    2013-01-01

    Conditional mutagenesis is becoming a method of choice for studying gene function, but constructing conditional alleles is often laborious, limited by target gene structure, and at times, prone to incomplete conditional ablation. To address these issues, we developed a technology termed conditionals by inversion (COIN). Before activation, COINs contain an inverted module (COIN module) that lies inertly within the antisense strand of a resident gene. When inverted into the sense strand by a site-specific recombinase, the COIN module causes termination of the target gene’s transcription and simultaneously provides a reporter for tracking this event. COIN modules can be inserted into natural introns (intronic COINs) or directly into coding exons as part of an artificial intron (exonic COINs), greatly simplifying allele design and increasing flexibility over previous conditional KO approaches. Detailed analysis of over 20 COIN alleles establishes the reliability of the method and its broad applicability to any gene, regardless of exon–intron structure. Our extensive testing provides rules that help ensure success of this approach and also explains why other currently available conditional approaches often fail to function optimally. Finally, the ability to split exons using the COIN’s artificial intron opens up engineering modalities for the generation of multifunctional alleles. PMID:23918385

  12. Method for numerical relativity: simulation of axisymmetric gravitational collapse and gravitational radiation generation

    SciTech Connect

    Evans, C.R. II

    1984-01-01

    A method is presented that allows fully self-consistent numerical simulation of asymptotically flat axisymmetric nonrotating general relativistic systems. These techniques were developed to model and understand resulting relativistic effects in gravitational core collapse and gravitational radiation generation. Both vacuum (Brill) spacetimes and matter-filled configurations can be treated. The author uses the (3 + 1) composition of Arnowitt, Deser, and Misner to write general relativity in a dynamical form. The conformal approach, including the transverse-traceless decomposition of extrinsic curvature due to York, is used to solve the initial-value problem. In addition, these techniques are extended to provide a fully constrained evolution scheme. Several new boundary conditions, applied at large but finite radius, are derived for the elliptic constraint equations. The method uses a simplifying three-gauge, placing the metric in quasi-isotropic form. The resulting three-metric contains only two components that must be solved. One, the conformal factor, is fixed by the Hamiltonian constraint. The second has nice radiative features and is related in the weak-field limit to the usual transverse-traceless gravitational wave amplitude. The time slicing is determined by implementation of the maximal slicing condition.

  13. Extending a CAD-Based Cartesian Mesh Generator for the Lattice Boltzmann Method

    SciTech Connect

    Cantrell, J Nathan; Inclan, Eric J; Joshi, Abhijit S; Popov, Emilian L; Jain, Prashant K

    2012-01-01

    This paper describes the development of a custom preprocessor for the PaRAllel Thermal Hydraulics simulations using Advanced Mesoscopic methods (PRATHAM) code based on an open-source mesh generator, CartGen [1]. PRATHAM is a three-dimensional (3D) lattice Boltzmann method (LBM) based parallel flow simulation software currently under development at the Oak Ridge National Laboratory. The LBM algorithm in PRATHAM requires a uniform, coordinate system-aligned, non-body-fitted structured mesh for its computational domain. CartGen [1], which is a GNU-licensed open source code, already comes with some of the above needed functionalities. However, it needs to be further extended to fully support the LBM specific preprocessing requirements. Therefore, CartGen is being modified to (i) be compiler independent while converting a neutral-format STL (Stereolithography) CAD geometry to a uniform structured Cartesian mesh, (ii) provide a mechanism for PRATHAM to import the mesh and identify the fluid/solid domains, and (iii) provide a mechanism to visually identify and tag the domain boundaries on which to apply different boundary conditions.

  14. Robust Self-Referencing Method for Chiral Sum Frequency Generation Spectroscopy.

    PubMed

    McDermott, M Luke; Petersen, Poul B

    2015-09-24

    Chiral sum frequency generation spectroscopy (SFG) is of great interest for studying biological systems, among others. Whereas the chiral response in circular dichroism is about 0.1% of the achiral response, the chiral SFG response can be the same order of magnitude as the achiral SFG signal. However, chiral SFG is limited by the attainable signal-to-noise of the weak nonlinear signals and therefore extremely sensitive to proper alignment. We present a robust method for chiral SFG and demonstrate the use on solid-air surfaces with achiral and chiral molecules. We simultaneously measure two orthogonal polarizations-either the interference chiral SFG (±45° polarized) or the pure chiral and achiral SFG-using a waveplate and beam displacer. Both optics are placed in the detection arm and can be easily incorporated into any SFG setup. Furthermore, we employ self-referencing to calibrate alignment for each sample individually using a polarizer in the detection arm. These methods greatly increase the reliability and quality of chiral SFG measurements. PMID:26322867

  15. INHALATION TOXICOLOGY METHODS: The Generation and Characterization of Exposure Atmospheres and Inhalational Exposures

    PubMed Central

    Chen, Lung-Chi; Lippmann, Morton

    2015-01-01

    In this review, we outline the need for laboratory-based inhalation toxicology studies, the historical background on adverse health effects of airborne toxicants, and the benefits of advance planning for the building of analytic options into the study design to maximize the scientific gains to be derived from the investments in the study. We then discuss methods for: 1) the generation and characterization of exposure atmospheres for inhalation exposures in humans and laboratory animals; 2) their delivery and distribution into and within whole-body exposure chambers, head-only exposure chambers, face-masks, and mouthpieces or nasal catheters; 3) options for on-line functional assays during and between exposures; and 4) options for serial non-invasive assays of response. In doing so, we go beyond exposures to single agents and simple mixtures, and include methods for evaluating biological responses to complex environmental mixtures. We also emphasize that great care should be taken in the design and execution of such studies so that the scientific returns can be maximized both initially, and in follow-up utilization of archived samples of the exposure atmospheres, excreta, and tissues collected for histology. PMID:25645246

  16. A method for real-time generation of augmented reality work instructions via expert movements

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Bhaskar; Winer, Eliot

    2015-03-01

    Augmented Reality (AR) offers tremendous potential for a wide range of fields including entertainment, medicine, and engineering. AR allows digital models to be integrated with a real scene (typically viewed through a video camera) to provide useful information in a variety of contexts. The difficulty in authoring and modifying scenes is one of the biggest obstacles to widespread adoption of AR. 3D models must be created, textured, oriented and positioned to create the complex overlays viewed by a user. This often requires using multiple software packages in addition to performing model format conversions. In this paper, a new authoring tool is presented which uses a novel method to capture product assembly steps performed by a user with a depth+RGB camera. Through a combination of computer vision and imaging process techniques, each individual step is decomposed into objects and actions. The objects are matched to those in a predetermined geometry library and the actions turned into animated assembly steps. The subsequent instruction set is then generated with minimal user input. A proof of concept is presented to establish the method's viability.

  17. Comparison of solution-based exome capture methods for next generation sequencing

    PubMed Central

    2011-01-01

    Background Techniques enabling targeted re-sequencing of the protein coding sequences of the human genome on next generation sequencing instruments are of great interest. We conducted a systematic comparison of the solution-based exome capture kits provided by Agilent and Roche NimbleGen. A control DNA sample was captured with all four capture methods and prepared for Illumina GAII sequencing. Sequence data from additional samples prepared with the same protocols were also used in the comparison. Results We developed a bioinformatics pipeline for quality control, short read alignment, variant identification and annotation of the sequence data. In our analysis, a larger percentage of the high quality reads from the NimbleGen captures than from the Agilent captures aligned to the capture target regions. High GC content of the target sequence was associated with poor capture success in all exome enrichment methods. Comparison of mean allele balances for heterozygous variants indicated a tendency to have more reference bases than variant bases in the heterozygous variant positions within the target regions in all methods. There was virtually no difference in the genotype concordance compared to genotypes derived from SNP arrays. A minimum of 11× coverage was required to make a heterozygote genotype call with 99% accuracy when compared to common SNPs on genome-wide association arrays. Conclusions Libraries captured with NimbleGen kits aligned more accurately to the target regions. The updated NimbleGen kit most efficiently covered the exome with a minimum coverage of 20×, yet none of the kits captured all the Consensus Coding Sequence annotated exons. PMID:21955854

  18. Formulation and Performance of Novel Energetic Nanocomposites and Gas Generators Prepared by Sol-Gel Methods

    SciTech Connect

    Clapsaddle, B J; Zhao, L; Prentice, D; Pantoya, M L; Gash, A E; Satcher Jr., J H; Shea, K J; Simpson, R L

    2005-03-24

    In the field of composite energetic materials, properties such as ingredient distribution, particle size, and morphology affect both sensitivity and performance. Since the reaction kinetics of composite energetic materials are typically controlled by the mass transport rates between reactants, one would anticipate new and potentially exceptional performance from energetic nanocomposites. We have developed a new method of making nanostructured energetic materials, specifically explosives, propellants, and pyrotechnics, using sol-gel chemistry. A novel sol-gel approach has proven successful in preparing nanostructured metal oxide materials. By introducing a fuel metal, such as aluminum, into the nanostructured metal oxide matrix, energetic materials based on thermite reactions can be fabricated. Two of the metal oxides are tungsten trioxide and iron(III) oxide, both of which are of interest in the field of energetic materials. Due to the versatility of the preparation method, binary oxidizing phases can also be prepared, thus enabling a potential means of controlling the energetic properties of the subsequent nanocomposites. Furthermore, organic additives can also be easily introduced into the nanocomposites for the production of nanostructured gas generators. The resulting nanoscale distribution of all the ingredients displays energetic properties not seen in its micro-scale counterparts due to the expected increase of mass transport rates between the reactants. The unique synthesis methodology, formulations, and performance of these materials will be presented. The degree of control over the burning rate of these nanocomposites afforded by the compositional variation of a binary oxidizing phase will also be discussed. These energetic nanocomposites have the potential for releasing controlled amounts of energy at a controlled rate. Due to the versatility of the synthesis method, a large number of compositions and physical properties can be achieved, resulting in

  19. System and method to improve the power output and longetivity of a radioisotope thermoelectric generator

    SciTech Connect

    Mowery, A.L. Jr.

    1992-12-31

    By using the helium generated by the alpha emissions of a thermoelectric generator during space travel for cooling the thermal degradation of the thermoelectric generator can be slowed. Slowing degradation allows missions to be longer with little additional expense or payload.

  20. Digital slip frequency generator and method for determining the desired slip frequency

    DOEpatents

    Klein, Frederick F.

    1989-01-01

    The output frequency of an electric power generator is kept constant with variable rotor speed by automatic adjustment of the excitation slip frequency. The invention features a digital slip frequency generator which provides sine and cosine waveforms from a look-up table, which are combined with real and reactive power output of the power generator.

  1. System and method to improve the power output and longetivity of a radioisotope thermoelectric generator

    DOEpatents

    Mowery, Jr., Alfred L.

    1993-01-01

    By using the helium generated by the alpha emissions of a thermoelectric generator during space travel for cooling, the thermal degradation of the thermoelectric generator can be slowed. Slowing degradation allows missions to be longer with little additional expense or payload.

  2. Aerodynamic characteristics of nebulized terbutaline sulphate using the Next Generation Impactor (NGI) and CEN method.

    PubMed

    Abdelrahim, Mohamed E; Chrystyn, Henry

    2009-03-01

    Characterization of the aerosolized dose emitted from a nebulized system can be determined using CEN (prEN13544-1) methodology and more recently with a Next Generation Impactor (NGI), but evaporative effects can influence the results. We have investigated these characteristics using different flows and cooling with the NGI and compared the results to the standard CEN method using two different nebulizer systems. The NGI was operated using flows of 15 and 30 L min(-1) at room (ROOM) temperature and immediately after cooling at 5 degrees C for 90 min (COLD). Two nebulizer systems, the Sidestream jet nebulizer (SIDE) and the Aeroneb Pro (AERO), were used to nebulize terbutaline sulphate respiratory solution. The CEN method was also used to provide the aerodynamic characteristics of the aerosolized dose from these two nebulizer systems. The mean (SD) mass median aerodynamic diameter (MMAD) using 15COLD, 15ROOM, 30COLD, 30ROOM, and CEN for AERO was 5.0(0.1), 4.1(0.3), 4.4(0.2), 2.0(0.3), and 3.0(1.1) microm, respectively, and 4.2(0.4), 2.6(0.4), 3.5(0.1), 1.7(0.1), and 3.2(0.3) microm for SIDE. The fine particle fraction (FPF), using the NGI, followed the expected trend associated with the corresponding MMAD values, ranging from 48.1 to 70.5% from AERO and 57.3 to 87.8% for SIDE. The mean FPF for AERO and SIDE using the CEN methodology was 72.5 and 63.6%. Overall there was a highly significant difference (p < 0.001) between the different operating conditions for the FPF and MMAD of both nebulizer systems. All methods revealed a significant difference between AERO and SIDE except CEN. Both nebulizer systems were prone to evaporation effects during in vitro testing. Cooling and using a slow flow minimizes evaporation effects with the NGI and should be adopted as the recommended compendial method. The CEN method provides different values to those of the NGI operating conditions and could not differentiate between the two nebulizers. PMID:19392586

  3. NASA Langley's Formal Methods Research in Support of the Next Generation Air Transportation System

    NASA Technical Reports Server (NTRS)

    Butler, Ricky W.; Munoz, Cesar A.

    2008-01-01

    This talk will provide a brief introduction to the formal methods developed at NASA Langley and the National Institute for Aerospace (NIA) for air traffic management applications. NASA Langley's formal methods research supports the Interagency Joint Planning and Development Office (JPDO) effort to define and develop the 2025 Next Generation Air Transportation System (NGATS). The JPDO was created by the passage of the Vision 100 Century of Aviation Reauthorization Act in Dec 2003. The NGATS vision calls for a major transformation of the nation s air transportation system that will enable growth to 3 times the traffic of the current system. The transformation will require an unprecedented level of safety-critical automation used in complex procedural operations based on 4-dimensional (4D) trajectories that enable dynamic reconfiguration of airspace scalable to geographic and temporal demand. The goal of our formal methods research is to provide verification methods that can be used to insure the safety of the NGATS system. Our work has focused on the safety assessment of concepts of operation and fundamental algorithms for conflict detection and resolution (CD&R) and self- spacing in the terminal area. Formal analysis of a concept of operations is a novel area of application of formal methods. Here one must establish that a system concept involving aircraft, pilots, and ground resources is safe. The formal analysis of algorithms is a more traditional endeavor. However, the formal analysis of ATM algorithms involves reasoning about the interaction of algorithmic logic and aircraft trajectories defined over an airspace. These trajectories are described using 2D and 3D vectors and are often constrained by trigonometric relations. Thus, in many cases it has been necessary to unload the full power of an advanced theorem prover. The verification challenge is to establish that the safety-critical algorithms produce valid solutions that are guaranteed to maintain separation

  4. A sensitive spectrophotometry-based method for the determination of the rate of hydrogen peroxide generation in biological systems.

    PubMed

    Di Paolo, M L; Scarpa, M; Rigo, A

    1994-04-01

    A new sensitive spectrophotometric method for the determination of the rate of hydrogen peroxide generation in biological systems has been developed. This method is based on the measurement of the oxidation rate of reduced cytochrome c by H2O2 in the presence of a mediator and permits the detection of H2O2 generation rates as low as 60 nM min-1. The solution of the differential equations of the kinetic process permitted the calculation of the kinetic rate constants and assessment of the conditions required to measure the hydrogen peroxide generation rate. PMID:8064115

  5. System and method for investigating sub-surface features of a rock formation with acoustic sources generating coded signals

    SciTech Connect

    Vu, Cung Khac; Nihei, Kurt; Johnson, Paul A; Guyer, Robert; Ten Cate, James A; Le Bas, Pierre-Yves; Larmat, Carene S

    2014-12-30

    A system and a method for investigating rock formations includes generating, by a first acoustic source, a first acoustic signal comprising a first plurality of pulses, each pulse including a first modulated signal at a central frequency; and generating, by a second acoustic source, a second acoustic signal comprising a second plurality of pulses. A receiver arranged within the borehole receives a detected signal including a signal being generated by a non-linear mixing process from the first-and-second acoustic signal in a non-linear mixing zone within the intersection volume. The method also includes-processing the received signal to extract the signal generated by the non-linear mixing process over noise or over signals generated by a linear interaction process, or both.

