Science.gov

Sample records for fuel bundle modeling

  1. Two-dimensional computational modeling of sodium boiling in simulated LMFBR fuel-pin bundles

    SciTech Connect

    Dearing, J.F.

    1981-01-01

    Extensive sodium boiling tests have been carried out in two simulated LMFBR fuel pin bundles in the Thermal-Hydraulic Out-of-Reactor Safety (THORS) Facility at Oak Ridge National Laboratory. Experimental results from a 19-pin bundle (THORS Bundle 6A) have been previously reported, and experimental results from a 61-pin bundle (THORS Bundle 9) will be reported soon. The results discussed here are from the 19-pin bundle. Preliminary analysis has shown that the computational methods used and conclusions reached are equally valid for the 61-pin bundle, as well as the 19-pin in-reactor Sodium Loop Safety Facility (SLSF) W-1 experiment. The main result of THORS sodium boiling experimentation is that boiling behavior is determined by two-dimensional effects, i.e., the rates of mass, momentum and energy transfer in the direction perpendicular to the axes of the fuel pins.

  2. Temperature Distributions in LMR Fuel Pin Bundles as Modeled by COBRA-IV-I

    NASA Astrophysics Data System (ADS)

    Wright, Steven A.; Stout, Sherry

    2005-02-01

    Most pin type reactor designs for space power or terrestrial applications group the fuel pins into a number of relatively large fuel pin bundles or subassemblies. Fuel bundles for terrestrial liquid metal fast breeders reactors typically use 217 - 271 pins per sub-assembly, while some SP100 designs use up to 331 pins in a central subassembly that was surrounded by partial assemblies. Because thermal creep is exponentially related to temperature, small changes in fuel pin cladding temperature can make large differences in the lifetime in a high temperature liquid metal reactor (LMR). This paper uses the COBRA-IV-I computer code to determine the temperature distribution within LMR fuel bundles. COBRA-IV-I uses the sub-channel analysis approach to determine the enthalpy (or temperature) and flow distribution in rod bundles for both steady-state and transient conditions. The COBRA code runs in only a few seconds and has been benchmarked and tested extensively over a wide range of flow conditions. In this report the flow and temperature distributions for two types of lithium cooled space reactor core designs were calculated. One design uses a very tight fuel pin packing that has a pitch to diameter ratio of 1.05 (small wire wrap with a diameter of 392 μm) as proposed in SP100. The other design uses a larger pitch to diameter ratio of 1.09 with a larger more conventional sized wire wrap diameter of 1 mm. The results of the COBRA pin bundle calculations show that the larger pitch-to-diameter fuel bundle designs are more tolerant to local flow blockages, and in addition they are less sensitive to mal-flow distributions that occur near the edges of the subassembly.

  3. Temperature Distributions in LMR Fuel Pin Bundles as Modeled by COBRA-IV-I

    SciTech Connect

    Wright, Steven A.; Stout, Sherry

    2005-02-06

    Most pin type reactor designs for space power or terrestrial applications group the fuel pins into a number of relatively large fuel pin bundles or subassemblies. Fuel bundles for terrestrial liquid metal fast breeders reactors typically use 217 - 271 pins per sub-assembly, while some SP100 designs use up to 331 pins in a central subassembly that was surrounded by partial assemblies. Because thermal creep is exponentially related to temperature, small changes in fuel pin cladding temperature can make large differences in the lifetime in a high temperature liquid metal reactor (LMR). This paper uses the COBRA-IV-I computer code to determine the temperature distribution within LMR fuel bundles. COBRA-IV-I uses the sub-channel analysis approach to determine the enthalpy (or temperature) and flow distribution in rod bundles for both steady-state and transient conditions. The COBRA code runs in only a few seconds and has been benchmarked and tested extensively over a wide range of flow conditions. In this report the flow and temperature distributions for two types of lithium cooled space reactor core designs were calculated. One design uses a very tight fuel pin packing that has a pitch to diameter ratio of 1.05 (small wire wrap with a diameter of 392 {mu}m) as proposed in SP100. The other design uses a larger pitch to diameter ratio of 1.09 with a larger more conventional sized wire wrap diameter of 1 mm. The results of the COBRA pin bundle calculations show that the larger pitch-to-diameter fuel bundle designs are more tolerant to local flow blockages, and in addition they are less sensitive to mal-flow distributions that occur near the edges of the subassembly.

  4. Development of a Fast Breeder Reactor Fuel Bundle Deformation Analysis Code - BAMBOO: Development of a Pin Dispersion Model and Verification by the Out-of-Pile Compression Test

    SciTech Connect

    Uwaba, Tomoyuki; Ito, Masahiro; Ukai, Shigeharu

    2004-02-15

    To analyze the wire-wrapped fast breeder reactor fuel pin bundle deformation under bundle/duct interaction conditions, the Japan Nuclear Cycle Development Institute has developed the BAMBOO computer code. This code uses the three-dimensional beam element to calculate fuel pin bowing and cladding oval distortion as the primary deformation mechanisms in a fuel pin bundle. The pin dispersion, which is disarrangement of pins in a bundle and would occur during irradiation, was modeled in this code to evaluate its effect on bundle deformation. By applying the contact analysis method commonly used in the finite element method, this model considers the contact conditions at various axial positions as well as the nodal points and can analyze the irregular arrangement of fuel pins with the deviation of the wire configuration.The dispersion model was introduced in the BAMBOO code and verified by using the results of the out-of-pile compression test of the bundle, where the dispersion was caused by the deviation of the wire position. And the effect of the dispersion on the bundle deformation was evaluated based on the analysis results of the code.

  5. Development of a Fast Breeder Reactor Fuel Bundle-Duct Interaction Analysis Code - BAMBOO: Analysis Model and Validation by the Out-of-Pile Compression Test

    SciTech Connect

    Uwaba, Tomoyuki; Tanaka, Kosuke

    2001-10-15

    To analyze the wire-wrapped fast breeder reactor (FBR) fuel pin bundle deformation under bundle-duct interaction (BDI) conditions, the Japan Nuclear Cycle Development Institute has developed the BAMBOO computer code. A three-dimensional beam element model is used in this code to calculate fuel pin bowing and cladding oval distortion, which are the dominant deformation mechanisms in a fuel pin bundle. In this work, the property of the cladding oval distortion considering the wire-pitch was evaluated experimentally and introduced in the code analysis.The BAMBOO code was validated in this study by using an out-of-pile bundle compression testing apparatus and comparing these results with the code results. It is concluded that BAMBOO reasonably predicts the pin-to-duct clearances in the compression tests by treating the cladding oval distortion as the suppression mechanism to BDI.

  6. SEU43 fuel bundle shielding analysis during spent fuel transport

    SciTech Connect

    Margeanu, C. A.; Ilie, P.; Olteanu, G.

    2006-07-01

    The basic task accomplished by the shielding calculations in a nuclear safety analysis consist in radiation doses calculation, in order to prevent any risks both for personnel protection and impact on the environment during the spent fuel manipulation, transport and storage. The paper investigates the effects induced by fuel bundle geometry modifications on the CANDU SEU spent fuel shielding analysis during transport. For this study, different CANDU-SEU43 fuel bundle projects, developed in INR Pitesti, have been considered. The spent fuel characteristics will be obtained by means of ORIGEN-S code. In order to estimate the corresponding radiation doses for different measuring points the Monte Carlo MORSE-SGC code will be used. Both codes are included in ORNL's SCALE 5 programs package. A comparison between the considered SEU43 fuel bundle projects will be also provided, with CANDU standard fuel bundle taken as reference. (authors)

  7. Fuel bundle design for enhanced usage of plutonium fuel

    DOEpatents

    Reese, Anthony P.; Stachowski, Russell E.

    1995-01-01

    A nuclear fuel bundle includes a square array of fuel rods each having a concentration of enriched uranium and plutonium. Each rod of an interior array of the rods also has a concentration of gadolinium. The interior array of rods is surrounded by an exterior array of rods void of gadolinium. By this design, usage of plutonium in the nuclear reactor is enhanced.

  8. Fuel bundle design for enhanced usage of plutonium fuel

    DOEpatents

    Reese, A.P.; Stachowski, R.E.

    1995-08-08

    A nuclear fuel bundle includes a square array of fuel rods each having a concentration of enriched uranium and plutonium. Each rod of an interior array of the rods also has a concentration of gadolinium. The interior array of rods is surrounded by an exterior array of rods void of gadolinium. By this design, usage of plutonium in the nuclear reactor is enhanced. 10 figs.

  9. LWR fuel rod bundle behavior under severe fuel damage conditions

    SciTech Connect

    Kuczera, B. Hagen, S.; Hofmann, P.

    1988-01-01

    Light water reactor (LWR) safety research and development activities conducted at Kernforschungszentrum Karlsruhe have recently been reorganized with a concentrated mission under the LWR safety project group. The topics treated relate mainly to severe-accident analysis research and source term assessment as well as to source term mitigation measures. A major part of the investigations concerns the early phase of a severe core meltdown accident, specifically LWR rod assembly behavior under sever fuel damage (SFD) conditions. To determine the extent of fuel rod damage, including the relocation behavior of molten reaction products, damage propagation, time-dependent H{sub 2} generation from clad oxidation, and fragmentation of oxygen-embrittled materials during cooldown and quenching, extensive out-of-pile rod bundle experiments have been initiated in the new CORA test facility. The bundle parameters, such as rod dimensions, rod pitch, and grid spacer, can be adjusted to both pressurized water reactor (PWR) and boiling water reactor (BWR) conditions. Currently, the test program consists of 15 experiments in which the influence of Inconel grid spacer, (Ag,In,Cd)-absorber rods (PWR) and of B{sub 4}C control blades (BWR) on fuel damage initiation and damage propagation are being investigated for different boundary conditions. As of June 1988, four bundle tests had been successfully carried out for PWR accident conditions.

  10. Interconnection of bundled solid oxide fuel cells

    SciTech Connect

    Brown, Michael; Bessette, II, Norman F; Litka, Anthony F; Schmidt, Douglas S

    2014-01-14

    A system and method for electrically interconnecting a plurality of fuel cells to provide dense packing of the fuel cells. Each one of the plurality of fuel cells has a plurality of discrete electrical connection points along an outer surface. Electrical connections are made directly between the discrete electrical connection points of adjacent fuel cells so that the fuel cells can be packed more densely. Fuel cells have at least one outer electrode and at least one discrete interconnection to an inner electrode, wherein the outer electrode is one of a cathode and and anode and wherein the inner electrode is the other of the cathode and the anode. In tubular solid oxide fuel cells the discrete electrical connection points are spaced along the length of the fuel cell.

  11. The design of the DUPIC spent fuel bundle counter

    SciTech Connect

    Menlove, H.O.; Rinard, P.M.; Kroncke, K.E.; Lee, Y.G.

    1997-05-01

    A neutron coincidence detector had been designed to measure the amount of curium in the fuel bundles and associated process samples used in the direct use of plutonium in Canadian deuterium-uranium (CANDU) fuel cycle. All of the sample categories are highly radioactive from the fission products contained in the pressurized water reactor (PWR) spent fuel feed stock. Substantial shielding is required to protect the He-3 detectors from the intense gamma rays. The Monte Carlo neutron and photon calculational code has been used to design the counter with a uniform response profile along the length of the CANDU-type fuel bundle. Other samples, including cut PWR rods, process powder, waste, and finished rods, can be measured in the system. This report describes the performance characteristics of the counter and support electronics. 3 refs., 23 figs., 6 tabs.

  12. A Kinetic Model of Active Extensile Bundles

    NASA Astrophysics Data System (ADS)

    Goldstein, Daniel; Chakraborty, Bulbul; Baskaran, Aparna

    Recent experiments in active filament networks reveal interesting rheological properties (Dan Chen: APS March Meeting 2015 D49.00001). This system consumes ATP to produce an extensile motion in bundles of microtubules. This extension then leads to self generated stresses and spontaneous flows. We propose a minimal model where the activity is modeled by self-extending bundles that are part of a cross linked network. This network can reorganize itself through buckling of extending filaments and merging events that alter the topology of the network. We numerically simulate this minimal kinetic model and examine the emergent rheological properties and determine how stresses are generated by the extensile activity. We will present results that focus on the effects of confinement and network connectivity of the bundles on stress fluctuations and response of an active gel.

  13. Hydraulic reinforcement of channel at lower tie-plate in BWR fuel bundle

    SciTech Connect

    Johansson, E.B.

    1989-12-26

    This patent describes an apparatus in a fuel bundle for confining fuel rods for the generation of steam in a steam water mixture passing interior of the fuel bundle. The fuel bundle includes: a lower tie-plate for supporting the fuel rods and permitting flow from the lower exterior portion of the fuel bundle into the interior portion of the fuel bundle; a plurality of fuel rods. The fuel rods supported on the lower tie-plate extending upwardly to and towards the upper portion of the fuel bundle for the generation of steam in a passing steam and water mixture interior of the fuel bundle; an upper tie-plate for maintaining the fuel rods in side-by-side relation and permitting a threaded connection between a plurality of the fuel rods with the threaded connection being at the upper and lower tie-plate. The upper tie-plate permitting escape of a steam water mixture from the top of the fuel bundle; a fuel bundle channel; and a labyrinth seal configured in the lower tie-plate.

  14. Anisotropic Turbulence Modeling for Accurate Rod Bundle Simulations

    SciTech Connect

    Baglietto, Emilio

    2006-07-01

    An improved anisotropic eddy viscosity model has been developed for accurate predictions of the thermal hydraulic performances of nuclear reactor fuel assemblies. The proposed model adopts a non-linear formulation of the stress-strain relationship in order to include the reproduction of the anisotropic phenomena, and in combination with an optimized low-Reynolds-number formulation based on Direct Numerical Simulation (DNS) to produce correct damping of the turbulent viscosity in the near wall region. This work underlines the importance of accurate anisotropic modeling to faithfully reproduce the scale of the turbulence driven secondary flows inside the bundle subchannels, by comparison with various isothermal and heated experimental cases. The very low scale secondary motion is responsible for the increased turbulence transport which produces a noticeable homogenization of the velocity distribution and consequently of the circumferential cladding temperature distribution, which is of main interest in bundle design. Various fully developed bare bundles test cases are shown for different geometrical and flow conditions, where the proposed model shows clearly improved predictions, in close agreement with experimental findings, for regular as well as distorted geometries. Finally the applicability of the model for practical bundle calculations is evaluated through its application in the high-Reynolds form on coarse grids, with excellent results. (author)

  15. Evaluation of the magnitude and effects of bundle duct interaction in fuel assemblies at developmental plant conditions

    SciTech Connect

    Serell, D.C.; Kaplan, S.

    1980-09-01

    Purpose of this evaluation is to estimate the magnitude and effects of irradiation and creep induced fuel bundle deformations in the developmental plant. This report focuses on the trends of the results and the ability of present models to evaluate the assembly temperatures in the presence of bundle deformation. Although this analysis focuses on the developmental plant, the conclusions are applicable to LMFBR fuel assemblies in general if they have wire spacers.

  16. Rod bundle thermal-hydraulic and melt progression analysis of CORA severe fuel damage experiments

    SciTech Connect

    Suh, K.Y. )

    1994-04-01

    An integral, fast-running computational model is developed to simulate the thermal-hydraulic and melt progression behavior in a nuclear reactor rod bundle under severe fuel damage conditions. This consists of the submodels for calculating steaming from the core, hydrogen formation, heat transfer in and out of the core, cooling from core spray or injection, and, most importantly, fuel melting, relocation, and freezing with chemical interactions taking place among the material constituents in a degrading core. The integral model is applied to three German severe fuel damage tests to analyze the core thermal and melt behavior: CORA-16 (18-rod bundle and slow cooling), CORA-17 (18-rod bundle and quenching), and CORA-18 (48-rod bundle and slow cooling). Results of the temperature response of the fuel rods, the channel box, and the absorber blade; hydrogen generation from the fuel rod and the channel box; and core material eutectic formation, melt relocation, and blockage formation are discussed. Reasonable agreement is observed for component temperatures at midelevation where prediction and measurement uncertainties are minimal. However, discrepancies or uncertainties are noticed for hydrogen generation and core-melt progression. The experimentally observed peak generation of hydrogen upon reflooding is not able to be reproduced, and the total amount generated is generally underpredicted primarily because of the early relocation of the Zircaloy fuel channel box and cladding. Also, difficulties are encountered in the process of assessing the core-melt formation and the relocation model because of either modeling uncertainties or a lack of definitive metallurgical data as a function of time throughout the transient.

  17. Results of international standard problem No. 36 severe fuel damage experiment of a VVER fuel bundle

    SciTech Connect

    Firnhaber, M.; Yegorova, L.; Brockmeier, U.

    1995-09-01

    International Standard Problems (ISP) organized by the OECD are defined as comparative exercises in which predictions with different computer codes for a given physical problem are compared with each other and with a carefully controlled experimental study. The main goal of ISP is to increase confidence in the validity and accuracy of analytical tools used in assessing the safety of nuclear installations. In addition, it enables the code user to gain experience and to improve his competence. This paper presents the results and assessment of ISP No. 36, which deals with the early core degradation phase during an unmitigated severe LWR accident in a Russian type VVER. Representatives of 17 organizations participated in the ISP using the codes ATHLET-CD, ICARE2, KESS-III, MELCOR, SCDAP/RELAP5 and RAPTA. Some participants performed several calculations with different codes. As experimental basis the severe fuel damage experiment CORA-W2 was selected. The main phenomena investigated are thermal behavior of fuel rods, onset of temperature escalation, material behavior and hydrogen generation. In general, the calculations give the right tendency of the experimental results for the thermal behavior, the hydrogen generation and, partly, for the material behavior. However, some calculations deviate in important quantities - e.g. some material behavior data - showing remarkable discrepancies between each other and from the experiments. The temperature history of the bundle up to the beginning of significant oxidation was calculated quite well. Deviations seem to be related to the overall heat balance. Since the material behavior of the bundle is to a great extent influenced by the cladding failure criteria a more realistic cladding failure model should be developed at least for the detailed, mechanistic codes. Regarding the material behavior and flow blockage some models for the material interaction as well as for relocation and refreezing requires further improvement.

  18. A Mechanistic Approach for the Prediction of Critical Power in BWR Fuel Bundles

    NASA Astrophysics Data System (ADS)

    Chandraker, Dinesh Kumar; Vijayan, Pallipattu Krishnan; Sinha, Ratan Kumar; Aritomi, Masanori

    The critical power corresponding to the Critical Heat Flux (CHF) or dryout condition is an important design parameter for the evaluation of safety margins in a nuclear fuel bundle. The empirical approaches for the prediction of CHF in a rod bundle are highly geometric specific and proprietary in nature. The critical power experiments are very expensive and technically challenging owing to the stringent simulation requirements for the rod bundle tests involving radial and axial power profiles. In view of this, the mechanistic approach has gained momentum in the thermal hydraulic community. The Liquid Film Dryout (LFD) in an annular flow is the mechanism of CHF under BWR conditions and the dryout modeling has been found to predict the CHF quite accurately for a tubular geometry. The successful extension of the mechanistic model of dryout to the rod bundle application is vital for the evaluation of critical power in the rod bundle. The present work proposes the uniform film flow approach around the rod by analyzing individual film of the subchannel bounded by rods with different heat fluxes resulting in different film flow rates around a rod and subsequently distributing the varying film flow rates of a rod to arrive at the uniform film flow rate as it has been found that the liquid film has a strong tendency to be uniform around the rod. The FIDOM-Rod code developed for the dryout prediction in BWR assemblies provides detailed solution of the multiple liquid films in a subchannel. The approach of uniform film flow rate around the rod simplifies the liquid film cross flow modeling and was found to provide dryout prediction with a good accuracy when compared with the experimental data of 16, 19 and 37 rod bundles under BWR conditions. The critical power has been predicted for a newly designed 54 rod bundle of the Advanced Heavy Water Reactor (AHWR). The selected constitutive models for the droplet entrainment and deposition rates validated for the dryout in tube were

  19. Cap assembly for a bundled tube fuel injector

    DOEpatents

    LeBegue, Jeffrey Scott; Melton, Patrick Benedict; Westmoreland, III, James Harold; Flanagan, James Scott

    2016-04-26

    A cap assembly for a bundled tube fuel injector includes an impingement plate and an aft plate that is disposed downstream from the impingement plate. The aft plate includes a forward side that is axially separated from an aft side. A tube passage extends through the impingement plate and the aft plate. A tube sleeve extends through the impingement plate within the tube passage towards the aft plate. The tube sleeve includes a flange at a forward end and an aft end that is axially separated from the forward end. A retention plate is positioned upstream from the impingement plate. A spring is disposed between the retention plate and the flange. The spring provides a force so as to maintain contact between at least a portion of the aft end of the tube sleeve and the forward side of the aft plate.

  20. Fiber bundle model under fluid pressure.

    PubMed

    Amitrano, David; Girard, Lucas

    2016-03-01

    Internal fluid pressure often plays an important role in the rupture of brittle materials. This is a major concern for many engineering applications and for natural hazards. More specifically, the mechanisms through which fluid pressure, applied at a microscale, can enhance the failure at a macroscale and accelerate damage dynamics leading to failure remains unclear. Here we revisit the fiber bundle model by accounting for the effect of fluid under pressure that contributes to the global load supported by the fiber bundle. Fluid pressure is applied on the broken fibers, following Biot's theory. The statistical properties of damage avalanches and their evolution toward macrofailure are analyzed for a wide range of fluid pressures. The macroscopic strength of the new model appears to be strongly controlled by the action of the fluid, particularly when the fluid pressure becomes comparable with the fiber strength. The behavior remains consistent with continuous transition, i.e., second order, including for large pressure. The main change concerns the damage acceleration toward the failure that is well modeled by the concept of sweeping of an instability. When pressure is increased, the exponent β characterizing the power-law distribution avalanche sizes significantly decreases and the exponent γ characterizing the cutoff divergence when failure is approached significantly increases. This proves that fluid pressure plays a key role in failure process acting as destabilization factor. This indicates that macrofailure occurs more readily under fluid pressure, with a behavior that becomes progressively unstable as fluid pressure increases. This may have considerable consequences on our ability to forecast failure when fluid pressure is acting. PMID:27078437

  1. Fiber bundle model under fluid pressure

    NASA Astrophysics Data System (ADS)

    Amitrano, David; Girard, Lucas

    2016-03-01

    Internal fluid pressure often plays an important role in the rupture of brittle materials. This is a major concern for many engineering applications and for natural hazards. More specifically, the mechanisms through which fluid pressure, applied at a microscale, can enhance the failure at a macroscale and accelerate damage dynamics leading to failure remains unclear. Here we revisit the fiber bundle model by accounting for the effect of fluid under pressure that contributes to the global load supported by the fiber bundle. Fluid pressure is applied on the broken fibers, following Biot's theory. The statistical properties of damage avalanches and their evolution toward macrofailure are analyzed for a wide range of fluid pressures. The macroscopic strength of the new model appears to be strongly controlled by the action of the fluid, particularly when the fluid pressure becomes comparable with the fiber strength. The behavior remains consistent with continuous transition, i.e., second order, including for large pressure. The main change concerns the damage acceleration toward the failure that is well modeled by the concept of sweeping of an instability. When pressure is increased, the exponent β characterizing the power-law distribution avalanche sizes significantly decreases and the exponent γ characterizing the cutoff divergence when failure is approached significantly increases. This proves that fluid pressure plays a key role in failure process acting as destabilization factor. This indicates that macrofailure occurs more readily under fluid pressure, with a behavior that becomes progressively unstable as fluid pressure increases. This may have considerable consequences on our ability to forecast failure when fluid pressure is acting.

  2. Numerical Study on Influence of Cross Flow on Rewetting of AHWR Fuel Bundle

    PubMed Central

    Kumar, Mithilesh; Mukhopadhyay, D.; Ghosh, A. K.; Kumar, Ravi

    2014-01-01

    Numerical study on AHWR fuel bundle has been carried out to assess influence of circumferential and cross flow rewetting on the conduction heat transfer. The AHWR fuel bundle quenching under accident condition is designed primarily with radial jets at several axial locations. A 3D (r, θ, z) transient conduction fuel pin model has been developed to carry out the study with a finite difference method (FDM) technique with alternating direction implicit (ADI) scheme. The single pin has been considered to study effect of circumferential conduction and multipins have been considered to study the influence of cross flow. Both analyses are carried out with the same fluid temperature and heat transfer coefficients as boundary conditions. It has been found from the analyses that, for radial jet, the circumferential conduction is significant and due to influence of overall cross flow the reductions in fuel temperature in the same quench plane in different rings are different with same initial surface temperature. Influence of cross flow on rewetting is found to be very significant. Outer fuel pins rewetting time is higher than inner. PMID:24672341

  3. An analytical fiber bundle model for pullout mechanics of root bundles

    NASA Astrophysics Data System (ADS)

    Cohen, D.; Schwarz, M.; Or, D.

    2011-09-01

    Roots in soil contribute to the mechanical stability of slopes. Estimation of root reinforcement is challenging because roots form complex biological networks whose geometrical and mechanical characteristics are difficult to characterize. Here we describe an analytical model that builds on simple root descriptors to estimate root reinforcement. Root bundles are modeled as bundles of heterogeneous fibers pulled along their long axes neglecting root-soil friction. Analytical expressions for the pullout force as a function of displacement are derived. The maximum pullout force and corresponding critical displacement are either derived analytically or computed numerically. Key model inputs are a root diameter distribution (uniform, Weibull, or lognormal) and three empirical power law relations describing tensile strength, elastic modulus, and length of roots as functions of root diameter. When a root bundle with root tips anchored in the soil matrix is pulled by a rigid plate, a unique parameter, ?, that depends only on the exponents of the power law relations, dictates the order in which roots of different diameters break. If ? < 1, small roots break first; if ? > 1, large roots break first. When ? = 1, all fibers break simultaneously, and the maximum tensile force is simply the roots' mean force times the number of roots in the bundle. Based on measurements of root geometry and mechanical properties, the value of ? is less than 1, usually ranging between 0 and 0.7. Thus, small roots always fail first. The model shows how geometrical and mechanical characteristics of roots and root diameter distribution affect the pullout force, its maximum and corresponding displacement. Comparing bundles of roots that have similar mean diameters, a bundle with a narrow variance in root diameter will result in a larger maximum force and a smaller displacement at maximum force than a bundle with a wide diameter distribution. Increasing the mean root diameter of a bundle without

  4. Verification of the FBR fuel bundle-duct interaction analysis code BAMBOO by the out-of-pile bundle compression test with large diameter pins

    NASA Astrophysics Data System (ADS)

    Uwaba, Tomoyuki; Ito, Masahiro; Nemoto, Junichi; Ichikawa, Shoichi; Katsuyama, Kozo

    2014-09-01

    The BAMBOO computer code was verified by results for the out-of-pile bundle compression test with large diameter pin bundle deformation under the bundle-duct interaction (BDI) condition. The pin diameters of the examined test bundles were 8.5 mm and 10.4 mm, which are targeted as preliminary fuel pin diameters for the upgraded core of the prototype fast breeder reactor (FBR) and for demonstration and commercial FBRs studied in the FaCT project. In the bundle compression test, bundle cross-sectional views were obtained from X-ray computer tomography (CT) images and local parameters of bundle deformation such as pin-to-duct and pin-to-pin clearances were measured by CT image analyses. In the verification, calculation results of bundle deformation obtained by the BAMBOO code analyses were compared with the experimental results from the CT image analyses. The comparison showed that the BAMBOO code reasonably predicts deformation of large diameter pin bundles under the BDI condition by assuming that pin bowing and cladding oval distortion are the major deformation mechanisms, the same as in the case of small diameter pin bundles. In addition, the BAMBOO analysis results confirmed that cladding oval distortion effectively suppresses BDI in large diameter pin bundles as well as in small diameter pin bundles.

  5. Bundle duct interaction studies for fuel assemblies. [LMFBR

    SciTech Connect

    Hsia, H.T.S.; Kaplan, S.

    1981-06-01

    It is known that the wire-wrapped rods and duct in an LMFBR are undergoing a gradual structural distortion from the initially uniform geometry under the combined effects of thermal expansion and irradiation induced swelling and creep. These deformations have a significant effect on flow characteristics, thus causing changes in thermal behavior such as cladding temperature and temperature distribution within a bundle. The temperature distribution may further enhance or retard irradiation induced deformation of the bundle. This report summarizes the results of the continuing effort in investigating the bundle-duct interaction, focusing on the need for the large development plant.

  6. System for supporting a bundled tube fuel injector within a combustor

    DOEpatents

    LeBegue, Jeffrey Scott; Melton, Patrick Benedict; Westmoreland, III, James Harold; Flanagan, James Scott

    2016-06-21

    A combustor includes an end cover having an outer side and an inner side, an outer barrel having a forward end that is adjacent to the inner side of the end cover and an aft end that is axially spaced from the forward end. An inner barrel is at least partially disposed concentrically within the outer barrel and is fixedly connected to the outer barrel. A fluid conduit extends downstream from the end cover. A first bundled tube fuel injector segment is disposed concentrically within the inner barrel. The bundled tube fuel injector segment includes a fuel plenum that is in fluid communication with the fluid conduit and a plurality of parallel tubes that extend axially through the fuel plenum. The bundled tube fuel injector segment is fixedly connected to the inner barrel.

  7. Mechanical Models of Microtubule Bundle Collapse in Alzheimer's Disease

    NASA Astrophysics Data System (ADS)

    Sendek, Austin; Singh, Rajiv; Cox, Daniel

    2013-03-01

    Amyloid-beta aggregates initiate Alzheimer's disease, and downstream trigger degradation of tau proteins that act as microtubule bundle stabilizers and mechanical spacers. Currently it is unclear which of tau cutting by proteases, tau phosphorylation, or tau aggregation are responsible for cytoskeleton degradation., We construct a percolation simulation of the microtubule bundle using a molecular spring model for the taus and including depletion force attraction between microtubules and membrane/actin cytoskeletal surface tension. The simulation uses a fictive molecular dynamics to model the motion of the individual microtubules within the bundle as a result of random tau removal, and calculates the elastic modulus of the bundle as the tau concentration falls. We link the tau removal steps to kinetic tau steps in various models of tau degradation. Supported by US NSF Grant DMR 1207624

  8. Reaction–diffusion model of hair-bundle morphogenesis

    PubMed Central

    Jacobo, Adrian; Hudspeth, A. J.

    2014-01-01

    The hair bundle, an apical specialization of the hair cell composed of several rows of regularly organized stereocilia and a kinocilium, is essential for mechanotransduction in the ear. Its precise organization allows the hair bundle to convert mechanical stimuli to electrical signals; mutations that alter the bundle’s morphology often cause deafness. However, little is known about the proteins involved in the process of morphogenesis and how the structure of the bundle arises through interactions between these molecules. We present a mathematical model based on simple reaction–diffusion mechanisms that can reproduce the shape and organization of the hair bundle. This model suggests that the boundary of the cell and the kinocilium act as signaling centers that establish the bundle’s shape. The interaction of two proteins forms a hexagonal Turing pattern—a periodic modulation of the concentrations of the morphogens, sustained by local activation and long-range inhibition of the reactants—that sets a blueprint for the location of the stereocilia. Finally we use this model to predict how different alterations to the system might impact the shape and organization of the hair bundle. PMID:25313064

  9. Fiber bundle model with highly disordered breaking thresholds.

    PubMed

    Roy, Chandreyee; Kundu, Sumanta; Manna, S S

    2015-03-01

    We present a study of the fiber bundle model using equal load-sharing dynamics where the breaking thresholds of the fibers are drawn randomly from a power-law distribution of the form p(b)∼b-1 in the range 10-β to 10β. Tuning the value of β continuously over a wide range, the critical behavior of the fiber bundle has been studied both analytically as well as numerically. Our results are: (i) The critical load σc(β,N) for the bundle of size N approaches its asymptotic value σc(β) as σc(β,N)=σc(β)+AN-1/ν(β), where σc(β) has been obtained analytically as σc(β)=10β/(2βeln10) for β≥βu=1/(2ln10), and for β<βu the weakest fiber failure leads to the catastrophic breakdown of the entire fiber bundle, similar to brittle materials, leading to σ_{c}(β)=10-β; (ii) the fraction of broken fibers right before the complete breakdown of the bundle has the form 1-1/(2βln10); (iii) the distribution D(Δ) of the avalanches of size Δ follows a power-law D(Δ)∼Δ-ξ with ξ=5/2 for Δ≫Δc(β) and ξ=3/2 for Δ≪Δc(β), where the crossover avalanche size Δc(β)=2/(1-e10-2β)2. PMID:25871050

  10. Dimer model for Tau proteins bound in microtubule bundles

    NASA Astrophysics Data System (ADS)

    Hall, Natalie; Kluber, Alexander; Hayre, N. Robert; Singh, Rajiv; Cox, Daniel

    2013-03-01

    The microtubule associated protein tau is important in nucleating and maintaining microtubule spacing and structure in neuronal axons. Modification of tau is implicated as a later stage process in Alzheimer's disease, but little is known about the structure of tau in microtubule bundles. We present preliminary work on a proposed model for tau dimers in microtubule bundles (dimers are the minimal units since there is one microtubule binding domain per tau). First, a model of tau monomer was created and its characteristics explored using implicit solvent molecular dynamics simulation. Multiple simulations yield a partially collapsed form with separate positively/negatively charged clumps, but which are a factor of two smaller than required by observed microtubule spacing. We argue that this will elongate in dimer form to lower electrostatic energy at a cost of entropic ``spring'' energy. We will present preliminary results on steered molecular dynamics runs on tau dimers to estimate the actual force constant. Supported by US NSF Grant DMR 1207624.

  11. Representing Practice: Practice Models, Patterns, Bundles

    ERIC Educational Resources Information Center

    Falconer, Isobel; Finlay, Janet; Fincher, Sally

    2011-01-01

    This article critiques learning design as a representation for sharing and developing practice, based on synthesis of three projects. Starting with the findings of the Mod4L Models of Practice project, it argues that the technical origins of learning design, and the consequent focus on structure and sequence, limit its usefulness for sharing…

  12. Calculation of the Local Neutronic Parameters for CANDU Fuel Bundles Using Transport Methods

    SciTech Connect

    Balaceanu, Victoria; Rizoiu, Andrei; Hristea, Viorel

    2006-07-01

    For a realistic neutronic evaluation of the CANDU reactor core it is important to accurately perform the local neutronic parameters (i.e. multigroup macroscopic cross sections for the core materials) calculation. This means using codes that allow a good geometric representation of the CANDU fuel bundle and then solving the transport equation. The paper reported here intends to study in detail the local behavior for two types of CANDU fuel, NU{sub 3}7 (Natural Uranium, 37 elements) and SEU{sub 4}3 (Slightly Enriched Uranium, 43 elements, with 1.1 wt% enrichment). The considered fuel types represent fresh and used bundles. The two types of CANDU super-cells are reference NU{sub 3}7, perturbed NU{sub 3}7, reference SEU{sub 4}3 and perturbed SEU{sub 4}3. The perturbed super-cells contain a Mechanical Control Absorber (a very strong reactivity device). For reaching the proposed objective a methodology is used based on WIMS and PIJXYZ codes. WIMS is a standard lattice-cell code, based on transport theory and it is used for producing fuel cell multigroup macroscopic cross sections. For obtaining the fine local neutronic parameters in the CANDU super-cells (k-eff values, local MCA reactivity worth, flux distributions and reaction rates), the PIJXYZ code is used. PIJXYZ is a 3D integral transport code using the first collision probability method and it has been developed for CANDU cell geometry. It is consistent with WIMS lattice-cell calculations and allows a good geometrical representation of the CANDU bundle in three dimensions. The analysis of the neutronic parameters consists of comparing the obtained results with the similar results calculated with the DRAGON code. This comparison shows a good agreement between these results. (authors)

  13. Numerical Simulation of Boiling Two-Phase Flow in Tight-Lattice Rod Bundle by 3-Dimensional Two-Fluid Model Code ACE-3D

    NASA Astrophysics Data System (ADS)

    Yoshida, Hiroyuki; Misawa, Takeharu; Takase, Kazuyuki

    Two-fluid model can simulate two-phase flow by computational cost less than detailed two-phase flow simulation method such as interface tracking method or particle interaction method. Therefore, two-fluid model is useful for thermal hydraulic analysis in large-scale domain such as a rod bundle. Japan Atomic Energy Agency (JAEA) develops three dimensional two-fluid model analysis code ACE-3D that adopts boundary fitted coordinate system in order to simulate complex shape flow channel. In this paper, boiling two-phase flow analysis in a tight-lattice rod bundle was performed by ACE-3D code. The parallel computation using 126 CPUs was applied to this analysis. In the results, the void fraction, which distributes in outermost region of rod bundle, is lower than that in center region of rod bundle. The tendency of void fraction distribution agreed with the measurement results by neutron radiography qualitatively. To evaluate effects of two-phase flow model used in ACE-3D code, numerical simulation of boiling two-phase in tight-lattice rod bundle with no lift force model was also performed. From the comparison of calculated results, it was concluded that the effects of lift force model were not so large for overall void fraction distribution of tight-lattice rod bundle. However, the lift force model is important for local void fraction distribution of fuel bundles.

  14. Combustor having mixing tube bundle with baffle arrangement for directing fuel

    DOEpatents

    Hughes, Michael John; McConnaughhay, Johnie Franklin

    2016-08-23

    A combustor includes a tube bundle that extends radially across at least a portion of the combustor. The tube bundle includes an upstream surface axially separated from a downstream surface, and a plurality of tubes extend from the upstream surface through the downstream surface to provide fluid communication through the tube bundle. A barrier extends radially inside the tube bundle between the upstream and downstream surfaces, and a baffle extends axially inside the tube bundle between the upstream surface and the barrier.

  15. Analytical Deriving of the Field Capacity through Soil Bundle Model

    NASA Astrophysics Data System (ADS)

    Arnone, E.; Viola, F.; Antinoro, C.; Noto, L. V.

    2015-12-01

    The concept of field capacity as soil hydraulic parameter is widely used in many hydrological applications. Althought its recurring usage, its definition is not univocal. Traditionally, field capacity has been related to the amount of water that remains in the soil after the excess water has drained away and the water downward movement experiences a significant decresase. Quantifying the drainage of excess of water may be vague and several definitions, often subjective, have been proposed. These definitions are based on fixed thresholds either of time, pressure, or flux to which the field capacity condition is associated. The flux-based definition identifies the field capacity as the soil moisture value corresponding to an arbitrary fixed threshold of free drainage flux. Recently, many works have investigated the flux-based definition by varying either the drainage threshold, the geometry setting and mainly the description of the drainage flux. Most of these methods are based on the simulation of the flux through a porous medium by using the Darcy's law or Richard's equation. Using the above-mentioned flux-based definition, in this work we propose an alternative analytical approach for deriving the field capacity based on a bundle-of-tubes model. The pore space of a porous medium is conceptualized as a bundle of capillary tubes of given length of different radii, derived from a known distribution. The drainage from a single capillary tube is given by the analytical solution of the differential equation describing the water height evolution within the capillary tube. This equation is based on the Poiseuille's law and describes the drainage flux with time as a function of tube radius. The drainage process is then integrated for any portion of soil taking into account the tube radius distribution which in turns depends on the soil type. This methodology allows to analytically derive the dynamics of drainage water flux for any soil type and consequently to define the

  16. Alternative Reimbursement Models: Bundled Payment and Beyond: AOA Critical Issues.

    PubMed

    Greenwald, A Seth; Bassano, Amy; Wiggins, Stephen; Froimson, Mark I

    2016-06-01

    The Bundled Payments for Care Improvement (BPCI) initiative was begun in January 2013 by the U.S. Centers for Medicare & Medicaid Services (CMS) through its Innovation Center authority, which was created by the U.S. Patient Protection and Affordable Care Act (PPACA). The BPCI program seeks to improve health-care delivery and to ultimately reduce costs by allowing providers to enter into prenegotiated payment arrangements that include financial and performance accountability for a clinical episode in which a risk-and-reward calculus must be determined. BPCI is a contemporary 3-year experiment designed to test the applicability of episode-based payment models as a viable strategy to transform the CMS payment methodology while improving health outcomes. A summary of the 4 models being evaluated in the BPCI initiative is presented in addition to the awardee types and the number of awardees in each model. Data from one of the BPCI-designated pilot sites demonstrate that strategies do exist for successful implementation of an alternative payment model by keeping patients first while simultaneously improving coordination, alignment of care, and quality and reducing cost. Providers will need to embrace change and their areas of opportunity to gain a competitive advantage. Health-care providers, including orthopaedic surgeons, health-care professionals at post-acute care institutions, and product suppliers, all have a role in determining the strategies for success. Open dialogue between CMS and awardees should be encouraged to arrive at a solution that provides opportunity for gainsharing, as this program continues to gain traction and to evolve. PMID:27252442

  17. Modeling root-reinforcement with a Fiber-Bundle Model and Monte Carlo simulation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper uses sensitivity analysis and a Fiber-Bundle Model (FBM) to examine assumptions underpinning root-reinforcement models. First, different methods for apportioning load between intact roots were investigated. Second, a Monte Carlo approach was used to simulate plants with heartroot, platero...

  18. Development of an internally cooled annular fuel bundle for pressurized heavy water reactors

    SciTech Connect

    Hamilton, H.; Armstrong, J.; Kittmer, A.; Zhuchkova, A.; Xu, R.; Hyland, B.; King, M.; Nava-Dominguez, A.; Livingstone, S.; Bergeron, A.

    2013-07-01

    A number of preliminary studies have been conducted at Atomic Energy of Canada Limited to explore the potential of using internally cooled annular fuel (ICAF) in CANDU reactors including finite element thermo-mechanical modelling, reactor physics, thermal hydraulics, fabrication and mechanical design. The most compelling argument for this design compared to the conventional solid-rod design is the significant reduction in maximum fuel temperature for equivalent LERs (linear element ratings). This feature presents the potential for power up-rating or higher burnup and a decreased defect probability due to in-core power increases. The thermal-mechanical evaluation confirmed the significant reduction in maximum fuel temperatures for ICAF fuel compared to solid-rod fuel for equivalent LER. The maximum fuel temperature increase as a function of LER increase is also significantly less for ICAF fuel. As a result, the sheath stress induced by an equivalent power increase is approximately six times less for ICAF fuel than solid-rod fuel. This suggests that the power-increase thresholds to failure (due to stress-corrosion cracking) for ICAF fuel should be well above those for solid-rod fuel, providing improvement in operation flexibility and safety.

  19. Subchannel thermal-hydraulic modeling of an APT tungsten target rod bundle

    SciTech Connect

    Hamm, L.L.; Shadday, M.A. Jr.

    1997-09-01

    The planned target for the Accelerator Production of Tritium (APT) neutron source consists of an array of tungsten rod bundles through which D{sub 2}O coolant flows axially. Here, a scoping analysis of flow through an APT target rod bundle was conducted to demonstrate that lateral cross-flows are important, and therefore subchannel modeling is necessary to accurately predict thermal-hydraulic behavior under boiling conditions. A local reactor assembly code, FLOWTRAN, was modified to model axial flow along the rod bundle as flow through three concentric heated annular passages.

  20. Heat Transfer Enhancement By Three-Dimensional Surface Roughness Technique In Nuclear Fuel Rod Bundles

    NASA Astrophysics Data System (ADS)

    Najeeb, Umair

    This thesis experimentally investigates the enhancement of single-phase heat transfer, frictional loss and pressure drop characteristics in a Single Heater Element Loop Tester (SHELT). The heater element simulates a single fuel rod for Pressurized Nuclear reactor. In this experimental investigation, the effect of the outer surface roughness of a simulated nuclear rod bundle was studied. The outer surface of a simulated fuel rod was created with a three-dimensional (Diamond-shaped blocks) surface roughness. The angle of corrugation for each diamond was 45 degrees. The length of each side of a diamond block is 1 mm. The depth of each diamond block was 0.3 mm. The pitch of the pattern was 1.614 mm. The simulated fuel rod had an outside diameter of 9.5 mm and wall thickness of 1.5 mm and was placed in a test-section made of 38.1 mm inner diameter, wall thickness 6.35 mm aluminum pipe. The Simulated fuel rod was made of Nickel 200 and Inconel 625 materials. The fuel rod was connected to 10 KW DC power supply. The Inconel 625 material of the rod with an electrical resistance of 32.3 kO was used to generate heat inside the test-section. The heat energy dissipated from the Inconel tube due to the flow of electrical current flows into the working fluid across the rod at constant heat flux conditions. The DI water was employed as working fluid for this experimental investigation. The temperature and pressure readings for both smooth and rough regions of the fuel rod were recorded and compared later to find enhancement in heat transfer coefficient and increment in the pressure drops. Tests were conducted for Reynold's Numbers ranging from 10e4 to 10e5. Enhancement in heat transfer coefficient at all Re was recorded. The maximum heat transfer co-efficient enhancement recorded was 86% at Re = 4.18e5. It was also observed that the pressure drop and friction factor increased by 14.7% due to the increased surface roughness.

  1. Fuel cell integral bundle assembly including ceramic open end seal and vertical and horizontal thermal expansion control

    SciTech Connect

    Zafred, Paolo R.; Gillett, James E.

    2012-04-24

    A plurality of integral bundle assemblies contain a top portion with an inlet fuel plenum and a bottom portion containing a base support, the base supports a dense, ceramic air exhaust manifold having four supporting legs, the manifold is below and connects to air feed tubes located in a recuperator zone, the air feed tubes passing into the center of inverted, tubular, elongated, hollow electrically connected solid oxide fuel cells having an open end above a combustion zone into which the air feed tubes pass and a closed end near the inlet fuel plenum, where the open end of the fuel cells rest upon and within a separate combination ceramic seal and bundle support contained in a ceramic support casting, where at least one flexible cushion ceramic band seal located between the recuperator and fuel cells protects and controls horizontal thermal expansion, and where the fuel cells operate in the fuel cell mode and where the base support and bottom ceramic air exhaust manifolds carry from 85% to all of the weight of the generator.

  2. Atomistic simulations, mesoscopic modeling, and theoretical analysis of thermal conductivity of bundles composed of carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Volkov, Alexey N.; Salaway, Richard N.; Zhigilei, Leonid V.

    2013-09-01

    The propensity of carbon nanotubes (CNTs) to self-organize into continuous networks of bundles has direct implications for thermal transport properties of CNT network materials and defines the importance of clear understanding of the mechanisms and scaling laws governing the heat transfer within the primary building blocks of the network structures—close-packed bundles of CNTs. A comprehensive study of the thermal conductivity of CNT bundles is performed with a combination of non-equilibrium molecular dynamics (MD) simulations of heat transfer between adjacent CNTs and the intrinsic conductivity of CNTs in a bundle with a theoretical analysis that reveals the connections between the structure and thermal transport properties of CNT bundles. The results of MD simulations of heat transfer in CNT bundles consisting of up to 7 CNTs suggest that, contrary to the widespread notion of strongly reduced conductivity of CNTs in bundles, van der Waals interactions between defect-free well-aligned CNTs in a bundle have negligible effect on the intrinsic conductivity of the CNTs. The simulations of inter-tube heat conduction performed for partially overlapping parallel CNTs indicate that the conductance through the overlap region is proportional to the length of the overlap for CNTs and CNT-CNT overlaps longer than several tens of nm. Based on the predictions of the MD simulations, a mesoscopic-level model is developed and applied for theoretical analysis and numerical modeling of heat transfer in bundles consisting of CNTs with infinitely large and finite intrinsic thermal conductivities. The general scaling laws predicting the quadratic dependence of the bundle conductivity on the length of individual CNTs in the case when the thermal transport is controlled by the inter-tube conductance and the independence of the CNT length in another limiting case when the intrinsic conductivity of CNTs plays the dominant role are derived. An application of the scaling laws to bundles of

  3. Spontaneous oscillations, signal amplification and synchronization in a model of active hair bundle mechanics

    PubMed Central

    Han, Lijuan; Neiman, Alexander B.

    2010-01-01

    We study spontaneous dynamics and signal transduction in a model of active hair bundle mechanics of sensory hair cells. The hair bundle motion is subjected to internal noise resulted from thermal fluctuations and stochastic dynamics of mechano-electrical transduction ion channels. Similar to other studies we found that in the presence of noise the coherence of stochastic oscillations is maximal at a point on the bifurcation diagram away from the Andronov-Hopf bifurcation and is close to the point of maximum sensitivity of the system to weak periodic mechanical perturbations. Despite decoherent effect of noise the stochastic hair bundle oscillations can be synchronized by external periodic force of few pN amplitude in a finite range of control parameters. We then study effects of receptor potential oscillations on mechanics of the hair bundle and show that the hair bundle oscillations can be synchronized by oscillating receptor voltage. Moreover, using a linear model for the receptor potential we show that bi-directional coupling of the hair bundle and the receptor potential results in significant enhancement of the coherence of spontaneous oscillations and of the sensitivity to the external mechanical perturbations. PMID:20481759

  4. Electrolytic/fuel cell bundles and systems including a current collector in communication with an electrode thereof

    DOEpatents

    Hawkes, Grant L.; Herring, James S.; Stoots, Carl M.; O& #x27; Brien, James E.

    2013-03-05

    Electrolytic/fuel cell bundles and systems including such bundles include an electrically conductive current collector in communication with an anode or a cathode of each of a plurality of cells. A cross-sectional area of the current collector may vary in a direction generally parallel to a general direction of current flow through the current collector. The current collector may include a porous monolithic structure. At least one cell of the plurality of cells may include a current collector that surrounds an outer electrode of the cell and has at least six substantially planar exterior surfaces. The planar surfaces may extend along a length of the cell, and may abut against a substantially planar surface of a current collector of an adjacent cell. Methods for generating electricity and for performing electrolysis include flowing current through a conductive current collector having a varying cross-sectional area.

  5. Simulation study on the avalanche process of the mixed brittle-plastic fiber bundle model

    NASA Astrophysics Data System (ADS)

    Hao, Da-Peng; Tang, Gang; Xun, Zhi-Peng; Xia, Hui; Han, Kui

    2016-01-01

    The mixed brittle-plastic fiber bundle model is an extension model based on the classical fiber bundle model to describe the nonbrittle failure process of some hierarchical structure materials such as spider silk. In order to explore the breaking dynamic properties of the hierarchical structure materials in short-range correlation, the mixed brittle-plastic fiber bundle model in local load sharing condition is detailed and numerically studied. The impacts of the proportion of plastic fibers and the plastic strength of a single plastic fiber on the macroscopic constitutive behavior, the avalanche size distribution and the step number of the external load increasing are investigated, respectively. The numerical results show that the insert of plastic fibers will hinder the brittle fracture process; as a result, both the macroscopic mechanical natures and the statistical properties of fracture are significantly influenced.

  6. Turtle utricle dynamic behavior using a combined anatomically accurate model and experimentally measured hair bundle stiffness

    PubMed Central

    Davis, J.L.; Grant, J.W.

    2014-01-01

    Anatomically correct turtle utricle geometry was incorporated into two finite element models. The geometrically accurate model included appropriately shaped macular surface and otoconial layer, compact gel and column filament (or shear) layer thicknesses and thickness distributions. The first model included a shear layer where the effects of hair bundle stiffness was included as part of the shear layer modulus. This solid model’s undamped natural frequency was matched to an experimentally measured value. This frequency match established a realistic value of the effective shear layer Young’s modulus of 16 Pascals. We feel this is the most accurate prediction of this shear layer modulus and fits with other estimates (Kondrachuk, 2001b). The second model incorporated only beam elements in the shear layer to represent hair cell bundle stiffness. The beam element stiffness’s were further distributed to represent their location on the neuroepithelial surface. Experimentally measured striola hair cell bundles mean stiffness values were used in the striolar region and the mean extrastriola hair cell bundles stiffness values were used in this region. The results from this second model indicated that hair cell bundle stiffness contributes approximately 40% to the overall stiffness of the shear layer– hair cell bundle complex. This analysis shows that high mass saccules, in general, achieve high gain at the sacrifice of frequency bandwidth. We propose the mechanism by which this can be achieved is through increase the otoconial layer mass. The theoretical difference in gain (deflection per acceleration) is shown for saccules with large otoconial layer mass relative to saccules and utricles with small otoconial layer mass. Also discussed is the necessity of these high mass saccules to increase their overall system shear layer stiffness. Undamped natural frequencies and mode shapes for these sensors are shown. PMID:25445820

  7. Population analysis of the cingulum bundle using the tubular surface model for schizophrenia detection

    NASA Astrophysics Data System (ADS)

    Mohan, Vandana; Sundaramoorthi, Ganesh; Kubicki, Marek; Terry, Douglas; Tannenbaum, Allen

    2010-03-01

    We propose a novel framework for population analysis of DW-MRI data using the Tubular Surface Model. We focus on the Cingulum Bundle (CB) - a major tract for the Limbic System and the main connection of the Cingulate Gyrus, which has been associated with several aspects of Schizophrenia symptomatology. The Tubular Surface Model represents a tubular surface as a center-line with an associated radius function. It provides a natural way to sample statistics along the length of the fiber bundle and reduces the registration of fiber bundle surfaces to that of 4D curves. We apply our framework to a population of 20 subjects (10 normal, 10 schizophrenic) and obtain excellent results with neural network based classification (90% sensitivity, 95% specificity) as well as unsupervised clustering (k-means). Further, we apply statistical analysis to the feature data and characterize the discrimination ability of local regions of the CB, as a step towards localizing CB regions most relevant to Schizophrenia.

  8. Motor-mediated bidirectional transport along an antipolar microtubule bundle: a mathematical model.

    PubMed

    Lin, Congping; Ashwin, Peter; Steinberg, Gero

    2013-05-01

    Long-distance bidirectional transport of organelles depends on the coordinated motion of various motor proteins on the cytoskeleton. Recent quantitative live cell imaging in the elongated hyphal cells of Ustilago maydis has demonstrated that long-range motility of motors and their endosomal cargo occurs on unipolar microtubules (MTs) near the extremities of the cell. These MTs are bundled into antipolar bundles within the central part of the cell. Dynein and kinesin-3 motors coordinate their activity to move early endosomes (EEs) in a bidirectional fashion where dynein drives motility towards MT minus ends and kinesin towards MT plus ends. Although this means that one can easily assign the drivers of bidirectional motion in the unipolar section, the bipolar orientations in the bundle mean that it is possible for either motor to drive motion in either direction. In this paper we use a multilane asymmetric simple exclusion process modeling approach to simulate and investigate phases of bidirectional motility in a minimal model of an antipolar MT bundle. In our model, EE cargos (particles) change direction on each MT with a turning rate Ω and there is switching between MTs in the bundle at the minus ends. At these ends, particles can hop between MTs with rate q(1) on passing from a unipolar to a bipolar section (the obstacle-induced switching rate) or q(2) on passing in the other direction (the end-induced switching rate). By a combination of numerical simulations and mean-field approximations, we investigate the distribution of particles along the MTs for different values of these parameters and of Θ, the overall density of particles within this closed system. We find that even if Θ is low, the system can exhibit a variety of phases with shocks in the density profiles near plus and minus ends caused by queuing of particles. We discuss how the parameters influence the type of particle that dominates active transport in the bundle. PMID:23767568

  9. Motor-mediated bidirectional transport along an antipolar microtubule bundle: A mathematical model

    NASA Astrophysics Data System (ADS)

    Lin, Congping; Ashwin, Peter; Steinberg, Gero

    2013-05-01

    Long-distance bidirectional transport of organelles depends on the coordinated motion of various motor proteins on the cytoskeleton. Recent quantitative live cell imaging in the elongated hyphal cells of Ustilago maydis has demonstrated that long-range motility of motors and their endosomal cargo occurs on unipolar microtubules (MTs) near the extremities of the cell. These MTs are bundled into antipolar bundles within the central part of the cell. Dynein and kinesin-3 motors coordinate their activity to move early endosomes (EEs) in a bidirectional fashion where dynein drives motility towards MT minus ends and kinesin towards MT plus ends. Although this means that one can easily assign the drivers of bidirectional motion in the unipolar section, the bipolar orientations in the bundle mean that it is possible for either motor to drive motion in either direction. In this paper we use a multilane asymmetric simple exclusion process modeling approach to simulate and investigate phases of bidirectional motility in a minimal model of an antipolar MT bundle. In our model, EE cargos (particles) change direction on each MT with a turning rate Ω and there is switching between MTs in the bundle at the minus ends. At these ends, particles can hop between MTs with rate q1 on passing from a unipolar to a bipolar section (the obstacle-induced switching rate) or q2 on passing in the other direction (the end-induced switching rate). By a combination of numerical simulations and mean-field approximations, we investigate the distribution of particles along the MTs for different values of these parameters and of Θ, the overall density of particles within this closed system. We find that even if Θ is low, the system can exhibit a variety of phases with shocks in the density profiles near plus and minus ends caused by queuing of particles. We discuss how the parameters influence the type of particle that dominates active transport in the bundle.

  10. Computed modeling of humeral mid-shaft fracture treated by bundle nailing.

    PubMed

    Obruba, Petr; Capek, Lukas; Henys, Petr; Kopp, Lubomir

    2016-10-01

    Elastic bundle nailing is a method for simple humeral mid-shaft fracture osteosynthesis. The aim of our subsequent numerical simulations was to find out torsional and bending stiffness of an elastic bundle nailed humerus. Parametrical 3D numerical model was developed. The diameter of nails was the varying parameter of 1.8, 2.5, 3 and 4 mm. From our results can be seen that the bending stiffness in bundle nailing technique does not depend on nail diameter. On the contrary the torsional stiffness does highly depend on nail diameter. The dependency of the maximal stress on a nail diameter during bending and torsion of the humerus is non-linear. It can be seen that the higher diameter is used the higher stress occurs. Achieved results allow us for the recommendation of optimal nail diameter for this method, which lies between 2 and 3 mm. PMID:26828368

  11. An improved bundle adjustment model and algorithm with novel block matrix partition method

    NASA Astrophysics Data System (ADS)

    Xia, Zemin; Li, Zhongwei; Zhong, Kai

    2014-11-01

    Sparse bundle adjustment is widely applied in computer vision and photogrammetry. However, existing implementation is based on the model of n 3D points projecting onto m different camera imaging planes at m positions, which can't be applied to commonly monocular, binocular or trinocular imaging systems. A novel design and implementation of bundle adjustment algorithm is proposed in this paper, which is based on n 3D points projecting onto the same camera imaging plane at m positions .To improve the performance of the algorithm, a novel sparse block matrix partition method is proposed. Experiments show that the improved bundle adjustment is effective, robust and has a better tolerance to pixel coordinates error.

  12. Improving prediction of hydraulic conductivity by constraining capillary bundle models to a maximum pore size

    NASA Astrophysics Data System (ADS)

    Iden, Sascha C.; Peters, Andre; Durner, Wolfgang

    2015-11-01

    The prediction of unsaturated hydraulic conductivity from the soil water retention curve by pore-bundle models is a cost-effective and widely applied technique. One problem for conductivity predictions from retention functions with continuous derivatives, i.e. continuous water capacity functions, is that the hydraulic conductivity curve exhibits a sharp drop close to water saturation if the pore-size distribution is wide. So far this artifact has been ignored or removed by introducing an explicit air-entry value into the capillary saturation function. However, this correction leads to a retention function which is not continuously differentiable. We present a new parameterization of the hydraulic properties which uses the original saturation function (e.g. of van Genuchten) and introduces a maximum pore radius only in the pore-bundle model. In contrast to models using an explicit air entry, the resulting conductivity function is smooth and increases monotonically close to saturation. The model concept can easily be applied to any combination of retention curve and pore-bundle model. We derive closed-form expressions for the unimodal and multimodal van Genuchten-Mualem models and apply the model concept to curve fitting and inverse modeling of a transient outflow experiment. Since the new model retains the smoothness and continuous differentiability of the retention model and eliminates the sharp drop in conductivity close to saturation, the resulting hydraulic functions are physically more reasonable and ideal for numerical simulations with the Richards equation or multiphase flow models.

  13. Time dependence of breakdown in a global fiber-bundle model with continuous damage

    SciTech Connect

    Moral, L.; Moreno, Y.; Gomez, J. B.; Pacheco, A. F.

    2001-06-01

    A time-dependent global fiber-bundle model of fracture with continuous damage is formulated in terms of a set of coupled nonlinear differential equations. A first integral of this set is analytically obtained. The time evolution of the system is studied by applying a discrete probabilistic method. Several results are discussed emphasizing their differences with the standard time-dependent model. The results obtained show that with this simple model a variety of experimental observations can be qualitatively reproduced.

  14. Hierarchical fiber bundle model to investigate the complex architectures of biological materials.

    PubMed

    Pugno, Nicola M; Bosia, Federico; Abdalrahman, Tamer

    2012-01-01

    The mechanics of fiber bundles has been widely studied in the literature, and fiber bundle models in particular have provided a wealth of useful analytical and numerical results for modeling ordinary materials. These models, however, are inadequate to treat bioinspired nanostructured materials, where hierarchy, multiscale, and complex properties play a decisive role in determining the overall mechanical characteristics. Here, we develop an ad hoc hierarchical theory designed to tackle these complex architectures, thus allowing the determination of the strength of macroscopic hierarchical materials from the properties of their constituents at the nanoscale. The roles of finite size, twisting angle, and friction are also included. Size effects on the statistical distribution of fiber strengths naturally emerge without invoking best-fit or unknown parameters. A comparison between the developed theory and various experimental results on synthetic and natural materials yields considerable agreement. PMID:22400587

  15. Beyond fractional anisotropy: extraction of bundle-specific structural metrics from crossing fiber models.

    PubMed

    Riffert, Till W; Schreiber, Jan; Anwander, Alfred; Knösche, Thomas R

    2014-10-15

    Diffusion MRI (dMRI) measurements are used for inferring the microstructural properties of white matter and to reconstruct fiber pathways. Very often voxels contain complex fiber configurations comprising multiple bundles, rendering the simple diffusion tensor model unsuitable. Multi-compartment models deliver a convenient parameterization of the underlying complex fiber architecture, but pose challenges for fitting and model selection. Spherical deconvolution, in contrast, very economically produces a fiber orientation density function (fODF) without any explicit model assumptions. Since, however, the fODF is represented by spherical harmonics, a direct interpretation of the model parameters is impossible. Based on the fact that the fODF can often be interpreted as superposition of multiple peaks, each associated to one relatively coherent fiber population (bundle), we offer a solution that seeks to combine the advantages of both approaches: first the fiber configuration is modeled as fODF represented by spherical harmonics and then each of the peaks is parameterized separately in order to characterize the underlying bundle. In this work, the fODF peaks are approximated by Bingham distributions, capturing first and second-order statistics of the fiber orientations, from which we derive metrics for the parametric quantification of fiber bundles. We propose meaningful relationships between these measures and the underlying microstructural properties. We focus on metrics derived directly from properties of the Bingham distribution, such as peak length, peak direction, peak spread, integral over the peak, as well as a metric derived from the comparison of the largest peaks, which probes the complexity of the underlying microstructure. We compare these metrics to the conventionally used fractional anisotropy (FA) and show how they may help to increase the specificity of the characterization of microstructural properties. While metrics relying on the first moments of

  16. Chiral formulation for hyperKähler sigma-models on cotangent bundles of symmetric spaces

    NASA Astrophysics Data System (ADS)

    Kuzenko, Sergei M.; Novak, Joseph

    2008-12-01

    Starting with the projective-superspace off-shell formulation for four-dimensional Script N = 2 supersymmetric sigma-models on cotangent bundles of arbitrary Hermitian symmetric spaces, their on-shell description in terms of Script N = 1 chiral superfields is developed. In particular, we derive a universal representation for the hyperkähler potential in terms of the curvature of the symmetric base space. Within the tangent-bundle formulation for such sigma-models, completed recently in arXiv:0709.2633 and realized in terms of Script N = 1 chiral and complex linear superfields, we give a new universal formula for the superspace Lagrangian. A closed form expression is also derived for the Kähler potential of an arbitrary Hermitian symmetric space in Kähler normal coordinates.

  17. Elastic deformation and failure in protein filament bundles: atomistic simulations and coarse-grained modeling

    PubMed Central

    Hammond, N. A.

    2008-01-01

    The synthetic peptide RAD16-II has shown promise in tissue engineering and drug delivery. It has been studied as a vehicle for cell delivery and controlled release of IGF-1 to repair infarcted cardiac tissue, and as a scaffold to promote capillary formation for an in vitro model of angiogenesis. The structure of RAD16-II is hierarchical, with monomers forming long β-sheets that pair together to form filaments; filaments form bundles approximately 30–60 nm in diameter; branching networks of filament bundles form macroscopic gels. We investigate the mechanics of shearing between the two β-sheets constituting one filament, and between cohered filaments of RAD16-II. This shear loading is found in filament bundle bending or in tensile loading of fibers composed of partial-length filaments. Molecular dynamics simulations show that time to failure is a stochastic function of applied shear stress, and that for a given loading time behavior is elastic for sufficiently small shear loads. We propose a coarse-grained model based on Langevin dynamics that matches molecular dynamics results and facilities extending simulations in space and time. The model treats a filament as an elastic string of particles, each having potential energy that is a periodic function of its position relative to the neighboring filament. With insight from these simulations, we discuss strategies for strengthening RAD16-II and similar materials. PMID:18440063

  18. Mutational analyses of HAMP helices suggest a dynamic bundle model of input-output signalling in chemoreceptors.

    PubMed

    Zhou, Qin; Ames, Peter; Parkinson, John S

    2009-09-01

    To test the gearbox model of HAMP signalling in the Escherichia coli serine receptor, Tsr, we generated a series of amino acid replacements at each residue of the AS1 and AS2 helices. The residues most critical for Tsr function defined hydrophobic packing faces consistent with a four-helix bundle. Suppression patterns of helix lesions conformed to the predicted packing layers in the bundle. Although the properties and patterns of most AS1 and AS2 lesions were consistent with both proposed gearbox structures, some mutational features specifically indicate the functional importance of an x-da bundle over an alternative a-d bundle. These genetic data suggest that HAMP signalling could simply involve changes in the stability of its x-da bundle. We propose that Tsr HAMP controls output signals by modulating destabilizing phase clashes between the AS2 helices and the adjoining kinase control helices. Our model further proposes that chemoeffectors regulate HAMP bundle stability through a control cable connection between the transmembrane segments and AS1 helices. Attractant stimuli, which cause inward piston displacements in chemoreceptors, should reduce cable tension, thereby stabilizing the HAMP bundle. This study shows how transmembrane signalling and HAMP input-output control could occur without the helix rotations central to the gearbox model. PMID:19656294

  19. Fluid structure interaction modelling for the vibration of tube bundles, part I: analysis of the fluid flow in a tube bundle

    SciTech Connect

    Desbonnets, Quentin; Broc, Daniel

    2012-07-01

    It is well known that a fluid may strongly influence the dynamic behaviour of a structure. Many different physical phenomena may take place, depending on the conditions: fluid flow, fluid at rest, little or high displacements of the structure. Inertial effects can take place, with lower vibration frequencies, dissipative effects also, with damping, instabilities due to the fluid flow (Fluid Induced Vibration). In this last case the structure is excited by the fluid. Tube bundles structures are very common in the nuclear industry. The reactor cores and the steam generators are both structures immersed in a fluid which may be submitted to a seismic excitation or an impact. In this case the structure moves under an external excitation, and the movement is influence by the fluid. The main point in such system is that the geometry is complex, and could lead to very huge sizes for a numerical analysis. Homogenization models have been developed based on the Euler equations for the fluid. Only inertial effects are taken into account. A next step in the modelling is to build models based on the homogenization of the Navier-Stokes equations. The papers presents results on an important step in the development of such model: the analysis of the fluid flow in a oscillating tube bundle. The analysis are made from the results of simulations based on the Navier-Stokes equations for the fluid. Comparisons are made with the case of the oscillations of a single tube, for which a lot of results are available in the literature. Different fluid flow pattern may be found, depending in the Reynolds number (related to the velocity of the bundle) and the Keulegan Carpenter number (related to the displacement of the bundle). A special attention is paid to the quantification of the inertial and dissipative effects, and to the forces exchanges between the bundle and the fluid. The results of such analysis will be used in the building of models based on the homogenization of the Navier

  20. Particle image velocimetry experiments on a macro-scale model for bacterial flagellar bundling

    NASA Astrophysics Data System (ADS)

    Kim, Min Jun; Kim, Mun Ju; Bird, James. C.; Park, Jinil; Powers, Thomas. R.; Breuer, Kenneth S.

    2004-12-01

    Escherichia coli (E. coli) and other bacteria are propelled through water by several helical flagella, which are rotated by motors embedded at random points on the cell wall. Depending on the handedness and rotation sense, the motion of the flagella induces a flow field that causes them to wrap around each other and form a bundle. Our objective is to understand and model the mechanics of this process. Full-scale flagella are 10 μm in length, 20 nm in diameter, and turn at a rate of 100 Hz. To accurately simulate bundling at a more easily observable scale, we built a scale model in which 20-cm-long helices are rotated in 100,000 cp silicone oil (Poly-di-methyl-siloxane). The highly viscous oil ensures an appropriately low Reynolds number. We developed a macro-scale particle image velocimetry (PIV) system to measure the full-field velocity distribution for rotating rigid helices and rotating flexible helices. In the latter case, the helices were made from epoxy-filled plastic tubing to give approximately the same ratio of elastic to viscous stresses as in the full-scale flagella. Comparison between PIV measurements and slender-body calculations shows good agreement for the case of rigid helices. For the flexible helices, we find that the flow field generated by a bundle in the steady state is well approximated by the flow generated by a single rigid helix with twice the filament radius.

  1. Irradiation performance of long-rod duplex fuel-pellet bundle test - LDR test (AWBA Development Program)

    SciTech Connect

    Waldman, L.A.; Sphar, C.D.; Alff, T.H.

