Science.gov

Sample records for fuca ridge northeast

  1. Hydrothermal fluid effects on sediment column in Middle Valley, Juan de Fuca Ridge (northeast Pacific)

    SciTech Connect

    Al-Aasm, I.S.; Blaise, B.

    1987-05-01

    Core PAR 85-34, located near a high heat flow area in Middle Valley, northern Juan de Fuca Ridge, contains carbonate nodules of various sizes (less than or equal to 1-5 cm in length). Sedimentological, geochemical, and isotopic results allow us to understand the origin of these concretions and the effects of hydrothermal activity from nearby sulfide vents on the sediment column. The mineralogy of the olive-gray surface sediment (0-15 cm) is identical to unaffected hemipelagic sediments in the region except for a concentration of barite crystals (up to 1 cm) at the water-sediment interface. In the clay, mud fraction, and bulk sediment, the FeO, S, Ba, Cu, Ni, Pb, Zn and As are more enriched than in normal hemipelagic sediment in the area due to hydrothermal activity. Petrographic and SEM analysis of the nodules reveal iron calcite and barite minerals in cracks and on the outside part of the nodules with mineralogical and textural variations downcore. Stable isotope curves of these nodules appear to demonstrate the effects of both bacterial sulfate reduction and microbiological methane generation, with consequent extreme /sup 13/C-depletion in the precipitated carbonate. The curves also demonstrate that the hydrothermal fluid entering the system may have caused the negative shift in oxygen isotopes downcore, although this effect may have been of cyclic or episodic nature.

  2. Characteristics of hydrothermal plumes from two vent fields on the Juan de Fuca Ridge, northeast Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Baker, Edward T.; Massoth, Gary J.

    1987-09-01

    Deep CTD/transmissometer tows and water bottle sampling were used during 1985 to map the regional distribution of the neutrally-buoyant plumes emanating from each of two major vent fields on the Southern Symmetrical Segment (SSS) and Endeavour Segment (ES) of the Juan de Fuca Ridge. At both vent fields, emissions from point and diffuse hydrothermal sources coalesced into a single 200-m-thick plume elongated in the direction of current flow and with characteristic temperature anomalies of 0.02-0.05°C and light-attenuation anomalies of 0.01-0.08 m -1 (10-80 μg/l above background). Temperature anomalies in the core of each plume were uniform as far downcurrent as the plumes were mapped (10-15 km). Downcurrent light-attenuation trends were non-uniform and differed between plumes, apparently because different vent fluid chemistries at each field cause significant differences in the settling characteristics of the hydrothermal precipitates. Vent fluids from the SSS are metal-dominated and mostly precipitate very fine-grained hydrous Fe-oxides that remain suspended in the plume. Vent fluids from the ES are sulfur-dominated and precipitate a high proportion of coarser-grained Fe-sulfides that rapidly settle from the plume. The integrated flux of each vent field was estimated from measurements of the advective transport of each plume. Heat flux was 1700 ± 1100 MW from the ES and 580 ± 351 MW from the SSS. Particle flux varied from 546 ± 312 g/s to 204 ± 116 g/s at the ES depending on distance from the vent field, and was 92 ± 48 g/s from the SSS.

  3. Pb, Sr, and Nd isotopes in seamount basalts from the Juan de Fuca Ridge and Kodiak-Bowie seamount chain, northeast Pacific

    USGS Publications Warehouse

    Hegner, E.; Tatsumoto, M.

    1989-01-01

    Pb, Sr, and Nd isotopic ratios and their parent/daughter element concentrations for 28 basalts from 10 hotspot and nonhotspot seamounts are reported. Nd and Sr isotopic compositions (143Nd/144Nd = 0.51325-0.51304; 87Sr/86Sr = 0.70237-0.70275) plot in the envelope for Juan de Fuca-Gorda ridge basalts with tholeiitic basalts showing more depleted sources and a better negative correlation than transitional to alkalic basalts. Pb isotopic ratios in tholeiitic and alkalic basalts overlap (206Pb/204Pb = 18.29-19.44) and display a trend toward more radiogenic Pb in alkalic basalts. The isotopic data for hotspot and nonhotspot basalts are indistinguishable and correlate broadly with rock composition, implying that they are controlled by partial melting. The isotopic variation in the seamount basalts is about 60% (Nd-Sr) to 100% (Pb) of that in East Pacific Rise basalts and is interpreted as a lower limit for the magnitude of mantle heterogeneity in the northeast Pacific. The data indicate absence of a chemically distinct plume component in the linear seamount chains and strongly suggest an origin from mid-ocean ridge basalt-like east Pacific mantle. -Authors

  4. Post-eruption succession of macrofaunal communities at diffuse flow hydrothermal vents on Axial Volcano, Juan de Fuca Ridge, Northeast Pacific

    NASA Astrophysics Data System (ADS)

    Marcus, Jean; Tunnicliffe, Verena; Butterfield, David A.

    2009-09-01

    Hydrothermal vents harbor dense aggregations of invertebrate fauna supported by chemosynthesis. Severe tectonic events and volcanic eruptions frequently destroy vent communities and initiate primary succession at new vents on ridge-crest submarine lava flows. An eruption on Axial Volcano (˜1500 m depth), a seamount on the Juan de Fuca Ridge (JdFR) in the northeast Pacific Ocean, occurred in January 1998, which created new substratum and vents. This study examines the development of the macrofaunal vent assemblages associated with tubeworms ( Ridgeia piscesae) at eight diffuse flow vents over the following 3 years. Biological collections by suction of lava surfaces also characterized "pre-tubeworm assemblages". Coupled fluid sampling showed an overall decrease in temperature, sulphide, and sulphide-to-heat ratios over 3 years as well as large spatial variability across the new vents. We examined collections of pre-eruption diffuse flow vent assemblages at Axial Volcano to compare the stages of new community development to "mature" vents. Mature vent assemblages are characterized by two major community types dominated by limpets ( Lepetodrilus fucensis) and alvinellid polychaetes ( Paralvinella pandorae and/or P. palmiformis). The following post-eruption succession patterns emerged. First, R. piscesae tubeworms took up to 3 years to establish aggregations at the new vents, and the majority of pre-tubeworm assemblages were dominated by grazing polychaetes. Second, species colonized quickly and by 30 months after habitat creation >60% of Axial's species pool had arrived at the new vents; abundance at mature vents predicted colonization success with some notable exceptions. Third, shifts in species dominance occurred rapidly and by Year 3 new vent assemblages resembled mature, pre-eruption communities. In general, tubeworm assemblages were dominated by alvinellid polychaetes ( P. pandorae and P. palmiformis) in the first 2 years post-eruption, with limpets ( L

  5. Hydrothermal Vents of Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Stark, Joyce

    As a member of REVEL (Research and Education: Volcanoes, Exploration and Life), I had an opportunity to participant in a scientific research cruise focused on the active volcanoes along the Juan de Fuca Ridge, the submarine spreading center off the Washington- Oregon-Canada coast. REVEL was sponsored by the National Science Foundation, University of Washington, Pennsylvania State University and the American Museum of Natural History. We studied the geological, chemical and biological processes associated with active hydrothermal systems and my research focused on the biological communities of the sulfide structures. We worked on board the Woods Hole Oceanographic Institution Vessel, R/V Atlantis and the submersible ALVIN was used to sample the "Black Smokers". As a member of the scientific party, I participated in collection and sorting of biological specimens from the vent communities, attended lectures by scientists, contributed to the cruise log website, maintained a journal and developed my own research project. It was my responsibility to bring this cutting-edge research back to the classroom.

  6. Microbial Life in Ridge Flank Crustal Fluids at Baby Bare Seamount, Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Huber, J. A.; Johnson, H. P.; Butterfield, D. A.; Baross, J. A.

    2005-12-01

    To determine the microbial community diversity within old oceanic crust, a novel sampling strategy was used to collect crustal fluids at Baby Bare Seamount, a 3.5 Ma old outcrop located in the northeast Pacific Ocean on the eastern flank of the Juan de Fuca Ridge. Stainless steel probes were driven directly into the igneous ocean crust to obtain samples of ridge flank crustal fluids. Genetic signatures and enrichment cultures of microorganisms demonstrate that these crustal fluids host a microbial community composed of species indigenous to the subseafloor, including anaerobic thermophiles, and species from other deep-sea habitats, such as seawater and sediments. Evidence using molecular techniques indicates the presence of a relatively small but active microbial population, dominated by bacteria. The microbial community diversity found in the crustal fluids may indicate habitat variability in old oceanic crust, with inputs of nutrients from seawater, sediment pore-water fluids and possibly hydrothermal sources. This report further supports the presence of an indigenous microbial community in ridge flank crustal fluids and advances our understanding of the potential physiological and phylogenetic diversity of this community.

  7. Water column hydrothermal plumes on the Juan de Fuca Ridge

    SciTech Connect

    Lupton, J.E. )

    1990-08-10

    Hydrographic surveys on the Juan de Fuca Ridge (JdFR) carried out from 1980 to 1987 show a complex pattern of {sup 3}He and Mn-rich water column plumes produced by venting from several submarine hot spring areas. In the vicinity of Axial Volcano at latitude 46{degree}N, distinct plumes were detected in 1980, 1982, and 1983 with {sup 3}He signatures up to {delta}({sup 3}He) = 64% at {approximately} 1,500 m depth at distances of {approximately} 10 km from the seamount summit. However, the same plumes had no detectable thermal signature, a paradox which is attributed to the high {sup 3}He/heat ratios and low salinities of the fluids venting within the caldera of Axial Volcano. Profiles directly over the seamount show hydrothermal {sup 3}He in the water column up to 300 m above the caldera floor, with the {sup 3}He signal increasing with depth to very high and uniform ratios of {delta}({sup 3}He) = 108-150% below the {approximately} 1,500-m caldera sill depth. Another apparent locus of hydrothermal input is Helium Basin, a depression on the northeast flank of Axial Volcano which had {delta}({sup 3}He) = 51% when first sampled in 1980. However, subsequent hydrocasts into Helium Basin in 1982 and 1983 yielded lower helium enrichments, suggesting either a decrease in hydrothermal input or flushing of the basin via a mixing event. To the south of Axial Volcano, high {delta}({sup 3}He) values of {approximately} 40% observed over the ridge axis at 45{degree}18{prime}N and 45{degree}39{prime}N indicate venting on this previously unexplored section of the ridge. The water column plumes over the US Geological Survey vent site at {approximately} 44{degree}40{prime}N on the southern JdFR have very high Mn/{sup 3}He ratios of 4,600 mol/cm{sup 3}, an apparently unique characteristic which can be used to distinguish these plumes from those originating at other JdFR vent fields.

  8. Sr isotopic variations along the Juan de Fuca Ridge.

    USGS Publications Warehouse

    Eaby, J.; Clague, D.A.; Delaney, J.R.

    1984-01-01

    The Sr isotopic ratios of 39 glass and microcrystalline basalt samples along the Juan de Fuca Ridge and one glass sample from Brown Bear Seamount are at the lower end of the range for normal MORB; the average 87Sr/86Sr ratio is 0.70249 + or - 0.00014 (2sigma ). Although subtle variations exist along the strike of the ridge, the Sr isotopic data do not show systematic variation relative to the proposed Cobb hotspot. The isotopic data are inconsistent with an enriched mantle-plume origin for the Cobb-Eikelberg Seamount chain.-W.H.B.

  9. Divergent Ridge Features on the Juan de Fuca and Gorda Ridges

    NASA Astrophysics Data System (ADS)

    Eaton, M. E.; Sautter, L.; Steele, M.

    2014-12-01

    Multibeam data collected using a Kongsberg EM122 sonar system on the NOAA ship R/V Marcus G. Langseth led by chief scientist Douglas Toomey (University of Oregon) in 2009 and with a Simrad EM302 sonar system on two NOAA ship Okeanos Explorer cruises led by chief scientists James Gardner (University of New Hampshire) and Catalina Martinez (University of Rhode Island) in 2009 show the morphology of the Juan de Fuca and Gorda Ridges, as well as the Blanco and Mendocino Fracture Zones. These ridges and fracture zones comprise the divergent plate boundary of the eastern edge of the Pacific Plate and the western edges of the Juan de Fuca and Gorda Plates. Both plates are being subducted beneath the western edge of the North American Plate. CARIS HIPS 8.1 software was used to process the multibeam data and create bathymetric images. The ridge axes, located off the coast of Washington and Oregon (USA) adjacent to the Cascadia Basin, indicate obvious signs of spreading, due to the series of faults and rocky ridges aligned parallel to the plate boundaries. Fault and ridge orientations are used to compare the direction of seafloor spreading, and indicate that both the Juan de Fuca Plate and Gorda Plate are spreading in a southeastern direction. Younger ridges from the Gorda Ridge system mapped in the study run parallel to the boundary, however older ridges do not show the same orientation, indicating a change in spreading direction. The presence of hydrothermal vents along the Juan de Fuca Ridge is also evidence of the active boundary, as the vent chimneys are composed of minerals and metals precipitated from the hot water heated by magma from beneath the spreading seafloor. In this study, the data are used to compare and contrast earthquake seismicity and ridge morphologies at a depth range of approximately 762 to 2134 meters. The diverging Pacific, Juan de Fuca, and Gorda Plates along with the San Andreas Fault have potential to increase seismic and volcanic activity around

  10. Acoustic detection of a seafloor spreading episode on the Juan de Fuca Ridge using military hydrophone arrays

    NASA Astrophysics Data System (ADS)

    Fox, Christopher G.; Radford, W. Eddie; Dziak, Robert P.; Lau, Tai-Kwan; Matsumoto, Haruyoshi; Schreiner, Anthony E.

    1995-01-01

    Until recently, no practical method has been available to continuously monitor seismicity of seafloor spreading centers. The availability of the U.S. Navy's SOund SUrveillance System (SOSUS) for environmental research has allowed the continuous monitoring of low-level seismicity of the Juan de Fuca Ridge in the northeast Pacific. On June 22, 1993, NOAA installed a prototype system at U.S Naval Facility Whidbey Island to allow real-time acoustic monitoring of the Juan de Fuca Ridge using SOSUS. On June 26, 2145 GMT, a burst of low-level seismic activity, with accompanying harmonic tremor, was observed and subsequently located near 46 deg 15 min N, 129 deg 53 min W, on the spreading axis of the Juan de Fuca Ridge. Over the following 2 days, the activity migrated to the NNE along the spreading axis with the final locus of activity near 46 deg 31.5 min N, 129 deg 35 min W. The nature of the seismicity was interpreted to represent a lateral dike injection with the possibility of eruption on the seafloor. Based on this interpretation, a response effort was initated by U.S. and Canadian research vessels, and both warm water plumes and fresh lavas were subsequently identified at the site.

  11. Microbial diversity in subseafloor fluids from Explorer Ridge, Northeast Pacific

    NASA Astrophysics Data System (ADS)

    Bolton, S.; Huber, J. A.; Embley, R.; Butterfield, D. A.; Baross, J. A.

    2003-12-01

    The Gorda, Juan de Fuca and Explorer Ridges are first order spreading centers located in the northeast Pacific. While the Gorda and Juan de Fuca Ridges have been extensively sampled for chemical and microbiological analyses, what little is known about the Explorer Ridge is from preliminary observations made in the mid-1980's. A cruise in 2002 revisited the area and discovered vigorous hydrothermal activity at Magic Mountain, a site located outside the primary rift valley. Explorer Ridge is an important site to compare with other well-described vent sites on the Juan de Fuca Ridge. Our research has focused on describing the phylogenetic and physiological diversity of bacteria and archaea in low temperature hydrothermal fluids in an effort to identify subseafloor indicator organisms and to use the physiological characteristics of these organisms to help constrain subseafloor habitat characteristics. We have previously established that there are microbial taxa that are unique to subseafloor habitats associated with diffuse flow fluids at Axial Seamount and at Endeavour both located on the Juan de Fuca Ridge. These included cultured anaerobic, thermophilic and hyperthermophilic heterotrophs, methanogens and sulfur metabolizers. Moreover, results from molecular phylogeny analyses using the 16S rRNA sequences identified a phylogenetically diverse group of bacteria belonging to the epsilon-proteobacteria. While anaerobic hyperthermophiles were cultured from some diffuse-flow vent sites at Explorer, they were less abundant than at Axial Volcano and Endeavour, and curiously, no methanogens were cultured or detected in 16S rRNA clonal libraries. Like Axial, a diverse group of epsilon-proteobacterial clones were found with many similar to those identified from Axial Seamount and other hydrothermal vent sites, although there appears to be some unique species. The overall bacterial diversity at Explorer appears different than at Axial, possibly linked to temperature or chemical

  12. Hydrothermal circulation within the Endeavour Segment, Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Johnson, H. Paul; Tivey, Maurice A.; Bjorklund, Tor A.; Salmi, Marie S.

    2010-05-01

    Areas of the seafloor at mid-ocean ridges where hydrothermal vents discharge are easily recognized by the dramatic biological, physical, and chemical processes that characterize such sites. Locations where seawater flows into the seafloor to recharge hydrothermal cells within the crustal reservoir are by contrast almost invisible but can be indirectly identified by a systematic grid of conductive heat flow measurements. An array of conductive heat flow stations in the Endeavour axial valley of the Juan de Fuca Ridge has identified recharge zones that appear to represent a nested system of fluid circulation paths. At the scale of an axial rift valley, conductive heat flow data indicate a general cross-valley fluid flow, where seawater enters the shallow subsurface crustal reservoir at the eastern wall of the Endeavour axial valley and undergoes a kilometer of horizontal transit beneath the valley floor, finally exiting as warm hydrothermal fluid discharge on the western valley bounding wall. Recharge zones also have been identified as located within an annular ring of very cold seafloor around the large Main Endeavour Hydrothermal Field, with seawater inflow occurring within faults that surround the fluid discharge sites. These conductive heat flow data are consistent with previous models where high-temperature fluid circulation cells beneath large hydrothermal vent fields may be composed of narrow vertical cylinders. Subsurface fluid circulation on the Endeavour Segment occurs at various crustal depths in three distinct modes: (1) general east to west flow across the entire valley floor, (2) in narrow cylinders that penetrate deeply to high-temperature heat sources, and (3) supplying low-temperature diffuse vents where seawater is entrained into the shallow uppermost crust by the adjacent high-temperature cylindrical systems. The systematic array of conductive heat flow measurements over the axial valley floor averaged ˜150 mW/m2, suggesting that only about 3% of

  13. Hydrothermal sulfide accumulation along the Endeavour Segment, Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Jamieson, J. W.; Clague, D. A.; Hannington, M. D.

    2014-06-01

    Hydrothermal sulfide deposits that form on the seafloor are often located by the detection of hydrothermal plumes in the water column, followed by exploration with deep-towed cameras, side-scan sonar imaging, and finally by visual surveys using remotely-operated vehicle or occupied submersible. Hydrothermal plume detection, however, is ineffective for finding hydrothermally-inactive sulfide deposits, which may represent a significant amount of the total sulfide accumulation on the seafloor, even in hydrothermally active settings. Here, we present results from recent high-resolution, autonomous underwater vehicle-based mapping of the hydrothermally-active Endeavour Segment of the Juan de Fuca Ridge, in the Northeast Pacific Ocean. Analysis of the ridge bathymetry resulted in the location of 581 individual sulfide deposits along 24 km of ridge length. Hydrothermal deposits were distinguished from volcanic and tectonic features based on the characteristics of their surface morphology, such as shape and slope angles. Volume calculations for each deposit results in a total volume of 372,500 m3 of hydrothermal sulfide-sulfate-silica material, for an equivalent mass of ∼1.2 Mt of hydrothermal material on the seafloor within the ridge's axial valley, assuming a density of 3.1 g/cm3. Much of this total volume is from previously undocumented inactive deposits outside the main active vent fields. Based on minimum ages of sulfide deposition, the deposits accumulated at a maximum rate of ∼400 t/yr, with a depositional efficiency (proportion of hydrothermal material that accumulates on the seafloor to the total amount hydrothermally mobilized and transported to the seafloor) of ∼5%. The calculated sulfide tonnage represents a four-fold increase over previous sulfide estimates for the Endeavour Segment that were based largely on accumulations from within the active fields. These results suggest that recent global seafloor sulfide resource estimates, which were based mostly

  14. Earthquake-induced changes in a hydrothermal system on the Juan de Fuca mid-ocean ridge

    PubMed

    Johnson; Hutnak; Dziak; Fox; Urcuyo; Cowen; Nabelek; Fisher

    2000-09-14

    Hydrothermal vents on mid-ocean ridges of the northeast Pacific Ocean are known to respond to seismic disturbances, with observed changes in vent temperature. But these disturbances resulted from submarine volcanic activity; until now, there have been no observations of the response of a vent system to non-magmatic, tectonic events. Here we report measurements of hydrothermal vent temperature from several vents on the Juan de Fuca ridge in June 1999, before, during and after an earthquake swarm of apparent tectonic origin. Vent fluid temperatures began to rise 4-11 days after the first earthquake. Following this initial increase, the vent temperatures oscillated for about a month before settling down to higher values. We also observed a tenfold increase in fluid output from the hydrothermal system over a period of at least 80 days, extending along the entire ridge segment. Such a large, segment-wide thermal response to relatively modest tectonic activity is surprising, and raises questions about the sources of excess heat and fluid, and the possible effect on vent biological communities. PMID:11001052

  15. Mantle flow geometry from ridge to trench beneath the Gorda-Juan de Fuca plate system

    NASA Astrophysics Data System (ADS)

    Martin-Short, Robert; Allen, Richard M.; Bastow, Ian D.; Totten, Eoghan; Richards, Mark A.

    2015-12-01

    Tectonic plates are underlain by a low-viscosity mantle layer, the asthenosphere. Asthenospheric flow may be induced by the overriding plate or by deeper mantle convection. Shear strain due to this flow can be inferred using the directional dependence of seismic wave speeds--seismic anisotropy. However, isolation of asthenospheric signals is challenging; most seismometers are located on continents, whose complex structure influences the seismic waves en route to the surface. The Cascadia Initiative, an offshore seismometer deployment in the US Pacific Northwest, offers the opportunity to analyse seismic data recorded on simpler oceanic lithosphere. Here we use measurements of seismic anisotropy across the Juan de Fuca and Gorda plates to reconstruct patterns of asthenospheric mantle shear flow from the Juan de Fuca mid-ocean ridge to the Cascadia subduction zone trench. We find that the direction of fastest seismic wave motion rotates with increasing distance from the mid-ocean ridge to become aligned with the direction of motion of the Juan de Fuca Plate, implying that this plate influences mantle flow. In contrast, asthenospheric mantle flow beneath the Gorda Plate does not align with Gorda Plate motion and instead aligns with the neighbouring Pacific Plate motion. These results show that asthenospheric flow beneath the small, slow-moving Gorda Plate is controlled largely by advection due to the much larger, faster-moving Pacific Plate.

  16. No spreading across the southern Juan de Fuca ridge axial cleft during 1994-1996

    USGS Publications Warehouse

    Chadwell, C.D.; Hildebrand, J.A.; Spiess, Fred N.; Morton, J.L.; Normark, W.R.; Reiss, C.A.

    1999-01-01

    Direct-path acoustic measurements between seafloor transponders observed no significant extension (-10 ?? 14 mm/yr) from August 1994 to September 1996 at the southern Juan de Fuca Ridge (44??40' N and 130??20' W). The acoustic path for the measurement is a 691-m baseline straddling the axial cleft, which bounds the Pacific and Juan de Fuca plates. Given an expected full-spreading rate of 56 mm/yr, these data suggest that extension across this plate boundary occurs episodically within the narrow (~1 km) region of the axial valley floor, and that active deformation is occurring between the axial cleft and the plate interior. A cleft-parallel 714-m baseline located 300 m to the west of the cleft on the Pacific plate monitored system performance and, as expected, observed no motion (+5??7 mm/yr) between the 1994 and 1996 surveys.Direct-path acoustic measurements between seafloor transponders observed no significant extension (-10 ?? 14 mm/yr) from August 1994 to September 1996 at the southern Juan de Fuca Ridge (44??40 minutes N and 130??20 minutes W). The acoustic path for the measurement is a 691-m baseline straddling the axial cleft, which bounds the Pacific and Juan de Fuca plates. Given an expected full-spreading rate of 56 mm/yr, these data suggest that extension across this plate boundary occurs episodically within the narrow (approx. 1 km) region of the axial valley floor, and that active deformation is occurring between the axial cleft and the plate interior. A cleft-parallel 714-m baseline located 300 m to the west of the cleft on the Pacific plate monitored system performance and, as expected, observed no motion (+5 ?? 7 mm/yr) between the 1994 and 1996 surveys.

  17. Pb, Sr, and Nd isotopes in basalts and sulfides from the Juan de Fuca Ridge

    SciTech Connect

    Hegner, E.; Tatsumoto, M.

    1987-10-10

    Pb, Sr, Nd isotopes of seven basalt glasses collected by the submersible Alvin from the southern Juan de Fuca Ridge (SJFR) are almost identical (/sup 206/Pb//sup 204/Pbapprox.18.45, /sup 207/Pb//sup 204/Pbapprox.15.47, /sup 208/Pb//sup 204/Pbapprox.37.81, /sup 87/Sr//sup 86/Srapprox.0.70249, /sup 143/Nd//sup 144/Ndapprox.0.51315). Whereas all basalts appear cogenetic, four of the samples have uniform abundances of U, Th, Rb, Nd, Sm, Pb, and Sr, indicating that they are also comagmatic. Two basalt glasses dredged previously at the SJFR have similar isotopic compositions but higher concentrations of U, Th, and Pb. The /sup 206/Pb//sup 204/Pb ratios are intermediate between generally less radiogenic ridge basalts from south of the Juan de Fuca Ridge (JFR) and often more radiogenic basalts from the northern JFR and NE Pacific seamounts. Sr and Nd isotopic compositions closely resemble data of other ridge basalts from the northernmost East Pacific Rise and are intermediate between isotopically more diverse seamount basalts produced nearby.

  18. Seismic anisotropy of the shallow crust at the Juan de Fuca Ridge

    USGS Publications Warehouse

    Almendros, J.; Barclay, A.H.; Wilcock, W.S.D.; Purdy, G.M.

    2000-01-01

    Microearthquake data recorded on four ocean bottom seismometers are used to study shear-wave splitting on the Endeavour Segment of the Juan de Fuca Ridge. The covariance matrix decomposition method is used to determine the sensor orientation from explosive shot data and to estimate the anisotropy parameters for 238 earthquake records. At three of the four sites, the results show a remarkably consistent fast direction parallel to the ridge axis. The time delays between the fast and the slow waves range from 40 to 200 ms, with an average of 90 ms. They are not clearly related to earthquake range, focal depth or source-receiver azimuth. The splitting of the shear waves is interpreted as an effect of structural anisotropy due to the presence of ridge-parallel cracks in the shallow crust. If we assume that anisotropy is concentrated in the upper 1-2 km, the splitting times require a high crack density of ~0.1.

  19. Propagation as a mechanism of reorientation of the Juan de Fuca ridge

    NASA Technical Reports Server (NTRS)

    Wilson, D. S.; Hey, R. N.; Nishimura, C.

    1984-01-01

    A revised model is presented of the tectonic evolution of the Juan de Fuca ridge by propagating rifting. The new model has three different relative rotation poles, covering the time intervals 17.0-8.5 Ma, 8.5-5.0 Ma, and 5.0 Ma to the present. The rotation pole shifts at 8.5 and 5.0 Ma imply clockwise shifts in the direction of relative motion of 10 deg to 15 deg. At each of these shifts, the pattern of propagation reorganizes, and the new ridges formed by propagation are at an orientation closer to orthogonal to the new direction of motion than the orientation of the preexisting ridges. The model, containing a total of seven propagation sequences, shows excellent agreement with the isochrons inferred from the magnetic anomaly data, except in areas complicated by the separate Explorer and Gorda plates. The agreement between model and data near the Explorer plate breaks down abruptly at an age of about 5 Ma, indicating that the probable cause of the rotation pole shift at that time was the separation of the Explorer plate from the Juan de Fuca plate.

  20. Biogenic iron oxyhydroxide formation at mid-ocean ridge hydrothermal vents: Juan de Fuca Ridge

    SciTech Connect

    Toner, Brandy M.; Santelli, Cara M.; Marcus, Matthew A.; Wirth, Richard; Chan, Clara S.; McCollom, Thomas; Bach, Wolfgang; Edwards, Katrina J.

    2008-05-22

    Here we examine Fe speciation within Fe-encrusted biofilms formed during 2-month seafloor incubations of sulfide mineral assemblages at the Main Endeavor Segment of the Juan de Fuca Ridge. The biofilms were distributed heterogeneously across the surface of the incubated sulfide and composed primarily of particles with a twisted stalk morphology resembling those produced by some aerobic Fe-oxidizing microorganisms. Our objectives were to determine the form of biofilm-associated Fe, and identify the sulfide minerals associated with microbial growth. We used micro-focused synchrotron-radiation X-ray fluorescence mapping (mu XRF), X-ray absorption spectroscopy (mu EXAFS), and X-ray diffraction (mu XRD) in conjunction with focused ion beam (FIB) sectioning, and highresolution transmission electron microscopy (HRTEM). The chemical and mineralogical composition of an Fe-encrusted biofilm was queried at different spatial scales, and the spatial relationship between primary sulfide and secondary oxyhydroxide minerals was resolved. The Fe-encrusted biofilms formed preferentially at pyrrhotite-rich (Fe1-xS, 0<_ x<_ 0.2) regions of the incubated chimney sulfide. At the nanometer spatial scale, particles within the biofilm exhibiting lattice fringing and diffraction patterns consistent with 2-line ferrihydrite were identified infrequently. At the micron spatial scale, Fe mu EXAFS spectroscopy and mu XRD measurements indicate that the dominant form of biofilm Fe is a short-range ordered Fe oxyhydroxide characterized by pervasive edge-sharing Fe-O6 octahedral linkages. Double corner-sharing Fe-O6 linkages, which are common to Fe oxyhydroxide mineral structures of 2-line ferrihydrite, 6-line ferrihydrite, and goethite, were not detected in the biogenic iron oxyhydroxide (BIO). The suspended development of the BIO mineral structure is consistent with Fe(III) hydrolysis and polymerization in the presence of high concentrations of Fe-complexing ligands. We hypothesize that

  1. Pb, Sr, and Nd isotopes in basalts and sulfides from the Juan de Fuca Ridge

    NASA Technical Reports Server (NTRS)

    Hegner, E.; Tatsumoto, M.

    1987-01-01

    Isotopic Pb, Sr, and Nd data were collected by the Alvin submersible from seven basalt glasses in the southern Juan de Fuca Ridge (JFR), giving similar ratios for Pb-206/Pb-204 of about 18.45, for Pb-207/Pb-204 of about 15.47, for Pb-208/Pb-204 of about 37.81, for Sr-87/Sr-86 of about 0.70249, and for Nd-143/Nd-144 of about 0.51315. Data suggest that the basalts are all cogenetic, and that four of the samples are also comagmatic. It is concluded that isotopic data for the JFR and seamount basalts provide additional support for the mantle blob cluster model (Allegre et al., 1984), suggesting the involvement of multiple components in the genesis of ridge basalts, and including an unusual end-member that has nonradiogenic Sr and variable Pb-206/Pb-204 isotopic compositions.

  2. U, Th, and Pb isotopes in hot springs on the Juan de Fuca Ridge

    NASA Technical Reports Server (NTRS)

    Chen, J. H.

    1987-01-01

    Concentrations and isotopic compositions of U, Th, and Pb in three hydrothermal fluids from the Juan de Fuca Ridge were determined from samples obtained by the Alvin submersible. The samples were enriched in Pb and Th relative to deep-sea water, and were deficient in U. No clear relationship with Mg was found, suggesting nonideal mixing between the hot hydrothermal fluids and the cold ambient seawater. Values for U-234/U-238 have a seawater signature, and show a U-234 enrichment relative to the equilibrium value. The Pb isotopic composition has a uniform midocean ridge basalt signature, and it is suggested that Pb in these fluids may represent the best average value of the local oceanic crust.

  3. Submersible observations along the southern Juan de Fuca Ridge: 1984 Alvin program.

    USGS Publications Warehouse

    Normark, W.R.; Morton, J.L.; Ross, S.L.

    1987-01-01

    In September 1984, the research submersible Alvin provided direct observations of three major hydrothermal vent areas along the southernmost segment of the Juan de Fuca Ridge (JFR). The submersible operations focuses on specific volcanologic, structural, and hydrothermal problems that had been identified during the preceding 4 years of photographic, dredging, acoustic imaging, and geophysical studies along a 12 km long section of the ridge. A continuously maintained (from 1981 to the present) net of seafloor-anchored acoustic transponders allowed the observations from Alvin to be directly tied to all previous USGS data sets and NOAA water column surveys from 1984 to the present. We review the dive program and present a brief synthesis of the geology of the vent sites together with sample and track line compilations.-from Authors

  4. Variability of low temperature hydrothermal alteration in upper ocean crust: Juan de Fuca Ridge and North Pond, Mid-Atlantic Ridge

    NASA Astrophysics Data System (ADS)

    Rutter, J.; Harris, M.; Coggon, R. M.; Alt, J.; Teagle, D. A. H.

    2014-12-01

    Over 2/3 of the global hydrothermal heat flux occurs at low temperatures (< 150°) on the ridge flanks carried by fluid volumes comparable to riverine discharge. Understanding ridge flank hydrothermal exchange is important to quantify global geochemical cycles. Hydrothermal chemical pathways are complex and the effects of water-rock reactions remain poorly constrained. Factors controlling fluid flow include volcanic structure, sediment thickness, and basement topography. This study compares the effects of low temperature alteration in two locations with contrasting hydrogeological regimes. The intermediate spreading Juan de Fuca ridge flank (JdF) in the northeast Pacific sports a thick sediment blanket. Rare basement outcrops are sites of fluid recharge and discharge. The average alteration extent (~10% secondary minerals), oxidation ratio (Fe3+/FeTOT=34%), and alteration character (orange, green, grey halos) of basement is constant with crustal age and depth along a 0.97-3.6 m.yr transect of ODP basement holes. However, vesicle fills record an increasingly complex history of successive alteration with age. In contrast, North Pond, a ~8 m.yr-old sediment-filled basin at 22N on the slow spreading Mid Atlantic Ridge, hosts rapid, relatively cool SE to NW basinal fluid flow. Average alteration extent (~10%) and oxidation ratio (33%) of Hole 395A basalts are similar to JdF. However, 395A cores are dominated by orange alteration halos, lack celadonite, but have abundant zeolite. Vesicle fill combinations are highly variable, but the most common fill progression is from oxidising to less oxidising secondary assemblages. The comparable extent of alteration between these two sites and the absence of an age relationship on the JdF suggests that the alteration extent of the upper crust is uniform and mostly established by 1 Myr. However, the variable alteration character reflects the influence of regional hydrology on hydrothermal alteration.

  5. Seismic and Acoustic Studies from a Seafloor Array on the Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    McDonald, Mark Armstrong

    This dissertation consists of two related but separate studies, one a refraction seismic study of the oceanic crust and the other an acoustic study of whale behavior in the presence of noise, both using seafloor array data. The goal of the first study was to measure the lateral thickness variability in the extrusive volcanic layer on the Juan de Fuca Ridge. The Juan de Fuca Ridge is a medium rate (6 cm per year full rate), active spreading center, separating the Juan de Fuca and Pacific plates. It is a site of volcanic eruptions, associated with creation of new oceanic crust, and hydrothermal vents which are important in the chemical balance of the oceans. To better understand the mechanisms controlling hydrothermal venting and the creation of new crust, a seismic refraction survey was conducted over a 20 km by 30 km area of the ridge. This survey, conducted in August of 1990, used airguns as energy sources and ocean bottom seismometers as recorders. A 3-dimensional traveltime inversion was used to interpret extrusive volcanic layer thickness changes of 300 m, occurring over less than several kilometers laterally. These thickness changes are interpreted as lava accumulations on the low side of listric faults in an episodic spreading system. The traveltime inversion also reveals a large horizontal seismic velocity anisotropy which is confined to the upper 500 m of crust. Compressional velocities are 3.35 km/s in the ridge strike direction and 2.25 km/s across strike. This anisotropy is believed to be caused by oriented fractures within the extrusive layer. The second study involved the tracking and analysis of whale vocalizations which were recorded on the array 10 percent of the time. The goal was to determine if noises such as generated by the airguns, shipping or earthquakes affected the behavior of these fin and blue whales. The vocalization patterns allow analysis of swimming speed, direction, respiration cycle and call interaction. While no clear noise

  6. Preeruptive flow focussing in dikes feeding historical pillow ridges on the Juan de Fuca and Gorda Ridges

    NASA Astrophysics Data System (ADS)

    Yeo, I. A.; Clague, D. A.; Martin, J. F.; Paduan, J. B.; Caress, D. W.

    2013-09-01

    Linear, hummocky pillow mound volcanism dominates at slow and intermediate spreading rate mid-ocean ridges. Volcanic hummocks are thought to be formed by low effusion rates or as a result of flow focussing during effusive fissure style eruptions in which the initial dike intercepts the seafloor and erupts along its entire length. In this study, high-resolution autonomous underwater vehicle (AUV) bathymetry is used to accurately map the extents of four historical fissure eruptions of the Juan de Fuca and Gorda ridges: on the North Gorda, North Cleft, and CoAxial ridge segments. The four mapped eruptions take the form of pillow mounds, which are similar in both lithology and dimension to hummocks on the Mid-Atlantic Ridge. Pillow mounds may be isolated, or coalesce to form composite mounds, aligned as ridges or as clustered groups. In three of the four mapped sites, the eruptions were discontinuous along their lengths, with pillow mounds and composite mounds commonly separated by areas of older seafloor. This style of discontinuous eruption is inconsistent with typical en echelon fissure eruptions and is probably due to a mildly overpressured, fingering dike intersecting the seafloor along parts of its length.

  7. U, Th, and Pb isotopes in hot springs on the Juan de Fuca Ridge

    SciTech Connect

    Chen, J.H.

    1987-10-10

    The concentrations and isotopic compositions of U, Th, and Pb in three hydrothermal fluids from the Juan de Fuca Ridge were determined. The samples consisted of 10.2--57.6% of the pure hydrothermal end-members based on Mg contents. The Pb contents of the samples ranged from 34 to 87 ng/g, U from 1.3 to 3.0 ng/g, and Th from 0.2 to 7.7 pg/g. These samples showed large enrichments of Pb and Th relative to deep-sea water and some depletion of U. They did not show coherent relationships with Mg, however, indicating nonideal mixings between the hot hydrothermal fluids and cold ambient seawater. Particles filtered from these hydrothermal fluids contained significant amounts of Th and Pb which may effectively increase the concentration of these elements in the fluids when acidified. The /sup 234/U//sup 238/U values in all samples show a /sup 234/U enrichment relative to the equilibrium value and have a seawater signature. The Pb isotopic composition of the Juan de Fuca hydrothermal fluids resembles that of 21 /sup 0/N East Pacific Rise and has a uniform mid-ocean ridge basalt signature. The hydrothermal systems at oceanic spreading ridges have circulated through a large volume of basalts. Therefore Pb in these fluids may represent the best average value of the local oceanic crust. From the effects of U deposition from seawater to the crust and Pb extraction from rock to the ocean, the U/Pb ratio in the hydrothermally altered oceanic crust may be increased significantly. copyright American Geophysical Union 1987

  8. Geochemistry of Axial seamount lavas: Magmatic relationship between the Cobb hotspot and the Juan de Fuca Ridge

    SciTech Connect

    Rhodes, J.M.; Morgan, C.; Lilas, R.A. )

    1990-08-10

    Axial seamount, located along the central portion of the Juan de Fuca Ridge axis and at the eastern end of the Cobb-Eickelberg seamount chain, is the current center of the Cobb hotspot. Lava chemistry and bathymetry indicate that Axial seamount is a discrete volcanic unit, with a more productive shallow magmatic plumbing system separate from the adjacent ridge segments. Despite this classic association of spreading center and hotspot volcanic activity, there is no evidence in the lavas for geochemical or isotopic enrichment typical of hotspot or mantle plume activity. The differences in composition between the Axial seamount lavas and the Juan de Fuca Ridge lavas are attributed to melting processes rather than to any fundamental differences in their mantle source compositions. The higher magma production rates, higher Sr, and lower silica saturation in the seamount lavas relative to the ridge lavas are thought to be a consequence of melt initiation at greater depths. The melting column producing the seamount lavas is thought to be initiated in the stability field of spinel peridotite, whereas the ridge lavas are produced from a melting column initiated at shallower levels, possibly within or close to the stability field of plagioclase peridotite. Implicit in this interpretation is the conclusion that the Juan de Fuca Ridge lavas, and by analogy most MORB, are generated at shallow mantle levels, mostly within the stability field of plagioclase peridotite. This interpretation also requires that for the upwelling mantle to intersect the solidus at different depths, the mantle supplying Axial seamount must be hotter than the rest of the Juan de Fuca Ridge. Axial seamount, therefore, reflects a thermal anomaly in the mantle, rather than a geochemically enriched ocean island basalt type mantle plume.

  9. Noble gases in vent water from the Juan de Fuca Ridge

    SciTech Connect

    Kennedy, B.M. )

    1988-07-01

    Hydrothermal vent fluids collected with the DSRV Alvin from the southern limb of the Juan de Fuca Ridge are chemically unique, having chloride concentrations {approximately}2 times ambient seawater. The same fluids contain noble gases in relative abundances like 2{degree}C air-saturated seawater, the expected recharge composition. However, the absolute noble gas abundances are depleted by {approximately}30% relative to seawater. The combination of very high chloride and moderately depleted noble gases appears to require formation of a Cl-rich, gas-free brine by phase separation. This brine is mixed with recharge seawater at temperatures in excess of {approximately}340{degree}C and, therefore, deep in the hydrothermal system.

  10. Near-axis crustal structure and thickness of the Endeavour Segment, Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Soule, Dax; Wilcock, William S. D.; Toomey, Douglas R.; Hooft, Emilie E. E.; Weekly, Robert T.

    2016-06-01

    A model of crustal thickness and lower crustal velocities is obtained for crustal ages of 0.1-1.2 Ma on the Endeavour Segment of the Juan de Fuca Ridge by inverting travel times of crustal paths and non-ridge-crossing wide-angle Moho reflections obtained from a three-dimensional tomographic experiment. The crust is thicker by 0.5-1 km beneath a 200 m high plateau that extends across the segment center. This feature is consistent with the influence of the proposed Heckle melt anomaly on the spreading center. The history of ridge propagation on the Cobb overlapping spreading center may also have influenced the formation of the plateau. The sharp boundaries of the plateau and crustal thickness anomaly suggest that melt transport is predominantly upward in the crust. Lower crustal velocities are lower at the ends of the segment, likely due to increased hydrothermal alteration in regions influenced by overlapping spreading centers, and possibly increased magmatic differentiation.

  11. Submersible observations along the southern Juan de Fuca Ridge: 1984 Alvin Program

    NASA Astrophysics Data System (ADS)

    Normark, William R.; Morton, Janet L.; Ross, Stephanie L.

    1987-10-01

    In September 1984, the research submersible Alvin provided direct observations of three major hydrothermal vent areas along the southernmost segment of the Juan de Fuca Ridge (JFR). The submersible operations focused on specific volcanologie, structural, and hydrothermal problems that had been identified during the preceding 4 years of photographic, dredging, acoustic imaging, and geophysical studies along a 12-km-long section of the ridge. A continuously maintained (from 1981 to the present) net of seafloor-anchored acoustic transponders allowed the observations from Alvin to be directly tied to all previous U.S. Geological Survey data sets and National Oceanic and Atmospheric Administration water column surveys from 1984 to the present. The three vent areas studied are the largest of at least six areas identified by previous deep-towed camera surveys that lie within a deep cleft, which marks the axis of symmetry of the JFR in this region. The cleft appears to be the locus of eruption for this segment of the JFR. The vent areas, at least in part, are localized near what appear to be previous volcanic eruptive centers marked by extensive lava lake collapse features adjacent to the cleft at these sites. Each hydrothermal area has several active discharge sites, and sulfide deposits occur as clusters (15-100 m2) of small chimneys, individual large chimneys, or clusters of large branched chimneys. We review the dive program and present a brief synthesis of the geology of the vent sites together with sample and track line compilations.

  12. Hydrological response to a seafloor spreading episode on the Juan de Fuca ridge.

    PubMed

    Davis, Earl; Becker, Keir; Dziak, Robert; Cassidy, John; Wang, Kelin; Lilley, Marvin

    2004-07-15

    Seafloor hydrothermal systems are known to respond to seismic and magmatic activity along mid-ocean ridges, often resulting in locally positive changes in hydrothermal discharge rate, temperature and microbial activity, and shifts in composition occurring at the time of earthquake swarms and axial crustal dike injections. Corresponding regional effects have also been observed. Here we present observations of a hydrological response to seafloor spreading activity, which resulted in a negative formation-fluid pressure transient during and after an earthquake swarm in the sediment-sealed igneous crust of the Middle Valley rift of the northernmost Juan de Fuca ridge. The observations were made with a borehole seal and hydrologic observatory originally established in 1991 to study the steady-state pressure and temperature conditions in this hydrothermally active area. The magnitude of the co-seismic response is consistent with the elastic strain that would be expected from the associated earthquakes, but the prolonged negative pressure transient after the swarm is surprising and suggests net co-seismic dilatation of the upper, permeable igneous crust. The rift valley was visited four weeks after the onset of the seismic activity, but no signature of increased hydrothermal activity was detected in the water column. It appears that water, not magma, filled the void left by this spreading episode. PMID:15254534

  13. Heat Flux From the Endeavour Segment of the Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Thompson, W. J.; McDuff, R. E.; Stahr, F. R.; Yoerger, D. R.; Jakuba, M.

    2005-12-01

    The very essence of a hydrothermal system is transfer of heat by a convecting fluid, yet the flux of heat remains a poorly known quantity. Past studies of heat flux consisted primarily of point measurements of temperature and fluid flow at individual vent sites and inventories of the neutrally buoyant plume above the field. In 2000 the Flow Mow project used the Autonomous Benthic Explorer (ABE) to determine heat flux from Main Endeavour Field (MEF) on the Juan de Fuca Ridge by intersecting the stems of rising buoyant plumes. ABE carries instruments to measure conductivity, temperature and depth, and a MAVS current meter to determine the vertical velocity of the fluid, after correcting for vehicle motion. Complementary work on horizontal fluxes suggests that the vertical flux measured by ABE includes both the primary high buoyancy focused "smoker" sources and also entrained diffuse flow. In 2004, ABE was again used to determine heat flux not only from MEF, but also from the other four fields in the Endeavour Segment RIDGE 2000 Integrated Study Site. In this four year interval the flux of heat from MEF has declined by approximately a factor of two. The High Rise vent field has the greatest heat flux, followed by MEF, then Mothra, Salty Dawg and Sasquatch (of order 500, 300, 100, 50 MW respectively; heat flux at Sasquatch was below detection).

  14. Sound field near hydrothermal vents on Axial Seamount, Juan de Fuca Ridge. Technical report

    SciTech Connect

    Little, S.A.; Stolzenbach, K.D.; Purdy, G.M.

    1990-08-10

    High-quality acoustic noise measurements were obtained by two hydrophones located 3 m and 40 m from an active hydrothermal vent on Axial Seamount, Juan de Fuca Ridge, in an effort to determine the feasibility of monitoring hydrothermal vent activity through flow noise generation. Most of the measured noise field could be attributed to ambient ocean noise sources of microseisms, distant shipping, and weather, punctuated by local ships and biological sources. Long-period, low-velocity, water/rock interface waves were detected with high amplitudes which rapidly decayed with distance from the seafloor. Detection of vent signals was hampered by unexpected spatial nonstationarity due to the shadowing effects of the calders wall. No continuous vent signals were deemed significant based on a criterion of 90% probability of detection and 5% probability of false alarm. However, a small signal near 40 Hz, with a power level of 0.0001 Pa sq/Hz was noticed on two records taken within 3 m of the Inferno black smoker. The frequency of this signal is consistent with predictions, and the power level suggests the occurrence of jet noise amplification due to convected density inhomogeneities. Keywords: Seamounts; Flow noise; Underwater acoustics; Acoustic measurement; Geothermy/noise; Ocean ridges; Underwater sound signals; Reprints; North Pacific Ocean. (EDC).

  15. Geochemistry of some gases in hydrothermal fluids from the southern Juan de Fuca Ridge

    USGS Publications Warehouse

    Evans, William C.; White, L.D.; Rapp, J.B.

    1988-01-01

    Five samples of hydrothermal fluids from two vent areas on the southern Juan de Fuca Ridge were analyzed for dissolved gases. Concentrations in the end-member hydrothermal fluid of H2 (270-527 ??mol/kg), CH4 (82-118 ??mol/kg), and CO2 (3920-4460 ??mol/kg) are well above values in ambient seawater and are similar to concentrations reported for other ridge crest hydrothermal systems. The carbon isotopic ratios of the CH4(??13C=-17.8 to -20.8) and CO2(??13C=-3.6 to -4.7) suggest that at least some of the CH4 and CO2 in the fluids is basalt-derived. The range of ??13C values for the basalt-derived CO2 is -6.8 to -9.7, calculated by assuming conservation of recharge ??CO2 during hydrothermal circulation. Apparent temperatures of equilibration between the CH4 and the basalt-derived CO2 range from 640??C to 750??C. Small amounts of ethane (C2H6/CH4??? 0.9 ?? 10-3-2.2 ?? 10-3), propane, and butane detected in the samples may also have formed in the basalt. One sample of almost pure (95.5%) hydrothermal fluid contained a significant fraction, up to 63% and 74%, respectively, of the recharge Ar and N2. This suggests that the fluid has not undergone extensive vapor-liquid phase separation. -Authors

  16. Juan de Fuca Plate Ridge-to-Trench Experiment: initial results from active source seismic imaging of the Juan de Fuca plate and Cascadia fore-arc (Invited)

    NASA Astrophysics Data System (ADS)

    Carbotte, S. M.; Canales, J.; Carton, H. D.; Han, S.; Gibson, J. C.; Janiszewski, H. A.; Horning, G.; Nedimovic, M. R.; Abers, G. A.; Trehu, A. M.

    2013-12-01

    Active source seismic data were acquired during the Juan de Fuca Ridge-to-Trench experiment (June-July 2012) to characterize the evolution and structure of the Juan de Fuca plate from formation at the ridge, through evolution in the plate interior, to subduction at the Cascadia trench. The survey provides plate-scale images of the sediments, crust, and shallowest mantle along two ridge-perpendicular transects, one extending from Axial seamount to the Oregon margin near Hydrate Ridge and the other from near Endeavour segment to Grays Harbor offshore Washington. In addition, a 450 km long trench-parallel line ~10 km seaward of the Cascadia deformation front was acquired to characterize variations in plate structure along the margin. Coincident long-streamer (8 km) multi-channel seismic (MCS) and wide-angle ocean bottom seismometer (OBS) data were collected along each transect. Using these data, our current investigations focus on the properties of the thick sediment blanket covering the Juan de Fuca plate and evidence for fluid flow at the deformation front, crustal structure within the plate interior and near the deformation front, and tracking the downgoing plate beneath the margin. Highlights include the discovery of numerous pockmarks on the seafloor providing evidence of active fluid flow up to 60 km west of the deformation front. Along the Oregon transect, a bright decollement horizon is imaged at ~1sec twtt above basement whereas at the Washington margin, protothrusts of the deformation front reach to the top of the oceanic crust. Variations in sediment properties are documented within the margin-parallel transect with changes in the stratigraphic level of decollement. While crustal thickness is quite uniform along the margin (~ 6 km), variations in crustal reflectivity and in shallowest mantle velocities are observed over ~30-50 km length scales that could be related to structural variations in the Cascadia subduction zone. Further landward, the top of the

  17. Lead Isotopic Compositions of the Endeavour Sulfides, Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Labonte, F.; Hannington, M. D.; Cousens, B. L.; Blenkinsop, J.; Gill, J. B.; Kelley, D. S.; Lilley, M. D.; Delaney, J. R.

    2006-12-01

    32 sulfide samples from the main structures of the Endeavour vent field, Juan de Fuca Ridge, were analyzed for their Pb isotope composition. The samples were collected from 6 main vent fields between 1985 and 2005 and encompass a strike length of more than 15 km along the ridge crest. The sulfides are typical of black smoker deposits on sediment-starved mid-ocean ridges. Pb isotope compositions of the massive sulfides within the six hydrothermal fields vary within narrow ranges, with 206Pb/204Pb = 18.58 18.75, 207Pb/204Pb = 15.45 15.53 and 208Pb/204Pb = 37.84 38.10. A geographic trend is observed, with the lower Pb ratios restricted mostly to the northern part of the segment (Salty Dawg, Sasquatch and High Rise fields), and the higher Pb ratios restricted mostly to the southern part of the segment (Main Endeavour, Clam Bed and Mothra fields). Variations within individual fields are much smaller than those between fields, and variation within individual sulfide structures is within the uncertainty of the measurements. Therefore, it is unlikely that the ranges of Pb isotope compositions along the length of the segment reflect remobilization, replacement, and recrystallization of sulfides, as suggested for the observed Pb isotope variability in some large seafloor sulfide deposits. Instead, the differences in isotopic compositions from north to south are interpreted to reflect differences in the source rocks exposed to hydrothermal circulation of fluids below the seafloor. Possible sources of the somewhat more radiogenic Pb may be small amounts of buried sediment, either from turbidites or from hemipelagic sediment. This possibility is supported by high concentrations of CH4 and NHC4 found in the high-temperature vent fluids at the Main Endeavour Field, which are interpreted to reflect subseafloor interaction between hydrothermal fluids and organic material in buried sediments. However, the majority of the samples fall below and are approximately parallel to the

  18. Fluid and chemical fluxes along a buried-basement ridge in the eastern Juan de Fuca Ridge flank

    NASA Astrophysics Data System (ADS)

    Hulme, S.; Wheat, C. G.

    2010-12-01

    Hydrothermal fluid circulation within oceanic crust at low temperatures affects global biogeochemical cycles, with the volume of fluid circulation rivaling that of the world’s water flux to the oceans from rivers. Our work focuses on the best studied low temperature hydrothermal system on the eastern flank of the Juan de Fuca Ridge where a buried basement ridge 100 km from the active spreading axis has been sampled with a variety of mediums. We use data from deep sea drilling, gravity coring, and submersible operations from five sites along-strike of the buried ridge to better constrain the chemical and fluid fluxes along this transect. A transport (advection-diffusion) model is applied to the data, constraining the volumetric fluid flux per unit length within the oceanic crust from 0.05 and 0.2 m3 y-1 cm-1 and identifying conservative elements within this system. Using an average fluid flux, reactive fluxes are determined for non-conservative elements within basaltic crust for twenty-four chemical species. Conservative species include K, Cl, SO4, Ba, Sr, Cs, Mo, and Y. Only Ca and the rare earth elements Ce and Gd are produced by basaltic basement. The remaining chemical species Mg, Na, ammonium, Li, Rb, Mn, Fe, Co, Zn, Cd, U, La and Yb are all consumed within upper basaltic basement. Fluxes of potentially-bioavailable redox species ammonium, Fe, and Mn into the upper basaltic basement are 3 to 20 nmol y-1cm-2. Possible mechanisms of removal are suggested, placing constraints on microbial metabolic activity and biomineralization.

  19. Seismic Structure of the Shallow Mantle Beneath the Endeavor Segment of the Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    VanderBeek, B. P.; Toomey, D. R.; Hooft, E. E.; Wilcock, W. S.; Weekly, R. T.; Soule, D. C.

    2013-12-01

    We present tomographic images of the seismic structure of the shallow mantle beneath the intermediate-spreading Endeavor segment of the Juan de Fuca ridge. Our results provide insight into the relationship between magma supply from the mantle and overlying ridge crest processes. We use seismic energy refracted below the Moho (Pn), as recorded by the Endeavor tomography (ETOMO) experiment, to image the anisotropic and isotropic P wave velocity structure. The ETOMO experiment was an active source seismic study conducted in August 2009 as part of the RIDGE2000 science program. The experimental area extends 100 km along- and 60 km across-axis and encompasses active hydrothermal vent fields near the segment center, the eastern end of the Heck seamount chain, and two overlapping spreading centers (OSCs) at either end of the segment. Previous tomographic analyses of seismic arrivals refracted through the crust (Pg), and reflected off the Moho (PmP), constrain a three-dimensional starting model of crustal velocity and thickness. These Pg and PmP arrivals are incorporated in our inversion of Pn travel-time data to further constrain the isotropic and anisotropic mantle velocity structure. Preliminary results reveal three distinct mantle low-velocity zones, inferred as regions of mantle melt delivery to the base of the crust, that are located: (i) off-axis near the segment center, (ii) beneath the Endeavor-West Valley OSC, and (iii) beneath the Cobb OSC near Split Seamount. The mantle anomalies are located at intervals of ~30 to 40 km along-axis and the low velocity anomalies beneath the OSCs are comparable in magnitude to the one located near the segment center. The direction of shallow mantle flow is inferred from azimuthal variations in Pn travel-time residuals relative to a homogeneous isotropic mantle. Continuing analysis will focus on constraining spatial variations in the orientation of azimuthal anisotropy. On the basis of our results, we will discuss the transport of

  20. Numerical modeling of phase separation at Main Endeavour Field, Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Singh, Shreya; Lowell, Robert P.; Lewis, Kayla C.

    2013-10-01

    Before being disrupted by a magmatic event in 1999, the vent temperatures and salinities along the axis of the Main Endeavour Field on the Juan de Fuca Ridge exhibited a quasi-steady spatial gradient in which the southern vent fluids were hotter and less saline than the northern vent fluids. We present 2-D numerical models of two phase flow in a NaCl-H2O system to understand these gradients. We consider homogenous permeability models with a range of bottom boundary temperature distributions and heterogeneous permeability models by imposing layer 2A extrusives with a constant bottom boundary temperature distribution. The aim is to understand the impact of both bottom boundary temperature and layer 2A permeability on hydrothermal fluids and to determine what combination of these controlling factors could cause the observed trend. We find that variations in bottom boundary temperature alone cannot explain the span of surface temperatures and salinities measured at the Main Endeavour Field. Heterogeneous permeability within layer 2A that has higher overall permeability in the northern part of the vent field than the southern part can reproduce the observed north to south temperature gradient, but such a permeability distribution cannot reproduce the observed salinity gradient. We conclude that both deep-seated heterogeneous permeability, perhaps localized by a fault zone, and a heterogeneous layer 2A are required to produce the trend of temperatures and salinities in vent fluids at the Main Endeavour Field prior to the 1999 event.

  1. A hydrographic transient above the Salty Dawg hydrothermal field, Endeavour segment, Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Kellogg, J. P.; McDuff, R. E.

    2010-12-01

    During systematic repeat hydrography cruises to the Endeavour segment of the Juan de Fuca Ridge in the summers of 2004, 2005, and 2006, we encountered a transient increase in the water column heat content above the Salty Dawg hydrothermal field. First observed in July 2005 and mapped in greater detail in August 2005, this feature was not a typical event or megaplume since potential temperature anomalies were continuously elevated from the plume top to the seafloor. During the summer of 2005, the heat content in the waters above Salty Dawg was elevated ˜30 TJ, and the plume top was over 150 m higher in the water column than the other years measured. Based on scaling analyses, an order of magnitude increase in the volume flux from Salty Dawg would be required to generate a neutrally buoyant plume of this size. This observation was unexpected because no substantial earthquakes were detected in the time frame of this increased heat flux. The duration of the transient suggests possible forcing mechanisms: advancement of a cracking front, a small-scale dike intrusion, aseismic crustal movement, fracture of a flow constriction to a previously unaccessible reservoir, an increase of heat in an underlying magma chamber, or movement of melt within the axial magma chamber. The transient disappeared before returning in August 2006, likely due to thermal expansion of shallow host rock, decreasing the permeability. Should such increases in seafloor heat flux prove to be common, the rate of hydrothermal cooling could be faster than previously thought.

  2. Chemistry of hydrothermal solutions from the southern Juan de Fuca Ridge

    SciTech Connect

    Von Damm, K.L.; Bischoff, J.L.

    1987-10-10

    Fluids from three vent fields on the southern Juan de Fuca Ridge were sampled in September 1984 using the DSRV Alvin. The fluids are uniquely high in both chloride, which ranges up to twice the seawater value, and in metal content. Simple vapor-liquid phase separation could not have produced both the high chlorinity and gas concentrations observed in these fluids. The cause of the elevated chlorinity can not be uniquely identified but may be the result of either or a combination of two processes: (1) subsurface formation of a degassed brine and subsequent mixing of a small amount of this brine with a hydrothermal seawater which has not undergone a phase separation and (2) dissolution of a chloride-rich phase combined with a possible small loss of gas during sampling procedures. Although measured temperatures were all less than 300 /sup 0/C, quartz geothermometry suggests that the fluids have equilibrated at greater than 340 /sup 0/C. Quartz geobarometry is also in agreement with geophysical estimates of depth to the local magma chamber. copyright American Geophysical Union 1987

  3. Metals and isotopes in Juan de Fuca Ridge hydrothermal fluids and their associated solid materials

    SciTech Connect

    Hinkley, T.K.; Tatsumoto, M.

    1987-10-10

    The /sup 87/Sr//sup 86/Sr ratio of the hydrothermal solution (HTS) (0.7034) is larger than that of basalt (0.7025) at the southern vent field of the Juan de Fuca Ridge (SJFR). Both the Sr isotopic ratio for HTS and the water/rock interaction ratio lie between those at two sites farther south on the East Pacific Rise, 13 /sup 0/N and 21 /sup 0/N. These parameters may be closely related to subsurface temperatures and rates of magma ascent and to extent of faulting and surface areas of the frameworks of the hydrothermal systems. For these three Pacific Ocean sites there is no steady geographical progression of these measured parameters, nor of reported spreading rate, with increasing latitude northward. Pb and Nd isotopic measurements are uniform for all samples from the SJFR, ranging only from 18.43 to 18.58 for /sup 206/Pb//sup 204/Pb (fluids and associated solids) and centering near 0.5131 for /sup 143/Nd//sup 144/Nd (only fluids measured). Values for basalts and sulfides from the site have similar values. Relatively high /sup 206/Pb//sup 204/Pb values at the SJFR suggest the potential for the existence of an anomalous radiogenic heat source in the underlying mantle material.

  4. Surficial permeability of the axial valley seafloor: Endeavour Segment, Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Hearn, Casey K.; Homola, Kira L.; Johnson, H. Paul

    2013-09-01

    Hydrothermal systems at mid-ocean spreading centers play a fundamental role in Earth's geothermal budget. One underexamined facet of marine hydrothermal systems is the role that permeability of the uppermost seafloor veneer plays in the distribution of hydrothermal fluid. As both the initial and final vertical gateway for subsurface fluid circulation, uppermost seafloor permeability may influence the local spatial distribution of hydrothermal flow. A method of deriving a photomosaic from seafloor video was developed and utilized to estimate relative surface permeability in an active hydrothermal area on the Endeavour Segment of the Juan de Fuca Ridge. The mosaic resolves seafloor geology of the axial valley seafloor at submeter resolution over an area greater than 1 km2. Results indicate that the valley walls and basal talus slope are topographically rugged and unsedimented, providing minimal resistance to fluid transmission. Elsewhere, the axial valley floor is capped by an unbroken blanket of low-permeability sediment, resisting fluid exchange with the subsurface reservoir. Active fluid emission sites were restricted to the high-permeability zone at the base of the western wall. A series of inactive fossil hydrothermal structures form a linear trend along the western bounding wall, oriented orthogonal to the spreading axis. High-temperature vent locations appear to have migrated over 100 m along-ridge-strike over the decade between surveys. While initially an expression of subsurface faulting, this spatial pattern suggests that increases in seafloor permeability from sedimentation may be at least a secondary contributing factor in regulating fluid flow across the seafloor interface.

  5. Geology of a vigorous hydrothermal system on the Endeavour segment, Juan de Fuca Ridge

    SciTech Connect

    Delaney, J.R.; Robigou, V.; McDuff, R.E. ); Tivey, M.K. )

    1992-12-10

    A high-precision, high-resolution geologic map explicitly documents relationships between tectonic features and large steep-sided, sulfide-sulfate-silica deposits in the vigorously venting Endeavour hydrothermal field near the northern end of the Juan de Fuca Ridge. Location of the most massive sulfide structures appears to be controlled by intersections of ridge-parallel normal faults and other fracture-fissure sets that trend oblique to, and perpendicular to the overall structural fabric of the axial valley. As presently mapped, the field is about 200 by 400 m on a side and contains at least 15 large (> 1,000 m[sup 3]) sulfide edifices and many tens of smaller, commonly inactive, sulfide structures. The larger sulfide structures are also the most vigorously venting features in the field; they are commonly more than 30 m in diameter and up to 20 m in height. Maximum venting temperatures of 375[degrees]C are associated with the smaller structures in the northern portion of the field are consistently 20[degrees]-30[degrees]C lower. Hydrothermal output from individual active sulfide features varies from no flow in the lower third of the edifice to vigorous output from fracture-controlled black smoker activity near the top of the structures. Two types of diffuse venting in the Endeavour field include a lower temperature 8[degrees]-15[degrees]C output through colonies of large tubeworms and 25[degrees]-50[degrees]C vent fluid that seems to percolate through the tops of overhanging flanges. The large size and steep-walled nature of these structures evidently results from sustained venting in a mature hydrothermal system, coupled with dual mineral depositional mechanisms involving vertical growth by accumulation of chimney sulfide debris and lateral growth by means of flange development.

  6. Pressures of Partial Crystallization of Magmas from the Juan de Fuca Ridge: Implications for Crustal Accretion

    NASA Astrophysics Data System (ADS)

    Scott, J. L.; Barton, M.

    2010-12-01

    Plate spreading at the mid-ocean ridges is accompanied by intrusion of dikes and eruption of lava along the ridge axis. It has been suggested that the depth of magma chambers that feed the flows and dikes is related to the rate of spreading. As part of a larger effort to examine this hypothesis, we determined the depths of magma chambers beneath the intermediate spreading Juan de Fuca Ridge (JdF) which extends from the Blanco fracture zone at about 44.5 degrees North to the Triple junction of the JdF, Nootka Fault, and the Socanco fracture zone at 48.7 degrees North. Pressures of partial crystallization were determined by comparing the compositions of natural liquids (glasses) with those of experimental liquids in equilibrium with olivine, plagioclase, and clinopyroxene at different pressures and temperatures using the method described by Kelley and Barton (2008). Chemical analyses mid-ocean ridge basalts glasses sampled from along the JdF were used as liquid compositions. Samples with anomalous chemical compositions and samples that yielded pressures associated with unrealistically large uncertainties were filtered out of the database. The calculated pressures for the remaining 533 samples were used to calculate the depths of partial crystallization and to identify the likely location of magma chambers. Preliminary results indicate that the pressure of partial crystallization decreases from 2 to 1±0.5 kbars from the Blanco fracture zone to the north along the Cleft segment of the ridge. Calculated pressures remain approximately constant at 0.87±0.53 kbars along ridge segments to the north of the Cleft. These low pressures for the remaining segments of the ridge are interpreted to indicate magma chambers at depths of 1.3-4.9 km and agree reasonably well with the depths of seismically imaged tops of axial magma chambers (2-3 km) (Canales et al 2009). The higher pressures obtained for lavas erupted along the Cleft segment of the JdF agree very well with recent

  7. Microbial diversity within Juan de Fuca ridge basement fluids sampled from oceanic borehole observatories

    NASA Astrophysics Data System (ADS)

    Jungbluth, S.; Bowers, R.; Lin, H.; Hsieh, C.; Cowen, J. P.; Rappé, M.

    2012-12-01

    Three generations of sampling and instrumentation platforms known as Circulation Obviation Retrofit Kit (CORK) observatories affixed to Ocean Drilling Program (ODP) and Integrated Ocean Drilling Program (IODP) boreholes are providing unrivaled access to fluids originating from 1.2-3.5 million-years (Myr) old basaltic crust of the eastern flank of the Juan de Fuca ridge. Borehole fluid samples obtained via a custom seafloor fluid pumping and sampling system coupled to CORK continuous fluid delivery lines are yielding critical insights into the biogeochemistry and nature of microbial life inhabiting the sediment-covered basement environment. Direct microscopic enumeration revealed microbial cell abundances that are 2-41% of overlying bottom seawater. Snapshots of basement fluid microbial diversity and community structure have been obtained through small subunit ribosomal RNA (SSU rRNA) gene cloning and sequencing from five boreholes that access a range of basement ages and temperatures at the sediment-basement interface. SSU rRNA gene clones were derived from four different CORK installations (1026B, 1301A, 1362A, and 1362B) accessing relatively warmer (65°C) and older (3.5 Myr) ridge flank, and one location (1025C) accessing relatively cooler (39°C) and younger (1.2 Myr) ridge flank, revealing that warmer basement fluids had higher microbial diversity. A sampling time-series collected from borehole 1301A has revealed a microbial community that is temporally variable, with the dominant lineages changing between years. Each of the five boreholes sampled contained a unique microbial assemblage, however, common members are found from both cultivated and uncultivated lineages within the archaeal and bacterial domains, including meso- and thermophilic microbial lineages involved with sulfur cycling (e.g Thiomicrospira, Sulfurimonas, Desulfocapsa, Desulfobulbus). In addition, borehole fluid environmental gene clones were also closely related to uncultivated lineages

  8. Upper Crustal Seismic Velocity Structure of the Endeavour Segment, Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Weekly, R. T.; Wilcock, W. S.; Toomey, D. R.; Hooft, E. E.; Wells, A. E.

    2010-12-01

    We report preliminary results from an active-source seismic tomography experiment that was conducted along the intermediate-spreading Endeavour Segment of the Juan de Fuca Ridge in 2009. The overarching objective of the experiment is to test competing hypotheses for what governs the scale and intensity of magmatic and hydrothermal processes at mid-ocean ridges. Previous models of crustal accretion inferred that ridge-basin topography observed at the Endeavour results from alternating periods of enhanced or reduced magma supply from the mantle. Alternatively, a recent seismic reflection study has imaged a crustal magma chamber underlying the central portion of the Endeavour, which may indicate that variations in seafloor topography instead result from dike-induced faulting that occurs within the upper crust, adjacent to the axial magma chamber. The first model predicts a thicker high-porosity eruptive layer and lower velocities beneath topographic highs, while the second model is compatible with a uniform pattern of volcanic accretion. The experiment used 68 four-component ocean-bottom seismometers (OBSs) at 64 sites to record 5,567 airgun shots from the 6600 in3 airgun array of the R/V Marcus G. Langseth. Three nested shooting grids were collected to image the three-dimensional crustal and upper mantle velocity structure of the segment at multiple spatial scales. We use first-arriving crustal phases (Pg) recorded by the two grids with the densest shot-receiver spacing, the 24 x 8 km2 vent field grid and the 60 x 20 km2 crustal grid, to image the fine-scale (< 1 km) three-dimensional velocity structure of the upper few kilometers of crust at the segment scale. We employ a non-linear tomographic method that utilizes a shortest-path ray-tracing algorithm with columns of nodes sheared vertically to include effects of seafloor topography. To date, we have manually picked 13,000 Pg phases located within 10 km of 17 OBSs. The full analysis will include ~40,000 Pg travel

  9. Temperature and Redox Effect on Mineral Colonization in Juan de Fuca Ridge Flank Subsurface Crustal Fluids

    PubMed Central

    Baquiran, Jean-Paul M.; Ramírez, Gustavo A.; Haddad, Amanda G.; Toner, Brandy M.; Hulme, Samuel; Wheat, Charles G.; Edwards, Katrina J.; Orcutt, Beth N.

    2016-01-01

    To examine microbe-mineral interactions in subsurface oceanic crust, we evaluated microbial colonization on crustal minerals that were incubated in borehole fluids for 1 year at the seafloor wellhead of a crustal borehole observatory (IODP Hole U1301A, Juan de Fuca Ridge flank) as compared to an experiment that was not exposed to subsurface crustal fluids (at nearby IODP Hole U1301B). In comparison to previous studies at these same sites, this approach allowed assessment of the effects of temperature, fluid chemistry, and/or mineralogy on colonization patterns of different mineral substrates, and an opportunity to verify the approach of deploying colonization experiments at an observatory wellhead at the seafloor instead of within the borehole. The Hole U1301B deployment did not have biofilm growth, based on microscopy and DNA extraction, thereby confirming the integrity of the colonization design against bottom seawater intrusion. In contrast, the Hole U1301A deployment supported biofilms dominated by Epsilonproteobacteria (43.5% of 370 16S rRNA gene clone sequences) and Gammaproteobacteria (29.3%). Sequence analysis revealed overlap in microbial communities between different minerals incubated at the Hole U1301A wellhead, indicating that mineralogy did not separate biofilm structure within the 1-year colonization experiment. Differences in the Hole U1301A wellhead biofilm community composition relative to previous studies from within the borehole using similar mineral substrates suggest that temperature and the diffusion of dissolved oxygen through plastic components influenced the mineral colonization experiments positioned at the wellhead. This highlights the capacity of low abundance crustal fluid taxa to rapidly establish communities on diverse mineral substrates under changing environmental conditions such as from temperature and oxygen. PMID:27064928

  10. Sulfide geochronology along the Endeavour Segment of the Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Jamieson, John W.; Hannington, Mark D.; Clague, David A.; Kelley, Deborah S.; Delaney, John R.; Holden, James F.; Tivey, Margaret K.; Kimpe, Linda E.

    2013-07-01

    Forty-nine hydrothermal sulfide-sulfate rock samples from the Endeavour Segment of the Juan de Fuca Ridge, northeastern Pacific Ocean, were dated by measuring the decay of 226Ra (half-life of 1600 years) in hydrothermal barite to provide a history of hydrothermal venting at the site over the past 6000 years. This dating method is effective for samples ranging in age from ˜200 to 20,000 years old and effectively bridges an age gap between shorter- and longer-lived U-series dating techniques for hydrothermal deposits. Results show that hydrothermal venting at the active High Rise, Sasquatch, and Main Endeavour fields began at least 850, 1450, and 2300 years ago, respectively. Barite ages of other inactive deposits on the axial valley floor are between ˜1200 and ˜2200 years old, indicating past widespread hydrothermal venting outside of the currently active vent fields. Samples from the half-graben on the eastern slope of the axial valley range in age from ˜1700 to ˜2925 years, and a single sample from outside the axial valley, near the westernmost valley fault scarp is ˜5850 ± 205 years old. The spatial relationship between hydrothermal venting and normal faulting suggests a temporal relationship, with progressive younging of sulfide deposits from the edges of the axial valley toward the center of the rift. These relationships are consistent with the inward migration of normal faulting toward the center of the valley over time and a minimum age of onset of hydrothermal activity in this region of 5850 years.

