Science.gov

Sample records for fuel cell cathode

  1. Cathodes for ceria-based fuel cells

    SciTech Connect

    Doshi, R.; Krumpelt, M.; Ricvhards, V.L.

    1997-08-01

    Work is underway to develop a solid oxide fuel cell that has a ceria-based electrolyte and operates at lower temperatures (500-600{degrees}C) than conventional zirconia-based cells. At present the performance of this ceria-based solid oxide fuel cell is limited by the polarization of conventional cathode materials. The performance of alternative cathodes was measured by impedance spectroscopy and dc polarization. The performance was found to improve by using a thin dense interface layer and by using two-phase cathodes with an electrolyte and an electronic phase. The cathode performance was also found to increase with increasing ionic conductivity for single phase cathodes.

  2. Cathode for molten carbonate fuel cell

    DOEpatents

    Kaun, Thomas D.; Mrazek, Franklin C.

    1990-01-01

    A porous sintered cathode for a molten carbonate fuel cell and method of making same, the cathode including a skeletal structure of a first electronically conductive material slightly soluble in the electrolyte present in the molten carbonate fuel cell covered by fine particles of a second material of possibly lesser electronic conductivity insoluble in the electrolyte present in the molten carbonate fuel cell, the cathode having a porosity in the range of from about 60% to about 70% at steady-state cell operating conditions consisting of both macro-pores and micro-pores.

  3. Alternative cathodes for molten carbonate fuel cells

    SciTech Connect

    Bloom, I.; Lanagan, M.; Roche, M.F.; Krumpelt, M.

    1996-02-01

    Argonne National Laboratory (ANL) is developing advanced cathodes for pressurized operation of the molten carbonate fuel cell (MCFC). The present cathode, lithiated nickel oxide, tends to transport to the anode of the MCFC, where it is deposited as metallic nickel. The rate of transport increases with increasing CO{sub 2} pressure. This increase is due to an increased solubility of nickel oxide (NiO) in the molten carbonate electrolyte. An alternative cathode is lithium cobaltate (LiCoO{sub 2})-Solid solutions of LiCoO{sub 2} in LiFeO{sub 2} show promise for long-lived cathode materials. We have found that small additions of LiCoO{sub 2} to LiFeO{sub 2} markedly decrease the resistivity of the cathode material. Cells containing the LiCoO{sub 2}-LiFeO{sub 2} cathodes have stable performance for more than 2100 h of operation and display lower cobalt migration.

  4. Fuel cell having dual electrode anode or cathode

    DOEpatents

    Findl, E.

    1984-04-10

    A fuel cell that is characterized by including a dual electrode anode that is operable to simultaneously electro-oxidize a gaseous fuel and a liquid fuel. In alternative embodiments, a fuel cell having a single electrode anode is provided with a dual electrode cathode that is operable to simultaneously reduce a gaseous oxidant and a liquid oxidant to electro-oxidize a fuel supplied to the cell.

  5. Fuel cell having dual electrode anode or cathode

    DOEpatents

    Findl, Eugene

    1985-01-01

    A fuel cell that is characterized by including a dual electrode anode that is operable to simultaneously electro-oxidize a gaseous fuel and a liquid fuel. In alternative embodiments, a fuel cell having a single electrode anode is provided with a dual electrode cathode that is operable to simultaneously reduce a gaseous oxidant and a liquid oxidant to electro-oxidize a fuel supplied to the cell.

  6. Molten carbonate fuel cell cathode with mixed oxide coating

    DOEpatents

    Hilmi, Abdelkader; Yuh, Chao-Yi

    2013-05-07

    A molten carbonate fuel cell cathode having a cathode body and a coating of a mixed oxygen ion conductor materials. The mixed oxygen ion conductor materials are formed from ceria or doped ceria, such as gadolinium doped ceria or yttrium doped ceria. The coating is deposited on the cathode body using a sol-gel process, which utilizes as precursors organometallic compounds, organic and inorganic salts, hydroxides or alkoxides and which uses as the solvent water, organic solvent or a mixture of same.

  7. Effects of Humidity on Solid Oxide Fuel Cell Cathodes

    SciTech Connect

    Hardy, John S.; Stevenson, Jeffry W.; Singh, Prabhakar; Mahapatra, Manoj K.; Wachsman, E. D.; Liu, Meilin; Gerdes, Kirk R.

    2015-03-17

    This report summarizes results from experimental studies performed by a team of researchers assembled on behalf of the Solid-state Energy Conversion Alliance (SECA) Core Technology Program. Team participants employed a variety of techniques to evaluate and mitigate the effects of humidity in solid oxide fuel cell (SOFC) cathode air streams on cathode chemistry, microstructure, and electrochemical performance.

  8. Microbial Fuel Cell Performance with a Pressurized Cathode Chamber

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Microbial fuel cell (MFC) power densities are often constrained by the oxygen reduction reaction rate on the cathode electrode. One important factor for this is the normally low solubility of oxygen in the aqueous cathode solution creating mass transport limitations, which hinder oxygen reduction a...

  9. Nanofiber Scaffold for Cathode of Solid Oxide Fuel Cell

    SciTech Connect

    Zhi, Mingjia; Mariani, Nicholas; Gemmen, Randall; Gerdes, Kirk; Wu, Nianqiang

    2010-10-01

    A high performance solid oxide fuel cell cathode using the yttria-stabilized zirconia (YSZ) nanofibers scaffold with the infiltrated La1-xSrxMnO3 (LSM) shows an enhanced catalytic activity toward oxygen reduction. Such a cathode offers a continuous path for charge transport and an increased number of triple-phase boundary sites.

  10. Cathode side hardware for carbonate fuel cells

    DOEpatents

    Xu, Gengfu; Yuh, Chao-Yi

    2011-04-05

    Carbonate fuel cathode side hardware having a thin coating of a conductive ceramic formed from one of Perovskite AMeO.sub.3, wherein A is at least one of lanthanum and a combination of lanthanum and strontium and Me is one or more of transition metals, lithiated NiO (Li.sub.xNiO, where x is 0.1 to 1) and X-doped LiMeO.sub.2, wherein X is one of Mg, Ca, and Co.

  11. Cathode preparation method for molten carbonate fuel cell

    DOEpatents

    Smith, James L.; Sim, James W.; Kucera, Eugenia H.

    1988-01-01

    A method of preparing a porous cathode structure for use in a molten carbonate fuel cell begins by providing a porous integral plaque of sintered nickel oxide particles. The nickel oxide plaque can be obtained by oxidizing a sintered plaque of nickel metal or by compacting and sintering finely divided nickel oxide particles to the desired pore structure. The porous sintered nickel oxide plaque is contacted with a lithium salt for a sufficient time to lithiate the nickel oxide structure and thus enhance its electronic conductivity. The lithiation can be carried out either within an operating fuel cell or prior to assembling the plaque as a cathode within the fuel cell.

  12. Polymer coatings as separator layers for microbial fuel cell cathodes

    NASA Astrophysics Data System (ADS)

    Watson, Valerie J.; Saito, Tomonori; Hickner, Michael A.; Logan, Bruce E.

    2011-03-01

    Membrane separators reduce oxygen flux from the cathode into the anolyte in microbial fuel cells (MFCs), but water accumulation and pH gradients between the separator and cathode reduces performance. Air cathodes were spray-coated (water-facing side) with anion exchange, cation exchange, and neutral polymer coatings of different thicknesses to incorporate the separator into the cathode. The anion exchange polymer coating resulted in greater power density (1167 ± 135 mW m-2) than a cation exchange coating (439 ± 2 mW m-2). This power output was similar to that produced by a Nafion-coated cathode (1114 ± 174 mW m-2), and slightly lower than the uncoated cathode (1384 ± 82 mW m-2). Thicker coatings reduced oxygen diffusion into the electrolyte and increased coulombic efficiency (CE = 56-64%) relative to an uncoated cathode (29 ± 8%), but decreased power production (255-574 mW m-2). Electrochemical characterization of the cathodes ex situ to the MFC showed that the cathodes with the lowest charge transfer resistance and the highest oxygen reduction activity produced the most power in MFC tests. The results on hydrophilic cathode separator layers revealed a trade off between power and CE. Cathodes coated with a thin coating of anion exchange polymer show promise for controlling oxygen transfer while minimally affecting power production.

  13. Long term investigations of silver cathodes for alkaline fuel cells

    NASA Astrophysics Data System (ADS)

    Wagner, N.; Schulze, M.; Gülzow, E.

    Alkaline fuel cells (AFC) are an interesting alternative to polymer electrolyte fuel cells (PEFC). In AFC no expensive platinum metal is necessary; silver can be used for the oxygen reduction reaction (ORR) (cathode catalyst). For technical use of AFC the long term behavior of AFC components is important, especially that of the electrodes. The investigated cathodes for AFC consist of a mixture of silver catalyst and polytetrafluorethylene (PTFE) as organic binder rolled onto a metal web. The electrodes were electrochemically investigated through measuring V- i curves and electrochemical impedance spectroscopy (EIS). The electrochemical characterization and the long term tests were performed in half-cells at 70 °C using pure oxygen (1 bar) under galvanostatic conditions. The cathodes were electrochemically investigated in half-cells using reference electrodes (Hg/HgO) by periodically recording V- i curve and electrochemical impedance spectroscopy. In addition, the cathodes were physically characterized by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS).

  14. Durability and performance optimization of cathode materials for fuel cells

    NASA Astrophysics Data System (ADS)

    Colon-Mercado, Hector Rafael

    The primary objective of this dissertation is to develop an accelerated durability test (ADT) for the evaluation of cathode materials for fuel cells. The work has been divided in two main categories, namely high temperature fuel cells with emphasis on the Molten Carbonate Fuel Cell (MCFC) cathode current collector corrosion problems and low temperature fuel cells in particular Polymer Electrolyte Fuel Cell (PEMFC) cathode catalyst corrosion. The high operating temperature of MCFC has given it benefits over other fuel cells. These include higher efficiencies (>50%), faster electrode kinetics, etc. At 650°C, the theoretical open circuit voltage is established, providing low electrode overpotentials without requiring any noble metal catalysts and permitting high electrochemical efficiency. The waste heat is generated at sufficiently high temperatures to make it useful as a co-product. However, in order to commercialize the MCFC, a lifetime of 40,000 hours of operation must be achieved. The major limiting factor in the MCFC is the corrosion of cathode materials, which include cathode electrode and cathode current collector. In the first part of this dissertation the corrosion characteristics of bare, heat-treated and cobalt coated titanium alloys were studied using an ADT and compared with that of state of the art current collector material, SS 316. PEMFCs are the best choice for a wide range of portable, stationary and automotive applications because of their high power density and relatively low-temperature operation. However, a major impediment in the commercialization of the fuel cell technology is the cost involved due to the large amount of platinum electrocatalyst used in the cathode catalyst. In an effort to increase the power and decrease the cathode cost in polymer electrolyte fuel cell (PEMFC) systems, Pt-alloy catalysts were developed to increase its activity and stability. Extensive research has been conducted in the area of new alloy development and

  15. Carbon support oxidation in PEM fuel cell cathodes

    NASA Astrophysics Data System (ADS)

    Maass, S.; Finsterwalder, F.; Frank, G.; Hartmann, R.; Merten, C.

    Oxidation of the cathode carbon catalyst support in polymer electrolyte fuel cells (PEMFC) has been examined. For this purpose platinum supported electrodes and pure carbon electrodes were fabricated and tested in membrane-electrode-assemblies (MEAs) in air and nitrogen atmosphere. The in situ experiments account for the fuel cell environment characterized by the presence of a solid electrolyte and water in the gas and liquid phases. Cell potential transients occurring during automotive fuel cell operation were simulated by dynamic measurements. Corrosion rates were calculated from CO 2 and CO concentrations in the cathode exhaust measured by non-dispersive infrared spectroscopy (NDIR). Results from these potentiodynamic measurements indicate that different potential regimes relevant for carbon oxidation can be distinguished. Carbon corrosion rates were found to be higher under dynamic operation and to strongly depend on electrode history. These characteristics make it difficult to predict corrosion rates accurately in an automotive drive cycle.

  16. Multiple cathodic reaction mechanisms in seawater cathodic biofilms operating in sediment microbial fuel cells.

    PubMed

    Babauta, Jerome T; Hsu, Lewis; Atci, Erhan; Kagan, Jeff; Chadwick, Bart; Beyenal, Haluk

    2014-10-01

    In this study, multiple reaction mechanisms in cathodes of sediment microbial fuel cells (SMFCs) were characterized by using cyclic voltammetry and microelectrode measurements of dissolved oxygen and pH. The cathodes were acclimated in SMFCs with sediment and seawater from San Diego Bay. Two limiting current regions were observed with onset potentials of approximately +400 mVAg/AgCl for limiting current I and -120 mVAg/AgCl for limiting current II. The appearance of two catalytic waves suggests that multiple cathodic reaction mechanisms influence cathodic performance. Microscale oxygen concentration measurements showed a zero surface concentration at the electrode surface for limiting current II but not for limiting current I, which allowed us to distinguish limiting current II as the conventional oxygen reduction reaction and limiting current I as a currently unidentified cathodic reaction mechanism. Microscale pH measurements further confirmed these results. PMID:25154833

  17. Autotrophic nitrite removal in the cathode of microbial fuel cells.

    PubMed

    Puig, Sebastià; Serra, Marc; Vilar-Sanz, Ariadna; Cabré, Marina; Bañeras, Lluís; Colprim, Jesús; Balaguer, M Dolors

    2011-03-01

    Nitrification to nitrite (nitritation process) followed by reduction to dinitrogen gas decreases the energy demand and the carbon requirements of the overall process of nitrogen removal. This work studies autotrophic nitrite removal in the cathode of microbial fuel cells (MFCs). Special attention was paid to determining whether nitrite is used as the electron acceptor by exoelectrogenic bacteria (biologic reaction) or by graphite electrodes (abiotic reaction). The results demonstrated that, after a nitrate pulse at the cathode, nitrite was initially accumulated; subsequently, nitrite was removed. Nitrite and nitrate can be used interchangeably as an electron acceptor by exoelectrogenic bacteria for nitrogen reduction from wastewater while producing bioelectricity. However, if oxygen is present in the cathode chamber, nitrite is oxidised via biological or electrochemical processes. The identification of a dominant bacterial member similar to Oligotropha carboxidovorans confirms that autotrophic denitrification is the main metabolism mechanism in the cathode of an MFC. PMID:21262566

  18. Degradation characteristics of air cathode in zinc air fuel cells

    NASA Astrophysics Data System (ADS)

    Ma, Ze; Pei, Pucheng; Wang, Keliang; Wang, Xizhong; Xu, Huachi; Liu, Yongfeng; peng, Guanlin

    2015-01-01

    The zinc air fuel cell (ZAFC) is a promising candidate for electrical energy storage and electric vehicle propulsion. However, its limited durability has become a major obstacle for its successful commercialization. In this study, 2-cell stacks, 25 cm² cells and three-electrode half-cells are constructed to experimentally investigate the degradation characteristics of the air cathode. The results of electrochemical tests reveal that the peak power density for the 25 cm2 cell with a new air cathode is 454 mW cm-2, which is twice as the value of the used air cathode. The electrochemical impedance analysis shows that both the charge transfer resistance and the mass transfer resistance of the used air cathodes have increased, suggesting that the catalyst surface area and gas diffusion coefficient have decreased significantly. Additionally, the microstructure and morphology of the catalytic layer (CL) and gas diffusion layer (GDL) are characterized by scanning electron microscopes (SEM). SEM results confirm that the micropores in CL and GDL of the used air cathode are seriously clogged, and many catalyst particles are lost. Therefore, the performance degradation is mainly due to the clogging of micropores and loss of catalyst particles. Furthermore, hypotheses of degradation mechanism and mitigation strategies for GDL and CL are discussed briefly.

  19. Functionally Graded Cathodes for Solid Oxide Fuel Cells

    SciTech Connect

    YongMan Choi; Meilin Liu

    2006-09-30

    This DOE SECA project focused on both experimental and theoretical understanding of oxygen reduction processes in a porous mixed-conducting cathode in a solid oxide fuel cell (SOFC). Elucidation of the detailed oxygen reduction mechanism, especially the rate-limiting step(s), is critical to the development of low-temperature SOFCs (400 C to 700 C) and to cost reduction since much less expensive materials may be used for cell components. However, cell performance at low temperatures is limited primarily by the interfacial polarization resistances, specifically by those associated with oxygen reduction at the cathode, including transport of oxygen gas through the porous cathode, the adsorption of oxygen onto the cathode surface, the reduction and dissociation of the oxygen molecule (O{sub 2}) into the oxygen ion (O{sup 2-}), and the incorporation of the oxygen ion into the electrolyte. In order to most effectively enhance the performance of the cathode at low temperatures, we must understand the mechanism and kinetics of the elementary processes at the interfaces. Under the support of this DOE SECA project, our accomplishments included: (1) Experimental determination of the rate-limiting step in the oxygen reduction mechanism at the cathode using in situ FTIR and Raman spectroscopy, including surface- and tip-enhanced Raman spectroscopy (SERS and TERS). (2) Fabrication and testing of micro-patterned cathodes to compare the relative activity of the TPB to the rest of the cathode surface. (3) Construction of a mathematical model to predict cathode performance based on different geometries and microstructures and analyze the kinetics of oxygen-reduction reactions occurring at charged mixed ionic-electronic conductors (MIECs) using two-dimensional finite volume models with ab initio calculations. (4) Fabrication of cathodes that are graded in composition and microstructure to generate large amounts of active surface area near the cathode/electrolyte interface using a

  20. Cathodic oxygen reduction catalyzed by bacteria in microbial fuel cells.

    PubMed

    Rabaey, Korneel; Read, Suzanne T; Clauwaert, Peter; Freguia, Stefano; Bond, Philip L; Blackall, Linda L; Keller, Jurg

    2008-05-01

    Microbial fuel cells (MFCs) have the potential to combine wastewater treatment efficiency with energetic efficiency. One of the major impediments to MFC implementation is the operation of the cathode compartment, as it employs environmentally unfriendly catalysts such as platinum. As recently shown, bacteria can facilitate sustainable and cost-effective cathode catalysis for nitrate and also oxygen. Here we describe a carbon cathode open to the air, on which attached bacteria catalyzed oxygen reduction. The bacteria present were able to reduce oxygen as the ultimate electron acceptor using electrons provided by the solid-phase cathode. Current densities of up to 2.2 A m(-2) cathode projected surface were obtained (0.303+/-0.017 W m(-2), 15 W m(-3) total reactor volume). The cathodic microbial community was dominated by Sphingobacterium, Acinetobacter and Acidovorax sp., according to 16S rRNA gene clone library analysis. Isolates of Sphingobacterium sp. and Acinetobacter sp. were obtained using H(2)/O(2) mixtures. Some of the pure culture isolates obtained from the cathode showed an increase in the power output of up to three-fold compared to a non-inoculated control, that is, from 0.015+/-0.001 to 0.049+/-0.025 W m(-2) cathode projected surface. The strong decrease in activation losses indicates that bacteria function as true catalysts for oxygen reduction. Owing to the high overpotential for non-catalyzed reduction, oxygen is only to a limited extent competitive toward the electron donor, that is, the cathode. Further research to refine the operational parameters and increase the current density by modifying the electrode surface and elucidating the bacterial metabolism is warranted. PMID:18288216

  1. Functionally graded composite cathodes for solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Hart, N. T.; Brandon, N. P.; Day, M. J.; Lapeña-Rey, N.

    Functionally graded solid oxide fuel cell (SOFC) cathodes have been prepared from mixtures of strontium-doped lanthanum manganite (LSM) and gadolinia-doped ceria (CGO) using slurry spraying techniques. Similar samples were also prepared from mixtures of LSM and ytrria-stabilised zirconia (YSZ). A current collector comprising a mixture of LSM and strontium-doped lanthanum cobaltite (LSCO) was then applied to both cathode types. Samples were characterised using scanning electron microscopy (SEM) and electrochemical impedance spectroscopy (EIS). Characterisation using EIS techniques showed that cathodes incorporating CGO into the structure gave improved performance over those fabricated using YSZ. These performance gains were most noticeable as the temperature was decreased towards 700 °C, and were maintained during the testing of three cell membrane electrode assemblies fabricated to the Rolls-Royce design.

  2. Cathode catalyst for primary phosphoric fuel cells

    NASA Technical Reports Server (NTRS)

    Walsh, F.

    1980-01-01

    Alkylation of Vulcan XC-72 provided the most stable bond type for linking CoTAA to the surface of the carbon; this result is based on data obtained by cyclic voltammetry, pulse voltammetry and by release of 14C from bonded CoTAA. Half-cell tests at 100 C in 85% phosphoric acid showed that CoTAA bonded to the surface of carbon (Vulcan XC-72) via an alkylation procedure is a more active catalyst than is platinum based on a factor of two improvement in Tafel slope; dimeric CoTAA has catalytic activity equal to platinum. Half-cell tests also showed that bonded CoTAA catalysts do not suffer a loss in potential when air is used as a fuel rather than oxygen. Commercially available PTFE was shown to be stable for four months in 200 C 85% phosphoric acid based on lack of change in surface wetting properties, IR and physical characteristics. When stressed electrochemically in 150 C 85% phosphoric acid, PTFE also showed no changes after one month.

  3. Improved Cathode Structure for a Direct Methanol Fuel Cell

    NASA Technical Reports Server (NTRS)

    Valdez, Thomas; Narayanan, Sekharipuram

    2005-01-01

    An improved cathode structure on a membrane/electrode assembly has been developed for a direct methanol fuel cell, in a continuing effort to realize practical power systems containing such fuel cells. This cathode structure is intended particularly to afford better cell performance at a low airflow rate. A membrane/electrode assembly of the type for which the improved cathode structure was developed (see Figure 1) is fabricated in a process that includes brush painting and spray coating of catalyst layers onto a polymer-electrolyte membrane and onto gas-diffusion backings that also act as current collectors. The aforementioned layers are then dried and hot-pressed together. When completed, the membrane/electrode assembly contains (1) an anode containing a fine metal black of Pt/Ru alloy, (2) a membrane made of Nafion 117 or equivalent (a perfluorosulfonic acid-based hydrophilic, proton-conducting ion-exchange polymer), (3) a cathode structure (in the present case, the improved cathode structure described below), and (4) the electrically conductive gas-diffusion backing layers, which are made of Toray 060(TradeMark)(or equivalent) carbon paper containing between 5 and 6 weight percent of poly(tetrafluoroethylene). The need for an improved cathode structure arises for the following reasons: In the design and operation of a fuel-cell power system, the airflow rate is a critical parameter that determines the overall efficiency, cell voltage, and power density. It is desirable to operate at a low airflow rate in order to obtain thermal and water balance and to minimize the size and mass of the system. The performances of membrane/electrode assemblies of prior design are limited at low airflow rates. Methanol crossover increases the required airflow rate. Hence, one way to reduce the required airflow rate is to reduce the effect of methanol crossover. Improvement of the cathode structure - in particular, addition of hydrophobic particles to the cathode - has been

  4. Corrosion testing of candidates for the alkaline fuel cell cathode

    NASA Technical Reports Server (NTRS)

    Singer, Joseph; Fielder, William L.

    1990-01-01

    Current/voltage data have been obtained for specially made corrosion electrodes of some oxides and of gold materials for the purpose of developing a screening test of catalysts and supports for use at the cathode of the alkaline fuel cell. The data consist of measurements of current at fixed potentials and cyclic voltammograms. These data will have to be correlated with longtime performance data in order to evaluate fully this approach to corrosion screening.

  5. Lithium-ferrate-based cathodes for molten carbonate fuel cells

    SciTech Connect

    Lanagan, M.T.; Bloom, I.; Kaun, T.D.