    1982-04-01

    The Long Duplex Rod (LDR) test is a five-rod bundle irradiation test of 0.30-inch diameter, 8-foot long, Zircaloy-clad rods containing duplex fuel pellets. These pellets include fissile material in an outer annulus surrounding fertile material in an inner cylindrical core. The rods are axially supported by top or bottom base plates and are laterally supported by an AM-350 stainless steel grid system. Design of the test, which includes duplex pellet annuli of three different compositions (UO/sub 2/, ZrO/sub 2/-UO/sub 2/-CaO, and ThO/sub 2/-UO/sub 2/), is described; and results of nondestructive examination after operation at peak linear power output of 9 to 18 Kw/ft to a peak depletion of 15 x 10/sup 20/ fissions/cm/sup 3/ of compartment (6.0 x 10/sup 4/ MWD/Tonne U + Th), or 30 x 10/sup 20/ fissions/cm/sup 3/ of fuel annulus volume (1.2 x 10/sup 5/ MWD/Tonne U + Th), are presented. It is concluded that performance capability of the duplex pellets is satisfactory for use in prebreeder reactor cores.

  2. Mechanics of progressive failures leading to rapid shallow landslides using the fiber bundle model

    NASA Astrophysics Data System (ADS)

    Cohen, Denis; Schwarz, Massimiliano; Or, Dani

    2010-05-01

    Shallow landslides are often sudden events caused by the rapid failure of a slip surface. Yet, such global failure is the culmination of a series of steps that begin with the initiation and growth of local cracks and failure planes that, with increased load eventually coalesce to form a continuous surface. The dynamics of such failure events is controlled, in part, by the rate of soil weakening during water infiltration and by distribution of tree roots that span across these failure zones. Conventional approaches rely on static limit-equilibrium analysis to compute the ratio of soil resistive strength to gravitational driving forces (factor of safety) to determine slope stability, often ignoring dynamics leading to failure as well as heterogeneities associated with land cover, subsurface material properties, hydrologic pathways, and presence of biological elements such as roots. Casting the problem in terms of stable or unstable slope does not describe the progressive formation of cracks in heterogeneous soils or the failure of roots that stretch across tension cracks or basal shear planes. Here we use the fiber bundle model (FBM) to describe soil and root failure focusing on landslide initiation. The FBM consists of a bundle of parallel, elastic-brittle fibers of identical length and stiffness stretched quasi-statically between two plates. Heterogeneity is introduced by fibers having finite threshold strength drawn randomly from a probability density function. Step-loading of the bundle causes weak fibers to break and load redistribution (either global or local) among surviving fibers can trigger secondary, tertiary, and so on, failures, a process known as an avalanche. We illustrate the potential utility of the FBM for two cases: (1) modeling of lateral root reinforcement where fibers represent roots of different sizes and strengths, and (2) modeling of progressive weakening of soils by water infiltration where fibers are analogs of bonds between soil aggregates

  3. Exploring Differential Bundle Functioning in Mathematics by Gender: The Effect of Hierarchical Modelling

    ERIC Educational Resources Information Center

    Ong, Yoke Mooi; Williams, Julian; Lamprianou, Iasonas

    2013-01-01

    Researchers interested in exploring substantive group differences are increasingly attending to bundles of items (or testlets): the aim is to understand how gender differences, for instance, are explained by differential performances on different types or bundles of items, hence differential bundle functioning (DBF). Some previous work has…

  4. Creep damage in a localized load sharing fibre bundle model with additional ageing

    NASA Astrophysics Data System (ADS)

    Lennartz-Sassinek, Sabine; Danku, Zsuzsa; Main, Ian; Kun, Ferenc

    2013-04-01

    Many fields of science are interested in the damage growth in earth materials. Often the damage propagates not in big avalanches like the crack growth measured by acoustic emissions. Also "silent" damage may occur whose emissions are either to small to be detected or mix with back ground noise. These silent emissions may carry the majority of the over all damage in a system until failure. One famous model for damage growth is the fibre bundle model. Here we consider an extended version of a localized load sharing fibre bundle model which incorporates additional time dependent ageing of each fibre motivated by a chemically active environment. We present the non-trivial time dependent damage growth in this model in the low load limit representing creep damage far away from failure. We show both numerical simulations and analytical equations describing the damage rate of silent events and the corresponding amount of triggered "acoustic" damage. The analytical description is in agreement with the numerical results.

  5. Probabilistic clustering and shape modelling of white matter fibre bundles using regression mixtures.

    PubMed

    Ratnarajah, Nagulan; Simmons, Andy; Hojjatoleslami, Ali

    2011-01-01

    We present a novel approach for probabilistic clustering of white matter fibre pathways using curve-based regression mixture modelling techniques in 3D curve space. The clustering algorithm is based on a principled method for probabilistic modelling of a set of fibre trajectories as individual sequences of points generated from a finite mixture model consisting of multivariate polynomial regression model components. Unsupervised learning is carried out using maximum likelihood principles. Specifically, conditional mixture is used together with an EM algorithm to estimate cluster membership. The result of clustering is a probabilistic assignment of fibre trajectories to each cluster and an estimate of cluster parameters. A statistical shape model is calculated for each clustered fibre bundle using fitted parameters of the probabilistic clustering. We illustrate the potential of our clustering approach on synthetic and real data. PMID:21995009

  6. Micro-scale Modeling of Flow and Oxygen Transfer in Hollow Fiber Membrane Bundle

    PubMed Central

    Taskin, M. Ertan; Fraser, Katharine H.; Zhang, Tao; Griffith, Bartley P.; Wu, Zhongjun J.

    2010-01-01

    The aim of this work was to develop a modeling approach to solve the flow and oxygen transfer when the blood passes through the hollow-fiber membrane bundle. For this purpose, a “two-region” modeling approach was developed regarding the hollow fiber and blood regions. The oxygen transfer in these regions was defined with separate diffusion processes. Two dimensional single and multi-fiber geometries were created and flow solutions were obtained for a non-Newtonian fluid. The convection-diffusion-reaction equation was solved to produce the oxygen partial pressure distributions. As a benefit of coupling the interstitial flow field into the oxygen transfer through the hollow-fiber membrane bundle, the membrane resistance was taken into consideration. Thus, varying oxygen partial pressures were observed on the outer fiber surface, which is contrary to the common simplifying assumptions of negligible membrane resistance and uniform oxygen content on the fiber surface (Traditional approach). It was illustrated that, the current approach can be utilized to predict the mass transfer efficiencies without overestimating as compared to the predictions obtained with the traditional approach. Utilization of the current approach was found to be beneficial for the geometries with lower packing density which allows significant PO2 variations on the fiber surfaces. For the geometries with dense packings, the above simplifying assumptions could be applicable. The model predictions were validated with the experimental measurements taken from a benchmark device. PMID:20802783

  7. Alternative Motor Fuel Use Model

    Energy Science and Technology Software Center (ESTSC)

    1992-11-16

    AMFU is a tool for the analysis and prediction of motor fuel use by highway vehicles. The model advances the art of vehicle stock modeling by including a representation of the choice of motor fuel for flexible and dual fuel vehicles.

  8. Application of Voronoi tesselation for modeling randomly packed hollow-fiber bundles

    SciTech Connect

    Chen, V.; Hlavacek, M. . Centre for Membrane Science and Technology)

    1994-04-01

    Hollow-fiber modules consisting of fiber bundles in a tube and shell configuration have been used in many applications such as filtration or contactor devices. They are being studied for use in membrane distillation and other separation processes. Recent applications also include bioreactors. Influence of local voids on flow maldistribution in randomly packed fiber bundles is examined by Voronoi tessellation. A theoretical expression for the local void distribution caused by random placement of fibers is developed by using a random-cell model. Simulations and packing experiments have been conducted to assess the accuracy of the theoretical distribution of cell sizes: In the case of shell side, laminar flow parallel to the fibers, the theoretical distribution is used to estimate fRe (friction factor times Reynolds number) and volumetric flows, and to compare results with ordered arrays and experimental data from literature. The results are used to assess the contributions of local voidage variations to flow bypass. This has implications for the prediction of pressure drop and heat and mass transfer in hollow-fiber module applications where transport is dominated by flow on the shell side.

  9. Tensile forces and failure characteristics of individual and bundles of roots embedded in soil - experiments and modeling

    NASA Astrophysics Data System (ADS)

    Schwarz, Massimiliano; Cohen, Dedis; Or, Dani

    2010-05-01

    The quantification of soil root reinforcement is relevant for many aspects of hillslope stability and forest management. The abundance and distribution of roots in upper soil layers determines slope stability and is considered a mitigating factor reducing shallow landslide hazard. Motivated by advances in modeling approaches that account for soil-root mechanical interactions at single root and bundle of roots of different geometries (the root bundle model - RBM), we set up a series of root pull out experiments in the laboratory and in the field to study the mechanical behavior of pulled roots. We focused on the role of displacement and root failure mechanisms in determining global tensile strength and failure dynamics in a root bundle. Strain controlled pull out tests of up to 13 roots in parallel each with its own force measurements provided insights into the detailed soil-root and bundle interactions . The results enabled systematic evaluation of factors such as root tortuosity and branching patterns for the prediction of single root pull out behavior, and demonstrated the importance of root diameter distribution for realistic prediction of global pullout behavior of a root bundle. Analyses of root-soil interface friction shows that force-displacement behavior varies for different combinations of soil types and water content. The maximal pull out interfacial friction ranges between 1 for wet sand (under 2 kPa confining pressure) and 17 kPa for dry sand (under 4.5 kPa confining pressure). These experiments were instrumental for calibration of the RBM which was later validated with six field experiments on natural root bundles of spruce (Picea abies L.). The tests demonstrated the progressive nature of failure of a bundle of roots under strain controlled conditions (such as formation of tension crack on a vegetated hillslope), and provide important insights regarding stress-strain behavior of natural root reinforcement.

  10. Fractal frontiers of bursts and cracks in a fiber bundle model of creep rupture.

    PubMed

    Danku, Zsuzsa; Kun, Ferenc; Herrmann, Hans J

    2015-12-01

    We investigate the geometrical structure of breaking bursts generated during the creep rupture of heterogeneous materials. Using a fiber bundle model with localized load sharing we show that bursts are compact geometrical objects; however, their external frontiers have a fractal structure which reflects their growth dynamics. The perimeter fractal dimension of bursts proved to have the universal value 1.25 independent of the external load and of the amount of disorder in the system. We conjecture that according to their geometrical features, breaking bursts fall in the universality class of loop-erased self-avoiding random walks with perimeter fractal dimension 5/4 similar to the avalanches of Abelian sand pile models. The fractal dimension of the growing crack front along which bursts occur proved to increase from 1 to 1.25 as bursts gradually cover the entire front. PMID:26764698

  11. Fractal frontiers of bursts and cracks in a fiber bundle model of creep rupture

    NASA Astrophysics Data System (ADS)

    Danku, Zsuzsa; Kun, Ferenc; Herrmann, Hans J.

    2015-12-01

    We investigate the geometrical structure of breaking bursts generated during the creep rupture of heterogeneous materials. Using a fiber bundle model with localized load sharing we show that bursts are compact geometrical objects; however, their external frontiers have a fractal structure which reflects their growth dynamics. The perimeter fractal dimension of bursts proved to have the universal value 1.25 independent of the external load and of the amount of disorder in the system. We conjecture that according to their geometrical features, breaking bursts fall in the universality class of loop-erased self-avoiding random walks with perimeter fractal dimension 5/4 similar to the avalanches of Abelian sand pile models. The fractal dimension of the growing crack front along which bursts occur proved to increase from 1 to 1.25 as bursts gradually cover the entire front.

  12. A two-phase flow regime map for a MAPLE-type nuclear research reactor fuel channel: Effect of hexagonal finned bundle

    SciTech Connect

    Harvel, G.D.; Chang, J.S.; Krishnan, V.S.

    1997-05-01

    A two-phase flow regime map is developed experimentally and theoretically for a vertical hexagonal flow channel with and without a 36-finned rod hexagonal bundle. This type of flow channel is of interest to MAPLE-type nuclear research reactors. The flow regime maps are determined by visual observations and observation of waveforms shown by a capacitance-type void fraction meter. The experimental results show that the inclusion of the finned hexagonal bundle shifts the flow regime transition boundaries toward higher water flow rates. Existing flow regime maps based on pipe flow require slight modifications when applied to the hexagonal flow channel with and without a MAPLE-type finned hexagonal bundle. The proposed theoretical model agrees well with experimental results.

  13. Fuel bundle assembly machine

    SciTech Connect

    Tunnell, G.W.; Schoenig, F.C. Jr.; Mc Lemore, D.R.; Patterson, R.G.

    1987-03-17

    An apparatus is described for placing elongate objects of substantially identical size and shape in a coordinate array in a support structure. The objects are parallel and mutually spaced from each other and each object occupies a designated coordinate position as determined by an identifying code carried by each object; the apparatus comprising: a queuing station for holding the plurality of objects; means for selectively removing the objects from the queuing station one at a time; means for reading the code on the removed objects; means responsive to each code read for positioning the corresponding object in horizontal and vertical alignment with the coordinate position; transport means for longitudinally moving each of the aligned objects into the two-dimensional coordinate position; and control means responsive to the presence of each object in a plurality of critical positions during its transfer between the queuing station and the coordinate position for timing and confirming the proper operation of the apparatus.

  14. Ensemble phase averaging equations for multiphase flows in porous media, part I: the bundle-of-tubes model

    SciTech Connect

    Yang, Dali; Zhang, Duan; Currier, Robert

    2008-01-01

    A bundle-of-tubes construct is used as a model system to study ensemble averaged equations for multiphase flow in a porous material. Momentum equations for the fluid phases obtained from the method are similar to Darcy's law, but with additional terms. We study properties of the additional terms, and the conditions under which the averaged equations can be approximated by the diffusion model or the extended Darcy's law as often used in models for multiphase flows in porous media. Although the bundle-of-tubes model is perhaps the simplest model for a porous material, the ensemble averaged equation technique developed in this paper assumes the very same form in more general treatments described in Part 2 of the present work (Zhang 2009). Any model equation system intended for the more general cases must be understood and tested first using simple models. The concept of ensemble phase averaging is dissected here in physical terms, without involved mathematics through its application to the idealized bundle-of-tubes model for multiphase flow in porous media.

  15. Permeability estimation of porous media by using an improved capillary bundle model based on micro-CT derived pore geometries

    NASA Astrophysics Data System (ADS)

    Jiang, Lanlan; Liu, Yu; Teng, Ying; Zhao, Jiafei; Zhang, Yi; Yang, Mingjun; Song, Yongchen

    2016-03-01

    The purpose of this work is to develop a permeability estimation method for porous media. This method is based on an improved capillary bundle model by introducing some pore geometries. We firstly carried out micro-CT scans to extract the 3D digital model of porous media. Then we applied a maximum ball extraction method to the digital model to obtain the topological and geometrical pore parameters such as the pore radius, the throat radius and length and the average coordination number. We also applied a random walker method to calculate the tortuosity factors of porous media. We improved the capillary bundle model by introducing the pore geometries and tortuosity factors. Finally, we calculated the absolute permeabilities of four kinds of porous media formed of glass beads and compared the results with experiments and several other models to verify the improved model. We found that the calculated permeabilities using this improved capillary bundle model show better agreement with the measured permeabilities than the other methods.

  16. Bundled Payment in Total Joint Care: Survey of AAHKS Membership Attitudes and Experience with Alternative Payment Models.

    PubMed

    Kamath, Atul F; Courtney, Paul M; Bozic, Kevin J; Mehta, Samir; Parsley, Brian S; Froimson, Mark I

    2015-12-01

    The goal of alternative payment models (APMs), particularly bundling of payments in total joint arthroplasty (TJA), is to incentivize physicians, hospitals, and payers to deliver quality care at lower cost. To study the effect of APMs on the field of adult reconstruction, we conducted a survey of AAHKS members using an electronic questionnaire format. Of the respondents, 61% are planning to or participate in an APM. 45% of respondents feel that a bundled payment system will be the most effective model to improve quality and to reduce costs. Common concerns were disincentives to operate on high-risk patients (94%) and uncertainty about revenue sharing (79%). While many members feel that APMs may improve value in TJA, surgeons continue to have reservations about implementation. PMID:26077149

  17. Dynamic subgrid scale model used in a deep bundle turbulence prediction using the large eddy simulation method

    SciTech Connect

    Barsamian, H.R.; Hassan, Y.A.

    1996-12-01

    Turbulence is one of the most commonly occurring phenomena of engineering interest in the field of fluid mechanics. Since most flows are turbulent, there is a significant payoff for improved predictive models of turbulence. One area of concern is the turbulent buffeting forces experienced by the tubes in steam generators of nuclear power plants. Although the Navier-Stokes equations are able to describe turbulent flow fields, the large number of scales of turbulence limit practical flow field calculations with current computing power. The dynamic subgrid scale closure model of Germano et. al (1991) is used in the large eddy simulation code GUST for incompressible isothermal flows. Tube bundle geometries of staggered and non-staggered arrays are considered in deep bundle simulations. The advantage of the dynamic subgrid scale model is the exclusion of an input model coefficient. The model coefficient is evaluated dynamically for each nodal location in the flow domain. Dynamic subgrid scale results are obtained in the form of power spectral densities and flow visualization of turbulent characteristics. Comparisons are performed among the dynamic subgrid scale model, the Smagorinsky eddy viscosity model (Smagorinsky, 1963) (that is used as the base model for the dynamic subgrid scale model) and available experimental data. Spectral results of the dynamic subgrid scale model correlate better with experimental data. Satisfactory turbulence characteristics are observed through flow visualization.

  18. Granular Shear Zone Formation: Acoustic Emission Measurements and Fiber-bundle Models

    NASA Astrophysics Data System (ADS)

    Michlmayr, Gernot; Or, Dani

    2013-04-01

    We couple the acoustic emissions method with conceptual models of granular material behavior for investigation of granular shear zone formation and to assess eminence of landslide hazard. When granular materials are mechanically loaded or sheared, they tend to produce discrete events of force network restructuring, and frictional interaction at grain contacts. Such abrupt perturbations within the granular lattice release part of the elastic energy stored in the strained material. Elastic waves generated by such events can be measured as acoustic emissions (AE) and may be used as surrogates for intermittent structural transitions associated with shear zone formation. To experimentally investigate the connection between granular shearing and acoustic signals we performed an array of strain-controlled shear-frame tests using glass beads. AE were measured with two different systems operating at two frequency ranges. High temporal resolution measurements of the shear stresses revealed the presence of small fluctuations typically associated with low-frequency (< 20 kHz) acoustic bursts. Shear stress jumps and linked acoustic signals give account of discrete events of grain network rearrangements and obey characteristic exponential frequency-size distributions. We found that statistical features of force jumps and AE events depend on mechanical boundary conditions and evolve during the straining process. Activity characteristics of high-frequency (> 30 kHz) AE events is linked to friction between grains. To interpret failure associated AE signals, we adapted a conceptual fiber-bundle model (FBM) that describes some of the salient statistical features of failure and associated energy production. Using FBMs for the abrupt mechanical response of the granular medium and an associated grain and force chain AE generation model provides us with a full description of the mechanical-acoustical granular shearing process. Highly resolved AE may serve as a diagnostic tool not only

  19. Sensitivity of the "Root Bundle Model" to root mechanical properties and root distribution: Implication for shallow landslide stability.

    NASA Astrophysics Data System (ADS)

    Schwarz, Massimiliano; Giadrossich, Filippo; Cohen, Denis

    2015-04-01

    Root reinforcement is recognized as an important factor for shallow landslides stability. Due to the complexity of root reinforcement mechanisms and the heterogeneity of the root-soil system, the estimation of parameters used in root reinforcement models is difficult, time consuming, and often highly uncertain. For practical applications, it is necessary to focus on the estimation of the most relevant parameters. The objective of the present contribution is to review the state of the art in the development of root reinforcement models and to discuss the sensitivity of the "Root Bundle Model" (RBM) when considering the variability of root mechanical properties and the heterogeneity of root distributions. The RBM is a strain-step loading fiber bundle model extended to include the mechanical and geometrical properties of roots. The model allows the calculation of the force-displacement behavior of a root bundle. In view of new results of field pullout tests performed on coarse roots of spruce (Picea abies) and considering a consistent dataset of root distribution of alpine tree species, we quantify the sensitivity of the RBM and the uncertainty associated with the most important input parameters. Preliminary results show that the extrapolation of force-diameter values from incomplete datasets (i.e., when only small roots are tested and values for coarse roots are extrapolated) may result in considerable errors. In particular, in the case of distributions with root diameters larger than 5 mm, root reinforcement tends to be dominated by coarse roots and their mechanical properties need to be quantified. In addition to the results of the model sensitivity, we present a possible best-practice method for the quantification of root reinforcement in view of its application to slope stability calculations and implementations in numerical models.

  20. Assessment of CCFL model of RELAP5/MOD3 against simple vertical tubes and rod bundle tests. International Agreement Report

    SciTech Connect

    Cho, S.; Arne, N.; Chung, B.D.; Kim, H.J.

    1993-06-01

    The CCFL model used in RELAP5/MOD3 version 5m5 has been assessed against simple vertical tubes and bundle tests performed at a facility of Korea Atomic Energy Research Institute. The effect of changes in tube diameter and nodalization of tube section were investigated. The roles of interfacial drags on the flooding characteristics are discussed. Differences between the calculation and the experiment are also discussed. A comparison between model assessment results and the test data showed that the calculated value lay well on the experimental flooding curve specified by user, but the pressure jump before onset of flooding was not calculated.

  1. High Burnup Fuel Behavior Modeling

    SciTech Connect

    Jahingir, M.; Rand, R.; Stachowski, R.; Miles, B.; Kusagaya, K.

    2007-07-01

    This paper discusses the development and qualification of the PRIME03 code to address high burnup mechanisms and to improve uranium utilization in current and new reactor designs. Materials properties and behavioral models have been updated from previous thermal-mechanical codes to reflect the effects of burnup on fuel pellet thermal conductivity, Zircaloy creep, fuel pellet relocation, and fission gas release. These new models are based on results of in-pool and post irradiation examination (PIE) of commercial boiling water reactor (BWR) fuel rods at high burnup and results from international experimental programs. The new models incorporated into PRIME03 also address specific high burnup effects associated with formation of pellet rim porosity at high exposure. The PRIME03 code is qualified by comparison of predicted and measured fuel performance parameters for a large number of high, low, and moderate burnup test and commercial reactor rod. The extensive experimental qualification of the PRIME03 prediction capabilities confirms that it is a reliable best-estimate predictor of fuel rod thermal-mechanical performance over a wide range of design and operating conditions. (authors)

  2. Modeling flow through inline tube bundles using an adaptive immersed boundary method

    NASA Astrophysics Data System (ADS)

    Liang, Chunlei; Luo, Xiaoyu; Griffith, Boyce

    2007-11-01

    Fluid flow and its exerted forces on the tube bundle cylinders are important in designing mechanical/nuclear heat exchanger facilities. In this paper, we study the vortex structure of the flow around the tube bundle for different tube spacing. An adaptive, formally 2^nd order immersed boundary (IB) method is used to simulate the flow. One advantage of the IB method is its great flexibility and ease in positioning solid bodies in the fluid domain. Our IB approach uses a six-point regularized delta function and is a type of continuous forcing approach. Validation results obtained using the IB method for two-in-tandem cylinders compare well with those obtained using the finite volume or spectral element methods on unstructured grids. Subsequently, we simulated flow through six-row inline tube bundles with pitch-to-diameter ratios of 2.1, 3.2, and 4, respectively, on structured adaptively refined Cartesian grids. The IB method enables us to study the critical tube spacing when the flow regime switches from the vortex reattachment pattern to alternative individual vortex shedding.

  3. Dynamics of flagellar bundling

    NASA Astrophysics Data System (ADS)

    Janssen, Pieter; Graham, Michael

    2010-11-01

    Flagella are long thin appendages of microscopic organisms used for propulsion in low-Reynolds environments. For E. coli the flagella are driven by a molecular motor, which rotates the flagella in a counter-clockwise motion (CCM). When in a forward swimming motion, all flagella bundle up. If a motor reverses rotation direction, the flagella unbundle and the cell makes a tumbling motion. When all motors turn in the same CC direction again, the flagella bundle up, and forward swimming continues. To investigate the bundling, we consider two flexible helices next to each other, as well as several flagella attached to a spherical body. Each helix is modeled as several prolate spheroids connected at the tips by springs. For hydrodynamic interactions, we consider the flagella to made up of point forces, while the finite size of the body is incorporated via Fax'en's laws. We show that synchronization occurs quickly relative to the bundling process. For flagella next to each other, the initial deflection is generated by rotlet interactions generated by the rotating helices. At longer times, simulations show the flagella only wrap once around each other, but only for flagella that are closer than about 4 helix radii. Finally, we show a run-and-tumble motion of the body with attached flagella.

  4. Change in the Pathologic Supraspinatus: A Three-Dimensional Model of Fiber Bundle Architecture within Anterior and Posterior Regions.

    PubMed

    Kim, Soo Y; Sachdeva, Rohit; Li, Zi; Lee, Dongwoon; Rosser, Benjamin W C

    2015-01-01

    Supraspinatus tendon tears are common and lead to changes in the muscle architecture. To date, these changes have not been investigated for the distinct regions and parts of the pathologic supraspinatus. The purpose of this study was to create a novel three-dimensional (3D) model of the muscle architecture throughout the supraspinatus and to compare the architecture between muscle regions and parts in relation to tear severity. Twelve cadaveric specimens with varying degrees of tendon tears were used. Three-dimensional coordinates of fiber bundles were collected in situ using serial dissection and digitization. Data were reconstructed and modeled in 3D using Maya. Fiber bundle length (FBL) and pennation angle (PA) were computed and analyzed. FBL was significantly shorter in specimens with large retracted tears compared to smaller tears, with the deeper fibers being significantly shorter than other parts in the anterior region. PA was significantly greater in specimens with large retracted tears, with the superficial fibers often demonstrating the largest PA. The posterior region was absent in two specimens with extensive tears. Architectural changes associated with tendon tears affect the regions and varying depths of supraspinatus differently. The results provide important insights on residual function of the pathologic muscle, and the 3D model includes detailed data that can be used in future modeling studies. PMID:26413533

  5. Change in the Pathologic Supraspinatus: A Three-Dimensional Model of Fiber Bundle Architecture within Anterior and Posterior Regions

    PubMed Central

    Kim, Soo Y.; Sachdeva, Rohit; Li, Zi; Lee, Dongwoon; Rosser, Benjamin W. C.

    2015-01-01

    Supraspinatus tendon tears are common and lead to changes in the muscle architecture. To date, these changes have not been investigated for the distinct regions and parts of the pathologic supraspinatus. The purpose of this study was to create a novel three-dimensional (3D) model of the muscle architecture throughout the supraspinatus and to compare the architecture between muscle regions and parts in relation to tear severity. Twelve cadaveric specimens with varying degrees of tendon tears were used. Three-dimensional coordinates of fiber bundles were collected in situ using serial dissection and digitization. Data were reconstructed and modeled in 3D using Maya. Fiber bundle length (FBL) and pennation angle (PA) were computed and analyzed. FBL was significantly shorter in specimens with large retracted tears compared to smaller tears, with the deeper fibers being significantly shorter than other parts in the anterior region. PA was significantly greater in specimens with large retracted tears, with the superficial fibers often demonstrating the largest PA. The posterior region was absent in two specimens with extensive tears. Architectural changes associated with tendon tears affect the regions and varying depths of supraspinatus differently. The results provide important insights on residual function of the pathologic muscle, and the 3D model includes detailed data that can be used in future modeling studies. PMID:26413533

  6. Development of burnup dependent fuel rod model in COBRA-TF

    NASA Astrophysics Data System (ADS)

    Yilmaz, Mine Ozdemir

    The purpose of this research was to develop a burnup dependent fuel thermal conductivity model within Pennsylvania State University, Reactor Dynamics and Fuel Management Group (RDFMG) version of the subchannel thermal-hydraulics code COBRA-TF (CTF). The model takes into account first, the degradation of fuel thermal conductivity with high burnup; and second, the fuel thermal conductivity dependence on the Gadolinium content for both UO2 and MOX fuel rods. The modified Nuclear Fuel Industries (NFI) model for UO2 fuel rods and Duriez/Modified NFI Model for MOX fuel rods were incorporated into CTF and fuel centerline predictions were compared against Halden experimental test data and FRAPCON-3.4 predictions to validate the burnup dependent fuel thermal conductivity model in CTF. Experimental test cases from Halden reactor fuel rods for UO2 fuel rods at Beginning of Life (BOL), through lifetime without Gd2O3 and through lifetime with Gd 2O3 and a MOX fuel rod were simulated with CTF. Since test fuel rod and FRAPCON-3.4 results were based on single rod measurements, CTF was run for a single fuel rod surrounded with a single channel configuration. Input decks for CTF were developed for one fuel rod located at the center of a subchannel (rod-centered subchannel approach). Fuel centerline temperatures predicted by CTF were compared against the measurements from Halden experimental test data and the predictions from FRAPCON-3.4. After implementing the new fuel thermal conductivity model in CTF and validating the model with experimental data, CTF model was applied to steady state and transient calculations. 4x4 PWR fuel bundle configuration from Purdue MOX benchmark was used to apply the new model for steady state and transient calculations. First, one of each high burnup UO2 and MOX fuel rods from 4x4 matrix were selected to carry out single fuel rod calculations and fuel centerline temperatures predicted by CTF/TORT-TD were compared against CTF /TORT-TD /FRAPTRAN

  7. Alternative fuels and vehicles choice model

    SciTech Connect

    Greene, D.L.

    1994-10-01

    This report describes the theory and implementation of a model of alternative fuel and vehicle choice (AFVC), designed for use with the US Department of Energy`s Alternative Fuels Trade Model (AFTM). The AFTM is a static equilibrium model of the world supply and demand for liquid fuels, encompassing resource production, conversion processes, transportation, and consumption. The AFTM also includes fuel-switching behavior by incorporating multinomial logit-type equations for choice of alternative fuel vehicles and alternative fuels. This allows the model to solve for market shares of vehicles and fuels, as well as for fuel prices and quantities. The AFVC model includes fuel-flexible, bi-fuel, and dedicated fuel vehicles. For multi-fuel vehicles, the choice of fuel is subsumed within the vehicle choice framework, resulting in a nested multinomial logit design. The nesting is shown to be required by the different price elasticities of fuel and vehicle choice. A unique feature of the AFVC is that its parameters are derived directly from the characteristics of alternative fuels and vehicle technologies, together with a few key assumptions about consumer behavior. This not only establishes a direct link between assumptions and model predictions, but facilitates sensitivity testing, as well. The implementation of the AFVC model as a spreadsheet is also described.

  8. Modeling of the energy savings of variable recruitment McKibben muscle bundles

    NASA Astrophysics Data System (ADS)

    Meller, Michael A.; Chipka, Jordan B.; Bryant, Matthew J.; Garcia, Ephrahim

    2015-03-01

    McKibben artificial muscles are often utilized in mobile robotic applications that require compliant and light weight actuation capable of producing large forces. In order to increase the endurance of these mobile robotic platforms, actuation efficiency must be addressed. Since pneumatic systems are rarely more than 30% efficient due to the compressibility of the working fluid, the McKibben muscles are hydraulically powered. Additionally, these McKibben artificial muscles utilize an inelastic bladder to reduce the energy losses associated with elastic energy storage in the usual rubber tube bladders. The largest energy losses in traditional valve-controlled hydraulic systems are found in the valving implementation to match the required loads. This is performed by throttling, which results in large pressure drops over the control valves and significant fluid power being wasted as heat. This paper discusses how these throttling losses are reduced by grouping multiple artificial muscles to form a muscle bundle where, like in skeletal muscle, more elements that make up the muscle bundle are recruited to match the load. This greatly lessens the pressure drops by effectively changing the actuator area, leading to much higher efficiencies over a broader operation envelope. Simulations of several different loading scenarios are discussed that reveal the benefits of such an actuation scheme.

  9. Spent nuclear fuel reprocessing modeling

    SciTech Connect

    Tretyakova, S.; Shmidt, O.; Podymova, T.; Shadrin, A.; Tkachenko, V.; Makeyeva, I.; Tkachenko, V.; Verbitskaya, O.; Schultz, O.; Peshkichev, I.

    2013-07-01

    The long-term wide development of nuclear power requires new approaches towards the realization of nuclear fuel cycle, namely, closed nuclear fuel cycle (CNFC) with respect to fission materials. Plant nuclear fuel cycle (PNFC), which is in fact the reprocessing of spent nuclear fuel unloaded from the reactor and the production of new nuclear fuel (NF) at the same place together with reactor plant, can be one variant of CNFC. Developing and projecting of PNFC is a complicated high-technology innovative process that requires modern information support. One of the components of this information support is developed by the authors. This component is the programme conducting calculations for various variants of process flow sheets for reprocessing SNF and production of NF. Central in this programme is the blocks library, where the blocks contain mathematical description of separate processes and operations. The calculating programme itself has such a structure that one can configure the complex of blocks and correlations between blocks, appropriate for any given flow sheet. For the ready sequence of operations balance calculations are made of all flows, i.e. expenses, element and substance makeup, heat emission and radiation rate are determined. The programme is open and the block library can be updated. This means that more complicated and detailed models of technological processes will be added to the library basing on the results of testing processes using real equipment, in test operating mode. The development of the model for the realization of technical-economic analysis of various variants of technologic PNFC schemes and the organization of 'operator's advisor' is expected. (authors)

  10. Chemical Kinetic Modeling of Advanced Transportation Fuels

    SciTech Connect

    PItz, W J; Westbrook, C K; Herbinet, O

    2009-01-20

    Development of detailed chemical kinetic models for advanced petroleum-based and nonpetroleum based fuels is a difficult challenge because of the hundreds to thousands of different components in these fuels and because some of these fuels contain components that have not been considered in the past. It is important to develop detailed chemical kinetic models for these fuels since the models can be put into engine simulation codes used for optimizing engine design for maximum efficiency and minimal pollutant emissions. For example, these chemistry-enabled engine codes can be used to optimize combustion chamber shape and fuel injection timing. They also allow insight into how the composition of advanced petroleum-based and non-petroleum based fuels affect engine performance characteristics. Additionally, chemical kinetic models can be used separately to interpret important in-cylinder experimental data and gain insight into advanced engine combustion processes such as HCCI and lean burn engines. The objectives are: (1) Develop detailed chemical kinetic reaction models for components of advanced petroleum-based and non-petroleum based fuels. These fuels models include components from vegetable-oil-derived biodiesel, oil-sand derived fuel, alcohol fuels and other advanced bio-based and alternative fuels. (2) Develop detailed chemical kinetic reaction models for mixtures of non-petroleum and petroleum-based components to represent real fuels and lead to efficient reduced combustion models needed for engine modeling codes. (3) Characterize the role of fuel composition on efficiency and pollutant emissions from practical automotive engines.

  11. Plant trait-based models identify direct and indirect effects of climate change on bundles of grassland ecosystem services

    PubMed Central

    Lamarque, Pénélope; Lavorel, Sandra; Mouchet, Maud; Quétier, Fabien

    2014-01-01

    Land use and climate change are primary causes of changes in the supply of ecosystem services (ESs). Although the consequences of climate change on ecosystem properties and associated services are well documented, the cascading impacts of climate change on ESs through changes in land use are largely overlooked. We present a trait-based framework based on an empirical model to elucidate how climate change affects tradeoffs among ESs. Using alternative scenarios for mountain grasslands, we predicted how direct effects of climate change on ecosystems and indirect effects through farmers’ adaptations are likely to affect ES bundles through changes in plant functional properties. ES supply was overall more sensitive to climate than to induced management change, and ES bundles remained stable across scenarios. These responses largely reflected the restricted extent of management change in this constrained system, which was incorporated when scaling up plot level climate and management effects on ecosystem properties to the entire landscape. The trait-based approach revealed how the combination of common driving traits and common responses to changed fertility determined interactions and tradeoffs among ESs. PMID:25225382

  12. Reconnection of superfluid vortex bundles.

    PubMed

    Alamri, Sultan Z; Youd, Anthony J; Barenghi, Carlo F

    2008-11-21

    Using the vortex filament model and the Gross-Pitaevskii nonlinear Schroedinger equation, we show that bundles of quantized vortex lines in He II are structurally robust and can reconnect with each other maintaining their identity. We discuss vortex stretching in superfluid turbulence and show that, during the bundle reconnection process, kelvin waves of large amplitude are generated, in agreement with the finding that helicity is produced by nearly singular vortex interactions in classical Euler flows. PMID:19113421

  13. Finite element solution of axial turbulent flow in a bare rod bundle using a one-equation turbulence model

    SciTech Connect

    Slagter, W.

    1982-11-01

    A new form of the one-equation turbulence model has been developed and verified by application to fully developed turbulent flow in smooth, bare rod bundles. The present model allows for the effect of anisotropic eddy viscosities on turbulent flow quantities. The finite element method has been used to predict local values of velocity and turbulent kinetic energy right up to the wall. A variational principle is applied to develop the finite element relationships. The resulting set of nonlinear algebraic equations for the nodal parameters is linearized by the successive-substitution scheme and solved by the frontal solution technique. The numerical results are shown to be in good agreement with available experimental data.

  14. COBRA-IV PC: A personal computer version of COBRA-IV-I for thermal-hydraulic analysis of rod bundle nuclear fuel elements and cores

    SciTech Connect

    Webb, B.J.

    1988-01-01

    COBRA-IV PC is a modified version of COBRA-IV-I, adapted for use with most IBM PC and PC-compatible desktop computers. Like COBRA-IV-I, COBRA-IV PC uses the subchannel analysis approach to determine the enthalpy and flow distribution in rod bundles for both steady-state and transient conditions. The steady-state and transient solution schemes used in COBRA-IIIC are still available in COBRA-IV PC as the implicit solution scheme option. An explicit solution scheme is also available, allowing the calculation of severe transients involving flow reversals, recirculations, expulsions, and reentry flows, with a pressure or flow boundary condition specified. In addition, several modifications have been incorporated into COBRA-IV PC to allow the code to run on the PC. These include a reduction in the array dimensions, the removal of the dump and restart options, and the inclusion of several code modifications by Oregon State University, most notably, a critical heat flux correlation for boiling water reactor fuel and a new solution scheme for cross-flow distribution calculations. 7 refs., 8 figs., 1 tab.

  15. Mechanical analysis of congestive heart failure caused by bundle branch block based on an electromechanical canine heart model

    NASA Astrophysics Data System (ADS)

    Dou, Jianhong; Xia, Ling; Zhang, Yu; Shou, Guofa; Wei, Qing; Liu, Feng; Crozier, Stuart

    2009-01-01

    Asynchronous electrical activation, induced by bundle branch block (BBB), can cause reduced ventricular function. However, the effects of BBB on the mechanical function of heart are difficult to assess experimentally. Many heart models have been developed to investigate cardiac properties during BBB but have mainly focused on the electrophysiological properties. To date, the mechanical function of BBB has not been well investigated. Based on a three-dimensional electromechanical canine heart model, the mechanical properties of complete left and right bundle branch block (LBBB and RBBB) were simulated. The anatomical model as well as the fiber orientations of a dog heart was reconstructed from magnetic resonance imaging (MRI) and diffusion tensor MRI (DT-MRI). Using the solutions of reaction-diffusion equations and with a strategy of parallel computation, the asynchronous excitation propagation and intraventricular conduction in BBB was simulated. The mechanics of myocardial tissues were computed with time-, sarcomere length-dependent uniaxial active stress initiated at the time of depolarization. The quantification of mechanical intra- and interventricular asynchrony of BBB was then investigated using the finite-element method with an eight-node isoparametric element. The simulation results show that (1) there exists inter- and intraventricular systolic dyssynchrony during BBB; (2) RBBB may have more mechanical synchrony and better systolic function of the left ventricle (LV) than LBBB; (3) the ventricles always move toward the early-activated ventricle; and (4) the septum experiences higher stress than left and right ventricular free walls in BBB. The simulation results validate clinical and experimental recordings of heart deformation and provide regional quantitative estimates of ventricular wall strain and stress. The present work suggests that an electromechanical heart model, incorporating real geometry and fiber orientations, may be helpful for better

  16. A general model for predicting coolant activity behaviour for fuel-failure monitoring analysis

    NASA Astrophysics Data System (ADS)

    El-Jaby, A.; Lewis, B. J.; Thompson, W. T.; Iglesias, F.; Ip, M.

    2010-04-01

    A mathematical treatment has been developed to predict the release of volatile fission products from operating defective nuclear fuel elements. The fission product activity in both the fuel-to-sheath gap and primary heat transport system as a function of time can be predicted during all reactor operating conditions, including: startup, steady-state, shutdown, and bundle-shifting manoeuvres. In addition, an improved ability to predict the coolant activity of the 135Xe isotope in commercial reactors is discussed. A method is also proposed to estimate both the burnup and the amount of tramp uranium deposits in-core. The model has been validated against in-reactor experiments conducted with defective fuel elements containing natural and artificial failures at the Chalk River Laboratories. Lastly, the model has been benchmarked against a defective fuel occurrence in a commercial reactor.

  17. Delay Tolerant Networking - Bundle Protocol Simulation

    NASA Technical Reports Server (NTRS)

    SeGui, John; Jenning, Esther

    2006-01-01

    In this paper, we report on the addition of MACHETE models needed to support DTN, namely: the Bundle Protocol (BP) model. To illustrate the useof MACHETE with the additional DTN model, we provide an example simulation to benchmark its performance. We demonstrate the use of the DTN protocol and discuss statistics gathered concerning the total time needed to simulate numerous bundle transmissions.

  18. VISION: Verifiable Fuel Cycle Simulation Model

    SciTech Connect

    Jacob J. Jacobson; Abdellatif M. Yacout; Gretchen E. Matthern; Steven J. Piet; David E. Shropshire

    2009-04-01

    The nuclear fuel cycle is a very complex system that includes considerable dynamic complexity as well as detail complexity. In the nuclear power realm, there are experts and considerable research and development in nuclear fuel development, separations technology, reactor physics and waste management. What is lacking is an overall understanding of the entire nuclear fuel cycle and how the deployment of new fuel cycle technologies affects the overall performance of the fuel cycle. The Advanced Fuel Cycle Initiative’s systems analysis group is developing a dynamic simulation model, VISION, to capture the relationships, timing and delays in and among the fuel cycle components to help develop an understanding of how the overall fuel cycle works and can transition as technologies are changed. This paper is an overview of the philosophy and development strategy behind VISION. The paper includes some descriptions of the model and some examples of how to use VISION.

  19. Zebrafish Models for the Mechanosensory Hair Cell Dysfunction in Usher Syndrome 3 Reveal That Clarin-1 Is an Essential Hair Bundle Protein

    PubMed Central

    Gopal, Suhasini R.; Chen, Daniel H.-C.; Chou, Shih-Wei; Zang, Jingjing; Neuhauss, Stephan C.F.; Stepanyan, Ruben; McDermott, Brian M.

    2015-01-01

    Usher syndrome type III (USH3) is characterized by progressive loss of hearing and vision, and varying degrees of vestibular dysfunction. It is caused by mutations that affect the human clarin-1 protein (hCLRN1), a member of the tetraspanin protein family. The missense mutation CLRN1N48K, which affects a conserved N-glycosylation site in hCLRN1, is a common causative USH3 mutation among Ashkenazi Jews. The affected individuals hear at birth but lose that function over time. Here, we developed an animal model system using zebrafish transgenesis and gene targeting to provide an explanation for this phenotype. Immunolabeling demonstrated that Clrn1 localized to the hair cell bundles (hair bundles). The clrn1 mutants generated by zinc finger nucleases displayed aberrant hair bundle morphology with diminished function. Two transgenic zebrafish that express either hCLRN1 or hCLRN1N48K in hair cells were produced to examine the subcellular localization patterns of wild-type and mutant human proteins. hCLRN1 localized to the hair bundles similarly to zebrafish Clrn1; in contrast, hCLRN1N48K largely mislocalized to the cell body with a small amount reaching the hair bundle. We propose that this small amount of hCLRN1N48K in the hair bundle provides clarin-1-mediated function during the early stages of life; however, the presence of hCLRN1N48K in the hair bundle diminishes over time because of intracellular degradation of the mutant protein, leading to progressive loss of hair bundle integrity and hair cell function. These findings and genetic tools provide an understanding and path forward to identify therapies to mitigate hearing loss linked to the CLRN1 mutation. SIGNIFICANCE STATEMENT Mutations in the clarin-1 gene affect eye and ear function in humans. Individuals with the CLRN1N48K mutation are born able to hear but lose that function over time. Here, we develop an animal model system using zebrafish transgenesis and gene targeting to provide an explanation for this

  20. Modeling and Simulation of Nuclear Fuel Materials

    SciTech Connect

    Devanathan, Ram; Van Brutzel, Laurent; Tikare, Veena; Bartel, Timothy; Besmann, Theodore M; Stan, Marius; Van Uffelen, Paul

    2010-01-01

    We review the state of modeling and simulation of nuclear fuels with emphasis on the most widely used nuclear fuel, UO2. The hierarchical scheme presented represents a science-based approach to modeling nuclear fuels by progressively passing information in several stages from ab initio to continuum levels. Such an approach is essential to overcome the challenges posed by radioactive materials handling, experimental limitations in modeling extreme conditions and accident scenarios and small time and distance scales of fundamental defect processes. When used in conjunction with experimental validation, this multiscale modeling scheme can provide valuable guidance to development of fuel for advanced reactors to meet rising global energy demand.

  1. Modeling and Simulation of Nuclear Fuel Materials

    SciTech Connect

    Devanathan, Ramaswami; Van Brutzel, Laurent; Chartier, Alan; Gueneau, Christine; Mattsson, Ann E.; Tikare, Veena; Bartel, Timothy; Besmann, T. M.; Stan, Marius; Van Uffelen, Paul

    2010-10-01

    We review the state of modeling and simulation of nuclear fuels with emphasis on the most widely used nuclear fuel, UO2. The hierarchical scheme presented represents a science-based approach to modeling nuclear fuels by progressively passing information in several stages from ab initio to continuum levels. Such an approach is essential to overcome the challenges posed by radioactive materials handling, experimental limitations in modeling extreme conditions and accident scenarios, and the small time and distance scales of fundamental defect processes. When used in conjunction with experimental validation, this multiscale modeling scheme can provide valuable guidance to development of fuel for advanced reactors to meet rising global energy demand.

  2. His bundle electrography

    MedlinePlus

    ... can be given medicines during the test. Electrocardiogram (ECG) leads are placed on your arms and legs. ... HBE; His bundle recording; Electrogram - His bundle Images ECG References Miller JM, Zipes DP. Diagnosis of cardiac ...

  3. Model Year 2011 Fuel Economy Guide: EPA Fuel Economy Estimates

    SciTech Connect

    2010-11-01

    The Fuel Economy Guide is published by the U.S. Department of Energy as an aid to consumers considering the purchase of a new vehicle. The Guide lists estimates of miles per gallon (mpg) for each vehicle available for the new model year. These estimates are provided by the U.S. Environmental Protection Agency in compliance with Federal Law. By using this Guide, consumers can estimate the average yearly fuel cost for any vehicle. The Guide is intended to help consumers compare the fuel economy of similarly sized cars, light duty trucks and special purpose vehicles.

  4. Model Year 2013 Fuel Economy Guide: EPA Fuel Economy Estimates

    SciTech Connect

    2012-12-01

    The Fuel Economy Guide is published by the U.S. Department of Energy as an aid to consumers considering the purchase of a new vehicle. The Guide lists estimates of miles per gallon (mpg) for each vehicle available for the new model year. These estimates are provided by the U.S. Environmental Protection Agency in compliance with Federal Law. By using this Guide, consumers can estimate the average yearly fuel cost for any vehicle. The Guide is intended to help consumers compare the fuel economy of similarly sized cars, light duty trucks and special purpose vehicles.

  5. Model Year 2012 Fuel Economy Guide: EPA Fuel Economy Estimates

    SciTech Connect

    2011-11-01

    The Fuel Economy Guide is published by the U.S. Department of Energy as an aid to consumers considering the purchase of a new vehicle. The Guide lists estimates of miles per gallon (mpg) for each vehicle available for the new model year. These estimates are provided by the U.S. Environmental Protection Agency in compliance with Federal Law. By using this Guide, consumers can estimate the average yearly fuel cost for any vehicle. The Guide is intended to help consumers compare the fuel economy of similarly sized cars, light duty trucks and special purpose vehicles.

  6. Modeling CANDU-6 liquid zone controllers for effects of thorium-based fuels

    SciTech Connect

    St-Aubin, E.; Marleau, G.

    2012-07-01

    We use the DRAGON code to model the CANDU-6 liquid zone controllers and evaluate the effects of thorium-based fuels on their incremental cross sections and reactivity worth. We optimize both the numerical quadrature and spatial discretization for 2D cell models in order to provide accurate fuel properties for 3D liquid zone controller supercell models. We propose a low computer cost parameterized pseudo-exact 3D cluster geometries modeling approach that avoids tracking issues on small external surfaces. This methodology provides consistent incremental cross sections and reactivity worths when the thickness of the buffer region is reduced. When compared with an approximate annular geometry representation of the fuel and coolant region, we observe that the cluster description of fuel bundles in the supercell models does not increase considerably the precision of the results while increasing substantially the CPU time. In addition, this comparison shows that it is imperative to finely describe the liquid zone controller geometry since it has a strong impact of the incremental cross sections. This paper also shows that liquid zone controller reactivity worth is greatly decreased in presence of thorium-based fuels compared to the reference natural uranium fuel, since the fission and the fast to thermal scattering incremental cross sections are higher for the new fuels. (authors)

  7. Mathematical modeling of polymer electrolyte fuel cells

    NASA Astrophysics Data System (ADS)

    Sousa, Ruy; Gonzalez, Ernesto R.

    Fuel cells with a polymer electrolyte membrane have been receiving more and more attention. Modeling plays an important role in the development of fuel cells. In this paper, the state-of-the-art regarding modeling of fuel cells with a polymer electrolyte membrane is reviewed. Modeling has allowed detailed studies concerning the development of these cells, e.g. in discussing the electrocatalysis of the reactions and the design of water-management schemes to cope with membrane dehydration. Two-dimensional models have been used to represent reality, but three-dimensional models can cope with some important additional aspects. Consideration of two-phase transport in the air cathode of a proton exchange membrane fuel cell seems to be very appropriate. Most fuel cells use hydrogen as a fuel. Besides safety concerns, there are problems associated with production, storage and distribution of this fuel. Methanol, as a liquid fuel, can be the solution to these problems and direct methanol fuel cells (DMFCs) are attractive for several applications. Mass transport is a factor that may limit the performance of the cell. Adsorption steps may be coupled to Tafel kinetics to describe methanol oxidation and methanol crossover must also be taken into account. Extending the two-phase approach to the DMFC modeling is a recent, important point.

  8. Thermochemical modelling of advanced CANDU reactor fuel

    NASA Astrophysics Data System (ADS)

    Corcoran, Emily Catherine

    2009-04-01

    With an aging fleet of nuclear generating facilities, the imperative to limit the use of non-renewal fossil fuels and the inevitable need for additional electricity to power Canada's economy, a renaissance in the use of nuclear technology in Canada is at hand. The experience and knowledge of over 40 years of CANDU research, development and operation in Ontario and elsewhere has been applied to a new generation of CANDU, the Advanced CANDU Reactor (ACR). Improved fuel design allows for an extended burnup, which is a significant improvement, enhancing the safety and the economies of the ACR. The use of a Burnable Neutron Absorber (BNA) material and Low Enriched Uranium (LEU) fuel has created a need to understand better these novel materials and fuel types. This thesis documents a work to advance the scientific and technological knowledge of the ACR fuel design with respect to thermodynamic phase stability and fuel oxidation modelling. For the BNA material, a new (BNA) model is created based on the fundamental first principles of Gibbs energy minimization applied to material phase stability. For LEU fuel, the methodology used for the BNA model is applied to the oxidation of irradiated fuel. The pertinent knowledge base for uranium, oxygen and the major fission products is reviewed, updated and integrated to create a model that is applicable to current and future CANDU fuel designs. As part of this thesis, X-Ray Diffraction (XRD) and Coulombic Titration (CT) experiments are compared to the BNA and LEU models, respectively. From the analysis of the CT results, a number of improvements are proposed to enhance the LEU model and provide confidence in its application to ACR fuel. A number of applications for the potential use of these models are proposed and discussed. Keywords: CANDU Fuel, Gibbs Energy Mimimization, Low Enriched Uranium (LEU) Fuel, Burnable Neutron Absorber (BNA) Material, Coulometric Titration, X-Ray Diffraction

  9. Used Fuel Testing Transportation Model

    SciTech Connect

    Ross, Steven B.; Best, Ralph E.; Maheras, Steven J.; Jensen, Philip J.; England, Jeffery L.; LeDuc, Dan

    2014-09-24

    This report identifies shipping packages/casks that might be used by the Used Nuclear Fuel Disposition Campaign Program (UFDC) to ship fuel rods and pieces of fuel rods taken from high-burnup used nuclear fuel (UNF) assemblies to and between research facilities for purposes of evaluation and testing. Also identified are the actions that would need to be taken, if any, to obtain U.S. Nuclear Regulatory (NRC) or other regulatory authority approval to use each of the packages and/or shipping casks for this purpose.

  10. Distinguishing Differential Testlet Functioning from Differential Bundle Functioning Using the Multilevel Measurement Model

    ERIC Educational Resources Information Center

    Beretvas, S. Natasha; Walker, Cindy M.

    2012-01-01

    This study extends the multilevel measurement model to handle testlet-based dependencies. A flexible two-level testlet response model (the MMMT-2 model) for dichotomous items is introduced that permits assessment of differential testlet functioning (DTLF). A distinction is made between this study's conceptualization of DTLF and that of…

  11. A SIEVE M-THEOREM FOR BUNDLED PARAMETERS IN SEMIPARAMETRIC MODELS, WITH APPLICATION TO THE EFFICIENT ESTIMATION IN A LINEAR MODEL FOR CENSORED DATA.

    PubMed

    Ding, Ying; Nan, Bin

    2011-01-01

    In many semiparametric models that are parameterized by two types of parameters - a Euclidean parameter of interest and an infinite-dimensional nuisance parameter, the two parameters are bundled together, i.e., the nuisance parameter is an unknown function that contains the parameter of interest as part of its argument. For example, in a linear regression model for censored survival data, the unspecified error distribution function involves the regression coefficients. Motivated by developing an efficient estimating method for the regression parameters, we propose a general sieve M-theorem for bundled parameters and apply the theorem to deriving the asymptotic theory for the sieve maximum likelihood estimation in the linear regression model for censored survival data. The numerical implementation of the proposed estimating method can be achieved through the conventional gradient-based search algorithms such as the Newton-Raphson algorithm. We show that the proposed estimator is consistent and asymptotically normal and achieves the semiparametric efficiency bound. Simulation studies demonstrate that the proposed method performs well in practical settings and yields more efficient estimates than existing estimating equation based methods. Illustration with a real data example is also provided. PMID:24436500

  12. Parameter Estimation of Spacecraft Fuel Slosh Model

    NASA Technical Reports Server (NTRS)

    Gangadharan, Sathya; Sudermann, James; Marlowe, Andrea; Njengam Charles

    2004-01-01

    Fuel slosh in the upper stages of a spinning spacecraft during launch has been a long standing concern for the success of a space mission. Energy loss through the movement of the liquid fuel in the fuel tank affects the gyroscopic stability of the spacecraft and leads to nutation (wobble) which can cause devastating control issues. The rate at which nutation develops (defined by Nutation Time Constant (NTC can be tedious to calculate and largely inaccurate if done during the early stages of spacecraft design. Pure analytical means of predicting the influence of onboard liquids have generally failed. A strong need exists to identify and model the conditions of resonance between nutation motion and liquid modes and to understand the general characteristics of the liquid motion that causes the problem in spinning spacecraft. A 3-D computerized model of the fuel slosh that accounts for any resonant modes found in the experimental testing will allow for increased accuracy in the overall modeling process. Development of a more accurate model of the fuel slosh currently lies in a more generalized 3-D computerized model incorporating masses, springs and dampers. Parameters describing the model include the inertia tensor of the fuel, spring constants, and damper coefficients. Refinement and understanding the effects of these parameters allow for a more accurate simulation of fuel slosh. The current research will focus on developing models of different complexity and estimating the model parameters that will ultimately provide a more realistic prediction of Nutation Time Constant obtained through simulation.

  13. Failure kinetic and scaling behavior of the composite materials: Fiber Bundle Model with the local load-sharing rule (LLS)

    NASA Astrophysics Data System (ADS)

    Hader, A.; Boughaleb, Y.; Achik, I.; Sbiaai, K.

    2013-11-01

    We investigate the spatial distribution of mechanical stresses of composite materials densely packed with thin glass fibers and yield so low transparency that the conventional method of photoelasticity testing fails to provide good quality birefringence fringes. The failure kinetic and the scaling behavior of theses materials are also studied. The calculations are done within the framework of the fiber bundle model with the local load-sharing rule (LLS) in which the load of the failing fiber is shared between only the nearest neighbor elements. We have found that the failure properties of these materials are characterized by the avalanche phenomena with two different timescales and the number of broken fibers presents a Boltzmann distribution. The failure time tf presents a power law with the applied force and the system size. The results show also that the failure kinetic of the composite materials is self-similar. The creep rupture is also investigated. The results show that these materials are characterized by a two creep regimes characterized by the Andrade's law with a two different exponents, and separated by a cross over time tm more consisting with the experiment results.

  14. Estimation of clearance potential index and hazard factors of Candu fuel bundle and its validation based on the measurements of radioisotopes inventories from Pickering reactor fuel

    SciTech Connect

    Pavelescu, Alexandru Octavian; Tinti, Renato; Voukelatou, Konstantina; Cepraga, Dan Gabriel

    2007-07-01

    This paper is related to the clearance potential levels, ingestion and inhalation hazard factors of the spent nuclear fuel and radioactive wastes. This study required a complex activity that consisted of more steps such as: the acquisition, setting up, validation and application of procedures, codes and libraries. The paper reflects the validation stage of this study. Its objective was to compare the measured inventories of selected actinide and fission products radionuclides in an element from the Pickering Candu reactor with the inventories predicted using a recent version of the SCALE 5/ORIGEN-ARP code coupled with the time dependent cross sections library for the Candu 28 reactor (produced by the sequence SCALE4.4a/SAS2H and SCALE4.4a/ORIGEN-S). In this way, the procedures, the codes and the libraries for the characterization of radioactive material in terns of radioactive inventories, clearance, and biological hazard factors could be qualified and validated, in support of the safety management of the radioactive wastes. (authors)

  15. Coolant mixing in LMFBR rod bundles and outlet plenum mixing transients. Progress report

    SciTech Connect

    Todreas, N.E.; Golay, M.W.; Wold, L.

    1981-02-01

    Four tasks are reported on: bundle geometry (wrapped and bare rods), subchannel geometry (bare rods), LMFBR outlet plenum flow mixing, and theoretical determination of local temperature fields in LMFBR fuel rod bundles. (DLC)

  16. Transmutation Fuel Performance Code Thermal Model Verification

    SciTech Connect

    Gregory K. Miller; Pavel G. Medvedev

    2007-09-01

    FRAPCON fuel performance code is being modified to be able to model performance of the nuclear fuels of interest to the Global Nuclear Energy Partnership (GNEP). The present report documents the effort for verification of the FRAPCON thermal model. It was found that, with minor modifications, FRAPCON thermal model temperature calculation agrees with that of the commercial software ABAQUS (Version 6.4-4). This report outlines the methodology of the verification, code input, and calculation results.

  17. Modeling Fuel Efficiency: MPG or GPHM?

    ERIC Educational Resources Information Center

    Bartkovich, Kevin G.

    2013-01-01

    The standard for measuring fuel efficiency in the U.S. has been miles per gallon (mpg). However, the Environmental Protection Agency's (EPA) switch in rating fuel efficiency from miles per gallon to gallons per hundred miles with the 2013 model-year cars leads to interesting and relevant mathematics with real-world connections. By modeling…

  18. Modeling of hybrid vehicle fuel economy and fuel engine efficiency

    NASA Astrophysics Data System (ADS)

    Wu, Wei

    "Near-CV" (i.e., near-conventional vehicle) hybrid vehicles, with an internal combustion engine, and a supplementary storage with low-weight, low-energy but high-power capacity, are analyzed. This design avoids the shortcoming of the "near-EV" and the "dual-mode" hybrid vehicles that need a large energy storage system (in terms of energy capacity and weight). The small storage is used to optimize engine energy management and can provide power when needed. The energy advantage of the "near-CV" design is to reduce reliance on the engine at low power, to enable regenerative braking, and to provide good performance with a small engine. The fuel consumption of internal combustion engines, which might be applied to hybrid vehicles, is analyzed by building simple analytical models that reflect the engines' energy loss characteristics. Both diesel and gasoline engines are modeled. The simple analytical models describe engine fuel consumption at any speed and load point by describing the engine's indicated efficiency and friction. The engine's indicated efficiency and heat loss are described in terms of several easy-to-obtain engine parameters, e.g., compression ratio, displacement, bore and stroke. Engine friction is described in terms of parameters obtained by fitting available fuel measurements on several diesel and spark-ignition engines. The engine models developed are shown to conform closely to experimental fuel consumption and motored friction data. A model of the energy use of "near-CV" hybrid vehicles with different storage mechanism is created, based on simple algebraic description of the components. With powertrain downsizing and hybridization, a "near-CV" hybrid vehicle can obtain a factor of approximately two in overall fuel efficiency (mpg) improvement, without considering reductions in the vehicle load.

  19. 78 FR 29139 - Medicare Program; Bundled Payments for Care Improvement Model 1 Open Period

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-17

    ... committed to achieving better health, better care, and lower costs through continuous improvement for... costs through continuous improvement. Create a cycle that leads to continually decreasing the cost of an... Improvement Model 1 Open Period AGENCY: Centers for Medicare & Medicaid Services (CMS), HHS. ACTION:...

  20. German bundle shear - cold test results

    SciTech Connect

    Kunze, P.

    1986-01-01

    In the planned Federal Republic of Germany (FRG) reprocessing plant, the mechanical decladding of the fuel elements will be done with a bundle shear. This shear was designed and built with Thyssen Henschel by adapting the experiences of the Wiederaufarbeitungsanlage Karlsruhe (WAK), the FRG reprocessing pilot plant. The tests included boiling water reactor (BWR) and pressurized water reactor (PWR) dummy elements filled with porcelain as well as steel fuel rod simulators. During the test period with prototype bundle shear, some technical improvements have been found that refer both to operating conditions and to remote handling. In 1987 the acceptance tests will be run.

  1. Model Year 2007 Fuel Economy Guide: EPA Fuel Economy Estimates

    SciTech Connect

    2007-10-01

    The Fuel Economy Guide is published by the U.S. Department of Energy as an aid to consumers considering the purchase of a new vehicle. The Guide lists estimates of miles per gallon (mpg) for each vehicle available for the new model year. These estimates are provided by the U.S. Environmental Protection Agency in compliance with Federal Law. By using this Guide, consumers can estimate the average yearly fuel cost for any vehicle. The Guide is intended to help consumers compare the fuel economy of similarly sized cars, light duty trucks and special purpose vehicles. The vehicles listed have been divided into three classes of cars, three classes of light duty trucks, and three classes of special purpose vehicles.

  2. Model Year 2008 Fuel Economy Guide: EPA Fuel Economy Estimates

    SciTech Connect

    2007-10-01

    The Fuel Economy Guide is published by the U.S. Department of Energy as an aid to consumers considering the purchase of a new vehicle. The Guide lists estimates of miles per gallon (mpg) for each vehicle available for the new model year. These estimates are provided by the U.S. Environmental Protection Agency in compliance with Federal Law. By using this Guide, consumers can estimate the average yearly fuel cost for any vehicle. The Guide is intended to help consumers compare the fuel economy of similarly sized cars, light duty trucks and special purpose vehicles. The vehicles listed have been divided into three classes of cars, three classes of light duty trucks, and three classes of special purpose vehicles.

  3. Model Year 2006 Fuel Economy Guide: EPA Fuel Economy Estimates

    SciTech Connect

    2005-11-01

    The Fuel Economy Guide is published by the U.S. Department of Energy as an aid to consumers considering the purchase of a new vehicle. The Guide lists estimates of miles per gallon (mpg) for each vehicle available for the new model year. These estimates are provided by the U.S. Environmental Protection Agency in compliance with Federal Law. By using this Guide, consumers can estimate the average yearly fuel cost for any vehicle. The Guide is intended to help consumers compare the fuel economy of similarly sized cars, light duty trucks and special purpose vehicles. The vehicles listed have been divided into three classes of cars, three classes of light duty trucks, and three classes of special purpose vehicles.

  4. Model Year 2005 Fuel Economy Guide: EPA Fuel Economy Estimates

    SciTech Connect

    2004-11-01

    The Fuel Economy Guide is published by the U.S. Department of Energy as an aid to consumers considering the purchase of a new vehicle. The Guide lists estimates of miles per gallon (mpg) for each vehicle available for the new model year. These estimates are provided by the U.S. Environmental Protection Agency in compliance with Federal Law. By using this Guide, consumers can estimate the average yearly fuel cost for any vehicle. The Guide is intended to help consumers compare the fuel economy of similarly sized cars, light duty trucks and special purpose vehicles. The vehicles listed have been divided into three classes of cars, three classes of light duty trucks, and three classes of special purpose vehicles.

  5. Model Year 2016 Fuel Economy Guide: EPA Fuel Economy Estimates

    SciTech Connect

    2015-11-01

    The Fuel Economy Guide is published by the U.S. Department of Energy as an aid to consumers considering the purchase of a new vehicle. The Guide lists estimates of miles per gallon (mpg) for each vehicle available for the new model year. These estimates are provided by the U.S. Environmental Protection Agency in compliance with Federal Law. By using this Guide, consumers can estimate the average yearly fuel cost for any vehicle. The Guide is intended to help consumers compare the fuel economy of similarly sized cars, light duty trucks and special purpose vehicles. The vehicles listed have been divided into three classes of cars, three classes of light duty trucks, and three classes of special purpose vehicles.

  6. Model Year 2009 Fuel Economy Guide: EPA Fuel Economy Estimates

    SciTech Connect

    2008-10-01

    The Fuel Economy Guide is published by the U.S. Department of Energy as an aid to consumers considering the purchase of a new vehicle. The Guide lists estimates of miles per gallon (mpg) for each vehicle available for the new model year. These estimates are provided by the U.S. Environmental Protection Agency in compliance with Federal Law. By using this Guide, consumers can estimate the average yearly fuel cost for any vehicle. The Guide is intended to help consumers compare the fuel economy of similarly sized cars, light duty trucks and special purpose vehicles. The vehicles listed have been divided into three classes of cars, three classes of light duty trucks, and three classes of special purpose vehicles.

  7. Model Year 2015 Fuel Economy Guide: EPA Fuel Economy Estimates

    SciTech Connect

    2014-12-01

    The Fuel Economy Guide is published by the U.S. Department of Energy as an aid to consumers considering the purchase of a new vehicle. The Guide lists estimates of miles per gallon (mpg) for each vehicle available for the new model year. These estimates are provided by the U.S. Environmental Protection Agency in compliance with Federal Law. By using this Guide, consumers can estimate the average yearly fuel cost for any vehicle. The Guide is intended to help consumers compare the fuel economy of similarly sized cars, light duty trucks and special purpose vehicles. The vehicles listed have been divided into three classes of cars, three classes of light duty trucks, and three classes of special purpose vehicles.

  8. Model Year 2010 Fuel Economy Guide: EPA Fuel Economy Estimates

    SciTech Connect

    2009-10-14

    The Fuel Economy Guide is published by the U.S. Department of Energy as an aid to consumers considering the purchase of a new vehicle. The Guide lists estimates of miles per gallon (mpg) for each vehicle available for the new model year. These estimates are provided by the U.S. Environmental Protection Agency in compliance with Federal Law. By using this Guide, consumers can estimate the average yearly fuel cost for any vehicle. The Guide is intended to help consumers compare the fuel economy of similarly sized cars, light duty trucks and special purpose vehicles. The vehicles listed have been divided into three classes of cars, three classes of light duty trucks, and three classes of special purpose vehicles.

  9. Model Year 2014 Fuel Economy Guide: EPA Fuel Economy Estimates

    SciTech Connect

    2013-12-01

    The Fuel Economy Guide is published by the U.S. Department of Energy as an aid to consumers considering the purchase of a new vehicle. The Guide lists estimates of miles per gallon (mpg) for each vehicle available for the new model year. These estimates are provided by the U.S. Environmental Protection Agency in compliance with Federal Law. By using this Guide, consumers can estimate the average yearly fuel cost for any vehicle. The Guide is intended to help consumers compare the fuel economy of similarly sized cars, light duty trucks and special purpose vehicles. The vehicles listed have been divided into three classes of cars, three classes of light duty trucks, and three classes of special purpose vehicles.

  10. Damping Properties of the Hair Bundle

    NASA Astrophysics Data System (ADS)

    Baumgart, Johannes; Kozlov, Andrei S.; Risler, Thomas; Hudspeth, A. J.

    2011-11-01

    The viscous liquid surrounding a hair bundle dissipates energy and dampens oscillations, which poses a fundamental physical challenge to the high sensitivity and sharp frequency selectivity of hearing. To identify the mechanical forces at play, we constructed a detailed finite-element model of the hair bundle. Based on data from the hair bundle of the bullfrog's sacculus, this model treats the interaction of stereocilia both with the surrounding liquid and with the liquid in the narrow gaps between the individual stereocilia. The investigation revealed that grouping stereocilia in a bundle dramatically reduces the total drag. During hair-bundle deflections, the tip links potentially induce drag by causing small but very dissipative relative motions between stereocilia; this effect is offset by the horizontal top connectors that restrain such relative movements at low frequencies. For higher frequencies the coupling liquid is sufficient to assure that the hair bundle moves as a unit with a low total drag. This work reveals the mechanical characteristics originating from hair-bundle morphology and shows quantitatively how a hair bundle is adapted for sensitive mechanotransduction.