  11. Temperature and Redox Effect on Mineral Colonization in Juan de Fuca Ridge Flank Subsurface Crustal Fluids.

    PubMed

    Baquiran, Jean-Paul M; Ramírez, Gustavo A; Haddad, Amanda G; Toner, Brandy M; Hulme, Samuel; Wheat, Charles G; Edwards, Katrina J; Orcutt, Beth N

    2016-01-01

    To examine microbe-mineral interactions in subsurface oceanic crust, we evaluated microbial colonization on crustal minerals that were incubated in borehole fluids for 1 year at the seafloor wellhead of a crustal borehole observatory (IODP Hole U1301A, Juan de Fuca Ridge flank) as compared to an experiment that was not exposed to subsurface crustal fluids (at nearby IODP Hole U1301B). In comparison to previous studies at these same sites, this approach allowed assessment of the effects of temperature, fluid chemistry, and/or mineralogy on colonization patterns of different mineral substrates, and an opportunity to verify the approach of deploying colonization experiments at an observatory wellhead at the seafloor instead of within the borehole. The Hole U1301B deployment did not have biofilm growth, based on microscopy and DNA extraction, thereby confirming the integrity of the colonization design against bottom seawater intrusion. In contrast, the Hole U1301A deployment supported biofilms dominated by Epsilonproteobacteria (43.5% of 370 16S rRNA gene clone sequences) and Gammaproteobacteria (29.3%). Sequence analysis revealed overlap in microbial communities between different minerals incubated at the Hole U1301A wellhead, indicating that mineralogy did not separate biofilm structure within the 1-year colonization experiment. Differences in the Hole U1301A wellhead biofilm community composition relative to previous studies from within the borehole using similar mineral substrates suggest that temperature and the diffusion of dissolved oxygen through plastic components influenced the mineral colonization experiments positioned at the wellhead. This highlights the capacity of low abundance crustal fluid taxa to rapidly establish communities on diverse mineral substrates under changing environmental conditions such as from temperature and oxygen. PMID:27064928

  12. Microbial Primary Productivity in Hydrothermal Vent Chimneys at Middle Valley, Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Olins, H. C.; Rogers, D.; Frank, K. L.; Girguis, P. R.; Vidoudez, C.

    2012-12-01

    Chemosynthetic primary productivity supports hydrothermal vent ecosystems, but the extent of that productivity has not been well measured. To examine the role that environmental temperature plays in controlling carbon fixation rates, and to assess the degree to which microbial community composition, in situ geochemistry, and mineralogy influence carbon fixation, we conducted a series of shipboard incubations across a range of temperatures (4, 25, 50 and 90°C) and at environmentally relevant geochemical conditions using material recovered from three hydrothermal vent chimneys in the Middle Valley hydrothermal vent field (Juan de Fuca Ridge). Net rates of carbon fixation (CFX) were greatest at lower temperatures, and were similar among structures. Rates did not correlate with the mineralogy or the geochemical composition of the high temperature fluids at each chimney. No obvious patterns of association were observed between carbon fixation rates and microbial community composition. Abundance of selected functional genes related to different carbon fixation pathway exhibited striking differences among the three study sites, but did not correlate with rates. Natural carbon isotope ratios implicate the Calvin Benson Bassham Cycle as the dominant mechanism of primary production in these systems, despite the abundance of genes related to other pathways (and presumably some degree of activity). Together these data reveal that primary productivity by endolithic communities does not exhibit much variation among these chimneys, and further reveal that microbial activity cannot easily be related to mineralogical and geochemical assessments that are made at a coarser scale. Indeed, the relationships between carbon fixation rates and community composition/functional gene abundance were also likely obfuscated by differences in scale at which these measurements were made. Regardless, these data reveal the degree to which endolithic, anaerobic carbon fixation contributes to

  13. Hydrothermal fluid composition at Middle Valley, Northern Juan de Fuca Ridge: Temporal and spatial variability

    NASA Astrophysics Data System (ADS)

    Cruse, Anna M.; Seewald, Jeffrey S.; Saccocia, Peter J.; Zierenberg, Robert

    Hydrothermal fluids were collected in July 2000 from the Dead Dog and Ore Drilling Program (ODP) Mound vent fields at Middle Valley, a sediment-covered spreading center on the northern Juan de Fuca Ridge. Measured fluid temperatures varied from 187° to 281°C in focused flow vents and 40°C in ODP Hole 1035F. Cl concentrations indicate that ODP Mound fluids undergo phase separation in the subsurface, whereas Dead Dog fluids do not. The lack of phase separation at Dead Dog is consistent with other geochemical indicators of lower subsurface temperatures. Cooling and equilibration with quartz after phase separation at the ODP Mound results in exit temperatures and silica concentrations that are indistinguishable from those at Dead Dog. The sulfur isotopic composition of aqueous ΣH2S indicates extensive reduction of seawater SO4 and leaching of basaltic sulfur at both areas. A new area of venting, which resulted from drilling operations during ODP Leg 169, was discovered on the eastern side of the ODP Mound. The fluids in the new area have compositions that are similar to those of Hole 1035H and Shiner Bock, except for lower H2 and higher H2S concentrations. These differences reflect the conversion of pyrite to pyrrhotite in the ODP Mound as fluids react with sulfide minerals during upflow. Fluid temperatures and compositions have remained constant between 1990 and 2000 indicating that subsurface reaction zone conditions did not change over this period. Near constant concentrations of sediment-derived mobile trace elements suggest that the residence time of fluids in a high-temperature reservoir exceeds 10 years.

  14. Precipitation and growth of barite within hydrothermal vent deposits from the Endeavour Segment, Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Jamieson, John William; Hannington, Mark D.; Tivey, Margaret K.; Hansteen, Thor; Williamson, Nicole M.-B.; Stewart, Margaret; Fietzke, Jan; Butterfield, David; Frische, Matthias; Allen, Leigh; Cousens, Brian; Langer, Julia

    2016-01-01

    Hydrothermal vent deposits form on the seafloor as a result of cooling and mixing of hot hydrothermal fluids with cold seawater. Amongst the major sulfide and sulfate minerals that are preserved at vent sites, barite (BaSO4) is unique because it requires the direct mixing of Ba-rich hydrothermal fluid with sulfate-rich seawater in order for precipitation to occur. Because of its extremely low solubility, barite crystals preserve geochemical fingerprints associated with conditions of formation. Here, we present data from petrographic and geochemical analyses of hydrothermal barite from the Endeavour Segment of the Juan de Fuca Ridge, northeast Pacific Ocean, in order to determine the physical and chemical conditions under which barite precipitates within seafloor hydrothermal vent systems. Petrographic analyses of 22 barite-rich samples show a range of barite crystal morphologies: dendritic and acicular barite forms near the exterior vent walls, whereas larger bladed and tabular crystals occur within the interior of chimneys. A two component mixing model based on Sr concentrations and 87Sr/86Sr of both seawater and hydrothermal fluid, combined with 87Sr/86Sr data from whole rock and laser-ablation ICP-MS analyses of barite crystals indicate that barite precipitates from mixtures containing as low as 17% and as high as 88% hydrothermal fluid component, relative to seawater. Geochemical modelling of the relationship between aqueous species concentrations and degree of fluid mixing indicates that Ba2+ availability is the dominant control on mineral saturation. Observations combined with model results support that dendritic barite forms from fluids of less than 40% hydrothermal component and with a saturation index greater than ∼0.6, whereas more euhedral crystals form at lower levels of supersaturation associated with greater contributions of hydrothermal fluid. Fluid inclusions within barite indicate formation temperatures of between ∼120 °C and 240 °C during

  15. Uniformity and diversity in the composition of mineralizing fluids from hydrothermal vents on the southern Juan de Fuca Ridge.

    USGS Publications Warehouse

    Philpotts, J.A.; Aruscavage, P. J.; Von Damm, K. L.

    1987-01-01

    Abundances of Li, Na, K, Rb, Ca, Sr, Ba, Mn, Fe, Zn, and Si have been determined in fluid samples from 7 vents located in three areas on the southern Juan de Fuca Ridge. The hydrothermal component estimated from the Mg contents of the samples ranges from 7% to 76%. Concentrations of Fe and Si, among other elements, in acid-stabilized solutions appear to be generally representative of the parental hydrothermal fluids, but some Zn determinations and most Ba values appear to be too low.-from Authors

  16. Monitoring Change on Hydrothermal Edifices by Photogrammetric Time Series: Case Studies from the Endeavour Segment (Juan de Fuca Ridge)

    NASA Astrophysics Data System (ADS)

    Heesemann, M.; Kwasnitschka, T.; Kelley, D. S.; Mihaly, S. F.

    2015-12-01

    High-resolution photogrammetric surveys derived from ROV or AUV imagery yield seafloor geometry at centimeter resolution with full color texture while modeling overhangs and crevasses, generating vastly more detailed terrain models compared to most acoustic methods. The models furthermore serve as geographic reference frames for localized studies. Repetitive surveys consequently facilitate the precise, quantitative study of edifice buildup and erosion as well as the development of the biological habitat. We compare data gathered by the Ocean Networks Canada maintenance cruises with earlier surveys at two sites (Mothra, Main Endeavour Field) along the Endeavour Segment of the Juan de Fuca Ridge.

  17. Massive sulfides in a sedimented rift valley, northern Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Davis, Earl E.; Goodfellow, Wayne D.; Bornhold, Brian D.; Adshead, John; Blaise, Bertrand; Villinger, Heiner; Le Cheminant, Gina M.

    1987-03-01

    A number of mounds each several hundred meters across and up to sixty meters high have been observed with SeaMARC II acoustic imagery and Seabeam bathymetry in the sediment-filled axial valley at the northern end of the Juan de Fuca Ridge. The mounds are located a few kilometers west of the eastern valley-bounding normal fault scarp where the local sediment fill is approximately 300 m thick. All of the mounds are believed to be of hydrothermal origin, and one is associated with anomalously high heat flow in excess of 1 W m -2. A piston core collected from that mound comprises coarse clastic sulfide units interbedded with sulfidic muds. Hydrothermal minerals present in the 2.3 m section include pyrrhotite, pyrite, marcasite, sphalerite, chalcopyrite, iss (intermediate solid solution in the Cu sbnd Fe sbnd Zn sbnd S system), chalcopyrrhotite, galena, talc, barite, and amorphous silica. Mineral fabrics of the clasts indicate that the material was precipitated at or near the sea floor by mixing of hot hydrothermal fluids with cold seawater. Low concentrations of Zn, Cu, Cd, and Ag relative to those found in unsedimented ridge hydrothermal deposits, and the presence of pyrrhotite as an early phase mineral indicates that the vent fluids have been modified by reaction with sediments beneath the mound. Rapid sedimentation in a rift valley is clearly conducive to the formation of large hydrothermal mineral deposits like those believed to be present within and beneath these mounds. The relatively impermeable sediment cover insulates the crust, inhibits groundwater recharge, promotes long-lived discharge at a restricted number of sites, provides a substrate for the efficient subsurface precipitation of minerals, and through continued sedimentation, protects surficial deposits from the corrosive effects of seawater. No reliable estimate of the bulk composition of the mounds can be made with existing data, but their size is comparable to major hydrothermal mineral deposits

  18. High-Resolution Imaging of Axial Volcano, Juan de Fuca ridge.

    NASA Astrophysics Data System (ADS)

    Arnulf, A. F.; Harding, A. J.; Kent, G. M.

    2014-12-01

    To date, seismic experiments have been key in our understanding of the internal structure of volcanic systems. However, most experiments, especially subaerial-based, are often restricted to refraction geometries with limited numbers of sources and receivers, and employ smoothing constraints required by tomographic inversions that produce smoothed and blurry images with spatial resolutions well below the length scale of important features that define these magmatic systems. Taking advantage of the high density of sources and receivers from multichannel seismic (MCS) data should, in principle, allow detailed images of velocity and reflectivity to be recovered. Unfortunately, the depth of mid-ocean ridges has the detrimental effect of concealing critical velocity information behind the seafloor reflection, preventing first arrival travel-time tomographic approaches from imaging the shallowest and most heterogeneous part of the crust. To overcome the limitations of the acquisition geometry, here we are using an innovative multistep approach. We combine a synthetic ocean bottom experiment (SOBE), 3-D traveltime tomography, 2D elastic full waveform and a reverse time migration (RTM) formalism, and present one of the most detailed imagery to date of a massive and complex magmatic system beneath Axial seamount, an active submarine volcano that lies at the intersection of the Juan de Fuca ridge and the Cobb-Eickelberg seamount chain. We present high-resolution images along 12 seismic lines that span the volcano. We refine the extent/volume of the main crustal magma reservoir that lies beneath the central caldera. We investigate the extent, volume and physical state of a secondary magma body present to the southwest and study its connections with the main magma reservoir. Additionally, we present a 3D tomographic model of the entire volcano that reveals a subsiding caldera floor that provides a near perfect trap for the ponding of lava flows, supporting a "trapdoor

  19. Endeavour Segment, Juan de Fuca Ridge, Integrated Studies Site (ISS) Update and Opportunities

    NASA Astrophysics Data System (ADS)

    Butterfield, D.; Ridge Community

    2003-12-01

    The Ridge 2000 (R2K) Integrated Studies bull's eye on the Juan de Fuca Ridge is focused on the Main Endeavour hydrothermal field, located on the central portion of the Endeavour Segment. This vent field is one of the most vigorously venting systems along the global mid-ocean ridge spreading network, hosting at least 18 large sulfide structures that contains more than100 smokers. Prior to a magmatic event in 2000 some of the edifices had been venting 380C, volatile-rich fluids with extremely low chlorinities for a decade. In addition to the Main Endeavour Field there are four other known high temperature vent fields spaced approximately 2 kilometers apart along the segment (with hints of more) and abundant areas of diffuse flow, both nearby and distal to the high temperature venting. Diffuse flow from the structures and from a variety of basaltic-hosted sites provides rich habitats abundant with microbial and macrofaunal communities. There are well-developed gradients in volatile concentrations along axis that may reflect influence from a sedimentary source to the north, and high chlorinity fluids vent from the most southern (Mothra) and northern fields (Sasquatch). Twenty years of research have laid a firm base for the 5-year plans of R2K at this site, which include examining the response of this segment to perturbations induced by tectonic and magmatic events, identification of the reservoirs, fluxes, and feedbacks of mass and energy at this site, and predictive modeling coupled with field observations. Since designation as an IS site, high-resolution bathymetric mapping (EM300) and an extensive multi-channel seismic survey have been conducted along the entire segment. Smaller focused areas have also been mapped at meter resolution by SM2000 sonar. Intense field programs in 2003 established the first in-situ seismic array along a mid-ocean ridge, which includes installation of a buried broadband seismometer and 7 short-period seismometers emplaced within basaltic

  20. Objective classification of oceanic ridge-crest terrains using two-dimensional spectral models of bathymetry: Application to the Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Fox, Christopher G.

    1996-12-01

    An important application of detailed bathymetric mapping is the interpretation of geological processes based on the nature of the fine-scale morphology of the seafloor. This interpretation is usually accomplished through qualitative analysis of contour maps. In this paper, an objective classification technique, based on a two-dimensional spectral model of bathymetry developed by Fox and Hayes (1985) is applied to detailed Sea Beam data from the Juan de Fuca Ridge. Parameters of the model can be directly related to seafloor properties corresponding to 1) isotropic (non-directionally dependent) roughness; 2) anisotropic (directionally dependent) roughness; 3) orientation of the anisotropic component; and 4) spectral rool-off ( ˜ fractal dimension), by fitting the model surface to two-dimensional amplitude spectra of bathymetry determined on a regular grid over the study area. A test area was selected which encompasses the southern volcanic rift zone of Axial Volcano and the northern terminus of the Vance Segment. Parameters of the model clearly define the contrast between the constructional volcanic terrain (rough, isotropic, with high fractal dimension) and the tectonic extensional terrain (smoother, anisotropic, with low fractal dimension). An agglomerative, hierarchical cluster analysis is applied to the data, independent of spatial information, to delineate groups of spectra with similar characteristics. Distinct, mappable regions, corresponding to volcanic and tectonic provinces, are objectively determined. Also, coherent sub-regions of consistent spectral properties occur within the larger volcanic/tectonic divisions. The classification is extended to the Juan de Fuca Ridge system from 44°30' N to 47°20' N through combining these results with an a priori technique (K-means clustering). Broad-scale physiographic regions of the Juan de Fuca Ridge are delineated by the technique, which may aid geologists in the interpretation of crustal accretion processes at

  1. Vent Field Distribution and Evolution Along the Endeavour Segment, Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Kelley, D. S.; Delaney, J. R.; Lilley, M. D.; Butterfield, D. A.

    2001-12-01

    Five major vent fields have now been discovered along the Endeavour Segment of the Juan de Fuca Ridge. From the north to the south they include Sasquatch, Salty Dawg, High Rise, Main Endeavour, and Mothra. Spacing between the distinct, high-temperature fields increases from the north to the south. For example Sasquatch is located 1.6 km north of Salty Dawg and Mothra is 2.7 km south of the Main Endeavour Field. In addition to changes in spacing of the vent fields along axis there are also dramatic changes in the style, intensity, and thermal-chemical characteristics of venting. The newly discovered Sasquatch field extends for >200 m in length, and venting is limited to a few isolated, small structures that reach 284° C. Active venting is confined to the northern portion of the field. In contrast, extinct, massive sulfide edifices and oxidized sulfide talus can be followed continuously for over 200 m along a 25-30 m wide, 020 trending ridge indicating that this field was very active in the past. In contrast to the delicate active structures, older extinct structures reach at least 25 m in height and the aspect ratios are similar to active pillars in the Mothra Field 7.5 km, to the south. It is unclear if venting at this site represents rejuvenation of the field, or whether it is in a waning stage. Within Salty Dawg, vent fluid temperatures reach 296° C and vigorous venting is constrained to a few, multi-flanged edifices that reach 25 m in height and 25 m in length. The field hosts over 25 structures, oxidized sulfide is abundant, and diffuse flow is dominant. Fluid compositions and temperatures are consistent with Salty Dawg being in a waning stage of evolution. Venting intensity and incidence of venting increase dramatically at High Rise where numerous multi-flanged structures are active; temperatures reach 343° C. The most intense and active of the fields is the Main Endeavour, with at least 21 actively venting, multi-flanged edifices that contain at least 100

  2. Estimating Heat Transfer from Grotto Mound, NEPTUNE Canada Cabled Observatory, Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Rona, P. A.; Bemis, K. G.; Xu, G.

    2012-12-01

    Heat flux is a fundamental property of a seafloor hydrothermal system that relates to magnitude of sub-seafloor heat source and biosphere conditions, to distribution and style of seafloor venting and benthic biota, to chemical flux, plume formation, and dispersal of biological matter in the water column. We are working to estimate heat flux from Grotto mound, the site of the NEPTUNE Canada Cabled Observatory in the Main Endeavour Field on the Juan de Fuca Ridge. The mound is formed of two sulfide edifices that lie between ~2190 and 2180 m isobaths: 1) an elliptical edifice with major NE-SW-trending axis ~30 m long and minor axis ~ 14 m wide (area ~ 330 m2); 2) a columnar edifice ~ 10 m in diameter and 10 m high (area ~80 m2) named the North Tower, situated across a narrow (~5 m wide) saddle (area ~40 m2) at the W end of the elliptical edifice. Several black smokers discharge relatively small plumes at the E end of the elliptical edifice. A cluster of vigorous black smokers discharge from the top of North Tower and merge to form a large plume. Patchy diffuse flow occurs in areas around all of the black smokers and in the saddle between the two edifices. We are in process of measuring heat flux from components of hydrothermal discharge on Grotto mound, as follows: 1) for smokers on the North Tower an integrated heat flux of 28-55 MW is calculated based on temperature measurements in the initial 20 m rise of the plume assuming that the highest temperatures measured are closest to those of the plume centerline ; 2) for smokers on the E end of the elliptical edifice based on measurements of flow rate from video and acoustic Doppler phase shift, video of vent diameters, and in situ temperature measurements; 3) for discharge from flanges on some chimneys based on video of flow and in situ temperature measurements; 4) for diffuse flow based on area measured by Acoustic Scintillation Thermography and direct measurements of temperature and flow rate. We are evaluating

  3. Direct Measurements of Hydrothermal Heat Output at Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Germanovich, L. N.; di Iorio, D.; Genc, G.; Hurt, R. S.; Lowell, R. P.; Holden, J. F.; Butterfield, D. A.; Olson, E. J.

    2009-12-01

    Heat output and fluid flow are key parameters for characterizing seafloor hydrothermal systems at oceanic spreading centers. In particular, they are essential for examining partition of heat and geochemical fluxes between discrete and diffuse flow components. Hydrothermal heat output also constrains permeability of young oceanic crust and thickness of the conductive boundary layer separating hydrothermal circulation from the underlying magmatic heat source. Over the past several years, we have deployed a number of relatively simple devices to make direct measurements of focused and diffuse flow. Most recently, we have used cup anemometer and turbine flow meters to measure fluid flow and heat flux at individual high-temperature vents and diffuse flow sites. The turbine flow meter (Figure 1) includes a titanium rotor assembly housed within a stainless steel tube and supported by sapphire bearings. The device can be used at different seafloor settings for measurements of both diffuse and focused flow. The spin of the rotor blades is videotaped to acquire the angular velocity, which is a function of the flow rate determined through calibration. We report data obtained during four cruises to the Main Endeavor and High Rise vent fields, Juan de Fuca Ridge (JdFR), between 2007 and 2009. Overall more than 50 successful measurements of heat flow have been made on a variety of high-, medium-, and low-temperature hydrothermal sites on the Endeavor, Mothra, and High Rise structures. For example, the velocity of diffuse flow at Endeavor ranged from ~1 to ~10 cm/sec. The flow velocity from black smokers varied from ~10 cm/sec to ~1 m/sec, which appears to be similar to EPR 9°N. Typical measurements of heat flux obtained at JdFR ranged from ~1 kW for diffuse flow to ~1 MW for black smokers. Although it is difficult to extrapolate the data and obtain the integrated heat output for a vent field on JdFR, the data are used to characterize the heat fluxes from individual vent

  4. Heat flux from black smokers on the Endeavour and Cleft segments, Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Ginster, Ursula; Mottl, Michael J.; von Herzen, Richard P.

    1994-03-01

    We have estimated the heat flux from black smoker vents on the Juan de Fuca Ridge to evaluate their importance for heat transfer from young oceanic crust. The velocity and temperature of smoker effluent were measured from the manned submersible Alvin within a few centimeters of vent orifices, using a turbine flowmeter with an attached temperature probe. Exit velocity was calculated from a simple plume model, and vent orifices were measured in photographs and video records. The estimated power output from smokers alone is 49 plus or minus 13 MW for the Plume site, Vent 1 and Vent 3 on the southern Cleft segment near 45 deg N; 364 plus or minus 73 MW for the main vent field on the Endeavour Segment near 48 deg N; and 122 plus or minus 61 MW for the Tubeworm field 2 km north. The estimates for the Cleft and Tubeworm fields could be too low because of undiscovered vents. These values constitute only 4% to 14% of the total advective heat flux estimated for these vent fields from measurements in the nonbuoyant plume and of diffuse flow at the seafloor, indicating that most of the heat advected at these hydrothermal vent sites is carried by diffuse rather than focused flow. Values for individual smokers vary from 0.1 to 94 MW, with an average of 6.2 MW at the Endeavour field and 3.1 MW at the Cleft field. Our estimates agree well at all scales with those of Bemis et al. (1993) based on measurements made during the same dives, in some cases simultaneously, up to 50 m high in the buoyant plume. The good agreement between the two techniques implies that little diffuse flow at either high or low temperature is incorporated into the buoyant plumes generated by smokers at these sites. Velocity-temperature measurements at vents excavated by Alvin could not be modeled successfully, suggesting that vent structures may grow in equilibrium with the force of the exiting water such that orifice size is determined by volume flux. At the Endeavour field the heat flux is focused by

  5. Free-living bacterial communities associated with tubeworm (Ridgeia piscesae) aggregations in contrasting diffuse flow hydrothermal vent habitats at the Main Endeavour Field, Juan de Fuca Ridge

    PubMed Central

    Forget, Nathalie L; Kim Juniper, S

    2013-01-01

    We systematically studied free-living bacterial diversity within aggregations of the vestimentiferan tubeworm Ridgeia piscesae sampled from two contrasting flow regimes (High Flow and Low Flow) in the Endeavour Hydrothermal Vents Marine Protected Area (MPA) on the Juan de Fuca Ridge (Northeast Pacific). Eight samples of particulate detritus were recovered from paired tubeworm grabs from four vent sites. Most sequences (454 tag and Sanger methods) were affiliated to the Epsilonproteobacteria, and the sulfur-oxidizing genus Sulfurovum was dominant in all samples. Gammaproteobacteria were also detected, mainly in Low Flow sequence libraries, and were affiliated with known methanotrophs and decomposers. The cooccurrence of sulfur reducers from the Deltaproteobacteria and the Epsilonproteobacteria suggests internal sulfur cycling within these habitats. Other phyla detected included Bacteroidetes, Actinobacteria, Chloroflexi, Firmicutes, Planctomycetes, Verrucomicrobia, and Deinococcus–Thermus. Statistically significant relationships between sequence library composition and habitat type suggest a predictable pattern for High Flow and Low Flow environments. Most sequences significantly more represented in High Flow libraries were related to sulfur and hydrogen oxidizers, while mainly heterotrophic groups were more represented in Low Flow libraries. Differences in temperature, available energy for metabolism, and stability between High Flow and Low Flow habitats potentially explain their distinct bacterial communities. PMID:23401293

  6. Free-living bacterial communities associated with tubeworm (Ridgeia piscesae) aggregations in contrasting diffuse flow hydrothermal vent habitats at the Main Endeavour Field, Juan de Fuca Ridge.

    PubMed

    Forget, Nathalie L; Kim Juniper, S

    2013-04-01

    We systematically studied free-living bacterial diversity within aggregations of the vestimentiferan tubeworm Ridgeia piscesae sampled from two contrasting flow regimes (High Flow and Low Flow) in the Endeavour Hydrothermal Vents Marine Protected Area (MPA) on the Juan de Fuca Ridge (Northeast Pacific). Eight samples of particulate detritus were recovered from paired tubeworm grabs from four vent sites. Most sequences (454 tag and Sanger methods) were affiliated to the Epsilonproteobacteria, and the sulfur-oxidizing genus Sulfurovum was dominant in all samples. Gammaproteobacteria were also detected, mainly in Low Flow sequence libraries, and were affiliated with known methanotrophs and decomposers. The cooccurrence of sulfur reducers from the Deltaproteobacteria and the Epsilonproteobacteria suggests internal sulfur cycling within these habitats. Other phyla detected included Bacteroidetes, Actinobacteria, Chloroflexi, Firmicutes, Planctomycetes, Verrucomicrobia, and Deinococcus-Thermus. Statistically significant relationships between sequence library composition and habitat type suggest a predictable pattern for High Flow and Low Flow environments. Most sequences significantly more represented in High Flow libraries were related to sulfur and hydrogen oxidizers, while mainly heterotrophic groups were more represented in Low Flow libraries. Differences in temperature, available energy for metabolism, and stability between High Flow and Low Flow habitats potentially explain their distinct bacterial communities. PMID:23401293

  7. Stable isotope studies of vent fluids and chimney minerals, southern Juan de Fuca Ridge: Sodium metasomatism and seawater sulfate reduction

    SciTech Connect

    Shanks W.C. III; Seyfried W.E. Jr.

    1987-10-10

    Sulfur isotope values (delta/sup 34/S) or H/sub 2/S in vent fluids from the southern Juan de Fuca Ridge hydrothermal sites range from 4.0 to 7.4% and are variably /sup 34/S-enriched with respect to coexisting inner wall chimney sulfides. Chimney sulfides range from 1.6 to 5.7%. The chimneys consist of Fe-sphalerite zoned to inner zinc sulfide and chalcopyrite ( +- isocubanite)-pyrrhotite lining channels. Sulfide from inner walls of type A chimneys have the lightest delta/sup 34/S values. Type B chimneys (porous, unzoned, low-Fe-sphalerite) have the isotopically heaviest chimney sulfides and occur at vent sites distal to the along-axis shallow point of the ridge crest, hence distal to the magma chamber. These variations are largely ascribed to sulfate reduction by ferrous iron in the hydrothermal fluid in chimneys of substrate mounds, probably due to transitory entrainment of ambient sulfate-bearing seawater. The delta/sup 18/O values of end-member hydrothermal fluids range from 0.6 to 0.8%, significantly lower than the delta/sup 18/O values at 21 /sup 0/N vent fluids. The deltaD values of the fluid samples range from -2.5 to 0.5%. Isotopic differences from the 21 /sup 0/N fluids may be due to slightly higher water/rock ratios, approximately 1.0, in the southern Juan de Fuca Ridge hydrothermal system. Admixture of a small amount of residual brine from an earlier phase separation even may have contributed water with low deltaD values.

  8. Hot spot-ridge crest convergence in the northeast Pacific

    SciTech Connect

    Karsten, J.L.; Delaney, J.R. )

    1989-01-10

    Evolution of the Juan de Fuca Ridge during the past 7 m.y. has been reconstructed taking into account both the propagating rift history and migration of the spreading center in the 'absolute' (fixed hot spot) reference frame. Northwestward migration of the spreading center (at a rate of 30 km/m.y.) has resulted in progressive encroachment of the ridge axis on the Cobb Hot Spot and westward jumping of the central third of the ridge axis more recently than 0.5 Ma. Seamounts in the Cobb-Eickelberg chain are predicted to display systematic variations in morphology and petrology, and a reduction in the age contrast between the edifice and underlying crust, as a result of the ridge axis approach. Relative seamount volumes also indicate that magmatic output of the hot spot varied during this interval, with a reduction in activity between 2.5 and 4.5 Ma, compared with relatively more robust activity before and after this period. Spatial relationships determined in this reconstruction allow hypotheses relating hot spot activity and rift propagation to be evaluated. In most cases, rift propagation has been directed away from the hot spot during the time period considered. Individual propagators show some reduction in propagation rate as separation between the propagating rift tip and hot spot increases, but cross comparison of multiple propagators does not uniformly display the same relationship. No obvious correlation exists between propagation rate and increasing proximity of the hot spot to the ridge axis or increasing hot spot output. Taken together, these observations do not offer compelling support for the concept of hot spot driven rift propagation. However, short-term reversals in propagation direction at the Cobb Offset coincide with activity of the Heckle melting anomaly, suggesting that local propagation effects may be related to excess magma supply at the ridge axis.

  9. Uniformity and diversity in the composition of mineralizing fluids from hydrothermal vents on the southern Juan de Fuca Ridge

    SciTech Connect

    Philpotts, J.A.; Aruscavage, P.J.; Von Damm, K.L.

    1987-10-10

    Abundances of Li, Ni, K, Rb, Ca, Sr, Ba, Mn, Fe, Zn, and Si have been determined in fluid samples from seven vents located in three areas on the southern Juan de Fuca Ridge. The hydrothermal component estimated from the Mg contents of the samples ranges from 7% to 76%. Concentrations of Fe and Si, among the other elements, in acid-stabilized solutions appear to be generally representative of the parental hydrothermal fluids, but some Zn determinations and most Ba values appear to be too low. Thermodynamic calculations indicate that the acidified samples remain supersaturated with respect to silica, barite, and pyrite; unacidified samples are supersaturated, in addition with respect to ZnS, FeS, and many silicate phases. Within the constraints of limited sampling there appear to be differences in fluid compositions both within and between the three vent areas. Some uniform differences in the elemental abundances predicted for hydrothermal end-member fluids might be due to inmixing of fresh seawater at depth in the hydrothermal system. The Juan de Fuca hydrothermal fluids contain more Fe but otherwise have relative elemental abundances fairly similar to those in 13 /sup 0/N (East Pacific Rise) fluids, albeit at higher levels. In contrast, fluids from 21 /sup 0/N (East Pacific Rise) and Galapagos have lower K/Rb and much lower Sr and Na abundances; these compositional features probably result from interaction of these fluids with a different mineral assemblage, possibly more mature greenstone. copyright American Geophysical Union 1987

  10. Understanding Plume Bending at Grotto Vent on the Endeavour Segment, Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Bemis, K. G.; Xu, G.; Rabinowitz, J.; Rona, P. A.; Jackson, D. R.; Jones, C. D.

    2011-12-01

    Our improved understanding of black smoker plume bending derives from acoustic imaging of the plume at Grotto, a 30 m diameter vent cluster in the Main Endeavour Field, Juan de Fuca Ridge. In July 2000, the VIP2000 cruise collected 15 acoustic images over 24 hours. In September 2010, the Cabled Observatory Vent Imaging Sonar (COVIS) was connected to the NEPTUNE Canada Endeavour Observatory and acquired a 29 day time series capturing plume bending in 479 independent images. Inclination and declination are extracted for one or more plumes from the acoustic images using 2D Gaussian fitting. The bending of the large plume above the northwest end of Grotto is consistent with a dominant tidal sloshing and secondary rift valley inflow based a spectral analysis of the COVIS time series compared with a spectral analysis of current data from 2.9 km north of Grotto. The smaller plume above the eastern end of Grotto behaves in a more complicated fashion as it sometimes bends towards the larger plume. The overall shape of the larger plume is highly variable: sometimes the plume just leans in the direction of the presumed ambient current; other times, the plume bends-over and, in a few cases, the plume bends in two or more directions (forming a sinusoidal shape). Several factors influence bending direction, magnitude and shape. First, for a fluctuating plume, the instantaneous plume centerline wiggles around within the time-averaged plume boundaries; this will certainly produce a "sinusoidal" shape and may be the best explanation for the small scale multi-directional bending observed in individual acoustic images. Second, the transition from jet to plume could produce a change in bending magnitude (but not direction); however, this is unlikely to be visible on the acoustic images as the transition from jet to plume is anticipated to occur within the first 1 m of rise. Third, the ratio of rise velocity W to cross-flow velocity U controls the magnitude and direction of bending

  11. A detailed study of the Cobb Offset of the Juan de Fuca Ridge: Evolution of a propagating rift

    NASA Astrophysics Data System (ADS)

    Johnson, H. Paul; Karsten, Jill L.; Delaney, John R.; Davis, Earl E.; Currie, Ralph G.; Chase, Richard L.

    1983-03-01

    The Cobb Offset on the northern portion of the Juan de Fuca Ridge has been identified as the tip of a northward propagating rift [Hey and Wilson, 1982]. Map compilations of magnetic and seismic data from four new cruises define the present locus of spreading and volcanism on the two ridge segments abutting the Offset and permit detailed modeling of the recent evolution within this transform zone. The axis of recent spreading on the southern ridge segment bends from the normal ridge trend (N20°E) to a N-S trend, north of 47°15'N. The spreading axis on the northern ridge segment generally defines a N20°E trend, except at the southern terminus, where the spreading center is offset slightly to the east. The two spreading centers overlap by about 33 km in the Offset vicinity, and there is evidence of recent volcanism on both segments. Present ridge axis morphology exhibits a transitional sequence from a symmetrical, axial high along the more `normal' portions of each ridge segment to a grabenlike depression as the tip is approached. The magnetic anomaly patterns observed in the Cobb Offset vicinity are not consistent with the patterns predicted by models of continuous, northward propagation. The magnetic anomaly patterns of the Brunhes Epoch require an event of rapid northward propagation about 0.7 m.y. B.P., followed by a more gradual southward propagation in the middle Brunhes Epoch; most recently, the spreading center on the southern ridge has extended northward to its present configuration. Prior to the Brunhes Epoch, modeling of the magnetic anomaly patterns does not indicate a unique solution; however, net propagation has been northward. We present alternative models for the period beginning 1.7 m.y. B.P. In the first model, the Cobb Offset has evolved by a series of northward and southward events of propagation, with net advance to the north. In the second model, stable asymmetric spreading from overlapping ridge segments has evolved into a transform fault

  12. Mineralogical studies of sulfide samples and volatile concentrations of basalt glasses from the southern Juan de Fuca Ridge

    NASA Technical Reports Server (NTRS)

    Brett, Robin; Evans, Howard T., Jr.; Wandless, M. V.; Gibson, E. K., Jr.; Hedenquist, Jeffrey W.

    1987-01-01

    Sulfide samples obtained from Alvin dives on the southern Juan de Fuca Ridge were examined, showing the presence of two previously undiscovered minerals, both formed at low temperatures. The first detection of lizardite, starkeyite, and anatase in such an environment is also reported. Sulfide geothermometry involving the Cu-Fe-S system shows a vent temperature of less than 328 C for one sample. Ice-melting temperatures on inclusions from this sample are about -2.8 C, and fluid inclusion studies on crystals near this sample show pressure-corrected homogenization temperatures of 268 and 285 C. Volatile concentrations from vesicle-free basalt glass from the vent field are found to be about 0.0013 wt pct CO2 and 0.16 wt pct H2O.

  13. Spectra and magnitudes of T-waves from the 1993 earthquake swarm on the Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Schreiner, Anthony E.; Fox, Christopher G.; Dziak, Robert P.

    1995-01-01

    A swarm of earthquakes on the crest of the Juan de Fuca Ridge was detected in June and July 1993 by a network of hydrophones. The activity migrated 60 km along the crest, suggesting a lateral dike injection and the possibility of a volcanic eruption. Subsequent geologic and oceanographic investigations confirmed that an eruption had taken place. Examination of the individual acoustic arrivals shows changes in the character of the signal that are consistent with an injection of magma. A reduction in the rise time of the wave packet and a proportional increase in high frequency energy was observed and is interpreted to result from a shoaling of the earthquake source region. Second, the source magnitudes were largest at the onset of the swarm and became smaller over time, also consistent with shoaling of the dike. The appearance of the T-wave arrivals changed significantly 5 days after the beginning of the swarm, potentially indicating the onset of a surface eruption.

  14. Regional patterns of hydrothermal alteration of sediments as interpreted from seafloor reflection coefficients, Middle Valley, Juan De Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Rohr, Kristin M. M.; Schmidt, Ulrike; Groschel-Becker, Henrike

    1993-09-01

    Reflection coefficients of the seafloor have been calculated from three multi-channel seismic reflection profiles across Middle Valley of the Juan de Fuca ridge. Seafloor reflection coefficients in this sedimented rift valley are high over an active hydrothermal vent and adjacent to major offset faults. Comparison of our measurements to drilling results from Leg 139 shows that high reflection coefficients over an active vent mound are produced by cemented sediments. Large reflection coefficients adjacent to major faults may have a similar origin and indicate that ongoing faulting creates pathways for hydrothermal fluids which alter the sediments and result in higher densities and velocities. Since 30 Hz seismic energy responds to the top 50 m of sediments, we are looking at the integrated response of hydrothermal alteration over tens of thousands of years. This is the first time seafloor reflection coefficients have been used to identify highly altered sediments in a region of deep-water hydrothermal activity.

  15. Estimates of crustal permeability on the Endeavour segment of the Juan de Fuca mid-ocean ridge

    NASA Astrophysics Data System (ADS)

    Wilcock, William S. D.; McNabb, Alex

    1996-02-01

    Observational studies of hydrothermal venting on the Endeavour segment of the Juan de Fuca Ridge place strong constraints on the spacing and area of vent fields, the depth of circulation, and the hydrothermal heat flux. A method is described to estimate a uniform crustal permeability from these parameters under the assumptions that upflow is confined to a narrow plume underlying each vent field and downflow can be described by potential flow into a point sink at the base of each plume. For a reasonable range of parameter values, the isotropic permeability of the Endeavour lies in the range 6 × 10 -13 to 6 × 10 -12 m 2. A significant elongation of vent fields along-axis suggests that the permeability structure is strongly anisotropic, with the across-axis permeability about an order of magnitude lower than the permeability in orthogonal directions.

  16. Geochemistry and petrology of andesites from the north rift zone of Axial Seamount, Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Smithka, I. N.; Perfit, M. R.; Clague, D. A.; Wanless, V. D.

    2014-12-01

    In 2013, the ROV Doc Ricketts onboard R/V Western Flyer explored ~4 km of an elongate pillow ridge up to ~300 m high along the eastern edge of the north rift zone of Axial Seamount. The steep-sided volcanic ridge is constructed of large pillow lavas up to 2-3 m in diameter and smaller elongated pillow tubes. Of the 27 samples collected during dive D526, all but one are andesites making it one of the largest confirmed high-silica exposures along a mid-ocean ridge (MOR). Based on radiocarbon ages of sediment on top of flows, the mounds are at least ~1390 years old. This minimum age is much younger than the 56 Ka age calculated based on distance from the rift axis, indicating eruption off-axis through older, colder crust and supporting the hypothesis and model calculations that extensive fractional crystallization (>85%) caused the high silica content. The andesitic lavas are primarily glassy, highly vesicular, crusty, and sparsely phyric with small (~1 mm) plagioclase crystals and olivine, clinopyroxene, and Fe-Ti oxide microphenocrysts. Microprobe analyses of glasses are similar to wax-core samples previously collected from this area but are more compositionally variable. Excluding one basalt (7.7 wt% MgO) sampled between mounds, the lavas are basaltic andesites and andesites (53-59 wt% SiO2) with <3 wt% MgO and 12.8-15.7 wt% FeO concentrations. Incompatible trace element abundances are ~4-6 times more enriched than in Axial Seamount T-MORB. Primitive mantle-normalized patterns are similar to those of high-silica lavas from other MORs (southern Juan de Fuca Ridge, 9N East Pacific Rise) with significant positive U anomalies, large negative Sr anomalies, small negative Eu anomalies, and slight positive Zr-Hf anomalies. The andesites are more enriched in light rare earth elements than basalts from Axial Seamount ((La/Yb)N 1.35-1.4 vs. 0.7-1.27) and N-MORB from the southern Juan de Fuca Ridge. The andesites also have high Cl (~0.3-0.6 wt%) and H2O (~1.60-1.71 wt

  17. Stable isotope studies of vent fluids and chimney minerals, southern Juan de Fuca Ridge: Sodium metasomatism and seawater sulfate reduction

    NASA Astrophysics Data System (ADS)

    Shanks, Wayne C., III; Seyfried, William E., Jr.

    1987-10-01

    Sulfur isotope values (δ34S) of H2S in vent fluids from the southern Juan de Fuca Ridge hydrothermal sites range from 4.0 to 7.4‰ and are variably 34S-enriched with respect to coexisting inner wall chimney sulfides. Chimney sulfides range from 1.6 to 5.7‰. The chimneys consist of Fe-sphalerite zoned to inner zinc sulfide and chalcopyrite (± isocubanite)-pyrrhotite lining channels. Sulfide from inner walls of type A chimneys have the lightest δ34S values. Type B chimneys (porous, unzoned, low-Fe-sphalerite) have the isotopically heaviest chimney sulfides and occur at vent sites distal to the along-axis shallow point of the ridge crest, hence distal to the magma chamber. These variations are largely ascribed to sulfate reduction by ferrous iron in the hydrothermal fluid in chimneys or substrate mounds, probably due to transitory entrainment of ambient sulfate-bearing seawater. The δ18O values of end-member hydrothermal fluids range from 0.6 to 0.8‰, significantly lower than the δ18O values at 21°N vent fluids. The δD values of the fluid samples range from -2.5 to 0.5‰. Isotopic differences from the 21°N fluids may be due to slightly higher water/rock ratios, approximately 1.0, in the southern Juan de Fuca Ridge hydrothermal system. Admixture of a small amount of residual brine from an earlier phase separation event may have contributed water with low δD values. Sulfate reduction occurs in the deep (2.3 km) hydrothermal reaction zone; a small amount of seawater sulfate passes through the zone of anhydrite precipitation during recharge of the hydrothermal system and is reduced by reaction with pyrrhotite in basalt. Sulfide from pyrrhotite is mixed with 34S-enriched sulfate-derived sulfide to produce pyrite having δ34S values of about 3.0‰ and H2S having values of about 2.1‰ in the ascending fluid. Requisite acidity is provided by Na-metasomatism at about 370°C, yielding albite- and epidote-rich alteration phases.

  18. Upper crustal seismic structure of the Endeavour segment, Juan de Fuca Ridge from traveltime tomography: Implications for oceanic crustal accretion

    NASA Astrophysics Data System (ADS)

    Weekly, Robert T.; Wilcock, William S. D.; Toomey, Douglas R.; Hooft, Emilie E. E.; Kim, Eunyoung

    2014-04-01

    isotropic and anisotropic P wave velocity structure of the upper oceanic crust on the Endeavour segment of the Juan de Fuca Ridge is studied using refracted traveltime data collected by an active-source, three-dimensional tomography experiment. The isotropic velocity structure is characterized by low crustal velocities in the overlapping spreading centers (OSCs) at the segment ends. These low velocities are indicative of pervasive tectonic fracturing and persist off axis, recording the history of ridge propagation. Near the segment center, velocities within the upper 1 km show ridge-parallel bands with low velocities on the outer flanks of topographic highs. These features are consistent with localized thickening of the volcanic extrusive layer from eruptions extending outside of the axial valley that flow down the fault-tilted blocks that form the abyssal hill topography. On-axis velocities are generally relatively high beneath the hydrothermal vent fields likely due to the infilling of porosity by mineral precipitation. Lower velocities are observed beneath the most vigorous vent fields in a seismically active region above the axial magma chamber and may reflect increased fracturing and higher temperatures. Seismic anisotropy is high on-axis but decreases substantially off axis over 5-10 km (0.2-0.4 Ma). This decrease coincides with an increase in seismic velocities resolved at depths ≥1 km and is attributed to the infilling of cracks by mineral precipitation associated with near-axis hydrothermal circulation. The orientation of the fast-axis of anisotropy is ridge-parallel near the segment center but curves near the segment ends reflecting the tectonic fabric within the OSCs.

  19. Fluid rare earth element anlayses from geothermal wells located on the Reykjanes Peninsula, Iceland and Middle Valley seafloor hydrothermal system on the Juan de Fuca Ridge.

    DOE Data Explorer

    Andrew Fowler

    2015-05-01

    Results for fluid rare earth element analyses from four Reykjanes peninsula high-temperature geothermal fields. Data for fluids from hydrothermal vents located 2400 m below sea level from Middle Valley on the Juan de Fuca Ridge are also included. Data have been corrected for flashing. Samples preconcentrated using a chelating resin with IDA functional group (InertSep ME-1). Analyzed using an Element magnetic sector inductively coupled plasma mass spectrometry (ICP-MS).

  20. Draft Genome Sequences of Pseudoalteromonas telluritireducens DSM 16098 and P. spiralis DSM 16099 Isolated from the Hydrothermal Vents of the Juan de Fuca Ridge

    PubMed Central

    Liu, Rui; Wang, Mengqiang; Wang, Hao; Gao, Qiang; Hou, Zhanhui; Zhou, Zhi; Gao, Dahai

    2016-01-01

    This report describes the draft genome sequences of two strains, Pseudoalteromonas telluritireducens DSM 16098 and P. spiralis DSM 16099, which were isolated from hydrothermal vents of the Juan de Fuca Ridge. The reads generated by an Ion Torrent PGM were assembled into contigs with total sizes of 4.4 Mb and 4.1 Mb for DSM 16098 and DSM 16099, respectively. PMID:27563045

  1. Draft Genome Sequences of Pseudoalteromonas telluritireducens DSM 16098 and P. spiralis DSM 16099 Isolated from the Hydrothermal Vents of the Juan de Fuca Ridge.

    PubMed

    Zhang, Huan; Liu, Rui; Wang, Mengqiang; Wang, Hao; Gao, Qiang; Hou, Zhanhui; Zhou, Zhi; Gao, Dahai; Wang, Lingling

    2016-01-01

    This report describes the draft genome sequences of two strains, Pseudoalteromonas telluritireducens DSM 16098 and P. spiralis DSM 16099, which were isolated from hydrothermal vents of the Juan de Fuca Ridge. The reads generated by an Ion Torrent PGM were assembled into contigs with total sizes of 4.4 Mb and 4.1 Mb for DSM 16098 and DSM 16099, respectively. PMID:27563045

  2. Compressional and Shear Wave Structure of the Upper Crust Beneath the Endeavour Segment, Juan De Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Kim, E.; Toomey, D. R.; Hooft, E. E. E.; Wilcock, W. S. D.; Weekly, R. T.; Lee, S. M.; Kim, Y.

    2014-12-01

    We present tomographic images of the compressional (Vp) and shear (Vs) wave velocity structure of the upper crust beneath the Endeavour segment of the Juan de Fuca Ridge. This ridge segment is bounded by the Endeavour and Cobb overlapping spreading centers (OSCs) to the north and south, respectively. Near the segment center an axial magma chamber (AMC) reflector underlies 5 hydrothermal vent fields. Our analysis uses data from the Endeavour tomography (ETOMO) experiment. A prior study of the Vp structure indicates that the shallow crust of the Endeavour segment is strongly heterogeneous [Weekly et al., 2014]. Beneath the OSCs Vp is anomalously low, indicating tectonic fracturing. Near the segment center, upper crustal Vp is relatively high beneath the hydrothermal vent fields, likely due to infilling of porosity by mineral precipitation. Lower velocities are observed immediately above the AMC, reflecting increased fracturing or higher temperatures. Anisotropic tomography reveals large amplitude ridge-parallel seismic anisotropy on-axis (>10%), but decreases in the off-axis direction over 5-10 km. Here we use crustal S-wave phases (Sg) — generated by P-to-S conversions near the seafloor — to better constrain crustal properties. Over half the OBSs in the ETOMO experiment recorded horizontal data on two channels that are of sufficiently high quality that we can orient the geophones using the polarizations of water waves from shots within 12 km. For these OBSs, crustal Sg phases are commonly visible out to ranges of ~20-25 km. We invert the Sg data separately for Vs structure, and also jointly invert Pg and Sg data to constrain the Vp/Vs ratio. Preliminary inversions indicate that Vs and Vp/Vs varies both laterally and vertically. These results imply strong lateral variations in both the physical (e.g., crack density and aspect ratio) and chemical (e.g., hydration) properties of oceanic crust.

  3. Activity and abundance of denitrifying bacteria in the subsurface biosphere of diffuse hydrothermal vents of the Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Bourbonnais, A.; Juniper, S. K.; Butterfield, D. A.; Devol, A. H.; Kuypers, M. M. M.; Lavik, G.; Hallam, S. J.; Wenk, C. B.; Chang, B. X.; Murdock, S. A.; Lehmann, M. F.

    2012-11-01

    Little is known about fixed nitrogen (N) transformation and elimination at diffuse hydrothermal vents where anoxic fluids are mixed with oxygenated crustal seawater prior to discharge. Oceanic N sinks that remove bio-available N ultimately affect chemosynthetic primary productivity in these ecosystems. Using 15N paired isotope techniques, we determined potential rates of fixed N loss pathways (denitrification, anammox) and dissimilatory nitrate reduction to ammonium (DNRA) in sulfidic hydrothermal vent fluids discharging from the subsurface at several sites at Axial Volcano and the Endeavour Segment on the Juan de Fuca Ridge. We also measured physico-chemical parameters (i.e., temperature, pH, nutrients, H2S and N2O concentrations) as well as the biodiversity and abundance of chemolithoautotrophic nitrate-reducing, sulfur-oxidizing γ-proteobacteria (SUP05 cluster) using sequence analysis of amplified small subunit ribosomal RNA (16S rRNA) genes in combination with taxon-specific quantitative polymerase chain reaction (qPCR) assays. Denitrification was the dominant N loss pathway in the subsurface biosphere of the Juan de Fuca Ridge, with rates of up to ~1000 nmol N l-1 day-1. In comparison, anammox rates were always < 5 nmol N l-1 day-1 and below the detection limit at most of the sites. DNRA rates were up to ~150 nmol N l-1 day-1. These results suggest that bacterial denitrification out-competes anammox in sulfidic hydrothermal vent waters. Taxon-specific qPCR revealed that γ-proteobacteria of the SUP05 cluster sometimes dominated the microbial community (SUP05/total bacteria up to 38%). Significant correlations were found between fixed N loss (i.e., denitrification, anammox) rates and in situ nitrate and dissolved inorganic nitrogen (DIN) deficits in the fluids, indicating that DIN availability may ultimately regulate N loss in the subsurface. Based on our rate measurements, and on published data on hydrothermal fluid fluxes and residence times, we estimated

  4. Activity and abundance of denitrifying bacteria in the subsurface biosphere of diffuse hydrothermal vents of the Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Bourbonnais, A.; Juniper, S. K.; Butterfield, D. A.; Devol, A. H.; Kuypers, M. M. M.; Lavik, G.; Hallam, S. J.; Wenk, C. B.; Chang, B. X.; Murdock, S. A.; Lehmann, M. F.

    2012-04-01

    Little is known about nitrogen (N) transformations in general, and the elimination of N in particular, at diffuse vents where anoxic hydrothermal fluids have mixed with oxygenated crustal seawater prior to discharge. Oceanic N sinks that remove bio-available N ultimately affect chemosynthetic primary productivity in these ecosystems. Using 15N paired isotope techniques, we determined potential rates of fixed N-loss pathways (denitrification, anammox) and dissimilative nitrate reduction to ammonium (DNRA) in sulfidic hydrothermal vent fluids discharging from the subsurface at several sites at Axial Volcano and the Endeavour Segment on the Juan de Fuca Ridge. We also measured physico-chemical parameters (i.e. temperature, pH, nutrients, H2S and N2O concentrations) as well as the biodiversity and abundance of chemolithotrophic nitrate-reducing, sulfur-oxidizing γ-proteobacteria (SUP05 cluster) using sequence analysis of amplified small subunit ribosomal RNA (16S rRNA) genes in combination with taxon-specific quantitative polymerase chain reaction (qPCR) assays. Denitrification was the dominant N-loss pathway in the subsurface biosphere of the Juan de Fuca Ridge, with rates of up to ~1000 nmol N l-1 day-1. In comparison, anammox rates were always <5 nmol N l-1 day-1 and below the detection limit at most of the sites. DNRA rates were up to 152 nmol N l-1 day-1. These results suggest that bacterial denitrification out-competes anammox in sulfidic hydrothermal vent waters. Taxon-specific qPCR revealed that γ-proteobacteria of the SUP05 cluster sometimes dominated the microbial community (SUP05/total bacteria up to 38%). Significant correlation existed between fixed N-loss (i.e., denitrification, anammox) rates and in-situ nitrate and dissolved inorganic nitrogen (DIN) deficits in the fluids, indicating that DIN availability may ultimately regulate N-loss in the subsurface. Based on our rate measurements, and on published data on hydrothermal fluid fluxes and residence

  5. Fine-scale heat flow, shallow heat sources, and decoupled circulation systems at two sea-floor hydrothermal sites, Middle Valley, northern Juan de Fuca Ridge

    SciTech Connect

    Stein, J.S.; Fisher, A.T.; Langseth, M.; Jin, W.; Iturrino, G.; Davis, E.

    1998-12-01

    Fine-scale heat-flow patterns at two areas of active venting in Middle Valley, a sedimented rift on the northern Juan de Fuca Ridge, provide thermal evidence of shallow hydrothermal reservoirs beneath the vent fields. The extreme variability of heat flow is explained by conductive heating immediately adjacent to vents and shallow circulation within sediments above the reservoir. This secondary circulation is hydrologically separated from the deeper system feeding the vents by a shallow conductive lid within the sediments. A similar separation of shallow and deep circulation may also occur at sediment-free ridge-crest hydrothermal environments.

  6. Quantitative estimate of heat flow from a mid-ocean ridge axial valley, Raven field, Juan de Fuca Ridge: Observations and inferences

    NASA Astrophysics Data System (ADS)

    Salmi, Marie S.; Johnson, H. Paul; Tivey, Maurice A.; Hutnak, Michael

    2014-09-01

    A systematic heat flow survey using thermal blankets within the Endeavour segment of the Juan de Fuca Ridge axial valley provides quantitative estimates of the magnitude and distribution of conductive heat flow at a mid-ocean ridge, with the goal of testing current models of hydrothermal circulation present within newly formed oceanic crust. Thermal blankets were deployed covering an area of 700 by 450 m in the Raven Hydrothermal vent field area located 400 m north of the Main Endeavour hydrothermal field. A total of 176 successful blanket deployment sites measured heat flow values that ranged from 0 to 31 W m-2. Approximately 53% of the sites recorded values lower than 100 mW m-2, suggesting large areas of seawater recharge and advective extraction of lithospheric heat. High heat flow values were concentrated around relatively small "hot spots." Integration of heat flow values over the Raven survey area gives an estimate of conductive heat output of 0.3 MW, an average of 0.95 W m-2, over the survey area. Fluid circulation cell dimensions and scaling equations allow calculation of a Rayleigh number of approximately 700 in Layer 2A. The close proximity of high and low heat flow areas, coupled with previous estimates of surficial seafloor permeability, argues for the presence of small-scale hydrothermal fluid circulation cells within the high-porosity uppermost crustal layer of the axial seafloor.

  7. Microbial diversity of a sulfide black smoker in main endeavour hydrothermal vent field, Juan de Fuca Ridge.

    PubMed

    Zhou, Huaiyang; Li, Jiangtao; Peng, Xiaotong; Meng, Jun; Wang, Fengping; Ai, Yuncan

    2009-06-01

    Submarine hydrothermal vents are among the least-understood habitats on Earth but have been the intense focus of research in the past 30 years. An active hydrothermal sulfide chimney collected from the Dudley site in the Main Endeavour vent Field (MEF) of Juan de Fuca Ridge was investigated using mineralogical and molecular approaches. Mineral analysis indicated that the chimney was composed mainly of Fe-, Zn-and Cu-rich sulfides. According to phylogenetic analysis, within the Crenarchaeota, clones of the order Desulfurococcales predominated, comprising nearly 50% of archaeal clones. Euryarchaeota were composed mainly of clones belonging to Thermococcales and deep-sea hydrothermal vent Euryarchaeota (DHVE), each of which accounted for about 20% of all clones. Thermophilic or hyperthermophilic physiologies were common to the predominant archaeal groups. More than half of bacterial clones belonged to epsilon-Proteobacteria, which confirmed their prevalence in hydrothermal vent environments. Clones of Proteobacteria (gamma-, delta-, beta-), Cytophaga-Flavobacterium-Bacteroides (CFB) and Deinococcus-Thermus occurred as well. It was remarkable that methanogens and methanotrophs were not detected in our 16S rRNA gene library. Our results indicated that sulfur-related metabolism, which included sulfur-reducing activity carried out by thermophilic archaea and sulfur-oxidizing by mesophilic bacteria, was common and crucial to the vent ecosystem in Dudley hydrothermal site. PMID:19557339

  8. Time-series measurement of hydrothermal heat flux at the Grotto mound, Endeavour Segment, Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Xu, Guangyu; Jackson, Darrell R.; Bemis, Karen G.; Rona, Peter A.

    2014-10-01

    Continuous time-series observations are key to understanding the temporal evolution of a seafloor hydrothermal system and its interplay with thermal and chemical processes in the ocean and Earth interior. In this paper, we present a 26-month time series of the heat flux driving a hydrothermal plume on the Endeavour Segment of the Juan de Fuca Ridge obtained using the Cabled Observatory Vent Imaging Sonar (COVIS). Since 2010, COVIS has been connected to the North East Pacific Time-series Underwater Networked Experiment (NEPTUNE) observatory that provides power and real-time data transmission. The heat flux time series has a mean value of 18.10 MW and a standard deviation of 6.44 MW. The time series has no significant global trend, suggesting the hydrothermal heat source remained steady during the observation period. The steadiness of the hydrothermal heat source coincides with reduced seismic activity at Endeavour observed in the seismic data recorded by an ocean bottom seismometer from 2011 to 2013. Furthermore, first-order estimation of heat flux based on the temperature measurements made by the Benthic and Resistivity Sensors (BARS) at a neighboring vent also supports the steadiness of the hydrothermal heat source.

  9. Submarine fissure eruptions and hydrothermal vents on the southern Juan de Fuca Ridge: preliminary observations from the submersible Alvin.

    USGS Publications Warehouse

    Normark, W.R.

    1986-01-01

    The submersible Alvin was used to investigate 3 active hydrothermal discharge sites along the S Juan de Fuca Ridge in September 1984. The hydrothermal zones occur within a 10-30m-deep, 30-50m-wide cleft marking the center of the axial valley. This cleft is the eruptive locus for the axial valley. The hydrothermal vents coincide with the main eruptive vents along the cleft. Each hydrothermal zone has multiple discharge sites extending as much as 500m along the cleft. Sulfide deposits occur as clusters (15-100m2 area) of small chimneys (= or <2m high) and as individual and clustered fields of large, branched chimneys (= or <10m high). Recovered sulfide samples are predominantly the tops of chimneys and spires and typically contain more than 80% sphalerite and wurtzite with minor pyrrhotite, pyrite, marcasite, isocubanite, chalcopyrite, anhydrite, anhydrite, and amorphous silica. The associated hydrothermal fluids have the highest chlorinity of any reported to date.-Authors

  10. Window into Sediment-Buried Basement Biosphere: Fluid Sampling from CORK Observatory Seafloor Platforms, Juan de Fuca Ridge Flanks

    NASA Astrophysics Data System (ADS)

    Cowen, J. P.; Lin, H.; Rappe, M.; Jungbluth, S.; Glazer, B. T.; Matzinger, M.; Amend, J. P.; Boettger, J.

    2010-12-01

    Studies of the deep basement biosphere are technologically challenging, requiring complementary approaches to provide sufficient access to allow precision analyses and experimentation. Our NSF-funded ‘Microbial Observatory’ has focused on IODP Circulation Obviating Retrofit Kit (CORK) observatories to obtain pristine samples of fluids from sediment-buried basement environments. We have developed instruments and samplers to interface with CORK fluid delivery lines, including a ROV/HOV-borne Mobile Pumping System and autonomous (e.g., GeoMICROBE) instrument sensor/sampler systems. These systems are providing high quality (e.g., depleted Mg++, <6 mM) samples of basement fluids from 3.5 mA old upper basement, on the flanks of the Juan de Fuca Ridge, for geochemical and microbial studies. Relative to bottom seawater, these fluids are also depleted in O2, SO42-, PO43-, NO3- and NO2-, while enriched in NH4+, H2S, Mn and Fe. In situ voltammetric analyses obtained during sample collection, revealed the presence of micromolar levels of sulfide (0.5 µm) in the fluids. Dissolved organic carbon in basement fluids is about half that of local bottom seawater, low molecular weight organic acids are below detection limits, while total amino acids are also low in concentration, but the relative abundance of specific amino acids varies from that of bottom seawater. Overall, the sediment-buried basement environments appears to be organic-carbon depleted and low energy, yet still dynamic. The microbial communities from CORK 1301A (47deg 45N, 127deg 45W) in consecutive years are heterogeneous, but share common groups. Different CORKs sampled a decade apart share major lineages, consistent with hydrogeologic connectivity. Samples collected from a new CORK installation at borehole 1026B contain a subset of members found a decade previously from an older style CORK at the same site. Communities retrieved from the CORK at 1025C (47deg 53N, 128deg 39W), in 1.4 My ridge flank basement

  11. Microbiological characterization of post-eruption “snowblower” vents at Axial Seamount, Juan de Fuca Ridge

    PubMed Central

    Meyer, Julie L.; Akerman, Nancy H.; Proskurowski, Giora; Huber, Julie A.

    2013-01-01

    Microbial processes within the subseafloor can be examined during the ephemeral and uncommonly observed phenomena known as snowblower venting. Snowblowers are characterized by the large quantity of white floc that is expelled from the seafloor following mid-ocean ridge eruptions. During these eruptions, rapidly cooling lava entrains seawater and hydrothermal fluids enriched in geochemical reactants, creating a natural bioreactor that supports a subseafloor microbial “bloom.” Previous studies hypothesized that the eruption-associated floc was made by sulfide-oxidizing bacteria; however, the microbes involved were never identified. Here we present the first molecular analysis combined with microscopy of microbial communities in snowblower vents from samples collected shortly after the 2011 eruption at Axial Seamount, an active volcano on the Juan de Fuca Ridge. We obtained fluid samples and white flocculent material from active snowblower vents as well as orange flocculent material found on top of newly formed lava flows. Both flocculent types revealed diverse cell types and particulates when examined by phase contrast and scanning electron microscopy (SEM). Distinct archaeal and bacterial communities were detected in each sample type through Illumina tag sequencing of 16S rRNA genes and through sequencing of the sulfide oxidation gene, soxB. In fluids and white floc, the dominant bacteria were sulfur-oxidizing Epsilonproteobacteria and the dominant archaea were thermophilic Methanococcales. In contrast, the dominant organisms in the orange floc were Gammaproteobacteria and Thaumarchaeota Marine Group I. In all samples, bacteria greatly outnumbered archaea. The presence of anaerobic methanogens and microaerobic Epsilonproteobacteria in snowblower communities provides evidence that these blooms are seeded by subseafloor microbes, rather than from microbes in bottom seawater. These eruptive events thus provide a unique opportunity to observe subseafloor microbial

  12. Seismic reflection images of a near-axis melt sill within the lower crust at the Juan de Fuca ridge.

    PubMed

    Canales, J Pablo; Nedimović, Mladen R; Kent, Graham M; Carbotte, Suzanne M; Detrick, Robert S

    2009-07-01

    The oceanic crust extends over two-thirds of the Earth's solid surface, and is generated along mid-ocean ridges from melts derived from the upwelling mantle. The upper and middle crust are constructed by dyking and sea-floor eruptions originating from magma accumulated in mid-crustal lenses at the spreading axis, but the style of accretion of the lower oceanic crust is actively debated. Models based on geological and petrological data from ophiolites propose that the lower oceanic crust is accreted from melt sills intruded at multiple levels between the Moho transition zone (MTZ) and the mid-crustal lens, consistent with geophysical studies that suggest the presence of melt within the lower crust. However, seismic images of molten sills within the lower crust have been elusive. Until now, only seismic reflections from mid-crustal melt lenses and sills within the MTZ have been described, suggesting that melt is efficiently transported through the lower crust. Here we report deep crustal seismic reflections off the southern Juan de Fuca ridge that we interpret as originating from a molten sill at present accreting the lower oceanic crust. The sill sits 5-6 km beneath the sea floor and 850-900 m above the MTZ, and is located 1.4-3.2 km off the spreading axis. Our results provide evidence for the existence of low-permeability barriers to melt migration within the lower section of modern oceanic crust forming at intermediate-to-fast spreading rates, as inferred from ophiolite studies. PMID:19571883

  13. Evolution of seismic layer 2B across the Juan de Fuca Ridge from hydrophone streamer 2-D traveltime tomography

    NASA Astrophysics Data System (ADS)

    Newman, Kori R.; Nedimović, Mladen R.; Canales, J. Pablo; Carbotte, Suzanne M.

    2011-05-01

    How oceanic crust evolves has important implications for understanding both subduction earthquake hazards and energy and mass exchange between the Earth's interior and the oceans. Although considerable work has been done characterizing the evolution of seismic layer 2A, there has been little analysis of the processes that affect layer 2B after formation. Here we present high-resolution 2-D tomographic models of seismic layer 2B along ˜300 km long multichannel seismic transects crossing the Endeavour, Northern Symmetric, and Cleft segments of the Juan de Fuca Ridge. These models show that seismic layer 2B evolves rapidly following a different course than layer 2A. The upper layer 2B velocities increase on average by 0.8 km/s and reach a generally constant velocity of 5.2 ± 0.3 km/s within the first 0.5 Myr after crustal formation. This suggests that the strongest impact on layer 2B evolution may be that of mineral precipitation due to "active" hydrothermal circulation centered about the ridge crest and driven by the heat from the axial magma chamber. Variations in upper layer 2B velocity with age at time scales ≥0.5 Ma show correlation about the ridge axis indicating that in the long term, crustal accretion processes affect both sides of the ridge axis in a similar way. Below the 0.5 Ma threshold, differences in 2B velocity are likely imprinted during crustal formation or early crustal evolution. Layer 2B velocities at propagator wakes (5.0 ± 0.2 km/s), where enhanced faulting and cracking are expected, and at areas that coincide with extensional or transtensional faulting are on average slightly slower than in normal mature upper layer 2B. Analysis of the layer 2B velocities from areas where the hydrothermal patterns are known shows that the locations of current and paleohydrothermal discharge and recharge zones are marked by reduced and increased upper layer 2B velocities, respectively. Additionally, the distance between present up-flow and down-flow zones is

  14. Shear wave splitting observations across the Juan de Fuca plate system: Ridge- to-trench constraints on mantle flow from 2 years of Cascadia Initiative OBS data

    NASA Astrophysics Data System (ADS)

    Bodmer, M.; Toomey, D. R.; Hooft, E. E. E.

    2014-12-01

    We present SKS splitting measurements for the first two years of data collected by the Cascadia Initiative (CI) amphibious array. Our analysis includes observations from over 100 ocean bottom seismometers (OBS), as well as 31 onshore stations, and spans both the Juan de Fuca and Gorda plates. The CI dataset is unique in that it includes several regions that can distinctly influence anisotropic fabric development such as: the upwelling mantle beneath the Juan de Fuca and Gorda ridges, the young evolving oceanic lithosphere of the plate interior, the Blanco transform fault, and the Cascadia subduction zone. For the first time, we are able to analyze these regions with a single dataset, and using a common methodology. Splitting measurements are routinely done on land sites, but have been completed on relatively few OBS stations. This is largely due to the low signal to noise present in OBS data, which can obscure the splitting results. To address that nearly all the OBS data exceeds the global high noise limit at the frequencies used for splitting, we implement a rigorous quality control scheme. Our method specifically takes into account the response of common splitting methods to high noise data and addresses known issues such as cycle skipping, false minima, low transverse energy, and near-null measurements. Individual measurements are filtered at 0.03-0.1 Hz, manually checked for quality, and stacked. Preliminary results show trench perpendicular onshore measurements consistent with previous studies. Oceanic measurements in the plate interior show a coherent fast axis roughly aligned with absolute plate motion. Several measurements near the ridge and trench appear to be rotated in the ridge and trench parallel directions. Continuing work will integrate splitting measurements from the final two years of the CI with these findings, which will be used to characterize the ridge-to-trench mantle flow across the Juan de Fuca plate system.

  15. Elastic Full Waveform Inversion reveals the fine-scale structure of Axial Volcano on the Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Arnulf, A. F.; Harding, A. J.; Kent, G.

    2012-12-01

    Axial volcano (sometimes referred to as "Axial seamount" or "Axial") is located at 46N, 130W at the intersection of the Juan de Fuca Ridge and the Cobb-Eickelberg seamount chain. It is the most recent eruptive center of the Cobb hotspot, which last erupted in 2011. The volcano rises ~700 m above the adjacent ridge axis and its summit features a U-shaped caldera open to the southeast, which hosts an active hydrothermal field and very young lava flows. Located at the junction of a mid-ocean ridge and a volcanic hotspot, Axial volcano is atypical and its internal structure remains poorly understood. Here, we present results from an elastic full waveform inversion (FWI) along multiple seismic lines that span the whole volcano. We have used a multi-stage FWI, inverting successively wide-angle reflections and refractions arrivals from downward extrapolated streamer data, then windowed short offset reflections from the underlying magma chamber. Our final models show fine scale velocity structures with spatial resolutions of tens of meters. Our results indicate that Layer 2A thickness is extremely heterogeneous (350-900 m) within the volcano with abrupt vertical throws of >300 m beneath the caldera walls that suggests the tectonic thinning of a geologically defined Layer 2A. Interestingly, Layer 2A appears to be extremely thin beneath the active hydrothermal field and the most recent lava flows, on the southeast end of the caldera, where sheeted dikes might lay <100 m beneath the seafloor. On the other hand, the nearby caldera center is filled by successive lava sequences (~450 m thick) that further appear to be micro faulted, suggesting a constant interplay between magmatic and tectonic processes. Surface velocities show limited variation over the whole volcano and may suggest relative recent formation, considering the rapid increase in layer 2A velocity with age. Finally, our velocity structures image a wide and complex magma chamber system beneath the volcano at depth

  16. Evidence of active ground deformation on the mid-ocean ridge: Axial seamount, Juan de Fuca Ridge, April-June 1988

    SciTech Connect

    Fox, C.G. )

    1990-08-10

    Since September 1987 a precision bottom pressure recorder (BPR) has been deployed within the summit caldera of Axial seamount. The instrument is capable of measuring pressure of 1 mbar resolution and recording these measurements at 64 samples per hour for up to 15 months. Any significant change in the pressure record should indicate a change of depth associated with vertical ground movement, commonly indicative of active inflation or deflation of underlying magma bodies. Results from the first 9 months of the BPR deployment revealed a significant change in pressure, which is interpreted to represent a 15-cm subsidence of the caldera floor during two 2- to 3-week periods in April-June 1988. Also during these periods, an anomalous decline in temperature at the site was recorded that is correlated with an apparent increase in current velocity at the Axial Seamount Hydrothermal Emissions Study (ASHES) vent field, suggesting vigorous advection of cold water into the caldera. Concurrent oceanographic data from Geosat and from current meter arrays do not indicate any large-scale oceanographic phenomena capable of generating these simultaneous events. One mechanism to explain simultaneous ground subsidence and temperature decline at the caldera center and increased bottom current at the caldera margin is the generation of a buoyant parcel of heated water in response to the intrusion or the eruption of magma associated with volcanic deflation. Similar volcanic events also may have generated large midwater plumes that have been described previously along the southern Juan de Fuca Ridge.

  17. Linkages between mineralogy, fluid chemistry, and microbial communities within hydrothermal chimneys from the Endeavour Segment, Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Lin, T. J.; Ver Eecke, H. C.; Breves, E. A.; Dyar, M. D.; Jamieson, J. W.; Hannington, M. D.; Dahle, H.; Bishop, J. L.; Lane, M. D.; Butterfield, D. A.; Kelley, D. S.; Lilley, M. D.; Baross, J. A.; Holden, J. F.