    1996-12-31

    Argonne National Laboratory is developing advanced cathodes for pressurized operation of the molten carbonate fuel cell (MCFC) at {approximately}650{degrees}C. To be economically viable for stationary power generation, molten carbonate fuel cells must have lifetimes of more than 25,000 h while exhibiting superior cell performance. In the present technology, lithiated NiO is used as the cathode. Over the lifetime of the cell, however, N{sup 2+} ions tend to transport to the anode, where they are reduced to metallic Ni. With increased CO{sub 2} partial pressure, the transport of Ni increases because of the increased solubility of NiO in the carbonate electrolyte. Although this process is slow in MCFCs operated at 1 atm and a low CO{sub 2} partial pressure (about 0.1 atm), transport of nickel to the anode may be excessive at a higher pressure (e.g., 3 atm) and a high CO{sub 2} partial pressure (e.g., about 0.3 arm). This transport is expected to lead eventually to poor MCFC performance and/or short circuiting. Several alternative cathode compositions have been explored to reduce cathode solubility in the molten salt electrolyte. For example, LiCoO{sub 2} has been studied extensively as a potential cathode material. The LiCoO{sub 2} cathode has a low resistivity, about 10-cm, and can be used as a direct substitute for NiO. Argonne is developing advanced cathodes based on lithium ferrate (LiFeO{sub 2}), which is attractive because of its very low solubility in the molten (Li,K){sub 2}CO{sub 3} electrolyte. Because of its high resistivity (about 3000-cm), however, LiFeO{sub 2} cannot be used as a direct substitute for NiO. Cation substitution is, therefore, necessary to decrease resistivity. We determined the effect of cation substitution on the resistivity and deformation of LiFeO{sub 2}. The substituents were chosen because their respective oxides as well as LiFeO{sub 2} crystallize with the rock-salt structure.

  6. Functionally Graded Cathodes for Solid Oxide Fuel Cells

    SciTech Connect

    Harry Abernathy; Meilin Liu

    2006-12-31

    One primary suspected cause of long-term performance degradation of solid oxide fuels (SOFCs) is the accumulation of chromium (Cr) species at or near the cathode/electrolyte interface due to reactive Cr molecules originating from Cr-containing components (such as the interconnect) in fuel cell stacks. To date, considerable efforts have been devoted to the characterization of cathodes exposed to Cr sources; however, little progress has been made because a detailed understanding of the chemistry and electrochemistry relevant to the Cr-poisoning processes is still lacking. This project applied multiple characterization methods - including various Raman spectroscopic techniques and various electrochemical performance measurement techniques - to elucidate and quantify the effect of Cr-related electrochemical degradation at the cathode/electrolyte interface. Using Raman microspectroscopy the identity and location of Cr contaminants (SrCrO{sub 4}, (Mn/Cr){sub 3}O{sub 4} spinel) have been observed in situ on an LSM cathode. These Cr contaminants were shown to form chemically (in the absence of current flowing through the cell) at temperatures as low as 625 C. While SrCrO{sub 4} and (Mn/Cr){sub 3}O{sub 4} spinel must preferentially form on LSM, since the LSM supplies the Sr and Mn cations necessary for these compounds, LSM was also shown to be an active site for the deposition of Ag{sub 2}CrO{sub 4} for samples that also contained silver. In contrast, Pt and YSZ do not appear to be active for formation of Cr-containing phases. The work presented here supports the theory that Cr contamination is predominantly chemically-driven and that in order to minimize the effect, cathode materials should be chosen that are free of cations/elements that could preferentially react with chromium, including silver, strontium, and manganese.

  7. Model of cathode reaction resistance in molten carbonate fuel cells

    SciTech Connect

    Morita, H.; Mugikura, Y.; Izaki, Y.; Watanabe, T.; Abe, T.

    1998-05-01

    A model of the performance of a molten carbonate fuel cell (MCFC) is required to estimate the efficiency of an MCFC power plant or to simulate the internal state of a stack. The model should provide an accurate representation of the performance under various operating conditions. However, the performance estimated by previous models has been found to deviate from the measured performance under low oxygen and carbon dioxide cathode partial pressures. To solve this problem, the authors carried out a systematic analysis of the performance of several bench-scale cells operated under various cathode gas conditions and investigated a model of cathode polarization according to the oxygen reduction mechanism in molten carbonate. As a result, it has been clarified that the behavior of cathode polarization under various conditions is described well by the dependence of mixed diffusion of superoxide ion O{sub 2}{sup {minus}} and CO{sub 2} in the melt on the assumed partial pressures at each total operating pressure.

  8. New Cathode Materials for Intermediate Temperature Solid Oxide Fuel Cells

    SciTech Connect

    Allan J. Jacobson

    2005-11-17

    Operation of SOFCs at intermediate temperatures (500-800 C) requires new combinations of electrolyte and electrode materials that will provide both rapid ion transport across the electrolyte and electrode--electrolyte interfaces and efficient electrocatalysis of the oxygen reduction and fuel oxidation reactions. This project concentrates on materials and issues associated with cathode performance that are known to become limiting factors as the operating temperature is reduced. The specific objectives of the proposed research are to develop cathode materials that meet the electrode performance targets of 1.0 W/cm{sup 2} at 0.7 V in combination with YSZ at 700 C and with GDC, LSGM or bismuth oxide based electrolytes at 600 C. The performance targets imply an area specific resistance of {approx}0.5 {Omega}cm{sup 2} for the total cell. The research strategy is to investigate both established classes of materials and new candidates as cathodes, to determine fundamental performance parameters such as bulk diffusion, surface reactivity and interfacial transfer, and to couple these parameters to performance in single cell tests. In this report, the oxygen exchange kinetics of a P2 composition are described in detail. The oxygen exchange kinetics of the oxygen deficient double perovskite LnBaCo{sub 2}O{sub 5.5+{delta}} (Ln=Pr and Nd) have been determined by electrical conductivity relaxation. The high electronic conductivity and rapid diffusion and surface exchange kinetics of PBCO suggest its application as cathode material in intermediate temperature solid oxide fuel cells.

  9. Investigating Microbial Fuel Cell Bioanode Performance Under Different Cathode Conditions

    SciTech Connect

    Borole, Abhijeet P; Hamilton, Choo Yieng; Aaron, D; Tsouris, Costas

    2009-01-01

    A compact, three-in-one, flow-through, porous, electrode design with minimal electrode spacing and minimal dead volume was implemented to develop a microbial fuel cell (MFC) with improved anode performance. A biofilm-dominated anode consortium enriched under a multimode, continuous-flow regime was used. The increase in the power density of the MFC was investigated by changing the cathode (type, as well as catholyte strength) to determine whether anode was limiting. The power density obtained with an air-breathing cathode was 56 W/m3 of net anode volume (590 mW/m2) and 203 W/m3 (2160 mW/m2) with a 50-mM ferricyanide- based cathode. Increasing the ferricyanide concentration and ionic strength further increased the power density, reaching 304 W/m3 (3220 mW/m2, with 200 mM ferricyanide and 200 mM buffer concentration). The increasing trend in the power density indicated that the anode was not limiting and that higher power densities could be obtained using cathodes capable of higher rates of oxidation. The internal solution resistance for the MFC was 5 6 X, which supported the improved performance of the anode design. A new parameter defined as the ratio of projected surface area to total anode volume is suggested as a design parameter to relate volumetric and area-based power densities and to enable comparison of various MFC configurations.

  10. Lithium ferrate and lithium cobaltate cathodes for molten carbonate fuel cells

    SciTech Connect

    Krumpelt, M.; Roche, M.; Bloom, I.; Indacochea, J.E.; Kucera, G.

    1994-08-01

    The objective of this research is to develop cathodes for the molten carbonate fuel cells (MCFC) having a performance approaching that of the lithiated nickel oxide cathode and a significantly greater life, particularly in pressurized MCFCs. To meet this objective, cathodes containing either doubly doped lithium ferrate or lithium cobaltate are being developed. In this project, the authors are optimizing the composition, microstructure, and loading density of the doubly doped lithium ferrate cathode and the lithium cobaltate cathodes.

  11. Tandem cathode for proton exchange membrane fuel cells.

    PubMed

    Siahrostami, Samira; Björketun, Mårten E; Strasser, Peter; Greeley, Jeff; Rossmeisl, Jan

    2013-06-21

    The efficiency of proton exchange membrane fuel cells is limited mainly by the oxygen reduction reaction at the cathode. The large cathodic overpotential is caused by correlations between binding energies of reaction intermediates in the reduction of oxygen to water. This work introduces a novel tandem cathode design where the full oxygen reduction, involving four electron-transfer steps, is divided into formation (equilibrium potential 0.70 V) followed by reduction (equilibrium potential 1.76 V) of hydrogen peroxide. The two part reactions contain only two electron-transfer steps and one reaction intermediate each, and they occur on different catalyst surfaces. As a result they can be optimized independently and the fundamental problem associated with the four-electron catalysis is avoided. A combination of density functional theory calculations and published experimental data is used to identify potentially active and selective materials for both catalysts. Co-porphyrin is recommended for the first step, formation of hydrogen peroxide, and three different metal oxides - SrTiO3(100), CaTiO3(100) and WO3(100) - are suggested for the subsequent reduction step. PMID:23661187

  12. Degradation of Ionic Pathway in PEM Fuel Cell Cathode

    SciTech Connect

    Park, Seh Kyu; Shao, Yuyan; Wan, Haiying; Viswanathan, Vilayanur V.; Towne, Silas A.; Rieke, Peter C.; Liu, Jun; Wang, Yong

    2011-11-12

    The degradation of the ionic pathway throughout the catalyst layer in proton exchange membrane fuel cells was studied under an accelerated stress test of catalyst support (potential hold at 1.2 V). Electrochemical behaviors of the cathode based on graphitic mesoporous carbon supported Pt catalyst were examined using electrochemical impedance spectroscopy and cyclic voltammetry. Impedance data were plotted and expressed in the complex capacitance form to determine useful parameters in the transmission line model: the double-layer capacitance, peak frequency, and ionic resistance. Electrochemical surface area and hydrogen crossover current through the membrane were estimated from cyclic voltammogram, while cathode Faradaic resistance was compared with ionic resistance as a function of test time. It was observed that during an accelerated stress test of catalyst support, graphitic mesoporous carbon becomes hydrophilic which increases interfacial area between the ionomer and the catalyst up to 100 h. However, the ionic resistance in the catalyst layer drastically increases after 100 h with further carbon support oxidation. The underlying mechanism has been studied and it was found that significant degradation of ionic pathway throughout the catalyst layer due to catalyst support corrosion induces uneven hydration and mechanical stress in the ionomer.

  13. Simulated coal-gas-fueled molten carbonate fuel cell development program. Topical report: Cathode compatibility tests

    SciTech Connect

    Johnson, W.H.

    1992-07-01

    In previous work, International Fuel Cells Corporation (EFC) found interactions between molten carbonate fuel cell cathode materials being considered as replacements for the presently used nickel oxide and matrix materials. Consequently, this work was conducted to screen additional new materials for mutual compatibility. As part of this program, experiments were performed to examine the compatibility of several candidate, alternative cathode materials with the standard lithium aluminate matrix material in the presence of electrolyte at cell potentials. Initial cathode candidates were materials lithium ferrite, yttrium iron garnet, lithium manganite and doped ceria which were developed by universities, national laboratories, or contractors to DOE, EPRI, or GRI. These investigations were conducted in laboratory scale experiments. None of the materials tested can directly replace nickel oxide or indicate greater stability of cell performance than afforded by nickel oxide. Specifically: (1) no further work on niobium doped ceria is warranted; (2) cobalt migration was found in the lithium ferrite cathode tested. This could possibly lead to shorting problems similiar to those encountered with nickel oxide; (3) Possible shorting problems may also exist with the proprietary dopant in YIG; (4) lithium ferrite and YIG cathode were not single phase materials. Assessment of the chemical stability, i.e., dopant loss, was severely impeded by dissolution of these second phases in the electrolyte; and (5) Magnesium doped lithium manganite warrants further work. Electrolytes should contain Mg ions to suppress dopant loss.

  14. Corrosion testing of candidates for the alkaline fuel cell cathode

    NASA Technical Reports Server (NTRS)

    Singer, Joseph; Fielder, William L.

    1989-01-01

    Current/voltage data was obtained for specially made corrosion electrodes of some oxides and of gold materials for the purpose of developing a screening test of catalysts and supports for use at the cathode of the alkaline fuel cell. The data consists of measurements of current at fixed potentials and cyclic voltammograms. These data will have to be correlated with longtime performance data in order to fully evaluate this approach to corrosion screening. Corrosion test screening of candidates for the oxygen reduction electrode of the alkaline fuel cell was applied to two substances, the pyrochlore Pb2Ru2O6.5 and the spinel NiCo2O4. The substrate gold screen and a sample of the IFC Orbiter Pt-Au performance electrode were included as blanks. The pyrochlore data indicate relative stability, although nothing yet can be said about long term stability. The spinel was plainly unstable. For this type of testing to be validated, comparisons will have to be made with long term performance tests.

  15. New Cathode Materials for Intermediate Temperature Solid Oxide Fuel Cells

    SciTech Connect

    Allan J. Jacobson

    2006-09-30

    Operation of SOFCs at intermediate temperatures (500-800 C) requires new combinations of electrolyte and electrode materials that will provide both rapid ion transport across the electrolyte and electrode-electrolyte interfaces and efficient electrocatalysis of the oxygen reduction and fuel oxidation reactions. This project concentrates on materials and issues associated with cathode performance that are known to become limiting factors as the operating temperature is reduced. The specific objectives of the proposed research are to develop cathode materials that meet the electrode performance targets of 1.0 W/cm{sup 2} at 0.7 V in combination with YSZ at 700 C and with GDC, LSGM or bismuth oxide based electrolytes at 600 C. The performance targets imply an area specific resistance of {approx}0.5 {Omega}cm{sup 2} for the total cell. The research strategy is to investigate both established classes of materials and new candidates as cathodes, to determine fundamental performance parameters such as bulk diffusion, surface reactivity and interfacial transfer, and to couple these parameters to performance in single cell tests. The initial choices for study were perovskite oxides based on substituted LaFeO{sub 3} (P1 compositions), where significant data in single cell tests exist at PNNL for example, for La{sub 0.8}Sr{sub 0.2}FeO{sub 3} cathodes on both YSZ and CSO/YSZ. The materials selection was then extended to La{sub 2}NiO{sub 4} compositions (K1 compositions), and then in a longer range task we evaluated the possibility of completely unexplored group of materials that are also perovskite related, the ABM{sub 2}O{sub 5+{delta}}. A key component of the research strategy was to evaluate for each cathode material composition, the key performance parameters, including ionic and electronic conductivity, surface exchange rates, stability with respect to the specific electrolyte choice, and thermal expansion coefficients. In the initial phase, we did this in parallel with

  16. A reduced temperature solid oxide fuel cell with three-dimensionally ordered macroporous cathode

    SciTech Connect

    Liang, B.; Suzuki, T.; Hamamoto, K.; Yamaguchi, T.; Sumi, H.; Fujishiro, Y.; Ingram, B. J.; Carter, J. D.

    2012-01-01

    Three-dimensionally ordered macroporous cathode was fabricated for a zirconia based micro-tubular solid oxide fuel cells (SOFCs). Three different cathodes (cathode A, no pore former; cathode B, with pore former (1.5 {micro}m in diameter); cathode C, with pore former (0.8 {micro}m in diameter)) were compared to investigate how the microstructure of it affected the cell performance at various operating temperatures. Micro-sized pores were well distributed within cathode B and C. The total porosity of cathode A is 35%, while it respectively reached 42 and 50% for cathodes B and C. At the same time, the specific surface area of them was 28.8 and 52.0% larger than that of the cathode A. As a result, the peak power density of the zirconia based cell, with cathode C, was 0.25 and 0.56 W cm{sup -2} at 550 and 600 C, while the respective value was just 0.11 and 0.30 W cm{sup -2} for the cell with cathode A. Thus, optimizing microstructure of cathode should be one of the best approaches for lowering the operating temperature for SOFCs.

  17. Corrosion testing of candidates for the alkaline fuel cell cathode

    NASA Technical Reports Server (NTRS)

    Singer, Joseph; Fielder, William L.

    1989-01-01

    It is desirable to employ a corrosion screening test for catalyst or support candidates for the fuel cell cathode before entering upon optimization of the candidate or of the catalytic electrode. To this end, corrosion test electrodes, intended for complete immersion and maximum wetting, have been made with 30 to 40 vol. pct Teflon; with perovskites this is about 10 to 15 pct. The candidates were synthesized by methods intended for single-phase product without special emphasis on high surface area, although the substances tested were no coarser than 2 m squared/g. A typical loading was 25 mg/cm sq of the pure substance, usually on gold screen, a few mm squared of which were left bare for contacting. Contact to the gold lead wire was made by welding with a micro-torch or a spot-welder. Corrosion testing consisted of obtaining current-voltage data under flowing inert gas in the potential region for reduction of O2. The electrode was immersed in 30 pct KOH. Observations were made at 20 C and 80 C, and the results compared with data from gold standards. Results with some perovskites, pyrochlores, spinels, and interstitial compounds will be discussed.

  18. Iron-based perovskite cathodes for solid oxide fuel cells

    DOEpatents

    Ralph, James M.; Rossignol, Cecile C.R.; Vaughey, John T.

    2007-01-02

    An A and/or A' site deficient perovskite of general formula of (A.sub.1-xA'.sub.x).sub.1-yFeO.sub.3-.delta. or of general formula A.sub.1-x-yA'.sub.xFeO.sub.3-67, wherein A is La alone or with one or more of the rare earth metals or a rare earth metal other than Ce alone or a combination of rare earth metals and X is in the range of from 0 to about 1; A' is Sr or Ca or mixtures thereof and Y is in the range of from about 0.01 to about 0.3; .delta. represents the amount of compensating oxygen loss. If either A or A' is zero the remaining A or A' is deficient. A fuel cell incorporating the inventive perovskite as a cathode is disclosed as well as an oxygen separation membrane. The inventive perovskite is preferably single phase.

  19. Electricity generation by microbial fuel cell using microorganisms as catalyst in cathode.

    PubMed

    Jang, Jae Kyung; Kan, Jinjun; Bretschger, Orianna; Gorby, Yuri A; Hsu, Lewis; Kim, Byung Hong; Nealson, Kenneth H

    2013-12-01

    The cathode reaction is one of the most seriously limiting factors in a microbial fuel cell (MFC). The critical dissolved oxygen (DO) concentration of a platinum-loaded graphite electrode was reported as 2.2 mg/l, about 10-fold higher than an aerobic bacterium. A series of MFCs were run with the cathode compartment inoculated with activated sludge (biotic) or not (abiotic) on platinum-loaded or bare graphite electrodes. At the beginning of the operation, the current values from MFCs with a biocathode and abiotic cathode were 2.3 ± 0.1 and 2.6 ± 0.2 mA, respectively, at the air-saturated water supply in the cathode. The current from MFCs with an abiotic cathode did not change, but that of MFCs with a biotic cathode increased to 3.0 mA after 8 weeks. The coulomb efficiency was 59.6% in the MFCs with a biotic cathode, much higher than the value of 15.6% of the abiotic cathode. When the DO supply was reduced, the current from MFCs with an abiotic cathode decreased more sharply than in those with a biotic cathode. When the respiratory inhibitor azide was added to the catholyte, the current decreased in MFCs with a biotic cathode but did not change in MFCs with an abiotic cathode. The power density was higher in MFCs with a biotic cathode (430 W/m(3) cathode compartment) than the abiotic cathode MFC (257 W/m(3) cathode compartment). Electron microscopic observation revealed nanowire structures in biofilms that developed on both the anode and on the biocathode. These results show that an electron consuming bacterial consortium can be used as a cathode catalyst to improve the cathode reaction. PMID:24225369

  20. Oxygen-hydrogen fuel cell with an iodine-iodide cathode - A concept

    NASA Technical Reports Server (NTRS)

    Javet, P.

    1970-01-01

    Fuel cell uses a porous cathode through which is fed a solution of iodine in aqueous iodide solution, the anode is a hydrogen electrode. No activation polarization appears on the cathode because of the high exchange-current density of the iodine-iodide electrode.

  1. Functionally Graded Cathodes for Solid Oxide Fuel Cells

    SciTech Connect

    Lei Yang; Ze Liu; Shizhone Wang; Jaewung Lee; Meilin Liu

    2008-04-30

    The main objective of this DOE project is to demonstrate that the performance and long-term stability of the state-of-the-art LSCF cathode can be enhanced by a catalytically active coating (e.g., LSM or SSC). We have successfully developed a methodology for reliably evaluating the intrinsic surface catalytic properties of cathode materials. One of the key components of the test cell is a dense LSCF film, which will function as the current collector for the electrode material under evaluation to eliminate the effect of ionic and electronic transport. Since it is dense, the effect of geometry would be eliminated as well. From the dependence of the electrode polarization resistance on the thickness of a dense LSCF electrode and on partial pressure of oxygen, we have confirmed that the surface catalytic activity of LSCF limits the performances of LSCF-based cathodes. Further, we have demonstrated, using test cells of different configurations, that the performance of LSCF-based electrodes can be significantly enhanced by infiltration of a thin film of LSM or SSC. In addition, the stability of LSCF-based cathodes was also improved by infiltration of LSM or SSC. While the concept feasibility of the electrode architecture is demonstrated, many details are yet to be determined. For example, it is not clear how the surface morphology, composition, and thickness of the coatings change under operating conditions over time, how these changes influence the electrochemical behavior of the cathodes, and how to control the microscopic details of the coatings in order to optimize the performance. The selection of the catalytic materials as well as the detailed microstructures of the porous LSCF and the catalyst layer may critically impact the performance of the proposed cathodes. Further, other fundamental questions still remain; it is not clear why the degradation rates of LSCF cathodes are relatively high, why a LSM coating improves the stability of LSCF cathodes, which catalysts

  2. Activated carbon nanofibers (ACNF) as cathode for single chamber microbial fuel cells (SCMFCs)

    NASA Astrophysics Data System (ADS)

    Santoro, Carlo; Stadlhofer, Astrid; Hacker, Viktor; Squadrito, Gaetano; Schröder, Uwe; Li, Baikun

    2013-12-01

    The suitability of carbon nanofibers (CNF) based cathodes as alternative to the platinum (Pt)-based cathode in single chamber microbial fuel cells (SCMFCs) were extensively studied over 3-month operational period. MFCs were fed with two solutions: synthetic wastewater (phosphate buffer (PBS) plus sodium acetate) and real wastewater (mixed liquor suspendedsolid (MLSS) solution). CNFs were chemically activated using HNO3 and then hot pressed on a carbon cloth support to increase surface area. The cathode polarization showed a better behavior of the clean Pt-based cathode in abiotic conditions. The activation of the nanofibers (ACNFs) gave an advantage to the cathode performances compared to the raw CNFs. The SCMFCs fed with PBS showed four times higher power generation compared to MLSS solution. All the cathodes showed a decrease in performances over time, and the advantage of the Pt over CNF/ACNF disappeared. CNF/ACNF cathodes showed more stability in performances in long time operations. Biofilm formation, salt precipitations on the cathode, and the presence of hydrogen sulfide decreased the activity of Pt cathodes. A degradation and Pt detachment were noticed on Pt cathodes over time. In contrast, CNF/ACNF cathodes exhibited less deterioration throughout the operational period, which demonstrated a great potential as cost-effective cathodes for long-term operation.

  3. On the actual cathode mixed potential in direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Zago, M.; Bisello, A.; Baricci, A.; Rabissi, C.; Brightman, E.; Hinds, G.; Casalegno, A.

    2016-09-01

    Methanol crossover is one of the most critical issues hindering commercialization of direct methanol fuel cells since it leads to waste of fuel and significantly affects cathode potential, forming a so-called mixed potential. Unfortunately, due to the sluggish anode kinetics, it is not possible to obtain a reliable estimation of cathode potential by simply measuring the cell voltage. In this work we address this limitation, quantifying the mixed potential by means of innovative open circuit voltage (OCV) tests with a methanol-hydrogen mixture fed to the anode. Over a wide range of operating conditions, the resulting cathode overpotential is between 250 and 430 mV and is strongly influenced by methanol crossover. We show using combined experimental and modelling analysis of cathode impedance that the methanol oxidation at the cathode mainly follows an electrochemical pathway. Finally, reference electrode measurements at both cathode inlet and outlet provide a local measurement of cathode potential, confirming the reliability of the innovative OCV tests and permitting the evaluation of cathode potential up to typical operating current. At 0.25 A cm-2 the operating cathode potential is around 0.85 V and the Ohmic drop through the catalyst layer is almost 50 mV, which is comparable to that in the membrane.