  11. VISION: Verifiable Fuel Cycle Simulation Model

    SciTech Connect

    Jacob Jacobson; A. M. Yacout; Gretchen Matthern; Steven Piet; David Shropshire; Tyler Schweitzer

    2010-11-01

    The nuclear fuel cycle consists of a set of complex components that work together in unison. In order to support the nuclear renaissance, it is necessary to understand the impacts of changes and timing of events in any part of the fuel cycle system. The Advanced Fuel Cycle Initiative’s systems analysis group is developing a dynamic simulation model, VISION, to capture the relationships, timing, and changes in and among the fuel cycle components to help develop an understanding of how the overall fuel cycle works. This paper is an overview of the philosophy and development strategy behind VISION. The paper includes some descriptions of the model components and some examples of how to use VISION.

  12. Fossil fuels supplies modeling and research

    SciTech Connect

    Leiby, P.N.

    1996-06-01

    The fossil fuel supplies modeling and research effort focuses on models for US Strategic Petroleum Reserve (SPR) planning and management. Topics covered included new SPR oil valuation models, updating models for SPR risk analysis, and fill-draw planning. Another task in this program area is the development of advanced computational tools for three-dimensional seismic analysis.

  13. Creep rupture of materials: Insights from a fiber bundle model with relaxation

    NASA Astrophysics Data System (ADS)

    Jagla, E. A.

    2011-04-01

    I adapted a model recently introduced in the context of seismic phenomena to study creep rupture of materials. It consists of linear elastic fibers that interact in an equal load sharing scheme, complemented with a local viscoelastic relaxation mechanism. The model correctly describes the three stages of the creep process; namely, an initial Andrade regime of creep relaxation, an intermediate regime of rather constant creep rate, and a tertiary regime of accelerated creep toward final failure of the sample. In the tertiary regime, creep rate follows the experimentally observed creep rate over time-to-failure dependence. The time of minimum strain rate is systematically observed to be about 60%-65 % of the time to failure, in accordance with experimental observations. In addition, burst size statistics of breaking events display a -3/2 power law for events close to the time of failure and a steeper decay for the all-time distribution. Statistics of interevent times shows a tendency of the events to cluster temporarily. This behavior should be observable in acoustic emission experiments.

  14. Model-based traction force microscopy reveals differential tension in cellular actin bundles.

    PubMed

    Soiné, Jérôme R D; Brand, Christoph A; Stricker, Jonathan; Oakes, Patrick W; Gardel, Margaret L; Schwarz, Ulrich S

    2015-03-01

    Adherent cells use forces at the cell-substrate interface to sense and respond to the physical properties of their environment. These cell forces can be measured with traction force microscopy which inverts the equations of elasticity theory to calculate them from the deformations of soft polymer substrates. We introduce a new type of traction force microscopy that in contrast to traditional methods uses additional image data for cytoskeleton and adhesion structures and a biophysical model to improve the robustness of the inverse procedure and abolishes the need for regularization. We use this method to demonstrate that ventral stress fibers of U2OS-cells are typically under higher mechanical tension than dorsal stress fibers or transverse arcs. PMID:25748431

  15. Model-based Traction Force Microscopy Reveals Differential Tension in Cellular Actin Bundles

    PubMed Central

    Soiné, Jérôme R. D.; Brand, Christoph A.; Stricker, Jonathan; Oakes, Patrick W.; Gardel, Margaret L.; Schwarz, Ulrich S.

    2015-01-01

    Adherent cells use forces at the cell-substrate interface to sense and respond to the physical properties of their environment. These cell forces can be measured with traction force microscopy which inverts the equations of elasticity theory to calculate them from the deformations of soft polymer substrates. We introduce a new type of traction force microscopy that in contrast to traditional methods uses additional image data for cytoskeleton and adhesion structures and a biophysical model to improve the robustness of the inverse procedure and abolishes the need for regularization. We use this method to demonstrate that ventral stress fibers of U2OS-cells are typically under higher mechanical tension than dorsal stress fibers or transverse arcs. PMID:25748431

  16. Best estimate radiation heat transfer model developed for TRAC-BD1

    SciTech Connect

    Spore, J.W.; Giles, M.M.; Shumway, R.W.

    1981-01-01

    A best estimate radiation heat transfer model for analysis of BWR fuel bundles has been developed and compared with 8 x 8 fuel bundle data. The model includes surface-to-surface and surface-to-two-phase fluid radiation heat transfer. A simple method of correcting for anisotropic reflection effects has been included in the model.

  17. Line bundle embeddings for heterotic theories

    NASA Astrophysics Data System (ADS)

    Nibbelin, Stefan Groot; Ruehle, Fabian

    2016-04-01

    In heterotic string theories consistency requires the introduction of a non-trivial vector bundle. This bundle breaks the original ten-dimensional gauge groups E8 × E8 or SO(32) for the supersymmetric heterotic string theories and SO(16) × SO(16) for the non-supersymmetric tachyon-free theory to smaller subgroups. A vast number of MSSM-like models have been constructed up to now, most of which describe the vector bundle as a sum of line bundles. However, there are several different ways of describing these line bundles and their embedding in the ten-dimensional gauge group. We recall and extend these different descriptions and explain how they can be translated into each other.

  18. Mathematical modeling of biomass fuels formation process

    SciTech Connect

    Gaska, Krzysztof Wandrasz, Andrzej J.

    2008-07-01

    The increasing demand for thermal and electric energy in many branches of industry and municipal management accounts for a drastic diminishing of natural resources (fossil fuels). Meanwhile, in numerous technical processes, a huge mass of wastes is produced. A segregated and converted combustible fraction of the wastes, with relatively high calorific value, may be used as a component of formed fuels. The utilization of the formed fuel components from segregated groups of waste in associated processes of co-combustion with conventional fuels causes significant savings resulting from partial replacement of fossil fuels, and reduction of environmental pollution resulting directly from the limitation of waste migration to the environment (soil, atmospheric air, surface and underground water). The realization of technological processes with the utilization of formed fuel in associated thermal systems should be qualified by technical criteria, which means that elementary processes as well as factors of sustainable development, from a global viewpoint, must not be disturbed. The utilization of post-process waste should be preceded by detailed technical, ecological and economic analyses. In order to optimize the mixing process of fuel components, a mathematical model of the forming process was created. The model is defined as a group of data structures which uniquely identify a real process and conversion of this data in algorithms based on a problem of linear programming. The paper also presents the optimization of parameters in the process of forming fuels using a modified simplex algorithm with a polynomial worktime. This model is a datum-point in the numerical modeling of real processes, allowing a precise determination of the optimal elementary composition of formed fuels components, with assumed constraints and decision variables of the task.

  19. Actively Contracting Bundles of Polar Filaments

    NASA Astrophysics Data System (ADS)

    Kruse, K.; Jülicher, F.

    2000-08-01

    We introduce a phenomenological model to study the properties of bundles of polar filaments which interact via active elements. The stability of the homogeneous state, the attractors of the dynamics in the unstable regime, and the tensile stress generated in the bundle are discussed. We find that the interaction of parallel filaments can induce unstable behavior and is responsible for active contraction and tension in the bundle. The interaction between antiparallel filaments leads to filament sorting. Our model could apply to simple contractile structures in cells such as stress fibers.

  20. Hierarchical scaling law for the strength of composite fibre bundles

    NASA Astrophysics Data System (ADS)

    Pimenta, Soraia; Pinho, Silvestre T.

    2013-06-01

    This paper presents an analytical model for size effects on the longitudinal tensile strength of composite fibre bundles. The strength of individual fibres is modelled by a Weibull distribution, while the matrix (or fibre-matrix interface) is represented through a perfectly plastic shear-lag model. A probabilistic analysis of the failure process in hierarchical bundles (bundles of bundles) is performed, so that a scaling law relating the strength distributions and characteristic lengths of consecutive bundle levels is derived. An efficient numerical scheme (based on asymptotic limits) is proposed, hence coupon-sized bundle strength distributions are obtained almost instantaneously. Parametric studies show that both fibre and matrix properties are critical for bundle strength; model predictions at different scales are validated against experimental results available in the literature.

  1. Fuel transfer system

    DOEpatents

    Townsend, Harold E.; Barbanti, Giancarlo

    1994-01-01

    A nuclear fuel bundle fuel transfer system includes a transfer pool containing water at a level above a reactor core. A fuel transfer machine therein includes a carriage disposed in the transfer pool and under the water for transporting fuel bundles. The carriage is selectively movable through the water in the transfer pool and individual fuel bundles are carried vertically in the carriage. In a preferred embodiment, a first movable bridge is disposed over an upper pool containing the reactor core, and a second movable bridge is disposed over a fuel storage pool, with the transfer pool being disposed therebetween. A fuel bundle may be moved by the first bridge from the reactor core and loaded into the carriage which transports the fuel bundle to the second bridge which picks up the fuel bundle and carries it to the fuel storage pool.

  2. Fuel transfer system

    DOEpatents

    Townsend, H.E.; Barbanti, G.

    1994-03-01

    A nuclear fuel bundle fuel transfer system includes a transfer pool containing water at a level above a reactor core. A fuel transfer machine therein includes a carriage disposed in the transfer pool and under the water for transporting fuel bundles. The carriage is selectively movable through the water in the transfer pool and individual fuel bundles are carried vertically in the carriage. In a preferred embodiment, a first movable bridge is disposed over an upper pool containing the reactor core, and a second movable bridge is disposed over a fuel storage pool, with the transfer pool being disposed therebetween. A fuel bundle may be moved by the first bridge from the reactor core and loaded into the carriage which transports the fuel bundle to the second bridge which picks up the fuel bundle and carries it to the fuel storage pool. 6 figures.

  3. Mathematical modeling of solid oxide fuel cells

    NASA Technical Reports Server (NTRS)

    Lu, Cheng-Yi; Maloney, Thomas M.

    1988-01-01

    Development of predictive techniques, with regard to cell behavior, under various operating conditions is needed to improve cell performance, increase energy density, reduce manufacturing cost, and to broaden utilization of various fuels. Such technology would be especially beneficial for the solid oxide fuel cells (SOFC) at it early demonstration stage. The development of computer models to calculate the temperature, CD, reactant distributions in the tubular and monolithic SOFCs. Results indicate that problems of nonuniform heat generation and fuel gas depletion in the tubular cell module, and of size limitions in the monolithic (MOD 0) design may be encountered during FC operation.

  4. Modeling of advanced fossil fuel power plants

    NASA Astrophysics Data System (ADS)

    Zabihian, Farshid

    The first part of this thesis deals with greenhouse gas (GHG) emissions from fossil fuel-fired power stations. The GHG emission estimation from fossil fuel power generation industry signifies that emissions from this industry can be significantly reduced by fuel switching and adaption of advanced power generation technologies. In the second part of the thesis, steady-state models of some of the advanced fossil fuel power generation technologies are presented. The impacts of various parameters on the solid oxide fuel cell (SOFC) overpotentials and outputs are investigated. The detail analyses of operation of the hybrid SOFC-gas turbine (GT) cycle when fuelled with methane and syngas demonstrate that the efficiencies of the cycles with and without anode exhaust recirculation are close, but the specific power of the former is much higher. The parametric analysis of the performance of the hybrid SOFC-GT cycle indicates that increasing the system operating pressure and SOFC operating temperature and fuel utilization factor improves cycle efficiency, but the effects of the increasing SOFC current density and turbine inlet temperature are not favourable. The analysis of the operation of the system when fuelled with a wide range of fuel types demonstrates that the hybrid SOFC-GT cycle efficiency can be between 59% and 75%, depending on the inlet fuel type. Then, the system performance is investigated when methane as a reference fuel is replaced with various species that can be found in the fuel, i.e., H2, CO2, CO, and N 2. The results point out that influence of various species can be significant and different for each case. The experimental and numerical analyses of a biodiesel fuelled micro gas turbine indicate that fuel switching from petrodiesel to biodiesel can influence operational parameters of the system. The modeling results of gas turbine-based power plants signify that relatively simple models can predict plant performance with acceptable accuracy. The unique

  5. Modeling of gas turbine fuel nozzle spray

    SciTech Connect

    Rizk, N.K.; Chin, J.S.; Razdan, M.K.

    1997-01-01

    Satisfactory performance of the gas turbine combustor relies on the careful design of various components, particularly the fuel injector. It is, therefore, essential to establish a fundamental basis for fuel injection modeling that involves various atomization processes. A two-dimensional fuel injection model has been formulated to simulate the airflow within and downstream of the atomizer and address the formation and breakup of the liquid sheet formed at the atomizer exit. The sheet breakup under the effects of airblast, fuel pressure, or the combined atomization mode of the air-assist type is considered in the calculation. The model accounts for secondary breakup of drops and the stochastic Lagrangian treatment of spray. The calculation of spray evaporation addresses both droplet heat-up and steady-state mechanisms, and fuel vapor concentration is based on the partial pressure concept. An enhanced evaporation model has been developed that accounts for multicomponent, finite mass diffusivity and conductivity effects, and addresses near-critical evaporation. The present investigation involved predictions of flow and spray characteristics of two distinctively different fuel atomizers under both nonreacting and reacting conditions. The predictions of the continuous phase velocity components and the spray mean drop sizes agree well with the detailed measurements obtained for the two atomizers, which indicates the model accounts for key aspects of atomization. The model also provides insight into ligament formation and breakup at the atomizer exit and the initial drop sizes formed in the atomizer near field region where measurements are difficult to obtain. The calculations of the reacting spray show the fuel-rich region occupied most of the spray volume with two-peak radial gas temperature profiles. The results also provided local concentrations of unburned hydrocarbon and CO in atomizer flowfield.

  6. The pore-lining region of shaker voltage-gated potassium channels: comparison of beta-barrel and alpha-helix bundle models.

    PubMed Central

    Kerr, I D; Sansom, M S

    1997-01-01

    Although there is a large body of site-directed mutagenesis data that identify the pore-lining sequence of the voltage-gated potassium channel, the structure of this region remains unknown. We have interpreted the available biochemical data as a set of topological and orientational restraints and employed these restraints to produce molecular models of the potassium channel pore region, H5. The H5 sequence has been modeled either as a tetramer of membrane-spanning beta-hairpins, thus producing an eight-stranded beta-barrel, or as a tetramer of incompletely membrane-spanning alpha-helical hairpins, thus producing an eight-staved alpha-helix bundle. In total, restraints-directed modeling has produced 40 different configurations of the beta-barrel model, each configuration comprising an ensemble of 20 structures, and 24 different configurations of the alpha-helix bundle model, each comprising an ensemble of 24 structures. Thus, over 1300 model structures for H5 have been generated. Configurations have been ranked on the basis of their predicted pore properties and on the extent of their agreement with the biochemical data. This ranking is employed to identify particular configurations of H5 that may be explored further as models of the pore-lining region of the voltage-gated potassium channel pore. Images FIGURE 7 FIGURE 12 PMID:9251779

  7. Fiber bundle endocytoscopy

    PubMed Central

    Hughes, Michael; Chang, Tou Pin; Yang, Guang-Zhong

    2013-01-01

    Endocytoscopy is an optical biopsy technique which uses a miniaturized camera to capture white light microscopy images through an endoscope. We have developed an alternative design that instead relays images to an external camera via a coherent fiber bundle. In this paper we characterize the device and demonstrate microscopy of porcine tissue ex vivo. One advantage of our approach is the ease with which other bundle-compatible imaging modalities can be deployed simultaneously. We show this by acquiring quasi-simultaneous endocytoscopy and fluorescence confocal endomicroscopy images through a single fiber bundle. This opens up possibilities for multi-modal endomicroscopy, combining white light and fluorescence imaging. PMID:24409380

  8. Contraction of cross-linked actomyosin bundles

    NASA Astrophysics Data System (ADS)

    Yoshinaga, Natsuhiko; Marcq, Philippe

    2012-08-01

    Cross-linked actomyosin bundles retract when severed in vivo by laser ablation, or when isolated from the cell and micromanipulated in vitro in the presence of ATP. We identify the timescale for contraction as a viscoelastic time τ, where the viscosity is due to (internal) protein friction. We obtain an estimate of the order of magnitude of the contraction time τ ≈ 10-100 s, consistent with available experimental data for circumferential microfilament bundles and stress fibers. Our results are supported by an exactly solvable, hydrodynamic model of a retracting bundle as a cylinder of isotropic, active matter, from which the order of magnitude of the active stress is estimated.

  9. Requirements for contractility in disordered cytoskeletal bundles

    NASA Astrophysics Data System (ADS)

    Lenz, Martin; Gardel, Margaret L.; Dinner, Aaron R.

    2012-03-01

    Actomyosin contractility is essential for biological force generation, and is well understood in highly organized structures such as striated muscle. Additionally, actomyosin bundles devoid of this organization are known to contract both in vivo and in vitro, which cannot be described by standard muscle models. To narrow down the search for possible contraction mechanisms in these systems, we investigate their microscopic symmetries. We show that contractile behavior requires non-identical motors that generate large-enough forces to probe the nonlinear elastic behavior of F-actin. This suggests a role for filament buckling in the contraction of these bundles, consistent with recent experimental results on reconstituted actomyosin bundles.

  10. Coolant mixing in LMFBR rod bundles and outlet plenum mixing transients. Final report

    SciTech Connect

    Todreas, N.E.; Cheng, S.K.; Basehore, K.

    1984-08-01

    This project principally undertook the investigation of the thermal hydraulic performance of wire wrapped fuel bundles of LMFBR configuration. Results obtained included phenomenological models for friction factors, flow split and mixing characteristics; correlations for predicting these characteristics suitable for insertion in design codes; numerical codes for analyzing bundle behavior both of the lumped subchannel and distributed parameter categories and experimental techniques for pressure velocity, flow split, salt conductivity and temperature measurement in water cooled mockups of bundles and subchannels. Flow regimes investigated included laminar, transition and turbulent flow under forced convection and mixed convection conditions. Forced convections conditions were emphasized. Continuing efforts are underway at MIT to complete the investigation of the mixed convection regime initiated here. A number of investigations on outlet plenum behavior were also made. The reports of these investigations are identified.

  11. Oxidation induced stress-rupture of fiber bundles

    SciTech Connect

    Lara-Curzio, E.

    1997-03-01

    The effect of oxidation on the stress-rupture behavior of fiber bundles was modeled. It is shown that oxidation-induced fiber strength degradation results in the delayed failure of the associated fiber bundle and that the fiber bundle strength decreases with time as t{sup {minus}1/4}. It is also shown that the temperature dependence of the bundle loss of strength reflects the thermal dependence of the mechanism controlling the oxidation of the fibers. The effect of gauge length on the fiber bundle strength was also analyzed. Numerical examples are presented for the special case of Nicalon{trademark} fibers.

  12. Modelling an experimental methane fuel processor

    NASA Astrophysics Data System (ADS)

    Lin, Shi-Tin; Chen, Yih-Hang; Yu, Cheng-Ching; Liu, Yen-Chun; Lee, Chiou-Hwang

    Steady-state models are developed to describe an experimental methane fuel processor that is intended to provide hydrogen for a fuel cell system for power generation (2-3 kW). First-principle reactor models are constructed to describe a series of reactions, i.e., steam and autothermal reforming (SR/ATR), high- and low-temperature water-gas shift (HTS/LTS) reactions and preferential oxidation (PROX) reactions, at different sectors of the reactor system for methane reforming as well as gas cleaning. The pre-exponential factors of the rate constants are adjusted to fit the experimental data and the resultant reactor model provides a reasonably good description of steady-state behaviour. Next, sensitivity analyses are performed to locate the optimum operating point of the fuel processor. The objective function of the optimization is fuel processor efficiency. The dominating optimization variables include: the ratios of water and oxygen to the hydrocarbon feed to the autothermal reforming reactor and the inlet temperature of the reactor. The results indicate that further improvement in fuel processor efficiency can be made with a reliable process model.

  13. COBRA-PI: an extension of the COBRA-3M code dynamically dimensioned to accept pin bundles of any size. [LMFBR

    SciTech Connect

    Froehle, P.H.; Bauer, T.H.

    1983-03-28

    COBRA, in general, performs a thermal-hydraulic analysis of an actual pin bundle by subdividing the bundle cross-section into coolant subchannels, pin sectors, duct wall sectors. Its calculation includes heat convected axially upward through coolant mass flow, heat flow between pin sectors and adjoining subchannels, and heat and mass flow between coolant subchannels. COBRA-3M is a version of COBRA built for LMFBR applications, that includes a sophisticated thermal model of fuel pins and duct wall. COBRA-3M that can explicitly model a wider variety of pin bundle configurations than 3M would allow and includes significant improvements to its thermal modeling. COBRA-PI is currently being used for thermal-hydraulic analysis of hypothetical LMFBR accident transients in both power and flow. Pin bundles currently being analyzed explicitly range from 7 to 37 pins of axial lengths ranging from approx. 0.3-2.0 meters.

  14. Modeling of molten-fuel-moderator interactions

    NASA Astrophysics Data System (ADS)

    Diab, Aya K.

    CANDU reactors are pressurized heavy-water moderated and cooled reactor designs. During commissioning of nuclear power plants a range of possible accidents must be considered to assure the plants' robust design. Consider a complete channel blockage in the CANDU reactor. Such an extreme flow blockage event would result in fuel overheating, pressure tube failure, partial melting of fuel rods and possible molten fuel-moderator interactions (MFMI). The MFMI phenomenon would occur immediately after tube rupture, and would involve a mixture of steam, hydrogen and molten fuel being ejected into the surrounding moderator water in the form of a high-pressure vapor bubble mixture. This bubble mixture would accelerate the surrounding denser water, causing interfacial mixing due to hydrodynamic instabilities at the interface. As a result of these interfacial instabilities, water is entrained into the growing two-phase bubble mixture with the attendant mass and heat transfer; e.g., water vaporization, fuel oxidation. A comprehensive model is developed to investigate these complex phenomena resulting from a postulated complete flow blockage and complete pressure tube failure. This dynamic model serves as a baseline to characterize the pressure response due to a pressure tube rupture and the associated MFMI phenomena. Theoretical modeling of these interrelated complex phenomena is not known a priori and therefore a semi-empirical approach is adopted. Consequently, experimental work is being proposed as part of the thesis work to verify key hypotheses regarding these interfacial fluid instabilities, such as the entrainment fraction into the rapidly expanding bubble.

  15. Nitride Fuel Modeling Recommendation for Nitride Fuel Material Property Measurement Priority

    SciTech Connect

    William Carmack; Richard Moore

    2005-09-01

    The purpose of this effort was to provide the basis for a model that effectively predicts nitride fuel behavior. Material property models developed for the uranium nitride fuel system have been used to approximate the general behavior of nitride fuels with specific property models for the transuranic nitride fuels utilized as they become available. The AFCI fuel development program now has the means for predicting the behavior of the transuranic nitride fuel compositions. The key data and models needed for input into this model include: Thermal conductivity with burnup Fuel expansion coefficient Fuel swelling with burnup Fission gas release with burnup. Although the fuel performance model is a fully functional FEA analysis tool, it is limited by the input data and models.

  16. MEGARA fiber bundles

    NASA Astrophysics Data System (ADS)

    Pérez-Calpena, A.; García-Vargas, María. Luisa; Arrillaga, X.; Gil de Paz, A.; Sánchez-Blanco, E.; Martínez-Delgado, I.; Carrera, M. A.; Gallego, J.; Carrasco, E.; Sánchez-Moreno, F. M.; Iglesias-Páramo, J.

    2014-07-01

    MEGARA (Multi Espectrógrafo en GTC de Alta Resolución para Astronomía) is the future optical Integral-Field Unit (IFU) and Multi-Object Spectrograph (MOS) for the 10.4-m Gran Telescopio CANARIAS (GTC). MEGARA has three different fiber bundles, the Large Central Bundle covering 12.5 arcsec x 11.3 arcsec on sky, the Small Compact Bundle, of 8.5 arcsec x 6.7 arcsec, and a Fiber MOS positioner system that is able to place up to 100 mini-bundles with 7 fibers each in MOS configuration within a 3.5 arcmin x 3.5 arcmin FOV. The MEGARA focal plane subsystems are located at one of the GTC Folded Cassegrain focal stations. A field lens provides a telecentric focal plane, where the fibers are located. Micro-lenses arrays couple the telescope beam to the collimator focal ratio at the entrance of the fibers. Finally, the fibers, organized in bundles conducted the light from the focal plane to the pseudo-slit plates at the entrance of the MEGARA spectrograph, which shall be located at one of the Nasmyth platforms. This article also summarizes the prototypes already done and describes the set-up that shall be used to integrate fibers and micro-lens and characterize the fiber bundles.

  17. Modeling Deep Burn TRISO particle nuclear fuel

    NASA Astrophysics Data System (ADS)

    Besmann, T. M.; Stoller, R. E.; Samolyuk, G.; Schuck, P. C.; Golubov, S. I.; Rudin, S. P.; Wills, J. M.; Coe, J. D.; Wirth, B. D.; Kim, S.; Morgan, D. D.; Szlufarska, I.

    2012-11-01

    Under the DOE Deep Burn program TRISO fuel is being investigated as a fuel form for consuming plutonium and minor actinides, and for greater efficiency in uranium utilization. The result will thus be to drive TRISO particulate fuel to very high burn-ups. In the current effort the various phenomena in the TRISO particle are being modeled using a variety of techniques. The chemical behavior is being treated utilizing thermochemical analysis to identify phase formation/transformation and chemical activities in the particle, including kernel migration. Density functional theory is being used to understand fission product diffusion within the plutonia oxide kernel, the fission product's attack on the SiC coating layer, as well as fission product diffusion through an alternative coating layer, ZrC. Finally, a multiscale approach is being used to understand thermal transport, including the effect of radiation damage induced defects, in a model SiC material.

  18. Bundle Binding in Polyelectrolyte Solutions

    SciTech Connect

    Stevens, M.J.

    1999-01-21

    Stiff polyelectrolytes are found to spontaneously form oriented bundles. Conditions under which bundling occurs are found. Molecular dynamics simulations show that divalent counterions are necessary, and the chains must be sufficiently long and stiff. No aggregation occurs for monovalent counterions. For flexible or short chains aggregation occurs, but bundle formation does not. Due to dynamical constraints the systems tend to order into a network of connected bundles, not a single bundle.

  19. Coolant mixing in LMFBR rod bundles and outlet plenum mixing transients. Progress report, March 1, 1980-May 31, 1980

    SciTech Connect

    Todreas, N.E.; Golay, M.W.; Wolf, L.

    1980-01-01

    Experimental and theoretical work is reported on four tasks: bundle geometry (wrapped and bare rods), subchannel geometry (bare rods), LMFBR outlet plenum flow mixing, and theoretical local temperature files in LMFBR fuel rod bundles. (DLC)

  20. Computational modeling of solid oxide fuel cell

    NASA Astrophysics Data System (ADS)

    Penmetsa, Satish Kumar

    In the ongoing search for alternative and environmentally friendly power generation facilities, the solid oxide fuel cell (SOFC) is considered one of the prime candidates for the next generation of energy conversion devices due to its capability to provide environmentally friendly and highly efficient power generation. Moreover, SOFCs are less sensitive to composition of fuel as compared to other types of fuel cells, and internal reforming of the hydrocarbon fuel cell can be performed because of higher operating temperature range of 700°C--1000°C. This allows us to use different types of hydrocarbon fuels in SOFCs. The objective of this study is to develop a three-dimensional computational model for the simulation of a solid oxide fuel cell unit to analyze the complex internal transport mechanisms and sensitivity of the cell with different operating conditions, and also to develop SOFC with higher operating current density with a more uniform gas distributions in the electrodes and with lower ohmic losses. This model includes mass transfer processes due to convection and diffusion in the gas flow channels based on the Navier-Stokes equations as well as combined diffusion and advection in electrodes using Brinkman's hydrodynamic equation and associated electrochemical reactions in the trilayer of the SOFC. Gas transport characteristics in terms of three-dimensional spatial distributions of reactant gases and their effects on electrochemical reactions at the electrode-electrolyte interface, and in the resulting polarizations, are evaluated for varying pressure conditions. Results show the significance of the Brinkman's hydrodynamic model in electrodes to achieve more uniform gas concentration distributions while using a higher operating pressure and over a higher range of operating current densities.

  1. Progress in Chemical Kinetic Modeling for Surrogate Fuels

    SciTech Connect

    Pitz, W J; Westbrook, C K; Herbinet, O; Silke, E J

    2008-06-06

    Gasoline, diesel, and other alternative transportation fuels contain hundreds to thousands of compounds. It is currently not possible to represent all these compounds in detailed chemical kinetic models. Instead, these fuels are represented by surrogate fuel models which contain a limited number of representative compounds. We have been extending the list of compounds for detailed chemical models that are available for use in fuel surrogate models. Detailed models for components with larger and more complicated fuel molecular structures are now available. These advancements are allowing a more accurate representation of practical and alternative fuels. We have developed detailed chemical kinetic models for fuels with higher molecular weight fuel molecules such as n-hexadecane (C16). Also, we can consider more complicated fuel molecular structures like cyclic alkanes and aromatics that are found in practical fuels. For alternative fuels, the capability to model large biodiesel fuels that have ester structures is becoming available. These newly addressed cyclic and ester structures in fuels profoundly affect the reaction rate of the fuel predicted by the model. Finally, these surrogate fuel models contain large numbers of species and reactions and must be reduced for use in multi-dimensional models for spark-ignition, HCCI and diesel engines.

  2. Characteristic classes associated to Q-bundles

    NASA Astrophysics Data System (ADS)

    Kotov, Alexei; Strobl, Thomas

    2015-10-01

    A Q-manifold is a graded manifold endowed with a vector field of degree 1 squaring to zero. We consider the notion of a Q-bundle, that is, a fiber bundle in the category of Q-manifolds. To each homotopy class of "gauge fields" (sections in the category of graded manifolds) and each cohomology class of a certain subcomplex of forms on the fiber we associate a cohomology class on the base. As any principal bundle yields canonically a Q-bundle, this construction generalizes Chern-Weil classes. Novel examples include cohomology classes that are locally de Rham differential of the integrands of topological sigma models obtained by the AKSZ-formalism in arbitrary dimensions. For Hamiltonian Poisson fibrations one obtains a characteristic 3-class in this manner. We also relate the framework to equivariant cohomology and Lecomte's characteristic classes of exact sequences of Lie algebras.

  3. Bundled payment fails to gain a foothold In California: the experience of the IHA bundled payment demonstration.

    PubMed

    Ridgely, M Susan; de Vries, David; Bozic, Kevin J; Hussey, Peter S

    2014-08-01

    To determine whether bundled payment could be an effective payment model for California, the Integrated Healthcare Association convened a group of stakeholders (health plans, hospitals, ambulatory surgery centers, physician organizations, and vendors) to develop, through a consensus process, the methods and means of implementing bundled payment. In spite of a high level of enthusiasm and effort, the pilot did not succeed in its goal to implement bundled payment for orthopedic procedures across multiple payers and hospital-physician partners. An evaluation of the pilot documented a number of barriers, such as administrative burden, state regulatory uncertainty, and disagreements about bundle definition and assumption of risk. Ultimately, few contracts were signed, which resulted in insufficient volume to test hypotheses about the impact of bundled payment on quality and costs. Although bundled payment failed to gain a foothold in California, the evaluation provides lessons for future bundled payment initiatives. PMID:25092835

  4. A Multi-Dimensional Heat Transfer Model of a Tie-Tube and Hexagonal Fuel Element for Nuclear Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Gomez, C. F.; Mireles, O. R.; Stewart, E.

    2016-01-01

    The Space Capable Cryogenic Thermal Engine (SCCTE) effort considers a nuclear thermal rocket design based around a Low-Enriched Uranium (LEU) design fission reactor. The reactor core is comprised of bundled hexagonal fuel elements that directly heat hydrogen for expansion in a thrust chamber and hexagonal tie-tubes that house zirconium hydride moderator mass for the purpose of thermalizing fast neutrons resulting from fission events. Created 3D steady state Hex fuel rod model with 1D flow channels. Hand Calculation were used to set up initial conditions for fluid flow. The Hex Fuel rod uses 1D flow paths to model the channels using empirical correlations for heat transfer in a pipe. Created a 2-D axisymmetric transient to steady state model using the CFD turbulent flow and Heat Transfer module in COMSOL. This model was developed to find and understand the hydrogen flow that might effect the thermal gradients axially and at the end of the tie tube where the flow turns and enters an annulus. The Hex fuel rod and Tie tube models were made based on requirements given to us by CSNR and the SCCTE team. The models helped simplify and understand the physics and assumptions. Using pipe correlations reduced the complexity of the 3-D fuel rod model and is numerically more stable and computationally more time-efficient compared to the CFD approach. The 2-D axisymmetric tie tube model can be used as a reference "Virtual test model" for comparing and improving 3-D Models.

  5. Förster resonance energy transfer measurements are consistent with a helical bundle model for lipid-free apolipoprotein A-I.

    PubMed

    Brouillette, Christie G; Dong, Wen-Ji; Yang, Zhengrong W; Ray, Marjorie J; Protasevich, Irina I; Cheung, Herbert C; Engler, Jeffrey A

    2005-12-20

    Apolipoprotein (apo) A-I mutants were constructed for FRET studies to distinguish between two possible lipid-free conformers, a globular helix bundle and an elongated helical hairpin. Mutants containing a single Trp at position 50 were prepared by replacing Trps at positions 8, 72, and 108 with Phe (W@50). Two mutants were constructed from W@50 by incorporating Cys at Arg83 (W@50R83C) or Arg173 (W@50R173C) for attachment of the fluorescent probe AEDANS. Secondary structure of the mutants is very similar to wild type (wt) apo A-I, and fluorescence emission indicates that W50 is protected from solvent. Thermal stabilities of the AEDANS-labeled mutants are also similar to wt. These results indicate that no discernible changes occur in structure or stability as a result of mutations or labeling. The FRET data from W@50 to AEDANS are well-represented by a single distance distribution function with a distance of approximately 22 A for W@50R83C and approximately 19 A for W@50R173C. These distances are consistent with theoretical values calculated from a helical bundle model but not from a helical hairpin. A probability distance distribution function yields significantly small half-width values of 5.6 and 3.7 A, respectively, suggesting low conformational dynamics in both mutants. Differential scanning calorimetry (DSC) was performed on wt and a C-terminal deletion mutant, Delta(187-243), to obtain information on domain architecture. Contrary to expectations, both proteins unfold cooperatively. The results are consistent with the presence of a single folded domain within residues 1-186. These results support the presence of a discrete globular bundle conformation for lipid-free apo A-I. PMID:16342934

  6. Performance model of molten carbonate fuel cell

    SciTech Connect

    Matsumoto, S.; Sasaki, A.; Urushibata, H.; Tanaka, T. )

    1990-06-01

    A performance model of a molten carbonate fuel cell (MCFC), that is an electrochemical energy conversion device for electric power generation, is discussed. The authors' purpose is to improve the presumptive ability of the MCFC model and to investigate the impact of MCFC characteristics in fuel cell system simulations. Basic data are obtained experimentally by single-cell tests. The authors pay special attention to the MCFC overall characteristics with respect to oxidant composition. A correlation formula based on the experimental data is derived as for the cell voltage, oxygen and carbon dioxide partial pressures. After three types of the MCFC system option are assumed, trade-off studies are made dependant on the performance models.

  7. On the capillary pressure function in porous media based on relative permeabilities of two immiscible fluids: Application of capillary bundle models and validation using experimental data.

    PubMed

    Babchin, A J; Bentsen, R; Faybishenko, B; Geilikman, M B

    2016-07-01

    The objective of the current paper is to extend the theoretical approach and an analytical solution, which was proposed by Babchin and Faybishenko (2014), for the evaluation of a capillary pressure (Pc) curve in porous media based on the apparent specific surface area, using an explicit combination of the relative permeability functions for the wetting and nonwetting phases. Specifically, in the current paper, the authors extended this approach by the application of two types of capillary bundle models with different formulations of effective capillary radius formulae. The application of the new models allowed the authors to improve the results of calculations of the effective average contact angle given in the paper by Babchin and Faybishenko (2014). The validation of the new models for calculations of the Pc curve is also given in this paper using the results of a specifically designed core experiment, which was originally conducted by Ayub and Bentsen (2001). PMID:26211849

  8. Development and validation of advanced CFD models for detailed predictions of void distribution in a BWR bundle

    NASA Astrophysics Data System (ADS)

    Neykov, Boyan

    In recent years, a commonly adopted approach is to use Computational Fluid Dynamics (CFD) codes as computational tools for simulation of different aspects of the nuclear reactor thermal-hydraulic performance where high-resolution and high-fidelity modeling is needed. Within the framework of this PhD work, the CFD code STAR-CD [1] is used for investigations of two phase flow in air-water systems as well as boiling phenomena in simple pipe geometry and in a Boiling Water Reactor (BWR) fuel assembly. Based on the two-fluid Eulerian solver, improvements of the STAR-CD code in the treatment of the drag, lift and wall lubrication forces in a dispersed two phase flow at high vapor (gas) phase fractions are investigated and introduced. These improvements constitute a new two phase modeling framework for STAR-CD, which has been shown to be superior as compared to the default models in STAR-CD. The conservation equations are discretized using the finite-volume method and solved using a solution procedure is based on Pressure Implicit with Splitting of Operators (PISO) algorithm, adapted to the solution of the two-fluid model. The improvements in the drag force modeling include investigation and integration of models with dependence on both void fraction and bubble diameter. The set of the models incorporated into STAR-CD is selected based on an extensive literature review focused on two phase systems with high vapor fractions. The research related to the modeling of wall lubrication force is focused on the validation of the already existing model in STAR-CD. The major contribution of this research is the development and implementation of an improved correlation for the lift coefficient used in the lift force formula. While a variety of correlations for the lift coefficient can be found in the open literature, most of those were derived from experiments conducted at low vapor (gas) phase fractions and are not applicable to the flow conditions existing in the BWRs. Therefore

  9. Simulating Topological Defects in Twisted Fiber Bundles

    NASA Astrophysics Data System (ADS)

    Bruss, Isaac R.; Grason, Gregory M.

    2012-02-01

    Twisted bundles are a common motif found in naturally occurring structures of self-assembled fibers, such as collagen and fibrin. By understanding the general principles governing such organizations, new synthetic materials--from the nano to the macroscale--may also be realized. Recently, continuum elasticity theory has been applied to describe generic twisted fiber bundles. This has revealed a relation between a bundle's twist and the presence of topological defects in the cross-sectional packing of the fibers. Here we employ numerical simulations to examine this interdependence. We model a bundle's cross-section as beads confined to a plane. The interactions between beads is governed by a modified Lennard-Jones potential that accounts for the effects of twist. We observe configurations that range from perfect hexagonal packing for cases of no twist, to defect populated structures above a critical amount of twist. For small bundles of less than ˜100 beads, there exists a discrete spectrum of energy ground states corresponding to integer numbers of five-fold disclinations. For larger bundles, we hope to uncover what types of defect arrangements effectively screen the stresses caused by twist, and compare these to current predictions of the internal organization of collagen fibrils.

  10. Statistical Model of Evaporating Multicomponent Fuel Drops

    NASA Technical Reports Server (NTRS)

    Harstad, Kenneth; LeClercq, Patrick; Bellan, Josette

    2007-01-01

    An improved statistical model has been developed to describe the chemical composition of an evaporating multicomponent- liquid drop and of the mixture of gases surrounding the drop. The model is intended for use in computational simulations of the evaporation and combustion of sprayed liquid fuels, which are typically mixtures of as many as hundreds of different hydrocarbon compounds. The present statistical model is an approximation designed to afford results that are accurate enough to contribute to understanding of the simulated physical and chemical phenomena, without imposing an unduly large computational burden.

  11. Scaling Shift in Multicracked Fiber Bundles

    NASA Astrophysics Data System (ADS)

    Manca, Fabio; Giordano, Stefano; Palla, Pier Luca; Cleri, Fabrizio

    2014-12-01

    Bundles of fibers, wires, or filaments are ubiquitous structures in both natural and artificial materials. We investigate the bundle degradation induced by an external damaging action through a theoretical model describing an assembly of parallel fibers, progressively damaged by a random population of cracks. Fibers in our model interact by means of a lateral linear coupling, thus retaining structural integrity even after substantial damage. Monte Carlo simulations of the Young's modulus degradation for increasing crack density demonstrate a remarkable scaling shift between an exponential and a power-law regime. Analytical solutions of the model confirm this behavior, and provide a thorough understanding of the underlying physics.

  12. Scaling shift in multicracked fiber bundles.

    PubMed

    Manca, Fabio; Giordano, Stefano; Palla, Pier Luca; Cleri, Fabrizio

    2014-12-19

    Bundles of fibers, wires, or filaments are ubiquitous structures in both natural and artificial materials. We investigate the bundle degradation induced by an external damaging action through a theoretical model describing an assembly of parallel fibers, progressively damaged by a random population of cracks. Fibers in our model interact by means of a lateral linear coupling, thus retaining structural integrity even after substantial damage. Monte Carlo simulations of the Young's modulus degradation for increasing crack density demonstrate a remarkable scaling shift between an exponential and a power-law regime. Analytical solutions of the model confirm this behavior, and provide a thorough understanding of the underlying physics. PMID:25554893

  13. Modelling fuel cell performance using artificial intelligence

    NASA Astrophysics Data System (ADS)

    Ogaji, S. O. T.; Singh, R.; Pilidis, P.; Diacakis, M.

    Over the last few years, fuel cell technology has been increasing promisingly its share in the generation of stationary power. Numerous pilot projects are operating worldwide, continuously increasing the amount of operating hours either as stand-alone devices or as part of gas turbine combined cycles. An essential tool for the adequate and dynamic analysis of such systems is a software model that enables the user to assess a large number of alternative options in the least possible time. On the other hand, the sphere of application of artificial neural networks has widened covering such endeavours of life such as medicine, finance and unsurprisingly engineering (diagnostics of faults in machines). Artificial neural networks have been described as diagrammatic representation of a mathematical equation that receives values (inputs) and gives out results (outputs). Artificial neural networks systems have the capacity to recognise and associate patterns and because of their inherent design features, they can be applied to linear and non-linear problem domains. In this paper, the performance of the fuel cell is modelled using artificial neural networks. The inputs to the network are variables that are critical to the performance of the fuel cell while the outputs are the result of changes in any one or all of the fuel cell design variables, on its performance. Critical parameters for the cell include the geometrical configuration as well as the operating conditions. For the neural network, various network design parameters such as the network size, training algorithm, activation functions and their causes on the effectiveness of the performance modelling are discussed. Results from the analysis as well as the limitations of the approach are presented and discussed.

  14. Code System for Spent Fuel Heating Analysis.

    Energy Science and Technology Software Center (ESTSC)

    1999-05-24

    Version 00 SFHA calculates steady-state fuel rod temperatures for hexagon and square-fuel bundles. The code is used to perform sensitivity studies and confirmatory analyses of results submitted by applicants for spent fuel storage licenses. All three modes of heat transfer are considered; radiation, convection, and conduction. Each is modeled separately. SFHA benchmark calculations were made with test data to validate the use of a simple one-dimensional heat transfer model for estimating fuel rod temperatures. Benchmarkmore » results show that SFHA is capable of calculating spent fuel rod temperatures for square and hexagonal fuel bundles under various environments for the consolidated or unconsolidated condition. The program is menu-driven and executes automatically after all required information is entered.« less

  15. Fuel model selection for BEHAVE in midwestern oak savannas

    USGS Publications Warehouse

    Grabner, K.W.; Dwyer, J.P.; Cutter, B.E.

    2001-01-01

    BEHAVE, a fire behavior prediction system, can be a useful tool for managing areas with prescribed fire. However, the proper choice of fuel models can be critical in developing management scenarios. BEHAVE predictions were evaluated using four standardized fuel models that partially described oak savanna fuel conditions: Fuel Model 1 (Short Grass), 2 (Timber and Grass), 3 (Tall Grass), and 9 (Hardwood Litter). Although all four models yielded regressions with R2 in excess of 0.8, Fuel Model 2 produced the most reliable fire behavior predictions.

  16. Boron-10 ABUNCL Models of Fuel Testing

    SciTech Connect

    Siciliano, Edward R.; Lintereur, Azaree T.; Kouzes, Richard T.; Ely, James H.

    2013-10-01

    The Department of Energy Office of Nuclear Safeguards and Security (NA-241) is supporting the project Coincidence Counting With Boron-Based Alternative Neutron Detection Technology at Pacific Northwest National Laboratory (PNNL) for the development of a 3He proportional counter alternative neutron coincidence counter. The goal of this project is to design, build and demonstrate a system based upon 10B-lined proportional tubes in a configuration typical for 3He-based coincidence counter applications. This report provides results from MCNP simulations of the General Electric Reuter-Stokes Alternative Boron-Based Uranium Neutron Coincidence Collar (ABUNCL) active configuration model with fuel pins previously measured at Los Alamos National Laboratory. A comparison of the GE-ABUNCL simulations and simulations of 3He based UNCL-II active counter (the system for which the GE-ABUNCL was targeted to replace) with the same fuel pin assemblies is also provided.

  17. FAST: A Fuel And Sheath Modeling Tool for CANDU Reactor Fuel

    NASA Astrophysics Data System (ADS)

    Prudil, Andrew Albert

    Understanding the behaviour of nuclear fuel during irradiation is a complicated multiphysics problem involving neutronics, chemistry, radiation physics, material-science, solid mechanics, heat transfer and thermal-hydraulics. Due to the complexity and interdependence of the physics and models involved, fuel modeling is typically clone with numerical models. Advancements in both computer hardware and software have made possible new more complex and sophisticated fuel modeling codes. The Fuel And Sheath modelling Tool (FAST) is a fuel performance code that has been developed for modeling nuclear fuel behaviour under normal and transient conditions. The FAST code includes models for heat generation and transport, thermal expansion, elastic strain, densification, fission product swelling, pellet relocation, contact, grain growth, fission gas release, gas and coolant pressure and sheath creep. These models are coupled and solved numerically using the Comsol Multiphysics finite-element platform. The model utilizes a radialaxial geometry of a fuel pellet (including dishing and chamfering) and accompanying fuel sheath allowing the model to predict circumferential ridging. This model has evolved from previous treatments developed at the Royal Military College. The model has now been significantly advanced to include: a more detailed pellet geometry, localized pellet-to-sheath gap size and contact pressure, ability to model cracked pellets, localized fuel burnup for material property models, improved U02 densification behaviour, fully 2-dimensional model for the sheath, additional creep models, additional material models, an FEM Booth-diffusion model for fission gas release (including ability to model temperature and power changes), a capability for end-of-life predictions, the ability to utilize text files as model inputs, and provides a first time integration of normal operating conditions (NOC) and transient fuel models into a single code (which has never been achieved

  18. Mechanics of Individual Keratin Bundles in Living Cells

    PubMed Central

    Nolting, Jens-Friedrich; Möbius, Wiebke; Köster, Sarah

    2014-01-01

    Along with microtubules and microfilaments, intermediate filaments are a major component of the eukaryotic cytoskeleton and play a key role in cell mechanics. In cells, keratin intermediate filaments form networks of bundles that are sparser in structure and have lower connectivity than, for example, actin networks. Because of this, bending and buckling play an important role in these networks. Buckling events, which occur due to compressive intracellular forces and cross-talk between the keratin network and other cytoskeletal components, are measured here in situ. By applying a mechanical model for the bundled filaments, we can access the mechanical properties of both the keratin bundles themselves and the surrounding cytosol. Bundling is characterized by a coupling parameter that describes the strength of the linkage between the individual filaments within a bundle. Our findings suggest that coupling between the filaments is mostly complete, although it becomes weaker for thicker bundles, with some relative movement allowed. PMID:25468348

  19. Buckling Behavior of Individual and Bundled Microtubules

    PubMed Central

    Soheilypour, Mohammad; Peyro, Mohaddeseh; Peter, Stephen J.; Mofrad, Mohammad R.K.

    2015-01-01

    As the major structural constituent of the cytoskeleton, microtubules (MTs) serve a variety of biological functions that range from facilitating organelle transport to maintaining the mechanical integrity of the cell. Neuronal MTs exhibit a distinct configuration, hexagonally packed bundles of MT filaments, interconnected by MT-associated protein (MAP) tau. Building on our previous work on mechanical response of axonal MT bundles under uniaxial tension, this study is focused on exploring the compression scenarios. Intracellular MTs carry a large fraction of the compressive loads sensed by the cell and therefore, like any other column-like structure, are prone to substantial bending and buckling. Various biological activities, e.g., actomyosin contractility and many pathological conditions are driven or followed by bending, looping, and buckling of MT filaments. The coarse-grained model previously developed in our lab has been used to study the mechanical behavior of individual and bundled in vivo MT filaments under uniaxial compression. Both configurations show tip-localized, decaying, and short-wavelength buckling. This behavior highlights the role of the surrounding cytoplasm and MAP tau on MT buckling behavior, which allows MT filaments to bear much larger compressive forces. It is observed that MAP tau interconnections improve this effect by a factor of two. The enhanced ability of MT bundles to damp buckling waves relative to individual MT filaments, may be interpreted as a self-defense mechanism because it helps axonal MTs to endure harsher environments while maintaining their function. The results indicate that MT filaments in a bundle do not buckle simultaneously implying that the applied stress is not equally shared among the MT filaments, that is a consequence of the nonuniform distribution of MAP tau proteins along the bundle length. Furthermore, from a pathological perspective, it is observed that axonal MT bundles are more vulnerable to failure in

  20. Hydrodynamic interaction of bacterial flagella - flagellar bundling

    NASA Astrophysics Data System (ADS)

    Lim, Sookkyung

    2013-11-01

    Flagellar bundling is an important aspect of locomotion in bacteria such as Escherichia coli. To study the hydrodynamic behavior of helical flagella, we present a computational model that is based on the geometry of the bacterial flagellar filament at the micrometer scale. We consider two model flagella, each of which has a rotary motor at its base with the rotation rate of the motor set at 100 Hz. Bundling occurs when both flagella are left-handed helices turning counterclockwise (when viewed from the nonmotor end of the flagellum looking back toward the motor) or when both flagella are right-handed helices turning clockwise. Helical flagella of the other combinations of handedness and rotation direction do not bundle. In this work we use the generalized immersed boundary method combined with the unconstrained Kirchhoff rod theory, which allows us to study the complicated hydrodynamics of flagellar behavior. This is a joint work with Charlie Peskin at NYU. NSF

  1. Bundled monocapillary optics

    DOEpatents

    Hirsch, Gregory

    2002-01-01

    A plurality of glass or metal wires are precisely etched to form the desired shape of the individual channels of the final polycapillary optic. This shape is created by carefully controlling the withdrawal speed of a group of wires from an etchant bath. The etched wires undergo a subsequent operation to create an extremely smooth surface. This surface is coated with a layer of material which is selected to maximize the reflectivity of the radiation being used. This reflective surface may be a single layer of material, or a multilayer coating for optimizing the reflectivity in a narrower wavelength interval. The collection of individual wires is assembled into a close-packed multi-wire bundle, and the wires are bonded together in a manner which preserves the close-pack configuration, irrespective of the local wire diameter. The initial wires are then removed by either a chemical etching procedure or mechanical force. In the case of chemical etching, the bundle is generally segmented by cutting a series of etching slots. Prior to removing the wire, the capillary array is typically bonded to a support substrate. The result of the process is a bundle of precisely oriented radiation-reflecting hollow channels. The capillary optic is used for efficiently collecting and redirecting the radiation from a source of radiation which could be the anode of an x-ray tube, a plasma source, the fluorescent radiation from an electron microprobe, a synchrotron radiation source, a reactor or spallation source of neutrons, or some other source.

  2. Forecast of future aviation fuels: The model

    NASA Technical Reports Server (NTRS)

    Ayati, M. B.; Liu, C. Y.; English, J. M.

    1981-01-01

    A conceptual models of the commercial air transportation industry is developed which can be used to predict trends in economics, demand, and consumption. The methodology is based on digraph theory, which considers the interaction of variables and propagation of changes. Air transportation economics are treated by examination of major variables, their relationships, historic trends, and calculation of regression coefficients. A description of the modeling technique and a compilation of historic airline industry statistics used to determine interaction coefficients are included. Results of model validations show negligible difference between actual and projected values over the twenty-eight year period of 1959 to 1976. A limited application of the method presents forecasts of air tranportation industry demand, growth, revenue, costs, and fuel consumption to 2020 for two scenarios of future economic growth and energy consumption.

  3. Thermal-hydraulic/heat transfer code development for sphere-pac-fueled LMFBRs. [COBRA-3SP code

    SciTech Connect

    Morris, D.G.

    1980-06-01

    Sphere-pac fuel has received much attention recently in light of the development of proliferation-resistant fuel cycles for the Fast Breeder Reactor Program in the United States. However, for sphere-pac fuel to be a viable alternative to conventional pellet fuel, a means to analyze the thermal behavior of sphere-pac-fueled pin bundles is needed. To meet this need, a thermal-hydraulic/heat transfer computer code has been developed for sphere-pac-fueled fast breeder reactors. The code, COBRA-3SP, is a modified version of COBRA-3M incorporating a three-region sphere-pac fuel pin model which permits fuel restructuring. With COBRA-3SP, steady-state and transient analysis of sphere-pac-fueled pin bundles is possible. The validity of the sphere-pac fuel pin model has been verified using experimental results of irradiated sphere-pac fuel.

  4. 76 FR 53137 - Bundled Payments for Care Improvement Initiative: Request for Applications

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-25

    ... HUMAN SERVICES Centers for Medicare & Medicaid Services Bundled Payments for Care Improvement Initiative... of the initial four models under the Bundled Payments for Care Improvement initiative beginning in... described on the CMS Innovation Center Web site...

  5. Carbon nanotube bundles under electric field perturbations

    NASA Astrophysics Data System (ADS)

    Hammes, I.; Latgé, A.

    2012-03-01

    Here we address the important role played by electric fields applied in carbon nanotube bundles in providing convenient scenarios for their use in electronic devices. We show that a gap modulation may be derived depending on the bundle configuration and the details of the applied field configuration. The system is described by a tight binding Hamiltonian and the Green function formalism is used to calculate the local density of states. Small bundles were used to validate our model on the basis of ab initio calculations. Further analysis shows that the number of tubes, geometrical configuration details and field intensities may be controlled to tune the electronic structure close to the Fermi energy, envisaging atomic-scale devices.

  6. Gaseous Fuel Injection Modeling using a Gaseous Sphere Injection Methodology

    SciTech Connect

    Hessel, R P; Aceves, S M; Flowers, D L

    2006-03-06

    The growing interest in gaseous fuels (hydrogen and natural gas) for internal combustion engines calls for the development of computer models for simulation of gaseous fuel injection, air entrainment and the ensuing combustion. This paper introduces a new method for modeling the injection and air entrainment processes for gaseous fuels. The model uses a gaseous sphere injection methodology, similar to liquid droplet in injection techniques used for liquid fuel injection. In this paper, the model concept is introduced and model results are compared with correctly- and under-expanded experimental data.

  7. A model for predicting coolant activity behaviour for fuel-failure monitoring analysis

    NASA Astrophysics Data System (ADS)

    El-Jaby, Ali

    A CANDU fuel element becomes defective when the Zircaloy-4 sheath is breached, allowing high pressure heavy water (D2O) coolant to enter the fuel-to-sheath gap, thereby creating a direct path for fission products (mainly volatile species of iodine and noble gases) and fuel debris to escape into the primary heat transport system (PHTS). In addition, the entry of D 2O coolant into the fuel-to-sheath gap may cause the UO2 fuel to oxidize, which in turn can augment the rate of fission product release into the PHTS. The release of fission products and fuel debris into the PHTS will elevate circuit contamination levels, consequently increasing radiation exposure to station personnel during maintenance tasks. Moreover, the continued operation of a defective fuel element may diminish its thermal performance due to fuel oxidation effects. It is therefore desirable to discharge defective fuel as soon as possible. Hence, a better understanding of defective fuel behaviour is required in order to develop an improved methodology for fuel-failure monitoring and PHTS coolant activity prediction. A mathematical model has been developed to predict the release of volatile fission products from operating defective nuclear fuel elements. The fission product activity in both the fuel-to-sheath gap and PHTS coolant as a function of time can be predicted during all reactor operations including steady-state operation as well as reactor shutdown, startup, and bundle-shifting manoeuvres. In addition, an improved ability to predict the PHTS coolant activity of the 135Xe isotope in commercial reactors is discussed. Moreover, a method to approximate both the burnup and the amount of the tramp uranium deposits in-core, as well as the tramp uranium fission rate is proposed. The model has been implemented as the STAR (Steady-state and Transient Activity Release) stand-alone code written in the C++ programming language using a custom developed finite-difference variable-mesh (FDVM) numerical

  8. Novel application-oriented transient fuel model of a port fuel injection S. I. engine

    NASA Astrophysics Data System (ADS)

    Wang, Cunlei; Zhang, Jianlong; Yin, Chengliang

    2014-03-01

    Most researches on transient fuel control of port fuel injection S.I. engine are carried out from the perspective of advanced mathematical theories. When it comes to practical control, there exist many limitations although they are more intelligent. In order to overcome the fuel wetting effect of PFI engine, the application-oriented transient fuel control is studied by analyzing the key parameters which are closely related with the engine transient characteristics. Both validity and simplicity are taken into consideration. Based on the fuel wall-wetting theory and popular fuel compensation strategy, short-term transient fuel(STF) and long-term transient fuel(LTF), as well as their individual decay approaches, are introduced. STF is to compensate the drastic fuel film loss caused by sudden throttle change, while the function of LTF is to compensate the fuel film loss by manifold air pressure( p) fluctuation. Each of them has their respective pros and cons. The engine fuel mass and air mass are also calculated for air-fuel ratio(AFR) according to ideal gas state equation and empirical equations. The vehicle acceleration test is designed for model validation. The engine experiences several mild and heavy accelerations corresponding to the gear change during vehicle acceleration. STF and LTF control are triggered reliably. The engine transient fuel control simulation adopts the same inputs as the test to ensure consistency. The logged test data are used to check the model output. The results show that the maximum fuel pulse width(FPW) error reaches 2 ms, and it only occurs under engine heavy acceleration condition. The average FPW error is 0.57 ms. The results of simulation and test are close overall, which indicates the accuracy of steady and transient fuel. The proposed research provides an efficient approach not only suitable for practical engineering application, but also for AFR prediction, fuel consumption calculation, and further studies on emission control.

  9. A methodology for assessing the market benefits of alternative motor fuels: The Alternative Fuels Trade Model

    SciTech Connect

    Leiby, P.N.

    1993-09-01

    This report describes a modeling methodology for examining the prospective economic benefits of displacing motor gasoline use by alternative fuels. The approach is based on the Alternative Fuels Trade Model (AFTM). AFTM development was undertaken by the US Department of Energy (DOE) as part of a longer term study of alternative fuels issues. The AFTM is intended to assist with evaluating how alternative fuels may be promoted effectively, and what the consequences of substantial alternative fuels use might be. Such an evaluation of policies and consequences of an alternative fuels program is being undertaken by DOE as required by Section 502(b) of the Energy Policy Act of 1992. Interest in alternative fuels is based on the prospective economic, environmental and energy security benefits from the substitution of these fuels for conventional transportation fuels. The transportation sector is heavily dependent on oil. Increased oil use implies increased petroleum imports, with much of the increase coming from OPEC countries. Conversely, displacement of gasoline has the potential to reduce US petroleum imports, thereby reducing reliance on OPEC oil and possibly weakening OPEC`s ability to extract monopoly profits. The magnitude of US petroleum import reduction, the attendant fuel price changes, and the resulting US benefits, depend upon the nature of oil-gas substitution and the supply and demand behavior of other world regions. The methodology applies an integrated model of fuel market interactions to characterize these effects.

  10. Modeling bacterial contamination of fuel ethanol fermentation.

    PubMed

    Bischoff, Kenneth M; Liu, Siqing; Leathers, Timothy D; Worthington, Ronald E; Rich, Joseph O

    2009-05-01

    The emergence of antibiotic-resistant bacteria may limit the effectiveness of antibiotics to treat bacterial contamination in fuel ethanol plants, and therefore, new antibacterial intervention methods and tools to test their application are needed. Using shake-flask cultures of Saccharomyces cerevisiae grown on saccharified corn mash and strains of lactic acid bacteria isolated from a dry-grind ethanol facility, a simple model to simulate bacterial contamination and infection was developed. Challenging the model with 10(8) CFU/mL Lactobacillus fermentum decreased ethanol yield by 27% and increased residual glucose from 6.2 to 45.5 g/L. The magnitude of the effect was proportional to the initial bacterial load, with 10(5) CFU/mL L. fermentum still producing an 8% decrease in ethanol and a 3.2-fold increase in residual glucose. Infection was also dependent on the bacterial species used to challenge the fermentation, as neither L. delbrueckii ATCC 4797 nor L. amylovorus 0315-7B produced a significant decrease in ethanol when inoculated at a density of 10(8) CFU/mL. In the shake-flask model, treatment with 2 microg/mL virginiamycin mitigated the infection when challenged with a susceptible strain of L. fermentum (MIC for virginiamycin < or =2 ppm), but treatment was ineffective at treating infection by a resistant strain of L. fermentum (MIC = 16 ppm). The model may find application in developing new antibacterial agents and management practices for use in controlling contamination in the fuel ethanol industry. PMID:19148876

  11. Mathematical Model of the Jet Engine Fuel System

    NASA Astrophysics Data System (ADS)

    Klimko, Marek

    2015-05-01

    The paper discusses the design of a simplified mathematical model of the jet (turbo-compressor) engine fuel system. The solution will be based on the regulation law, where the control parameter is a fuel mass flow rate and the regulated parameter is the rotational speed. A differential equation of the jet engine and also differential equations of other fuel system components (fuel pump, throttle valve, pressure regulator) will be described, with respect to advanced predetermined simplifications.

  12. Dynamic Modeling in Solid-Oxide Fuel Cells Controller Design

    SciTech Connect

    Lu, Ning; Li, Qinghe; Sun, Xin; Khaleel, Mohammad A.

    2007-06-28

    In this paper, a dynamic model of the solid-oxide fuel cell (SOFC) power unit is developed for the purpose of designing a controller to regulate fuel flow rate, fuel temperature, air flow rate, and air temperature to maintain the SOFC stack temperature, fuel utilization rate, and voltage within operation limits. A lumped model is used to consider the thermal dynamics and the electro-chemial dynamics inside an SOFC power unit. The fluid dynamics at the fuel and air inlets are considered by using the in-flow ramp-rates.

  13. Fossil fuel conversion -- Measurement and modeling

    SciTech Connect

    Solomon, P.R.; Smoot, L.D.; Serio, M.A.; Hamblen, D.G.; Brewster, B.S.; Radulovic, P.T.

    1995-11-01

    The main objective of this program is to understand the chemical and physical mechanisms in coal conversion processes and incorporate this knowledge in computer-aided reactor engineering technology for the purposes of development, evaluation, design, scale up, simulation, control and feedstock evaluation in advanced coal conversion devices. To accomplish this objective, this program will: (1) provide critical data on the physical and chemical processes in fossil fuel gasifier and combustors; (2) further develop a set of comprehensive codes; and (3) apply these codes to model various types of combustors and gasifier (fixed-bed, transport reactor, and fluidized-bed for coal and gas turbines for natural gas). Results are presented on the devolatilization of large coal particles; transport reactor modeling; fluidized bed model; nitrogen evolution from small and large coal particles; modeling of hydrogen cyanide and ammonia release during coal pyrolysis; oxidation rates for large coal particles at high pressures; advanced fixed-bed model development and evaluation; application of ACERC combustion and gasification codes to AFR diagnostic capabilities to systems of interest to METC; and submodel for lean premixed combustion of natural gas in industrial gas turbines.

  14. [Masquerading bundle branch block].

    PubMed

    Kukla, Piotr; Baranchuk, Adrian; Jastrzębski, Marek; Bryniarski, Leszek

    2014-01-01

    We here describe a surface 12-lead electrocardiogram (ECG) of a 72-year-old female with a prior history of breast cancer and chemotherapy-induced cardiomyopathy. An echocardiogram revealed left ventricular dysfunction, ejection fraction of 23%, with mild enlarged left ventricle. The 12-lead ECG showed atrial fibrillation with a mean heart rate of about 100 bpm, QRS duration 160 ms, QT interval 400 ms, right bundle branch block (RBBB) and left anterior fascicular block (LAFB). The combination of RBBB features in the precordial leads and LAFB features in the limb leads is known as ''masquerading bundle branch block''. In most cases of RBBB and LAFB, the QRS axis deviation is located between - 80 to -120 degrees. Rarely, when predominant left ventricular forces are present, the QRS axis deviation is near about -90 degrees, turning the pattern into an atypical form. In a situation of RBBB associated with LAFB, the S wave can be absent or very small in lead I. Such a situation is the result of not only purely LAFB but also with left ventricular hypertrophy and/or focal block due to scar (extensive anterior myocardial infarction) or fibrosis (cardiomyopathy). Sometimes, this specific ECG pattern is mistaken for LBBB. RBBB with LAFB may imitate LBBB either in the limb leads (known as 'standard masquerading' - absence of S wave in lead I), or in the precordial leads (called 'precordial masquerading' - absence of S wave in leads V₅ and V₆). Our ECG showed both these types of masquerading bundle branch block - absence of S wave in lead I and in leads V₅ and V₆. PMID:24469750

  15. Alpha1 LASSO data bundles Lamont, OK

    DOE Data Explorer

    Gustafson, William Jr; Vogelmann, Andrew; Endo, Satoshi; Toto, Tami; Xiao, Heng; Li, Zhijin; Cheng, Xiaoping; Krishna, Bhargavi (ORCID:000000018828528X)

    2016-08-03

    A data bundle is a unified package consisting of LASSO LES input and output, observations, evaluation diagnostics, and model skill scores. LES input includes model configuration information and forcing data. LES output includes profile statistics and full domain fields of cloud and environmental variables. Model evaluation data consists of LES output and ARM observations co-registered on the same grid and sampling frequency. Model performance is quantified by skill scores and diagnostics in terms of cloud and environmental variables.

  16. Characterization of active hair-bundle motility by a mechanical-load clamp

    NASA Astrophysics Data System (ADS)

    Salvi, Joshua D.; Maoiléidigh, Dáibhid Ó.; Fabella, Brian A.; Tobin, Mélanie; Hudspeth, A. J.

    2015-12-01

    Active hair-bundle motility endows hair cells with several traits that augment auditory stimuli. The activity of a hair bundle might be controlled by adjusting its mechanical properties. Indeed, the mechanical properties of bundles vary between different organisms and along the tonotopic axis of a single auditory organ. Motivated by these biological differences and a dynamical model of hair-bundle motility, we explore how adjusting the mass, drag, stiffness, and offset force applied to a bundle control its dynamics and response to external perturbations. Utilizing a mechanical-load clamp, we systematically mapped the two-dimensional state diagram of a hair bundle. The clamp system used a real-time processor to tightly control each of the virtual mechanical elements. Increasing the stiffness of a hair bundle advances its operating point from a spontaneously oscillating regime into a quiescent regime. As predicted by a dynamical model of hair-bundle mechanics, this boundary constitutes a Hopf bifurcation.

  17. New Mechanical Model for the Transmutation Fuel Performance Code

    SciTech Connect

    Gregory K. Miller

    2008-04-01

    A new mechanical model has been developed for implementation into the TRU fuel performance code. The new model differs from the existing FRAPCON 3 model, which it is intended to replace, in that it will include structural deformations (elasticity, plasticity, and creep) of the fuel. Also, the plasticity algorithm is based on the “plastic strain–total strain” approach, which should allow for more rapid and assured convergence. The model treats three situations relative to interaction between the fuel and cladding: (1) an open gap between the fuel and cladding, such that there is no contact, (2) contact between the fuel and cladding where the contact pressure is below a threshold value, such that axial slippage occurs at the interface, and (3) contact between the fuel and cladding where the contact pressure is above a threshold value, such that axial slippage is prevented at the interface. The first stage of development of the model included only the fuel. In this stage, results obtained from the model were compared with those obtained from finite element analysis using ABAQUS on a problem involving elastic, plastic, and thermal strains. Results from the two analyses showed essentially exact agreement through both loading and unloading of the fuel. After the cladding and fuel/clad contact were added, the model demonstrated expected behavior through all potential phases of fuel/clad interaction, and convergence was achieved without difficulty in all plastic analysis performed. The code is currently in stand alone form. Prior to implementation into the TRU fuel performance code, creep strains will have to be added to the model. The model will also have to be verified against an ABAQUS analysis that involves contact between the fuel and cladding.

  18. Two-state approach to stochastic hair bundle dynamics

    NASA Astrophysics Data System (ADS)

    Clausznitzer, Diana; Lindner, Benjamin; Jülicher, Frank; Martin, Pascal

    2008-04-01

    Hair cells perform the mechanoelectrical transduction of sound signals in the auditory and vestibular systems of vertebrates. The part of the hair cell essential for this transduction is the so-called hair bundle. In vitro experiments on hair cells from the sacculus of the American bullfrog have shown that the hair bundle comprises active elements capable of producing periodic deflections like a relaxation oscillator. Recently, a continuous nonlinear stochastic model of the hair bundle motion [Nadrowski , Proc. Natl. Acad. Sci. U.S.A. 101, 12195 (2004)] has been shown to reproduce the experimental data in stochastic simulations faithfully. Here, we demonstrate that a binary filtering of the hair bundle's deflection (experimental data and continuous hair bundle model) does not change significantly the spectral statistics of the spontaneous as well as the periodically driven hair bundle motion. We map the continuous hair bundle model to the FitzHugh-Nagumo model of neural excitability and discuss the bifurcations between different regimes of the system in terms of the latter model. Linearizing the nullclines and assuming perfect time-scale separation between the variables we can map the FitzHugh-Nagumo system to a simple two-state model in which each of the states corresponds to the two possible values of the binary-filtered hair bundle trajectory. For the two-state model, analytical expressions for the power spectrum and the susceptibility can be calculated [Lindner and Schimansky-Geier, Phys. Rev. E 61, 6103 (2000)] and show the same features as seen in the experimental data as well as in simulations of the continuous hair bundle model.

  19. A partial lesion model of Parkinson's disease in mice--characterization of a 6-OHDA-induced medial forebrain bundle lesion.