    2016-02-01

    Rock and fluid samples were collected from three hydrothermal chimneys at the Endeavour Segment, Juan de Fuca Ridge to evaluate linkages among mineralogy, fluid chemistry, and microbial community composition within the chimneys. Mössbauer, midinfrared thermal emission, and visible-near infrared spectroscopies were utilized for the first time to characterize vent mineralogy, in addition to thin-section petrography, X-ray diffraction, and elemental analyses. A 282°C venting chimney from the Bastille edifice was composed primarily of sulfide minerals such as chalcopyrite, marcasite, and sphalerite. In contrast, samples from a 300°C venting chimney from the Dante edifice and a 321°C venting chimney from the Hot Harold edifice contained a high abundance of the sulfate mineral anhydrite. Geochemical modeling of mixed vent fluids suggested the oxic-anoxic transition zone was above 100°C at all three vents, and that the thermodynamic energy available for autotrophic microbial redox reactions favored aerobic sulfide and methane oxidation. As predicted, microbes within the Dante and Hot Harold chimneys were most closely related to mesophilic and thermophilic aerobes of the Betaproteobacteria and Gammaproteobacteria and sulfide-oxidizing autotrophic Epsilonproteobacteria. However, most of the microbes within the Bastille chimney were most closely related to mesophilic and thermophilic anaerobes of the Deltaproteobacteria, especially sulfate reducers, and anaerobic hyperthermophilic archaea. The predominance of anaerobes in the Bastille chimney indicated that other environmental factors promote anoxic conditions. Possibilities include the maturity or fluid flow characteristics of the chimney, abiotic Fe2+ and S2- oxidation in the vent fluids, or O2 depletion by aerobic respiration on the chimney outer wall.

  18. GeoChip-based analysis of metabolic diversity of microbial communities at the Juan de Fuca Ridge hydrothermal vent

    PubMed Central

    Wang, Fengping; Zhou, Huaiyang; Meng, Jun; Peng, Xiaotong; Jiang, Lijing; Sun, Ping; Zhang, Chuanlun; Van Nostrand, Joy D.; Deng, Ye; He, Zhili; Wu, Liyou; Zhou, Jizhong; Xiao, Xiang

    2009-01-01

    Deep-sea hydrothermal vents are one of the most unique and fascinating ecosystems on Earth. Although phylogenetic diversity of vent communities has been extensively examined, their physiological diversity is poorly understood. In this study, a GeoChip-based, high-throughput metagenomics technology revealed dramatic differences in microbial metabolic functions in a newly grown protochimney (inner section, Proto-I; outer section, Proto-O) and the outer section of a mature chimney (4143-1) at the Juan de Fuca Ridge. Very limited numbers of functional genes were detected in Proto-I (113 genes), whereas much higher numbers of genes were detected in Proto-O (504 genes) and 4143-1 (5,414 genes). Microbial functional genes/populations in Proto-O and Proto-I were substantially different (around 1% common genes), suggesting a rapid change in the microbial community composition during the growth of the chimney. Previously retrieved cbbL and cbbM genes involved in the Calvin Benson Bassham (CBB) cycle from deep-sea hydrothermal vents were predominant in Proto-O and 4143-1, whereas photosynthetic green-like cbbL genes were the major components in Proto-I. In addition, genes involved in methanogenesis, aerobic and anaerobic methane oxidation (e.g., ANME1 and ANME2), nitrification, denitrification, sulfate reduction, degradation of complex carbon substrates, and metal resistance were also detected. Clone libraries supported the GeoChip results but were less effective than the microarray in delineating microbial populations of low biomass. Overall, these results suggest that the hydrothermal microbial communities are metabolically and physiologically highly diverse, and the communities appear to be undergoing rapid dynamic succession and adaptation in response to the steep temperature and chemical gradients across the chimney. PMID:19273854

  19. Heat flux measured acoustically at Grotto Vent, a hydrothermal vent cluster on the Endeavour Segment, Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Xu, G.; Jackson, D. R.; Bemis, K. G.; Rona, P. A.

    2013-12-01

    Over the past several decades, quantifying the heat output has been a unanimous focus of studies at hydrothermal vent fields discovered around the global ocean. Despite their importance, direct measurements of hydrothermal heat flux are very limited due to the remoteness of most vent sites and the complexity of hydrothermal venting. Moreover, almost all the heat flux measurements made to date are snapshots and provide little information on the temporal variation that is expected from the dynamic nature of a hydrothermal system. The Cabled Observatory Vent Imaging Sonar (COVIS, https://sites.google.com/a/uw.edu/covis/) is currently connected to the Endeavour node of the NEPTUNE Canada observatory network (http://www.neptunecanada.ca) to monitor the hydrothermal plumes issuing from a vent cluster (Grotto) on the Endeavour Segment of the Juan de Fuca Ridge. COVIS is acquiring a long-term (20-months to date) time series of the vertical flow rate and volume flux of the hydrothermal plume above Grotto through the Doppler analysis of the acoustic backscatter data (Xu et al., 2013). We then estimate the plume heat flux from vertical flow rate and volume flux using our newly developed inverse method. In this presentation, we will briefly summarize the derivation of the inverse method and present the heat-flux time series obtained consequently with uncertainty quantification. In addition, we compare our heat-flux estimates with the one estimated from the plume in-situ temperatures measured using a Remotely Operative Vehicle (ROV) in 2012. Such comparison sheds light on the uncertainty of our heat flux estimation. Xu, G., Jackson, D., Bemis, K., and Rona, P., 2013, Observations of the volume flux of a seafloor hydrothermal plume using an acoustic imaging sonar, Geochemistry, Geophysics Geosystems, 2013 (in press).

  20. High-resolution near-bottom vector magnetic anomalies over Raven Hydrothermal Field, Endeavour Segment, Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Tivey, Maurice A.; Johnson, H. Paul; Salmi, Marie S.; Hutnak, Michael

    2014-10-01

    High-resolution, near-bottom vector magnetic data were collected by remotely operated vehicle Jason over the Raven hydrothermal vent field (47°57.3'N 129°5.75'W) located north of Main Endeavour vent field on the Endeavour segment of the Juan de Fuca Ridge. The survey was part of a comprehensive heat flow study of the Raven site using innovative thermal blanket technology to map the heat flux and crustal fluid pathways around a solitary hydrothermal vent field. Raven hydrothermal activity is presently located along the western axial valley wall, while additional inactive hydrothermal deposits are found to the NW on the upper rift valley wall. Magnetic inversion results show discrete areas of reduced magnetization associated with both active and inactive hydrothermal vent deposits that also show high conductive heat flow. Higher spatial variability in the heat flow patterns compared to the magnetization is consistent with the heat flow reflecting the currently active but ephemeral thermal environment of fluid flow, while crustal magnetization is representative of the static time-averaged effect of hydrothermal alteration. A general NW to SE trend in reduced magnetization across the Raven area correlates closely with the distribution of hydrothermal deposits and heat flux patterns and suggests that the fluid circulation system at depth is likely controlled by local crustal structure and magma chamber geometry. Magnetic gradient tensor components computed from vector magnetic data improve the resolution of the magnetic anomaly source and indicate that the hydrothermally altered zone directly beneath the Raven site is approximately 15 × 106 m3 in volume.

  1. Chemical Speciation and Oxidation Kinetics of Iron and Sulfur in Subseafloor Basement Fluids on the Juan de Fuca Ridge Flanks

    NASA Astrophysics Data System (ADS)

    Glazer, B. T.; Matzinger, M.; Cowen, J. P.

    2011-12-01

    Redox reactive chemical species circulate throughout the upper oceanic crust, and are involved in a variety of abiotic and microbially-mediated reactions. Through exchange with bottom seawater, fluids circulating in the upper basement have the potential to influence scales ranging from global-scale biogeochemical cycling to micro-scale microbe-mineral interactions. Understanding fundamental chemical speciation, distribution, bioavailability, and rates of transformations for key chemical redox species is crucial to understanding processes in the subsurface. In-situ electrochemical analyses were conducted in real-time at CORK (Circulation Obviation Retrofit Kit) observatories affixed to Integrated Ocean Drilling Program (IODP) boreholes in Cascadia Basin on the Juan de Fuca Ridge Flanks. Voltammetric electrodes were mounted into a flow cell to allow for simultaneous detection of redox species (O2, H_{2}O2, HS^{-}, S(0), Sx^{2-}, S2O_{3}2-, S_{4}O6^{2-}, Fe(II), Fe(III), FeS$_{(aq)}) concurrent to sample filtering or fluid collection. During real-time voltammetric scanning, qualitative assessment of the integrity of fluids delivered through the Fluid Delivery Lines could be made, allowing for comparisons between CORK sites and various sampling strategies. Newly installed CORKs at IODP sites 1362A and 1362B are producing the highest-integrity basement fluids collected to date, deplete in oxygen (<3uM) and enriched in iron (>1uM). Here, we report results of in situ electrochemical measurements at multiple borehole observatories, including the newly installed 1362A & 1362B sites, and present results of speciation analyses and kinetics of oxidation for iron and sulfur in discrete samples.

  2. Space-time relations of hydrothermal sulfide-sulfate-silica deposits at the northern Cleft Segment, Juan de Fuca Ridge

    SciTech Connect

    Koski, R.A.; Smith, V.K. ); Embley, R.W. ); Jonasson, I.R. ); Kadko, D.C. . Rosenstiel School of Marine and Atmospheric Science)

    1993-04-01

    Submersible investigations along the northern Cleft Segment of the Juan de Fuca Ridge indicate that a newly erupted sheet flow and two recent megaplume events are spatially related to a NNE-trending fissure system that is now the locus for active hydrothermal venting and deposition of massive sulfide mounds and chimneys. Samples from active high-temperature vent sites located east and north of the sheet flow terrain include zoned Cu-sulfide-rich chimneys (Type 1), bulbous anhydrite-rich chimneys (Type 2), and columnar Zn-sulfide-rich chimneys (Type 3). Type 1 chimneys with large open channelways result from the focused discharge of fluid at temperatures between 310 and 328 C from the Monolith sulfide mound. Type 2 chimneys are constructed on the Monolith and Fountain mounds where discharge of fluid at temperatures between 293 and 315 C is diffuse and sluggish. Type 3 chimneys, characterized by twisting narrow channelways, are deposited from focused and relatively low-temperature fluid discharging directly from basalt substrate. Inactive sulfide chimneys (Type 4) located within 100 m of the fissure system have bulk compositions, mineral assemblages, colloform and bacteroidal textures, and oxygen isotope characteristics consistent with low-temperature (< 250 C ) deposition from less robust vents. Field relations and [sup 210]Pb ages (> 100 years) indicate that the Type 4 chimneys formed prior to the sheet flow eruption. The sulfide mounds and Type 1 and Type 2 chimneys at the Monolith and Fountain vents, however, are an expression of the same magmatic event that caused the sheet flow eruption and megaplume events.

  3. Mineralogical studies of sulfide samples and volatile concentrations of basalt glasses from the southern Juan de Fuca Ridge.

    PubMed

    Brett, R; Evans, H T; Gibson, E K; Hedenquist, J W; Wandless, M V; Sommer, M A

    1987-10-10

    Sulfide samples obtained from the U.S. Geological Survey's DSRV Alvin dives on the southern Juan de Fuca Ridge closely resemble those from the same area described by Koski et al. (1984). Major minerals include sphalerite, wurtzite, pyrite, marcasite, isocubanite, anhydrite, and chalcopyrite. Equilibrium, if attained at all, during deposition of most sulfides was a transient event over a few tens of micrometers at most and was perturbed by rapid temperature and compositional changes of the circulating fluid. Two new minerals were found: one, a hydrated Zn, Fe hydroxy-chlorosulfate, and the other, a (Mn, Mg, Fe) hydroxide or hydroxy-hydrate. Both were formed at relatively low temperatures. Lizardite, starkeyite, and anatase were found for the first time in such an environment. Sulfide geothermometry involving the system Cu-Fe-S indicates a vent temperature of <328 degrees C for one sample. Fluid inclusion studies on crystals from the same vicinity of the same sample give pressure-corrected homogenization temperatures of 268 degrees and 285 degrees C. Ice-melting temperatures on inclusions from the same sample are about -2.8 degrees C, indicating that the equivalent salinity of the trapped fluid is about 50% greater than that of seawater. Volatile concentrations from vesicle-free basalt glass from the vent field are about 0.013 wt% CO2 and 0.16 wt% H2O, CO2 contents in these samples yield an entrapment depth of 2200 m of seawater, which is the depth from which the samples were collected. PMID:11542121

  4. Complete genome sequence of the hyperthermophilic archaeon Pyrococcus sp. strain ST04, isolated from a deep-sea hydrothermal sulfide chimney on the Juan de Fuca Ridge.

    PubMed

    Jung, Jong-Hyun; Lee, Ju-Hoon; Holden, James F; Seo, Dong-Ho; Shin, Hakdong; Kim, Hae-Yeong; Kim, Wooki; Ryu, Sangryeol; Park, Cheon-Seok

    2012-08-01

    Pyrococcus sp. strain ST04 is a hyperthermophilic, anaerobic, and heterotrophic archaeon isolated from a deep-sea hydrothermal sulfide chimney on the Endeavour Segment of the Juan de Fuca Ridge in the northeastern Pacific Ocean. To further understand the distinct characteristics of this archaeon at the genome level (polysaccharide utilization at high temperature and ATP generation by a Na(+) gradient), the genome of strain ST04 was completely sequenced and analyzed. Here, we present the complete genome sequence analysis results of Pyrococcus sp. ST04 and report the major findings from the genome annotation, with a focus on its saccharolytic and metabolite production potential. PMID:22843576

  5. Complete Genome Sequence of the Hyperthermophilic Archaeon Pyrococcus sp. Strain ST04, Isolated from a Deep-Sea Hydrothermal Sulfide Chimney on the Juan de Fuca Ridge

    PubMed Central

    Jung, Jong-Hyun; Lee, Ju-Hoon; Holden, James F.; Seo, Dong-Ho; Shin, Hakdong; Kim, Hae-Yeong; Kim, Wooki; Ryu, Sangryeol

    2012-01-01

    Pyrococcus sp. strain ST04 is a hyperthermophilic, anaerobic, and heterotrophic archaeon isolated from a deep-sea hydrothermal sulfide chimney on the Endeavour Segment of the Juan de Fuca Ridge in the northeastern Pacific Ocean. To further understand the distinct characteristics of this archaeon at the genome level (polysaccharide utilization at high temperature and ATP generation by a Na+ gradient), the genome of strain ST04 was completely sequenced and analyzed. Here, we present the complete genome sequence analysis results of Pyrococcus sp. ST04 and report the major findings from the genome annotation, with a focus on its saccharolytic and metabolite production potential. PMID:22843576

  6. Linking Microearthquakes and Seismic Tomography on the Endeavour Segment of the Juan de Fuca Ridge: Implications for Hydrothermal Circulation

    NASA Astrophysics Data System (ADS)

    Wilcock, W. S.; Weekly, R. T.; Hooft, E. E.; Toomey, D. R.; Kim, E.

    2013-12-01

    We report on a remarkable correlation between the patterns of microearthquakes and three-dimensional upper crustal velocity anomalies on the Endeavour segment of the Juan de Fuca Ridge. Microearthquakes were monitored from 2003-2006 by a small seismic network deployed on the central part of the segment. The velocity model was obtained from a tomography experiment comprising over 5500 shots from a large airgun array that were recorded by ocean bottom seismometers deployed at 64 sites along the Endeavour segment and the adjacent overlapping spreading centers (OSCs). On the segment scale, upper crustal velocities are low in the OSCs indicating that the crust is highly fractured. These low velocities persist off-axis and record the history of ridge propagation. In 2005, two swarm sequences that were interpreted in terms of magmatic intrusions on the limbs of the Endeavour-West Valley OSC were accompanied by extensive seismicity within the overlap basin. Throughout the microearthquake experiment earthquakes were concentrated in a region surrounding the southern tip of the West Valley propagator that coincides closely with the southern limit of the low velocities imaged around the OSC. Beneath the hydrothermal vent fields in the center of the Endeavour segment, the earthquakes were mostly located in a 500-m-thick band immediately above the axial magma chamber. There was a close correlation between the rates of seismicity beneath each vent field and their thermal output. The highest rates of seismicity were observed beneath the High Rise and Main Endeavour fields that each have power outputs of several hundred megawatts. Seismic velocities are generally high beneath the vent fields relative to velocities along the ridge axis immediately to the north and south. However, the High Rise and Main Endeavour fields are underlain by a low velocity region at 2 km depth that coincides with the seismically active region. This is consistent with a region of increased fracturing and

  7. Geologic setting of massive sulfide deposits and hydrothermal vents along the southern Juan de Fuca Ridge

    SciTech Connect

    Normark, W.R.; Morton, J.L.; Delaney, J.R.

    1982-01-01

    This report incorporates data from two cruises of the USGS vessel SP LEE: (1) L12-80-WF from 29 October to 13 November 1980, and (2) L11-81-WF from 4 to 15 September 1981. The 1980 cruise occurred long after the optimum weather window for this region. The natural results was that no photographic or sample stations could be attempted during nearly continuous gale- and storm-force winds, which twice forced the vessel to depart the work area for safety. A detailed bathymetric survey of a 35-km segment of the ridge axial zone was completed nonetheless, and the bathymetric map compiled from this survey was used as the base for our second cruise in 1981. The second visit to the area was blessed with fair weather, and most of the cruise effort was devoted to photography and sampling, including dredging and hydrocasts in the axial valley segment, which is the central part of the area surveyed in 1980.

  8. Modeling mid-ocean ridge hydrothermal response to earthquakes, tides, and ocean currents: a case study at the Grotto mound, Endeavour Segment, Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Xu, G.; Bemis, K. G.

    2014-12-01

    Seafloor hydrothermal systems feature intricate interconnections among oceanic, geological, hydrothermal, and biological processes. The advent of the NEPTUNE observatory operated by Ocean Networks Canada at the Endeavour Segment, Juan de Fuca Ridge enables scientists to study these interconnections through multidisciplinary, continuous, real-time observations. The multidisciplinary observatory instruments deployed at the Grotto Mound, a major study site of the NEPTUNE observatory, makes it a perfect place to study the response of a seafloor hydrothermal system to geological and oceanic processes. In this study, we use the multidisciplinary datasets recorded by the NEPTUNE Observatory instruments as observational tools to demonstrate two different aspects of the response of hydrothermal activity at the Grotto Mound to geological and oceanic processes. First, we investigate a recent increase in venting temperature and heat flux at Grotto observed by the Benthic and Resistivity Sensors (BARS) and the Cabled Observatory Vent Imaging Sonar (COVIS) respectively. This event started in Mar 2014 and is still evolving by the time of writing this abstract. An initial interpretation in light of the seismic data recorded by a neighboring ocean bottom seismometer on the NEPTUNE observatory suggests the temperature and heat flux increase is probably triggered by local seismic activities. Comparison of the observations with the results of a 1-D mathematical model simulation of hydrothermal sub-seafloor circulation elucidates the potential mechanisms underlying hydrothermal response to local earthquakes. Second, we observe significant tidal oscillations in the venting temperature time series recorded by BARS and the acoustic imaging of hydrothermal plumes by COVIS, which is evidence for hydrothermal response to ocean tides and currents. We interpret the tidal oscillations of venting temperature as a result of tidal loading on a poroelastic medium. We then invoke poroelastic

  9. Temporal Changes in the Strength of Tidal Triggering Linked to Volcanic Swarms on the Endeavour Segment, Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Wilcock, W. S.; Weekly, R. T.; Hooft, E. E.; Toomey, D. R.

    2010-12-01

    A number of studies on mid-ocean ridges have documented a clear tidal triggering signal for volcanic/hydrothermal microearthquakes with earthquake rates increasing during intervals when the volumetric tidal stresses are least compressive. Tidal triggering has been demonstrated for the Endeavour segment in 1995, Axial Volcano in 1994, and the East Pacific Rise near 9°50’N in 2003-4. The results from the East Pacific Rise show a particularly strong tidal triggering signal that was interpreted as indicating that the crust was critically stressed in the lead up to a volcanic eruption in 2005-6. Observations in several subduction zones also show an increasing tidal triggering signal prior to large earthquakes and no clear evidence for triggering immediately afterwards. We present results from a tidal triggering study on the Endeavour segment of the Juan de Fuca ridge using a three-year catalog of seismicity for a local network deployed around the vent fields from 2003-2006. The catalog spans two complex regional swarms in January and February 2005 that we interpret as non-eruptive volcanic events on the southern extension of the West Valley propagating ridge and the northern Endeavour segment, respectively. These swarms were followed by a substantial drop in seismicity rates along the entire Endeavour segment and by a drop in b-values in the areas of the swarms. The swarms appear to mark the end of a 6-year spreading event that began with a swarm in 1999 and cumulatively ruptured the whole Endeavour segment. We analyze both the tidal phase and height at the times of earthquakes for triggering. Preliminary results show that prior to the swarms there is a strong triggering signal. For example, for earthquakes near the vent fields the rates of seismicity during times when the tidal phase is closer to low tide than high tide is 50% higher than when the phase is closer to high tide. The rate of earthquakes is 130% higher when tide heights are in the lowest tenth

  10. Large Lava Pond Complex on the Juan de Fuca Ridge: an Effusive, Energetic Eruption that Drained Away

    NASA Astrophysics Data System (ADS)

    Paduan, J. B.; Clague, D. A.; Davis, A. S.; Chadwick, W.; Cousens, B. L.; Embley, R. W.

    2005-12-01

    We explored an unusually large, deep, drained lava lake complex on the south rift of Axial Seamount on the Juan de Fuca Ridge during three dives with the ROV Tiburon in August 2005. The complex of five large ponds, first identified from EM300 multibeam bathymetry, is 5 km long and more than 1 km wide. The ponds are separated from one another by narrow levees that rise about 90 meters above the pond floors. The levees are all about the same depth, which suggests that the ponds formed at the same time. The volume of the lake, prior to draining, was 0.2-0.4 km3, making it the largest lava lake known along the ridge system. The outer slopes of the pond levees are constructed of elongate pillows that flowed down the steep slopes. The rims are narrow, level plateaus of lobate flows with many collapses. The inner walls are vertical cliffs, overhanging in places, with horizontal shelves from the top of the levees down to the floors of the ponds. Left like bathtub rings, these shelves mark former surfaces of the lava pond as it drained away while the lava was still molten. In many places, this veneer has collapsed to reveal truncated lobate flows and pillows. The floor of one small pond was entirely talus blocks. However, the floors of the other, larger ponds had little talus and, instead, were vast expanses of thin broken crusts, lobate flows, and very fluid, chaotic, folded and jumbled sheet flows. The lavas from each pond have abundant large feldspar and rarer olivine crystals, suggesting that all were from the same eruption. This eruption apparently began with sheet flows whose advance was limited by topography. It then ponded and built up the levees that were left when the lava drained away. On the floor of one pond we found a deposit several meters tall that was delicate and difficult to sample, and turned out to be agglutinated spatter. Limu o Pele (lava bubble wall fragments) was abundant in all the sediment samples in and around the ponds. The spatter and limu

  11. Mechanisms of Mg-phyllosilicate formation in a hydrothermal system at a sedimented ridge (Middle Valley, Juan de Fuca)

    NASA Astrophysics Data System (ADS)

    Buatier, M. D.; Früh-Green, Gretchen L.; Karpoff, A. M.

    1995-11-01

    We present results of a detailed mineralogical and geochemical study of the progressive hydrothermal alteration of clastic sediments recovered at ODP Site 858 in an area of active hydrothermal venting at the sedimented, axial rift valley of Middle Valley (northern Juan de Fuca Ridge). These results allow a characterization of newly formed phyllosilicates and provide constraints on the mechanisms of clay formation and controls of mineral reactions on the chemical and isotopic composition of hydrothermal fluids. Hydrothermal alteration at Site 858 is characterized by a progressive change in phyllosilicate assemblages with depth. In the immediate vent area, at Hole 858B, detrital layers are intercalated with pure hydrothermal precipitates at the top of the section, with a predominance of hydrothermal phases at depth. Sequentially downhole in Hole 858B, the clay fraction of the pure hydrothermal layers changes from smectite to corrensite to swelling chlorite and finally to chlorite. In three pure hydrothermal layers in the deepest part of Hole 858B, the clay minerals coexist with neoformed quartz. Neoformed and detrital components are clearly distinguished on the basis of morphology, as seen by SEM and TEM, and by their chemical and stable isotope compositions. Corrensite is characterized by a 24 Å stacking sequence and high Si- and Mg-contents, with Fe/(Fe+Mg) ratio of ≈0.08. We propose that corrensite is a unique, possibly metastable, mineralogical phase and was precipitated directly from seawater-dominated hydrothermal fluids. Hydrothermal chlorite in Hole 858B has a stacking sequence of 14 Å with Fe/(Fe+Mg) ratios of ≈0.35. The chemistry and structure of swelling chlorite suggest that it is a corrensite/chlorite mixed-layer phase. The mineralogical zonation in Hole 858B is accompanied by a systematic decrease in δ18O, reflecting both the high thermal gradients that prevail at Site 858 and extensive sediment-fluid interaction. Precipitation of the Mg

  12. Microbially-Mediated Sulfur Oxidation in Diffuse Hydrothermal Vent Fluids at Axial Seamount, Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Akerman, N. H.; Butterfield, D. A.; Huber, J. A.

    2011-12-01

    Diffusely venting hydrothermal fluids can act as a window to the subseafloor microbial environment, where chemically-reduced hydrothermal fluids mixing with oxygenated seawater in the shallow crust creates chemical disequilibria that chemotrophic microorganisms can exploit for energy gain. At Axial Seamount, an active deep-sea volcano located on the Juan de Fuca Ridge, sulfide concentrations have been measured as high as 5770 μM, and sulfide oxidation is quantitatively the most important chemical energy source for microbial metabolism. In addition, studies of microbial population structure indicate that diffuse fluids at Axial are dominated by putative sulfur- and sulfide-oxidizing bacteria belonging to the Epsilonproteobacteria. To further study this important microbial process, we surveyed diffuse vent samples from Axial over a range of temperature, pH, and sulfide concentrations for the presence and expression of sulfide-oxidizing bacteria using a functional gene approach. Dissolved oxygen concentrations decrease exponentially above 40°C and lower the potential for sulfide oxidation, so we identified six sites of different temperatures, two each in the low (< 30°C), medium (~30°C), and high temperature (30 - 50°C) range. The low temperature sites had sulfide-to-temperature ratios of 1 - 26, the medium from 15 - 29, and the high from 26 - 36. PCR primers were designed to target the sulfur oxidation gene soxB specifically from Epsilonproteobacteria and five of the six sites were positive for soxB in the DNA fraction. Bulk RNA was also extracted from the same sites to examine in situ expression of soxB. Data from these analyses, along with quantification of the soxB gene abundance and expression using quantitative PCR, are currently being carried out. Together, this data set of soxB gene diversity, expression, and abundance along with geochemical data will allow us to quantitatively determine the functional dynamics of sulfide oxidation in the subseafloor at

  13. Recent Results From Seafloor Instruments at the NeMO Observatory, Axial Volcano, Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Chadwick, W. W.; Butterfield, D. A.; Embley, R. W.; Meinig, C.; Stalin, S. E.; Nooner, S. L.; Zumberge, M. A.; Fox, C. G.

    2002-12-01

    NeMO is a seafloor observatory at Axial Seamount, an active submarine volcano located on the Juan de Fuca Ridge (JdFR) in the NE Pacific. Axial Volcano was chosen for NeMO because it has the largest magma supply on the JdFR, and is therefore the best place to study volcanic events and the perturbations they cause to pre-existing hydrothermal systems. In fact, Axial volcano erupted in January 1998 and initially our field efforts were focused on mapping the new lava flows and documenting the impact of the eruption on the hydrothermal vents and biological communities. Since then, our emphasis has gradually shifted to long-term geophysical and geochemical monitoring of the volcano in anticipation of its next eruption. Recent results from seafloor monitoring instruments and recent geologic mapping will be presented, including the following: (1) NeMO Net, a state-of-the-art, two-way communication system currently deployed at Axial, which uses a moored surface buoy to link three instruments on the seafloor in near real-time to the internet. The buoy communicates with the seafloor instruments via acoustic modems and relays data to and from shore via the Orbcomm and Iridium satellite systems. The seafloor instruments include two Remote Access Samplers (RAS) located at two hydrothermal vents in the ASHES vent field, and a Bottom Pressure Recorder (BPR) located near the center of the caldera. The RAS samplers monitor temperature and chemistry at the vents and can take 48 fluid and particle samples over a year, but can also be commanded from shore to take a sample at any time in response to detected seismic or volcanic events. The BPR is monitoring vertical motion of the seafloor, looking for sudden inflation or deflation events that may signal the onset of an eruption or intrusion. Data from the three instruments is displayed on the web at http://www.pmel.noaa.gov/vents/nemo/realtime/. (2) Data from a RAS sampler that was deployed at Cloud vent in Axial caldera between 2001

  14. Crustal magnetization and the subseafloor structure of the ASHES vent field, Axial Seamount, Juan de Fuca Ridge: Implications for the investigation of hydrothermal sites

    NASA Astrophysics Data System (ADS)

    Caratori Tontini, Fabio; Crone, Timothy J.; Ronde, Cornel E. J.; Fornari, Daniel J.; Kinsey, James C.; Mittelstaedt, Eric; Tivey, Maurice

    2016-06-01

    High-resolution geophysical data have been collected using the Autonomous Underwater Vehicle (AUV) Sentry over the ASHES (Axial Seamount Hydrothermal Emission Study) high-temperature (~348°C) vent field at Axial Seamount, on the Juan de Fuca Ridge. Multiple surveys were performed on a 3-D grid at different altitudes above the seafloor, providing an unprecedented view of magnetic data resolution as a function of altitude above the seafloor. Magnetic data derived near the seafloor show that the ASHES field is characterized by a zone of low magnetization, which can be explained by hydrothermal alteration of the host volcanic rocks. Surface manifestations of hydrothermal activity at the ASHES vent field are likely controlled by a combination of local faults and fractures and different lava morphologies near the seafloor. Three-dimensional inversion of the magnetic data provides evidence of a vertical, pipe-like upflow zone of the hydrothermal fluids with a vertical extent of ~100 m.

  15. Preliminary Results from Downhole Osmotic Samplers in a Gas Tracer Injection Experiment in the Upper Oceanic Crust on the Eastern Flank of the Juan de Fuca Ridge.

    NASA Astrophysics Data System (ADS)

    de Jong, M. T.; Clark, J. F.; Neira, N. M.; Fisher, A. T.; Wheat, C. G.

    2015-12-01

    We present results from a gas tracer injection experiment in the ocean crust on the eastern flank of the Juan de Fuca Ridge, in an area of hydrothermal circulation. Sulfur hexafluoride (SF6) tracer was injected in Hole 1362B in 2010, during IODP Expedition 327. Fluid samples were subsequently collected from a borehole observatory (CORK) installed in this hole and similar CORKs in three additional holes (1026B, 1362A, and 1301A), located 300 to 500 m away. This array of holes is located on 3.5 My old seafloor, as an array oriented subparallel to the Endeavor Segment of Juan de Fuca Ridge. Borehole fluid samples were collected in copper coils using osmotic pumps. In addition to pumps at seafloor wellheads, downhole sampling pumps were installed in the perforated casing in the upper ocean crust. These downhole samplers were intended to produce a high-resolution continuous record of tracer concentrations, including records from the first year after tracer injection in Holes 1362A and 1362B. In contrast, wellhead samplers were not installed on these CORKs holes until 2011, and wellhead records from all CORKs have a record gap of up to one year, because of a delayed expedition in 2012. The downhole samples were recovered with the submersible Alvin in August 2014. SF6 concentrations in downhole samples recovered in 2014 are generally consistent with data obtained from wellhead samples. Of particular interest are the results from Hole 1362B, where a seafloor valve was opened and closed during various recovery expeditions. High resolution tracer curves produced from the 1362B downhole samples confirm that these operations produced an SF6 breakthrough curve corresponding to a classic push-pull test used to evaluate contaminant field locations in terrestrial setting. Complete analyses of downhole samples from these CORKs are expected to produce high-resolution breakthrough curves that will allow more precise analysis and modeling of hydrothermal flow in the study area.

  16. Geology, mineralogy, and chemistry of sediment-hosted clastic massive sulfides in shallow cores, Middle Valley, northern Juan de Fuca Ridge

    SciTech Connect

    Goodfellow, W.D.; Franklin, J.M. )

    1993-12-01

    Middle Valley is a sediment-covered rift near the northern end of Juan de Fuca Ridge. Hydrothermal fluids are presently being discharged at two vent fields about 3 km apart, Bent Hill and the area of active venting. The hydrothermally active chimneys at both Bent Hill and the area of active venting consist of anhydrite and Mg-rich silicates with minor pyrite, Cu-Fe sulfide, sphalerite, and galena. Hydrothermal discharge in these areas appears to be focused along extensional faults. At the Bent Hill massive sulfide deposit, clastic sulfide layers are interbedded with hydrothermally altered and unaltered hemipelagic and turbiditic sediment along the flanks of the sulfide mound. Sulfide textures and mineralogy suggest that the Bent Hill sulfide mound formed by the build-up and collapse of sulfide chimneys, the resedimentation of sulfide debris and the formation of clastic sulfide layers, and the infilling and replacement of clastic sulfides by hydrothermal fluids near vents. Sulfur isotope values that are consistently more positive than basaltic sulfur support the addition of seawater sulfur. Pb isotope values for the Bent Hill deposit that are transitional between midocean ridge basalt (MORB) and Middle Valley sediments indicate that the sulfides probably formed from fluids which originated in the oceanic crust but which have been modified by reaction with lower temperature (<274 C) fluids generated in the sedimentary pile, similar to those now venting in Middle Valley.

  17. Major- and minor-metal composition of three distinct solid material fractions associated with Juan de Fuca hydrothermal fluids (northeast Pacific), and calculation of dilution fluid samples

    USGS Publications Warehouse

    Hinkley, T.K.; Seeley, J.L.; Tatsumoto, M.

    1988-01-01

    Three distinct types of solid material are associated with each sample of the hydrothermal fluid that was collected from the vents of the Southern Juan de Fuca Ridge. The solid materials appear to be representative of deposits on ocean floors near mid-ocean ridges, and interpretation of the chemistry of the hydrothermal solutions requires understanding of them. Sr isotopic evidence indicates that at least two and probably all three of these solid materials were removed from the solution with which they are associated, by precipitation or adsorption. This occurred after the "pure" hydrothermal fluid was diluted and thoroughly mixed with ambient seawater. The three types of solid materials, are, respectively, a coarse Zn- and Fe-rich material with small amounts of Na and Ca; a finer material also rich in Zn and Fe, but with alkali and alkaline-earth metals; and a scum composed of Ba or Zn, with either considerable Fe or Si, and Sr. Mineral identification is uncertain because of uncertain anion composition. Only in the cases of Ba and Zn were metal masses greater in solid materials than in the associated fluids. For all other metals measured, masses in fluids dwarf those in solids. The fluids themselves contain greater concentrations of all metals measured, except Mg, than seawater. We discuss in detail the relative merits of two methods of determining the mixing proportions of "pure" hydrothermal solution and seawater in the fluids, one based on Sr isotopes, and another previously used method based on Mg concentrations. Comparison of solute concentrations in the several samples shows that degree of dilution of "pure" hydrothermal solutions by seawater, and amounts of original solutes that were removed from it as solid materials, are not related. There is no clear evidence that appreciable amounts of solid materials were not conserved (lost) either during or prior to sample collection. ?? 1988.

  18. Insights on the Biology of the Eastern Lau Spreading Center from Studies on the East Pacific Rise and Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Fisher, C. R.; Sen, A.; Becker, E.

    2011-12-01

    A primary goal of the Ridge 2000 program was to conduct comparable interdisciplinary studies at a few fundamentally different sites that would facilitate comparisons among sites and development of concepts with broad application across deep ocean ridge spreading centers. Although the Eastern Lau Spreading Center (ELSC) was the least known of the three Integrated Study Sites, we were able to make amazingly fast progress on understanding this system because we could draw on technology and experience developed during the RIDGE program to plan and conduct the work, and now interpret our findings in the context of the rich literature and Ridge 2000 studies on East Pacific Rise (EPR) , Juan de Fuca Ridge (JdFR), and Mid Atlantic Ridge communities. The ELSC communities not only house different species than those of the other regions, but unlike the often tubeworm dominated E. Pacific vents, they are structured by symbiont reliant species that are mobile; snails and mussels. Although there is some variation with lava type on the ELSC, the 4 species of large, symbiont-containing snails largely occupy the niches filled by tubeworms and mussels on the EPR, while the niche of the mussel in the W. Pacific vents is quite different from that of its EPR cousin. Although we have not observed any significant tectonic or magmatic events during our studies of the ELSC, 4 years of study considered in the context of what we have learned on the EPR and JdFR allow us to formulate and begin testing hypotheses about temporal change and succession in these very different and much less visited ecosystems. Furthermore, athough Paralvinella fijiensis are only found in limited areas on some chimneys and flanges, unlike the situation on the EPR and JdFR ,the ELSC chimney communities are largely composed of the same species as are found in diffuse flow on the lavas. The ELSC chimney communities are also remarkably stable, hosting some of the largest and apparently oldest individuals found on the

  19. Seismic reflection imaging of the Juan de Fuca plate from ridge to trench: New constraints on the distribution of faulting and evolution of the crust prior to subduction

    NASA Astrophysics Data System (ADS)

    Han, Shuoshuo; Carbotte, Suzanne M.; Canales, Juan Pablo; Nedimović, Mladen R.; Carton, Hélène; Gibson, James C.; Horning, Greg W.

    2016-03-01

    We present prestack time-migrated multichannel seismic images along two cross-plate transects from the Juan de Fuca (JdF) Ridge to the Cascadia deformation front (DF) offshore Oregon and Washington from which we characterize crustal structure, distribution and extent of faults across the plate interior as the crust ages and near the DF in response to subduction bending. Within the plate interior, we observe numerous small offset faults in the sediment section beginning 50-70 km from the ridge axis with sparse fault plane reflections confined to the upper crust. Plate bending due to sediment loading and subduction initiates at ~120-150 km and ~65-80 km seaward of the DF, respectively, and is accompanied by increase in sediment fault offsets and enhancement of deeper fault plane reflectivity. Most bend faulting deformation occurs within 40 km from the DF; on the Oregon transect, bright fault plane reflections that extend through the crust and 6-7 km into the mantle are observed. If attributed to serpentinization, ~0.12-0.92 wt % water within the uppermost 6 km of the mantle is estimated. On the Washington transect, bending faults are confined to the sediment section and upper-middle crust. The regional difference in subduction bend-faulting and potential hydration of the JdF plate is inconsistent with the spatial distribution of intermediate-depth intraslab seismicity at Cascadia. A series of distinctive, ridgeward dipping (20°-40°) lower crustal reflections are imaged in ~6-8 Ma crust along both transects and are interpreted as ductile shear zones formed within the ridge's accretionary zone in response to temporal variations in mantle upwelling, possibly associated with previously recognized plate reorganizations at 8.5 Ma and 5.9 Ma.

  20. Contrasting two-dimensional and three-dimensional models of outcrop-to-outcrop hydrothermal circulation on the eastern flank of the Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Fisher, A. T.; Winslow, D. M.; Stauffer, P. H.; Gable, C. W.; Zyvoloski, G.

    2015-12-01

    We present results from two-dimensional and three-dimensional coupled (fluid and heat flow) simulations of ridge-flank hydrothermal circulation on the eastern flank of the Juan de Fuca Ridge. Field studies in this region demonstrate the existence of an active hydrothermal siphon operating between two seamounts separated by ~50 km, and provide quantitative constraints that help to determine which simulations are successful in replicating known properties and processes. Constraints from field observations include (a) the flow rate between the outcrops, (b) the presence of secondary convection within the basement aquifer, leading to simultaneous recharge and discharge through a single outcrop (in additional to siphon flow between outcrops), (c) direct measurements of crustal permeability in basement boreholes, and (d) the lack of a regional seafloor heat flux anomaly as a consequence of outcrop-to-outcrop circulation. New simulations include an assessment of crustal permeability and thickness, outcrop permeability, and a comparison of simulation results using different geometries. Three-dimensional simulations are more consistent with field observations than their two-dimensional counterparts and indicate a crustal aquifer of ≤300 m thick having a bulk permeability between 3×10-13 and 2×10-12 m2, values consistent with borehole measurements. In addition, we find fluid flow rates and crustal cooling efficiencies that are an order of magnitude greater in three-dimensional simulations than inferred from two-dimensional simulations using equivalent properties. These results show that three-dimensional simulations of outcrop-to-outcrop hydrothermal circulation on a ridge flank improves the geological and geometric accuracy of results, in comparison to models run in two dimensions.

  1. Preliminary Results from a Gas Tracer Injection Experiment in the Upper Oceanic Crust on the Eastern Flank of the Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Neira, N. M.; Clark, J. F.; Fisher, A. T.; Wheat, C. G.

    2013-12-01

    We present the first results from a gas tracer injection experiment in the ocean crust on the eastern flank of the Juan de Fuca Ridge, in an area of vigorous hydrothermal circulation. A mixture of tracers was injected in Hole 1362B in 2010, during IODP Expedition 327, as part of a 24-hour pumping experiment. Fluid samples were subsequently collected from this hole and three additional holes (1026B, 1362A, and 1301A), located 300 to 500 m away. The array of holes is located on 3.5 M.y. old seafloor, and oriented N20°E, subparallel to the Endeavor Segment of Juan de Fuca Ridge, 100 km to the west. Sulfur hexafluoride (SF6) was injected at a concentration of 0.0192 mol/min, with fluid pumping rate of 6.7 L/s for 20.2 h, resulting in a mean concentration of 47.6 μM and 23.3 mol of SF6 being added to crustal fluids. Borehole fluid samples were collected in copper coils using osmotic pumps attached to the wellheads of several long-term, subseafloor observatories (CORKs). These samples were recovered from the seafloor using a remotely-operated vehicle in 2011 and 2013. Analyses of SF6 concentrations in samples recovered in 2011 indicate the first arrival of SF6 in Hole 1301A, 550 m south of the injection Hole 1362B, ~265 days after injection. This suggests that the most rapid lateral transport of gas (at the leading edge of the plume) occurred at ~2 m/day. Samples recovered in 2013 should provide a more complete breakthrough curve, allowing assessment of the mean lateral transport rate. Additional insights will come from analysis of metal salts and particle tracers injected contemporaneously with the SF6, the cross-hole pressure response to injection and a two-year fluid discharge experiment. Additional wellhead samples will be collected in Summer 2014, as will downhole osmosamplers deployed in perforated casing within the upper ocean crust in Holes 1362A and 1362B.

  2. Neogene magmatism northeast of the Aegir and Kolbeinsey ridges, NE Atlantic: Spreading ridge-mantle plume interaction?

    NASA Astrophysics Data System (ADS)

    Breivik, AsbjøRn Johan; Faleide, Jan Inge; Mjelde, Rolf

    2008-02-01

    According to mantle plume theory the Earth's interior cools partly by localized large vertical mass transport, causing extensive decompression melting. The Iceland melt anomaly is regarded as a typical example of a mantle plume. However, there are centers of Miocene to recent magmatism in the Norwegian-Greenland Sea not easily explained by the plume theory. Here we present new data to document diffuse late Miocene magmatic underplating of older oceanic crust located mostly north of the Aegir Ridge, an extinct seafloor spreading axis in the Norway Basin. There is also a region with similar magmatism northeast of the presently spreading Kolbeinsey Ridge north of Iceland. Intraplate magmatism in these locations is not easily explained by local plume models, edge-driven convection, or by asthenosphere flow-lithosphere thickness interaction. On the basis of correlation between the magmatism and the active or extinct spreading ridges, we propose the mid-ocean ridge basalt-capture model, in which this magmatism can be understood through plume-spreading ridge interaction: The asthenosphere flow out from Iceland captures deeper, low-degree partially molten asthenospheric regions from underneath the spreading ridges and carry these across the terminating fracture zones, to subsequently underplate oceanic crust or to intrude and build seamounts. This model is similar to lithospheric cracking models for intraplate magmatism in requiring that low-degree partial melt can be retained in the asthenosphere over time but differ in that the magma is extracted by internal magma movement processes and not by external tectonic forces.

  3. Origin of minor and trace element compositional diversity in anorthitic feldspar phenocrysts and melt inclusions from the Juan de Fuca Ridge

    USGS Publications Warehouse

    Adams, David T.; Nielsen, Roger L.; Kent, Adam J.R.; Tepley, Frank J., III

    2011-01-01

    Melt inclusions trapped in phenocryst phases are important primarily due to their potential of preserving a significant proportion of the diversity of magma composition prior to modification of the parent magma array during transport through the crust. The goal of this investigation was to evaluate the impact of formational and post-entrapment processes on the composition of melt inclusions hosted in high anorthite plagioclase in MORB. Our observations from three plagioclase ultra-phyric lavas from the Endeavor Segment of the Juan de Fuca Ridge document a narrow range of major elements and a dramatically greater range of minor and trace elements within most host plagioclase crystals. Observed host/inclusion partition coefficients for Ti are consistent with experimental determinations. In addition, observed values of DTi are independent of inclusion size and inclusion TiO2 content of the melt inclusion. These observations preclude significant effects from the re-homogenization process, entrapment of incompatible element boundary layers or dissolution/precipitation. The observed wide range of TiO2 contents in the host feldspar, and between bands of melt inclusions within individual crystals rule out modification of TiO contents by diffusion, either pre-eruption or due to re-homogenization. However, we do observe comparatively small ranges for values of K2O and Sr compared to P2O5 and TiO2 in both inclusions and crystals that can be attributed to diffusive processes that occurred prior to eruption.

  4. A Diverse Community of Metal(loid) Oxide Respiring Bacteria Is Associated with Tube Worms in the Vicinity of the Juan de Fuca Ridge Black Smoker Field

    PubMed Central

    Maltman, Chris; Walter, Graham; Yurkov, Vladimir

    2016-01-01

    Epibiotic bacteria associated with tube worms living in the vicinity of deep sea hydrothermal vents of the Juan de Fuca Ridge in the Pacific Ocean were investigated for the ability to respire anaerobically on tellurite, tellurate, selenite, selenate, metavanadate and orthovanadate as terminal electron acceptors. Out of 107 isolates tested, 106 were capable of respiration on one or more of these oxides, indicating that metal(loid) oxide based respiration is not only much more prevalent in nature than is generally believed, but also is an important mode of energy generation in the habitat. Partial 16S rRNA gene sequencing revealed the bacterial community to be rich and highly diverse, containing many potentially new species. Furthermore, it appears that the worms not only possess a close symbiotic relationship with chemolithotrophic sulfide-oxidizing bacteria, but also with the metal(loid) oxide transformers. Possibly they protect the worms through reduction of the toxic compounds that would otherwise be harmful to the host. PMID:26914590

  5. A Diverse Community of Metal(loid) Oxide Respiring Bacteria Is Associated with Tube Worms in the Vicinity of the Juan de Fuca Ridge Black Smoker Field.

    PubMed

    Maltman, Chris; Walter, Graham; Yurkov, Vladimir

    2016-01-01

    Epibiotic bacteria associated with tube worms living in the vicinity of deep sea hydrothermal vents of the Juan de Fuca Ridge in the Pacific Ocean were investigated for the ability to respire anaerobically on tellurite, tellurate, selenite, selenate, metavanadate and orthovanadate as terminal electron acceptors. Out of 107 isolates tested, 106 were capable of respiration on one or more of these oxides, indicating that metal(loid) oxide based respiration is not only much more prevalent in nature than is generally believed, but also is an important mode of energy generation in the habitat. Partial 16S rRNA gene sequencing revealed the bacterial community to be rich and highly diverse, containing many potentially new species. Furthermore, it appears that the worms not only possess a close symbiotic relationship with chemolithotrophic sulfide-oxidizing bacteria, but also with the metal(loid) oxide transformers. Possibly they protect the worms through reduction of the toxic compounds that would otherwise be harmful to the host. PMID:26914590

  6. Phylogenetic diversity of microorganisms in subseafloor crustal fluids from Holes 1025C and 1026B along the Juan de Fuca Ridge flank

    PubMed Central

    Jungbluth, Sean P.; Lin, Huei-Ting; Cowen, James P.; Glazer, Brian T.; Rappé, Michael S.

    2014-01-01

    To expand investigations into the phylogenetic diversity of microorganisms inhabiting the subseafloor biosphere, basalt-hosted crustal fluids were sampled from Circulation Obviation Retrofit Kits (CORKs) affixed to Holes 1025C and 1026B along the Juan de Fuca Ridge (JdFR) flank using a clean fluid pumping system. These boreholes penetrate the crustal aquifer of young ocean crust (1.24 and 3.51 million years old, respectively), but differ with respect to borehole depth and temperature at the sediment-basement interface (147 m and 39°C vs. 295 m and 64°C, respectively). Cloning and sequencing of PCR-amplified small subunit ribosomal RNA genes revealed that fluids retrieved from Hole 1025C were dominated by relatives of the genus Desulfobulbus of the Deltaproteobacteria (56% of clones) and Candidatus Desulforudis of the Firmicutes (17%). Fluids sampled from Hole 1026B also contained plausible deep subseafloor inhabitants amongst the most abundant clone lineages; however, both geochemical analysis and microbial community structure reveal the borehole to be compromised by bottom seawater intrusion. Regardless, this study provides independent support for previous observations seeking to identify phylogenetic groups of microorganisms common to the deep ocean crustal biosphere, and extends previous observations by identifying additional lineages that may be prevalent in this unique environment. PMID:24723917

  7. Distribution and composition of hydrothermal plume particles from the ASHES vent field at Axial Volcano, Juan de Fuca Ridge. [Axial Seamount Hydrothermal Emission Study

    SciTech Connect

    Feely, R.A.; Geiselman, T.L.; Baker, E.T.; Massoth, G.J. ); Hammond, S.R. )

    1990-08-10

    In 1986 and 1987, buoyant and neutrally buoyant hydrothermal plume particles from the ASHES vent field within Axial Volcano were sampled to study their variations in composition with height above the seafloor. Individual mineral phases were identified using standard X ray diffraction procedures. Elemental composition and particle morphologies were determined by X ray fluorescence spectrometry and scanning electron microscopy/X ray energy spectrometry techniques. The vent particles were primarily composed of sphalerite, anhydrite, pyrite, pyrrhotite, chalcopyrite, barite, hydrous iron oxides, and amorphous silica. Grain size analyses of buoyant plume particles showed rapid particle growth in the first few centimeters above the vent orifice, followed by differential sedimentation of the larger sulfide and sulfate minerals out of the buoyant plume. The neutrally buoyant plume consisted of a lower plume, which was highly enriched in Fe, S, Zn, and Cu, and an upper plume, which was highly enriched in Fe and Mn. The upper plume was enriched in Fe and Mn oxyhydroxide particles, and the lower plume was enriched in suspended sulfide particles in addition to the Fe and Mn oxyhydroxide particles. The chemical data for the water column particles indicate that chemical scavenging and differential sedimentation processes are major factors controlling the composition of the dispersing hydrothermal particles. Short-term sediment trap experiments indicate that the fallout from the ASHES vent field is not as large as some of the other vent fields on the Juan de Fuca Ridge.

  8. Eruptive and tectonic history of the Endeavour Segment, Juan de Fuca Ridge, based on AUV mapping data and lava flow ages

    NASA Astrophysics Data System (ADS)

    Clague, David. A.; Dreyer, Brian M.; Paduan, Jennifer B.; Martin, Julie F.; Caress, David W.; Gill, James B.; Kelley, Deborah S.; Thomas, Hans; Portner, Ryan A.; Delaney, John R.; Guilderson, Thomas P.; McGann, Mary L.

    2014-08-01

    bathymetric surveys from autonomous underwater vehicles ABE and D. Allan B. were merged to create a coregistered map of 71.7 km2 of the Endeavour Segment of the Juan de Fuca Ridge. Radiocarbon dating of foraminifera in cores from three dives of remotely operated vehicle Doc Ricketts provide minimum eruption ages for 40 lava flows that are combined with the bathymetric data to outline the eruptive and tectonic history. The ages range from Modern to 10,700 marine-calibrated years before present (yr BP). During a robust magmatic phase from >10,700 yr BP to ˜4300 yr BP, flows erupted from an axial high and many flowed >5 km down the flanks; some partly buried adjacent valleys. Axial magma chambers (AMCs) may have been wider than today to supply dike intrusions over a 2 km wide axial zone. Summit Seamount formed by ˜4770 yr BP and was subsequently dismembered during a period of extension with little volcanism starting ˜4300 yr BP. This tectonic phase with only rare volcanic eruptions lasted until ˜2300 yr BP and may have resulted in near-solidification of the AMCs. The axial graben formed by crustal extension during this period of low magmatic activity. Infrequent eruptions occurred on the flanks between 2620-1760 yr BP and within the axial graben since ˜1750 yr BP. This most recent phase of limited volcanic and intense hydrothermal activity that began ˜2300 yr BP defines a hydrothermal phase of ridge development that coincides with the present-day 1 km wide AMCs and overlying hydrothermal vent fields.

  9. Three-dimensional modeling of outcrop-to-outcrop hydrothermal circulation on the eastern flank of the Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Winslow, D. M.; Fisher, A. T.; Stauffer, P. H.; Gable, C. W.; Zyvoloski, G. A.

    2016-03-01

    We present three-dimensional simulations of coupled fluid and heat transport in the ocean crust, to explore patterns and controls on ridge-flank hydrothermal circulation on the eastern flank of the Juan de Fuca Ridge. Field studies have shown that there is large-scale fluid flow in the volcanic ocean crust in this region, including local convection and circulation between two basement outcrops separated by ~50 km. New simulations include an assessment of crustal permeability and aquifer thickness, outcrop permeability, the potential influence of multiple discharging outcrops, and a comparison between two-dimensional (profile) and three-dimensional representations of the natural system. Field observations that help to constrain new simulations include a modest range of flow rates between recharging and discharging outcrops, secondary convection adjacent to the recharging outcrop, crustal permeability determinations made in boreholes, and the lack of a regional seafloor heat flux anomaly as a consequence of advective heat loss from the crust. Three-dimensional simulations are most consistent with field observations when models use a crustal permeability of 3 × 10-13 to 2 × 10-12 m2, and the crustal aquifer is ≤300 m thick, values consistent with borehole observations. We find fluid flow rates and crustal cooling efficiencies that are an order of magnitude greater in three-dimensional simulations than in two-dimensional simulations using equivalent properties. Simulations including discharge from an additional outcrop can also replicate field observations but tend to increase the overall rate of recharge and reduce the flow rate at the primary discharge site.

  10. Eruptive and tectonic history of the Endeavour Segment, Juan de Fuca Ridge, based on AUV mapping data and lava flow ages

    USGS Publications Warehouse

    Clague, David A.; Dreyer, Brian M; Paduan, Jennifer B; Martin, Julie F; Caress, David W; Gillespie, James B.; Kelley, Deborah S; Thomas, Hans; Portner, Ryan A; Delaney, John R; Guilderson, Thomas P.; McGann, Mary L.

    2016-01-01

    High-resolution bathymetric surveys from autonomous underwater vehicles ABE and D. Allan B. were merged to create a coregistered map of 71.7 km2 of the Endeavour Segment of the Juan de Fuca Ridge. Radiocarbon dating of foraminifera in cores from three dives of remotely operated vehicle Doc Ricketts provide minimum eruption ages for 40 lava flows that are combined with the bathymetric data to outline the eruptive and tectonic history. The ages range from Modern to 10,700 marine-calibrated years before present (yr BP). During a robust magmatic phase from >10,700 yr BP to ~4300 yr BP, flows erupted from an axial high and many flowed >5 km down the flanks; some partly buried adjacent valleys. Axial magma chambers (AMCs) may have been wider than today to supply dike intrusions over a 2 km wide axial zone. Summit Seamount formed by ~4770 yr BP and was subsequently dismembered during a period of extension with little volcanism starting ~4300 yr BP. This tectonic phase with only rare volcanic eruptions lasted until ~2300 yr BP and may have resulted in near-solidification of the AMCs. The axial graben formed by crustal extension during this period of low magmatic activity. Infrequent eruptions occurred on the flanks between 2620–1760 yr BP and within the axial graben since ~1750 yr BP. This most recent phase of limited volcanic and intense hydrothermal activity that began ~2300 yr BP defines a hydrothermal phase of ridge development that coincides with the present-day 1 km wide AMCs and overlying hydrothermal vent fields.

  11. Seismic Structure of the Endeavour Segment, Juan de Fuca Ridge: Correlations of Crustal Magma Chamber Properties With Seismicity, Faulting, and Hydrothermal Activity

    NASA Astrophysics Data System (ADS)

    van Ark, E. M.; Detrick, R. S.; Canales, J. P.; Carbotte, S. M.; Diebold, J. B.; Harding, A.; Kent, G.; Nedimovic, M. R.; Wilcock, W. S.

    2003-12-01

    Multichannel seismic reflection data collected in July 2002 at the RIDGE2000 Integrated Studies Site at the Endeavour segment, Juan de Fuca Ridge show a high-amplitude, mid-crustal reflector underlying all of the known hydrothermal vent fields at this segment. This reflector, which has been identified with a crustal magma body [Detrick et al., 2002], is found at a two-way travel time of 0.85-1.5 s (1.9-4.0 km) below the seafloor and extends approximately 25 km along axis although it is only 1-2 km wide on the cross-axis lines. The reflector is shallowest (2.5 km depth on the along-axis line) beneath the central, elevated part of the Endeavour segment and deepens toward the segment ends, with a maximum depth of 4 km. The cross axis lines show the mid-crustal reflector dipping from 9 to 50? to the east with the shallowest depths under the ridge axis and greater depths under the eastern flank of the ridge. The amplitude-offset behavior of this mid-crustal axial reflector is consistent with a negative impedance contrast, indicating the presence of melt or a crystallizing mush. We have constructed partial offset stacks at 2-3 km offset to examine the variation of melt-mush content of the axial magma chamber along axis. We see a decrease in P-wave amplitudes with increasing offset for the mid-crustal reflector beneath the Mothra and Main Endeavour vent fields and between the Salty Dawg and Sasquatch vent fields, indicating the presence of a melt-rich body. Beneath the High Rise, Salty Dawg, and Sasquatch vent fields P-wave amplitudes vary little with offset suggesting the presence of a more mush-rich magma chamber. Hypocenters of well-located microseismicity in this region [Wilcock et al., 2002] have been projected onto the along-axis and cross-axis seismic lines, revealing that most axial earthquakes are concentrated in a depth range of 1.5 - 2.7 km, just above the axial magma chamber. In general, seismicity is distributed diffusely within this zone indicating thermal

  12. Crustal structure of Axial Volcano on the Juan de Fuca Ridge, from seafloor depths to the bottom of the magma chamber, using Elastic Full Waveform Inversion.

    NASA Astrophysics Data System (ADS)

    Arnulf, Adrien; Harding, Alistair; Kent, Graham

    2013-04-01

    Axial volcano is located at 46˚N, 130˚W at the intersection of the Juan de Fuca Ridge and the Cobb-Eickelberg seamount chain. It is the most recent eruptive center of the Cobb hotspot, which last erupted in 2011. The volcano rises ~700 m above the adjacent ridge axis and its summit features a 8-km-long, U-shaped caldera with an opening to the southeast where there is an active hydrothermal field and very young lava flows. Located at the junction of a mid-ocean ridge and a volcanic hotspot, Axial volcano is atypical and its internal structure remains poorly understood. Here, we present results from an elastic full waveform inversion (FWI) along multiple seismic lines that span the whole volcano. We have used a multi-stage FWI, inverting successively wide-angle reflections and refractions arrivals from downward extrapolated streamer data, then windowed short offset reflections from the underlying magma chamber. Our final models show fine scale velocity structures with spatial resolutions of tens of meters. Our results indicate that Layer 2A thickness is extremely heterogeneous (350-900 m) within the volcano with abrupt vertical offsets of >300 m at the caldera walls, consistent with faulting of a geologically defined Layer 2A. Interestingly, Layer 2A appears to be extremely thin beneath the active hydrothermal field, where sheeted dikes might lay <100 m beneath the seafloor. On the other hand, the ever-dropping floor of the caldera appears to be a perfect trap for the ponding of lava flows: the thickness of the lava flows increase gradually to the northwest reaching ~450 m at end of the caldera. Surface velocities are low and exhibit limited variation over the whole volcano suggesting relative recent formation, as layer 2A velocity increases rapidly with age at slightly greater depths. Crustal aging (increase in layer 2A velocity with age) appears to be controlled by pipe-like pattern of focused hydrothermal mineralization. Finally, RTM images reveal a large melt

  13. Local Earthquakes on the Endeavour Segment of the Juan de Fuca Ridge: First Seismic Results from the Keck Seismic/Hydrothermal Observatory

    NASA Astrophysics Data System (ADS)

    Wilcock, W. S.; Barclay, A. H.; McGill, P. R.; Stakes, D. S.; Ramirez, T. M.; Toomey, D. R.; Durant, D. T.; Hooft, E. E.; Mulder, T. L.; Ristau, J. P.

    2004-12-01

    The W.M. Keck Foundation is supporting a five-year program to conduct prototype seafloor observatory experiments to monitor the relationships between episodic deformation, fluid venting and microbial productivity on the Endeavour segment of the Juan de Fuca Ridge and at the intersection of the Nootka fault and the Cascadia subduction zone. At the Endeavour, the experiment is sited near the central portion of the segment in a region where the spreading axis is characterized by a 100-m-deep, 500-m-wide axial valley that hosts five high-temperature hydrothermal vent fields spaced 2-3 km apart. The objectives of the experiment are to monitor local and regional seismicity around the vent fields in conjunction with the deployment of sensors and samplers to monitor temporal variations in the physical, chemical and ultimately microbial characteristics of the hydrothermal fluids. The Endeavour seismic network was installed in the summer of 2003 with the ROV ROPOS and comprises seven GEOSense three-component short-period corehole seismometers and one buried Guralp CMG-1T broadband seismometer. Five of the seven short-period seismometers were inserted in horizontal coreholes drilled into seafloor basalts; two were deployed in concrete monuments on the ridge flanks. It is the first seismic network on a mid-ocean ridge in which the sensors are deployed with an ROV beneath the seafloor in order to ensure good coupling and minimize the effects of current-generated noise. In August 2004, we used the ROV Tiburon to service the Endeavour seismic network and recover the first year of data. In addition, we installed a second broadband and three short period seismometers on the Nootka fault and a third broadband seismometer on the Explorer plate. The Endeavour seismic network performed well with all eight instruments recording high-quality data. A preliminary inspection of the data reveals many examples of local, regional and teleseismic earthquakes. One striking characteristic of the

  14. Metalloid reducing bacteria isolated from deep ocean hydrothermal vents of the Juan de Fuca Ridge, Pseudoalteromonas telluritireducens sp. nov. and Pseudoalteromonas spiralis sp. nov.

    PubMed

    Rathgeber, Christopher; Yurkova, Natalia; Stackebrandt, Erko; Schumann, Peter; Humphrey, Elaine; Beatty, J Thomas; Yurkov, Vladimir

    2006-11-01

    Five strains of Gram-negative, rod, curved rod and spiral-shaped bacteria were isolated from the vicinity of deep ocean hydrothermal vents along the Main Endeavour Segment of the Juan de Fuca Ridge in the Pacific Ocean. All strains showed remarkable resistance to high levels of toxic metalloid oxyanions, and were capable of reducing the oxyanions tellurite and selenite to their less toxic elemental forms. Phylogenetic analysis of four strains identified these isolates as close relatives of the genus Pseudoalteromonas within the class Gammaproteobacteria. Pseudoalteromonas agarivorans was the closest relative of strains Te-1-1 and Se-1-2-redT, with, respectively, 99.5 and 99.8% 16S rDNA sequence similarity. Strain Te-2-2T was most closely related to Pseudoalteromonas paragorgicola, with 99.8% 16S rDNA sequence similarity. The DNA G+C base composition was 39.6 to 41.8 mol%, in agreement with other members of the genus Pseudoalteromonas. However, the isolates showed important morphological and physiological differences from previously described species of this genus, with one group forming rod-shaped bacteria typical of Pseudoalteromonas and the other forming vibrioid- to spiral-shaped cells. Based on these differences, and on phylogenetic data, we propose the creation of the new species Pseudoalteromonas telluritireducens sp. nov., with strain Se-1-2-redT (DSMZ = 16098T = VKM B-2382T) as the type strain, and Pseudoalteromonas spiralis sp. nov., with strain Te-2-2T (DSMZ = 16099T = VKM B-2383T) as the type strain. PMID:17066332

  15. Constraining Seasonal and Vertical Distributions of Planktonic Foraminifera for Paleoclimate Reconstruction Since MIS3 at the Axial Seamount, Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Chen, S. L.; Ravelo, A. C.; Clague, D. A.

    2015-12-01

    The California Current is an upwelling region with dynamic interactions between circulation, biological productivity and ecology. A 77 cm piston push core was taken from the Juan de Fuca Ridge Axial Seamount using a Remotely Operated Vehicle (ROV) (2213m, 45.55º N, 130.08º W), an active submarine volcano ~480 km off Oregon's coast. Five radiocarbon dates indicate that the sediment ranges from 42.6 ka at 77 cm to 17.6 ka at 15 cm, with an average sediment accumulation rate of 2.47 cm/ka from 77-15 cm, and an average rate of 0.85 cm/ka during the postglacial period (<17.6 ka). Multiple species of planktic foraminifera from the core representing subtropical, subartic, and arctic fauna have been used to constrain changes in vertical and seasonal temperature since Marine Isotope Stage 3 (MIS3). Measurements of δ18O of the upwelling species Globigerina bulloides, the thermocline dwelling species Neogloboquadrina dutertrei, and the warm mixed-layer species Orbulina universa are offset from each other, reflecting vertical and seasonal variation among the planktonic foraminifera. Of the three species, G. bulloides shows the least variation in δ18O, possibly indicating that marked changes in temperature are masking changes in the δ18O of seawater due to global ice volume changes. G. bulloides and O. universa δ18O values are similar in MIS 3 and diverge with time, indicating the development of strong seasonal succession of species, since the last glacial maximum. Bulk nitrogen isotopes and nitrogen flux provide additional constraints on upwelling strength and insight into local biological productivity and nutrient dynamics. Obtaining Mg/Ca data will clarify the δ 18O interpretation except deep in the core where metal-bearing authigenic precipitates affect Mg concentrations. These climatic proxies together provide insight into how global climate change and local seamount volcanism impacts regional productivity in the California Current.

  16. Numerical Modeling of Two-Phase Flow at the Main Endeavour Field, Juan de Fuca Ridge: Quasi-Steady State and Thermal Decline of the Vent Field

    NASA Astrophysics Data System (ADS)

    Singh, S.; Lowell, R. P.; Lewis, K. C.

    2012-12-01

    The Main Endeavour Field (MEF) on the Juan de Fuca Ridge consists of a large number of chimney structures occupying an area approximately 400 m x 150 m along the ridge axis. For nearly a decade, the MEF exhibited quasi-steady north-south trending spatial gradients of both temperature and salinity. We have constructed 2-D across-axis numerical models of two-phase flow using the code FISHES to investigate possible causes for this variation. We considered the effect of bottom boundary temperature and both a homogeneous permeability structure and a geometry incorporating a more-permeable layer 2A. From these model results we argue that such a trend is more likely to be the result of heterogeneous permeability structure of the shallow oceanic crust than a result of bottom boundary temperature variations. After a magmatic event in 1999, this trend was disrupted; and thermal data using the Autonomous Benthic Explorer (ABE) indicates that there has been a significant decline in the heat output from a value of approximately 450 MW in 2000 to approximately 300 MW in 2004. In the southern part of the vent field, vent salinities have also increased from values well below those of seawater to values close to seawater. We therefore extend our investigation to include the effect of a temporally-decaying basal heat flow, which may result from cooling, crystallizing magma chamber, on the system. Our aim is to determine whether such a phenomenon could cause the observed rapid decline of heat flow and changes in vent salinity at the MEF. We find that the thermal inertia in the system is such that changes in basal heat flow would be difficult to detect in the given time frame, if magma replenishment ceased following the 1999 magmatic event. The time delay between changes in bottom conditions and the observed decay in observed heat output suggests that the 1999 event represented a small replenishment event and that the AMC may have begun cooling some time before that. Moreover, because

  17. Microearthquakes beneath the Hydrothermal Vent Fields on the Endeavour Segment of the Juan de Fuca Ridge: Results from the Keck Seismic/Hydrothermal Observatory

    NASA Astrophysics Data System (ADS)

    Bowman, D.; Parker, J.; Wilcock, W.; Hooft, E.; Barclay, A.; Toomey, D.; McGill, P.; Stakes, D.; Schmidt, C.; Patel, H.

    2005-12-01

    The W.M. Keck Foundation is supporting the operation of a small seismic network in the vicinity of the hydrothermal vent fields on the central portion of the Endeavour Segment of the Juan de Fuca Ridge. This is part of a program to conduct prototype seafloor observatory experiments to monitor the relationships between episodic deformation, fluid venting and microbial productivity at oceanic plate boundaries. The Endeavour seismic network was installed in the summer of 2003 and comprises seven GEOSense three-component short-period corehole seismometers and one buried Guralp CMG-1T broadband seismometer. A preliminary analysis of the first year of data was undertaken as part of an undergraduate research apprenticeship class taught at the University of Washington's Friday Harbor Laboratories and additional analysis has since been completed by two of the apprentices and by two IRIS undergraduate interns. Over 12,000 earthquakes were located along the ridge-axis of the Endeavour, of which ~3,000 occur within or near the network and appear to be associated with the hydrothermal systems. The levels of seismicity are strongly correlated with the intensity of venting with particularly high rates of seismicity beneath the Main and High Rise Fields and substantially lower rates to the north beneath the relatively inactive Salty Dawg and Sasquatch fields. We have used both HYPOINVERSE and a grid search algorithm to investigate the distribution of focal depths assuming a variety of one-dimensional velocity models. The preliminary results show that the majority of earthquakes occur within a narrow depth range and may represent an intense zone of seismicity within a reaction overlying the axial magma chamber at ~2.5 km depth. However, the mean focal depth is strongly dependent on the relative weights assigned to the S arrivals. We infer from the inspection of residuals that no combination of the P- and S-wave velocity models we have so far investigated are fully consistent with

  18. Age, Episodicity and Migration of Hydrothermal Activity within the Axial Valley, Endeavour Segment, Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Jamieson, J. W.; Hannington, M. D.; Kelley, D. S.; Clague, D. A.; Holden, J. F.; Tivey, M. K.; Delaney, J. R.

    2011-12-01

    Hydrothermal sulfide deposits record the history of high-temperature venting along the Endeavour Segment. Active venting is currently located within five discreet vent fields, with minor diffuse venting occurring between the fields. However, inactive and/or extinct sulfide structures are found throughout the entire axial valley of the ridge segment, suggesting that hydrothermal activity has been more vigorous in the past or focused venting has migrated with time. Here, we present age constraints from U-series dating of 44 sulfide samples collected by manned submersible from between the Mothra Field in the south to Sasquatch in the north. Samples are dated using 226Ra/Ba ratios from hydrothermal barite that precipitates along with the sulfide minerals. Most samples have been collected from within or near the active vent fields. Fifteen samples from the Main Endeavour Field (MEF) show a spectrum of ages from present to 2,430 years old, indicating that this field has been continuously active for at least ~2,400 years. MEF appears to be oldest currently active field. This minimum value for the age of hydrothermal activity also provides a minimum age of the axial valley itself. Ages from thirteen samples from the High-Rise Field indicate continuous venting for at least the past ~1,250 years. These age data are used in conjunction with age constraints of the volcanic flows to develop an integrated volcanic, hydrothermal and tectonic history of the Endeavour Segment. The total volume of hydrothermal sulfide within the axial valley, determined from high-resolution bathymetry, is used in conjunction with the age constraints of the sulfide material to determine the mass accumulation rates of sulfide along the Endeavour Segment. These data can be used to calibrate the efficiency of sulfide deposition from the hydrothermal vents, and provide a time-integrated history of heat, fluid and chemical fluxes at the ridge-segment scale. The comparison of time-integrated rates with

  19. Characterization of Active Hydrothermal Fluid Discharge and Recharge Zones in the Endeavour Axial Valley, Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Salmi, M.; Hutnak, M.; Hearn, C.; Tivey, M.; Bjorklund, T.; Johnson, H. P.

    2012-12-01

    Sites where warm hydrothermal fluid vents at mid-ocean spreading centers are important for understanding a wide range of critical oceanic processes, but discharge zones represent a very limited portion of crustal fluid circulation pathways. Mapping the distribution of both fluid recharge and discharge sites within the axial valley provides wider insight into the larger scale features of hydrothermal circulation. Our 2011 survey consisted of 180 conductive heat flow stations within the Endeavour axial valley in roughly a 400 m by 1000 m grid, extending across the entire axial valley from the outer flank of the western boundary ridge to the eastern wall. Data acquisition used thermal blankets which measured conductive heat flow without requiring substantial sediment cover. A surprising result from this survey was zones of high heat flow extending across-strike, from the summit of the west valley wall across the entire axial valley floor. This trend was correlated with anomalously low seafloor magnetization from a near-bottom survey with the ROV JASON. Unexpectedly, over half of the axial valley floor was anomalously low at <50 mW m-2, while a small portion of the sites within the 'warm zone' had heat flow values >1 W m-2. The areas of extremely low heat flow values are interpreted as being directly influenced by recharge zones. Based on MCS estimates of partial melt depth below the axial valley and the assumption of no fluid advection, the purely conductive heat flow for this region should be on the order of 1 W m-2.The observation that conductive heat flux is suppressed over large portions of the axial valley floor suggests that heat transfer within the crustal sub-surface fluid reservoir is widespread, and impacts a large portion of our survey area. The largely bi-modal distribution of high and low conductive heat flow, coupled with geophysical and video observations, suggest current Endeavour axial valley crustal fluid circulation models need to be re-evaluated.

  20. Seismicity Along the Endeavour Segment of the Juan de Fuca Ridge: Automated Event Locations for an Ocean-Bottom Seismometer Network

    NASA Astrophysics Data System (ADS)

    Weekly, R. T.; Wilcock, W. S.; Hooft, E. E.; Toomey, D. R.; McGill, P. R.