  4. Cathode materials for the molten carbonate fuel cell

    SciTech Connect

    Kucera, G.H.; Brown, A.P.; Roche, M.F.; Indacochea, E.J.; Krumpelt, M.; Myles, K.M.

    1993-08-01

    Both LiFeO{sub 2} and Li{sub 2},MnO{sub 3} were stable in the cathode environment, had low solubility, and were nonprecipitating in the anode environment. Dopants were employed to enhance the electronic conductivity of both materials. Cobalt-doped LiFeO{sub 2} was a factor of 30 more conductive than the undoped LiFeO{sub 2}; Nb-doped Li{sub 2}MnO{sub 3} was a factor of 60 more conductive than its undoped form. However, only the Co-doped LiFeO{sub 2} Li{sub 2} exhibited the desired p-type conduction. Half- and full-cell tests with Co-doped LiFeO{sub 2} as the cathode material showed that its performance strongly depended on the oxygen partial pressure. Under simulated high-pressure conditions, where the O{sub 2} partial pressure was 70 kPa, the performance was good. LiCoO{sub 2} had low solubility and was a good electronic conductor undoped. In addition, it exhibited p-type conduction, and, when used as a cathode material, gave good cell performance. It precipitated as cobalt metal under reducing conditions in anode. However, neither rate of deposition nor conditions influencing deposition and location are known.

  5. Proton exchange membrane fuel cell cathode contamination - Acetylene

    NASA Astrophysics Data System (ADS)

    Zhai, Y.; St-Pierre, Jean

    2015-04-01

    Acetylene adsorption on PEMFC electrodes and contamination in single cells are investigated with 300 ppm acetylene at a cathode held at 80 °C. The results of adsorption experiments suggest that acetylene adsorbs readily on electrodes and is reduced to ethylene and ethane under an open circuit potential of H2/N2, as the adsorbates can be electro-oxidized at high potentials. The cell voltage response shows that 300 ppm acetylene results in a cell performance loss of approximately 88%. The voltage degradation curve is divided into two stages by an inflection point, which suggests that potential-dependent processes are involved in acetylene poisoning. These potential-dependent processes may include acetylene oxidation and reduction as well as accumulation of intermediates on the electrode surface. Electrochemical impedance spectroscopy analysis suggests that acetylene affects the oxygen reduction reaction and may also affect mass transport processes. Acetylene also may be reduced in the steady poisoning state of the operating cell. After neat air operation, the cyclic voltammetry results imply that the cathode catalyst surface is almost completely restored, with no contaminant residues remaining in the MEA. Linear scanning voltammetry measurements show no change in hydrogen crossover caused by contamination, and polarization curves confirm complete recovery of cell performance.

  6. Temporal variations of cathode performance in air-cathode single-chamber microbial fuel cells with different separators

    NASA Astrophysics Data System (ADS)

    Ma, Jinxing; Wang, Zhiwei; Suor, Denis; Liu, Shumeng; Li, Jiaqi; Wu, Zhichao

    2014-12-01

    An ideal separator is essential for efficient power production from air-cathode single-chamber microbial fuel cells (MFCs). In this study, we use different kinds of membranes as separators, including Nafion 117 proton exchange membrane, polyethersulfone and poly(vinylidene fluoride) microfiltration membranes. Temporal variations of cathode performance are monitored during the experiment. Results show that MFCs with microfiltration membranes present higher power output but deterioration is still observed after about 600-h operation. With the utilization of appropriate separators (e.g., polyethersulfone membrane), biofouling, cation fouling and chemical scale fouling of the cathodes are alleviated while reaction fouling seems inevitable. Moreover, it is found that Coulombic efficiency (CE) and energy efficiency (EE) are also related to the cathode performance. Despite relatively high oxygen diffusivity (1.49 × 10-5 cm2 s-1), CE and EE of the MFC with 0.1 μm pore-size polyethersulfone membrane can reach 92.8% and 13.7%, respectively, when its average power density registers 403.5 mW m-2. This phenomenon might be attributed to the finding that the overall substrate consumption rate due to oxygen reduction and respiration is almost constant in the air-cathode MFCs. Oxygen leakage into the electrolyte can be inhibited due to the efficient oxygen reduction reaction on the surface of the cathode.

  7. Improvement in high temperature proton exchange membrane fuel cells cathode performance with ammonium carbonate

    NASA Astrophysics Data System (ADS)

    Song, Ying; Wei, Yu; Xu, Hui; Williams, Minkmas; Liu, Yuxiu; Bonville, Leonard J.; Russell Kunz, H.; Fenton, James M.

    Proton exchange membrane (PEM) fuel cells with optimized cathode structures can provide high performance at higher temperature (120 °C). A "pore-forming" material, ammonium carbonate, applied in the unsupported Pt cathode catalyst layer of a high temperature membrane electrode assembly enhanced the catalyst activity and minimized the mass-transport limitations. The ammonium carbonate amount and Nafion ® loading in the cathode were optimized for performance at two conditions: 80 °C cell temperature with 100% anode/75% cathode R.H. and 120 °C cell temperature with 35% anode/35% cathode R.H., both under ambient pressure. A cell with 20 wt.% ammonium carbonate and 20 wt.% Nafion ® operating at 80 °C and 120 °C presented the maximum cell performance. Hydrogen/air cell voltages at a current density of 400 mA cm -2 using the Ionomem/UConn membrane as the electrolyte with a cathode platinum loading of 0.5 mg cm -2 were 0.70 V and 0.57 V at the two conditions, respectively. This was a 19% cell voltage increase over a cathode without the "pore-forming" ammonium carbonate at the 120 °C operating condition.

  8. Electrochemical Performance and Stability of the Cathode for Solid Oxide Fuel Cells IV. On the Ohmic loss in anode supported button cells with LSM or LSCF cathodes

    SciTech Connect

    Lu, Zigui; Zhou, Xiao Dong; Templeton, Jared W.; Stevenson, Jeffry W.

    2010-05-08

    Anode-supported solid oxide fuel cells (SOFC) with a variety of YSZ electrolyte thicknesses were fabricated by tape casting and lamination. The preparation of the YSZ electrolyte tapes with various thicknesses was accomplished by using doctor blades with different gaps between the precision machined, polished blade and the casting surface. The green tape was cut into discs, sintered at 1385°C for 2 h, and subsequently creep-flattened at 1350°C for 2 h. Either LSCF with an SDC interlayer or LSM+YSZ composite was used as the cathode material for the fuel cells. The ohmic resistances of these anode-supported fuel cells were characterized by electrochemical impedance spectroscopy at temperatures from 500°C to 750°C. A linear relationship was found between the ohmic resistance of the fuel cell and the YSZ electrolyte thickness at all the measuring temperatures for both LSCF and LSM+YSZ cathode fuel cells. The ionic conductivities of the YSZ electrolyte, derived for the fuel cells with LSM+YSZ or LSCF cathodes, were independent of the cathode material and cell configuration. The ionic conductivities of the YSZ electrolyte was slightly lower than that of the bulk material, possibly due to Ni-doping into the electrolyte. The fuel cell with a SDC interlayer and LSCF cathode showed larger intercept resistance than the fuel cell with LSM+YSZ cathode, which was possibly due to the imperfect contact between the SDC interlayer and the YSZ electrolyte and the migration of Zr into the SDC interlayer to form an insulating solid solution during cell fabrication. Calculations of the contribution of the YSZ electrolyte to the total ohmic resistance showed that YSZ was still a satisfactory electrolyte at temperatures above 650°C. Explorations should be directed to reduce the intercept resistance to achieve significant improvement in cell performance.

  9. Development of gold alloy catalyst cathode for alkaline electrolyte fuel cells

    NASA Technical Reports Server (NTRS)

    Freed, M. S.; Lawrance, R. J.

    1975-01-01

    A program for the development of improved catalyst and Teflon-bonded electrode structures using this improved catalyst is described, for use in fuel cell cathodes. It was found that Au-Pt was superior to the traditional platinum black as a catalyst. The impetus to the program was provided by the discovery that a life-limiting mechanism on the old catalyst was the gradual dissolution of platinum from the cathode and subsequent redeposition in the electrolyte-containing matrix.

  10. Multi-variable mathematical models for the air-cathode microbial fuel cell system

    DOE PAGESBeta

    Ou, Shiqi; Kashima, Hiroyuki; Aaron, Douglas S.; Regan, John M.; Mench, Matthew M.

    2016-03-10

    This research adopted the version control system into the model construction for the single chamber air-cathode microbial fuel cell (MFC) system, to understand the interrelation of biological, chemical, and electrochemical reactions. The anodic steady state model was used to consider the chemical species diffusion and electric migration influence to the MFC performance. In the cathodic steady state model, the mass transport and reactions in a multi-layer, abiotic cathode and multi-bacteria cathode biofilm were simulated. Transport of hydroxide was assumed for cathodic pH change. This assumption is an alternative to the typical notion of proton consumption during oxygen reduction to explainmore » elevated cathode pH. The cathodic steady state model provided the power density and polarization curve performance results that can be compared to an experimental MFC system. Another aspect we considered was the relative contributions of platinum catalyst and microbes on the cathode to the oxygen reduction reaction (ORR). We found simulation results showed that the biocatalyst in a cathode that includes a Pt/C catalyst likely plays a minor role in ORR, contributing up to 8% of the total power calculated by the models.« less

  11. Oxygen reduction kinetics on graphite cathodes in sediment microbial fuel cells.

    PubMed

    Renslow, Ryan; Donovan, Conrad; Shim, Matthew; Babauta, Jerome; Nannapaneni, Srilekha; Schenk, James; Beyenal, Haluk

    2011-12-28

    Sediment microbial fuel cells (SMFCs) have been used as renewable power sources for sensors in fresh and ocean waters. Organic compounds at the anode drive anodic reactions, while oxygen drives cathodic reactions. An understanding of oxygen reduction kinetics and the factors that determine graphite cathode performance is needed to predict cathodic current and potential losses, and eventually to estimate the power production of SMFCs. Our goals were to (1) experimentally quantify the dependence of oxygen reduction kinetics on temperature, electrode potential, and dissolved oxygen concentration for the graphite cathodes of SMFCs and (2) develop a mechanistic model. To accomplish this, we monitored current on polarized cathodes in river and ocean SMFCs. We found that (1) after oxygen reduction is initiated, the current density is linearly dependent on polarization potential for both SMFC types; (2) current density magnitude increases linearly with temperature in river SMFCs but remains constant with temperature in ocean SMFCs; (3) the standard heterogeneous rate constant controls the current density temperature dependence; (4) river and ocean SMFC graphite cathodes have large potential losses, estimated by the model to be 470 mV and 614 mV, respectively; and (5) the electrochemical potential available at the cathode is the primary factor controlling reduction kinetic rates. The mechanistic model based on thermodynamic and electrochemical principles successfully fit and predicted the data. The data, experimental system, and model can be used in future studies to guide SMFC design and deployment, assess SMFC current production, test cathode material performance, and predict cathode contamination. PMID:22052235

  12. Performance and stability of different cathode base materials for use in microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Janicek, Anthony; Fan, Yanzhen; Liu, Hong

    2015-04-01

    Metal supporting materials are increasingly being used as base materials for microbial fuel cell (MFC) cathodes. However, the potential for corrosion may limit their use as base materials of MFCs during scale-up and long-term operation. In this study, the electrochemical performance, power generation in MFCs, hydrostatic pressure tolerance, and stability of activated carbon (catalyst) cathodes with carbon cloth or different size metal mesh as base materials are investigated. Electrochemical testing results show that the finest stainless steel mesh (250 × 250 openings per inch) outperforms carbon cloth cathodes by 10-40% at current densities ranging from 6 to 11.2 A m-2 over the typical cathode operating range of 0.1 V-0 V. When tested in MFCs, however, carbon cloth based cathodes out perform all stainless steel mesh cathodes by as much as 34%, reaching 1.72 W m-2; probably due to the corrosion and salt build-up on the surface of the stainless steel mesh cathodes. Carbon cloth cathodes also maintained high static pressure heads of 1.9 m. The high electrochemical performance, hydrostatic pressure tolerance, and corrosion resistance of carbon cloth suggest that carbon fiber based materials may be more suitable than metal based materials for use as MFC cathodes base material for some applications.

  13. Multi-variable mathematical models for the air-cathode microbial fuel cell system

    NASA Astrophysics Data System (ADS)

    Ou, Shiqi; Kashima, Hiroyuki; Aaron, Douglas S.; Regan, John M.; Mench, Matthew M.

    2016-05-01

    This research adopted the version control system into the model construction for the single chamber air-cathode microbial fuel cell (MFC) system, to understand the interrelation of biological, chemical, and electrochemical reactions. The anodic steady state model was used to consider the chemical species diffusion and electric migration influence to the MFC performance. In the cathodic steady state model, the mass transport and reactions in a multi-layer, abiotic cathode and multi-bacteria cathode biofilm were simulated. Transport of hydroxide was assumed for cathodic pH change. This assumption is an alternative to the typical notion of proton consumption during oxygen reduction to explain elevated cathode pH. The cathodic steady state model provided the power density and polarization curve performance results that can be compared to an experimental MFC system. Another aspect considered was the relative contributions of platinum catalyst and microbes on the cathode to the oxygen reduction reaction (ORR). Simulation results showed that the biocatalyst in a cathode that includes a Pt/C catalyst likely plays a minor role in ORR, contributing up to 8% of the total power calculated by the models.

  14. An intermediate-temperature solid oxide fuel cell with electrospun nanofiber cathode

    SciTech Connect

    Zhi, Mingjia; Lee, Shiwoo; Miller, Nicholas; Menzler, Norbert H.; Wu, Nianqiang

    2012-05-01

    Lanthanum strontium cobalt ferrite (LSCF) nanofibers have been fabricated by the electrospinning method and used as the cathode of an intermediate-temperature solid oxide fuel cell (SOFC) with yttria-stabilized zirconia (YSZ) electrolyte. The three-dimensional nanofiber network cathode has several advantages: (i) high porosity; (ii) high percolation; (iii) continuous pathway for charge transport; (iv) good thermal stability at the operating temperature; and (v) excellent scaffold for infiltration. The fuel cell with the monolithic LSCF nanofiber cathode exhibits a power density of 0.90 W cm{sup −2} at 1.9 A cm{sup −2} at 750 °C. The electrochemical performance of the fuel cell has been further improved by infiltration of 20 wt% of gadolinia-doped ceria (GDC) into the LSCF nanofiber cathode. The fuel cell with the LSCF–20% GDC composite cathode shows a power density of 1.07 W cm{sup −2} at 1.9 A cm{sup −2} at 750 °C. The results obtained show that one-dimensional nanostructures such as nanofibers hold great promise as electrode materials for intermediate-temperature SOFCs.

  15. Contribution of properties of composite cathode and cathode/electrolyte interface to cell performance in a planar solid oxide fuel cell stack

    NASA Astrophysics Data System (ADS)

    Wu, Wei; Guan, Wanbing; Wang, Weiguo

    2015-04-01

    Solid oxide fuel cells (SOFCs) with distinct cathode materials usually differ in output performance. In this study, 2 μm-thick Pt voltage probes are embedded into the cathode/electrolyte interface. The effects of the electrical properties and cathode/electrolyte interfaces of LSCF-GDC and LSM-YSZ composite cathodes on cell performance are investigated in situ for anode-supported planar SOFCs. Results show that the voltage and maximum output power density measured by the probes on both sides of the LSCF-GDC and LSM-YSZ composite cathodes are 7% and 4%, respectively, of those of the corresponding cell during instantaneous current-voltage testing. The enhanced LSCF cell performance is mainly attributed to the rough GDC/LSCF-GDC interface that is responsible for the three-dimensional contact between the GDC layer and LSCF-GDC cathode particles and increases the triple-phase boundary (TPB) length. The LSM-YSZ cathode performance degradation is attributed to the variation in polarization resistance caused by cathode particle growth. However, the primary factor for the degradation of LSCF-GDC cathode performance is structural instability, such as inner cracks.

  16. Two-phase flow and transport in the air cathode of proton exchange membrane fuel cells

    SciTech Connect

    WANG,Z.H.; WANG,C.Y.; CHEN,KEN S.

    2000-03-20

    Two-phase flow and transport of reactants and products in the air cathode of proton exchange membrane (PEM) fuel cells is studied analytically and numerically. Four regimes of water distribution and transport are classified by defining three threshold current densities and a maximum current density. They correspond to first appearance of liquid water at the membrane/cathode interface, extension of the gas-liquid two-phase zone to the cathode/channel interface, saturated moist air exiting the gas channel, and complete consumption of oxygen by the electrochemical reaction. When the cell operates above the first threshold current density, liquid water appears and a two-phase zone forms within the porous cathode. A two-phase, multi-component mixture model in conjunction with a finite-volume-based computational fluid dynamics (CFD) technique is applied to simulate the cathode operation in this regime. The model is able to handle the situation where a single-phase region co-exists with a two-phase zone in the air cathode. For the first time, the polarization curve as well as water and oxygen concentration distributions encompassing both single- and two-phase regimes of the air cathode are presented. Capillary action is found to be the dominant mechanism for water transport inside the two-phase zone. The liquid water saturation within the cathode is predicted to reach 6.3% at 1.4 A/cm{sup 2}.

  17. Stainless steel mesh supported nitrogen-doped carbon nanofibers for binder-free cathode in microbial fuel cells.

    PubMed

    Chen, Shuiliang; Chen, Yu; He, Guanghua; He, Shuijian; Schröder, Uwe; Hou, Haoqing

    2012-04-15

    In this communication, we report a binder-free oxygen reduction cathode for microbial fuel cells. The binder-free cathode is prepared by growth of nitrogen-doped carbon nanofibers (NCNFs) on stainless steel mesh (SSM) via simple pyrolysis of pyridine. The interaction force between NCNFs and SSM surface is very strong which is able to tolerate water flush. The NCNFs/SSM cathode shows high and stable electrocatalytic activity for oxygen reduction reaction, which is comparable to that of Pt/SSM and ferricyanide cathode. This study proposes a promising low-cost binder-free cathode for microbial fuel cells. PMID:22336437

  18. Proton conducting intermediate-temperature solid oxide fuel cells using new perovskite type cathodes

    NASA Astrophysics Data System (ADS)

    Li, Meiling; Ni, Meng; Su, Feng; Xia, Changrong

    2014-08-01

    Sr2Fe1.5Mo0.5O6-δ (SFM) is proposed as the electrodes for symmetric solid oxide fuel cells (SOFCs) based on oxygen-ion conducting electrolytes. In this work SFM is investigated as the cathodes for SOFCs with proton conducting BaZr0.1Ce0.7Y0.2O3-δ (BZCY) electrolyte. SFM is synthesized with a combined glycine and citric acid method and shows very good chemical compatibility with BZCY under 1100 °C. Anode-supported single cell (Ni-BZCY anode, BZCY electrolyte, and SFM-BZCY cathode) and symmetrical fuel cell (SFM-BZCY electrodes and BZCY electrolyte) are fabricated and their performances are measured. Impedance spectroscopy on symmetrical cell consisting of BZCY electrolyte and SFM-BZCY electrodes demonstrates low area-specific interfacial polarization resistance Rp, and the lowest Rp, 0.088 Ω cm2 is achieved at 800 °C when cathode is sintered at 900 °C for 2 h. The single fuel cell achieves 396 mW cm-2 at 800 °C in wet H2 (3 vol% H2O) at a co-sintering temperature of 1000 °C. This study demonstrates the potential of SFM-BZCY as a cathode material in proton-conducting intermediate-temperature solid oxide fuel cells.

  19. Effects of sulfide on microbial fuel cells with platinum and nitrogen-doped carbon powder cathodes.

    PubMed

    Feng, Yujie; Shi, Xinxin; Wang, Xin; Lee, He; Liu, Jia; Qu, Youpeng; He, Weihua; Kumar, S M Senthil; Kim, Byung Hong; Ren, Nanqi

    2012-05-15

    Because of the advantages of low cost, good electrical conductivity and high oxidation resistance, nitrogen-doped carbon (NDC) materials have a potential to replace noble metals in microbial fuel cells (MFCs) for wastewater treatment. In spite of a large volume of studies on NDC materials as catalysts for oxygen reduction reaction, the influence of sulfide on NDC materials has not yet been explicitly reported so far. In this communication, nitrogen-doped carbon powders (NDCP) were prepared by treating carbon powders in nitric acid under reflux condition. Sodium sulfide (Na(2)S) was added to the cathodic electrolyte to compare its effects on platinum (Pt) and NDCP cathodes. Cell voltages, power density and cathodic potentials were monitored without and with Na(2)S and after Na(2)S was removed. The maximum cell voltage of the MFCs with Pt cathode decreased by 10% in the presence of Na(2)S that did not change the performance of the MFC with NDCP cathode, and the maximum power density of the MFC with NDCP cathode was even 11.3% higher than that with Pt cathode (222.5 ± 8 mW m(-2) vs. 199.7 ± 4 mW m(-2)). PMID:22424752

  20. Quantifying the Water Content in the Cathode of Enzyme Fuel Cells via Neutron Imaging

    SciTech Connect

    Aaron, D; Borole, Abhijeet P; Hussey , Daniel; Jacobson, David; Yiacoumi, Sotira; Tsouris, Costas

    2011-01-01

    Neutron imaging was used to study cathode water content over time in a three-dimensional-cathode enzyme fuel cell (EFC). A porous carbon felt cathode allowed air to flow through the electrode. A solution with laccase and a mediator formed an aqueous layer on the electrode surface. Water loss was observed in situ via neutron imaging for varying experimental conditions, including flow rates of hydrogen and air, cathode inlet humidity, volume of enzyme solution, and its composition. Cathode water loss occurred for all experimental conditions, but the loss rate was noticeably reduced when a high-salt-concentration enzyme solution was used in the cathode in conjunction with increased humidity in the air feed stream. Results from neutron imaging and power density analysis were used in analyzing the causes that could contribute to EFC water loss. An increase in temperature due to the exothermic cathode reaction is considered a plausible cause of cathode water loss via evaporation. This is the first reported application of neutron imaging as a technique to study EFC water management. The results suggest that neutron imaging can be employed to provide a better understanding of EFC phenomena and thereby contribute to design and operational improvements of EFCs.

  1. Novel anti-flooding poly(dimethylsiloxane) (PDMS) catalyst binder for microbial fuel cell cathodes

    NASA Astrophysics Data System (ADS)

    Zhang, Fang; Chen, Guang; Hickner, Michael A.; Logan, Bruce E.

    2012-11-01

    Poly(dimethylsiloxane) (PDMS) was investigated as an alternative to Nafion as an air cathode catalyst binder in microbial fuel cells (MFCs). Cathodes were constructed around either stainless steel (SS) mesh or copper mesh using PDMS as both catalyst binder and diffusion layer, and compared to cathodes of the same structure having a Nafion binder. With PDMS binder, copper mesh cathodes produced a maximum power of 1710 ± 1 mW m-2, while SS mesh had a slightly lower power of 1680 ± 12 mW m-2, with both values comparable to those obtained with Nafion binder. Cathodes with PDMS binder had stable power production of 1510 ± 22 mW m-2 (copper) and 1480 ± 56 mW m-2 (SS) over 15 days at cycle 15, compared to a 40% decrease in power with the Nafion binder. Cathodes with the PDMS binder had lower total cathode impedance than those with Nafion. This is due to a large decrease in diffusion resistance, because hydrophobic PDMS effectively prevented catalyst sites from filling up with water, improving oxygen mass transfer. The cost of PDMS is only 0.23% of that of Nafion. These results showed that PDMS is a very effective and low-cost alternative to Nafion binder that will be useful for large scale construction of these cathodes for MFC applications.