  6. Method and apparatus for anti-islanding protection of distributed generations

    DOEpatents

    Ye, Zhihong; John, Vinod; Wang, Changyong; Garces, Luis Jose; Zhou, Rui; Li, Lei; Walling, Reigh Allen; Premerlani, William James; Sanza, Peter Claudius; Liu, Yan; Dame, Mark Edward

    2006-03-21

    An apparatus for anti-islanding protection of a distributed generation with respect to a feeder connected to an electrical grid is disclosed. The apparatus includes a sensor adapted to generate a voltage signal representative of an output voltage and/or a current signal representative of an output current at the distributed generation, and a controller responsive to the signals from the sensor. The controller is productive of a control signal directed to the distributed generation to drive an operating characteristic of the distributed generation out of a nominal range in response to the electrical grid being disconnected from the feeder.

  7. Hydrazine-hydrothermal method to synthesize three-dimensional chalcogenide framework for photocatalytic hydrogen generation

    SciTech Connect

    Liu Yi; Kanhere, Pushkar D.; Wong, Chui Ling; Tian Yuefeng; Feng Yuhua; Boey, Freddy; Wu, Tom; Chen Hongyu; White, Tim J.; Chen Zhong; Zhang Qichun

    2010-11-15

    A novel chalcogenide, [Mn{sub 2}Sb{sub 2}S{sub 5}(N{sub 2}H{sub 4}){sub 3}] (1), has been synthesized by the hydrazine-hydrothermal method. X-ray crystallography study reveals that the new compound 1 crystallizes in space group P1-bar (no. 2) of the triclinic system. The structure features an open neutral three-dimensional framework, where two-dimensional mesh-like inorganic layers are bridged by intra- and inter-layer hydrazine ligands. Both two Mn1 and Mn2 sites adopt distorted octahedral coordination. While two Sb1 and Sb2 sites exhibit two different coordination geometries, the Sb1 site is coordinated with three S atoms to generate a SbS{sub 3} trigonal-pyramidal geometry, and the Sb2 site adopts a SbS{sub 4} trigonal bipyramidal coordination geometry. It has an optical band gap of about {approx}2.09 eV, which was deduced from the diffuse reflectance spectrum, and displays photocatalytic behaviors under visible light irradiation. Magnetic susceptibility measurements show compound 1 obeys the Curie-Weiss law in the range of 50-300 K. -- Graphical abstract: A novel chalcogenide, [Mn{sub 2}Sb{sub 2}S{sub 5}(N{sub 2}H{sub 4}){sub 3}] (1), synthesized by hydrazine-hydrothermal method, has a band gap of about {approx}2.09 eV and displays photocatalytic behaviors under visible light irradiation. Display Omitted

  8. A Low-Cost Production Method of FeSi2 Power Generation Thermoelectric Modules

    NASA Astrophysics Data System (ADS)

    Inoue, Hiroyuki; Kobayashi, Takahide; Kato, Masahiko; Yoneda, Seiji

    2016-03-01

    A method is proposed to reduce the production cost of power generation thermoelectric modules. FeSi2 is employed as the thermoelectric material because of its low cost, low environmental load, and oxidation resistance. The raw materials were prepared in the composition of Fe0.96Si2.1Co0.04 for n-type and Fe0.92Si2.1Mn0.08 for p-type, which were added with 0.5 wt.% Cu as the starting materials. They were sintered without pressure at 1446 K to be formed into elements. The Seebeck coefficient and resistivity at room temperature were determined to be -182 μV/K and 0.13 mΩm for n-type, and 338 μV/K and 1.13 mΩm for p-type, respectively. The brazing conditions of the direct joining between the element and the solder were examined. Pastes of BNi-6, BNi-7 or TB-608T were tried as the solder. TB-608T was useable for metallizing of insulation substrates and joining of thermoelectric elements in order to manufacture thermoelectric modules. The joining strength was determined to be 50 MPa between the alumina plate and the elements. No mechanical failure was observed in the modules after repetition of 10 or more exposures to a heat source of 670 K. No change was found in the internal resistance. The present production method will provide modules with high durability and low production cost, which will enable high-power multi-stage cascade modules at a reasonable cost.

  9. Monitoring of facial stress during space flight: Optical computer recognition combining discriminative and generative methods

    NASA Astrophysics Data System (ADS)

    Dinges, David F.; Venkataraman, Sundara; McGlinchey, Eleanor L.; Metaxas, Dimitris N.

    2007-02-01

    Astronauts are required to perform mission-critical tasks at a high level of functional capability throughout spaceflight. Stressors can compromise their ability to do so, making early objective detection of neurobehavioral problems in spaceflight a priority. Computer optical approaches offer a completely unobtrusive way to detect distress during critical operations in space flight. A methodology was developed and a study completed to determine whether optical computer recognition algorithms could be used to discriminate facial expressions during stress induced by performance demands. Stress recognition from a facial image sequence is a subject that has not received much attention although it is an important problem for many applications beyond space flight (security, human-computer interaction, etc.). This paper proposes a comprehensive method to detect stress from facial image sequences by using a model-based tracker. The image sequences were captured as subjects underwent a battery of psychological tests under high- and low-stress conditions. A cue integration-based tracking system accurately captured the rigid and non-rigid parameters of different parts of the face (eyebrows, lips). The labeled sequences were used to train the recognition system, which consisted of generative (hidden Markov model) and discriminative (support vector machine) parts that yield results superior to using either approach individually. The current optical algorithm methods performed at a 68% accuracy rate in an experimental study of 60 healthy adults undergoing periods of high-stress versus low-stress performance demands. Accuracy and practical feasibility of the technique is being improved further with automatic multi-resolution selection for the discretization of the mask, and automated face detection and mask initialization algorithms.

  10. Computational aeroacoustics of phonation, part I: Computational methods and sound generation mechanisms.

    PubMed

    Zhao, Wei; Zhang, Cheng; Frankel, Steven H; Mongeau, Luc

    2002-11-01

    The aerodynamic generation of sound during phonation was studied using direct numerical simulations of the airflow and the sound field in a rigid pipe with a modulated orifice. Forced oscillations with an imposed wall motion were considered, neglecting fluid-structure interactions. The compressible, two-dimensional, axisymmetric form of the Navier-Stokes equations were numerically integrated using highly accurate finite difference methods. A moving grid was used to model the effects of the moving walls. The geometry and flow conditions were selected to approximate the flow within an idealized human glottis and vocal tract during phonation. Direct simulations of the flow and farfield sound were performed for several wall motion programs, and flow conditions. An acoustic analogy based on the Ffowcs Williams-Hawkings equation was then used to decompose the acoustic source into its monopole, dipole, and quadrupole contributions for analysis. The predictions of the farfield acoustic pressure using the acoustic analogy were in excellent agreement with results from the direct numerical simulations. It was found that the dominant sound production mechanism was a dipole induced by the net force exerted by the surfaces of the glottis walls on the fluid along the direction of sound wave propagation. A monopole mechanism, specifically sound from the volume of fluid displaced by the wall motion, was found to be comparatively weak at the frequency considered (125 Hz). The orifice geometry was found to have only a weak influence on the amplitude of the radiated sound. PMID:12430825

  11. A new method for generating an invariant iris private key based on the fuzzy vault system.

    PubMed

    Lee, Youn Joo; Park, Kang Ryoung; Lee, Sung Joo; Bae, Kwanghyuk; Kim, Jaihie

    2008-10-01

    Cryptographic systems have been widely used in many information security applications. One main challenge that these systems have faced has been how to protect private keys from attackers. Recently, biometric cryptosystems have been introduced as a reliable way of concealing private keys by using biometric data. A fuzzy vault refers to a biometric cryptosystem that can be used to effectively protect private keys and to release them only when legitimate users enter their biometric data. In biometric systems, a critical problem is storing biometric templates in a database. However, fuzzy vault systems do not need to directly store these templates since they are combined with private keys by using cryptography. Previous fuzzy vault systems were designed by using fingerprint, face, and so on. However, there has been no attempt to implement a fuzzy vault system that used an iris. In biometric applications, it is widely known that an iris can discriminate between persons better than other biometric modalities. In this paper, we propose a reliable fuzzy vault system based on local iris features. We extracted multiple iris features from multiple local regions in a given iris image, and the exact values of the unordered set were then produced using the clustering method. To align the iris templates with the new input iris data, a shift-matching technique was applied. Experimental results showed that 128-bit private keys were securely and robustly generated by using any given iris data without requiring prealignment. PMID:18784013

  12. Estimation of temperature elevation generated by ultrasonic irradiation in biological tissues using the thermal wave method

    NASA Astrophysics Data System (ADS)

    Liu, Xiao-Zhou; Zhu, Yi; Zhang, Fei; Gong, Xiu-Fen

    2013-02-01

    In most previous models, simulation of the temperature generation in tissue is based on the Pennes bio-heat transfer equation, which implies an instantaneous thermal energy deposition in the medium. Due to the long thermal relaxation time τ (20 s-30 s) in biological tissues, the actual temperature elevation during clinical treatments could be different from the value predicted by the Pennes bioheat equation. The thermal wave model of bio-heat transfer (TWMBT) defines a thermal relaxation time to describe the tissue heating from ultrasound exposure. In this paper, COMSOL Multiphysics 3.5a, a finite element method software package, is used to simulate the temperature response in tissues based on Pennes and TWMBT equations. We further discuss different factors in the bio-heat transfer model on the influence of the temperature rising and it is found that the temperature response in tissue under ultrasound exposure is a rising process with a declining rate. The thermal relaxation time inhibits the temperature elevation at the beginning of ultrasonic heating. Besides, thermal relaxation in TWMBT leads to lower temperature estimation than that based on Pennes equation during the same period of time. The blood flow carrying heat dominates most to the decline of temperature rising rate and the influence increases with temperature rising. On the contrary, heat diffusion, which can be described by thermal conductivity, has little effect on the temperature rising.

  13. Method for generating fractal mountains with controllable macroscopic shapes by spectral synthesis

    NASA Astrophysics Data System (ADS)

    Wang, Humin

    1996-03-01

    Let a 2D random function X(x,y) to denote fBm with exponent 0 < H < 1, then its spectral density Sx(u,v) has relation: Sx(u,v) 1/(u2 + v2)H+1. Such algorithm based on fBm has shown us beautiful pictures of fractal mountains. But the mountains (fractal surfaces) were produced naturally by random process. As a result, the macroscopic shapes and global positions of fractal mounts are not controllable. This paper presents a method that generates fractal mountains with controllable macroscopic shapes and positions using spectral synthesis. First, the discrete data of Y(x,y) on finite grids are inputted, and FFT is employed to produce discrete spectral F(u,v). Second, by InvFFT, low frequency components of F(u,v) together with high frequency components of F(u,v) are transformed to produce Z(x,y)--fractal surface. The macroscopic shapes are controlled by low frequency; meanwhile, the high frequency describes texture of fractal mountains.

  14. Vector method for studying the second-harmonic-generation light derived from complex periodic ferroelectric domains

    NASA Astrophysics Data System (ADS)

    He, Zhihong; Yang, Xiangbo; Wang, Zhenyu

    2010-05-01

    In this Letter, in order to overcome the disadvantages of controlling the second-harmonic-generation (SHG) light derived from the traditional one-dimensional (1D) periodic ferroelectric domains we propose a kind of so-called complex periodic ferroelectric structure (CPFS), which unit cell is composed of even layers of positive and negative domains arranged alternatively following aperiodic sequence. It is found that comparing with the traditional periodic structure, CPFS cannot offer more reciprocal vector compensations for the mismatching phase, but CPFS may provide larger effective nonlinear coefficients (ENCs) in high-order quasi-phase-matching (QPM) and possesses advantages of the amplitude modulation for SHG peaks. In this Letter we study CPFS by use of vector method (VM), where the contribution to ENC for each domain or each unit cell will be treated as a vector and the QPM condition for CPFS and the modulation effect of aperiodic unit cells have been obtained. Without any Fourier transformation VM treats the grating function in real space and will be very convenient and intuitive. Both VM and CPFS would possess potential applications in the field of SHG investigations.

  15. A Method for Generating Reduced-Order Linear Models of Multidimensional Supersonic Inlets

    NASA Technical Reports Server (NTRS)

    Chicatelli, Amy; Hartley, Tom T.

    1998-01-01

    Simulation of high speed propulsion systems may be divided into two categories, nonlinear and linear. The nonlinear simulations are usually based on multidimensional computational fluid dynamics (CFD) methodologies and tend to provide high resolution results that show the fine detail of the flow. Consequently, these simulations are large, numerically intensive, and run much slower than real-time. ne linear simulations are usually based on large lumping techniques that are linearized about a steady-state operating condition. These simplistic models often run at or near real-time but do not always capture the detailed dynamics of the plant. Under a grant sponsored by the NASA Lewis Research Center, Cleveland, Ohio, a new method has been developed that can be used to generate improved linear models for control design from multidimensional steady-state CFD results. This CFD-based linear modeling technique provides a small perturbation model that can be used for control applications and real-time simulations. It is important to note the utility of the modeling procedure; all that is needed to obtain a linear model of the propulsion system is the geometry and steady-state operating conditions from a multidimensional CFD simulation or experiment. This research represents a beginning step in establishing a bridge between the controls discipline and the CFD discipline so that the control engineer is able to effectively use multidimensional CFD results in control system design and analysis.

  16. New method for generating breast models featuring glandular tissue spatial distribution

    NASA Astrophysics Data System (ADS)

    Paixão, L.; Oliveira, B. B.; Oliveira, M. A.; Teixeira, M. H. A.; Fonseca, T. C. F.; Nogueira, M. S.

    2016-02-01

    Mammography is the main radiographic technique used for breast imaging. A major concern with mammographic imaging is the risk of radiation-induced breast cancer due to the high sensitivity of breast tissue. The mean glandular dose (DG) is the dosimetric quantity widely accepted to characterize the risk of radiation induced cancer. Previous studies have concluded that DG depends not only on the breast glandular content but also on the spatial distribution of glandular tissue within the breast. In this work, a new method for generating computational breast models featuring skin composition and glandular tissue distribution from patients undergoing digital mammography is proposed. Such models allow a more accurate way of calculating individualized breast glandular doses taking into consideration the glandular tissue fraction. Sixteen breast models of four patients with different glandularity breasts were simulated and the results were compared with those obtained from recommended DG conversion factors. The results show that the internationally recommended conversion factors may be overestimating the mean glandular dose to less dense breasts and underestimating the mean glandular dose for denser breasts. The methodology described in this work constitutes a powerful tool for breast dosimetry, especially for risk studies.

  17. Automated apparatus and method of generating native code for a stitching machine

    NASA Technical Reports Server (NTRS)

    Miller, Jeffrey L. (Inventor)

    2000-01-01

    A computer system automatically generates CNC code for a stitching machine. The computer determines the locations of a present stitching point and a next stitching point. If a constraint is not found between the present stitching point and the next stitching point, the computer generates code for making a stitch at the next stitching point. If a constraint is found, the computer generates code for changing a condition (e.g., direction) of the stitching machine's stitching head.

  18. A Method for Generating Simulated Plasmodes and Artificial Test Clusters with User-Defined Shape, Size, and Orientation.

    ERIC Educational Resources Information Center

    Waller, Niels G.; Underhill, J. Michael; Kaiser, Heather A.