    PubMed

    Boix, Jordi; Padel, Thomas; Paul, Gesine

    2015-05-01

    The most frequently used animal models for Parkinson's disease (PD) utilize unilateral injection of 6-hydroxydopamine (6-OHDA) in the medial forebrain bundle (MFB), which results in total denervation of the dopaminergic nigrostriatal pathway. However, neuroprotective interventions in PD require models resembling earlier stages of PD, where some dopaminergic cells and fibres remain. The aim of the present study was therefore to establish a MFB partial lesion model in mice. We tested four different 6-OHDA doses, and our results show a dose-dependent loss of nigral dopaminergic cells and striatal fibres that correlated with behavioural impairment in several behavioural tests. Specifically, doses of 0.7 μg and 1 μg of 6-OHDA induced a partial denervation of the nigrostriatal pathway, associated with a mild but quantifiable behavioural impairment. We identified the amphetamine-induced rotation, stepping, corridor and cylinder test to be sensitive enough to select partial lesion animals. Based on our data, we proposed a range of cut-off values for these different behavioural tests to select partial lesion mice. Using a statistical prediction model we identified two behavioural tests (the stepping test and amphetamine-induced rotation test) that with a high sensitivity and specificity predict the extent of nigral dopaminergic cell loss and select mice with a partial nigrostriatal lesion prior to further interventions. This model can serve as an important tool to study neuroprotective therapies for PD in mouse models, especially when the treatment targets the substantia nigra and/or the striatum. PMID:25698603

  20. CFD Modeling of Superheated Fuel Sprays

    NASA Technical Reports Server (NTRS)

    Raju, M. S.

    2008-01-01

    An understanding of fuel atomization and vaporization behavior at superheat conditions is identified to be a topic of importance in the design of modern supersonic engines. As a part of the NASA aeronautics initiative, we have undertaken an assessment study to establish baseline accuracy of existing CFD models used in the evaluation of a ashing jet. In a first attempt towards attaining this goal, we have incorporated an existing superheat vaporization model into our spray solution procedure but made some improvements to combine the existing models valid at superheated conditions with the models valid at stable (non-superheat) evaporating conditions. Also, the paper reports some validation results based on the experimental data obtained from the literature for a superheated spray generated by the sudden release of pressurized R134A from a cylindrical nozzle. The predicted profiles for both gas and droplet velocities show a reasonable agreement with the measured data and exhibit a self-similar pattern similar to the correlation reported in the literature. Because of the uncertainty involved in the specification of the initial conditions, we have investigated the effect of initial droplet size distribution on the validation results. The predicted results were found to be sensitive to the initial conditions used for the droplet size specification. However, it was shown that decent droplet size comparisons could be achieved with properly selected initial conditions, For the case considered, it is reasonable to assume that the present vaporization models are capable of providing a reasonable qualitative description for the two-phase jet characteristics generated by a ashing jet. However, there remains some uncertainty with regard to the specification of certain initial spray conditions and there is a need for experimental data on separate gas and liquid temperatures in order to validate the vaporization models based on the Adachi correlation for a liquid involving R134A.

  1. Model of U3Si2 Fuel System using BISON Fuel Code

    SciTech Connect

    K. E. Metzger; T. W. Knight; R. L. Williamson

    2014-04-01

    This research considers the proposed advanced fuel system: U3Si2 combined with an advanced cladding. U3Si2 has a number of advantageous thermophysical properties, which motivate its use as an accident tolerant fuel. This preliminary model evaluates the behavior of U3Si2 using available thermophysical data to predict the cladding-fuel pellet temperature and stress using the fuel performance code: BISON. The preliminary results obtained from the U3Si2 fuel model describe the mechanism of Pellet-Clad Mechanical Interaction for this system while more extensive testing including creep testing of U3Si2 is planned for improved understanding of thermophysical properties for predicting fuel performance.

  2. Modeling of constituent redistribution in U Pu Zr metallic fuel

    NASA Astrophysics Data System (ADS)

    Kim, Yeon Soo; Hayes, S. L.; Hofman, G. L.; Yacout, A. M.

    2006-12-01

    A computer model was developed to analyze constituent redistribution in U-Pu-Zr metallic nuclear fuels. Diffusion and thermochemical properties were parametrically determined to fit the postirradiation data from a fuel test performed in the Experimental Breeder Reactor II (EBR-II). The computer model was used to estimate redistribution profiles of fuels proposed for the conceptual designs of small modular fast reactors. The model results showed that the level of redistribution of the fuel constituents of the designs was similar to the measured data from EBR-II.

  3. Stable vector bundles and string theory

    SciTech Connect

    Gomez, Tomas L.; Sols, Ignacio; Lukic, Sergio

    2009-05-06

    In [4], Braun, He, Ovrut and Pantev proposed a model of string theory (based on the Calabi-Yau 3-fold X) whose low energy limit predicts certain properties of the Standard Model of particle Physics. This model depends on two vector bundles that have to be stable. We calculate the ample cone of X, and prove that one of them is stable, and the other one is not.

  4. Chemical Kinetic Modeling of Combustion of Automotive Fuels

    SciTech Connect

    Pitz, W J; Westbrook, C K; Silke, E J

    2006-11-10

    The objectives of this report are to: (1) Develop detailed chemical kinetic reaction models for components of fuels, including olefins and cycloalkanes used in diesel, spark-ignition and HCCI engines; (2) Develop surrogate mixtures of hydrocarbon components to represent real fuels and lead to efficient reduced combustion models; and (3) Characterize the role of fuel composition on production of emissions from practical automotive engines.

  5. PWR FLECHT SEASET 163-Rod Bundle Flow Blockage Task data report. NRC/EPRI/Westinghouse report No. 13, August-October 1982

    SciTech Connect

    Loftus, M J; Hochreiter, L E; McGuire, M F; Valkovic, M M

    1983-10-01

    This report presents data from the 163-Rod Bundle Blow Blockage Task of the Full-Length Emergency Cooling Heat Transfer Systems Effects and Separate Effects Test Program (FLECHT SEASET). The task consisted of forced and gravity reflooding tests utilizing electrical heater rods with a cosine axial power profile to simulate PWR nuclear core fuel rod arrays. These tests were designed to determine effects of flow blockage and flow bypass on reflooding behavior and to aid in the assessment of computational models in predicting the reflooding behavior of flow blockage in rod bundle arrays.

  6. Bundle Security Protocol for ION

    NASA Technical Reports Server (NTRS)

    Burleigh, Scott C.; Birrane, Edward J.; Krupiarz, Christopher

    2011-01-01

    This software implements bundle authentication, conforming to the Delay-Tolerant Networking (DTN) Internet Draft on Bundle Security Protocol (BSP), for the Interplanetary Overlay Network (ION) implementation of DTN. This is the only implementation of BSP that is integrated with ION.

  7. Monad constructions of omalous bundles

    NASA Astrophysics Data System (ADS)

    Henni, Abdelmoubine Amar; Jardim, Marcos

    2013-12-01

    We consider a particular class of holomorphic vector bundles relevant for supersymmetric string theory, called omalous, over nonsingular projective varieties. We use monads to construct examples of such bundles over 3-fold hypersurfaces in P4, complete intersection Calabi-Yau manifolds in Pk, blow-ups of P2 at n distinct points, and products Pm×Pn.

  8. Software Requirements Specification Verifiable Fuel Cycle Simulation (VISION) Model

    SciTech Connect

    D. E. Shropshire; W. H. West

    2005-11-01

    The purpose of this Software Requirements Specification (SRS) is to define the top-level requirements for a Verifiable Fuel Cycle Simulation Model (VISION) of the Advanced Fuel Cycle (AFC). This simulation model is intended to serve a broad systems analysis and study tool applicable to work conducted as part of the AFCI (including costs estimates) and Generation IV reactor development studies.

  9. The 6-OHDA mouse model of Parkinson's disease - Terminal striatal lesions provide a superior measure of neuronal loss and replacement than median forebrain bundle lesions.

    PubMed

    Bagga, V; Dunnett, S B; Fricker, R A

    2015-07-15

    Unilateral 6-hydroxydopamine (6-OHDA) lesions of the nigrostriatal pathway produce side-biased motor impairments that reflect the motor deficits seen in Parkinson's disease (PD). This toxin-induced model in the rat has been used widely, to evaluate possible therapeutic strategies, but has not been well established in mice. With the advancements in mouse stem cell research we believe the requirement for a mouse model is essential for the therapeutic potential of these and other mouse-derived cells to be efficiently assessed. This aim of this study focused on developing a mouse model of PD using the 129 P2/OLA Hsd mouse strain as this is widely used in the generation of mouse embryonic stem cells. Both unilateral 6-OHDA medial forebrain bundle (MFB) and striatal lesion protocols were compared, with mice analysed for appropriate drug-induced rotational bias. Results demonstrated that lesioned mice responded to d-amphetamine with peak rotation dose at 5mg/kg and 10mg/kg for MFB and striatal lesions respectively. Apomorphine stimulation produced no significant rotational responses, at any dose, in either the MFB or striatal 6-OHDA lesioned mice. Analysis of dopamine neuron loss revealed that the MFB lesion was unreliable with little correlation between dopamine neuron loss and rotational asymmetry. Striatal lesions however were more reliable, with a strong correlation between dopamine neuron loss and rotational asymmetry. Functional recovery of d-amphetamine-induced rotational bias was shown following transplantation of E13 mouse VM tissue into the lesioned striatum; confirming the validity of this mouse model. PMID:25841616

  10. Mechanical modeling of porous oxide fuel pellet A Test Problem

    SciTech Connect

    Nukala, Phani K; Barai, Pallab; Simunovic, Srdjan; Ott, Larry J

    2009-10-01

    A poro-elasto-plastic material model has been developed to capture the response of oxide fuels inside the nuclear reactors under operating conditions. Behavior of the oxide fuel and variation in void volume fraction under mechanical loading as predicted by the developed model has been reported in this article. The significant effect of void volume fraction on the overall stress distribution of the fuel pellet has also been described. An important oxide fuel issue that can have significant impact on the fuel performance is the mechanical response of oxide fuel pellet and clad system. Specifically, modeling the thermo-mechanical response of the fuel pellet in terms of its thermal expansion, mechanical deformation, swelling due to void formation and evolution, and the eventual contact of the fuel with the clad is of significant interest in understanding the fuel-clad mechanical interaction (FCMI). These phenomena are nonlinear and coupled since reduction in the fuel-clad gap affects thermal conductivity of the gap, which in turn affects temperature distribution within the fuel and the material properties of the fuel. Consequently, in order to accurately capture fuel-clad gap closure, we need to account for fuel swelling due to generation, retention, and evolution of fission gas in addition to the usual thermal expansion and mechanical deformation. Both fuel chemistry and microstructure also have a significant effect on the nucleation and growth of fission gas bubbles. Fuel-clad gap closure leading to eventual contact of the fuel with the clad introduces significant stresses in the clad, which makes thermo-mechanical response of the clad even more relevant. The overall aim of this test problem is to incorporate the above features in order to accurately capture fuel-clad mechanical interaction. Because of the complex nature of the problem, a series of test problems with increasing multi-physics coupling features, modeling accuracy, and complexity are defined with the

  11. Fiber bundle phase conjugate mirror

    SciTech Connect

    Ward, Benjamin G.

    2012-05-01

    An improved method and apparatus for passively conjugating the phases of a distorted wavefronts resulting from optical phase mismatch between elements of a fiber laser array are disclosed. A method for passively conjugating a distorted wavefront comprises the steps of: multiplexing a plurality of probe fibers and a bundle pump fiber in a fiber bundle array; passing the multiplexed output from the fiber bundle array through a collimating lens and into one portion of a non-linear medium; passing the output from a pump collection fiber through a focusing lens and into another portion of the non-linear medium so that the output from the pump collection fiber mixes with the multiplexed output from the fiber bundle; adjusting one or more degrees of freedom of one or more of the fiber bundle array, the collimating lens, the focusing lens, the non-linear medium, or the pump collection fiber to produce a standing wave in the non-linear medium.

  12. Cable Bundle Wire Derating

    NASA Technical Reports Server (NTRS)

    Lundquist, Ray A.; Leidecker, Henning

    1998-01-01

    The allowable operating currents of electrical wiring when used in the space vacuum environment is predominantly determined by the maximum operating temperature of the wire insulation. For Kapton insulated wire this value is 200 C. Guidelines provided in the Goddard Space Flight Center (GSFC) Preferred Parts List (PPL) limit the operating current of wire within vacuum to ensure the maximum insulation temperature is not exceeded. For 20 AWG wire, these operating parameters are: 3.7 amps per wire, bundle of 15 or more wires, 70 C environment, and vacuum of 10(exp -5) torr or less. To determine the behavior and temperature of electrical wire at different operating conditions, a thermal vacuum test was performed on a representative electrical harness of the Hubble Space Telescope (HST) power distribution system. This paper describes the test and the results.

  13. Cable Bundle Wire Derating

    NASA Technical Reports Server (NTRS)

    Lundquist, Ray A.; Leidecker, Henning

    1998-01-01

    The allowable operating currents of electrical wiring when used in the space vacuum environment is predominantly determined by the maximum operating temperature of the wire insulation. For Kapton insulated wire this value is 200 C. Guidelines provided in the Goddard Space Flight Center (GSFC) Preferred Parts List (PPL) limit the operating current of wire within vacuum to ensure the maximum insulation temperature is not exceeded. For 20 AWG wire, these operating parameters are: (1) 3.7 amps per wire; (2) bundle of 15 or more wires; (3) 70 C environment: and (4) vacuum of 10(exp -5) torr or less. To determine the behavior and temperature of electrical wire at different operating conditions, a thermal vacuum test was performed on a representative electrical harness of the Hubble Space Telescope (HST) power distribution system. This paper describes the test and the results.

  14. Cable Bundle Wire Derating

    NASA Technical Reports Server (NTRS)

    Lundquist, Ray A.; Leidecker, Henning

    1999-01-01

    The allowable operating currents of electrical wiring when used in the space vacuum environment is predominantly determined by the maximum operating temperature of the wire insulation. For Kapton insulated wire this value is 200 degree C. Guidelines provided in the Goddard Space Flight Center (GSFC) Preferred Parts List (PPL) limit the operating current of wire within vacuum to ensure the maximum insulation temperature is not exceeded. For 20 AWG wire, these operating parameters are: (1) 3.7 amps per wire (2) bundle of 15 or more wires (3) 70 C environment (4) vacuum of 10(exp -5) torr or less To determine the behavior and temperature of electrical wire at different operating conditions, a thermal vacuum test was performed on a representative electrical harness of the Hubble Space Telescope (HST) power distribution system. This paper describes the test and the results.

  15. Fuel Element Transfer Cask Modelling Using MCNP Technique

    NASA Astrophysics Data System (ADS)

    Darmawan, Rosli; Topah, Budiman Naim

    2010-01-01

    After operating for more than 25 years, some of the Reaktor TRIGA Puspati (RTP) fuel elements would have been depleted. A few addition and fuel reconfiguration exercises have to be conducted in order to maintain RTP capacity. Presently, RTP spent fuels are stored at the storage area inside RTP tank. The need to transfer the fuel element outside of RTP tank may be prevalence in the near future. The preparation shall be started from now. A fuel element transfer cask has been designed according to the recommendation by the fuel manufacturer and experience of other countries. A modelling using MCNP code has been conducted to analyse the design. The result shows that the design of transfer cask fuel element is safe for handling outside the RTP tank according to recent regulatory requirement.

  16. Fuel Element Transfer Cask Modelling Using MCNP Technique

    SciTech Connect

    Darmawan, Rosli; Topah, Budiman Naim

    2010-01-05

    After operating for more than 25 years, some of the Reaktor TRIGA Puspati (RTP) fuel elements would have been depleted. A few addition and fuel reconfiguration exercises have to be conducted in order to maintain RTP capacity. Presently, RTP spent fuels are stored at the storage area inside RTP tank. The need to transfer the fuel element outside of RTP tank may be prevalence in the near future. The preparation shall be started from now. A fuel element transfer cask has been designed according to the recommendation by the fuel manufacturer and experience of other countries. A modelling using MCNP code has been conducted to analyse the design. The result shows that the design of transfer cask fuel element is safe for handling outside the RTP tank according to recent regulatory requirement.

  17. Effectiveness of Hair Bundle Motility as the Cochlear Amplifier

    PubMed Central

    Sul, Bora; Iwasa, Kuni H.

    2009-01-01

    Abstract The effectiveness of hair bundle motility in mammalian and avian ears is studied by examining energy balance for a small sinusoidal displacement of the hair bundle. The condition that the energy generated by a hair bundle must be greater than energy loss due to the shear in the subtectorial gap per hair bundle leads to a limiting frequency that can be supported by hair-bundle motility. Limiting frequencies are obtained for two motile mechanisms for fast adaptation, the channel re-closure model and a model that assumes that fast adaptation is an interplay between gating of the channel and the myosin motor. The limiting frequency obtained for each of these models is an increasing function of a factor that is determined by the morphology of hair bundles and the cochlea. Primarily due to the higher density of hair cells in the avian inner ear, this factor is ∼10-fold greater for the avian ear than the mammalian ear, which has much higher auditory frequency limit. This result is consistent with a much greater significance of hair bundle motility in the avian ear than that in the mammalian ear. PMID:19917218

  18. Fossil Fuel Emission Verification Modeling at LLNL

    SciTech Connect

    Cameron-Smith, P; Kosovic, B; Guilderson, T; Monache, L D; Bergmann, D

    2009-08-06

    We have an established project at LLNL to develop the tools needed to constrain fossil fuel carbon dioxide emissions using measurements of the carbon-14 isotope in atmospheric samples. In Figure 1 we show the fossil fuel plumes from Los Angeles and San Francisco for two different weather patterns. Obviously, a measurement made at any given location is going to depend on the weather leading up to the measurement. Thus, in order to determine the GHG emissions from some region using in situ measurements of those GHGs, we use state-of-the-art global and regional atmospheric chemistry-transport codes to simulate the plumes: the LLNL-IMPACT model (Rotman et al., 2004) and the WRFCHEM community code (http://www.wrf-model.org/index.php). Both codes can use observed (aka assimilated) meteorology in order to recreate the actual transport that occurred. The measured concentration of each tracer at a particular spatio-temporal location is a linear combination of the plumes from each region at that location (for non-reactive species). The challenge is to calculate the emission strengths for each region that fit the observed concentrations. In general this is difficult because there are errors in the measurements and modeling of the plumes. We solve this inversion problem using the strategy illustrated in Figure 2. The Bayesian Inference step combines the a priori estimates of the emissions, and their uncertainty, for each region with the results of the observations, and their uncertainty, and an ensemble of model predicted plumes for each region, and their uncertainty. The result is the mathematical best estimate of the emissions and their errors. In the case of non-linearities, or if we are using a statistical sampling technique such as a Markov Chain Monte Carlo technique, then the process is iterated until it converges (ie reaches stationarity). For the Bayesian inference we can use both a direct inversion capability, which is fast but requires assumptions of linearity and

  19. THERMAL MODELING ANALYSIS OF SRS 70 TON CASK

    SciTech Connect

    Lee, S.; Jordan, J.; Hensel, S.

    2011-03-08

    The primary objective of this work was to perform the thermal calculations to evaluate the Material Test Reactor (MTR) fuel assembly temperatures inside the SRS 70-Ton Cask loaded with various bundle powers. MTR fuel consists of HFBR, MURR, MIT, and NIST. The MURR fuel was used to develop a bounding case since it is the fuel with the highest heat load. The results will be provided for technical input for the SRS 70 Ton Cask Onsite Safety Assessment. The calculation results show that for the SRS 70 ton dry cask with 2750 watts total heat source with a maximum bundle heat of 670 watts and 9 bundles of MURR bounding fuel, the highest fuel assembly temperatures are below about 263 C. Maximum top surface temperature of the plastic cover is about 112 C, much lower than its melting temperature 260 C. For 12 bundles of MURR bounding fuel with 2750 watts total heat and a maximum fuel bundle of 482 watts, the highest fuel assembly temperatures are bounded by the 9 bundle case. The component temperatures of the cask were calculated by a three-dimensional computational fluid dynamics approach. The modeling calculations were performed by considering daily-averaged solar heat flux.

  20. A Nonlinear Model for Fuel Atomization in Spray Combustion

    NASA Technical Reports Server (NTRS)

    Liu, Nan-Suey (Technical Monitor); Ibrahim, Essam A.; Sree, Dave

    2003-01-01

    Most gas turbine combustion codes rely on ad-hoc statistical assumptions regarding the outcome of fuel atomization processes. The modeling effort proposed in this project is aimed at developing a realistic model to produce accurate predictions of fuel atomization parameters. The model involves application of the nonlinear stability theory to analyze the instability and subsequent disintegration of the liquid fuel sheet that is produced by fuel injection nozzles in gas turbine combustors. The fuel sheet is atomized into a multiplicity of small drops of large surface area to volume ratio to enhance the evaporation rate and combustion performance. The proposed model will effect predictions of fuel sheet atomization parameters such as drop size, velocity, and orientation as well as sheet penetration depth, breakup time and thickness. These parameters are essential for combustion simulation codes to perform a controlled and optimized design of gas turbine fuel injectors. Optimizing fuel injection processes is crucial to improving combustion efficiency and hence reducing fuel consumption and pollutants emissions.

  1. Surrogate Model Development for Fuels for Advanced Combustion Engines

    SciTech Connect

    Anand, Krishnasamy; Ra, youngchul; Reitz, Rolf; Bunting, Bruce G

    2011-01-01

    The fuels used in internal-combustion engines are complex mixtures of a multitude of different types of hydrocarbon species. Attempting numerical simulations of combustion of real fuels with all of the hydrocarbon species included is highly unrealistic. Thus, a surrogate model approach is generally adopted, which involves choosing a few representative hydrocarbon species whose overall behavior mimics the characteristics of the target fuel. The present study proposes surrogate models for the nine fuels for advanced combustion engines (FACE) that have been developed for studying low-emission, high-efficiency advanced diesel engine concepts. The surrogate compositions for the fuels are arrived at by simulating their distillation profiles to within a maximum absolute error of 4% using a discrete multi-component (DMC) fuel model that has been incorporated in the multi-dimensional computational fluid dynamics (CFD) code, KIVA-ERC-CHEMKIN. The simulated surrogate compositions cover the range and measured concentrations of the various hydrocarbon classes present in the fuels. The fidelity of the surrogate fuel models is judged on the basis of matching their specific gravity, lower heating value, hydrogen/carbon (H/C) ratio, cetane number, and cetane index with the measured data for all nine FACE fuels.

  2. Experimental study of burnout in channels with twisted fuel rods

    NASA Astrophysics Data System (ADS)

    Bol'Shakov, V. V.; Bashkirtsev, S. M.; Kobzar', L. L.; Morozov, A. G.

    2007-05-01

    The results of experimental studies of pressure drop and critical heat flux in the models of fuel assemblies (FAs) with fuel rod simulators twisted relative to the longitudinal axis and a three-ray cross section are considered. The experimental data are compared to the results obtained with the use of techniques adopted for design calculations with fuel rod bundles of type-VVER reactors.

  3. Stochastic Molecular Transport on Microtubule Bundles with Structural Defects

    NASA Astrophysics Data System (ADS)

    Gramlich, M. W.; Tabei, S. M. Ali

    Intracellular transport involves complex coordination of multiple components such as: the cytoskeletal network and molecular motors. Perturbations in this process can amplify over time and space, thereby affecting transport. One little studied component of transport are structural defects in the cytoskeletal network. In this talk we will present a stochastic model of the interaction of the molecular motor, kinesin-1, and a bundled cystoskeletal network of microtubules, and explicitly explore the role of microtubule ends (a type of defect) on long-range transport. We will show how different types of end distributions can ultimately result in the same observed transport behavior for bundles. We compare transport on completely uniform bundles, found in the axon, to completely random bundles, found in dendrites. Because of the un-biased random bundle nature, defects affect transport on dendrite bundles more than on uniform bundles in the axon. Further, defects act as large spatial-scale traps that result in random wait-times which have been assumed in previous models.

  4. Proceedings of the NETL Workshop on Fuel Cell Modeling

    SciTech Connect

    Randall S. Gemmen; J. R. Selman

    2000-04-18

    This workshop was the first U.S. DOE sponsored meeting devoted to fuel cell modeling. The workshop was attended by over 45 people from industry, universities, and the government. The goals of the meeting were to assess the status of fuel cell modeling, and determine how new developments in fuel cell modeling can improve cell design, stack design, and power system design. The primary focus was on cell and stack modeling. Following a review of DOE/NETL fuel cell related programs and activities, Professor Robert Selman (Illinois Institute of Technology) kicked off the technical portion of the workshop by presenting an overview of fuel cell phenomena and the status of fuel cell modeling. This overview provided the necessary background for establishing a common framework for discussing fuel cell modeling. A distinction was made between micro modeling, electrode modeling, cell modeling, stack modeling, and system modeling. It was proposed that all modeling levels be supported for further development. In addition, due to significant advances being made outside the U.S., it was proposed that dialog/exchange with other international researchers be established. Following the Overview Session, eight leading researchers in modeling gave individual presentations. These presentations provided additional information on the status and present direction of model developments. All these presentations can be found in Attachment A. Before the workshop, a survey was sent out requesting comments from the attendees. Results from this survey can be found in Attachment B. This survey was then used as initial talking points at the individual breakout sessions on the afternoon of the workshop. Breakouts were organized by microfundamental modeling, cell modeling, stack modeling, and systems modeling.

  5. DESIGN OF WIRE-WRAPPED ROD BUNDLE MATCHED INDEX-OF-REFRACTION EXPERIMENTS

    SciTech Connect

    Hugh McIlroy; Hongbin Zhang; Kurt Hamman

    2008-05-01

    Experiments will be conducted in the Idaho National Laboratory (INL) Matched Index-of-Refraction (MIR) Flow Facility [1] to characterize the three-dimensional velocity and turbulence fields in a wire-wrapped rod bundle typically employed in liquid-metal cooled fast reactors and to provide benchmark data for computer code validation. Sodium cooled fast reactors are under consideration for use in the U.S. Department of Energy (DOE) Global Nuclear Energy Partnership (GNEP) program. The experiment model will be constructed of quartz components and the working fluid will be mineral oil. Accurate temperature control (to within 0.05 oC) matches the index-of-refraction of mineral oil with that of quartz and renders the model transparent to the wavelength of laser light employed for optical measurements. The model will be a scaled 7-pin rod bundle enclosed in a hexagonal canister. Flow field measurements will be obtained with a LaVision 3-D particle image velocimeter (PIV) and complimented by near-wall velocity measurements obtained from a 2-D laser Doppler velocimeter (LDV). These measurements will be used as benchmark data for computational fluid dynamics (CFD) validation. The rod bundle model dimensions will be scaled up from the typical dimensions of a fast reactor fuel assembly to provide the maximum Reynolds number achievable in the MIR flow loop. A range of flows from laminar to fully-turbulent will be available with a maximum Reynolds number, based on bundle hydraulic diameter, of approximately 22,000. The fuel pins will be simulated by 85 mm diameter quartz tubes (closed on the inlet ends) and the wire-wrap will be simulated by 25 mm diameter quartz rods. The canister walls will be constructed from quartz plates. The model will be approximately 2.13 m in length. Bundle pressure losses will also be measured and the data recorded for code comparisons. The experiment design and preliminary CFD calculations, which will be used to provide qualitative hydrodynamic

  6. Evaluating big deal journal bundles

    PubMed Central

    Bergstrom, Theodore C.; Courant, Paul N.; McAfee, R. Preston; Williams, Michael A.

    2014-01-01

    Large commercial publishers sell bundled online subscriptions to their entire list of academic journals at prices significantly lower than the sum of their á la carte prices. Bundle prices differ drastically between institutions, but they are not publicly posted. The data that we have collected enable us to compare the bundle prices charged by commercial publishers with those of nonprofit societies and to examine the types of price discrimination practiced by commercial and nonprofit journal publishers. This information is of interest to economists who study monopolist pricing, librarians interested in making efficient use of library budgets, and scholars who are interested in the availability of the work that they publish. PMID:24979785

  7. Evaluating big deal journal bundles.

    PubMed

    Bergstrom, Theodore C; Courant, Paul N; McAfee, R Preston; Williams, Michael A

    2014-07-01

    Large commercial publishers sell bundled online subscriptions to their entire list of academic journals at prices significantly lower than the sum of their á la carte prices. Bundle prices differ drastically between institutions, but they are not publicly posted. The data that we have collected enable us to compare the bundle prices charged by commercial publishers with those of nonprofit societies and to examine the types of price discrimination practiced by commercial and nonprofit journal publishers. This information is of interest to economists who study monopolist pricing, librarians interested in making efficient use of library budgets, and scholars who are interested in the availability of the work that they publish. PMID:24979785

  8. A comprehensive combustion model for biodiesel-fueled engine simulations

    NASA Astrophysics Data System (ADS)

    Brakora, Jessica L.

    Engine models for alternative fuels are available, but few are comprehensive, well-validated models that include accurate physical property data as well as a detailed description of the fuel chemistry. In this work, a comprehensive biodiesel combustion model was created for use in multi-dimensional engine simulations, specifically the KIVA3v R2 code. The model incorporates realistic physical properties in a vaporization model developed for multi-component fuel sprays and applies an improved mechanism for biodiesel combustion chemistry. A reduced mechanism was generated from the methyl decanoate (MD) and methyl-9-decenoate (MD9D) mechanism developed at Lawrence Livermore National Laboratory. It was combined with a multi-component mechanism to include n-heptane in the fuel chemistry. The biodiesel chemistry was represented using a combination of MD, MD9D and n-heptane, which varied for a given fuel source. The reduced mechanism, which contained 63 species, accurately predicted ignition delay times of the detailed mechanism over a range of engine-specific operating conditions. Physical property data for the five methyl ester components of biodiesel were added to the KIVA library. Spray simulations were performed to ensure that the models adequately reproduce liquid penetration observed in biodiesel spray experiments. Fuel composition impacted liquid length as expected, with saturated species vaporizing more and penetrating less. Distillation curves were created to ensure the fuel vaporization process was comparable to available data. Engine validation was performed against a low-speed, high-load, conventional combustion experiments and the model was able to predict the performance and NOx formation seen in the experiment. High-speed, low-load, low-temperature combustion conditions were also modeled, and the emissions (HC, CO, NOx) and fuel consumption were well-predicted for a sweep of injection timings. Finally, comparisons were made between the results of biodiesel

  9. Modifications of bundles, elliptic integrable systems, and related problems

    NASA Astrophysics Data System (ADS)

    Zotov, A. V.; Smirnov, A. V.

    2013-10-01

    We describe a construction of elliptic integrable systems based on bundles with nontrivial characteristic classes, especially attending to the bundle-modification procedure, which relates models corresponding to different characteristic classes. We discuss applications and related problems such as the Knizhnik-Zamolodchikov-Bernard equations, classical and quantum R-matrices, monopoles, spectral duality, Painlevé equations, and the classical-quantum correspondence. For an SL(N,ℂ)-bundle on an elliptic curve with nontrivial characteristic classes, we obtain equations of isomonodromy deformations.

  10. Fuel cycle assessment: A compendium of models, methodologies, and approaches

    SciTech Connect

    Not Available

    1994-07-01

    The purpose of this document is to profile analytical tools and methods which could be used in a total fuel cycle analysis. The information in this document provides a significant step towards: (1) Characterizing the stages of the fuel cycle. (2) Identifying relevant impacts which can feasibly be evaluated quantitatively or qualitatively. (3) Identifying and reviewing other activities that have been conducted to perform a fuel cycle assessment or some component thereof. (4) Reviewing the successes/deficiencies and opportunities/constraints of previous activities. (5) Identifying methods and modeling techniques/tools that are available, tested and could be used for a fuel cycle assessment.

  11. A thermal-hydraulic code for transient analysis in a channel with a rod bundle

    SciTech Connect

    Khodjaev, I.D.

    1995-09-01

    The paper contains the model of transient vapor-liquid flow in a channel with a rod bundle of core of a nuclear power plant. The computer code has been developed to predict dryout and post-dryout heat transfer in rod bundles of nuclear reactor core under loss-of-coolant accidents. Economizer, bubble, dispersed-annular and dispersed regimes are taken into account. The computer code provides a three-field representation of two-phase flow in the dispersed-annular regime. Continuous vapor, continuous liquid film and entrained liquid drops are three fields. For the description of dispersed flow regime two-temperatures and single-velocity model is used. Relative droplet motion is taken into account for the droplet-to-vapor heat transfer. The conservation equations for each of regimes are solved using an effective numerical technique. This technique makes it possible to determine distribution of the parameters of flows along the perimeter of fuel elements. Comparison of the calculated results with the experimental data shows that the computer code adequately describes complex processes in a channel with a rod bundle during accident.

  12. Separation and re-adhesion processes of two adhered single-walled carbon nanotube bundles

    NASA Astrophysics Data System (ADS)

    Wu, Yu-Chiao; Ryan, Peter J.; McGruer, Nicol E.; Adams, George G.

    2014-03-01

    Carbon nanotubes are desirable components of nanoelectromechanical (NEM) devices due to their excellent mechanical and electrical properties. In this study, dielectrophoresis, a potential high-rate nanomanufacturing process, was used to assemble single-walled carbon nanotube (SWCNT) bundles suspended over a trench. The intent was to assemble a single SWCNT bundle between two electrodes. However, it was observed that when two or more SWCNT bundles assembled across the trench, the bundles were attached together in a portion of the suspended section. This study models the separation and re-adhesion processes of two adhered SWCNT bundles as their internal tensions are varied using an atomic force microscope (AFM) tip. Two devices were selected with distinct SWCNT bundles. Observation of the force-distance measurements through applying an AFM tip at the middle of the suspended SWCNT bundles, in conjunction with continuum mechanics modelling, allowed the work of adhesion between the two nanotube bundles to be determined. As the force was applied by the AFM tip, the tension induced in each bundle increases sufficiently to partially overcome the adhesion between the bundles, thereby decreasing the adhesive length. The adhesive length then recovers due to the decrease in the induced tension during the unloading process. The average value of the work of adhesion between two adhered SWCNT bundles was determined to be 0.37 J m-2 according to the experimental data and modelling results.

  13. Tube bundle system

    PubMed Central

    Marchewka, W.; Mohamed, K.; Addis, J.; Karnack, F.

    2015-01-01

    A tube bundle system (TBS) is a mechanical system for continuously drawing gas samples through tubes from multiple monitoring points located in an underground coal mine. The gas samples are drawn via vacuum pump to the surface and are typically analyzed for oxygen, methane, carbon dioxide and carbon monoxide. Results of the gas analyses are displayed and recorded for further analysis. Trends in the composition of the mine atmosphere, such as increasing methane or carbon monoxide concentration, can be detected early, permitting rapid intervention that prevents problems, such as a potentially explosive atmosphere behind seals, fire or spontaneous combustion. TBS is a well-developed technology and has been used in coal mines around the world for more than 50 years. Most longwall coal mines in Australia deploy a TBS, usually with 30 to 40 monitoring points as part of their atmospheric monitoring. The primary uses of a TBS are detecting spontaneous combustion and maintaining sealed areas inert. The TBS might also provide mine atmosphere gas composition data after a catastrophe occurs in an underground mine, if the sampling tubes are not damaged. TBSs are not an alternative to statutory gas and ventilation airflow monitoring by electronic sensors or people; rather, they are an option to consider in an overall mine atmosphere monitoring strategy. This paper describes the hardware, software and operation of a TBS and presents one example of typical data from a longwall coal mine PMID:26306052

  14. Kinetic Modeling of Combustion Characteristics of Real Biodiesel Fuels

    SciTech Connect

    Naik, C V; Westbrook, C K

    2009-04-08

    Biodiesel fuels are of much interest today either for replacing or blending with conventional fuels for automotive applications. Predicting engine effects of using biodiesel fuel requires accurate understanding of the combustion characteristics of the fuel, which can be acquired through analysis using reliable detailed reaction mechanisms. Unlike gasoline or diesel that consists of hundreds of chemical compounds, biodiesel fuels contain only a limited number of compounds. Over 90% of the biodiesel fraction is composed of 5 unique long-chain C{sub 18} and C{sub 16} saturated and unsaturated methyl esters. This makes modeling of real biodiesel fuel possible without the need for a fuel surrogate. To this end, a detailed chemical kinetic mechanism has been developed for determining the combustion characteristics of a pure biodiesel (B100) fuel, applicable from low- to high-temperature oxidation regimes. This model has been built based on reaction rate rules established in previous studies at Lawrence Livermore National Laboratory. Computed results are compared with the few fundamental experimental data that exist for biodiesel fuel and its components. In addition, computed results have been compared with experimental data for other long-chain hydrocarbons that are similar in structure to the biodiesel components.

  15. Verifiable Fuel Cycle Simulation Model (VISION): A Tool for Analyzing Nuclear Fuel Cycle Futures

    SciTech Connect

    Jacob J. Jacobson; Steven J. Piet; Gretchen E. Matthern; David E. Shropshire; Robert F. Jeffers; A. M. Yacout; Tyler Schweitzer

    2010-11-01

    The nuclear fuel cycle consists of a set of complex components that are intended to work together. To support the nuclear renaissance, it is necessary to understand the impacts of changes and timing of events in any part of the fuel cycle system such as how the system would respond to each technological change, a series of which moves the fuel cycle from where it is to a postulated future state. The system analysis working group of the United States research program on advanced fuel cycles (formerly called the Advanced Fuel Cycle Initiative) is developing a dynamic simulation model, VISION, to capture the relationships, timing, and changes in and among the fuel cycle components to help develop an understanding of how the overall fuel cycle works. This paper is an overview of the philosophy and development strategy behind VISION. The paper includes some descriptions of the model components and some examples of how to use VISION. For example, VISION users can now change yearly the selection of separation or reactor technologies, the performance characteristics of those technologies, and/or the routing of material among separation and reactor types - with the model still operating on a PC in <5 min.

  16. Experimental Verification of a Cracked Fuel Mechanical Model

    SciTech Connect

    Williford, R. E.

    1982-12-01

    This report describes the results of a series of laboratory experiments conducted to independently verify a model that describes the nonlinear mechanical behavior of cracked fuel in pelletized UO{sub 2}/Zircaloy nuclear fuel rods under normal operating conditions. After a brief description of the analytical model, each experiment is discussed in detail. Experiments were conducted to verify the general behavior and numerical values for the three primary independent modelling parameters (effective crack roughness, effective gap roughness, and total crack length), and to verify the model predictions that the effective Young's moduli for cracked fuel systems were substantially less than those for solid UO{sub 2} pellets. In general, the model parameters and predictions were confirmed, and new insight was gained concerning the complexities of cracked fuel mechanics.

  17. Spontaneous Oscillation by Hair Bundles of the Bullfrog's Sacculus

    PubMed Central

    Martin, Pascal; Bozovic, D.; Choe, Y.; Hudspeth, A. J.

    2007-01-01

    One prominent manifestation of mechanical activity in hair cells is spontaneous otoacoustic emission, the unprovoked emanation of sound by an internal ear. Because active hair-bundle motility probably constitutes the active process of non-mammalian hair cells, we investigated the ability of hair bundles in the bullfrog's sacculus to produce oscillations that might underlie spontaneous otoacoustic emissions. When maintained in the ear's normal ionic milieu, many bundles oscillated spontaneously through distances as great as 80 nm at frequencies of 5-50 Hz. Whole-cell recording disclosed that the positive phase of movement was associated with the opening of transduction channels. Gentamicin, which blocks transduction channels, reversibly arrested oscillation; drugs that affect the cAMP phosphorylation pathway and might influence myosin's activity altered the rate of oscillation. Increasing the Ca2+ concentration rendered oscillations faster and smaller until they were suppressed; lowering the Ca2+ concentration moderately with chelators had the opposite effect. When a bundle was offset with a stimulus fiber, oscillations were transiently suppressed but gradually resumed. Loading a bundle by partial displacement clamping, which simulated the presence of the accessory structures to which a bundle is ordinarily attached, increased the frequency and diminished the magnitude of oscillation. These observations accord with a model in which oscillations arise from the interplay of the hair bundle's negative stiffness with the activity of adaptation motors and with Ca2+-dependent relaxation of gating springs. PMID:12805294

  18. Spontaneous oscillation by hair bundles of the bullfrog's sacculus.

    PubMed

    Martin, Pascal; Bozovic, D; Choe, Y; Hudspeth, A J

    2003-06-01

    One prominent manifestation of mechanical activity in hair cells is spontaneous otoacoustic emission, the unprovoked emanation of sound by an internal ear. Because active hair bundle motility probably constitutes the active process of nonmammalian hair cells, we investigated the ability of hair bundles in the bullfrog's sacculus to produce oscillations that might underlie spontaneous otoacoustic emissions. When maintained in the normal ionic milieu of the ear, many bundles oscillated spontaneously through distances as great as 80 nm at frequencies of 5-50 Hz. Whole-cell recording disclosed that the positive phase of movement was associated with the opening of transduction channels. Gentamicin, which blocks transduction channels, reversibly arrested oscillation; drugs that affect the cAMP phosphorylation pathway and might influence the activity of myosin altered the rate of oscillation. Increasing the Ca 2+ concentration rendered oscillations faster and smaller until they were suppressed; lowering the Ca 2+ concentration moderately with chelators had the opposite effect. When a bundle was offset with a stimulus fiber, oscillations were transiently suppressed but gradually resumed. Loading a bundle by partial displacement clamping, which simulated the presence of the accessory structures to which a bundle is ordinarily attached, increased the frequency and diminished the magnitude of oscillation. These observations accord with a model in which oscillations arise from the interplay of the hair bundle's negative stiffness with the activity of adaptation motors and with Ca 2+-dependent relaxation of gating springs. PMID:12805294

  19. Estimating Vegetative Fuel Loadings and Fuel Moisture Using Satellite Data for Modeling Biomass Burning Emissions

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Kondragunta, S.; Kogan, F.; Tarpley, J. D.; Guo, W.; Wiedinmyer, C.; Schmidt, C.

    2005-12-01

    Biomass burning is the second largest source of aerosols, which affects air quality and the Earth's radiation budget. Because the emissions of aerosols is strongly influenced by factors such as biomass density, combustion efficiency, and burned area, current burning emission estimates are rather imprecise and vary markedly with different methodologies. The aim of this study is to model biomass burning emissions using satellite-derived vegetative fuel loadings, fuel moisture, and burned areas in the USA. For this purpose, we first developed an approach for mapping vegetative fuel loadings using Moderate-Resolution Imaging Spectroradiometer (MODIS) data at a spatial resolution of 1 km. MODIS data used in this study are land cover types, vegetation continuous fields, and a time series of leaf-area index (LAI). The LAI data were used to produce live leaf fuel loadings varying with vegetation types and vegetation fractions. For forest regions, the maximum leaf fuel loading within a year was applied to calculate branch fuel loadings and total tree fuel loadings using tree allometric models. Since fuel combustion efficiency and emission factors are functions of fuel moisture, we then determined weekly fuel moisture categories from AVHRR-based vegetation condition index (VCI). The VCI was calculated by normalizing the NDVI (normalized difference vegetation index) to the difference of the extreme NDVI fluctuations (maximum and minimum) from 1982-2004. This dataset is reliable since it is calibrated using post-launch algorithms and temporally smoothed. Further, we derived sub-pixel fire size from GOES WF-ABBA fire product. This fire product is available at 30 minutes interval. We used all these inputs to estimate aerosols (PM2.5, particulate mass for particles with diameter < 2.5 μ-m) for each individual fire in 2002 across the USA. We will present the algorithm details and the analysis of the derived emissions.

  20. VHTR Prismatic Super Lattice Model for Equilibrium Fuel Cycle Analysis

    SciTech Connect

    G. S. Chang

    2006-09-01

    The advanced Very High Temperature gas-cooled Reactor (VHTR), which is currently being developed, achieves simplification of safety through reliance on innovative features and passive systems. One of the VHTRs innovative features is the reliance on ceramic-coated fuel particles to retain the fission products under extreme accident conditions. The effect of the random fuel kernel distribution in the fuel prismatic block is addressed through the use of the Dancoff correction factor in the resonance treatment. However, if the fuel kernels are not perfect black absorbers, the Dancoff correction factor is a function of burnup and fuel kernel packing factor, which requires that the Dancoff correction factor be updated during Equilibrium Fuel Cycle (EqFC) analysis. An advanced Kernel-by-Kernel (K-b-K) hexagonal super lattice model can be used to address and update the burnup dependent Dancoff effect during the EqFC analysis. The developed Prismatic Super Homogeneous Lattice Model (PSHLM) is verified by comparing the calculated burnup characteristics of the double-heterogeneous Prismatic Super Kernel-by-Kernel Lattice Model (PSK-b-KLM). This paper summarizes and compares the PSHLM and PSK-b-KLM burnup analysis study and results. This paper also discusses the coupling of a Monte-Carlo code with fuel depletion and buildup code, which provides the fuel burnup analysis tool used to produce the results of the VHTR EqFC burnup analysis.

  1. VISION User Guide - VISION (Verifiable Fuel Cycle Simulation) Model

    SciTech Connect

    Jacob J. Jacobson; Robert F. Jeffers; Gretchen E. Matthern; Steven J. Piet; Benjamin A. Baker; Joseph Grimm

    2009-08-01

    The purpose of this document is to provide a guide for using the current version of the Verifiable Fuel Cycle Simulation (VISION) model. This is a complex model with many parameters; the user is strongly encouraged to read this user guide before attempting to run the model. This model is an R&D work in progress and may contain errors and omissions. It is based upon numerous assumptions. This model is intended to assist in evaluating “what if” scenarios and in comparing fuel, reactor, and fuel processing alternatives at a systems level for U.S. nuclear power. The model is not intended as a tool for process flow and design modeling of specific facilities nor for tracking individual units of fuel or other material through the system. The model is intended to examine the interactions among the components of a fuel system as a function of time varying system parameters; this model represents a dynamic rather than steady-state approximation of the nuclear fuel system. VISION models the nuclear cycle at the system level, not individual facilities, e.g., “reactor types” not individual reactors and “separation types” not individual separation plants. Natural uranium can be enriched, which produces enriched uranium, which goes into fuel fabrication, and depleted uranium (DU), which goes into storage. Fuel is transformed (transmuted) in reactors and then goes into a storage buffer. Used fuel can be pulled from storage into either separation of disposal. If sent to separations, fuel is transformed (partitioned) into fuel products, recovered uranium, and various categories of waste. Recycled material is stored until used by its assigned reactor type. Note that recovered uranium is itself often partitioned: some RU flows with recycled transuranic elements, some flows with wastes, and the rest is designated RU. RU comes out of storage if needed to correct the U/TRU ratio in new recycled fuel. Neither RU nor DU are designated as wastes. VISION is comprised of several

  2. Mechanistic modeling of evaporating thin liquid film instability on a BWR fuel rod with parallel and cross vapor flow

    NASA Astrophysics Data System (ADS)

    Hu, Chih-Chieh

    This work has been aimed at developing a mechanistic, transient, 3-D numerical model to predict the behavior of an evaporating thin liquid film on a non-uniformly heated cylindrical rod with simultaneous parallel and cross flow of vapor. Interest in this problem has been motivated by the fact that the liquid film on a full-length boiling water reactor fuel rod may experience significant axial and azimuthal heat flux gradients and cross flow due to variations in the thermal-hydraulic conditions in surrounding subchannels caused by proximity to inserted control blade tip and/or the top of part-length fuel rods. Such heat flux gradients coupled with localized cross flow may cause the liquid film on the fuel rod surface to rupture, thereby forming a dry hot spot. These localized dryout phenomena can not be accurately predicted by traditional subchannel analysis methods in conjunction with empirical dryout correlations. To this end, a numerical model based on the Level Contour Reconstruction Method was developed. The Standard k-ε turbulence model is included. A cylindrical coordinate system has been used to enhance the resolution of the Level Contour Reconstruction Model. Satisfactory agreement has been achieved between the model predictions and experimental data. A model of this type is necessary to supplement current state-of-the-art BWR core thermal-hydraulic design methods based on subchannel analysis techniques coupled with empirical dry out correlations. In essence, such a model would provide the core designer with a "magnifying glass" by which the behavior of the liquid film at specific locations within the core (specific axial node on specific location within a specific bundle in the subchannel analysis model) can be closely examined. A tool of this type would allow the designer to examine the effectiveness of possible design changes and/or modified control strategies to prevent conditions leading to localized film instability and possible fuel failure.

  3. Experimental study of rocket engine model with gaseous polyethylene fuel

    NASA Astrophysics Data System (ADS)

    Yemets, V. V.

    Experimental results for liquid rocket engine models with gaseous polyethylene fuel that is hard before its consumption are considered. The possibility of hard design element combustion in a liquid rocket engine is demonstrated.

  4. Reversible separation of single-walled carbon nanotubes in bundles

    SciTech Connect

    Sahoo, Sangeeta; Lastella, Sarah; Maranganti, Ravi; Sharma, Pradeep; Mallick, Govind; Karna, Shashi; Ajayan, Pulickel M.

    2008-08-25

    We show that electrostatic charging of nanotubes and the consequent repulsion can lead to reversible separation of individual single-walled carbon nanotubes in bundles. Low-energy electron beam irradiation leads to this completely reversible phenomenon. A simple semianalytical model is used to explain the observed separation mechanism. The reversibility of the separation process is attributed to discharging and thermal-fluctuation induced motion of the nanotubes in ambient air. Further, the separation impacts the electrical conductance of small nanotube bundled devices.

  5. Modeling Constituent Redistribution in U-Pu-Zr Metallic Fuel Using the Advanced Fuel Performance Code BISON

    SciTech Connect

    Douglas Porter; Steve Hayes; Various

    2014-06-01

    The Advanced Fuels Campaign (AFC) metallic fuels currently being tested have higher zirconium and plutonium concentrations than those tested in the past in EBR reactors. Current metal fuel performance codes have limitations and deficiencies in predicting AFC fuel performance, particularly in the modeling of constituent distribution. No fully validated code exists due to sparse data and unknown modeling parameters. Our primary objective is to develop an initial analysis tool by incorporating state-of-the-art knowledge, constitutive models and properties of AFC metal fuels into the MOOSE/BISON (1) framework in order to analyze AFC metallic fuel tests.

  6. LG Solid Oxide Fuel Cell (SOFC) Model Development

    SciTech Connect

    Haberman, Ben; Martinez-Baca, Carlos; Rush, Greg

    2013-05-31

    This report presents a summary of the work performed by LG Fuel Cell Systems Inc. during the project LG Solid Oxide Fuel Cell (SOFC) Model Development (DOE Award Number: DE-FE0000773) which commenced on October 1, 2009 and was completed on March 31, 2013. The aim of this project is for LG Fuel Cell Systems Inc. (formerly known as Rolls-Royce Fuel Cell Systems (US) Inc.) (LGFCS) to develop a multi-physics solid oxide fuel cell (SOFC) computer code (MPC) for performance calculations of the LGFCS fuel cell structure to support fuel cell product design and development. A summary of the initial stages of the project is provided which describes the MPC requirements that were developed and the selection of a candidate code, STAR-CCM+ (CD-adapco). This is followed by a detailed description of the subsequent work program including code enhancement and model verification and validation activities. Details of the code enhancements that were implemented to facilitate MPC SOFC simulations are provided along with a description of the models that were built using the MPC and validated against experimental data. The modeling work described in this report represents a level of calculation detail that has not been previously available within LGFCS.

  7. Steady-State Analysis Model for Advanced Fuel Cycle Schemes.

    Energy Science and Technology Software Center (ESTSC)

    2008-03-17

    Version 00 SMAFS was developed as a part of the study, "Advanced Fuel Cycles and Waste Management", which was performed during 2003-2005 by an ad-hoc expert group under the Nuclear Development Committee in the OECD/NEA. The model was designed for an efficient conduct of nuclear fuel cycle scheme cost analyses. It is simple, transparent and offers users the capability to track down cost analysis results. All the fuel cycle schemes considered in the model aremore » represented in a graphic format and all values related to a fuel cycle step are shown in the graphic interface, i.e., there are no hidden values embedded in the calculations. All data on the fuel cycle schemes considered in the study including mass flows, waste generation, cost data, and other data such as activities, decay heat and neutron sources of spent fuel and high-level waste along time are included in the model and can be displayed. The user can easily modify values of mass flows and/or cost parameters and see corresponding changes in the results. The model calculates: front-end fuel cycle mass flows such as requirements of enrichment and conversion services and natural uranium; mass of waste based on the waste generation parameters and the mass flow; and all costs.« less

  8. Heterotic String Compactification and New Vector Bundles

    NASA Astrophysics Data System (ADS)

    Lin, Hai; Wu, Baosen; Yau, Shing-Tung

    2016-07-01

    We propose a construction of Kähler and non-Kähler Calabi-Yau manifolds by branched double covers of twistor spaces. In this construction we use the twistor spaces of four-manifolds with self-dual conformal structures, with the examples of connected sum of n {mathbb{P}2}s. We also construct K3-fibered Calabi-Yau manifolds from the branched double covers of the blow-ups of the twistor spaces. These manifolds can be used in heterotic string compactifications to four dimensions. We also construct stable and polystable vector bundles. Some classes of these vector bundles can give rise to supersymmetric grand unified models with three generations of quarks and leptons in four dimensions.

  9. Heterotic String Compactification and New Vector Bundles

    NASA Astrophysics Data System (ADS)

    Lin, Hai; Wu, Baosen; Yau, Shing-Tung

    2016-06-01

    We propose a construction of Kähler and non-Kähler Calabi-Yau manifolds by branched double covers of twistor spaces. In this construction we use the twistor spaces of four-manifolds with self-dual conformal structures, with the examples of connected sum of n {P2} s. We also construct K3-fibered Calabi-Yau manifolds from the branched double covers of the blow-ups of the twistor spaces. These manifolds can be used in heterotic string compactifications to four dimensions. We also construct stable and polystable vector bundles. Some classes of these vector bundles can give rise to supersymmetric grand unified models with three generations of quarks and leptons in four dimensions.

  10. Modeling Bacterial Contamination of Fuel Ethanol Fermentation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The emergence of antibiotic resistant bacteria may limit the effectiveness of antibiotics to treat bacterial contamination in fuel ethanol plants, and therefore, new antibacterial intervention methods and tools to test their application are needed. Using shake-flask cultures of Saccharomyces cerevi...

  11. Modeling of the repository behavior of TRISO fuel.

    SciTech Connect

    Morris, E. E.; Bauer, T. H.

    2006-01-31

    This report satisfies Milestone 4295 for Work Package A0403K11. The long-term behavior of TRISO nuclear reactor fuel in a geologic repository is examined in terms of its durability and thermal impact. The TRISO fuel concept, under development at General Atomics[1] involves embedding fissile uranium and/or actinides in a carbonaceous material as shown in Fig. 1. In the concept, fuel kernels containing fissile material are surrounded with a porous carbon buffer and coated with inner and outer pyrocarbon layers separated with a SiC layer. The fuel particles are then imbedded in a graphite compact and the compacts placed in fuel channels drilled in fuel assembly blocks as shown in the lower right-hand corner of the figure. Dimensions are listed in Table 1. Available data on the degradation of the carbonaceous materials in an aqueous environment is reviewed. A model accounting for waste package failure and the resulting degradation of the waste forms is used to evaluate the potential for the long-term sequestration of radionuclides from spent TRISO fuel in the Yucca Mountain Repository. Finally, thermal analyses of decay heat assess the potential benefits in repository space utilization from recycling actinides from PWR spent fuel as very high burnup TRISO fuel. Experimental data on the aqueous dissolution of carbonaceous materials is relatively sparse and in some cases is based on measurements carried out at temperatures much higher than would be expected in the repository. In addition, the degree to which the aqueous solutions used in the measurements are representative of Yucca Mountain groundwater is uncertain. However, the available dissolution rate data are generally two or more orders of magnitude lower than the Yucca Mountain Project's dissolution model for borosilicate glass. Model calculations show that if the observed rates are applicable to the Yucca Mountain environment, directly disposed TRISO fuel has the potential to prevent significant release of

  12. Mediterranean maquis fuel model development and mapping to support fire modeling

    NASA Astrophysics Data System (ADS)

    Bacciu, V.; Arca, B.; Pellizzaro, G.; Salis, M.; Ventura, A.; Spano, D.; Duce, P.

    2009-04-01

    Fuel load data and fuel model maps represent a critical issue for fire spread and behaviour modeling. The availability of accurate input data at different spatial and temporal scales can allow detailed analysis and predictions of fire hazard and fire effects across a landscape. Fuel model data are used in spatially explicit fire growth models to attain fire behaviour information for fuel management in prescribed fires, fire management applications, firefighters training, smoke emissions, etc. However, fuel type characteristics are difficult to be parameterized due to their complexity and variability: live and dead materials with different size contribute in different ways to the fire spread and behaviour. In the last decades, a strong help was provided by the use of remote sensing imagery at high spatial and spectral resolution. Such techniques are able to capture fine scale fuel distributions for accurate fire growth projections. Several attempts carried out in Europe were devoted to fuel classification and map characterization. In Italy, fuel load estimation and fuel model definition are still critical issues to be addressed due to the lack of detailed information. In this perspective, the aim of the present work was to propose an integrated approach based on field data collection, fuel model development and fuel model mapping to provide fuel models for the Mediterranean maquis associations. Field data needed for the development of fuel models were collected using destructive and non destructive measurements in experimental plots located in Northern Sardinia (Italy). Statistical tests were used to identify the main fuel types that were classified into four custom fuel models. Subsequently, a supervised classification by the Maximum Likelihood algorithm was applied on IKONOS images to identify and map the different types of maquis vegetation. The correspondent fuel model was then associated to each vegetation type to obtain the fuel model map. The results show the

  13. Model documentation: Electricity Market Module, Electricity Fuel Dispatch Submodule

    SciTech Connect

    Not Available

    1994-04-08

    This report documents the objectives, analytical approach and development of the National Energy Modeling System Electricity Fuel Dispatch Submodule (EFD), a submodule of the Electricity Market Module (EMM). The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated through the synthesis and scenario development based on these components.

  14. System level modeling and component level control of fuel cells

    NASA Astrophysics Data System (ADS)

    Xue, Xingjian

    This dissertation investigates the fuel cell systems and the related technologies in three aspects: (1) system-level dynamic modeling of both PEM fuel cell (PEMFC) and solid oxide fuel cell (SOFC); (2) condition monitoring scheme development of PEM fuel cell system using model-based statistical method; and (3) strategy and algorithm development of precision control with potential application in energy systems. The dissertation first presents a system level dynamic modeling strategy for PEM fuel cells. It is well known that water plays a critical role in PEM fuel cell operations. It makes the membrane function appropriately and improves the durability. The low temperature operating conditions, however, impose modeling difficulties in characterizing the liquid-vapor two phase change phenomenon, which becomes even more complex under dynamic operating conditions. This dissertation proposes an innovative method to characterize this phenomenon, and builds a comprehensive model for PEM fuel cell at the system level. The model features the complete characterization of multi-physics dynamic coupling effects with the inclusion of dynamic phase change. The model is validated using Ballard stack experimental result from open literature. The system behavior and the internal coupling effects are also investigated using this model under various operating conditions. Anode-supported tubular SOFC is also investigated in the dissertation. While the Nernst potential plays a central role in characterizing the electrochemical performance, the traditional Nernst equation may lead to incorrect analysis results under dynamic operating conditions due to the current reverse flow phenomenon. This dissertation presents a systematic study in this regard to incorporate a modified Nernst potential expression and the heat/mass transfer into the analysis. The model is used to investigate the limitations and optimal results of various operating conditions; it can also be utilized to perform the

  15. Loss of spent fuel pool cooling PRA: Model and results

    SciTech Connect

    Siu, N.; Khericha, S.; Conroy, S.; Beck, S.; Blackman, H.

    1996-09-01

    This letter report documents models for quantifying the likelihood of loss of spent fuel pool cooling; models for identifying post-boiling scenarios that lead to core damage; qualitative and quantitative results generated for a selected plant that account for plant design and operational practices; a comparison of these results and those generated from earlier studies; and a review of available data on spent fuel pool accidents. The results of this study show that for a representative two-unit boiling water reactor, the annual probability of spent fuel pool boiling is 5 {times} 10{sup {minus}5} and the annual probability of flooding associated with loss of spent fuel pool cooling scenarios is 1 {times} 10{sup {minus}3}. Qualitative arguments are provided to show that the likelihood of core damage due to spent fuel pool boiling accidents is low for most US commercial nuclear power plants. It is also shown that, depending on the design characteristics of a given plant, the likelihood of either: (a) core damage due to spent fuel pool-associated flooding, or (b) spent fuel damage due to pool dryout, may not be negligible.

  16. Calibration of a fuel relocation model in BISON

    SciTech Connect

    Swiler, L. P.; Williamson, R. L.; Perez, D. M.

    2013-07-01

    We demonstrate parameter calibration in the context of the BISON nuclear fuels performance analysis code. Specifically, we present the calibration of a parameter governing fuel relocation: the power level at which the relocation model is activated. This relocation activation parameter is a critical value in obtaining reasonable comparison with fuel centerline temperature measurements. It also is the subject of some debate in terms of the optimal values. We show that the optimal value does vary across the calibration to individual rods. We also demonstrate an aggregated calibration, where we calibrate to observations from six rods. (authors)

  17. F-cell: The Aspen fuel cell model

    NASA Astrophysics Data System (ADS)

    Regenhardt, P. A.

    1985-03-01

    This report documents the fuel cell model created at the Morgantown Energy Technology Center for systems simulations that use the Advanced System for Process Engineering (ASPEN) simulator. The report includes: (1) an explanation of the thermodynamics involved, (2) an explanation of the efficiencies used to describe and compare a fuel cell, (3) the FORTRAN code and ASPEN system definition file entries required to install the model into the ASPEN system, (4) three sample ASPEN input files demonstrating how the model could be used for phosphoric acid, molten carbonate, and solid oxide fuel cells, (5) a detailed ASPEN input file that simulates a commercial 40-kW phosphoric acid fuel cell system, and (6) the technical and the user entries for the ASPEN manuals. F-CELL is designed to use the results of either a mechanistic model or experimental data to model a fuel cell in a system study. A double set of efficiencies is produced; the first is calculated from the user's input, and the second is based on ASPEN's results. The second set of efficiencies serves as a check on the input data and is not used in any internal calculations. The model also checks for carbon deposition.

  18. Bundle Formation in Biomimetic Hydrogels.

    PubMed

    Jaspers, Maarten; Pape, A C H; Voets, Ilja K; Rowan, Alan E; Portale, Giuseppe; Kouwer, Paul H J

    2016-08-01

    Bundling of single polymer chains is a crucial process in the formation of biopolymer network gels that make up the extracellular matrix and the cytoskeleton. This bundled architecture leads to gels with distinctive properties, including a large-pore-size gel formation at very low concentrations and mechanical responsiveness through nonlinear mechanics, properties that are rarely observed in synthetic hydrogels. Using small-angle X-ray scattering (SAXS), we study the bundle formation and hydrogelation process of polyisocyanide gels, a synthetic material that uniquely mimics the structure and mechanics of biogels. We show how the structure of the material changes at the (thermally induced) gelation point and how factors such as concentration and polymer length determine the architecture, and with that, the mechanical properties. The correlation of the gel mechanics and the structural parameters obtained from SAXS experiments is essential in the design of future (synthetic) mimics of biopolymer networks. PMID:27409975

  19. Cohomology of line bundles: Applications

    NASA Astrophysics Data System (ADS)

    Blumenhagen, Ralph; Jurke, Benjamin; Rahn, Thorsten; Roschy, Helmut

    2012-01-01

    Massless modes of both heterotic and Type II string compactifications on compact manifolds are determined by vector bundle valued cohomology classes. Various applications of our recent algorithm for the computation of line bundle valued cohomology classes over toric varieties are presented. For the heterotic string, the prime examples are so-called monad constructions on Calabi-Yau manifolds. In the context of Type II orientifolds, one often needs to compute cohomology for line bundles on finite group action coset spaces, necessitating us to generalize our algorithm to this case. Moreover, we exemplify that the different terms in Batyrev's formula and its generalizations can be given a one-to-one cohomological interpretation. Furthermore, we derive a combinatorial closed form expression for two Hodge numbers of a codimension two Calabi-Yau fourfold.

  20. The FIT Model - Fuel-cycle Integration and Tradeoffs

    SciTech Connect

    Steven J. Piet; Nick R. Soelberg; Samuel E. Bays; Candido Pereira; Layne F. Pincock; Eric L. Shaber; Meliisa C Teague; Gregory M Teske; Kurt G Vedros

    2010-09-01

    All mass streams from fuel separation and fabrication are products that must meet some set of product criteria – fuel feedstock impurity limits, waste acceptance criteria (WAC), material storage (if any), or recycle material purity requirements such as zirconium for cladding or lanthanides for industrial use. These must be considered in a systematic and comprehensive way. The FIT model and the “system losses study” team that developed it [Shropshire2009, Piet2010] are an initial step by the FCR&D program toward a global analysis that accounts for the requirements and capabilities of each component, as well as major material flows within an integrated fuel cycle. This will help the program identify near-term R&D needs and set longer-term goals. The question originally posed to the “system losses study” was the cost of separation, fuel fabrication, waste management, etc. versus the separation efficiency. In other words, are the costs associated with marginal reductions in separations losses (or improvements in product recovery) justified by the gains in the performance of other systems? We have learned that that is the wrong question. The right question is: how does one adjust the compositions and quantities of all mass streams, given uncertain product criteria, to balance competing objectives including cost? FIT is a method to analyze different fuel cycles using common bases to determine how chemical performance changes in one part of a fuel cycle (say used fuel cooling times or separation efficiencies) affect other parts of the fuel cycle. FIT estimates impurities in fuel and waste via a rough estimate of physics and mass balance for a set of technologies. If feasibility is an issue for a set, as it is for “minimum fuel treatment” approaches such as melt refining and AIROX, it can help to make an estimate of how performances would have to change to achieve feasibility.

  1. Modeling and Analysis of Aluminum/Air Fuel Cell

    NASA Astrophysics Data System (ADS)

    Leon, Armando J.

    The technical and scientific challenges to provide reliable sources energy for US and global economy are enormous tasks, and especially so when combined with strategic and recent economic concerns of the last five years. It is clear that as part of the mix of energy sources necessary to deal with these challenges, fuel cells technology will play critical or even a central role. The US Department of Energy, as well as a number of the national laboratories and academic institutions have been aware of the importance such technology for some time. Recently, car manufacturers, transportation experts, and even utilities are paying attention to this vital source of energy for the future. In this thesis, a review of the main fuel cell technologies is presented with the focus on the modeling, and control of one particular and promising fuel cell technology, aluminum air fuel cells. The basic principles of this fuel cell technology are presented. A major part of the study consists of a description of the electrochemistry of the process, modeling, and simulations of aluminum air FC using Matlab Simulink(TM). The controller design of the proposed model is also presented. In sequel, a power management unit is designed and analyzed as an alternative source of power. Thus, the system commutes between the fuel cell output and the alternative power source in order to fulfill a changing power load demand. Finally, a cost analysis and assessment of this technology for portable devices, conclusions and future recommendations are presented.

  2. Alternative Liquid Fuels Simulation Model (AltSim).

    SciTech Connect

    Baker, Arnold Barry; Williams, Ryan; Drennen, Thomas E.; Klotz, Richard

    2007-10-01

    The Alternative Liquid Fuels Simulation Model (AltSim) is a high-level dynamic simulation model which calculates and compares the production costs, carbon dioxide emissions, and energy balances of several alternative liquid transportation fuels. These fuels include: corn ethanol, cellulosic ethanol, biodiesel, and diesels derived from natural gas (gas to liquid, or GTL) and coal (coal to liquid, or CTL). AltSim allows for comprehensive sensitivity analyses on capital costs, operation and maintenance costs, renewable and fossil fuel feedstock costs, feedstock conversion efficiency, financial assumptions, tax credits, CO{sub 2} taxes, and plant capacity factor. This paper summarizes the preliminary results from the model. For the base cases, CTL and cellulosic ethanol are the least cost fuel options, at $1.60 and $1.71 per gallon, respectively. Base case assumptions do not include tax or other credits. This compares to a $2.35/gallon production cost of gasoline at September, 2007 crude oil prices ($80.57/barrel). On an energy content basis, the CTL is the low cost alternative, at $12.90/MMBtu, compared to $22.47/MMBtu for cellulosic ethanol. In terms of carbon dioxide emissions, a typical vehicle fueled with cellulosic ethanol will release 0.48 tons CO{sub 2} per year, compared to 13.23 tons per year for coal to liquid.

  3. Software Platform Evaluation - Verifiable Fuel Cycle Simulation (VISION) Model

    SciTech Connect

    J. J. Jacobson; D. E. Shropshire; W. B. West

    2005-11-01

    The purpose of this Software Platform Evaluation (SPE) is to document the top-level evaluation of potential software platforms on which to construct a simulation model that satisfies the requirements for a Verifiable Fuel Cycle Simulation Model (VISION) of the Advanced Fuel Cycle (AFC). See the Software Requirements Specification for Verifiable Fuel Cycle Simulation (VISION) Model (INEEL/EXT-05-02643, Rev. 0) for a discussion of the objective and scope of the VISION model. VISION is intended to serve as a broad systems analysis and study tool applicable to work conducted as part of the AFCI (including costs estimates) and Generation IV reactor development studies. This document will serve as a guide for selecting the most appropriate software platform for VISION. This is a “living document” that will be modified over the course of the execution of this work.