  2. Cathode catalysts for primary phosphoric acid fuel cells

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Alkylation or carbon Vulcan XC-72, the support carbon, was shown to provide the most stable bond type for linking cobalt dehydrodibenzo tetraazannulene (CoTAA) to the surface of the carbon; this result is based on data obtained by cyclic voltammetry, pulse voltammetry and by release of 14C from bonded CoTAA. Half-cell tests at 100 C in 85% phosphoric acid showed that CoTAA bonded to the surface of carbon (Vulcan XC-72) via an alkylation procedure is a more active catalyst than is platinum based on a factor of two improvement in Tafel slope; dimeric CoTAA had catalytic activity equal to platinum. Half-cell tests also showed that bonded CoTAA catalysts do not suffer a loss in potential when air is used as a fuel rather than oxygen. Commercially available polytetrafluroethylene (PTFE) was shown to be unstable in the fuel cell environment with degradation occurring in 2000 hours or less. The PTFE was stressed at 200 C in concentrated phosphoric acid as well as electrochemically stressed in 150 C concentrated phosphoric acid; the surface chemistry of PTFE was observed to change significantly. Radiolabeled PTFE was prepared and used to verify that such chemical changes also occur in the primary fuel cell environment.

  3. Cathode and electrolyte materials for solid oxide fuel cells and ion transport membranes

    DOEpatents

    Jacobson, Allan J; Wang, Shuangyan; Kim, Gun Tae

    2014-01-28

    Novel cathode, electrolyte and oxygen separation materials are disclosed that operate at intermediate temperatures for use in solid oxide fuel cells and ion transport membranes based on oxides with perovskite related structures and an ordered arrangement of A site cations. The materials have significantly faster oxygen kinetics than in corresponding disordered perovskites.

  4. Surface-reconstructed graphite nanofibers as a support for cathode catalysts of fuel cells.

    PubMed

    Gan, Lin; Du, Hongda; Li, Baohua; Kang, Feiyu

    2011-04-01

    Graphite nanofibers (GNFs), on which surface graphite edges were reconstructed into nano-loops, were explored as a cathode catalyst support for fuel cells. The high degree of graphitization, as well as the surface-reconstructed nano-loops that possess topological defects for uniform metal deposition, resulted in an improved performance of the GNF-supported Pt catalyst. PMID:21336405

  5. Copper nitride nanocubes: size-controlled synthesis and application as cathode catalyst in alkaline fuel cells.

    PubMed

    Wu, Haibin; Chen, Wei

    2011-10-01

    Copper nitride nanocubes are synthesized in a facile one-phase process. The crystal size could be tuned easily by using different primary amines as capping agents. Such Pt-free nanocrystals exhibit electrocatalytic activity toward oxygen reduction and appear to be promising cathodic electrocatalysts in alkaline fuel cells. PMID:21894995

  6. Fuel Cell Cathode Contamination: Comparison of Prevention Strategies and their Viability

    NASA Astrophysics Data System (ADS)

    Tejaswi, Arjun

    Fuel cells are a major area of research in ongoing efforts to find alternate sources of energy. Today these efforts have become ever the more necessary in the face of spiraling costs of conventional sources of energy and concerns about global warming. Most fuel cells consume hydrogen to produce, for the most part, only water in their exhaust. They are also capable of achieving significantly higher efficiencies than conventional automobile internal combustion engines. Since cost still remains one of the most intractable challenges to the advent of fuel cells, it is imperative that every effort be made to lower the costs of fuel cell production, operation and maintenance as well as improving overall efficiency. The air circulation system of a fuel cell is designed to provide oxygen to the cathode of the fuel cell. Air taken from the surroundings, however, often contains pollutants including dust, SO2, NO 2 and various other gases. These gases may severely degrade various components of system, especially for polymer electrolyte membrane (PEM) type fuel cells, including the catalyst, membrane electrode assembly and other components. Moreover, these pollutants may lead to specific behavior based on ambient air composition at the test site thereby confusing researchers. In order to address these issues, this study seeks to identify these pollutants and examine the mitigation strategies to mitigate them. Also discussed is whether these pollutants have an effect debilitating enough to justify the extra cost and potential parasitic losses associated with these mitigation strategies. Adsorptive filtration is identified as the most appropriate cathode side air quality system for fuel cells. Performance of cathode side fuel cell filters are examined under varying relative humidity, temperature, air flow rate and pollutant concentration conditions. An estimated filter survival time under realistic conditions is also suggested.

  7. A review on air cathodes for zinc-air fuel cells

    NASA Astrophysics Data System (ADS)

    Neburchilov, Vladimir; Wang, Haijiang; Martin, Jonathan J.; Qu, Wei

    This paper reviews the compositions, design and methods of fabrication of air cathodes for alkali zinc-air fuel cells (ZAFCs), one of the few successfully commercialized fuel cells. The more promising compositions for air cathodes are based on individual oxides, or mixtures of such, with a spinel, perovskite, or pyrochlore structure: MnO 2, Ag, Co 3O 4, La 2O 3, LaNiO 3, NiCo 2O 4, LaMnO 3, LaNiO 3, etc. These compositions provide the optimal balance of ORR activity and chemical stability in an alkali electrolyte. The sol-gel and reverse micelle methods supply the most uniform distribution of the catalyst on carbon and the highest catalyst BET surface area. It is shown that the design of the air cathode, including types of carbon black, binding agents, current collectors, Teflon membranes, thermal treatment of the GDL, and catalyst layers, has a strong effect on performance.

  8. An efficient approach to cathode operational parameters optimization for microbial fuel cell using response surface methodology

    PubMed Central

    2014-01-01

    Background In the recent study, optimum operational conditions of cathode compartment of microbial fuel cell were determined by using Response Surface Methodology (RSM) with a central composite design to maximize power density and COD removal. Methods The interactive effects of parameters such as, pH, buffer concentration and ionic strength on power density and COD removal were evaluated in two-chamber microbial batch-mode fuel cell. Results Power density and COD removal for optimal conditions (pH of 6.75, buffer concentration of 0.177 M and ionic strength of cathode chamber of 4.69 mM) improve by 17 and 5%, respectively, in comparison with normal conditions (pH of 7, buffer concentration of 0.1 M and ionic strength of 2.5 mM). Conclusions In conclusion, results verify that response surface methodology could successfully determine cathode chamber optimum operational conditions. PMID:24423039

  9. SOLID OXIDE FUEL CELL CATHODES: Polarization Mechanisms and Modeling of the Electrochemical Performance

    NASA Astrophysics Data System (ADS)

    Fleig, Jurgen

    2003-08-01

    Several recent experimental and numerical investigations have contributed to the improved understanding of the electrochemical mechanisms taking place at solid oxide fuel cell (SOFC) cathodes and yielded valuable information on the relationships between alterable parameters (geometry/material) and the cathodic polarization resistance. Efforts to reduce the polarization resistance in SOFCs can benefit from these results, and some important aspects of the corresponding studies are reviewed. Experimental results, particularly measurements using geometrically well-defined Sr-doped LaMnO3 (LSM) cathodes, are discussed. In regard to simulations, the different levels of sophistication used in SOFC electrode modeling studies are summarized and compared. Exemplary simulations of mixed conducting cathodes that show the capabilities and limits of different modeling levels are described.

  10. Microbial fuel cell cathode with dendrimer encapsulated Pt nanoparticles as catalyst

    NASA Astrophysics Data System (ADS)

    Yang, Xiaoling; Lu, Jindan; Zhu, Yihua; Shen, Jianhua; Zhang, Zhen; Zhang, Jianmei; Chen, Cheng; Li, Chunzhong

    In this paper, we investigated the use of polyamidoamine (PAMAM) dendrimer-encapsulated platinum nanoparticles (Pt-DENs) as a promising type of cathode catalyst for air-cathode single chamber microbial fuel cells (SCMFCs). The Pt-DENs, prepared via template synthesis method, have uniform diameter distribution with size range of 3-5 nm. The Pt-DENs then loaded on to a carbon substrate. For comparison, we also electrodeposited Pt on carbon substrate. The calculation shows that the loading amount of Pt-DENs on carbon substrate is about 0.1 mg cm -2, which is three times lower than that of the electrodeposited Pt (0.3 mg cm -2). By measuring batch experiments, the results show that Pt-DENs in air-cathode SCMFCs have a power density of 630 ± 5 mW m -2 and a current density of 5200 ± 10 mA m -2 (based on the projected anodic surface area), which is significantly better than electrodeposited Pt cathodes (power density: 275 ± 5 mW m -2 and current density: 2050 ± 10 mA m -2). Additionally, Pt-DENs-based cathodes resulted in a higher power production with 129.1% as compared to cathode with electrodeposited Pt. This finding suggests that Pt-DENs in MFC cathodes is a better catalyst and has a lower loading amount than electrodeposited Pt, and may serve as a novel and alternative catalyst to previously used noble metals in MFC applications.

  11. Power generation using carbon mesh cathodes with different diffusion layers in microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Luo, Yong; Zhang, Fang; Wei, Bin; Liu, Guangli; Zhang, Renduo; Logan, Bruce E.

    An inexpensive carbon material, carbon mesh, was examined to replace the more expensive carbon cloth usually used to make cathodes in air-cathode microbial fuel cells (MFCs). Three different diffusion layers were tested using carbon mesh: poly(dimethylsiloxane) (PDMS), polytetrafluoroethylene (PTFE), and Goretex cloth. Carbon mesh with a mixture of PDMS and carbon black as a diffusion layer produced a maximum power density of 1355 ± 62 mW m -2 (normalized to the projected cathode area), which was similar to that obtained with a carbon cloth cathode (1390 ± 72 mW m -2). Carbon mesh with a PTFE diffusion layer produced only a slightly lower (6.6%) maximum power density (1303 ± 48 mW m -2). The Coulombic efficiencies were a function of current density, with the highest value for the carbon mesh and PDMS (79%) larger than that for carbon cloth (63%). The cost of the carbon mesh cathode with PDMS/Carbon or PTFE (excluding catalyst and binder costs) is only 2.5% of the cost of the carbon cloth cathode. These results show that low cost carbon materials such as carbon mesh can be used as the cathode in an MFC without reducing the performance compared to more expensive carbon cloth.

  12. Improvement of microbial fuel cell cathodes using cost-effective polyvinylidene fluoride

    NASA Astrophysics Data System (ADS)

    Qiu, Zhaozheng; Su, Min; Wei, Liling; Han, Hongliang; Jia, Qibo; Shen, Jianquan

    2015-01-01

    In this study polyvinylidene fluoride (PVDF) is investigated as an alternative to polytetrafluoroethylene (PTFE) for air-cathode diffusion layers (DLs) in microbial fuel cells (MFCs) for the improvement of MFC power generation. It is found that the cathode fabricated with PVDF achieves a higher maximum power density (MPD) than a PTFE cathode. Successive PVDF or PVDF/carbon black DLs are applied on the base layers in order to optimize cathode performance. The results show significant improvements in such performances as the coulombic efficiency (CE), MPD, and water loss. In electrochemical tests, the cathode coated with four PVDF DLs has the largest current response at a given applied potential, yielding the highest MPD of 0.123 mW cm-2 (normalized to the projected cathode surface area) and largest CE (10.7%) in the MFC test. Carbon black is added to the DLs in order to test its effect on the MFC power generation. Cathodes made from pure PVDF DLs perform better than those containing PVDF/carbon black DLs in electrochemical and MFC tests. In addition, a smaller MFC (28 mL) produces a much higher MPD than a larger MFC (700 mL), resulting in an increase in the CE.

  13. Enhanced stability of multilayer graphene-supported catalysts for polymer electrolyte membrane fuel cell cathodes

    NASA Astrophysics Data System (ADS)

    Marinkas, A.; Hempelmann, R.; Heinzel, A.; Peinecke, V.; Radev, I.; Natter, H.

    2015-11-01

    One of the biggest challenges in the field of polymer electrolyte membrane fuel cells (PEMFC) is to enhance the lifetime and the long-term stability of PEMFC electrodes, especially of cathodes, furthermore, to reduce their platinum loading, which could lead to a cost reduction for efficient PEMFCs. These demands could be achieved with a new catalyst support architecture consisting of a composite of carbon structures with significant different morphologies. A highly porous cathode catalyst support layer is prepared by addition of various carbon types (carbon black particles, multi-walled carbon nanotubes (MWCNT)) to multilayer graphene (MLG). The reported optimized cathodes shows extremely high durability and similar performance to commercial standard cathodes but with 89% lower Pt loading. The accelerated aging protocol (AAP) on the membrane electrode assemblies (MEA) shows that the presence of MLG increases drastically the durability and the Pt-extended electrochemical surface area (ECSA). In fact, after the AAP slightly enhanced performance can be observed for the MLG-containing cathodes instead of a performance loss, which is typical for the commercial carbon-based cathodes. Furthermore, the presence of MLG drastically decreases the ECSA loss rate. The MLG-containing cathodes show up to 6.8 times higher mass-normalized Pt-extended ECSA compared to the commercial standard systems.

  14. Power generation by packed-bed air-cathode microbial fuel cells.

    PubMed

    Zhang, Xiaoyuan; Shi, Juan; Liang, Peng; Wei, Jincheng; Huang, Xia; Zhang, Chuanyi; Logan, Bruce E

    2013-08-01

    Catalysts and catalyst binders are significant portions of the cost of microbial fuel cell (MFC) cathodes. Many materials have been tested as aqueous cathodes, but air-cathodes are needed to avoid energy demands for water aeration. Packed-bed air-cathodes were constructed without expensive binders or diffusion layers using four inexpensive carbon-based materials. Cathodes made from activated carbon produced the largest maximum power density of 676 ± 93 mW/m(2), followed by semi-coke (376 ± 47 mW/m(2)), graphite (122 ± 14 mW/m(2)) and carbon felt (60 ± 43 mW/m(2)). Increasing the mass of activated carbon and semi-coke from 5 to ≥ 15 g significantly reduced power generation because of a reduction in oxygen transfer due to a thicker water layer in the cathode (∼3 or ∼6 cm). These results indicate that a thin packed layer of activated carbon or semi-coke can be used to make inexpensive air-cathodes for MFCs. PMID:23732924

  15. Silver electrodeposition on the activated carbon air cathode for performance improvement in microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Pu, Liangtao; Li, Kexun; Chen, Zhihao; Zhang, Peng; Zhang, Xi; Fu, Zhou

    2014-12-01

    The present work was to study silver electrodeposition on the activated carbon (AC) air cathode for performance improvement in microbial fuel cells (MFCs). The treated cathodes were proved to be effective to enhance the performance of MFCs. The maximum power density of MFC with silver electrodeposition time of 50 s (Ag-50) cathode was 1080 ± 60 mW m-2, 69% higher than the bare AC air cathode. X-ray photoelectron spectroscopy (XPS) results showed that zero-valent, monovalent and divalent silver were present to transform mutually, which illustrated that the oxygen reduction reaction (ORR) at the cathode took place through four-electron pathway. From electrochemical impedance spectroscopy (EIS) analysis, the electrodeposition method made the total resistance of the electrodes largely reduced. Meanwhile the deposited silver had no toxic effects on anode culture but inhibited the biofilm growth of the cathodes. This kind of antimicrobial efficient cathode, prepared with a simple, fast and economical method, was of good benefit to the performance improvement of MFCs.

  16. Iron-based cathode catalyst with enhanced power density in polymer electrolyte membrane fuel cells.

    PubMed

    Proietti, Eric; Jaouen, Frédéric; Lefèvre, Michel; Larouche, Nicholas; Tian, Juan; Herranz, Juan; Dodelet, Jean-Pol

    2011-01-01

    H(2)-air polymer-electrolyte-membrane fuel cells are electrochemical power generators with potential vehicle propulsion applications. To help reduce their cost and encourage widespread use, research has focused on replacing the expensive Pt-based electrocatalysts in polymer-electrolyte-membrane fuel cells with a lower-cost alternative. Fe-based cathode catalysts are promising contenders, but their power density has been low compared with Pt-based cathodes, largely due to poor mass-transport properties. Here we report an iron-acetate/phenanthroline/zeolitic-imidazolate-framework-derived electrocatalyst with increased volumetric activity and enhanced mass-transport properties. The zeolitic-imidazolate-framework serves as a microporous host for phenanthroline and ferrous acetate to form a catalyst precursor that is subsequently heat treated. A cathode made with the best electrocatalyst from this work, tested in H(2)-O(2,) has a power density of 0.75 W cm(-2) at 0.6 V, a meaningful voltage for polymer-electrolyte-membrane fuel cells operation, comparable with that of a commercial Pt-based cathode tested under identical conditions. PMID:21811245

  17. Solid oxide fuel cells having porous cathodes infiltrated with oxygen-reducing catalysts

    SciTech Connect

    Liu, Meilin; Liu, Ze; Liu, Mingfei; Nie, Lifang; Mebane, David Spencer; Wilson, Lane Curtis; Surdoval, Wayne

    2014-08-12

    Solid-oxide fuel cells include an electrolyte and an anode electrically coupled to a first surface of the electrolyte. A cathode is provided, which is electrically coupled to a second surface of the electrolyte. The cathode includes a porous backbone having a porosity in a range from about 20% to about 70%. The porous backbone contains a mixed ionic-electronic conductor (MIEC) of a first material infiltrated with an oxygen-reducing catalyst of a second material different from the first material.

  18. Copper cobalt spinel as a high performance cathode for intermediate temperature solid oxide fuel cells.

    PubMed

    Shao, Lin; Wang, Qi; Fan, Lishuang; Wang, Pengxiang; Zhang, Naiqing; Sun, Kening

    2016-06-30

    CuCo2O4 spinel prepared via an EDTA-citric acid process was studied as a candidate solid oxide fuel cell (SOFC) cathode material at intermediate temperatures (IT). CuCo2O4 cathodes were measured using thermal gravimetric analysis, X-ray diffraction and scanning electron microscopy. AC impedance spectroscopy and DC polarization measurements were used to study the electrode performance. The obtained value of the polarization resistances at 800 °C was 0.12 Ω cm(2) with a maximum power density of 972 mW cm(-2). PMID:27326915

  19. Study of azo dye decolorization and determination of cathode microorganism profile in air-cathode microbial fuel cells.

    PubMed

    Kumru, Mert; Eren, Hilal; Catal, Tunc; Bermek, Hakan; Akarsubaşi, Alper Tunga

    2012-09-01

    Five textile azo dyes, as part of an artificial mixture, were treated in single-chamber air-cathode microbial fuel cells while simultaneously utilizing acetate for electricity production. Remazol Black, Remazol Brilliant Blue, Remazol Turquoise Blue, Reactive Yellow and Reactive Red at concentrations of 40 or 80 mg L(-1) were decolorized to a similar extent, at averages of 78, 95, 53, 93 and 74%, respectively, in 24 hours. During the process of decolorization, electricity generation from acetate oxidation continued. Power densities obtained in the presence of textile dyes ranged from 347 to 521 mW m(-2) at the current density range of 0.071 - 0.086 mA cm(-2). Microbial community analyses of cathode biofilm exhibited dynamic changes in abundant species following dye decolorization. Upon the addition of the first dye, a major change (63%) in microbial diversity was observed; however, subsequent addition of other dyes did not affect the community profile significantly. Actinobacteria, Aquamicrobium, Mesorhizobium, Ochrobactrum, Thauera, Paracoccus, Achromobacter and Chelatacoccus affiliated phylotypes were the major phylotypes detected. Our results demonstrate that microbial fuel cells could be a promising alternative for treatment of textile wastewaters and an active bacterial community can rapidly be established for simultaneous azo dye decolorization and sustainable electricity generation. PMID:23240212

  20. Mesh optimization for microbial fuel cell cathodes constructed around stainless steel mesh current collectors

    NASA Astrophysics Data System (ADS)

    Zhang, Fang; Merrill, Matthew D.; Tokash, Justin C.; Saito, Tomonori; Cheng, Shaoan; Hickner, Michael A.; Logan, Bruce E.

    Mesh current collectors made of stainless steel (SS) can be integrated into microbial fuel cell (MFC) cathodes constructed of a reactive carbon black and Pt catalyst mixture and a poly(dimethylsiloxane) (PDMS) diffusion layer. It is shown here that the mesh properties of these cathodes can significantly affect performance. Cathodes made from the coarsest mesh (30-mesh) achieved the highest maximum power of 1616 ± 25 mW m -2 (normalized to cathode projected surface area; 47.1 ± 0.7 W m -3 based on liquid volume), while the finest mesh (120-mesh) had the lowest power density (599 ± 57 mW m -2). Electrochemical impedance spectroscopy showed that charge transfer and diffusion resistances decreased with increasing mesh opening size. In MFC tests, the cathode performance was primarily limited by reaction kinetics, and not mass transfer. Oxygen permeability increased with mesh opening size, accounting for the decreased diffusion resistance. At higher current densities, diffusion became a limiting factor, especially for fine mesh with low oxygen transfer coefficients. These results demonstrate the critical nature of the mesh size used for constructing MFC cathodes.

  1. Parameters characterization and optimization of activated carbon (AC) cathodes for microbial fuel cell application.

    PubMed

    Santoro, Carlo; Artyushkova, Kateryna; Babanova, Sofia; Atanassov, Plamen; Ieropoulos, Ioannis; Grattieri, Matteo; Cristiani, Pierangela; Trasatti, Stefano; Li, Baikun; Schuler, Andrew J

    2014-07-01

    Activated carbon (AC) is employed as a cost-effective catalyst for cathodic oxygen reduction in microbial fuel cells (MFC). The fabrication protocols of AC-based cathodes are conducted at different applied pressures (175-3500 psi) and treatment temperatures (25-343°C). The effects of those parameters along with changes in the surface morphology and chemistry on the cathode performances are comprehensively examined. The cathodes are tested in a three-electrode setup and explored in single chamber membraneless MFCs (SCMFCs). The results show that the best performance of the AC-based cathode is achieved when a pressure of 1400 psi is applied followed by heat treatment of 150-200°C for 1h. The influence of the applied pressure and the temperature of the heat treatment on the electrodes and SCMFCs is demonstrated as the result of the variation in the transfer resistance, the surface morphology and surface chemistry of the AC-based cathodes tested. PMID:24787317

  2. Comparative study on power generation of dual-cathode microbial fuel cell according to polarization methods.

    PubMed

    Lee, Kang-yu; Ryu, Wyan-seuk; Cho, Sung-il; Lim, Kyeong-ho

    2015-11-01

    Microbial fuel cells (MFCs) exist in various forms depending on the type of pollutant to be removed and the expected performance. Dual-cathode MFCs, with their simple structure, are capable of removing both organic matter and nitrogen. Moreover, various methods are available for the collection of polarization data, which can be used to calculate the maximum power density, an important factor of MFCs. Many researchers prefer the method of varying the external resistance in a single-cycle due to the short measurement time and high accuracy. This study compared power densities of dual-cathode MFCs in a single-cycle with values calculated over multi-cycles to determine the optimal polarization method. External resistance was varied from high to low and vice versa in the single-cycle, to calculate power density. External resistance was organized in descending order with initial start-up at open circuit voltage (OCV), and then it was organized in descending order again after the initial start-up at 1000 Ω. As a result, power density was underestimated at the anoxic cathode when the external resistance was varied from low to high, and overestimated at the aerobic cathode and anoxic cathode when external resistance at OCV was reduced following initial start-up. In calculating the power densities of dual-cathode MFCs, this paper recommends the method of gradually reducing the external resistance after initial start-up with high external resistance. PMID:26210028

  3. Microbial fuel cell with an algae-assisted cathode: A preliminary assessment

    NASA Astrophysics Data System (ADS)

    González del Campo, Araceli; Cañizares, Pablo; Rodrigo, Manuel A.; Fernández, Francisco J.; Lobato, Justo

    2013-11-01

    A microbial fuel cell (MFC) with an algae-assisted cathode, i.e., a system where the oxygen required by the cathode is not provided by aeration but by the photosynthetic process of the algae (Chlorella vulgaris), has been studied. The cathode was illuminated for 12 h each day (from 8:00 h to 20:00 h). 25 days was necessary to achieve steady state conditions. The time evolution of dissolved oxygen and cell voltage were assessed over the course of each day. As expected, the dissolved oxygen values were not constant throughout the day, reaching maximum values between 14:00 h and 20:00 h when dark phase reactions began and the algae started to consume oxygen. Cell voltage (Rext 120 Ω) followed the same trend as the oxygen profile. The supply of CO2 in the cathode was also studied, and half an hour was enough time to get the system working properly. During the acclimation stage, power density increased up to 13.5 mW m-2 at steady state conditions. However, impedance analysis showed that polarization resistance was higher at the cathode than at the anode. Nevertheless, it can be concluded that the studied system is a feasible method to treat wastewater in a self-sustainable way.