    1999-01-01

    Presents a simple method for generating simulated plasmodes and artificial test clusters with user-defined shape, size, and orientation. For "J" clusters, indicator validity is defined as the squared correlation ratio between the cluster indicator and J-1 dummy variables. Illustrates the method through simulation. (SLD)

  19. Generator-absorber-heat exchange heat transfer apparatus and method and use thereof in a heat pump

    DOEpatents

    Phillips, Benjamin A.; Zawacki, Thomas S.

    1996-12-03

    Numerous embodiments and related methods for generator-absorber heat exchange (GAX) are disclosed, particularly for absorption heat pump systems. Such embodiments and related methods use the working solution of the absorption system for the heat transfer medium. A combination of weak and rich liquor working solution is used as the heat transfer medium.

  20. Testing the improved method for calculating the radiation heat generation at the periphery of the BOR-60 reactor core

    SciTech Connect

    Varivtsev, A. V. Zhemkov, I. Yu.

    2014-12-15

    The application of the improved method for calculating the radiation heat generation in the elements of an experimental device located at the periphery of the BOR-60 reactor core results in a significant reduction in the discrepancies between the calculated and the experimental data. This allows us to conclude that the improved method has an advantage over the one used earlier.

  1. A Cautionary Note on the Use of the Vale and Maurelli Method to Generate Multivariate, Nonnormal Data for Simulation Purposes

    ERIC Educational Resources Information Center

    Olvera Astivia, Oscar L.; Zumbo, Bruno D.

    2015-01-01

    To further understand the properties of data-generation algorithms for multivariate, nonnormal data, two Monte Carlo simulation studies comparing the Vale and Maurelli method and the Headrick fifth-order polynomial method were implemented. Combinations of skewness and kurtosis found in four published articles were run and attention was…

  2. Monte Carlo method based radiative transfer simulation of stochastic open forest generated by circle packing application

    NASA Astrophysics Data System (ADS)

    Jin, Shengye; Tamura, Masayuki

    2013-10-01

    Monte Carlo Ray Tracing (MCRT) method is a versatile application for simulating radiative transfer regime of the Solar - Atmosphere - Landscape system. Moreover, it can be used to compute the radiation distribution over a complex landscape configuration, as an example like a forest area. Due to its robustness to the complexity of the 3-D scene altering, MCRT method is also employed for simulating canopy radiative transfer regime as the validation source of other radiative transfer models. In MCRT modeling within vegetation, one basic step is the canopy scene set up. 3-D scanning application was used for representing canopy structure as accurately as possible, but it is time consuming. Botanical growth function can be used to model the single tree growth, but cannot be used to express the impaction among trees. L-System is also a functional controlled tree growth simulation model, but it costs large computing memory. Additionally, it only models the current tree patterns rather than tree growth during we simulate the radiative transfer regime. Therefore, it is much more constructive to use regular solid pattern like ellipsoidal, cone, cylinder etc. to indicate single canopy. Considering the allelopathy phenomenon in some open forest optical images, each tree in its own `domain' repels other trees. According to this assumption a stochastic circle packing algorithm is developed to generate the 3-D canopy scene in this study. The canopy coverage (%) and the tree amount (N) of the 3-D scene are declared at first, similar to the random open forest image. Accordingly, we randomly generate each canopy radius (rc). Then we set the circle central coordinate on XY-plane as well as to keep circles separate from each other by the circle packing algorithm. To model the individual tree, we employ the Ishikawa's tree growth regressive model to set the tree parameters including DBH (dt), tree height (H). However, the relationship between canopy height (Hc) and trunk height (Ht) is

  3. Method for generating a mesh representation of a region characterized by a trunk and a branch thereon

    DOEpatents

    Shepherd, Jason; Mitchell, Scott A.; Jankovich, Steven R.; Benzley, Steven E.

    2007-05-15

    The present invention provides a meshing method, called grafting, that lifts the prior art constraint on abutting surfaces, including surfaces that are linking, source/target, or other types of surfaces of the trunk volume. The grafting method locally modifies the structured mesh of the linking surfaces allowing the mesh to conform to additional surface features. Thus, the grafting method can provide a transition between multiple sweep directions extending sweeping algorithms to 23/4-D solids. The method is also suitable for use with non-sweepable volumes; the method provides a transition between meshes generated by methods other than sweeping as well.

  4. Analysis of object segmentation methods for VOP generation in MPEG-4

    NASA Astrophysics Data System (ADS)

    Vaithianathan, Karthikeyan; Panchanathan, Sethuraman

    2000-04-01

    The recent audio-visual standard MPEG4 emphasizes content- based information representation and coding. Rather than operating at the level of pixels, MPEG4 operates at a higher level of abstraction, capturing the information based on the content of a video sequence. Video object plane (VOP) extraction is an important step in defining the content of any video sequence, except in the case of authored applications which involve creation of video sequences using synthetic objects and graphics. The generation of VOPs from a video sequence involves segmenting the objects from every frame of the video sequence. The problem of object segmentation is also being addressed by the Computer Vision community. The major problem faced by the researchers is to define object boundaries such that they are semantically meaningful. Finding a single robust solution for this problem that can work for all kinds of video sequences still remains to be a challenging task. The object segmentation problem can be simplified by imposing constraints on the video sequences. These constraints largely depend on the type of application where the segmentation technique will be used. The purpose of this paper is twofold. In the first section, we summarize the state-of- the-art research in this topic and analyze the various VOP generation and object segmentation methods that have been presented in the recent literature. In the next section, we focus on the different types of video sequences, the important cues that can be employed for efficient object segmentation, the different object segmentation techniques and the types of techniques that are well suited for each type of application. A detailed analysis of these approaches from the perspective of accuracy of the object boundaries, robustness towards different kinds of video sequences, ability to track the objects through the video sequences, and complexity involved in implementing these approaches along with other limitations will be discussed. In

  5. Program generator for the Incomplete Cholesky Conjugate Gradient (ICCG) method with a symmetrizing preprocessor. [GENIC code package

    SciTech Connect

    Kuo-Petravic, G.; Petravic, M.

    1980-03-01

    This paper is an extension of the previous paper, A Program Generator for the Incomplete LU-Decomposition-Conjugate Gradient (ILUCG) Method which appeared in Computer Physics Communications. In that paper a generator program was presented which produced a code package to solve the system of equations Ax/sub approx./ = b/sub approx./, where A is an arbitrary nonsingular matrix, by the ILUCG method. In the present paper an alternative generator program is offered which produces a code package applicable to the case where A is symmetric and positive definite. The numerical algorithm used is the Incomplete Cholesky Conjugate Gradient (ICCG) method of Meijerink and Van der Vorst, which executes approximately twice as fast per iteration as the ILUCG method. In addition, an optional preprocessor is provided to treat the case of a not diagonally dominant nonsymmetric and nonsingular matrix A by solving the equation A/sup T/Ax/sub approx./ = A/sup T/b/sub approx./.

  6. General purpose program to generate compatibility matrix for the integrated force method

    NASA Technical Reports Server (NTRS)

    Nagabhusanam, J.; Patnaik, S. N.

    1990-01-01

    An efficient procedure for obtaining the compatibility conditions of finite-element models involves the generation of both field and compatibility conditions from deformation-displacement relations, using (1) the compatibility bandwidth, and (2) the node-determinacy concept. A computer program thus structured will generate sparse and banded compatibility conditions for a structure that is idealized by the finite elements.

  7. Methods of generation and amplification of micro- and millimeter waves in vacuum tubes

    NASA Astrophysics Data System (ADS)

    Steyskal, H.

    1981-01-01

    The principles underlying electron tubes, such as gyrotrons, peniotrons, free electron lasers, orotrons, and gyrocons are described. These generators for very high frequency and very high power generators are considerably different from conventional microwave tubes. They are at present in the research and development stage but may soon become important for fusion and radar technology.

  8. The Generation of Item Hierarchies by an Ordering-Theoretic Method and a Piagetian Example.

    ERIC Educational Resources Information Center

    Bart, William M.; Airasian, Peter W.

    Using ordering theory, a boolean algebraic measurement model in which item response patterns are viewed as atoms in a boolean algebra with as many generators as there are items being considered, a hierarchy-generative procedure is developed. This procedure relates to the determination of prerequisite relationships between pairs of items. An…

  9. Using the FotoFeedback Method to Increase Reflective Learning in the Millennial Generation

    ERIC Educational Resources Information Center

    Tornabene, Ladona; Nowak, Amy Versnik; Vogelsang, Lisa

    2012-01-01

    This current generation of students, known as the Millennial Generation, has a propensity toward multi-tasking and a history of structured and tightly filled days. Reflection may not be viewed as productive and as conducive to learning as other "tasks" and thus may be neglected. However, by employing a methodology (photography) that…

  10. DNA immunoprecipitation semiconductor sequencing (DIP-SC-seq) as a rapid method to generate genome wide epigenetic signatures.

    PubMed

    Thomson, John P; Fawkes, Angie; Ottaviano, Raffaele; Hunter, Jennifer M; Shukla, Ruchi; Mjoseng, Heidi K; Clark, Richard; Coutts, Audrey; Murphy, Lee; Meehan, Richard R

    2015-01-01

    Modification of DNA resulting in 5-methylcytosine (5 mC) or 5-hydroxymethylcytosine (5hmC) has been shown to influence the local chromatin environment and affect transcription. Although recent advances in next generation sequencing technology allow researchers to map epigenetic modifications across the genome, such experiments are often time-consuming and cost prohibitive. Here we present a rapid and cost effective method of generating genome wide DNA modification maps utilising commercially available semiconductor based technology (DNA immunoprecipitation semiconductor sequencing; "DIP-SC-seq") on the Ion Proton sequencer. Focussing on the 5hmC mark we demonstrate, by directly comparing with alternative sequencing strategies, that this platform can successfully generate genome wide 5hmC patterns from as little as 500 ng of genomic DNA in less than 4 days. Such a method can therefore facilitate the rapid generation of multiple genome wide epigenetic datasets. PMID:25985418

  11. DNA immunoprecipitation semiconductor sequencing (DIP-SC-seq) as a rapid method to generate genome wide epigenetic signatures

    PubMed Central

    Thomson, John P.; Fawkes, Angie; Ottaviano, Raffaele; Hunter, Jennifer M.; Shukla, Ruchi; Mjoseng, Heidi K.; Clark, Richard; Coutts, Audrey; Murphy, Lee; Meehan, Richard R.

    2015-01-01

    Modification of DNA resulting in 5-methylcytosine (5 mC) or 5-hydroxymethylcytosine (5hmC) has been shown to influence the local chromatin environment and affect transcription. Although recent advances in next generation sequencing technology allow researchers to map epigenetic modifications across the genome, such experiments are often time-consuming and cost prohibitive. Here we present a rapid and cost effective method of generating genome wide DNA modification maps utilising commercially available semiconductor based technology (DNA immunoprecipitation semiconductor sequencing; “DIP-SC-seq”) on the Ion Proton sequencer. Focussing on the 5hmC mark we demonstrate, by directly comparing with alternative sequencing strategies, that this platform can successfully generate genome wide 5hmC patterns from as little as 500 ng of genomic DNA in less than 4 days. Such a method can therefore facilitate the rapid generation of multiple genome wide epigenetic datasets. PMID:25985418

  12. Grid generation and adaptation for the Direct Simulation Monte Carlo Method. [for complex flows past wedges and cones

    NASA Technical Reports Server (NTRS)

    Olynick, David P.; Hassan, H. A.; Moss, James N.

    1988-01-01

    A grid generation and adaptation procedure based on the method of transfinite interpolation is incorporated into the Direct Simulation Monte Carlo Method of Bird. In addition, time is advanced based on a local criterion. The resulting procedure is used to calculate steady flows past wedges and cones. Five chemical species are considered. In general, the modifications result in a reduced computational effort. Moreover, preliminary results suggest that the simulation method is time step dependent if requirements on cell sizes are not met.

  13. Next-generation Methods for HIV Partner Services: A Systematic Review

    PubMed Central

    Hochberg, Chad H.; Berringer, Kathryn; Schneider, John A.

    2016-01-01

    Partner notification is a widely accepted method whose intent is to limit onwards HIV transmission. With acceleration in the use of new technologies such as text-messaging, e-mail and social network sites, there has been growing interest in utilizing these techniques for “next-generation” HIV partner services (PS). We conducted a systematic review to assess the utilization and effectiveness of these technologies in HIV PS. Our literature search resulted in 1,343 citations, and 8 met our inclusion criteria. We found efforts focused in 3 domains: 1) patient-led anonymous referral online (n=3); 2) provider-led efforts to augment traditional partner notification techniques at public health departments (n=4); 3) a hybrid approach utilizing a website for e-notification available to those with confirmed STI through an STI clinic (n=1). For the provider-led efforts a modest increase in HIV case-finding was noted despite a generally lower rate of successful notification in comparison to traditional PS. The public websites had a high total number of e-notifications sent, but less than 10% of cards were sent for HIV. Furthermore, low awareness of these services was found in surveys amongat-risk target populations. When given a choice, the majority of clients chose to send an e-notification via text versus e-mail. Although successful notification may be lower overall, use of next-generation services provides an avenue to contact those that would previously have been untraceable. Additional research is needed to determine to what extent technology enhanced partner services improves identification of newly infected persons as well as initiating new prevention for HIV negative clients within high-risk networks. PMID:26267881

  14. A novel method for the multiplexed target enrichment of MinION next generation sequencing libraries using PCR-generated baits

    PubMed Central

    Karamitros, Timokratis; Magiorkinis, Gkikas

    2015-01-01

    The enrichment of targeted regions within complex next generation sequencing libraries commonly uses biotinylated baits to capture the desired sequences. This method results in high read coverage over the targets and their flanking regions. Oxford Nanopore Technologies recently released an USB3.0-interfaced sequencer, the MinION. To date no particular method for enriching MinION libraries has been standardized. Here, using biotinylated PCR-generated baits in a novel approach, we describe a simple and efficient way for multiplexed enrichment of MinION libraries, overcoming technical limitations related with the chemistry of the sequencing-adapters and the length of the DNA fragments. Using Phage Lambda and Escherichia coli as models we selectively enrich for specific targets, significantly increasing the corresponding read-coverage, eliminating unwanted regions. We show that by capturing genomic fragments, which contain the target sequences, we recover reads extending targeted regions and thus can be used for the determination of potentially unknown flanking sequences. By pooling enriched libraries derived from two distinct E. coli strains and analyzing them in parallel, we demonstrate the efficiency of this method in multiplexed format. Crucially we evaluated the optimal bait size for large fragment libraries and we describe for the first time a standardized method for target enrichment in MinION platform. PMID:26240383

  15. A novel method for the multiplexed target enrichment of MinION next generation sequencing libraries using PCR-generated baits.

    PubMed

    Karamitros, Timokratis; Magiorkinis, Gkikas

    2015-12-15

    The enrichment of targeted regions within complex next generation sequencing libraries commonly uses biotinylated baits to capture the desired sequences. This method results in high read coverage over the targets and their flanking regions. Oxford Nanopore Technologies recently released an USB3.0-interfaced sequencer, the MinION. To date no particular method for enriching MinION libraries has been standardized. Here, using biotinylated PCR-generated baits in a novel approach, we describe a simple and efficient way for multiplexed enrichment of MinION libraries, overcoming technical limitations related with the chemistry of the sequencing-adapters and the length of the DNA fragments. Using Phage Lambda and Escherichia coli as models we selectively enrich for specific targets, significantly increasing the corresponding read-coverage, eliminating unwanted regions. We show that by capturing genomic fragments, which contain the target sequences, we recover reads extending targeted regions and thus can be used for the determination of potentially unknown flanking sequences. By pooling enriched libraries derived from two distinct E. coli strains and analyzing them in parallel, we demonstrate the efficiency of this method in multiplexed format. Crucially we evaluated the optimal bait size for large fragment libraries and we describe for the first time a standardized method for target enrichment in MinION platform. PMID:26240383

  16. Method and means for a spatial and temporal probe for laser-generated plumes based on density gradients

    DOEpatents

    Yeung, E.S.; Chen, G.