    2004-12-01

    From 2003-2006, the W.M. Keck Foundation supported the operation of a network of eight ocean-bottom seismometers (OBSs) that were deployed with a remotely operated vehicle along the central portion of the Endeavour Segment of the Juan de Fuca mid-ocean ridge as part of a multidisciplinary prototype NEPTUNE experiment. Data from 2003-2004 were initially analyzed during a research apprenticeship class at the University of Washington's Friday Harbor Laboratories. Eight student analysts located ~13,000 earthquakes along the Endeavour Segment. Analysis of data from 2004-2005 has to date been limited to locating ~6,000 earthquakes associated with a swarm in February-March 2005 near the northern end of the Endeavour Segment. The remaining data includes several significant swarms and it is anticipated that tens of thousands of earthquakes still need to be located. In order to efficiently obtain a complete catalog of high-quality locations for the 3-year experiment, we are developing an automatic method for earthquake location. We first apply a 5-Hz high-pass filter and identify triggers when the ratio of the root-mean square (RMS) amplitudes in short- and long- term windows exceeds a specified threshold. We search for events that are characterized by triggers within a short time interval on the majority of stations and use the signal spectra to eliminate events that are the result of 20-Hz Fin and Blue whale vocalizations. An autoregressive technique is applied to a short time window centered on the trigger time to pick P-wave times on each station's vertical channel. We locate the earthquake with these picks and either attempt to repick or eliminate arrivals with unacceptable residuals. Preliminary S-wave picks are then made on the horizontal channels by applying a 5-12 Hz bandpass filter, identifying the peak RMS amplitude for a short running window, and making a pick at the time the RMS amplitude rises above 50% of this value. The picks are refined using the

  1. Seismicity Along the Endeavour Segment of the Juan de Fuca Ridge: Automated Event Locations for an Ocean-Bottom Seismometer Network

    NASA Astrophysics Data System (ADS)

    Weekly, R. T.; Wilcock, W. S.; Hooft, E. E.; Toomey, D. R.; McGill, P. R.

    2007-12-01

    From 2003-2006, the W.M. Keck Foundation supported the operation of a network of eight ocean-bottom seismometers (OBSs) that were deployed with a remotely operated vehicle along the central portion of the Endeavour Segment of the Juan de Fuca mid-ocean ridge as part of a multidisciplinary prototype NEPTUNE experiment. Data from 2003-2004 were initially analyzed during a research apprenticeship class at the University of Washington's Friday Harbor Laboratories. Eight student analysts located ~13,000 earthquakes along the Endeavour Segment. Analysis of data from 2004-2005 has to date been limited to locating ~6,000 earthquakes associated with a swarm in February-March 2005 near the northern end of the Endeavour Segment. The remaining data includes several significant swarms and it is anticipated that tens of thousands of earthquakes still need to be located. In order to efficiently obtain a complete catalog of high-quality locations for the 3-year experiment, we are developing an automatic method for earthquake location. We first apply a 5-Hz high-pass filter and identify triggers when the ratio of the root-mean square (RMS) amplitudes in short- and long- term windows exceeds a specified threshold. We search for events that are characterized by triggers within a short time interval on the majority of stations and use the signal spectra to eliminate events that are the result of 20-Hz Fin and Blue whale vocalizations. An autoregressive technique is applied to a short time window centered on the trigger time to pick P-wave times on each station's vertical channel. We locate the earthquake with these picks and either attempt to repick or eliminate arrivals with unacceptable residuals. Preliminary S-wave picks are then made on the horizontal channels by applying a 5-12 Hz bandpass filter, identifying the peak RMS amplitude for a short running window, and making a pick at the time the RMS amplitude rises above 50% of this value. The picks are refined using the

  2. Competing styles of deep-marine explosive eruptions revealed from Axial seamount and Juan De Fuca ridge push core records

    NASA Astrophysics Data System (ADS)

    Portner, R. A.; Clague, D. A.; Paduan, J. B.; Martin, J. F.

    2012-12-01

    extremely fine-grained, angular-sliver shaped and locally concentrated into reverse graded laminae. Fluidal shards are rare. Plagioclase fragments are locally abundant up to 15%. A significant component of hydrothermal grains also occurs and consists of pale greenish-blue clay aggregates, reddish-orange botryoidal grains, anyhydrite, barite or zeolite, and pyrite. X-ray diffraction analysis indicates that the muddy host contains minor nontronite or saponite, and chlorite. This mineral association is in stark contrast to quartz-illite bearing sediment samples from adjacent ridge segments, and supports the interpretation that the ashy mud deposits on Axial seamount preserve hydrothermal activity. Analogous to a phreatomagmatic eruption on land, we envisage shallow circulation of hydrothermal fluids below the vent and hydrovolcanic fragmentation during ascent through the conduit. Lamination and grading criteria suggest that beds were deposited via dilute turbidity flows and reworked by ocean bottom currents. Associations of the two pyroclastic lithofacies with interbedded fossiliferous-bioturbated mud, indicates relatively quiescent periods between separate magmatic or phreatomagmatic eruptions. These eruptive modes extend our knowledge about the range in deep-marine explosive activity.

  3. Very High Resolution Bathymetric Mapping at the Ridge 2000 Integrated Study Sites: Acquisition and Processing Protocols Developed During Recent Alvin Field Programs to the East Pacific Rise and Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Ferrini, V.; Fornari, D. J.; Shank, T.; Tivey, M.; Kelley, D. S.; Glickson, D.; Carbotte, S. M.; Howland, J.; Whitcomb, L. L.; Yoerger, D.

    2004-12-01

    Recent field programs at the East Pacific Rise and Juan de Fuca Ridge have resulted in the refinement of data processing protocols that enable the rapid creation of high-resolution (meter-scale) bathymetric maps from pencil-beam altimetric sonar data that are routinely collected during DSV Alvin dives. With the development of the appropriate processing tools, the Imagenex sonar, a permanent sensor on Alvin, can be used by a broad range of scientists permitting the analysis of various data sets within the context of high-quality bathymetric maps. The data processing protocol integrates depth data recorded with Alvin's Paroscientific pressure sensor with bathymetric soundings collected with an Imagenex 675 kHz articulating (scanning) sonar system, and high-resolution navigational data acquired with DVLNAV, which includes bottom lock Doppler sonar and long baseline (LBL) navigation. Together these data allow us, for the first time, to visualize portions of Ridge 2000 Integrated Study Sites (ISS) at 1-m vertical and horizontal resolution. These maps resolve morphological details of structures within the summit trough at scales that are relevant to biological communities (e.g. hydrothermal vents, lava pillars, trough walls), thus providing the important geologic context necessary to better understand spatial patterns associated with integrated biological-hydrothermal-geological processes. The Imagenex sonar is also a permanent sensor on the Jason2 ROV, which is also equipped with an SM2000 (200 kHz) near-bottom multibeam sonar. In the future, it is envisioned that near-bottom multibeam sonars will be standard sensors on all National Deep Submergence Facility (NDSF) vehicles. Streamlining data processing protocols makes these datasets more accessible to NDSF users and ensures broad compatibility between data formats among NDSF vehicle systems and allied vehicles (e.g. ABE). Establishing data processing protocols and software suites, routinely calibrating sensors (e

  4. Microbial and Mineral Descriptions of the Interior Habitable Zones of Active Hydrothermal Chimneys from the Endeavour Segment, Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Holden, J. F.; Lin, T.; Ver Eecke, H. C.; Breves, E.; Dyar, M. D.; Jamieson, J. W.; Hannington, M. D.; Butterfield, D. A.; Bishop, J. L.; Lane, M. D.

    2013-12-01

    Actively venting hydrothermal chimneys and their associated hydrothermal fluids were collected from the Endeavour Segment, Juan de Fuca Ridge to determine the mineralogy, chemistry and microbial community composition of their interiors. To characterize the mineralogy, Mössbauer, FTIR, VNIR and thermal emission spectroscopies were used for the first time on this type of sample in addition to thin-section petrography, x-ray diffraction and elemental analyses. A chimney from the Bastille edifice was Fe-sulfide rich and composed primarily of chalcopyrite, marcasite-sphalerite, and pyrrhotite while chimneys from the Dante and Hot Harold edifices were Fe-sulfide poor and composed primarily of anhydrite. The bulk emissivity and reflectance spectroscopies corroborated well with the petrography and XRD analyses. The microbial community in the interior of Bastille was most closely related to mesophilic-to-thermophilic anaerobes of the deltaproteobacteria and hyperthermophilic archaea while those in the interiors of Dante and Hot Harold were most closely related to mesophilic-to-thermophilic aerobes of the beta-, gamma- and epsilonproteobacteria. The fluid temperatures (282-321°C) and chemistries of the three chimneys were very similar suggesting that differences in mineralogy and microbial community compositions were more dependent on fluid flow characteristics and paragenesis within the chimney. Thin-section petrography of the interior of another hydrothermal chimney collected from the Dante edifice (emitting 336°C fluid) shows a thin coat of Fe3+ oxide associated with amorphous silica on the exposed outer surfaces of pyrrhotite, sphalerite and chalcopyrite in pore spaces, along with anhydrite precipitation in the pores that is indicative of seawater ingress. The Fe-sulfide minerals were likely oxidized to ferrihydrite with increasing pH and Eh due to cooling and seawater exposure, providing reactants for bioreduction. Culture-based most-probable-number estimates of

  5. The Cobb-Eickelberg seamount chain: Hotspot volcanism with mid-ocean ridge basalt affinity

    SciTech Connect

    Desonie, D.L.; Duncan, R.A. )

    1990-08-10

    Cobb hotspot, currently located beneath Axial seamount on the Juan de Fuca ridge, has the temporal but not the isotopic characteristics usually attributed to a mantle plume. The earlier volcanic products of the hotspot, form eight volcanoes in the Cobb-Eickelberg seamount (CES) chain, show a westward age progression away from the hotspot and a westward increase in the age difference between the seamounts and the crust on which they formed. These results are consistent with movement of the Pacific plate over a fixed Cobb hotspot and eventual encroachment by the westwardly migrating Juan de Fuca ridge. CES lavas are slightly enriched in alkalies and incompatible elements relative to those of the Juan de Fuca ridge but they have Sr, Nd, and Pb isotopic compositions virtually identical to those found along the ridge. Therefore, Cobb hotspot is a stationary, upper mantle melting anomaly whose volcanic products show strong mid-ocean ridge basalt (MORB) affinity. These observations can be explained by low degrees of partial melting of entrained heterogeneous upper mantle MORB source material within a thermally driven lower mantle diapir or by an intrinsic MORB-like composition of the deeper mantle source region from which northeast Pacific plumes rise.

  6. An estimate of hydrothermal fluid residence times and vent chimney growth rates based on 210Pb Pb ratios and mineralogic studies of sulfides dredged from the Juan de Fuca Ridge

    USGS Publications Warehouse

    Kadko, D.; Koski, R.; Tatsumoto, M.; Bouse, R.

    1985-01-01

    The 210Pb Pb ratios across two sulfide samples dredged from the Juan de Fuca Ridge are used to estimate the growth rate of the sulfide material and the residence time of the hydrothermal fluid within the oceanic crust from the onset of basalt alteration. 210Pb is added to the hydrothermal fluid by two processes: (1) high-temperature alteration of basalt and (2) if the residence time of the fluid is on the order of the 22.3-year half-life of 210Pb, by in-situ growth from 222Rn (Krishnaswami and Turekian, 1982). Stable lead is derived only from the alteration of basalt. The 210Pb Pb ratio across one sample was ??? 0.5 dpm/10-6 g Pb, and across the other it was ??? 0.4 dpm/10-6 g Pb. These values are quite close to the 238U Pb ratios of basalts from the area, suggesting that the residence time of the hydrothermal fluid from the onset of basalt alteration is appreciably less than the mean life of 210Pb, i.e., the time required for ingrowth from the radon. An apparent growth rate of 1.2 cm/yr is derived from the slope of the 210Pb Pb curve for one of the samples. This is consistent with its mineralogy and texture which suggest an accretionary pattern of development. There is no obvious sequential growth pattern, and virtually no gradient in 210Pb Pb across the second sample. This is consistent with alteration of the original 210Pb Pb distribution by extensive remobilization reactions which are inferred from the mineralogic and textural relationships of the sample. ?? 1985.

  7. Re-evaluating across-axis geochemical variations at the East Pacific Rise and Juan de Fuca Ridge: on- and off-axis melt delivery

    NASA Astrophysics Data System (ADS)

    Perfit, M. R.; Walters, R. L.

    2014-12-01

    High spatial density geochemical data sets from the N-EPR and S-JdFR are used to re-evaluate the across-axis geochemical variations in major and trace elements at mid-ocean ridges (MORs). At two axial melt lens (AML) segments, north and south, at the 9-10°N EPR, N-MORB MgO varies across-axis from the most primitive above the AML to more evolved away from the axis. This trend is distinct at the northern (magmatically more robust) segment with an axial MgO range of 8-9 wt% and off-axis (>2km) range of 6.5-8 wt%. This decrease is also reflected in E-MORB MgO variation. There is more variability at the southern segment but, off-axis progression to more evolved MgO is still evident. Interestingly, the Cleft segment, JdFR, displays similar geochemical behavior to the EPR with an axial MgO range of 7-8.5 wt% and off-axis (>2km) range of 6-7.5 wt%. EPR geochemical studies over the past 30 years have described models of upper crustal accumulation ranging from eruptions limited to the axis, to temporal variation in the composition of magma in the AML, to multiple eruption sites across the ridge crest and flanks (<5km). Eruptions limited to the axis, with topographically controlled flow off-axis, cannot reproduce the observed off-axis change to more evolved N-MORB. Time-dependence could explain one instance of evolved lavas off-axis but, similar geochemical behavior is observed at two separate AML segments. Multiple instances of consistent compositional variability at multiple AML segments, and at different ridges, point to a common process of crustal accretion at MORs. In light of recent geophysical discoveries of Off-axis AMLs (OAMLs) at the EPR and JdFR, we propose that the trend of more evolved lavas for the majority of N-MORB lavas with distance from the axis is controlled by thermal distribution in the underlying crystal mush zone (CMZ). Higher magma flux beneath the axis facilitates higher temperatures and high porosity melt pathways, reducing crustal residence times

  8. Phylogenetic and Physiological Diversity of Subseafloor Microbial Communities at Axial Seamount, Juan de Fuca Ridge: Summary of Results From the New Millenium Observatory (NeMO), 1998-2004

    NASA Astrophysics Data System (ADS)

    Baross, J. A.; Huber, J. A.; Mehta, M. P.; Opatkiewicz, A.; Bolton, S. A.; Butterfield, D. A.; Sogin, M. L.; Embley, R. W.

    2005-12-01

    Axial Seamount (45 ° 58' N; 130 ° 00' W) is an active submarine volcano located on the Juan de Fuca Ridge, approximately 300 miles off the coast of Oregon. Lying at the intersection of a seamount chain and a spreading axis, Axial is a unique study site from both the geological and biological perspective. In January of 1998, Axial experienced a week-long series of earthquakes, and subsequent water column and seafloor observations on the southeast portion of the caldera found temperature and chemical anomalies, extensive new seafloor lava flows, large "snow blower" type vents, and other characteristics commonly associated with diking-eruptive events. Due to its high activity and close proximity to shore, Axial was chosen as a site for a multi-year observatory (New Millenium Observatory, NeMO) to document changes and interactions between geology, chemistry, and biology on the mid-ocean ridge system. From 1998 through 2004, we extensively sampled diffuse vents at Axial Seamount to determine the physiological and phylogenetic diversity of subseafloor microbial communities and their relationship to the geochemical environment. Here we present a summary of those studies, including molecular-based phylogenetic surveys of bacteria, archaea, and potential nitrogen-fixing organisms, culturing results of thermophiles and hyperthermophiles from over 20 sites, and the distribution of one particular group of hyperthermophiles at diffuse vents throughout the caldera and how that distribution may be linked to the geochemical habitat. Results indicate that Axial supports a diverse subseafloor microbial community, including hydrogen and sulfur oxidizers, hyperthermophilic methane producers and heterotrophs, and many organisms with the potential to fix nitrogen. In addition, we find that the species composition of the microbial community changes in response to changes in the physical and chemical conditions at each vent site. The extent of seawater mixing with hydrothermal fluids

  9. Phylogenetic Diversity of Nitrogenase (nifH) Genes in Deep-Sea and Hydrothermal Vent Environments of the Juan de Fuca Ridge

    PubMed Central

    Mehta, Mausmi P.; Butterfield, David A.; Baross, John A.

    2003-01-01

    The subseafloor microbial habitat associated with typical unsedimented mid-ocean-ridge hydrothermal vent ecosystems may be limited by the availability of fixed nitrogen, inferred by the low ammonium and nitrate concentrations measured in diffuse hydrothermal fluid. Dissolved N2 gas, the largest reservoir of nitrogen in the ocean, is abundant in deep-sea and hydrothermal vent fluid. In order to test the hypothesis that biological nitrogen fixation plays an important role in nitrogen cycling in the subseafloor associated with unsedimented hydrothermal vents, degenerate PCR primers were designed to amplify the nitrogenase iron protein gene nifH from hydrothermal vent fluid. A total of 120 nifH sequences were obtained from four samples: a nitrogen-poor diffuse vent named marker 33 on Axial Volcano, sampled twice over a period of 1 year as its temperature decreased; a nitrogen-rich diffuse vent near Puffer on Endeavour Segment; and deep seawater with no detectable hydrothermal plume signal. Subseafloor nifH genes from marker 33 and Puffer are related to anaerobic clostridia and sulfate reducers. Other nifH genes unique to the vent samples include proteobacteria and divergent Archaea. All of the nifH genes from the deep-seawater sample are most closely related to the thermophilic, anaerobic archaeon Methanococcus thermolithotrophicus (77 to 83% amino acid similarity). These results provide the first genetic evidence of potential nitrogen fixers in hydrothermal vent environments and indicate that at least two sources contribute to the diverse assemblage of nifH genes detected in hydrothermal vent fluid: nifH genes from an anaerobic, hot subseafloor and nifH genes from cold, oxygenated deep seawater. PMID:12571018

  10. Phylogenetic diversity of nitrogenase (nifH) genes in deep-sea and hydrothermal vent environments of the Juan de Fuca Ridge.

    PubMed

    Mehta, Mausmi P; Butterfield, David A; Baross, John A

    2003-02-01

    The subseafloor microbial habitat associated with typical unsedimented mid-ocean-ridge hydrothermal vent ecosystems may be limited by the availability of fixed nitrogen, inferred by the low ammonium and nitrate concentrations measured in diffuse hydrothermal fluid. Dissolved N2 gas, the largest reservoir of nitrogen in the ocean, is abundant in deep-sea and hydrothermal vent fluid. In order to test the hypothesis that biological nitrogen fixation plays an important role in nitrogen cycling in the subseafloor associated with unsedimented hydrothermal vents, degenerate PCR primers were designed to amplify the nitrogenase iron protein gene nifH from hydrothermal vent fluid. A total of 120 nifH sequences were obtained from four samples: a nitrogen-poor diffuse vent named marker 33 on Axial Volcano, sampled twice over a period of 1 year as its temperature decreased; a nitrogen-rich diffuse vent near Puffer on Endeavour Segment; and deep seawater with no detectable hydrothermal plume signal. Subseafloor nifH genes from marker 33 and Puffer are related to anaerobic clostridia and sulfate reducers. Other nifH genes unique to the vent samples include proteobacteria and divergent Archaea. All of the nifH genes from the deep-seawater sample are most closely related to the thermophilic, anaerobic archaeon Methanococcus thermolithotrophicus (77 to 83% amino acid similarity). These results provide the first genetic evidence of potential nitrogen fixers in hydrothermal vent environments and indicate that at least two sources contribute to the diverse assemblage of nifH genes detected in hydrothermal vent fluid: nifH genes from an anaerobic, hot subseafloor and nifH genes from cold, oxygenated deep seawater. PMID:12571018

  11. The NeMO Explorer Web Site: Interactive Exploration of a Recent Submarine Eruption and Hydrothermal Vents, Axial Volcano, Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Weiland, C.; Chadwick, W. W.; Embley, R. W.

    2001-12-01

    To help visualize the submarine volcanic landscape at NOAA's New Millennium Observatory (NeMO), we have created the NeMO Explorer web site: http://www.pmel.noaa.gov/vents/nemo/explorer.html. This web site takes visitors a mile down beneath the ocean surface to explore Axial Seamount, an active submarine volcano 300 miles off the Oregon coast. We use virtual reality to put visitors in a photorealistic 3-D model of the seafloor that lets them view hydrothermal vents and fresh lava flows as if they were really on the seafloor. At each of six virtual sites there is an animated tour and a 360o panorama in which users can view the volcanic landscape and see biological communities within a spatially accurate context. From the six sites there are hyperlinks to 50 video clips taken by a remotely operated vehicle. Each virtual site concentrates on a different topic, including the dynamics of the 1998 eruption at Axial volcano (Rumbleometer), high-temperature hydrothermal vents (CASM and ASHES), diffuse hydrothermal venting (Marker33), subsurface microbial blooms (The Pit), and the boundary between old and new lavas (Castle vent). In addition to exploring the region geographically, visitors can also explore the web site via geological concepts. The concepts gallery lets you quickly find information about mid-ocean ridges, hydrothermal vents, vent fauna, lava morphology, and more. Of particular interest is an animation of the January 1998 eruption, which shows the rapid inflation (by over 3 m) and draining of the sheet flow. For more info see Fox et al., Nature, v.412, p.727, 2001. This project was funded by NOAA's High Performance Computing and Communication (HPCC) and Vents Programs. Our goal is to present a representative portion of the vast collection of NOAA's multimedia imagery to the public in a way that is easy to use and understand. These data are particularly challenging to present because of their high data rates and low contextual information. The 3-D models create

  12. Continuing evolution of the Pacific-Juan de Fuca-North America slab window system-A trench-ridge-transform example from the Pacific Rim

    USGS Publications Warehouse

    McCrory, P.A.; Wilson, D.S.; Stanley, R.G.

    2009-01-01

    Many subduction margins that rim the Pacific Ocean contain complex records of Cenozoic slab-window volcanism combined with tectonic disruption of the continental margin. The series of slab windows that opened beneath California and Mexico starting about 28.5 Ma resulted from the death of a series of spreading ridge segments and led to piecewise destruction of a subduction regime. The timing and areal extent of the resultant slab-window volcanism provide constraints on models that depict the subsequent fragmentation and dispersal of the overlying continental margin. The initial Pioneer slab window thermally weakened the overlying western Transverse Ranges and California Borderlands region starting about 28.5 Ma. A second thermal pulse occurred in the same region starting about 19 Ma during growth of the Monterey slab window. This additional heating, combined with the capture of a partially subducted Monterey plate fragment by the Cocos plate, initiated the pulling apart and rotation of the adjacent continental margin. Similarly, the capture of Guadalupe and Magdalena plate fragments by the Pacific plate and initiation of the Guadalupe-Magdalena slab window about 12.5 Ma are coeval with Baja California pulling away from the Mexico continental margin, with the break along the Comondú arc, in crust already thermally weakened by about 10 My of volcanism. In coastal California, distributed crustal extension and subsidence accompanied the new transform plate boundary, and continued until the slab windows cooled and plate motion coalesced along a through-going system of strike-slip faults. The transform boundary continues to evolve, and forward modeling predicts an instability with the current configuration as a result of convergence between the Sierra Nevada and Peninsular Ranges batholiths, starting about 2 My in the future. The instability may be resolved by a shift in the locus of transform motion from the San Andreas fault to the eastern California shear zone, or by

  13. Volcanism and massive sulfide formation at a sedimented spreading center, Escanaba Trough, Gorda Ridge, northeast Pacific.

    USGS Publications Warehouse

    Morton, J.L.; Holmes, M.L.; Koski, R.A.

    1987-01-01

    Seismic-reflection profiles over the sediment-filled Escanaba Trough at the southern Gorda Ridge reveal a series of volcanic centers that pierce the sediment. The volcanic edifices are 3 to 6 km in diameter and are spaced at 15 to 20 km intervals along the axis of the trough. Composition and form of sulfide samples obtained from the bank suggest significant interaction between hydrothermal fluids and sediment at depth, and deposition of sulfide within the sediment pile.-from Authors

  14. Rare earth element geochemistry in cold-seep pore waters of Hydrate Ridge, northeast Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Himmler, Tobias; Haley, Brian A.; Torres, Marta E.; Klinkhammer, Gary P.; Bohrmann, Gerhard; Peckmann, Jörn

    2013-07-01

    The concentrations of rare earth elements (REEs), sulphate, hydrogen sulphide, total alkalinity, calcium, magnesium and phosphate were measured in shallow (<12 cm below seafloor) pore waters from cold-seep sediments on the northern and southern summits of Hydrate Ridge, offshore Oregon. Downward-decreasing sulphate and coevally increasing sulphide concentrations reveal sulphate reduction as dominant early diagenetic process from ~2 cm depth downwards. A strong increase of total dissolved REE (∑REE) concentrations is evident immediately below the sediment-water interface, which can be related to early diagenetic release of REEs into pore water resulting from the re-mineralization of particulate organic matter. The highest pore water ∑REE concentrations were measured close to the sediment-water interface at ~2 cm depth. Distinct shale-normalized REE patterns point to particulate organic matter and iron oxides as main REE sources in the upper ~2-cm depth interval. In general, the pore waters have shale-normalized patterns reflecting heavy REE (HREE) enrichment, which suggests preferential complexation of HREEs with carbonate ions. Below ~2 cm depth, a downward decrease in ∑REE correlates with a decrease in pore water calcium concentrations. At this depth, the anaerobic oxidation of methane (AOM) coupled to sulphate reduction increases carbonate alkalinity through the production of bicarbonate, which results in the precipitation of carbonate minerals. It seems therefore likely that the REEs and calcium are consumed during vast AOM-induced precipitation of carbonate in shallow Hydrate Ridge sediments. The analysis of pore waters from Hydrate Ridge shed new light on early diagenetic processes at cold seeps, corroborating the great potential of REEs to identify geochemical processes and to constrain environmental conditions.

  15. Biogeochemistry of dissolved methane and hydrogen within basement fluids of the sediment-buried Juan de Fuca Ridge flank at Borehole (CORKs) 1301A, 1362A and 1362B

    NASA Astrophysics Data System (ADS)

    Lin, H.; Cowen, J. P.; Olson, E. J.; Lilley, M. D.; Jungbluth, S.; Rappé, M.; Bowers, R.

    2012-12-01

    Hydrogen and methane are important electron donors in chemosynthesis-based ecosystmes. Within the deeply buried Juan de Fuca Ridge flank crustal biosphere, while oxygen and nitrate are exhausted, sulfate is still abundant. Coupled with sulfate, hydrogen and methane can yield energy to support life. In this work, we will present and discuss the hydrogen and methane concentrations of fluids collected via fluid delivery line that run exterior to the Integrated Ocean Drilling Project (IODP) Circulation Observatory Retrofit Kit (CORK) casing from basement depths to the seafloor outlet ports at sites 1301A, 1362A and 1362B. Carbon isotope values of methane will also be presented and discussed for 1301A samples. The three CORKs were installed to study horizontal and vertical circulation/mixing patterns. CORK 1362 is ~800 m north-northwest of CORK 1301B. CORK 1362 A and 1362B are ~200m apart. The fluid intake is ~50 m below sediment-basement interface (mbs) at CORK 1301A, 200 mbs at CORK 1362A and ~40 mbs at CORK 1362B. Despite their close proximities, the basement fluids from the three CORKs show some differences in their biogeochemical compositions, including their hydrogen and methane concentrations. Higher hydrogen (0.3-2 μM) and lower methane (1.5±0.2μM) concentrations are observed at CORK 1301A than at the other two sites. CORKs 1362A and 1362B have similar hydrogen concentrations (0.05±0.02 μM and 0.08±0.03 μM, respectively) but their methane concentrations differ significantly (6±0.4 μM and 13±1 μM, respectively) and are much higher than the methane concentrations (2-3 μM) in the sediment porewater collected near the sediment-basement interface, suggesting methane sources in situ within the basement environment. Abiotic production of hydrogen from basalt-seawater interaction has been observed in both field and lab studies (Stevens and McKinley, 2000). Thermodynamic calculations also show that the reaction of methane production from hydrogen is favorable

  16. Biogeochemistry of dissolved methane and hydrogen in basement fluids of the sediment-buried Juan de Fuca Ridge flank at Boreholes (CORKs) 1301A, 1362A and 1362B: methane isotopic compositions

    NASA Astrophysics Data System (ADS)

    Lin, H.; Cowen, J. P.; Olson, E. J.; Lilley, M. D.; Jungbluth, S.; Rappe, M. S.

    2013-12-01

    The ocean crust is the largest aquifer system on Earth. Within the sediment-buried 3.5 Myr basaltic crust of the eastern Juan de Fuca Ridge (JFR) flank, the circulating basement fluids have moderate temperature (~65°C) and potentially harbor a substantial subseafloor biosphere. With dissolved oxygen and nitrate exhausted, sulfate may serve as the major electron acceptor in this environment. This study aims to evaluate the availability and the biogeochemistry of two important electron donors, methane and hydrogen, for the subseafloor biosphere. Basement fluids were collected via stainless steel and ethylene-tetrafluoroethylene fluoropolymer (ETFE) fluid delivery lines associated with Integrated Ocean Drilling Program (IODP) Circulation Obviation Retrofit Kits (CORKs) that extend from basement depths to outlet ports at the seafloor. Three CORKs were visited; 1301A, 1362A and 1362B lie within 200 to 500 m of each other, and their fluid intakes lie at ~30, ~60, and ~50 m below the sediment-basement interface (mbs), respectively. In addition, CORK 1362A contains a second intake at a deep (~200 mbs) horizon. The basement fluids from the three CORKs contained significantly higher concentrations of methane (1.5-13μM) and hydrogen (0.05-1.1 μM) than in bottom seawater (0.002 and 0.0004, respectively), indicating that prevalence and availability of both methane and hydrogen as electron donors for the subseafloor biosphere. Thermodynamic calculations show that sulfate reduction coupled with either methane or hydrogen oxidation is energy yielding in the oceanic basement. The δ13C values of methane ranged from -43×1‰ to -58×0.3‰; the δ2H values of methane in CORKs 1301A, 1362A and 1362B fluids were 57×5‰, -262×2‰, -209×2‰, respectively. The isotopic compositions suggest that methane in the basement fluid is of biogenic origin. Interestingly, the δ2H value of methane in the CORK 1301A fluids is far more positive than that in other marine environments

  17. Regional characteristics of land use in Northeast and Southern Blue Ridge Province: Associations with acid rain effects on surface-water chemistry

    NASA Astrophysics Data System (ADS)

    Liegel, Leon; Cassell, David; Stevens, Donald; Shaffer, Paul; Church, Robbins

    1991-03-01

    The Direct/Delayed Response Project (DDRP) is one of several studies being conducted by the United States Environmental Protection Agency to assess risk to surface waters from acidic deposition in the eastern United States. In one phase of DDRP, land use, wetland, and forest cover data were collected for statistical samples of 145 Northeast lake and 35 Southern Blue Ridge Province stream watersheds in the United States. Land-use and other data then were extrapolated from individual to target watershed populations. Project statistical design allows summarization of results for various subsets of the target population. This article discusses results and implications of the land-use and land-cover characterization for both regions. Forest cover was the primary land use in both regions. In the Northeast, developed (agriculture and urban) land was positively associated with surface-water chemistry values for acid neutralizing capacity, Ca plus Mg, pH, and sulfate in the Pocono/Catskill subregion. Extensive wetlands and beaver activity occur in parts of the Northeast region, whereas topography limits wetland and riparian development in the Southern Blue Ridge Province. Northeast soils have low sulfate adsorption capacity, most watersheds are near sulfur steady state, and lake sulfate concentrations are controlled principally by levels of sulfur deposition. Net annual sulfur retention in Northeast watersheds is positively correlated with occurrence of wetlands and beaver impoundments. In contrast, most Southern Blue Ridge Province soils have high sulfate adsorption capacities, resulting in high net watershed sulfur retention. At the present time, stream sulfate concentrations and percent sulfur retention are controlled principally by soil chemical properties related to adsorption rather than atmospheric deposition and land use.

  18. Sea level Variability and Juan de Fuca Bathymetry

    NASA Astrophysics Data System (ADS)

    Huybers, P. J.; Boulahanis, B.; Proistosescu, C.; Langmuir, C. H.; Carbotte, S. M.; Katz, R. F.

    2015-12-01

    That deglaciation influences mid-ocean ridge volcanism is well established for Iceland, where depressurization associated with melting a ~2 km ice cap led to order of magnitude increases in volcanism during the last deglaciation. The case was also made that the more subtle ~100 m changes in sea level that accompany glacial cycles have identifiable implications for undersea mid-ocean ridge systems using both models and data from the Australian-Antarctic Ridge (Crowley et al., 2015). Sea level rising at ~1 cm/year during deglaciation leads to an expectation of ~10% decreases in melt production at ridges, given mantle upwelling rates of ˜3 cm/yr at intermediate spreading ridges and mantle density being ~3 times that of seawater. The implications of variations in melt production for bathymetry, however, involve numerous considerations, including whether melt signals are cancelled within the melt column, appreciably alter accretionary or fault processes, and have identifiable surface expressions. Further empirical assessment of bathymetry is thus useful for purposes of confirming patterns and constraining processes. Here we report on spectral analyses of bathymetry recently acquired from the Juan de Fuca ridge between 44°30'N and 45°15'N during the SeaVOICE expedition. Multibeam swath sonar data were acquired with an EM122 sonar insonfiying seafloor to crustal ages of ˜2 ma with 35 m spatial resolution. We examine (1.) the statistical significance of concentrations of bathymetric variability at the 100 ky, 41 ky, and 23 ky periods characteristic of late-Pleistocene sea level variability; (2.) whether sea level responses are primarily at 41 ky periods in crust accreted during the early Pleistocene, when global sea level variations were primarily at this period; and (3.) if sea level responses are superimposed on bathymetry variations or, instead, align with fault features. We also note that Juan de Fuca's proximity to the Cordilleran Ice Sheet implies that regional

  19. Magnetic Anomalies over the Mid-Atlantic Ridge near 27{degrees}N.

    PubMed

    Phillips, J D

    1967-08-25

    Ten magnetic profiles across the mid-Atlantic ridge near 27 degrees N show trends that are parallel to the ridge axis and symmetrical about the ridge axis. The configuration of magnetic bodies that could account for the pattern supports the Vine and Matthews hypothesis for the origin of magnetic anomalies over oceanic ridges. A polarity-reversal time scale inferred from models for sea-floor spreading in the Pacific-Antarctic ridge and radiometrically dated reversals of the geomagnetic field indicates a spreading rate of 1.25 centimeters per year during the last 6 million years and a rate of 1.65 centimeters per year between 6 and 10 million years ago. A similar analysis of more limited data over the mid-Atlantic ridge near 22 degrees N also indicates a change in the spreading rate. Here a rate of 1.4 centimeters per year appears to have been in effect during the last 5 million years; between 5 and 9 million years ago, an increased rate of 1.7 centimeters per year is indicated. The time of occurrence and relative magnitude of these changes in the spreading rate, about 5 to 6 million years ago and 18 to 27 percent, respectively, accords with the spreading rate change implied for the Juan de Fuca ridge in the northeast Pacific. PMID:17792827

  20. SEISMICITY AND VOLCANISM IN THE PACIFIC NORTHWEST: EVIDENCE FOR THE SEGMENTATION OF THE JUAN DE FUCA PLATE.

    USGS Publications Warehouse

    Weaver, Craig S.; Michaelson, Caryl A.

    1985-01-01

    The distributions of earthquakes and late Cenozoic and Quaternary volcanism in Washington and northern Oregon change markedly across two northeast-striking lines, one near Mount Rainier and one near Mount Hood. On the basis of these observations and a comparison with the Nazoa subduction zone, we propose that the Juan de Fuca subduction zone is divided into two segments. Landward of the coastal thrust zone, we suggest the Juan de Fuca plate dips more steeply beneath the southern segment than beneath the northern segment. Refs.

  1. Isotopic evidence for the incorporation of methane-derived carbon into foraminifera from modern methane seeps, Hydrate Ridge, Northeast Pacific

    NASA Astrophysics Data System (ADS)

    Hill, T. M.; Kennett, J. P.; Valentine, D. L.

    2004-11-01

    The presence of modern methane seeps at Hydrate Ridge, offshore Oregon, provide an opportunity to study the influence of methane seeps on the ecology and geochemistry of living foraminifera. A series of cores were collected from the southern summit of Hydrate Ridge in 2002. Samples were preserved and stained to determine the δ 13C composition of three species of live (stained) and dead benthic foraminifera: Uvigerina peregrina, Cibicidoides mckannai, and Globobulimina auriculata. Specimens were examined under light and Scanning Electron Microscopy (SEM) and exhibit no evidence of diagenesis or authigenic carbonate precipitation. Individual living foraminifera from seep sites recorded δ 13C values from -0.4‰ to -21.2‰, indicating the isotopic influence of high methane concentrations. Average δ 13C values (calculated from single specimens) range from -1.28 to -5.64‰ at seep sites, and -0.81 to -0.85‰ at a control (off seep) site. Two distinct seep environments, distinguished by the presence of microbial mats or clam fields, were studied to determine environmental influences on δ 13C values. Individual foraminifera from microbial mat sites exhibited more depleted δ 13C values than those from clam field sites. We interpret these differences as an effect of food source and/or symbiotic microbes on foraminiferal carbon isotopic values, acting to magnify the negative δ 13C values recorded via the DIC pool. No statistical difference was found between δ 13C values of live vs. dead specimens. This suggests that authigenic carbonate precipitation did not play a dominant role in the observed isotopic compositions. However, a few dead specimens with extremely negative δ 13C composition (<-12‰) do indicate potential evidence for an authigenic influence on the recorded δ 13C composition.

  2. Bimodal volcanism in northeast Puerto Rico and the Virgin Islands (Greater Antilles Island Arc): Genetic links with Cretaceous subduction of the mid-Atlantic ridge Caribbean spur

    NASA Astrophysics Data System (ADS)

    Jolly, Wayne T.; Lidiak, Edward G.; Dickin, Alan P.

    2008-07-01

    Bimodal extrusive volcanic rocks in the northeast Greater Antilles Arc consist of two interlayered suites, including (1) a predominantly basaltic suite, dominated by island arc basalts with small proportions of andesite, and (2) a silicic suite, similar in composition to small volume intrusive veins of oceanic plagiogranite commonly recognized in oceanic crustal sequences. The basaltic suite is geochemically characterized by variable enrichment in the more incompatible elements and negative chondrite-normalized HFSE anomalies. Trace element melting and mixing models indicate the magnitude of the subducted sediment component in Antilles arc basalts is highly variable and decreases dramatically from east to west along the arc. In the Virgin Islands, the sediment component ranges between< 0.5 to ˜ 1% in Albian rocks, and between ˜ 1 and 2% in succeeding Cenomanian to Campanian strata. In comparison, sediment proportions in central Puerto Rico range between 0.5 to 1.5% in the Albian to 2 to > 4% during the Cenomanian-Campanian interval. The silicic suite, consisting predominantly of rhyolites, is characterized by depleted Al 2O 3 (average < 16%), low Mg-number (molar Mg/Mg + Fe < 0.5), TiO 2 (< 1.0%), and Sr/Y (< 10), oceanic or arc-like Sr, Nd, and Pb isotope signatures, and by the presence of plagioclase. All of these features are consistent with an anatexic origin in gabbroic sources, of both oceanic and arc-related origin, within the sub-arc basement. The abundance of silicic lavas varies widely along the length of the arc platform. In the Virgin Islands on the east, rhyolites comprise up to 80% of Lower Albian strata (112 to 105 Ma), and about 20% in post-Albian strata (105 to 100 Ma). Farther west, in Puerto Rico, more limited proportions (< 20%) of silicic lavas were erupted. The systematic variation of both sediment flux and abundance of crustally derived silicic lavas are consistent with current tectonic models of Caribbean evolution involving approximately

  3. 33 CFR 80.1385 - Strait of Juan de Fuca.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Strait of Juan de Fuca. 80.1385... NAVIGATION RULES COLREGS DEMARCATION LINES Thirteenth District § 80.1385 Strait of Juan de Fuca. The 72 COLREGS shall apply on all waters of the Strait of Juan de Fuca....

  4. Vacuolate-attached filaments: highly productive Ridgeia piscesae epibionts at the Juan de Fuca hydrothermal vents.

    PubMed

    Kalanetra, Karen M; Nelson, Douglas C

    2010-01-01

    Vacuolate sulfur bacteria with high morphological similarity to vacuolate-attached filaments previously described from shallow hydrothermal vents (White Point, CA) were found at deep-sea hydrothermal vents. These filamentous bacteria grow in dense mats that cover surfaces and potentially provide a significant source of organic carbon where they occur. Vacuolate-attached filaments were collected near vents at the Clam Bed site of the Endeavour Segment of the Juan de Fuca Ridge and from the sediment surface at Escanaba Trough on the Gorda Ridge. A phylogenetic analysis comparing their 16S rRNA gene sequences to those collected from the shallow White Point site showed that all vacuolate-attached filament sequences form a monophyletic group within the vacuolate sulfur-oxidizing bacteria clade in the gamma proteobacteria. Abundance of the attached filaments was quantified over the length of the exterior surface of the tubes of Ridgeia piscesae worms collected from the Clam Bed site at Juan de Fuca yielding a per worm average of 0.070 ± 0.018 cm(3) (n = 4). In agreement with previous results for White Point filaments, anion measurements by ion chromatography showed no detectable internal nitrate concentrations above ambient seawater (n = 9). For one R. piscesae tube worm "bush" at the Easter Island vent site, potential gross epibiont productivity is estimated to be 15 to 45× the net productivity of the worms. PMID:24391244

  5. Shallow structure and surface wave propagation characteristics of the Juan de Fuca plate from seismic ambient noise

    NASA Astrophysics Data System (ADS)

    Tian, Y.; Shen, W.; Ritzwoller, M. H.

    2013-12-01

    Ambient noise cross-correlation analysis has been widely used to investigate the continental lithosphere, but the method has been applied much less to study the oceanic lithosphere due to the relative shortage of continuous ocean bottom seismic measurements. The Cascadia Initiative experiment possesses a total of 62 ocean bottom seismometers that spans much of the Juan de Fuca plate and provides data to investigate both the structure and evolution of the oceanic lithosphere near the Juan De Fuca ridge and the characteristics of surface waves and overtones propagating within the oceanic lithosphere. We produce ambient noise cross correlations for the first year of Cascadia OBS data for both the vertical and the horizontal components. The observed empirical Green's functions are first used to test the hypothesis that the near-ridge phase speeds can be described by a simple age-dependent formula, which we invert for an age-dependent shear wave speed model (Figure 1a). A shallow low shear velocity zone with a velocity minimum at about 20km depth is observed in Vsv and the lithosphere thickens with age faster than predicted by a half-space conductive cooling model (Figure 1b). To further understand the oceanic surface waves, we analyze the first higher mode Rayleigh waves that propagate within the Juan De Fuca plate and emerge on the North American continent and investigate the existence of radial anisotropy beneath the ridge by exploring the Rayleigh and Love wave Green's functions. The results of the study are summarized with the age-dependent shear velocity model along with some preliminary observations of both Love wave and higher mode Rayleigh waves.

  6. Juan de Fuca subducting plate geometry and intraslab seismicity

    NASA Astrophysics Data System (ADS)

    Medema, Guy Frederick

    The geometry of the subducting Juan de Fuca plate beneath the Olympic Peninsula of Western Washington is modeled using wide-angle P mP reflections off the slab Moho. Active-source reflection data collected from the 1998 WET SHIPS project were augmented with earthquake-source reflections to increase the spatial distribution of reflection points over the Juan de Fuca arch structure. Approximately 1100 WET SHIPS and 500 earthquake-source reflections were used in our inversion. PmP travel-times from active sources and PmP--P differential times from earthquakes sources were simultaneously inverted for slab-Moho depth, using a combination of finite-difference and 3-D ray-tracing methods. Results show a tighter arch structure than in previous models with the shallowest dipping portion (˜ 10° dip) concentrated directly beneath the Olympic Mountains. Comparison of our slab model to intraslab earthquake hypocenters reveals a southwest-northeast trending lineament of seismicity situated just beneath the subducted Moho in the slab mantle. We interpret this seismicity as the manifestation of a subducting pseudofault along which high levels of upper mantle hydration occurred prior to subduction. Most of the remaining intraslab seismicity is concentrated on the northern and southern flanks of the arch and is likely due to increased strain rates in these regions from the combined effect of slab arch and subsequent steepening of slab dip. Earthquakes in the northern region appear to occur above the slab Moho in the crust of the oceanic plate, while uncertainties in earthquake locations and 3-D velocities in the southern region prevent an unambiguous interpretation at this time. The southern patch is especially important as it contains 3 large (magnitude 6.5 to 7.1) earthquakes during that past 60 years, including the 2001, Mw 6.8, Nisqually earthquake. Earthquakes occurring between 45 and 65 km depth in these two regions also systematically produce an anomalous low

  7. Tracking fin whales in the northeast Pacific Ocean with a seafloor seismic network.

    PubMed

    Wilcock, William S D

    2012-10-01

    Ocean bottom seismometer (OBS) networks represent a tool of opportunity to study fin and blue whales. A small OBS network on the Juan de Fuca Ridge in the northeast Pacific Ocean in ~2.3 km of water recorded an extensive data set of 20-Hz fin whale calls. An automated method has been developed to identify arrival times based on instantaneous frequency and amplitude and to locate calls using a grid search even in the presence of a few bad arrival times. When only one whale is calling near the network, tracks can generally be obtained up to distances of ~15 km from the network. When the calls from multiple whales overlap, user supervision is required to identify tracks. The absolute and relative amplitudes of arrivals and their three-component particle motions provide additional constraints on call location but are not useful for extending the distance to which calls can be located. The double-difference method inverts for changes in relative call locations using differences in residuals for pairs of nearby calls recorded on a common station. The method significantly reduces the unsystematic component of the location error, especially when inconsistencies in arrival time observations are minimized by cross-correlation. PMID:23039436

  8. Hydrothermal plumes over spreading ridges and related deposits in the northeast Pacific Ocean: The East Pacific Rise near 11 degrees north and 21 degrees north, Explorer Ridge and J. Tuzo Wilson Seamounts

    SciTech Connect

    McConachy, T.F.

    1988-01-01

    Hydrothermal plumes emanating from hot springs over spreading ridges in the north east Pacific Ocean have been mapped and sampled using the submersible ALVIN and equipment deployed from surface ships. The geologic setting and polymetallic sulfides of the vent field producing the hydrothermal plume at 11{degree}N have also been examined. At 11{degree}N, two distinct metalliferous components are delivered to the intermediate to far-field from high temperature black smoker discharge as a result of the physical and chemical processes that occur in the lower 32 m of the plume. About 60 volume % of this material is estimated to settle within a 6-km-radius of the vent field, based on the results of SEM-IPS grain-size analyses and their application to a published particle settling model. The second component delivered to the far-field consists of the remaining 40 volume % of fine-grained sulfides and non-sulfides, 10% of dissolved Fe which will eventually precipitate as oxyhydroxides, and {>=} 80% of the hydrothermally injected Mn, Si, and probably Ba. At 21{degree} N by contrast, only 20 volume % of the smoke particles is conservatively estimated to settle within a 8-km-radius of the NGS vent due to their finer grain size and a higher terminal height of the buoyant hydrothermal plume.

  9. Seismic velocity structure of the Juan de Fuca and Gorda plates revealed by a joint inversion of ambient noise and regional earthquakes

    NASA Astrophysics Data System (ADS)

    Gao, Haiying

    2016-05-01

    The crust and upper mantle seismic structure, spanning from the Juan de Fuca and Gorda spreading centers to the Cascade back arc, is imaged with full-wave propagation simulation and a joint inversion of ambient noise and regional earthquake recordings. The spreading centers have anomalously low shear wave velocity beneath the oceanic lithosphere. Around the Cobb axial seamount, we observe a low-velocity anomaly underlying a relatively thin oceanic lithosphere, indicating its influence on the Juan de Fuca ridge. The oceanic Moho is clearly defined by a P velocity increase from 6.3 km/s to 7.5 km/s at about 6 km depth beneath the seafloor. The thickness of the oceanic plates is less than 40 km prior to subduction, and the structure of the oceanic lithosphere varies both along strike and along dip. Farther landward, very low velocity anomalies are observed above the plate interface along the Cascade fore arc, indicative of subducted sediments.

  10. THE STRAIT OF JUAN DE FUCA INTERTIDAL AND SUBTIDAL BENTHOS

    EPA Science Inventory

    This report presents the second year results of an intertidal and shallow subtidal benthic sampling program at ten sites along the Washington State coast of the Strait of Juan de Fuca. The purpose of this program was to provide a quantitative characterization of the marine, shall...

  11. Offshore finfish mariculture in the Strait of Juan de Fuca

    SciTech Connect

    Rensel, Jack; Kiefer, Dale; Forster, John R.; Woodruff, Dana L.; Evans, Nathan R.

    2007-10-07

    Finfish mariculture has existed in the U.S. Pacific Northwest for over thirty years, but for the past 15 years most effort has focused on culture of Atlantic salmon in protected, inshore cage sites. The Strait of Juan de Fuca (the "Strait") is a large area with relatively sparce shoreline development and several apparent advantages for mariculture using offshore technology.

  12. Recent movements of the Juan de Fuca Plate System

    NASA Astrophysics Data System (ADS)

    1984-08-01

    Analysis of the magnetic anomalies of the Juan de Fuca plate system allows instantaneous poles of rotation relative to the Pacific plate to be calculated from 7 Ma to the present. By combining these with global solutions for Pacific America and ``absolute'' (relative to hot spot) motions, a plate motion sequence can be constructed. This sequence shows that both absolute motions and motions relative to America are characterized by slower velocities where younger and more buoyant material enters the convergence zone: ``pivoting subduction.'' The resistance provided by the youngest portion of the Juan de Fuca plate apparently resulted in its detachment at 4 Ma as the independent Explorer plate. In relation to the hot spot framework, this plate almost immediately began to rotate clockwise around a pole close to itself such that its translational movement into the mantle virtually ceased. After 4 Ma the remainder of the Juan de Fuca plate adjusted its motion in response to the fact that the youngest material entering the subduction zone was not to the south. Differences in seismicity and recent uplift between northern and southern Vancourver Island may reflect a distinction in tectonic style between the ``normal'' subduction of the Juan de Fuca plate to the south and a complex ``underplating occurring as the Explorer plate is overridden by the continent. The history of the Explorer plate may exemplify the conditins under which the self-driving forces of small subducting plates are overcome by the influence of larger, adjacent plates. The recent rapid migration of the absolute pole of rotation of the Juan de Fuca plate toward the plate suggests that it, too, may be nearing this condition.

  13. Recent movements of the Juan de Fuca Plate System

    NASA Astrophysics Data System (ADS)

    Riddihough, Robin

    1984-08-01

    Analysis of the magnetic anomalies of the Juan de Fuca plate system allows instantaneous poles of rotation relative to the Pacific plate to be calculated from 7 Ma to the present. By combining these with global solutions for Pacific/America and "absolute" (relative to hot spot) motions, a plate motion sequence can be constructed. This sequence shows that both absolute motions and motions relative to America are characterized by slower velocities where younger and more buoyant material enters the convergence zone: "pivoting subduction." The resistance provided by the youngest portion of the Juan de Fuca plate apparently resulted in its detachment at 4 Ma as the independent Explorer plate. In relation to the hot spot framework, this plate almost immediately began to rotate clockwise around a pole close to itself such that its translational movement into the mantle virtually ceased. After 4 Ma the remainder of the Juan de Fuca plate adjusted its motion in response to the fact that the youngest material entering the subduction zone was now to the south. Differences in seismicity and recent uplift between northern and southern Vancouver Island may reflect a distinction in tectonic style between the "normal" subduction of the Juan de Fuca plate to the south and a complex "underplating" occurring as the Explorer plate is overridden by the continent. The history of the Explorer plate may exemplify the conditions under which the self-driving forces of small subducting plates are overcome by the influence of larger, adjacent plates. The recent rapid migration of the absolute pole of rotation of the Juan de Fuca plate toward the plate suggests that it, too, may be nearing this condition.

  14. The importance of hydrothermal venting to water-column secondary production in the northeast Pacific

    NASA Astrophysics Data System (ADS)

    Burd, Brenda J.; Thomson, Richard E.

    2015-11-01

    The purpose of this study is to show that seafloor hydrothermal venting in the open northeast Pacific Ocean has a marked impact on secondary biomass and production within the overlying water column. Specifically, we use net tows and concurrently measured acoustic backscatter data collected over six summers to examine the effects of hydrothermal venting from the Endeavour Segment of Juan de Fuca Ridge on macro-zooplankton biomass and production throughout the entire 2000 m depth range. Previous research shows that ontogenetic diapausing migrators and their predators from the upper ocean aggregate above the neutrally buoyant plumes in summer and resume feeding on plume and bottom upwelled particles, resulting in increased zooplankton reproductive output to the upper ocean. Within the limitations of our sampling methodology, net tows reveal a statistically significant exponential decline in total water-column biomass with increasing lateral distance from the vent fields. The acoustic backscatter data show a similar decline, but only below 800 m depth. Near-surface biomass was highly variable throughout the region, but values near vents consistently ranged higher than summer values found elsewhere in the offshore northeast Pacific. Water-column biomass was similar in magnitude above and below 800 m depth throughout the region. Because epiplume biomass can be advected a considerable distance from vent fields, biomass enhancement of the water column from hydrothermal venting may extend considerable distances to the west and northwest of the vent sites, in the prevailing directions of the subsurface flow. Based on the extensive acoustic Doppler current profiler (ADCP) data collected, and the strong correlation between zooplankton production derived from net sample biomass and acoustic backscatter intensity, we estimate that daily macro-zooplankton production in the upper 400 m of the water column within 10 km of the vent fields averages approximately 16% of photosynthetic

  15. 33 CFR 110.229 - Straits of Juan de Fuca, Wash.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Straits of Juan de Fuca, Wash. 110.229 Section 110.229 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.229 Straits of Juan de Fuca, Wash. (a)...

  16. 33 CFR 167.1312 - In the Strait of Juan de Fuca: Southern lanes.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...: Southern lanes. 167.1312 Section 167.1312 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF... Fuca: Southern lanes. In the southern lanes of the Strait of Juan de Fuca, the following are...′ W 48°10.99′ N 123°24.84′ W (b) A traffic lane for northbound traffic between the separation zone...

  17. 33 CFR 167.1311 - In the Strait of Juan de Fuca: Western lanes.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...: Western lanes. 167.1311 Section 167.1311 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF... Fuca: Western lanes. In the western lanes of the Strait of Juan de Fuca, the following are established...′ W (b) A traffic lane for north-westbound traffic. (1) The traffic lane is established between...

  18. 33 CFR 167.1313 - In the Strait of Juan de Fuca: Northern lanes.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...: Northern lanes. 167.1313 Section 167.1313 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF... Fuca: Northern lanes. In the northern lanes of the Strait of Juan de Fuca, the following are...′ W (b) A traffic lane for southbound traffic between the separation zone and a line connecting...

  19. 33 CFR 167.1312 - In the Strait of Juan de Fuca: Southern lanes.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...: Southern lanes. 167.1312 Section 167.1312 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF... Fuca: Southern lanes. In the southern lanes of the Strait of Juan de Fuca, the following are...′ W 48°10.99′ N 123°24.84′ W (b) A traffic lane for northbound traffic between the separation zone...

  20. 33 CFR 167.1314 - In the Strait of Juan de Fuca: Eastern lanes.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...: Eastern lanes. 167.1314 Section 167.1314 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF... Fuca: Eastern lanes. In the eastern lanes of the Strait of Juan de Fuca, the following are established...′ W (b) A traffic lane for westbound traffic between the separation zone and a line connecting...

  1. 33 CFR 167.1311 - In the Strait of Juan de Fuca: Western lanes.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...: Western lanes. 167.1311 Section 167.1311 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF... Fuca: Western lanes. In the western lanes of the Strait of Juan de Fuca, the following are established...′ W (b) A traffic lane for north-westbound traffic. (1) The traffic lane is established between...

  2. 33 CFR 167.1313 - In the Strait of Juan de Fuca: Northern lanes.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...: Northern lanes. 167.1313 Section 167.1313 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF... Fuca: Northern lanes. In the northern lanes of the Strait of Juan de Fuca, the following are...′ W (b) A traffic lane for southbound traffic between the separation zone and a line connecting...

  3. 33 CFR 167.1313 - In the Strait of Juan de Fuca: Northern lanes.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...: Northern lanes. 167.1313 Section 167.1313 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF... Fuca: Northern lanes. In the northern lanes of the Strait of Juan de Fuca, the following are...′ W (b) A traffic lane for southbound traffic between the separation zone and a line connecting...

  4. 33 CFR 167.1311 - In the Strait of Juan de Fuca: Western lanes.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...: Western lanes. 167.1311 Section 167.1311 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF... Fuca: Western lanes. In the western lanes of the Strait of Juan de Fuca, the following are established...′ W (b) A traffic lane for north-westbound traffic. (1) The traffic lane is established between...

  5. 33 CFR 167.1314 - In the Strait of Juan de Fuca: Eastern lanes.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...: Eastern lanes. 167.1314 Section 167.1314 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF... Fuca: Eastern lanes. In the eastern lanes of the Strait of Juan de Fuca, the following are established...′ W (b) A traffic lane for westbound traffic between the separation zone and a line connecting...

  6. 33 CFR 167.1314 - In the Strait of Juan de Fuca: Eastern lanes.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...: Eastern lanes. 167.1314 Section 167.1314 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF... Fuca: Eastern lanes. In the eastern lanes of the Strait of Juan de Fuca, the following are established...′ W (b) A traffic lane for westbound traffic between the separation zone and a line connecting...

  7. 33 CFR 167.1311 - In the Strait of Juan de Fuca: Western lanes.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...: Western lanes. 167.1311 Section 167.1311 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF... Fuca: Western lanes. In the western lanes of the Strait of Juan de Fuca, the following are established...′ W (b) A traffic lane for north-westbound traffic. (1) The traffic lane is established between...

  8. 33 CFR 167.1314 - In the Strait of Juan de Fuca: Eastern lanes.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...: Eastern lanes. 167.1314 Section 167.1314 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF... Fuca: Eastern lanes. In the eastern lanes of the Strait of Juan de Fuca, the following are established...′ W (b) A traffic lane for westbound traffic between the separation zone and a line connecting...

  9. 33 CFR 167.1312 - In the Strait of Juan de Fuca: Southern lanes.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...: Southern lanes. 167.1312 Section 167.1312 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF... Fuca: Southern lanes. In the southern lanes of the Strait of Juan de Fuca, the following are...′ W 48°10.99′ N 123°24.84′ W (b) A traffic lane for northbound traffic between the separation zone...

  10. 33 CFR 167.1313 - In the Strait of Juan de Fuca: Northern lanes.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...: Northern lanes. 167.1313 Section 167.1313 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF... Fuca: Northern lanes. In the northern lanes of the Strait of Juan de Fuca, the following are...′ W (b) A traffic lane for southbound traffic between the separation zone and a line connecting...

  11. 33 CFR 167.1312 - In the Strait of Juan de Fuca: Southern lanes.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...: Southern lanes. 167.1312 Section 167.1312 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF... Fuca: Southern lanes. In the southern lanes of the Strait of Juan de Fuca, the following are...′ W 48°10.99′ N 123°24.84′ W (b) A traffic lane for northbound traffic between the separation zone...

  12. Physical characteristics of the Endeavour Ridge hydrothermal plume during July 1988

    NASA Astrophysics Data System (ADS)

    Thomson, Richard E.; Delaney, John R.; McDuff, Russell E.; Janecky, David R.; McClain, James S.

    1992-06-01

    We conducted CTD-transmissometer tows from 8 to 26 July, 1988 within 15 km of the central hydrothermal vent site ( ≈ 47°57'N, 129°06'W) on the Endeavour segment of Juan de Fuca Ridge. Anomalies of temperature, salinity and light attenuation reveal possible new vent sites 4 and 8 km northeast and 6 km south of the central vent site. As a result of widespread plume dispersion, background values of potential temperature, salinity and light attenuation below the 1900 m depth exceeded those for "pristine" ambient waters by 0.05°C, 0.05 psu and 0.03 m -1, respectively. Maximum plume anomalies relative to the background waters were of the order of 0.10°C, 0.010 psu and 0.10 m -1 at core depths of 2000-2050 m. Heat and salt anomalies were detectable more than 5 km from the central vent site whereas light attenuation (particle) anomalies were confined to within 2.5 km of the vent site. Based on the background water property anomalies and moored current meter records, the mean (time-averaged) heat fluxes for the survey region were+2.3(±1.5) × 10 8 W in the along-ridge direction (20°T) and-7.7(±4.7) × 10 8 W in the cross-ridge direction (110°T). Mean along- and cross-ridge salt fluxes were+7(±5)and-25(±15)kg s -1; mean particle fluxes were+0.09(±0.06)and-0.29(±0.18)kg s -1. Estimates of the instantaneous fluxes derived from coincident current and plume measurements indicate that heat fluxes from the central vent field may have been as high as1.2(±0.6)×10 10 W and corresponding particulate fluxes as high as6(±3)kg s -1.

  13. Cabled-observatory Regional Circulation Moorings on the Endeavour segment of the Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Mihaly, S. F.

    2011-12-01

    In September of 2010, one of four moorings was deployed on the Endeavour node of the NEPTUNE Canada cabled-observatory network. The installation included the laying of a 7km cable from the node to the mooring site in the axial valley about 3km north of the Main Endeavour Vent Field over extraordinary bathymetry. This September, three more cables and secondary junction boxes will be deployed to support the three additional moorings that complete the regional circulation array. The cable-laying is facilitated by the Canadian Scientific Submersible Facility's ROV ROPOS and a remotely operated cable-laying system, whereas the actual deployment of the moorings is a two ship operation. The CCGS John P. Tully lowers the mooring anchor first, while the RV Thomas G. Thompson supports the ROV operations which navigate the mooring to underwater mateable cable end. Precise navigation is needed because there are few areas suitable for placement of the junction boxes. Scientifically, the moorings are designed and located to best constrain the hydrothermally driven circulation within the rift valley, the regional circulation can then be used as a proxy measurement for hydrothermal fluxes. Each mooring carries a current meter/ ctd pair at 4, 50, 125, and 200m, with an upward looking ADCP at 250m. The northern moorings are located between the Hi-Rise and Salty Dawg fields about 700m apart in the ~1km wide rift valley and the southern moorings are located south of the Mothra vent field. Here we present initial results from the four mooring array.

  14. Geologic history of the summit of Axial Seamount, Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Clague, David A.; Dreyer, Brian M.; Paduan, Jennifer B.; Martin, Julie F.; Chadwick, William W.; Caress, David W.; Portner, Ryan A.; Guilderson, Thomas P.; McGann, Mary L.; Thomas, Hans; Butterfield, David A.; Embley, Robert W.

    2013-10-01

    Multibeam (1 m resolution) and side scan data collected from an autonomous underwater vehicle, and lava samples, radiocarbon-dated sediment cores, and observations of flow contacts collected by remotely operated vehicle were combined to reconstruct the geologic history and flow emplacement processes on Axial Seamount's summit and upper rift zones. The maps show 52 post-410 CE lava flows and 20 precaldera lava flows as old as 31.2 kyr, the inferred age of the caldera. Clastic deposits 1-2 m thick accumulated on the rims postcaldera. Between 31 ka and 410 CE, there are no known lava flows near the summit. The oldest postcaldera lava (410 CE) is a pillow cone SE of the caldera. Two flows erupted on the W rim between ˜800 and 1000 CE. From 1220 to 1300 CE, generally small eruptions of plagioclase phyric, depleted, mafic lava occurred in the central caldera and on the east rim. Larger post-1400 CE eruptions produced inflated lobate flows of aphyric, less-depleted, and less mafic lava on the upper rift zones and in the N and S caldera. All caldera floor lava flows, and most uppermost rift zone flows, postdate 1220 CE. Activity shifted from the central caldera to the upper S rift outside the caldera, to the N rift and caldera floor, and then to the S caldera and uppermost S rift, where two historical eruptions occurred in 1998 and 2011. The average recurrence interval deduced from the flows erupted over the last 800 years is statistically identical to the 13 year interval between historical eruptions.

  15. Geologic history of the summit of Axial Seamount, Juan de Fuca Ridge

    USGS Publications Warehouse

    Clague, David A.; Dreyer, Brian M; Paduan, Jennifer B; Martin, Julie F; Chadwick, William W Jr; Caress, David W; Portner, Ryan A; Guilderson, Thomas P.; McGann, Mary; Thomas, Hans; Butterfield, David A; Embley, Robert W

    2013-01-01

    Multibeam (1 m resolution) and side scan data collected from an autonomous underwater vehicle, and lava samples, radiocarbon-dated sediment cores, and observations of flow contacts collected by remotely operated vehicle were combined to reconstruct the geologic history and flow emplacement processes on Axial Seamount's summit and upper rift zones. The maps show 52 post-410 CE lava flows and 20 precaldera lava flows as old as 31.2 kyr, the inferred age of the caldera. Clastic deposits 1–2 m thick accumulated on the rims postcaldera. Between 31 ka and 410 CE, there are no known lava flows near the summit. The oldest postcaldera lava (410 CE) is a pillow cone SE of the caldera. Two flows erupted on the W rim between ∼800 and 1000 CE. From 1220 to 1300 CE, generally small eruptions of plagioclase phyric, depleted, mafic lava occurred in the central caldera and on the east rim. Larger post-1400 CE eruptions produced inflated lobate flows of aphyric, less-depleted, and less mafic lava on the upper rift zones and in the N and S caldera. All caldera floor lava flows, and most uppermost rift zone flows, postdate 1220 CE. Activity shifted from the central caldera to the upper S rift outside the caldera, to the N rift and caldera floor, and then to the S caldera and uppermost S rift, where two historical eruptions occurred in 1998 and 2011. The average recurrence interval deduced from the flows erupted over the last 800 years is statistically identical to the 13 year interval between historical eruptions.

  16. 247. Axial Parkway alignment along ridge top. Note the open ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    247. Axial Parkway alignment along ridge top. Note the open vistas to either side of the roadway. These are maintained through vegetation management. The wood guide rail is a primary safety feature. View is to the northeast. - Blue Ridge Parkway, Between Shenandoah National Park & Great Smoky Mountains, Asheville, Buncombe County, NC

  17. Juan de Fuca plate: Aseismic subduction at 1. 8 cm/yr

    SciTech Connect

    Acharya, H.

    1981-11-01

    Volcanic activity in the Cascades in historic times suggests that the Juan de Fuca plate is underthrusting aseismically at about 1.8 cm/yr. This rate of underthrusting is identical to the rate computed from sediment studies.

  18. Pole of rotating analysis of present-day Juan de Fuca plate motion

    NASA Technical Reports Server (NTRS)

    Nishimura, C.; Wilson, D. S.; Hey, R. N.

    1984-01-01

    Convergence rates between the Juan de Fuca and North American plates are calculated by means of their relative, present-day pole of rotation. A method of calculating the propagation of errors in addition to the instantaneous poles of rotation is also formulated and applied to determine the Euler pole for Pacific-Juan de Fuca. This pole is vectorially added to previously published poles for North America-Pacific and 'hot spot'-Pacific to obtain North America-Juan de Fuca and 'hot spot'-Juan de Fuca, respectively. The errors associated with these resultant poles are determined by propagating the errors of the two summed angular velocity vectors. Under the assumption that hot spots are fixed with respect to a mantle reference frame, the average absolute velocity of the Juan de Puca plate is computed at approximately 15 mm/yr, thereby making it the slowest-moving of the oceanic plates.

  19. Nature and extent of electrogenic microbial communities recovered from Juan de Fuca hydrothermal sulfides

    NASA Astrophysics Data System (ADS)

    Girguis, P. R.; Nielsen, M. E.

    2011-12-01

    Microbes have evolved a variety of metabolic strategies to survive in anaerobic environments, including extracellular electron transfer (EET). Here we present laboratory and in situ experiments revealing that hydrothermal vent microbes employ and depend upon EET to access spatially remote oxidants via semi-conductive pyrite. To simulate the physical and electrochemical conditions in vent sulfides, we constructed a two-chamber flow-through bioelectrochemical reactor in which a pyrite electrode was enclosed in one chamber and subject to simulated hydrothermal conditions. Electroactive biofilms formed solely on pyrite in electrical continuity with oxygenated water. Phylogenetic and metagenomic analyses revealed a diversity of autotrophic and heterotrophic archaea and bacteria, markedly different in composition from the control (pyrite without electrical continuity). To further characterize this phenomenon, we deployed a bioelectrochemical experiment in situ at the hydrothermal vent sulfide "Roane" (2200 m water depth, at the Mothra hydrothermal field, Juan de Fuca ridge). A graphite anode was inserted into a borehole drilled into the base of a hydrothermal sulfide, and connected through a potentiostat to a carbon-fiber cathode on the outside of the vent structure. The in situ experiment produced sustained current and enriched for a distinct microbial community likely associated with EET. The data presented herein reveal the nature and extent of microbial communities that use conductive minerals such as pyrite, though fully reduced, to facilitate the reduction of spatially remote oxidants while maintaining chemical discontinuity. Thus EET, by enabling sustained access to terminal electron acceptors while maintaining the functioning of strictly anaerobic metabolisms, may alleviate the limitations commonly associated with anaerobic environs, namely the depletion of oxidants.

  20. p53 directly regulates the glycosidase FUCA1 to promote chemotherapy-induced cell death

    PubMed Central

    Baudot, Alice D.; Crighton, Diane; O'Prey, Jim; Somers, Joanna; Sierra Gonzalez, Pablo; Ryan, Kevin M.

    2016-01-01

    ABSTRACT p53 is a central factor in tumor suppression as exemplified by its frequent loss in human cancer. p53 exerts its tumor suppressive effects in multiple ways, but the ability to invoke the eradication of damaged cells by programmed cell death is considered a key factor. The ways in which p53 promotes cell death can involve direct activation or engagement of the cell death machinery, or can be via indirect mechanisms, for example though regulation of ER stress and autophagy. We present here another level of control in p53-mediated tumor suppression by showing that p53 activates the glycosidase, FUCA1, a modulator of N-linked glycosylation. We show that p53 transcriptionally activates FUCA1 and that p53 modulates fucosidase activity via FUCA1 up-regulation. Importantly, we also report that chemotherapeutic drugs induce FUCA1 and fucosidase activity in a p53-dependent manner. In this context, while we found that over-expression of FUCA1 does not induce cell death, RNAi-mediated knockdown of endogenous FUCA1 significantly attenuates p53-dependent, chemotherapy-induced apoptotic death. In summary, these findings add an additional component to p53s tumor suppressive response and highlight another mechanism by which the tumor suppressor controls programmed cell death that could potentially be exploited for cancer therapy. PMID:27315169

  1. p53 directly regulates the glycosidase FUCA1 to promote chemotherapy-induced cell death.

    PubMed

    Baudot, Alice D; Crighton, Diane; O'Prey, Jim; Somers, Joanna; Sierra Gonzalez, Pablo; Ryan, Kevin M

    2016-09-01

    p53 is a central factor in tumor suppression as exemplified by its frequent loss in human cancer. p53 exerts its tumor suppressive effects in multiple ways, but the ability to invoke the eradication of damaged cells by programmed cell death is considered a key factor. The ways in which p53 promotes cell death can involve direct activation or engagement of the cell death machinery, or can be via indirect mechanisms, for example though regulation of ER stress and autophagy. We present here another level of control in p53-mediated tumor suppression by showing that p53 activates the glycosidase, FUCA1, a modulator of N-linked glycosylation. We show that p53 transcriptionally activates FUCA1 and that p53 modulates fucosidase activity via FUCA1 up-regulation. Importantly, we also report that chemotherapeutic drugs induce FUCA1 and fucosidase activity in a p53-dependent manner. In this context, while we found that over-expression of FUCA1 does not induce cell death, RNAi-mediated knockdown of endogenous FUCA1 significantly attenuates p53-dependent, chemotherapy-induced apoptotic death. In summary, these findings add an additional component to p53s tumor suppressive response and highlight another mechanism by which the tumor suppressor controls programmed cell death that could potentially be exploited for cancer therapy. PMID:27315169

  2. Metopic ridge

    MedlinePlus

    ... infant is made up of bony plates. The gaps between the plates allow for growth of the skull. The places where these plates connect are called sutures or suture lines. They do not fully close until the 2nd or 3rd year of life. A metopic ridge occurs when the ...

  3. 33 CFR 334.1180 - Strait of Juan de Fuca, Wash.; air-to-surface weapon range, restricted area.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Strait of Juan de Fuca, Wash.; air-to-surface weapon range, restricted area. 334.1180 Section 334.1180 Navigation and Navigable... REGULATIONS § 334.1180 Strait of Juan de Fuca, Wash.; air-to-surface weapon range, restricted area. (a)...

  4. 33 CFR 334.1180 - Strait of Juan de Fuca, Wash.; air-to-surface weapon range, restricted area.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Strait of Juan de Fuca, Wash.; air-to-surface weapon range, restricted area. 334.1180 Section 334.1180 Navigation and Navigable... REGULATIONS § 334.1180 Strait of Juan de Fuca, Wash.; air-to-surface weapon range, restricted area. (a)...

  5. 33 CFR 334.1180 - Strait of Juan de Fuca, Wash.; air-to-surface weapon range, restricted area.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Strait of Juan de Fuca, Wash.; air-to-surface weapon range, restricted area. 334.1180 Section 334.1180 Navigation and Navigable... REGULATIONS § 334.1180 Strait of Juan de Fuca, Wash.; air-to-surface weapon range, restricted area. (a)...

  6. 33 CFR 334.1180 - Strait of Juan de Fuca, Wash.; air-to-surface weapon range, restricted area.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Strait of Juan de Fuca, Wash.; air-to-surface weapon range, restricted area. 334.1180 Section 334.1180 Navigation and Navigable... REGULATIONS § 334.1180 Strait of Juan de Fuca, Wash.; air-to-surface weapon range, restricted area. (a)...

  7. 33 CFR 334.1180 - Strait of Juan de Fuca, Wash.; air-to-surface weapon range, restricted area.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Strait of Juan de Fuca, Wash.; air-to-surface weapon range, restricted area. 334.1180 Section 334.1180 Navigation and Navigable... REGULATIONS § 334.1180 Strait of Juan de Fuca, Wash.; air-to-surface weapon range, restricted area. (a)...