  4. Nonactivated and Activated Biochar Derived from Bananas as Alternative Cathode Catalyst in Microbial Fuel Cells

    PubMed Central

    Yuan, Haoran; Deng, Lifang; Qi, Yujie; Kobayashi, Noriyuki; Tang, Jiahuan

    2014-01-01

    Nonactivated and activated biochars have been successfully prepared by bananas at different thermotreatment temperatures. The activated biochar generated at 900°C (Biochar-act900) exhibited improved oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) performances in alkaline media, in terms of the onset potential and generated current density. Rotating disk electron result shows that the average of 2.65 electrons per oxygen molecule was transferred during ORR of Biochar-act900. The highest power density of 528.2 mW/m2 and the maximum stable voltage of 0.47 V were obtained by employing Biochar-act900 as cathode catalyst, which is comparable to the Pt/C cathode. Owning to these advantages, it is expected that the banana-derived biochar cathode can find application in microbial fuel cell systems. PMID:25243229

  5. Effect of cathode electron acceptors on simultaneous anaerobic sulfide and nitrate removal in microbial fuel cell.

    PubMed

    Cai, Jing; Zheng, Ping; Mahmood, Qaisar

    2016-01-01

    The current investigation reports the effect of cathode electron acceptors on simultaneous sulfide and nitrate removal in two-chamber microbial fuel cells (MFCs). Potassium permanganate and potassium ferricyanide were common cathode electron acceptors and evaluated for substrate removal and electricity generation. The abiotic MFCs produced electricity through spontaneous electrochemical oxidation of sulfide. In comparison with abiotic MFC, the biotic MFC showed better ability for simultaneous nitrate and sulfide removal along with electricity generation. Keeping external resistance of 1,000 Ω, both MFCs showed good capacities for substrate removal where nitrogen and sulfate were the main end products. The steady voltage with potassium permanganate electrodes was nearly twice that of with potassium ferricyanide. Cyclic voltammetry curves confirmed that the potassium permanganate had higher catalytic activity than potassium ferricyanide. The potassium permanganate may be a suitable choice as cathode electron acceptor for enhanced electricity generation during simultaneous treatment of sulfide and nitrate in MFCs. PMID:26901739

  6. Nd-nickelate solid oxide fuel cell cathode sensitivity to Cr and Si contamination

    NASA Astrophysics Data System (ADS)

    Andreas Schuler, J.; Lübbe, Henning; Hessler-Wyser, Aïcha; Van herle, Jan

    2012-09-01

    The stability of Nd-nickelate, considered as an alternative solid oxide fuel cell (SOFC) cathode material, was evaluated in this work on its tolerance towards contaminants. Symmetrical cells with Nd1.95NiO4+δ (NNO) electrodes sintered on gadolinia-doped ceria electrolyte supports were monitored over time-spans of 1000 h at 700 °C under polarization in an air-flux with deliberate chromium contamination. Impedance spectroscopy pointed out a polarization increase with time by the growth of the low frequency arc describing the electrode's oxygen reduction and incorporation processes. Post-test observations revealed polluted cathode regions with increasing amounts of Cr accumulations towards the electrolyte/cathode interface. Cr deposits were evidenced to surround active nickelate grain surfaces forming Nd-containing Cr oxides. In addition to exogenous Cr contamination, endogenous contamination was revealed. Silicon, present as impurity material in the raw NNO powder (introduced by milling during powder processing), reacts during sintering steps to form Nd-silicate phases, which decreases the active cathode surface. Nd-depletion of the nickelate, as a result of secondary phase formation with the contaminants Cr and Si (NdCrO4 and Nd4Si3O12), then triggers the thermally-induced decomposition of NNO into stoichiometric Nd2NiO4+δ and NiO. Summarized, the alternative Nd-nickelate cathode also suffers from degradation caused by pollutant species, like standard perovskites.

  7. Enhanced Oxygen and Hydroxide Transport in a Cathode Interface by Efficient Antibacterial Property of a Silver Nanoparticle-Modified, Activated Carbon Cathode in Microbial Fuel Cells.

    PubMed

    Li, Da; Qu, Youpeng; Liu, Jia; Liu, Guohong; Zhang, Jie; Feng, Yujie

    2016-08-17

    A biofilm growing on an air cathode is responsible for the decreased performance of microbial fuel cells (MFCs). For the undesired biofilm to be minimized, silver nanoparticles were synthesized on activated carbon as the cathodic catalyst (Ag/AC) in MFCs. Ag/AC enhanced maximum power density by 14.6% compared to that of a bare activated carbon cathode (AC) due to the additional silver catalysis. After operating MFCs over five months, protein content on the Ag/AC cathode was only 38.3% of that on the AC cathode, which resulted in a higher oxygen concentration diffusing through the Ag/AC cathode. In addition, a lower pH increment (0.2 units) was obtained near the Ag/AC catalyst surface after biofouling compared to 0.8 units of the AC cathode, indicating that less biofilm on the Ag/AC cathode had a minor resistance on hydroxide transported from the catalyst layer interfaces to the bulk solution. Therefore, less decrements of the Ag/AC activity and MFC performance were obtained. This result indicated that accelerated transport of oxygen and hydroxide, benefitting from the antibacterial property of the cathode, could efficiently maintain higher cathode stability during long-term operation. PMID:27441786

  8. Phase field modeling of microstructure evolution of electrocatalyst-infiltrated solid oxide fuel cell cathodes

    NASA Astrophysics Data System (ADS)

    Liang, Linyun; Li, Qun; Hu, Jiamian; Lee, Shiwoo; Gerdes, Kirk; Chen, Long-Qing

    2015-02-01

    A phase field model is developed to examine microstructural evolution of an infiltrated solid oxide fuel cell cathode. It is employed to generate the three-phase backbone microstructures and morphology of infiltrate nano-particles [La1-xSrxMnO3 (LSM)]. Two-phase Y2O3 + ZrO2 and LSM backbones composed of 0.5-1 μm particles are first generated and then seeded with infiltrate, and evolution is compared for starting infiltrate particle diameters of 5 nm and 10 nm. The computed lifetime triple phase boundary (3PB) density of the infiltrated cathode is then compared to the cathode backbone. Results indicate that initial coarsening of infiltrate nano-particles is the primary evolution process, and infiltrate coarsening is the majority contributor to 3PB reduction. However, at all times, the infiltrated cathode possesses significantly greater 3PB length than even the uncoarsened backbone. Infiltrate particle size effects indicate that the smaller particle size produces greater 3PB length for the same infiltration amount, consistent with intuition. A maximum 3PB enhancement is reached when increasing infiltrate particle loading, and the maximum enhancement depends on infiltrate particle size. It is found that architectural degradation modes will insignificantly affect the lifetime performance of infiltrated cathodes. This work suggests that lifetime optimized particle size/loading combinations are identifiable, and can be precise if additional fundamental data become available.

  9. Pore Scale Modeling of the Reactive Transport of Chromium in the Cathode of a Solid Oxide Fuel Cell

    SciTech Connect

    Ryan, Emily M.; Tartakovsky, Alexandre M.; Recknagle, Kurtis P.; Khaleel, Mohammad A.; Amon, Cristina

    2011-01-01

    We present a pore scale model of a solid oxide fuel cell (SOFC) cathode. Volatile chromium species are known to migrate from the current collector of the SOFC into the cathode where over time they decrease the voltage output of the fuel cell. A pore scale model is used to investigate the reactive transport of chromium species in the cathode and to study the driving forces of chromium poisoning. A multi-scale modeling approach is proposed which uses a cell level model of the cathode, air channel and current collector to determine the boundary conditions for a pore scale model of a section of the cathode. The pore scale model uses a discrete representation of the cathode to explicitly model the surface reactions of oxygen and chromium with a cathode material. The pore scale model is used to study the reaction mechanisms of chromium by considering the effects of reaction rates, diffusion coefficients, chromium vaporization, and oxygen consumption on chromium’s deposition in the cathode. The study shows that chromium poisoning is most significantly affected by the chromium reaction rates in the cathode and that the reaction rates are a function of the local current density in the cathode.

  10. Real-time thermal imaging of solid oxide fuel cell cathode activity in working condition.

    PubMed

    Montanini, Roberto; Quattrocchi, Antonino; Piccolo, Sebastiano A; Amato, Alessandra; Trocino, Stefano; Zignani, Sabrina C; Faro, Massimiliano Lo; Squadrito, Gaetano

    2016-09-01

    Electrochemical methods such as voltammetry and electrochemical impedance spectroscopy are effective for quantifying solid oxide fuel cell (SOFC) operational performance, but not for identifying and monitoring the chemical processes that occur on the electrodes' surface, which are thought to be strictly related to the SOFCs' efficiency. Because of their high operating temperature, mechanical failure or cathode delamination is a common shortcoming of SOFCs that severely affects their reliability. Infrared thermography may provide a powerful tool for probing in situ SOFC electrode processes and the materials' structural integrity, but, due to the typical design of pellet-type cells, a complete optical access to the electrode surface is usually prevented. In this paper, a specially designed SOFC is introduced, which allows temperature distribution to be measured over all the cathode area while still preserving the electrochemical performance of the device. Infrared images recorded under different working conditions are then processed by means of a dedicated image processing algorithm for quantitative data analysis. Results reported in the paper highlight the effectiveness of infrared thermal imaging in detecting the onset of cell failure during normal operation and in monitoring cathode activity when the cell is fed with different types of fuels. PMID:27607294

  11. Performance of Stainless Steel Mesh Cathode and PVDF-graphite Cathode in Microbial Fuel Cells

    NASA Astrophysics Data System (ADS)

    Huang, Liping; Tian, Ying; Li, Mingliang; He, Gaohong; Li, Zhikao

    2010-11-01

    Inexpensive and conductive materials termed as stainless steel mesh and polyvinylidene fluoride (PVDF)-graphite were currently used as the air cathode electrodes in MFCs for the investigation of power production. By loading PTFE (poly(tetrafluoroethylene)) on the surface of stainless steel mesh, electricity production reached 3 times as high as that of the naked stainless steel. A much high catalytic activity for oxygen reduction was exhibited by Pt based and PTFE loading stainless steel mesh cathode, with an electricity generation of 1144±44 mW/m2 (31±1 W/m3) and a Coulombic efficiency (CE) of 77±2%. When Pt was replaced by an inexpensive transition metal based catalyst (cobalt tetramethylphenylporphyrin, CoTMPP), power production and CE were 845±21 mW/m2 (23±1 W/m3) and 68±1%, respectively. Accordingly, power production from PVDF-graphite (hydrophobic) MFC and PVDF-graphite (hydrophile) MFC were 286±20 mW/m2(8±1 W/m3) and 158±13 mW/m2(4±0.4 W/m3), respectively using CoTMPP as catalyst. These results give us new insight into materials like stainless steel mesh and PVDF-graphite as low cost cathode for reducing the costs of MFCs for wastewater treatment applications.

  12. Composite Cathode for High-Power Density Solid Oxide Fuel Cells

    SciTech Connect

    Ilwon Kim; Scott Barnett; Yi Jiang; Manoj Pillai; Nikkia McDonald; Dan Gostovic; Zhongryang Zhan; Jiang Liu

    2004-01-31

    Reduction of solid oxide fuel cell (SOFC) operating temperature will play a key role in reducing the stack cost by allowing the use of low-cost metallic interconnects and new approaches to sealing, while making applications such as transportation more feasible. Reported results for anode-supported SOFCs show that cathode polarization resistance is the primary barrier to achieving high power densities at operating temperatures of 700 C and lower. This project aims to identify and develop composite cathodes that could reduce SOFC operating temperatures below 700 C. This effort focuses on study and use of (La,Sr)(Co,Fe)O{sub 3} (LSCF) based composite cathodes, which have arguably the best potential to substantially improve on the currently-used, (La,Sr)MnO{sub 3}-Yttria-stabilized Zirconia. During this Phase I, it was successfully demonstrated that high performances can be achieved with LSCF/Gadolinium-Doped Ceria composite cathodes on Ni-based anode supported cells operating at 700 C or lower. We studied electrochemical reactions at LSCF/Yttria-stabilized Zirconia (YSZ) interfaces, and observed chemical reactions between LSCF and YSZ. By using ceria electrolytes or YSZ electrolytes with ceria diffusion barrier layers, the chemical reactions between LSCF and electrolytes were prevented under cathode firing conditions necessary for the optimal adhesion of the cathodes. The protection provided by ceria layer is expected to be adequate for stable long-term cathode performances, but more testing is needed to verify this. Using ceria-based barrier layers, high performance Ni-YSZ anode supported cells have been demonstrated with maximum power densities of 0.8W/cm2 at 700 C and 1.6W/cm{sup 2} at 800 C. Ni-SDC anode supported cells with SDC electrolytes yielded >1W/cm{sup 2} at 600 C. We speculate that the power output of Ni-YSZ anode supported cell at 700 C and lower, was limited by the quality of the Ceria and Ceria YSZ interface. Improvements in the low

  13. Cathode pressure modeling of the Buckeye Bullet II 500kW PEM fuel cell system

    NASA Astrophysics Data System (ADS)

    Hillstrom, Edward T.

    This dissertation details the development of a model that simulates the pressure dynamics of the cathode supply system for the Buckeye Bullet 2, the worlds fastest hydrogen fuel cell vehicle. Due to the extreme power levels of the BB2 system, and the unique use of heliox as the oxidant supply, it is shown that existing system level models for predicting the fuel cell pressure dynamics do not adequately capture the dynamics of the BB2 system. Several modeling attempts are evaluated, and eventually the most robust model is a model which is derived from a rational system decomposition of the cathode system. By separating the major losses of the cathode system into an upstream and downstream resistance, the performance of the model is significantly improved. It is shown that the rate at which water exits the cathode plays a significant role accurately capturing the pressure dynamics. With this in mind, a distributed parameter model is developed to provide estimates of how the rate of liquid water removal from cathode changes with time. The results of this model are validated through physical testing. The resulting model relies on five empirically tunable parameters to tune the model performance to match that of the system. The method of calibrating these parameters is outlined, and the resulting model developed with stationary test data is compared to data from the actual BB2 race data. Only a few parameters need to be recalibrated, which is due to physical system differences between the data from the stationary tests and the race data.

  14. Photoregenerative I−/I3− couple as a liquid cathode for proton exchange membrane fuel cell

    PubMed Central

    Liu, Zhen; Wang, Yadong; Ai, Xinping; Tu, Wenmao; Pan, Mu

    2014-01-01

    A photoassisted oxygen reduction reaction (ORR) through I−/I3− redox couple was investigated for proton exchange membrane (PEM) fuel cell cathode reaction. The I−/I3−-based liquid cathode was used to replace conventional oxygen cathode, and its discharge product I− was regenerated to I3− by photocatalytic oxidation with the participation of oxygen. This new and innovative approach may provide a strategy to eliminate the usage of challenging ORR electrocatalysts, resulting in an avenue for developing low-cost and high-efficiency PEM fuel cells. PMID:25348812

  15. An investigation of anode and cathode materials in photomicrobial fuel cells.

    PubMed

    Schneider, Kenneth; Thorne, Rebecca J; Cameron, Petra J

    2016-02-28

    Photomicrobial fuel cells (p-MFCs) are devices that use photosynthetic organisms (such as cyanobacteria or algae) to turn light energy into electrical energy. In a p-MFC, the anode accepts electrons from microorganisms that are either growing directly on the anode surface (biofilm) or are free floating in solution (planktonic). The nature of both the anode and cathode material is critical for device efficiency. An ideal anode is biocompatible and facilitates direct electron transfer from the microorganisms, with no need for an electron mediator. For a p-MFC, there is the additional requirement that the anode should not prevent light from perfusing through the photosynthetic cells. The cathode should facilitate the rapid reaction of protons and oxygen to form water so as not to rate limit the device. In this paper, we first review the range of anode and cathode materials currently used in p-MFCs. We then present our own data comparing cathode materials in a p-MFC and our first results using porous ceramic anodes in a mediator-free p-MFC. PMID:26755764

  16. Copper-substituted perovskite compositions for solid oxide fuel cell cathodes and oxygen reduction electrodes in other electrochemical devices

    DOEpatents

    Rieke, Peter C.; Coffey, Gregory W.; Pederson, Larry R.; Marina, Olga A.; Hardy, John S.; Singh, Prabhaker; Thomsen, Edwin C.

    2010-07-20

    The present invention provides novel compositions that find advantageous use in making electrodes for electrochemical cells. Also provided are electrochemical devices that include active oxygen reduction electrodes, such as solid oxide fuel cells, sensors, pumps and the like. The compositions comprises a copper-substituted ferrite perovskite material. The invention also provides novel methods for making and using the electrode compositions and solid oxide fuel cells and solid oxide fuel cell assemblies having cathodes comprising the compositions.

  17. Composite cathode materials development for intermediate temperature solid oxide fuel cell systems

    NASA Astrophysics Data System (ADS)

    Qin, Ya

    Solid oxide fuel cell (SOFC) systems are of particular interest as electrochemical power systems that can operate on various hydrocarbon fuels with high fuel-to-electrical energy conversion efficiency. Within the SOFC stack, La0.8Sr 0.2Ga0.8Mg0.115Co0.085O3-delta (LSGMC) has been reported as an optimized composition of lanthanum gallate based electrolytes to achieve higher oxygen ionic conductivity at intermediate temperatures, i.e., 500-700°C. The electrocatalytic properties of interfaces between LSGMC electrolytes and various candidate intermediate-temperature SOFC cathodes have been investigated. Sm0.5Sr0.5CoO 3-delta (SSC), and La0.6Sr0.4Co0.2Fe 0.8O3-delta (LSCF), in both pure and composite forms with LSGMC, were investigated with regards to both oxygen reduction and evolution, A range of composite cathode compositions, having ratios of SSC (in wt.%) with LSGMC (wt.%) spanning the compositions 9:1, 8:2, 7:3, 6:4 and 5:5, were investigated to determine the optimal cathode-electrolyte interface performance at intermediate temperatures. All LSGMC electrolyte and cathode powders were synthesized using the glycine-nitrate process (GNP). Symmetrical electrochemical cells were investigated with three-electrode linear dc polarization and ac impedance spectroscopy to characterize the kinetics of the interfacial reactions in detail. Composite cathodes were found to perform better than the single phase cathodes due to significantly reduced polarization resistances. Among those composite SSC-LSGMC cathodes, the 7:3 composition has demonstrated the highest current density at the equivalent overpotential values, indicating that 7:3 is an optimal mixing ratio of the composite cathode materials to achieve the best performance. For the composite SC-LSGMC cathode/LSGMC interface, the cathodic overpotential under 1 A/cm2 current density was as low as 0.085 V at 700°C, 0.062V at 750°C and 0.051V at 800°C in air. Composite LSCF-LSGMC cathode/LSGMC interfaces were found to have

  18. Analysis of liquid water formation in polymer electrolyte membrane (PEM) fuel cell flow fields with a dry cathode supply

    NASA Astrophysics Data System (ADS)

    Gößling, Sönke; Klages, Merle; Haußmann, Jan; Beckhaus, Peter; Messerschmidt, Matthias; Arlt, Tobias; Kardjilov, Nikolay; Manke, Ingo; Scholta, Joachim; Heinzel, Angelika

    2016-02-01

    PEM fuel cells can be operated within a wide range of different operating conditions. In this paper, the special case of operating a PEM fuel cell with a dry cathode supply and without external humidification of the cathode, is considered. A deeper understanding of the water management in the cells is essential for choosing the optimal operation strategy for a specific system. In this study a theoretical model is presented which aims to predict the location in the flow field at which liquid water forms at the cathode. It is validated with neutron images of a PEM fuel cell visualizing the locations at which liquid water forms in the fuel cell flow field channels. It is shown that the inclusion of the GDL diffusion resistance in the model is essential to describe the liquid water formation process inside the fuel cell. Good agreement of model predictions and measurement results has been achieved. While the model has been developed and validated especially for the operation with a dry cathode supply, the model is also applicable to fuel cells with a humidified cathode stream.

  19. Co-flow anode/cathode supply heat exchanger for a solid-oxide fuel cell assembly

    DOEpatents

    Haltiner, Jr., Karl J.; Kelly, Sean M.

    2005-11-22

    In a solid-oxide fuel cell assembly, a co-flow heat exchanger is provided in the flow paths of the reformate gas and the cathode air ahead of the fuel cell stack, the reformate gas being on one side of the exchanger and the cathode air being on the other. The reformate gas is at a substantially higher temperature than is desired in the stack, and the cathode gas is substantially cooler than desired. In the co-flow heat exchanger, the temperatures of the reformate and cathode streams converge to nearly the same temperature at the outlet of the exchanger. Preferably, the heat exchanger is formed within an integrated component manifold (ICM) for a solid-oxide fuel cell assembly.

  20. Development of electrocatalysts for fuel cell cathodes: Experimental studies and mathematical modeling

    NASA Astrophysics Data System (ADS)

    Subramanian, Nalini Palaniappan

    The primary objective of this dissertation is to develop electrocatalysts for fuel cell cathodes and to understanding the performance of various cathode materials using mathematical modeling. Recent advances in Proton Exchange Membrane Fuel Cells (PEMFCs) have made them a promising alternative to internal combustion and gasoline driven vehicles. PEMFCs are the best choice for a wide range of portable, stationary and automotive applications because of their high power density and relatively low-temperature operation. However, a major impediment in the commercialization of the fuel cell technology is the cost involved due to the large amount of platinum electrocatalyst used for Oxygen Reduction Reaction (ORR). For example, PEMFCs today do not meet the Department of Energy (DOE) targets for transportation applications (which is 0.4 A/cm2 at 0.8 V and 0.1 A/cm2 at 0.85 V with an MEA cost under $10/kW). To achieve this, precious metal loadings must be reduced to less than 0.2 g/peak kW or 0.05 mg/cm2 of platinum. Platinum loading can be reduced by (i) increasing the utilization of platinum, (ii) alloying platinum with other transition metals, and (iii) developing platinum-free catalysts. In this dissertation, the third approach has been adopted, where a platinum-free cobalt-chelate catalyst supported on modified carbon black substrates has been developed. This catalyst shows less than 100 mV higher overpotential compared to commercial E-TEK 19.1% Pt/C. The modified carbon substrate used in this catalyst can itself act as an ORR catalyst. Here, a highly active metal-free carbon catalyst has been developed for ORR. The second approach to reducing platinum loading has also been adopted by developing 18.8% Pt2.5Co1 catalysts using electroless co-deposition, which showed a performance close to commercial E-TEK 20% Pt 3Co1/C. Finally, a three-phase homogeneous model has been developed for the cathode in a Molten Carbonate Fuel Cell (MCFC) to extract kinetic and conductivity

  1. High-performance cathode-supported solid oxide fuel cells with copper cermet anodes

    NASA Astrophysics Data System (ADS)

    Zhao, Lin; Ye, Xiaofeng; Zhan, Zhongliang

    2011-08-01

    Thin film solid oxide fuel cells, composed of thin coatings of 8 mol% Y2O3-stabilized ZrO2 (YSZ), thick substrates of infiltrated La0.8S0.2FeO3 (LSF)-YSZ cathodes and CuO-SDC (Ce0.85Sm0.15O1.925)-ceria anodes, are fabricated using the conventional tape casting and infiltration methods. Infiltrated LSF-YSZ cathodes exhibit a much lower interfacial polarization resistance than (La0.8Sr0.2)0.98MnO3 (LSM)-YSZ cathodes due to the mixed ionic and electronic conducting behavior of LSF, especially at low operation temperatures. The single cell has shown good and stable performance in hydrogen and hydrocarbon fuels. Maximum power densities for hydrogen, propane, dodecane and low sulfur diesel at 800 °C are 0.62 W cm-2, 0.40 W cm-2, 0.37 W cm-2 and 0.36 W cm-2, respectively.