    1990-05-01

    A method and means are disclosed for a spatial and temporal probe for laser generated plumes based on density gradients includes generation of a plume of vaporized material from a surface by an energy source. The probe laser beam is positioned so that the plume passes through the probe laser beam. Movement of the probe laser beam caused by refraction from the density gradient of the plume is monitored. Spatial and temporal information, correlated to one another, is then derived. 15 figs.

  17. Method and means for a spatial and temporal probe for laser-generated plumes based on density gradients

    DOEpatents

    Yeung, Edward S.; Chen, Guoying

    1990-05-01

    A method and means for a spatial and temporal probe for laser generated plumes based on density gradients includes generation of a plume of vaporized material from a surface by an energy source. The probe laser beam is positioned so that the plume passes through the probe laser beam. Movement of the probe laser beam caused by refraction from the density gradient of the plume is monitored. Spatial and temporal information, correlated to one another, is then derived.

  18. Methods of high current magnetic field generator for transcranial magnetic stimulation application

    NASA Astrophysics Data System (ADS)

    Bouda, N. R.; Pritchard, J.; Weber, R. J.; Mina, M.

    2015-05-01

    This paper describes the design procedures and underlying concepts of a novel High Current Magnetic Field Generator (HCMFG) with adjustable pulse width for transcranial magnetic stimulation applications. This is achieved by utilizing two different switching devices, the MOSFET and insulated gate bipolar transistor (IGBT). Results indicate that currents as high as ±1200 A can be generated with inputs of +/-20 V. Special attention to tradeoffs between field generators utilizing IGBT circuits (HCMFG1) and MOSFET circuits (HCMFG2) was considered. The theory of operation, design, experimental results, and electronic setup are presented and analyzed.

  19. Methods of high current magnetic field generator for transcranial magnetic stimulation application

    SciTech Connect

    Bouda, N. R. Pritchard, J.; Weber, R. J.; Mina, M.

    2015-05-07

    This paper describes the design procedures and underlying concepts of a novel High Current Magnetic Field Generator (HCMFG) with adjustable pulse width for transcranial magnetic stimulation applications. This is achieved by utilizing two different switching devices, the MOSFET and insulated gate bipolar transistor (IGBT). Results indicate that currents as high as ±1200 A can be generated with inputs of +/−20 V. Special attention to tradeoffs between field generators utilizing IGBT circuits (HCMFG{sub 1}) and MOSFET circuits (HCMFG{sub 2}) was considered. The theory of operation, design, experimental results, and electronic setup are presented and analyzed.

  20. A method to generate picoliter droplets out of a microliter drop, on-demand using satellite formation

    NASA Astrophysics Data System (ADS)

    Moon, Dustin; Im, Do Jin; Kang, In Seok

    2010-11-01

    We investigated a simple, robust way to generate pico- to femtoliter drops out of a single 1microliter droplet for the use of generating monodisperse droplets in droplet-based microfluidics. A single drop is placed between glass substrates, immersed in silicone oil with different viscosities, moved with constant velocities from 50micron/s to 1500micron/s. As two plates separates, liquid bridge breaks and smaller droplets, or satellites are formed. We have found that for a fixed viscosity, nearly same size of droplets are generated over several orders of velocities. Using this method, single cell encapsulation is also possible without any other complex control and we successively captured a single Arabidopsis Protoplast with this method. This method can be used to divide smal l bio sample on-demand, to several smaller droplets for further analysis.

  1. Determination of Chemical Compounds Generated from Second-generation E-cigarettes Using a Sorbent Cartridge Followed by a Two-step Elution Method.

    PubMed

    Uchiyama, Shigehisa; Senoo, Yui; Hayashida, Hideki; Inaba, Yohei; Nakagome, Hideki; Kunugita, Naoki

    2016-01-01

    We developed an analytical method for analyzing electronic cigarette (E-cigarette) smoke, and measured the carbonyl compounds and volatile organic compounds generated by 10 brands of second-generation E-cigarettes. A glass filter (Cambridge filter pad) for particulate matter and a solid sorbent tube packed with Carboxen-572 for gaseous compounds were used to collect E-cigarette smoke. These were then analyzed using a two-step elution method with carbon disulfide and methanol, followed by high-performance liquid chromatography (HPLC) and gas chromatography mass spectrometry (GC/MS). Formaldehyde (FA), acetaldehyde (AA), acetone (AC), acrolein (ACR), propanal (PA), acetol (AT), glyoxal (GO), and methyl glyoxal (MGO) were detected by HPLC in some E-cigarettes. Propylene glycol (PG), glycerol (GLY), and some esters were detected by GC/MS. GO and MGO exist mainly as particulate matter. AA, AC, ACR, PA, and AT exist mainly as gaseous compounds. FA exists as both particulate matter and gaseous compounds. These carbonyl compounds have carbon numbers C1 - C3. The main components of E-liquid are PG (C3) and GLY (C3). Therefore, the oxidation of liquids, such as PG and GLY in E-cigarettes upon incidental contact with the heating element in E-cigarette, is suggested as being a possible cause for carbonyl generation. When the puff number exceeds a critical point, carbonyl generation rapidly increases and then remains constant. The results of this study are now being used to determine the following E-cigarette smoking protocol: puff volume, 55 mL; puff duration, 2 s; and puff number, 30. E-cigarette analysis revealed very large variation in carbonyl concentration among not only different brands, but also different samples of the same product. Typical distributions of carbonyl concentration were not observed in any of the E-cigarettes tested, and the mean values greatly differed from median values. PMID:27169655

  2. Intimacy in young adults' narratives of romance and friendship predicts Eriksonian generativity: a mixed method analysis.

    PubMed

    Mackinnon, Sean P; Nosko, Amanda; Pratt, Michael W; Norris, Joan E

    2011-06-01

    A quantitative and qualitative study tested Erikson's ego developmental hypotheses regarding the positive relationship between generativity and intimacy. At age 26, participants (N = 100) told 2 stories about "relationship-defining moments," one about a romantic partner, and another about a same-sex friend. Levels of relationship intimacy were coded from these narratives. "True love" and "true friendship" themes arose as the most prototypical, highly intimate stories. Romantic intimacy and friendship intimacy as coded from narratives each contributed uniquely to the prediction of generative concern; as intimacy in each domain increased, so did generative concern. This relationship remained statistically significant, even when controlling for gender, current romantic relationship status, subjective well-being, optimism, and depressive symptoms. Results suggest that our "relationship-defining moment" narrative task is a useful tool for examining development in emerging adulthood and that intimacy may be an important precursor to generative concern in early adulthood, consistent with Erikson's model. PMID:21534965

  3. Device and method for generating a beam of acoustic energy from a borehole, and applications thereof

    DOEpatents

    Vu, Cung Khac; Sinha, Dipen N.; Pantea, Cristian; Nihei, Kurt; Schmitt, Denis P.; Skelt, Christopher

    2010-11-23

    In some aspects of the invention, a device, positioned within a well bore, configured to generate and direct an acoustic beam into a rock formation around a borehole is disclosed. The device comprises a source configured to generate a first signal at a first frequency and a second signal at a second frequency; a transducer configured to receive the generated first and the second signals and produce acoustic waves at the first frequency and the second frequency; and a non-linear material, coupled to the transducer, configured to generate a collimated beam with a frequency equal to the difference between the first frequency and the second frequency by a non-linear mixing process, wherein the non-linear material includes one or more of a mixture of liquids, a solid, a granular material, embedded microspheres, or an emulsion.

  4. A novel method for the generation of multi-block computational structured grids from medical imaging of arterial bifurcations.

    PubMed

    Makris, Evangelos; Neofytou, Panagiotis; Tsangaris, Sokrates; Housiadas, Christos

    2012-10-01

    In this study a description of a new approach, for the generation of multi-block structured computational grids on patient-specific bifurcation geometries is presented. The structured grid generation technique is applied to data obtained by medical imaging examination, resulting in a surface conforming, high quality, multi-block structured grid of the branching geometry. As a case study application a patient specific abdominal aorta bifurcation is selected. For the evaluation of the grid produced by the novel method, a grid convergence study and a comparison between the grid produced by the method and unstructured grids produced by commercial meshing software are carried out. PMID:22209311

  5. Crowned spur gears - Methods for generation and Tooth Contact Analysis. II - Generation of the pinion tooth surface by a surface of revolution

    NASA Technical Reports Server (NTRS)

    Litvin, F. L.; Handschuh, R. F.; Zhang, J.

    1988-01-01

    A method for generation of crowned pinion tooth surfaces using a surface of revolution is developed. The crowned pinion meshes with a regular involute gear and has a prescribed parabolic type of transmission errors when the gears operate in the aligned mode. When the gears are misaligned the transmission error remains parabolic with the maximum level still remaining very small (less than 0.34 arc second for the numerical examples). Tooth Contact Analysis (TCA) is used to simulate the conditions of meshing, determine the transmission error, and the bearing contact.

  6. Method and apparatus for enhanced heat recovery from steam generators and water heaters

    DOEpatents

    Knight, Richard A.; Rabovitser, Iosif K.; Wang, Dexin

    2006-06-27

    A heating system having a steam generator or water heater, at least one economizer, at least one condenser and at least one oxidant heater arranged in a manner so as to reduce the temperature and humidity of the exhaust gas (flue gas) stream and recover a major portion of the associated sensible and latent heat. The recovered heat is returned to the steam generator or water heater so as to increase the quantity of steam generated or water heated per quantity of fuel consumed. In addition, a portion of the water vapor produced by combustion of fuel is reclaimed for use as feed water, thereby reducing the make-up water requirement for the system.

  7. Wind turbine generators having wind assisted cooling systems and cooling methods

    DOEpatents

    Bagepalli, Bharat; Barnes, Gary R.; Gadre, Aniruddha D.; Jansen, Patrick L.; Bouchard, Jr., Charles G.; Jarczynski, Emil D.; Garg, Jivtesh

    2008-09-23

    A wind generator includes: a nacelle; a hub carried by the nacelle and including at least a pair of wind turbine blades; and an electricity producing generator including a stator and a rotor carried by the nacelle. The rotor is connected to the hub and rotatable in response to wind acting on the blades to rotate the rotor relative to the stator to generate electricity. A cooling system is carried by the nacelle and includes at least one ambient air inlet port opening through a surface of the nacelle downstream of the hub and blades, and a duct for flowing air from the inlet port in a generally upstream direction toward the hub and in cooling relation to the stator.

  8. Fiber-optic delay-line stabilization of heterodyne optical signal generator and method using same

    NASA Technical Reports Server (NTRS)

    Logan, Ronald T. (Inventor)

    1997-01-01

    The present invention is a laser heterodyne frequency generator system with a stabilizer for use in the microwave and millimeter-wave frequency ranges utilizing a photonic mixer as a photonic phase detector in a stable optical fiber delay-line. Phase and frequency fluctuations of the heterodyne laser signal generators are stabilized at microwave and millimeter wave frequencies by a delay line system operating as a frequency discriminator. The present invention is free from amplifier and mixer 1/.function. noise at microwave and millimeter-wave frequencies that typically limit phase noise performance in electronic cavity stabilized electronic oscillators. Thus, 1/.function. noise due to conventional mixers is eliminated and stable optical heterodyne generation of electrical signals is achieved.

  9. Stem drive oil recovery method utilizing a downhole steam generator and anti clay-swelling agent

    SciTech Connect

    Hopkins, D. N.; Snavely, E. S.

    1985-06-11

    Viscous oil is recovered from a subterranean, viscous oil-containing formation by a steam flooding technique wherein steam is generated in a downhole steam generator located in an injection well by spontaneous combustion of a pressurized mixture of a water-soluble fuel such as sugars and alcohols dissolved in water or a stable hydrocarbon fuel-in-water emulsion containing an anti clay-swelling agent and substantially pure oxygen. The generated mixture of steam and combustion gases pass through the formation, displacing oil and reducing the oil's viscosity and the mobilized oil is produced from the formation via a spaced-apart production well. Suitable anti clay-swelling agents include metal halide salts and diammonium phosphate.

  10. Microfabricated rankine cycle steam turbine for power generation and methods of making the same

    NASA Technical Reports Server (NTRS)

    Frechette, Luc (Inventor); Muller, Norbert (Inventor); Lee, Changgu (Inventor)

    2009-01-01

    In accordance with the present invention, an integrated micro steam turbine power plant on-a-chip has been provided. The integrated micro steam turbine power plant on-a-chip of the present invention comprises a miniature electric power generation system fabricated using silicon microfabrication technology and lithographic patterning. The present invention converts heat to electricity by implementing a thermodynamic power cycle on a chip. The steam turbine power plant on-a-chip generally comprises a turbine, a pump, an electric generator, an evaporator, and a condenser. The turbine is formed by a rotatable, disk-shaped rotor having a plurality of rotor blades disposed thereon and a plurality of stator blades. The plurality of stator blades are interdigitated with the plurality of rotor blades to form the turbine. The generator is driven by the turbine and converts mechanical energy into electrical energy.

  11. Method and means for generating a synchronizing pulse from a repetitive wave of varying frequency

    DOEpatents

    DeVolpi, Alexander; Pecina, Ronald J.; Travis, Dale J.

    1976-01-01

    An event that occurs repetitively at continuously changing frequencies can be used to generate a triggering pulse which is used to synchronize or control. The triggering pulse is generated at a predetermined percentage of the period of the repetitive waveform without regard to frequency. Counts are accumulated in two counters, the first counting during the "on" fraction of the period, and the second counting during the "off" fraction. The counts accumulated during each cycle are compared. On equality the trigger pulse is generated. Count input rates to each counter are determined by the ratio of the on-off fractions of the event waveform and the desired phase relationship. This invention is of particular utility in providing a trigger or synchronizing pulse during the open period of the shutter of a high-speed framing camera during its acceleration as well as its period of substantially constant speed.

  12. An efficient method for supercontinuum generation in dispersion-tailored Lead-silicate fiber taper

    NASA Astrophysics Data System (ADS)

    Chen, Z.; Ma, S.; Dutta, N. K.

    2010-08-01

    In this paper we theoretically study the broadband mid-IR supercontinuum generation (SCG) in a lead-silicate microstructured fiber (the glass for simulation is SF57). The total dispersion of the fiber can be tailored by changing the core diameter of the fiber so that dispersion profiles with two zero dispersion wavelengths (ZDWs) can be obtained. Numerical simulations of the SCG process in a 4 cm long SF57 fiber/fiber taper seeded by femto-second pulses at telecommunications wavelength of 1.55 µm are presented. The results show that a fiber taper features a continuous shift of the longer zero dispersion wavelength. This extends the generated continuum to a longer wavelength region compared to fibers with fixed ZDWs. The phase-matching condition (PMC) is continuously modified in the fiber taper and the bandwidth of the generated dispersive waves (DWs) is significantly broadened.

  13. Air gap winding method and support structure for a super conducting generator and method for forming the same

    DOEpatents

    Hopeck, James Frederick

    2003-11-25

    A method of forming a winding support structure for use with a superconducting rotor wherein the method comprises providing an inner support ring, arranging an outer support ring around the inner support ring, coupling first and second support blocks to the outer support ring and coupling a lamination to the first and second support blocks. A slot is defined between the support blocks and between the outer support ring and the lamination to receive a portion of a winding. An RTV fills any clearance space in the slot.

  14. A Common Coordinates/Heading Direction Generation Method for a Robot Swarm with Only RSSI-Based Ranging

    NASA Astrophysics Data System (ADS)

    Hara, Shinsuke; Ishimoto, Tatsuya; Kitano, Masaya; Tsujioka, Tetsuo

    2009-12-01

    In the motion control of a microrobot swarm, a key issue is how to autonomously generate a set of common coordinates among all robots and how to notify each robot of its heading direction in the generated common coordinates without any special devices for estimating location and bearing. This paper proposes a set of common coordinates and a heading direction generation method for a robot swarm with only received signal strength indicator (RSSI) measured through wireless communications. We explain the principle of the proposed method and show some computer simulation results on the location and direction estimation errors. Finally, we demonstrate some experimental results using a swarm composed of five robots with the IEEE 802.15.4 standard as its wireless communication tool.