  8. Novel p53 target gene FUCA1 encodes a fucosidase and regulates growth and survival of cancer cells.

    PubMed

    Ezawa, Issei; Sawai, Yuichiro; Kawase, Tatsuya; Okabe, Atsushi; Tsutsumi, Shuichi; Ichikawa, Hitoshi; Kobayashi, Yuka; Tashiro, Fumio; Namiki, Hideo; Kondo, Tadashi; Semba, Kentaro; Aburatani, Hiroyuki; Taya, Yoichi; Nakagama, Hitoshi; Ohki, Rieko

    2016-06-01

    The tumor suppressor p53 functions by inducing the transcription of a collection of target genes. We previously attempted to identify p53 target genes by microarray expression and ChIP-sequencing analyses. In this study, we describe a novel p53 target gene, FUCA1, which encodes a fucosidase. Although fucosidase, α-l-1 (FUCA1) has been reported to be a lysosomal protein, we detected it outside of lysosomes and observed that its activity is highest at physiological pH. As there is a reported association between fucosylation and tumorigenesis, we investigated the potential role of FUCA1 in cancer. We found that overexpression of FUCA1, but not a mutant defective in enzyme activity, suppressed the growth of cancer cells and induced cell death. Furthermore, we showed that FUCA1 reduced fucosylation and activation of epidermal growth factor receptor, and concomitantly suppressed epidermal growth factor signaling pathways. FUCA1 loss-of-function mutations are found in several cancers, its expression is reduced in cancers of the large intestine, and low FUCA1 expression is associated with poorer prognosis in several cancers. These results show that protein defucosylation mediated by FUCA1 is involved in tumor suppression. PMID:26998741

  9. 46 CFR 7.145 - Strait of Juan de Fuca, Haro Strait and Strait of Georgia WA.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Strait of Juan de Fuca, Haro Strait and Strait of Georgia WA. 7.145 Section 7.145 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY PROCEDURES APPLICABLE TO THE PUBLIC BOUNDARY LINES Pacific Coast § 7.145 Strait of Juan de Fuca, Haro Strait and...

  10. Multi-mode conversion imaging of the subducted Gorda and Juan de Fuca plates below the North American continent

    NASA Astrophysics Data System (ADS)

    Tauzin, Benoit; Bodin, Thomas; Debayle, Eric; Perrillat, Jean-Philippe; Reynard, Bruno

    2016-04-01

    Receiver function analysis and seismic tomography show tectonic structures dipping eastward in the mantle below the Cascadia volcanic arc (western US) that have been related to the subduction of the Gorda and Juan de Fuca oceanic micro-plates. Inconsistencies in the dip angle and depth extent of the slab between the two methods undermine the interpretation of the structure and processes at work. Receiver function imaging is biased by multiple reflection phases that interfere with converted phases, and produce spurious discontinuities in images. Here, we correct the interference using a multiple mode conversion imaging technique that efficiently removes artifacts under dipping structures. The method has the advantage of being applicable to large aperture arrays, and can image large-scale structures down to the transition zone. With this approach, the interfaces between the subducting and overriding plates and the oceanic Moho are imaged at shallow depths (<120 km) with a dip angle of ∼20°, consistently with former studies. In addition, several important features are imaged with the present method. Faint converters located between 100 and 400 km depth in the mantle wedge, and strong sub-horizontal seismic scatterers near 160 km depth, may highlight dehydration and metasomatism processes in the Cascadia subduction zone. A discontinuity located at ∼15 km depth in the lithospheric mantle of the subducted plates and associated with a negative impedance contrast is interpreted as the fossil fabric of the plates acquired at the spreading ridges.

  11. Estuarine versus transient flow regimes in Juan de Fuca Strait

    NASA Astrophysics Data System (ADS)

    Thomson, Richard E.; MiháLy, Steven F.; Kulikov, Evgueni A.

    2007-09-01

    Residual currents in Juan de Fuca Strait are observed to switch between two fundamental states: estuarine and transient. The estuarine regime, which prevails roughly 90% of the time in summer and 55% of the time in winter, has a fortnightly modulated, three-layer structure characterized by strong (˜50 cm s-1) outflow above 60 ± 15 m depth, moderate (˜25 cm s-1) inflow between 60 and 125 m depth, and weak (˜10 cm s-1) inflow below 125 ± 10 m depth. Rotation increases the upper layer depth by 40 m on the northern side of the channel and upwelling-favorable coastal winds augment inflow in the bottom layer by as much as 5 cm s-1. Rotation, combined with modulation of the estuarine currents by tidal mixing in the eastern strait, leads to fortnightly variability in the along-channel velocity and cross-channel positioning of the core flow regions. Transient flows, which occur roughly 10% of the time in summer and 45% of the time in winter, are rapidly evolving, horizontally and vertically sheared "reversals" in the estuarine circulation generated during poleward wind events along the outer coast. Major events can persist for several weeks, force a net inward transport, and give rise to an O(10) km wide, surface-intensified, O(100) cm s-1 inflow along the southern (Olympic Peninsula) boundary of the strait. This "Olympic Peninsula Countercurrent" is typically accompanied by an abrupt decrease in salinity, indicating that it is a buoyancy flow originating with low-density water on the northern Washington shelf.

  12. Polar Ridges

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Context image for PIA03662 Polar Ridges

    This ridge system is located in the south polar region.

    Image information: VIS instrument. Latitude -81.7N, Longitude 296.5E. 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  13. RECOVERY OF STRAIT OF JUAN DE FUCA INTERTIDAL HABITAT FOLLOWING EXPERIMENTAL CONTAMINATION WITH OIL

    EPA Science Inventory

    This is a second year interim report on the effects of experimental oiling with Prudhoe Bay crude oil on recovery of intertidal infauna and epifauna of the Strait of Juan de Fuca, Washington State. It describes completed studies of the recovery of infauna as recovery rate relates...

  14. EFFECTS OF EXPERIMENTAL OILING ON RECOVERY OF STRAIT OF JUAN DE FUCA INTERTIDAL HABITATS

    EPA Science Inventory

    Experimental studies of the effects of Prudhoe Bay crude oil on the recovery of inter-tidal infauna and epifauna were conducted in the Strait of Juan de Fuca region of Washington State. The studies experimentally evaluated the effect of oil treatment, site, substrate type, season...

  15. SYNTHESIS OF BIOLOGICAL DATA FROM THE STRAIT OF JUAN DE FUCA AND NORTHERN PUGET SOUND

    EPA Science Inventory

    This report summarizes the biological data collected during a 5-year research project, titled 'An Environmental Assessment of Northern Puget Sound and the Strait of Juan de Fuca.' This report also incorporates biological data collected during a similar program conducted by the Wa...

  16. Topographically Enhanced Subinertial Currents at Endeavour Ridge

    NASA Astrophysics Data System (ADS)

    Thomson, R. E.; Rabinovich, A. B.; Mihaly, S. F.; Veirs, S.; Stahr, F. R.; McDuff, R. E.; Subbotina, M. M.

    2001-12-01

    We use velocity records collected from moored current meters to examine the effects of seafloor topography and hydrothermal venting on near-bottom (\\~ 2000 m depth) currents flowing over the Endeavour Segment of Juan de Fuca Ridge. Focus is on the 50-m vertical resolution records collected from July-October 2000 near the main Endeavour vent field and on the 2-km lateral resolution records collected from July-October 2001 at three sites within the 100 m deep axial valley. Semidiurnal currents are found to be marginally more energetic than diurnal currents, and flow above the ridge crest is often dominated by wind-generated inertial events (periods \\~ 16 hrs at 48N) and low-frequency (O(10 day) period) clockwise rotary motions. Observations, supported by numerical modeling, reveal marked topographic amplification of subinertial motions within 100 m of the ridge crest. Motions within the diurnal, inertial, and wind-forced frequency bands undergo especially pronounced above-ridge amplification but attenuate equally rapidly within the confines of the narrow (\\~ 1 km) axial valley. Semidiurnal currents are much less affected by the ridge topography and have approximately uniform amplitudes with depth within the first 250 m of the bottom. Within a few tens of meters of the valley floor, the flow is dominated by \\~ 5 cm/s along-axis semidiurnal oscillations and a surprisingly strong (2 to 4 cm/s), persistently northward up-valley flow. The up-valley flow appears to be independent of, and generally counter to, the prevailing flow in the overlying water column. Initial findings suggest that the enhanced near-bottom flow is maintained by an along-valley pressure gradient created by turbulent entrainment of cold (\\~ 2 C) ambient water by the superheated (\\~ 350 C) hydrothermal plumes and low-temperature diffuse flow. If so, the mean-flow dynamics may be analogous to the summer sea-breeze in coastal fjords, with hydrothermal convection playing the role of summertime

  17. Detail of the ridge framing of the clerestory roof, note ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail of the ridge framing of the clerestory roof, note the alternating wood and steel beams, view facing northeast - U.S. Marine Corps Base Hawaii, Kaneohe Bay, Warehouse 250, Aviation Storehouse, C Street between Fifth & Sixth Streets, Kaneohe, Honolulu County, HI

  18. Structure of the Lithosphere-Asthenosphere System Beneath the Juan de Fuca Plate: Results of Body Wave Imaging Using Cascadia Initiative Data

    NASA Astrophysics Data System (ADS)

    Byrnes, J. S.; Toomey, D. R.; Hooft, E. E. E.

    2014-12-01

    The plate-scale deployment of ocean bottom seismometers (OBS) as part of the Cascadia Initiative (CI) of NSF provides a unique opportunity to study the structure and dynamics of the lithosphere-asthenosphere system beneath an entire oceanic plate, from its birth at a spreading center to its subduction beneath a continent. Here we present tomographic images of the seismic structure of oceanic upper mantle beneath the Juan de Fuca (JdF) and Gorda plates derived from body wave delay times. The results constrain structural anomalies beneath the JdF and Gorda spreading centers, the Blanco and Mendocino transform faults, near ridge hotspots such as Axial Seamount, and the upper mantle structure beneath the subducting oceanic lithosphere. We measured delay times of teleseismic P and S wave phases for the first two years of the CI. Our tomographic analysis assumes both isotropic and anisotropic starting models and accounts for finite-frequency effects and three-dimensional ray bending. Preliminary results indicate that the upper mantle structure beneath the JdF spreading center is asymmetric, with lower shear wave velocities beneath the Pacific plate (also the direction of ridge migration). On a regional scale, regions of lower seismic velocities beneath the JdF and Gorda spreading centers correlate with shallower ridge depths. Beneath the southern Gorda plate a low velocity anomaly is detected, which is absent to the north; this anomaly is bounded to the south by the Mendocino transform. Ongoing work includes analysis of the third year of CI data, which will improve resolution of structure and allow better definition of anomalies in the vicinity of the Blanco transform. In addition, we will combine ocean and continental data to obtain images of the Cascadia subduction zone.

  19. NORTHEAST CLIMATE DATA

    EPA Science Inventory

    The Northeast Regional Climate Center (NRCC) database includes a complete collection of historical climate data for the northeastern United States as well as continually updated National Weather Service observations and forecasts. In addition, daily temperature and precipitation ...

  20. Transform push, oblique subduction resistance, and intraplate stress of the Juan de Fuca Plate

    NASA Astrophysics Data System (ADS)

    Wang, Kelin; He, Jiangheng; Davis, Earl E.

    1997-01-01

    The Juan de Fuca plate is a small oceanic plate between the Pacific and North America plates. In the southernmost region, referred to as the Gorda deformation zone, the maximum compressive stress σ1 constrained by earthquake focal mechanisms is N-S. Off Oregon, and possibly off Washington, NW trending left-lateral faults cutting the Juan de Fuca plate indicate a σ1 in a NE-SW to E-W direction. The magnitude of differential stress increases from north to south; this is inferred from the plastic yielding and distribution of earthquakes throughout the Gorda deformation zone. To understand how tectonic forces determine the stress field of the Juan de Fuca plate, we have modeled the intraplate stress using both elastic and elastic-perfectly plastic plane-stress finite element models. We conclude that the right-lateral shear motion of the Pacific and North America plates is primarily responsible for the stress pattern of the Juan de Fuca plate. The most important roles are played by a compressional force normal to the Mendocino transform fault, a result of the northward push by the Pacific plate and a horizontal resistance operating against the northward, or margin-parallel, component of oblique subduction. Margin-parallel subduction resistance results in large N-S compression in the Gorda deformation zone because the force is integrated over the full length of the Cascadia subduction zone. The Mendocino transform fault serves as a strong buttress that is very weak in shear but capable of transmitting large strike-normal compressive stresses. Internal failure of the Gorda deformation zone potentially places limits on the magnitude of the fault-normal stresses being transmitted and correspondingly on the magnitude of strike-parallel subduction resistance. Transform faults and oblique subduction zones in other parts of the world can be expected to transmit and create stresses in the same manner.

  1. Transform push, oblique subduction resistance, and intraplate stress of the Juan de Fuca plate

    USGS Publications Warehouse

    Wang, K.; He, J.; Davis, E.E.

    1997-01-01

    The Juan de Fuca plate is a small oceanic plate between the Pacific and North America plates. In the southernmost region, referred to as the Gorda deformation zone, the maximum compressive stress a, constrained by earthquake focal mechanisms is N-S. Off Oregon, and possibly off Washington, NW trending left-lateral faults cutting the Juan de Fuca plate indicate a a, in a NE-SW to E-W direction. The magnitude of differential stress increases from north to south; this is inferred from the plastic yielding and distribution of earthquakes throughout the Gorda deformation zone. To understand how tectonic forces determine the stress field of the Juan de Fuca plate, we have modeled the intraplate stress using both elastic and elastic-perfectly plastic plane-stress finite element models. We conclude that the right-lateral shear motion of the Pacific and North America plates is primarily responsible for the stress pattern of the Juan de Fuca plate. The most important roles are played by a compressional force normal to the Mendocino transform fault, a result of the northward push by the Pacific plate and a horizontal resistance operating against the northward, or margin-parallel, component of oblique subduction. Margin-parallel subduction resistance results in large N-S compression in the Gorda deformation zone because the force is integrated over the full length of the Cascadia subduction zone. The Mendocino transform fault serves as a strong buttress that is very weak in shear but capable of transmitting large strike-normal compressive stresses. Internal failure of the Gorda deformation zone potentially places limits on the magnitude of the fault-normal stresses being transmitted and correspondingly on the magnitude of strike-parallel subduction resistance. Transform faults and oblique subduction zones in other parts of the world can be expected to transmit and create stresses in the same manner. Copyright 1997 by the American Geophysical Union.

  2. Precise relative locations for earthquakes in the northeast Pacific region

    SciTech Connect

    Cleveland, K. Michael; VanDeMark, Thomas F.; Ammon, Charles J.

    2015-10-09

    We report that double-difference methods applied to cross-correlation measured Rayleigh wave time shifts are an effective tool to improve epicentroid locations and relative origin time shifts in remote regions. We apply these methods to seismicity offshore of southwestern Canada and the U.S. Pacific Northwest, occurring along the boundaries of the Pacific and Juan de Fuca (including the Explorer Plate and Gorda Block) Plates. The Blanco, Mendocino, Revere-Dellwood, Nootka, and Sovanco fracture zones host the majority of this seismicity, largely consisting of strike-slip earthquakes. The Explorer, Juan de Fuca, and Gorda spreading ridges join these fracture zones and host normal faulting earthquakes. Our results show that at least the moderate-magnitude activity clusters along fault strike, supporting suggestions of large variations in seismic coupling along oceanic transform faults. Our improved relative locations corroborate earlier interpretations of the internal deformation in the Explorer and Gorda Plates. North of the Explorer Plate, improved locations support models that propose northern extension of the Revere-Dellwood fault. Relocations also support interpretations that favor multiple parallel active faults along the Blanco Transform Fault Zone. Seismicity of the western half of the Blanco appears more scattered and less collinear than the eastern half, possibly related to fault maturity. We use azimuthal variations in the Rayleigh wave cross-correlation amplitude to detect and model rupture directivity for a moderate size earthquake along the eastern Blanco Fault. Lastly, the observations constrain the seismogenic zone geometry and suggest a relatively narrow seismogenic zone width of 2 to 4 km.

  3. Precise relative locations for earthquakes in the northeast Pacific region

    DOE PAGESBeta

    Cleveland, K. Michael; VanDeMark, Thomas F.; Ammon, Charles J.

    2015-10-09

    We report that double-difference methods applied to cross-correlation measured Rayleigh wave time shifts are an effective tool to improve epicentroid locations and relative origin time shifts in remote regions. We apply these methods to seismicity offshore of southwestern Canada and the U.S. Pacific Northwest, occurring along the boundaries of the Pacific and Juan de Fuca (including the Explorer Plate and Gorda Block) Plates. The Blanco, Mendocino, Revere-Dellwood, Nootka, and Sovanco fracture zones host the majority of this seismicity, largely consisting of strike-slip earthquakes. The Explorer, Juan de Fuca, and Gorda spreading ridges join these fracture zones and host normal faultingmore » earthquakes. Our results show that at least the moderate-magnitude activity clusters along fault strike, supporting suggestions of large variations in seismic coupling along oceanic transform faults. Our improved relative locations corroborate earlier interpretations of the internal deformation in the Explorer and Gorda Plates. North of the Explorer Plate, improved locations support models that propose northern extension of the Revere-Dellwood fault. Relocations also support interpretations that favor multiple parallel active faults along the Blanco Transform Fault Zone. Seismicity of the western half of the Blanco appears more scattered and less collinear than the eastern half, possibly related to fault maturity. We use azimuthal variations in the Rayleigh wave cross-correlation amplitude to detect and model rupture directivity for a moderate size earthquake along the eastern Blanco Fault. Lastly, the observations constrain the seismogenic zone geometry and suggest a relatively narrow seismogenic zone width of 2 to 4 km.« less

  4. Juan de Fuca slab geometry and its relation to Wadati-Benioff zone seismicity

    USGS Publications Warehouse

    McCrory, Patricia A.; Blair, J. Luke; Waldhause, Felix; Oppenheimer, David H.

    2012-01-01

    A new model of the subducted Juan de Fuca plate beneath western North America allows first-order correlations between the occurrence of Wadati-Benioff zone earthquakes and slab geometry, temperature, and hydration state. The geo-referenced 3D model, constructed from weighted control points, integrates depth information from earthquake locations and regional seismic velocity studies. We use the model to separate earthquakes that occur in the Cascadia forearc from those that occur within the underlying Juan de Fuca plate and thereby reveal previously obscured details regarding the spatial distribution of earthquakes. Seismicity within the slab is most prevalent where the slab is warped beneath northwestern California and western Washington suggesting that slab flexure, in addition to expected metamorphic dehydration processes, promotes earthquake occurrence within the subducted oceanic plate. Earthquake patterns beneath western Vancouver Island are consistent with slab dehydration processes. Conversely, the lack of slab earthquakes beneath western Oregon is consistent with an anhydrous slab. Double-differenced relocated seismicity resolves a double seismic zone within the slab beneath northwestern California that strongly constrains the location of the plate interface and delineates a cluster of seismicity 10 km above the surface that includes the 1992 M7.1 Mendocino earthquake. We infer that this earthquake ruptured a surface within the Cascadia accretionary margin above the Juan de Fuca plate. We further speculate that this earthquake is associated with a detached fragment of former Farallon plate. Other subsurface tectonic elements within the forearc may have the potential to generate similar damaging earthquakes.

  5. Juan de Fuca slab geometry and its relation to Wadati-Benioff zone seismicity

    NASA Astrophysics Data System (ADS)

    McCrory, Patricia A.; Blair, J. Luke; Waldhauser, Felix; Oppenheimer, David H.

    2012-09-01

    A new model of the subducted Juan de Fuca plate beneath western North America allows first-order correlations between the occurrence of Wadati-Benioff zone earthquakes and slab geometry, temperature, and hydration state. The geo-referenced 3D model, constructed from weighted control points, integrates depth information from earthquake locations and regional seismic velocity studies. We use the model to separate earthquakes that occur in the Cascadia forearc from those that occur within the underlying Juan de Fuca plate and thereby reveal previously obscured details regarding the spatial distribution of earthquakes. Seismicity within the slab is most prevalent where the slab is warped beneath northwestern California and western Washington suggesting that slab flexure, in addition to expected metamorphic dehydration processes, promotes earthquake occurrence within the subducted oceanic plate. Earthquake patterns beneath western Vancouver Island are consistent with slab dehydration processes. Conversely, the lack of slab earthquakes beneath western Oregon is consistent with an anhydrous slab. Double-differenced relocated seismicity resolves a double seismic zone within the slab beneath northwestern California that strongly constrains the location of the plate interface and delineates a cluster of seismicity 10 km above the surface that includes the 1992 M7.1 Mendocino earthquake. We infer that this earthquake ruptured a surface within the Cascadia accretionary margin above the Juan de Fuca plate. We further speculate that this earthquake is associated with a detached fragment of former Farallon plate. Other subsurface tectonic elements within the forearc may have the potential to generate similar damaging earthquakes.

  6. Geophysical Investigation of Australian-Antarctic Ridge Using High-Resolution Gravity and Bathymetry

    NASA Astrophysics Data System (ADS)

    Kim, S. S.; Lin, J.; Park, S. H.; Choi, H.

    2015-12-01

    Much of the Australian-Antarctic Ridge (AAR) has been remained uncharted until 2011 because of its remoteness and harsh weather conditions. From 2011, the multidisciplinary ridge program initiated by the Korea Polar Research Institute (KOPRI) surveyed the little-explored eastern ends of the AAR to characterize the tectonics, geochemistry, and hydrothermal activity of this intermediate spreading system. In this study, we present a detailed analysis of a 300-km-long supersegment of the AAR to quantify the spatial variations in ridge morphology and axial and off-axis volcanisms as constrained by high-resolution shipboard bathymetry and gravity. The ridge axis morphology alternates between rift valleys and axial highs within relatively short ridge segments. To obtain a geological proxy for regional variations in magma supply, we calculated residual mantle Bouguer gravity anomalies (RMBA), gravity-derived crustal thickness, and residual topography for neighboring seven sub-segments. The results of the analyses revealed that the southern flank of the AAR is associated with shallower seafloor, more negative RMBA, thicker crust, and/or less dense mantle in comparison to the conjugate northern flank. Furthermore, this north-south asymmetry becomes more prominent toward the KR1 supersegment of the AAR. The axial topography of the KR1 supersegment exhibits a sharp transition from axial highs at the western end to rift valleys at the eastern end, with regions of axial highs being associated with more robust magma supply as indicated by more negative RMBA. We also compare and contrast the characteristics of the AAR supersegment with that of other ridges of intermediate spreading rates, including the Juan de Fuca Ridge, Galápagos Spreading Center, and Southeast Indian Ridge west of the Australian-Antarctic Discordance, to investigate the influence of ridge-hotspot interaction on ridge magma supply and tectonics.

  7. Grafts for Ridge Preservation

    PubMed Central

    Jamjoom, Amal; Cohen, Robert E.

    2015-01-01

    Alveolar ridge bone resorption is a biologic phenomenon that occurs following tooth extraction and cannot be prevented. This paper reviews the vertical and horizontal ridge dimensional changes that are associated with tooth extraction. It also provides an overview of the advantages of ridge preservation as well as grafting materials. A Medline search among English language papers was performed in March 2015 using alveolar ridge preservation, ridge augmentation, and various graft types as search terms. Additional papers were considered following the preliminary review of the initial search that were relevant to alveolar ridge preservation. The literature suggests that ridge preservation methods and augmentation techniques are available to minimize and restore available bone. Numerous grafting materials, such as autografts, allografts, xenografts, and alloplasts, currently are used for ridge preservation. Other materials, such as growth factors, also can be used to enhance biologic outcome. PMID:26262646

  8. Ambient light emission from hydrothermal vents on the Mid-Atlantic Ridge

    NASA Astrophysics Data System (ADS)

    White, Sheri N.; Chave, Alan D.; Reynolds, George T.; Van Dover, Cindy L.

    2002-08-01

    A spectral imaging camera was used to observe light emission from high-temperature, deep-sea vents at three hydrothermal sites on the Mid-Atlantic Ridge (MAR): Logatchev, Snake Pit, and Lucky Strike. Ambient light measured at these sites is similar to that observed at sites along the East Pacific Rise and the Juan de Fuca Ridge, with components from both thermal and non-thermal sources. The shrimp species Rimicaris exoculata, which is found on the MAR but not in the Eastern Pacific, possesses a unique photoreceptor capable of detecting low light levels. It is not yet known if R. exoculata ``sees'' vent light. However, since the characteristics of vent light appear to be unrelated to geographical location, the exclusion of R. exoculata from the Eastern Pacific is probably unrelated to differences in ambient light conditions.

  9. VIEW OF NORTHEAST TOWARD MAINTENANCE SHED AT NORTHEAST CORNER OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF NORTHEAST TOWARD MAINTENANCE SHED AT NORTHEAST CORNER OF PARK - Candler Park Historic District, Roughly bounded by Moreland, Dekalb, McLendon & Harold Avenues, Matthews Street & Clifton Terrace, Atlanta, Fulton County, GA

  10. 5. INTERIOR OF NORTHEAST ROOM AND MEZZANINE, NORTHEAST VIEW OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. INTERIOR OF NORTHEAST ROOM AND MEZZANINE, NORTHEAST VIEW OF (HOISTS IN CENTER). - Vanadium Corporation of America (VCA) Naturita Mill, Sampling Building & Ore Receiving Platform, 3 miles Northwest of Naturita, between Highway 141 & San Miguel River, Naturita, Montrose County, CO

  11. 52. Ground floor, northeast corner, looking northeast at former delivery ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    52. Ground floor, northeast corner, looking northeast at former delivery entries (archways have since been filled in) - Sheffield Farms Milk Plant, 1075 Webster Avenue (southwest corner of 166th Street), Bronx, Bronx County, NY

  12. 33 CFR 334.1200 - Strait of Juan de Fuca, eastern end; off the westerly shore of Whidbey Island; naval restricted...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Register citations affecting § 334.1200, see the List of CFR Sections Affected, which appears in the... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Strait of Juan de Fuca, eastern... AND RESTRICTED AREA REGULATIONS § 334.1200 Strait of Juan de Fuca, eastern end; off the westerly...

  13. Beryllium 10 in hydrothermal vent deposits from the East Pacific Ridges: Role of sediments in the hydrothermal processes

    SciTech Connect

    Valette-Silver, J.N.; Tera, F.; Klein, J.; Middleton, R.

    1987-10-10

    Beryllium 10 concentrations were determined for 31 handpicked hydrothermal sulfides, six oxyhydroxides, seven basalts, and five sediments collected from the hydrothermally active areas of the East Pacific ridges. The samples includes specimens from the East Pacific Rise (EPR) at 21 /sup 0/N and 13 /sup 0/N, the Galapagos Rift, the Guaymas Basin, and the Gorda and the Juan de Fuca ridges. Additional samples from massive sulfides associated with the Oman ophiolites were studied. In all samples, we obtained values ranging from 0.04 x 10/sup 6/ atoms/g to 125 x 10/sup 6/ atoms/g, with the lowest values being very close to our blank (0.015 x 10/sup 6/ atoms/g). The data show systematic variations with sample location and type. The /sup 10/Be concentrations measured for the mid-ocean basalts are of the order of 0.3 x 10/sup 6/ atoms/g and reach 3800 x 10/sup 6/ atoms/g for the pelagic deep-sea sediments collected near the EPR 21 /sup 0/N. Based on their /sup 10/Be concentrations, we can clearly distinguish two categories of sulfides: sulfides containing low /sup 10/Be concentration (<10 /sup 6/ atoms/g) sitting directly on the mid-ocean basalt (EPR of Juan de Fuca), and sulfides with high /sup 10/Be concentration (>10/sup 6/ atoms/g) located atop of a thick pile of young sediments (Guaymas Basin or Gorda Ridge).

  14. Project NEPTUNE: an innovative, powered, fibre-optic cabled deep ocean observatory spanning the Juan de Fuca plate, NE Pacific

    NASA Astrophysics Data System (ADS)

    Barnes, C.; Delaney, J.

    2003-04-01

    NEPTUNE is an innovative facility, a deep-water cabled observatory, that will transform marine science. MARS and VENUS are deep and shallow-water test bed facilities for NEPTUNE located in Monterey Canyon, California and in southern British Columbia, respectively; both were funded in 2002. NEPTUNE will be a network of over 30 subsea observatories covering the 200,000 sq. km Juan de Fuca tectonic plate, Northeast Pacific. It will draw power via two shore stations and receive and exchange data with scientists through 3000 km of submarine fiber-optic cables. Each observatory, and cabled extensions, will host and power many scientific instruments on the surrounding seafloor, in seafloor boreholes and buoyed through the water column. Remotely operated and autonomous vehicles will reside at depth, recharge at observatories, and respond to distant labs. Continuous near-real-time multidisciplinary measurement series will extend over 30 years. Free from the limitations of battery life, ship schedules/ accommodations, bad weather and delayed access to data, scientists will monitor remotely their deep-sea experiments in real time on the Internet, and routinely command instruments to respond to storms, plankton blooms, earthquakes, eruptions, slope slides and other events. Scientists will be able to pose entirely new sets of questions and experiments to understand complex, interacting Earth System processes such as the structure and seismic behavior of the ocean crust; dynamics of hot and cold fluids and gas hydrates in the upper ocean crust and overlying sediments; ocean climate change and its effect on the ocean biota at all depths; and the barely known deep-sea ecosystem dynamics and biodiversity. NEPTUNE is a US/Canada (70/30) partnership to design, test, build and operate the network on behalf of a wide scientific community. The total cost of the project is estimated at about U.S. 250 million from concept to operation. Over U.S. 50 million has already been funded for

  15. Magnetite formation from ferrihydrite by hyperthermophilic archaea from Endeavour Segment, Juan de Fuca Ridge hydrothermal vent chimneys.

    PubMed

    Lin, T Jennifer; Breves, E A; Dyar, M D; Ver Eecke, H C; Jamieson, J W; Holden, J F

    2014-05-01

    Hyperthermophilic iron reducers are common in hydrothermal chimneys found along the Endeavour Segment in the northeastern Pacific Ocean based on culture-dependent estimates. However, information on the availability of Fe(III) (oxyhydr) oxides within these chimneys, the types of Fe(III) (oxyhydr) oxides utilized by the organisms, rates and environmental constraints of hyperthermophilic iron reduction, and mineral end products is needed to determine their biogeochemical significance and are addressed in this study. Thin-section petrography on the interior of a hydrothermal chimney from the Dante edifice at Endeavour showed a thin coat of Fe(III) (oxyhydr) oxide associated with amorphous silica on the exposed outer surfaces of pyrrhotite, sphalerite, and chalcopyrite in pore spaces, along with anhydrite precipitation in the pores that is indicative of seawater ingress. The iron sulfide minerals were likely oxidized to Fe(III) (oxyhydr) oxide with increasing pH and Eh due to cooling and seawater exposure, providing reactants for bioreduction. Culture-dependent estimates of hyperthermophilic iron reducer abundances in this sample were 1740 and 10 cells per gram (dry weight) of material from the outer surface and the marcasite-sphalerite-rich interior, respectively. Two hyperthermophilic iron reducers, Hyperthermus sp. Ro04 and Pyrodictium sp. Su06, were isolated from other active hydrothermal chimneys on the Endeavour Segment. Strain Ro04 is a neutrophilic (pH opt 7-8) heterotroph, while strain Su06 is a mildly acidophilic (pH opt 5), hydrogenotrophic autotroph, both with optimal growth temperatures of 90-92 °C. Mössbauer spectroscopy of the iron oxides before and after growth demonstrated that both organisms form nanophase (<12 nm) magnetite [Fe3 O4 ] from laboratory-synthesized ferrihydrite [Fe10 O14 (OH)2 ] with no detectable mineral intermediates. They produced up to 40 mm Fe(2+) in a growth-dependent manner, while all abiotic and biotic controls produced <3 mm Fe(2+) . Hyperthermophilic iron reducers may have a growth advantage over other hyperthermophiles in hydrothermal systems that are mildly acidic where mineral weathering at increased temperatures occurs. PMID:24612368

  16. Viral Genomics and Evolution in Subseafloor Diffuse Flow Viral Communities in the Main Endeavour Hydrothermal Field, Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Anderson, R. E.; Baross, J. A.

    2010-04-01

    In the dynamic environment of hydrothermal vents, transduction may play a crucial role in microbial evolution. Metagenomic analysis of diffuse flow viral communities may elucidate the nature and extent of transduction in these ancient ecosystems.

  17. Heat and chemical flux variability within the Main Endeavour Field, Juan de Fuca Ridge, from 2000, 2004

    NASA Astrophysics Data System (ADS)

    Kellogg, J. P.; McDuff, R. E.; Hautala, S. L.; Stahr, F.

    2010-12-01

    The Main Endeavour Field (MEF) has had a split personality since it was discovered. The southern half of the field is regularly observed to be hotter and fresher than the northern half. Differences lessened after the 1999 earthquake event, but the thermal and chemical gradient remains. We examine CTD and MAVS current meter data collected during surveys, designed to intersect the rising hydrothermal plume, conducted with the Autonomous Benthic Explorer (ABE) in 2000 and 2004. By taking subsets of the data over known clusters of structures within the field, we attribute fractional contributions to the whole field heat and salt fluxes. Preliminary findings indicate that North MEF contributes ~90% and ~100% of the heat from MEF in 2000 and 2004 respectively. It is clear from this that the majority of the MEF buoyancy flux is from North MEF even though the source fluids from South MEF are estimated to be initially more buoyant than those from North MEF. Within North MEF, ~2/3 of the heat comes from the Grotto, Dante, Lobo sulfide cluster and ~1/4 from the Hulk and Crypto cluster. These data, for the intra-field spatial scales of heat and salt flux, may allow us to infer mechanisms capable of altering the porous network of the hydrothermal system.

  18. Northeast Hellas Landscape

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-446, 8 August 2003

    This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image of pitted terrain northeast of Hellas Basin shows light-toned outcrops of layered, sedimentary rock, and a valley floor covered by large, dark ripples or small dunes. Similar light-toned sedimentary materials are found throughout the region immediately northeast of Hellas, and in the crater, Terby. The area shown is 3 km (1.9 mi) wide and located near 27.5oS, 281.7oW. Sunlight illuminates the scene from the upper left.

  19. Segmentation of mid-ocean ridges attributed to oblique mantle divergence

    NASA Astrophysics Data System (ADS)

    Vanderbeek, Brandon P.; Toomey, Douglas R.; Hooft, Emilie E. E.; Wilcock, William S. D.

    2016-08-01

    The origin of mid-ocean ridge segmentation--the systematic along-axis variation in tectonic and magmatic processes--remains controversial. It is commonly assumed that mantle flow is a passive response to plate divergence and that between transform faults magma supply controls segmentation. Using seismic tomography, we constrain the geometry of mantle flow and the distribution of mantle melt beneath the intermediate-spreading Endeavour segment of the Juan de Fuca Ridge. Our results, in combination with prior studies, establish a systematic skew between the mantle-divergence and plate-spreading directions. In all three cases studied, mantle divergence is advanced with respect to recent changes in the plate-spreading direction and the extent to which the flow field is advanced increases with decreasing spreading rate. Furthermore, seismic images show that large-offset, non-transform discontinuities are regions of enhanced mantle melt retention. We propose that oblique mantle flow beneath mid-ocean ridges is a driving force for the reorientation of spreading segments and the formation of ridge-axis discontinuities. The resulting tectonic discontinuities decrease the efficiency of upward melt transport, thus defining segment-scale variations in magmatic processes. We predict that across spreading rates mid-ocean ridge segmentation is controlled by evolving patterns in asthenospheric flow and the dynamics of lithospheric rifting.

  20. Crustal Assimilation and the Petrogenesis of Mid-Ocean Ridge Dacites

    NASA Astrophysics Data System (ADS)

    Wanless, V.; Perfit, M. R.; Ridley, W. I.; Klein, E. M.; Grimes, C. B.; Valley, J. W.

    2010-12-01

    The majority of eruptions at spreading centers produce lavas with relatively homogeneous mid-ocean ridge basalt (MORB) compositions, but andesitic and dacitic lavas have been sampled at several different mid-ocean ridges (MOR). Eruption of high-silica lavas are commonly associated with ridge discontinuities, examples being propagating ridge tips at ridge-transform intersections on the Juan de Fuca Ridge and eastern Galápagos spreading center, and at the 9°N overlapping spreading center on the East Pacific Rise. Although these lavas are found at different ridges, the dacites show remarkably similar major element trends and incompatible trace element enrichments, suggesting that similar processes control their formation. Although most geochemical variability in the MOR series basalts -ferrobasalts - FeTi basalts is consistent with low-pressure fractional crystallization, modeling suggests that extreme fractional crystallization accompanied by partial melting and assimilation of amphibole-bearing altered oceanic crust is important in the petrogenesis of high-silica differentiates. Such a complex process is consistent with dacites showing: 1) elevated U, Th, Zr, and Hf; 2) relatively low Nb and Ta; 3) Al2O3, K2O, Cl, H2O concentrations that are higher than expected from fractional crystallization; 4) relatively low δ18O glass values of ~5.6 compared to values ~6.9 ‰ expected from fractional crystallization. This suggests that crustal assimilation is an important process in the formation of highly evolved MOR lavas (i.e., andesites and dacites) and may be significant in formation of MORB in general. Although basaltic material at MOR is much more voluminous than high-silica lavas, the eruption of dacites at numerous ridges, and the seemingly ubiquitous presence of plagiogranite veins in exposed and drilled sections of gabbroic Layer 3 indicate that high-silica lavas are an intrinsic component of the ocean crust, though their petrogenesis may involve various

  1. Sub-Seafloor Carbon Dioxide Storage Potential on the Juan de Fuca Plate, Western North America

    SciTech Connect

    Jerry Fairley; Robert Podgorney

    2012-11-01

    The Juan de Fuca plate, off the western coast of North America, has been suggested as a site for geological sequestration of waste carbon dioxide because of its many attractive characteristics (high permeability, large storage capacity, reactive rock types). Here we model CO2 injection into fractured basalts comprising the upper several hundred meters of the sub-seafloor basalt reservoir, overlain with low-permeability sediments and a large saline water column, to examine the feasibility of this reservoir for CO2 storage. Our simulations indicate that the sub-seafloor basalts of the Juan de Fuca plate may be an excellent CO2 storage candidate, as multiple trapping mechanisms (hydrodynamic, density inversions, and mineralization) act to keep the CO2 isolated from terrestrial environments. Questions remain about the lateral extent and connectivity of the high permeability basalts; however, the lack of wells or boreholes and thick sediment cover maximize storage potential while minimizing potential leakage pathways. Although promising, more study is needed to determine the economic viability of this option.

  2. A Geo-referenced 3D model of the Juan de Fuca Slab and associated seismicity

    USGS Publications Warehouse

    Blair, J.L.; McCrory, P.A.; Oppenheimer, D.H.; Waldhauser, F.

    2011-01-01

    We present a Geographic Information System (GIS) of a new 3-dimensional (3D) model of the subducted Juan de Fuca Plate beneath western North America and associated seismicity of the Cascadia subduction system. The geo-referenced 3D model was constructed from weighted control points that integrate depth information from hypocenter locations and regional seismic velocity studies. We used the 3D model to differentiate earthquakes that occur above the Juan de Fuca Plate surface from earthquakes that occur below the plate surface. This GIS project of the Cascadia subduction system supersedes the one previously published by McCrory and others (2006). Our new slab model updates the model with new constraints. The most significant updates to the model include: (1) weighted control points to incorporate spatial uncertainty, (2) an additional gridded slab surface based on the Generic Mapping Tools (GMT) Surface program which constructs surfaces based on splines in tension (see expanded description below), (3) double-differenced hypocenter locations in northern California to better constrain slab location there, and (4) revised slab shape based on new hypocenter profiles that incorporate routine depth uncertainties as well as data from new seismic-reflection and seismic-refraction studies. We also provide a 3D fly-through animation of the model for use as a visualization tool.

  3. Tomographic imaging of the Cascadia subduction zone: Constraints on the Juan de Fuca slab

    NASA Astrophysics Data System (ADS)

    Chen, Chuanxu; Zhao, Dapeng; Wu, Shiguo

    2015-04-01

    We used 40,343 P-wave arrival times from 1883 local earthquakes and 105,455 P-wave arrivals from 6361 teleseismic events to study the detailed structure of the Cascadia subduction zone. We conducted tomographic inversions using a starting velocity model which includes the high-velocity subducting Juan de Fuca slab as a priori information. A number of such slab-constrained inversions are conducted by changing the slab thickness and the velocity contrast between the slab and the surrounding mantle. Our optimal 3-D velocity model fits the data much better than that determined by an inversion with a 1-D homogeneous starting model. Our results show that the subducting Juan de Fuca slab has a thickness of 30-50 km and a P-wave velocity of 1-3% higher than that of the surrounding mantle. Beneath the northern and southern parts of the Cascadia, P-wave velocity is lower in the slab and along the slab interface, which may reflect a more hydrated slab and more active slab dehydration there. The lateral velocity variations may indicate different degrees of slab dehydration and forearc mantle serpentinization. The segmentation in episodic tremor and slip (ETS) is also spatially coincident with the velocity heterogeneities, indicating that the ETS occurrence and recurrence interval are controlled by fluid activity in and around the mantle wedge corner.

  4. Northeast Regional Biomass Program

    SciTech Connect

    Lusk, P.D.

    1992-12-01

    The Northeast Regional Biomass Program has been in operation for a period of nine years. During this time, state managed programs and technical programs have been conducted covering a wide range of activities primarily aim at the use and applications of wood as a fuel. These activities include: assessments of available biomass resources; surveys to determine what industries, businesses, institutions, and utility companies use wood and wood waste for fuel; and workshops, seminars, and demonstrations to provide technical assistance. In the Northeast, an estimated 6.2 million tons of wood are used in the commercial and industrial sector, where 12.5 million cords are used for residential heating annually. Of this useage, 1504.7 mw of power has been generated from biomass. The use of wood energy products has had substantial employment and income benefits in the region. Although wood and woodwaste have received primary emphasis in the regional program, the use of municipal solid waste has received increased emphasis as an energy source. The energy contribution of biomass will increase as potentia users become more familiar with existing feedstocks, technologies, and applications. The Northeast Regional Biomass Program is designed to support region-specific to overcome near-term barriers to biomass energy use.

  5. 46 CFR 7.145 - Strait of Juan de Fuca, Haro Strait and Strait of Georgia WA.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Strait of Juan de Fuca, Haro Strait and Strait of Georgia WA. 7.145 Section 7.145 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY PROCEDURES... of Georgia WA. (a) A line drawn from the northernmost point of Angeles Point to latitude 48°21.1′...

  6. 46 CFR 7.145 - Strait of Juan de Fuca, Haro Strait and Strait of Georgia WA.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Strait of Juan de Fuca, Haro Strait and Strait of Georgia WA. 7.145 Section 7.145 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY PROCEDURES... of Georgia WA. (a) A line drawn from the northernmost point of Angeles Point to latitude 48°21.1′...

  7. 46 CFR 7.145 - Strait of Juan de Fuca, Haro Strait and Strait of Georgia WA.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Strait of Juan de Fuca, Haro Strait and Strait of Georgia WA. 7.145 Section 7.145 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY PROCEDURES... of Georgia WA. (a) A line drawn from the northernmost point of Angeles Point to latitude 48°21.1′...

  8. 46 CFR 7.145 - Strait of Juan de Fuca, Haro Strait and Strait of Georgia WA.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Strait of Juan de Fuca, Haro Strait and Strait of Georgia WA. 7.145 Section 7.145 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY PROCEDURES... of Georgia WA. (a) A line drawn from the northernmost point of Angeles Point to latitude 48°21.1′...

  9. HF (HIGH FREQUENCY) RADAR MEASUREMENTS OF CIRCULATION IN THE EASTERN STRAIT OF JUAN DE FUCA (AUGUST, 1978)

    EPA Science Inventory

    During August, 1978, the surface currents in the Eastern Strait of Juan de Fuca were mapped with a High Frequency (HF) radar system (CODAR). The surface currents were measured simultaneously over several hundred square kilometers at one hour intervals continuously for five days. ...

  10. 33 CFR 165.1310 - Strait of Juan de Fuca and adjacent coastal waters of Northwest Washington; Makah Whale Hunting...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Strait of Juan de Fuca and adjacent coastal waters of Northwest Washington; Makah Whale Hunting-Regulated Navigation Area. 165.1310 Section 165.1310 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PORTS AND WATERWAYS SAFETY...

  11. HF (HIGH FREQUENCY) RADAR MEASUREMENTS OF CIRCULATION IN THE EASTERN STRAIT OF JUAN DE FUCA NEAR PROTECTION ISLAND (JULY, 1979)

    EPA Science Inventory

    During July 1979 the surface currents in the Eastern Strait of Juan de Fuca were mapped with a High Frequency (HF) radar system (CODAR). These currents were measured simultaneously over several hundred square kilometers continuously for five days. The strong tidal currents and es...

  12. Coastal geology of northeast Africa and implications for prehistory

    SciTech Connect

    Hassan, F.A.; Higab, O.; Sharat, A.

    1985-01-01

    The coast of northeast Africa is characterized by ridges of disputed origin. The authors investigations clearly demonstrate that the ridges consist of littoral cycles and that they are neither wholly marine nor eolian. For example, Gebel Maryut Ridge in Egypt consists of several cycles, each consisting of beach or lagoonal deposits of a transgressive marine hemicycle followed by a regressive hemicycle represented by eolianite, which may be followed by soil development and colluviation. Paleontologic evidence, morphostratigraphy and correlation with the littoral cycles of Spain suggest that the marine sediments in the Gebel Maryut Ridge at 3, 4, 7 and 9 m asl are of Middle Pleistocene age (about 0.9->.25 my). The next and youngest ridge overlooking the modern beach consist of eolianite overlying supratidal gypseous sand and lagoonal shelly sand dating most probably to the last interglacial transgressive hemicycle. The coast today is erosional and the sea level has risen from -2 or -4 m to the present level since Graeco-Roman times. This suggests that sites that may have been located near the seashore from the last interglacial transgression and the recent transgression may have been destroyed. This is confirmed by a lack of prehistoric remains along the Egyptian Mediterranean Coast.

  13. Interaction of a mantle plume and a segmented mid-ocean ridge: Results from numerical modeling

    NASA Astrophysics Data System (ADS)

    Georgen, Jennifer E.

    2014-04-01

    Previous investigations have proposed that changes in lithospheric thickness across a transform fault, due to the juxtaposition of seafloor of different ages, can impede lateral dispersion of an on-ridge mantle plume. The application of this “transform damming” mechanism has been considered for several plume-ridge systems, including the Reunion hotspot and the Central Indian Ridge, the Amsterdam-St. Paul hotspot and the Southeast Indian Ridge, the Cobb hotspot and the Juan de Fuca Ridge, the Iceland hotspot and the Kolbeinsey Ridge, the Afar plume and the ridges of the Gulf of Aden, and the Marion/Crozet hotspot and the Southwest Indian Ridge. This study explores the geodynamics of the transform damming mechanism using a three-dimensional finite element numerical model. The model solves the coupled steady-state equations for conservation of mass, momentum, and energy, including thermal buoyancy and viscosity that is dependent on pressure and temperature. The plume is introduced as a circular thermal anomaly on the bottom boundary of the numerical domain. The center of the plume conduit is located directly beneath a spreading segment, at a distance of 200 km (measured in the along-axis direction) from a transform offset with length 100 km. Half-spreading rate is 0.5 cm/yr. In a series of numerical experiments, the buoyancy flux of the modeled plume is progressively increased to investigate the effects on the temperature and velocity structure of the upper mantle in the vicinity of the transform. Unlike earlier studies, which suggest that a transform always acts to decrease the along-axis extent of plume signature, these models imply that the effect of a transform on plume dispersion may be complex. Under certain ranges of plume flux modeled in this study, the region of the upper mantle undergoing along-axis flow directed away from the plume could be enhanced by the three-dimensional velocity and temperature structure associated with ridge-transform-ridge

  14. 2. SOUTHWEST VIEW OF NORTH SIDE (NORTHEAST CORNER).. THE NORTHEAST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. SOUTHWEST VIEW OF NORTH SIDE (NORTHEAST CORNER).. THE NORTHEAST SIDE OF THE MINE OFFICE IS IN THE BACKGROUND. - Juniata Mill Complex, Mill Camp Shed, 22.5 miles Southwest of Hawthorne, between Aurora Crater & Aurora Peak, Hawthorne, Mineral County, NV

  15. 29. Photocopy of photograph. VIEW, LOOKING NORTHEAST, OF NORTHEAST SECTION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    29. Photocopy of photograph. VIEW, LOOKING NORTHEAST, OF NORTHEAST SECTION OF THE STRUCTURE, SHOWING ORIGINAL WOOD DECK, RAILING AND EARLY 1930'S PACKARD AUTOMOBILE IN BACKGROUND. Photographer unknown, date unknown. (Print in possession of the Washington County Highway Department). - Hegeman-Hill Street Bridge, Spanning Batten Kill, .65 mile West of Greenwich, Easton, Washington County, NY

  16. Ridge Regression Signal Processing

    NASA Technical Reports Server (NTRS)

    Kuhl, Mark R.

    1990-01-01

    The introduction of the Global Positioning System (GPS) into the National Airspace System (NAS) necessitates the development of Receiver Autonomous Integrity Monitoring (RAIM) techniques. In order to guarantee a certain level of integrity, a thorough understanding of modern estimation techniques applied to navigational problems is required. The extended Kalman filter (EKF) is derived and analyzed under poor geometry conditions. It was found that the performance of the EKF is difficult to predict, since the EKF is designed for a Gaussian environment. A novel approach is implemented which incorporates ridge regression to explain the behavior of an EKF in the presence of dynamics under poor geometry conditions. The basic principles of ridge regression theory are presented, followed by the derivation of a linearized recursive ridge estimator. Computer simulations are performed to confirm the underlying theory and to provide a comparative analysis of the EKF and the recursive ridge estimator.

  17. PUSCH RIDGE WILDERNESS, ARIZONA.

    USGS Publications Warehouse

    Hinkle, Margaret E.; Ryan, George S.

    1984-01-01

    On the basis of a mineral survey, the Pusch Ridge Wilderness, located at the northern boundary of the city of Tucson, Arizona, offers little or no promise for the occurrence of energy resources. Only one area contains a probable potential for small, isolated contact-metamorphic deposits containing copper, molybdenum, tungsten, lead, and zinc. This area is located around the southwestern end of Pusch Ridge, adjacent to a residential area.

  18. [sup 226]Ra-[sup 230]Th disequilibrium in axial and off-axis mid-ocean ridge basalts

    SciTech Connect

    Volpe, A.M.; Goldstein, S.J. Los Alamos National Lab., NM )

    1993-03-01

    The authors describe [sup 226]Ra-[sup 230]Th disequilibrium in mid-ocean ridge basalt (MORB) glasses from the Juan de Fuca, Gorda, and East Pacific ridges. These first mass spectrometric measurements of [sup 226]Ra in MORB glasses at sub-picogram abundance levels confirm the large excesses over [sup 230]Th determined by radon-emanation techniques and alpha spectrometry. All off-axis MORB glasses have [sup 226]Ra-[sup 230]Th and [sup 234]U-[sup 238]U in secular equilibrium. This suggests that magmatic processes, not secondary post-eruption alteration, generate [sup 238]U-series disequilibrium in these MORB. Least evolved, N-MORB from axial valleys have ([sup 226]Ra/[sup 230]Th) between 2.2-2.3. Differentiated and enriched E-type MORB have consistently low ([sup 226]Ra/[sup 230]Th) ratios compared with N-MORB from the same ridge sections. Ra-Th fractionation may be less pronounced, or magma residence-transit periods may be long for differentiated MORB. Also, E-MORB may be generated by different melt extraction volumes and rates. Estimated [sup 226]Ra-[sup 230]Th ages for N-MORB agree with location on and off ridge segments, and with Th-U model ages. These preliminary results show that [sup 226]Ra-[sup 230]Th disequilibrium could be used to quantify volcanic episodicity at ocean ridges. 39 refs., 6 figs., 4 tabs.

  19. Dissolved organic carbon in ridge-axis and ridge-flank hydrothermal systems

    NASA Astrophysics Data System (ADS)

    Lang, Susan Q.; Butterfield, David A.; Lilley, Marvin D.; Paul Johnson, H.; Hedges, John I.

    2006-08-01

    The circulation of hydrothermal fluid through the upper oceanic crustal reservoir has a large impact on the chemistry of seawater, yet the impact on dissolved organic carbon (DOC) in the ocean has received almost no attention. To determine whether hydrothermal circulation is a source or a sink for DOC in the oceans, we measured DOC concentrations in hydrothermal fluids from several environments. Hydrothermal fluids were collected from high-temperature vents and diffuse, low-temperature vents on the basalt-hosted Juan de Fuca Ridge axis and also from low-temperature vents on the sedimented eastern flanks. High-temperature fluids from Main Endeavour Field (MEF) and Axial Volcano (AV) contain very low DOC concentrations (average = 15 and 17 μM, respectively) compared to background seawater (36 μM). At MEF and AV, average DOC concentrations in diffuse fluids (47 and 48 μM, respectively) were elevated over background seawater, and high DOC is correlated with high microbial cell counts in diffuse fluids. Fluids from off-axis hydrothermal systems located on 3.5-Ma-old crust at Baby Bare Seamount and Ocean Drilling Program (ODP) Hole 1026B had average DOC concentrations of 11 and 13 μM, respectively, and lowered DOC was correlated with low cell counts. The relative importance of heterotrophic uptake, abiotic sorption to mineral surfaces, thermal decomposition, and microbial production in fixing the DOC concentration in vent fluids remains uncertain. We calculated the potential effect of hydrothermal circulation on the deep-sea DOC cycle using our concentration data and published water flux estimates. Maximum calculated fluxes of DOC are minor compared to most oceanic DOC source and sink terms.

  20. Northeast Pacific flatfish management

    NASA Astrophysics Data System (ADS)

    Trumble, Robert J.

    1998-03-01

    Exploitation of northeast Pacific flatfish effectively began in the late 1800s with the fishery for Pacific halibut. Harvest of other flatfish occurred on a limited, local basis until foreign fishing fleets came to the area in the late 1950s. When US and Canadian fishermen replaced the foreign fleets in the 1970s and 1980s, a conservation-based management system designed to control foreign fishing was applied to the domestic fleet. Flatfish stock assessment is based on scientific surveys, both trawl and longline, and on catch-age models. In Alaskan waters since 1989 and since 1996 in Canadian waters, mandatory observers collect data on species composition, discards of flatfish and other groundfish, and catch and discards of prohibited species. Fishermen pay observer costs. Most biomass and harvest occurs in the Bering Sea-Aleutian Islands area. Many northeast Pacific flatfish are near record-high abundance, an order of magnitude higher than 20 years ago. Exploitation rates based on F35% or F0.1 generate acceptable biological catch of more than 1 million mt, but annual harvest reaches only 300,000 mt. Total groundfish harvest is limited by an optimum yield limit of 2 million mt in the Bering Sea-Aleutian Islands, where the acceptable biological catch is 3 million mt, and by limits on amounts of Pacific halibut and other prohibited species bycatch. Most flatfish are relatively low-value species, and fishermen chose to fish for more valuable species. A large, powerful fleet which developed under open access in the US saw fishing time decline and economic problems increase as catching capacity grew, while Canada stabilized its fleet with limited entry and catch restrictions for individual vessels.

  1. Activity of Wind-Blown Sand and the Formation of Feathered Sand Ridges in the Kumtagh Desert, China

    NASA Astrophysics Data System (ADS)

    Liao, Kongtai; Qu, Jianjun; Tang, Jinnian; Ding, Feng; Liu, Hujun; Zhu, Shujuan

    2010-05-01

    We study the activity of wind-blown sand and its effects on the evolution of feathered sand ridges in the Kumtagh Desert, China, and attempt to reveal the formation process of feathered sand ridges using wind-tunnel experiments, remote sensing data, and detailed field observations from 2005 to 2008. The prevailing wind direction in the Kumtagh Desert is easterly in winter and north-easterly in other seasons. The average annual wind speed is 5.9 ms-1, and winds sufficiently strong to entrain sand occur on 143 days per annum. The sand transport rate within 0.4 m of the ground is strongly influenced by local landforms, and is related to wind speed by a power function. Wind erosion occurs on the crest, the windward slope of crescent sand ridges and inter-ridge sand strips, where the blowing sand cloud is in an unsaturated state; in contrast, sand accumulation occurs on the leeward slope of the crescent sand ridges, where the blowing sand cloud is in an over-saturated state. These results indicate that the development of feathered sand ridges in the Kumtagh Desert is mainly controlled by the local wind regime. The dominant winds (from the north, north-north-east and north-east) and additional winds (from the east-north-east, east and east-south-east) determine the development of crescent sand ridges, but winds that are approximately parallel to sand ridges form the secondary inter-ridge sand strips.

  2. FOSSIL RIDGE WILDERNESS STUDY AREA, COLORADO.

    USGS Publications Warehouse

    DeWitt, Ed; Kluender, Steven E.

    1984-01-01

    The Fossil Ridge Wilderness Study Area, approximately 20 mi northeast of Gunnison in central Colorado, was studied and its mineral-resource potential assessed. Portions of the study area have substantiated resource potential for gold, silver, copper, lead, zinc, molybdenum, uranium, thorium, rare-earth elements, and high-calcium limestone. Much of the area has a probable resource potential for the preceeding commodities as well as for tin. Various other elements are found in anomalous concentrations within the study area, but there is likelihood for their occurrence in amounts sufficient to constitute resources. Exploration, especially for molybdenum, gold, and uranium, has been active in the past and is expected to continue in the future. No potential for fossil fuel resources was identified in this study.

  3. Depth to the Juan De Fuca slab beneath the Cascadia subduction margin - a 3-D model for sorting earthquakes

    USGS Publications Warehouse

    McCrory, Patricia A.; Blair, J. Luke; Oppenheimer, David H.; Walter, Stephen R.

    2004-01-01

    We present an updated model of the Juan de Fuca slab beneath southern British Columbia, Washington, Oregon, and northern California, and use this model to separate earthquakes occurring above and below the slab surface. The model is based on depth contours previously published by Fluck and others (1997). Our model attempts to rectify a number of shortcomings in the original model and update it with new work. The most significant improvements include (1) a gridded slab surface in geo-referenced (ArcGIS) format, (2) continuation of the slab surface to its full northern and southern edges, (3) extension of the slab surface from 50-km depth down to 110-km beneath the Cascade arc volcanoes, and (4) revision of the slab shape based on new seismic-reflection and seismic-refraction studies. We have used this surface to sort earthquakes and present some general observations and interpretations of seismicity patterns revealed by our analysis. For example, deep earthquakes within the Juan de Fuca Plate beneath western Washington define a linear trend that may mark a tear within the subducting plate Also earthquakes associated with the northern stands of the San Andreas Fault abruptly terminate at the inferred southern boundary of the Juan de Fuca slab. In addition, we provide files of earthquakes above and below the slab surface and a 3-D animation or fly-through showing a shaded-relief map with plate boundaries, the slab surface, and hypocenters for use as a visualization tool.

  4. Improved Epicentral Locations for Earthquakes Near Explorer Ridge

    NASA Astrophysics Data System (ADS)

    Clemens-Sewall, D.; Trehu, A. M.

    2014-12-01

    The tectonics and structure of the Explorer region, which is the northern boundary of the subducting Juan de Fuca plate, help to inform our assessments of the seismic hazard in the Pacific Northwest. Our understanding of this tectonically complex area is largely based on morphology of the seafloor from swath bathymetric data, potential field anomalies, and the calculated locations of contemporary earthquakes in the region. However, the Navy Sound Surveillance System hydrophone network, the Canadian National Seismic Network, the U.S. Advanced National Seismic System, and the Harvard Centroid Moment Tensor Catalog report significantly different epicentral locations for swarms of earthquakes near Explorer Ridge in August and October 2008. We relocated the larger (M>5) earthquakes in the August 2008 swarm using data from both U.S. and Canadian networks to improve azimuthal coverage. Absolute locations were determined for the largest events in the swarm, and the smaller events were relocated relative to the largest using a double difference method. To better understand why the locations from land-based seismic networks differ from those computed from the hydrophone arrays, we also examine T-phases from regional events recorded on Ocean Bottom Seismometers from the COLZA and Cascadia Initiative experiments and evaluate the potential for using T-phases to improve the epicentral locations of submarine earthquakes in the Pacific Northwest region.

  5. Ridge Subduction Beneath the Americas: Synthesis and New Research on Anomalous Tectonism and Magmatism

    NASA Astrophysics Data System (ADS)

    Thorkelson, D. J.; Madsen, J. K.; Breitsprecher, K.; Groome, W. G.; Sluggett, C.

    2006-12-01

    The west coast of the Americas has been repeatedly affected by ridge-trench interactions from Mesozoic to Recent time. Beneath North America, subduction of the Kula-Farallon, Kula-Resurrection and Farallon- Resurrection spreading ridges resulted in anomalous and time-transgressive forearc to backarc magmatism and related tectonism from the Late Cretaceous to the Eocene. Following consumption and redistribution of the Kula and Resurrection plates, the Neogene Farallon-Pacific ridge system intersected the North American trench in two locations - western Canada and northwestern Mexico / southwestern United States - causing pronounced magmatic and tectonic effects that continue to the present. Beneath Central America, divergent subduction of the Nazca and Cocos plates led to development of a slab window, with a present location beneath Panama and a probable pre-Pliocene position beneath Columbia or Ecuador. Patagonia has been the site of localized ridge subduction from the Eocene to the Recent, with the Phoenix-Farallon ridge subducting from the Eocene to the early Miocene, and the Nazca-Antarctic ridge from the Miocene to the present. Antarctica experienced diverging Antarctic-Phoenix plate subduction from the Eocene to the Pliocene. In all cases, normal arc magmatism was interrupted or eliminated by anomalous igneous activity ranging in signature from adakitic to intraplate. Our current research involves geochemical, tectonic, and thermal modeling of slab window environments. A new geochemical analysis on the effects of Miocene to Recent subduction of the northern segment of the Farallon (Juan de Fuca)-Pacific ridge is underway. A symmetrical arc-intraplate-arc geochemical pattern is evident in a transect from the northern Cascade Arc, through the volcanic fields of British Columbia, Yukon and eastern Alaska, and into the Aleutian Arc. This pattern can be explained by Neogene displacement of the arc-metasomatized mantle wedge caused by upwelling oceanic

  6. Fingermark ridge drift.

    PubMed

    De Alcaraz-Fossoul, Josep; Roberts, Katherine A; Feixat, Carme Barrot; Hogrebe, Gregory G; Badia, Manel Gené

    2016-01-01

    Distortions of the fingermark topography are usually considered when comparing latent and exemplar fingerprints. These alterations are characterized as caused by an extrinsic action, which affects entire areas of the deposition and alters the overall flow of a series of contiguous ridges. Here we introduce a novel visual phenomenon that does not follow these principles, named fingermark ridge drift. An experiment was designed that included variables such as type of secretion (eccrine and sebaceous), substrate (glass and polystyrene), and degrees of exposure to natural light (darkness, shade, and direct light) indoors. Fingermarks were sequentially visualized with titanium dioxide powder, photographed and analyzed. The comparison between fresh and aged depositions revealed that under certain environmental conditions an individual ridge could randomly change its original position regardless of its unaltered adjacent ridges. The causes of the drift phenomenon are not well understood. We believe it is exclusively associated with intrinsic natural aging processes of latent fingermarks. This discovery will help explain the detection of certain dissimilarities at the minutiae/ridge level; determine more accurate "hits"; identify potentially erroneous corresponding points; and rethink identification protocols, especially the criteria of "no single minutiae discrepancy" for a positive identification. PMID:26646735

  7. Pb isotopes in sulfides from mid-ocean ridge hydrothermal sites

    SciTech Connect

    LeHuray, A.P.; Church, S.E.; Koski, R.A.; Bouse, R.M.

    1988-04-01

    The authors report Pb isotope ratios of sulfides deposited at seven recently active mid-ocean ridge (MOR) hydrothermal vents. Sulfides from three sediment-starved sites on the Juan de Fuca Ridge contain Pb with isotope ratios identical to their local basaltic sources. Lead in two deposits from the sediment-covered Escanaba Trough, Gorda Ridge, is derived from the sediments and does not appear to contain any basaltic component. There is a range of isotope ratios in a Guaymas Basin deposit, consistent with a mixture of sediment and MOR basalt Pb. Lead in a Galapagos deposit differs slightly from known Galapagos basalt Pb isotope values. The faithful record of Pb isotope signatures of local sources in MOR sulfides indicates that isotope ratios from ancient analogues ca be used as accurate reflections of ancient oceanic crustal values in ophiolite-hosted deposits and continental crustal averages in sediment-hosted deposits. The preservation of primary ophiolitic or continental crustal Pb isotope signatures in ancient MOR sulfides provides a powerful tool for investigation of crustal evolution and for fingerprinting ancient terranes.

  8. Major off-axis hydrothermal activity on the northern Gorda Ridge

    SciTech Connect

    Rona, P.A. ); Denlinger, R.P. ); Fisk, M.R.; Howard, K.J.; Taghon, G.L. ); Klitgord, K.D. ); McClain, J.S. ); McMurray, G.R. ); Wiltshire, J.C. )

    1990-06-01

    The first hydrothermal field on the northern Gorda Ridge, the Sea Cliff hydrothermal field, was discovered and geologic controls of hydrothermal activity in the rift valley were investigated on a dive series using the DSV Sea Cliff. The Sea Cliff hydrothermal field was discovered where predicted at the intersection of axis-oblique and axis-parallel faults at the south end of a linear ridge at mid-depth (2700 m) on on the east wall. Preliminary mapping and sampling of the field reveal: a setting nested on nearly sediment-free fault blocks 300 m above the rift valley floor 2.6 km from the axis; a spectrum of venting types from seeps to black smokers; high conductive heat flow estimated to be equivalent to the convective flux of multiple black smokers through areas of the sea floor sealed by a caprock of clastic breccia primarily derived from basalt with siliceous cement and barite pore fillings; and a vent biota with Juan de Fuca Ridge affinities. These findings demonstrate the importance of off-axis hydrothermal activity and the role of the intersection of tectonic lineations in controlling hydrothermal sites at sea-floor spreading centers.

  9. Ultraslow spreading processes along the Arctic mid-ocean ridge system

    NASA Astrophysics Data System (ADS)

    Schlindwein, Vera

    2013-04-01

    Generation of new seafloor in the Arctic Ocean occurs along the more than 2800 km long Arctic Ridge System from the Knipovich Ridge in the south to Gakkel ridge in the northeast. The plates separate at velocities of only 6-15 mm/y making the Arctic Ridge System the most prominent representative of an ultraslow spreading mid-ocean ridge. The engine of crustal production splutters at very low spreading rates such that ultraslow spreading ridges show a unique morphology: Isolated volcanoes, capable of vigorous eruptions, pierce the seafloor at distances of several hundred kilometres; in between there are long stretches without volcanism. My work group studies at global, regional and local scale the spreading processes of the Arctic ridge system, using earthquake records of ocean bottom seismometers, seismometers on drifting ice floes and of the global seismic network. We discovered that, contrary to faster spreading ridges, amagmatic portions of the Arctic ridge system are characterised by decreased seismicity rates with few and relatively weak earthquakes, whereas magmatically robust segments display more frequent seismic events. The maximum depth of earthquake hypocentres varies markedly along axis reaching maxima of 22 km depth below sea floor. Volcanic centres are characterized by vigorous earthquake swarm activity including large earthquake swarms that are recorded teleseismically. These earthquake swarms appear to be connected to episodes of active spreading as demonstrated at the 85°E volcanic complex at eastern Gakkel ridge which experienced an unusual spreading event between 1999 and 2001. The varying patterns of seismicity along the ridge axis correlate well with the pronounced differences in ridge morphology and petrology and its magnetic and gravimetric signatures. Our results support current theories of magma production at ultraslow spreading ridges which postulate a lateral melt flow towards isolated volcanic centres.

  10. The Sagatu Ridge dike swarm, Ethiopian rift margin. [tectonic evolution

    NASA Technical Reports Server (NTRS)

    Mohr, P. A.; Potter, E. C.

    1976-01-01

    A swarm of dikes forms the core of the Sagatu Ridge, a 70-km-long topographic feature elevated to more than 4000 m above sea level and 1500 m above the level of the Eastern (Somalian) plateau. The ridge trends NNE and lies about 50 km east of the northeasterly trending rift-valley margin. Intrusion of the dikes and buildup of the flood-lava pile, largely hawaiitic but with trachyte preponderant in the final stages, occurred during the late Pliocene-early Pleistocene and may have been contemporaneous with downwarping of the protorift trough to the west. The ensuing faulting that formed the present rift margin, however, bypassed the ridge. The peculiar situation and orientation of the Sagatu Ridge, and its temporary existence as a line of crustal extension and voluminous magmatism, are considered related to a powerful structural control by a major line of Precambrian crustal weakness, well exposed further south. Transverse rift structures of unknown type appear to have limited the development of the ridge to the north and south.

  11. Ridged Layer Outcrop

    NASA Technical Reports Server (NTRS)

    2004-01-01

    15 August 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a strange ridged pattern developed in an eroding layer of material on the floor of a Labyrinthus Noctis depression in the Valles Marineris system. The ridges bear some resemblance to ripple-like dunes seen elsewhere on Mars, but they are linked to the erosion of a specific layer of material--i.e., something in the rock record of Mars. Similar ridged textures are found in eroded dark-toned mantling layers in regions as far away as northern Sinus Meridiani and Mawrth Vallis. The explanation for these landforms is as elusive as this image is evocative. The image is located near 8.2oS, 93.6oW, and covers an area 3 km (1.9 mi) across. The scene is illuminated by sunlight from the upper left.

  12. Slab stagnation and detachment under northeast China

    NASA Astrophysics Data System (ADS)

    Honda, Satoru

    2016-03-01

    Results of tomography models around the Japanese Islands show the existence of a gap between the horizontally lying (stagnant) slab extending under northeastern China and the fast seismic velocity anomaly in the lower mantle. A simple conversion from the fast velocity anomaly to the low-temperature anomaly shows a similar feature. This feature appears to be inconsistent with the results of numerical simulations on the interaction between the slab and phase transitions with temperature-dependent viscosity. Such numerical models predict a continuous slab throughout the mantle. I extend previous analyses of the tomography model and model calculations to infer the origins of the gap beneath northeastern China. Results of numerical simulations that take the geologic history of the subduction zone into account suggest two possible origins for the gap: (1) the opening of the Japan Sea led to a breaking off of the otherwise continuous subducting slab, or (2) the western edge of the stagnant slab is the previous subducted ridge, which was the plate boundary between the extinct Izanagi and the Pacific plates. Origin (2) suggesting the present horizontally lying slab has accumulated since the ridge subduction, is preferable for explaining the present length of the horizontally lying slab in the upper mantle. Numerical models of origin (1) predict a stagnant slab in the upper mantle that is too short, and a narrow or non-existent gap. Preferred models require rather stronger flow resistance of the 660-km phase change than expected from current estimates of the phase transition property. Future detailed estimates of the amount of the subducted Izanagi plate and the present stagnant slab would be useful to constrain models. A systematic along-arc variation of the slab morphology from the northeast Japan to Kurile arcs is also recognized, and its understanding may constrain the 3D mantle flow there.

  13. Long Wave Propagation Into the Strait of Juan de Fuca, Puget Sound, Strait of Georgia

    NASA Astrophysics Data System (ADS)

    Tolkova, E.

    2012-12-01

    The East Japan tsunami of 11 March 2011 penetrated worldwide and provided an unprecedented level of observations. In particular, it was clearly recorded at eight US and Canadian tide gauge stations in the Salish Sea, a collective term for the Strait of Juan de Fuca, Puget Sound, Strait of Georgia, and related waters. The Juan de Fuca strait has a shape of a straight channel of a nearly constant (22-23 km) width for most of its length, especially for about its fist 50 km from the ocean. Thus the ocean input is essentially a plane wave propagating in the direction of the channel. There is an NOS tide gauge station in Neah Bay, right at the strait entrance from the ocean. Thus the Salish Sea represents a natural laboratory to test a tsunami model, with a measurable input and multiple observations along 300 km long wave path. Benchmarking/validation of tsunami models is a necessary element of numerical modeling of tsunamis. Laboratory benchmarks allow to test a model against known input and output, but have a disadvantage of being only simplified, greatly down-scaled copies of the real world. Field benchmarks allow to test a model in the real-wold settings, but rarely supply all the necessary data. In particular, the input to the model remains unknown to some extent. In this context, the 2011 East Japan tsunami propagation in the Salish Sea represents a field benchmark with the data quality of a lab one. The tsunami propagation in the Salish Sea, coupled with tide, was simulated with the MOST model. The 2-day-long input into the model was read from the Neah Bay tide gauge. The model results were compared with the observations at the locations. The agreement between the simulations and observations over the entire wave train is better the longer the wavelength, being very good for the tidal component and longer-period tsunami components. Some conclusions were made about patterns of wave penetration into the Salish Sea, for different wavelengths.

  14. Rapid cooling rates at an active mid-ocean ridge from zircon thermochronology

    NASA Astrophysics Data System (ADS)

    Schmitt, Axel K.; Perfit, Michael R.; Rubin, Kenneth H.; Stockli, Daniel F.; Smith, Matthew C.; Cotsonika, Laurie A.; Zellmer, Georg F.; Ridley, W. Ian; Lovera, Oscar M.