  4. A Radiologist's Primer on Bundles and Care Episodes.

    PubMed

    Seidenwurm, David; Lexa, Frank James

    2016-09-01

    Bundled or episode payments are among the most heavily emphasized approaches to aligning incentives and promoting care coordination, efficiency, and accountability in health care redesign. Bundled or episode payments price a market basket of services for an entire episode of care with both a clearly defined trigger and termination. Because the radiologist is "ancillary" in many bundles, the specialty is often unaware of the phenomenon. This is likely to change rapidly. Radiology is pivotal in high-prevalence, high-impact care areas such as low back pain and stroke that are focuses of widely used system performance metrics. More important, radiology is central to the diagnosis and management of a wide range of important diagnostic issues in areas such as breast cancer, pulmonary nodules, and incidental findings. Three models of bundled care will probably involve radiology intimately in the near future. Pure radiology bundles might be constructed for breast cancer screening and diagnosis, and these could be priced on the basis of guideline-based best-practice frequencies of care events such as recall and biopsy. Clinical bundles, for example low back pain, could be priced on the basis of optimal imaging frequencies. Finally, pricing of imaging studies might include evidence-based frequencies of follow-up imaging for incidental findings. PMID:27210231

  5. Chirality and equilibrium biopolymer bundles.

    PubMed

    Grason, Gregory M; Bruinsma, Robijn F

    2007-08-31

    We use continuum theory to show that chirality is a key thermodynamic control parameter for the aggregation of biopolymers: chirality produces a stable disperse phase of hexagonal bundles under moderately poor solvent conditions, as has been observed in in vitro studies of F actin [O. Pelletier et al., Phys. Rev. Lett. 91, 148102 (2003)]. The large characteristic radius of these chiral bundles is not determined by a mysterious long-range molecular interaction but by in-plane shear elastic stresses generated by the interplay between a chiral torque and an unusual, but universal, nonlinear gauge term in the strain tensor of ordered chains that is imposed by rotational invariance. PMID:17931038

  6. Combustion space modelling of oxy-fuel fired glass melter

    SciTech Connect

    Richter, W. , Irvine, CA ); Kobayashi, Hisashi )

    1990-01-01

    A three-dimensional heat transfer code based on the zonal method was applied to evaluate the oxygen-fuel firing of a cross-fired regenerative glass melter. A furnace end section which includes the bridge wall and a pair of the regenerator ports was modelled in detail for a base air case and several oxy-fuel firing cases. The firing rates of two oxy-fuel burners that matched the heat flux distribution of the base air case were determined. The effects of the height and angle of the oxy-fuel burners on the temperature and heat flux distributions were predicted to evaluate the optimum burner placement of the oxy-fuel burners. The main conclusions of the simulation are that; (1) in spite of the small flame diameters, the high momentum low flame temperature oxy-fuel burners can create temperature and heat flux distributions equivalent to those of the base air case with a wide flame and (2) both lower burner elevation and angling of the oxy-fuel burners toward the glass surface tend to increase heat transfer to glass surface and reduce the peak refractory temperatures. 12 refs., 21 figs., 4 tabs.

  7. Advanced Nuclear Fuel Cycle Transitions: Optimization, Modeling Choices, and Disruptions

    NASA Astrophysics Data System (ADS)

    Carlsen, Robert W.

    Many nuclear fuel cycle simulators have evolved over time to help understan the nuclear industry/ecosystem at a macroscopic level. Cyclus is one of th first fuel cycle simulators to accommodate larger-scale analysis with it liberal open-source licensing and first-class Linux support. Cyclus also ha features that uniquely enable investigating the effects of modeling choices o fuel cycle simulators and scenarios. This work is divided into thre experiments focusing on optimization, effects of modeling choices, and fue cycle uncertainty. Effective optimization techniques are developed for automatically determinin desirable facility deployment schedules with Cyclus. A novel method fo mapping optimization variables to deployment schedules is developed. Thi allows relationships between reactor types and scenario constraints to b represented implicitly in the variable definitions enabling the usage o optimizers lacking constraint support. It also prevents wasting computationa resources evaluating infeasible deployment schedules. Deployed power capacit over time and deployment of non-reactor facilities are also included a optimization variables There are many fuel cycle simulators built with different combinations o modeling choices. Comparing results between them is often difficult. Cyclus flexibility allows comparing effects of many such modeling choices. Reacto refueling cycle synchronization and inter-facility competition among othe effects are compared in four cases each using combinations of fleet of individually modeled reactors with 1-month or 3-month time steps. There are noticeable differences in results for the different cases. The larges differences occur during periods of constrained reactor fuel availability This and similar work can help improve the quality of fuel cycle analysi generally There is significant uncertainty associated deploying new nuclear technologie such as time-frames for technology availability and the cost of buildin advanced reactors

  8. Advances in Computational Fluid Dynamics Modeling of Two Phase Flow in a Boiling Water Reactor Fuel Assembly

    SciTech Connect

    Tentner, Adrian; Lo, Simon; Ioilev, Andrey; Melnikov, Vladimir; Samigulin, Maskhud; Ustinenko, Vasily; Kozlov, Valentin

    2006-07-01

    A new code, CFD-BWR, is being developed for the simulation of two-phase flow phenomena inside a BWR fuel bundle. These phenomena include coolant phase changes and multiple flow regimes which directly influence the coolant interaction with fuel assembly and, ultimately, the reactor performance. CFD-BWR is a specialized module built on the foundation of the commercial CFD code STAR-CD which provides general two-phase flow modeling capabilities. New models describing the inter-phase mass, momentum, and energy transfer phenomena specific for BWRs have been developed and implemented in the CFD-BWR module. A set of experiments focused on two-phase flow and phase-change phenomena has been identified for the validation of the CFD-BWR code and results of two experiment analyses focused on the radial void distribution are presented. The close agreement between the computed results, the measured data and the correlation results provides confidence in the accuracy of the models. (authors)

  9. Kinetic Modeling of Toluene Oxidation for Surrogate Fuel Applications

    SciTech Connect

    Frassoldati, A; Mehl, M; Fietzek, R; Faravelli, T; Pitz, W J; Ranzi, E

    2009-04-21

    New environmental issues, like the effect of combustion-generated greenhouse gases, provide motivation to better characterize oxidation of hydrocarbons. Transportation, in particular, significantly contributes to energy consumption and CO{sub 2} emissions. Kinetic studies about the combustion of fuels under conditions typical of internal combustion engines provides important support to improve mechanism formulation and to eventually provide better computational tools that can be used to increase the engine performance. It is foreseeable that at least in the next 30 years the main transportation fuels will be either gasoline or diesel. Unfortunately, these fuels are very complex mixtures of many components. Moreover, their specifications and performance requirements significantly change the composition of these fuels: gasoline and diesel mixtures are different if coming from different refineries or they are different from winter to summer. At the same time a fuel with a well defined and reproducible composition is needed for both experimental and modeling work. In response to these issues, surrogate fuels are proposed. Surrogate fuels are defined as mixtures of a small number of hydrocarbons whose relative concentrations is adjusted in order to approximate the chemical and physical properties of a real fuel. Surrogate fuels are then very useful both for the design of reproducible experimental tests and also for the development of reliable kinetic models. The primary reference fuels (PRF) are a typical and old example of surrogate fuel: n-heptane and iso-octane mixtures are used to reproduce antiknock propensity of complex mixtures contained in a gasoline. PRFs are not able to surrogate gasoline in operating conditions different from standard ones and new surrogates have been recently proposed. Toluene is included in all of them as a species able to represent the behavior of aromatic compounds. On the other side, the toluene oxidation chemistry is not so well

  10. VISION -- A Dynamic Model of the Nuclear Fuel Cycle

    SciTech Connect

    J. J. Jacobson; A. M. Yacout; S. J. Piet; D. E. Shropshire; G. E. Matthern

    2006-02-01

    The Advanced Fuel Cycle Initiative’s (AFCI) fundamental objective is to provide technology options that – if implemented – would enable long-term growth of nuclear power while improving sustainability and energy security. The AFCI organization structure consists of four areas; Systems Analysis, Fuels, Separations and Transmutations. The Systems Analysis Working Group is tasked with bridging the program technical areas and providing the models, tools, and analyses required to assess the feasibility of design and deploy¬ment options and inform key decision makers. An integral part of the Systems Analysis tool set is the development of a system level model that can be used to examine the implications of the different mixes of reactors, implications of fuel reprocessing, impact of deployment technologies, as well as potential “exit” or “off ramp” approaches to phase out technologies, waste management issues and long-term repository needs. The Verifiable Fuel Cycle Simulation Model (VISION) is a computer-based simulation model that allows performing dynamic simulations of fuel cycles to quantify infrastructure requirements and identify key trade-offs between alternatives. VISION is intended to serve as a broad systems analysis and study tool applicable to work conducted as part of the AFCI (including costs estimates) and Generation IV reactor development studies.

  11. Modeling of Spent Fuel Oxidation at Low Temperature

    SciTech Connect

    Poulesquen, Arnaud; Ferry, Cecile; Desgranges, Lionel

    2007-07-01

    During dry storage, the oxidation of the spent fuel in case of cladding and container failure (accidental scenario) could be detrimental for further handling of the spent fuel rod and for the safety of the facilities. Depending on whether the uranium dioxide is under the form of powder or pellet, irradiated or unirradiated, the weight gain curves do not present the same shape. To account for these different behaviours, two models have been developed. Firstly, the oxidation of unirradiated powders has been modelled based on the coexistence, during the oxidation, of two intermediate products, U{sub 4}O{sub 9} and U{sub 3}O{sub 7}. The comparison between the calculation and the literature data is good in terms of weight gain curves and chemical diffusion coefficient of oxygen within the two phases. Secondly, the oxidation of spent fuel fragments is approached by a convolution procedure between a grain oxidation model and an empirical parameter which represents the linear oxidation speed of grain boundary or an average distance able to cover the entire spent fuel fragment. This procedure of calculation allows in one hand to account for the incubation period noticed on unirradiated pellets or spent fuel and in another hand to link the empirical parameter to physical as porosity, cracks or linear power, or operational parameters such as fission gas release (FGR) respectively. A comparison of this new modelling with experimental data will be proposed. (authors)

  12. Fuel dispersal modeling for aircraft-runway impact scenarios

    SciTech Connect

    Tieszen, S.R.

    1995-11-01

    A fuel dispersal model for C-141 transport accidents was developed for the Defense Nuclear Agency`s Fuel Fire Technology Base Program to support Weapon System Safety Assessments. The spectrum of accidents resulting from aircraft impact on a runway was divided into three fuel dispersal regimes: low, intermediate, and high-velocity impact. Sufficient data existed in the accident, crash test, and fuel-filled bomb literature to support development of a qualitative framework for dispersal models, but not quantitative models for all regimes. Therefore, a test series at intermediate scale was conducted to generate data on which to base the model for the high-velocity regime. Tests were conducted over an impact velocity range from 12 m/s to 91 m/s and angles of impact from 22.5{degrees} to 67.5{degrees}. Dependent variables were area covered by dispersed fuel, amount of mass in that area, and location of the area relative to the impact line. Test results showed that no liquid pooling occurred for impact velocities greater than 61 m/s, independent of the angle of impact. Some pooling did occur at lower velocities, but in no test was the liquid-layer thickness greater than 5.25 mm.

  13. Heat Transfer Modeling of Dry Spent Nuclear Fuel Storage Facilities

    SciTech Connect

    Lee, S.Y.

    1999-01-13

    The present work was undertaken to provide heat transfer model that accurately predicts the thermal performance of dry spent nuclear fuel storage facilities. One of the storage configurations being considered for DOE Aluminum-clad Spent Nuclear Fuel (Al-SNF), such as the Material and Testing Reactor (MTR) fuel, is in a dry storage facility. To support design studies of storage options a computational and experimental program has been conducted at the Savannah River Site (SRS). The main objective is to develop heat transfer models including natural convection effects internal to an interim dry storage canister and to geological codisposal Waste Package (WP). Calculated temperatures will be used to demonstrate engineering viability of a dry storage option in enclosed interim storage and geological repository WP and to assess the chemical and physical behaviors of the Al-SNF in the dry storage facilities. The current paper describes the modeling approaches and presents the computational results along with the experimental data.

  14. The modelling of fuel volatilisation in accident conditions

    NASA Astrophysics Data System (ADS)

    Manenc, H.; Mason, P. K.; Kissane, M. P.

    2001-04-01

    For oxidising conditions, at high temperatures, the pressure of uranium vapour species at the fuel surface is predicted to be high. These vapour species can be transported away from the fuel surface, giving rise to significant amounts of volatilised fuel, as has been observed during small-scale experiments and taken into account in different models. Hence, fuel volatilisation must be taken into account in the conduct of a simulated severe accident such as the Phebus FPT-4 experiment. A large-scale in-pile test is designed to investigate the release of fission products and actinides from irradiated UO 2 fuel in a debris bed and molten pool configuration. Best estimate predictions for fuel volatilisation were performed before the test. This analysis was used to assess the maximum possible loading of filters collecting emissions and the consequences for the filter-change schedule. Following successful completion of the experiment, blind post-test analysis is being performed; boundary conditions for the calculations are based on the preliminary post-test analysis with the core degradation code ICARE2 [J.C. Crestia, G. Repetto, S. Ederli, in: Proceedings of the Fourth Technical Seminar on the PHEBUS FP Programme, Marseille, France, 20-22 March 2000]. The general modelling approach is presented here and then illustrated by the analysis of fuel volatilisation in Phebus FPT4 (for which results are not yet available). Effort was made to reduce uncertainties in the calculations by improving the understanding of controlling physical processes and by using critically assessed thermodynamic data to determine uranium vapour pressures. The analysis presented here constitutes a preliminary, blind, post-test estimate of fuel volatilised during the test.

  15. Investigation of Burnup Credit Modeling Issues Associated with BWR Fuel

    SciTech Connect

    Wagner, J.C.

    2000-10-12

    /or decreasing the neutron absorber concentration. However, regulations associated with permanent disposal require consideration of scenarios and/or package conditions that are not relevant or credible for storage or transportation, and as a result, necessitate credit for burnup in BWR fuel to maintain capacity objectives. Burnup credit relies on depletion calculations to provide a conservative estimate of spent fuel contents and subsequent criticality calculations to assess the value of k{sub eff} for a spent fuel cask or a fuel configuration under a variety of postulated conditions. Therefore, validation is necessary to quantify biases and uncertainties between analytic predictions and measured isotopics. However, the design and operational aspects of BWRs result in a more heterogeneous and time-varying reactor configuration than those of PWRs. Thus, BWR spent fuel analyses and validation efforts are significantly more complicated than those of their PWR counterparts. BWR spent fuel assemblies are manufactured with variable enrichments, both radially and axially, are exposed to time- and spatially-varying void distributions, contain integral burnable absorber rods, and are subject to partial control-blade insertion during operation. The latter is especially true in older fuel assemblies. Away-from-reactor depletion tools used for characterization of spent fuel have typically been developed and validated for more homogeneous PWR fuel assemblies without integral burnable absorber rods, and thus must be reassessed for BWR configurations to determine a conservative methodology for estimating the isotopic content of spent BWR fuel. This report examines the use of SAS2H8 for calculating spent BWR fuel isotopics for burnup-credit criticality safety analyses and assesses the adequacy of SAS2H for this task. The effects of SAS2H modeling assumptions on calculated spent BWR fuel isotopics and the effects of depletion assumptions on calculated k{sub inf} values are investigated. Detailed

  16. Exploring Bundling Theory with Geometry

    ERIC Educational Resources Information Center

    Eckalbar, John C.

    2006-01-01

    The author shows how instructors might successfully introduce students in principles and intermediate microeconomic theory classes to the topic of bundling (i.e., the selling of two or more goods as a package, rather than separately). It is surprising how much students can learn using only the tools of high school geometry. To be specific, one can…

  17. PDS4 Bundle Creation Governance Using BPMN

    NASA Astrophysics Data System (ADS)

    Radulescu, C.; Levoe, S. R.; Algermissen, S. S.; Rye, E. D.; Hardman, S. H.

    2015-06-01

    The AMMOS-PDS Pipeline Service (APPS) provides a Bundle Builder tool, which governs the process of creating, and ultimately generates, PDS4 bundles incrementally, as science products are being generated.

  18. Modelling explicit fracture of nuclear fuel pellets using peridynamics

    NASA Astrophysics Data System (ADS)

    Mella, R.; Wenman, M. R.

    2015-12-01

    Three dimensional models of explicit cracking of nuclear fuel pellets for a variety of power ratings have been explored with peridynamics, a non-local, mesh free, fracture mechanics method. These models were implemented in the explicitly integrated molecular dynamics code LAMMPS, which was modified to include thermal strains in solid bodies. The models of fuel fracture, during initial power transients, are shown to correlate with the mean number of cracks observed on the inner and outer edges of the pellet, by experimental post irradiation examination of fuel, for power ratings of 10 and 15 W g-1 UO2. The models of the pellet show the ability to predict expected features such as the mid-height pellet crack, the correct number of radial cracks and initiation and coalescence of radial cracks. This work presents a modelling alternative to empirical fracture data found in many fuel performance codes and requires just one parameter of fracture strain. Weibull distributions of crack numbers were fitted to both numerical and experimental data using maximum likelihood estimation so that statistical comparison could be made. The findings show P-values of less than 0.5% suggesting an excellent agreement between model and experimental distributions.

  19. Heat transfer to water from a vertical tube bundle under natural-circulation conditions. [PWR; BWR

    SciTech Connect

    Gruszczynski, M.J.; Viskanta, R.

    1983-01-01

    The natural circulation heat transfer data for longitudinal flow of water outside a vertical rod bundle are needed for developing correlations which can be used in best estimate computer codes to model thermal-hydraulic behavior of nuclear reactor cores under accident or shutdown conditions. The heat transfer coefficient between the fuel rod surface and the coolant is the key parameter required to predict the fuel temperature. Because of the absence of the required heat transfer coefficient data base under natural circulation conditions, experiments have been performed in a natural circulation loop. A seven-tube bundle having a pitch-to-diameter ratio of 1.25 was used as a test heat exchanger. A circulating flow was established in the loop, because of buoyancy differences between its two vertical legs. Steady-state and transient heat transfer measurements have been made over as wide a range of thermal conditions as possible with the system. Steady state heat transfer data were correlated in terms of relevant dimensionless parameters. Empirical correlations for the average Nusselt number, in terms of Reynolds number, Rayleigh number and the ratio of Grashof to Reynolds number are given.

  20. Remote handling equipment and techniques used in the postirradiation examination of the severe fuel damage tests

    SciTech Connect

    Van Deusen, L.C.; Cook, B.A.

    1984-01-01

    Two, 32-rod, experimental fuel bundles from a pressurized water reactor have been subjected to severe reactor operation conditions in the Power Burst Facility. After testing, the fuel bundles were examined in a shielded, remotely handling facility to determine the condition of the bundles after a severe reactor transient. Special handling equipment and techniques were developed for unique application in the postirradiation examination of these large irradiated fuel bundles. This equipment was required to remotely handle the heavy, highly radioactive fuel bundles without disruption of the bundle geometry.

  1. Time-dependent fiber bundles with local load sharing.

    PubMed

    Newman, W I; Phoenix, S L

    2001-02-01

    Fiber bundle models, where fibers have random lifetimes depending on their load histories, are useful tools in explaining time-dependent failure in heterogeneous materials. Such models shed light on diverse phenomena such as fatigue in structural materials and earthquakes in geophysical settings. Various asymptotic and approximate theories have been developed for bundles with various geometries and fiber load-sharing mechanisms, but numerical verification has been hampered by severe computational demands in larger bundles. To gain insight at large size scales, interest has returned to idealized fiber bundle models in 1D. Such simplified models typically assume either equal load sharing (ELS) among survivors, or local load sharing (LLS) where a failed fiber redistributes its load onto its two nearest flanking survivors. Such models can often be solved exactly or asymptotically in increasing bundle size, N, yet still capture the essence of failure in real materials. The present work focuses on 1D bundles under LLS. As in previous works, a fiber has failure rate following a power law in its load level with breakdown exponent rho. Surviving fibers under fixed loads have remaining lifetimes that are independent and exponentially distributed. We develop both new asymptotic theories and new computational algorithms that greatly increase the bundle sizes that can be treated in large replications (e.g., one million fibers in thousands of realizations). In particular we develop an algorithm that adapts several concepts and methods that are well-known among computer scientists, but relatively unknown among physicists, to dramatically increase the computational speed with no attendant loss of accuracy. We consider various regimes of rho that yield drastically different behavior as N increases. For 1/2< or =rho< or =1, ELS and LLS have remarkably similar behavior (they have identical lifetime distributions at rho=1) with approximate Gaussian bundle lifetime statistics and a

  2. Mapping wildland fuels for fire management across multiple scales: Integrating remote sensing, GIS, and biophysical modeling

    USGS Publications Warehouse

    Keane, R.E.; Burgan, R.; van Wagtendonk, J.

    2001-01-01

    Fuel maps are essential for computing spatial fire hazard and risk and simulating fire growth and intensity across a landscape. However, fuel mapping is an extremely difficult and complex process requiring expertise in remotely sensed image classification, fire behavior, fuels modeling, ecology, and geographical information systems (GIS). This paper first presents the challenges of mapping fuels: canopy concealment, fuelbed complexity, fuel type diversity, fuel variability, and fuel model generalization. Then, four approaches to mapping fuels are discussed with examples provided from the literature: (1) field reconnaissance; (2) direct mapping methods; (3) indirect mapping methods; and (4) gradient modeling. A fuel mapping method is proposed that uses current remote sensing and image processing technology. Future fuel mapping needs are also discussed which include better field data and fuel models, accurate GIS reference layers, improved satellite imagery, and comprehensive ecosystem models.

  3. Modelling of radiation field around spent fuel container.

    PubMed

    Kryuchkov, E F; Opalovsky, V A; Tikhomirov, G V

    2005-01-01

    Operation of nuclear reactors leads to the production of spent nuclear fuel (SNF). There are two basic strategies of SNF management: ultimate disposal of SNF in geological formations and recycle or repeated utilisation of reprocessed SNF. In both options, there is an urgent necessity to study radiation properties of SNF. Information about SNF radiation properties is required at all stages of SNF management. In order to reach more effective utilisation of nuclear materials, new fuel cycles are under development based on uranium-plutonium, uranium-thorium and some other types of nuclear fuel. These promising types of nuclear fuel are characterised by quite different radiation properties at all the stages of nuclear fuel cycle (NFC) listed above. So, comparative analysis is required for radiation properties of different nuclear fuel types at different NFC stages. The results presented here were obtained from the numerical analysis of the radiation field around transport containers of different SNF types and in SNF storage. The calculations are carried out with the application of the computer code packages SCALE-4.3 and MCNP-4C. Comparison of the dose parameters obtained for different models of the transport container with experimental data allowed us to make certain conclusions about the errors of numerical results caused by the approximate geometrical description of the transport container. PMID:16604702

  4. NUCLEAR REACTOR FUEL ELEMENT

    DOEpatents

    Wheelock, C.W.; Baumeister, E.B.

    1961-09-01

    A reactor fuel element utilizing fissionable fuel materials in plate form is described. This fuel element consists of bundles of fuel-bearing plates. The bundles are stacked inside of a tube which forms the shell of the fuel element. The plates each have longitudinal fins running parallel to the direction of coolant flow, and interspersed among and parallel to the fins are ribs which position the plates relative to each other and to the fuel element shell. The plate bundles are held together by thin bands or wires. The ex tended surface increases the heat transfer capabilities of a fuel element by a factor of 3 or more over those of a simple flat plate.

  5. BISON and MARMOT Development for Modeling Fast Reactor Fuel Performance

    SciTech Connect

    Gamble, Kyle Allan Lawrence; Williamson, Richard L.; Schwen, Daniel; Zhang, Yongfeng; Novascone, Stephen Rhead; Medvedev, Pavel G.

    2015-09-01

    BISON and MARMOT are two codes under development at the Idaho National Laboratory for engineering scale and lower length scale fuel performance modeling. It is desired to add capabilities for fast reactor applications to these codes. The fast reactor fuel types under consideration are metal (U-Pu-Zr) and oxide (MOX). The cladding types of interest include 316SS, D9, and HT9. The purpose of this report is to outline the proposed plans for code development and provide an overview of the models added to the BISON and MARMOT codes for fast reactor fuel behavior. A brief overview of preliminary discussions on the formation of a bilateral agreement between the Idaho National Laboratory and the National Nuclear Laboratory in the United Kingdom is presented.

  6. Heterotic non-Kähler geometries via polystable bundles on Calabi-Yau threefolds

    NASA Astrophysics Data System (ADS)

    Andreas, Björn; Garcia-Fernandez, Mario

    2012-02-01

    In arXiv:1008.1018 it is shown that a given stable vector bundle V on a Calabi-Yau threefold X which satisfies c2(X)=c2(V) can be deformed to a solution of the Strominger system and the equations of motion of heterotic string theory. In this note we extend this result to the polystable case and construct explicit examples of polystable bundles on elliptically fibered Calabi-Yau threefolds where it applies. The polystable bundle is given by a spectral cover bundle, for the visible sector, and a suitably chosen bundle, for the hidden sector. This provides a new class of heterotic flux compactifications via non-Kähler deformation of Calabi-Yau geometries with polystable bundles. As an application, we obtain examples of non-Kähler deformations of some three generation GUT models.

  7. Mechanical models for slosh of liquid fuel

    NASA Technical Reports Server (NTRS)

    Buseck, R.; Benaroya, H.

    1993-01-01

    This paper concentrates on equilibrium behavior of fluids in low or zero gravity, and sloshing in normal and low gravity. Included are a background and review of the literature, and an introduction to a new equivalent mechanical model.

  8. On the Ablation Models of Fuel Pellets

    SciTech Connect

    Rozhansky, V.A.; Senichenkov, I.Yu.

    2005-12-15

    The neutral gas shielding model and neutral-gas-plasma shielding model are analyzed qualitatively. The main physical processes that govern the formation of the shielding gas cloud and, consequently, the ablation rate are considered. For the neutral gas shielding model, simple formulas relating the ablation rate and cloud parameters to the parameters of the pellet and the background plasma are presented. The estimates of the efficiency of neutral gas shielding and plasma shielding are compared. It is shown that the main portion of the energy flux of the background electrons is released in the plasma cloud. Formulas for the ablation rate and plasma parameters are derived in the neutral-gas-plasma shielding model. The question is discussed as to why the neutral gas shielding model describes well the ablation rate of the pellet material, although it does not take into account the ionization effects and the effects associated with the interaction of ionized particles with the magnetic field. The reason is that the ablation rate depends weakly on the energy flux of hot electrons; as a result, the attenuation of this flux by the electrostatic shielding and plasma shielding has little effect on the ablation rate. This justifies the use of the neutral gas shielding model to estimate the ablation rate (to within a factor of about 2) over a wide range of parameters of the pellet and the background plasma.

  9. Thermal hydraulic modeling of the mock fuel facility

    NASA Astrophysics Data System (ADS)

    Gardner, Jacob

    The major focus of this thesis was to make improved three dimensional models of the Mock Fuel Facility. Three distinct experiment types run with the Mock Fuel Facility (MFF) were the main focus of this thesis. Two of the experiments were modeled and an in-depth analysis of the model results was performed to gain a better understanding of the Mock Fuel Facility. For the third experiment the process of creating a model was begun. There were multiple purposes for the work completed in this thesis. The work was done partially to gain a greater understanding of the UMass Lowell Research Reactor (UMLRR). There is minimal instrumentation within the UMLRR to measure localized temperatures within the UMLRR. It is hoped that the work done in this thesis will provide a basis for future modeling work which will give insight into the temperature profiles within the UMLRR. This work is also being done to gain insight into the capabilities of the COMSOL multiphysics modelling software and evaluate its potential for future modelling work. Finally this work is also being done for its potential as an educational tool. The MFF and COMSOL have potential to be used for experimental lab work by students to learn about computer modeling and validation.

  10. A physical and economic model of the nuclear fuel cycle

    NASA Astrophysics Data System (ADS)

    Schneider, Erich Alfred

    A model of the nuclear fuel cycle that is suitable for use in strategic planning and economic forecasting is presented. The model, to be made available as a stand-alone software package, requires only a small set of fuel cycle and reactor specific input parameters. Critical design criteria include ease of use by nonspecialists, suppression of errors to within a range dictated by unit cost uncertainties, and limitation of runtime to under one minute on a typical desktop computer. Collision probability approximations to the neutron transport equation that lead to a computationally efficient decoupling of the spatial and energy variables are presented and implemented. The energy dependent flux, governed by coupled integral equations, is treated by multigroup or continuous thermalization methods. The model's output includes a comprehensive nuclear materials flowchart that begins with ore requirements, calculates the buildup of 24 actinides as well as fission products, and concludes with spent fuel or reprocessed material composition. The costs, direct and hidden, of the fuel cycle under study are also computed. In addition to direct disposal and plutonium recycling strategies in current use, the model addresses hypothetical cycles. These include cycles chosen for minor actinide burning and for their low weapons-usable content.

  11. HCCI experiments with gasoline surrogate fuels modeled by a semidetailed chemical kinetic model

    SciTech Connect

    Andrae, J.C.G.; Head, R.A.

    2009-04-15

    Experiments in a homogeneous charge compression ignition (HCCI) engine have been conducted with four gasoline surrogate fuel blends. The pure components in the surrogate fuels consisted of n-heptane, isooctane, toluene, ethanol and diisobutylene and fuel sensitivities (RON-MON) in the fuel blends ranged from two to nine. The operating conditions for the engine were p{sub in}=0.1 and 0.2 MPa, T{sub in}=80 and 250 C, {phi}=0.25 in air and engine speed 1200 rpm. A semidetailed chemical kinetic model (142 species and 672 reactions) for gasoline surrogate fuels, validated against ignition data from experiments conducted in shock tubes for gasoline surrogate fuel blends at 1.0{<=} p{<=}5.0MPa, 700{<=} T{<=}1200 K and {phi}=1.0, was successfully used to qualitatively predict the HCCI experiments using a single zone modeling approach. The fuel blends that had higher fuel sensitivity were more resistant to autoignition for low intake temperature and high intake pressure and less resistant to autoignition for high intake temperature and low intake pressure. A sensitivity analysis shows that at high intake temperature the chemistry of the fuels ethanol, toluene and diisobutylene helps to advance ignition. This is consistent with the trend that fuels with the least Negative Temperature Coefficient (NTC) behavior show the highest octane sensitivity, and become less resistant to autoignition at high intake temperatures. For high intake pressure the sensitivity analysis shows that fuels in the fuel blend with no NTC behavior consume OH radicals and acts as a radical scavenger for the fuels with NTC behavior. This is consistent with the observed trend of an increase in RON and fuel sensitivity. With data from shock tube experiments in the literature and HCCI modeling in this work, a correlation between the reciprocal pressure exponent on the ignition delay to the fuel sensitivity and volume percentage of single-stage ignition fuel in the fuel blend was found. Higher fuel

  12. Geometric Frustration Selects Morphology in Chiral Filament Bundles

    NASA Astrophysics Data System (ADS)

    Hall, Douglas; Bruss, Isaac; Barone, Justin; Grason, Gregory

    Assemblies of twisted filaments appear in a range of biological contexts, from extracellular filament bundles to amyloid fibrils. Owing to numerous distinctions in molecular structures and interactions underlying these diverse assemblies, a framework to predict and classify the basic mechanisms of structure formation in twisted filament assemblies is still lacking. In this study, we model how the size and shape of self-assembled fibers are controlled by competition between the elastic costs of inter-filament frustration, bending deformation of filaments and bundle surface energy. Exploiting a geometric mapping between inter-filament packing in twisted bundles and packing on positively-curved 2D surfaces, we show that the anisotropy of the bundle cross-section is determined by a single parameter describing the competition between elastic and bending costs. We compare the continuum model's predictions for stability of cylindrical and tape-like twisted morphologies to numerical simulations of cohesive filament bundles and observations of micron-scale amyloid fibers assembled from hydrolyzed protein fragments. Nsf (CAREER) DMR-0955760.

  13. Integration of non-fuel coproducts into the GREET model.

    PubMed

    Forman, Grant S; Unnasch, Stefan

    2015-04-01

    The life-cycle greenhouse gas (GHG) emissions of alternative fuels that are capable of replacing conventional, petroleum-derived gasoline and diesel continue to be scrutinized for policy implementation. These alternative fuel technologies can also produce a number of value-adding nonfuel coproducts that require thorough and rigorous assessment in order to achieve an accurate life-cycle GHG emissions value. By using the gas to liquids (GTL) diesel pathway as a proxy for other alternative fuel pathways with coproducts, this paper examines how integration of coproduct analysis using the substitution method is possible within the existing framework and functionality of the GREET model. Using this approach, a GREET-compatible external tool was developed to calculate the life-cycle inventory of GTL coproducts to determine the life-cycle GHG emissions of GTL diesel using the substitution method. In addition to having built-in regional scenarios, this tool allows the user the flexibility to configure a given GTL product slate and to calculate the life-cycle GHG emissions of GTL diesel based on a given product composition. Using this protocol, the life-cycle GHG emissions of GTL diesel can range from 71.7 to 95.7 gCO2e/MJ on a well to wheel basis, with the range in carbon intensity being dependent on the mix of coproducts. These results highlight a weakly understood relationship between fuel and chemical products in LCA models. The coproduct integration approach described herein could potentially be incorporated into fuel LCA models, such as GREET, to allow users to further understand the potential environmental benefits of alternative fuel pathways, such as GTL. PMID:25710605

  14. Infinite number of MSSMs from heterotic line bundles?

    NASA Astrophysics Data System (ADS)

    Groot Nibbelink, Stefan; Loukas, Orestis; Ruehle, Fabian; Vaudrevange, Patrick K. S.

    2015-08-01

    We consider heterotic E8×E8 supergravity compactified on smooth Calabi-Yau manifolds with line bundle gauge backgrounds. Infinite sets of models that satisfy the Bianchi identities and flux quantization conditions can be constructed by letting their background flux quanta grow without bound. Even though we do not have a general proof, we find that all examples are at the boundary of the theory's validity: the Donaldson-Uhlenbeck-Yau equations, which can be thought of as vanishing D-term conditions, cannot be satisfied inside the Kähler cone unless a growing number of scalar vacuum expectation values is switched on. As they are charged under various line bundles simultaneously, the gauge background gets deformed by these VEVs to a non-Abelian bundle. In general, our physical expectation is that such infinite sets of models should be impossible, since they never seem to occur in exact conformal field theory constructions.

  15. Use of refinery computer model to predict fuel production

    NASA Technical Reports Server (NTRS)

    Flores, F. J.

    1979-01-01

    Several factors (crudes, refinery operation and specifications) that affect yields and properties of broad specification jet fuel were parameterized using the refinery simulation model which can simulate different types of refineries were used to make the calculations. Results obtained from the program are used to correlate yield as a function of final boiling point, hydrogen content and freezing point for jet fuels produced in two refinery configurations, each one processing a different crude mix. Refinery performances are also compared in terms of energy consumption.

  16. Nuclear Fuel Leasing, Recycling and proliferation: Modeling a Global View

    SciTech Connect

    Crozat, M P; Choi, J; Reis, V H; Hill, R

    2004-03-10

    would extend the spirit of President Eisenhower's ''Atoms for Peace'' vision toward solving some of the major international problems of the 21st Century--global climate change and the creation of a peaceful and stable world political regime. Needless to say, this is a very complex problem, encompassing all of the issues involved in nuclear power--economics, proliferation, waste management and safety--and a myriad of public and diplomatic policy issues as well. To gain a better understanding of the leasing concept we have built an interactive system dynamics model, Multinuke, using STELLA software. (STELLA is particularly useful for this type of analysis because of its capability to create user-friendly interfaces.) Multinuke simulates two separate nuclear entities and possible interactions between them, and therefore can be used to investigate the fuel-leasing concept. In this paper we will apply the results of Multinuke to a few simplified scenarios to help understand how fuel leasing might affect the future global growth of nuclear power, proliferation concern and spent fuel management.

  17. Beta-peptide bundles with fluorous cores.

    PubMed

    Molski, Matthew A; Goodman, Jessica L; Craig, Cody J; Meng, He; Kumar, Krishna; Schepartz, Alanna

    2010-03-24

    We reported recently that certain beta-peptides self-assemble spontaneously into cooperatively folded bundles whose kinetic and thermodynamic metrics mirror those of natural helix bundle proteins. The structures of four such beta-peptide bundles are known in atomic detail. These structures reveal a solvent-sequestered, hydrophobic core stabilized by a unique arrangement of leucine side chains and backbone methylene groups. Here we report that this hydrophobic core can be re-engineered to contain a fluorous subdomain while maintaining the characteristic beta-peptide bundle fold. Like alpha-helical bundles possessing fluorous cores, fluorous beta-peptide bundles are stabilized relative to hydrocarbon analogues and undergo cold denaturation. Beta-peptide bundles with fluorous cores represent the essential first step in the synthesis of orthogonal protein assemblies that can sequester selectively in an interstitial membrane environment. PMID:20196598

  18. Fuel Performance Experiments and Modeling: Fission Gas Bubble Nucleation and Growth in Alloy Nuclear Fuels

    SciTech Connect

    McDeavitt, Sean; Shao, Lin; Tsvetkov, Pavel; Wirth, Brian; Kennedy, Rory

    2014-04-07

    Advanced fast reactor systems being developed under the DOE's Advanced Fuel Cycle Initiative are designed to destroy TRU isotopes generated in existing and future nuclear energy systems. Over the past 40 years, multiple experiments and demonstrations have been completed using U-Zr, U-Pu-Zr, U-Mo and other metal alloys. As a result, multiple empirical and semi-empirical relationships have been established to develop empirical performance modeling codes. Many mechanistic questions about fission as mobility, bubble coalescience, and gas release have been answered through industrial experience, research, and empirical understanding. The advent of modern computational materials science, however, opens new doors of development such that physics-based multi-scale models may be developed to enable a new generation of predictive fuel performance codes that are not limited by empiricism.

  19. CFD Analysis of Coolant Flow in VVER-440 Fuel Assemblies with the Code ANSYS CFX 10.0

    SciTech Connect

    Toth, Sandor; Legradi, Gabor; Aszodi, Attila

    2006-07-01

    From the aspect of planning the power upgrading of nuclear reactors - including the VVER-440 type reactor - it is essential to get to know the flow field in the fuel assembly. For this purpose we have developed models of the fuel assembly of the VVER-440 reactor using the ANSYS CFX 10.0 CFD code. At first a 240 mm long part of a 60 degrees segment of the fuel pin bundle was modelled. Implementing this model a sensitivity study on the appropriate meshing was performed. Based on the development of the above described model, further models were developed: a 960 mm long part of a 60-degree-segment and a full length part (2420 mm) of the fuel pin bundle segment. The calculations were run using constant coolant properties and several turbulence models. The impacts of choosing different turbulence models were investigated. The results of the above-mentioned investigations are presented in this paper. (authors)

  20. Systematic Bundle Adjustment of HRSC Image Data

    NASA Astrophysics Data System (ADS)

    Bostelmann, J.; Schmidt, R.; Heipke, C.

    2012-07-01

    The European Mars Express mission was launched in June 2003 and sent into orbit around Mars. On board the orbiter is the German High Resolution Stereo Camera (HRSC). This multi-line sensor images the Martian surface with a resolution of up to 12m per pixel in three dimensions and provides RGB and infra-red color information. The usage of the stereoscopic image information for the improvement of the observed position and attitude information via bundle adjustment is important to derive high quality 3D surface models, color orthoimages and other data products. In many cases overlapping image strips of different orbits can be used to form photogrammetric blocks, thus allowing the simultaneous adjustment of the exterior orientation data. This reduces not only local, but also regional inconsistencies in the data. With the growing number of HRSC image strips in this ongoing mission, the size and complexity of potential blocks is increasing. Therefore, a workflow has been built up for the systematic improvement of the exterior orientation using single orbit strips and regional blocks. For a successful bundle adjustment of blocks using multiple image strips a sufficient number of tie points in the overlapping area is needed. The number of tie points depends mainly on the geometric and radiometric quality of the images. This is considered by detailed analysis of the tie point accuracy and distribution. The combination of methods for image pre-processing, tie point matching, bundle adjustment and evaluation of the results in an automated workflow allows for all HRSC images a global assessment of the quality and a systematic selection of data for larger blocks.

  1. Modeling of SSME fuel preburner ASI

    NASA Technical Reports Server (NTRS)

    Liang, Pak-Yan

    1992-01-01

    The Augmented Spark Ignitor (ASI) is a LOX/H2/electrical spark system that functions as an ignition source and sustainer for stable combustion. It is used in the Space Shuttle Main Engine (SSME) preburner combustor, the SMME main combustion chamber, the J-1 and J-2 engines, as well as proposed designs of the Space Transportation Main Engine (STME) main combustor and gas generators. An undertaking to characterize the flow of the ASI is documented. The code consists of a marriage of the Implicit-Continuous Eulerian/Arbitrary Lagrangian Code (ICE-ALE) Navier-Stokes solver with the Volume-of-Fluid (VOF) Methodology for tracking of two immiscible fluids with sharp discontinuities. Spray droplets are represented by discrete numerical parcels tracked in a Lagrangian fashion. Numerous physical sub-models are also incorporated to describe the processes of atomization, droplet collision, droplet breakup, evaporation, and droplet and gas phase turbulence. An equilibrium chemistry model accounting for 8 active gaseous species is also used. Taking advantage of this symmetry plane, half of the actual ASI is modeled with a 3-D grid that geometrically resolves the LOX ports, the spark plug locations, and the hydrogen injection slots.

  2. Modeling of SSME fuel preburner ASI

    NASA Astrophysics Data System (ADS)

    Liang, Pak-Yan

    1992-07-01

    The Augmented Spark Ignitor (ASI) is a LOX/H2/electrical spark system that functions as an ignition source and sustainer for stable combustion. It is used in the Space Shuttle Main Engine (SSME) preburner combustor, the SMME main combustion chamber, the J-1 and J-2 engines, as well as proposed designs of the Space Transportation Main Engine (STME) main combustor and gas generators. An undertaking to characterize the flow of the ASI is documented. The code consists of a marriage of the Implicit-Continuous Eulerian/Arbitrary Lagrangian Code (ICE-ALE) Navier-Stokes solver with the Volume-of-Fluid (VOF) Methodology for tracking of two immiscible fluids with sharp discontinuities. Spray droplets are represented by discrete numerical parcels tracked in a Lagrangian fashion. Numerous physical sub-models are also incorporated to describe the processes of atomization, droplet collision, droplet breakup, evaporation, and droplet and gas phase turbulence. An equilibrium chemistry model accounting for 8 active gaseous species is also used. Taking advantage of this symmetry plane, half of the actual ASI is modeled with a 3-D grid that geometrically resolves the LOX ports, the spark plug locations, and the hydrogen injection slots.

  3. Current Capabilities of the Fuel Performance Modeling Code PARFUME

    SciTech Connect

    G. K. Miller; D. A. Petti; J. T. Maki; D. L. Knudson

    2004-09-01

    The success of gas reactors depends upon the safety and quality of the coated particle fuel. A fuel performance modeling code (called PARFUME), which simulates the mechanical and physico-chemical behavior of fuel particles during irradiation, is under development at the Idaho National Engineering and Environmental Laboratory. Among current capabilities in the code are: 1) various options for calculating CO production and fission product gas release, 2) a thermal model that calculates a time-dependent temperature profile through a pebble bed sphere or a prismatic block core, as well as through the layers of each analyzed particle, 3) simulation of multi-dimensional particle behavior associated with cracking in the IPyC layer, partial debonding of the IPyC from the SiC, particle asphericity, kernel migration, and thinning of the SiC caused by interaction of fission products with the SiC, 4) two independent methods for determining particle failure probabilities, 5) a model for calculating release-to-birth (R/B) ratios of gaseous fission products, that accounts for particle failures and uranium contamination in the fuel matrix, and 6) the evaluation of an accident condition, where a particle experiences a sudden change in temperature following a period of normal irradiation. This paper presents an overview of the code.

  4. Modeling and cold start in alcohol-fueled engines

    SciTech Connect

    Markel, A.J.; Bailey, B.K.

    1998-05-01

    Neat alcohol fuels offer several benefits over conventional gasoline in automotive applications. However, their low vapor pressure and high heat of vaporization make it difficult to produce a flammable vapor composition from a neat alcohol fuel during a start under cold ambient conditions. Various methods have been introduced to compensate for this deficiency. In this study, the authors applied computer modeling and simulation to evaluate the potential of four cold-start technologies for engines fueled by near-neat alcohol. The four technologies were a rich combustor device, a partial oxidation reactor, a catalytic reformer, and an enhanced ignition system. The authors ranked the competing technologies by their ability to meet two primary criteria for cold starting an engine at {minus}25 deg C and also by several secondary parameters related to commercialization. Their analysis results suggest that of the four technologies evaluated, the enhanced ignition system is the best option for further development.

  5. MODELING AND DESIGN FOR A DIRECT CARBON FUEL CELL WITH ENTRAINED FUEL AND OXIDIZER

    SciTech Connect

    Alan A. Kornhauser; Ritesh Agarwal

    2005-04-01

    The novel molten carbonate fuel cell design described in this report uses porous bed electrodes. Molten carbonate, with carbon fuel particles and oxidizer entrained, is circulated through the electrodes. Carbon may be reacted directly, without gasification, in a molten carbonate fuel cell. The cathode reaction is 2CO{sub 2} + O{sub 2} 4e{sup -} {yields} 2CO{sub 3}{sup =}, while the anode reaction can be either C + 2CO{sub 3}{sup =} {yields} 3CO{sub 2} + 4e{sup -} or 2C + CO{sub 3}{sup =} {yields} 3CO + 2e{sup -}. The direct carbon fuel cell has an advantage over fuel cells using coal-derived synthesis gas in that it provides better overall efficiency and reduces equipment requirements. Also, the liquid electrolyte provides a means for transporting the solid carbon. The porous bed cell makes use of this carbon transport ability of the molten salt electrolyte. A one-dimensional model has been developed for predicting the performance of this cell. For the cathode, dependent variables are superficial O{sub 2} and CO{sub 2} fluxes in the gas phase, superficial O{sub 2} and CO{sub 2} fluxes in the liquid phase, superficial current density through the electrolyte, and electrolyte potential. The variables are related by correlations, from the literature, for gas-liquid mass transfer, liquid-solid mass transfer, cathode current density, electrode overpotential, and resistivity of a liquid with entrained gas. For the anode, dependent variables are superficial CO{sub 2} flux in the gas phase, superficial CO{sub 2} flux in the liquid phase, superficial C flux, superficial current density through the electrolyte, and electrolyte potential. The same types of correlations relate the variables as in the cathode, with the addition of a correlation for resistivity of a fluidized bed. CO production is not considered, and axial dispersion is neglected. The model shows behavior typical of porous bed electrodes used in electrochemical processes. Efficiency is comparable to that of

  6. A dermatotoxicokinetic model of human exposures to jet fuel.

    PubMed

    Kim, David; Andersen, Melvin E; Nylander-French, Leena A

    2006-09-01

    Workers, both in the military and the commercial airline industry, are exposed to jet fuel by inhalation and dermal contact. We present a dermatotoxicokinetic (DTK) model that quantifies the absorption, distribution, and elimination of aromatic and aliphatic components of jet fuel following dermal exposures in humans. Kinetic data were obtained from 10 healthy volunteers following a single dose of JP-8 to the forearm over a surface area of 20 cm2. Blood samples were taken before exposure (t = 0 h), after exposure (t = 0.5 h), and every 0.5 h for up to 3.5 h postexposure. The DTK model that best fit the data included five compartments: (1) surface, (2) stratum corneum (SC), (3) viable epidermis, (4) blood, and (5) storage. The DTK model was used to predict blood concentrations of the components of JP-8 based on dermal-exposure measurements made in occupational-exposure settings in order to better understand the toxicokinetic behavior of these compounds. Monte Carlo simulations of dermal exposure and cumulative internal dose demonstrated no overlap among the low-, medium-, and high-exposure groups. The DTK model provides a quantitative understanding of the relationship between the mass of JP-8 components in the SC and the concentrations of each component in the systemic circulation. The model may be used for the development of a toxicokinetic modeling strategy for multiroute exposure to jet fuel. PMID:16801332

  7. Quantum Bundles and Their Symmetries

    NASA Astrophysics Data System (ADS)

    Balachandran, A. P.; Marmo, G.; Simoni, A.; Sparano, G.

    Wave functions in the domain of observables such as the Hamiltonian are not always smooth functions on the classical configuration space Q. Rather, they are often best regarded as functions on a G bundle EG over Q or as sections of an associated bundle. If H is a classical group which acts on Q, its quantum version HG, which acts on EG, is not always H, but an extension of H by G. A powerful and physically transparent construction of EG and HG, where G=U(1) and H1(Q, Z)=0, has been developed using the path space {P}. ({P} consists of paths on Q from a fixed point.) In this paper we show how to construct EG and HG when G is U(1) or U(1)×π1(Q) and there is no restriction on H1(Q, Z). The method is illustrated with concrete examples, such as a system of charges and monopoles. We argue also that {P} is a sort of superbundle from which a large variety of bundles can be obtained by imposing suitable equivalence relations.

  8. Modeling Thermal and Stress Behavior of the Fuel-clad Interface in Monolithic Fuel Mini-plates

    SciTech Connect

    Gregory K. Miller; Pavel G. Medvedev; Douglas E. Burkes; Daniel M. Wachs

    2010-08-01

    As part of the Global Threat Reduction Initiative, a fuel development and qualification program is in process with the objective of qualifying very high density low enriched uranium fuel that will enable the conversion of high performance research reactors with operational requirements beyond those supported with currently available low enriched uranium fuels. The high density of the fuel is achieved by replacing the fuel meat with a single monolithic low enriched uranium-molybdenum fuel foil. Doing so creates differences in the mechanical and structural characteristics of the fuel plate because of the planar interface created by the fuel foil and cladding. Furthermore, the monolithic fuel meat will dominate the structural properties of the fuel plate rather than the aluminum matrix, which is characteristic of dispersion fuel types. Understanding the integrity and behavior of the fuel-clad interface during irradiation is of great importance for qualification of the new fuel, but can be somewhat challenging to determine with a single technique. Efforts aimed at addressing this problem are underway within the fuel development and qualification program, comprised of modeling, as-fabricated plate characterization, and post-irradiation examination. An initial finite element analysis model has been developed to investigate worst-case scenarios for the basic monolithic fuel plate structure, using typical mini-plate irradiation conditions in the Advanced Test Reactor. Initial analysis shows that the stress normal to the fuel-clad interface dominates during irradiation, and that the presence of small, rounded delaminations at the interface is not of great concern. However, larger and/or fuel-clad delaminations with sharp corners can create areas of concern, as maximum principal cladding stress, strain, displacement, and peak fuel temperature are all significantly increased. Furthermore, stresses resulting from temperature gradients that cause the plate to bow or buckle in

  9. Computational modeling and optimization of proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Secanell Gallart, Marc

    Improvements in performance, reliability and durability as well as reductions in production costs, remain critical prerequisites for the commercialization of proton exchange membrane fuel cells. In this thesis, a computational framework for fuel cell analysis and optimization is presented as an innovative alternative to the time consuming trial-and-error process currently used for fuel cell design. The framework is based on a two-dimensional through-the-channel isothermal, isobaric and single phase membrane electrode assembly (MEA) model. The model input parameters are the manufacturing parameters used to build the MEA: platinum loading, platinum to carbon ratio, electrolyte content and gas diffusion layer porosity. The governing equations of the fuel cell model are solved using Netwon's algorithm and an adaptive finite element method in order to achieve quadratic convergence and a mesh independent solution respectively. The analysis module is used to solve two optimization problems: (i) maximize performance; and, (ii) maximize performance while minimizing the production cost of the MEA. To solve these problems a gradient-based optimization algorithm is used in conjunction with analytical sensitivities. The presented computational framework is the first attempt in the literature to combine highly efficient analysis and optimization methods to perform optimization in order to tackle large-scale problems. The framework presented is capable of solving a complete MEA optimization problem with state-of-the-art electrode models in approximately 30 minutes. The optimization results show that it is possible to achieve Pt-specific power density for the optimized MEAs of 0.422 gPt/kW. This value is extremely close to the target of 0.4 gPt/kW for large-scale implementation and demonstrate the potential of using numerical optimization for fuel cell design.

  10. Mathematical modeling of diesel fuel hydrotreating

    NASA Astrophysics Data System (ADS)

    Tataurshikov, A.; Ivanchina, E.; Krivtcova, N.; Krivtsov, E.; Syskina, A.

    2015-11-01

    Hydrotreating of the diesel fraction with the high initial sulfur content of 1,4 mass% is carried out in the flow-through laboratory setup with the industrial GKD-202 catalyst at various process temperature. On the basis of the experimental data the regularities of the hydrogenation reactions are revealed, and the formalized scheme of sulfur-containing components (sulfides, benzothiophenes, and dibenzothiophenes) transformations is made. The mathematical model of hydrotreating process is developed, the constant values for the reaction rate of hydrodesulfurization of the specified components are calculated.

  11. Detailed Chemical Kinetic Modeling of Diesel Combustion with Oxygenated Fuels

    SciTech Connect

    Curran, H J; Fisher, E M; Glaude, P-A; Marinov, N M; Pitz, W J; Westbrook, C K; Flynn, P F; Durrett, R P; zur Loye, A O; Akinyemi, O C; Dryer, F L

    2000-01-11

    mixing model to study the premixed, rich ignition process. Using n-heptane as a representative diesel fuel, they showed that addition of an oxygenated additive, methanol, to the fuel reduced the concentrations of a number of hydrocarbon species in the products of the rich ignition. Specifically, methanol addition reduced the total concentrations of acetylene, ethylene and 1,3-butadiene, as well as propargyl and vinyl radicals, in the ignition products. These are the same species shown in a number of studies [4-6] to be responsible for formation of aromatic and polycyclic aromatic species in flames, species which lead eventually to production of soot. Flynn et al. did not, however, examine the kinetic processes responsible for the computed reduction in production of soot precursor species. At least two hypotheses have been advanced to explain the role that oxygenated species play in diesel ignition and the reduction in the concentrations of these species. The first is that the additive, methanol in the case of Flynn et al., does not contain any C-C bonds and cannot then produce significant levels of the species such as acetylene, ethylene or the unsaturated radicals which are known to lead to aromatic species. The second hypothesis is that the product distribution changes very naturally as oxygen is added and the overall equivalence ratio is reduced. In the present study, we repeat the ignition calculations of Flynn et al. and include a number of other oxygenated species to determine which of these theories is more applicable to this model.

  12. Thermal conductivity modeling of U-Mo/Al dispersion fuel

    NASA Astrophysics Data System (ADS)

    Kim, Yeon Soo; Cho, Byoung Jin; Sohn, Dong-Seong; Park, Jong Man

    2015-11-01

    A dataset for the thermal conductivity of U-Mo/Al dispersion fuel made available by KAERI was reanalyzed. Using this dataset, an analytical model was obtained by expanding the Bruggeman model. The newly developed model incorporates thermal resistances at the interface between the U-Mo particles and the Al matrix and the defects within the Al matrix (grain boundaries, cracks, and dislocations). The interfacial resistances are expressed as functions of U-Mo particle size and Al grain size obtained empirically by fitting to measured data from KAERI. The model was then validated against an independently measured dataset from ANL.

  13. Variable recruitment in bundles of miniature pneumatic artificial muscles.

    PubMed

    DeLaHunt, Sylvie A; Pillsbury, Thomas E; Wereley, Norman M

    2016-01-01

    The natural compliance and force generation properties of pneumatic artificial muscles (PAMs) allow them to operate like human muscles in anthropomorphic robotic manipulators. Traditionally, manipulators use a single PAM or multiple PAMs actuated in unison in place of a human muscle. However, these standard manipulators can experience significant efficiency losses when operated outside their target performance ranges at low actuation pressures. This study considers the application of a variable recruitment control strategy to a parallel bundle of miniature PAMs as an attempt to mimic the selective recruitment of motor units in a human muscle. Bundles of miniature PAMs are experimentally characterized, their actuation behavior is modeled, and the efficiency gains and losses associated with the application of a variable recruitment control strategy are assessed. This bio-inspired control strategy allows muscle bundles to operate the fewest miniature PAMs necessary to achieve a desired performance objective, improving the muscle bundle's operating efficiency over larger ranges of force generation and displacement. The study also highlights the need for improved PAM fabrication techniques to facilitate the production of identical miniature PAMs for inclusion in muscle bundles. PMID:27623216

  14. Thermal imaging through infrared fiber/waveguides bundles

    NASA Astrophysics Data System (ADS)

    Gannot, Israel; Goren, Alon; Rave, Eran; Katzir, Abraham; Gopal, Veena; Revezin, Gregory; Harrington, James A.

    2004-06-01

    Trans-endoscopic Infrared Imaging (IRI) relates the possibility to conduct IRI diagnosis of internal body surfaces under minimal invasiveness. It may also be utilized to control and to optimize the thermal interactions and the potential side effects during Minimally Invasive Surgeries (MIS). However, transferring the thermal images transendoscopically requires the usage of IR imaging bundles, which are neither yet mature nor commercially available. In our setup we have used two basic types of recently-developed imaging bundles: Ag/AgI-coated Hollow Glass Waveguide (HGW) bundles and Silver Halide (AgClBr) core-clad fiber bundles. The optical setup system was consisted of IR optics (e.g. ZnSe lenses, reflective objectives) and a thermal IR camera. We have succeeded to image objects through the bundles, such as various shapes of electrically heated wires, ex-vivo biological phantoms (samples of porcine stomach) and in-vivo phantom models (mice) irradiated by CO2 laser. Measurements were conducted for both - static and dynamic object states.

  15. OEDGE Modeling of Divertor Fueling at DIII-D

    NASA Astrophysics Data System (ADS)

    Bray, B. D.; Leonard, A. W.; Elder, J. D.; Stangeby, P. C.

    2015-11-01

    Onion-skin-modeling (OSM) is used to assess the affect of divertor closure on pedestal fueling sources. The OSM includes information from a wide range of diagnostic measurements at DIII-D to constrain the model background plasma for better simulation of neutrals and impurity ions and spectroscopy to compare to the results of the simulation. DIII-D has open lower divertor and closed upper divertor configurations which can be run with similar discharges. Progress toward modeling the pedestal fueling in low density plasmas for these cases will be presented as well as initial comparisons of recent lower single null discharges with the outer leg on the divertor shelf (fully open) and divertor floor (partially open). Work supported by the US DOE under DE-FC02-04ER54698 and DE-AC52-07NA27344.

  16. Pressurized water reactor fuel crud and corrosion modeling

    NASA Astrophysics Data System (ADS)

    Deshon, Jeff; Hussey, Dennis; Kendrick, Brian; McGurk, John; Secker, Jeff; Short, Michael

    2011-08-01

    Pressurized water reactors circulate high-temperature water that slowly corrodes Inconel and stainless steel system surfaces, and the nickel/iron based corrosion products deposit in regions of the fuel where sub-cooled nucleate boiling occurs. The deposited corrosion products, called `crud', can have an adverse impact on fuel performance. Boron can concentrate within the crud in the boiling regions of the fuel leading to a phenomenon known as axial offset anomaly (AOA). In rare cases, fuel clad integrity can be compromised because of crud-induced localized corrosion (CILC) of the zirconium-based alloy. Westinghouse and the Electric Power Research Institute have committed to understanding the crud transport process and develop a risk assessment software tool called boron-induced offset anomaly (BOA) to avoid AOA and CILC. This paper reviews the history of the BOA model development and new efforts to develop a micro-scale model called MAMBA for use in the Consortium for Advanced Light Water Reactor Simulation (CASL) program.

  17. Life cycle models of conventional and alternative-fueled automobiles

    NASA Astrophysics Data System (ADS)

    Maclean, Heather Louise

    This thesis reports life cycle inventories of internal combustion engine automobiles with feasible near term fuel/engine combinations. These combinations include unleaded gasoline, California Phase 2 Reformulated Gasoline, alcohol and gasoline blends (85 percent methanol or ethanol combined with 15 percent gasoline), and compressed natural gas in spark ignition direct and indirect injection engines. Additionally, I consider neat methanol and neat ethanol in spark ignition direct injection engines and diesel fuel in compression ignition direct and indirect injection engines. I investigate the potential of the above options to have a lower environmental impact than conventional gasoline-fueled automobiles, while still retaining comparable pricing and consumer benefits. More broadly, the objective is to assess whether the use of any of the alternative systems will help to lead to the goal of a more sustainable personal transportation system. The principal tool is the Economic Input-Output Life Cycle Analysis model which includes inventories of economic data, environmental discharges, and resource use. I develop a life cycle assessment framework to assemble the array of data generated by the model into three aggregate assessment parameters; economics, externalities, and vehicle attributes. The first step is to develop a set of 'comparable cars' with the alternative fuel/engine combinations, based on characteristics of a conventional 1998 gasoline-fueled Ford Taurus sedan, the baseline vehicle for the analyses. I calculate the assessment parameters assuming that these comparable cars can attain the potential thermal efficiencies estimated by experts for each fuel/engine combination. To a first approximation, there are no significant differences in the assessment parameters for the vehicle manufacture, service, fixed costs, and the end-of-life for any of the options. However, there are differences in the vehicle operation life cycle components and the state of technology

  18. First principles Candu fuel model and validation experimentation

    SciTech Connect

    Corcoran, E.C.; Kaye, M.H.; Lewis, B.J.; Thompson, W.T.; Akbari, F.; Higgs, J.D.; Verrall, R.A.; He, Z.; Mouris, J.F.

    2007-07-01

    Many modeling projects on nuclear fuel rest on a quantitative understanding of the co-existing phases at various stages of burnup. Since the various fission products have considerably different abilities to chemically associate with oxygen, and the O/M ratio is slowly changing as well, the chemical potential (generally expressed as an equivalent oxygen partial pressure) is a function of burnup. Concurrently, well-recognized small fractions of new phases such as inert gas, noble metals, zirconates, etc. also develop. To further complicate matters, the dominant UO{sub 2} fuel phase may be non-stoichiometric and most of minor phases have a variable composition dependent on temperature and possible contact with the coolant in the event of a sheathing defect. A Thermodynamic Fuel Model to predict the phases in partially burned Candu nuclear fuel containing many major fission products has been under development. This model is capable of handling non-stoichiometry in the UO{sub 2} fluorite phase, dilute solution behaviour of significant solute oxides, noble metal inclusions, a second metal solid solution U(Pd-Rh-Ru)3, zirconate and uranate solutions as well as other minor solid phases, and volatile gaseous species. The treatment is a melding of several thermodynamic modeling projects dealing with isolated aspects of this important multi-component system. To simplify the computations, the number of elements has been limited to twenty major representative fission products known to appear in spent fuel. The proportion of elements must first be generated using SCALES-5. Oxygen is inferred from the concentration of the other elements. Provision to study the disposition of very minor fission products is included within the general treatment but these are introduced only on an as needed basis for a particular purpose. The building blocks of the model are the standard Gibbs energies of formation of the many possible compounds expressed as a function of temperature. To these data

  19. Short-Term Energy Outlook Model Documentation: Electricity Generation and Fuel Consumption Models

    EIA Publications

    2014-01-01

    The electricity generation and fuel consumption models of the Short-Term Energy Outlook (STEO) model provide forecasts of electricity generation from various types of energy sources and forecasts of the quantities of fossil fuels consumed for power generation. The structure of the electricity industry and the behavior of power generators varies between different areas of the United States. In order to capture these differences, the STEO electricity supply and fuel consumption models are designed to provide forecasts for the four primary Census regions.

  20. Magnetic Propulsion of Microswimmers with DNA-Based Flagellar Bundles

    PubMed Central

    2016-01-01

    We show that DNA-based self-assembly can serve as a general and flexible tool to construct artificial flagella of several micrometers in length and only tens of nanometers in diameter. By attaching the DNA flagella to biocompatible magnetic microparticles, we provide a proof of concept demonstration of hybrid structures that, when rotated in an external magnetic field, propel by means of a flagellar bundle, similar to self-propelling peritrichous bacteria. Our theoretical analysis predicts that flagellar bundles that possess a length-dependent bending stiffness should exhibit a superior swimming speed compared to swimmers with a single appendage. The DNA self-assembly method permits the realization of these improved flagellar bundles in good agreement with our quantitative model. DNA flagella with well-controlled shape could fundamentally increase the functionality of fully biocompatible nanorobots and extend the scope and complexity of active materials. PMID:26821214

  1. Overview of rod-bundle thermal-hydraulic analysis

    SciTech Connect

    Sha, W.T.

    1980-11-01

    Three methods used in rod-bundle thermal-hydraulic analysis are summarized. These methods are: (1) subchannel analysis, and its inherent assumptions are clearly stated; (2) porous medium formulation with volume porosity, surface permeability, distributed resistance and distributed heat source (sink) - the concept of surface permeability is new in porous medium formulation, and greatly facilitates modeling anisotropic effects; and (3) benchmark rod-bundle thermal-hydraulic analysis using a boundary-fitted coordinate system, and it represents the most rigorous method to date. For laminar flow, this method gives solutions without any assumptions and it requires information on rod bundle geometry and thermal physical properties of the fluid. Basic limitations and merits of each method are discussed in detail. 19 refs., 6 figs., 1 tab.

  2. Magnetic Propulsion of Microswimmers with DNA-Based Flagellar Bundles.

    PubMed

    Maier, Alexander M; Weig, Cornelius; Oswald, Peter; Frey, Erwin; Fischer, Peer; Liedl, Tim

    2016-02-10

    We show that DNA-based self-assembly can serve as a general and flexible tool to construct artificial flagella of several micrometers in length and only tens of nanometers in diameter. By attaching the DNA flagella to biocompatible magnetic microparticles, we provide a proof of concept demonstration of hybrid structures that, when rotated in an external magnetic field, propel by means of a flagellar bundle, similar to self-propelling peritrichous bacteria. Our theoretical analysis predicts that flagellar bundles that possess a length-dependent bending stiffness should exhibit a superior swimming speed compared to swimmers with a single appendage. The DNA self-assembly method permits the realization of these improved flagellar bundles in good agreement with our quantitative model. DNA flagella with well-controlled shape could fundamentally increase the functionality of fully biocompatible nanorobots and extend the scope and complexity of active materials. PMID:26821214

  3. Distribution of heating in an LVRF bundle due to dysprosium in the central element

    SciTech Connect

    Tsang, K.; Buijs, A.

    2006-07-01

    The computer code MCNP was used to establish the effect of adding dysprosium to the central pin of the proposed BRUCE-B CANFLEX{sup R} Low-Void-Reactivity Fuel (LVRF) on the heat load of the central pin and the heat balance inside the fuel bundle. The Dy generates heat through radiative capture of thermal neutrons, as well as through beta decay of {sup 165}Dy to {sup 165}Ho. We conclude that for fresh fuel, the presence of Dy contributes 26% of the overall heat to the central pin, and 0.5% to the whole fuel bundle. These percentages decrease to 11% and 0.5% at the end-of-life burnup condition. A second, operational quantity is the HPFP ratio (heating-power to fission-power ratio). This ratio is 1.63 for fresh fuel and decreases to 1.19 for fuel at the end-of-life burnup condition. (authors)

  4. Medicare bundled payment: what is it worth to you?

    PubMed

    Harris, John; Elizondo, Idette; Isdaner, Andrew

    2014-01-01

    Hospital leaders who are contemplating participation in a bundled payment initiative should first assess current circumstances to determine the extent of the opportunity for their organizations. Those who have decided conditions are favorable for such an initiative should next perform a financial assessment that includes modeling direct contract results, assessing the financial impact of reduced utilization and of improved clinical care and operations, and evaluating the net financial impact. Hospital executives also should understand the competitive and strategic benefits that bundled payment offers. PMID:24511781

  5. Phase Transition to Bundles of Flexible Supramolecular Polymers

    NASA Astrophysics Data System (ADS)

    Huisman, B. A. H.; Bolhuis, P. G.; Fasolino, A.

    2008-05-01

    We report Monte Carlo simulations of the self-assembly of supramolecular polymers based on a model of patchy particles. We find a first-order phase transition, characterized by hysteresis and nucleation, toward a solid bundle of polymers, of length much greater than the average gas phase length. We argue that the bundling transition is the supramolecular equivalent of the sublimation transition, which results from a weak chain-chain interaction. We provide a qualitative equation of state that gives physical insight beyond the specific values of the parameters used in our simulations.

  6. Material distribution in light water reactor-type bundles tested under severe accident conditions

    SciTech Connect

    Noack, V.; Hagen, S.J.L.; Hofmann, P.; Schanz, G.; Sepold, L.K.

    1997-02-01

    Severe fuel damage experiments simulating small-break loss-of-coolant accidents have been carried out in the CORA out-of-pile test facility at Forschungszentrum Karlsruhe. Rod bundles with electrically heated fuel rod simulators containing annular UO{sub 2} pellets, UO{sub 2} full pellet rods, and absorber rods of two kinds (Ag/In/Cd to represent pressurized water reactor conditions and B{sub 4}C to represent boiling water reactor and VVER-1000 fuel elements) were subjected to temperature transients up to 2,300 K. A special method was applied to determine the axial mass distribution of bundle materials. The low-temperature melt formation by various interactions between zirconium and components of absorber and spacer grids strongly influences the bundle degradation and material relocation. Absorber materials can separate from the fuel by a noncoherent relocation of the materials at different temperatures. The distributions of solidified materials in the different test bundles show a clear dependence on the axial temperature profile. Coolant channel blockages are observed mainly at the lower end of the bundle, i.e., near the lowest elevation at which an oxidation excursion resulting from the highly exothermic zirconium-steam reaction had been experienced. This elevation corresponds with a steep axial temperature gradient in the maximum temperature attained. Oxide layers on Zircaloy result in reduced melt formation.

  7. Induction Heating Model of Cermet Fuel Element Environmental Test (CFEET)

    NASA Technical Reports Server (NTRS)

    Gomez, Carlos F.; Bradley, D. E.; Cavender, D. P.; Mireles, O. R.; Hickman, R. R.; Trent, D.; Stewart, E.