  2. Numerical study of the cathode electrode in the Microfluidic Fuel Cell using agglomerate model

    NASA Astrophysics Data System (ADS)

    Moein-Jahromi, M.; Movahed, S.; Kermani, M. J.

    2015-03-01

    Simulation of the cathode electrode of a Microfluidic Fuel Cell (hereafter MFC) is performed with focus on the electrochemical reaction. Oxygen transport phenomena are modeled from the microchannel inlet to the reaction sites surface (on the platinum particles) in the catalyst layer. The dissolved oxygen in sulfuric acid and the formic acid are considered as the oxidant and the fuel, respectively. The cathode catalyst layer is modeled using the agglomerate model versus the homogenous model which is incapable of predicting concentration loss at high current densities. The results are validated versus the experiments of Choban et al. published in 2004. A set of parametric study is performed to investigate the influence of operating and structural parameters on the cell performance; at the end, a sensitivity analysis is implemented to rank the studied parameters with rank 1 for the most influential parameters. The results indicate that oxygen concentration at the inlet of microchannel within the range 0.1 M-0.7 M is the most influential parameter, and the cell performance can enhance by 2.615 W m-2 at the studied range. The results could be used by the microfluidic fuel cell manufacturers to overcome the current drawbacks of the MFCs.

  3. Comparative analysis of microbial community between different cathode systems of microbial fuel cells for denitrification.

    PubMed

    Li, Chao; Xu, Ming; Lu, Yi; Fang, Fang; Cao, Jiashun

    2016-03-01

    Two types of cathodic biofilm in microbial fuel cells (MFC) were established for comparison on their performance and microbial communities. Complete autotrophic simultaneous nitrification and denitrification (SND) without organics addition was achieved in nitrifying-MFC (N-MFC) with a total nitrogen (TN) removal rate of 0.35 mg/(L·h), which was even higher than that in denitrifying-MFC (D-MFC) at same TN level. Integrated denaturing gradient gel electrophoresis analysis based on both 16S rRNA and nirK genes showed that Alpha-, Gammaproteobacteria were the main denitrifier communities. Some potential autotrophic denitrifying bacteria which can use electrons and reducing power from cathodes, such as Shewanella oneidensis, Shewanella loihica, Pseudomonas aeruginosa, Starkeya novella and Rhodopseudomonas palustris were identified and selectively enriched on cathode biofilms. Further, relative abundance of denitrifying bacteria characterized by nirK/16S ratios was much higher in biofilm than suspended sludge according to real-time polymerase chain reaction. The highest enrichment efficiency for denitrifiers was obtained in N-MFC cathode biofilms, which confirmed autotrophic denitrifying bacteria enrichment is the key factor for a D-MFC system. PMID:26278100

  4. Manganese dioxide as a new cathode catalyst in microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Li, Xiang; Hu, Boxun; Suib, Steven; Lei, Yu; Li, Baikun

    This study focused on manganese oxides with a cryptomelane-type octahedral molecular sieve (OMS-2) structure to replace platinum as a cathode catalyst in microbial fuel cells (MFCs). Undoped (ud-OSM-2) and three catalysts doped with cobalt (Co-OMS-2), copper (Cu-OMS-2), and cerium (Ce-OMS-2) to enhance their catalytic performances were investigated. The novel OMS-2 cathodes were examined in granular activated carbon MFC (GACMFC) with sodium acetate as the anode reagent and oxygen in air as the cathode reagent. The results showed that after 400 h of operation, the Co-OMS-2 and Cu-OMS-2 exhibited good catalytic performance in an oxygen reduction reaction (ORR). The voltage of the Co-OMS-2 GACMFC was 217 mV, and the power density was 180 mW m -2. The voltage of the Cu-OMS-2 GACMFC was 214 mV and the power density was 165 mW m -2. The internal resistance (R in) of the OMS-2 GACMFCs (18 ± 1 Ω) was similar to that of the platinum GACMFCs (17 Ω). Furthermore, the degradation rates of organic substrates in the OMS-2 GACMFCs were twice those in the platinum GACMFCs, which enhance their wastewater treatment efficiencies. This study indicated that using OMS-2 manganese oxides to replace platinum as a cathodic catalyst enhances power generation, increases contaminant removal, and substantially reduces the cost of MFCs.

  5. Modeling and validation of single-chamber microbial fuel cell cathode biofilm growth and response to oxidant gas composition

    DOE PAGESBeta

    Ou, Shiqi; Zhao, Yi; Aaron, Douglas S.; Regan, John M.; Mench, Matthew M.

    2016-08-15

    This work describes experiments and computational simulations to analyze single-chamber, air-cathode microbial fuel cell (MFC) performance and cathodic limitations in terms of current generation, power output, mass transport, biomass competition, and biofilm growth. Steady-state and transient cathode models were developed and experimentally validated. Two cathode gas mixtures were used to explore oxygen transport in the cathode: the MFCs exposed to a helium-oxygen mixture (heliox) produced higher current and power output than the group of MFCs exposed to air or a nitrogen-oxygen mixture (nitrox), indicating a dependence on gas-phase transport in the cathode. Multi-substance transport, biological reactions, and electrochemical reactions inmore » a multi-layer and multi-biomass cathode biofilm were also simulated in a transient model. The transient model described biofilm growth over 15 days while providing insight into mass transport and cathodic dissolved species concentration profiles during biofilm growth. Lastly, simulation results predict that the dissolved oxygen content and diffusion in the cathode are key parameters affecting the power output of the air-cathode MFC system, with greater oxygen content in the cathode resulting in increased power output and fully-matured biomass.« less

  6. First Principles based thermo-kinetic modeling of electrocatalytic processes at fuel cell cathodes

    NASA Astrophysics Data System (ADS)

    Gadre, Milind Jayram

    Fuel Cells are promising alternative-energy technologies for the future. The design of efficient, cost-effective materials to catalyze the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is a major hurdle facing the large-scale commercialization of these technologies. Perovskites of transition metal oxides and related hetero-structures are promising, cheap materials for oxygen electro-catalysis. Understanding the detailed nature of OER and ORR catalytic activity of various surfaces of perovskite oxides can help design highly active perovskite cathodes. My research work involves first principles based thermo-kinetic modeling of various oxygen electro-catalytic processes on the surfaces of transition metal perovskites, to develop detailed mechanistic understanding of oxygen reduction/evolution reactions, and to suggest ways to engineer better cathode materials.

  7. Scaled-up dual anode/cathode microbial fuel cell stack for actual ethanolamine wastewater treatment.

    PubMed

    An, Byung-Min; Heo, Yoon; Maitlo, Hubdar-Ali; Park, Joo-Yang

    2016-06-01

    The aim of this work was to develop the scale-up microbial fuel cell technology for actual ethanolamine wastewater treatment, dual anode/cathode MFC stacks connected in series to achieve any desired current, treatment capacity, and volume capacity. However, after feeding actual wastewater into the MFC, maximum power density decreased while the corresponding internal resistance increased. With continuous electricity production, a stack of eight MFCs in series achieved 96.05% of COD removal and 97.30% of ammonia removal at a flow rate of 15.98L/d (HRT 12h). The scaled-up dual anode/cathode MFC stack system in this research was demonstrated to treat actual ETA wastewater with the added benefit of harvesting electricity energy. PMID:26888335

  8. Continuum and Quantum-Chemical Modeling of Oxygen Reduction on the Cathode in a Solid Oxide Fuel Cell

    SciTech Connect

    Choi, Yongman; Mebane, David S.; Wang, Jeng-Han; Liu, Meilin

    2009-10-08

    Solid oxide fuel cells (SOFCs) have several advantages over other types of fuels cells such as high-energy efficiency and excellent fuel flexibility. To be economically competitive, however, new materials with extraordinary transport and catalytic properties must be developed to dramatically improve the performance while reducing the cost. This article reviews recent advancements in understanding oxygen reduction on various cathode materials using phenomenological and quantum chemical approaches in order to develop novel cathode materials with high catalytic activity toward oxygen reduction. We summarize a variety of results relevant to understanding the interactions between O2 and cathode materials at the molecular level as predicted using quantum-chemical cal-culations and probed using in situ surface vibrational spectroscopy. It is hoped that this in-depth understanding may provide useful insights into the design of novel cath-ode materials for a new generation of SOFCs.

  9. Silver-praseodymium oxy-sulfate cermet: A new composite cathode for intermediate temperature solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Yang, Tao; Shaula, Aliaksandr L.; Mikhalev, Sergey M.; Ramasamy, Devaraj; Fagg, Duncan P.

    2016-02-01

    Ag-Pr2O2SO4 is identified as a promising new composite material to enhance the cathodic oxygen reduction reaction in solid oxide fuel cells. Ag-Pr2O2SO4 was studied in terms of synthesis, stability of Pr2O2SO4 in CO2, and electrochemical behavior as a cathode. The performance of the composite cathode was assessed as a function of temperature by A.C. impedance using a symmetrical cell arrangement in oxygen. The global performance of an anode-supported fuel cell Ag-Pr2O2SO4/CGO/NiO-CGO was also assessed, the highest power density being 1.5 W cm-2 at 800 °C. A longevity test of this cell performed at 800 °C under load for 24 days demonstrated high stability with Ag-Pr2O2SO4 cathode.

  10. Inkjet-Printed Porous Silver Thin Film as a Cathode for a Low-Temperature Solid Oxide Fuel Cell.

    PubMed

    Yu, Chen-Chiang; Baek, Jong Dae; Su, Chun-Hao; Fan, Liangdong; Wei, Jun; Liao, Ying-Chih; Su, Pei-Chen

    2016-04-27

    In this work we report a porous silver thin film cathode that was fabricated by a simple inkjet printing process for low-temperature solid oxide fuel cell applications. The electrochemical performance of the inkjet-printed silver cathode was studied at 300-450 °C and was compared with that of silver cathodes that were fabricated by the typical sputtering method. Inkjet-printed silver cathodes showed lower electrochemical impedance due to their porous structure, which facilitated oxygen gaseous diffusion and oxygen surface adsorption-dissociation reactions. A typical sputtered nanoporous silver cathode became essentially dense after the operation and showed high impedance due to a lack of oxygen supply. The results of long-term fuel cell operation show that the cell with an inkjet-printed cathode had a more stable current output for more than 45 h at 400 °C. A porous silver cathode is required for high fuel cell performance, and the simple inkjet printing technique offers an alternative method of fabrication for such a desirable porous structure with the required thermal-morphological stability. PMID:27045453

  11. Tolerance of non-platinum group metals cathodes proton exchange membrane fuel cells to air contaminants

    NASA Astrophysics Data System (ADS)

    Reshetenko, Tatyana; Serov, Alexey; Artyushkova, Kateryna; Matanovic, Ivana; Sarah Stariha; Atanassov, Plamen

    2016-08-01

    The effects of major airborne contaminants (SO2, NO2 and CO) on the spatial performance of Fe/N/C cathode membrane electrode assemblies were studied using a segmented cell system. The injection of 2-10 ppm SO2 in air stream did not cause any performance decrease and redistribution of local currents due to the lack of stably adsorbed SO2 molecules on Fe-Nx sites, as confirmed by density functional theory (DFT) calculations. The introduction of 5-20 ppm of CO into the air stream also did not affect fuel cell performance. The exposure of Fe/N/C cathodes to 2 and 10 ppm NO2 resulted in performance losses of 30 and 70-75 mV, respectively. DFT results showed that the adsorption energies of NO2 and NO were greater than that of O2, which accounted for the observed voltage decrease and slight current redistribution. The cell performance partially recovered when the NO2 injection was stopped. The long-term operation of the fuel cells resulted in cell performance degradation. XPS analyses of Fe/N/C electrodes revealed that the performance decrease was due to catalyst degradation and ionomer oxidation. The latter was accelerated in the presence of air contaminants. The details of the spatial performance and electrochemical impedance spectroscopy results are presented and discussed.

  12. Enhanced oxygen reduction activity and solid oxide fuel cell performance with a nanoparticles-loaded cathode.

    PubMed

    Zhang, Xiaomin; Liu, Li; Zhao, Zhe; Tu, Baofeng; Ou, Dingrong; Cui, Daan; Wei, Xuming; Chen, Xiaobo; Cheng, Mojie

    2015-03-11

    Reluctant oxygen-reduction-reaction (ORR) activity has been a long-standing challenge limiting cell performance for solid oxide fuel cells (SOFCs) in both centralized and distributed power applications. We report here that this challenge has been tackled with coloading of (La,Sr)MnO3 (LSM) and Y2O3 stabilized zirconia (YSZ) nanoparticles within a porous YSZ framework. This design dramatically improves ORR activity, enhances fuel cell output (200-300% power improvement), and enables superior stability (no observed degradation within 500 h of operation) from 600 to 800 °C. The improved performance is attributed to the intimate contacts between nanoparticulate YSZ and LSM particles in the three-phase boundaries in the cathode. PMID:25686380

  13. Chromium poisoning in (La,Sr)MnO3 cathode: Three-dimensional simulation of a solid oxide fuel cell

    NASA Astrophysics Data System (ADS)

    Miyoshi, Kota; Iwai, Hiroshi; Kishimoto, Masashi; Saito, Motohiro; Yoshida, Hideo

    2016-09-01

    A three-dimensional numerical model of a single solid oxide fuel cell (SOFC) considering chromium poisoning on the cathode side has been developed to investigate the evolution of the SOFC performance over long-term operation. The degradation model applied in the simulation describes the loss of the cathode electrochemical activity as a decrease in the active triple-phase boundary (TPB) length. The calculations are conducted for two types of cell: lanthanum strontium manganite (LSM)/yttria-stabilized zirconia (YSZ)/Ni-YSZ and LSM-YSZ/YSZ/Ni-YSZ. Their electrode microstructures are acquired by imaging with a focused ion beam scanning-electron microscope (FIB-SEM). The simulation results qualitatively reproduce the trends of chromium poisoning reported in the literature. It has been revealed that the performance degradation by chromium is primarily due to an increase in the cathode activation overpotential. In addition, in the LSM-YSZ composite cathode, TPBs in the vicinity of the cathode-electrolyte interface preferentially deteriorate, shifting the active reaction site towards the cathode surface. This also results in an increase in the cathode ohmic loss associated with oxide ion conduction through the YSZ phase. The effects of the cell temperature, the partial pressure of steam at the chromium source, the cathode microstructure, and the cathode thickness on chromium poisoning are also discussed.

  14. A dual-chambered microbial fuel cell with Ti/nano-TiO2/Pd nano-structure cathode

    NASA Astrophysics Data System (ADS)

    Hosseini, Mir Ghasem; Ahadzadeh, Iraj

    2012-12-01

    In this research, Ti/nano-TiO2/Pd nano-structure electrode is prepared, characterized and applied as cathode electrode in a dual-chambered microbial fuel cell with graphite anode and Flemion cation exchange membrane. Prepared nano-structured electrode morphology and mixed-culture biofilm formed on the anode are studied by scanning electron microscopy (SEM). Cell performance is investigated by polarization, cyclic voltammetery (CV) and electrochemical impedance spectroscopy (EIS) methods. Results show that Ti/nano-TiO2/Pd electrode exhibits satisfactory long term performance as a cathode to reduce water dissolved oxygen. The maximum output power of the cell is about 200 mW m-2 normalized to the cathode surface area. Open circuit potential (OCP) of the cell is about 480 mV and value of the short circuit current is 0.21 mA cm-2 of the cathode geometric surface area. Thus this nano-structure cathode can produce comparable output power to that of platinum-based cathodes such as Pt-doped carbon paper; therefore due to the ease of preparation and low cost, this electrode can be applied as alternative to platinum-based cathodes in microbial fuel cells.

  15. Platinum-rare earth cathodes for direct borohydride-peroxide fuel cells

    NASA Astrophysics Data System (ADS)

    Cardoso, D. S. P.; Santos, D. M. F.; Šljukić, B.; Sequeira, C. A. C.; Macciò, D.; Saccone, A.

    2016-03-01

    Hydrogen peroxide (H2O2) is being actively investigated as an oxidant for direct borohydride fuel cells. Herein, platinum-rare earth (RE = Sm, Dy, Ho) alloys are prepared by arc melting and their activity for hydrogen peroxide reduction reaction (HPRR) is studied in alkaline media. Cyclic voltammetry and chronoamperometry measurements show that Pt-Sm electrode displays the highest catalytic activity for HPRR with the lowest activation energy, followed by Pt-Ho, while Pt-Dy alloys show practically no activity. Laboratory direct borohydride-peroxide fuel cells (DBPFCs) are assembled using these alloys. The DBPFC with Pt-Sm cathode gives the highest peak power density of 85 mW cm-2, which is more than double of that obtained in a DBPFC with Pt electrodes.

  16. Bifunctional silver nanoparticle cathode in microbial fuel cells for microbial growth inhibition with comparable oxygen reduction reaction activity.

    PubMed

    An, Junyeong; Jeon, Hongrae; Lee, Jaeyoung; Chang, In Seop

    2011-06-15

    Organic contamination of water bodies in which benthic microbial fuel cells (benthic MFCs) are installed, and organic crossover from the anode to the cathode of membraneless MFCs, is a factor causing oxygen depletion and substrate loss in the cathode due to the growth of heterotrophic aerobic bacteria. This study examines the possible use of silver nanoparticles (AgNPs) as a cathodic catalyst for MFCs suffering from organic contamination and oxygen depletion. Four treated cathodes (AgNPs-coated, Pt/C-coated, Pt/C+AgNPs-coated, and plain graphite cathodes) were prepared and tested under high levels of organics loading. During operation (fed with 50 mM acetate), the AgNPs-coated system showed the highest DO concentration (0.8 mg/L) in the cathode area as well as the highest current (ranging from 0.04 to 0.12 mA). Based on these results, we concluded that (1) the growth of oxygen-consuming heterotrophic microbes could be inhibited by AgNPs, (2) the function of AgNPs as a bacterial growth inhibitor resulted in a greater increase of DO concentration in the cathode than the other tested cathode systems, (3) AgNPs could be applied as a cathode catalyst for oxygen reduction, and as a result (4) the MFC with the AgNPs-coated cathode led to the highest current generation among the tested MFCs. PMID:21585217

  17. Microbial community structures differentiated in a single-chamber air-cathode microbial fuel cell fueled with rice straw hydrolysate

    PubMed Central

    2014-01-01

    Background The microbial fuel cell represents a novel technology to simultaneously generate electric power and treat wastewater. Both pure organic matter and real wastewater can be used as fuel to generate electric power and the substrate type can influence the microbial community structure. In the present study, rice straw, an important feedstock source in the world, was used as fuel after pretreatment with diluted acid method for a microbial fuel cell to obtain electric power. Moreover, the microbial community structures of anodic and cathodic biofilm and planktonic culturewere analyzed and compared to reveal the effect of niche on microbial community structure. Results The microbial fuel cell produced a maximum power density of 137.6 ± 15.5 mW/m2 at a COD concentration of 400 mg/L, which was further increased to 293.33 ± 7.89 mW/m2 through adjusting the electrolyte conductivity from 5.6 mS/cm to 17 mS/cm. Microbial community analysis showed reduction of the microbial diversities of the anodic biofilm and planktonic culture, whereas diversity of the cathodic biofilm was increased. Planktonic microbial communities were clustered closer to the anodic microbial communities compared to the cathodic biofilm. The differentiation in microbial community structure of the samples was caused by minor portion of the genus. The three samples shared the same predominant phylum of Proteobacteria. The abundance of exoelectrogenic genus was increased with Desulfobulbus as the shared most abundant genus; while the most abundant exoelectrogenic genus of Clostridium in the inoculum was reduced. Sulfate reducing bacteria accounted for large relative abundance in all the samples, whereas the relative abundance varied in different samples. Conclusion The results demonstrated that rice straw hydrolysate can be used as fuel for microbial fuel cells; microbial community structure differentiated depending on niches after microbial fuel cell operation; exoelectrogens were

  18. MWCNT-supported phthalocyanine cobalt as air-breathing cathodic catalyst in glucose/O2 fuel cells

    NASA Astrophysics Data System (ADS)

    Elouarzaki, Kamal; Haddad, Raoudha; Holzinger, Michael; Le Goff, Alan; Thery, Jessica; Cosnier, Serge

    2014-06-01

    Simple and highly efficient glucose fuel cells using abiotic catalysts and different ion exchange membranes were designed. The glucose fuel cells are based on a multi-walled carbon nanotube (MWCNT)-supported cobalt phthalocyanine (CoPc) cathode and a carbon black/platinum (C/Pt) anode. The electrocatalytic activity of the MWCNT/CoPc electrode for oxygen reduction was investigated by cyclic and linear sweep voltammetry. The electrochemical experiments show that CoPc exhibits promising catalytic properties for oxygen reduction due to its high overpotential and efficiency at reduced metal load. The MWCNT/CoPc electrodes were applied to the oxygen reduction reaction as air-breathing cathode in a single-chambered glucose fuel cell. This cathode was associated with a C/Pt anode in fuel cell configurations using either an anion (Nafion®) or a cation (Tokuyama) exchange membrane. The best fuel cell configuration delivered a maximum power density of 2.3 mW cm-2 and a cell voltage of 0.8 V in 0.5 M KOH solution containing 0.5 M glucose using the Tokuyama membrane at ambient conditions. Beside the highest power density per cathodic catalyst mass (383 W g-1), these glucose fuel cells exhibit a high operational stability, delivering 0.3 mW cm-2 after 50 days.

  19. Microstructural engineering of composite cathode systems for intermediate and low-temperature solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Camaratta, Matthew

    Solid oxide fuel cells (SOFCs) are electrochemical devices with the potential to generate power at high efficiency with little environmental impact. However, in order to improve their commercial appeal, operating temperatures must be lowered from the 800-1000°C temperature range to 500-700°C and below. Due to the high bond strength of oxygen molecules, the kinetics of oxygen reduction are orders of magnitude slower than those of fuel oxidation. Consequently, much research in the reduced-temperature SOFC field is aimed at enhancing cathode performance. A composite cathode makes use of an electronic conducting phase as well as an ion conducting phase in order to spread the 3PB reaction zone beyond the cathode/electrolyte interface. Silver-stabilized bismuth oxide composite cathodes exhibit low resistance to oxygen reduction due to a combination of high catalytic activity for oxygen reduction of both phases, as well as high ionic conductivity of the bismuth oxide phase. Isothermal comparisons were made between pure silver cathodes, silver-yttrium stabilized bismuth oxide (YSB) cathodes, and silver-erbium stabilized bismuth oxides (ESB) at 650°C. The performance of all cathodes was shown to degrade with time. Cathode area specific resistance (ASR) of both the Ag-YSB and Ag-ESB electrodes increased by around 70%, while the pure Ag system experienced a near fourfold increase during the same length of time under open circuit conditions. In light of the electrochemical, microstructural, and chemical evidence presented, it was concluded that electrode microstructural evolution due to growth, agglomeration, and coalescence of the silver phase, rather than chemical reactivity of the bismuth oxide phase, was responsible for the observed degradation in electrochemical performance. Attempts were made to reduce the microstructural evolution of the silver phase in Ag-ESB20 composites by introduction of small particles (nano-size 8YSZ or vibratory-milled ESB20 particles) into

  20. Rational design of novel cathode materials in solid oxide fuel cells using first-principles simulations

    NASA Astrophysics Data System (ADS)

    Choi, YongMan; Lin, M. C.; Liu, Meilin

    The search for clean and renewable sources of energy represents one of the most vital challenges facing us today. Solid oxide fuel cells (SOFCs) are among the most promising technologies for a clean and secure energy future due to their high energy efficiency and excellent fuel flexibility (e.g., direct utilization of hydrocarbons or renewable fuels). To make SOFCs economically competitive, however, development of new materials for low-temperature operation is essential. Here we report our results on a computational study to achieve rational design of SOFC cathodes with fast oxygen reduction kinetics and rapid ionic transport. Results suggest that surface catalytic properties are strongly correlated with the bulk transport properties in several material systems with the formula of La 0.5Sr 0.5BO 2.75 (where B = Cr, Mn, Fe, or Co). The predictions seem to agree qualitatively with available experimental results on these materials. This computational screening technique may guide us to search for high-efficiency cathode materials for a new generation of SOFCs.