    2011-02-01

    Oceanic spreading ridges are Earth's most productive crust generating environment, but mechanisms and rates of crustal accretion and heat loss are debated. Existing observations on cooling rates are ambiguous regarding the prevalence of conductive vs. convective cooling of lower oceanic crust. Here, we report the discovery and dating of zircon in mid-ocean ridge dacite lavas that constrain magmatic differentiation and cooling rates at an active spreading center. Dacitic lavas erupted on the southern Cleft segment of the Juan de Fuca ridge, an intermediate-rate spreading center, near the intersection with the Blanco transform fault. Their U-Th zircon crystallization ages (29.3 - 4.6 + 4.8 ka; 1σ standard error s.e.) overlap with the (U-Th)/He zircon eruption age (32.7 ± 1.6 ka) within uncertainty. Based on similar 238U- 230Th disequilibria between southern Cleft dacite glass separates and young mid-ocean ridge basalt (MORB) erupted nearby, differentiation must have occurred rapidly, within ~ 10-20 ka at most. Ti-in-zircon thermometry indicates crystallization at 850-900 °C and pressures > 70-150 MPa are calculated from H 2O solubility models. These time-temperature constraints translate into a magma cooling rate of ~ 2 × 10 - 2 °C/a. This rate is at least one order-of-magnitude faster than those calculated for zircon-bearing plutonic rocks from slow spreading ridges. Such short intervals for differentiation and cooling can only be resolved through uranium-series ( 238U- 230Th) decay in young lavas, and are best explained by dissipating heat convectively at high crustal permeability.

  15. Advanced Seismic Studies of the Endeavour Ridge: Understanding the Interplay among Magmatic, Hydrothermal, and Tectonic Processes at Mid-Ocean Ridges

    NASA Astrophysics Data System (ADS)

    Arnoux, G. M.; VanderBeek, B. P.; Morgan, J. V.; Hooft, E. E. E.; Toomey, D. R.; Wilcock, W. S. D.; Warner, M.

    2014-12-01

    At mid-ocean ridges magmatic, hydrothermal, and tectonic processes are linked. Understanding their interactions requires mapping magmatic systems and tectonic structures, as well as their relationship to hydrothermal circulation. Three-dimensional seismic images of the crust can be used to infer the size, shape, and location of magma reservoirs, in addition to the structure of the thermal boundary layer that connects magmatic and hydrothermal processes. Travel time tomography has often been used to study these processes, however, the spatial resolution of travel time tomography is limited. Three-dimensional full waveform inversion (FWI) is a state-of-the art seismic method developed for use in the oil industry to obtain high-resolution models of the velocity structure. The primary advantage of FWI is that it has the potential to resolve subsurface structures on the order of half the seismic wavelength—a significant improvement on conventional travel time tomography. Here, we apply anisotropic FWI to data collected on the Endeavour segment of the Juan de Fuca Ridge. Starting models for anisotropic P-wave velocity were obtained by travel time tomography [Weekly et al., 2014]. During FWI, the isotropic velocity model is updated and anisotropy is held constant. We have recovered low-velocity zones approximately 2-3 km beneath the ridge axis that likely correspond to a segmented magma-rich body and are in concert with those previously resolved using multi-channel seismic reflection methods. The segmented crustal magma body underlies all five known high-temperature hydrothermal vent fields along the Endeavour segment. A high-velocity zone, shallower than the observed low-velocity zones, underlies the southernmost hydrothermal vent field. This may be indicative of waning hydrothermal activity in which minerals are crystallizing beneath the vent field. Our FWI study of the Endeavour Ridge will provide the most detailed three-dimensional images of the crustal structure to

  16. Ridge from strings

    NASA Astrophysics Data System (ADS)

    Braun, M. A.; Pajares, C.; Vechernin, V. V.

    2015-04-01

    In the colour string picture with fusion and percolation it is shown that long-range azimuthal-rapidity correlations (ridge) can arise from the superposition of many events with exchange of clusters of different number of strings and not from a single event. Relation of the ridge with the flow harmonics coefficients is derived. By direct Monte Carlo simulations, in the technique previously used to calculate these coefficients, ridge correlations are calculated for AA, pA and pp collisions. The azimuthal anisotropy follows from the assumed quenching of the emitted particles in the strong colour fields inside string clusters. It is confirmed that in pp collisions the ridge structure only appears in rare events with abnormally high multiplicity. Comparison with the experimental data shows a good agreement. Good agreement is also found for pPb collisions. For AA collisions a reasonable agreement is found for both near-side and away-side angular correlations although it worsens at intermediate angles.

  17. Helium as a tracer for fluids released from Juan de Fuca lithosphere beneath the Cascadia forearc

    NASA Astrophysics Data System (ADS)

    McCrory, P. A.; Constantz, J. E.; Hunt, A. G.; Blair, J. L.

    2016-06-01

    Helium isotopic ratios (3He/4He) observed in 25 mineral springs and wells above the Cascadia forearc provide a marker for fluids derived from Juan de Fuca lithosphere. This exploratory study documents a significant component of mantle-derived helium within forearc springs and wells, and in turn, documents variability in helium enrichment across the Cascadia forearc. Sample sites arcward of the forearc mantle corner generally yield significantly higher ratios (˜1.2-4.0 RA) than those seaward of the corner (˜0.03-0.7 RA). 3He detected above the inner forearc mantle wedge may represent a mixture of both oceanic lithosphere and forearc mantle sources, whereas 3He detected seaward of the forearc mantle corner likely has only an oceanic source. The highest ratios in the Cascadia forearc coincide with slab depths (˜40-45 km) where metamorphic dehydration of young oceanic lithosphere is expected to release significant fluid and where tectonic tremor occurs, whereas little fluid is expected to be released from the slab depths (˜25-30 km) beneath sites seaward of the corner. These observations provide independent evidence that tremor is associated with deep fluids, and further suggest that high pore pressures associated with tremor may serve to keep fractures open for 3He migration through the ductile upper mantle and lower crust.

  18. Along-axis variations within the plate boundary zone of the southern segment of the Endeavour Ridge

    NASA Astrophysics Data System (ADS)

    Barone, Angela M.; Ryan, William B. F.

    1988-07-01

    The width of and along-axis variations within the plate boundary zone of the southern segment of the Endeavour Ridge of the Juan de Fuca Ridge System have been quantified using Sea MARC I side-looking sonar imagery. The sonar imagery was calibrated with video and photographic surveying to provide visual corroboration of the activity, spacing, and offset of faults and fissures. This ridge segment contains an axial high bisected along its length by a summit depression whose width, relief of its rims, depth of its floor, and spacing of faults and fissures vary systematically away from the mid-point of the ridge segment toward its tips. The axial high and its summit depression are likened to an elongated shield volcano that is being disrupted by collapse of its crest into a widening linear caldera. The observed distribution of faults and fissures could be produced by mechanisms which stretch young ocean crust which is characterized by rheological properties which vary with distance from the center of the elongated volcano.

  19. Spatial and temporal distribution of the seismicity along two mid-oceanic ridges with contrasted spreading rates in the Indian Ocean

    NASA Astrophysics Data System (ADS)

    Tsang-Hin-Sun, E.; Perrot, J.; Royer, J. Y.

    2015-12-01

    The seismicity of the ultra-slow spreading Southwest (14 mm/y) and intermediate spreading Southeast (60 mm/y) Indian ridges was monitored from February 2012 to March 2013 by the OHASISBIO array of 7 autonomous hydrophones. A total of 1471 events were located with 4 instruments or more, inside the array, with a median location uncertainty < 5 km and a completeness magnitude of mb = 3. Both ridges display similar average rates of seismicity, suggesting that there is no systematic relationship between seismicity and spreading rates. Accretion modes do differ, however, by the along-axis distribution of the seismic events. Along the ultra-slow Southwest Indian Ridge, events are sparse but regularly spaced and scattered up to 50 km off-axis. Along the fast Southeast Indian Ridge, events are irregularly distributed, focusing in narrow regions near the ridge axis at segment ends and along transform faults, whereas ridge-segment centers generally appear as seismic gaps (at the level of completeness of the array). Only two clusters, 6 months apart, are identified in a segment-center at 29°S. From the temporal distribution of the clustered events and comparisons with observations in similar mid-oceanic ridge setting, both clusters seem to have a volcanic origin and to be related to a dike emplacement or a possible eruption on the seafloor. Their onset time and migration rate are comparable to volcanic swarms recorded along the Juan de Fuca Ridge. Overall, the rate of seismicity along the two Indian spreading ridges correlates with the large-scale variations in the bathymetry and shear-wave velocity anomaly in the upper mantle, suggesting that the distribution of the low-magnitude seismicity is mainly controlled by along-axis variations in the lithosphere rheology and temperature.

  20. Ridge network in crumpled paper.

    PubMed

    Andresen, Christian André; Hansen, Alex; Schmittbuhl, Jean

    2007-08-01

    The network formed by ridges in a straightened sheet of crumpled paper is studied using a laser profilometer. Square sheets of paper were crumpled into balls, unfolded, and their height profile measured. From these profiles the imposed ridges were extracted as networks. Nodes were defined as intersections between ridges, and links as the various ridges connecting the nodes. Many network and spatial properties have been investigated. The tail of the ridge length distribution was found to follow a power law, whereas the shorter ridges followed a log-normal distribution. The degree distribution was found to have an exponentially decaying tail, and the degree correlation was found to be disassortative. The facets created by the ridges and the Voronoi diagram formed by the nodes have also been investigated. PMID:17930105

  1. Ridge regression processing

    NASA Technical Reports Server (NTRS)

    Kuhl, Mark R.

    1990-01-01

    Current navigation requirements depend on a geometric dilution of precision (GDOP) criterion. As long as the GDOP stays below a specific value, navigation requirements are met. The GDOP will exceed the specified value when the measurement geometry becomes too collinear. A new signal processing technique, called Ridge Regression Processing, can reduce the effects of nearly collinear measurement geometry; thereby reducing the inflation of the measurement errors. It is shown that the Ridge signal processor gives a consistently better mean squared error (MSE) in position than the Ordinary Least Mean Squares (OLS) estimator. The applicability of this technique is currently being investigated to improve the following areas: receiver autonomous integrity monitoring (RAIM), coverage requirements, availability requirements, and precision approaches.

  2. Dacite petrogenesis on mid-ocean ridges: Evidence for oceanic crustal melting and assimilation

    USGS Publications Warehouse

    Wanless, V.D.; Perfit, M.R.; Ridley, W.I.; Klein, E.

    2010-01-01

    Whereas the majority of eruptions at oceanic spreading centers produce lavas with relatively homogeneous mid-ocean ridge basalt (MORB) compositions, the formation of tholeiitic andesites and dacites at mid-ocean ridges (MORs) is a petrological enigma. Eruptions of MOR high-silica lavas are typically associated with ridge discontinuities and have produced regionally significant volumes of lava. Andesites and dacites have been observed and sampled at several locations along the global MOR system; these include propagating ridge tips at ridge-transform intersections on the Juan de Fuca Ridge and eastern Gal??pagos spreading center, and at the 9??N overlapping spreading center on the East Pacific Rise. Despite the formation of these lavas at various ridges, MOR dacites show remarkably similar major element trends and incompatible trace element enrichments, suggesting that similar processes are controlling their chemistry. Although most geochemical variability in MOR basalts is consistent with low-pressure fractional crystallization of various mantle-derived parental melts, our geochemical data for MOR dacitic glasses suggest that contamination from a seawater-altered component is important in their petrogenesis. MOR dacites are characterized by elevated U, Th, Zr, and Hf, low Nb and Ta concentrations relative to rare earth elements (REE), and Al2O3, K2O, and Cl concentrations that are higher than expected from low-pressure fractional crystallization alone. Petrological modeling of MOR dacites suggests that partial melting and assimilation are both integral to their petrogenesis. Extensive fractional crystallization of a MORB parent combined with partial melting and assimilation of amphibole-bearing altered crust produces a magma with a geochemical signature similar to a MOR dacite. This supports the hypothesis that crustal assimilation is an important process in the formation of highly evolved MOR lavas and may be significant in the generation of evolved MORB in

  3. Geodynamics map of northeast Asia

    USGS Publications Warehouse

    Parfenov, Leonid M., (compiler); Khanchuk, Alexander I.; Badarch, Gombosuren; Miller, Robert J.; Naumova, Vera V.; Nokleberg, Warren J.; Ogasawara, Masatsugu; Prokopiev, Andrei V.; Yan, Hongquan

    2013-01-01

    This map portrays the geodynamics of Northeast Asia at a scale of 1:5,000,000 using the concepts of plate tectonics and analysis of terranes and overlap assemblages. The map is the result of a detailed compilation and synthesis at 5 million scale and is part of a major international collaborative study of the mineral resources, metallogenesis, and tectonics of northeast Asia conducted from 1997 through 2002 by geologists from earth science agencies and universities in Russia, Mongolia, northeastern China, South Korea, Japan, and the USA.

  4. A geochemical anomaly contiguous with the Dorsa Geike wrinkle ridge in Mare Fecunditatis

    NASA Technical Reports Server (NTRS)

    Andre, C. G.; Adler, I.; Clark, P. E.; Weidner, J. R.; Philpotts, J. A.

    1976-01-01

    The orbital Al/Si X-ray fluorescence data from Apollo 15 and 16 reveal a concentration of unusually low Al/Si intensity ratios associated with a 220-km long ray along the northeast-southwest trending wrinkle ridge, Dorsa Geike, of the Mare Fecunditatis. The paper describes in detail the analysis of the Al/Si X-ray fluorescence data by which this geochemical anomaly was discovered. Correlation with other remote sensing data also indicates that the ridge area is different from the rest of the mare. It is possible that the material associated with the low Al/Si intensity ratio is of different composition than the adjacent mare regolith. Downslope transport along the ridge and arch could expose basalts which contrast chemically with surrounding regolith. The anomaly could also be due to extrusion of a volcanic rock of different composition at the fracture system represented by the wrinkle ridge.

  5. Juan de Fuca subduction zone from a mixture of tomography and waveform modeling

    NASA Astrophysics Data System (ADS)

    Chu, Risheng; Schmandt, Brandon; Helmberger, Don V.

    2012-03-01

    Seismic tomography images of the upper mantle structures beneath the Pacific Northwestern United States display a maze of high-velocity anomalies, many of which produce distorted waveforms evident in the USArray observations indicative of the Juan de Fuca (JdF) slab. The inferred location of the slab agrees quite well with existing contour lines defining the slab's upper interface. Synthetic waveforms generated from a recent tomography image fit teleseismic travel times quite well and also some of the waveform distortions. Regional earthquake data, however, require substantial changes to the tomographic velocities. By modeling regional waveforms of the 2008 Nevada earthquake, we find that the uppermost mantle of the 1D reference model AK135, the reference velocity model used for most tomographic studies, is too fast for the western United States. Here, we replace AK135 with mT7, a modification of an older Basin-and-Range model T7. We present two hybrid velocity structures satisfying the waveform data based on modified tomographic images and conventional slab wisdom. We derive P and SH velocity structures down to 660 km along two cross sections through the JdF slab. Our results indicate that the JdF slab is subducted to a depth of 250 km beneath the Seattle region, and terminates at a shallower depth beneath Portland region of Oregon to the south. The slab is about 60 km thick and has a P velocity increase of 5% with respect to mT7. In order to fit waveform complexities of teleseismic Gulf of Mexico and South American events, a slab-like high-velocity anomaly with velocity increases of 3% for P and 7% for SH is inferred just above the 660 discontinuity beneath Nevada.

  6. Sub-km HIMU-type Enriched Mantle at a Mid-ocean Ridge Far From a Plume: Endeavour, JdFR

    NASA Astrophysics Data System (ADS)

    Gill, J. B.; Michael, P. J.; Dreyer, B. M.; Clague, D. A.; Ramos, F. C.

    2015-12-01

    The Endeavour segment of the Juan de Fuca Ridge is characterized by abundant enriched (E) MORB since the currently inflated axial ridge formed <105 years ago, and by the full range of depleted (D) to E-MORB during the last 2300 years in the km-wide axial graben. Two different styles of enrichment of moderately incompatible elements are present. The first characterized basalts across the ~5 km-wide ridge from >10,000 to ~4000 years ago, whereas the second characterizes more recent basalts erupted in the axial graben. We attribute the first to a higher proportion of pyroxenite to enriched peridotite in the mantle source during ridge inflation. The more recent style reflects the reduced role of pyroxenite after the axial graben formed. The enriched component for both styles is a HIMU-type because it has low 87Sr/86Sr and 176Hf/177Hf relative to 143Nd/144Nd, lower 3He/4He (~8.1 RA) than in the more depleted basalts, shallow slopes on Pb isotope diagrams, and high Nb/LREE ratios. It is regionally widespread and shared with the West Valley and Explorer segments to the north. At least 14 different samplings of mantle components occurred within <1 km of ridge length and width during a time when <1 km of upwelling occurred, indicating that the scale of mantle heterogeneity is <1 km in this setting that is far from a plume.

  7. Remedial investigation work plan for Chestnut Ridge Operable Unit 4 (Rogers Quarry/Lower McCoy Branch) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect

    Not Available

    1993-09-01

    The Oak Ridge Y-12 Plant includes - 800 acres near the northeast comer of the reservation and adjacent to the city of Oak Ridge (Fig. 1-1). The plant is a manufacturing and developmental engineering facility that produced components for various nuclear weapons systems and provides engineering support to other Energy Systems facilities. More than 200 contaminated sites have been identified at the Y-12 Plant that resulted from past waste management practices. Many of the sites have operable units (OUs) based on priority and on investigative and remediation requirements. This Remedial Investigation RI work plan specifically addresses Chestnut Ridge OU 4. Chestnut Ridge OU 4 consists of Rogers Quarry and Lower McCoy Branch (MCB). Rogers Quarry, which is also known as Old Rogers Quarry or Bethel Valley Quarry was used for quarrying from the late 1940s or early 1950s until about 1960. Since that time, the quarry has been used for disposal of coal ash and materials from Y-12 production operations, including classified materials. Disposal of coal ash ended in July 1993. An RI is being conducted at this site in response to CERCLA regulations. The overall objectives of the RI are to collect data necessary to evaluate the nature and extent of contaminants of concern, support an Ecological Risk Assessment and a Human Health Risk Assessment, support the evaluation of remedial alternatives, and ultimately develop a Record of Decision for the site. The purpose of this work plan is to outline RI activities necessary to define the nature and extent of suspected contaminants at Chestnut Ridge OU 4. Potential migration pathways also will be investigated. Data collected during the RI will be used to evaluate the risk posed to human health and the environment by OU 4.

  8. High-resolution mapping of ice-marginal landforms in the Barnim region, northeast Germany

    NASA Astrophysics Data System (ADS)

    Hardt, Jacob; Hebenstreit, Robert; Lüthgens, Christopher; Böse, Margot

    2015-12-01

    Despite more than a 100-year-long research history, timing and position of the last glacial ice margins in the northeast German lowland are still up for debate. The Barnim region, a till plain in the northeast German young morainic landscape, is traversed by the contradictorily discussed Frankfurt ice marginal position. It is located in a key position to reassess the current state of research with help of a geographic information system (GIS) and field methods. A qualitative geomorphological analysis of a high resolution LiDAR digital elevation model (DEM) in the Barnim area uncovers a variety of landforms that were previously not described. The most prominent discovery is a set of about 10 lobe-shaped ridges in the middle Barnim area. Fieldwork and geophysical measurements were carried out to investigate the structure of the ridges. The ridges are 1000-1500 m in length and their widths vary from 10 to 15 km. They are raised some 6-10 m from their surroundings. The Frankfurt ice marginal position can only partially be traced in the DEM. Sedimentological and geophysical investigations indicate that the ridges are composed of glacial till that was deposited on glaciofluvial sediments. Their formation most probably took place during the ice retreat of the Brandenburg phase (W1B) and hence represents the W1F phase in the region.

  9. Microbial community in black rust exposed to hot ridge flank crustal fluids.

    PubMed

    Nakagawa, Satoshi; Inagaki, Fumio; Suzuki, Yohey; Steinsbu, Bjørn Olav; Lever, Mark Alexander; Takai, Ken; Engelen, Bert; Sako, Yoshihiko; Wheat, Charles Geoffrey; Horikoshi, Koki

    2006-10-01

    During Integrated Ocean Drilling Program Expedition 301, we obtained a sample of black rust from a circulation obviation retrofit kit (CORK) observatory at a borehole on the eastern flank of Juan de Fuca Ridge. Due to overpressure, the CORK had failed to seal the borehole. Hot fluids from oceanic crust had discharged to the overlying bottom seawater and resulted in the formation of black rust analogous to a hydrothermal chimney deposit. Both culture-dependent and culture-independent analyses indicated that the black-rust-associated community differed from communities reported from other microbial habitats, including hydrothermal vents at seafloor spreading centers, while it shared phylotypes with communities previously detected in crustal fluids from the same borehole. The most frequently retrieved sequences of bacterial and archaeal 16S rRNA genes were related to the genera Ammonifex and Methanothermococcus, respectively. Most phylotypes, including phylotypes previously detected in crustal fluids, were isolated in pure culture, and their metabolic traits were determined. Quantification of the dissimilatory sulfite reductase (dsrAB) genes, together with stable sulfur isotopic and electron microscopic analyses, strongly suggested the prevalence of sulfate reduction, potentially by the Ammonifex group of bacteria. Stable carbon isotopic analyses suggested that the bulk of the microbial community was trophically reliant upon photosynthesis-derived organic matter. This report provides important insights into the phylogenetic, physiological, and trophic characteristics of subseafloor microbial ecosystems in warm ridge flank crusts. PMID:17021232

  10. Late Neogene geohistory analysis of the Humboldt Basin and its relationship to convergence of the Juan de Fuca Plate

    NASA Astrophysics Data System (ADS)

    McCrory, Patricia A.

    1989-03-01

    Geohistory analysis of Neogene Humboldt basin strata provides important constraints for hypotheses of the tectonic evolution of the southern Cascadia subduction margin, leading up to the arrival of the Mendocino triple junction. This analysis suggests that the tectonic evolution of the Humboldt basin area was dominated by coupling between the downgoing Juan de Fuca plate and the continental margin. This coupling is reflected in the timing of major hiatuses within the basin sedimentary sequence and margin uplift and subsidence which occur during periods of tectonic plate adjustment. Stratigraphic evidence indicates that Humboldt basin originated at the base of the continental slope in early Miocene time. Syndepositional uplift of basin strata began in the late Pliocene and was both thermal isostatic and tectonic in origin. Isostatic uplift was a function of an increasingly more buoyant slab being subducted, whereas tectonic uplift was due to imbricated thrusting of the accretionary complex and underplating of offscraped sediment during subduction. A component of margin uplift is postulated to have been caused by a change in the rate of convergence between the Juan de Fuca and North American plates. Coeval with late Pliocene uplift documented onshore was a sharp decrease in covergence rate ˜3 Ma. A reduction in rate of tectonic uplift, observed in the Eel River section, in early Pleistocene time was coeval with a marked increase in relative motion parallel to the continental margin. This localized subsidence may have been caused by syndepositional folding.

  11. Triassic/Jurassic faulting patterns of Conecuh Ridge, southwest Alabama

    SciTech Connect

    Hutley, J.K.

    1985-02-01

    Two major fault systems influenced Jurassic structure and deposition on the Conecuh Ridge, southwest Alabama. Identification and dating of these fault systems are based on seismic-stratigraphic interpretation of a 7-township grid in Monroe and Conecuh Counties. Relative time of faulting is determined by fault geometry and by formation isopachs and isochrons. Smackover and Norphlet Formations, both Late Jurassic in age, are mappable seismic reflectors and are thus reliable for seismicstratigraphic dating. The earlier of the 2 fault systems is a series of horsts and grabens that trends northeast-southwest and is Late Triassic to Early Jurassic in age. The system formed in response to tensional stress associated with the opening of the Atlantic Ocean. The resulting topography was a series of northeast-southwest-trending ridges. Upper Triassic Eagle Mills and Jurassic Werner Formations were deposited in the grabens. The later fault system is also a series of horsts and grabens trending perpendicular to the first. This system was caused by tensional stress related to a pulse in the opening of the Gulf of Mexico. Faulting began in Early Jurassic and continued into Late Jurassic, becoming progressively younger basinward. At the basin margin, faulting produced a very irregular shoreline. Submerged horst blocks became centers for shoaling or carbonate buildups. Today, these blocks are exploration targets in southwest Alabama.

  12. Contextual view of Point Bonita Ridge, showing Bonita Ridge access ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Contextual view of Point Bonita Ridge, showing Bonita Ridge access road retaining wall and location of Signal Corps Radar (S.C.R.) 296 Station 5 Transmitter Building foundation (see stake at center left), camera facing north - Fort Barry, Signal Corps Radar 296, Station 5, Transmitter Building Foundation, Point Bonita, Marin Headlands, Sausalito, Marin County, CA

  13. Helium As a Tracer for Fluids Released from Juan De Fuca Lithosphere Beneath the Cascadia Forearc

    NASA Astrophysics Data System (ADS)

    McCrory, P. A.; Constantz, J. E.; Hunt, A. G.; Blair, J. L.

    2014-12-01

    Helium isotope ratios in mineral springs provide an indication of the sources and pathways for magma ascending beneath volcanic arcs and are used as a tracer for fluids associated tectonic processes occurring in subduction systems. We sampled a series of mineral springs to define fluids derived from Juan de Fuca lithosphere beneath the forearc as the subducting slab dehydrates and densifies with increasing depth. Surface springs above the slab depth of 25-30 km have 3He/4He ratios of ~0.3 (R/RA); above the slab at a depth of ~40 km the ratio is ~4.0; and for springs above the slab at depths of 50-55 km the ratio ranges from ~0.7-1.6. The springs situated trenchward of the forearc mantle corner (FMC; varying from 35 to 43 km deep), yield the lowest ratios, thus indicating only a minor component of mantle-derived helium within spring waters. Springs situated arcward of the FMC yield intermediate (0.8-1.2 RC/RA ) to high (>1.2 RC/RA ) ratios, indicating a significant component of mantle-derived helium. Although helium isotopes do not allow us to differentiate between oceanic and forearc mantle sources, the lowest values are situated above the region that lacks forearc mantle, suggesting that either little slab-derived fluid is released at shallow slab depths, or that forearc mantle is the major source of 3He and acquired as the fluids rise to the surface. Sample sites range from 40 km to more than 200 km from the nearest Cascade Arc volcano. For the closer sites, we cannot rule out that 3He may be partially derived from westward migration of arc related fluids. The highest value occurs ~130 km from the nearest arc volcano, thus likely does not reflect arc related fluids. These preliminary observations provide geologic evidence that slab-derived fluids can migrate through the forearc mantle wedge to the surface even though the mantle is typically considered a sink for fluids owing to serpentinization processes. Likely pathways consist of fractures in the forearc mantle

  14. Crustal structure and evolution of the southern Juan de Fuca plate from wide-angle seismic data: Insights into the hydration state of the incoming plate off Cascadia subduction zone

    NASA Astrophysics Data System (ADS)

    Horning, G.; Canales, J. P.; Carbotte, S. M.; Nedimovic, M. R.; Carton, H. D.

    2014-12-01

    A multi-channel seismic reflection and wide-angle refraction seismic experiment was conducted on the Juan de Fuca (JdF) plate to investigate the evolution of the plate from accretion to its subduction at the Cascadia margin. Hydration of the upper crust (UC) of the JdF Plate is well documented, but the state of hydration of the lower crust (LC) and upper mantle (UM] remains to be investigated. A 2D P-wave velocity model of the plate is derived from a joint reflection-refraction travel-time inversion of wide-angle seismic data. Stacked MCS reflection images together with modeled sedimentary velocities define an increasing thickness of sedimentary cover of up to 2.7km. Evidence for bending-related faulting is identified in coincident MCS images both indirectly as faulting in the sedimentary layer [Gibson, et al., this meeting] and directly as dipping crustal reflectors [Han et al., this meeting]. Three first order features are evident in the patterns of crustal velocity variations along the profile. 1: Crustal velocities at 150-250 km landward of the spreading ridge (~5 Ma age) show reduced velocities up to -0.20 km/s in comparison to velocities in younger crust (~3 Ma) 100-150 km from the ridge. This decrease in velocities is coincident with a propagator wake. 2: Upper crustal velocities begin to increase at 170km from the deformation front (DF), which coincides with the first evidence of faulting from sedimentary offsets. Crustal velocities start a decreasing trend at 80km from the DF where fault throws are seen to begin increasing trend landward. 3: UC velocities in the region of directly imaged crustal faulting (40km from trench) increase ~0.5km/s at the DF, while LC velocities decrease ~0.3km/s. The contrasting behavior in the upper and lower crust may indicate that bending promotes hydrothermal circulation in the outer rise. Circulation may be vigorous enough within the sediments/UC so that any residual shallow porosity is clogged with alteration products

  15. Northeast Regional Biomass Energy Program

    SciTech Connect

    O'Connell, R.A.

    1992-02-01

    The Northeast Regional Biomass Program (NRBP) is entering its ninth year of operation. The management and the objectives have virtually remained unchanged and are stated as follows. The program conducted by NRBP has three basic features: (1) a state grant component that provides funds (with a 50 percent matching requirement) to each of the states in the region to strengthen and integrate the work of state agencies involved in biomass energy; (2) a series of technical reports and studies in areas that have been identified as being of critical importance to the development of biomass energy in the region; and (3) a continuous long range planning component with heavy private sector involvement that helps to identify activities necessary to spur greater development and use of biomass energy in the Northeast.

  16. Surface circulation in the northeast Atlantic as observed with drifters

    NASA Astrophysics Data System (ADS)

    Otto, L.; Van Aken, H. M.

    1996-04-01

    ARGOS surface drifter data from the northern parts of the northeast Atlantic over the years 1990-1993 have been analysed. The drifters had a drogue at a depth of 15 or 30 m. These data cover well over 10 drifter years. The overall drift appeared to be towards the northeast. Analysis by geographic area and by season revealed regional and temporal variations of both the mean flow and the eddy statistics. In winter the drifter velocities had a tendency towards higher values, probably due to increased wind speeds. Highest eddy kinetic energy was found in the deep Iceland Basin, where an extension of the Sub-Arctic front was observed, while the lowest eddy kinetic energy was observed over the shallower Rockall Plateau. The strongest mean surface velocities were found in the Iceland Basin, just west of the Rockall Plateau. They were connected with the Sub-Arctic front in this region. No evidence was found of westward transport of surface water across the Reykjanes Ridge towards the Irminger Sea. Two drifters were observed to leave the area across the Iceland-Faroe Ridge, flowing eastwards over the northern Faroes slope, whereas two drifters left the area through the Faroe-Shetland Channel. The small banks in the area appeared to generate anti-cyclonic surface circulation on the scale of these banks. Over the larger Rockall Bank no preference for cyclonic circulation was found. The eddy kinetic energy was highest over the deep Iceland Basin where transient eddies were found with scalar velocities well over 20 cm s -1, while the Rockall Plateau seems to be an "eddy desert". The dispersion due to the temporal variability of the Lagrangian surface velocity could well be modelled with the simple Taylor's theory, with a good fit of the data to the theoretical lines for timescales of 0.25-40 days.

  17. The Northeast Climate Science Center

    NASA Astrophysics Data System (ADS)

    Ratnaswamy, M. J.; Palmer, R. N.; Morelli, T.; Staudinger, M.; Holland, A. R.

    2013-12-01

    The Department of Interior Northeast Climate Science Center (NE CSC) is part of a federal network of eight Climate Science Centers created to provide scientific information, tools, and techniques that managers and other parties interested in land, water, wildlife and cultural resources can use to anticipate, monitor, and adapt to climate change. Recognizing the critical threats, unique climate challenges, and expansive and diverse nature of the northeast region, the University of Massachusetts Amherst, College of Menominee Nation, Columbia University, Marine Biological Laboratory, University of Minnesota, University of Missouri Columbia, and University of Wisconsin-Madison have formed a consortium to host the NE CSC. This partnership with the U.S. Geological Survey climate science center network provides wide-reaching expertise, resources, and established professional collaborations in both climate science and natural and cultural resources management. This interdisciplinary approach is needed for successfully meeting the regional needs for climate impact assessment, adaptive management, education, and stakeholder outreach throughout the northeast region. Thus, the NE CSC conducts research, both through its general funds and its annual competitive award process, that responds to the needs of natural resource management partners that exist, in part or whole, within the NE CSC bounds. This domain includes the North Atlantic, Upper Midwest and Great Lakes, Eastern Tallgrass and Big Rivers, and Appalachian Landscape Conservation Cooperatives (LCCs), among other management stakeholders. For example, researchers are developing techniques to monitor tree range dynamics as affected by natural disturbances which can enable adaptation of projected climate impacts; conducting a Designing Sustainable Landscapes project to assess the capability of current and potential future landscapes in the Northeast to provide integral ecosystems and suitable habitat for a suite of

  18. Remedial Investigation Report on Chestnut Ridge Operable Unit 2 (Filled Coal Ash Pond/Upper McCoy Branch) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Volume 1. Main Text

    SciTech Connect

    Not Available

    1994-08-01

    This document is a report on the remedial investigation (RI) of Chestnut Ridge Operable Unit (OU) 2 at the Oak Ridge Y-12 Plant. Chestnut Ridge OU 2 consists of Upper McCoy Branch (UMB), the Filled Coal Ash Pond (FCAP), and the area surrounding the Sluice Channel formerly associated with coal ash disposal in the FCAP. Chestnut Ridge OU 2 is located within the U.S. Department of Energy`s (DOE`s) Oak Ridge Reservation in Anderson County, Tennessee, approximately 24 miles west of Knoxville. The pond is an 8.5-acre area on the southern slope of Chestnut Ridge, 0.5 mile south of the main Y-12 Plant and geographically separated from the Y-12 Plant by Chestnut Ridge. The elevation of the FCAP is {approximately} 950 ft above mean sea level (msl), and it is relatively flat and largely vegetated. Two small ponds are usually present at the northeast and northwest comers of the FCAP. The Sluice Channel Area extends {approximately}1000 ft from the northern margin of the FCAP to the crest of Chestnut Ridge, which has an elevation of {approximately}1100 ft above msl. The Sluice Channel Area is largely vegetated also. McCoy Branch runs from the top of Chestnut Ridge across the FCAP into Rogers Quarry and out of the quarry where it runs a short distance into Milton Hill Lake at McCoy Embayment, termed UMB. The portion south of Rogers Quarry, within Chestnut Ridge OU 4, is termed Lower McCoy Branch. The DOE Oak Ridge Y-12 Plant disposed of coal ash from its steam plant operations as a slurry that was discharged into an ash retention impoundment; this impoundment is the FCAP. The FCAP was built in 1955 to serve as a settling basin after coal ash slurried over Chestnut Ridge from the Y-12 Plant. The FCAP was constructed by building an earthen dam across the northern tributary of McCoy Branch. The dam was designed to hold 20 years of Y-12 steam plant ash. By July 1967, ash had filled up the impoundment storage behind the dam to within 4 ft of the top.

  19. Preliminary northeast Asia geodynamics map

    USGS Publications Warehouse

    Parfenov, Leonid M., (compiler); Khanchuk, Alexander I.; Badarch, Gombosuren; Miller, Robert J.; Naumova, Vera V.; Nokleberg, Warren J.; Ogasawara, Masatsugu; Prokopiev, Andrei V.; Yan, Hongquan

    2003-01-01

    This map portrays the geodynamics of Northeast Asia at a scale of 1:5,000,000 using the concepts of plate tectonics and analysis of terranes and overlap assemblages. The map is the result of a detailed compilation and synthesis at 5 million scale and is part of a major international collaborative study of the Mineral Resources, Metallogenesis, and Tectonics of Northeast Asia conducted from 1997 through 2002 by geologists from earth science agencies and universities in Russia, Mongolia, Northeastern China, South Korea, Japan, and the USA. This map is the result of extensive geologic mapping and associated tectonic studies in Northeast Asia in the last few decades and is the first collaborative compilation of the geology of the region at a scale of 1:5,000,000 by geologists from Russia, Mongolia, Northeastern China, South Korea, Japan, and the USA. The map was compiled by a large group of international geologists using the below concepts and definitions during collaborative workshops over a six-year period. The map is a major new compilation and re-interpretation of pre-existing geologic maps of the region. The map is designed to be used for several purposes, including regional tectonic analyses, mineral resource and metallogenic analysis, petroleum resource analysis, neotectonic analysis, and analysis of seismic hazards and volcanic hazards. The map consists of two sheets. Sheet 1 displays the map at a scale of 1:5,000,000, explanation. Sheet 2 displays the introduction, list of map units, and source references. Detailed descriptions of map units and stratigraphic columns are being published separately. This map is one of a series of publications on the mineral resources, metallogenesis, and geodynamics,of Northeast Asia. Companion studies and other articles and maps , and various detailed reports are: (1) a compilation of major mineral deposit models (Rodionov and Nokleberg, 2000; Rodionov and others, 2000; Obolenskiy and others, in press a); (2) a series of

  20. Effect of ridge-ridge interactions in crumpled thin sheets

    NASA Astrophysics Data System (ADS)

    Liou, Shiuan-Fan; Lo, Chun-Chao; Chou, Ming-Han; Hsiao, Pai-Yi; Hong, Tzay-Ming

    2014-02-01

    We study whether and how the energy scaling based on the single-ridge approximation is revised in an actual crumpled sheet, namely, in the presence of ridge-ridge interactions. Molecular dynamics simulation is employed for this purpose. In order to improve the data quality, modifications are introduced to the common protocol. As crumpling proceeds, we find that the average storing energy changes from being proportional to one-third of the ridge length to a linear relation, while the ratio of bending and stretching energies decreases from 5 to 2. The discrepancy between previous simulations and experiments on the material-dependence for the power-law exponent is resolved. We further determine the average ridge length to scale as 1/D1/3, the ridge number as D2/3, and the average storing energy per unit ridge length as D0.881 where D denotes the volume density of the crumpled ball. These results are accompanied by experimental proofs and are consistent with mean-field predictions. Finally, we extend the existent simulations to the high-pressure region and verify the existence of a scaling relation that is more general than the familiar power law at covering the whole density range.

  1. Active Submarine Volcanoes and Electro-Optical Sensor Networks: The Potential of Capturing and Quantifying an Entire Eruptive Sequence at Axial Seamount, Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Delaney, J. R.; Kelley, D. S.; Proskurowski, G.; Fundis, A. T.; Kawka, O.

    2011-12-01

    The NE Pacific Regional Scale Nodes (RSN) component of the NSF Ocean Observatories Initiative is designed to provide unprecedented electrical power and bandwidth to the base and summit of Axial Seamount. The scientific community is engaged in identifying a host of existing and innovative observation and measurement techniques that utilize the high-power and bandwidth infrastructure and its real-time transmission capabilities. The cable, mooring, and sensor arrays will enable the first quantitative documentation of myriad processes leading up to, during, and following a submarine volcanic event. Currently planned RSN instrument arrays will provide important and concurrent spatial and temporal constraints on earthquake activity, melt migration, hydrothermal venting behavior and chemistry, ambient currents, microbial community structure, high-definition (HD) still images and HD video streaming from the vents, and water-column chemistry in the overlying ocean. Anticipated, but not yet funded, additions will include AUVs and gliders that continually document the spatial-temporal variations in the water column above the volcano and the distal zones. When an eruption appears imminent the frequency of sampling will be increased remotely, and the potential of repurposing the tracking capabilities of the mobile sensing platforms will be adapted to the spatial indicators of likely eruption activity. As the eruption begins mobile platforms will fully define the geometry, temperature, and chemical-microbial character of the volcanic plume as it rises into the thoroughly documented control volume above the volcano. Via the Internet the scientific community will be able to witness and direct adaptive sampling in response to changing conditions of plume formation. A major goal will be to document the eruptive volume and link the eruption duration to the volume of erupted magma. For the first time, it will be possible to begin to quantify the time-integrated output of an underwater volcanic eruption linked to the heat, chemical, and biological fluxes. In the late stages of the event, the dissipation of the "event plume" into the surrounding water column and the plume's migration patterns in the ambient regional flow will be tracked using specifically designed mobile sensor-platforms. The presence of these assets opens the potential for more immediate, coordinated, and thorough event responses than the community has previously been able to mount. Given the relative abundance of information on many variables in a verifiable and archived spatial and temporal context, and the rapidly evolving ability to conduct real-time genomic analyses, our community may be able to secure entirely novel organisms that are released into the overlying ocean only under well-characterized eruptive conditions.

  2. Isolation of Aerobic Anoxygenic Photosynthetic Bacteria from Black Smoker Plume Waters of the Juan de Fuca Ridge in the Pacific Ocean

    PubMed Central

    Yurkov, Vladimir; Beatty, J. Thomas

    1998-01-01

    A strain of the aerobic anoxygenic photosynthetic bacteria was isolated from a deep-ocean hydrothermal vent plume environment. The in vivo absorption spectra of cells indicate the presence of bacteriochlorophyll a incorporated into light-harvesting complex I and a reaction center. The general morphological and physiological characteristics of this new isolate are described. PMID:16349490

  3. Partitioning Between Plume and Diffuse Flow at the Grotto Vent Cluster, Main Endeavour Vent Field, Juan de Fuca Ridge: Past and Present

    NASA Astrophysics Data System (ADS)

    Rona, P. A.; Bemis, K. G.; Jones, C.; Jackson, D. R.; Mitsuzawa, K.; Palmer, D. R.

    2010-12-01

    Seafloor hydrothermal systems discharge as plumes from discrete vents and as diffuse flow from surrounding areas that transfer heat and chemicals from the lithosphere into the ocean in quantitatively significant amounts. Our VIP (Vent Imaging Pacific) July 2000 experiment was designed to acoustically image and quantify these flows at vent clusters in the Main Endeavour field using a sonar system (Simrad SM 2000) mounted on ROV Jason from fixed positions on the seafloor using three methods that we developed. Buoyant plumes are reconstructed applying visualization techniques to volume backscatter from suspended particulates and density discontinuities in plumes. A Doppler algorithm is used to measure mean vertical velocity through plume cross sections and to calculate volume flux at different altitudes in a plume. Acoustic Scintillation Thermography (AST) is used to image irregular areas of diffuse flow. Results from a sulfide edifice (north tower of Grotto Vent cluster; height 12 m; diameter 10 m; sonar range 12 m) supplemented by additional AST measurements and in situ measurements of flow rate and temperature are tabulatd below: The higher diffuse than plume heat flux is consistent with prior studies at other sites. However, the ratio of diffuse to plume heat flux (range 23-353) is exceptionally large suggesting an overestimation of diffuse flow area at the high end and/or underestimation of plume flux. We are scheduled this fall to connect our next generation sonar system (COVIS=Cable Operated Vent Imaging Sonar) to the NEPTUNE Canada cabled observatory at the Grotto vent cluster. COVIS is designed to image plume and diffuse flow in space and in time, which will contribute to interpreting our past observations and to provide new insights on how partitioning may vary with time.

  4. Comment on 'Consequences of phase separation on the distribution of hydrothermal fluids at ASHES vent field, axial volcano, Juan de Fuca ridge' by Christopher G. Fox

    NASA Astrophysics Data System (ADS)

    Scholl, M. A.; Ingebritsen, S. E.; Essaid, H. I.

    1993-02-01

    Fox (1990), in order to explain observations during the Axial Seamount Hydrothermal Emissions Study (ASHES), proposed a conceptual model for a two-phase subsea hydrothermal system in which steam controlled flow patterns by blocking liquid flow. An attempt is made here to demonstrate with a very general model that relative permeability contrasts by themselves do not cause spatial isolation of phases in steam/liquid water systems and that density segregation, independent of relative permeability effects, should not be ruled out as an explanation for the observations at the ASHES site. Fox replies that density segregation is probably not the only mechanism at work.

  5. Isolation of Tellurite- and Selenite-Resistant Bacteria from Hydrothermal Vents of the Juan de Fuca Ridge in the Pacific Ocean

    PubMed Central

    Rathgeber, Christopher; Yurkova, Natalia; Stackebrandt, Erko; Beatty, J. Thomas; Yurkov, Vladimir

    2002-01-01

    Deep-ocean hydrothermal-vent environments are rich in heavy metals and metalloids and present excellent sites for the isolation of metal-resistant microorganisms. Both metalloid-oxide-resistant and metalloid-oxide-reducing bacteria were found. Tellurite- and selenite-reducing strains were isolated in high numbers from ocean water near hydrothermal vents, bacterial films, and sulfide-rich rocks. Growth of these isolates in media containing K2TeO3 or Na2SeO3 resulted in the accumulation of metallic tellurium or selenium. The MIC of K2TeO3 ranged from 1,500 to greater than 2,500 μg/ml, and the MIC of Na2SeO3 ranged from 6,000 to greater than 7,000 μg/ml for 10 strains. Phylogenetic analysis of 4 of these 10 strains revealed that they form a branch closely related to members of the genus Pseudoalteromonas, within the γ-3 subclass of the Proteobacteria. All 10 strains were found to be salt tolerant, pH tolerant, and thermotolerant. The metalloid resistance and morphological, physiological, and phylogenetic characteristics of newly isolated strains are described. PMID:12200320

  6. Geochemistry of hydrothermal fluids from Axial Seamount Hydrothermal Emissions Study vent field, Juan de Fuca Ridge: Subseafloor boiling and subsequent fluid-rock interaction

    SciTech Connect

    Butterfield, D.A.; McDuff, R.E.; Lilley, M.D. ); Massoth, G.J. ); Lupton, J.E. )

    1990-08-10

    Hydrothermal fluids collected from the ASHES vent field in 1986, 1987, and 1988 exhibit a very wide range of chemical composition over a small area ({approximately} 60 m in diameter). Compositions range from a 300C, gas-enriched (285 mmol/kg CO{sub 2}), low-chlorinity ({approximately} 33% of seawater) fluid to a 328C, relatively gas-depleted (50 mmol/kg CO{sub 2}), high-chlorinity ({approximately} 116% of seawater) fluid. The entire range of measured compositions at ASHES is best explained by a single hydrothermal fluid undergoing phase separation while rising through the ocean crust, followed by partial segregation of the vapor and brine phases. Other mechanisms proposed to produce chlorinity variations in hydrothermal fluids (precipitation/dissolution of a chloride-bearing mineral or crustal hydration) cannot produce the covariation of chlorinity and gas content observed at ASHES. There is good argument of the measured fluid compositions generated by a simple model of phase separation, in which gases are partitioned according to Henry's law and all salt remains in the liquid phase. Significant enrichments in silica, lithium and boron in the low-chlorinity fluids over levels predicted by the model are attributed to fluid-rock interaction in the upflow zone. Depletions in iron and calcium suggest that these elements have been removed by iron-sulfide and anhydrite precipitation at some time in the history of the low-chlorinity fluids. The distribution of low- and high-chlorinity venting is consistent with mechanisms of phase segregation based on differential buoyancy or relative permeability. The relatively shallow depth of the seafloor (1,540 m) and the observed chemistry of ASHES fluids are consistent with phase separation in the sub-critical or near-critical region.

  7. Central ridge of Newfoundland: Little explored, potential large

    SciTech Connect

    Silva, N.R. De )

    1993-10-25

    The Central ridge on the northeastern Grand Banks off Newfoundland represents a large area with known hydrocarbon accumulations and the potential for giant fields. It covers some 17,000 sq km with water less than 400 m deep. The first major hydrocarbon discovery on the Newfoundland Grand Banks is giant Hibernia field in the Jeanne d'Arc basin. Hibernia field, discovered in 1979, has reserves of 666 million bbl and is due onstream in 1997. Since Hibernia, 14 other discoveries have been made on the Grand Banks, with three on the Central ridge. Oil was first discovered on Central Ridge in 1980 with the Mobil et al. South Tempest G-88 well. In 1982 gas was discovered with the Mobil et al. North Dana I-43 well 30 km northeast of the earlier discovery. In 1983 gas and condensate were discovered with the Husky-Bow Valley et al. Trave E-87 well 20 km south of the South Tempest well. These discoveries are held under significant discovery licenses and an additional 2,400 sq km are held under exploration licenses. The paper discusses the history of the basin, the reservoir source traps, and the basin potential.

  8. Data Sharing Report Characterization of Isotope Row Facilities Oak Ridge National Laboratory Oak Ridge TN

    SciTech Connect

    Weaver, Phyllis C

    2013-12-12

    The U.S. Department of Energy (DOE) Oak Ridge Office of Environmental Management (EM-OR) requested that Oak Ridge Associated Universities (ORAU), working under the Oak Ridge Institute for Science and Education (ORISE) contract, provide technical and independent waste management planning support using funds provided by the American Recovery and Reinvestment Act (ARRA). Specifically, DOE EM-OR requested ORAU to plan and implement a survey approach, focused on characterizing the Isotope Row Facilities located at the Oak Ridge National Laboratory (ORNL) for future determination of an appropriate disposition pathway for building debris and systems, should the buildings be demolished. The characterization effort was designed to identify and quantify radiological and chemical contamination associated with building structures and process systems. The Isotope Row Facilities discussed in this report include Bldgs. 3030, 3031, 3032, 3033, 3033A, 3034, 3036, 3093, and 3118, and are located in the northeast quadrant of the main ORNL campus area, between Hillside and Central Avenues. Construction of the isotope production facilities was initiated in the late 1940s, with the exception of Bldgs. 3033A and 3118, which were enclosed in the early 1960s. The Isotope Row facilities were intended for the purpose of light industrial use for the processing, assemblage, and storage of radionuclides used for a variety of applications (ORNL 1952 and ORAU 2013). The Isotope Row Facilities provided laboratory and support services as part of the Isotopes Production and Distribution Program until 1989 when DOE mandated their shutdown (ORNL 1990). These facilities performed diverse research and developmental experiments in support of isotopes production. As a result of the many years of operations, various projects, and final cessation of operations, production was followed by inclusion into the surveillance and maintenance (S&M) project for eventual decontamination and decommissioning (D&D). The

  9. Learning experiences at Oak Ridge

    SciTech Connect

    White, R.K.

    1990-01-01

    The Oak Ridge Operations (ORO) of DOE has organized an Environmental Restoration Program to handle environmental cleanup activitis for the Oak Ridge Reservation (ORR) following General Watkins' reorganization at DOE Headquarters. Based on the major facilities and locations of contamination sites, the Environmental Restoration Program is divided into five subprograms: Oak Ridge, National Laboatory (ORNL) sites, y-12 Plant sites, Oak Ridge Gaseous Diffusion Plant (ORGDP) sites, Oak Ridge Associated Universities (ORAU) sites and off-site areas. The Office of Risk Analysis at ORNL was established under the auspices of the Environmental Restoration Program to implement Superfun legislation in the five subprograms of DOE-ORO. Risk assessment must examine protetial human health and ecological impacts from contaminant sources that range from highly radioactive materials to toxic chemicals and mixed wastes. The remedial alternatives we are evaluating need to reach acceptable levels of risk effectively while also being cost-efficient. The purpose of this paper is to highlight areas of particular interest and concern at Oak Ridge and to discuss, where possible, solutions implemented by the Oak Ridge Environmental Restoation Program.

  10. Ridge 2000 Data Management System

    NASA Astrophysics Data System (ADS)

    Goodwillie, A. M.; Carbotte, S. M.; Arko, R. A.; Haxby, W. F.; Ryan, W. B.; Chayes, D. N.; Lehnert, K. A.; Shank, T. M.

    2005-12-01

    Hosted at Lamont by the marine geoscience Data Management group, mgDMS, the NSF-funded Ridge 2000 electronic database, http://www.marine-geo.org/ridge2000/, is a key component of the Ridge 2000 multi-disciplinary program. The database covers each of the three Ridge 2000 Integrated Study Sites: Endeavour Segment, Lau Basin, and 8-11N Segment. It promotes the sharing of information to the broader community, facilitates integration of the suite of information collected at each study site, and enables comparisons between sites. The Ridge 2000 data system provides easy web access to a relational database that is built around a catalogue of cruise metadata. Any web browser can be used to perform a versatile text-based search which returns basic cruise and submersible dive information, sample and data inventories, navigation, and other relevant metadata such as shipboard personnel and links to NSF program awards. In addition, non-proprietary data files, images, and derived products which are hosted locally or in national repositories, as well as science and technical reports, can be freely downloaded. On the Ridge 2000 database page, our Data Link allows users to search the database using a broad range of parameters including data type, cruise ID, chief scientist, geographical location. The first Ridge 2000 field programs sailed in 2004 and, in addition to numerous data sets collected prior to the Ridge 2000 program, the database currently contains information on fifteen Ridge 2000-funded cruises and almost sixty Alvin dives. Track lines can be viewed using a recently- implemented Web Map Service button labelled Map View. The Ridge 2000 database is fully integrated with databases hosted by the mgDMS group for MARGINS and the Antarctic multibeam and seismic reflection data initiatives. Links are provided to partner databases including PetDB, SIOExplorer, and the ODP Janus system. Improved inter-operability with existing and new partner repositories continues to be

  11. Lower Tertiary laterite on the Iceland-Faeroe Ridge and the Thulean land bridge

    USGS Publications Warehouse

    Nilsen, T.H.

    1978-01-01

    CORES of a lower Tertiary lateritic palaeosol resting on basalt were recovered1 from Deep Sea Drilling Project Site 336 (Leg 38) on the north-east flank of the Iceland-Faeroe Ridge (Fig. 1), a major aseismic oceanic ridge that, together with Iceland, forms the Icelandic transverse ridge 2. The transverse ridge extends from the West European continental margin to the East Greenland continental margin, forming the geographic boundary and a partial barrier to flow of water between the Norwegian-Greenland Sea to the north and the northern North Atlantic Ocean to the south. The palaeosol indicates that at least part of the Iceland-Faeroe Ridge was above sea level during early Tertiary time3. Palaeogeographic and palaeooceanographic reconstructions suggest that it formed the main part of the Thulean land bridge that connected South-east Greenland and the Faeroe islands during the early Tertiary4. This report summarises the subsidence history of the Iceland-Faeroe Ridge relative to early Tertiary seafloor spreading, basaltic volcanism, and the development of the proposed Thulean land bridge. ?? 1978 Nature Publishing Group.

  12. Ocean Ridges and Oxygen

    NASA Astrophysics Data System (ADS)

    Langmuir, C. H.

    2014-12-01

    The history of oxygen and the fluxes and feedbacks that lead to its evolution through time remain poorly constrained. It is not clear whether oxygen has had discrete steady state levels at different times in Earth's history, or whether oxygen evolution is more progressive, with trigger points that lead to discrete changes in markers such as mass independent sulfur isotopes. Whatever this history may have been, ocean ridges play an important and poorly recognized part in the overall mass balance of oxidants and reductants that contribute to electron mass balance and the oxygen budget. One example is the current steady state O2 in the atmosphere. The carbon isotope data suggest that the fraction of carbon has increased in the Phanerozoic, and CO2 outgassing followed by organic matter burial should continually supply more O2 to the surface reservoirs. Why is O2 not then increasing? A traditional answer to this question would relate to variations in the fraction of burial of organic matter, but this fraction appears to have been relatively high throughout the Phanerozoic. Furthermore, subduction of carbon in the 1/5 organic/carbonate proportions would contribute further to an increasingly oxidized surface. What is needed is a flux of oxidized material out of the system. One solution would be a modern oxidized flux to the mantle. The current outgassing flux of CO2 is ~3.4*1012 moles per year. If 20% of that becomes stored organic carbon, that is a flux of .68*1012 moles per year of reduced carbon. The current flux of oxidized iron in subducting ocean crust is ~2*1012 moles per year of O2 equivalents, based on the Fe3+/Fe2+ ratios in old ocean crust compared to fresh basalts at the ridge axis. This flux more than accounts for the incremental oxidizing power produced by modern life. It also suggests a possible feedback through oxygenation of the ocean. A reduced deep ocean would inhibit oxidation of ocean crust, in which case there would be no subduction flux of oxidized

  13. Growth of a tectonic ridge

    SciTech Connect

    Fleming, R.W.; Messerich, J.A.; Johnson, A.M.

    1997-12-31

    The 28 June 1992 Landers, California, earthquake of M 7.6 created an impressive record of surface rupture and ground deformation. Fractures extend over a length of more than 80 km including zones of right-lateral shift, steps in the fault zones, fault intersections and vertical changes. Among the vertical changes was the growth of a tectonic ridge described here. In this paper the authors describe the Emerson fault zone and the Tortoise Hill ridge including the relations between the fault zone and the ridge. They present data on the horizontal deformation at several scales associated with activity within the ridge and belt of shear zones and show the differential vertical uplifts. And, they conclude with a discussion of potential models for the observed deformation.

  14. The Mid-Ocean Ridge.

    ERIC Educational Resources Information Center

    Macdonald, Kenneth C.; Fox, Paul J.

    1990-01-01

    Described are concepts involved with the formation and actions of the Mid-Ocean Ridge. Sea-floor spreading, the magma supply model, discontinuities, off-axis structures, overlaps and deviation, and aquatic life are discussed. (CW)

  15. Testing Models of Magmatic and Hydrothermal Segmentation: A Three-Dimensional Seismic Tomography Experiment at the Endeavour Ridge (Invited)

    NASA Astrophysics Data System (ADS)

    Wilcock, W. S.; Toomey, D. R.; Hooft, E. E.; Weekly, R. T.; Wells, A. E.

    2010-12-01

    Competing models for what controls the segmentation and intensity of ridge crest processes are at odds on the scale of mantle and crustal magmatic segmentation, the distribution of hydrothermal venting with respect to a volcanic segment and the properties of the thermal boundary layer that transports energy between the magmatic and hydrothermal systems. The presence of an axial magma chamber (AMC) reflector beneath the central portion of the Endeavour segment of the Juan de Fuca ridge, as well as systematic along axis changes in seafloor depth, ridge crest morphology and hydrothermal venting provide an ideal target for testing conflicting hypotheses. In late summer 2009, we conducted an active source seismic experiment on the Endeavour segment of the Juan de Fuca Ridge. A total of 5,567 airgun shots from the 36-gun, 6,600 in3 airgun array of the R/V Marcus G. Langseth were recorded by 68 short-period ocean bottom seismometers (OBSs) deployed at 64 sites. The experimental geometry utilized 3 nested scales and was designed to image (1) crustal thickness variations within 25 km of the axial high (0 to 900 kyr); (2) the map view heterogeneity and anisotropy of the topmost mantle beneath the spreading axis; (3) the three-dimensional structure of the crustal magmatic system and (4) the detailed three-dimensional, shallow crustal thermal structure beneath the Endeavour vent fields. At the segment scale, six 100-km-long ridge-parallel shot lines were obtained at distances of 16, 23 and 30 km to both sides of the ridge axis with OBSs on all but the outer lines. At the along-axis scale of the AMC reflector, shot lines are spaced 1 km apart and OBSs 8 km apart within a 60 x 20 km2 region. At the vent field scale, shots were obtained on a 500 x 500 m2 grid and OBSs spaced 5 km apart within a 20 x 10 km2 region. All the shooting lines were collected with a 9 m source depth to obtain impulsive arrivals at shorter ranges but the outer lines were also shot with a 15 m source depth

  16. 11. Exterior detail view of northeast corner, showing stucco finish ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. Exterior detail view of northeast corner, showing stucco finish and woodwork details - American Railway Express Company Freight Building, 1060 Northeast Division Street, Bend, Deschutes County, OR

  17. 3. Perspective view of Express Building looking northeast, with Division ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. Perspective view of Express Building looking northeast, with Division Street in foreground - American Railway Express Company Freight Building, 1060 Northeast Division Street, Bend, Deschutes County, OR

  18. Eriophyoid mites from Northeast China (Acari: Eriophyoidea).

    PubMed

    Xue, Xiao-Feng; Guo, Jing-Feng; Hong, Xiao-Yue

    2013-01-01

    We describe and illustrate herein one new genus and eighteen new eriophyoid mite species (Acari: Eriophyoidea) collected in northeast China. They are: Shevtchenkella huzhongiensis sp. nov. on Ulmus davidiana Planch. var. japonica (Sarg. ex Rehder) Nakai (Ulmaceae), Shevtchenkella jingboicus sp. nov. on Acer sp. (Aceraceae), Calepitrimerus flexuosus sp. nov. on Spiraea flexuosa Fisch. ex Cambess. (Rosaceae), Calepitrimerus maximowiczii sp. nov. on Crataegus maximowiczii Schneid. (Rosaceae), Calepitrimerus pilosus sp. nov. on Agrimonia pilosa Ledeb. (Rosaceae), Calepitrimerus yichunensis sp. nov. on Sorbaria sorbifolia (L.) A.Br. (Rosaceae), Cupacarus oxyphyllus sp. nov. on Euonymus oxyphyllus Miq. (Cel-astraceae), Epitrimerus sambucus sp. nov. on Sambucus williamsii Hance (Caprifoliaceae), Epitrimerus wuyingensis sp. nov. on Acer sp. (Aceraceae), Longisolenidionus amurensis gen. nov & sp. nov. on Tilia amurensis Rupr. (Tiliaceae), Phyllocoptes jiagedaqiensis sp. nov. on Cunninghamia sp. (Taxodiaceae), Aculops huzhongensis sp. nov. on Salix sp. (Sali-caceae), Aculus huzhongsalixus sp. nov. on Salix sp. (Salicaceae), Tetra angelica sp. nov. on Angelica sp. (Apiaceae), Tetra jiagedaqia sp. nov. on Lespedeza sp. (Fabaceae), Vittacus mandshurica sp. nov. on Corylus sieboldiana Blume var. mandshurica (Maxim.) C. K. Schneid. (Betulaceae), Vittacus cannabus sp. nov. on Cannabis sativa L. (Moraceae), and Peralox dentatis sp. nov. on Ulmus sp. (Ulmaceae). Two species formerly assigned to Rhyncaphytoptus, R. abiesis (Xue, Song & Hong, 2006) and R. fabris (Xue, Song & Hong, 2006) were reassigned to Nalepella, based on the presence of seta vi on the apical shield, and other characteristics of Nalepella. One species formerly assigned to Rhyncaphytoptus, R. fargesis (Xue, Song & Hong, 2006) was reassigned to Pentaporca, based on the presence of seta vi on the apical shield, opisthosoma with five ridges and other characteristics of Pentaporca. At the same time, four new eriophyoid

  19. A reduced crustal magnetization zone near the first observed active hydrothermal vent field on the Southwest Indian Ridge

    NASA Astrophysics Data System (ADS)

    Zhu, Jian; Lin, Jian; Chen, Yongshun J.; Tao, Chunhui; German, Christopher R.; Yoerger, Dana R.; Tivey, Maurice A.

    2010-09-01

    Inversion of near-bottom magnetic data reveals a well-defined low crustal magnetization zone (LMZ) near a local topographic high (37°47‧S, 49°39‧E) on the ultraslow-spreading Southwest Indian Ridge (SWIR). The magnetic data were collected by the autonomous underwater vehicle ABE on board R/V DaYangYiHao in February-March 2007. The first active hydrothermal vent field observed on the SWIR is located in Area A within and adjacent to the LMZ at the local topographic high, implying that this LMZ may be the result of hydrothermal alteration of magnetic minerals. The maximum reduction in crustal magnetization is 3 A/M. The spatial extent of the LMZ is estimated to be at least 6.7 × 104 m2, which is larger than that of the LMZs at the TAG vent field on the Mid-Atlantic Ridge (MAR), as well as the Relict Field, Bastille, Dante-Grotto, and New Field vent-sites on the Juan de Fuca Ridge (JdF). The calculated magnetic moment, i.e., the product of the spatial extent and amplitude of crustal magnetization reduction is at least -3 × 107 Am2 for the LMZ on the SWIR, while that for the TAG field on the MAR is -8 × 107 Am2 and that for the four individual vent fields on the JdF range from -5 × 107 to -3 × 107 Am2. Together these results indicate that crustal demagnetization is a common feature of basalt-hosted hydrothermal vent fields at mid-ocean ridges of all spreading rates. Furthermore, the crustal demagnetization of the Area A on the ultraslow-spreading SWIR is comparable in strength to that of the TAG area on the slow-spreading MAR.

  20. Noble metals in mid-ocean ridge volcanism: A significant fractionation of gold with respect to platinum group metals

    NASA Technical Reports Server (NTRS)

    Crocket, James H.

    1988-01-01

    Hydrothermal precipitates, black smoker particulate, and massive sulphide dredge samples from the Explorer Ridge on the Juan de Fuca Plate and the TAG hydrothermal area on the Mid-Atlantic Ridge were analyzed for selected noble metals including Au, Ir and Pd by radiochemical neutron activation analysis. The preliminary results indicate that gold contents may reach the ppm range although values in the neighborhood of 100 to 200 ppb are more typical. The platinum group elements (PGE) represented by Ir and Pd are typically less than 0.02 ppb and less than 2 ppb respectively. These abundances represent a significant enrichment of gold relative to the PGE in comparison with average noble metal abundances in mid-ocean ridge basalts (MORB). A partial explanation of this distinctive fractionation can be found in the concepts of sulfur-saturation of basic magma in mid-ocean ridge (MOR) settings, and the origin of MOR hydrothermal fluids. Experimental and petrological data suggest that MORBs are sulfur-saturated at the time of magma generation and that an immiscible sulfide component remains in the mantle residue. Hence, MORBs are noble metal-poor, particularly with respect to PGE. Consequently, black smoker fluids can be expected to reflect the low Ir and Pd contents of the rock column. The average Au content of MORB is 1.3 ppb, and so the rock column is not significantly enriched in Au. The generation of fluids which precipitate solids with 200 ppb Au is apparently dependent on highly efficient fluid chemistry to mobilize Au from the rock column, high Au solubility in seawater hydrothermal fluids and efficient precipitation mechanisms to coprecipitate Au on Fe, Zn and Cu sulfides. Significant differences in these parameters appear to be the ultimate cause of the strong Au-PGE fractionation in the MOR setting. It does not appear from the current data base that MOR hydrothermal fluids are significant contributors to the Ir enrichment seen in Cretaceous-Tertiary boundary

  1. Active tectonics of the Devils Mountain Fault and related structures, northern Puget Lowland and eastern Strait of Juan de Fuca region, Pacific Northwest

    USGS Publications Warehouse

    Johnson, Samuel Y.; Dadisman, Shawn V.; Mosher, David C.; Blakely, Richard J.; Childs, Jonathan R.

    2001-01-01

    Information from marine high-resolution and conventional seismic-reflection surveys, aeromagnetic mapping, coastal exposures of Pleistocene strata, and lithologic logs of water wells is used to assess the active tectonics of the northern Puget Lowland and eastern Strait of Juan de Fuca region of the Pacific Northwest. These data indicate that the Devils Mountain Fault and the newly recognized Strawberry Point and Utsalady Point faults are active structures and represent potential earthquake sources.

  2. Flow rate perturbations in a black smoker hydrothermal vent in response to a mid-ocean ridge earthquake swarm

    NASA Astrophysics Data System (ADS)

    Crone, Timothy J.; Wilcock, William S. D.; McDuff, Russell E.

    2010-03-01

    Although there is indirect evidence for strong connections between tectonic processes and mid-ocean ridge hydrothermal flow, there are no direct observations of these links, primarily because measuring flow in these systems is difficult. Here we use an optical analysis technique to obtain a 44 day record of flow rate changes in a black smoker vent in the Main Endeavour field of the Juan de Fuca Ridge. We show that variations in the flow rate coincide with an earthquake swarm observed using an ocean bottom seismometer array. These observations indicate that connections between tectonics and flow are indeed strong, that hydraulic connections within this hydrothermal system are long ranging, and that enhanced tidal pumping of fluids may be initiated by earthquake activity. Because the effects of the swarm cross over an intervening vent field, we infer that the upflow zones feeding this field are narrow. Using the time lag between the swarm onset and the flow rate changes we estimate that the bulk permeability of the crust on the Endeavour segment ranges from 3.0 × 10-13 m2 to 6.0 × 10-12 m2.

  3. A new species of Duttaphrynus (Anura:Bufonidae) from Northeast India.

    PubMed

    Das, Abhijit; Chetia, Mitali; Dutta, Sushil Kumar; Sengupta, Saibal

    2013-01-01

    A new species of montane toad Duttaphrynus is described from Nagaland state of Northeast India. The new species is diagnosable based on following combination of characters: absence of preorbital, postorbital and orbitotympanic ridges, elongated and broad parotid gland, first finger longer than second and presence of a mid-dorsal line. The tympanum is hidden under a skin fold (in male) or absent (in female). The species is compared with its congers from India and Indo-China. We propose to consider Duttaphrynus wokhaensis as junior synonym of Duttaphrynus melanostictus. PMID:26213769

  4. Carpenter Ridge Tuff, CO

    NASA Astrophysics Data System (ADS)

    Bachmann, Olivier; Deering, Chad D.; Lipman, Peter W.; Plummer, Charles

    2014-06-01

    The ~1,000 km3 Carpenter Ridge Tuff (CRT), erupted at 27.55 Ma during the mid-tertiary ignimbrite flare-up in the western USA, is among the largest known strongly zoned ash-flow tuffs. It consists primarily of densely welded crystal-poor rhyolite with a pronounced, highly evolved chemical signature (high Rb/Sr, low Ba, Zr, Eu), but thickly ponded intracaldera CRT is capped by a more crystal-rich, less silicic facies. In the outflow ignimbrite, this upper zone is defined mainly by densely welded crystal-rich juvenile clasts of trachydacite composition, with higher Fe-Ti oxide temperatures, and is characterized by extremely high Ba (to 7,500 ppm), Zr, Sr, and positive Eu anomalies. Rare mafic clasts (51-53 wt% SiO2) with Ba contents to 4,000-5,000 ppm and positive Eu anomalies are also present. Much of the major and trace-element variations in the CRT juvenile clasts can be reproduced via in situ differentiation by interstitial melt extraction from a crystal-rich, upper-crustal mush zone, with the trachydacite, crystal-rich clasts representing the remobilized crystal cumulate left behind by the melt extraction process. Late recharge events, represented by the rare mafic clasts and high-Al amphiboles in some samples, mixed in with parts of the crystal cumulate and generated additional scatter in the whole-rock data. Recharge was important in thermally remobilizing the silicic crystal cumulate by partially melting the near-solidus phases, as supported by: (1) ubiquitous wormy/sieve textures and reverse zoning patterns in feldspars and biotites, (2) absence of quartz in this very silicic unit stored at depths of >4-5 km, and (3) heterogeneous melt compositions in the trachydacite fiamme and mafic clasts, particularly in Ba, indicating local enrichment of this element due mostly to sanidine and biotite melting. The injection of hot, juvenile magma into the upper-crustal cumulate also imparted the observed thermal gradient to the deposits and the mixing overprint that

  5. Microscopy study of biologically mediated alteration of natural mid-oceanic ridge basalts and magnetic implications

    NASA Astrophysics Data System (ADS)

    Carlut, Julie; Benzerara, Karim; Horen, HéLèNe; Menguy, Nicolas; Janots, Dominique; Findling, Nathaniel; Addad, Amhed; Machouk, ImèNe

    2010-12-01

    Microbial communities have been shown over the last few years to be a significant component of the subseafloor crustal environment. However, their role in the low-temperature alteration of seafloor basalts remains an open question. Among the diversity of microorganisms that can contribute to oceanic rock weathering, sulfate-reducing bacteria have been suggested, based on sulfur isotope studies, to be major actors. Previous laboratory experiments conducted on basalt samples from the Juan de Fuca Ridge incubated with model sulfate-reducing bacteria for several months showed that bacterial activity can play a role in the decrease of seafloor magnetic signal. In this paper, we characterized alteration features at the nanoscale in one of these basalt samples in order to better understand the mechanisms of the magnetic signal decrease. For that purpose, we used a combination of focused ion beam milling, transmission electron microscopy and scanning transmission X-ray microscopy. Fossilized microbial cells and phyllosilicates were evidenced at the surface of the sample. Within the sample, alteration rims mostly composed of Fe and S and measuring 100-300 nm in thickness were observed around titanomagnetites crystals that bear most of the magnetic signal. In contrast, these features were not observed on noninoculated control samples. This study offers a detailed view of the specific mineral assemblages formed in the presence of model sulfate-reducing bacteria that can be looked for in the oceanic crust. These observations contribute to understand the potential role of microbes in the alteration of the oceanic crust.

  6. Microscopy study of biologically mediated alteration of natural mid-oceanic ridge basalts and magnetic implications

    NASA Astrophysics Data System (ADS)

    Carlut, Julie; Benzerara, Karim; Horen, Hélène; Menguy, Nicolas; Janots, Dominique; Findling, Nathaniel; Addad, Amhed; Machouk, Imène

    2010-10-01

    Microbial communities have been shown over the last few years to be a significant component of the subseafloor crustal environment. However, their role in the low-temperature alteration of seafloor basalts remains an open question. Among the diversity of microorganisms that can contribute to oceanic rock weathering, sulfate-reducing bacteria have been suggested, based on sulfur isotope studies, to be major actors. Previous laboratory experiments conducted on basalt samples from the Juan de Fuca Ridge incubated with model sulfate-reducing bacteria for several months showed that bacterial activity can play a role in the decrease of seafloor magnetic signal. In this paper, we characterized alteration features at the nanoscale in one of these basalt samples in order to better understand the mechanisms of the magnetic signal decrease. For that purpose, we used a combination of focused ion beam milling, transmission electron microscopy and scanning transmission X-ray microscopy. Fossilized microbial cells and phyllosilicates were evidenced at the surface of the sample. Within the sample, alteration rims mostly composed of Fe and S and measuring 100-300 nm in thickness were observed around titanomagnetites crystals that bear most of the magnetic signal. In contrast, these features were not observed on noninoculated control samples. This study offers a detailed view of the specific mineral assemblages formed in the presence of model sulfate-reducing bacteria that can be looked for in the oceanic crust. These observations contribute to understand the potential role of microbes in the alteration of the oceanic crust.

  7. Chemical reaction rates and entrainment within the Endeavour Ridge hydrothermal plume

    NASA Astrophysics Data System (ADS)

    Kadko, D. C.; Rosenberg, N. D.; Lupton, J. E.; Collier, R. W.; Lilley, M. D.

    1990-09-01

    The aging of the hydrothermal plume over the Endeavour segment of the Juan de Fuca Ridge was estimated by measuring the 222Rn 3He ratio in the plume as it dispersed. Despite uncertainties in the source function of hydrothermal input, it wa determined that the relative sequence of removal from the plume is H 2 > Δc > 222Rn>CH 4 ≫Mn , where Δc is a measure of particle concentration and the mean life of 222Rn is 5.5 days. H 2 is removed from the plume within hours of input while Mn is not removed within the two-week timescale of the radon-helium clock. Entrainment of bottom water within the buoyant plume may introduce additional chemical signatures into the spreading effluent layer over that which would be introduced by hydrothermal discharge alone. This is particularly significant for those chemical species which are not greatly enriched in the vent fluids relative to bottom water concentration and which display a nutrient-like profile in the deep ocean. Thus we found that significant fractions of the Si and 226Ra anomalies in the plume were not of hydrothermal origin but were derived from entrained bottom water which has a higher concentration of these elements than ambient water at plume height.