    2013-01-01

    Deep space missions with large payloads require high specific impulse and relatively high thrust to achieve mission goals in reasonable time frames. Nuclear Thermal Rockets (NTR) are capable of producing a high specific impulse by employing heat produced by a fission reactor to heat and therefore accelerate hydrogen through a rocket nozzle providing thrust. Fuel element temperatures are very high (up to 3000 K) and hydrogen is highly reactive with most materials at high temperatures. Data covering the effects of high-temperature hydrogen exposure on fuel elements are limited. The primary concern is the mechanical failure of fuel elements due to large thermal gradients; therefore, high-melting-point ceramics-metallic matrix composites (cermets) are one of the fuels under consideration as part of the Nuclear Cryogenic Propulsion Stage (NCPS) Advance Exploration System (AES) technology project at the Marshall Space Flight Center. The purpose of testing and analytical modeling is to determine their ability to survive and maintain thermal performance in a prototypical NTR reactor environment of exposure to hydrogen at very high temperatures and obtain data to assess the properties of the non-nuclear support materials. The fission process and the resulting heating performance are well known and do not require that active fissile material to be integrated in this testing. A small-scale test bed; Compact Fuel Element Environmental Tester (CFEET), designed to heat fuel element samples via induction heating and expose samples to hydrogen is being developed at MSFC to assist in optimal material and manufacturing process selection without utilizing fissile material. This paper details the analytical approach to help design and optimize the test bed using COMSOL Multiphysics for predicting thermal gradients induced by electromagnetic heating (Induction heating) and Thermal Desktop for radiation calculations.

  8. TRISO-Fuel Element Performance Modeling for the Hybrid LIFE Engine with Pu Fuel Blanket

    SciTech Connect

    DeMange, P; Marian, J; Caro, M; Caro, A

    2010-02-18

    A TRISO-coated fuel thermo-mechanical performance study is performed for the hybrid LIFE engine to test the viability of TRISO particles to achieve ultra-high burnup of a weapons-grade Pu blanket. Our methodology includes full elastic anisotropy, time and temperature varying material properties for all TRISO layers, and a procedure to remap the elastic solutions in order to achieve fast fluences up to 30 x 10{sup 25} n {center_dot} m{sup -2} (E > 0.18 MeV). In order to model fast fluences in the range of {approx} 7 {approx} 30 x 10{sup 25} n {center_dot} m{sup -2}, for which no data exist, careful scalings and extrapolations of the known TRISO material properties are carried out under a number of potential scenarios. A number of findings can be extracted from our study. First, failure of the internal pyrolytic carbon (PyC) layer occurs within the first two months of operation. Then, the particles behave as BISO-coated particles, with the internal pressure being withstood directly by the SiC layer. Later, after 1.6 years, the remaining PyC crumbles due to void swelling and the fuel particle becomes a single-SiC-layer particle. Unrestrained by the PyC layers, and at the temperatures and fluences in the LIFE engine, the SiC layer maintains reasonably-low tensile stresses until the end-of-life. Second, the PyC creep constant, K, has a striking influence on the fuel performance of TRISO-coated particles, whose stresses scale almost inversely proportional to K. Obtaining more reliable measurements, especially at higher fluences, is an imperative for the fidelity of our models. Finally, varying the geometry of the TRISO-coated fuel particles results in little differences in the scope of fuel performance. The mechanical integrity of 2-cm graphite pebbles that act as fuel matrix has also been studied and it is concluded that they can reliable serve the entire LIFE burnup cycle without failure.

  9. Transport Studies and Modeling in PEM Fuel Cells

    SciTech Connect

    Mittelsteadt, Cortney K.; Xu, Hui; Brawn, Shelly

    2014-07-30

    This project’s aim was to develop fuel cell components (i.e. membranes, gas-diffusion media (GDM), bipolar plates and flow fields) that possess specific properties (i.e. water transport and conductivity). A computational fluid dynamics model was developed to elucidate the effect of certain parameters on these specific properties. Ultimately, the model will be used to determine sensitivity of fuel cell performance to component properties to determine limiting components and to guide research. We have successfully reached our objectives and achieved most of the milestones of this project. We have designed and synthesized a variety of hydrocarbon block polymer membranes with lower equivalent weight, structure, chemistry, phase separation and process conditions. These membranes provide a broad selection with optimized water transport properties. We have also designed and constructed a variety of devices that are capable of accurately measuring the water transport properties (water uptake, water diffusivity and electro-osmatic drag) of these membranes. These transport properties are correlated to the membranes’ structures derived from X-ray and microscopy techniques to determine the structure-property relationship. We successfully integrated hydrocarbon membrane MEAs with a current distribution board (CBD) to study the impact of hydrocarbon membrane on water transport in fuel cells. We have designed and fabricated various GDM with varying substrate, diffusivity and micro-porous layers (MPL) and characterized their pore structure, tortuosity and hydrophobicity. We have derived a universal chart (MacMullin number as function of wet proofing and porosity) that can be used to characterize various GDM. The abovementioned GDMs have been evaluated in operating fuel cells; their performance is correlated to various pore structure, tortuosity and hydrophobicity of the GDM. Unfortunately, determining a universal relationship between the MacMullin number and these properties

  10. Development of Detailed Kinetic Models for Fischer-Tropsch Fuels

    SciTech Connect

    Westbrook, C K; Pitz, W J; Carstensen, H; Dean, A M

    2008-10-28

    Fischer-Tropsch (FT) fuels can be synthesized from a syngas stream generated by the gasification of biomass. As such they have the potential to be a renewable hydrocarbon fuel with many desirable properties. However, both the chemical and physical properties are somewhat different from the petroleum-based hydrocarbons that they might replace, and it is important to account for such differences when considering using them as replacements for conventional fuels in devices such as diesel engines and gas turbines. FT fuels generally contain iso-alkanes with one or two substituted methyl groups to meet the pour-point specifications. Although models have been developed for smaller branched alkanes such as isooctane, additional efforts are required to properly capture the kinetics of the larger branched alkanes. Recently, Westbrook et al. developed a chemical kinetic model that can be used to represent the entire series of n-alkanes from C{sub 1} to C{sub 16} (Figure 1). In the current work, the model is extended to treat 2,2,4,4,6,8,8-heptamethylnonane (HMN), a large iso-alkane. The same reaction rate rules used in the iso-octane mechanism were incorporated in the HMN mechanism. Both high and low temperature chemistry was included so that the chemical kinetic model would be applicable to advanced internal combustion engines using low temperature combustion strategies. The chemical kinetic model consists of 1114 species and 4468 reactions. Concurrently with this effort, work is underway to improve the details of specific reaction classes in the mechanism, guided by high-level electronic structure calculations. Attention is focused upon development of accurate rate rules for abstraction of the tertiary hydrogens present in branched alkanes and properly accounting for the pressure dependence of the ?-scission, isomerization, and R + O{sub 2} reactions.

  11. Confinement-dependent friction in peptide bundles.

    PubMed

    Erbaş, Aykut; Netz, Roland R

    2013-03-19

    Friction within globular proteins or between adhering macromolecules crucially determines the kinetics of protein folding, the formation, and the relaxation of self-assembled molecular systems. One fundamental question is how these friction effects depend on the local environment and in particular on the presence of water. In this model study, we use fully atomistic MD simulations with explicit water to obtain friction forces as a single polyglycine peptide chain is pulled out of a bundle of k adhering parallel polyglycine peptide chains. The whole system is periodically replicated along the peptide axes, so a stationary state at prescribed mean sliding velocity V is achieved. The aggregation number is varied between k = 2 (two peptide chains adhering to each other with plenty of water present at the adhesion sites) and k = 7 (one peptide chain pulled out from a close-packed cylindrical array of six neighboring peptide chains with no water inside the bundle). The friction coefficient per hydrogen bond, extrapolated to the viscous limit of vanishing pulling velocity V → 0, exhibits an increase by five orders of magnitude when going from k = 2 to k = 7. This dramatic confinement-induced friction enhancement we argue to be due to a combination of water depletion and increased hydrogen-bond cooperativity. PMID:23528088

  12. A CFD Approach to Modeling Spacecraft Fuel Slosh

    NASA Technical Reports Server (NTRS)

    Marsell, Brandon; Gangadharan, Sathya; Chatman, Yadira; Sudermann, James; Schlee, Keith; Ristow, James E.

    2009-01-01

    Energy dissipation and resonant coupling from sloshing fuel in spacecraft fuel tanks is a problem that occurs in the design of many spacecraft. In the case of a spin stabilized spacecraft, this energy dissipation can cause a growth in the spacecrafts' nutation (wobble) that may lead to disastrous consequences for the mission. Even in non-spinning spacecraft, coupling between the spacecraft or upper stage flight control system and an unanticipated slosh resonance can result in catastrophe. By using a Computational Fluid Dynamics (CFD) solver such as Fluent, a model for this fuel slosh can be created. The accuracy of the model must be tested by comparing its results to an experimental test case. Such a model will allow for the variation of many different parameters such as fluid viscosity and gravitational field, yielding a deeper understanding of spacecraft slosh dynamics. In order to gain a better understanding of the dynamics behind sloshing fluids, the Launch Services Program (LSP) at the NASA Kennedy Space Center (KSC) is interested in finding ways to better model this behavior. Thanks to past research, a state-of-the-art fuel slosh research facility was designed and fabricated at Embry Riddle Aeronautical University (ERAU). This test facility has produced interesting results and a fairly reliable parameter estimation process to predict the necessary values that accurately characterize a mechanical pendulum analog model. The current study at ERAU uses a different approach to model the free surface sloshing of liquid in a spherical tank using Computational Fluid Dynamics (CFD) methods. Using a software package called Fluent, a model was created to simulate the sloshing motion of the propellant. This finite volume program uses a technique called the Volume of Fluid (VOF) method to model the interaction between two fluids [4]. For the case of free surface slosh, the two fluids are the propellant and air. As the fuel sloshes around in the tank, it naturally

  13. Development of Standard Fuel Models in Boreal Forests of Northeast China through Calibration and Validation

    PubMed Central

    Cai, Longyan; He, Hong S.; Wu, Zhiwei; Lewis, Benard L.; Liang, Yu

    2014-01-01

    Understanding the fire prediction capabilities of fuel models is vital to forest fire management. Various fuel models have been developed in the Great Xing'an Mountains in Northeast China. However, the performances of these fuel models have not been tested for historical occurrences of wildfires. Consequently, the applicability of these models requires further investigation. Thus, this paper aims to develop standard fuel models. Seven vegetation types were combined into three fuel models according to potential fire behaviors which were clustered using Euclidean distance algorithms. Fuel model parameter sensitivity was analyzed by the Morris screening method. Results showed that the fuel model parameters 1-hour time-lag loading, dead heat content, live heat content, 1-hour time-lag SAV(Surface Area-to-Volume), live shrub SAV, and fuel bed depth have high sensitivity. Two main sensitive fuel parameters: 1-hour time-lag loading and fuel bed depth, were determined as adjustment parameters because of their high spatio-temporal variability. The FARSITE model was then used to test the fire prediction capabilities of the combined fuel models (uncalibrated fuel models). FARSITE was shown to yield an unrealistic prediction of the historical fire. However, the calibrated fuel models significantly improved the capabilities of the fuel models to predict the actual fire with an accuracy of 89%. Validation results also showed that the model can estimate the actual fires with an accuracy exceeding 56% by using the calibrated fuel models. Therefore, these fuel models can be efficiently used to calculate fire behaviors, which can be helpful in forest fire management. PMID:24714164

  14. Development of standard fuel models in boreal forests of Northeast China through calibration and validation.

    PubMed

    Cai, Longyan; He, Hong S; Wu, Zhiwei; Lewis, Benard L; Liang, Yu

    2014-01-01

    Understanding the fire prediction capabilities of fuel models is vital to forest fire management. Various fuel models have been developed in the Great Xing'an Mountains in Northeast China. However, the performances of these fuel models have not been tested for historical occurrences of wildfires. Consequently, the applicability of these models requires further investigation. Thus, this paper aims to develop standard fuel models. Seven vegetation types were combined into three fuel models according to potential fire behaviors which were clustered using Euclidean distance algorithms. Fuel model parameter sensitivity was analyzed by the Morris screening method. Results showed that the fuel model parameters 1-hour time-lag loading, dead heat content, live heat content, 1-hour time-lag SAV(Surface Area-to-Volume), live shrub SAV, and fuel bed depth have high sensitivity. Two main sensitive fuel parameters: 1-hour time-lag loading and fuel bed depth, were determined as adjustment parameters because of their high spatio-temporal variability. The FARSITE model was then used to test the fire prediction capabilities of the combined fuel models (uncalibrated fuel models). FARSITE was shown to yield an unrealistic prediction of the historical fire. However, the calibrated fuel models significantly improved the capabilities of the fuel models to predict the actual fire with an accuracy of 89%. Validation results also showed that the model can estimate the actual fires with an accuracy exceeding 56% by using the calibrated fuel models. Therefore, these fuel models can be efficiently used to calculate fire behaviors, which can be helpful in forest fire management. PMID:24714164

  15. Modeling of multicomponent-fuel drop-laden mixing layers having a multitude of species

    NASA Technical Reports Server (NTRS)

    Clercq, P. C. Le; Bellan, J.

    2004-01-01

    A formulation representing multicomponent-fuel (MC-fuel composition as a Probability Distribution Function (PDF) depending on the molar weight is used to construct a model of a large number of MC-fuel drops evaporating in a gas flow, so as to assess the extent of fuel specificity on the vapor composition.

  16. Meta-analysis of In vitro and Intra-operative Laxities after Single Bundle and Double Bundle Anterior Cruciate Ligament Reconstructions

    PubMed Central

    Gadikota, Hemanth R; Seon, Jong Keun; Chen, Chih-Hui; Wu, Jia-Lin; Gill, Thomas J; Li, Guoan

    2010-01-01

    Purpose The purpose of this study was to objectively evaluate if the double bundle ACL reconstruction can better restore the normal translational and rotational laxities than the conventional single bundle ACL reconstruction among the reported biomechanical studies. Methods A systematic literature search was conducted to identify in vitro and in vivo (intra-operative) biomechanical studies that compared the laxities (anterior or anteroposterior or rotational) between single and double bundle ACL reconstructions. Due to a large variability among the loading conditions and testing methods used to determine the rotational laxities between the studies, a meta-analysis of rotational laxities was not feasible. Results Seven in vitro and three in vivo studies were included in this analysis based on the predefined inclusion criteria. The overall mean difference calculated by the random effects model in the anteroposterior laxity between the single bundle and double bundle ACL reconstruction techniques at 0°, 30°, 60° and 90° of flexion were 0.99 mm, 0.38 mm, 0.34 mm, and 0.07 mm respectively. No statistical significant difference was noted between the two treatments at all flexion angles. Among the nine studies that compared the rotational laxity of single bundle and double bundle ACL reconstructions, four studies reported that double bundle reconstruction can provide a better rotational control compared to the single bundle reconstruction. The other five studies could not identify any significant difference between the two reconstructions in terms of the rotational laxity. Conclusions Both single and double bundle treatment options for anterior cruciate ligament injury result in similar anteroposterior knee joint laxity at time-zero. No 1 conclusive evidence on the superiority of one reconstruction technique over the other in terms of rotation laxity can be obtained due to several variations in the experimental protocol and the parameters used to measure the

  17. 40 CFR 600.207-93 - Calculation of fuel economy values for a model type.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... a model type. 600.207-93 Section 600.207-93 Protection of Environment ENVIRONMENTAL PROTECTION... Economy Regulations for 1977 and Later Model Year Automobiles-Procedures for Calculating Fuel Economy Values § 600.207-93 Calculation of fuel economy values for a model type. (a) Fuel economy values for...

  18. Development of customized fire behavior fuel models for boreal forests of northeastern China.

    PubMed

    Wu, Zhi Wei; He, Hong Shi; Chang, Yu; Liu, Zhi Hua; Chen, Hong Wei

    2011-12-01

    Knowledge of forest fuels and their potential fire behavior across a landscape is essential in fire management. Four customized fire behavior fuel models that differed significantly in fuels characteristics and environmental conditions were identified using hierarchical cluster analysis based on fuels data collected across a boreal forest landscape in northeastern China. Fuel model I represented the dense and heavily branched Pinus pumila shrubland which has significant fine live woody fuels. These forests occur mainly at higher mountain elevations. Fuel model II is applicable to forests dominated by Betula platyphylla and Populus davidiana occurring in native forests on hill slopes or at low mountain elevations. This fuel model was differentiated from other fuel models by higher herbaceous cover and lower fine live woody loading. The primary coniferous forests dominated by Larix gmelini and Pinus sylvestris L. var. mongolica were classified as fuel model III and fuel model IV. Those fuel models differed from one another in average cover and height of understory shrub and herbaceous layers as well as in aspect. The potential fire behavior for each fuel model was simulated with the BehavePlus5.0 fire behavior prediction system. The simulation results indicated that the Pinus pumila shrubland fuels had the most severe fire behavior for the 97th percentile weather condition, and had the least severe fire behavior under 90th percentile weather condition. Fuel model II presented the least severe fire potential across weather conditions. Fuel model IV resulted in greater fire severity than Fuel model III across the two weather scenarios that were examined. PMID:21691875

  19. Global analysis of bundle behavior in pressurized water reactor specific CORA experiments

    SciTech Connect

    Hering, W. ); Minato, Kazuo; Nagase, Fumihisa )

    1993-04-01

    At Kernforschungszentrum Karlsruhe, out-of-pile bundle experiments are performed in the CORA facility to investigate the behavior of light water reactor fuel elements during severe fuel damage accidents. To analyze the phenomena observed during the tests, such as claddin failure, oxidation, and deformation, as well as their influence on the post test bundle state, four pressurized water reactor specific tests are selected: CORA-2, CORA-3, CORA-5, and CORA-12. From each of these tests, a detailed global analysis using all the measured temperatures, pressures, and fluid compositions as well as videoscope information has been performed. To describe the post test bundle state quantitatively, axial profiles of the bundle cross-section area, the damage state of the rods, the average cladding oxidation, and the damage to the pellets are measured. The effects of CORA-specific components on the bundle melt progression and the measured axial profiles are identified and assessed. Most of the observations during the tests as well as the post test bundle state can be explained by the established common sequence of phenomena. For a better understanding of the melt progression, some physical phenomena, such as the energy release associated with the double-sided oxidation of the cladding, the melt release, or the melt relocation, must be analyzed in detail.

  20. Modeling, Simulation, and Parameter Estimation of Lateral Spacecraft Fuel Slosh

    NASA Technical Reports Server (NTRS)

    Chatman, Yadira; Gangadharan, Sathya; Marsell, Brandon; Schlee, Keith; Sudermann, James; Walker, Charles; Ristow, James

    2008-01-01

    Predicting the effect of fuel slosh on a spacecraft and/or launch vehicle attitude control system is a very important and a challenging task. Whether the spacecraft is under spinning or lateral moving conditions, the dynamic effect of the fuel slosh will help determine whether the spacecraft will remain on its chosen trajectory. There are three categories of slosh that can be caused by launch vehicle and/or spacecraft maneuvers when the fuel is in the presence of an acceleration field. These include bulk fluid motion, subsurface wave motion, and free surface slosh. Each of these slosh types have a periodic component that is defined by either a spinning or lateral motion. For spinning spacecraft, all three types of slosh can play a major role in determining stability. Bulk fluid motion and free surface slosh can affect the lateral slosh characteristics. For either condition, the possibility for an unpredicted coupled resonance between the spacecraft and its on board fuel can have mission threatening affects. This on-going research effort aims at improving the accuracy and efficiency of modeling techniques used to predict these types of lateral fluid motions. In particular, efforts will focus on analyzing the effects of viscoelastic diaphragms on slosh dynamics.

  1. Development of an Integrated Performance Model for TRISO-Coated Gas Reactor Particle Fuel

    SciTech Connect

    Petti, David Andrew; Miller, Gregory Kent; Martin, David George; Maki, John Thomas

    2005-05-01

    The success of gas reactors depends upon the safety and quality of the coated particle fuel. The understanding and evaluation of this fuel requires development of an integrated mechanistic fuel performance model that fully describes the mechanical and physico-chemical behavior of the fuel particle under irradiation. Such a model, called PARFUME (PARticle Fuel ModEl), is being developed at the Idaho National Engineering and Environmental Laboratory. PARFUME is based on multi-dimensional finite element modeling of TRISO-coated gas reactor fuel. The goal is to represent all potential failure mechanisms and to incorporate the statistical nature of the fuel. The model is currently focused on carbide, oxide nd oxycarbide uranium fuel kernels, while the coating layers are the classical IPyC/SiC/OPyC. This paper reviews the current status of the mechanical aspects of the model and presents results of calculations for irradiations from the New Production Modular High Temperature Gas Reactor program.

  2. Parallel transport on principal bundles over stacks

    NASA Astrophysics Data System (ADS)

    Collier, Brian; Lerman, Eugene; Wolbert, Seth

    2016-09-01

    In this paper we introduce a notion of parallel transport for principal bundles with connections over differentiable stacks. We show that principal bundles with connections over stacks can be recovered from their parallel transport thereby extending the results of Barrett, Caetano and Picken, and Schreiber and Waldorf from manifolds to stacks. In the process of proving our main result we simplify Schreiber and Waldorf's original definition of a transport functor for principal bundles with connections over manifolds and provide a more direct proof of the correspondence between principal bundles with connections and transport functors.

  3. Modeling and control of fuel cell based distributed generation systems

    NASA Astrophysics Data System (ADS)

    Jung, Jin Woo

    This dissertation presents circuit models and control algorithms of fuel cell based distributed generation systems (DGS) for two DGS topologies. In the first topology, each DGS unit utilizes a battery in parallel to the fuel cell in a standalone AC power plant and a grid-interconnection. In the second topology, a Z-source converter, which employs both the L and C passive components and shoot-through zero vectors instead of the conventional DC/DC boost power converter in order to step up the DC-link voltage, is adopted for a standalone AC power supply. In Topology 1, two applications are studied: a standalone power generation (Single DGS Unit and Two DGS Units) and a grid-interconnection. First, dynamic model of the fuel cell is given based on electrochemical process. Second, two full-bridge DC to DC converters are adopted and their controllers are designed: an unidirectional full-bridge DC to DC boost converter for the fuel cell and a bidirectional full-bridge DC to DC buck/boost converter for the battery. Third, for a three-phase DC to AC inverter without or with a Delta/Y transformer, a discrete-time state space circuit model is given and two discrete-time feedback controllers are designed: voltage controller in the outer loop and current controller in the inner loop. And last, for load sharing of two DGS units and power flow control of two DGS units or the DGS connected to the grid, real and reactive power controllers are proposed. Particularly, for the grid-connected DGS application, a synchronization issue between an islanding mode and a paralleling mode to the grid is investigated, and two case studies are performed. To demonstrate the proposed circuit models and control strategies, simulation test-beds using Matlab/Simulink are constructed for each configuration of the fuel cell based DGS with a three-phase AC 120 V (L-N)/60 Hz/50 kVA and various simulation results are presented. In Topology 2, this dissertation presents system modeling, modified space

  4. System Modeling and Diagnostics for Liquefying-Fuel Hybrid Rockets

    NASA Technical Reports Server (NTRS)

    Poll, Scott; Iverson, David; Ou, Jeremy; Sanderfer, Dwight; Patterson-Hine, Ann

    2003-01-01

    A Hybrid Combustion Facility (HCF) was recently built at NASA Ames Research Center to study the combustion properties of a new fuel formulation that burns approximately three times faster than conventional hybrid fuels. Researchers at Ames working in the area of Integrated Vehicle Health Management recognized a good opportunity to apply IVHM techniques to a candidate technology for next generation launch systems. Five tools were selected to examine various IVHM techniques for the HCF. Three of the tools, TEAMS (Testability Engineering and Maintenance System), L2 (Livingstone2), and RODON, are model-based reasoning (or diagnostic) systems. Two other tools in this study, ICS (Interval Constraint Simulator) and IMS (Inductive Monitoring System) do not attempt to isolate the cause of the failure but may be used for fault detection. Models of varying scope and completeness were created, both qualitative and quantitative. In each of the models, the structure and behavior of the physical system are captured. In the qualitative models, the temporal aspects of the system behavior and the abstraction of sensor data are handled outside of the model and require the development of additional code. In the quantitative model, less extensive processing code is also necessary. Examples of fault diagnoses are given.

  5. A computational model for biofilm-based microbial fuel cells.

    PubMed

    Picioreanu, Cristian; Head, Ian M; Katuri, Krishna P; van Loosdrecht, Mark C M; Scott, Keith

    2007-07-01

    This study describes and evaluates a computational model for microbial fuel cells (MFCs) based on redox mediators with several populations of suspended and attached biofilm microorganisms, and multiple dissolved chemical species. A number of biological, chemical and electrochemical reactions can occur in the bulk liquid, in the biofilm and at the electrode surface. The evolution in time of important MFC parameters (current, charge, voltage and power production, consumption of substrates, suspended and attached biomass growth) has been simulated under several operational conditions. Model calculations evaluated the effect of different substrate utilization yields, standard potential of the redox mediator, ratio of suspended to biofilm cells, initial substrate and mediator concentrations, mediator diffusivity, mass transfer boundary layer, external load resistance, endogenous metabolism, repeated substrate additions and competition between different microbial groups in the biofilm. Two- and three-dimensional model simulations revealed the heterogeneous current distribution over the planar anode surface for younger and patchy biofilms, but becoming uniform in older and more homogeneous biofilms. For uniformly flat biofilms one-dimensional models should give sufficiently accurate descriptions of produced currents. Voltage- and power-current characteristics can also be calculated at different moments in time to evaluate the limiting regime in which the MFC operates. Finally, the model predictions are tested with previously reported experimental data obtained in a batch MFC with a Geobacter biofilm fed with acetate. The potential of the general modeling framework presented here is in the understanding and design of more complex cases of wastewater-fed microbial fuel cells. PMID:17537478

  6. Enabling Advanced Modeling and Simulations for Fuel-Flexible Combustors

    SciTech Connect

    Pitsch, Heinz

    2010-05-31

    The overall goal of the present project is to enable advanced modeling and simulations for the design and optimization of fuel-flexible turbine combustors. For this purpose we use a high fidelity, extensively-tested large-eddy simulation (LES) code and state-of-the-art models for premixed/partially-premixed turbulent combustion developed in the PI's group. In the frame of the present project, these techniques are applied, assessed, and improved for hydrogen enriched premixed and partially premixed gas-turbine combustion. Our innovative approaches include a completely consistent description of flame propagation; a coupled progress variable/level set method to resolve the detailed flame structure, and incorporation of thermal-diffusion (non-unity Lewis number) effects. In addition, we have developed a general flamelet-type transformation holding in the limits of both non-premixed and premixed burning. As a result, a model for partially premixed combustion has been derived. The coupled progress variable/level method and the general flamelet transformation were validated by LES of a lean-premixed low-swirl burner that has been studied experimentally at Lawrence Berkeley National Laboratory. The model is extended to include the non-unity Lewis number effects, which play a critical role in fuel-flexible combustor with high hydrogen content fuel. More specifically, a two-scalar model for lean hydrogen and hydrogen-enriched combustion is developed and validated against experimental and direct numerical simulation (DNS) data. Results are presented to emphasize the importance of non-unity Lewis number effects in the lean-premixed low-swirl burner of interest in this project. The proposed model gives improved results, which shows that the inclusion of the non-unity Lewis number effects is essential for accurate prediction of the lean-premixed low-swirl flame.

  7. Enabling Advanced Modeling and Simulations for Fuel-Flexible Combustors

    SciTech Connect

    Heinz Pitsch

    2010-05-31

    The overall goal of the present project is to enable advanced modeling and simulations for the design and optimization of fuel-flexible turbine combustors. For this purpose we use a high-fidelity, extensively-tested large-eddy simulation (LES) code and state-of-the-art models for premixed/partially-premixed turbulent combustion developed in the PI's group. In the frame of the present project, these techniques are applied, assessed, and improved for hydrogen enriched premixed and partially premixed gas-turbine combustion. Our innovative approaches include a completely consistent description of flame propagation, a coupled progress variable/level set method to resolve the detailed flame structure, and incorporation of thermal-diffusion (non-unity Lewis number) effects. In addition, we have developed a general flamelet-type transformation holding in the limits of both non-premixed and premixed burning. As a result, a model for partially premixed combustion has been derived. The coupled progress variable/level method and the general flamelet tranformation were validated by LES of a lean-premixed low-swirl burner that has been studied experimentally at Lawrence Berkeley National Laboratory. The model is extended to include the non-unity Lewis number effects, which play a critical role in fuel-flexible combustor with high hydrogen content fuel. More specifically, a two-scalar model for lean hydrogen and hydrogen-enriched combustion is developed and validated against experimental and direct numerical simulation (DNS) data. Results are presented to emphasize the importance of non-unity Lewis number effects in the lean-premixed low-swirl burner of interest in this project. The proposed model gives improved results, which shows that the inclusion of the non-unity Lewis number effects is essential for accurate prediction of the lean-premixed low-swirl flame.

  8. On a Pioneering Polymer Electrolyte Fuel Cell Model

    SciTech Connect

    Weber, Adam Z.; Meyers, Jeremy P.

    2010-07-07

    "Polymer Electrolyte Fuel Cell Model" is a seminal work that continues to form the basis for modern modeling efforts, especially models concerning the membrane and its behavior at the continuum level. The paper is complete with experimental data, modeling equations, model validation, and optimization scenarios. While the treatment of the underlying phenomena is limited to isothermal, single-phase conditions, and one-dimensional flow, it represents the key interactions within the membrane at the center of the PEFC. It focuses on analyzing the water balance within the cell and clearly demonstrates the complex interactions of water diffusion and electro-osmotic flux. Cell-level and system-level water balance are key to the development of efficient PEFCs going forward, particularly as researchers address the need to simplify humidification and recycle configurations while increasing the operating temperature of the stack to minimize radiator requirements.

  9. Chemical Looping Combustion System-Fuel Reactor Modeling

    SciTech Connect

    Gamwo, I.K.; Jung, J.; Anderson, R.R.; Soong, Y.

    2007-04-01

    Chemical looping combustion (CLC) is a process in which an oxygen carrier is used for fuel combustion instead of air or pure oxygen as shown in the figure below. The combustion is split into air and fuel reactors where the oxidation of the oxygen carrier and the reduction of the oxidized metal occur respectively. The CLC system provides a sequestration-ready CO2 stream with no additional energy required for separation. This major advantage places combustion looping at the leading edge of a possible shift in strict control of CO2 emissions from power plants. Research in this novel technology has been focused in three distinct areas: techno-economic evaluations, integration of the system into power plant concepts, and experimental development of oxygen carrier metals such as Fe, Ni, Mn, Cu, and Ca. Our recent thorough literature review shows that multiphase fluid dynamics modeling for CLC is not available in the open literature. Here, we have modified the MFIX code to model fluid dynamic in the fuel reactor. A computer generated movie of our simulation shows bubble behavior consistent with experimental observations.

  10. Multiphase CFD-based models for chemical looping combustion process: Fuel reactor modeling

    SciTech Connect

    Jung, Jonghwun; Gamwo, I.K.

    2008-04-21

    Chemical looping combustion (CLC) is a flameless two-step fuel combustion that produces a pure CO2 stream, ready for compression and sequestration. The process is composed of two interconnected fluidized bed reactors. The air reactor which is a conventional circulating fluidized bed and the fuel reactor which is a bubbling fluidized bed. The basic principle is to avoid the direct contact of air and fuel during the combustion by introducing a highly-reactive metal particle, referred to as oxygen carrier, to transport oxygen from the air to the fuel. In the process, the products from combustion are kept separated from the rest of the flue gases namely nitrogen and excess oxygen. This process eliminates the energy intensive step to separate the CO2 from nitrogen-rich flue gas that reduce the thermal efficiency. Fundamental knowledge of multiphase reactive fluid dynamic behavior of the gas–solid flow is essential for the optimization and operation of a chemical looping combustor. Our recent thorough literature review shows that multiphase CFD-based models have not been adapted to chemical looping combustion processes in the open literature. In this study, we have developed the reaction kinetics model of the fuel reactor and implemented the kinetic model into a multiphase hydrodynamic model, MFIX, developed earlier at the National Energy Technology Laboratory. Simulated fuel reactor flows revealed high weight fraction of unburned methane fuel in the flue gas along with CO2 and H2O. This behavior implies high fuel loss at the exit of the reactor and indicates the necessity to increase the residence time, say by decreasing the fuel flow rate, or to recirculate the unburned methane after condensing and removing CO2.

  11. Recent Advances in Detailed Chemical Kinetic Models for Large Hydrocarbon and Biodiesel Transportation Fuels

    SciTech Connect

    Westbrook, C K; Pitz, W J; Curran, H J; Herbinet, O; Mehl, M

    2009-03-30

    n-Hexadecane and 2,2,4,4,6,8,8-heptamethylnonane represent the primary reference fuels for diesel that are used to determine cetane number, a measure of the ignition property of diesel fuel. With the development of chemical kinetics models for these two primary reference fuels for diesel, a new capability is now available to model diesel fuel ignition. Also, we have developed chemical kinetic models for a whole series of large n-alkanes and a large iso-alkane to represent these chemical classes in fuel surrogates for conventional and future fuels. Methyl decanoate and methyl stearate are large methyl esters that are closely related to biodiesel fuels, and kinetic models for these molecules have also been developed. These chemical kinetic models are used to predict the effect of the fuel molecule size and structure on ignition characteristics under conditions found in internal combustion engines.

  12. Modeling Spacecraft Fuel Slosh at Embry-Riddle Aeronautical University

    NASA Technical Reports Server (NTRS)

    Schlee, Keith L.

    2007-01-01

    As a NASA-sponsored GSRP Fellow, I worked with other researchers and analysts at Embry-Riddle Aeronautical University and NASA's ELV Division to investigate the effect of spacecraft fuel slosh. NASA's research into the effects of fuel slosh includes modeling the response in full-sized tanks using equipment such as the Spinning Slosh Test Rig (SSTR), located at Southwest Research Institute (SwRI). NASA and SwRI engineers analyze data taken from SSTR runs and hand-derive equations of motion to identify model parameters and characterize the sloshing motion. With guidance from my faculty advisor, Dr. Sathya Gangadharan, and NASA flight controls analysts James Sudermann and Charles Walker, I set out to automate this parameter identification process by building a simple physical experimental setup to model free surface slosh in a spherical tank with a simple pendulum analog. This setup was then modeled using Simulink and SimMechanics. The Simulink Parameter Estimation Tool was then used to identify the model parameters.

  13. PWR FLECHT SEASET 21-rod bundle flow blockage task data and analysis report. NRC/EPRI/Westinghouse Report No. 11. Appendices K-P

    SciTech Connect

    Loftus, M.J.; Hochreiter, L.E.; Lee, N.; McGuire, M.F.; Wenzel, A.H.; Valkovic, M.M.

    1982-09-01

    This report presents data and limited analysis from the 21-Rod Bundle Flow Blockage Task of the Full-Length Emergency Cooling Heat Transfer Separate Effects and Systems Effects Test Program (FLECHT SEASET). The tests consisted of forced and gravity reflooding tests utilizing electrical heater rods with a cosine axial power profile to simulate PWR nuclear core fuel rod arrays. Steam cooling and hydraulic characteristics tests were also conducted. These tests were utilized to determine effects of various flow blockage configurations (shapes and distributions) on reflooding behavior, to aid in development/assessment of computational models in predicting reflooding behavior of flow blockage configurations, and to screen flow blockage configurations for future 163-rod flow blockage bundle tests.

  14. Model documentation Renewable Fuels Module of the National Energy Modeling System

    SciTech Connect

    1996-01-01

    This report documents the objectives, analaytical approach and design of the National Energy Modeling System (NEMS) Renewable Fuels Module (RFM) as it relates to the production of the 1996 Annual Energy Outlook forecasts. The report catalogues and describes modeling assumptions, computational methodologies, data inputs, and parameter estimation techniques. A number of offline analyses used in lieu of RFM modeling components are also described.

  15. Evaluation and assessment of reflooding models in RELAP5/Mod2.5 and RELAP5/Mod3 codes using Lehigh University and PSI-Neptun bundle experimental data

    SciTech Connect

    Sencar, M.; Aksan, N.

    1995-09-01

    An extensive analysis and assessment work on reflooding models of RELAP5/Mod2.5 and, RELAP5/Mod3/v5m5 and RELAP/Mod3/v7j have been performed. Experimental data from LehighUniversityv. and PSI-NEPTUN bundle reflooding experiments have been used for the assessment, since both of these tests cover a broad range of initial conditions. Within the range of these initial conditions, it was tried to identify their separate impacts on the calculated results. A total of six Lehigh University reflooding bundle tests and two PSI-NEPTUN tests with bounding initial conditions are selected for the analysis. Detailed nodalisation studies both for hydraulic and conduction heat transfer were done. On the basis of the results obtained from these cases, a base nodalisation scheme was established. All the other analysis work was performed by using this base nodalisation. RELAP5/Mod2.5 results do not change with renodalisation but RELAP5/Mod3 results are more sensitive to renodalisation. The results of RELAP5/Mod2.5 versions show very large deviations from the used experimental data. These results indicate that some of the phenomenology of the events occurring during the reflooding could not be identified. In the paper, detailed discussions on the main reasons of the deviations from the experimental data will be presented. Since, the results and findings of this study are meant to be a developmental aid, some recommendations have been drawn and some of these have already been implemented at PSI with promising results.

  16. Experimental study of heat transfer in a 7-element bundle cooled with supercritical Freon-12

    SciTech Connect

    Richards, G.; Shelegov, A. S.; Kirillov, P. L.; Pioro, I. L.; Harvel, G.

    2012-07-01

    Experimental data on Supercritical-Water (SCW) cooled bundles are very limited. Major problems with performing such experiments are technical difficulties in testing and experimental costs at high pressures, temperatures and heat fluxes. Also, there are only a few SCW experimental setups currently in the world capable of providing data. Supercritical Water-cooled nuclear Reactors (SCWRs), as one of the six concepts of Generation IV reactors, cannot be designed without such data. Therefore, a preliminary approach uses modeling fluids such as carbon dioxide and refrigerants instead of water is practical. In particularly, experiments in supercritical refrigerant-cooled bundles can be used. One of the SC modeling fluids typically used is Freon-12 (R-12) with the critical pressure of 4.136 MPa and the critical temperature of 111.97 deg. C. These conditions correspond to the critical pressure of 22.064 MPa and critical temperature of 373.95 deg. C in water. A set of experimental data obtained at the Inst. of Physics and Power Engineering (IPPE, Obninsk, Russia) in a vertically-oriented bundle cooled with supercritical R-12 was analyzed. This dataset consisted of 20 runs. The test section was 7-element bundle installed in a hexagonal flow channel with 3 grid spacers. Data was collected at pressures of approximately 4.65 MPa for several different combinations of wall and bulk-fluid temperatures that were below, at, or above the pseudo-critical temperature. The values of mass flux were ranged from 400 to 1320 kg/m{sup 2}s and inlet temperatures ranged from 72 to 120 deg. C. The test section consisted of fuel-element simulators that were 9.5 mm in OD with the total heated length of about 1 m. Bulk-fluid and wall temperature profiles were recorded using a combination of 8 different thermocouples. Analysis of the data has confirmed that there are three distinct heat-transfer regimes for forced convention in supercritical fluids: 1) Normal heat transfer; 2) Deteriorated heat

  17. Geometries and applications of active fiber bundles

    NASA Astrophysics Data System (ADS)

    Giglmayr, Josef

    2001-10-01

    Active fiber bundles (FBs) are aimed to model photonic switching and processing in 3-D without the restrictions of the photonic technology. The 2-D photonic architectures are assumed to be implemented by networks of directional couplers (DCs) and Mach-Zehnder interferometers (MZIs), respectively. For the implementation several crucial problems are expected: (1) proper operation of the spatial couplers/switches (nonblocking interconnections) and (2) coupling in the interstage interconnection section mainly caused by parallel and crossing fibers/waveguides (WGs). For the design of proper operating switches (refinement of couplers) the application of decoupling concepts of modern control theory is proposed. The final goal is to translate the refined couplers into integrated photonic architectures rather than into additional lightwave circuits (LWCs) which simply would increase the coupling. The decoupling concepts are reviewed. The paper is an attempt to prepare for applying well-known system engineering concepts to the upcoming technology of photonics.

  18. Vision, healing brush, and fiber bundles

    NASA Astrophysics Data System (ADS)

    Georgiev, Todor

    2005-03-01

    The Healing Brush is a tool introduced for the first time in Adobe Photoshop (2002) that removes defects in images by seamless cloning (gradient domain fusion). The Healing Brush algorithms are built on a new mathematical approach that uses Fibre Bundles and Connections to model the representation of images in the visual system. Our mathematical results are derived from first principles of human vision, related to adaptation transforms of von Kries type and Retinex theory. In this paper we present the new result of Healing in arbitrary color space. In addition to supporting image repair and seamless cloning, our approach also produces the exact solution to the problem of high dynamic range compression of17 and can be applied to other image processing algorithms.

  19. Dosimetry Modeling for Predicting Radiolytic Production at the Spent Fuel - Water Interface

    SciTech Connect

    Miller, William H.; Kline, Amanda J.; Hanson, Brady D.

    2006-04-30

    Modeling of the alpha, beta, and gamma dose from spent fuel as a function of particle size and fuel to water ratio was examined. These doses will be combined with modeling of G values and interactions to determine the concentration of various species formed at the fuel water interface and their affect on dissolution rates.

  20. Liquid-like bundles of crosslinked actin filaments contract without motors

    NASA Astrophysics Data System (ADS)

    Weirich, Kimberly

    The actin cytoskeleton is a dynamic, structural material that drives cellular-scale deformations during processes such as cell migration and division. Motor proteins are responsible for actively driving many deformations by buckling and translocating actin filaments. However, there is evidence that deformations, such as the constriction of the actin bundle that drives the separation of cells during division, can occur without motors, mediated instead by crosslinker proteins. How might crosslinkers, independent of motors, drive contraction of a bundle? Using a model system of purified proteins, we show that crosslinkers, analogous to molecular cohesion, create an effective surface tension that induces bundle contraction. Crosslinked short actin filaments form micron-sized spindle-shaped bundles. Similar to tactoid granules found at the isotropic-nematic phase transition in liquid crystals, these bundles coarsen and coalesce like liquid droplets. In contrast, crosslinked long filaments coarsen into a steady state of bundles that are frozen in a solid-like network. Near the liquid-solid boundary, filaments of intermediate length initially form bundles that spontaneously contract into tactoid droplets. Our results, that crosslinked actin bundles are liquid-like with an effective surface tension, provide evidence for a mechanism of motor-independent contractility in biological materials.

  1. Darcy Permeability of Hollow Fiber Bundles Used in Blood Oxygenation Devices

    PubMed Central

    Pacella, Heather E.; Eash, Heidi J.; Federspiel, William J.

    2011-01-01

    Many industrial and biomedical devices (e.g. blood oxygenators and artificial lungs) use bundles of hollow fiber membranes for separation processes. Analyses of flow and mass transport within the shell-side of the fiber bundles most often model the bundle for simplicity as a packed bed or porous media, using a Darcy permeability coefficient estimated from the Blake-Kozeny equation to account for viscous drag from the fibers. In this study, we developed a simple method for measuring the Darcy permeability of hollow fiber membrane bundles and evaluated how well the Blake-Kozeny (BK) equation predicted the Darcy permeability for these bundles. Fiber bundles were fabricated from commercially available Celgard® ×30-240 fiber fabric (300 μm outer diameter fibers @ 35 and 54 fibers/inch) and from a fiber fabric with 193 μm fibers (61 fibers/inch). The fiber bundles were mounted to the bottom of an acrylic tube and Darcy permeability was determined by measuring the elapsed time for a column of glycerol solution to flow through a fiber bundle. The ratio of the measured Darcy permeability to that predicted from the BK equation varied from 1.09 to 0.56. A comprehensive literature review suggested a modified BK equation with the “constant” correlated to porosity. This modification improved the predictions of the BK equation, with the ratio of measured to predicted permeability varying from 1.13 to 0.84. PMID:22927706

  2. Post irradiation analysis and performance modeling of dispersion and monolithic U-Mo fuels

    SciTech Connect

    Kim, Yeon Soo; Hofman, G.L.; Medvedev, P.G.; Robinson, A.B.; Shevlyakov, G.V.; Ryu, H.J.

    2008-07-15

    We analyzed fission product swelling of post-irradiation U-Mo fuels from the early RERTR tests to the recent RERTR-8 test. We found that the gas bubble swelling of the fuel-swelling model was overestimated. From the recent tests, RERTR-7A and 8, we could also collect a considerable amount of fuel swelling data from monolithic U-Mo fuel plates. The fuel swelling data from the monolithic fuel plates are considered more reliable because the interaction layer growth between the fuel and matrix in dispersion fuel, which obscures fuel swelling, does not exist. The swelling correlation comparison to the Si-added dispersion fuel data and monolithic fuel data suggested that a modification of the existing model was necessary. We also developed an interaction layer growth model for U-Mo/Al dispersion fuel plates with a Si-added matrix. PLATE code calculations with the new PIE data analysis results were performed. The updated versions predict with better accuracies for both monolithic fuel plates and dispersion fuel plates. In this paper, we present the results of fission product swelling characterization. In addition, the interaction layer growth model for U-Mo/Al with a Si-added matrix is presented. (author)

  3. A nonlinear model for top fuel dragster dynamic performance assessment

    NASA Astrophysics Data System (ADS)

    Spanos, P. D.; Castillo, D. H.; Kougioumtzoglou, I. A.; Tapia, R. A.

    2012-02-01

    The top fuel dragster is the fastest and quickest vehicle in drag racing. This vehicle is capable of travelling a quarter mile in less than 4.5 s, reaching a final speed in excess of 330 miles per hour. The average power delivered by its engine exceeds 7000 Hp. To analyse and eventually increase the performance of a top fuel dragster, a dynamic model of the vehicle is developed. Longitudinal, vertical, and pitching chassis motions are considered, as well as drive-train dynamics. The aerodynamics of the vehicle, the engine characteristics, and the force due to the combustion gases are incorporated into the model. Further, a simplified model of the traction characteristics of the rear tyres is developed where the traction is calculated as a function of the slip ratio and the velocity. The resulting nonlinear, coupled differential equations of motion are solved using a fourth-order Runge-Kutta numerical integration scheme. Several simulation runs are made to investigate the effects of the aerodynamics and of the engine's initial torque in the performance of the vehicle. The results of the computational simulations are scrutinised by comparisons with data from actual dragster races. Ultimately, the proposed dynamic model of the dragster can be used to improve the aerodynamics, the engine and clutch set-ups of the vehicle, and possibly facilitate the redesign of the dragster.

  4. Net order optimization in analog net bundles

    NASA Astrophysics Data System (ADS)

    Jambor, Thomas; Schreiner, Lars; Olbrich, Markus; Barke, Erich

    2005-06-01

    This paper presents a new approach to optimize net order in analog busses. It is used for the PARasitic SYmmetric router (PARSY), which routes net bundles, e.g. busses or differential pairs, maintaining parasitic symmetry and limiting differential coupling. The router is mainly devoted to analog signal interconnect but can also be used for critical digital busses. Net bundles have a fixed order, because wire crossing is not allowed in net bundle segments to enforce symmetry. Wires inside net bundle segments are generated by module generators. Connecting cell terminals to the first or the last net bundle segment is complex, because the cell terminals can vary in geometry and placement. Therefore, an assignment between nets and wires (net order) in a segment is required. This assignment does not affect the order in which nets or net bundles are routed sequentially. The optimization objective for the connections from net bundle segments to terminals is to minimize the number of crossings and the length difference, while maintaining symmetry if possible. Therefore, a net order has to be calculated, which globally optimizes these criteria for all terminal connections. Different net orders can be computed from the placement of terminals, which have to be connected to a net bundle segment. An additional order is calculated from these net orders, which contains the most characteristic features of all net orders. For all net orders costs are evaluated, and the one with the lowest cost is chosen.

  5. Fock modules and noncommutative line bundles

    NASA Astrophysics Data System (ADS)

    Landi, Giovanni

    2016-09-01

    To a line bundle over a noncommutative space there is naturally associated a Fock module. The algebra of corresponding creation and annihilation operators is the total space algebra of a principal U(1) -bundle over the noncommutative space. We describe the general construction and illustrate it with examples.

  6. Helium Behavior in Oxide Nuclear Fuels: First Principles Modeling

    SciTech Connect

    Gryaznov, D.; Rashkeev, Sergey N.; Kotomin, E. A.; Heifets, Eugene; Zhukovskii, Yuri F.

    2010-10-01

    UO2 and (U, Pu)O2 solid solutions (the so-called MOX) nowadays are used as commercial nuclear fuels in many countries. One of the safety issues during the storage of these fuels is related to their self-irradiation that produces and accumulates point defects and helium therein. We present density functional theory (DFT) calculations for UO2, PuO2 and MOX containing He atoms in octahedral interstitial positions. In particular, we calculated basic MOX properties and He incorporation energies as functions of Pu concentration within the spin-polarized, generalized gradient approximation (GGA) DFT calculations. We also included the on-site electron correlation corrections using the Hubbard model (in the framework of the so-called DFT + U approach). We found that PuO2 remains semiconducting with He in the octahedral position while UO2 requires a specific lattice distortion. Both materials reveal a positive energy for He incorporation, which, therefore, is an exothermic process. The He incorporation energy increases with the Pu concentration in the MOX fuel.

  7. Spontaneous insertion of carbon nanotube bundles inside biomembranes: A hybrid particle-field coarse-grained molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Sarukhanyan, Edita; De Nicola, Antonio; Roccatano, Danilo; Kawakatsu, Toshihiro; Milano, Giuseppe

    2014-03-01

    The processes of CNTs bundle formation and insertion/rearrangement inside lipid bilayers, as models of cellular membranes, is described and analyzed in details using simulations on the microsecond scale. Molecular Dynamics simulations employing hybrid particle-field models (MD-SCF) show that during the insertion process lipid molecules coat bundles surfaces. The distortions of bilayers are more pronounced for systems undergoing to insertion of bundles made of longer CNTs. In particular, when the insertion occurs in perpendicular orientation, adsorption of lipids on CNTs surfaces promotes a transient poration. This result suggests mechanism of membrane disruption operated by bundles causing the formation of solvent-rich pockets.

  8. Modeling and Diagnostic Software for Liquefying-Fuel Rockets

    NASA Technical Reports Server (NTRS)

    Poll, Scott; Iverson, David; Ou, Jeremy; Sanderfer, Dwight; Patterson-Hine, Ann

    2005-01-01

    A report presents a study of five modeling and diagnostic computer programs considered for use in an integrated vehicle health management (IVHM) system during testing of liquefying-fuel hybrid rocket engines in the Hybrid Combustion Facility (HCF) at NASA Ames Research Center. Three of the programs -- TEAMS, L2, and RODON -- are model-based reasoning (or diagnostic) programs. The other two programs -- ICS and IMS -- do not attempt to isolate the causes of failures but can be used for detecting faults. In the study, qualitative models (in TEAMS and L2) and quantitative models (in RODON) having varying scope and completeness were created. Each of the models captured the structure and behavior of the HCF as a physical system. It was noted that in the cases of the qualitative models, the temporal aspects of the behavior of the HCF and the abstraction of sensor data are handled outside of the models, and it is necessary to develop additional code for this purpose. A need for additional code was also noted in the case of the quantitative model, though the amount of development effort needed was found to be less than that for the qualitative models.

  9. Integrating repositories with fuel cycles: The airport authority model

    SciTech Connect

    Forsberg, C.

    2012-07-01

    The organization of the fuel cycle is a legacy of World War II and the cold war. Fuel cycle facilities were developed and deployed without consideration of the waste management implications. This led to the fuel cycle model of a geological repository site with a single owner, a single function (disposal), and no other facilities on site. Recent studies indicate large economic, safety, repository performance, nonproliferation, and institutional incentives to collocate and integrate all back-end facilities. Site functions could include geological disposal of spent nuclear fuel (SNF) with the option for future retrievability, disposal of other wastes, reprocessing with fuel fabrication, radioisotope production, other facilities that generate significant radioactive wastes, SNF inspection (navy and commercial), and related services such as SNF safeguards equipment testing and training. This implies a site with multiple facilities with different owners sharing some facilities and using common facilities - the repository and SNF receiving. This requires a different repository site institutional structure. We propose development of repository site authorities modeled after airport authorities. Airport authorities manage airports with government-owned runways, collocated or shared public and private airline terminals, commercial and federal military facilities, aircraft maintenance bases, and related operations - all enabled and benefiting the high-value runway asset and access to it via taxi ways. With a repository site authority the high value asset is the repository. The SNF and HLW receiving and storage facilities (equivalent to the airport terminal) serve the repository, any future reprocessing plants, and others with needs for access to SNF and other wastes. Non-public special-built roadways and on-site rail lines (equivalent to taxi ways) connect facilities. Airport authorities are typically chartered by state governments and managed by commissions with members

  10. HCCI experiments with toluene reference fuels modeled by a semidetailed chemical kinetic model

    SciTech Connect

    Andrae, J.C.G.; Brinck, T.; Kalghatgi, G.T.

    2008-12-15

    A semidetailed mechanism (137 species and 633 reactions) and new experiments in a homogeneous charge compression ignition (HCCI) engine on the autoignition of toluene reference fuels are presented. Skeletal mechanisms for isooctane and n-heptane were added to a detailed toluene submechanism. The model shows generally good agreement with ignition delay times measured in a shock tube and a rapid compression machine and is sensitive to changes in temperature, pressure, and mixture strength. The addition of reactions involving the formation and destruction of benzylperoxide radical was crucial to modeling toluene shock tube data. Laminar burning velocities for benzene and toluene were well predicted by the model after some revision of the high-temperature chemistry. Moreover, laminar burning velocities of a real gasoline at 353 and 500 K could be predicted by the model using a toluene reference fuel as a surrogate. The model also captures the experimentally observed differences in combustion phasing of toluene/n-heptane mixtures, compared to a primary reference fuel of the same research octane number, in HCCI engines as the intake pressure and temperature are changed. For high intake pressures and low intake temperatures, a sensitivity analysis at the moment of maximum heat release rate shows that the consumption of phenoxy radicals is rate-limiting when a toluene/n-heptane fuel is used, which makes this fuel more resistant to autoignition than the primary reference fuel. Typical CPU times encountered in zero-dimensional calculations were on the order of seconds and minutes in laminar flame speed calculations. Cross reactions between benzylperoxy radicals and n-heptane improved the model predictions of shock tube experiments for {phi}=1.0 and temperatures lower than 800 K for an n-heptane/toluene fuel mixture, but cross reactions had no influence on HCCI simulations. (author)

  11. Performance modeling of the Ballard Mark IV solid polymer electrolyte fuel cell. 1: Mechanistic model development

    SciTech Connect

    Amphlett, J.C.; Baumert, R.M.; Mann, R.F.; Peppley, B.A.; Roberge, P.R. ); Harris, T.J. )

    1995-01-01

    A parametric model predicting the performance of a solid polymer electrolyte, proton exchange membrane (PEM) fuel cell has been developed using a combination of mechanistic and empirical modeling techniques. This paper details the mechanistic model development. Mass transport properties are considered in the mechanistic development via Stefan-Maxwell equations. Thermodynamic equilibrium potentials are defined using the Nernst equation. Activation overvoltages are defined via a Tafel equation, and internal resistance are defined via the Nernst-Planck equation, leading to a definition of ohmic overvoltage via an Ohm's law equation. The mechanistic model cannot adequately model fuel cell performance, since several simplifying approximations have been used in order to facilitate model development. Additionally, certain properties likely to be observed in operational fuel cells, such as thermal gradients, have not been considered. Nonetheless, the insights gained from the mechanistic assessment of fuel cell processes were found to give the resulting empirical model a firmer theoretical basis than many of the models presently available in the literature. Correlation of the empirical model to actual experimental data was very good.

  12. Modeling of gaseous flows within proton exchange membrane fuel cells

    SciTech Connect

    Weisbrod, K.R.; Vanderborgh, N.E.; Grot, S.A.

    1996-12-31

    Development of a comprehensive mechanistic model has been helpful to understand PEM fuel cell performance. Both through-the-electrode and down-the-channel models have been developed to support our experimental effort to enhance fuel cell design and operation. The through-the-electrode model was described previously. This code describes the known transport properties and dynamic processes that occur within a membrane and electrode assembly. Key parameters include transport through the backing layers, water diffusion and electroosmotic transport in the membrane, and reaction electrochemical kinetics within the cathode catalyst layer. In addition, two geometric regions within the cathode layer are represented, the first region below saturation and second with liquid water present. Although processes at high gas stoichiometry are well represented by more simple codes, moderate stoichiometry processes require a two dimensional representation that include the gaseous composition and temperature along flow channel. Although usually PEM hardware utilizes serpentine flow channels, this code does not include such geometric features and thus the flow can be visualized along a single channel.

  13. Criteria for Modeling in LES of Multicomponent Fuel Flow

    NASA Technical Reports Server (NTRS)

    Bellan, Josette; Selle, Laurent

    2009-01-01

    A report presents a study addressing the question of which large-eddy simulation (LES) equations are appropriate for modeling the flow of evaporating drops of a multicomponent liquid in a gas (e.g., a spray of kerosene or diesel fuel in air). The LES equations are obtained from the direct numerical simulation (DNS) equations in which the solution is computed at all flow length scales, by applying a spatial low-pass filter. Thus, in LES the small scales are removed and replaced by terms that cannot be computed from the LES solution and instead must be modeled to retain the effect of the small scales into the equations. The mathematical form of these models is a subject of contemporary research. For a single-component liquid, there is only one LES formulation, but this study revealed that for a multicomponent liquid, there are two non-equivalent LES formulations for the conservation equations describing the composition of the vapor. Criteria were proposed for selecting the multicomponent LES formulation that gives the best accuracy and increased computational efficiency. These criteria were applied in examination of filtered DNS databases to compute the terms in the LES equations. The DNS databases are from mixing layers of diesel and kerosene fuels. The comparisons resulted in the selection of one of the multicomponent LES formulations as the most promising with respect to all criteria.

  14. Non-Euclidean geometry of twisted filament bundle packing

    PubMed Central

    Bruss, Isaac R.; Grason, Gregory M.

    2012-01-01

    Densely packed and twisted assemblies of filaments are crucial structural motifs in macroscopic materials (cables, ropes, and textiles) as well as synthetic and biological nanomaterials (fibrous proteins). We study the unique and nontrivial packing geometry of this universal material design from two perspectives. First, we show that the problem of twisted bundle packing can be mapped exactly onto the problem of disc packing on a curved surface, the geometry of which has a positive, spherical curvature close to the center of rotation and approaches the intrinsically flat geometry of a cylinder far from the bundle center. From this mapping, we find the packing of any twisted bundle is geometrically frustrated, as it makes the sixfold geometry of filament close packing impossible at the core of the fiber. This geometrical equivalence leads to a spectrum of close-packed fiber geometries, whose low symmetry (five-, four-, three-, and twofold) reflect non-Euclidean packing constraints at the bundle core. Second, we explore the ground-state structure of twisted filament assemblies formed under the influence of adhesive interactions by a computational model. Here, we find that the underlying non-Euclidean geometry of twisted fiber packing disrupts the regular lattice packing of filaments above a critical radius, proportional to the helical pitch. Above this critical radius, the ground-state packing includes the presence of between one and six excess fivefold disclinations in the cross-sectional order. PMID:22711799

  15. Get ready: Bundled payments are in your future.

    PubMed

    2015-09-01

    The Centers for Medicare & Medicaid Services' (CMS') mandatory bundled payment pilot project makes clear that the agency intends to reform Medicare reimbursement. Hospitals in 75 geographic areas are required to participate in a five-year pilot project that puts them at risk for the cost of hip and knee replacements from the time of surgery until 90 days after discharge. Already, more than 6,500 providers are participating in the Bundled Payments for Care Improvement project, a voluntary program where participants can choose from 48 clinical episodes and four models. Even if they won't be part of a bundled payments arrangement, case managers need to shift their thinking to prepare for the future of reimbursement by developing close working relationships with post-acute providers, knowing the services and quality delivered by post-acute providers, and being aware of the costs for the entire episode of care. Case managers will not be able to handle all the responsibilities necessary in a bundled payment arrangement if they have large caseloads. PMID:26310055

  16. Experimental and Modeling Studies of the Combustion Characteristics of Conventional and Alternative Jet Fuels. Final Report

    NASA Technical Reports Server (NTRS)

    Meeks, Ellen; Naik, Chitral V.; Puduppakkam, Karthik V.; Modak, Abhijit; Egolfopoulos, Fokion N.; Tsotsis, Theo; Westbrook, Charles K.

    2011-01-01

    The objectives of this project have been to develop a comprehensive set of fundamental data regarding the combustion behavior of jet fuels and appropriately associated model fuels. Based on the fundamental study results, an auxiliary objective was to identify differentiating characteristics of molecular fuel components that can be used to explain different fuel behavior and that may ultimately be used in the planning and design of optimal fuel-production processes. The fuels studied in this project were Fischer-Tropsch (F-T) fuels and biomass-derived jet fuels that meet certain specifications of currently used jet propulsion applications. Prior to this project, there were no systematic experimental flame data available for such fuels. One of the key goals has been to generate such data, and to use this data in developing and verifying effective kinetic models. The models have then been reduced through automated means to enable multidimensional simulation of the combustion characteristics of such fuels in real combustors. Such reliable kinetic models, validated against fundamental data derived from laminar flames using idealized flow models, are key to the development and design of optimal combustors and fuels. The models provide direct information about the relative contribution of different molecular constituents to the fuel performance and can be used to assess both combustion and emissions characteristics.

  17. Forecast of future aviation fuels: the model. final report

    SciTech Connect

    Ayati, M.B.; Liu, C.Y.; English, J.M.

    1981-09-01

    A conceptual models of the commercial air transportation industry is developed which can be used to predict trends in economics, demand, and consumption. The methodology is based on digraph theory, which considers the interaction of variables and propagation of changes. Air transportation economics are treated by examination of major variables, their relationships, historic trends, and calculation of regression coefficients. A description of the modeling technique and a compilation of historic airline industry statistics used to determine interaction coefficients are included. Results of model validations show negligible difference between actual and projected values over the twenty-eight year period of 1959 to 1976. A limited application of the method presents forecasts of air tranportation industry demand, growth, revenue, costs, and fuel consumption to 2020 for two scenarios of future economic growth and energy consumption.

  18. The Modeling of Advanced BWR Fuel Designs with the NRC Fuel Depletion Codes PARCS/PATHS

    DOE PAGESBeta

    Ward, Andrew; Downar, Thomas J.; Xu, Y.; March-Leuba, Jose A; Thurston, Carl; Hudson, Nathanael H.; Ireland, A.; Wysocki, A.

    2015-04-22

    The PATHS (PARCS Advanced Thermal Hydraulic Solver) code was developed at the University of Michigan in support of U.S. Nuclear Regulatory Commission research to solve the steady-state, two-phase, thermal-hydraulic equations for a boiling water reactor (BWR) and to provide thermal-hydraulic feedback for BWR depletion calculations with the neutronics code PARCS (Purdue Advanced Reactor Core Simulator). The simplified solution methodology, including a three-equation drift flux formulation and an optimized iteration scheme, yields very fast run times in comparison to conventional thermal-hydraulic systems codes used in the industry, while still retaining sufficient accuracy for applications such as BWR depletion calculations. Lastly, themore » capability to model advanced BWR fuel designs with part-length fuel rods and heterogeneous axial channel flow geometry has been implemented in PATHS, and the code has been validated against previously benchmarked advanced core simulators as well as BWR plant and experimental data. We describe the modifications to the codes and the results of the validation in this paper.« less

  19. The Modeling of Advanced BWR Fuel Designs with the NRC Fuel Depletion Codes PARCS/PATHS

    SciTech Connect

    Ward, Andrew; Downar, Thomas J.; Xu, Y.; March-Leuba, Jose A; Thurston, Carl; Hudson, Nathanael H.; Ireland, A.; Wysocki, A.

    2015-04-22

    The PATHS (PARCS Advanced Thermal Hydraulic Solver) code was developed at the University of Michigan in support of U.S. Nuclear Regulatory Commission research to solve the steady-state, two-phase, thermal-hydraulic equations for a boiling water reactor (BWR) and to provide thermal-hydraulic feedback for BWR depletion calculations with the neutronics code PARCS (Purdue Advanced Reactor Core Simulator). The simplified solution methodology, including a three-equation drift flux formulation and an optimized iteration scheme, yields very fast run times in comparison to conventional thermal-hydraulic systems codes used in the industry, while still retaining sufficient accuracy for applications such as BWR depletion calculations. Lastly, the capability to model advanced BWR fuel designs with part-length fuel rods and heterogeneous axial channel flow geometry has been implemented in PATHS, and the code has been validated against previously benchmarked advanced core simulators as well as BWR plant and experimental data. We describe the modifications to the codes and the results of the validation in this paper.

  20. Developing Custom Fire Behavior Fuel Models for Mediterranean Wildland-Urban Interfaces in Southern Italy.

    PubMed

    Elia, Mario; Lafortezza, Raffaele; Lovreglio, Raffaella; Sanesi, Giovanni

    2015-09-01

    The dramatic increase of fire hazard in wildland-urban interfaces (WUIs) has required more detailed fuel management programs to preserve ecosystem functions and human settlements. Designing effective fuel treatment strategies allows to achieve goals such as resilient landscapes, fire-adapted communities, and ecosystem response. Therefore, obtaining background information on forest fuel parameters and fuel accumulation patterns has become an important first step in planning fuel management interventions. Site-specific fuel inventory data enhance the accuracy of fuel management planning and help forest managers in fuel management decision-making. We have customized four fuel models for WUIs in southern Italy, starting from forest classes of land-cover use and adopting a hierarchical clustering approach. Furthermore, we provide a prediction of the potential fire behavior of our customized fuel models using FlamMap 5 under different weather conditions. The results suggest that fuel model IIIP (Mediterranean maquis) has the most severe fire potential for the 95th percentile weather conditions and the least severe potential fire behavior for the 85th percentile weather conditions. This study shows that it is possible to create customized fuel models directly from fuel inventory data. This achievement has broad implications for land managers, particularly forest managers of the Mediterranean landscape, an ecosystem that is susceptible not only to wildfires but also to the increasing human population and man-made infrastructures. PMID:25962800

  1. Developing Custom Fire Behavior Fuel Models for Mediterranean Wildland-Urban Interfaces in Southern Italy

    NASA Astrophysics Data System (ADS)

    Elia, Mario; Lafortezza, Raffaele; Lovreglio, Raffaella; Sanesi, Giovanni

    2015-09-01

    The dramatic increase of fire hazard in wildland-urban interfaces (WUIs) has required more detailed fuel management programs to preserve ecosystem functions and human settlements. Designing effective fuel treatment strategies allows to achieve goals such as resilient landscapes, fire-adapted communities, and ecosystem response. Therefore, obtaining background information on forest fuel parameters and fuel accumulation patterns has become an important first step in planning fuel management interventions. Site-specific fuel inventory data enhance the accuracy of fuel management planning and help forest managers in fuel management decision-making. We have customized four fuel models for WUIs in southern Italy, starting from forest classes of land-cover use and adopting a hierarchical clustering approach. Furthermore, we provide a prediction of the potential fire behavior of our customized fuel models using FlamMap 5 under different weather conditions. The results suggest that fuel model IIIP (Mediterranean maquis) has the most severe fire potential for the 95th percentile weather conditions and the least severe potential fire behavior for the 85th percentile weather conditions. This study shows that it is possible to create customized fuel models directly from fuel inventory data. This achievement has broad implications for land managers, particularly forest managers of the Mediterranean landscape, an ecosystem that is susceptible not only to wildfires but also to the increasing human population and man-made infrastructures.

  2. Vibration Analysis of a Multi-span Tube in a Bundle

    SciTech Connect

    Khushnood, Shahab; Khan, Zaffar M.; Afzaal Malik, M.; Zafar Ullah Koreshi; Mehmood Anwer Khan

    2002-07-01

    Nuclear and process industry has seen tube bundle failures more frequently in recent years. There is some concern that the practice of structural configuration has not advanced as rapidly as thermal design of heat exchangers. Catastrophic vibration of tube in a bundle can be avoided if the tube natural frequency is kept well above the estimated existing turbulent buffeting frequencies. Flow distribution and partial admission in to the tube bundle due to upstream piping further complicates the system. In this paper, tube in a bundle has been modeled as a beam on multiple supports. Effects of damping and motion of boundaries have also been considered. Governing equations have been solved analytically for natural as well as forced vibrations. The model has been extended for a bundle of tubes by developing and implementing a computer code. Subsequent experimental verification of results on a research heat exchanger bundle has been carried. The proposed model is expected to prove a useful guide in predicting the vibration behavior of tube bundles. (authors)

  3. Far-field dispersal modeling for fuel-air-explosive devices

    SciTech Connect

    Glass, M.W.

    1990-05-01

    A computer model for simulating the explosive dispersal of a fuel agent in the far-field regime is described and is applied to a wide variety of initial conditions to judge their effect upon the resulting fuel/air cloud. This work was directed toward modeling the dispersal process associated with Fuel-Air-Explosives devices. The far-field dispersal regime is taken to be that time after the initial burster charge detonation in which the shock forces no longer dominate the flow field and initial canister and fuel mass breakup has occurred. The model was applied to a low vapor pressure fuel, a high vapor pressure fuel and a solid fuel. A strong dependence of the final cloud characteristics upon the initial droplet size distribution was demonstrated. The predicted fuel-air clouds were highly non-uniform in concentration. 18 refs., 86 figs., 4 tabs.