  1. Electro-thermal impedance spectroscopy applied to an open-cathode polymer electrolyte fuel cell

    NASA Astrophysics Data System (ADS)

    Engebretsen, Erik; Robinson, James B.; Obeisun, Oluwamayowa; Mason, Tom; Finegan, Donal; Hinds, Gareth; Shearing, Paul R.; Brett, Daniel J. L.

    2016-01-01

    The development of in-situ diagnostic techniques is critical to ensure safe and effective operation of polymer electrolyte fuel cell systems. Infrared thermal imaging is an established technique which has been extensively applied to fuel cells; however, the technique is limited to measuring surface temperatures and is prone to errors arising from emissivity variations and reflections. Here we demonstrate that electro-thermal impedance spectroscopy can be applied to enhance infrared thermal imaging and mitigate its limitations. An open-cathode polymer electrolyte fuel cell is used as a case study. The technique operates by imposing a periodic electrical stimulus to the fuel cell and measuring the consequent surface temperature response (phase and amplitude). In this way, the location of heat generation from within the component can be determined and the thermal conduction properties of the materials and structure between the point of heat generation and the point of measurement can be determined. By selectively 'locking-in' to a suitable modulation frequency, spatially resolved images of the relative amplitude between the current stimulus and temperature can be generated that provide complementary information to conventional temporal domain thermograms.

  2. Modeling of thermal expansion coefficient of perovskite oxide for solid oxide fuel cell cathode

    NASA Astrophysics Data System (ADS)

    Heydari, F.; Maghsoudipour, A.; Alizadeh, M.; Khakpour, Z.; Javaheri, M.

    2015-09-01

    Artificial intelligence models have the capacity to eliminate the need for expensive experimental investigation in various areas of manufacturing processes, including the material science. This study investigates the applicability of adaptive neuro-fuzzy inference system (ANFIS) approach for modeling the performance parameters of thermal expansion coefficient (TEC) of perovskite oxide for solid oxide fuel cell cathode. Oxides (Ln = La, Nd, Sm and M = Fe, Ni, Mn) have been prepared and characterized to study the influence of the different cations on TEC. Experimental results have shown TEC decreases favorably with substitution of Nd3+ and Mn3+ ions in the lattice. Structural parameters of compounds have been determined by X-ray diffraction, and field emission scanning electron microscopy has been used for the morphological study. Comparison results indicated that the ANFIS technique could be employed successfully in modeling thermal expansion coefficient of perovskite oxide for solid oxide fuel cell cathode, and considerable savings in terms of cost and time could be obtained by using ANFIS technique.

  3. Bismuth doped lanthanum ferrite perovskites as novel cathodes for intermediate-temperature solid oxide fuel cells.

    PubMed

    Li, Mei; Wang, Yao; Wang, Yunlong; Chen, Fanglin; Xia, Changrong

    2014-07-23

    Bismuth is doped to lanthanum strontium ferrite to produce ferrite-based perovskites with a composition of La(0.8-x)Bi(x)Sr0.2FeO(3-δ) (0 ≤ x ≤ 0.8) as novel cathode material for intermediate-temperature solid oxide fuel cells. The perovskite properties including oxygen nonstoichiometry coefficient (δ), average valence of Fe, sinterability, thermal expansion coefficient, electrical conductivity (σ), oxygen chemical surface exchange coefficient (K(chem)), and chemical diffusion coefficient (D(chem)) are explored as a function of bismuth content. While σ decreases with x due to the reduced Fe(4+) content, D(chem) and K(chem) increase since the oxygen vacancy concentration is increased by Bi doping. Consequently, the electrochemical performance is substantially improved and the interfacial polarization resistance is reduced from 1.0 to 0.10 Ω cm(2) at 700 °C with Bi doping. The perovskite with x = 0.4 is suggested as the most promising composition as solid oxide fuel cell cathode material since it has demonstrated high electrical conductivity and low interfacial polarization resistance. PMID:24971668

  4. Olive mill wastewater treatment in single-chamber air-cathode microbial fuel cells.

    PubMed

    Bermek, Hakan; Catal, Tunc; Akan, S Süha; Ulutaş, Mehmet Sefa; Kumru, Mert; Özgüven, Mine; Liu, Hong; Özçelik, Beraat; Akarsubaşı, Alper Tunga

    2014-04-01

    Olive mill wastewaters create significant environmental issues in olive-processing countries. One of the most hazardous groups of pollutants in these wastewaters is phenolic compounds. Here, olive mill wastewater was used as substrate and treated in single-chamber air-cathode microbial fuel cells. Olive mill wastewater yielded a maximum voltage of 381 mV on an external resistance of 1 kΩ. Notable decreases in the contents of 3,4-dihydroxybenzoic acid, tyrosol, gallic acid and p-coumaric acid were detected. Chemical oxygen demand removal rates were 65 % while removal of total phenolics by the process was lower (49 %). Microbial community analysis during the olive mill wastewater treating MFC has shown that both exoelectrogenic and phenol-degrading microorganisms have been enriched during the operation. Brevundimonas-, Sphingomonas- and Novosphingobium-related phylotypes were enriched on the anode biofilm, while Alphaproteobacteria and Bacteriodetes dominated the cathode biofilm. As one of the novel studies, it has been demonstrated that recalcitrant olive mill wastewaters could be treated and utilized for power generation in microbial fuel cells. PMID:24165748

  5. Use of pyrolyzed iron ethylenediaminetetraacetic acid modified activated carbon as air-cathode catalyst in microbial fuel cells.

    PubMed

    Xia, Xue; Zhang, Fang; Zhang, Xiaoyuan; Liang, Peng; Huang, Xia; Logan, Bruce E

    2013-08-28

    Activated carbon (AC) is a cost-effective catalyst for the oxygen reduction reaction (ORR) in air-cathode microbial fuel cells (MFCs). To enhance the catalytic activity of AC cathodes, AC powders were pyrolyzed with iron ethylenediaminetetraacetic acid (FeEDTA) at a weight ratio of FeEDTA:AC = 0.2:1. MFCs with FeEDTA modified AC cathodes and a stainless steel mesh current collector produced a maximum power density of 1580 ± 80 mW/m(2), which was 10% higher than that of plain AC cathodes (1440 ± 60 mW/m(2)) and comparable to Pt cathodes (1550 ± 10 mW/m(2)). Further increases in the ratio of FeEDTA:AC resulted in a decrease in performance. The durability of AC-based cathodes was much better than Pt-catalyzed cathodes. After 4.5 months of operation, the maximum power density of Pt cathode MFCs was 50% lower than MFCs with the AC cathodes. Pyridinic nitrogen, quaternary nitrogen and iron species likely contributed to the increased activity of FeEDTA modified AC. These results show that pyrolyzing AC with FeEDTA is a cost-effective and durable way to increase the catalytic activity of AC. PMID:23902951

  6. Microbial fuel cell using anaerobic respiration as an anodic reaction and biomineralized manganese as a cathodic reactant.

    PubMed

    Rhoads, Allison; Beyenal, Haluk; Lewandowski, Zbigniew

    2005-06-15

    We have operated a microbial fuel cell in which glucose was oxidized by Klebsiella pneumoniae in the anodic compartment, and biomineralized manganese oxides, deposited by Leptothrix discophora, were electrochemically reduced in the cathodic compartment. In the anodic compartment, to facilitate the electron transfer from glucose to the graphite electrode, we added a redox mediator, 2-hydroxy-1,4-naphthoquinone. We did not add any redox mediator to the cathodic compartment because the biomineralized manganese oxides were deposited on the surface of a graphite electrode and were reduced directly by electrons from the electrode. We have demonstrated that biomineralized manganese oxides are superiorto oxygen when used as cathodic reactants in microbial fuel cells. The current density delivered by using biomineralized manganese oxides as the cathodic reactant was almost 2 orders of magnitude higher than that delivered using oxygen. Several fuel cells were operated for 500 h, reaching anodic potentials of -441.5 +/- 31 mVscE and cathodic potentials of +384.5 +/- 64 mVscE. When the electrodes were connected by a 50 Ohms resistor, the fuel cell delivered the peak power density of 126.7 +/- 31.5 mW/m2. PMID:16047807

  7. Modeling the cathode pressure dynamics in the Buckeye Bullet II 540 kW hydrogen PEM fuel cell system

    NASA Astrophysics Data System (ADS)

    Hillstrom, Edward T.; Canova, Marcello; Guezennec, Yann; Rizzoni, Giorgio

    2013-11-01

    The Buckeye Bullet 2 (BB2) is the world's fastest hydrogen fuel cell vehicle, with an international speed record of 302.9 mph. In order to achieve the power levels necessary for reaching the top speed, a unique gas supply system was designed to feed the PEM fuel cell modules. Stored Heliox with 40% oxygen content was used as the oxidizer and supplied to the cathode at high pressure. The high oxygen concentration at the cathode leads to a high rate of water formation in the GDL, with considerable influence on the pressure dynamics. For this reason, a precise monitoring of the pressure and water formation is required so that the cathode can operate at the maximum allowable pressure. This paper presents a novel control-oriented modeling approach to predict the cathode pressure dynamics of the BB2 PEM fuel cell system, developed for system optimization, monitoring and control. A distributed-parameter model was designed to characterize the liquid water formation and transport in the cathode channels, starting from the conservation laws for viscous fluid flow. The model was validated against a set of laboratory tests and actual race data. In this context, the proposed model is compared to a well known control-oriented PEM fuel cell model, to illustrate how the ability to predict the water transport at high reaction rates allows for an improved prediction of the pressure dynamics.

  8. Performance and durability of anode-supported flat-tubular solid oxide fuel cells with Ag-infiltrated cathodes.

    PubMed

    Pi, Seuk-Hoon; Lee, Jong-Won; Lee, Seung-Bok; Lim, Tak-Hyoung; Park, Seok-Joo; Park, Chong-Ook; Song, Rak-Hyun

    2014-10-01

    An anode-supported flat-tubular solid oxide fuel cell is an advanced cell design, which offers many advantages including a high volumetric power density, a minimized sealing area and a high resistance to thermal cycling. Infiltration of nano-sized noble metal catalysts into a porous cathode is known to be an effective method to improve cathode performances at reduced temperatures, but the cathode stability is of potential concern. This study addresses the performance and durability of anode-supported flat-tubular solid oxide fuel cells with Ag-infiltrated cathodes. Uniformly dispersed Ag nanoparticles on the cathode are formed via a wet infiltration technique combined with subsequent heat-treatment. Although the Ag infiltration results in improved cell performance, the durability tests indicate that the cell performance degrades over time and that the degradation rate increases with increasing Ag loading in the cathode. The observed performance degradation is mainly attributed to formation of large-scale Ag agglomerates. A strategy based on an inter-dispersed composite of Ag and CeO2 nanoparticles is proposed to mitigate the performance degradation. PMID:25942845

  9. Determination of Optimal Parameters for Dual-Layer Cathode of Polymer Electrolyte Fuel Cell Using Computational Intelligence-Aided Design

    PubMed Central

    Chen, Yi; Huang, Weina; Peng, Bei

    2014-01-01

    Because of the demands for sustainable and renewable energy, fuel cells have become increasingly popular, particularly the polymer electrolyte fuel cell (PEFC). Among the various components, the cathode plays a key role in the operation of a PEFC. In this study, a quantitative dual-layer cathode model was proposed for determining the optimal parameters that minimize the over-potential difference and improve the efficiency using a newly developed bat swarm algorithm with a variable population embedded in the computational intelligence-aided design. The simulation results were in agreement with previously reported results, suggesting that the proposed technique has potential applications for automating and optimizing the design of PEFCs. PMID:25490761

  10. Carbon Nanohorn-Derived Graphene Nanotubes as a Platinum-Free Fuel Cell Cathode.

    PubMed

    Unni, Sreekuttan M; Illathvalappil, Rajith; Bhange, Siddheshwar N; Puthenpediakkal, Hasna; Kurungot, Sreekumar

    2015-11-01

    Current low-temperature fuel cell research mainly focuses on the development of efficient nonprecious electrocatalysts for the reduction of dioxygen molecule due to the reasons like exorbitant cost and scarcity of the current state-of-the-art Pt-based catalysts. As a potential alternative to such costly electrocatalysts, we report here the preparation of an efficient graphene nanotube based oxygen reduction electrocatalyst which has been derived from single walled nanohorns, comprising a thin layer of graphene nanotubes and encapsulated iron oxide nanoparticles (FeGNT). FeGNT shows a surface area of 750 m(2)/g, which is the highest ever reported among the metal encapsulated nanotubes. Moreover, the graphene protected iron oxide nanoparticles assist the system to attain efficient distribution of Fe-Nx and quaternary nitrogen based active reaction centers, which provides better activity and stability toward the oxygen reduction reaction (ORR) in acidic as well as alkaline conditions. Single cell performance of a proton exchange membrane fuel cell by using FeGNT as the cathode catalyst delivered a maximum power density of 200 mW cm(-2) with Nafion as the proton exchange membrane at 60 °C. The facile synthesis strategy with iron oxide encapsulated graphitic carbon morphology opens up a new horizon of hope toward developing Pt-free fuel cells and metal-air batteries along with its applicability in other energy conversion and storage devices. PMID:26458554

  11. Novel pore-filled polyelectrolyte composite membranes for cathodic microbial fuel cell application

    NASA Astrophysics Data System (ADS)

    Gohil, J. M.; Karamanev, D. G.

    2013-12-01

    Novel pore-filled polyelectrolyte membrane (PEM) was produced using track etched polycarbonate (PC) as porous substrate and poly(vinyl alcohol) (PVA) as pore filling material. PVA in PC pores was stabilized through cross-linking of PVA matrix with glutaraldehyde (GA). Cross-link time was varied from 24 h to 96 h while keeping the membranes in GA solution. Pore sizes of substrate PC membrane tested were 0.01, 0.1 and 0.2 μm. The membranes were characterized by Fourier-transform infrared spectroscopy and scanning electron microscopy. Ionic conductivity, water uptake, contact angle and gel content have been measured to determine membranes performance. The ionic crossover (iron ions and protons) through membranes was studied in a complete fuel cell. The single-cell performance of membrane was tested in a cathodic microbial fuel cell (MFC, Biogenerator). The physiochemical properties and membranes fuel cell performance were highly depended on the cross-link density of PVA matrices. Membranes cross-liked with GA for 72 h showed maximum gel content and their peak power density has reached 110 mW cm-2 at current density of 378 mA cm-2. Among all, membrane cross-linked for 72 h was studied for continuous long-term stability, which showed consistency for application in MFC.

  12. Electrode surface modification for cathode catalysis in semi-fuel cells. End of the year report

    SciTech Connect

    Bessette, R.R.

    1998-07-07

    The program objective is to identify the optimum conditions for fabricating a stable electrocatalytic cathode of palladium and iridium that will: improve the cathode polarization potential, diminish the heterogeneous decomposition and direct chemical reactions and significantly improve (gain of 50%) the overall electrochemical cell efficiency. The second objective is to evaluate the electrochemical performance of the catalyzed cathode. The third objective is to characterize the structure and composition of the catalytic surface.

  13. Chlorobenzene Poisoning and Recovery of Platinum-Based Cathodes in Proton Exchange Membrane Fuel Cells

    PubMed Central

    Zhai, Yunfeng; Baturina, Olga; Ramaker, David; Farquhar, Erik; St-Pierre, Jean; Swider-Lyons, Karen

    2015-01-01

    The platinum electrocatalysts found in proton exchange membrane fuel cells are poisoned both reversibly and irreversibly by air pollutants and residual manufacturing contaminants. In this work, the poisoning of a Pt/C PEMFC cathode was probed by a trace of chlorobenzene in the air feed. Chlorobenzene inhibits the oxygen reduction reaction and causes significant cell performance loss. The performance loss is largely restored by neat air operation and potential cycling between 0.08 V and 1.2 V under H2/N2 (anode/cathode). The analysis of emissions, in situ X-ray absorption spectroscopy and electrochemical impedance spectra show the chlorobenzene adsorption/reaction and molecular orientation on Pt surface depend on the electrode potential. At low potentials, chlorobenzene deposits either on top of adsorbed H atoms or on the Pt surface via the benzene ring and is converted to benzene (ca. 0.1 V) or cyclohexane (ca. 0 V) upon Cl removal. At potentials higher than 0.2 V, chlorobenzene binds to Pt via the Cl atom and can be converted to benzene (less than 0.3 V) or desorbed. Cl− is created and remains in the membrane electrode assembly. Cl− binds to the Pt surface much stronger than chlorobenzene, but can slowly be flushed out by liquid water. PMID:26388963

  14. Effects of operating conditions on durability of polymer electrolyte membrane fuel cell Pt cathode catalyst layer

    NASA Astrophysics Data System (ADS)

    Ohyagi, Shinsuke; Matsuda, Toshihiko; Iseki, Yohei; Sasaki, Tatsuyoshi; Kaito, Chihiro

    In this study, we investigated the effects of humidity and oxygen reduction on the degradation of the catalyst of a polymer electrolyte membrane fuel cell (PEMFC) in a voltage cycling test. To elucidate the effect of humidity on the voltage cycling corrosion of a carbon-supported Pt catalyst with 3 nm Pt particles, voltage cycling tests based on 10,000 cycles were conducted using 100% relative humidity (RH) hydrogen as anode gas and nitrogen of varying humidities as cathode gas. The degradation rate of an electrochemical surface area (ECSA) was almost 50% under 189% RH nitrogen atmosphere and the Pt average particle diameter after 10,000 cycles under these conditions was about 2.3 times that of a particle of fresh catalyst because of the agglomeration of Pt particles. The oxygen reduction reaction (ORR) that facilitated Pt catalyst agglomeration when oxygen was employed as the cathode gas also demonstrated that Pt agglomeration was prominent in higher concentrations of oxygen. The ECSA degradation figure in 100% RH oxygen was similar to that in 189% RH nitrogen. It was concluded that liquid water, which was dropped under a supersaturated condition or generated by ORR, accelerated Pt agglomeration. In this paper, we suggest that the Pt agglomeration degradation occurs in a flooding area in a cell plane.

  15. Compatibility between strontium-doped ferrite cathode and metallic interconnects in solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Miguel-Pérez, Verónica; Martínez-Amesti, Ana; Arriortua, María Isabel

    2015-04-01

    One of the most important issues related to the performance of solid oxide fuel cells (SOFCs) is the chromium poisoning of the perovskite-type materials used as cathodes by the gaseous chromium species from metallic interconnects. In this study, powder mixtures of LSF40-Cr2O3 were heated at 800 °C and 1000 °C in air and were subsequently analysed by X-ray powder diffraction. For all the mixtures, the crystallisation of SrCrO4 was observed. In addition, the degradation occurring between three alloys with different compositions, Crofer 22 APU, SS430 and Conicro 4023 W 188, as metallic interconnects and La0.6Sr0.4FeO3 (LSF40) ceramic material as a cathode was studied. The results show significant chromium deposition and the formation of SrCrO4, LaCrO3 and La2O3 that block the active LSF40 electrode surface and degrade the stack (YSZ/SDC/LSF40/Interconnect) performance. LSF40 assembled with SS430 exhibited substantial Cr deposition. The deposition of the Cr species and the reaction with the LSF40 cathode is related to the composition of the oxide scales formed at each metallic interconnect and at the same time is related to the composition of the alloys. The best results obtained were for the half-cell (YSZ/SDC/LSF40) in contact with Conicro 4023 W 188 and Crofer 22 APU after heat treatment in air at 800 °C for 100 h.

  16. Optimisation of air cooled, open-cathode fuel cells: Current of lowest resistance and electro-thermal performance mapping

    NASA Astrophysics Data System (ADS)

    Meyer, Quentin; Ronaszegi, Krisztian; Pei-June, Gan; Curnick, Oliver; Ashton, Sean; Reisch, Tobias; Adcock, Paul; Shearing, Paul R.; Brett, Daniel J. L.

    2015-09-01

    Selecting the ideal operating point for a fuel cell depends on the application and consequent trade-off between efficiency, power density and various operating considerations. A systematic methodology for determining the optimal operating point for fuel cells is lacking; there is also the need for a single-value metric to describe and compare fuel cell performance. This work shows how the 'current of lowest resistance' can be accurately measured using electrochemical impedance spectroscopy and used as a useful metric of fuel cell performance. This, along with other measures, is then used to generate an 'electro-thermal performance map' of fuel cell operation. A commercial air-cooled open-cathode fuel cell is used to demonstrate how the approach can be used; in this case leading to the identification of the optimum operating temperature of ∼45 °C.

  17. Binary and ternary nano-catalysts as cathode materials in proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Trimm, Bryan Dunning

    The need for alternative energy, in order to reduce dependence on petroleum based fuels, has increased in recent years. Public demand is at an all-time high for low emitting or none polluting energy sources, driving the research for cleaner technology. Lithium batteries and fuel cells have the ability to produce this alternative energy with much cleaner standards, while allowing for portability and high energy densities. This work focuses on the performance of nanocatalysts in Proton Exchange Membrane Fuel Cell or PEMFC. A key technical challenge is the sluggish rate for oxygen reduction reaction at the cathode of PEMFC, which requires highly-active and stable catalysts. Our investigation is directed at increasing stability and durability as well as reducing high loading of noble metals in these catalyst materials. Binary and ternary structured nanomaterials, e.g., Pt51V1Co48/C and Pd xCu1-x/C, have been synthesized and tested in a PEMFC, in order to gain a better understanding of their durability and efficiency. In addition to electrochemical characterization, synchrotron x-ray techniques at the Advance Photon Source in Argonne National Lab have also been used for the structural characterization.

  18. Methods for using novel cathode and electrolyte materials for solid oxide fuel cells and ion transport membranes

    DOEpatents

    Jacobson, Allan J.; Wang, Shuangyan; Kim, Gun Tae

    2016-01-12

    Methods using novel cathode, electrolyte and oxygen separation materials operating at intermediate temperatures for use in solid oxide fuel cells and ion transport membranes include oxides with perovskite related structures and an ordered arrangement of A site cations. The materials have significantly faster oxygen kinetics than in corresponding disordered perovskites.

  19. Artificial Neural Network Modeling of Pt/C Cathode Degradation in PEM Fuel Cells

    NASA Astrophysics Data System (ADS)

    Maleki, Erfan; Maleki, Nasim

    2016-08-01

    Use of computational modeling with a few experiments is considered useful to obtain the best possible result for a final product, without performing expensive and time-consuming experiments. Proton exchange membrane fuel cells (PEMFCs) can produce clean electricity, but still require further study. An oxygen reduction reaction (ORR) takes place at the cathode, and carbon-supported platinum (Pt/C) is commonly used as an electrocatalyst. The harsh conditions during PEMFC operation result in Pt/C degradation. Observation of changes in the Pt/C layer under operating conditions provides a tool to study the lifetime of PEMFCs and overcome durability issues. Recently, artificial neural networks (ANNs) have been used to solve, predict, and optimize a wide range of scientific problems. In this study, several rates of change at the cathode were modeled using ANNs. The backpropagation (BP) algorithm was used to train the network, and experimental data were employed for network training and testing. Two different models are constructed in the present study. First, the potential cycles, temperature, and humidity are used as inputs to predict the resulting Pt dissolution rate of the Pt/C at the cathode as the output parameter of the network. Thereafter, the Pt dissolution rate and Pt ion diffusivity are regarded as inputs to obtain values of the Pt particle radius change rate, Pt mass loss rate, and surface area loss rate as outputs. The networks are finely tuned, and the modeling results agree well with experimental data. The modeled responses of the ANNs are acceptable for this application.

  20. Catalysts for ultrahigh current density oxygen cathodes for space fuel cell applications

    NASA Technical Reports Server (NTRS)

    Tryk, D.; Yeager, E.; Shingler, M.; Aldred, W.; Wang, C.