  15. Finger milling-cutter CNC generating hypoid pinion tooth surfaces based on modified-roll method and machining simulation

    NASA Astrophysics Data System (ADS)

    Li, Genggeng; Deng, Xiaozhong; Wei, Bingyang; Lei, Baozhen

    2011-05-01

    The two coordinate systems of cradle-type hypoid generator and free-form CNC machine tool by application disc milling-cutter to generate hypoid pinion tooth surfaces based on the modified-roll method were set up, respectively, and transformation principle and method for machine-tool settings between the two coordinate systems was studied. It was presented that finger milling-cutter was mounted on imagined disc milling-cutter and its motion was controlled directly by CNC shafts to replace disc milling-cutter blades effective cutting motion. Finger milling-cutter generation accomplished by ordered circular interpolation was determined, and interpolation center, starting and ending were worked out. Finally, a hypoid pinion was virtually machined by using CNC machining simulation software VERICUT.

  16. Finger milling-cutter CNC generating hypoid pinion tooth surfaces based on modified-roll method and machining simulation

    NASA Astrophysics Data System (ADS)

    Li, Genggeng; Deng, Xiaozhong; Wei, Bingyang; Lei, Baozhen

    2010-12-01

    The two coordinate systems of cradle-type hypoid generator and free-form CNC machine tool by application disc milling-cutter to generate hypoid pinion tooth surfaces based on the modified-roll method were set up, respectively, and transformation principle and method for machine-tool settings between the two coordinate systems was studied. It was presented that finger milling-cutter was mounted on imagined disc milling-cutter and its motion was controlled directly by CNC shafts to replace disc milling-cutter blades effective cutting motion. Finger milling-cutter generation accomplished by ordered circular interpolation was determined, and interpolation center, starting and ending were worked out. Finally, a hypoid pinion was virtually machined by using CNC machining simulation software VERICUT.

  17. Laser generation of Lamb waves for defect detection: experimental methods and finite element modeling.

    PubMed

    Burrows, Susan E; Dutton, Ben; Dixon, Steve

    2012-01-01

    The propagation of Lamb waves generated by a pulsed laser beam in an aluminum sheet is modeled using finite element analysis, and the interaction with defects is studied and compared to experimental results. The ultrasonic Lamb waves are detected by an electromagnetic acoustic transducer (EMAT). The frequency content of the received wave is shown to be enhanced when the generation point is situated directly over the defect in both the modeled and experimental cases. Time-frequency analysis using a Wigner transform has enabled individual modes to be identified. PMID:22293738

  18. Integrated Design Engineering Analysis (IDEA) Environment Automated Generation of Structured CFD Grids using Topology Methods

    NASA Technical Reports Server (NTRS)

    Kamhawi, Hilmi N.

    2012-01-01

    This report documents the work performed from March 2010 to March 2012. The Integrated Design and Engineering Analysis (IDEA) environment is a collaborative environment based on an object-oriented, multidisciplinary, distributed framework using the Adaptive Modeling Language (AML) as a framework and supporting the configuration design and parametric CFD grid generation. This report will focus on describing the work in the area of parametric CFD grid generation using novel concepts for defining the interaction between the mesh topology and the geometry in such a way as to separate the mesh topology from the geometric topology while maintaining the link between the mesh topology and the actual geometry.

  19. System and method for determining an ammonia generation rate in a three-way catalyst

    DOEpatents

    Sun, Min; Perry, Kevin L; Kim, Chang H

    2014-12-30

    A system according to the principles of the present disclosure includes a rate determination module, a storage level determination module, and an air/fuel ratio control module. The rate determination module determines an ammonia generation rate in a three-way catalyst based on a reaction efficiency and a reactant level. The storage level determination module determines an ammonia storage level in a selective catalytic reduction (SCR) catalyst positioned downstream from the three-way catalyst based on the ammonia generation rate. The air/fuel ratio control module controls an air/fuel ratio of an engine based on the ammonia storage level.

  20. System and Method for Generating a Frequency Modulated Linear Laser Waveform

    NASA Technical Reports Server (NTRS)

    Pierrottet, Diego F. (Inventor); Petway, Larry B. (Inventor); Amzajerdian, Farzin (Inventor); Barnes, Bruce W. (Inventor); Lockard, George E. (Inventor); Hines, Glenn D. (Inventor)

    2014-01-01

    A system for generating a frequency modulated linear laser waveform includes a single frequency laser generator to produce a laser output signal. An electro-optical modulator modulates the frequency of the laser output signal to define a linear triangular waveform. An optical circulator passes the linear triangular waveform to a band-pass optical filter to filter out harmonic frequencies created in the waveform during modulation of the laser output signal, to define a pure filtered modulated waveform having a very narrow bandwidth. The optical circulator receives the pure filtered modulated laser waveform and transmits the modulated laser waveform to a target.

  1. System and method for investigating sub-surface features of a rock formation with acoustic sources generating conical broadcast signals

    DOEpatents

    Vu, Cung Khac; Skelt, Christopher; Nihei, Kurt; Johnson, Paul A.; Guyer, Robert; Ten Cate, James A.; Le Bas, Pierre -Yves; Larmat, Carene S.

    2015-08-18

    A method of interrogating a formation includes generating a conical acoustic signal, at a first frequency--a second conical acoustic signal at a second frequency each in the between approximately 500 Hz and 500 kHz such that the signals intersect in a desired intersection volume outside the borehole. The method further includes receiving, a difference signal returning to the borehole resulting from a non-linear mixing of the signals in a mixing zone within the intersection volume.

  2. Application and evaluation of forecasting methods for municipal solid waste generation in an Eastern-European city.

    PubMed

    Rimaityte, Ingrida; Ruzgas, Tomas; Denafas, Gintaras; Racys, Viktoras; Martuzevicius, Dainius

    2012-01-01

    Forecasting of generation of municipal solid waste (MSW) in developing countries is often a challenging task due to the lack of data and selection of suitable forecasting method. This article aimed to select and evaluate several methods for MSW forecasting in a medium-scaled Eastern European city (Kaunas, Lithuania) with rapidly developing economics, with respect to affluence-related and seasonal impacts. The MSW generation was forecast with respect to the economic activity of the city (regression modelling) and using time series analysis. The modelling based on social-economic indicators (regression implemented in LCA-IWM model) showed particular sensitivity (deviation from actual data in the range from 2.2 to 20.6%) to external factors, such as the synergetic effects of affluence parameters or changes in MSW collection system. For the time series analysis, the combination of autoregressive integrated moving average (ARIMA) and seasonal exponential smoothing (SES) techniques were found to be the most accurate (mean absolute percentage error equalled to 6.5). Time series analysis method was very valuable for forecasting the weekly variation of waste generation data (r (2) > 0.87), but the forecast yearly increase should be verified against the data obtained by regression modelling. The methods and findings of this study may assist the experts, decision-makers and scientists performing forecasts of MSW generation, especially in developing countries. PMID:21382880

  3. SplinkBES - A Splinkerette-Based Method for Generating Long End Sequences From Large Insert DNA Libraries

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We report on the development of a novel splinkerette-based method for generating long end-sequences from large insert library clones, using a carrot (Daucus carota L.) BAC library as a model. The procedure involves digestion of the BAC DNA with a 6-bp restriction enzyme, followed by ligation of spli...

  4. Use of adaptive network burst detection methods for multielectrode array data and the generation of artificial spike patterns for method evaluation

    NASA Astrophysics Data System (ADS)

    Mendis, G. D. C.; Morrisroe, E.; Petrou, S.; Halgamuge, S. K.

    2016-04-01

    Objective. Multielectrode arrays are an informative extracellular recording technology that enables the analysis of cultured neuronal networks and network bursts (NBs) are a dominant feature observed in these recordings. This paper focuses on the validation of NB detection methods on different network activity patterns and developing a detection method that performs robustly across a wide variety of activity patterns. Approach. A firing rate based approach was used to generate artificial spike timestamps where NBs were introduced as episodes where the probability of spiking increases. Variations in firing and bursting characteristics were also included. In addition, an improved methodology of detecting NBs is proposed, based on time-binned average firing rates and time overlaps of single channel bursts. The robustness of the proposed method was compared against three existing algorithms using simulated, publicly available and newly acquired data. Main results. A range of activity patterns were generated by changing simulation variables that correspond to NB duration (40-2200 ms), intervals (0.3-16 s), firing rates (0.1-1 spikes s-1), local burst percentage (0%-90%), number of channels in local bursts (20-40) as well as the number of tonic and frequently-bursting channels. By extracting simulation parameters directly from real data, we generated synthetic data that closely resemble activity of mouse and rat cortical cultures at native and chemically perturbed states. In 50 simulated data sets with randomly selected parameter values, the improved NB detection method performed better (ascertained by the f-measure) than three existing methods (p < 0.005). The improved method was also able to detect clustered, long-tailed and short-frequent NBs on real data. Significance. This work presents an objective method of assessing the applicability of NB detection methods for different neuronal activity patterns. Furthermore, it proposes an improved NB detection method that can

  5. Generation and application of the equations of condition for high order Runge-Kutta methods

    NASA Technical Reports Server (NTRS)

    Haley, D. C.

    1972-01-01

    This thesis develops the equations of condition necessary for determining the coefficients for Runge-Kutta methods used in the solution of ordinary differential equations. The equations of condition are developed for Runge-Kutta methods of order four through order nine. Once developed, these equations are used in a comparison of the local truncation errors for several sets of Runge-Kutta coefficients for methods of order three up through methods of order eight.

  6. Two Electrode Collector-Generator Method for the Detection of Electrochemically or Photoelectrochemically Produced O2.

    PubMed

    Sherman, Benjamin D; Sheridan, Matthew V; Dares, Christopher J; Meyer, Thomas J

    2016-07-19

    A dual working electrode technique for the in situ production and quantification of electrochemically or photoelectrochemically produced O2 is described. This technique, termed a collector-generator cell, utilizes a transparent fluorine doped tin oxide electrode to sense O2. This setup is specifically designed for detecting O2 in dye sensitized photoelectrosynthesis cells. PMID:27341737

  7. THIRD GENERATION COMPUTER CURRICULUM AND INNOVATIVE TEACHING METHODS AT EL CAMINO COLLEGE.

    ERIC Educational Resources Information Center

    FEDRICK, ROBERT J.

    A 1967 QUESTIONNAIRE SURVEY IN THE EL CAMINO JUNIOR COLLEGE DISTRICT INDICATED THE EXISTENCE OF 115 COMPUTER SYSTEMS IN 64 COMPANIES, WITH A TREND TOWARD THIRD GENERATION SYSTEMS. WHILE UNIT RECORD SYSTEMS WERE USED IN ABOUT HALF OF THE COMPANIES SURVEYED, THEIR USE WAS DEEMPHASIZED, AND EMPLOYERS INDICATED NEED FOR TRAINING IN PROGRAMING,…

  8. Collaborative Sketching in Crowdsourcing Design: A New Method for Idea Generation

    ERIC Educational Resources Information Center

    Sun, Lingyun; Xiang, Wei; Chen, Shi; Yang, Zhiyuan

    2015-01-01

    Design integrates concepts and solves problems. Crowdsourcing design imports vast knowledge and produces creative ideas. It publishes design tasks, collects dozens of contributors' ideas and reward the best. Contributors in crowdsourcing design work individually when generating ideas. However, those who collaborate could make better use of crowd's…

  9. Principal-Generated YouTube Video as a Method of Improving Parental Involvement

    ERIC Educational Resources Information Center

    Richards, Joey

    2013-01-01

    The purpose of this study was to evaluate the involvement level of parents and reveal whether principal-generated YouTube videos for regular communication would enhance levels of parental involvement at one North Texas Christian Middle School (pseudonym). The following questions guided this study: 1. What is the beginning level of parental…

  10. A Method for Generating Educational Test Items That Are Aligned to the Common Core State Standards

    ERIC Educational Resources Information Center

    Gierl, Mark J.; Lai, Hollis; Hogan, James B.; Matovinovic, Donna

    2015-01-01

    The demand for test items far outstrips the current supply. This increased demand can be attributed, in part, to the transition to computerized testing, but, it is also linked to dramatic changes in how 21st century educational assessments are designed and administered. One way to address this growing demand is with automatic item generation.…

  11. 40 CFR 799.6786 - TSCA water solubility: Generator column method.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... method. 799.6786 Section 799.6786 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... method. (a) Scope—(1) Applicability. This section is intended to meet the testing requirements of the... paragraph (c)(3)(ii)(B)(1) of this section when the HPLC method is used. Saturated solution is a solution...

  12. A comparative study between xerographic, computer-assisted overlay generation and animated-superimposition methods in bite mark analyses.

    PubMed

    Tai, Meng Wei; Chong, Zhen Feng; Asif, Muhammad Khan; Rahmat, Rabiah A; Nambiar, Phrabhakaran

    2016-09-01

    This study was to compare the suitability and precision of xerographic and computer-assisted methods for bite mark investigations. Eleven subjects were asked to bite on their forearm and the bite marks were photographically recorded. Alginate impressions of the subjects' dentition were taken and their casts were made using dental stone. The overlays generated by xerographic method were obtained by photocopying the subjects' casts and the incisal edge outlines were then transferred on a transparent sheet. The bite mark images were imported into Adobe Photoshop® software and printed to life-size. The bite mark analyses using xerographically generated overlays were done by comparing an overlay to the corresponding printed bite mark images manually. In computer-assisted method, the subjects' casts were scanned into Adobe Photoshop®. The bite mark analyses using computer-assisted overlay generation were done by matching an overlay and the corresponding bite mark images digitally using Adobe Photoshop®. Another comparison method was superimposing the cast images with corresponding bite mark images employing the Adobe Photoshop® CS6 and GIF-Animator©. A score with a range of 0-3 was given during analysis to each precision-determining criterion and the score was increased with better matching. The Kruskal Wallis H test showed significant difference between the three sets of data (H=18.761, p<0.05). In conclusion, bite mark analysis using the computer-assisted animated-superimposition method was the most accurate, followed by the computer-assisted overlay generation and lastly the xerographic method. The superior precision contributed by digital method is discernible despite the human skin being a poor recording medium of bite marks. PMID:27591538

  13. Over/Undervoltage and undervoltage shift of hybrid islanding detection method of distributed generation.

    PubMed

    Yingram, Manop; Premrudeepreechacharn, Suttichai

    2015-01-01

    The mainly used local islanding detection methods may be classified as active and passive methods. Passive methods do not perturb the system but they have larger nondetection zones, whereas active methods have smaller nondetection zones but they perturb the system. In this paper, a new hybrid method is proposed to solve this problem. An over/undervoltage (passive method) has been used to initiate an undervoltage shift (active method), which changes the undervoltage shift of inverter, when the passive method cannot have a clear discrimination between islanding and other events in the system. Simulation results on MATLAB/SIMULINK show that over/undervoltage and undervoltage shifts of hybrid islanding detection method are very effective because they can determine anti-islanding condition very fast. ΔP/P > 38.41% could determine anti-islanding condition within 0.04 s; ΔP/P < -24.39% could determine anti-islanding condition within 0.04 s; -24.39% ≤ ΔP/P ≤ 38.41% could determine anti-islanding condition within 0.08 s. This method perturbed the system, only in the case of -24.39% ≤ ΔP/P ≤ 38.41% at which the control system of inverter injected a signal of undervoltage shift as necessary to check if the occurrence condition was an islanding condition or not. PMID:25879064

  14. Over/Undervoltage and Undervoltage Shift of Hybrid Islanding Detection Method of Distributed Generation

    PubMed Central

    Premrudeepreechacharn, Suttichai

    2015-01-01

    The mainly used local islanding detection methods may be classified as active and passive methods. Passive methods do not perturb the system but they have larger nondetection zones, whereas active methods have smaller nondetection zones but they perturb the system. In this paper, a new hybrid method is proposed to solve this problem. An over/undervoltage (passive method) has been used to initiate an undervoltage shift (active method), which changes the undervoltage shift of inverter, when the passive method cannot have a clear discrimination between islanding and other events in the system. Simulation results on MATLAB/SIMULINK show that over/undervoltage and undervoltage shifts of hybrid islanding detection method are very effective because they can determine anti-islanding condition very fast. ΔP/P > 38.41% could determine anti-islanding condition within 0.04 s; ΔP/P < −24.39% could determine anti-islanding condition within 0.04 s; −24.39% ≤ ΔP/P ≤ 38.41% could determine anti-islanding condition within 0.08 s. This method perturbed the system, only in the case of −24.39% ≤ ΔP/P ≤ 38.41% at which the control system of inverter injected a signal of undervoltage shift as necessary to check if the occurrence condition was an islanding condition or not. PMID:25879064

  15. Adomian decomposition sumudu transform method for solving a solid and porous fin with temperature dependent internal heat generation.