  4. Numerical Investigation of Cross Flow Phenomena in a Tight-Lattice Rod Bundle Using Advanced Interface Tracking Method

    NASA Astrophysics Data System (ADS)

    Zhang, Weizhong; Yoshida, Hiroyuki; Ose, Yasuo; Ohnuki, Akira; Akimoto, Hajime; Hotta, Akitoshi; Fujimura, Ken

    In relation to the design of an innovative FLexible-fuel-cycle Water Reactor (FLWR), investigation of thermal-hydraulic performance in tight-lattice rod bundles of the FLWR is being carried out at Japan Atomic Energy Agency (JAEA). The FLWR core adopts a tight triangular lattice arrangement with about 1 mm gap clearance between adjacent fuel rods. In view of importance of accurate prediction of cross flow between subchannels in the evaluation of the boiling transition (BT) in the FLWR core, this study presents a statistical evaluation of numerical simulation results obtained by a detailed two-phase flow simulation code, TPFIT, which employs an advanced interface tracking method. In order to clarify mechanisms of cross flow in such tight lattice rod bundles, the TPFIT is applied to simulate water-steam two-phase flow in two modeled subchannels. Attention is focused on instantaneous fluctuation characteristics of cross flow. With the calculation of correlation coefficients between differential pressure and gas/liquid mixing coefficients, time scales of cross flow are evaluated, and effects of mixing section length, flow pattern and gap spacing on correlation coefficients are investigated. Differences in mechanism between gas and liquid cross flows are pointed out.

  5. Alternative Liquid Fuels Simulation Model (AltSim).

    SciTech Connect

    Williams, Ryan; Baker, Arnold Barry; Drennen, Thomas E.

    2009-12-01

    The Alternative Liquid Fuels Simulation Model (AltSim) is a high-level dynamic simulation model which calculates and compares the production and end use costs, greenhouse gas emissions, and energy balances of several alternative liquid transportation fuels. These fuels include: corn ethanol, cellulosic ethanol from various feedstocks (switchgrass, corn stover, forest residue, and farmed trees), biodiesel, and diesels derived from natural gas (gas to liquid, or GTL), coal (coal to liquid, or CTL), and coal with biomass (CBTL). AltSim allows for comprehensive sensitivity analyses on capital costs, operation and maintenance costs, renewable and fossil fuel feedstock costs, feedstock conversion ratio, financial assumptions, tax credits, CO{sub 2} taxes, and plant capacity factor. This paper summarizes the structure and methodology of AltSim, presents results, and provides a detailed sensitivity analysis. The Energy Independence and Security Act (EISA) of 2007 sets a goal for the increased use of biofuels in the U.S., ultimately reaching 36 billion gallons by 2022. AltSim's base case assumes EPA projected feedstock costs in 2022 (EPA, 2009). For the base case assumptions, AltSim estimates per gallon production costs for the five ethanol feedstocks (corn, switchgrass, corn stover, forest residue, and farmed trees) of $1.86, $2.32, $2.45, $1.52, and $1.91, respectively. The projected production cost of biodiesel is $1.81/gallon. The estimates for CTL without biomass range from $1.36 to $2.22. With biomass, the estimated costs increase, ranging from $2.19 per gallon for the CTL option with 8% biomass to $2.79 per gallon for the CTL option with 30% biomass and carbon capture and sequestration. AltSim compares the greenhouse gas emissions (GHG) associated with both the production and consumption of the various fuels. EISA allows fuels emitting 20% less greenhouse gases (GHG) than conventional gasoline and diesels to qualify as renewable fuels. This allows several of the CBTL

  6. Development of custom fire behavior fuel models from FCCS fuelbeds for the Savannah River fuel assessment project.

    SciTech Connect

    Scott, Joe, H.

    2009-07-23

    The purpose of this project is to create fire behavior fuel models that replicate the fire behavior characteristics (spread rate and fireline intensity) produced by 23 candidate FCCS fuelbeds developed for the Savannah River National Wildlife Refuge. These 23 fuelbeds were created by FERA staff in consultation with local fuel managers. The FCCS produces simulations of surface fire spread rate and flame length (and therefore fireline intensity) for each of these fuelbeds, but it does not produce maps of those fire behavior characteristics or simulate fire growth—those tasks currently require the use of the FARSITE and/or FlamMap software systems. FARSITE and FlamMap do not directly use FCCS fuelbeds, but instead use standard or custom fire behavior fuel models to describe surface fuel characteristics for fire modeling. Therefore, replicating fire growth and fire behavior potential calculations using FCCS-simulated fire characteristics requires the development of custom fuel models that mimic, as closely as possible, the fire behavior characteristics produced by the FCCS for each fuelbed, over a range of fuel moisture and wind speeds.

  7. New high burnup fuel models for NRC`s licensing audit code, FRAPCON

    SciTech Connect

    Lanning, D.D.; Beyer, C.E.; Painter, C.L.

    1996-03-01

    Fuel behavior models have recently been updated within the U.S. Nuclear Regulatory Commission steady-state FRAPCON code used for auditing of fuel vendor/utility-codes and analyses. These modeling updates have concentrated on providing a best estimate prediction of steady-state fuel behavior up to the maximum burnup level s of current data (60 to 65 GWd/MTU rod-average). A decade has passed since these models were last updated. Currently, some U.S. utilities and fuel vendors are requesting approval for rod-average burnups greater than 60 GWd/MTU; however, until these recent updates the NRC did not have valid fuel performance models at these higher burnup levels. Pacific Northwest Laboratory (PNL) has reviewed 15 separate effects models within the FRAPCON fuel performance code (References 1 and 2) and identified nine models that needed updating for improved prediction of fuel behavior at high burnup levels. The six separate effects models not updated were the cladding thermal properties, cladding thermal expansion, cladding creepdown, fuel specific heat, fuel thermal expansion and open gap conductance. Comparison of these models to the currently available data indicates that these models still adequately predict the data within data uncertainties. The nine models identified as needing improvement for predicting high-burnup behavior are fission gas release (FGR), fuel thermal conductivity (accounting for both high burnup effects and burnable poison additions), fuel swelling, fuel relocation, radial power distribution, fuel-cladding contact gap conductance, cladding corrosion, cladding mechanical properties and cladding axial growth. Each of the updated models will be described in the following sections and the model predictions will be compared to currently available high burnup data.

  8. Performance modeling of the Ballard Mark IV solid polymer electrolyte fuel cell. 2: Empirical model development

    SciTech Connect

    Amphlett, J.C.; Baumert, R.M.; Mann, R.F.; Peppley, B.A.; Roberge, P.R. ); Harris, T.J. )

    1995-01-01

    A parametric model predicting the performance of a solid polymer electrolyte, proton exchange membrane (PEM) fuel cell has been developed using a combination of mechanistic and empirical modeling techniques. This paper details the empirical analysis which yielded the parametric coefficients employed in the model. A 28 run experiment covering a range of operating currents (50 to 300 ASF), temperatures (328 to 358 K), oxygen partial pressures (0.6 to 3.1 atm abs.) and hydrogen partial pressures (2.0 to 3.1 atm abs.) was conducted. Parametric equations for the activation overvoltage and the internal resistance of the fuel cell were obtained from linear regression. The factors to be employed in the linear regression had been previously determined through a mechanistic analysis of fuel cell processes. Activation overvoltage was modeled as a function of the operating temperature, the product of operating temperature, and the logarithm of the operating current, and the product of operating temperature and the logarithm of the oxygen concentration at the catalyst reaction sites. The internal resistance of the fuel cell was modeled as a function of the operating temperature and the current. Correlation of the empirical model to experimental data was very good. It is anticipated that the mechanistic validity yielded by the coupling of mechanistic and empirical modeling techniques will also allow for accurate predictive capabilities outside of the experimental range.

  9. Calculation of Quad-Cities Central Bundle Documented by the U.S. in FY98 Using Russian Computer Codes

    SciTech Connect

    Pavlovichev, A.M.

    2001-06-19

    The report presents calculation results of isotopic composition of irradiated fuel performed for the Quad Cities-1 reactor bundle with UO{sub 2} and MOX fuel. The MCU-REA code was used for calculations. The code is developed in Kurchatov Institute, Russia. The MCU-REA results are compared with the experimental data and HELIOS code results.

  10. Preliminary report: NIF laser bundle review

    SciTech Connect

    Tietbohl, G.L.; Larson, D.W.; Erlandson, A.C.

    1995-08-31

    As requested in the guidance memo {sup 1}, this committe determined whether there are compelling reasons to recommend a change from the NIF CDR baseline laser. The baseline bundle design based on a tradeoff between cost and technical risk, which is replicated four times to create the required 192 beams. The baseline amplifier design uses bottom loading 1{times}4 slab and flashlamp cassettes for amplifier maintenance and large vacuum enclosures (2.5m high {times} 7m wide in cross-section for each of the two spatial filters in each of the four bundles. The laser beams are arranged in two laser bays configured in a u-shape around the target area. The entire bundle review effort was performed in a very short time (six weeks) and with limited resources (15 personnel part-time). This should be compared to the effort that produced the CDR design (12 months, 50 to 100 personnel). This committee considered three alternate bundle configurations (2{times}2, 4{times}2, and 4{times}4 bundles), and evaluated each bundle against the baseline design using the seven requested issues in the guidance memo: Cost; schedule; performance risk; maintainability/operability; hardware failure cost exposure; activation; and design flexibility. The issues were reviewed to identify differences between each alternate bundle configuration and the baseline.

  11. Prioritary omalous bundles on Hirzebruch surfaces

    NASA Astrophysics Data System (ADS)

    Aprodu, Marian; Marchitan, Marius

    2016-01-01

    An irreducible algebraic stack is called unirational if there exists a surjective morphism, representable by algebraic spaces, from a rational variety to an open substack. We prove unirationality of the stack of prioritary omalous bundles on Hirzebruch surfaces, which implies also the unirationality of the moduli space of omalous H-stable bundles for any ample line bundle H on a Hirzebruch surface (compare with Costa and Miro-Ŕoig, 2002). To this end, we find an explicit description of the duals of omalous rank-two bundles with a vanishing condition in terms of monads. Since these bundles are prioritary, we conclude that the stack of prioritary omalous bundles on a Hirzebruch surface different from P1 ×P1 is dominated by an irreducible section of a Segre variety, and this linear section is rational (Ionescu, 2015). In the case of the space quadric, the stack has been explicitly described by N. Buchdahl. As a main tool we use Buchdahl's Beilinson-type spectral sequence. Monad descriptions of omalous bundles on hypersurfaces in P4, Calabi-Yau complete intersection, blowups of the projective plane and Segre varieties have been recently obtained by A.A. Henni and M. Jardim (Henni and Jardim, 2013), and monads on Hirzebruch surfaces have been applied in a different context in Bartocci et al. (2015).

  12. GMDH-type neural network modeling and genetic algorithm-based multi-objective optimization of thermal and friction characteristics in heat exchanger tubes with wire-rod bundles

    NASA Astrophysics Data System (ADS)

    Rahimi, Masoud; Beigzadeh, Reza; Parvizi, Mehdi; Eiamsa-ard, Smith

    2016-08-01

    The group method of data handling (GMDH) technique was used to predict heat transfer and friction characteristics in heat exchanger tubes equipped with wire-rod bundles. Nusselt number and friction factor were determined as functions of wire-rod bundle geometric parameters and Reynolds number. The performance of the developed GMDH-type neural networks was found to be superior in comparison with the proposed empirical correlations. For optimization, the genetic algorithm-based multi-objective optimization was applied.

  13. Compressive force generation by a bundle of living biofilaments

    NASA Astrophysics Data System (ADS)

    Ramachandran, Sanoop; Ryckaert, Jean-Paul

    2013-08-01

    To study the compressional forces exerted by a bundle of living stiff filaments pressing on a surface, akin to the case of an actin bundle in filopodia structures, we have performed particulate molecular dynamics simulations of a grafted bundle of parallel living (self-assembling) filaments, in chemical equilibrium with a solution of their constitutive monomers. Equilibrium is established as these filaments, grafted at one end to a wall of the simulation box, grow at their chemically active free end, and encounter the opposite confining wall of the simulation box. Further growth of filaments requires bending and thus energy, which automatically limit the populations of longer filaments. The resulting filament sizes distribution and the force exerted by the bundle on the obstacle are analyzed for different grafting densities and different sub- or supercritical conditions, these properties being compared with the predictions of the corresponding ideal confined bundle model. In this analysis, non-ideal effects due to interactions between filaments and confinement effects are singled out. For all state points considered at the same temperature and at the same gap width between the two surfaces, the force per filament exerted on the opposite wall appears to be a function of a rescaled free monomer density hat{ρ }_1^eff. This quantity can be estimated directly from the characteristic length of the exponential filament size distribution P observed in the size domain where these grafted filaments are not in direct contact with the wall. We also analyze the dynamics of the filament contour length fluctuations in terms of effective polymerization (U) and depolymerization (W) rates, where again it is possible to disentangle non-ideal and confinement effects.

  14. Designing Covalently Linked Heterodimeric Four-Helix Bundles.

    PubMed

    Chino, M; Leone, L; Maglio, O; Lombardi, A

    2016-01-01

    De novo design has proven a powerful methodology for understanding protein folding and function, and for mimicking or even bettering the properties of natural proteins. Extensive progress has been made in the design of helical bundles, simple structural motifs that can be nowadays designed with a high degree of precision. Among helical bundles, the four-helix bundle is widespread in nature, and is involved in numerous and fundamental processes. Representative examples are the carboxylate bridged diiron proteins, which perform a variety of different functions, ranging from reversible dioxygen binding to catalysis of dioxygen-dependent reactions, including epoxidation, desaturation, monohydroxylation, and radical formation. The "Due Ferri" (two-irons; DF) family of proteins is the result of a de novo design approach, aimed to reproduce in minimal four-helix bundle models the properties of the more complex natural diiron proteins, and to address how the amino acid sequence modulates their functions. The results so far obtained point out that asymmetric metal environments are essential to reprogram functions, and to achieve the specificity and selectivity of the natural enzymes. Here, we describe a design method that allows constructing asymmetric four-helix bundles through the covalent heterodimerization of two different α-helical harpins. In particular, starting from the homodimeric DF3 structure, we developed a protocol for covalently linking the two α2 monomers by using the Cu(I) catalyzed azide-alkyne cycloaddition. The protocol was then generalized, in order to include the construction of several linkers, in different protein positions. Our method is fast, low cost, and in principle can be applied to any couple of peptides/proteins we desire to link. PMID:27586346

  15. Repair of hair bundles in sea anemones by secreted proteins.

    PubMed

    Watson, G M; Mire, P; Hudson, R R

    1998-01-01

    Sea anemones are sessile invertebrates that detect movements of prey using numerous hair bundles located on tentacles surrounding their mouth. Previously we found that hair bundles of anemones are structurally and functionally similar to those of vertebrates. After 10-15 min exposure to calcium depleted buffers, hair bundles in chickens suffer moderate damage from which they recover in 12 h without requiring new protein synthesis [Zhao, Yamoah and Gillespie, Proc. Natl. Acad. Sci. USA 94 (1996) 15469-15474]. We find that after 1 h exposure to calcium free seawater, hair bundles of anemones suffer extensive damage from which they recover in 4 h, apparently because of newly synthesized, secretory proteins called 'repair proteins'. Recovery is delayed in a dose dependent fashion by cycloheximide. In the presence of exogenously added repair proteins, recovery occurs within 8 min and is cycloheximide insensitive. Recovery is ascertained by a bioassay performed on intact specimens, by electrophysiology, and by timelapse video microscopy. Fraction beta, a chromatographic fraction with bioactivity comparable to the complete mixture of repair proteins, consists of complexes having an estimated mass of 2000 kDa. Avidin based cytochemistry suggests that biotinylated fraction beta binds to damaged hair bundles. SDS-PAGE gel electrophoresis demonstrates that fraction beta contains 8-10 polypeptides of 90 kDa or smaller. At least four of these polypeptides apparently are consumed during the repair process. Negatively stained samples of fraction beta are shown by transmission electron microscopy to include filamentous structures similar in length (150 nm) and width (6 nm) to linkages between stereocilia. The filamentous structures can be associated with globular structures (20 nm in diameter). A model is presented wherein repair proteins comprise replacement linkages and enzymes that attach linkages to appropriate membrane proteins. PMID:9472741

  16. Homogeneous versus heterogeneous shielding modeling of spent-fuel casks

    SciTech Connect

    Carbajo, J.J.; Lindner, C.N. )

    1992-01-01

    The design of spent-fuel casks for storage and transport requires modeling the cask for criticality, shielding, thermal, and structural analyses. While some parts of the cask are homogeneous, other regions are heterogeneous with different materials intermixed. For simplicity, some of the heterogeneous regions may be modeled as homogeneous. This paper evaluates the effect of homogenizing some regions of a cask on calculating radiation dose rates outside the cask. The dose rate calculations were performed with the one-dimensional discrete ordinates shielding XSDRNPM code coupled with the XSDOSE code and with the three-dimensional QAD-CGGP code. Dose rates were calculated radially at the midplane of the cask at two locations, cask surface and 2.3 m from the radial surface. The last location corresponds to a point 2 m from the lateral sides of a transport railroad car.

  17. Phosphoric acid fuel cell power plant system performance model and computer program

    NASA Technical Reports Server (NTRS)

    Alkasab, K. A.; Lu, C. Y.

    1984-01-01

    A FORTRAN computer program was developed for analyzing the performance of phosphoric acid fuel cell power plant systems. Energy mass and electrochemical analysis in the reformer, the shaft converters, the heat exchangers, and the fuel cell stack were combined to develop a mathematical model for the power plant for both atmospheric and pressurized conditions, and for several commercial fuels.

  18. 40 CFR 600.207-86 - Calculation of fuel economy values for a model type.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Calculation of fuel economy values for a model type. 600.207-86 Section 600.207-86 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND CARBON-RELATED EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy Regulations for 1977 and Later...

  19. EIA model documentation: Electricity market module - electricity fuel dispatch

    SciTech Connect

    1997-01-01

    This report documents the National Energy Modeling System Electricity Fuel Dispatch Submodule (EFD), a submodule of the Electricity Market Module (EMM) as it was used for EIA`s Annual Energy Outlook 1997. It replaces previous documentation dated March 1994 and subsequent yearly update revisions. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated through the synthesis and scenario development based on these components. This document serves four purposes. First, it is a reference document providing a detailed description of the model for reviewers and potential users of the EFD including energy experts at the Energy Information Administration (EIA), other Federal agencies, state energy agencies, private firms such as utilities and consulting firms, and non-profit groups such as consumer and environmental groups. Second, this report meets the legal requirement of the Energy Information Administration (EIA) to provide adequate documentation in support of its statistical and forecast reports. Third, it facilitates continuity in model development by providing documentation which details model enhancements that were undertaken for AE097 and since the previous documentation. Last, because the major use of the EFD is to develop forecasts, this documentation explains the calculations, major inputs and assumptions which were used to generate the AE097.

  20. Microstructural modeling of thermal conductivity of high burn-up mixed oxide fuel

    NASA Astrophysics Data System (ADS)

    Teague, Melissa; Tonks, Michael; Novascone, Stephen; Hayes, Steven

    2014-01-01

    Predicting the thermal conductivity of oxide fuels as a function of burn-up and temperature is fundamental to the efficient and safe operation of nuclear reactors. However, modeling the thermal conductivity of fuel is greatly complicated by the radially inhomogeneous nature of irradiated fuel in both composition and microstructure. In this work, radially and temperature-dependent models for effective thermal conductivity were developed utilizing optical micrographs of high burn-up mixed oxide fuel. The micrographs were employed to create finite element meshes with the OOF2 software. The meshes were then used to calculate the effective thermal conductivity of the microstructures using the BISON [1] fuel performance code. The new thermal conductivity models were used to calculate thermal profiles at end of life for the fuel pellets. These results were compared to thermal conductivity models from the literature, and comparison between the new finite element-based thermal conductivity model and the Duriez-Lucuta model was favorable.

  1. Microstructural Modeling of Thermal Conductivity of High Burn-up Mixed Oxide Fuel

    SciTech Connect

    Melissa Teague; Michael Tonks; Stephen Novascone; Steven Hayes

    2014-01-01

    Predicting the thermal conductivity of oxide fuels as a function of burn-up and temperature is fundamental to the efficient and safe operation of nuclear reactors. However, modeling the thermal conductivity of fuel is greatly complicated by the radially inhomogeneous nature of irradiated fuel in both composition and microstructure. In this work, radially and temperature-dependent models for effective thermal conductivity were developed utilizing optical micrographs of high burn-up mixed oxide fuel. The micrographs were employed to create finite element meshes with the OOF2 software. The meshes were then used to calculate the effective thermal conductivity of the microstructures using the BISON fuel performance code. The new thermal conductivity models were used to calculate thermal profiles at end of life for the fuel pellets. These results were compared to thermal conductivity models from the literature, and comparison between the new finite element-based thermal conductivity model and the Duriez–Lucuta model was favorable.

  2. Modeling of chemical interactions of fuel rod materials at high temperatures I. Simultaneous dissolution of UO 2 and ZrO 2 by molten Zr in an oxidizing atmosphere

    NASA Astrophysics Data System (ADS)

    Veshchunov, M. S.; Berdyshev, A. V.

    1998-01-01

    Investigations and modeling of high-temperature processes associated with the oxidation of UZrO molten mixtures under various conditions of severe accidents (intact heated fuel rods or relocating melt) are presented on the basis of a thorough analysis of metallographic post-test examination data obtained in the fuel bundle CORA experiments. In Part I a model of simultaneous dissolution of solid UO 2 and ZrO 2 phases by molten Zr in an oxidizing atmosphere (steam) is presented. This modeling is performed on the basis of the generalization of a previously developed model of UO 2 dissolution by molten Zr taking into account the chemical dissolution by convectively stirring melt of a ZrO 2 layer interacting with steam. The model describes the complicated kinetics of these interactions accompanied by precipitation of a ceramic (U, Zr)O 2- x phase in the bulk of the liquid. This process finally leads to complete conversion of the melt into the (U, Zr)O 2- x layer located between UO 2 fuel and ZrO 2 shell. Such a three-layer structure was regularly observed in the CORA post-test metallographic examinations of fuel rods heated above the melting point of Zr cladding ( T ≥ 1950°C).

  3. Chemical degradation of fluorosulfonamide fuel cell membrane polymer model compounds

    NASA Astrophysics Data System (ADS)

    Alsheheri, Jamela M.; Ghassemi, Hossein; Schiraldi, David A.

    2014-12-01

    The durability of a polymer electrolyte fuel cell membrane, along with high proton conductivity and mechanical performance is critical to the success of these energy conversion devices. Extending our work in perfluorinated membrane stability, aromatic trifluoromethyl sulfonamide model compounds were prepared, and their oxidative degradation was examined. The chemical structures for the models were based on mono-, di- and tri-perfluorinated sulfonamide modified phenyl rings. Durability of the model compounds was evaluated by exposure to hydroxyl radicals generated using Fenton reagent and UV irradiation of hydrogen peroxide. LC-MS results for the mono-substituted model compound indicate greater stability to radical oxidation than the di-substituted species; loss of perfluorinated fonamide side chains appears to be an important pathway, along with dimerization and aromatic ring hydroxylation. The tri-substituted model compound also shows loss of side chains, with the mono-substituted compound being a major oxidation product, along with a limited amount of hydroxylation and dimerization of the starting material.

  4. Computational modeling of a direct propane fuel cell

    NASA Astrophysics Data System (ADS)

    Khakdaman, H.; Bourgault, Y.; Ternan, M.

    2011-03-01

    The first two dimensional mathematical model of a complete direct propane fuel cell (DPFC) is described. The governing equations were solved using FreeFem software that uses finite element methods. Robin boundary conditions were used to couple the anode, membrane, and cathode sub-domains successfully. The model showed that a polytetrafluoroethylene membrane having its pores filled with zirconium phosphate (ZrP-PTFE), in a DPFC at 150 °C performed much the same as other electrolytes; Nafion, aqueous H3PO4, and H2SO4 doped polybenzimidazole, when they were used in DPFCs. One advantage of a ZrP-PTFE at 150 °C is that it operates without liquid phase water. As a result corrosion will be much less severe and it may be possible for non-precious metal catalysts to be used. Computational results showed that the thickness of the catalyst layer could be increased sufficiently so that the pressure drop between the reactant and product channels of the interdigitated flow fields is small. By increasing the width of the land and therefore the reactant's contact time with the catalyst it was possible to approach 100% propane conversion. Therefore fuel cell operation with a minimum concentration of propane in the product stream should be possible. Finally computations of the electrical potential in the ZrP phase, the electron flux in the Pt/C phase, and the overpotential in both the anode and cathode catalyst layers showed that serious errors in the model occurred because proton diffusion, caused by the proton concentration gradient, was neglected in the equation for the conservation of protons.

  5. Numerical modeling and simulation of PEM fuel cells: Progress and perspective

    NASA Astrophysics Data System (ADS)

    Song, Guang-Hua; Meng, Hua

    2013-06-01

    This paper provides a comprehensive review on the research and development in multi-scale numerical modeling and simulation of PEM fuel cells. An overview of recent progress in PEM fuel cell modeling has been provided. Fundamental transport phenomena in PEM fuel cells and the corresponding mathematical formulation of macroscale models are analyzed. Various important issues in PEM fuel cell modeling and simulation are examined in detail, including fluid flow and species transport, electron and proton transport, heat transfer and thermal management, liquid water transport and water management, transient response behaviors, and cold-start processes. Key areas for further improvements have also been discussed.

  6. Onboard fuel reformers for fuel cell vehicles: Equilibrium, kinetic and system modeling

    SciTech Connect

    Kreutz, T.G.; Steinbugler, M.M.; Ogden, J.M.

    1996-12-31

    On-board reforming of liquid fuels to hydrogen for use in proton exchange membrane (PEM) fuel cell electric vehicles (FCEVs) has been the subject of numerous investigations. In many respects, liquid fuels represent a more attractive method of carrying hydrogen than compressed hydrogen itself, promising greater vehicle range, shorter refilling times, increased safety, and perhaps most importantly, utilization of the current fuel distribution infrastructure. The drawbacks of on-board reformers include their inherent complexity [for example a POX reactor includes: a fuel vaporizer, a reformer, water-gas shift reactors, a preferential oxidation (PROX) unit for CO cleanup, heat exchangers for thermal integration, sensors and controls, etc.], weight, and expense relative to compressed H{sub 2}, as well as degraded fuel cell performance due to the presence of inert gases and impurities in the reformate. Partial oxidation (POX) of automotive fuels is another alternative for hydrogen production. This paper provides an analysis of POX reformers and a fuel economy comparison of vehicles powered by on-board POX and SRM fuel processors.

  7. An Integrated Model for Identifying Linkages Between the Management of Fuel Treatments, Fire and Ecosystem Services

    NASA Astrophysics Data System (ADS)

    Bart, R. R.; Anderson, S.; Moritz, M.; Plantinga, A.; Tague, C.

    2015-12-01

    Vegetation fuel treatments (e.g. thinning, prescribed burning) are a frequent tool for managing fire-prone landscapes. However, predicting how fuel treatments may affect future wildfire risk and associated ecosystem services, such as forest water availability and streamflow, remains a challenge. This challenge is in part due to the large range of conditions under which fuel treatments may be implemented, as response is likely to vary with species type, rates of vegetation regrowth, meteorological conditions and physiographic properties of the treated site. It is also due to insufficient understanding of how social factors such as political pressure, public demands and economic constraints affect fuel management decisions. To examine the feedbacks between ecological and social dimensions of fuel treatments, we present an integrated model that links a biophysical model that simulates vegetation and hydrology (RHESSys), a fire spread model (WMFire) and an empirical fuel treatment model that accounts for agency decision-making. We use this model to investigate how management decisions affect landscape fuel loads, which in turn affect fire severity and ecosystem services, which feedback to management decisions on fuel treatments. We hypothesize that this latter effect will be driven by salience theory, which predicts that fuel treatments are more likely to occur following major wildfire events. The integrated model provides a flexible framework for answering novel questions about fuel treatments that span social and ecological domains, areas that have previously been treated separately.

  8. Quantum Bundle Description of Quantum Projective Spaces

    NASA Astrophysics Data System (ADS)

    Ó Buachalla, Réamonn

    2012-12-01

    We realise Heckenberger and Kolb's canonical calculus on quantum projective ( N - 1)-space C q [ C p N-1] as the restriction of a distinguished quotient of the standard bicovariant calculus for the quantum special unitary group C q [ SU N ]. We introduce a calculus on the quantum sphere C q [ S 2 N-1] in the same way. With respect to these choices of calculi, we present C q [ C p N-1] as the base space of two different quantum principal bundles, one with total space C q [ SU N ], and the other with total space C q [ S 2 N-1]. We go on to give C q [ C p N-1] the structure of a quantum framed manifold. More specifically, we describe the module of one-forms of Heckenberger and Kolb's calculus as an associated vector bundle to the principal bundle with total space C q [ SU N ]. Finally, we construct strong connections for both bundles.

  9. Robust incoherent fiber optic bundle decoder

    NASA Technical Reports Server (NTRS)

    Roberts, Hilary E. (Inventor); DePlachett, Charles P. (Inventor); Deason, Brent E. (Inventor); Pilgrim, Robert A. (Inventor); Sanford, Harold S. (Inventor)

    2003-01-01

    Apparatus and method for calibrating an incoherent fiber optic bundle for use in transmitting visual or infrared coherent images. The apparatus includes a computer, a computer video monitor, an objective lens adjacent to the input end of the bundle, a second lens adjacent the output end of the bundle, and a CCD camera. The camera transmits video data to the monitor to produce an illuminated fiber optic image. The coordinates for the center of each fiber is found through an imaging process and the output fibers coordinates are related to the input fiber coordinates and processed in the computer to produce a mapping lookup-table (LUT) unique to the specific fiber bundle. Remapping of the LUT due to changes in the lens focus, CCD camera, or the addition of an infrared filter is accomplished by a software utility in the computer.

  10. Heat and mass transfer in turbulent flow of the N/sub 2/O/sub 4/ /r reversible/ 2NO/sub 2/ /r reversible/ 2NO + O/sub 2/ system in a rod bundle contained in a hexagonal jacket

    SciTech Connect

    Besedina, T.V.; Tverkovkin, B.E.; Udot, A.V.; Yakushev, A.P.

    1988-08-01

    A model is proposed for heat and mass transfer in a flowing dissociating liquid coolant in a nuclear fuel rod bundle in a hexagonal jacket. The temperature pattern in the liquid and in a heat-conducting rod was determined from general solutions to the conduction equations for rods and shells. Calculations are specifically constructed for determining the longitudinal flow and heat transfer of a N/sub 2//sub 4/ coolant in the peripheral (lateral and corner) channels of the rod groups. The turbulent transfer coefficients were calculated from Buleev's model. The finite-element method was used to derive unknown quantities of the velocity and temperature. Expressions were also found for modeling heat transfer in the frozen and chemically reacting flow components of the coolant. The algorithm is intended for reducing the temperature nonuniformity in parametric fuel rod bundle design calculations.

  11. Annular Flow Liquid Film Dynamics in Pipes and Bod Bundle

    NASA Astrophysics Data System (ADS)

    Ju, Peng

    improvement on the prediction accuracy compared to other models. In order to develop detailed model of the annular two-phase flow, the average liquid film thickness in rod bundle is an important parameter. It can significantly affect the occurrence of dryout and post-dryout phenomena on heater surfaces. Most research on film thickness has been focused on pipe flows. Data in rod bundle geometry are very limited. However data in rod bundle geometry is much more valuable for reactor safety modeling and calculations. Because of this, an experiment to measure liquid film thickness has been performed for the air-water annular flow in an 8x8 BWR rod bundle. Film thickness data were obtained both on the rods and on the channel wall. Data were recorded at four axial locations within the rod bundle. This included locations just before and just after a spacer grid. This allows the spacer grids effect on the film thickness to be evaluated. The minimum film thickness was measured at the center rod. Also, the presence of the spacer grid results in reduced film thickness. Finally, the models for film thickness and interfacial friction factor in pipes have been implemented into rod bundle geometry with some approaches. These approaches are mainly focused on the length scale and flow conditions. With these methods, the correlations can be successfully used for rod bundle geometry.

  12. Modeling efficiency and water balance in PEM fuel cell systems with liquid fuel processing and hydrogen membranes

    NASA Astrophysics Data System (ADS)

    Pearlman, Joshua B.; Bhargav, Atul; Shields, Eric B.; Jackson, Gregory S.; Hearn, Patrick L.

    Integrating PEM fuel cells effectively with liquid hydrocarbon reforming requires careful system analysis to assess trade-offs associated with H 2 production, purification, and overall water balance. To this end, a model of a PEM fuel cell system integrated with an autothermal reformer for liquid hydrocarbon fuels (modeled as C 12H 23) and with H 2 purification in a water-gas-shift/membrane reactor is developed to do iterative calculations for mass, species, and energy balances at a component and system level. The model evaluates system efficiency with parasitic loads (from compressors, pumps, and cooling fans), system water balance, and component operating temperatures/pressures. Model results for a 5-kW fuel cell generator show that with state-of-the-art PEM fuel cell polarization curves, thermal efficiencies >30% can be achieved when power densities are low enough for operating voltages >0.72 V per cell. Efficiency can be increased by operating the reformer at steam-to-carbon ratios as high as constraints related to stable reactor temperatures allow. Decreasing ambient temperature improves system water balance and increases efficiency through parasitic load reduction. The baseline configuration studied herein sustained water balance for ambient temperatures ≤35 °C at full power and ≤44 °C at half power with efficiencies approaching ∼27 and ∼30%, respectively.

  13. Model of cathode reaction resistance in molten carbonate fuel cells

    SciTech Connect

    Morita, H.; Mugikura, Y.; Izaki, Y.; Watanabe, T.; Abe, T.

    1998-05-01

    A model of the performance of a molten carbonate fuel cell (MCFC) is required to estimate the efficiency of an MCFC power plant or to simulate the internal state of a stack. The model should provide an accurate representation of the performance under various operating conditions. However, the performance estimated by previous models has been found to deviate from the measured performance under low oxygen and carbon dioxide cathode partial pressures. To solve this problem, the authors carried out a systematic analysis of the performance of several bench-scale cells operated under various cathode gas conditions and investigated a model of cathode polarization according to the oxygen reduction mechanism in molten carbonate. As a result, it has been clarified that the behavior of cathode polarization under various conditions is described well by the dependence of mixed diffusion of superoxide ion O{sub 2}{sup {minus}} and CO{sub 2} in the melt on the assumed partial pressures at each total operating pressure.

  14. Aviation Fuel Tracer Simulation: Model Intercomparison and Implications

    NASA Technical Reports Server (NTRS)

    Danilin, M. Y.; Fahey, D. W.; Schumann, U.; Prather, M. J.; Penner, J. E.; Ko, M. K. W.; Weisenstein, D. K.; Jackman, C. H.; Pitari, G.; Koehler, I.; Sausen, R.; Weaver, C. J.; Douglass, A. R.; Connell, P. S.; Kinnison, D. E.; Dentener, F. J.; Fleming, E. L.; Berntsen, T. K.; Isaksen, I. S. A.

    1998-01-01

    An upper limit for aircraft-produced perturbations to aerosols and gaseous exhaust products in the upper troposphere and lower stratosphere (UT/LS) is derived using the 1992 aviation fuel tracer simulation performed by eleven global atmospheric models. Key findings are that subsonic aircraft emissions: (1) have not been responsible for the observed water vapor trends at 40degN; (2) could be a significant source of soot mass near 12 km, but not at 20 km; (3) might cause a noticeable increase in the background sulfate aerosol surface area and number densities (but not mass density) near the northern mid-latitude tropopause; and (4) could provide a global, annual mean top of the atmosphere radiative forcing up to +0.006 W/sq m and -0.013 W/sq m due to emitted soot and sulfur, respectively.

  15. Aviation Fuel Tracer Simulation: Model Intercomparison and Implications

    NASA Technical Reports Server (NTRS)

    Danilin, M. Y.; Fahey, D. W.; Schumann, U.; Prather, M. J.; Penner, J. E.; Ko, M. K. W.; Weisenstein, D. K.; Jackman, C. H.; Pitari, G.; Koehler, I.; Sausen, R.; Weaver, C. J.; Douglass, A. R.; Connell, P. S.; Kinnison, D. E.; Dentener, F. J.; Fleming, E. L.; Berntsen, T. K.; Isaksen, I. S. A.; Haywood, J. M.

    1998-01-01

    An upper limit for aircraft-produced perturbations to aerosols and gaseous exhaust products in the upper troposphere and lower stratosphere (UT/LS) is derived using the 1992 aviation fuel tracer simulation performed by eleven global atmospheric models. Key Endings are that subsonic aircraft emissions: (1) have not be responsible for the observed water vapor trends at 40 deg N; (2) could be a significant source of soot mass near 12 km, but not at 20 km; (3) might cause a noticeable increase in the background sulfate aerosol surface area and number densities (but not mass density) near the northern mid-latitude tropopause; and (4) could provide a global, annual mean top of the atmosphere radiative forcing up to +0.006 W/sq m and -0.013 W/sq m due to emitted soot and sulfur, respectively.

  16. Sealed fiber-optic bundle feedthrough

    DOEpatents

    Tanner, Carol E.

    2002-01-01

    A sealed fiber-optic bundle feedthrough by which a multitude of fiber-optic elements may be passed through an opening or port in a wall or structure separating two environments at different pressures or temperatures while maintaining the desired pressure or temperature in each environment. The feedthrough comprises a rigid sleeve of suitable material, a bundle of individual optical fibers, and a resin-based sealing material that bonds the individual optical fibers to each other and to the rigid sleeve.

  17. Verify Super Double-Heterogeneous Spherical Lattice Model for Equilibrium Fuel Cycle Analysis AND HTR Spherical Super Lattice Model for Equilibrium Fuel Cycle Analysis

    SciTech Connect

    Gray S. Chang

    2005-11-01

    The currently being developed advanced High Temperature gas-cooled Reactors (HTR) is able to achieve a simplification of safety through reliance on innovative features and passive systems. One of the innovative features in these HTRs is reliance on ceramic-coated fuel particles to retain the fission products even under extreme accident conditions. Traditionally, the effect of the random fuel kernel distribution in the fuel pebble / block is addressed through the use of the Dancoff correction factor in the resonance treatment. However, the Dancoff correction factor is a function of burnup and fuel kernel packing factor, which requires that the Dancoff correction factor be updated during Equilibrium Fuel Cycle (EqFC) analysis. An advanced KbK-sph model and whole pebble super lattice model (PSLM), which can address and update the burnup dependent Dancoff effect during the EqFC analysis. The pebble homogeneous lattice model (HLM) is verified by the burnup characteristics with the double-heterogeneous KbK-sph lattice model results. This study summarizes and compares the KbK-sph lattice model and HLM burnup analyzed results. Finally, we discuss the Monte-Carlo coupling with a fuel depletion and buildup code - ORIGEN-2 as a fuel burnup analysis tool and its PSLM calculated results for the HTR EqFC burnup analysis.

  18. Energy Band Gap Study of Semiconducting Single Walled Carbon Nanotube Bundle

    NASA Technical Reports Server (NTRS)

    Elkadi, Asmaa; Decrossas, Emmanuel; El-Ghazaly, Samir

    2013-01-01

    The electronic properties of multiple semiconducting single walled carbon nanotubes (s-SWCNTs) considering various distribution inside a bundle are studied. The model derived from the proposed analytical potential function of electron density for na individual s-SWCNT is general and can be easily applied to multiple nanotubes. This work demonstrates that regardless the number of carbon nanotubes, the strong coupling occurring between the closet neighbors reduces the energy band gap of the bundle by 10%. As expected, the coupling is strongly dependent on the distance separating the s-SWCNTs. In addition, based on the developed model, it is proposed to enhance this coupling effect by applying an electric field across the bundle to significantly reduce the energy band gap of the bundle by 20%.

  19. Energy Band Gap Study of Semiconducting Single Walled Carbon Nanotube Bundle

    NASA Technical Reports Server (NTRS)

    Elkadi, Asmaa; Decrossas, Emmanuel; El-Ghazaly, Samir

    2013-01-01

    The electronic properties of multiple semiconducting single walled carbon nanotubes (s-SWCNTs) considering various distribution inside a bundle are studied. The model derived from the proposed analytical potential function of the electron density for an individual s-SWCNT is general and can be easily applied to multiple nanotubes. This work demonstrates that regardless the number of carbon nanotubes, the strong coupling occurring between the closest neighbours reduces the energy band gap of the bundle by 10%. As expected, the coupling is strongly dependent on the distance separating the s-SWCNTs. In addition, based on the developed model, it is proposed to enhance this coupling effect by applying an electric field across the bundle to significantly reduce the energy band gap of the bundle by 20%.

  20. Creep rupture of fiber bundles: A molecular dynamics investigation

    NASA Astrophysics Data System (ADS)

    Linga, G.; Ballone, P.; Hansen, Alex

    2015-08-01

    The creep deformation and eventual breaking of polymeric samples under a constant tensile load F is investigated by molecular dynamics based on a particle representation of the fiber bundle model. The results of the virtual testing of fibrous samples consisting of 40 000 particles arranged on Nc=400 chains reproduce characteristic stages seen in the experimental investigations of creep in polymeric materials. A logarithmic plot of the bundle lifetime τ versus load F displays a marked curvature, ruling out a simple power-law dependence of τ on F . A power law τ ˜F-4 , however, is recovered at high load. We discuss the role of reversible bond breaking and formation on the eventual fate of the sample and simulate a different type of creep testing, imposing a constant stress rate on the sample up to its breaking point. Our simulations, relying on a coarse-grained representation of the polymer structure, introduce new features into the standard fiber bundle model, such as real-time dynamics, inertia, and entropy, and open the way to more detailed models, aiming at material science aspects of polymeric fibers, investigated within a sound statistical mechanics framework.

  1. Neurotrophin-3 Is Involved in the Formation of Apical Dendritic Bundles in Cortical Layer 2 of the Rat

    PubMed Central

    Wintzer, Marie; Kurotani, Tohru; Konishi, Tomokazu; Ichinohe, Noritaka; Rockland, Kathleen S.

    2010-01-01

    Apical dendritic bundles from pyramidal neurons are a prominent feature of cortical neuropil but with significant area specializations. Here, we investigate mechanisms of bundle formation, focusing on layer (L) 2 bundles in rat granular retrosplenial cortex (GRS), a limbic area implicated in spatial memory. By using microarrays, we first searched for genes highly and specifically expressed in GRS L2 at postnatal day (P) 3 versus GRS L2 at P12 (respectively, before and after bundle formation), versus GRS L5 (at P3), and versus L2 in barrel field cortex (BF) (at P3). Several genes, including neurotrophin-3 (NT-3), were identified as transiently and specifically expressed in GRS L2. Three of these were cloned and confirmed by in situ hybridization. To test that NT-3–mediated events are causally involved in bundle formation, we used in utero electroporation to overexpress NT-3 in other cortical areas. This produced prominent bundles of dendrites originating from L2 neurons in BF, where L2 bundles are normally absent. Intracellular biocytin fills, after physiological recording in vitro, revealed increased dendritic branching in L1 of BF. The controlled ectopic induction of dendritic bundles identifies a new role for NT-3 and a new in vivo model for investigating dendritic bundles and their formation. PMID:19447860

  2. Modeling, design and energy management of fuel cell systems for aircraft

    NASA Astrophysics Data System (ADS)

    Bradley, Thomas Heenan

    Fuel cell powered aircraft have been of long term interest to the aviation community because of their potential for improved performance and environmental compatibility. Only recently have improvements in the technological readiness of fuel cell powerplants enabled the first aviation applications of fuel cell technology. Based on the results of conceptual design studies and a few technology demonstration projects, there has emerged a widespread understanding of the importance of fuel cell powerplants for near-term and future aviation applications. Despite this, many aspects of the performance, design and construction of robust and optimized fuel cell powered aircraft have not been fully explored. This goal of this research then is to develop an improved understanding of the performance, design characteristics, design tradeoffs and viability of fuel cell powerplants for aviation applications. To accomplish these goals, new modeling, design, and experimental tools are developed, validated and applied to the design of fuel cell powered unmanned aerial vehicles. First, a general sub-system model of fuel cell powerplant performance, mass and geometry is derived from experimental and theoretical investigations of a fuel cell powerplant that is developed in hardware. These validated fuel cell subsystem models are then incorporated into a computer-based, application-integrated, parametric, and optimizeable design environment that allows for the concurrent design of the aircraft and fuel cell powerplant. The advanced modeling and design techniques required for modern aircraft design (including multi-disciplinary analysis, performance optimization under uncertainty and system performance validation), are applied at the fuel cell subsystem level and are linked to aircraft performance and design metrics. These tools and methods are then applied to the analysis and design of fuel cell powered aircraft in a series of case studies and design experiments. Based on the results of

  3. Appendix model performance - model documentation renewable fuels module of the National Energy Modeling System

    SciTech Connect

    Not Available

    1994-09-01

    This appendix discusses performance aspects of the Renewable Fuels Module (RFM). It is intended to present the pattern of response of the RFM to typical changes in its major inputs from other NEMS modules. The overall approach of this document, with the particular statistics presented, is designed to be comparable with similar analyses conducted for all of the modules of NEMS. While not always applicable, the overall approach has been to produce analyses and statistics that are as comparable as possible with model developer`s reports for other NEMS modules. Those areas where the analysis is somewhat limited or constrained are discussed. Because the RFM consists of independent submodules, this appendix is broken down by submodule.

  4. Determinants of contractile forces generated in disorganized actomyosin bundles.

    PubMed

    Kim, Taeyoon

    2015-04-01

    Actomyosin machinery is a fundamental engine consisting mostly of actin filaments, molecular motors, and passive cross-linkers, generating mechanical forces required for biological processes of non-muscle cells such as cell migration, cytokinesis, and morphogenesis. Although the molecular and physical properties of key elements in the actomyosin machinery have been characterized well, it still remains unclear how macroscopic force buildup and dissipation in actomyosin networks and bundles depend on the microscopic properties of individual cytoskeletal components and their local interactions. To bridge such a gap between macroscopic and microscopic scales, we have developed a three-dimensional computational model of actomyosin bundles clamped to an elastic substrate with minimal components: actin filaments, passive cross-linkers, and active motors. Our model accounts for several key features neglected by previous studies despite their significance for force generation, such as realistic structure and kinetics of the motors. Using the model, we systematically investigated how net tension in actomyosin bundles is governed via interplay between motors and cross-linkers. We demonstrated motors can generate large tension on a bundle in the absence of cross-linkers in a very inefficient, unstable manner. Cross-linkers help motors to generate their maximum potential forces as well as enhance overall connectivity, leading to much higher efficiency and stability. We showed further that the cross-linkers behave as a molecular clutch with tunable friction which has quite distinct effects on net tension depending on their cross-linking angles. We also examined the source of symmetry breaking between tensile and compressive forces during tension generation process and discussed how the length and dynamics of actin filaments and the stiffness of the elastic substrate can affect the generated tension. PMID:25103419

  5. Modeling a failure criterion for U-Mo/Al dispersion fuel

    NASA Astrophysics Data System (ADS)

    Oh, Jae-Yong; Kim, Yeon Soo; Tahk, Young-Wook; Kim, Hyun-Jung; Kong, Eui-Hyun; Yim, Jeong-Sik

    2016-05-01

    The breakaway swelling in U-Mo/Al dispersion fuel is known to be caused by large pore formation enhanced by interaction layer (IL) growth between fuel particles and Al matrix. In this study, a critical IL thickness was defined as a criterion for the formation of a large pore in U-Mo/Al dispersion fuel. Specifically, the critical IL thickness is given when two neighboring fuel particles come into contact with each other in the developed IL. The model was verified using the irradiation data from the RERTR tests and KOMO-4 test. The model application to full-sized sample irradiations such as IRISs, FUTURE, E-FUTURE, and AFIP-1 tests resulted in conservative predictions. The parametric study revealed that the fuel particle size and the homogeneity of the fuel particle distribution are influential for fuel performance.

  6. Single-Bundle Versus Double-Bundle Acl Reconstructions in Isolation and in Conjunction with Extra-Articular Iliotibial Band Tenodesis

    PubMed Central

    Butler, Paul D.; Mellecker, Chloe J.; Rudert, M. James; Albright, John P.

    2013-01-01

    Background Intra-articular anterior cruciate ligament (ACL) reconstruction has been the primary treatment option for isolated ACL injuries for many years. An anatomic double-bundle reconstruction has been devised in an effort to improve rotational control. The role of the extra-articular iliotibial band tenodesis in ACL injuries has evolved from primary treatment, to an adjuvant secondary procedure, to being used more selectively in revision ACL reconstructions. Hypotheses: 1) Single-bundle and doublebundle intra-articular ACL reconstructions will both restore pre-injury laxity measurements in an isolated ACL injury cadaver model. 2) The deep iliotibial band structures contribute to rotational control and in a dual ACL + ITB injury cadaver model, ACL reconstruction alone cannot restore rotational control. Study Design Controlled Laboratory Design Methods 17 fresh frozen cadavers received intra-articular reconstructions, seven single-bundle and ten double-bundle; laxity was measured with the ACL intact/ITB intact, ACL reconstructed/ITB intact, after cutting the ITB, and after an ITB tenodesis procedure; laxity measurements of anterior tibial translation(ATT) and internal rotation(IR) were measured following applications of an anterior shear force, an internal torque and a coupled anterior shear force-internal torque at 30 and 90 degrees of flexion. Results Single-bundle and double-bundle ACL reconstructions both restored IR to a native knee state under isolated internal torques and under coupled forces. Both reconstruction techniques also re-established anterior tibial translation to at least the pre-ACL injury level, with over-constraint in the double-bundle subgroup [5.00 (+2.11) to 3.50(+1.18), p-value 0.026] under coupled loads at 30 degrees of flexion. With the individual ACL reconstructions held constant, under coupled forces mean IR increased in the single-bundle subgroup [13.7(+1.1) to 17.6(+1.2), p-value 0.004] and the double-bundle subgroup [9.5(+1.0) to

  7. Reflood completion report: Volume 1. A phenomenological thermal-hydraulic model of hot rod bundles experiencing simultaneous bottom and top quenching and an optimization methodology for closure development

    SciTech Connect

    Nelson, R.A. Jr.; Pimentel, D.A.; Jolly-Woodruff, S.; Spore, J.

    1998-04-01

    In this report, a phenomenological model of simultaneous bottom-up and top-down quenching is developed and discussed. The model was implemented in the TRAC-PF1/MOD2 computer code. Two sets of closure relationships were compared within the study, the Absolute set and the Conditional set. The Absolute set of correlations is frequently viewed as the pure set because the correlations is frequently viewed as the pure set because the correlations utilize their original coefficients as suggested by the developer. The Conditional set is a modified set of correlations with changes to the correlation coefficient only. Results for these two sets indicate quite similar results. This report also summarizes initial results of an effort to investigate nonlinear optimization techniques applied to the closure model development. Results suggest that such techniques can provide advantages for future model development work, but that extensive expertise is required to utilize such techniques (i.e., the model developer must fully understand both the physics of the process being represented and the computational techniques being employed). The computer may then be used to improve the correlation of computational results with experiments.

  8. Quantum Turbulence: Vortex Bundle Collapse and Kolmogorov Spectrum

    NASA Astrophysics Data System (ADS)

    Nemirovskii, Sergey K.

    2015-12-01

    The statement of problem is motivated by the idea of modeling the classical turbulence with a set of chaotic quantized vortex filaments in superfluids. Among various arguments supporting the idea of quasi-classic behavior of quantum turbulence, the strongest, probably, is the k dependence of the spectra of energy, E(k)∝ k^{-5/3} obtained in numerical simulations and experiments. At the same time, the mechanism of classical vs. quantum turbulence is not clarified and the source of the k^{-5/3} dependence is unclear. In this work, we concentrated on the nonuniform vortex bundles. This choice is related to the actively discussed question concerning a role of collapses in the vortex dynamics in formation of turbulent spectra. We demonstrate that the nonuniform vortex bundles, which appear in result of nonlinear vortex dynamics, generates an energy spectrum which is close to the Kolmogorov dependence ∝ k^{-5/3}.

  9. Nanostructured Composites: Effective Mechanical Property Determination of Nanotube Bundles

    NASA Technical Reports Server (NTRS)

    Saether, E.; Pipes, R. B.; Frankland, S. J. V.

    2002-01-01

    Carbon nanotubes naturally tend to form crystals in the form of hexagonally packed bundles or ropes that should exhibit a transversely isotropic constitutive behavior. Although the intratube axial stiffness is on the order of 1 TPa due to a strong network of delocalized bonds, the intertube cohesive strength is orders of magnitude less controlled by weak, nonbonding van der Waals interactions. An accurate determination of the effective mechanical properties of nanotube bundles is important to assess potential structural applications such as reinforcement in future composite material systems. A direct method for calculating effective material constants is developed in the present study. The Lennard-Jones potential is used to model the nonbonding cohesive forces. A complete set of transverse moduli are obtained and compared with existing data.

  10. A Modeling and Experimental Framework for Controls for Fuel Cells

    SciTech Connect

    Lu, Ning; Sun, Xin; Khaleel, Mohammad A.

    2006-03-15

    OLID oxide fuel cells (SOFCs) hold the promise of playing a major role in future power grids either as distributed generators (DGs) or as stand-alone power units because of their higher efficiency, lower emission, modular structure, and higher generation capability over other DGs or batteries. SOFCs operate at temperatures ranging from 600 C to 1000 C. To avoid thermal shock during heat-up as well as operation, inlet flow (fuel and air) temperatures and speeds must be carefully controlled to maintain the temperature gradient within the SOFC stack. Furthermore, increased fuel flow tends to decrease the fuel utilization and increase uniformity of the reaction rates across the active area, while decreased fuel flow tends to increase the fuel utilization but it can cause local fuel depletion and cold spots that exacerbate temperature non-uniformities [1]. Therefore, when maintaining reasonable fuel utilization at any loading level, the air flow rate and the fuel flow rate must be adjusted so that the fuel distribution and temperature gradient across the cell is more uniform.

  11. Development of Design Technology on Thermal-Hydraulic Performance in Tight-Lattice Rod Bundles: II - Rod Bowing Effect on Boiling Transition under Transient Conditions

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Tamai, Hidesada; Kureta, Masatoshi; Ohnuki, Akira; Akimoto, Hajime

    A thermal-hydraulic feasibility project for an Innovative Water Reactor for Flexible fuel cycle (FLWR) has been performed since 2002. In this R&D project, large-scale thermal-hydraulic tests, several model experiments and development of advanced numerical analysis codes have been carried out. In this paper, we describe the critical power characteristics in a 37-rod tight-lattice bundle with rod bowing under transient states. It is observed that transient Boiling Transition (BT) always occurs axially at exit elevation of upper high-heat-flux region and transversely in the central area of the bundle, which is same as that under steady state. For the postulated power increase and flow decrease cases that may be possibly met in a normal operation of the FLWR, it is confirmed that no BT occurs when Initial Critical Power Ratio (ICPR) is 1.3. Moreover, when the transients are run under severer ICPR that causes BT, the transient critical powers are generally same as the steady ones. The experiments are analyzed with a modified TRAC-BFI code, where Japan Atomic Energy Agency (JAEA) newest critical power correlation is implemented for the BT judgement. The code shows good prediction for the occurrence or the non occurrence of the BT and predicts the BT starting time conservatively. Traditional quasi-steady state prediction of the transient BT is confirmed being applicable for the postulated abnormal transient processes in the tight-lattice bundle with rod bowing.

  12. External Verification of the Bundle Adjustment in Photogrammetric Software Using the Damped Bundle Adjustment Toolbox

    NASA Astrophysics Data System (ADS)

    Börlin, Niclas; Grussenmeyer, Pierre

    2016-06-01

    The aim of this paper is to investigate whether the Matlab-based Damped Bundle Adjustment Toolbox (DBAT) can be used to provide independent verification of the BA computation of two popular software—PhotoModeler (PM) and PhotoScan (PS). For frame camera data sets with lens distortion, DBAT is able to reprocess and replicate subsets of PM results with high accuracy. For lens-distortion-free data sets, DBAT can furthermore provide comparative results between PM and PS. Data sets for the discussed projects are available from the authors. The use of an external verification tool such as DBAT will enable users to get an independent verification of the computations of their software. In addition, DBAT can provide computation of quality parameters such as estimated standard deviations, correlation between parameters, etc., something that should be part of best practice for any photogrammetric software. Finally, as the code is free and open-source, users can add computations of their own.

  13. GREET 1.0 -- Transportation fuel cycles model: Methodology and use

    SciTech Connect

    Wang, M.Q.

    1996-06-01

    This report documents the development and use of the Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model. The model, developed in a spreadsheet format, estimates the full fuel-cycle emissions and energy use associated with various transportation fuels for light-duty vehicles. The model calculates fuel-cycle emissions of five criteria pollutants (volatile organic compounds, Co, NOx, SOx, and particulate matter measuring 10 microns or less) and three greenhouse gases (carbon dioxide, methane, and nitrous oxide). The model also calculates the total fuel-cycle energy consumption, fossil fuel consumption, and petroleum consumption using various transportation fuels. The GREET model includes 17 fuel cycles: petroleum to conventional gasoline, reformulated gasoline, clean diesel, liquefied petroleum gas, and electricity via residual oil; natural gas to compressed natural gas, liquefied petroleum gas, methanol, hydrogen, and electricity; coal to electricity; uranium to electricity; renewable energy (hydropower, solar energy, and wind) to electricity; corn, woody biomass, and herbaceous biomass to ethanol; and landfill gases to methanol. This report presents fuel-cycle energy use and emissions for a 2000 model-year car powered by each of the fuels that are produced from the primary energy sources considered in the study.

  14. Developing custom fire behavior fuel models from ecologically complex fuel structures for upper Atlantic Coastal Plain forests.

    SciTech Connect

    Parresol, Bernard, R.; Scott, Joe, H.; Andreu, Anne; Prichard, Susan; Kurth, Laurie

    2012-01-01

    Currently geospatial fire behavior analyses are performed with an array of fire behavior modeling systems such as FARSITE, FlamMap, and the Large Fire Simulation System. These systems currently require standard or customized surface fire behavior fuel models as inputs that are often assigned through remote sensing information. The ability to handle hundreds or thousands of measured surface fuelbeds representing the fine scale variation in fire behavior on the landscape is constrained in terms of creating compatible custom fire behavior fuel models. In this study, we demonstrate an objective method for taking ecologically complex fuelbeds from inventory observations and converting those into a set of custom fuel models that can be mapped to the original landscape. We use an original set of 629 fuel inventory plots measured on an 80,000 ha contiguous landscape in the upper Atlantic Coastal Plain of the southeastern United States. From models linking stand conditions to component fuel loads, we impute fuelbeds for over 6000 stands. These imputed fuelbeds were then converted to fire behavior parameters under extreme fuel moisture and wind conditions (97th percentile) using the fuel characteristic classification system (FCCS) to estimate surface fire rate of spread, surface fire flame length, shrub layer reaction intensity (heat load), non-woody layer reaction intensity, woody layer reaction intensity, and litter-lichen-moss layer reaction intensity. We performed hierarchical cluster analysis of the stands based on the values of the fire behavior parameters. The resulting 7 clusters were the basis for the development of 7 custom fire behavior fuel models from the cluster centroids that were calibrated against the FCCS point data for wind and fuel moisture. The latter process resulted in calibration against flame length as it was difficult to obtain a simultaneous calibration against both rate of spread and flame length. The clusters based on FCCS fire behavior

  15. Application of Thermochemical Modeling to Assessment/Evaluation of Nuclear Fuel Behavior

    SciTech Connect

    Besmann, Theodore M; McMurray, Jake W; Simunovic, Srdjan

    2016-01-01

    The combination of new fuel compositions and higher burn-ups envisioned for the future means that representing fuel properties will be much more important, and yet more complex. Behavior within the oxide fuel rods will be difficult to model owing to the high temperatures, and the large number of elements generated and their significant concentrations that are a result of fuels taken to high burn-up. This unprecedented complexity offers an enormous challenge to the thermochemical understanding of these systems and opportunities to advance solid solution models to describe these materials. This paper attempts to model and simulate that behavior using an oxide fuels thermochemical description to compute the equilibrium phase state and oxygen potential of LWR fuel under irradiation.

  16. Modeling of the performance of weapons MOX fuel in light water reactors

    SciTech Connect

    Alvis, J.; Bellanger, P.; Medvedev, P.G.; Peddicord, K.L.; Gellene, G.I.

    1999-05-01

    Both the Russian Federation and the US are pursing mixed uranium-plutonium oxide (MOX) fuel in light water reactors (LWRs) for the disposition of excess plutonium from disassembled nuclear warheads. Fuel performance models are used which describe the behavior of MOX fuel during irradiation under typical power reactor conditions. The objective of this project is to perform the analysis of the thermal, mechanical, and chemical behavior of weapons MOX fuel pins under LWR conditions. If fuel performance analysis indicates potential questions, it then becomes imperative to assess the fuel pin design and the proposed operating strategies to reduce the probability of clad failure and the associated release of radioactive fission products into the primary coolant system. Applying the updated code to anticipated fuel and reactor designs, which would be used for weapons MOX fuel in the US, and analyzing the performance of the WWER-100 fuel for Russian weapons plutonium disposition are addressed in this report. The COMETHE code was found to do an excellent job in predicting fuel central temperatures. Also, despite minor predicted differences in thermo-mechanical behavior of MOX and UO{sub 2} fuels, the preliminary estimate indicated that, during normal reactor operations, these deviations remained within limits foreseen by fuel pin design.

  17. The FIT 2.0 Model - Fuel-cycle Integration and Tradeoffs

    SciTech Connect

    Steven J. Piet; Nick R. Soelberg; Layne F. Pincock; Eric L. Shaber; Gregory M Teske

    2011-06-01

    All mass streams from fuel separation and fabrication are products that must meet some set of product criteria – fuel feedstock impurity limits, waste acceptance criteria (WAC), material storage (if any), or recycle material purity requirements such as zirconium for cladding or lanthanides for industrial use. These must be considered in a systematic and comprehensive way. The FIT model and the “system losses study” team that developed it [Shropshire2009, Piet2010b] are steps by the Fuel Cycle Technology program toward an analysis that accounts for the requirements and capabilities of each fuel cycle component, as well as major material flows within an integrated fuel cycle. This will help the program identify near-term R&D needs and set longer-term goals. This report describes FIT 2, an update of the original FIT model.[Piet2010c] FIT is a method to analyze different fuel cycles; in particular, to determine how changes in one part of a fuel cycle (say, fuel burnup, cooling, or separation efficiencies) chemically affect other parts of the fuel cycle. FIT provides the following: Rough estimate of physics and mass balance feasibility of combinations of technologies. If feasibility is an issue, it provides an estimate of how performance would have to change to achieve feasibility. Estimate of impurities in fuel and impurities in waste as function of separation performance, fuel fabrication, reactor, uranium source, etc.

  18. Nerve Bundles and Deep Dyspareunia in Endometriosis.

    PubMed

    Williams, Christina; Hoang, Lien; Yosef, Ali; Alotaibi, Fahad; Allaire, Catherine; Brotto, Lori; Fraser, Ian S; Bedaiwy, Mohamed A; Ng, Tony L; Lee, Anna F; Yong, Paul J

    2016-07-01

    The etiology of deep dyspareunia in endometriosis is unclear. Our objective was to determine whether nerve bundle density in the cul-de-sac/uterosacrals (zone II) is associated with deep dyspareunia in women with endometriosis. We conducted a blinded retrospective immunohistochemistry study (n = 58) at a tertiary referral center (2011-2013). Patients were stringently phenotyped into a study group and 2 control groups. The study group (tender endometriosis, n = 29) consisted of patients with deep dyspareunia, a tender zone II on examination, and an endometriosis lesion in zone II excised at surgery. Control group 1 (nontender endometriosis, n = 17) consisted of patients without deep dyspareunia, a nontender zone II on examination, and an endometriosis lesion in zone II excised at surgery. Control group 2 (tender nonendometriosis, n = 12) consisted of patients with deep dyspareunia, a tender zone II on examination, and a nonendometriosis lesion (eg, normal histology) in zone II excised at surgery. Protein gene product 9.5 (PGP9.5) immunohistochemistry was performed to identify nerve bundles (nerve fibers surrounded by perineurium) in the excised zone II lesion. PGP9.5 nerve bundle density (bundles/high powered field [HPF]) was then scored by a pathologist blinded to the group. We found a significant difference in PGP9.5 nerve bundle density between the 3 groups (analysis of variance, F2,55 = 6.39, P = .003). Mean PGP9.5 nerve bundle density was significantly higher in the study group (1.16 ± 0.56 bundles/HPF [±standard deviation]) compared to control group 1 (0.65 ± 0.36, Tukey test, P = .005) and control group 2 (0.72 ± 0.56, Tukey test, P = .044). This study provides evidence that neurogenesis in the cul-de-sac/uterosacrals may be an etiological factor for deep dyspareunia in endometriosis. PMID:26711313

  19. Mechanism of Actin Filament Bundling by Fascin

    SciTech Connect

    Jansen, Silvia; Collins, Agnieszka; Yang, Changsong; Rebowski, Grzegorz; Svitkina, Tatyana; Dominguez, Roberto

    2013-03-07

    Fascin is the main actin filament bundling protein in filopodia. Because of the important role filopodia play in cell migration, fascin is emerging as a major target for cancer drug discovery. However, an understanding of the mechanism of bundle formation by fascin is critically lacking. Fascin consists of four {beta}-trefoil domains. Here, we show that fascin contains two major actin-binding sites, coinciding with regions of high sequence conservation in {beta}-trefoil domains 1 and 3. The site in {beta}-trefoil-1 is located near the binding site of the fascin inhibitor macroketone and comprises residue Ser-39, whose phosphorylation by protein kinase C down-regulates actin bundling and formation of filopodia. The site in {beta}-trefoil-3 is related by pseudo-2-fold symmetry to that in {beta}-trefoil-1. The two sites are {approx}5 nm apart, resulting in a distance between actin filaments in the bundle of {approx}8.1 nm. Residue mutations in both sites disrupt bundle formation in vitro as assessed by co-sedimentation with actin and electron microscopy and severely impair formation of filopodia in cells as determined by rescue experiments in fascin-depleted cells. Mutations of other areas of the fascin surface also affect actin bundling and formation of filopodia albeit to a lesser extent, suggesting that, in addition to the two major actin-binding sites, fascin makes secondary contacts with other filaments in the bundle. In a high resolution crystal structure of fascin, molecules of glycerol and polyethylene glycol are bound in pockets located within the two major actin-binding sites. These molecules could guide the rational design of new anticancer fascin inhibitors.

  20. The myosin X motor is optimized for movement on actin bundles.

    PubMed

    Ropars, Virginie; Yang, Zhaohui; Isabet, Tatiana; Blanc, Florian; Zhou, Kaifeng; Lin, Tianming; Liu, Xiaoyan; Hissier, Pascale; Samazan, Frédéric; Amigues, Béatrice; Yang, Eric D; Park, Hyokeun; Pylypenko, Olena; Cecchini, Marco; Sindelar, Charles V; Sweeney, H Lee; Houdusse, Anne

    2016-01-01

    Myosin X has features not found in other myosins. Its structure must underlie its unique ability to generate filopodia, which are essential for neuritogenesis, wound healing, cancer metastasis and some pathogenic infections. By determining high-resolution structures of key components of this motor, and characterizing the in vitro behaviour of the native dimer, we identify the features that explain the myosin X dimer behaviour. Single-molecule studies demonstrate that a native myosin X dimer moves on actin bundles with higher velocities and takes larger steps than on single actin filaments. The largest steps on actin bundles are larger than previously reported for artificially dimerized myosin X constructs or any other myosin. Our model and kinetic data explain why these large steps and high velocities can only occur on bundled filaments. Thus, myosin X functions as an antiparallel dimer in cells with a unique geometry optimized for movement on actin bundles. PMID:27580874

  1. Detailed Multi‐dimensional Modeling of Direct Internal Reforming Solid Oxide Fuel Cells

    PubMed Central

    Tseronis, K.; Fragkopoulos, I.S.; Bonis, I.

    2016-01-01

    Abstract Fuel flexibility is a significant advantage of solid oxide fuel cells (SOFCs) and can be attributed to their high operating temperature. Here we consider a direct internal reforming solid oxide fuel cell setup in which a separate fuel reformer is not required. We construct a multidimensional, detailed model of a planar solid oxide fuel cell, where mass transport in the fuel channel is modeled using the Stefan‐Maxwell model, whereas the mass transport within the porous electrodes is simulated using the Dusty‐Gas model. The resulting highly nonlinear model is built into COMSOL Multiphysics, a commercial computational fluid dynamics software, and is validated against experimental data from the literature. A number of parametric studies is performed to obtain insights on the direct internal reforming solid oxide fuel cell system behavior and efficiency, to aid the design procedure. It is shown that internal reforming results in temperature drop close to the inlet and that the direct internal reforming solid oxide fuel cell performance can be enhanced by increasing the operating temperature. It is also observed that decreases in the inlet temperature result in smoother temperature profiles and in the formation of reduced thermal gradients. Furthermore, the direct internal reforming solid oxide fuel cell performance was found to be affected by the thickness of the electrochemically‐active anode catalyst layer, although not always substantially, due to the counter‐balancing behavior of the activation and ohmic overpotentials. PMID:27570502

  2. FRAPCON-3: Modifications to fuel rod material properties and performance models for high-burnup application

    SciTech Connect

    Lanning, D.D.; Beyer, C.E.; Painter, C.L.

    1997-12-01

    This volume describes the fuel rod material and performance models that were updated for the FRAPCON-3 steady-state fuel rod performance code. The property and performance models were changed to account for behavior at extended burnup levels up to 65 Gwd/MTU. The property and performance models updated were the fission gas release, fuel thermal conductivity, fuel swelling, fuel relocation, radial power distribution, solid-solid contact gap conductance, cladding corrosion and hydriding, cladding mechanical properties, and cladding axial growth. Each updated property and model was compared to well characterized data up to high burnup levels. The installation of these properties and models in the FRAPCON-3 code along with input instructions are provided in Volume 2 of this report and Volume 3 provides a code assessment based on comparison to integral performance data. The updated FRAPCON-3 code is intended to replace the earlier codes FRAPCON-2 and GAPCON-THERMAL-2. 94 refs., 61 figs., 9 tabs.