  8. Novel microbial assemblages inhabiting crustal fluids within mid-ocean ridge flank subsurface basalt.

    PubMed

    Jungbluth, Sean P; Bowers, Robert M; Lin, Huei-Ting; Cowen, James P; Rappé, Michael S

    2016-08-01

    Although little is known regarding microbial life within our planet's rock-hosted deep subseafloor biosphere, boreholes drilled through deep ocean sediment and into the underlying basaltic crust provide invaluable windows of access that have been used previously to document the presence of microorganisms within fluids percolating through the deep ocean crust. In this study, the analysis of 1.7 million small subunit ribosomal RNA genes amplified and sequenced from marine sediment, bottom seawater and basalt-hosted deep subseafloor fluids that span multiple years and locations on the Juan de Fuca Ridge flank was used to quantitatively delineate a subseafloor microbiome comprised of distinct bacteria and archaea. Hot, anoxic crustal fluids tapped by newly installed seafloor sampling observatories at boreholes U1362A and U1362B contained abundant bacterial lineages of phylogenetically unique Nitrospirae, Aminicenantes, Calescamantes and Chloroflexi. Although less abundant, the domain Archaea was dominated by unique, uncultivated lineages of marine benthic group E, the Terrestrial Hot Spring Crenarchaeotic Group, the Bathyarchaeota and relatives of cultivated, sulfate-reducing Archaeoglobi. Consistent with recent geochemical measurements and bioenergetic predictions, the potential importance of methane cycling and sulfate reduction were imprinted within the basalt-hosted deep subseafloor crustal fluid microbial community. This unique window of access to the deep ocean subsurface basement reveals a microbial landscape that exhibits previously undetected spatial heterogeneity. PMID:26872042

  9. Northeast Regional Planetary Data Center

    NASA Technical Reports Server (NTRS)

    Schultz, Peter H.; Saunders, Stephen (Technical Monitor)

    2005-01-01

    In 1980, the Northeast Planetary Data Center (NEPDC) was established with Tim Mutch as its Director. The Center was originally located in the Sciences Library due to space limitations but moved to the Lincoln Field Building in 1983 where it could serve the Planetary Group and outside visitors more effectively. In 1984 Dr. Peter Schultz moved to Brown University and became its Director after serving in a similar capacity at the Lunar and Planetary Institute since 1976. Debbie Glavin has served as the Data Center Coordinator since 1982. Initially the NEPDC was build around Tim Mutch's research collection of Lunar Orbiter and Mariner 9 images with only partial sets of Apollo and Viking materials. Its collection was broadened and deepened as the Director (PHS) searched for materials to fill in gaps. Two important acquisitions included the transfer of a Viking collection from a previous PI in Tucson and the donation of surplused lunar materials (Apollo) from the USGS/Menlo Park prior to its building being torn down. Later additions included the pipeline of distributed materials such as the Viking photomosaic series and certain Magellan products. Not all materials sent to Brown, however, found their way to the Data Center, e.g., Voyager prints and negatives. In addition to the NEPDC, the planetary research collection is separately maintained in conjunction with past and ongoing mission activities. These materials (e.g., Viking, Magellan, Galileo, MGS mission products) are housed elsewhere and maintained independently from the NEPDC. They are unavailable to other researchers, educators, and general public. Consequently, the NEPDC represents the only generally accessible reference collection for use by researchers, students, faculty, educators, and general public in the Northeast corridor.

  10. The Effects of Aseismic Ridge Collision on Upper Plate Deformation: Cocos Ridge Collision and Deformation of the Western Caribbean

    NASA Astrophysics Data System (ADS)

    La Femina, P. C.; Govers, R. M. A.; Ruiz, G.; Geirsson, H.; Camacho, E.; Mora-Paez, H.

    2015-12-01

    The collision of the Panamanian isthmus with northwestern South America is thought to have initiated as early as Oligocene - Miocene time (23-25 Ma) based on geologic and geophysical data and paleogeographic reconstructions. This collision was driven by eastward-directed subduction beneath northwestern South America. Cocos - Caribbean convergence along the Middle America Trench, and Nazca - Caribbean oblique convergence along the South Panama Deformed Belt have resulted in complex deformation of the southwestern Caribbean since Miocene - Pliocene time. Subduction and collision of the aseismic Cocos Ridge is thought to have initiated <3.5 Ma and has been linked to: 1) late Miocene-Pliocene cessation of volcanism and uplift of the Cordillera de Talamanca, Costa Rica; 2) Quaternary migration of the volcanic arc toward the back-arc in Costa Rica; 3) Quaternary to present deformation within the Central Costa Rica Deformed Belt; 4) Quaternary to present shortening across the fore-arc Fila Costeña fold and thrust belt and back-arc North Panama Deformed Belt (NPDB); 5) Quaternary to present outer fore-arc uplift of Nicoya Peninsula above the seamount domain, and the Osa and Burica peninsulas above the ridge; and 6) Pleistocene to present northwestward motion of the Central American Fore Arc (CAFA) and northeastward motion of the Panama Region. We investigate the geodynamic effects of Cocos Ridge collision on motion of the Panama Region with a new geodynamic model. The model is compared to a new 1993-2015 GPS-derived three-dimensional velocity field for the western Caribbean and northwestern South America. Specifically, we test the hypotheses that the Cocos Ridge is the main driver for upper plate deformation in the western Caribbean. Our models indicate that Cocos Ridge collision drives northwest-directed motion of the CAFA and the northeast-directed motion of the Panama Region. The Panama Region is driven into the Caribbean across the NPDB and into northwestern South

  11. Methane-generated( ) pockmarks on young, thickly sedimented oceanic crust in the Arctic. Vestnesa ridge, Fram strait

    SciTech Connect

    Vogt, P.R.; Crane, K. ); Sundvor, E. ); Max, M.D. ); Pfirman, S.L. )

    1994-03-01

    Acoustic backscatter imagery in the Farm strait (between Greenland and Spitzbergen) reveals a 1-3-km-wide, 50-km-long belt of -50 pointlike backscatter objects decorating the -1300-m-deep crest of Vestnesa Ridge, a 1 [minus]> 2 km thick sediment drift possibly underlain by a transform-parallel oceanic basement ridge (crustal ages approximately 3-14 Ma). A 3.5 kHz seismic-reflection profile indicates that at least some objects are pockmarks approximately 100-200 m in diameter and 10-20 m deep. The pockmarks (possibly also mud dipairs) may have been formed by evolution of methane generated by the decomposition of marine organic matter in the Vestnesa ridge sediment drift. The ridge may be underlain by an anticlinical carapace of methane-hydrate calculated to be 200-300 m thick, comparable to the hydrate thickness measured just to the south. The rising methane would collect in the ridge-crest trap, intermittently escaping to the sea floor. This hypothesis is supported by multichannel evidence for bright spots and bottom-simulating reflectors in the area. The pockmark belt may also be located above a transcurrent fault. Sediment slumps on the flanks of Vestnesa ridge and northeast of Molloy ridge may have been triggered by plate-boundary earthquakes and facilitated by methane hydrates. 11 refs., 4 figs.

  12. Wrinkle ridge assemblages on the terrestrial planets

    NASA Technical Reports Server (NTRS)

    Watters, Thomas R.

    1988-01-01

    The morphological and dimensional similarities of the structures within the wrinkle ridge assemblages observed on terrestrial planets are investigated, including structures that occur in mare basalts on the moon and in smooth plains on Mars and Mercury. These structures can be classified as either arches or ridges on the basis of morphology, and ridges can be subdivided onto first-, second-, and third-order ridges on the basis of dimensions. Using ridge structures on the Columbia Plateau (U.S.) as analogs, a basis for a structural interpretation of the wrinkle ridge assemblages on the terrestrial planets is established. It is shown that the anticlinal ridges of the Columbia Plateau are appropriate analogs to the first-order ridges, supporting tectonic interpretations for the ridges.

  13. PROPAGATION AND LINKAGE OF OCEANIC RIDGE SEGMENTS.

    USGS Publications Warehouse

    Pollard, David D.; Aydin, Atilla

    1984-01-01

    An investigation was made of spreading ridges and the development of structures that link ridge segments using an analogy between ridges and cracks in elastic plates. The ridge-propagation force and a path factor that controls propagation direction were calculated for echelon ridge segments propagating toward each other. The ridge-propagation force increases as ridge ends approach but then declines sharply as the ends pass, so ridge segments may overlap somewhat. The sign of the path factor changes as ridge ends approach and pass, so the overlapping ridge ends may diverge and then converge following a hook-shaped path. The magnitudes of shear stresses in the plane of the plate and orientations of maximum shear planes between adjacent ridge segments were calculated to study transform faulting. For different loading conditions simulating ridge push, plate pull, and ridge suction, a zone of intense mechanical interaction between adjacent ridge ends in which stresses are concentrated was identified. The magnitudes of mean stresses in the plane of the plate and orientations of principal stress planes were also calculated.

  14. Comparison of Ridges on Triton and Europa

    NASA Technical Reports Server (NTRS)

    Prockter, L. M.; Pappalardo, R. .

    2003-01-01

    Triton and Europa each display a variety of ridges and associated troughs. The resemblance of double ridges on these two satellites has been previously noted [R. Kirk, pers. comm.], but as yet, the similarities and differences between these feature types have not been examined in any detail. Triton s ridges, and Europa s, exhibit an evolutionary sequence ranging from isolated troughs, through doublet ridges, to complex ridge swaths [1, 2]. Comparison of ridges on Europa to those on Triton may provide insight into their formation on both satellites, and thereby have implications for the satellites' histories.

  15. A novel microbial habitat in the mid-ocean ridge subseafloor

    PubMed Central

    Summit, Melanie; Baross, John A.

    2001-01-01

    The subseafloor at the mid-ocean ridge is predicted to be an excellent microbial habitat, because there is abundant space, fluid flow, and geochemical energy in the porous, hydrothermally influenced oceanic crust. These characteristics also make it a good analog for potential subsurface extraterrestrial habitats. Subseafloor environments created by the mixing of hot hydrothermal fluids and seawater are predicted to be particularly energy-rich, and hyperthermophilic microorganisms that broadly reflect such predictions are ejected from these systems in low-temperature (≈15°C), basalt-hosted diffuse effluents. Seven hyperthermophilic heterotrophs isolated from low-temperature diffuse fluids exiting the basaltic crust in and near two hydrothermal vent fields on the Endeavour Segment, Juan de Fuca Ridge, were compared phylogenetically and physiologically to six similarly enriched hyperthermophiles from samples associated with seafloor metal sulfide structures. The 13 organisms fell into four distinct groups: one group of two organisms corresponding to the genus Pyrococcus and three groups corresponding to the genus Thermococcus. Of these three groups, one was composed solely of sulfide-derived organisms, and the other two related groups were composed of subseafloor organisms. There was no evidence of restricted exchange of organisms between sulfide and subseafloor habitats, and therefore this phylogenetic distinction indicates a selective force operating between the two habitats. Hypotheses regarding the habitat differences were generated through comparison of the physiology of the two groups of hyperthermophiles; some potential differences between these habitats include fluid flow stability, metal ion concentrations, and sources of complex organic matter. PMID:11226209

  16. Northeast Clean Energy Application Center

    SciTech Connect

    Bourgeois, Tom

    2013-09-30

    From October 1, 2009 through September 30, 2013 (“contract period”), the Northeast Clean Energy Application Center (“NE-CEAC”) worked in New York and New England (Connecticut, Rhode Island, Vermont, Massachusetts, New Hampshire, and Maine) to create a more robust market for the deployment of clean energy technologies (CETs) including combined heat and power (CHP), district energy systems (DES), and waste heat recovery (WHR) systems through the provision of technical assistance, education and outreach, and strategic market analysis and support for decision-makers. CHP, DES, and WHR can help reduce greenhouse gas emissions, reduce electrical and thermal energy costs, and provide more reliable energy for users throughout the United States. The NE-CEAC’s efforts in the provision of technical assistance, education and outreach, and strategic market analysis and support for decision-makers helped advance the market for CETs in the Northeast thereby helping the region move towards the following outcomes: • Reduction of greenhouse gas emissions and criteria pollutants • Improvements in energy efficiency resulting in lower costs of doing business • Productivity gains in industry and efficiency gains in buildings • Lower regional energy costs • Strengthened energy security • Enhanced consumer choice • Reduced price risks for end-users • Economic development effects keeping more jobs and more income in our regional economy Over the contract period, NE-CEAC provided technical assistance to approximately 56 different potential end-users that were interested in CHP and other CETs for their facility or facilities. Of these 56 potential end-users, five new CHP projects totaling over 60 MW of install capacity became operational during the contract period. The NE-CEAC helped host numerous target market workshops, trainings, and webinars; and NE-CEAC staff delivered presentations at many other workshops and conferences. In total, over 60 different workshops

  17. Lava Cones and Shields on Intermediate-Rate Mid-Ocean Ridges

    NASA Astrophysics Data System (ADS)

    Clague, D. A.; Paduan, J. B.; Caress, D. W.

    2014-12-01

    Most eruptions of basalt along mid-ocean ridges produce either sheet flows or pillow mounds and ridges. Rare eruptions on the Juan de Fuca and Gorda Ridges and on the Alarcon Rise (northern East Pacific Rise) produce volcanic cones or shields from point sources. Bathymetric maps at 1-m resolution from an autonomous underwater vehicle enabled classification of these ~circular features. The most common are 290-510m across and <50m tall cones with craters or tumulus-like inflated flows on their summits. There are 8 of these on the upper south rift, caldera floor, and southwest caldera rim on Axial Seamount; one on North Cleft segment near the 1986 pillow mounds; and one in the axial graben on northern Endeavour Segment. Hundreds of smaller pillow mounds lack craters or tumulus-like inflated flows at their summits. Three 660-1300m across circular cones have either a crater or an inflated tumulus-like structure at their flat to slightly domed summits. One in the axial graben on the northern Endeavour Segment is dissected by extensional faulting. Cage Seamount on the Coaxial Segment south of the 1993 pillow ridge is the most voluminous at 1100m across and >200m tall. Two flat-topped cones are located near the center of Alarcon Rise. A low-relief shield volcano on the northern Alarcon Rise is ~1700m across and only ~45m tall, and is cut by numerous faults and fissures. Two other shields, 860m and 1700m across and 50-70m tall, occur south of the 1996 North Gorda pillow mounds. These shields are decorated with small pillow mounds. Five 100-250m across and 15-30m deep pits collapsed on the northern shield. These constructional cones and shields form during eruptions where the initial fissure consolidated to a point, indicative of long duration activity. They are constructed during uncommon eruptions with flux larger than produces pillow mounds and smaller than produces sheet flows. They are a submarine equivalent of subaerial shield-building eruptions.

  18. Inner-shelf circulation and sediment dynamics on a series of shoreface connected ridges offshore of Fire Island, NY

    USGS Publications Warehouse

    Warner, John C.; List, Jeffrey H.; Schwab, William C.; Voulgaris, George; Armstrong, Brandy N.; Marshall, N

    2014-01-01

    Locations along the inner-continental shelf offshore of Fire Island, NY, are characterized by a series of shoreface connected ridges (SFCRs). These sand ridges have approximate dimensions of 10 km in length, 3 km spacing, up to ~8 m ridge to trough relief, and are oriented obliquely at approximately 30 degrees clockwise from the coastline. Stability analysis from previous studies explains how sand ridges such as these could be formed and maintained by storm-driven flows directed alongshore with a key maintenance mechanism of offshore deflected flows over ridge crests and onshore in the troughs. We examine these processes both with a limited set of idealized numerical simulations and analysis of observational data. Model results confirm that along-shore flows over the SFCRs exhibit offshore veering of currents over the ridge crests and onshore-directed flows in the troughs, and demonstrate the opposite circulation pattern for a reverse wind. To further investigate these maintenance processes, oceanographic instruments were deployed at seven sites on the SFCRs offshore of Fire Island to measure water levels, ocean currents, waves, suspended-sediment concentrations, and bottom stresses from January to April 2012. Data analysis reveals that during storms with winds from the northeast the processes of offshore deflection of currents over ridge crests and onshore in the troughs were observed, and during storm events with winds from the southwest a reverse flow pattern over the ridges occurred. Computations of suspended-sediment fluxes identify periods that are consistent with SFCR maintenance mechanisms. Alongshore winds from the northeast drove fluxes offshore on the ridge crest and onshore in the trough that would tend to promote ridge maintenance. However, alongshore winds from the southwest drove opposite circulations. The wind fields are related to different storm types that occur in the region (low pressure systems, cold fronts, and warm fronts). From the limited

  19. Temperature anomalies under the Northeast Atlantic rifted volcanic margins

    NASA Astrophysics Data System (ADS)

    Clift, Peter D.

    1997-01-01

    Subsidence analysis of ODP/DSDP drill sites located on oceanic crust on the Southeast Greenland, Edoras Bank, and Vøring Plateau margins, as well as on the Iceland-Faeroe Ridge, shows that the subsidence of these areas does not follow the agerelationship of normal oceanic crust. By correcting for the effect of thickened oceanic crust in raising the level to which subsidence will occur and analyzing the rate of thermal subsidence, it is possible to provide maximum temperature estimates for the underlying asthenosphere through time by identifying periods of anomalous depth to basement. Isostatic models predict crustal thicknesses of 27 km under the Iceland-Faeoe Ridge, around 20 km at Edoras Bank and Southeast Greenland, and 16-17 km at the Vøring Plateau. Asthenospheric temperatures at the time of continental break-up range from 50°C to 100°C above normal mantle, which are insufficient to account for the crustal thicknesses if melting is purely a passive adiabatic process. Asthenospheric upwelling must thus have been more rapid than spreading following break-up. At Edoras Bank the thermal anomaly dissipated within 5 Myr of rifting, similar to that inferred from the eastern US margin, where no plume is considered to have affected the rifting process. The need to invoke thermal input from the Iceland Plume in generating the thickened crust at Edoras Bank, and possibly elsewhere in the Northeast Atlantic, is called into question. However, a 14-20 Myr anomaly, peaking at 12 Myr post-rift, in Southeast Greenland suggests that, although the plume did provide heat to this margin, its strongest influence post-dated break-up.

  20. Antimalarial plants of northeast India: An overview

    PubMed Central

    Shankar, Rama; Deb, Sourabh; Sharma, B K

    2012-01-01

    The need for an alternative drug for malaria initiated intensive efforts for developing new antimalarials from indigenous plants. The information from different tribal communities of northeast India along with research papers, including books, journals and documents of different universities and institutes of northeast India was collected for information on botanical therapies and plant species used for malaria. Sixty-eight plant species belonging to 33 families are used by the people of northeast India for the treatment of malaria. Six plant species, namely, Alstonia scholaris, Coptis teeta, Crotolaria occulta, Ocimum sanctum, Polygala persicariaefolia, Vitex peduncularis, have been reported by more than one worker from different parts of northeast India. The species reported to be used for the treatment of malaria were either found around the vicinity of their habitation or in the forest area of northeast India. The most frequently used plant parts were leaves (33%), roots (31%), and bark and whole plant (12%). The present study has compiled and enlisted the antimalarial plants of northeast India, which would help future workers to find out the suitable antimalarial plants by thorough study. PMID:22529674

  1. The Ridge, the Glasma and Flow

    SciTech Connect

    McLerran,L.

    2008-09-15

    I discuss the ridge phenomena observed in heavy ion collisions at RHIC. I argue that the ridge may be due to flux tubes formed from the Color Glass Condensate in the early Glasma phase of matter produced in such collisions.

  2. Ridge Regression for Interactive Models.

    ERIC Educational Resources Information Center

    Tate, Richard L.

    1988-01-01

    An exploratory study of the value of ridge regression for interactive models is reported. Assuming that the linear terms in a simple interactive model are centered to eliminate non-essential multicollinearity, a variety of common models, representing both ordinal and disordinal interactions, are shown to have "orientations" that are favorable to…

  3. Oak Ridge callibration recall program

    SciTech Connect

    Falter, K.G.; Wright, W.E.; Pritchard, E.W.

    1996-12-31

    A development effort was initiated within the Oak Ridge metrology community to address the need for a more versatile and user friendly tracking database that could be used across the Oak Ridge complex. This database, which became known as the Oak Ridge Calibration Recall Program (ORCRP), needed to be diverse enough for use by all three Oak Ridge facilities, as well as the seven calibration organizations that support them. Various practical functions drove the initial design of the program: (1) accessible by any user at any site through a multi-user interface, (2) real-time database that was able to automatically generate e-mail notices of due and overdue measuring and test equipment, (3) large memory storage capacity, and (4) extremely fast data access times. In addition, the program needed to generate reports on items such as instrument turnaround time, workload projections, and laboratory efficiency. Finally, the program should allow the calibration intervals to be modified, based on historical data. The developed program meets all of the stated requirements and is accessible over a network of computers running Microsoft Windows software.

  4. [Environmental mesotheliomas in northeast Corsica].

    PubMed

    Rey, F; Viallat, J R; Boutin, C; Farisse, P; Billon-Galland, M A; Hereng, P; Dumortier, P; De Vuyst, P

    1993-01-01

    Since 1980, we have collected fourteen cases of mesothelioma induced by environmental exposure to asbestos, going back to childhood in patients from north-east Corsica, in a region which was remote from the asbestos mine of Canari. There were eight men and six women with a mean age of 69.5 +/- 4 years. Six patients presented with bilateral calcified pleural plaques as evidence of environmental exposure. The mineral analysis carried out on five patients (four had thoracoscopies and one an alveolar lavage), showed a moderate deposit of chrysotile (0.3 to 3.4 x 10(6) fibres per gram of dry tissue), and elevated level of tremolite (1.4 to 62 x 10(6) fibres/g). The ambient dosage of asbestos has confirmed the existence of environmental pollution by chrysotile fibres and above all by tremolite. In addition, the same type of fibres have been identified in the parietal pleural of animals subjected to the same risk. In this region, the risk is estimated, on the basis of our results, as 10 cases of mesothelioma per 100,000 inhabitants per year. PMID:8235025

  5. Composition of pore and spring waters from Baby Bare: global implications of geochemical fluxes from a ridge flank hydrothermal system

    NASA Astrophysics Data System (ADS)

    Wheat, C. Geoffrey; Mottl, Michael J.

    2000-02-01

    Warm hydrothermal springs were discovered on Baby Bare, which is an isolated basement outcrop on 3.5 Ma-old crust on the eastern flank of the Juan de Fuca Ridge. We have sampled these spring waters from a manned submersible, along with associated sediment pore waters from 48 gravity and piston cores. Systematic variations in the chemical composition of these waters indicate that hydrothermal reactions in basement at moderate temperatures (63°C in uppermost basement at this site) remove Na, K, Li, Rb, Mg, TCO 2, alkalinity, and phosphate from the circulating seawater and leach Ca, Sr, Si, B, and Mn from the oceanic crust; and that reactions with the turbidite sediment surrounding Baby Bare remove Na, Li, Mg, Ca, Sr, and sulfate from the pore water while producing ammonium and Si and both producing and consuming phosphate, nitrate, alkalinity, Mn, and Fe. K, Rb, and B are relatively unreactive in the sediment column. These data confirm the earlier inference that sediment pore waters from areas of upwelling can be used to estimate the composition of altered seawater in the underlying basement, even for those elements that are reactive in the sediment column or are affected by sampling artifacts. The composition of altered seawater in basement at Baby Bare is similar to the inferred composition of 58°C formation water from crust nearly twice as old (5.9 Ma) on the southern flank of the Costa Rica Rift. The Baby Bare fluids also exhibit the same directions of net elemental transfer between basalt and seawater as solutions produced in laboratory experiments at a similar temperature, and complement compositional changes from seawater observed in seafloor basalts altered at cool to moderate temperatures. The common parameter among the two ridge flanks and experiments is temperature, suggesting that the residence time of seawater in basement at the two ridge-flank sites is sufficiently long for the solutions to equilibrate with altered basalt. This conclusion is supported

  6. Mosaic of Europa's Ridges, Craters

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This view of the icy surface of Jupiter's moon, Europa, is a mosaic of two pictures taken by the Solid State Imaging system on board the Galileo spacecraft during a close flyby of Europa on February 20, 1997. The pictures were taken from a distance of 2,000 kilometers (1,240 miles). The area shown is about 14 kilometers by 17 kilometers (8.7 miles by 10.6 miles), and has a resolution of 20 meters (22 yards) per pixel. Illumination is from the right (east). The picture is centered at about 14.8 north latitude, 273.8 west longitude, in Europa's trailing hemisphere.

    One of the youngest features seen in this area is the double ridge cutting across the picture from the lower left to the upper right. This double ridge is about 2.6 kilometers (1.6 miles) wide and stands some 300 meters (330 yards) high. Small craters are most easily seen in the smooth deposits along the south margin of the prominent double ridge, and in the rugged ridged terrain farther south. The complexly ridged terrain seen here shows that parts of the icy crust of Europa have been modified by intense faulting and disruption, driven by energy from the planet's interior.

    The Jet Propulsion Laboratory, Pasadena, CA, manages the mission for NASA's Office of Space Science, Washington D.C. This image and other images and data received from Galileo are posted on the World Wide Web Galileo mission home page at: http://galileo.jpl.nasa.gov.

  7. A Subnational Perspective for Comparative Research: Education and Development in Northeast Brazil and Northeast Thailand.

    ERIC Educational Resources Information Center

    Fry, Gerald; Kempner, Ken

    1996-01-01

    Case studies of northeast Brazil and northeast Thailand highlight the importance of a subnational approach to comparative research. Compares geographic and economic conditions, regional culture, ethnicity and gender issues, migration patterns, religion, literacy, and educational underdevelopment. Points out that neglect of a region and its people…

  8. Europa Ridges, Hills and Domes

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This moderate-resolution view of the surface of one of Jupiter's moons, Europa, shows the complex icy crust that has been extensively modified by fracturing and the formation of ridges. The ridge systems superficially resemble highway networks with overpasses, interchanges and junctions. From the relative position of the overlaps, it is possible to determine the age sequence for the ridge sets. For example, while the 8-kilometer-wide (5-mile) ridge set in the lower left corner is younger than most of the terrain seen in this picture, a narrow band cuts across the set toward the bottom of the picture, indicating that the band formed later. In turn, this band is cut by the narrow 2- kilometer-wide (1.2-mile) double ridge running from the lower right to upper left corner of the picture. Also visible are numerous clusters of hills and low domes as large as 9 kilometers (5.5 miles) across, many with associated dark patches of non-ice material. The ridges, hills and domes are considered to be ice-rich material derived from the subsurface. These are some of the youngest features seen on the surface of Europa and could represent geologically young eruptions.

    This area covers about 140 kilometers by 130 kilometers (87 miles by 81 miles) and is centered at 12.3 degrees north latitude, 268 degrees west longitude. Illumination is from the east (right side of picture). The resolution is about 180 meters (200 yards) per pixel, meaning that the smallest feature visible is about a city block in size. The picture was taken by the Solid State Imaging system on board the Galileo spacecraft on February 20, 1997, from a distance of 17,700 kilometers (11,000 miles) during its sixth orbit around Jupiter.

    The Jet Propulsion Laboratory, Pasadena, CA, manages the mission for NASA's Office of Space Science, Washington D.C. This image and other images and data received from Galileo are posted on the World Wide Web Galileo mission home page at http://galileo.jpl.nasa.gov.

  9. Recent geodynamics and evolution of the Moma rift, Northeast Asia.

    NASA Astrophysics Data System (ADS)

    Imaev, V. S.; Imaeva, L. P.; Kozmin, B. M.; Fujita, K. S.; Mackey, K. G.

    2009-04-01

    Eurasia; this geometry also supports the extrusion of the Okhotsk Sea plate. Poles of rotation calculated earlier using magnetic lineation and fracture zone data from the North Atlantic yielded poles further south, about 62°N. This, combined with other evidence for extension in northeast Russia in the Oligocene and the sedimentary record of the basins, supports the origin of the Moma rift system as an extension of the Arctic Mid-Ocean Ridge in the Oligocene and continuing through about Pliocene time, although the complete lack of any evidence of volcanism in the rifts in this time period is mystifying. Sometime in the Quaternary, the pole of rotation shifted north, placing the Moma rift system into compression. The young age for Balagan-Tas would suggest that the change occurred in the not too distant past. Thus, the Moma rift system probably originated as an extension of the Arctic (Gakkel) Mid-Ocean Ridge into the continent in the Early Cenozoic. hi the Quaternary, movement of the Euler pole between North America and Eurasia resulted in the region being placed under compression with the development (or reactivation) of major strike-slip fault systems and the compression of the former rift basins.

  10. Oral Mucosal Lesions in Indians From Northeast Brazil

    PubMed Central

    Cury, Patricia Ramos; Porto, Lia Pontes Arruda; dos Santos, Jean Nunes; e Ribeiro, Livia Silva Figueiredo; de Aquino Xavier, Flavia Caló; Figueiredo, Andreia Leal; Ramalho, Luciana Maria Pedreira

    2014-01-01

    Abstract The aim of this cross-sectional study was to evaluate the prevalence of oral mucosal lesions, and their risk indicators in adult Kiriri Indians from Northeast Brazil. Clinical oral examination was performed on a representative sample of 223 Indians (age ≥19 years). A systematic evaluation of lips, labial mucosa and sulcus, commissures, buccal mucosa and sulcus, gingiva and alveolar ridge, tongue, floor of the mouth, and soft and hard palate was performed. Bivariate analysis was conducted to assess associations between mucosal conditions and age, gender, income, educational level, diabetic status, and smoking status. Mucosal lesions were found in 50 participants (22.4%). The most prevalent lesions were fistulae (6.2%) and traumatic ulcers (4.48%). Oral mucosal was associated with higher age (≥35 years; odds ratio [OR] = 1.99, 95% confidence interval [CI]: 1.05–3.76, P = 0.03) and lower education level (<9 years; OR = 2.13, 95% CI: 0.96–4.71, P = 0.06). Mucosal conditions are prevalent in Kiriri Indians and the presence of mucosal lesions is associated with advanced age and lower education. A public health program aimed at preventing and treating mucosal lesions and targeted toward the high-risk group is vital to improve the oral health status of this population. PMID:25501053

  11. Accretion and Subduction of Oceanic Lithosphere: 2D and 3D Seismic Studies of Off-Axis Magma Lenses at East Pacific Rise 9°37-40'N Area and Downgoing Juan de Fuca Plate at Cascadia Subduction Zone

    NASA Astrophysics Data System (ADS)

    Han, Shuoshuo

    Two thirds of the Earth's lithosphere is covered by the ocean. The oceanic lithosphere is formed at mid-ocean ridges, evolves and interacts with the overlying ocean for millions of years, and is eventually consumed at subduction zones. In this thesis, I use 2D and 3D multichannel seismic (MCS) data to investigate the accretionary and hydrothermal process on the ridge flank of the fast-spreading East Pacific Rise (EPR) at 9°37-40'N and the structure of the downgoing Juan de Fuca plate at the Cascadia subduction zone offshore Oregon and Washington. Using 3D multichannel seismic (MCS) data, I image a series of off-axis magma lenses (OAML) in the middle or lower crust, 2-10 km from the ridge axis at EPR 9°37-40'N. The large OAMLs are associated with Moho travel time anomalies and local volcanic edifices above them, indicating off-axis magmatism contributes to crustal accretion though both intrusion and eruption (Chapter 1). To assess the effect of OAMLs on the upper crustal structure, I conduct 2-D travel time tomography on downward continued MCS data along two across-axis lines above a prominent OAML in our study area. I find higher upper crustal velocity in a region ~ 2 km wide above this OAML compared with the surrounding crust. I attribute these local anomalies to enhanced precipitation of alteration minerals in the pore space of upper crust associated with high-temperature off-axis hydrothermal circulation driven by the OAML (Chapter 2). At Cascadia, a young and hot end-member of the global subduction system, the state of hydration of the downgoing Juan de Fuca (JdF) plate is important to a number of subduction processes, yet is poorly known. As local zones of higher porosity and permeability, faults constitute primary conduits for seawater to enter the crust and potentially uppermost mantle. From pre-stack time migrated MCS images, I observe pervasive faulting in the sediment section up to 200 km from the deformation front. Yet faults with large throw and

  12. The East Greenland Ridge - a continental sliver along the Greenland Fracture Zone

    NASA Astrophysics Data System (ADS)

    Gerlings, Joanna; Funck, Thomas; Castro, Carlos F.; Hopper, John R.

    2014-05-01

    The East Greenland Ridge (EGR), situated along the Greenland Fracture Zone in the northern part of the Greenland-Norwegian Sea, is a NW-SE trending 250-km-long and up to 50-km-wide bathymetric high that separates the Greenland Basin in the south from the Boreas Basin in the north. Previous seismic work established that the EGR is primarily continental in nature. Detailed swath bathymetric data revealed a complex internal structure of the ridge with two main overstepping ridge segments. These segments were not adequately covered by the GEUS2002NEG seismic survey as the detailed structure was not known at that time. The crustal affinity of the northwestern, landward-most ridge segment, and how it is attached to the Northeast Greenland continental shelf, remained unclear. The GEUS-EAGER2011 survey was designed to address these issues and to provide further constraints on the structural development of the EGR. During the GEUS-EAGER2011 survey, additional seismic refraction and reflection data were acquired on the EGR and the Northeast Greenland shelf. The data set consists of two strike lines covering the seaward-most part of the Northeast Greenland shelf and the landward-most part of the EGR, and one cross line extending from the Boreas Basin, across the ridge and into the Greenland Basin. A total of 15 ocean bottom seismometers and 46 sonobuoys were deployed along the three seismic refraction lines. P-wave velocity models for the crust and upper mantle were derived by forward and inverse modelling of the travel times of the observed seismic phases using the raytracing algorithm RAYINVR. Seismic reflection data, coinciding with the seismic refraction data were used to guide the modelling of the sedimentary layers down to basement. The velocity models confirm that the crust has a continental nature along both ridge segments with a velocity structure that significantly differs from that of normal oceanic crust. The models also show that the crust of the EGR is linked to

  13. Oceanic Core Complexes on the Mohns Ridge

    NASA Astrophysics Data System (ADS)

    Denny, A. R.; Pedersen, R. B.

    2013-12-01

    The Mohns Ridge, an ultra-slow spreading ridge in the Arctic Mid-Ocean Ridge system, is host to multiple volcanic and tectonic spreading segments. This oblique-spreading ridge is hotspot influenced at its southern terminus and is bound to the north by a curvilinear contact with the highly oblique Knipovich Ridge. This study examines EM120 multibeam bathymetry of the Mohns Ridge collected from 1999-2001 and gridded to 50 m cell size. Geomorphic interpretation of near-axis and off-axis structures reveals multiple expressions of potential oceanic core complexes (OCCs) along the 550 km long spreading axis. The OCCs form only on the western side of the spreading axis, consistent with the increased tectonic vs. volcanic morphology of the western flank of the Mohns Ridge. In the southern Mohns Ridge OCCs occur adjacent to on-axis active volcanic spreading centers. In the northern Mohns Ridge OCCs appear related to both ';V' shaped northern-propagating ridge spreading centers and spreading-parallel strings of core complexes extending at least 60 km off axis in the direction of spreading. This geomorphic interpretation should be further refined by dedicated ship-based investigations to fully describe this unique oblique-spreading Arctic Ridge system.

  14. Magdalena Ridge Observatory Project Overview

    NASA Astrophysics Data System (ADS)

    Laubscher, Bryan E.; Buscher, David F.; Chang, Mark J.; Cobb, Michael L.; Haniff, Chris A.; Horton, Richard F.; Jorgensen, Anders M.; Klinglesmith, Dan; Loos, Gary; Nemzek, Robert J.

    The Magdalena Ridge Observatory (MRO) is a project with the goal of building a state of the art observatory on Magdalena Ridge west of Socorro New Mexico. This observatory will be sited above 3700 meters and will consist of a 10-element 400-meter baseline optical/infrared imaging interferometer and a separate 2.4-meter telescope with fast response capability. The MRO consortium members include New Mexico Institute of Mining and Technology University of Puerto Rico Mew Mexico Highlands University New Mexico State University and the Los Alamos National Laboratory. The University of Cambridge is a joint participant in the current design phase of the interferometer and expects to join the consortium. We will present an overview of the optical interferometer and single telescope designs and review their instrumentation and science programs

  15. Status of Blue Ridge Reservoir

    SciTech Connect

    Not Available

    1990-09-01

    This is one in a series of reports prepared by the Tennessee Valley Authority (TVA) for those interested in the conditions of TVA reservoirs. This overview of Blue Ridge Reservoir summarizes reservoir and watershed characteristics, reservoir uses and use impairments, water quality and aquatic biological conditions, and activities of reservoir management agencies. This information was extracted from the most current reports and data available, as well as interview with water resource professionals in various federal, state, and local agencies. Blue Ridge Reservoir is a single-purpose hydropower generating project. When consistent with this primary objective, the reservoir is also operated to benefit secondary objectives including water quality, recreation, fish and aquatic habitat, development of shoreline, aesthetic quality, and other public and private uses that support overall regional economic growth and development. 8 refs., 1 fig.

  16. Oak Ridge National Laboratory Review

    SciTech Connect

    Krause, C.; Pearce, J.; Zucker, A.

    1992-01-01

    This report presents brief descriptions of the following programs at Oak Ridge National Laboratory: The effects of pollution and climate change on forests; automation to improve the safety and efficiency of rearming battle tanks; new technologies for DNA sequencing; ORNL probes the human genome; ORNL as a supercomputer research center; paving the way to superconcrete made with polystyrene; a new look at supercritical water used in waste treatment; and small mammals as environmental monitors.

  17. P-wave tomography of the western United States: Insight into the Yellowstone hotspot and the Juan de Fuca slab

    NASA Astrophysics Data System (ADS)

    Tian, You; Zhao, Dapeng

    2012-06-01

    We used 190,947 high-quality P-wave arrival times from 8421 local earthquakes and 1,098,022 precise travel-time residuals from 6470 teleseismic events recorded by the EarthScope/USArray transportable array to determine a detailed three-dimensional P-wave velocity model of the crust and mantle down to 1000 km depth under the western United States (US). Our tomography revealed strong heterogeneities in the crust and upper mantle under the western US. Prominent high-velocity anomalies are imaged beneath Idaho Batholith, central Colorado Plateau, Cascadian subduction zone, stable North American Craton, Transverse Ranges, and Southern Sierra Nevada. Prominent low-velocity anomalies are imaged at depths of 0-200 km beneath Snake River Plain, which may represent a small-scale convection beneath the western US. The low-velocity structure deviates variably from a narrow vertical plume conduit extending down to ˜1000 km depth, suggesting that the Yellowstone hotspot may have a lower-mantle origin. The Juan de Fuca slab is imaged as a dipping high-velocity anomaly under the western US. The slab geometry and its subducted depth vary in the north-south direction. In the southern parts the slab may have subducted down to >600 km depth. A "slab hole" is revealed beneath Oregon, which shows up as a low-velocity anomaly at depths of ˜100 to 300 km. The formation of the slab hole may be related to the Newberry magmatism. The removal of flat subducted Farallon slab may have triggered the vigorous magmatism in the Basin and Range and southern part of Rocky Mountains and also resulted in the uplift of the Colorado Plateau and Rocky Mountains.

  18. Directionality of ambient noise on the Juan de Fuca plate: implications for source locations of the primary and secondary microseisms

    NASA Astrophysics Data System (ADS)

    Tian, Ye; Ritzwoller, Michael H.

    2015-04-01

    Based on cross-correlations of ambient seismic noise computed using 61 ocean bottom seismometers (OBSs) within the Juan de Fuca (JdF) plate from the Cascadia Initiative experiment and 42 continental stations near the coast of the western United States, we investigate the locations of generation of the primary (11-20 s period) and secondary (5-10 s period) microseisms in the northern Pacific Ocean by analysing the directionality and seasonality of the microseism (Rayleigh wave) signals received in this region. We conclude that (1) the ambient noise observed across the array is much different in the primary and secondary microseism bands, both in its azimuthal content and seasonal variation. (2) The principal secondary microseism signals propagate towards the east, consistent with their generation in deep waters of the North Pacific, perhaps coincident both with the region of observed body wave excitation and the predicted wave-wave interaction region from recent studies. (3) The primary microseism, as indicated by observations of the azimuthal dependence of the fundamental mode Rayleigh wave as well as observations of precursory arrivals, derives significantly from the shallow waters of the eastern Pacific near to the JdF plate but also has a component generated at greater distance of unknown origin. (4) These observations suggest different physical mechanisms for generating the two microseisms: the secondary microseisms are likely to be generated by non-linear wave-wave interaction over the deep Pacific Ocean, while the primary microseism may couple directly into the solid earth locally in shallow waters from ocean gravity waves. (5) Above 5 s period, high quality empirical Green's functions are observed from cross-correlations between deep water OBSs and continental stations, which illustrates that microseisms propagate efficiently from either deep or shallow water source regions onto the continent and are well recorded by continental seismic stations.

  19. Prominent Doublet Ridges on Europa

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This image of Jupiter's satellite Europa was obtained from a range of 7364 miles (11851 km) by the Galileo spacecraft during its fourth orbit around Jupiter and its first close pass of Europa. The image spans 30 miles by 57 miles (48 km x 91 km) and shows features as small as 800 feet (240 meters) across, a resolution more than 150 times better than the best Voyager coverage of this area. The sun illuminates the scene from the right. The large circular feature in the upper left of the image could be the scar of a large meteorite impact. Clusters of small craters seen in the right of the image may mark sites where debris thrown from this impact fell back to the surface. Prominent doublet ridges over a mile (1.6 km) wide cross the plains in the right part of the image; younger ridges overlap older ones, allowing the sequence of formation to be determined. Gaps in ridges indicate areas where emplacement of new surface material has obliterated pre-existing terrain.

    The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the Galileo mission home page on the World Wide Web at http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

  20. Multiple Active Volcanoes in the Northeast Lau Basin

    NASA Astrophysics Data System (ADS)

    Baker, E. T.; Resing, J. A.; Lupton, J. E.; Walker, S. L.; Embley, R. W.; Rubin, K. H.; Buck, N.; de Ronde, C. E.; Arculus, R. J.

    2010-12-01

    The northeast Lau Basin occupies a complex geological area between the Tafua arc front, the E-W trending Tonga Trench, and the Northeast Lau Spreading Center. These boundaries create multiple zones of extension and thus provide abundant opportunities for magma to invade the crust. The 25-km-long chain of “Mata” volcanoes lies near the center of this area, separated from both the arc front and the spreading ridge. In 2008 we discovered hydrothermal venting on the largest and most southerly of these volcanoes, W and E Mata. In 2010 we visited the 7 smaller volcanoes that form a 15-km-long arcuate sweep to the north from W and E Mata (the “North Matas”). We also revisited W and E Mata. Over each volcano we conducted CTD tows to map plumes and collect water samples. Based on the CTD results, camera tows searched for seafloor sources on three volcanoes. The N Mata volcanoes, extending from Mata Taha (1) in the south to Mata Fitu (7) in the north, lie within a prominent gap in the shallow bathymetry along the southern border of the Tonga trench. Northward from E Mata the Mata volcanoes degrade from large symmetrical cones to smaller and blocky volcanic edifices. Summit depths range from 1165 m (W Mata) to 2670 m (Mata Nima (5)). The most active volcano in the chain is the erupting W Mata, with an intense plume that extended 250 m above the summit. Hydrothermal temperature anomalies (Δθ, corrected for hydrographic masking effects) reached ˜1.7°C, with light-scattering values as high as 2-5 ΔNTU. The 2010 surveys now show that 6 of the 7 N Mata volcanoes are also hydrothermally active. Along the N Matas, Δθ and ΔNTU signals ranged from robust to weak, but distinct oxidation-reduction potential (aka Eh) anomalies confirmed active venting in each case. The most concentrated plumes were found near Mata Ua (2) and Mata Fitu (7), with Δθ and ΔNTU maxima of 0.1-0.17°C and 0.3, respectively. Despite the variability in plume strength, however, ΔNTU/Δθ ratios

  1. Structural and stratigraphic controls on cave development in the Oak Ridge area, Tennessee

    SciTech Connect

    Rubin, P.A.; Lemiszki, P.J.

    1992-12-31

    The Oak Ridge Reservation (ORR) is located in the northwestern part of the Valley and Ridge province in east Tennessee. The Valley and Ridge province is the topographic expression of the southern Appalachian foreland fold-thrust belt, which formed during the late Paleozoic Alleghanian orogeny. In the Oak Ridge area, three major northwest verging thrust faults (Kingston, Whiteoak Mountain, and Copper Creek) imbricate and juxtapose carbonate and clastic stratigraphic units that range in age from the lower Cambrian to the lower Mississippian. The carbonate stratigraphic units range in thickness from 1278 to 1748 m and include the Maynardville Limestone in the Conasauga Group (hereby included as part of the Knox Group), the Knox Group, and the Chickamauga Group. Stratigraphic relationships and repetition of units by thrust faulting has produced three northeast striking and southeast dipping carbonate bands bounded to the northwest and southeast by noncarbonate units. Preliminary results indicate that within two of these carbonate bands, formations composed of mudstone and argillaceous limestone appear to further subdivide groundwater basins. Our efforts have focused on relating the stratigraphic and structural characteristics of these rock units with cave development in the region.

  2. Structural and stratigraphic controls on cave development in the Oak Ridge area, Tennessee

    SciTech Connect

    Rubin, P A; Lemiszki, P J

    1992-01-01

    The Oak Ridge Reservation (ORR) is located in the northwestern part of the Valley and Ridge province in east Tennessee. The Valley and Ridge province is the topographic expression of the southern Appalachian foreland fold-thrust belt, which formed during the late Paleozoic Alleghanian orogeny. In the Oak Ridge area, three major northwest verging thrust faults (Kingston, Whiteoak Mountain, and Copper Creek) imbricate and juxtapose carbonate and clastic stratigraphic units that range in age from the lower Cambrian to the lower Mississippian. The carbonate stratigraphic units range in thickness from 1278 to 1748 m and include the Maynardville Limestone in the Conasauga Group (hereby included as part of the Knox Group), the Knox Group, and the Chickamauga Group. Stratigraphic relationships and repetition of units by thrust faulting has produced three northeast striking and southeast dipping carbonate bands bounded to the northwest and southeast by noncarbonate units. Preliminary results indicate that within two of these carbonate bands, formations composed of mudstone and argillaceous limestone appear to further subdivide groundwater basins. Our efforts have focused on relating the stratigraphic and structural characteristics of these rock units with cave development in the region.

  3. Comparison of results of two dye-tracer tests at the Chestnut Ridge Security Pits, Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect

    Goldstrand, P.M.; Haas, J.

    1994-01-01

    Personnel from Martin Marietta Energy Systems, Inc. (Energy Systems) manage a closed hazardous waste disposal unit the Chestnut Ridge Security Pits (CRSP), located on the crest of Chestnut Ridge near the Y-12 Plant, Oak Ridge, Tennessee. To investigate the discharge of groundwater from CRSP to springs and streams located along the flanks and base of Chestnut Ridge, an initial dye-tracer study was conducted during 1990. A hydraulic connection was inferred to exist between the injection well (GW-178) on Chestnut Ridge and several sites to the east-northeast, east, and southeast of CRSP. A second dye-tracer study was conducted in 1992 to verify the results of the initial test and identify additional discharge points that are active during wet-weather conditions. No definitive evidence for the presence of dye was identified at any of the 35 locations monitored during the second dye study. Although interpretations of the initial dye test suggest a hydraulic connection with several sites and CRSP, reevaluation of the spectrofluorescence data from this test suggests that dye may not have been detected during the initial test. A combination of relatively high analytical detection limits during the initial test, and high natural background interference spectral peaks observed during the second test, suggest that high natural background emission spectra near the wavelength of the dye used during the initial test may have caused the apparently high reported concentrations. The results of these two tests do not preclude that a hydraulic connection exists; dye may be present in concentrations below the analytical detection limits or has yet to emerge from the groundwater system. The dye injection well is not completed within any significant karst features. Dye migration therefore, may be within a diffuse, slow-flow portion of the aquifer, at least in the immediate vicinity of the source well.

  4. Changing characteristics of arctic pressure ridges

    NASA Astrophysics Data System (ADS)

    Wadhams, Peter; Toberg, Nick

    2012-04-01

    The advent of multibeam sonar permits us to obtain full three-dimensional maps of the underside of sea ice. In particular this enables us to distinguish the morphological characteristics of first-year (FY) and multi-year (MY) pressure ridges in a statistically valid way, whereas in the past only a small number of ridges could be mapped laboriously by drilling. In this study pressure ridge distributions from two parts of the Arctic Ocean are compared, in both the cases using mainly data collected by the submarine “Tireless” in March 2007 during two specific grid surveys, in the Beaufort Sea at about 75° N, 140° W (N of Prudhoe Bay), and north of Ellesmere Island at about 83° 20‧ N, 64° W. In the Beaufort Sea the ice was mainly FY, and later melted or broke up as this area became ice-free during the subsequent summer. N of Ellesmere Island the ice was mainly MY. Ridge depth and spacing distributions were derived for each region using the boat's upward looking sonar, combined with distributions of shapes of the ridges encountered, using the Kongsberg EM3002 multibeam sonar. The differing shapes of FY and MY ridges are consistent with two later high-resolution multibeam studies of specific ridges by AUV. FY ridges are found to fit the normal triangular shape template in cross-section (with a range of slope angles averaging 27°) with a relatively constant along-crest depth, and often a structure of small ice blocks can be distinguished. MY ridges, however, are often split into a number of independent solid, smooth blocks of large size, giving an irregular ridge profile which may be seemingly without linearity. Our hypothesis for this difference is that during its long lifetime an MY ridge is subjected to several episodes of crack opening; new cracks in the Arctic pack often run in straight lines across the ridges and undeformed ice alike. Such a crack will open somewhat before refreezing, interpolating a stretch of thin ice into the structure, and breaking up

  5. Climate change in the Brazilian northeast

    NASA Astrophysics Data System (ADS)

    Rodrigues, Regina R.; Haarsma, Reindert J.; Hoelzemann, Judith J.

    2012-10-01

    Climate Change, Impacts and Vulnerabilities in Brazil: Preparing the Brazilian Northeast for the Future; Natal, Brazil, 27 May to 01 June 2012 The variability of the semiarid climate of the Brazilian northeast has enormous environmental and social implications. Because most of the population in this area depends on subsistence agriculture, periods of severe drought in the past have caused extreme poverty and subsequent migration to urban centers. From the ecological point of view, frequent and prolonged droughts can lead to the desertification of large areas. Understanding the causes of rainfall variability, in particular periods of severe drought, is crucial for accurate forecasting, mitigation, and adaptation in this important region of Brazil.

  6. Latest Developments in the Installation Planning for Stage 1, NEPTUNE Regional Cabled Observatory, Northeast Pacific

    NASA Astrophysics Data System (ADS)

    Barnes, C. R.

    2004-12-01

    NEPTUNE is a proposed innovative network of over 30 sub-sea observatories linked by over 3300 km of powered, fiber-optic cables covering the Juan de Fuca Plate (200,000 sq km), Northeast Pacific. Each observatory will host and power many scientific instruments on the surrounding seafloor, in boreholes in the seafloor, and buoyed up into the water column. Remotely operated and autonomous vehicles will reside at depth, recharge at observatories, and respond to distant labs. Continuous near-real-time multidisciplinary measurement series will extend over 30 years. Shore stations will be located in Port Alberni, BC and Nedonna Beach, OR. Major research themes include: the structure and seismic behavior of the ocean crust; the dynamics of hot and cold fluids and gas hydrates in the upper ocean crust and overlying sediments; ocean climate change and its effect on the ocean biota at all depths; and the barely known ecosystem dynamics and biodiversity of the deep-sea. All involve interacting processes, long term changes, and non-linear, chaotic, episodic events that are hard to study with traditional means. VENUS, MARS, and NEPTUNE will use many of the same cable and engineering systems with the former two acting as test-beds for the latter. NEPTUNE is an US/Canada (70/30) partnership with the total facility cost of about 250M. Over 40M has already been funded for NEPTUNE design and development and for VENUS and MARS. Funding for NEPTUNE Canada's installation contribution (CAN$62.4M) was announced in October 2003. With US NSF/MREFC funding not anticipated before FY 2006, the Northern Loop (Stage 1) of the Project will be installed by NEPTUNE Canada, which comprises a consortium of 12 Canadian universities, lead by the University of Victoria. Housed in new quarters at UVic, NEPTUNE Canada has hired a dozen staff members, with more of be appointed, and has purchased the former Teleglobe TPC4 Shore Station at Port Alberni. Current activities include: a) issuing an RFQu and RFP

  7. Rear (northeast side) of gateway with building 9 on the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Rear (northeast side) of gateway with building 9 on the left and building 10 on the right - Fitzsimons General Hospital, Entrance Gateway, East Colfax Avenue & Peoria Street, Northeast Corner, Aurora, Adams County, CO

  8. Detail of door and gable treatment, looking northeast at intersection ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail of door and gable treatment, looking northeast at intersection of East Wing (Wing 1) and central core - Hospital for Sick Children, 1731 Bunker Hill Road, Northeast, Washington, District of Columbia, DC

  9. 10. Lighthouse boathouse and granite wharf, view north northeast, southwest ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. Lighthouse boathouse and granite wharf, view north northeast, southwest and southeast sides of boathouse, west and south sides of dock - Whitehead Light Station, Whitehead Island, East northeast of Tenants Harbor, Spruce Head, Knox County, ME

  10. 53. INTERIOR VIEW LOOKING NORTH NORTHEAST SHOWING THE REMAINS OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    53. INTERIOR VIEW LOOKING NORTH NORTHEAST SHOWING THE REMAINS OF A WOODEN SETTLING BOX IN THE BACKGROUND RIGHT. AMALGAMATING PANS IN THE FOREGROUND. - Standard Gold Mill, East of Bodie Creek, Northeast of Bodie, Bodie, Mono County, CA

  11. Steam sand dryer in northeast part of sand tower. View ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Steam sand dryer in northeast part of sand tower. View to northeast - Duluth & Iron Range Rail Road Company Shops, Sand Tower, Southwest of downtown Two Harbors, northwest of Agate Bay, Two Harbors, Lake County, MN

  12. 2. General context view of Express Building, looking northeast, with ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. General context view of Express Building, looking northeast, with Division Street in foreground, showing relationship to the Bend Depot - American Railway Express Company Freight Building, 1060 Northeast Division Street, Bend, Deschutes County, OR

  13. 1. HEBRONVILLE MILL COMPLEX ADJACENT TO NORTHEAST CORRIDOR. HEBRONVILLE, BRISTOL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. HEBRONVILLE MILL COMPLEX ADJACENT TO NORTHEAST CORRIDOR. HEBRONVILLE, BRISTOL CO., MA. Sec. 4116, MP 193.75. - Northeast Railroad Corridor, Amtrak Route between RI/MA State Line & South Station, Boston, Suffolk County, MA

  14. 3. DODGEVILLE MILL COMPLEX ADJACENT TO NORTHEAST CORRIDOR DODGEVILLE, BRISTOL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. DODGEVILLE MILL COMPLEX ADJACENT TO NORTHEAST CORRIDOR DODGEVILLE, BRISTOL CO., MA. Sec. 4116, MP 195.55. - Northeast Railroad Corridor, Amtrak Route between RI/MA State Line & South Station, Boston, Suffolk County, MA

  15. 19. GENERAL VIEW, LOOKING SOUTHWEST TO NORTHEAST, SHOWING ENCLOSED OFFICE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. GENERAL VIEW, LOOKING SOUTHWEST TO NORTHEAST, SHOWING ENCLOSED OFFICE UNITS FLANKING OVERHEAD PORT AT NORTHEAST END OF BUILDING - Oakland Army Base, Transit Shed, East of Dunkirk Street & South of Burma Road, Oakland, Alameda County, CA

  16. 55. VIEW TO NORTHEAST OF MOTOR AND REDUCTION GEAR NO. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    55. VIEW TO NORTHEAST OF MOTOR AND REDUCTION GEAR NO. 1: View towards the northeast of Motor and Reduction Gear No. 1, installed in 1957. - San Francisco Cable Railway, Washington & Mason Streets, San Francisco, San Francisco County, CA

  17. 3. Light tower and fog signal house, view northeast, west ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. Light tower and fog signal house, view northeast, west and south sides - Great Duck Island Light Station, At southern tip of Great Duck Island southeast of Bass Harbor & northeast of Frenchboro, Frenchboro, Hancock County, ME

  18. 7. Oil house, view northeast, west and south sides ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Oil house, view northeast, west and south sides - Great Duck Island Light Station, At southern tip of Great Duck Island southeast of Bass Harbor & northeast of Frenchboro, Frenchboro, Hancock County, ME

  19. 19. INTERIOR OF NORTHEAST REAR BEDROOM SHOWING ALUMINUMFRAME SLIDING GLASS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. INTERIOR OF NORTHEAST REAR BEDROOM SHOWING ALUMINUM-FRAME SLIDING GLASS WINDOWS. VIEW TO NORTHEAST. - Bishop Creek Hydroelectric System, Plant 4, Worker Cottage, Bishop Creek, Bishop, Inyo County, CA

  20. 20. DETAIL OF OFFICE FURNITURE IN NORTHEAST CORNER OF SECRETARIES' ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. DETAIL OF OFFICE FURNITURE IN NORTHEAST CORNER OF SECRETARIES' OFFICE ALONG NORTH SIDE OF FIRST FLOOR. VIEW TO NORTHEAST. - Boise Project, Boise Project Office, 214 Broadway, Boise, Ada County, ID

  1. Interior view of northeast unit master bedroom, looking into sleeping ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior view of northeast unit master bedroom, looking into sleeping porch, facing northeast - MacDill Air Force Base, Double Non-Commissioned Officers' Quarters, 7418 Hanger Loop Drive, Tampa, Hillsborough County, FL

  2. 5. ADMINISTRATION BUILDING, RIGHT AND LEFT SIDES, LOOKING NORTHEAST. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. ADMINISTRATION BUILDING, RIGHT AND LEFT SIDES, LOOKING NORTHEAST. - NIKE Missile Base SL-40, Administration Building, East central portion of base, southeast of Mess Hall, northeast of HIPAR Equipment Building, Hecker, Monroe County, IL

  3. 11. DETAIL SHOWING ROLLING ENGINE DECK AND NORTHEAST TRUSS OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. DETAIL SHOWING ROLLING ENGINE DECK AND NORTHEAST TRUSS OF SUPERSTRUCTURE. Looking northeast. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-A, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA

  4. 1. BUILDING 522, SOUTH SIDE, OBLIQUE VIEW, FROM NORTHEAST CORNER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. BUILDING 522, SOUTH SIDE, OBLIQUE VIEW, FROM NORTHEAST CORNER OF BUILDING 431, LOOKING NORTHEAST. - Oakland Naval Supply Center, Aeronautical Materials Storehouses, Between E & G Streets, between Fourth & Sixth Streets, Oakland, Alameda County, CA

  5. 2. Light tower and keeper's house, view southwest, north northeast ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Light tower and keeper's house, view southwest, north northeast side of tower, northeast and northwest sides of keeper's house - Wood Island Light Station, East end of Wood Island, at mouth of Soo River, Biddeford Pool, York County, ME

  6. 3. GENERAL VIEW LOOKING NORTHEAST, SHOWING ENTRANCE ROAD TO BONNEVILLE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. GENERAL VIEW LOOKING NORTHEAST, SHOWING ENTRANCE ROAD TO BONNEVILLE PROJECT; AUDITORIUM IS VISIBLE IN CENTER BACKGROUND. - Bonneville Project, Columbia River, 1 mile Northeast of Exit 40, off Interstate 84, Bonneville, Multnomah County, OR

  7. 1. GENERAL EXTERIOR VIEW LOOKING NORTHEAST, SHOWING FRONT FACADE OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. GENERAL EXTERIOR VIEW LOOKING NORTHEAST, SHOWING FRONT FACADE OF AUDITORIUM; ENTRANCE ROAD TO BONNEVILLE PROJECT IS IN FOREGROUND; FLAGPOLE IS IN CENTER. - Bonneville Project, Auditorium, Columbia River, 1 mile Northeast of Exit 40, Interstate 84, Bonneville, Multnomah County, OR

  8. 2. GENERAL EXTERIOR VIEW LOOKING NORTHEAST, SHOWING LANDSCAPING AROUND ENTRANCE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. GENERAL EXTERIOR VIEW LOOKING NORTHEAST, SHOWING LANDSCAPING AROUND ENTRANCE ROAD TO BONNEVILLE PROJECT; THE AUDITORIUM IS PARTIALLY VISIBLE IN CENTER BACKGROUND. - Bonneville Project, Columbia River, 1 mile Northeast of Exit 40, off Interstate 84, Bonneville, Multnomah County, OR

  9. OVERALL VIEW OF QUARRY, FACING NORTHEAST, SHOWING SOUTHERN SECTION OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    OVERALL VIEW OF QUARRY, FACING NORTHEAST, SHOWING SOUTHERN SECTION OF QUARRY - Granite Hill Plantation, Quarry No. 2, South side of State Route 16, 1.3 miles northeast east of Sparta, Sparta, Hancock County, GA

  10. Interior view of upstairs loft, north portion; camera facing northeast. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior view of upstairs loft, north portion; camera facing northeast. - Mare Island Naval Shipyard, Ordnance Warehouse, Blake Avenue, northeast corner of Blake Avenue & Railroad Avenue, Vallejo, Solano County, CA

  11. 1. TWOSTALL GARAGE. FRONT (SOUTHWEST) SIDE. VIEW TO NORTHEAST. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. TWO-STALL GARAGE. FRONT (SOUTHWEST) SIDE. VIEW TO NORTHEAST. - Rainbow Hydroelectric Facility, Two Stall Garage, On north bank of Missouri River 2 miles Northeast of Great Falls, & end of Rainbow Dam Road, Great Falls, Cascade County, MT

  12. 1. TOOL HOUSE. NORTHEAST AND NORTHWEST SIDES. VIEW TO SOUTHEAST. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. TOOL HOUSE. NORTHEAST AND NORTHWEST SIDES. VIEW TO SOUTHEAST. - Rainbow Hydroelectric Facility, Tool House, On north bank of Missouri River 2 miles Northeast of Great Falls, & end of Rainbow Dam Road, Great Falls, Cascade County, MT

  13. 6. CLUBHOUSE. SOUTHWEST SIDE. VIEW TO NORTHEAST. Rainbow Hydroelectric ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. CLUBHOUSE. SOUTHWEST SIDE. VIEW TO NORTHEAST. - Rainbow Hydroelectric Facility, Clubhouse, On north bank of Missouri River 2 miles Northeast of Great Falls, & end of Rainbow Dam Road, Great Falls, Cascade County, MT

  14. 3. CLUBHOUSE. FRONT (SOUTHEAST) FACADE AND NORTHEAST SIDE. VIEW TO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. CLUBHOUSE. FRONT (SOUTHEAST) FACADE AND NORTHEAST SIDE. VIEW TO WEST. - Rainbow Hydroelectric Facility, Clubhouse, On north bank of Missouri River 2 miles Northeast of Great Falls, & end of Rainbow Dam Road, Great Falls, Cascade County, MT

  15. 1. THREESTALL GARAGE. SOUTHEAST AND NORTHEAST SIDES. VIEW TO WEST. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. THREE-STALL GARAGE. SOUTHEAST AND NORTHEAST SIDES. VIEW TO WEST. - Rainbow Hydroelectric Facility, Three Stall Garage, On north bank of Missouri River 2 miles Northeast of Great Falls, & end of Rainbow Dam Road, Great Falls, Cascade County, MT

  16. 4. CLUBHOUSE. NORTHEAST SIDE. VIEW TO SOUTHWEST. Rainbow Hydroelectric ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. CLUBHOUSE. NORTHEAST SIDE. VIEW TO SOUTHWEST. - Rainbow Hydroelectric Facility, Clubhouse, On north bank of Missouri River 2 miles Northeast of Great Falls, & end of Rainbow Dam Road, Great Falls, Cascade County, MT

  17. 2. TOOL HOUSE. NORTHEAST AND SOUTHEAST SIDES. VIEW TO WEST. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. TOOL HOUSE. NORTHEAST AND SOUTHEAST SIDES. VIEW TO WEST. - Rainbow Hydroelectric Facility, Tool House, On north bank of Missouri River 2 miles Northeast of Great Falls, & end of Rainbow Dam Road, Great Falls, Cascade County, MT

  18. 2. THREESTALL GARAGE. NORTHEAST SIDE. VIEW TO SOUTHWEST. Rainbow ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. THREE-STALL GARAGE. NORTHEAST SIDE. VIEW TO SOUTHWEST. - Rainbow Hydroelectric Facility, Three Stall Garage, On north bank of Missouri River 2 miles Northeast of Great Falls, & end of Rainbow Dam Road, Great Falls, Cascade County, MT

  19. 4. FOREMAN'S HOUSE. NORTHEAST SIDE. VIEW TO SOUTHWEST. Rainbow ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. FOREMAN'S HOUSE. NORTHEAST SIDE. VIEW TO SOUTHWEST. - Rainbow Hydroelectric Facility, Foreman's House, On north bank of Missouri River 2 miles Northeast of Great Falls, & end of Rainbow Dam Road, Great Falls, Cascade County, MT

  20. 4. HOUSE No. 16. NORTHEAST SIDE. VIEW TO SOUTHWEST. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. HOUSE No. 16. NORTHEAST SIDE. VIEW TO SOUTHWEST. - Rainbow Hydroelectric Facility, House No. 16, On north bank of Missouri River 2 miles Northeast of Great Falls, & end of Rainbow Dam Road, Great Falls, Cascade County, MT

  1. 3. TWOSTALL GARAGE SOUTHEAST AND NORTHEAST SIDES. VIEW TO WEST. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. TWO-STALL GARAGE SOUTHEAST AND NORTHEAST SIDES. VIEW TO WEST. - Rainbow Hydroelectric Facility, Two Stall Garage, On north bank of Missouri River 2 miles Northeast of Great Falls, & end of Rainbow Dam Road, Great Falls, Cascade County, MT

  2. 2. FOREMAN'S HOUSE. SOUTHWEST SIDE. VIEW TO NORTHEAST. Rainbow ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. FOREMAN'S HOUSE. SOUTHWEST SIDE. VIEW TO NORTHEAST. - Rainbow Hydroelectric Facility, Foreman's House, On north bank of Missouri River 2 miles Northeast of Great Falls, & end of Rainbow Dam Road, Great Falls, Cascade County, MT

  3. Magmatism at mid-ocean ridges: Constraints from volcanological and geochemical investigations

    NASA Astrophysics Data System (ADS)

    Perfit, Michael R.; Chadwick, William W., Jr.

    The morphological, structural, and volcanic characteristics of the neovolcanic zone at mid-ocean ridges (MOR) vary strongly with spreading rate. At fast-spreading ridges, the neovolcanic zone is narrow, has low-relief both across and along strike, is dominated by the products of fluid, fissure-fed eruptions, and exhibits morphologic and magmatic continuity along axis. At slow-spreading ridges, the neovolcanic zone is wider, has greater relief, is characterized by many discrete point-source constructs, and exhibits less morphologic and magmatic continuity along axis compared to fast-spreading ridges. Intermediate-spreading ridges typically have characteristics that vary in time and space between these two extremes. Lava flow morphology also varies markedly with spreading rate-sheet flows are dominant on fast-spreading ridges whereas pillow lavas are dominant at slow-spreading ridges. The morphological differences primarily reflect a difference in extrusion rates, and indicate that dikes are intruded at higher magma pressure at fast-spreading ridges. Even though volcanism appears to be concentrated within the neovolcanic zone, off-axis eruptions add significant volumes to the crust. Off-axis volcanism may be fed by the distal sections of magma lenses or, in the case of long-lived, near-axis seamounts, from magma sources that are independent of sub-axial magma bodies. The timing, locations, and volumes of volcanic events on the MOR are still largely unknown, but the documentation of recent eruptions have provided new insights and the first quantitative information regarding active volcanic processes on the ridge-crest. Documentation of historical eruptions has been realized by some good luck and detailed surveying of the neovolcanic zone along the southern Juan de Fuca Ridge (JdFR) and northern East Pacific Rise (EPR), but the most recent eruptions have been detected in real-time by listening with hydrophones for acoustic T-waves that are generated by small

  4. A 14-year-long Measurement of the Convergence Rate of the Juan de Fuca and North America Plates Offshore Central Oregon using GPS-Acoustics

    NASA Astrophysics Data System (ADS)

    Chadwell, C. D.; Webb, S. C.; Nooner, S. L.

    2015-12-01

    The motion of the sea floor was measured at a 3000-m-deep site approximately 120 km offshore Central Oregon using the GPS-Acoustic technique in 2000, 2001, 2002, 2003 and 2014. The GPS-Acoustic derived motion relative to the interior of North America agrees with the geomagnetically-derived value within their measurement uncertainties. The time series from the early 2000's was resurrected using two new innovations. The first innovation, a permanent benchmark that has locating channels and mating pins, allows reoccupation of an established benchmark at any later date using an ROV to replace the transponder on the benchmark. The second innovation: an autonomous platform based on a Waveglider that carries a GPS navigated acoustic transponder interrogation system that is wave and solar powered. This enables measurements to be obtained over a GPSA site without requiring a large ship, greatly reducing the cost of a GPSA measurement. Combining data at this site with data from two other GPS-Acoustic seafloor sites on the Juan de Fuca plate, makes it possible to determine a present-day Euler Pole for the Juan de Fuca - North America plates using GPS-Acoustics seafloor geodesy.

  5. NEARSHORE FISH AND MACROINVERTEBRATE ASSEMBLAGES ALONG THE STRAIT OF JUAN DE FUCA INCLUDING FOOD HABITS OF THE COMMON NEARSHORE FISH: FINAL REPORT OF THREE YEARS' SAMPLING, 1976-1979

    EPA Science Inventory

    A seasonal survey of nearshore fishes was made in the Strait of Juan de Fuca from May 1976 to June 1979. A beach seine was used for sampling nearshore demersal fishes and a townet for nearshore pelagic fishes; intertidal fishes were sampled with the use of anesthetic and a hand n...

  6. NORTHEAST VIEW OF FOUNDRY FROM TOP OF GREY IRON CUPOLA ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    NORTHEAST VIEW OF FOUNDRY FROM TOP OF GREY IRON CUPOLA SHOWING CORE ROOM ROOF DIRECTLY NORTHEAST, GREY IRON FOUNDRY TO THE RIGHT, MALLEABLE IRON CUPOLAS AND FOUNDRY NORTHEAST OF GREY IRON FOUNDRY WITH THE BRASS FOUNDRY IN THE REAR. - Stockham Pipe & Fittings Company, 4000 Tenth Avenue North, Birmingham, Jefferson County, AL

  7. The Mid-Ocean Ridge

    SciTech Connect

    Macdonald, K.C. ); Fox, P.J. )

    1990-06-01

    The Mid-Ocean Ridge girdles the earth like the seam of a baseball. For more than 75,000 kilometers, this submerged range of razorback mountains--many higher than the greatest peaks on land--marks the restless boundary between continental plates. An analysis of this huge structure reveals a fascinating picture of how it is created by magma welling up as the plates pull apart. The paper discusses sea-floor spreading, the magma supply model, types of discontinuities, off-axis structures, small overlaps and DEVALs (slight DEViations in Axial Linearity), and aquatic life.

  8. Ridge effect and alignment phenomenon

    SciTech Connect

    Lokhtin, I. P. Managadze, A. K. Snigirev, A. M.

    2013-05-15

    It is assumed that the ridge effect observed by the CMS Collaboration in proton-proton collisions at the LHC and the phenomenon observed by the Pamir Collaboration in emulsion experiments with cosmic rays and characterized by the alignment of spots on a film is a manifestation of the same as-yet-unknown mechanism of the emergence of a coplanar structure of events. A large coplanar effect at the LHC in the region of forward rapidities is predicted on the basis of this hypothesis and an analysis of experimental data.

  9. Terrestrial Analogs for Planetary Wrinkle Ridges

    NASA Technical Reports Server (NTRS)

    Plescia, J. B.; Golombek, M. P.

    1985-01-01

    Wrinkle ridges are common physiographic features on the terrestrial planets. Their origin has remained enigmatic, although two different types of models, volcanic and tectonic, have been proposed. The major impediment to deciphering the origin of wrinkle ridges has been the lack of a terrestrial analog. Seven terrestrial analogs were discussed, two in detail. Their implications for the origin for planetary wrinkle ridges were considered. All of the terrestrial analogs were formed in compressional environments and are the surface breaks of thrust faults.

  10. The 2008 Puipui eruption and morphology of the Northeast Lau Spreading Center between Maka and Tafu (Invited)

    NASA Astrophysics Data System (ADS)

    Clague, D. A.; Caress, D. W.; Rubin, K. H.; Paduan, J. B.

    2010-12-01

    An event plume was discovered in the water column between Maka and Tafu volcanoes on the Northeast Lau Spreading Center in Nov. 2008. A Rapid Response cruise in May 2009 found that eruptive activity had ceased after observations on two Jason II ROV dives and one MBARI Mapping AUV survey that mapped most of the axis and flanks at 1.5-m resolution. Jason II located a recent lava flow, which was named Puipui. The small ridge of mounds aligned along two overlapping fissures extend for 1.8 km. The pillow ridge cuts obliquely across the ridge axis. The dive observations show mainly pillow lavas near the NE end and sheet flows near the SE end. A central 340 m portion observed by Jason II as predominantly ponded lobate flows was not mapped by the AUV. The Puipui and prior eruptions produced abundant vesicular angular glass fragments, Pele’s hair, and less abundant limu o Pele pyroclasts that thinly blanket the axial plateau and cascade down the steep flanks, mixing debris from many eruptions. Electron probe analyses of 91 fragments show that 15 Puipui pyroclasts are compositionally variable (normalized 6.5-7.2% MgO, ~49.6% SiO2) and distinct from prior eruptions in the area that have lower TiO2, K2O, Na2O, and K2O; and 52.3-53.7% SiO2. Pyroclasts of all compositions are highly degassed (<0.025% S) prior to eruption. The NE-trending segment, anchored by Maka volcano at the SE end, includes the Puipui flow. The morphology changes dramatically over short distances. The 1 km SW end is characterized by multiple extensional faults that parallel the ridge axis. The AUV survey ends on a sheet flow with drained ponds. To the NE, Maka is a 1.2 km diameter central volcano rising 300 m above the adjacent ridge to a summit at 1515 m. The ridge axis deepens steadily to 2140 m at the NE survey end and 1900 m to the SW. Rift zones on Maka parallel the ridge axis and are constructed of overlapping lava deltas. The NW and SE flanks are smooth like those at actively erupting West Mata

  11. Northeast Regional Exchange, Annual Report, January 1982.

    ERIC Educational Resources Information Center

    1982

    The activities of Northeast Regional Exchange, Inc. (NEREX) during its first year of operation are delineated in this report. The newest member of the national network of Research and Development Exchanges (RDx), this service agency was established to promote educational improvement in the seven northeastern states: Connecticut, Maine,…

  12. Northeast Regional Education Planning Project. Final Report.

    ERIC Educational Resources Information Center

    Northeast Regional Exchange Steering Committee, Boston, MA.