    PubMed

    Patel, Trushit; Meher, Ramakanta

    2016-01-01

    In this paper, Adomian decomposition sumudu transform method is introduced and used to solve the temperature distribution in a solid and porous fin with the temperature dependent internal heat generation for a fractional order energy balance equation. In this study, we assume heat generation as a variable of fin temperature for solid and porous fin and the heat transfer through porous media is simulated by using Darcy's model. The results are presented for the temperature distribution for the range of values of parameters appeared in the mathematical formulation and also compared with numerical solutions in order to verify the accuracy of the proposed method. It is found that the proposed method is in good agreement with direct numerical solution. PMID:27218004

  16. Method and split cavity oscillator/modulator to generate pulsed particle beams and electromagnetic fields

    DOEpatents

    Clark, M. Collins; Coleman, P. Dale; Marder, Barry M.

    1993-01-01

    A compact device called the split cavity modulator whose self-generated oscillating electromagnetic field converts a steady particle beam into a modulated particle beam. The particle beam experiences both signs of the oscillating electric field during the transit through the split cavity modulator. The modulated particle beam can then be used to generate microwaves at that frequency and through the use of extractors, high efficiency extraction of microwave power is enabled. The modulated beam and the microwave frequency can be varied by the placement of resistive wires at nodes of oscillation within the cavity. The short beam travel length through the cavity permit higher currents because both space charge and pinching limitations are reduced. The need for an applied magnetic field to control the beam has been eliminated.

  17. Method and split cavity oscillator/modulator to generate pulsed particle beams and electromagnetic fields

    DOEpatents

    Clark, M.C.; Coleman, P.D.; Marder, B.M.

    1993-08-10

    A compact device called the split cavity modulator whose self-generated oscillating electromagnetic field converts a steady particle beam into a modulated particle beam. The particle beam experiences both signs of the oscillating electric field during the transit through the split cavity modulator. The modulated particle beam can then be used to generate microwaves at that frequency and through the use of extractors, high efficiency extraction of microwave power is enabled. The modulated beam and the microwave frequency can be varied by the placement of resistive wires at nodes of oscillation within the cavity. The short beam travel length through the cavity permit higher currents because both space charge and pinching limitations are reduced. The need for an applied magnetic field to control the beam has been eliminated.

  18. INSTRUMENTS AND METHODS OF INVESTIGATION: Generation of squeezed (sub-Poissonian) light by a multimode laser

    NASA Astrophysics Data System (ADS)

    Kozlovskii, A. V.

    2007-12-01

    Theoretical and experimental results of investigations into the quantum noise of multimode laser radiation are considered. The feasibility of generating light with a photon-number-squeezed (sub-Poissonian) photon distribution by a multimode laser with a homogeneously broadened line is analyzed. The conditions of noisy and noiseless (regular) pumping are considered. Photon-number fluctuations of the net laser radiation summed over all generated modes are calculated in the approximation of equidistant equal modes, as are photon-number fluctuations in an individual mode inside and outside the resonator. Output-radiation noise spectra and photon-number fluctuations are calculated for solid-state (neodymium glass, Nd:YAG) and semiconductor lasers. Theoretical results are compared with a number of experimental data obtained for semiconductor lasers in recent years.

  19. The three-cubic method: An optional online robot joint trajectory generator under velocity, acceleration, and wandering constraints

    SciTech Connect

    Tondu, B.; Bazaz, S.A.

    1999-09-01

    An original method called the three-cubic method is proposed to generate online robot joint trajectories interpolating given position points with associated velocities. The method is based on an acceleration profile composed of three cubic polynomial segments, which ensure a zero acceleration at each intermediate point. Velocity and acceleration continuity is obtained, and this three-cubics combination allows the analytical solution to the minimum time trajectory problem under maximum velocity and acceleration constraints. Possible wandering is detected and can be overcome. Furthermore, the analytical solution to the minimum time trajectory problem leads to an online trajectory computation.

  20. Method for generating extreme ultraviolet with mather-type plasma accelerators for use in Extreme Ultraviolet Lithography

    DOEpatents

    Hassanein, Ahmed; Konkashbaev, Isak

    2006-10-03

    A device and method for generating extremely short-wave ultraviolet electromagnetic wave uses two intersecting plasma beams generated by two plasma accelerators. The intersection of the two plasma beams emits electromagnetic radiation and in particular radiation in the extreme ultraviolet wavelength. In the preferred orientation two axially aligned counter streaming plasmas collide to produce an intense source of electromagnetic radiation at the 13.5 nm wavelength. The Mather type plasma accelerators can utilize tin, or lithium covered electrodes. Tin, lithium or xenon can be used as the photon emitting gas source.

  1. Automate generation of incremental linear networks masks by using photocomposition method with with multiple microphotographical reductions using laser microsystems

    NASA Astrophysics Data System (ADS)

    Gheorghe, Gheorghe I.; Dontu, Octavian

    2008-03-01

    The paper treats high precision micro technologies for automate generation of linear incremental networks masks by using the photocomposition method with multiple micro photographical reductions using laser high sensitivity microsystems, for the manufacture of micro-sensors and micro-transducers for micro displacements with endowment in industrial and metrological laboratories. These laser micro technologies allow automate generation of incremental networks masks with incremental step of 0,1 µm ensuring necessary accuracy according to European and international standards as well as realization of linear incremental photoelectric rules divisor and vernier as marks ultra precise components of micro-sensors and microtransducers for micro displacements.

  2. Resonantly enhanced method for generation of tunable, coherent vacuum-ultraviolet radiation

    DOEpatents

    Glownia, J.H.; Sander, R.K.

    1982-06-29

    Carbon Monoxide vapor is used to generate coherent, tunable vacuum ultraviolet radiation by third-harmonic generation using a single tunable dye laser. The presence of a nearby electronic level resonantly enhances the nonlinear susceptibility of this molecule allowing efficient generation of the vuv light at modest pump laser intensities, thereby reducing the importance of a six-photon multiple-photon ionization process which is also resonantly enhanced by the same electronic level but no higher order. By choosing the pump radiation wavelength to be of shorter wavelength than individual vibronic levels used to extend tunability stepwise from 154.4 to 124.6 nm, and the intensity to be low enough, multiple-photon ionization can be eliminated. Excitation spectra of the third-harmonic emission output exhibit shifts to shorter wavelength and broadening with increasing CO pressure due to phase matching effects. Increasing the carbon monoxide pressure, therefore, allows the substantial filling in of gaps arising from the stepwise tuning thereby providing almost continuous tunability over the quoted range of wavelength emitted.

  3. System and method for generating steady state confining current for a toroidal plasma fusion reactor

    DOEpatents

    Fisch, Nathaniel J.

    1981-01-01

    A system for generating steady state confining current for a toroidal plasma fusion reactor providing steady-state generation of the thermonuclear power. A dense, hot toroidal plasma is initially prepared with a confining magnetic field with toroidal and poloidal components. Continuous wave RF energy is injected into said plasma to establish a spectrum of traveling waves in the plasma, where the traveling waves have momentum components substantially either all parallel, or all anti-parallel to the confining magnetic field. The injected RF energy is phased to couple to said traveling waves with both a phase velocity component and a wave momentum component in the direction of the plasma traveling wave components. The injected RF energy has a predetermined spectrum selected so that said traveling waves couple to plasma electrons having velocities in a predetermined range .DELTA.. The velocities in the range are substantially greater than the thermal electron velocity of the plasma. In addition, the range is sufficiently broad to produce a raised plateau having width .DELTA. in the plasma electron velocity distribution so that the plateau electrons provide steady-state current to generate a poloidal magnetic field component sufficient for confining the plasma. In steady state operation of the fusion reactor, the fusion power density in the plasma exceeds the power dissipated in the plasma.

  4. System and method for generating steady state confining current for a toroidal plasma fusion reactor

    DOEpatents

    Bers, Abraham

    1981-01-01

    A system for generating steady state confining current for a toroidal plasma fusion reactor providing steady-state generation of the thermonuclear power. A dense, hot toroidal plasma is initially prepared with a confining magnetic field with toroidal and poloidal components. Continuous wave RF energy is injected into said plasma to estalish a spectrum of traveling waves in the plasma, where the traveling waves have momentum components substantially either all parallel, or all anti-parallel to the confining magnetic field. The injected RF energy is phased to couple to said traveling waves with both a phase velocity component and a wave momentum component in the direction of the plasma traveling wave components. The injected RF energy has a predetermined spectrum selected so that said traveling waves couple to plasma electrons having velocities in a predetermined range .DELTA.. The velocities in the range are substantially greater than the thermal electron velocity of the plasma. In addition, the range is sufficiently broad to produce a raised plateau having width .DELTA. in the plasma electron velocity distribution so that the plateau electrons provide steady-state current to generate a poloidal magnetic field component sufficient for confining the plasma. In steady state operation of the fusion reactor, the fusion power density in the plasma exceeds the power dissipated inthe plasma.

  5. Development of Decision Model for Selection of Appropriate Power Generation System Using Distance Based Approach Method

    NASA Astrophysics Data System (ADS)

    Widiyanto, Anugerah; Kato, Seizo; Maruyama, Naoki

    For solving decision problems in electric generation planning, a matrix operation based deterministic quantitative model called the Distance Based Approach (DBA) has been proposed for comparing the technical-economical and environmental features of various electric power plants. The customized computer code is developed to evaluate the overall function of alternative energy systems from the performance pattern corresponding to the selected energy attributes. For the purpose of exploring the applicability and the effectiveness of the proposed model, the model is applied to decision problems concerning the selection of energy sources for power generation in Japan. The set of nine energy alternatives includes conventional and new energy technologies of oil fired-, natural gas fired-, coal fired-, nuclear power, hydropower, geothermal, solar photovoltaic, wind power and solar thermal plants. Also, a set of criteria for optimized selection includes five areas of concern; energy economy, energy security, environmental protection, socio-economic development and technological aspects for electric power generation. The result will be a ranking of alternative sources of energy based on the Euclidean composite distance of each alternative to the designated optimal source of energy.

  6. Resonantly enhanced method for generation of tunable, coherent vacuum ultraviolet radiation

    DOEpatents

    Glownia, James H.; Sander, Robert K.

    1985-01-01

    Carbon Monoxide vapor is used to generate coherent, tunable vacuum ultraviolet radiation by third-harmonic generation using a single tunable dye laser. The presence of a nearby electronic level resonantly enhances the nonlinear susceptibility of this molecule allowing efficient generation of the vuv light at modest pump laser intensities, thereby reducing the importance of a six-photon multiple-photon ionization process which is also resonantly enhanced by the same electronic level but to higher order. By choosing the pump radiation wavelength to be of shorter wavelength than individual vibronic levels used to extend tunability stepwise from 154.4 to 124.6 nm, and the intensity to be low enough, multiple-photon ionization can be eliminated. Excitation spectra of the third-harmonic emission output exhibit shifts to shorter wavelength and broadening with increasing CO pressure due to phase matching effects. Increasing the carbon monoxide pressure, therefore, allows the substantial filling in of gaps arising from the stepwise tuning thereby providing almost continuous tunability over the quoted range of wavelength emitted.

  7. A frequency domain method for the generation of partially coherent normal stationary time domain signals

    SciTech Connect

    Smallwood, D.O.; Paez, T.L.

    1991-01-01

    A procedure for generating vectors of time domain signals which are partially coherent in a prescribed manner is described. The procedure starts with the spectral density matrix, (G{sub xx}(f)), that relates pairs of elements of the vector random process (x(t), {minus}{infinity} < t < {infinity}). The spectral density matrix is decomposed into the form (G{sub xx}(f)) = (U(f)) (S(f)) (U(f)){prime} where (U(f)) is a matrix of complex frequency response functions, and (S(f)) is a diagonal matrix of real functions which can vary with frequency. The factors of the spectral density matrix, (U(f)) and (S(f)), are then used to generate a frame of random data in the frequency domain. The data is transformed into the time domain using an inverse FFT to generate a frame of data in the time domain. Successive frames of data are then windowed, overlapped, and added to form a vector of normal stationary sampled time histories, (x(t)), of arbitrary length. 11 refs., 4 figs., 1 tab.

  8. Accuracy evaluation of ClimGen weather generator and daily to hourly disaggregation methods in tropical conditions

    NASA Astrophysics Data System (ADS)

    Safeeq, Mohammad; Fares, Ali

    2011-12-01

    Daily and sub-daily weather data are often required for hydrological and environmental modeling. Various weather generator programs have been used to generate synthetic climate data where observed climate data are limited. In this study, a weather data generator, ClimGen, was evaluated for generating information on daily precipitation, temperature, and wind speed at four tropical watersheds located in Hawai`i, USA. We also evaluated different daily to sub-daily weather data disaggregation methods for precipitation, air temperature, dew point temperature, and wind speed at Mākaha watershed. The hydrologic significance values of the different disaggregation methods were evaluated using Distributed Hydrology Soil Vegetation Model. MuDRain and diurnal method performed well over uniform distribution in disaggregating daily precipitation. However, the diurnal method is more consistent if accurate estimates of hourly precipitation intensities are desired. All of the air temperature disaggregation methods performed reasonably well, but goodness-of-fit statistics were slightly better for sine curve model with 2 h lag. Cosine model performed better than random model in disaggregating daily wind speed. The largest differences in annual water balance were related to wind speed followed by precipitation and dew point temperature. Simulated hourly streamflow, evapotranspiration, and groundwater recharge were less sensitive to the method of disaggregating daily air temperature. ClimGen performed well in generating the minimum and maximum temperature and wind speed. However, for precipitation, it clearly underestimated the number of extreme rainfall events with an intensity of >100 mm/day in all four locations. ClimGen was unable to replicate the distribution of observed precipitation at three locations (Honolulu, Kahului, and Hilo). ClimGen was able to reproduce the distributions of observed minimum temperature at Kahului and wind speed at Kahului and Hilo. Although the weather

  9. Availability study of CFD-based Mask3D simulation method for next generation lithography technologies

    NASA Astrophysics Data System (ADS)

    Takahashi, M.; Kawabata, Y.; Washitani, T.; Tanaka, S.; Maeda, S.; Mimotogi, S.

    2014-03-01

    In progress of lithography technologies, the importance of Mask3D analysis has been emphasized because the influence of mask topography effects is not avoidable to be increased explosively. An electromagnetic filed simulation method, such as FDTD, RCWA and FEM, is applied to analyze those complicated phenomena. We have investigated Constrained Interpolation Profile (CIP) method, which is one of the Method of Characteristics (MoC), for Mask3D analysis in optical lithography. CIP method can reproduce the phase of propagating waves with less numerical error by using high order polynomial function. The restrictions of grid distance are relaxed with spatial grid. Therefore this method reduces the number of grid points in complex structure. In this paper, we study the feasibility of CIP scheme applying a non-uniform and spatial-interpolated grid to practical mask patterns. The number of grid points might be increased in complex layout and topological structure since these structures require a dense grid to remain the fidelity of each design. We propose a spatial interpolation method based on CIP method same as time-domain interpolation to reduce the number of grid points to be computed. The simulation results of two meshing methods with spatial interpolation are shown.