  3. Advanced Pellet Cladding Interaction Modeling Using the US DOE CASL Fuel Performance Code: Peregrine

    SciTech Connect

    Jason Hales; Various

    2014-06-01

    The US DOE’s Consortium for Advanced Simulation of LWRs (CASL) program has undertaken an effort to enhance and develop modeling and simulation tools for a virtual reactor application, including high fidelity neutronics, fluid flow/thermal hydraulics, and fuel and material behavior. The fuel performance analysis efforts aim to provide 3-dimensional capabilities for single and multiple rods to assess safety margins and the impact of plant operation and fuel rod design on the fuel thermomechanical- chemical behavior, including Pellet-Cladding Interaction (PCI) failures and CRUD-Induced Localized Corrosion (CILC) failures in PWRs. [1-3] The CASL fuel performance code, Peregrine, is an engineering scale code that is built upon the MOOSE/ELK/FOX computational FEM framework, which is also common to the fuel modeling framework, BISON [4,5]. Peregrine uses both 2-D and 3-D geometric fuel rod representations and contains a materials properties and fuel behavior model library for the UO2 and Zircaloy system common to PWR fuel derived from both open literature sources and the FALCON code [6]. The primary purpose of Peregrine is to accurately calculate the thermal, mechanical, and chemical processes active throughout a single fuel rod during operation in a reactor, for both steady state and off-normal conditions.

  4. Advanced Pellet-Cladding Interaction Modeling using the US DOE CASL Fuel Performance Code: Peregrine

    SciTech Connect

    Montgomery, Robert O.; Capps, Nathan A.; Sunderland, Dion J.; Liu, Wenfeng; Hales, Jason; Stanek, Chris; Wirth, Brian D.

    2014-06-15

    The US DOE’s Consortium for Advanced Simulation of LWRs (CASL) program has undertaken an effort to enhance and develop modeling and simulation tools for a virtual reactor application, including high fidelity neutronics, fluid flow/thermal hydraulics, and fuel and material behavior. The fuel performance analysis efforts aim to provide 3-dimensional capabilities for single and multiple rods to assess safety margins and the impact of plant operation and fuel rod design on the fuel thermo-mechanical-chemical behavior, including Pellet-Cladding Interaction (PCI) failures and CRUD-Induced Localized Corrosion (CILC) failures in PWRs. [1-3] The CASL fuel performance code, Peregrine, is an engineering scale code that is built upon the MOOSE/ELK/FOX computational FEM framework, which is also common to the fuel modeling framework, BISON [4,5]. Peregrine uses both 2-D and 3-D geometric fuel rod representations and contains a materials properties and fuel behavior model library for the UO2 and Zircaloy system common to PWR fuel derived from both open literature sources and the FALCON code [6]. The primary purpose of Peregrine is to accurately calculate the thermal, mechanical, and chemical processes active throughout a single fuel rod during operation in a reactor, for both steady state and off-normal conditions.

  5. Ab Initio Enhanced calphad Modeling of Actinide-Rich Nuclear Fuels

    SciTech Connect

    Morgan, Dane; Yang, Yong Austin

    2013-10-28

    The process of fuel recycling is central to the Advanced Fuel Cycle Initiative (AFCI), where plutonium and the minor actinides (MA) Am, Np, and Cm are extracted from spent fuel and fabricated into new fuel for a fast reactor. Metallic alloys of U-Pu-Zr-MA are leading candidates for fast reactor fuels and are the current basis for fast spectrum metal fuels in a fully recycled closed fuel cycle. Safe and optimal use of these fuels will require knowledge of their multicomponent phase stability and thermodynamics (Gibbs free energies). In additional to their use as nuclear fuels, U-Pu-Zr-MA contain elements and alloy phases that pose fundamental questions about electronic structure and energetics at the forefront of modern many-body electron theory. This project will validate state-of-the-art electronic structure approaches for these alloys and use the resulting energetics to model U-Pu-Zr-MA phase stability. In order to keep the work scope practical, researchers will focus on only U-Pu-Zr-{Np,Am}, leaving Cm for later study. The overall objectives of this project are to: Provide a thermodynamic model for U-Pu-Zr-MA for improving and controlling reactor fuels; and, Develop and validate an ab initio approach for predicting actinide alloy energetics for thermodynamic modeling.

  6. Model documentation renewable fuels module of the National Energy Modeling System

    SciTech Connect

    1997-04-01

    This report documents the objectives, analytical approach, and design of the National Energy Modeling System (NEMS) Renewable Fuels Module (RFM) as it relates to the production of the 1997 Annual Energy Outlook forecasts. The report catalogues and describes modeling assumptions, computational methodologies, data inputs. and parameter estimation techniques. A number of offline analyses used in lieu of RFM modeling components are also described. This documentation report serves three purposes. First, it is a reference document for model analysts, model users, and the public interested in the construction and application of the RFM. Second, it meets the legal requirement of the Energy Information Administration (EIA) to provide adequate documentation in support of its models. Finally, such documentation facilitates continuity in EIA model development by providing information sufficient to perform model enhancements and data updates as part of EIA`s ongoing mission to provide analytical and forecasting information systems.

  7. Photothermal imaging through coherent infrared bundles

    NASA Astrophysics Data System (ADS)

    Milstein, Yonat; Tepper, Michal; Harrington, James A.; Ben David, Moshe; Gannot, Israel

    2011-03-01

    This study aims to develop a photothermal imaging system through a coherent infrared bundle. This system will be used to determine the oxygenation level of various tissues, suspected malignant tissues in particular. The oxygenation estimation is preformed using a computerized algorithm. In order to evaluate the system, different bundle configurations were used for the determination of the optimal one. Bundle transmittance and the algorithm's estimation ability were measured, measurements were performed using agar phantoms consisting of varying ratios of Methylene Blue and ICG. A bundle consisting of 19 Teflon waveguides with a of 1.1mm was found to be the optimal configuration with an RMS of the error of 9.38%. At a second stage the system was validated on blood samples with varying oxygenation levels and there oxygenation levels were estimated. This stage had an RMS of the error of 10.16% for the oxygenation level estimation for samples with a 50% oxygenation level and higher. Once the basic system was validated successfully on agar phantoms and blood samples a portable system was designed and built in order to fit the system for portable use. The portable system consists of a white light illuminating source followed by filters transmitting certain wavelengths, a transmitting fiber, a thermal imaging bundle and a portable thermal camera. This portable system will be evaluated in order to have an adequate portable system for implementing the method out of the lab.

  8. "Bundle Data" Approach at GES DISC Targeting Natural Hazards

    NASA Astrophysics Data System (ADS)

    Shie, C. L.; Shen, S.; Kempler, S. J.

    2015-12-01

    Severe natural phenomena such as hurricane, volcano, blizzard, flood and drought have the potential to cause immeasurable property damages, great socioeconomic impact, and tragic loss of human life. From searching to assessing the "Big", i.e., massive and heterogeneous scientific data (particularly, satellite and model products) in order to investigate those natural hazards, it has, however, become a daunting task for Earth scientists and applications researchers, especially during recent decades. The NASA Goddard Earth Sciences Data and Information Service Center (GES DISC) has served "Big" Earth science data, and the pertinent valuable information and services to the aforementioned users of diverse communities for years. In order to help and guide our users to online readily (i.e., with a minimum effort) acquire their requested data from our enormous resource at GES DISC for studying their targeted hazard/event, we have thus initiated a "Bundle Data" approach in 2014, first targeting the hurricane event/topic. We have recently worked on new topics such as volcano and blizzard. The "bundle data" of a specific hazard/event is basically a sophisticated integrated data package consisting of a series of proper datasets containing a group of relevant ("knowledge-based") data variables readily accessible to users via a system-prearranged table linking those data variables to the proper datasets (URLs). This online approach has been developed by utilizing a few existing data services such as Mirador as search engine; Giovanni for visualization; and OPeNDAP for data access, etc. The online "Data Cookbook" site at GES DISC is the current host for the "bundle data". We are now also planning on developing an "Automated Virtual Collection Framework" that shall eventually accommodate the "bundle data", as well as further improve our management in "Big Data".

  9. Bundle Data Approach at GES DISC Targeting Natural Hazards

    NASA Technical Reports Server (NTRS)

    Shie, Chung-Lin; Shen, Suhung; Kempler, Steven J.

    2015-01-01

    Severe natural phenomena such as hurricane, volcano, blizzard, flood and drought have the potential to cause immeasurable property damages, great socioeconomic impact, and tragic loss of human life. From searching to assessing the Big, i.e., massive and heterogeneous scientific data (particularly, satellite and model products) in order to investigate those natural hazards, it has, however, become a daunting task for Earth scientists and applications researchers, especially during recent decades. The NASA Goddard Earth Sciences Data and Information Service Center (GES DISC) has served Big Earth science data, and the pertinent valuable information and services to the aforementioned users of diverse communities for years. In order to help and guide our users to online readily (i.e., with a minimum effort) acquire their requested data from our enormous resource at GES DISC for studying their targeted hazard event, we have thus initiated a Bundle Data approach in 2014, first targeting the hurricane event topic. We have recently worked on new topics such as volcano and blizzard. The bundle data of a specific hazard event is basically a sophisticated integrated data package consisting of a series of proper datasets containing a group of relevant (knowledge--based) data variables readily accessible to users via a system-prearranged table linking those data variables to the proper datasets (URLs). This online approach has been developed by utilizing a few existing data services such as Mirador as search engine; Giovanni for visualization; and OPeNDAP for data access, etc. The online Data Cookbook site at GES DISC is the current host for the bundle data. We are now also planning on developing an Automated Virtual Collection Framework that shall eventually accommodate the bundle data, as well as further improve our management in Big Data.

  10. A multiphase interfacial model for the dissolution of spent nuclear fuel

    NASA Astrophysics Data System (ADS)

    Jerden, James L.; Frey, Kurt; Ebert, William

    2015-07-01

    The Fuel Matrix Dissolution Model (FMDM) is an electrochemical reaction/diffusion model for the dissolution of spent uranium oxide fuel. The model was developed to provide radionuclide source terms for use in performance assessment calculations for various types of geologic repositories. It is based on mixed potential theory and consists of a two-phase fuel surface made up of UO2 and a noble metal bearing fission product phase in contact with groundwater. The corrosion potential at the surface of the dissolving fuel is calculated by balancing cathodic and anodic reactions occurring at the solution interfaces with UO2 and NMP surfaces. Dissolved oxygen and hydrogen peroxide generated by radiolysis of the groundwater are the major oxidizing agents that promote fuel dissolution. Several reactions occurring on noble metal alloy surfaces are electrically coupled to the UO2 and can catalyze or inhibit oxidative dissolution of the fuel. The most important of these is the oxidation of hydrogen, which counteracts the effects of oxidants (primarily H2O2 and O2). Inclusion of this reaction greatly decreases the oxidation of U(IV) and slows fuel dissolution significantly. In addition to radiolytic hydrogen, large quantities of hydrogen can be produced by the anoxic corrosion of steel structures within and near the fuel waste package. The model accurately predicts key experimental trends seen in literature data, the most important being the dramatic depression of the fuel dissolution rate by the presence of dissolved hydrogen at even relatively low concentrations (e.g., less than 1 mM). This hydrogen effect counteracts oxidation reactions and can limit fuel degradation to chemical dissolution, which results in radionuclide source term values that are four or five orders of magnitude lower than when oxidative dissolution processes are operative. This paper presents the scientific basis of the model, the approach for modeling used fuel in a disposal system, and preliminary

  11. Modeling, analysis and control of fuel cell hybrid power systems

    NASA Astrophysics Data System (ADS)

    Suh, Kyung Won

    Transient performance is a key characteristic of fuel cells, that is sometimes more critical than efficiency, due to the importance of accepting unpredictable electric loads. To fulfill the transient requirement in vehicle propulsion and portable fuel cell applications, a fuel cell stack is typically coupled with a battery through a DC/DC converter to form a hybrid power system. Although many power management strategies already exist, they all rely on low level controllers that realize the power split. In this dissertation we design controllers that realize various power split strategies by directly manipulating physical actuators (low level commands). We maintain the causality of the electric dynamics (voltage and current) and investigate how the electric architecture affects the hybridization level and the power management. We first establish the performance limitations associated with a stand-alone and power-autonomous fuel cell system that is not supplemented by an additional energy storage and powers all its auxiliary components by itself. Specifically, we examine the transient performance in fuel cell power delivery as it is limited by the air supplied by a compressor driven by the fuel cell itself. The performance limitations arise from the intrinsic coupling in the fluid and electrical domain between the compressor and the fuel cell stack. Feedforward and feedback control strategies are used to demonstrate these limitations analytically and with simulations. Experimental tests on a small commercial fuel cell auxiliary power unit (APU) confirm the dynamics and the identified limitations. The dynamics associated with the integration of a fuel cell system and a DC/DC converter is then investigated. Decentralized and fully centralized (using linear quadratic techniques) controllers are designed to regulate the power system voltage and to prevent fuel cell oxygen starvation. Regulating these two performance variables is a difficult task and requires a compromise

  12. An evaporative and engine-cycle model for fuel octane sensitivity prediction

    SciTech Connect

    Moran, D.P.; Taylor, A.B.

    1995-12-31

    The Motor Octane Number (MON) ranks fuels by their chemical resistance to knock. Evaporative cooling coupled with fuel chemistry determine Research Octane Number (RON) antiknock ratings. It is shown in this study that fuel Octane sensitivity (numerically RON minus MON) is liked to an important difference between the two test methods; the RON test allows each fuel`s evaporative cooling characteristics to affect gas temperature, while the MON test generally eliminates this effect by pre-evaporation. In order to establish RON test charge temperatures, a computer model of fuel evaporation was adapted to Octane Engine conditions, and simulations were compared with real Octane Test Engine measurements including droplet and gas temperatures. A novel gas temperature probe yielded data that corresponded well with model predictions. Tests spanned single component fuels and blends of isomers, n-paraffins, aromatics and alcohols. Commercially available automotive and aviation gasolines were also tested. A good correlation was observed between the computer predictions and measured temperature data across the range of pure fuels and blends. A numerical method to estimate the effect of precombustion temperature differences on Octane sensitivity was developed and applied to analyze these data, and was found to predict the widely disparate sensitivities of the tested fuels with accuracy. Data are presented showing mixture temperature histories of various tested fuels, and consequent sensitivity predictions. It is concluded that a fuel`s thermal-evaporative behavior gives rise to fuel Octane sensitivity as measured by differences between the RON and MON tests. This is demonstrated by the success, over a wide range of fuels, of the sensitivity predictor method describes. Evaporative cooling, must therefore be regarded as an important parameter affecting the general road performance of automobiles.

  13. MELCOR model for an experimental 17x17 spent fuel PWR assembly.

    SciTech Connect

    Cardoni, Jeffrey

    2010-11-01

    A MELCOR model has been developed to simulate a pressurized water reactor (PWR) 17 x 17 assembly in a spent fuel pool rack cell undergoing severe accident conditions. To the extent possible, the MELCOR model reflects the actual geometry, materials, and masses present in the experimental arrangement for the Sandia Fuel Project (SFP). The report presents an overview of the SFP experimental arrangement, the MELCOR model specifications, demonstration calculation results, and the input model listing.

  14. Dynamic first principles model of a complete reversible fuel cell system

    NASA Astrophysics Data System (ADS)

    Brown, Tim M.; Brouwer, Jacob; Samuelsen, G. Scott; Holcomb, Franklin H.; King, Joel

    A dynamic model of a discrete reversible fuel cell (RFC) system has been developed in a Matlab Simulink ® environment. The model incorporates first principles dynamic component models of a proton exchange membrane (PEM) fuel cell, a PEM electrolyzer, a metal hydride hydrogen storage tank, and a cooling system radiator, as well as empirical models of balance of plant components. Dynamic simulations show unique charging and discharging control issues and highlight factors contributing to overall system efficiency.

  15. KINETIC MODELING OF FUEL EFFECTS OVER A WIDE RANGE OF CHEMISTRY, PROPERTIES, AND SOURCES

    SciTech Connect

    Bunting, Bruce G; Bunce, Michael; Niak, Chitralkumar; Puduppakkam, Karthik

    2012-01-01

    Kinetic modeling is an important tool for engine design and can also be used for engine tuning and to study response to fuel chemistry and properties before an engine configuration is physically built and tested. Methodologies needed for studying fuel effects include development of fuel kinetic mechanisms for pure compounds, tools for designing surrogate blends of pure compounds that mimic a desired market fuel, and tools for reducing kinetic mechanisms to a size that allows inclusion in complex CFD engine models. In this paper, we demonstrate the use of these tools to reproduce engine results for a series of research diesel fuels using surrogate fuels in an engine and then modeling results with a simple 2 component surrogate blend with physical properties adjusted to vary fuel volatility. Results indicate that we were reasonably successful in mimicking engine performance of real fuels with blends of pure compounds. We were also successful in spanning the range of the experimental data using CFD and kinetic modeling, but further tuning and matching will be needed to exactly match engine performance of the real and surrogate fuels.

  16. Modeling Cold Start in a Polymer-Electrolyte Fuel Cell

    NASA Astrophysics Data System (ADS)

    Balliet, Ryan James

    Polymer-electrolyte fuel cells (PEFCs) are electrochemical devices that create electricity by consuming hydrogen and oxygen, forming water and heat as byproducts. PEFCs have been proposed for use in applications that may require start-up in environments with temperatures below 0 degrees C. Doing so requires that the cell heat up, and when its own waste heat is used to do so, the process is referred to here as "cold start.'' However, at low temperatures the cell's product water freezes, and if the temperature does not rise fast enough, the accumulation of ice in the cathode catalyst layer (cCL) can reduce cell performance significantly, extending the time required to heat up. In addition to reducing performance during cold start, under some conditions the accumulation of ice can lead to irreversible structural degradation of the cCL. The objective of this dissertation is to construct and verify a cold-start model for a single PEFC, use it to improve understanding of cold-start behavior, and to demonstrate how this understanding can lead to better start protocols and material properties. The macrohomogeneous model that has been developed to meet the objective is two-dimensional, transient, and nonisothermal. A key differentiating feature is the inclusion of water in all four of the possible phases: ice, liquid, gas, and membrane. In order to predict water content in the ice, liquid, and gas phases that are present in the porous media, the thermodynamics of phase equilibrium are revisited, and a method for relating phase pressures to water content in each of these phases is developed. Verification of the model is performed by comparing model predictions for cell behavior during parametric studies to measured values taken from various sources. In most cases, good agreement is observed between the model and the experiments. Results from the simulations are used to explain the trends that are observed. The verified cold-start model is deployed to determine a cold

  17. Fuel Cell Power Model Version 2: Startup Guide, System Designs, and Case Studies. Modeling Electricity, Heat, and Hydrogen Generation from Fuel Cell-Based Distributed Energy Systems

    SciTech Connect

    Steward, D.; Penev, M.; Saur, G.; Becker, W.; Zuboy, J.

    2013-06-01

    This guide helps users get started with the U.S. Department of Energy/National Renewable Energy Laboratory Fuel Cell Power (FCPower) Model Version 2, which is a Microsoft Excel workbook that analyzes the technical and economic aspects of high-temperature fuel cell-based distributed energy systems with the aim of providing consistent, transparent, comparable results. This type of energy system would provide onsite-generated heat and electricity to large end users such as hospitals and office complexes. The hydrogen produced could be used for fueling vehicles or stored for later conversion to electricity.

  18. Fission Product Release from Molten U/Al Alloy Fuel: A Vapor Transpiration Model

    SciTech Connect

    Whitkop, P.G.

    2001-06-26

    This report describes the application of a vapor transportation model to fission product release data obtained for uranium/aluminum alloy fuel during early Oak Ridge fuel melt experiments. The Oak Ridge data validates the vapor transpiration model and suggests that iodine and cesium are released from the molten fuel surface in elemental form while tellurium and ruthenium are released as oxides. Cesium iodide is postulated to form in the vapor phase outside of the fuel matrix. Kinetic data indicates that cesium iodide can form from Cs atoms and diatomic iodine in the vapor phase. Temperatures lower than those capable of melting fuel are necessary in order to maintain a sufficient I2 concentration. At temperatures near the fuel melting point, cesium can react with iodine atoms to form CsI only on solid surfaces such as aerosols.

  19. Axisymmetric whole pin life modelling of advanced gas-cooled reactor nuclear fuel

    NASA Astrophysics Data System (ADS)

    Mella, R.; Wenman, M. R.

    2013-06-01

    Thermo-mechanical contributions to pellet-clad interaction (PCI) in advanced gas-cooled reactors (AGRs) are modelled in the ABAQUS finite element (FE) code. User supplied sub-routines permit the modelling of the non-linear behaviour of AGR fuel through life. Through utilisation of ABAQUS's well-developed pre- and post-processing ability, the behaviour of the axially constrained steel clad fuel was modelled. The 2D axisymmetric model includes thermo-mechanical behaviour of the fuel with time and condition dependent material properties. Pellet cladding gap dynamics and thermal behaviour are also modelled. The model treats heat up as a fully coupled temperature-displacement study. Dwell time and direct power cycling was applied to model the impact of online refuelling, a key feature of the AGR. The model includes the visco-plastic behaviour of the fuel under the stress and irradiation conditions within an AGR core and a non-linear heat transfer model. A multiscale fission gas release model is applied to compute pin pressure; this model is coupled to the PCI gap model through an explicit fission gas inventory code. Whole pin, whole life, models are able to show the impact of the fuel on all segments of cladding including weld end caps and cladding pellet locking mechanisms (unique to AGR fuel). The development of this model in a commercial FE package shows that the development of a potentially verified and future-proof fuel performance code can be created and used. The usability of a FE based fuel performance code would be an enhancement over past codes. Pre- and post-processors have lowered the entry barrier for the development of a fuel performance model to permit the ability to model complicated systems. Typical runtimes for a 5 year axisymmetric model takes less than one hour on a single core workstation. The current model has implemented: Non-linear fuel thermal behaviour, including a complex description of heat flow in the fuel. Coupled with a variety of

  20. The effect of hair bundle shape on hair bundle hydrodynamics of non-mammalian inner ear hair cells for the full frequency range.

    PubMed

    Shatz, Lisa F

    2004-09-01

    The effect of the size and the shape of the hair bundle of a hair cell in the inner ear of non-mammals on its motion for the full range of frequencies is determined thereby extending the results of a previous analysis of hair bundle motion for high and low frequencies [Hear Res. 141 (2000) 39-50]. A hemispheroid is used to represent the hair bundle because it can represent a full range of shapes, from thin, pencil-like shapes to wide, flat, disk-like shapes. Boundary element methods are used to approximate the solution for the hydrodynamics. For physiologically relevant parameters, an excellent match is obtained between the model's predictions and measurements of hair bundle motion in the free-standing region of the basilar papilla of the alligator lizard [Aranyosi, Measuring sound-induced motions of the alligator lizard cochlea. Massachusetts Institute of Technology, PhD Thesis, 2002]. Neither in the model's predictions nor in experimental measurements is sharp tuning observed. The model predicted the low frequency region of neural tuning curves for the alligator lizard and bobtail lizard, but could not predict the sharp tuning or the high frequency region. An element that represents an active mechanism is added to the hair bundle model to predict neural tuning curves, which are sharply tuned, and an excellent match is obtained for all the characteristics of neural tuning curves for the alligator lizard, and for the low and high frequency regions for the bobtail lizard. The model does not predict well the sharp tuning of the shorter hair bundles of the bobtail lizard, possibly because it does not represent tectorial sallets. PMID:15350278

  1. Modelling of Dynamic Responses of AN Automotive Fuel Rail System, Part II: Entire System

    NASA Astrophysics Data System (ADS)

    WU, S. F.; HU, Q.; STOTTLER, S.; RAGHUPATHI, R.

    2001-08-01

    The computer model developed for calculating pressure fluctuations inside an automotive fuel injector (Hu et al. Journal of Sound and Vibration (submitted)) is extended to the entire fuel rail system, which consists of six injectors, a pressure regulator, pressure damper, fuel pump, and torturous fuel supply and return lines. Since the pressure fluctuations generated inside any injector can propagate throughout the entire fuel rail system, the responses of all injectors are coupled. The presence of a pressure regulator may also affect the dynamic responses of the fuel rail system. In Part II of this paper, formulations for describing pressure fluctuations inside the injectors, pressure regulator, and fuel rails are derived and solved simultaneously. The effect of twists and turns of the fuel lines on the losses of fluid kinetic energy, and that of wave propagation throughout the fuel rail system are taken into account. The computer model thus developed is validated experimentally. Measurements are conducted on a test bench that simulates a real engine with injectors fired in a particular order. The calculated pressure fluctuations inside different injectors and fuel lines are compared with the measured data under various working conditions. Favorable agreements are obtained in all cases.

  2. Modeling the Influence of Interaction Layer Formation on Thermal Conductivity of U–Mo Dispersion Fuel

    SciTech Connect

    Burkes, Douglas; Casella, Andrew M.; Huber, Tanja K.

    2015-01-01

    The Global Threat Reduction Initiative Program continues to develop existing and new plate- and rod-type research and test reactor fuels with maximum attainable uranium loadings capable of potentially converting a number of the world’s remaining high-enriched uranium fueled reactors to low-enriched uranium fuel. Currently, the program is focused on assisting with the development and qualification of an even higher density fuel type consisting of a uranium-molybdenum (U-Mo) alloy dispersed in an aluminum matrix. Thermal conductivity is an important consideration in determining the operational temperature of the fuel plate and can be influenced by interaction layer formation between the fuel and matrix, porosity that forms during fabrication of the fuel plates, and upon the concentration of the dispersed phase within the matrix. This paper develops and validates a simple model to study the influence of interaction layer formation and conductivity, fuel particle size, and volume fraction of fuel dispersed in the matrix on the effective conductivity of the composite. The model shows excellent agreement with results previously presented in the literature. In particular, the thermal conductivity of the interaction layer does not appear to be important in determining the overall conductivity of the composite, while formation of the interaction layer and subsequent consumption of the matrix reveals a rather significant effect. The effective thermal conductivity of the composite can be influenced by the fuel particle distribution by minimizing interaction layer formation and preserving the higher thermal conductivity matrix.

  3. User Guide for VISION 3.4.7 (Verifiable Fuel Cycle Simulation) Model

    SciTech Connect

    Jacob J. Jacobson; Robert F. Jeffers; Gretchen E. Matthern; Steven J. Piet; Wendell D. Hintze

    2011-07-01

    The purpose of this document is to provide a guide for using the current version of the Verifiable Fuel Cycle Simulation (VISION) model. This is a complex model with many parameters and options; the user is strongly encouraged to read this user guide before attempting to run the model. This model is an R&D work in progress and may contain errors and omissions. It is based upon numerous assumptions. This model is intended to assist in evaluating 'what if' scenarios and in comparing fuel, reactor, and fuel processing alternatives at a systems level. The model is not intended as a tool for process flow and design modeling of specific facilities nor for tracking individual units of fuel or other material through the system. The model is intended to examine the interactions among the components of a fuel system as a function of time varying system parameters; this model represents a dynamic rather than steady-state approximation of the nuclear fuel system. VISION models the nuclear cycle at the system level, not individual facilities, e.g., 'reactor types' not individual reactors and 'separation types' not individual separation plants. Natural uranium can be enriched, which produces enriched uranium, which goes into fuel fabrication, and depleted uranium (DU), which goes into storage. Fuel is transformed (transmuted) in reactors and then goes into a storage buffer. Used fuel can be pulled from storage into either separation or disposal. If sent to separations, fuel is transformed (partitioned) into fuel products, recovered uranium, and various categories of waste. Recycled material is stored until used by its assigned reactor type. VISION is comprised of several Microsoft Excel input files, a Powersim Studio core, and several Microsoft Excel output files. All must be co-located in the same folder on a PC to function. You must use Powersim Studio 8 or better. We have tested VISION with the Studio 8 Expert, Executive, and Education versions. The Expert and Education

  4. Analytic modeling of soot nucleation under fuel rich conditions

    NASA Technical Reports Server (NTRS)

    Yang, C. H.

    1983-01-01

    The objective of the present research is to construct a soot nucleation model according to a proposed chemical kinetic scheme to delineate quantitatively the nucleation mechanism in the soot formation process. Instead of following the traditional views which generally associate sooting with the homogeneous nucleation process in phase transformation or polymerization, we choose a chemical kinetic approach. In our proposed scheme the number of carbon atoms in the intermediate species between the fuel molecule and soot nuclei is continuously increased by radical additions. The number of hydrogen atoms in the intermediate species on the other hand is steadily decreased by radical dehydrogenation. When the number of carbon atoms in each of the intermediate molecules has exceeded a certain limit and the number of hydrogen atoms has fallen below a certain level, they may coagulate with one and another to form a larger molecule which is regarded as the initial soot nuclei in the present theory. Further coagulation and surface growth of the nuclei will lead to observable soot particles.

  5. Double bundle or single bundle plus extraarticular tenodesis in ACL reconstruction? A CAOS study.

    PubMed

    Monaco, E; Labianca, L; Conteduca, F; De Carli, A; Ferretti, A

    2007-10-01

    Anatomic reconstructions of anterior cruciate ligament (ACL) with double bundle gracilis and semitendonosus tendons graft, reproducing AM and PL bundles, have been introduced to offer a better biomechanical outcome, especially during rotatory loads. On the other hand, many methods of tenodesing the lateral aspect of the tibia to the femur to reduce internal rotation (IR) of the tibia and minimize anterior translation of the tibia relative to the femur as a backup for intra-articular reconstruction, have been also suggested. The goal of this study is to evaluate the effect, on the IR of the tibia, of a lateral reconstruction in addition to a standard single bundle ACL reconstruction as compared with an anatomic double bundle ACL reconstruction. Computer assisted ACL reconstruction has been used because it could be very effective in evaluating the global kinematic performance of the reconstructed knee. We selected 20 consecutive ACL reconstruction procedures to be performed in males in our hospital. Patients were alternately assigned to one of the two groups--group A: standard single bundle ACL reconstruction with doubled gracilis and semitendinosus tendons graft with an arthroscopically assisted two incisions technique and a lateral extraarticular reconstruction; group B: double bundle ACL reconstruction with doubled gracilis and semitendinosus tendons graft with an arthroscopically assisted two incisions technique. In all ACL reconstruction procedures navigation process was performed. Both surgical techniques reduced significantly AP displacement, IR and external rotation (ER) of the tibia respect to pre-operative ACL deficient condition (p<0.05). Comparing the group A after the single bundle reconstruction and the group B after the AM bundle fixation, non differences were found in AP displacement, IR and ER of the tibia (p=0.75, p=0.07 and p=0.07 respectively; power: 0.94). Comparing the group A after the addition of the lateral tenodesis and group B after the PL

  6. Modeling of thermo-mechanical and irradiation behavior of mixed oxide fuel for sodium fast reactors

    NASA Astrophysics Data System (ADS)

    Karahan, Aydın; Buongiorno, Jacopo

    2010-01-01

    An engineering code to model the irradiation behavior of UO2-PuO2 mixed oxide fuel pins in sodium-cooled fast reactors was developed. The code was named fuel engineering and structural analysis tool (FEAST-OXIDE). FEAST-OXIDE has several modules working in coupled form with an explicit numerical algorithm. These modules describe: (1) fission gas release and swelling, (2) fuel chemistry and restructuring, (3) temperature distribution, (4) fuel-clad chemical interaction and (5) fuel-clad mechanical analysis. Given the fuel pin geometry, composition and irradiation history, FEAST-OXIDE can analyze fuel and cladding thermo-mechanical behavior at both steady-state and design-basis transient scenarios. The code was written in FORTRAN-90 program language. The mechanical analysis module implements the LIFE algorithm. Fission gas release and swelling behavior is described by the OGRES and NEFIG models. However, the original OGRES model has been extended to include the effects of joint oxide gain (JOG) formation on fission gas release and swelling. A detailed fuel chemistry model has been included to describe the cesium radial migration and JOG formation, oxygen and plutonium radial distribution and the axial migration of cesium. The fuel restructuring model includes the effects of as-fabricated porosity migration, irradiation-induced fuel densification, grain growth, hot pressing and fuel cracking and relocation. Finally, a kinetics model is included to predict the clad wastage formation. FEAST-OXIDE predictions have been compared to the available FFTF, EBR-II and JOYO databases, as well as the LIFE-4 code predictions. The agreement was found to be satisfactory for steady-state and slow-ramp over-power accidents.

  7. Extremal Bundles on Calabi-Yau Threefolds

    NASA Astrophysics Data System (ADS)

    Gao, Peng; He, Yang-Hui; Yau, Shing-Tung

    2015-06-01

    We study constructions of stable holomorphic vector bundles on Calabi-Yau threefolds, especially those with exact anomaly cancellation which we call extremal. By going through the known databases we find that such examples are rare in general and can be ruled out for the spectral cover construction for all elliptic threefolds. We then introduce a general Hartshorne-Serre construction and use it to find extremal bundles of general ranks and study their stability, as well as computing their Chern numbers. Based on both existing and our new constructions, we revisit the DRY conjecture for the existence of stable sheaves on Calabi-threefolds, and provide theoretical and numerical evidence for its correctness. Our construction can be easily generalized to bundles with no extremal conditions imposed.

  8. PWR FLECHT SEASET 21-rod-bundle flow-blockage task: data and analysis report. NRC/EPRI/Westinghouse report No. 11, main report and appendices A-J

    SciTech Connect

    Loftus, M.J.; Hochreiter, L.E.; Lee, N.; McGuire, M.F.; Wenzel, A.H.; Valkovic, M.M.

    1982-09-01

    This report presents data and limited analysis from the 21-Rod Bundle Flow Blockage Task of the Full-Length Emergency Cooling Heat Transfer Separate Effects and Systems Effects Test Program (FLECHT SEASET). The tests consisted of forced and gravity reflooding tests utilizing electrical heater rods with a cosine axial power profile to simulate PWR nuclear core fuel rod arrays. Steam cooling and hydraulic characteristics tests were also conducted. These tests were utilized to determine effects of various flow blockage configurations (shapes and distributions) on reflooding behavior, to aid in development/assessment of computational models in predicting reflooding behavior of flow blockage configurations, and to screen flow blockage configurations for future 163-rod flow blockage bundle tests.

  9. Porous Silicon and Denim Fiber Bundle Characterization

    NASA Astrophysics Data System (ADS)

    Deuro, Randi Ellen

    My thesis research aims to characterize and exploit materials in an efficient, rapid, non-destructive manner. Part I of this document summarizes my research on porous silicon (pSi) design, fabrication, and surface modification for use as a novel chemical sensor. The optimization of fabrication process parameters (etching time, etching solution, electrode shape, and the fixing process) on pSi photoluminescence (PL) is presented. I have also investigated the effects of analyte vapors (acetonitrile, toluene, methanol, acetone) on the pSi PL and surface chemistry using luminescence and Fourier-transform infrared (FT-IR) spectroscopy and microscopy methods. The mechanism and benefits of one method of pSi surface modification and protection (ultraviolet (UV) hydrosilylation) will also be presented. Finally, high thorough-put methods of pSi sensor production are described. In Part II of this document, I introduce a novel technique for analyzing and discriminating among denim fiber bundles. An investigation into the benefits of luminescence-based multispectral imaging (LMSI) for denim fiber bundle identification has been conducted. I explore the power of nitromethane (CH 3NO2) based quenching in fiber bundle classification and identify the quenching mechanism. The luminescence spectra (450 - 850 nm) and images from the denim fiber bundles were obtained while exciting at 325 nm or 405 nm. Here, LMSI data were recorded in < 10 s and subsequently assessed by principal component analysis (PCA) and rendered red, green, blue (RGB) component histograms. The results show that LMSI data can be used to rapidly and uniquely classify all the fiber bundle types studied in this research. These non-destructive techniques eliminate extensive sample preparation and allow for rapid multispectral image collection, analysis, and assessment. The quenching data also revealed that the dye molecules within the individual fiber bundles exhibited dramatically different accessibilities to CH 3NO2.

  10. Infrared imaging with fiber optic bundles

    NASA Astrophysics Data System (ADS)

    Hilton, Albert R., Sr.; McCord, James; Thompson, W. S.; LeBlanc, Richard A.

    2003-09-01

    Efforts have resumed to improve the image quality of infrared imaging bundles formed at AMI using the ribbon stacking method. The C4 glass has been used to reduce core size, increase packing density and improve flexibility. Ribbons are formed from unclad fiber wound on a drum with pitch, ribbon count and spacing between ribbons computer controlled. A small portion of each ribbon is compressed and fused using thin, dilute Epoxy. Unfortunately, the Epoxy, serving as a clad, absorbs most all the LWIR energy making the bundles unsuited for 8-12 μm cameras. The ribbons are removed from the drum and stacked, one on top of the other observing proper orientation to form the bundle. A typical 1 meter bundle is formed from 50-70 count ribbons for a total of 2500-4900 fibers, made from 2.5-4.9 Km of C4 fiber. Typical core diameters are 60-80 μm. Active surface area ranges from 60-70%. Infrared resolution images formed using a NIR tube camera equipped with a special relay lens demonstrates the resolution limit for the bundle. Currently, the limit is about 10 lp/mm. The bundle end is imaged in the 3-5 μm Agema 210 camera using an Amtir 1 F/1 meniscus, coated 3-5 μm. Video images taken in natural light of an individual, easily recognizable at 50 feet, will be shown. Results of careful evaluation carried out at Lockheed Martin in Orlando using a high performance Raytheon Galileo camera will be presented.

  11. Model documentation renewable fuels module of the National Energy Modeling System

    SciTech Connect

    1995-06-01

    This report documents the objectives, analytical approach, and design of the National Energy Modeling System (NEMS) Renewable Fuels Module (RFM) as it relates to the production of the 1995 Annual Energy Outlook (AEO95) forecasts. The report catalogues and describes modeling assumptions, computational methodologies, data inputs, and parameter estimation techniques. A number of offline analyses used in lieu of RFM modeling components are also described. The RFM consists of six analytical submodules that represent each of the major renewable energy resources--wood, municipal solid waste (MSW), solar energy, wind energy, geothermal energy, and alcohol fuels. The RFM also reads in hydroelectric facility capacities and capacity factors from a data file for use by the NEMS Electricity Market Module (EMM). The purpose of the RFM is to define the technological, cost and resource size characteristics of renewable energy technologies. These characteristics are used to compute a levelized cost to be competed against other similarly derived costs from other energy sources and technologies. The competition of these energy sources over the NEMS time horizon determines the market penetration of these renewable energy technologies. The characteristics include available energy capacity, capital costs, fixed operating costs, variable operating costs, capacity factor, heat rate, construction lead time, and fuel product price.

  12. Model documentation renewable fuels module of the National Energy Modeling System

    NASA Astrophysics Data System (ADS)

    1995-06-01

    This report documents the objectives, analytical approach, and design of the National Energy Modeling System (NEMS) Renewable Fuels Module (RFM) as it relates to the production of the 1995 Annual Energy Outlook (AEO95) forecasts. The report catalogs and describes modeling assumptions, computational methodologies, data inputs, and parameter estimation techniques. A number of offline analyses used in lieu of RFM modeling components are also described. The RFM consists of six analytical submodules that represent each of the major renewable energy resources -- wood, municipal solid waste (MSW), solar energy, wind energy, geothermal energy, and alcohol fuels. The RFM also reads in hydroelectric facility capacities and capacity factors from a data file for use by the NEMS Electricity Market Module (EMM). The purpose of the RFM is to define the technological, cost, and resource size characteristics of renewable energy technologies. These characteristics are used to compute a levelized cost to be competed against other similarly derived costs from other energy sources and technologies. The competition of these energy sources over the NEMS time horizon determines the market penetration of these renewable energy technologies. The characteristics include available energy capacity, capital costs, fixed operating costs, variable operating costs, capacity factor, heat rate, construction lead time, and fuel product price.

  13. Rod-bundle transient-film boiling of high-pressure water in the liquid-deficient regime. [PWR

    SciTech Connect

    Morris, D.G.; Mullins, C.B.; Yoder, G.L.

    1982-01-01

    Results are reported from a recent experiment investigating dispersed flow film boiling of high pressure water in upflow through a rod bundle. The data, obtained under mildly transient conditions, are used to assess correlations currently used to predict heat transfer in these circumstances. In light of the scarcity of similar data, the data should prove useful in the development and assessment of new heat transfer models. The experiment was conducted at the Oak Ridge National Laboratory in the Thermal-Hydraulic Test Facility, a highly instrumented, non-nuclear, pressurized-water loop containing 64, 3.66-m (12-ft) long rods (of which 60 are electrically heated). The rods are arranged in a square array typical of 17 x 17 fuel rod assemblies in late generation PWRs. Data were collected over typical reactor blowdown parameter ranges.

  14. Emissions and fuel economy results 1993 car models (for microcomputers). Software

    SciTech Connect

    Not Available

    1993-01-01

    Emissions and Fuel Economy Results 1993 Car Models contains 3 separate reports: (1) 1993 Test Car List--Passenger Cars; states: For each model year, each manufacturer must calculate the fuel economy for similar vehicles. It contains key test parameters, actual emission levels, and actual fuel economy for each of the specific test vehicles required for the 1993 model year. The subsequent average data can be found in the file Fuel Economy Guide; (2) 1993 Fuel Economy Guide-6 Number; states: For each model year, the Energy Policy and Conservation Act requires that a compilation of fuel economy values be provided to the public. These data are intended to help the consumer compare the fuel economy of similar size cars, light-duty trucks, and special purpose vehicles. The adjusted and unadjusted fuel economy values are provided for city, highway and a combination of city and highway driving; (3) Federal Certification Test Results for the 1993 Model Year; states: Each manufacturer of a passenger car, (light-duty vehicle), light-duty truck, motorcycle, heavy-duty gasoline engine, and heavy-duty diesel engine is required to demonstrate compliance with the applicable exhaust emission standard. The report contains all of the individual tests that were required by the certification procedues found in Title 40 of the Code of Federal Regulations in Part 86.

  15. Emissions and fuel economy results 1992 car models (for microcomputers). Software

    SciTech Connect

    Not Available

    1992-01-01

    Emissions and Fuel Economy Results 1992 Car Models contains 3 separate reports: (1) 1992 Test Car List--Passenger Cars; states: For each model year, each manufacturer must calculate the fuel economy for similar vehicles. It contains key test parameters, actual emission levels, and actual fuel economy for each of the specific test vehicles required for the 1992 model year. The subsequent average data can be found in the file Fuel Economy Guide; (2) 1992 Fuel Economy Guide-6 Number; states: For each model year, the Energy Policy and Conservation Act requires that a compilation of fuel economy values be provided to the public. These data are intended to help the consumer compare the fuel economy of similar size cars, light-duty trucks, and special purpose vehicles. The adjusted and unadjusted fuel economy values are provided for city, highway and a combination of city and highway driving; (3) Federal Certification Test Results for the 1992 Model Year; states: Each manufacturer of a passenger car, (light-duty vehicle), light-duty truck, motorcycle, heavy-duty gasoline engine, and heavy-duty diesel engine is required to demonstrate compliance with the applicable exhaust emission standard. The report contains all of the individual tests that were required by the certification procedures found in Title 40 of the Code of Federal Regulations in Part 86.

  16. Evaluating potential benefits of burning lower quality fuel oils using the oil burn optimization model

    SciTech Connect

    Babilonia, P.

    1995-09-01

    As a result of a 1987 New York State Public Service Commission Audit of Niagara Mohawk`s Fuel Supply operations, Niagara Mohawk (NMPC) became interested in analyzing the plant performance impacts of burning fuels of differing qualities at its various generating stations. Black & Veatch (B&V) had previously developed a computer model for EPRI that analyzed coal quality impacts (i.e., Coal Quality Impact Model). As a result of B&V`s work, NMPC contracted with B&V to first develop custom-designed software for its coal stations (Coal Burn Optimization Model (CBOM)). Subsequently, B&V was retained to develop a similar designed software for its oil stations, Oswego and Albany Steam Stations. The Oil Burn Optimization Model (OBOM) was, therefore, developed. OBOM was designed to be used to evaluate residual fuel oil supply options by predicting their fuel-related plant operating and maintenance costs. Fuel oil-related costs can also be compared to natural gas-related costs. Costs are estimated by predicting performance of various plant equipment. Predictions focus on combustion calculations, material flows, auxiliary power, boiler efficiency, precipitator and fan performance, fuel pumping and preheating requirements, and corrosion considerations. Total costs at the busbar attributed to fuel are calculated from these predictions. OBOM is a PC-based system operating under MS-DOS. The model produces hard copy results for quick comparison of fuels and their potential effects on plant operating and maintenance costs.

  17. Modeling and Analysis of FCM UN TRISO Fuel Using the PARFUME Code

    SciTech Connect

    Blaise Collin

    2013-09-01

    The PARFUME (PARticle Fuel ModEl) modeling code was used to assess the overall fuel performance of uranium nitride (UN) tri-structural isotropic (TRISO) ceramic fuel in the frame of the design and development of Fully Ceramic Matrix (FCM) fuel. A specific modeling of a TRISO particle with UN kernel was developed with PARFUME, and its behavior was assessed in irradiation conditions typical of a Light Water Reactor (LWR). The calculations were used to access the dimensional changes of the fuel particle layers and kernel, including the formation of an internal gap. The survivability of the UN TRISO particle was estimated depending on the strain behavior of the constituent materials at high fast fluence and burn-up. For nominal cases, internal gas pressure and representative thermal profiles across the kernel and layers were determined along with stress levels in the pyrolytic carbon (PyC) and silicon carbide (SiC) layers. These parameters were then used to evaluate fuel particle failure probabilities. Results of the study show that the survivability of UN TRISO fuel under LWR irradiation conditions might only be guaranteed if the kernel and PyC swelling rates are limited at high fast fluence and burn-up. These material properties are unknown at the irradiation levels expected to be reached by UN TRISO fuel in LWRs. Therefore, more effort is needed to determine them and positively conclude on the applicability of FCM fuel to LWRs.

  18. Properties of the microcirculation in capillary bundles of rat spinotrapezius muscle fascia

    NASA Astrophysics Data System (ADS)

    Jacobitz, Frank; Engebrecht, Cheryn; Metzger, Ian; Porterfield, Colin

    2006-11-01

    Properties of the microcirculation in capillary bundles of rat spinotrapezius muscle fascia are investigated using microscope observations, empirical modeling, and numerical simulations. Capillary bundles consist of a network of feeding arterioles, draining venules, and capillary vessels. A dozen samples of muscle fascia tissue were prepared for microscope observation. The chosen method of preparation allows for the long-term preservation of the tissue samples for future studies. Capillary bundles are photographed under a microscope with 40x magnification. From the images, the microvasculature of the tissue samples is reconstructed. It was found, for example, that the distribution of vessel length in a capillary bundle follows a log-normal law. In addition to a statistical analysis of the vessel data, the network topology is used for numerical simulations of the flow in the capillary bundles. The numerical approach uses a sparse-matrix solver and it considers vessel elasticity and blood rheology. The numerical simulations show, for example, a strong pressure drop across the capillary vessels of the bundle.

  19. Bundling in semiflexible polymers: A theoretical overview.

    PubMed

    Benetatos, Panayotis; Jho, YongSeok

    2016-06-01

    Supramolecular assemblies of polymers are key modules to sustain the structure of cells and their function. The main elements of these assemblies are charged semiflexible polymers (polyelectrolytes) generally interacting via a long(er)-range repulsion and a short(er)-range attraction. The most common supramolecular structure formed by these polymers is the bundle. In the present paper, we critically review some recent theoretical and computational advances on the problem of bundle formation, and point a few promising directions for future work. PMID:26813628

  20. Crosstalk analysis of carbon nanotube bundle interconnects.

    PubMed

    Zhang, Kailiang; Tian, Bo; Zhu, Xiaosong; Wang, Fang; Wei, Jun

    2012-01-01

    Carbon nanotube (CNT) has been considered as an ideal interconnect material for replacing copper for future nanoscale IC technology due to its outstanding current carrying capability, thermal conductivity, and mechanical robustness. In this paper, crosstalk problems for single-walled carbon nanotube (SWCNT) bundle interconnects are investigated; the interconnect parameters for SWCNT bundle are calculated first, and then the equivalent circuit has been developed to perform the crosstalk analysis. Based on the simulation results using SPICE simulator, the voltage of the crosstalk-induced glitch can be reduced by decreasing the line length, increasing the spacing between adjacent lines, or increasing the diameter of SWCNT. PMID:22340628

  1. A model for recovery of scrap monolithic uranium molybdenum fuel by electrorefining

    NASA Astrophysics Data System (ADS)

    Van Kleeck, Melissa A.

    The goal of the Reduced Enrichment for Research and Test Reactors program (RERTR) is toreduce enrichment at research and test reactors, thereby decreasing proliferation risk at these facilities. A new fuel to accomplish this goal is being manufactured experimentally at the Y12 National Security Complex. This new fuel will require its own waste management procedure,namely for the recovery of scrap from its manufacture. The new fuel is a monolithic uraniummolybdenum alloy clad in zirconium. Feasibility tests were conducted in the Planar Electrode Electrorefiner using scrap U-8Mo fuel alloy. These tests proved that a uranium product could be recovered free of molybdenum from this scrap fuel by electrorefining. Tests were also conducted using U-10Mo Zr clad fuel, which confirmed that product could be recovered from a clad version of this scrap fuel at an engineering scale, though analytical results are pending for the behavior of Zr in the electrorefiner. A model was constructed for the simulation of electrorefining the scrap material produced in the manufacture of this fuel. The model was implemented on two platforms, Microsoft Excel and MatLab. Correlations, used in the model, were developed experimentally, describing area specific resistance behavior at each electrode. Experiments validating the model were conducted using scrap of U-10Mo Zr clad fuel in the Planar Electrode Electrorefiner. The results of model simulations on both platforms were compared to experimental results for the same fuel, salt and electrorefiner compositions and dimensions for two trials. In general, the model demonstrated behavior similar to experimental data but additional refinements are needed to improve its accuracy. These refinements consist of a function for surface area at anode and cathode based on charge passed. Several approximations were made in the model concerning areas of electrodes which should be replaced by a more accurate function describing these areas.

  2. A practical PEM fuel cell model for simulating vehicle power sources

    SciTech Connect

    Amphlett, J.C.; Mann, R.F.; Peppley, B.A.; Roberge, P.R.; Rodrigues, A.

    1995-07-01

    The interest in fuel cell technology as an alternative to internal combustion engines is growing rapidly with the increased concern with environmental issues such s reducing vehicle emissions. Fuel cells offer a power source which produces electrical energy from fuel and oxidant which produce little or no emissions. Fuel cell power sources are being considered for both terrestrial and marine applications. The research and commercialization of such systems require system modeling to determine performance levels and fuel and oxidant requirements. A practical model will have to be flexible in its calculations depending on the information available. A model predicting the performance of a proton exchange membrane fuel cell has been developed for a Ballard Mark V 5 kW 35-cell stack. The parametric model combining both empirical and mechanistic qualities was developed to calculate the cell voltage output in terms of complex relationships between current, stack temperature, and inlet partial pressure of hydrogen and oxygen. The model utilizes an iterative computer solution to obtain a practical flexible model which could calculate any variable in terms of the others. This paper illustrates the use of a practical model to determine the fuel and oxidant requirements to achieve various levels of power required for different vehicle power supplies. Applications to automobiles, buses, locomotives, ships, submarines, and unmanned underwater vehicles with power supplies of 3--3,000 kW were investigated.

  3. Balance Ability and Proprioception after Single-Bundle, Single-Bundle Augmentation, and Double-Bundle ACL Reconstruction

    PubMed Central

    Ma, Yubao; Iwaki, Daisuke; Asaeda, Makoto; Adachi, Nobuo; Ochi, Mitsuo

    2014-01-01

    Purpose. The present study sought to determine the influences of single-bundle (SB), single-bundle augmentation (SBA), and double-bundle (DB) reconstructions on balance ability and proprioceptive function. Methods. 67 patients who underwent a single- or double-bundle ACL reconstruction or a SBA using multistranded autologous hamstring tendons were included in this study with a 1-year follow-up. Body sway and knee kinesthesia (using the threshold to detect passive motion test (TTDPM)) were measured to indicate balance ability and proprioceptive function, respectively. Additionally, within-subject differences in anterior-posterior stability of the tibia and lower extremity muscle strength were evaluated before and after surgery. Results. At 6 and 12 months after surgery, DB reconstruction resulted in better balance and proprioceptive function than SB reconstruction (P < 0.05). Although no significant difference was observed in balance ability or proprioceptive function between the SBA and DB reconstructions, knee stability was significantly better with SBA and DB reconstructions than SB reconstruction (P < 0.05). No significant differences were found in quadriceps and hamstrings strength among the three reconstruction techniques. Conclusions. Our findings consider that joint stability, proprioceptive function, and balance ability were superior with SBA and DB reconstructions compared to SB reconstruction at 6 and 12 months after surgery. PMID:25614884

  4. Evaluation of nonequilibrium effects in bundle dispersed-flow film boiling. [PWR; BWR

    SciTech Connect

    Morris, D.G.; Mullins, C.B.; Yoder, G.L.

    1983-01-01

    The effects of thermodynamic nonequilibrium in dispersed flow film boiling heat transfer are examined. Steady-state and transient rod-bundle data are used to evaluate several empirical heat-transfer models commonly employed to predict post-CHF behavior. The models that account for thermodynamic nonequilibrium perform adequately, while those that ignore nonequilibrium effects incur errors in wall superheat as high as 190/sup 0/K. Nonequilibrium effects can also be treated by explicitly modeling the phenomena. The thermal-hydraulic code COBRA-TF employs this approach. Using bundle data, the models in the code are evaluated. Analysis suggests that the interfacial heat transfer is overpredicted.

  5. Determining the tube bundle streamlining critical parameters using the numerical experiment method

    NASA Astrophysics Data System (ADS)

    Kaplunov, S. M.; Val'es, N. G.; Samolysov, A. V.; Marchevskaya, O. A.

    2015-08-01

    The article is devoted to development and application of mathematical models describing the most dangerous mechanisms through which vibrations are excited in tube bundles and blunt cylindrically shaped structures, and to development of reliable calculation methods for describing these models, which would make it possible to obtain prompt data for designing and subsequent operation of the considered structural elements. For solving such problems, a comprehensive approach is required, which should be based on a combined use of numerical experiments on computers and experimental investigations on full-scale equipment. The authors have developed a procedure for numerically investigating the hydrodynamic forces arising during stalled streamlining and the tube bundle vibrations caused by these forces. The procedure is based on using the developed mathematical model describing fluid-elastic excitation of vibrations in a bundle of elastic tubes placed in external cross flow. The problem of studying fluid-elastic excitation is brought to stability analysis, which is carried out with the assumption about a linear behavior of destabilizing forces for undisturbed state of elastic tubes. A theoretical investigation of the developed mathematical model was carried out, from which the necessary and sufficient condition of system stability has been obtained in terms of system dimensionless parameters (mass, damping, and velocity). An algorithm for numerically determining the matrices of linear hydrodynamic coupling coefficients for particular tube bundles is developed. The validity of the algorithm and the computer programs developed on its basis are checked by comparing the results of test calculations with the bank of known experimental data. A procedure is proposed for determining the matrices of linear hydrodynamic coupling coefficients in bundles having a regular layout of their cross section and a large number of tubes through calculating these matrices for a relatively small

  6. Model documentation: Renewable Fuels Module of the National Energy Modeling System

    SciTech Connect

    Not Available

    1994-04-01

    This report documents the objectives, analytical approach, and design of the National Energy Modeling System (NEMS) Renewable Fuels Module (RFM) as it related to the production of the 1994 Annual Energy Outlook (AEO94) forecasts. The report catalogues and describes modeling assumptions, computational methodologies, data inputs, and parameter estimation techniques. A number of offline analyses used in lieu of RFM modeling components are also described. This documentation report serves two purposes. First, it is a reference document for model analysts, model users, and the public interested in the construction and application of the RFM. Second, it meets the legal requirement of the Energy Information Administration (EIA) to provide adequate documentation in support of its models. The RFM consists of six analytical submodules that represent each of the major renewable energy resources -- wood, municipal solid waste (MSW), solar energy, wind energy, geothermal energy, and alcohol fuels. Of these six, four are documented in the following chapters: municipal solid waste, wind, solar and biofuels. Geothermal and wood are not currently working components of NEMS. The purpose of the RFM is to define the technological and cost characteristics of renewable energy technologies, and to pass these characteristics to other NEMS modules for the determination of mid-term forecasted renewable energy demand.

  7. 40 CFR 600.209-08 - Calculation of vehicle-specific 5-cycle fuel economy values for a model type.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-cycle fuel economy values for a model type. 600.209-08 Section 600.209-08 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND CARBON-RELATED EXHAUST EMISSIONS OF... Calculating Fuel Economy Values § 600.209-08 Calculation of vehicle-specific 5-cycle fuel economy values for...

  8. Experimental Measurement and Numerical Modeling of the Effective Thermal Conductivity of TRISO Fuel Compacts

    SciTech Connect

    Folsom, Charles; Xing, Changhu; Jensen, Colby; Ban, Heng; Marshall, Douglas W.

    2015-03-01

    Accurate modeling capability of thermal conductivity of tristructural-isotropic (TRISO) fuel compacts is important to fuel performance modeling and safety of Generation IV reactors. To date, the effective thermal conductivity (ETC) of tristructural-isotropic (TRISO) fuel compacts has not been measured directly. The composite fuel is a complicated structure comprised of layered particles in a graphite matrix. In this work, finite element modeling is used to validate an analytic ETC model for application to the composite fuel material for particle-volume fractions up to 40%. The effect of each individual layer of a TRISO particle is analyzed showing that the overall ETC of the compact is most sensitive to the outer layer constituent. In conjunction with the modeling results, the thermal conductivity of matrix-graphite compacts and the ETC of surrogate TRISO fuel compacts have been successfully measured using a previously developed measurement system. The ETC of the surrogate fuel compacts varies between 50 and 30 W m-1 K-1 over a temperature range of 50-600°C. As a result of the numerical modeling and experimental measurements of the fuel compacts, a new model and approach for analyzing the effect of compact constituent materials on ETC is proposed that can estimate the fuel compact ETC with approximately 15-20% more accuracy than the old method. Using the ETC model with measured thermal conductivity of the graphite matrix-only material indicate that, in the composite form, the matrix material has a much greater thermal conductivity, which is attributed to the high anisotropy of graphite thermal conductivity. Therefore, simpler measurements of individual TRISO compact constituents combined with an analytic ETC model, will not provide accurate predictions of overall ETC of the compacts emphasizing the need for measurements of composite, surrogate compacts.

  9. Mathematical modeling for the forest fuel layer ignition caused by focused solar radiation flux

    NASA Astrophysics Data System (ADS)

    Baranovskiy, Nikolay V.

    2015-11-01

    Forest fuel layer ignition conditions analysis by focused flow of sunlight is lead. Scenarios of simulation corresponds to occurrence of forest fire as result of focused flux of sunlight influence on forest fuel layer. Scenarios calculations taking into account various intensity of radiation are lead. Recommendations on the further development of this component of determined model are submitted.

  10. Development of an analytical model to assess fuel property effects on combustor performance

    NASA Technical Reports Server (NTRS)

    Sutton, R. D.; Troth, D. L.; Miles, G. A.; Riddlebaugh, S. M.

    1987-01-01

    A generalized first-order computer model has been developed in order to analytically evaluate the potential effect of alternative fuels' effects on gas turbine combustors. The model assesses the size, configuration, combustion reliability, and durability of the combustors required to meet performance and emission standards while operating on a broad range of fuels. Predictions predicated on combustor flow-field determinations by the model indicate that fuel chemistry, as defined by hydrogen content, exerts a significant influence on flame retardation, liner wall temperature, and smoke emission.

  11. Discrete Modeling of Early-Life Thermal Fracture in Ceramic Nuclear Fuel

    SciTech Connect

    Spencer, Benjamin W.; Huang, Hai; Dolbow, John E.; Hales, Jason D.

    2015-03-01

    Fracturing of ceramic fuel pellets heavily influences performance of light water reactor (LWR) fuel. Early in the life of fuel, starting with the initial power ramp, large thermal gradients cause high tensile hoop and axial stresses in the outer region of the fuel pellets, resulting in the formation of radial and axial cracks. Circumferential cracks form due to thermal gradients that occur when the power is ramped down. These thermal cracks cause the fuel to expand radially, closing the pellet/cladding gap and enhancing the thermal conductance across that gap, while decreasing the effective conductivity of the fuel in directions normal to the cracking. At lower length scales, formation of microcracks is an important contributor to the decrease in bulk thermal conductivity that occurs over the life of the fuel as the burnup increases. Because of the important effects that fracture has on fuel performance, a realistic, physically based fracture modeling capability is essential to predict fuel behavior in a wide variety of normal and abnormal conditions. Modeling fracture within the context of the finite element method, which is based on continuous interpolations of solution variables, has always been challenging because fracture is an inherently discontinuous phenomenon. Work is underway at Idaho National Laboratory to apply two modeling techniques model fracture as a discrete displacement discontinuity to nuclear fuel: The extended finite element method (XFEM), and discrete element method (DEM). XFEM is based on the standard finite element method, but with enhancements to represent discontinuous behavior. DEM represents a solid as a network of particles connected by bonds, which can arbitrarily fail if a fracture criterion is reached. This paper presents initial results applying the aforementioned techniques to model fuel fracturing. This work has initially focused on early life behavior of ceramic LWR fuel. A coupled thermal-mechanical XFEM method that includes

  12. Computational de novo design of a four-helix bundle protein—DND_4HB

    PubMed Central

    Murphy, Grant S; Sathyamoorthy, Bharatwaj; Der, Bryan S; Machius, Mischa C; Pulavarti, Surya V; Szyperski, Thomas; Kuhlman, Brian

    2015-01-01

    The de novo design of proteins is a rigorous test of our understanding of the key determinants of protein structure. The helix bundle is an interesting de novo design model system due to the diverse topologies that can be generated from a few simple α-helices. Previously, noncomputational studies demonstrated that connecting amphipathic helices together with short loops can sometimes generate helix bundle proteins, regardless of the bundle's exact sequence. However, using such methods, the precise positions of helices and side chains cannot be predetermined. Since protein function depends on exact positioning of residues, we examined if sequence design tools in the program Rosetta could be used to design a four-helix bundle with a predetermined structure. Helix position was specified using a folding procedure that constrained the design model to a defined topology, and iterative rounds of rotamer-based sequence design and backbone refinement were used to identify a low energy sequence for characterization. The designed protein, DND_4HB, unfolds cooperatively (Tm >90°C) and a NMR solution structure shows that it adopts the target helical bundle topology. Helices 2, 3, and 4 agree very closely with the design model (backbone RMSD = 1.11 Å) and >90% of the core side chain χ1 and χ2 angles are correctly predicted. Helix 1 lies in the target groove against the other helices, but is displaced 3 Å along the bundle axis. This result highlights the potential of computational design to create bundles with atomic-level precision, but also points at remaining challenges for achieving specific positioning between amphipathic helices. PMID:25287625

  13. Calculation of Non-Bonded Forces Due to Sliding of Bundled Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Frankland, S. J. V.; Bandorawalla, T.; Gates, T. S.

    2003-01-01

    An important consideration for load transfer in bundles of single-walled carbon nanotubes is the nonbonded (van der Waals) forces between the nanotubes and their effect on axial sliding of the nanotubes relative to each other. In this research, the non-bonded forces in a bundle of seven hexagonally packed (10,10) single-walled carbon nanotubes are represented as an axial force applied to the central nanotube. A simple model, based on momentum balance, is developed to describe the velocity response of the central nanotube to the applied force. The model is verified by comparing its velocity predictions with molecular dynamics simulations that were performed on the bundle with different force histories applied to the central nanotube. The model was found to quantitatively predict the nanotube velocities obtained from the molecular dynamics simulations. Both the model and the simulations predict a threshold force at which the nanotube releases from the bundle. This force converts to a shear yield strength of 10.5-11.0 MPa for (10,10) nanotubes in a bundle.

  14. Development and use of the GREET model to estimate fuel-cycle energy use and emissions of various transportation technologies and fuels

    SciTech Connect

    Wang, M.Q.

    1996-03-01

    This report documents the development and use of the Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model. The model, developed in a spreadsheet format, estimates the full fuel- cycle emissions and energy use associated with various transportation fuels for light-duty vehicles. The model calculates fuel-cycle emissions of five criteria pollutants (volatile organic compounds, carbon monoxide, nitrogen oxides, sulfur oxides, and particulate matter measuring 10 microns or less) and three greenhouse gases (carbon dioxide, methane, and nitrous oxide). The model also calculates the total fuel-cycle energy consumption, fossil fuel consumption, and petroleum consumption using various transportation fuels. The GREET model includes 17 fuel cycles: petroleum to conventional gasoline, reformulated gasoline, clean diesel, liquefied petroleum gas, and electricity via residual oil; natural gas to compressed natural gas, liquefied petroleum gas, methanol, hydrogen, and electricity; coal to electricity; uranium to electricity; renewable energy (hydrogen, solar energy, and wind) to electricity; corn, woody biomass, and herbaceous biomass to ethanol; and landfill gases to methanol. This report presents fuel-cycle energy use and emissions for a 2000 model-year car powered by each of the fuels that are produced from the primary energy sources considered in the study.

  15. Social Bundles: Thinking through the Infant Body

    ERIC Educational Resources Information Center

    Brownlie, Julie; Leith, Valerie M. Sheach

    2011-01-01

    Drawing on a UK research study on immunization, this article investigates parents' understandings of the relationship between themselves, their infants, other bodies, the state, and cultural practices--material and symbolic. The article argues that infant bodies are best thought of as always social bundles, rather than as biobundles made social…

  16. The Bundled Payments for Care Improvement Initiative.

    PubMed

    Hirsch, Joshua A; Leslie-Mazwi, Thabele M; Barr, Robert M; McGinty, Geraldine; Nicola, Gregory N; Silva, Ezequiel; Manchikanti, Laxmaiah

    2016-05-01

    The Affordable Care Act enters its fifth year firmly entrenched in our national consciousness. One method that has entered the vernacular for achieving cost savings is accountable care. There are other approaches that are less well known. The Bundled Payments for Care Improvement Initiative has the potential to significantly impact neurointerventionalists. We review that initiative here. PMID:25829366

  17. High precision optical fiber bundle displacement sensor

    NASA Astrophysics Data System (ADS)

    Cao, Hui-min; Chen, You-ping; Zhang, Gang; Zhou, Zu-de

    2006-02-01

    A noncontact optical fiber bundle displacement sensor with nanometer resolution and low drift is proposed. The principle of the sensor is based on reflective intensity modulation technique. The optical fiber bundle probe contains one transmitting bundle and two receiving bundles. There are 727 identical glass optical fibers with a diameter of 50μm arranged in a concentric random pattern at the probe end. The diameter of the probe coated with a thin stainless ferrule is as small as 2.5mm. A carrier amplifier system is adopted to reduce dc drift and the interference of ambient stray light. The disturbance caused by fluctuation of light source and variation of target surface reflectivity is eliminated by taking a ratio of two receiving signals. The thermal drifts from two photoelectric signal processing circuits cancel out each other by using elements with identical specifications for both photodetector-amplifier chains. The sensitivity of the sensor is 5.9mV/nm over a linear range of 700-2300μm with a nonlinearity of 1%. The achieved resolution is 1nm/square root Hz; over a dynamic bandwidth of 10KHz and the dynamic range is 286dB. It has been proved that the sensor run sufficiently well when used with nano-technological instruments.

  18. A Theoretical Solid Oxide Fuel Cell Model for Systems Controls and Stability Design

    NASA Technical Reports Server (NTRS)

    Kopasakis, George; Brinson, Thomas; Credle, Sydni

    2008-01-01

    As the aviation industry moves toward higher efficiency electrical power generation, all electric aircraft, or zero emissions and more quiet aircraft, fuel cells are sought as the technology that can deliver on these high expectations. The hybrid solid oxide fuel cell system combines the fuel cell with a micro-turbine to obtain up to 70% cycle efficiency, and then distributes the electrical power to the loads via a power distribution system. The challenge is to understand the dynamics of this complex multidiscipline system and the design distributed controls that take the system through its operating conditions in a stable and safe manner while maintaining the system performance. This particular system is a power generation and a distribution system, and the fuel cell and micro-turbine model fidelity should be compatible with the dynamics of the power distribution system in order to allow proper stability and distributed controls design. The novelty in this paper is that, first, the case is made why a high fidelity fuel cell mode is needed for systems control and stability designs. Second, a novel modeling approach is proposed for the fuel cell that will allow the fuel cell and the power system to be integrated and designed for stability, distributed controls, and other interface specifications. This investigation shows that for the fuel cell, the voltage characteristic should be modeled but in addition, conservation equation dynamics, ion diffusion, charge transfer kinetics, and the electron flow inherent impedance should also be included.

  19. Fuel Used for Off-Road Recreation: A Reassessment of the Fuel Use Model

    SciTech Connect

    Davis, S.C.; Truett, L.F.; Hu, P.S.

    1999-07-01

    The Intermodal Surface Transportation Efficiency Act of 1991 (ISTEA) established a National Recreational Trails Funding Program and the National Recreational Trails Trust Fund. ISTEA required that certain tax revenue generated from the sales of motor fuel used for off-road recreation be transferred from the Highway Trust Funds to the Trails Trust Fund for recreational trail and facility improvements. In order to apportion the Trails Trust Fund to individual States equitably, the Federal Highway Administration (FHWA) asked the Oak Ridge National Laboratory (ORNL) in 1993 to estimate the amount of motor fuel used for off-road recreation in the State level by different vehicle types. A modification of the methodology developed by ORNL has been used to apportion funds to the States since that time.

  20. Heterotic bundles on Calabi-Yau manifolds with small Picard number

    NASA Astrophysics Data System (ADS)

    He, Yang-Hui; Kreuzer, Maximilian; Lee, Seung-Joo; Lukas, Andre

    2011-12-01

    We undertake a systematic scan of vector bundles over spaces from the largest database of known Calabi-Yau three-folds, in the context of heterotic string compactification. Specifically, we construct positive rank five monad bundles over Calabi-Yau hypersurfaces in toric varieties, with the number of Kähler moduli equal to one, two, and three and extract physically interesting models. We select models which can lead to three families of matter after dividing by a freely-acting discrete symmetry and including Wilson lines. About 2000 such models on two manifolds are found.