    Created to facilitate the dissemination of information between researchers and the educational community, the Northeast Regional Exchange steering committee has defined needs, determined agency qualifications, identified priorities, undertaken a series of minigrant projects, and developed plans for the extension of these projects and a study of…

  13. Teacher Morale in Rural Northeast Tennessee

    ERIC Educational Resources Information Center

    Eggers, Brenda Dishman

    2012-01-01

    The purpose of this quantitative study was to investigate the factors that influence the morale levels of teachers in the public school systems of 3 contiguous counties in rural northeast Tennessee. The level of teacher morale was measured using the Purdue Teacher Opinionaire. Data associated with the Tennessee Value-Added Assessment System…

  14. Mapping oceanic ridge segments in Oman ophiolite

    NASA Astrophysics Data System (ADS)

    Nicolas, A.; Boudier, F.

    1995-04-01

    This paper presents the results of detailed mapping of high-temperature flow structures in the mantle and crust of two massifs of the Oman ophiolite. In these massifs, the dominant structures, including large-scale folds, shear zones, and fractures, were generated at elevated temperatures and are ascribed to the ridge or ridge environment activity; this means that the structural maps presented can be viewed as those of partly dissected ridge segments. It has been possible in the two massifs to locate the paleoaxis of the oceanic ridge which created this crust. This location, which is constrained by several independent tests, is a prerequisite to reconstruct the structure and to investigate the dynamics of a fast spreading ridge. In the Nakhl-Rustaq massif, high temperature tectonic activity at the ridge rotated the Moho toward a vertical altitude and folded the layered gabbros on the scale of several hundred meters. This tectonism is attributed to a propagating ridge deforming a slightly older lithosphere. The propagating ridge segment extends in the field from a diapir area to a domain located along strike some 20 km away, where the sheeted dike complex roots directly in the mantle, without layered gabbros in between. The diapir area represents the mantle feeder for the ridge segment, and the rooted dikes represent the propagating tip. Other results include the detailed mapping of two mantle diapirs and of the diverging mantle flow issued from them. Magma chambers are centered over diapirs and are tent-shaped, in accord with our previous models.

  15. A new look at Northwind Ridge: implications for the history of the Canada Basin

    NASA Astrophysics Data System (ADS)

    Hutchinson, D. R.; Mosher, D. C.; Shimeld, J.; Jackson, R.; Chian, D.; Edwards, B. D.; Hart, P. E.; Mayer, L. A.

    2010-12-01

    ) models of the opening of CB may not require complete closure and therefore (2) NR may not overlap the continental margin of northern Canada, a problem with previous reconstructions. The northeast orientation of NR is subparallel to the inferred orientation of a deeply buried graben complex that is characterized by a northeast-trending negative gravity anomaly and offset ~250 km to the east of NR. Three northeast-trending bathymetric ridges also occur in the Sever Spur area or CB. Although the ages of rifting for either NR or the deeply buried graben complex are not well constrained, their subparallel orientation suggests this northeast direction is a preferred tectonic fabric either inherited prior to or created during the rifting and opening of the basin.

  16. Probable Causes of the Abnormal Ridge Accompanying the 2013-2014 California Drought: ENSO Precursor and Anthropogenic Warming Footprint

    SciTech Connect

    Wang, S-Y; Hipps, Lawrence; Gillies, Robert R.; Yoon, Jin-Ho

    2014-05-16

    The 2013-14 California drought was accompanied by an anomalous high-amplitude ridge system. The anomalous ridge was investigated using reanalysis data and the Community Earth System Model (CESM). It was found that the ridge emerged from continual sources of Rossby wave energy in the western North Pacific starting in late summer, and subsequently intensified into winter. The ridge generated a surge of wave energy downwind and deepened further the trough over the northeast U.S., forming a dipole. The dipole and associated circulation pattern is not linked directly with either ENSO or Pacific Decadal Oscillation; instead it is correlated with a type of ENSO precursor. The connection between the dipole and ENSO precursor has become stronger since the 1970s, and this is attributed to increased GHG loading as simulated by the CESM. Therefore, there is a traceable anthropogenic warming footprint in the enormous intensity of the anomalous ridge during winter 2013-14, the associated drought and its intensity.

  17. Emergency preparedness at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect

    Skipper, M.N.

    1990-03-01

    Emergency preparedness for industry was commonly believed to be an essential responsibility on the part of management. Therefore, this study was conducted to research and accumulate information and data on emergency preparedness at Oak Ridge National Laboratory (ORNL). The objective of this study was to conduct a thorough evaluation of emergency preparedness knowledge among employees to determine if they were properly informed or if they needed more training. Also, this study was conducted to provide insight to management as to what their responsibility was concerning this training. To assess employee emergency preparedness knowledge, a questionnaire was developed and administered to 100 employees at ORNL. The data was analyzed using frequencies and percentages of response and was displayed through the use of graphs within the report. 22 refs., 22 figs.

  18. Petrology and Geochemistry of the Northeast Seamounts of the Galapagos Platform

    NASA Astrophysics Data System (ADS)

    Sinton, C. W.; Harpp, K. S.; Christie, D. M.

    2010-12-01

    One of the best locations to study hotspot-ridge interactions is the Northern Galápagos Province (NGP), the region that lies between the Galapagos Spreading Center (GSC) and the central portion of the Galapagos Archipelago. The Galapagos hotspot is currently located off-axis from the GSC but still has a profound influence on the ridge in terms of axial lava composition and ridge bathymetry. The NGP is characterized by an array of volcanic lineaments that are composed of seamounts and five small islands. The eastern edge of the NGP is defined by a group of at least five seamounts (the Northeast Seamounts), three of which were mapped and dredged in 1990 during Leg 2 of the PLUME expedition of the R/V Thomas Washington. We report petrological and geochemical data from the basalts recovered at six dredge sites. All basalts are tholeiitic with a general MORB-like composition, but with considerable variation within some individual dredge hauls and between seamounts. Previously published isotopic data are limited but 3He/4He ratios (Graham et al. 1993) and Sr-Nd-Pb isotopic data (Harpp and White 2000) are consistent with a depleted mantle source for all three seamounts. Based on geochemistry and petrological observations, the basalts can be divided into at least thirteen distinct groups. The bulk of the analyzed glass samples have compositions more than MORB with MgO content of 8-10% wt., although two of the groups are in the 6-7% range. In addition, the primitive lavas have high CaO and Al2O3 . The mineralogy ranges from aphyric for the more evolved lavas to olivine + plagioclase-phyric or plagioclase ultraphyric for the more primitive basalts. The plagioclase appear to be very calcic (up to An91) xenocrysts that are often hosting aluminous spinel (Al2O3 46-48% wt.) and primitive melt inclusions (Sinton et al., 1993). Initial trace element data show light rare earth (LREE)-depleted signatures, although several samples are slightly enriched in the LREE. Taken together

  19. Ridges and tidal stress on Io

    USGS Publications Warehouse

    Bart, G.D.; Turtle, E.P.; Jaeger, W.L.; Keszthelyi, L.P.; Greenberg, R.

    2004-01-01

    Sets of ridges of uncertain origin are seen in twenty-nine high-resolution Galileo images, which sample seven locales on Io. These ridges are on the order of a few kilometers in length with a spacing of about a kilometer. Within each locale, the ridges have a consistent orientation, but the orientations vary from place to place. We investigate whether these ridges could be a result of tidal flexing of Io by comparing their orientations with the peak tidal stress orientations at the same locations. We find that ridges grouped near the equator are aligned either north-south or east-west, as are the predicted principal stress orientations there. It is not clear why particular groups run north-south and others east-west. The one set of ridges observed far from the equator (52?? S) has an oblique azimuth, as do the tidal stresses at those latitudes. Therefore, all observed ridges have similar orientations to the tidal stress in their region. This correlation is consistent with the hypothesis that tidal flexing of Io plays an important role in ridge formation. ?? 2004 Elsevier Inc. All rights reserved.

  20. Cedar Ridge Camp: Using the Local Environment

    ERIC Educational Resources Information Center

    Burke, Grayson

    2007-01-01

    In 2007 Cedar Ridge Camp opened for its first season as a traditional co-ed summer camp and year-round outdoor education and recreation centre. The mission would centre on creating a program that would encourage personal development and growth through a shared outdoor experience. Cedar Ridge's main goals were to promote the formation of close…

  1. Earthquakes and beach ridges on Kamchatka

    NASA Astrophysics Data System (ADS)

    Bourgeois, J.; Ortuno, M.; Thibault, C.; Higman, B.; Pinegina, T.

    2003-04-01

    There are several proposed origins for beach ridges, or berms, with the majority of studies focused on Atlantic-type margins. Primary factors invoked for beach-ridge formation include changes in sea-level, in wave climate, and in sediment supply. On subduction-zone margins, co-seismic deformation can force any of these three factors. For example, subsidence of the shoreline (local sea level rise) will generally lead to coastal erosion, whereas shoreline uplift (subduing local wave climate) will strand beach ridges. Earthquake-triggered landslides may significantly increase sediment supply. Some authors working on Pacific margins have correlated either beach ridges (e.g., A. Kurbatov on Kamchatka; P. Saltonstall and G. Carver on Kodiak), or buried erosional scarps (e.g. R.A. Meyers et al., Washington State) with subduction-zone earthquakes and the seismic cycle. Our work on Kamchatka provides examples where buried scarps and beach ridges are superimposed, each pair of which we interpret to be the result of a single seismic cycle, apparently consistent with some other data and interpretations (Kodiak, particularly). That is, in a setting where the shoreline subsides during an earthquake and recovers thereafter, beach ridges overlie buried scarps. In one case on Kamchatka, in southern Vestnik Bay, there is a spectacular outcrop illustrating this relationship. This model by no means explains all beach ridges, so identifying earthquake-forced beach ridges remains a challenge.

  2. Student Health Services at Orchard Ridge.

    ERIC Educational Resources Information Center

    Nichols, Don D.

    This paper provides a synoptic review of student health services at the community college level while giving a more detailed description of the nature of health services at Orchard Ridge, a campus of Oakland Community College. The present College Health Service program provides for a part-time (24 hrs./wk.) nurse at Orchard Ridge. A variety of…

  3. 27 CFR 9.158 - Mendocino Ridge.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Mendocino Ridge. 9.158 Section 9.158 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.158 Mendocino Ridge. (a) Name. The name of...

  4. Mid-Ocean Ridge Magma Supply and Glacial Cycles: Long Time Series Studies of Crustal Thickness and Seafloor Topography

    NASA Astrophysics Data System (ADS)

    Boulahanis, B.; Carbotte, S. M.; Huybers, P. J.; Langmuir, C. H.; Han, S.; Aghaei, O.; Canales, J. P.; Nedimovic, M. R.; Menke, W. H.

    2015-12-01

    Glacial loading has been shown to modulate volcanic melt generation in subaerial systems, and recent studies suggest that eustatic sea level fluctuations induced by glacial cycles may influence mantle-melting regimes at mid-ocean ridges. Models predict temporal variation in crustal thickness, and seafloor topography, linked to sea level change. Recent studies of bathymetry as a proxy for crustal thickness show significant spectral energy at periodicities linked to Milankovitch cycles of 23, 41, and 100ka (Crowley et al., 2015; Tolstoy, M., 2015). In this study we investigate climate driven periodicity in mid-ocean ridge magma supply utilizing basement topography and crustal thickness data. We use multichannel seismic reflection (MCS) data from two prior studies of the flanks of the Juan de Fuca (JdF) ridge, and 3D MCS data from the Northern East Pacific Rise (EPR) 9°37-57'N. The JdF datasets extend to crustal ages up to 8.78 Ma, and EPR data to ~180 ka. By performing spectral analysis on these data along with dO18 climate records from Lisiecki and Raymo (2005) for the last 5.32ma and Zachos et al. (2001) for earlier times we investigate intervals of similar periodicities in order to identify potential links between climate and magma supply to mid-ocean ridges. Further analysis is undertaken to determine whether depth to basement and crustal thickness are correlated within and across datasets, and whether significant spectral peaks occur in basement and crustal thickness data outside of known climate cycles. Initial results show significant spectral energy in basement depth at the 100ky cycle in the 0-1Ma time series, when eccentricity is understood to have the most impact. Long-term temporal variability is apparent in JdF data, with low relief abyssal hills (~70m on average) present 1-3.2Ma and 6-8.78Ma, but higher relief bathymetry (~200m) from 3.2-6Ma. These subsets align well with previously identified climatic subgroups (Zachos et al., 2001), correlating both

  5. Composition of pore and spring waters from Baby Bare: Global implications of geochemical fluxes from a ridge flank hydrothermal system

    SciTech Connect

    Wheat, C.G.; Mottl, M.J.

    2000-02-01

    Warm hydrothermal springs were discovered on Baby Bare, which is an isolated basement outcrop on 3.5 Ma-old crust on the eastern flank of the Juan de Fuca Ridge. The authors have sampled these spring waters from a manned submersible, along with associated sediment pore waters from 48 gravity and piston cores. Systematic variations in the chemical composition of these waters indicate that hydrothermal reactions in basement at moderate temperatures remove Na, K, Li, Rb, Mg, TCO{sub 2}, alkalinity, and phosphate from the circulating seawater and leach Ca, Sr, Si, B, and Mn from the oceanic crust; and that reactions with the turbidite sediment surrounding Baby Bare remove Na, Li, Mg, Ca, Sr, and sulfate from the pore water while producing ammonium and Si and both producing and consuming phosphate, nitrate, alkalinity, Mn, and Fe. K, Rb, and B are relatively unreactive in the sediment column. The composition of altered seawater in basement at Baby Bare is similar to the inferred composition of 58 C formation water from crust nearly twice as old (5.9 Ma) on the southern flank of the Costa Rica Rift. The Baby Bare fluids also exhibit the same directions of net elemental transfer between basalt and seawater as solutions produced in laboratory experiments at a similar temperature, and complement compositional changes form seawater observed in seafloor basalts altered at cool to moderate temperatures. The common parameter among the two ridge flanks and experiments is temperature, suggesting that the residence time of seawater in the two ridge-flank sites is sufficiently long for the solutions to equilibrate with altered basalt. The authors use the Baby Bare spring water to estimate upper limits on the global fluxes of 14 elements at warm ridge-flank sites such as Baby Bare. Maximum calculated fluxes of Mg, Ca, sulfate, B, and K may equal or exceed 25% of the riverine flux, and such sites may represent the missing, high K/Rb sink required for the K budget.

  6. Manastash Ridge Observatory Autoguider Upgrade

    NASA Astrophysics Data System (ADS)

    Lozo, Jason; Huehnerhoff, Joseph; Armstrong, John; Davila, Adrian; Johnson, Courtney; McMaster, Alex; Olinger, Kyle

    2016-06-01

    The Astronomy Undergraduate Engineering Group (AUEG) at the University of Washington has designed and manufactured a novel autoguider system for the 0.8-meter telescope at the Manastash Ridge Observatory in Ellensburg, Washington. The system uses a pickoff mirror placed in the unused optical path, directing the outer field to the guide camera via a system of axi-symmetrically rotating relay mirrors (periscope). This allows the guider to sample nearly 7 times the area that would be possible with the same fixed detector. This system adds closed loop optical feedback to the tracking capabilities of the telescope. When tuned the telescope will be capable of acheiving 0.5 arcsecond tracking or better. Dynamic focusing of the primary optical path will also be an included feature of this system. This unique guider will be a much needed upgrade to the telescope allowing for increased scientific capability.

  7. Hydroforming Applications at Oak Ridge

    SciTech Connect

    bird, e.l.; ludtka, g.m.

    1999-03-10

    Hydroforming technology is a robust forming process that produces components with high precision and complexity. The goal of this paper is to present a brief description of the sheet hydroforming process with respect to the authors' experience and capabilities. Following the authors' discussion of the sheet-metal forming application, the tubular hydroforming process is described in the context of one of our technology development programs with an automotive industrial partner. After that is a summary of the tubular hydroforming advisor (expert system) development activity, which was a significant part of this overall program based on previous experience in developing a design and manufacturing support hydroforming advisor for the Oak Ridge Y-12 Plant's weapons-component manufacturing needs. Therefore, this paper is divided into three sections: (1) Hydroforming of Stainless Steel Parts, (2) Tubular Hydroforming, and (3) Components of a Tubular Hydroforming Advisor.

  8. Hurricane Bonnie, Northeast of Bermuda, Atlantic Ocean

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Hurricane Bonnie was over the North Atlantic Ocean about 500 miles northeast of Bermuda (39.0N, 56.5W) when this photo was taken. Compare this view with Hurricane Iniki, also photographed on this mission (STS-47-77-058). Bonnie is small but in her prime, having a well defined eye, a tight spiral gyre indicating high wind speeds and numerous thunderheads. Iniki, on the other hand, was decaying when photographed and no longer presented a threat.

  9. Northeast Regional Carbon Sequestration Partnership Investigation

    NASA Astrophysics Data System (ADS)

    Coleman, A. J.; Trautz, R. C.

    2008-12-01

    Geologic carbon storage is a viable option for the electric power industry in the "Northeast" region to meet regional and forthcoming federal CO2 cap-and-trade programs. Capturing CO2 emissions and storing the gas in underground geological formations could significantly reduce the amount of CO2 released to the atmosphere. However, before this can be implemented, site-specific geological research needs to be conducted to determine which formations are potentially capable of storing the quantity of CO2 emitted by power plants in the Northeast region. While the target geosequestration formations in the Northeast may have less storage capacity than those in the Midwest, Southeast or Southwest, the available capacities may be large enough to sequester a significant fraction of the CO2 produced by some regional power plants (which are also smaller, individually and in total, than those in the other regions). The study will also conduct baseline assessments of electric power producer plants and CO2 emission estimates and create first level screening on potential geologic structures for CO2 sequestration. The work will establish a general database of "Other Uses" (current industrial and technological innovations/options), characterize transport issues, both on land and offshore, and, provide general guidance on the physical and land-use constraint factors of "add-on" capture technologies at existing power plants.

  10. Slope failure of continental frontal ridges offshore Vancouver Island, British Columbia

    NASA Astrophysics Data System (ADS)

    Scholz, N.; Riedel, M.; Spence, G.; Dugan, B.; Daigle, H.; Hyndman, R. D.; James, T. S.; Naegeli, K.

    2010-12-01

    Bathymetric data from the Northern Cascadia margin offshore Vancouver Island reveal several submarine landslide features on the seaward slopes of frontal ridges. The slides occur just landward of the deformation front of the subducting Juan de Fuca and Explorer plates. Possible trigger mechanisms for the slope failures include earthquakes, pore pressure changes induced by sea-level changes, and the dissociation of gas hydrates. Evidence of gas hydrate has been found beneath the frontal ridges. A bottom simulating reflection (BSR) has been identified in regional seismic data and logging data showed gas hydrate indicators including sonic velocity and high electrical resistivity. The influence of gas hydrate formation and dissociation on slope stability is of special interest since previous studies showed coincident depths of BSRs and failure planes. We investigate two slope failure events in detail using numerical modeling techniques such as finite and discrete element modeling. Hybrid techniques provide a means to model processes ranging from grain-scale interactions up to movements of the sliding body by addressing both the continuous and discontinuous aspects of the problem. These include the internal forces, the evaluation of material failure criterion, deformation, and interaction forces. Furthermore, tensile failure and crack propagation, for example caused by gas hydrate or by the gradual breakdown of the slope material, can be characterized. Particle flow using different shapes and properties can be simulated. By examining the effect of local sea-level changes, glacial rebound, and gas hydrate formation or dissociation on stresses and fluid pressures, the work involves modeling the failure conditions associated with a decrease in shear strength, an increase in pore pressure, and the possible development or re-opening of cracks. Beyond describing the trigger mechanism, we also have interest in reconstructing the dynamics of the slide events to explain their

  11. Morphology of the Knipovich Ridge Area

    NASA Astrophysics Data System (ADS)

    Zarayskaya, Y.; Abramova, A.; Dobrolyubova, K.; Mazarovich, A.; Moroz, E.

    2014-12-01

    Knipovich Ridge is the northernmost part of the Mid-Atlantic Ridge system. It is located between Mohns and Molloy spreading centers in the Greenland Sea. The scientific team of the R/V "Akademik Nikolaj Strakhov" (Geological Institute RAS, Russia) surveyed this area in 2006, 2007, 2009 and 2010 using the deep-water multibeam echosounder RESON Seabat 7150 with working frequency 12 kHz. The total surveyed area is up to 82000 km² including 65000 km² covering rift valley and flanges of the ridge. Knipovich ridge is classified as an ultra-slow oblique spreading center with spreading rate around 1,4 cm/y. Its large-scale morphological features are reduced in number comparing to other mid-ocean ridges. Eastern flange is buried under the continental slope sediments and only the rare highest peaks rise above this cover. Western flange is fully developed and consists of several ridges prolonged parallel to the rift valley. Ridges are supplemented with individual highs. Rift valley is 20-40 km wide and 500 km long. Its depth is 3300-3700 m. Valley slopes have terraces and ledges of different amplitudes. The bottom of the valley is echeloned by 5 volcanic axial highs rising 400 - 1000 m above it. Spreading obliquity is imprinted in the ridge morphology. The global models predict a plate motion vector of 307º. The main ridge axis has general orientation of 350º. Rift valley follows this direction from the South, and on the half way to the North turns to azimuth of 2º. The detailed bathymetry shows that small-scale features orientation differs. Rift axial highs and individual flange highs are prolonged NW-SE under azimuth of 30º. This orientation is sub-perpendicular to the plate motion vector (83º) and oblique to the ridge axes (40º). The multibeam bathymetry shows no sing of transform faults or non-transform discontinuities along the Knipovich ridge rift valley. There is one strong lineation in the northern part of the ridge. It includes flange and axial highs and

  12. Chronology of sand ridges and the Late Quaternary evolution of the Etosha Pan, Namibia

    NASA Astrophysics Data System (ADS)

    Hipondoka, M. H. T.; Mauz, B.; Kempf, J.; Packman, S.; Chiverrell, R. C.; Bloemendal, J.

    2014-01-01

    Etosha Pan, situated at the southern border of tropical Africa, is a vast endorheic plain in Namibia's semi-arid north. The most recent studies agree that the pan was the floor of a former lake with varying water levels. Here we explored this idea further by investigating the link between lake-level change and records of late Pleistocene and Holocene climate change. The varying lake levels were inferred through sediment analysis and optical dating of sand deposits that form ridges parallel to the current shore along the northern and western margins of the pan. Our results support the view that the sand ridges are shoreline deposits of an evaporitic lake. The ridges result from the interplay between intermittent river discharge and riverine sediment supply from the north, prevailing north-easterly wind and shore-parallel waves. Therefore they are a proxy for former levels of a perennial lake. We infer higher levels during the late Pleistocene and a drastic drop shortly after 10 ka. Since around 8 ka Etosha Pan was covered by a shallow water body. This lake water-level reconstruction is not in line with the histories of ITCZ migration and strength of Benguela current upwelling. We confirm that the linkages between the evolution of the Etosha Pan and the climate mechanisms driving hydrological changes in subtropical southwest Africa are poorly resolved and need further investigation.

  13. Wrinkle ridges of Arcadia Planitia, Mars

    NASA Technical Reports Server (NTRS)

    Plescia, J. B.

    1993-01-01

    Wrinkle ridges of Arcadia Planitia were examined to determine their morphology, spatial distribution, and the amount of crustal shortening and strain they accommodate. Ridges trend generally northward, but their orientation and distribution are strongly controlled by the relief of the underlying hobby material. Ridges begin or end at inselbergs of older terrain and are associated with buried craters. Arcadia Planitia ridges have an average width of 3425 m and accommodate an average folding shortening of 3 m and a faulting shortening of 55 m; mean total shortening is 57 m. Three east-west transects were constructed at 20 deg 25 deg and 28 deg N to estimate regional shortening and strain. Average total shortening across the transects is about 900 m, corresponding to a regional compressive strain of 0.06 percent. The total shortening and compression across Arcadia Planitia are less than in Lungae Planum. Faults associated with the Arcadia ridges are inferred to have a westward dip compared with an eastward dip for Lungae Planum ridges. The general levels of compression and symmetric orientation of the ridges suggest a regionally organized stress system.

  14. Dynamic plumbing systems along the 100 km long Arctic Vestnesa Ridge

    NASA Astrophysics Data System (ADS)

    Plaza-Faverola, Andreia; Buenz, Stefan; Vadakkepuliyambatta, Sunil; Mienert, Jurgen; Chand, Shyam; Johnson, Joel; Greinert, Jens

    2014-05-01

    Vestnesa is a ridge-like contour-current controlled sediment succession that lies above young oceanic crust created during the tectonic opening of Fram Strait. It is surrounded by the Molloy transform fault to the southwest, the Molloy deep to the north-west, the Knipovich oceanic ridge to the south-east, and the continental margin of Svalbard to the northeast. Although interrupted in places, a mostly continuous bottom simulating reflector (BSR), the seismic indicator for the base of the gas hydrate stability zone (GHSZ), extends for tens of kilometers from the crest of the ridge towards its northern and southern flanks. High-resolution P-Cable 2D seismic data show vertical fluid migration pathways, distributed in clusters along the 100 km long ridge, connecting the free gas system beneath the GHSZ through a 160-180 m thick hydrate stability zone to seabed pockmarks at the crest of the ridge. Among these clusters only those lying towards the easternmost end of the ridge have been documented to be periodically active in terms of present-day seafloor gas seepage. The methane release activity shows particularly well on 18 kHz echosounder data over a time period from 2008 to 2013. Gas hydrates have been recovered in shallow sediment cores (<6 mbsf) at the active seafloor seepage site. Gas analyses show heavier gases in addition to methane, as a hydrate-forming gas. Within the framework of CAGE - Center for Arctic Gas Hydrate, Environment and Climate, we are investigating the development of the plumbing systems of the Arctic Vestnesa Ridge in space and time domains. We compare the modeled base of the GHSZ for different gas compositions against the depth of the BSR in the region and discuss the elements of fluid migration systems that could explain observed lateral changes in BSR depths and the switching between active and inactive plumbing systems. The Centre of Excellence is funded by the Norwegian Research Council (grant No. 223259) over a period of ten years.

  15. SRTM Anaglyph: Wheeler Ridge, California

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Wheeler Ridge and vicinity, California, is a site of major tectonic activity, both historically and over recent geologic time. The epicenter of the 7.5 magnitude Kern County earthquake occurred here on July 21,1952, and numerous geologic and topographic features indicate rapid geologic processes. The ridge itself (upper-right center) is a geologic fold that is growing out of the southern San Joaquin Valley. A prominent 'wind gap,' now used for passage of the California aquaduct (with the aid of a pumping station), is evidence that the ridge grew faster than tranversing streams could erode down. Nearby abrupt and/or landslid mountain fronts similarly indicate a vigorous tectonic setting here, just north of the San Andreas fault. The Interstate 5 freeway can be seen crossing agricultural fields on the right and entering the very rugged and steep Grapevine Canyon toward the bottom.

    This anaglyph was generated by first draping a Landsat satellite image over a preliminary topographic map from the Shuttle Radar Topography Mission (SRTM), then generating two differing perspectives, one for each eye. When viewed through special glasses, the result is a vertically exaggerated view of the Earth's surface in its full three dimensions. Anaglyph glasses cover the left eye with a red filter and cover the right eye with a blue filter. Landsat has been providing visible and infrared views of the Earth since 1972. SRTM elevation data matches the 30 meter resolution of most Landsat images and will substantially help in analyses of the large and growing Landsat image archive.

    The elevation data used in this image was acquired by SRTM aboard the Space Shuttle Endeavour, launched on February 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect three-dimensional measurements of the Earth's surface. To collect

  16. Two new species of Munidopsis (Crustacea: Anomura: Munidopsidae) from the Kermadec and Louisville ridge systems off New Zealand.

    PubMed

    Schnabel, Kareen E; Ahyong, Shane T

    2015-01-01

    Two new species of Munidopsis are described from the wider New Zealand region. Munidopsis bamberi sp. nov. is described from the Havre Trough adjacent to the Kermadec Volcanic Arc north-east of the New Zealand continental shelf, and is named in honour of Roger Bamber for his contributions to arthropod taxonomy and systematics. The second species is M. sculpo sp. nov. from Forde Seamount on the Louisville Ridge east of New Zealand. This brings the number of Munidopsis species known in New Zealand waters to 17 and a key to the New Zealand species is provided. PMID:26250316

  17. The structure of mid-ocean ridges

    NASA Technical Reports Server (NTRS)

    Solomon, Sean C.; Toomey, Douglas R.

    1992-01-01

    Recent research results on the structure of midocean ridges are reviewed. The new view of ridge-axis crustal structure obtained from high-resolution seismology is reviewed, emphasizing the variation of that structure with spreading rate and along-axis at a given spreading rate. Recent results on upper mantle structure beneath ridges are examined, including variations with seafloor age, indications from anisotropy for directions of mantle flow, and long-wavelength along-axis variations in structure and their implications for lateral heterogeneity in mantle temperature and composition.

  18. Controls on melting at spreading ridges from correlated abyssal peridotite - mid-ocean ridge basalt compositions

    NASA Astrophysics Data System (ADS)

    Regelous, Marcel; Weinzierl, Christoph G.; Haase, Karsten M.

    2016-09-01

    Variations in the volume and major element composition of basalt erupted along the global mid-ocean ridge system have been attributed to differences in mantle potential temperature, mantle composition, or plate spreading rate and lithosphere thickness. Abyssal peridotites, the residues of mantle melting beneath mid-ocean ridges, provide additional information on the melting process, which could be used to test these hypotheses. We compiled a global database of abyssal peridotite compositions averaged over the same ridge segments defined by Gale et al. (2013). In addition, we calculated the distance of each ridge segment to the nearest hotspots. We show that Cr# in spinel in abyssal peridotites is negatively correlated with Na90 in basalts from the same ridge segments on a global scale. Ridge segments that erupt basalts apparently produced by larger degrees of mantle melting are thus underlain by peridotites from which large amounts of melt have been extracted. We find that near-ridge hotspots have a more widespread influence on mid-ocean ridge basalt (MORB) composition and ridge depth than previously thought. However, when these hotspot-influenced ridge segments are excluded, the remaining segments show clear relationships between MORB composition, peridotite composition, and ridge depth with spreading rate. Very slow-spreading ridges (<20 mm/yr) are deeper, erupt basalts with higher Na90, Al90, K90/Ti90, and lower Fe90, Ca90/Al90, and expose peridotites with lower Cr# than intermediate and fast-spreading ridges. We show that away from hotspots, the spreading-rate dependence of the maximum degree of mantle melting inferred from Cr# in peridotites (FM) and the bulk degree of melting inferred from Na90 in basalts (FB) from the same ridge segments is unlikely to be due to variations in mantle composition. Nor can the effects of dynamic mantle upwelling or incomplete melt extraction at low spreading rates satisfactorily explain the observed compositions of abyssal

  19. Curie-point depths estimated from fractal spectral analyses of magnetic anomalies in the western United States and northeast Pacific Oecan

    NASA Astrophysics Data System (ADS)

    Wang, J.; Li, C.

    2011-12-01

    We estimate Curie-point depths (Zb) of the western United States and northeast Pacific Ocean by analyzing radially averaged amplitude spectra of magnetic anomalies based on a fractal magnetization model. The amplitude spectrum of source magnetization is proportional to the wavenumber (k) raised to a fractal exponent (-β). We first test whether long-wavelength components are captured appropriately by using variable overlapping windows ranging in sizes from 75 × 75 km2 to 200 × 200 km2. For each sliding window, the amplitude spectrum is pre-multiplied with the factor k-β prior to computation. We then use the centroid method (Tanaka et al., 1999) to calculate Zb. We find that when the window size approaches 200 × 200 km2 the resolution of estimated Zb is too low to reveal important geological features. For our study, fractal exponents larger than 0.6 will result in overcorrection. Considering the difficulty of simultaneous inversion of the depths to the top and centroid of magnetic sources (Zt and Z0 respectively) and β, we fix β = 0.5 for the whole study area. Note that β here is defined for amplitude spectrum, which is equivalent to 1 for power spectrum of 2D magnetic sources. Our results show that the estimated Curie depths range from 4 km to 40 km. The average Zb in the northern part of the northeast Pacific Ocean is about 14 km below the sea level, and almost the same depths are found in the junction of the active and ancient Cascade arcs and remanent track of Yellowstone hotspot. Subduction beneath the North American plate and consequent magmatism can account for small Zb in the above mentioned volcanic arc regions. The Mendocino Triple Junction separates the northeast Pacific into northern (mainly consisting of the Explorer, Juan de Fuca and Gorda plates) and southern parts. Both the Zb and the thickness of magnetic layer in the southern part are larger than those in the northern part. This contrast is due to the fact that the Pacific plate to the south

  20. Periodic bedrock ridges on Mars

    NASA Astrophysics Data System (ADS)

    Montgomery, David R.; Bandfield, Joshua L.; Becker, Scott K.

    2012-03-01

    Evidence for sediment transport and erosion by wind is widespread over the surface of Mars today and was likely a major geomorphic process for much of its geological past. Although Martian surface features resembling aeolian dunes and ripples have been recognized since the Mariner and Viking missions, such features have been interpreted previously as active, indurated, or exhumed sedimentary forms. Here we report evidence based on High Resolution Imaging Science Experiment images that show some megaripple forms are eroded into cohesive substrate rather than being composed of loose granular material or fossilized dunes. Exposure of stratigraphic continuity within layered, cohesive material extending crest to trough through features with mean wavelengths of 18 to 51 m demonstrates the primarily erosional formation of what we term periodic bedrock ridges (PBRs). Hence some surfaces on Mars previously considered to be covered by wind-deposited material are actually wind-carved exposures that offer windows into Martian history. PBRs lack the distinctive streamlining associated with wind-parallel yardangs and comparison of PBR orientation to yardangs, megayardangs, and active sedimentary dunes in the same vicinity confirm that these PBRs formed transverse to prevailing winds. Observed wavelengths of PBRs are comparable to those predicted by a simple model for erosional wavelengths of periodic transverse bed forms owing to the spacing of flow separations within the flow. Recognition of these transverse aeolian erosional forms brings up the question of how widespread Martian PBRs are and how many have been misinterpreted as active or indurated (fossilized) sedimentary dunes.

  1. DETAIL VIEW OF SOUTH FRONT DOORS, FACING NORTHEAST. Douglas ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL VIEW OF SOUTH FRONT DOORS, FACING NORTHEAST. - Douglas Aircraft Company Long Beach Plant, Aircraft Wing & Fuselage Assembly Building, 3855 Lakewood Boulevard, Long Beach, Los Angeles County, CA

  2. Perspective view from northeast of convalescent pavilion ("A"). National ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Perspective view from northeast of convalescent pavilion ("A"). - National Home for Disabled Volunteer Soldiers, Northwestern Branch, Hospital, 5000 West National Avenue, Milwaukee, Milwaukee County, WI

  3. 3. MAGAZINE P STAIRWAY ENCLOSURE, LOOKING NORTHEAST. NIKE Missile ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. MAGAZINE P STAIRWAY ENCLOSURE, LOOKING NORTHEAST. - NIKE Missile Base C-84, Underground Storage Magazines & Launcher-Loader Assemblies, Easternmost portion of launch area, Barrington, Cook County, IL

  4. 21. Historic American Buildings Survey Stanley Schwartz, Photographer 1971 NORTHEAST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. Historic American Buildings Survey Stanley Schwartz, Photographer 1971 NORTHEAST VIEW OF EXAMINING ROOM, DOCTOR'S OFFICE - Governor John Hubbard House, 52 Winthrop Street, Hallowell, Kennebec County, ME

  5. Perspective view of east entrance from northeast National Home ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Perspective view of east entrance from northeast - National Home for Disabled Volunteer Soldiers, Pacific Branch, Mental Health Building, 11301 Wilshire Boulevard, West Los Angeles, Los Angeles County, CA

  6. View of exterior circumferential path at northeast side of building ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of exterior circumferential path at northeast side of building beneath trellis, looking southeast - National Zoological Park, Bird House, 3001 Connecticut Avenue NW, Washington, District of Columbia, DC

  7. 10. VIEW, LOOKING NORTHEAST, OF MAIN LOBBY, FIRST FLOOR, SHOWING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. VIEW, LOOKING NORTHEAST, OF MAIN LOBBY, FIRST FLOOR, SHOWING PORTALS TO NEW LOBBY - Pennsylvania Railroad, Harrisburg Station & Trainshed, Market & South Fourth Streets, Harrisburg, Dauphin County, PA

  8. 2. VIEW SOUTH SHOWING NORTHEAST ELEVATION; BRICK CORBELLING, BUTTRESSES AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. VIEW SOUTH SHOWING NORTHEAST ELEVATION; BRICK CORBELLING, BUTTRESSES AND ART DECO STAINED GLASS - Poletown Historic District, St. Michael's Greek Catholic Church, 2390 East Grand Boulevard, Detroit, MI

  9. Looking Northeast Along Hallway between Pellet Plant and Oxide Building, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Looking Northeast Along Hallway between Pellet Plant and Oxide Building, including Virgin Hopper Bins - Hematite Fuel Fabrication Facility, Pellet Plant, 3300 State Road P, Festus, Jefferson County, MO

  10. Perspective view of second floor landing from northeast National ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Perspective view of second floor landing from northeast - National Home for Disabled Volunteer Soldiers, Danville Branch, Directors' House, 1900 and 2000 East Main Street , Danville, Vermilion County, IL

  11. 6. Northeast elevation of single bin. Delaware, Lackawanna & ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. Northeast elevation of single bin. - Delaware, Lackawanna & Western Railroad, Scranton Yards, Scrap Platform, 350 feet South of South Washington Avenue & River Street, Scranton, Lackawanna County, PA

  12. 4. Perspective view of platform, looking northeast. Delaware, Lackawanna ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. Perspective view of platform, looking northeast. - Delaware, Lackawanna & Western Railroad, Scranton Yards, Scrap Platform, 350 feet South of South Washington Avenue & River Street, Scranton, Lackawanna County, PA

  13. 2. View northeast. South elevation Westminster span, link span, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. View northeast. South elevation - Westminster span, link span, Walpole span. - Walpole-Westminster Bridge, Spanning Connecticut River between Walpole, NH & Westminster, VT, Walpole, Cheshire County, NH

  14. 11. VIEW NORTHEAST, DETAIL OF BRIDGE BEARING AT SOUTHEAST CORNER, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. VIEW NORTHEAST, DETAIL OF BRIDGE BEARING AT SOUTHEAST CORNER, SHOWING WELDED REINFORCEMENT - Perkins Corner Bridge, Spanning Willimantic River at Flanders & Cider Mill Roads, Coventry, Tolland County, CT

  15. View of main facade (southwest side), camera facing northeast ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of main facade (southwest side), camera facing northeast - Golden Gate International Exposition, Hall of Transportation, 440 California Avenue, Treasure Island, San Francisco, San Francisco County, CA

  16. EAGLE CREEK BRIDGE, WEST ELEVATION LOOKING 55 DEGREES NORTHEAST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    EAGLE CREEK BRIDGE, WEST ELEVATION LOOKING 55 DEGREES NORTHEAST - Historic Columbia River Highway, Eagle Creek Bridge, Spanning Eagle Creek on Historic Columbia River Highway, Troutdale, Multnomah County, OR

  17. VIEW OF CENTRAL INTERIOR SPACE, FACING NORTHEAST. Douglas Aircraft ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF CENTRAL INTERIOR SPACE, FACING NORTHEAST. - Douglas Aircraft Company Long Beach Plant, Aircraft Parts Shipping & Receiving Building, 3855 Lakewood Boulevard, Long Beach, Los Angeles County, CA

  18. View of south elevation; camera facing northeast. Mare Island ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of south elevation; camera facing northeast. - Mare Island Naval Shipyard, Hospital Headquarters, Johnson Lane, west side at intersection of Johnson Lane & Cossey Street, Vallejo, Solano County, CA

  19. 36. TURBINE HALL, NEW TURBO GENERATOR, LOOKING NORTHEAST Philadelphia ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    36. TURBINE HALL, NEW TURBO GENERATOR, LOOKING NORTHEAST - Philadelphia Electric Company, Richmond Power Station, Southeast end of Lewis Street along Delaware River, Philadelphia, Philadelphia County, PA

  20. Northeast and northwest elevations. View to south Flint Creek ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Northeast and northwest elevations. View to south - Flint Creek Hydroelectric Project, Powerhouse, Approximately 3 miles southeast of Porters Corner on Powerhouse Road, Philipsburg, Granite County, MT

  1. 1. Aerial view, looking northeast up Newark Bay, showing entire ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Aerial view, looking northeast up Newark Bay, showing entire island Charles Wisniewski, photographer, January 1985 - Shooters Island, Ships Graveyard, Newark Bay, Staten Island (subdivision), Richmond County, NY

  2. OVERHILLS GOLF COURSE LOOKING NORTHEAST FROM SPECTATOR SHELTER BACK UP ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    OVERHILLS GOLF COURSE LOOKING NORTHEAST FROM SPECTATOR SHELTER BACK UP FAIRWAY #1 - Overhills, Fort Bragg Military Reservation, Approximately 15 miles NW of Fayetteville, Overhills, Harnett County, NC

  3. Elevation of grove looking northeast toward Washington Monument 1910 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Elevation of grove looking northeast toward Washington Monument - 1910 Japanese Flowering Cherry Trees , East Potomac Golf Course, East Potomac Park, Hains Point vicinity, Washington, District of Columbia, DC

  4. OBLIQUE VIEW, REAR ELEVATION, LOOKING NORTHEAST Mountain Home Air ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    OBLIQUE VIEW, REAR ELEVATION, LOOKING NORTHEAST - Mountain Home Air Force Base 1958 Senior Officers' Housing, General's Residence, Rabeni Street (originally Ivy Street), Mountain Home, Elmore County, ID

  5. Underside from northeast. Waterville Bridge, Spanning Swatara Creek at ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Underside from northeast. - Waterville Bridge, Spanning Swatara Creek at Appalachian Trail (moved from Little Pine Creek at State Route 44, Waterville, Lycoming County), Green Point, Lebanon County, PA

  6. VIEW OF WEST ELEVATION: CAMERA FACING NORTHEAST Mare Island ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF WEST ELEVATION: CAMERA FACING NORTHEAST - Mare Island Naval Shipyard, Transportation Building & Gas Station, Third Street, south side between Walnut Avenue & Cedar Avenue, Vallejo, Solano County, CA

  7. Magnetic Anomaly Amplitudes on the Gakkel Ridge: Indicators of Ridge Variability

    NASA Astrophysics Data System (ADS)

    Childers, V. A.; Lawver, L. A.; Brozena, J. M.

    2002-12-01

    For most of its length, the Gakkel Ridge in the Arctic Ocean's Eurasia Basin is characterized by a discontinuous magnetic signature with regions of missing or low-amplitude central anomalies punctuated by short, high-amplitude segments. The ridge segment in between the Morris Jesup Rise and the Yermak Plateau has an unusually large amplitude central magnetic anomaly that is more than four times the amplitude of the flanking anomalies. This ridge segment is straight, without large offsets, for about 150 km. The difference in character between the central anomaly in this segment and the rest of Gakkel Ridge is striking. The western half of the Gakkel Ridge and the Eurasia Basin were surveyed in 1998-99 by a Naval Research Laboratory aerogeophysical campaign that measured magnetics, gravity, and sea-surface topography. The new magnetic data densify the historical US Navy aeromagnetic data and improve the resolution of the magnetic anomaly field in this region. This new field highlights the variability of the Gakkel Ridge over time, showing regions of strong anomalies that are continuous along strike and anomalies that fade away or become discontinuous. In particular, anomalies 15y to 21o show regions of high amplitudes on both sides of the ridge for varying distances along strike. We suggest that these high-amplitude segments were formed at times when the Gakkel Ridge at this location had a high-amplitude central magnetic anomaly like the present day high-amplitude segment or the shorter ones distributed along the ridge. The higher central anomaly amplitudes may be associated with variations in geochemistry and/or melt delivery along the ridge. Recent dredging of zero-aged crust along the Gakkel Ridge showed a good but not perfect correlation of high-amplitude central anomalies and basalt recovery (P. Michael, personal communication). This magnetic data set in conjunction with future dredging provides an opportunity to constrain past ridge variability.

  8. Seismic structure and crustal accretion along an intermediate-rate mid-ocean ridge segment

    NASA Astrophysics Data System (ADS)

    Weekly, Robert Todd

    Epicenters and magnitudes for 36,523 earthquakes recorded along the Endeavour segment between August 2003 and October 2006 are automatically determined using a local ocean-bottom seismometer (OBS) network. The catalog is dominated by two swarm sequences in January and February 2005 in the vicinity of the Endeavour overlapping spreading center, which included earthquakes in West Valley, the northern portion of the Endeavour segment, southwest Endeavour Valley and the Endeavour vent fields. These swarms are attributed to volcanism including a dike intrusion on the northern Endeavour in February 2005 and smaller diking events on the propagating tip of the West Valley segment in both swarms. The dike on the northern Endeavour propagated to the south, which is inconsistent with magma sourced from the axial magma chamber beneath the elevated central portion of the segment. Following the swarms, seismic activity on the Endeavour segment decreased on average to ˜15% of pre-swarm values and almost ceased at the segment ends. I infer that a six-year non-eruptive event that started with a swarm in 1999 and finished with the 2005 swarms ruptured the entire segment and relieved plate-spreading stresses. The inferred coupling between the 1999 and 2005 events, the observation of extensive precursory activity prior to the 2005 swarms, and the interaction between seismically active regions during the swarms is consistent with static triggering with delays influenced by viscoelastic relaxation, hydraulic diffusion and magma withdrawal and replenishment. The isotropic and anisotropic P-wave velocity structure of the upper oceanic crust on the Endeavour Segment of the Juan de Fuca Ridge is studied using refracted travel time data collected by an active-source, three-dimensional tomography experiment. The isotropic velocity structure is characterized by low crustal velocities in the overlapping spreading centers (OSCs) at the ends of the segment. These low velocities are indicative of

  9. Lava Flow Ages and Geologic Mapping on Mid-ocean Ridges

    NASA Astrophysics Data System (ADS)

    Clague, D. A.; Paduan, J. B.; Dreyer, B. M.; Caress, D. W.

    2010-12-01

    Geologic mapping of mid-ocean ridges has been hindered by a lack of high-resolution bathymetry and age data. Autonomous underwater vehicles (AUV) with multibeam sonars now produce maps with 1-m resolution. MBARI has collected data since 2006 along the Juan de Fuca and Gorda Ridges, including the 1998 eruptions in summit caldera and upper south rift zone on Axial Seamount, the 1993 and 1982-1991 eruptions on the CoAxial segment, the 1986 pillow mounds and “young sheet flow” on the north Cleft segment, the 1996 eruption on the North Gorda segment, and part of the Endeavour Ridge. The 1-m data allows identification of flow internal structure, boundaries, and emplacement sequences using superposition and abundance of fissures. Geologic maps of young volcanoes on land are constructed using the same principles, constrained by observations of flow contacts and 14C age dates on charcoal from beneath flow margins. In the deep sea, we collect sediment on top of the flows that contains planktic and benthic foraminifera that can be dated using AMS 14C dating. We sampled sediment on flows from the Axial, CoAxial, and North Cleft areas using 30-cm long pushcores deployed from remotely operated vehicles (ROVs). The coring is done with collection of flow samples for chemistry and video observations to confirm contact locations and flow superposition. Cores are inserted until they hit the underlying lava and can be recovered between pillow lobes when the sediment is >~10 cm thick. We recover the basal 1 cm of sediment, sieve to recover foraminifera, and hand-pick for 14C dating. The North Gorda neovolcanic zone at ~3150 m lacks carbonate sediment and therefore ages. Ages of planktic foraminifera are marine calibrated in years before present (aBP). Benthic foraminifera are calibrated against planktic foraminifera from 5 samples. 14C ages obtained from basal sediment from over 40 sites represent minimum ages as there is probably a small amount of unrecovered basal sediment. Ages

  10. Dark and Bright Ridges on Europa

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This high-resolution image of Jupiter's moon Europa, taken by NASA's Galileo spacecraft camera, shows dark, relatively smooth region at the lower right hand corner of the image which may be a place where warm ice has welled up from below. The region is approximately 30 square kilometers in area. An isolated bright hill stands within it. The image also shows two prominent ridges which have different characteristics; youngest ridge runs from left to top right and is about 5 kilometers in width (about 3.1 miles). The ridge has two bright, raised rims and a central valley. The rims of the ridge are rough in texture. The inner and outer walls show bright and dark debris streaming downslope, some of it forming broad fans. This ridge overlies and therefore must be younger than a second ridge running from top to bottom on the left side of the image. This dark 2 km wide ridge is relatively flat, and has smaller-scale ridges and troughs along its length.

    North is to the top of the picture, and the sun illuminates the surface from the upper left. This image, centered at approximately 14 degrees south latitude and 194 degrees west longitude, covers an area approximately 15 kilometers by 20 kilometers (9 miles by 12 miles). The resolution is 26 meters (85 feet) per picture element. This image was taken on December 16, 1997 at a range of 1300 kilometers (800 miles) by Galileo's solid state imaging system.

    The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://www.jpl.nasa.gov/ galileo.

  11. Diffraction of sound by a smooth ridge

    NASA Technical Reports Server (NTRS)

    Berthelot, Yves H.; Pierce, Allan D.; Kearns, James A.; Main, Geoffrey L.

    1987-01-01

    The propagation of sound over uneven terrain and irregular topography is considered. Laboratory scale experiments were conducted on a 4.88 x 2.44 m plywood bench top with a cylindrical ridge whose radius of curvature is about 2.5 m. Experimental results include the insertion loss on the diffracting surface, and in the penumbra region, at several distances from the apex of the ridge.

  12. The cretaceous opening of the Northeast Atlantic

    NASA Astrophysics Data System (ADS)

    Hanisch, J.

    1984-01-01

    A continuous rift system from the Rockall Trough through the Faeroe-Shetland Channel, and the Møre and Vøring basins up to the Tromsø and Bear Island basins is inferred to have developed during the Cretaceous. Oceanic crust was generated in its southern part but its width presumably decreases toward the northeast and probably ends in the Møre Basin. This rift/spreading system requires a clockwise rotation of Greenland and the Rockall Plateau during the Cretaceous around a rotation pole at its northern end at about 74°N 21°E. North of the pole of rotation crustal shortening must have occurred. This compression is interpreted to have taken place on West Spitsbergen. The orogeny there is reinterpreted as (1) a Cretaceous folding phase, (2) a phase of overthrusting at the Paleocene-Eocene boundary, and (3) an extensional faulting phase during the Oligocene. This plate-tectonic model can resolve a series of problems in the Northeast Atlantic region: the connection of the Caledonian fronts of Scotland and Greenland can be easily established. The northern ends of the West Shetland Basin and the North Sea graben; the unusual depth of the Møre and Vøring basins; the marked obliqueness of structural trends between the Northeast Greenland shelf and the Norwegian shelf; the fact that the western Hammerfest Basin was intersected by a younger north-south trending graben which formed the deep Tromsø Basin—all these enigmatic observations can be explained by the Cretaceous rift system.

  13. Assessing the clarity of friction ridge impressions.

    PubMed

    Hicklin, R Austin; Buscaglia, JoAnn; Roberts, Maria Antonia

    2013-03-10

    The ability of friction ridge examiners to correctly discern and make use of the ridges and associated features in finger or palm impressions is limited by clarity. The clarity of an impression relates to the examiner's confidence that the presence, absence, and attributes of features can be correctly discerned. Despite the importance of clarity in the examination process, there have not previously been standard methods for assessing clarity in friction ridge impressions. We introduce a process for annotation, analysis, and interchange of friction ridge clarity information that can be applied to latent or exemplar impressions. This paper: (1) describes a method for evaluating the clarity of friction ridge impressions by using color-coded annotations that can be used by examiners or automated systems; (2) discusses algorithms for overall clarity metrics based on manual or automated clarity annotation; and (3) defines a method of quantifying the correspondence of clarity when comparing a pair of friction ridge images, based on clarity annotation and resulting metrics. Different uses of this approach include examiner interchange of data, quality assurance, metrics, and as an aid in automated fingerprint matching. PMID:23313600

  14. Oak Ridge Reservation environmental report for 1989

    SciTech Connect

    Jacobs, V.A.; Wilson, A.R.

    1990-10-01

    This two-volume report, the Oak Ridge Reservation Environmental Report for 1989, is the nineteenth in an annual series that began in 1971. It reports the results of a comprehensive, year-round program to monitor the impact of operations at the three major US Department of Energy (DOE) production and research installations in Oak Ridge on the immediate areas' and surrounding region's groundwater and surface waters, soil, air quality, vegetation and wildlife, and through these multiple and varied pathways, the resident human population. Information is presented for the environmental monitoring Quality Assurance (QA) Program, audits and reviews, waste management activities, land special environmental studies. Data are included for the Oak Ridge Y-12 Plant, Oak Ridge National Laboratory (ORNL), and Oak Ridge Gaseous Diffusion Plant (ORGDP). Volume 1 presents narratives, summaries, and conclusions based on environmental monitoring at the three DOE installations and in the surrounding environs during calendar year (CY) 1989. Volume 1 is intended to be a stand-alone'' report about the Oak Ridge Reservation (ORR) for the reader who does not want an in-depth review of 1989 data. Volume 2 presents the detailed data from which these conclusions have been drawn and should be used in conjunction with Volume 1.

  15. Molecular characterization of bromeliads from northeast Brazil.

    PubMed

    Vieira, S D; Rabbani, A R C; Santos, F; Silva-Mann, R; Arrigoni-Blank, M F; Prata, A P N; Resende, L V; Pasqual, M; Blank, A F

    2014-01-01

    Bromeliaceae is an important botany family that includes many species with economic value; demand for members of this family is increasing. However, illegal collection frequently occurs, drastically reducing the species populations; thus, it is necessary to collect and store Bromeliaceae genetic material. In this study, we identified and quantified genetic variability of the Bromeliad family using dominant markers to create the first Germplasm Bank in the northeast region of Brazil. Molecular tools were used to characterize the collected accessions. The combination of 11 inter-simple sequence repeats and 13 random amplified polymorphic DNA markers were used to detect the genetic variability of wild bromeliad accessions. PMID:25501194

  16. Distribution of mega fauna on sulfide edifices on the Eastern Lau Spreading Center and Valu Fa Ridge

    NASA Astrophysics Data System (ADS)

    Sen, Arunima; Becker, Erin L.; Podowski, Elizabeth L.; Wickes, Leslie N.; Ma, Shufen; Mullaugh, Katherine M.; Hourdez, Stéphane; Luther, George W.; Fisher, Charles R.

    2013-02-01

    Hydrothermal vent sulfide edifices contain some of the most extreme thermal and chemical conditions in which animals are able to live. As a result, sulfide edifices in the East Pacific Rise, Juan de Fuca Ridge, and Mid Atlantic Ridge vent systems often contain distinct faunal assemblages. In this study, we used high-resolution imagery and in-situ physico-chemical measurements within the context of a Geographic Information System (GIS) to examine community structure and niche differentiation of dominant fauna on sulfide edifices in the Eastern Lau Spreading Center (ELSC) and Valu Fa Ridge (VFR) in the Western Pacific Ocean. Our results show that ELSC and VFR sulfide edifices host two distinct types of communities. One type, that covers the majority of sulfide edifice faces, is overall very similar to nearby lava communities and biomass is dominated by the same chemoautotrophic symbiont-containing molluscs that dominate lava communities, namely the provannid gastropods Alviniconcha spp. and Ifremeria nautilei and the mytilid bivalve Bathymodiolus brevior. The spatial distribution of the dominant molluscs is often a variation of the pattern of concentric rings observed on lavas, with Alviniconcha spp. at the tops of edifices where exposure to vent flow is the highest, and I. nautilei and B. brevior below. Our physico-chemical measurements indicate that because of rapid dispersion of vent fluid, habitable area for symbiont-containing fauna is quite limited on sulfide edifices, and the realized niches of the mollusc groups are narrower on sulfide edifices than on lavas. We suggest that competition plays an important role in determining the realized distributions of the mollusc groups on edifices. The other habitat, present in small patches of presumably hot, new anhydrite, is avoided by the dominant symbiont-containing molluscs and inhabited by crabs, shrimp and polynoids that are likely more heat tolerant. The ratio of sulfide concentration to temperature anomaly of

  17. Results from a 14-month hydroacoustic monitoring of the three mid-oceanic ridges in the Indian Ocean

    NASA Astrophysics Data System (ADS)

    Royer, J.-Y.; Dziak, R. P.; Delatre, M.; Chateau, R.; Brachet, C.; Haxel, J. H.; Matsumoto, H.; Goslin, J.; Brandon, V.; Bohnenstielh, D. R.

    2009-04-01

    From October 2006 to January 2008, an hydroacoustic experiment in the Indian Ocean was carried out by the CNRS/University of Brest and NOAA/Oregon State University to monitor the low-level seismic activity associated with the three contrasting spreading ridges and deforming zones in the Indian Ocean. Three autonomous hydrophones were moored in the SOFAR channel by R/V Marion Dufresne for 14 months in the Madagascar Basin, and northeast and southwest of Amsterdam Island, complementing the two permanent hydroacoustic stations of the Comprehensive nuclear-Test-Ban Treaty Organization (CTBTO) located near Diego Garcia Island and off Cape Leeuwin. The three instruments successfully collected 14 month of continuous acoustic records. Combined with the records from the permanent stations, the array detected 1780 acoustic events consisting mostly of earthquake generated T-waves, but also of iceberg tremors from Wilkes Land, Antarctica. Within the triangle defined by the temporary array, the three ridges exhibit contrasting seismicity patterns. Along the Southeast Indian ridge (SEIR), the 272 acoustic events (vs 24 events in the NEIC catalog) occur predominantly along the transform faults ; only one ridge segment (76˚E) displays a continuous activity for 10 months. Along the Central Indian Ridge (CIR), seismicity is distributed along fracture zones and ridge segments (269 events vs 45 NEIC events), with two clusters of events near the triple junction (24-25S) and south of Marie-Celeste FZ (18.5S). Along the Southwest Indian Ridge (SWIR), the 222 events (vs 31 NEIC events) are distributed along the ridge segments with a larger number of events west of Melville FZ and a cluster at 58E. The immediate vicinity of the Rodrigues triple junction shows periods of quiescence and of intense activity. Some large earthquakes (Mb>5) near the triple junction (SEIR and CIR) seem to be preceded by several acoustic events that may be precursors. Finally, off-ridge seismicity is mostly

  18. Potential for Large Transpressional Earthquakes along the Santa Cruz-Catalina Ridge, California Continental Borderland

    NASA Astrophysics Data System (ADS)

    Legg, M.; Kohler, M. D.; Weeraratne, D. S.; Castillo, C. M.

    2015-12-01

    Transpressional fault systems comprise networks of high-angle strike-slip and more gently-dipping oblique-slip faults. Large oblique-slip earthquakes may involve complex ruptures of multiple faults with both strike-slip and dip-slip. Geophysical data including high-resolution multibeam bathymetry maps, multichannel seismic reflection (MCS) profiles, and relocated seismicity catalogs enable detailed mapping of the 3-D structure of seismogenic fault systems offshore in the California Continental Borderland. Seafloor morphology along the San Clemente fault system displays numerous features associated with active strike-slip faulting including scarps, linear ridges and valleys, and offset channels. Detailed maps of the seafloor faulting have been produced along more than 400 km of the fault zone. Interpretation of fault geometry has been extended to shallow crustal depths using 2-D MCS profiles and to seismogenic depths using catalogs of relocated southern California seismicity. We examine the 3-D fault character along the transpressional Santa Cruz-Catalina Ridge (SCCR) section of the fault system to investigate the potential for large earthquakes involving multi-fault ruptures. The 1981 Santa Barbara Island (M6.0) earthquake was a right-slip event on a vertical fault zone along the northeast flank of the SCCR. Aftershock hypocenters define at least three sub-parallel high-angle fault surfaces that lie beneath a hillside valley. Mainshock rupture for this moderate earthquake appears to have been bilateral, initiating at a small discontinuity in the fault geometry (~5-km pressure ridge) near Kidney Bank. The rupture terminated to the southeast at a significant releasing step-over or bend and to the northeast within a small (~10-km) restraining bend. An aftershock cluster occurred beyond the southeast asperity along the East San Clemente fault. Active transpression is manifest by reverse-slip earthquakes located in the region adjacent to the principal displacement zone

  19. Northeast Oregon Hatchery Project, Final Siting Report.

    SciTech Connect

    Watson, Montgomery

    1995-03-01

    This report presents the results of site analysis for the Bonneville Power Administration Northeast Oregon Hatchery Project. The purpose of this project is to provide engineering services for the siting and conceptual design of hatchery facilities for the Bonneville Power Administration. The hatchery project consists of artificial production facilities for salmon and steelhead to enhance production in three adjacent tributaries to the Columbia River in northeast Oregon: the Grande Ronde, Walla Walla, and Imnaha River drainage basins. Facilities identified in the master plan include adult capture and holding facilities; spawning incubation, and early rearing facilities; full-term rearing facilities; and direct release or acclimation facilities. The evaluation includes consideration of a main production facility for one or more of the basins or several smaller satellite production facilities to be located within major subbasins. The historic and current distribution of spring and fall chinook salmon and steelhead was summarized for the Columbia River tributaries. Current and future production and release objectives were reviewed. Among the three tributaries, forty seven sites were evaluated and compared to facility requirements for water and space. Site screening was conducted to identify the sites with the most potential for facility development. Alternative sites were selected for conceptual design of each facility type. A proposed program for adult holding facilities, final rearing/acclimation, and direct release facilities was developed.

  20. NASA Northeast Regional Technology Transfer Center

    NASA Technical Reports Server (NTRS)

    Dunn, James P.

    2001-01-01

    This report is a summary of the primary activities and metrics for the NASA Northeast Regional Technology Transfer Center, operated by the Center for Technology Commercialization, Inc. (CTC). This report covers the contract period January 1, 2000 - March 31, 2001. This report includes a summary of the overall CTC Metrics, a summary of the Major Outreach Events, an overview of the NASA Business Outreach Program, a summary of the Activities and Results of the Technology into the Zone program, and a Summary of the Major Activities and Initiatives performed by CTC in supporting this contract. Between January 1, 2000 and March 31, 2001, CTC has facilitated 10 license agreements, established 35 partnerships, provided assistance 517 times to companies, and performed 593 outreach activities including participation in 57 outreach events. CTC also assisted Goddard in executing a successful 'Technology into the Zone' program.' CTC is pleased to have performed this contract, and looks forward to continue providing their specialized services in support of the new 5 year RTTC Contract for the Northeast region.

  1. Physiography of eastern Mendocino Ridge, NE Pacific

    NASA Astrophysics Data System (ADS)

    Gardner, J. V.; Malik, M. A.; Verplank, N. S.

    2009-12-01

    The bathymetry of the eastern 850 km of Mendocino Ridge (MR) was mapped using NOAA Ship Okeanos Explorer’s Kongsberg EM302 multibeam as part of mapping trials to support the University of New Hampshire’s U.S. Law of the Sea mapping program. The ridge was mapped from the margin to ~500 km west of the intersection of the ridge with Gorda Ridge (GR) at a spatial resolution of 40 m/sounding. The mapped section can be subdivided into two morphologic styles. East of the GR intersection, along the transform fault, MR is a single 4-18 km wide ridge with summit depths of 1200 to 1700 m deep with slopes of 10-40°. West of the intersection, along the fracture zone, MR has summit depths of >2100 m deep. A series of drag folds formed by basement ridges west of GR and north of the fracture zone reflects the differential spreading rates of GR. The almost 90° bend in the drag folds is often accompanied by large volcanic fields with summit craters in many volcanoes in water depths of 2 to 4 km. Beginning ~45 km west of GR intersection, MR evolves into a series of en echelon ridges striking 290°, some with slopes as steep as 55°. The change in morphology appears to be the effects of compression in the transform fault section between the Gorda Plate to the north and the Pacific Plate to the south, whereas extension is evident in the fracture zone section of the ridge. Mendocino Channel immediately to the north of the easternmost MR was mapped from the margin to ~105 km to the west before the channel relief was below the resolution of the multibeam system. The channel walls have as much as 50 m of relief with decreasing relief down channel. Mendocino Channel is bordered on the north by a large field of levees with bedforms and on the south by the 1200 m high wall of MR. Several large sediment failures have occurred in the levee field. The channel is straight for the first 40+ km with an average channel slope of 0.7° but suddenly begins to meander when the channel slope is <0

  2. The Cocos Ridge drives collision of Panama with northwestern South America

    NASA Astrophysics Data System (ADS)

    LaFemina, Peter; Govers, Rob; Mora-Paez, Hector; Geirsson, Halldor; Cmacho, Eduardo

    2015-04-01

    The collision of the Panamanian isthmus with northwestern South America is thought to have initiated as early as Oligocene - Miocene time (23-25 Ma) based on geologic and geophysical data and paleogeographic reconstructions. This collision was driven by eastward-directed subduction beneath northwestern South America. Cocos - Caribbean convergence along the Middle America Trench, and Nazca - Caribbean oblique convergence along the South Panama Deformed Belt have resulted in complex deformation of the southwestern Caribbean since Miocene - Pliocene time. Subduction and collision of the aseismic Cocos Ridge is thought to have initiated <3.5 Ma and has been linked to: 1) late Miocene-Pliocene cessation of volcanism and uplift of the Cordillera de Talamanca; 2) Quaternary migration of the volcanic arc toward the back-arc; 3) Quaternary to present deformation within the Central Costa Rica Deformed Belt; 4) Quaternary to present shortening across the fore-arc Fila Costeña fold and thrust belt and back-arc North Panama Deformed Belt (NPDB); 5) Quaternary to present outer fore-arc uplift of Nicoya Peninsula above the seamount domain, and the Osa and Burica peninsulas above the ridge; and 6) Pleistocene to present northwestward motion of the Central American Fore Arc (CAFA) and northeastward motion of the Panama Region. We investigate the geodynamic effects of Cocos Ridge collision on motion of the Panama Region with a new geodynamic model. The model is compared to a new 1993-2015 GPS-derived three-dimensional velocity field for the western Caribbean and northwestern South America. Specifically, we test the hypotheses that the Cocos Ridge is the main driver for upper plate deformation in the western Caribbean. Our models indicate that Cocos Ridge collision drives northwest-directed motion of the CAFA and the northeast-directed motion of the Panama Region. The Panama Region is driven into the Caribbean across the NPDB and into northwestern South America, which is also

  3. 2. View of blast deflector fences along northeast side of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. View of blast deflector fences along northeast side of the operational apron. View to northwest. - Offutt Air Force Base, Looking Glass Airborne Command Post, Blast Deflector Fences, Northeast & Southwest sides of Operational Apron, Project Looking Glass Historic District, Bellevue, Sarpy County, NE

  4. 3. NORTHEAST REAR, SHOWING CONCRETE ENCASEMENT FOR STAIRWAY LEADING FROM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. NORTHEAST REAR, SHOWING CONCRETE ENCASEMENT FOR STAIRWAY LEADING FROM INSTRUMENT ROOM TO UNDERGROUND FIRING CONTROL ROOM. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Firing Control Building, Test Area 1-100, northeast end of Test Area 1-100 Road, Boron, Kern County, CA

  5. 27. LOBBY, LOOKING NORTHEAST FROM SECOND FLOOR. THE STRUCTURE IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    27. LOBBY, LOOKING NORTHEAST FROM SECOND FLOOR. THE STRUCTURE IN UPPER LEFT HAND SIDE OF PHOTOGRAPH, A MUSICIANS' PLATFORM CALLED 'THE CROW'S NEST' WAS BUILT IN THE GABLE. - Old Faithful Inn, 900' northeast of Snowlodge & 1050' west of Old Faithful Lodge, Lake, Teton County, WY

  6. 17. Interior detail, pilaster on transverse wall at the northeast ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. Interior detail, pilaster on transverse wall at the northeast end of the Machine Shop, Roundhouse Machine Shop Extension, Southern Pacific Railroad Carlin Shops, view to northeast (90mm lens). Note the offset top of the pilaster, a feature common to all interior transverse wall pilasters. - Southern Pacific Railroad, Carlin Shops, Roundhouse Machine Shop Extension, Foot of Sixth Street, Carlin, Elko County, NV

  7. Cell block three and northeast guard tower (center), looking from ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Cell block three and northeast guard tower (center), looking from the central guard tower, facing northeast (note view also includes the baseball field (left), and cell blocks fourteen and eleven (right)) - Eastern State Penitentiary, 2125 Fairmount Avenue, Philadelphia, Philadelphia County, PA

  8. NORTHEAST LOON STUDY WORKING GROUP PARTNERSHIP TO ASSESS ENVIRONMENTAL RISK

    EPA Science Inventory

    The Northeast Loon Study Working Group (NELSWG) was formed in 1994 to proactively identify threats to one of the Northeast's most popular waterbirds, the common loon, Gavia immer. Seventeen institutions have come together to identify strategy, coordinate the work load, and share ...

  9. 5. VIEW OF FRONT (WEST AND SOUTH SIDES) TO NORTHEAST. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. VIEW OF FRONT (WEST AND SOUTH SIDES) TO NORTHEAST. VIEW TO NORTHEAST. NOTE THAT LARGE TREES PREVENT MORE COMPLETE VIEW FROM BETTER ANGLE. FOR MORE COMPLETE VIEW, SEE PHOTOGRAPHIC COPY OF 1916 PHOTO, NO. ID-17-C-35. - Boise Project, Boise Project Office, 214 Broadway, Boise, Ada County, ID

  10. 1. ROCKET ENGINE TEST STAND, LOCATED IN THE NORTHEAST ¼ ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. ROCKET ENGINE TEST STAND, LOCATED IN THE NORTHEAST ¼ OF THE X-15 ENGINE TEST COMPLEX. Looking northeast. - Edwards Air Force Base, X-15 Engine Test Complex, Rocket Engine & Complete X-15 Vehicle Test Stands, Rogers Dry Lake, east of runway between North Base & South Base, Boron, Kern County, CA

  11. 10. VIEW OF SUBMERGED DRIFT CHUTE IN NORTHEAST CORNER OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. VIEW OF SUBMERGED DRIFT CHUTE IN NORTHEAST CORNER OF UPPER GATE RECESS, LOOKING NORTHEAST. - Ohio Slack Water Dams, Lock & Dam No. 4, East bank of Ohio River at mile point 18.6, along State Route 65, Ambridge, Beaver County, PA

  12. 16. View of northeast corner of East Ward Street and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. View of northeast corner of East Ward Street and North McDonald Avenue, facing northeast. - Gaskin Avenue Neighborhood, Bounded by Dart Street to east, CSX Railroad to south, Pearl & Madison Avenues to west, & Wilson & Gordon Streets to north, Douglas, Coffee County, GA

  13. Credit BG. Northeast and northwest facades of Building 4496 (Security ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Credit BG. Northeast and northwest facades of Building 4496 (Security Facility) as seen when looking south (178°) from entrance to secured area. The Control Tower (Building 4500) appears in background. The Security Facility is part of the secured Building 4505 complex - Edwards Air Force Base, North Base, Security Facility, Northeast of A Street, Boron, Kern County, CA

  14. Understanding Philanthropic Motivations of Northeast State Community College Donors

    ERIC Educational Resources Information Center

    Cook, Heather J.

    2012-01-01

    At Northeast State Community College (NeSCC) nearly 70% of students need some form of financial aid to attend. State support is flattening or decreasing and the gap is filled by private donors' support (Northeast State Community College, 2011). Hundreds of donors have made significant contributions to aid in the education of those in the…

  15. View of parade ground inside fort looking to the northeast ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of parade ground inside fort looking to the northeast generally so that part of the north wall is visible as well as the first 8 bays of the northeast wall (note: cannon in foreground and shadow of flagpole above gorge wall) - Fort Pulaski, Cockspur Island, Savannah, Chatham County, GA

  16. 4. View to northwest showing southeast and northeast elevations of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. View to northwest showing southeast and northeast elevations of 1909 SE wing, with 1941 SE wing and porte-cochere (at left), and original front facade (northeast elevation) at right - Portsmouth Naval Hospital, Hospital Building, Rixey Place, bounded by Williamson Drive, Holcomb Road, & The Circle, Portsmouth, Portsmouth, VA

  17. 7 CFR 1001.2 - Northeast marketing area.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 9 2014-01-01 2013-01-01 true Northeast marketing area. 1001.2 Section 1001.2 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS AND ORDERS; MILK), DEPARTMENT OF AGRICULTURE MILK IN THE NORTHEAST MARKETING AREA Order...

  18. 7 CFR 1001.2 - Northeast marketing area.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 9 2011-01-01 2011-01-01 false Northeast marketing area. 1001.2 Section 1001.2 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements and Orders; Milk), DEPARTMENT OF AGRICULTURE MILK IN THE NORTHEAST MARKETING AREA Order...

  19. 7 CFR 1001.2 - Northeast marketing area.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 9 2012-01-01 2012-01-01 false Northeast marketing area. 1001.2 Section 1001.2 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements and Orders; Milk), DEPARTMENT OF AGRICULTURE MILK IN THE NORTHEAST MARKETING AREA Order...

  20. 7 CFR 1001.2 - Northeast marketing area.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 9 2010-01-01 2009-01-01 true Northeast marketing area. 1001.2 Section 1001.2 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements and Orders; Milk), DEPARTMENT OF AGRICULTURE MILK IN THE NORTHEAST MARKETING AREA Order...