  10. New half-film method for measuring Al2O3 film MTF of 3rd generation image intensifier

    NASA Astrophysics Data System (ADS)

    Cheng, Yaojin; Shi, Feng; Bai, Xiaofeng; Zhu, Yufeng; Yan, Lei; Liu, Feng; Li, Min

    2012-10-01

    In 3rd generation image intensifier, Al2O3 film on the input of MCP is a serious influence factor on device MTF due to its electron scattering process. There are no reportes about how to measure the MTF of Al2O3 film. In this paper a new Half-film comparssion test method is creatively established for determing the film MTF, which overcomes the difficulty of measuring super thin film less than a few nm. In this way, the MTF curves of 10nm Al2O3 film can be accurately obtained. The measurement results show that 10nm Al2O3 film obviously decay the MTF performance of the 3rd generation image intensifier and take an important role in the improvement work of 3rd generation image intensifier MTF and resolution performances.

  11. Method of Generating Transient Equivalent Sink and Test Target Temperatures for Swift BAT

    NASA Technical Reports Server (NTRS)

    Choi, Michael K.

    2004-01-01

    The NASA Swift mission has a 600-km altitude and a 22 degrees maximum inclination. The sun angle varies from 45 degrees to 180 degrees in normal operation. As a result, environmental heat fluxes absorbed by the Burst Alert Telescope (BAT) radiator and loop heat pipe (LHP) compensation chambers (CCs) vary transiently. Therefore the equivalent sink temperatures for the radiator and CCs varies transiently. In thermal performance verification testing in vacuum, the radiator and CCs radiated heat to sink targets. This paper presents an analytical technique for generating orbit transient equivalent sink temperatures and a technique for generating transient sink target temperatures for the radiator and LHP CCs. Using these techniques, transient target temperatures for the radiator and LHP CCs were generated for three thermal environmental cases: worst hot case, worst cold case, and cooldown and warmup between worst hot case in sunlight and worst cold case in the eclipse, and three different heat transport values: 128 W, 255 W, and 382 W. The 128 W case assumed that the two LHPs transport 255 W equally to the radiator. The 255 W case assumed that one LHP fails so that the remaining LHP transports all the waste heat from the detector array to the radiator. The 382 W case assumed that one LHP fails so that the remaining LHP transports all the waste heat from the detector array to the radiator, and has a 50% design margin. All these transient target temperatures were successfully implemented in the engineering test unit (ETU) LHP and flight LHP thermal performance verification tests in vacuum.

  12. Evaluating multiplexed next-generation sequencing as a method in palynology for mixed pollen samples.

    PubMed

    Keller, A; Danner, N; Grimmer, G; Ankenbrand, M; von der Ohe, K; von der Ohe, W; Rost, S; Härtel, S; Steffan-Dewenter, I

    2015-03-01

    The identification of pollen plays an important role in ecology, palaeo-climatology, honey quality control and other areas. Currently, expert knowledge and reference collections are essential to identify pollen origin through light microscopy. Pollen identification through molecular sequencing and DNA barcoding has been proposed as an alternative approach, but the assessment of mixed pollen samples originating from multiple plant species is still a tedious and error-prone task. Next-generation sequencing has been proposed to avoid this hindrance. In this study we assessed mixed pollen probes through next-generation sequencing of amplicons from the highly variable, species-specific internal transcribed spacer 2 region of nuclear ribosomal DNA. Further, we developed a bioinformatic workflow to analyse these high-throughput data with a newly created reference database. To evaluate the feasibility, we compared results from classical identification based on light microscopy from the same samples with our sequencing results. We assessed in total 16 mixed pollen samples, 14 originated from honeybee colonies and two from solitary bee nests. The sequencing technique resulted in higher taxon richness (deeper assignments and more identified taxa) compared to light microscopy. Abundance estimations from sequencing data were significantly correlated with counted abundances through light microscopy. Simulation analyses of taxon specificity and sensitivity indicate that 96% of taxa present in the database are correctly identifiable at the genus level and 70% at the species level. Next-generation sequencing thus presents a useful and efficient workflow to identify pollen at the genus and species level without requiring specialised palynological expert knowledge. PMID:25270225

  13. Higher-Order Harmonic Generation from Fullerene by Means of the Plasma Harmonic Method

    SciTech Connect

    Ganeev, R. A.; Bom, L. B. Elouga; Abdul-Hadi, J.; Ozaki, T.; Wong, M. C. H.; Brichta, J. P.; Bhardwaj, V. R.

    2009-01-09

    We demonstrate, for the first time, high-order harmonic generation from C{sub 60} by an intense femtosecond Ti:sapphire laser. Laser-produced plasmas from C{sub 60}-rich epoxy and C{sub 60} films were used as the nonlinear media. Harmonics up to the 19th order were observed. The harmonic yield from fullerene-rich plasma is about 25 times larger compared with those produced from a bulk carbon target. Structural studies of plasma debris confirm the presence and integrity of fullerenes within the plasma plume, indicating fullerenes as the source of high-order harmonics.

  14. Identifying and Mitigating Bias in Next-Generation Sequencing Methods for Chromatin Biology

    PubMed Central

    Meyer, Clifford A.; Liu, X. Shirley

    2015-01-01

    Next generation sequencing (NGS) technologies have been used in diverse ways to investigate facets of chromatin biology by identifying genomic loci that are bound by transcription factors, occupied by nucleosomes, accessible to nuclease cleavage, or physically interact with remote genomic loci. Reaching sound biological conclusions from such NGS enrichment profiles, however, requires that many potential biases be taken into account. In this Review we discuss common ways in which bias may be introduced into NGS chromatin profiling data, ways in which these biases can be diagnosed, and analytical techniques to mitigate their effect. PMID:25223782

  15. Microbial Analysis of Arctic Snow and Frost Flowers: What Next Generation Sequencing Method Can Reveal

    NASA Astrophysics Data System (ADS)

    Mortazavi, R.; Attiya, S.; Ariya, P. A.

    2014-12-01

    We herein examined and identified the population of the microbial communities of Arctic snow types and frost flower during the spring 2009 campaign of the Ocean-Atmosphere-Sea Ice-Snowpack (OASIS) program in Barrow, Alaska, USA. In addition to conventional microbial identification techniques (culture-isolation-PCR amplification-sequencing) we deployed a state-of-the-art genomic Next Generation Sequencing (NGS) technique to examine the true bacterial communities in Arctic samples. Our results have indicated that diverse community of microbial exists in Arctic with many originating from distinct ecological environment. The alterations observed in the texture of Arctic samples by microbial has further signified their importance in ecosystem.

  16. Simple method for generating Bose-Einstein condensates in a weak hybrid trap

    SciTech Connect

    Zaiser, M.; Hartwig, J.; Schlippert, D.; Velte, U.; Winter, N.; Lebedev, V.; Ertmer, W.; Rasel, E. M.

    2011-03-15

    We report on a simple trapping scheme for the generation of Bose-Einstein condensates of {sup 87}Rb atoms. This scheme employs a near-infrared single-beam optical dipole trap combined with a weak magnetic quadrupole field as used for magneto-optical trapping to enhance the confinement in axial direction. Efficient forced evaporative cooling to the phase transition is achieved in this weak hybrid trap via reduction of the laser intensity of the optical dipole trap at constant magnetic field gradient.

  17. The Application of Parameter Space Design Method for Generator Excitation Control

    NASA Astrophysics Data System (ADS)

    Iki, Hiroyuki; Yoshimura, Shyuta; Uriu, Yosihisa

    Recently, control engineering changes from classical control theory to modern control theory, and analogue to digital. However, as a matter of fact, the sensitivity adjustment of the parameters using Bode diagram require many time and works. In this paper, the tool of Matlab/Simulink that adjusted the AVR control parameter of the PI control type brushless and Thyristor excitation method by using the technique for based on the parameter space planning method by QE was made. Moreover, the adjustment of the sensitivity parameter of the excitation control method intended for the dynamic stability level area in Single Machine Infinite Bus is examined with the tool.

  18. Method for generating a highly reactive plasma for exhaust gas after treatment and enhanced catalyst reactivity

    SciTech Connect

    Whealton, John H.; Hanson, Gregory R.; Storey, John M.; Raridon, Richard J.; Armfield, Jeffrey S.; Bigelow, Timothy S.; Graves, Ronald L.

    2000-07-01

    This patent application describes a method and apparatus of exhaust gas remediation that enhance the reactivity of the material catalysts found within catalytic converters of cars, trucks, and power stations.

  19. EVALUATION OF ANALYTICAL REPORTING ERRORS GENERATED AS DESCRIBED IN SW-846 METHOD 8261A

    EPA Science Inventory

    SW-846 Method 8261A incorporates the vacuum distillation of analytes from samples, and their recoveries are characterized by internal standards. The internal standards measure recoveries with confidence intervals as functions of physical properties. The frequency the calculate...

  20. Investigation of a method for generating synthetic CT models from MRI scans of the head and neck for radiation therapy.

    PubMed

    Hsu, Shu-Hui; Cao, Yue; Huang, Ke; Feng, Mary; Balter, James M

    2013-12-01

    Magnetic resonance (MR) images often provide superior anatomic and functional information over computed tomography (CT) images, but generally are not used alone without CT images for radiotherapy treatment planning and image guidance. This study aims to investigate the potential of probabilistic classification of voxels from multiple MRI contrasts to generate synthetic CT ('MRCT') images. The method consists of (1) acquiring multiple MRI volumes: T1-weighted, T2-weighted, two echoes from a ultra-short echo time (UTE) sequence, and calculated fat and water image volumes using a Dixon method, (2) classifying tissues using fuzzy c-means clustering with a spatial constraint, (3) assigning attenuation properties with weights based on the probability of individual tissue classes being present in each voxel, and (4) generating a MRCT image volume from the sum of attenuation properties in each voxel. The capability of each MRI contrast to differentiate tissues of interest was investigated based on a retrospective analysis of ten patients. For one prospective patient, the correlation of skull intensities between CT and MR was investigated, the discriminatory power of MRI in separating air from bone was evaluated, and the generated MRCT image volume was qualitatively evaluated. Our analyses showed that one MRI volume was not sufficient to separate all tissue types, and T2-weighted images was more sensitive to bone density variation compared to other MRI image types. The short echo UTE image showed significant improvement in contrasting air versus bone, but could not completely separate air from bone without false labeling. Generated MRCT and CT images showed similar contrast between bone and soft/solid tissues. These results demonstrate the potential of the presented method to generate synthetic CT images to support the workflow of radiation oncology treatment planning and image guidance. PMID:24217183

  1. Investigation of a method for generating synthetic CT models from MRI scans of the head and neck for radiation therapy

    NASA Astrophysics Data System (ADS)

    Hsu, Shu-Hui; Cao, Yue; Huang, Ke; Feng, Mary; Balter, James M.

    2013-12-01

    Magnetic resonance (MR) images often provide superior anatomic and functional information over computed tomography (CT) images, but generally are not used alone without CT images for radiotherapy treatment planning and image guidance. This study aims to investigate the potential of probabilistic classification of voxels from multiple MRI contrasts to generate synthetic CT (‘MRCT’) images. The method consists of (1) acquiring multiple MRI volumes: T1-weighted, T2-weighted, two echoes from a ultra-short echo time (UTE) sequence, and calculated fat and water image volumes using a Dixon method, (2) classifying tissues using fuzzy c-means clustering with a spatial constraint, (3) assigning attenuation properties with weights based on the probability of individual tissue classes being present in each voxel, and (4) generating a MRCT image volume from the sum of attenuation properties in each voxel. The capability of each MRI contrast to differentiate tissues of interest was investigated based on a retrospective analysis of ten patients. For one prospective patient, the correlation of skull intensities between CT and MR was investigated, the discriminatory power of MRI in separating air from bone was evaluated, and the generated MRCT image volume was qualitatively evaluated. Our analyses showed that one MRI volume was not sufficient to separate all tissue types, and T2-weighted images was more sensitive to bone density variation compared to other MRI image types. The short echo UTE image showed significant improvement in contrasting air versus bone, but could not completely separate air from bone without false labeling. Generated MRCT and CT images showed similar contrast between bone and soft/solid tissues. These results demonstrate the potential of the presented method to generate synthetic CT images to support the workflow of radiation oncology treatment planning and image guidance.

  2. A buoyancy method for the measurement of total ultrasound power generated by HIFU transducers.

    PubMed

    Shaw, Adam

    2008-08-01

    Total acoustic output power is a key parameter for most ultrasonic medical equipment and especially for high intensity focused ultrasound (HIFU) systems, which treat certain cancers and other conditions by the noninvasive thermal ablation of the affected tissue. In planar unfocused fields, the use of a radiation force balance has been considered the most accurate method of measuring ultrasound power. However, radiation force is not strictly dependent on the ultrasound power but, rather, on the wave momentum resolved in one direction. Consequently, measurements based on radiation force become progressively less accurate as the ultrasound wave deviates further from a true plane-wave. HIFU transducers can be very strongly focused with F-numbers less than one: under these conditions, the uncertainty associated with use of the radiation force method becomes very significant. In this article, a new method for determining power is described in detail. Instead of radiation force, the new method relies on measuring the change in buoyancy caused by thermal expansion of castor oil inside a target suspended in a water bath. The change in volume is proportional to the incident energy and is independent of focusing or the angle of incidence of the ultrasound. The principles and theory behind the new method are laid out and the characteristics and construction of an appropriate target are examined and the results of validation tests are presented. The uncertainties of the method are calculated to be approximately +/-3.4% in the current implementation, with the potential to reduce these further. The new technique has several important advantages over the radiation force method and offers the potential to be an alternative primary standard method. PMID:18471952

  3. A hybrid fault diagnosis method based on second generation wavelet de-noising and local mean decomposition for rotating machinery.

    PubMed

    Liu, Zhiwen; He, Zhengjia; Guo, Wei; Tang, Zhangchun

    2016-03-01

    In order to extract fault features of large-scale power equipment from strong background noise, a hybrid fault diagnosis method based on the second generation wavelet de-noising (SGWD) and the local mean decomposition (LMD) is proposed in this paper. In this method, a de-noising algorithm of second generation wavelet transform (SGWT) using neighboring coefficients was employed as the pretreatment to remove noise in rotating machinery vibration signals by virtue of its good effect in enhancing the signal-noise ratio (SNR). Then, the LMD method is used to decompose the de-noised signals into several product functions (PFs). The PF corresponding to the faulty feature signal is selected according to the correlation coefficients criterion. Finally, the frequency spectrum is analyzed by applying the FFT to the selected PF. The proposed method is applied to analyze the vibration signals collected from an experimental gearbox and a real locomotive rolling bearing. The results demonstrate that the proposed method has better performances such as high SNR and fast convergence speed than the normal LMD method. PMID:26753616

  4. Methods and analysis of factors impact on the efficiency of the photovoltaic generation

    NASA Astrophysics Data System (ADS)

    Tianze, Li; Xia, Zhang; Chuan, Jiang; Luan, Hou

    2011-02-01

    First of all, the thesis elaborates two important breakthroughs which happened In the field of the application of solar energy in the 1950s.The 21st century the development of solar photovoltaic power generation will have the following characteristics: the continued high growth of industrial development, the significantly reducing cost of the solar cell, the large-scale high-tech development of photovoltaic industries, the breakthroughs of the film battery technology, the rapid development of solar PV buildings integration and combined to the grids. The paper makes principles of solar cells the theoretical analysis. On the basis, we study the conversion efficiency of solar cells, find the factors impact on the efficiency of the photovoltaic generation, solve solar cell conversion efficiency of technical problems through the development of new technology, and open up new ways to improve the solar cell conversion efficiency. Finally, the paper connecting with the practice establishes policies and legislation to the use of encourage renewable energy, development strategy, basic applied research etc.

  5. Method and system for generating a beam of acoustic energy from a borehole, and applications thereof

    DOEpatents

    Johnson Paul A.; Ten Cate, James A.; Guyer, Robert; Le Bas, Pierre-Yves; Vu, Cung; Nihei, Kurt; Schmitt, Denis P.; Skelt, Christopher

    2012-02-14

    A compact array of transducers is employed as a downhole instrument for acoustic investigation of the surrounding rock formation. The array is operable to generate simultaneously a first acoustic beam signal at a first frequency and a second acoustic beam signal at a second frequency different than the first frequency. These two signals can be oriented through an azimuthal rotation of the array and an inclination rotation using control of the relative phases of the signals from the transmitter elements or electromechanical linkage. Due to the non-linearity of the formation, the first and the second acoustic beam signal mix into the rock formation where they combine into a collimated third signal that propagates in the formation along the same direction than the first and second signals and has a frequency equal to the difference of the first and the second acoustic signals. The third signal is received either within the same borehole, after reflection, or another borehole, after transmission, and analyzed to determine information about rock formation. Recording of the third signal generated along several azimuthal and inclination directions also provides 3D images of the formation, information about 3D distribution of rock formation and fluid properties and an indication of the dynamic acoustic non-linearity of the formation.

  6. Fluid Dynamics of the Generation and Transmission of Heart Sounds: (2): Direct Simulation using a Coupled Hemo-Elastodynamic Method

    NASA Astrophysics Data System (ADS)

    Seo, Jung-Hee; Bakhshaee, Hani; Zhu, Chi; Mittal, Rajat

    2015-11-01

    Patterns of blood flow associated with abnormal heart conditions generate characteristic sounds that can be measured on the chest surface using a stethoscope. This technique of `cardiac auscultation' has been used effectively for over a hundred years to diagnose heart conditions, but the mechanisms that generate heart sounds, as well as the physics of sound transmission through the thorax, are not well understood. Here we present a new computational method for simulating the physics of heart murmur generation and transmission and use it to simulate the murmurs associated with a modeled aortic stenosis. The flow in the model aorta is simulated by the incompressible Navier-Stokes equations and the three-dimensional elastic wave generation and propagation on the surrounding viscoelastic structure are solved with a high-order finite difference method in the time domain. The simulation results are compared with experimental measurements and show good agreement. The present study confirms that the pressure fluctuations on the vessel wall are the source of these heart murmurs, and both compression and shear waves likely plan an important role in cardiac auscultation. Supported by the NSF Grants IOS-1124804 and IIS-1344772, Computational resource by XSEDE NSF grant TG-CTS100002.

  7. Assessment of radiation shield integrity of DD/DT fusion neutron generator facilities by Monte Carlo and experimental methods

    NASA Astrophysics Data System (ADS)

    Srinivasan, P.; Priya, S.; Patel, Tarun; Gopalakrishnan, R. K.; Sharma, D. N.

    2015-01-01

    DD/DT fusion neutron generators are used as sources of 2.5 MeV/14.1 MeV neutrons in experimental laboratories for various applications. Detailed knowledge of the radiation dose rates around the neutron generators are essential for ensuring radiological protection of the personnel involved with the operation. This work describes the experimental and Monte Carlo studies carried out in the Purnima Neutron Generator facility of the Bhabha Atomic Research Center (BARC), Mumbai. Verification and validation of the shielding adequacy was carried out by measuring the neutron and gamma dose-rates at various locations inside and outside the neutron generator hall during different operational conditions both for 2.5-MeV and 14.1-MeV neutrons and comparing with theoretical simulations. The calculated and experimental dose rates were found to agree with a maximum deviation of 20% at certain locations. This study has served in benchmarking the Monte Carlo simulation methods adopted for shield design of such facilities. This has also helped in augmenting the existing shield thickness to reduce the neutron and associated gamma dose rates for radiological protection of personnel during operation of the generators at higher source neutron yields up to 1 × 1010 n/s.

  8. The geometry of r-adaptive meshes generated using optimal transport methods

    NASA Astrophysics Data System (ADS)

    Budd, C. J.; Russell, R. D.; Walsh, E.

    2015-02-01

    The principles of mesh equidistribution and alignment play a fundamental role in the design of adaptive methods, and a metric tensor and mesh metric are useful theoretical tools for understanding a method's level of mesh alignment, or anisotropy. We consider a mesh redistribution method based on the Monge-Ampère equation which combines equidistribution of a given scalar density function with optimal transport. It does not involve explicit use of a metric tensor, although such a tensor must exist for the method, and an interesting question to ask is whether or not the alignment produced by the metric gives an anisotropic mesh. For model problems with a linear feature and with a radially symmetric feature, we derive the exact form of the metric, which involves expressions for its eigenvalues and eigenvectors. The eigenvectors are shown to be orthogonal and tangential to the feature, and the ratio of the eigenvalues (corresponding to the level of anisotropy) is shown to depend, both locally and globally, on the value of the density function and the amount of curvature. We thereby demonstrate how the optimal transport method produces an anisotropic mesh along a given feature while equidistributing a suitably chosen scalar density function. Numerical results are given to verify these results and to demonstrate how the analysis is useful for problems involving more complex features, including for a non-trivial time dependant nonlinear PDE which evolves narrow and curved reaction fronts.

  9. User-generated quality standards for youth mental health in primary care: a participatory research design using mixed methods

    PubMed Central

    Graham, Tanya; Rose, Diana; Murray, Joanna; Ashworth, Mark; Tylee, André

    2014-01-01

    Objectives To develop user-generated quality standards for young people with mental health problems in primary care using a participatory research model. Methods 50 young people aged 16–25 from community settings and primary care participated in focus groups and interviews about their views and experiences of seeking help for mental health problems in primary care, cofacilitated by young service users and repeated to ensure respondent validation. A second group of young people also aged 16–25 who had sought help for any mental health problem from primary care or secondary care within the last 5 years were trained as focus groups cofacilitators (n=12) developed the quality standards from the qualitative data and participated in four nominal groups (n=28). Results 46 quality standards were developed and ranked by young service users. Agreement was defined as 100% of scores within a two-point region. Group consensus existed for 16 quality standards representing the following aspects of primary care: better advertising and information (three); improved competence through mental health training and skill mix within the practice (two); alternatives to medication (three); improved referral protocol (three); and specific questions and reassurances (five). Alternatives to medication and specific questions and reassurances are aspects of quality which have not been previously reported. Conclusions We have demonstrated the feasibility of using participatory research methods in order to develop user-generated quality standards. The development of patient-generated quality standards may offer a more formal method of incorporating the views of service users into quality improvement initiatives. This method can be adapted for generating quality standards applicable to other patient groups. PMID:24920648

  10. Method for measuring the cone angle and the shape of the axicon simultaneously using computer-generated holograms.

    PubMed

    Chen, Qiang; Zhang, Yonghong; Qiu, Chuankai; Wan, Yongjian; Hou, Xi

    2015-10-01

    An axicon is an optical element with rotational symmetry and cone shape, which is nowadays widely used in many fields of engineering, like laser beam shaping, imaging systems, optical testing, laser machining, etc. In this paper, we propose a new method to measure the cone angle and the shape of the axicon simultaneously by using a computer-generated hologram. This test is performed in a null-test configuration. PMID:26479598

  11. Beam splitter and method for generating equal optical path length beams

    DOEpatents

    Qian, Shinan; Takacs, Peter

    2003-08-26

    The present invention is a beam splitter for splitting an incident beam into first and second beams so that the first and second beams have a fixed separation and are parallel upon exiting. The beam splitter includes a first prism, a second prism, and a film located between the prisms. The first prism is defined by a first thickness and a first perimeter which has a first major base. The second prism is defined by a second thickness and a second perimeter which has a second major base. The film is located between the first major base and the second major base for splitting the incident beam into the first and second beams. The first and second perimeters are right angle trapezoidal shaped. The beam splitter is configured for generating equal optical path length beams.

  12. Method of power generation and its apparatus utilizing gravitation force and buoyancy

    SciTech Connect

    Kim, M.K.; Lee, S.E.

    1988-01-26

    An apparatus for the generation of power is described which comprises: at least first cylinder and at least second cylinder, at least first float member and at least second float member disposed in at least first and second cylinders, a lever arm pivotably disposed above the cylinder, the end portions of the arm lever being operatively connected to the respective float members, the lever arm containing weight members and defining a path for guiding the weight members to traverse the lever arm between the end portions, a crank member rotatably disposed on a crank shaft, the crank member connected to the center portion of the lever arm through connecting rods and guide-gears, a dam which provides a source of water, means for removing water from the dam and alternatively introducing and removing the water to and from at least first and second cylinders.

  13. System and method for generating current by selective minority species heating

    DOEpatents

    Fisch, Nathaniel J.

    1983-01-01

    A system for the generation of toroidal current in a plasma which is prepared in a toroidal magnetic field. The system utilizes the injection of low-frequency waves into the plasma by means of phased antenna arrays or phased waveguide arrays. The plasma is prepared with a minority ion species of different charge state and different gyrofrequency from the majority ion species. The wave frequency and wave phasing are chosen such that the wave energy is absorbed preferentially by minority species ions traveling in one toroidal direction. The absorption of energy in this manner produces a toroidal electric current even when the injected waves themselves do not have substantial toroidal momentum. This current can be continuously maintained at modest cost in power and may be used to confine the plasma. The system can operate efficiently on fusion grade tokamak plasmas.

  14. Methods for small RNA preparation for digital gene expression profiling by next-generation sequencing.

    PubMed

    Linsen, Sam E V; Cuppen, Edwin

    2012-01-01

    Digital gene expression (DGE) profiling techniques are playing an eminent role in the detection, localization, and differential expression quantification of many small RNA species, including microRNAs (1-3). Procedures in small RNA library preparation techniques typically include adapter ligation by RNA ligase, followed by reverse transcription and amplification by PCR. This chapter describes three protocols that were successfully applied to generate small RNA sequencing SOLiD(TM) libraries. The Ambion SREK(TM)-adopted protocol can be readily used for multiplexing samples; the modban-based protocol is cost-efficient, but biased toward certain microRNAs; the poly(A)-based protocol is less biased, but less precise because of the A-tail that is introduced. In summary, each of these protocols has its advantages and disadvantages with respect to the ease of including barcodes, costs, and outcome. PMID:22144201

  15. Steady-state, high-dose neutron generation and concentration apparatus and method for deuterium atoms

    SciTech Connect

    Uhm, H.S.; Lee, W.M.

    1991-01-01

    A steady-state source of neutrons is produced within an electrically grounded and temperature controlled chamber confining tritium or deuterium plasma at a predetermined density to effect implantation of ions in the surface of a palladium target rod coated with diffusion barrier material and immersed in such plasma. The rod is enriched with a high concentration of deuterium atoms after a prolonged plasma ion implantation. Collision of the deuterium atoms in the target by impinging ions of the plasma initiates fusion reactions causing emission of neutrons during negative voltage pulses applied to the rod through a high power modulator. The neutrons are so generated at a relatively high dose rate under optimized process conditions.

  16. Concise Review: Methods and Cell Types Used to Generate Down Syndrome Induced Pluripotent Stem Cells

    PubMed Central

    Hibaoui, Youssef; Feki, Anis

    2015-01-01

    Down syndrome (DS, trisomy 21), is the most common viable chromosomal disorder, with an incidence of 1 in 800 live births. Its phenotypic characteristics include intellectual impairment and several other developmental abnormalities, for the majority of which the pathogenetic mechanisms remain unknown. Several models have been used to investigate the mechanisms by which the extra copy of chromosome 21 leads to the DS phenotype. In the last five years, several laboratories have been successful in reprogramming patient cells carrying the trisomy 21 anomaly into induced pluripotent stem cells, i.e., T21-iPSCs. In this review, we summarize the different T21-iPSCs that have been generated with a particular interest in the technical procedures and the somatic cell types used for the reprogramming. PMID:26239351

  17. Plant regeneration methods for rapid generation of a large scale Ds transposant population in rice.

    PubMed

    Xuan, Yuan Hu; Huang, Jin; Yi, Gihwan; Park, Dong-Soo; Park, Soo Kwon; Eun, Moo Young; Yun, Doh Won; Lee, Gang-Seob; Kim, Tae Ho; Han, Chang-deok

    2013-01-01

    To mutagenize rice genomes, a two-element system is utilized. This system comprises an immobile Ac element driven by the CaMV 35S promoter, and a gene trap Ds carrying a partial intron with alternative splice acceptors fused to the GUS coding region. Rapid, large-scale generation of a Ds transposant population was achieved using a plant regeneration procedure involving the tissue culture of seed-derived calli carrying Ac and Ds elements. During tissue cultures, Ds mobility accompanies changes in methylation patterns of a terminal region of Ds, where over 70% of plants contained independent Ds insertions. In the transposon population, around 12% of plants expressed GUS at the early seedling stage. A flanking-sequence-tag (FST) database has been established by cloning over 19,968 Ds insertion sites and the Ds map shows relatively uniform distribution across the rice chromosomes. PMID:23918423

  18. Methods and apparatuses for self-generating fault-tolerant keys in spread-spectrum systems

    DOEpatents

    Moradi, Hussein; Farhang, Behrouz; Subramanian, Vijayarangam

    2015-12-15

    Self-generating fault-tolerant keys for use in spread-spectrum systems are disclosed. At a communication device, beacon signals are received from another communication device and impulse responses are determined from the beacon signals. The impulse responses are circularly shifted to place a largest sample at a predefined position. The impulse responses are converted to a set of frequency responses in a frequency domain. The frequency responses are shuffled with a predetermined shuffle scheme to develop a set of shuffled frequency responses. A set of phase differences is determined as a difference between an angle of the frequency response and an angle of the shuffled frequency response at each element of the corresponding sets. Each phase difference is quantized to develop a set of secret-key quantized phases and a set of spreading codes is developed wherein each spreading code includes a corresponding phase of the set of secret-key quantized phases.

  19. A new method for power generation and distribution in outer space

    SciTech Connect

    Bamberger, J.A.

    1989-09-01

    The power system is a major component of a space system's size, mass, technical complexity, and hence, cost. To date, space systems include the energy source as an integral part of the mission satellite. Potentially significant benefit could be realized by separating the energy source from the end-use system and transmitting the power via an energy beam (power beaming) (Coomes et al., 1989). This concept parallels the terrestrial central generating station and transmission grid. In this summary, the system components required for power beaming implementation are outlined and applied to a satellite for power beaming implementation are outlined and applied to a satellite constellation to demonstrate the feasibility of implementing power beaming in the next 20 years. 5 refs., 1 fig., 3 tabs.

  20. Method and apparatus for generating motor current spectra to enhance motor system fault detection

    DOEpatents

    Linehan, Daniel J.; Bunch, Stanley L.; Lyster, Carl T.

    1995-01-01

    A method and circuitry for sampling periodic amplitude modulations in a nonstationary periodic carrier wave to determine frequencies in the amplitude modulations. The method and circuit are described in terms of an improved motor current signature analysis. The method insures that the sampled data set contains an exact whole number of carrier wave cycles by defining the rate at which samples of motor current data are collected. The circuitry insures that a sampled data set containing stationary carrier waves is recreated from the analog motor current signal containing nonstationary carrier waves by conditioning the actual sampling rate to adjust with the frequency variations in the carrier wave. After the sampled data is transformed to the frequency domain via the Discrete Fourier Transform, the frequency distribution in the discrete spectra of those components due to the carrier wave and its harmonics will be minimized so that signals of interest are more easily analyzed.