    1990-01-01

    The objective of this research was to identify promising electrocatalyst/support systems for the oxygen cathode in alkaline fuel cells operating at relatively high temperatures, O2 pressures and current densities. A number of materials were prepared, including Pb-Ru and Pb-Ir pyrochlores, RuO2 and Pt-doped RuO2, and lithiated NiO. Several of these were prepared using techniques that had not been previously used to prepare them. Particularly interesting is the use of the alkaline solution technique to prepare the Pt-doped Pb-Ru pyrochlore in high area form. Well-crystallized Pb(2)Ru(2)O(7-y) was used to fabricate high performance O2 cathodes with relatively good stability in room temperature KOH. This material was also found to be stable over a useful potential range at approximately 140 C in concentrated KOH. Other pyrochlores were found to be either unstable (amorphous samples) or the fabrication of the gas-fed electrodes could not be fully optimized during this project period. Future work may be directed at this problem. High area platinum supported on conductive metal oxide supports produced mixed results: small improvements in O2 reduction performance for Pb(2)Ru(2)O(7-y) but a large improvement for Li-doped NiO at room temperature. Nearly reversible behavior was observed for the O2/OH couple for Li-doped NiO at approximately 200 C.

  1. Finite element thermal stress analysis of solid oxide fuel cell cathode microstructures

    NASA Astrophysics Data System (ADS)

    Vaidya, Sushrut; Kim, Jeong-Ho

    2013-03-01

    Two-dimensional images of solid oxide fuel cell (SOFC) cathode microstructures (50:50 wt.% LSM:YSZ) are used to generate three-dimensional finite element (FE) models. An approximate, heuristic scheme is developed to derive a microstructure of 30:70 wt.% LSM:YSZ composition from the original, real microstructures. The derived model is validated by calculating three-phase boundary (TPB) and phase surface area densities by comparing with data available in the literature. Construction of such derived microstructures will provide insights on the effects of phase compositions on the mechanics of electrode structures. The heuristic scheme is not proposed as a replacement for rigorous approaches such as the random packing model, but rather as a simplified approach for deriving reasonably realistic microstructures of different compositions within a limited range of validity. The models are analyzed using finite elements to estimate thermal stresses and probability of failure using Weibull analysis. The effects of temperature-dependent material properties and phase volume fractions on probability of failure of the cathode are discussed.

  2. Development of carbon free diffusion layer for activated carbon air cathode of microbial fuel cells.

    PubMed

    Yang, Wulin; Kim, Kyoung-Yeol; Logan, Bruce E

    2015-12-01

    The fabrication of activated carbon air cathodes for larger-scale microbial fuel cells requires a diffusion layer (DL) that is highly resistant to water leakage, oxygen permeable, and made using inexpensive materials. A hydrophobic polyvinylidene fluoride (PVDF) membrane synthesized using a simple phase inversion process was examined as a low cost ($0.9/m(2)), carbon-free DL that prevented water leakage at high pressure heads compared to a polytetrafluoroethylene/carbon black DL ($11/m(2)). The power density produced with a PVDF (20%, w/v) DL membrane of 1400±7mW/m(2) was similar to that obtained using a wipe DL [cloth coated with poly(dimethylsiloxane)]. Water head tolerance reached 1.9m (∼19kPa) with no mesh supporter, and 2.1m (∼21kPa, maximum testing pressure) with a mesh supporter, compared to 0.2±0.05m for the wipe DL. The elimination of carbon black from the DL greatly simplified the fabrication procedure and further reduced overall cathode costs. PMID:26342345

  3. Carbon filtration cathode in microbial fuel cell to enhance wastewater treatment.

    PubMed

    Zuo, Kuichang; Liang, Shuai; Liang, Peng; Zhou, Xuechen; Sun, Dongya; Zhang, Xiaoyuan; Huang, Xia

    2015-06-01

    A homogeneous carbon membrane with multi-functions of microfiltration, electron conduction, and oxygen reduction catalysis was fabricated without using noble metals. The produced carbon membrane has a pore size of 553nm, a resistance of 6.0±0.4Ωcm(2)/cm, and a specific surface area of 32.2m(2)/g. After it was assembled in microbial fuel cell (MFC) as filtration air cathode, a power density of 581.5mW/m(2) and a current density of 1671.4mA/m(2) were achieved, comparable with previous Pt air cathode MFCs. The filtration MFC was continuously operated for 20days and excellent wastewater treatment performance was also achieved with removal efficiencies of TOC (93.6%), NH4(+)-N (97.2%), and total nitrogen (91.6%). In addition, the carbon membrane was much cheaper than traditional microfiltration membrane, suggesting a promising multi-functional material in wastewater treatment field. PMID:25782632

  4. Combined Theoretical and Experimental Analysis of Processes Determining Cathode Performance in Solid Oxide Fuel Cells

    SciTech Connect

    Kukla, Maija M.; Kotomin, Eugene Alexej; Merkle, R.; Mastrikov, Yuri; Maier, J.

    2013-02-11

    Solid oxide fuel cells (SOFC) are under intensive investigation since the 1980’s as these devices open the way for ecologically clean direct conversion of the chemical energy into electricity, avoiding the efficiency limitation by Carnot’s cycle for thermochemical conversion. However, the practical development of SOFC faces a number of unresolved fundamental problems, in particular concerning the kinetics of the electrode reactions, especially oxygen reduction reaction. We review recent experimental and theoretical achievements in the current understanding of the cathode performance by exploring and comparing mostly three materials: (La,Sr)MnO3 (LSM), (La,Sr)(Co,Fe)O3 (LSCF) and (Ba,Sr)(Co,Fe)O3 (BSCF). Special attention is paid to a critical evaluation of advantages and disadvantages of BSCF, which shows the best cathode kinetics known so far for oxides. We demonstrate that it is the combined experimental and theoretical analysis of all major elementary steps of the oxygen reduction reaction which allows us to predict the rate determining steps for a given material under specific operational conditions and thus control and improve SOFC performance.

  5. Stabilizing nanostructured solid oxide fuel cell cathode with atomic layer deposition.

    PubMed

    Gong, Yunhui; Palacio, Diego; Song, Xueyan; Patel, Rajankumar L; Liang, Xinhua; Zhao, Xuan; Goodenough, John B; Huang, Kevin

    2013-09-11

    We demonstrate that the highly active but unstable nanostructured intermediate-temperature solid oxide fuel cell cathode, La0.6Sr0.4CoO3-δ (LSCo), can retain its high oxygen reduction reaction (ORR) activity with exceptional stability for 4000 h at 700 °C by overcoating its surfaces with a conformal layer of nanoscale ZrO2 films through atomic layer deposition (ALD). The benefits from the presence of the nanoscale ALD-ZrO2 overcoats are remarkable: a factor of 19 and 18 reduction in polarization area-specific resistance and degradation rate over the pristine sample, respectively. The unique multifunctionality of the ALD-derived nanoscaled ZrO2 overcoats, that is, possessing porosity for O2 access to LSCo, conducting both electrons and oxide-ions, confining thermal growth of LSCo nanoparticles, and suppressing surface Sr-segregation is deemed the key enabler for the observed stable and active nanostructured cathode. PMID:23924170

  6. Passive cathodic water/air management device for micro-direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Peng, Hsien-Chih; Chen, Po-Hon; Chen, Hung-Wen; Chieng, Ching-Chang; Yeh, Tsung-Kuang; Pan, Chin; Tseng, Fan-Gang

    A high efficient passive water/air management device (WAMD) is proposed and successfully demonstrated in this paper. The apparatus consists of cornered micro-channels and air-breathing windows with hydrophobicity arrangement to regulate liquids and gases to flow on their predetermined pathways. A high performance water/air separation with water removal rate of about 5.1 μl s -1 cm -2 is demonstrated. The performance of the proposed WAMD is sufficient to manage a cathode-generated water flux of 0.26 μl s -1 cm -2 in the micro-direct methanol fuel cells (μDMFCs) which are operated at 100 mW cm -2 or 400 mA cm -2. Furthermore, the condensed vapors can also be collected and recirculated with the existing micro-channels which act as a passive water recycling system for μDMFCs. The durability testing shows that the fuel cells equipped with WAMD exhibit improved stability and higher current density.

  7. Electricity generation and bivalent copper reduction as a function of operation time and cathode electrode material in microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Wu, Dan; Huang, Liping; Quan, Xie; Li Puma, Gianluca

    2016-03-01

    The performance of carbon rod (CR), titanium sheet (TS), stainless steel woven mesh (SSM) and copper sheet (CS) cathode materials are investigated in microbial fuel cells (MFCs) for simultaneous electricity generation and Cu(II) reduction, in multiple batch cycle operations. After 12 cycles, the MFC with CR exhibits 55% reduction in the maximum power density and 76% increase in Cu(II) removal. In contrast, the TS and SSM cathodes at cycle 12 show maximum power densities of 1.7 (TS) and 3.4 (SSM) times, and Cu(II) removal of 1.2 (TS) and 1.3 (SSM) times higher than those observed during the first cycle. Diffusional resistance in the TS and SSM cathodes is found to appreciably decrease over time due to the copper deposition. In contrast to CR, TS and SSM, the cathode made with CS is heavily corroded in the first cycle, exhibiting significant reduction in both the maximum power density and Cu(II) removal at cycle 2, after which the performance stabilizes. These results demonstrate that the initial deposition of copper on the cathodes of MFCs is crucial for efficient and continuous Cu(II) reduction and electricity generation over prolonged time. This effect is closely associated with the nature of the cathode material. Among the materials examined, the SSM is the most effective and inexpensive cathode for practical use in MFCs.

  8. Inhibition of microbial growth on air cathodes of single chamber microbial fuel cells by incorporating enrofloxacin into the catalyst layer.

    PubMed

    Liu, Weifeng; Cheng, Shaoan; Sun, Dan; Huang, Haobin; Chen, Jie; Cen, Kefa

    2015-10-15

    The inevitable growth of aerobic bacteria on the surface of air cathodes is an important factor reducing the performance stability of air cathode single-chamber membrane-free microbial fuel cells (MFCs). Thus searching for effective methods to inhibit the cathodic microbial growth is critical for the practical application of MFCs. In this study, enrofloxacin (ENR), a broad spectrum fluoroquinolone antibiotic, was incorporated into the catalyst layer of activated carbon air cathodes (ACACs) to inhibit the cathodic microbial growth. The biomass content on ACACs was substantially reduced by 60.2% with ENR treatment after 91 days of MFCs operation. As a result of the inhibited microbial growth, the oxygen reduction catalytic performance of the ENR treated ACACs was much stable compared to the fast performance decline of the untreated control. Consequently, a quite stable electricity production was obtained for the MFCs with the ENR treated ACACs, in contrast with a 22.5% decrease in maximum power density of the MFCs with the untreated cathode. ENR treatment of ACACs showed minimal effects on the anode performance. These results indicate that incorporating antibiotics into ACACs should be a simple and effective strategy to inhibit the microbial growth and improve the long-term stability of the performance of air cathode and the electricity production of MFCs. PMID:25957076

  9. Effect of flow pulsation on mass transport in a cathode channel of polymer electrolyte membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Han, Hun Sik; Kim, Yun Ho; Kim, Seo Young; Hyun, Jae Min

    2012-09-01

    An experimental and theoretical study on the cathode flow pulsation in a polymer electrolyte membrane (PEM) fuel cell is performed. A 10-cell PEM fuel cell stack with open-air cathode channels is employed to investigate the effects of the cathode flow pulsation on the overall performance. The polarization and corresponding power curves obtained show that both the limiting current density and the maximum power density are substantially enhanced when the pulsating component is added to the cathode mainstream flow. The flow pulsation at Re = 77 provides the maximum increment of 40% and 35.5% in the limiting current density and in the maximum power density, respectively. The enhancement of the overall performance is more pronounced at low Reynolds numbers. Also, the theoretical mass transport analysis in the pulsating cathode flow channel is carried out to verify the present experimental results. The momentum and species conservation equations are analytically solved, and the effective time-averaged dispersion coefficient is defined to account for the enhanced mass transport by the flow pulsation. Comprehensive analytical solutions show that the effect of the relevant parameters is in well accordance with the experimental results.

  10. OPTIMIZATION OF THE CATHODE LONG-TERM STABILITY IN MOLTEN CARBONATE FUEL CELLS: EXPERIMENTAL STUDY AND MATHEMATICAL MODELING

    SciTech Connect

    Dr. Ralph E. White; Dr. Branko N. Popov

    2002-04-01

    The dissolution of NiO cathodes during cell operation is a limiting factor to the successful commercialization of molten carbonate fuel cells (MCFCs). Lithium cobalt oxide coating onto the porous nickel electrode has been adopted to modify the conventional MCFC cathode which is believed to increase the stability of the cathodes in the carbonate melt. The material used for surface modification should possess thermodynamic stability in the molten carbonate and also should be electro catalytically active for MCFC reactions. Two approaches have been adopted to get a stable cathode material. First approach is the use of LiNi{sub 0.8}Co{sub 0.2}O{sub 2}, a commercially available lithium battery cathode material and the second is the use of tape cast electrodes prepared from cobalt coated nickel powders. The morphology and the structure of LiNi{sub 0.8}Co{sub 0.2}O{sub 2} and tape cast Co coated nickel powder electrodes were studied using scanning electron microscopy and X-Ray diffraction studies respectively. The electrochemical performance of the two materials was investigated by electrochemical impedance spectroscopy and polarization studies. A three phase homogeneous model was developed to simulate the performance of the molten carbonate fuel cell cathode. The homogeneous model is based on volume averaging of different variables in the three phases over a small volume element. The model gives a good fit to the experimental data. The model has been used to analyze MCFC cathode performance under a wide range of operating conditions.

  11. Development and characterization of novel cathode materials for molten carbonate fuel cell

    NASA Astrophysics Data System (ADS)

    Giorgi, L.; Carewska, M.; Patriarca, M.; Scaccia, S.; Simonetti, E.; Dibartolomeo, A.

    1994-04-01

    In the development of molten carbonate fuel cell (MCFC) technology, the corrosion of materials is a serious problem for long-term operation. Indeed, slow dissolution of lithiated-NiO cathode in molten carbonates is the main obstacle for the commercialization of MCFCs. In the search of new, more stable, cathode materials, alternative compounds such as LiFeO2, Li2MnO3, and La(1-x)Sr(x)CoO3 are presently under investigation to replace the currently used lithiated-NiO. The aim of the present work was to investigate the possibility to produce electrode based on LiCoO2, a promising cathode material. At first, Li(x)CoO2 powder samples (0.8 less than x less than 1.1) were made by thermal decomposition of carbonate precursors in air. The synthesis processes were monitored by thermal analysis (TGA, DTA). The calcined and sintered powder samples were characterized by x ray diffraction (XRD) andatomic absorption spectrophotometry (F-AAS). A single phase was detected in all the samples, without any change in crystal structure as a function of lithium content. Porous sintered electrodes were prepared starting from lithium cobaltite powders mixed with different pore-formers by cold pressing and sintering. A bimodal pore-size distribution with a mean pore diameter in the range of 0.15 to 8 micron, a surface area of 2 to 12 sq m/g and a porosity of 10 to 65%, determined by the Hg-intrusion technique, were observed in all the materials. Conductivity measurements were carried out in the temperature range of 500-700 C, in air. The influence of the deviations from stoichiometry on the electronic properties was determined, the conductivity value of the stoichiometric compound being the lowest. A linear relationship between the electronic conductivity and the sample porosity was found. Solubility testing of the materials was carried out to evaluate their chemical stability in the electrolyte. The sampling method (F-AAS) and square wave voltammetry (SWV) were used to determine the

  12. ACTIVE CATHODES FOR SUPER-HIGH POWER DENSITY SOLID OXIDE FUEL CELLS THROUGH SPACE CHARGE EFFECTS

    SciTech Connect

    Anil V. Virkar

    2003-11-03

    This report summarizes the work done during the third quarter of the project. Effort was directed in two areas: (1) Further development of the model on the role of connectivity on ionic conductivity of porous bodies, including the role of grain boundaries, and its relationship to cathode polarization. Included indirectly through the grain boundary effect is the effect of space charge. (2) Synthesis of LSC + SDC composite cathode powders by combustion synthesis. (3) Fabrication and testing of anode-supported single cells made using synthesized LSC + ScDC composite cathodes.

  13. OPTIMIZATION OF THE CATHODE LONG-TERM STABILITY IN MOLTEN CARBONATE FUEL CELLS: EXPERIMENTAL STUDY AND MATHEMATICAL MODELING

    SciTech Connect

    Hector Colonmer; Prabhu Ganesan; Nalini Subramanian; Dr. Bala Haran; Dr. Ralph E. White; Dr. Branko N. Popov

    2002-09-01

    This project focused on addressing the two main problems associated with state of art Molten Carbonate Fuel Cells, namely loss of cathode active material and stainless steel current collector deterioration due to corrosion. We followed a dual approach where in the first case we developed novel materials to replace the cathode and current collector currently used in molten carbonate fuel cells. In the second case we improved the performance of conventional cathode and current collectors through surface modification. States of art NiO cathode in MCFC undergo dissolution in the cathode melt thereby limiting the lifetime of the cell. To prevent this we deposited cobalt using an electroless deposition process. We also coated perovskite (La{sub 0.8}Sr{sub 0.2}CoO{sub 3}) in NiO thorough a sol-gel process. The electrochemical oxidation behavior of Co and perovskites coated electrodes is similar to that of the bare NiO cathode. Co and perovskite coatings on the surface decrease the dissolution of Ni into the melt and thereby stabilize the cathode. Both, cobalt and provskites coated nickel oxide, show a higher polarization compared to that of nickel oxide, which could be due to the reduced surface area. Cobalt substituted lithium nickel oxide (LiNi{sub 0.8}Co{sub 0.2}O{sub 2}) and lithium cobalt oxide were also studied. LiNi{sub x}Co{sub 1-x}O{sub 2} was synthesized by solid-state reaction procedure using lithium nitrate, nickel hydroxide and cobalt oxalate precursor. LiNi{sub x}Co{sub 1-x}O{sub 2} showed smaller dissolution of nickel than state of art nickel oxide cathode. The performance was comparable to that of nickel oxide. The corrosion of the current collector in the cathode side was also studied. The corrosion characteristics of both SS304 and SS304 coated with Co-Ni alloy were studied. This study confirms that surface modification of SS304 leads to the formation of complex scales with better barrier properties and better electronic conductivity at 650 C. A three

  14. Metal foams application to enhance cooling of open cathode polymer electrolyte membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Sajid Hossain, Mohammad; Shabani, Bahman

    2015-11-01

    Conventional channel flow fields of open cathode Polymer Electrolyte Membrane Fuel Cells (PEMFCs) introduce some challenges linked to humidity, temperature, pressure and oxygen concentration gradients along the conventional flow fields that reduce the cell performance. According to previous experimental reports, with conventional air flow fields, hotspot formation due to water accumulation in Gas Diffusion Layer (GDL) is common. Unlike continuous long flow passages in conventional channels, metal foams provide randomly interrupted flow passages. Re-circulation of fluid, due to randomly distributed tortuous ligaments, enhances temperature and humidity uniformity in the fluid. Moreover, the higher electrical conductivity of metal foams compared to non-metal current collectors and their very low mass density compared to solid metal materials are expected to increase the electrical performance of the cell while significantly reducing its weight. This article reviews the existing cooling systems and identifies the important parameters on the basis of reported literature in the air cooling systems of PEMFCs. This is followed by investigating metal foams as a possible option to be used within the structure of such PEMFCs as an option that can potentially address cooling and flow distribution challenges associated with using conventional flow channels, especially in air-cooled PEMFCs.

  15. Two-phase flow modeling for the cathode side of a polymer electrolyte fuel cell

    NASA Astrophysics Data System (ADS)

    Qin, Chaozhong; Rensink, Dirk; Fell, Stephan; Majid Hassanizadeh, S.

    2012-01-01

    Liquid water flooding in micro gas channels is an important issue in the water management of polymer electrolyte fuel cells (PEFCs). However, in most previous numerical studies liquid water transport in the gas channels (GC) has been simplified by the mist flow assumption. In this work, we present a two-phase flow model for the cathode side of a PEFC. The GC is assumed to be a structured porous medium with the porosity of 1.0. The two-phase Darcy's law is applied to both diffusion layers and GC. Based on the developed model, the liquid water flooding in the GC and its impact on the liquid water distribution in the diffusion layers are explored in detail. Furthermore, we study the effect of the immobile saturation on the predicted liquid water distribution in the diffusion layers. The results show that neglecting the GC flooding leads to an incorrect prediction of liquid water distribution in the diffusion layers and an overestimation of the cell performance. The gas flow rate in the GC can be optimized to achieve the best cell performance. Finally, when considering the immobile saturation in the model, more liquid water is predicted in the diffusion layers.

  16. Influence of the cathode architecture in the frequency response of self-breathing proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Ferreira-Aparicio, P.; Chaparro, A. M.

    2014-12-01

    Self-breathing proton exchange membrane fuel cells are apparently simple devices, but efficient water management is critical for their performance. The cathode configuration should guarantee balanced rates between O2 accessibility from the circumventing air and H2O removal, and a good electric contact between catalyst layers and current collectors at the same time. By applying progressive modifications to the initial concept of a conventional PEMFC, the effect of the cathode architecture on cell performance has been analyzed. Frequency response analyses of the cell during steady-state potentiostatic stepping have yielded relevant information regarding limitations originated by the cathode impedance under high current load conditions. The primitive cell design has been optimized for self-breathing operation by means of this diagnostic tool. The thickness of the perforated plate in the cathode has been found to be one of the main factors contributing to limit oxygen accessibility when a high current load is demanded. Adequate cathode architecture is critical for reducing mass transport limitations in the catalytic layer and enhancing performance under self-breathing conditions.

  17. Development of Ni1-xCoxO as the cathode/interconnect contact for solid oxide fuel cells

    SciTech Connect

    Lu, Zigui; Xia, Guanguang; Templeton, Joshua D.; Li, Xiaohong S.; Nie, Zimin; Yang, Zhenguo; Stevenson, Jeffry W.

    2011-06-01

    A new type of material, Ni1-xCoxO, was developed for solid oxide fuel cell (SOFC) cathode/interconnect contact applications. The phase structure, coefficient of thermal expansion, sintering behavior, electrical property, and mechanical bonding strength of these materials were evaluated against the requirements of the SOFC cathode/interconnect contact. A dense cathode/interconnect contact layer was developed through reaction sintering from Ni and Co metal powders. An area specific resistance (ASR) as low as 5.5 mohm.cm2 was observed after 1000 h exposure in air at 800 °C for the LSM/Ni0.33Co0.67O/AISI441 assembly. Average mechanical strengths of 6.8 and 5.0 MPa were obtained for the cathode/contact/cathode and interconnect/contact/interconnect structures, respectively. The significantly low ASR was probably due to the dense structure and therefore improved electrical conductivity of the Ni0.33Co0.67O contact and the good bonding of the interfaces between the contact and the cathode, and between the contact and the interconnect.

  18. OPTIMIZATION OF THE CATHODE LONG-TERM STABILITY IN MOLTEN CARBONATE FUEL CELLS: EXPERIMENTAL STUDY AND MATHEMATICAL MODELING

    SciTech Connect

    Dr. Ralph E. White

    2000-09-30

    The dissolution of NiO cathodes during cell operation is a limiting factor to the successful commercialization of molten carbonate fuel cells (MCFCs). Microencapsulation of the NiO cathode has been adopted as a surface modification technique to increase the stability of NiO cathodes in the carbonate melt. The material used for surface modification should possess thermodynamic stability in the molten carbonate and also should be electro catalytically active for MCFC reactions. A simple first principles model was developed to understand the influence of exchange current density and conductivity of the electrode material on the polarization of MCFC cathodes. The model predictions suggest that cobalt can be used to improve the corrosion resistance of NiO cathode without affecting its performance. Cobalt was deposited on NiO cathode by electroless deposition. The morphology and thermal oxidation behavior of Co coated NiO was studied using scanning electron microscopy and thermal gravimetric analysis respectively. The electrochemical performance of cobalt encapsulated NiO cathodes were investigated with open circuit potential measurement and current-potential polarization studies. These results were compared to that of bare NiO. The electrochemical oxidation behavior of cobalt-coated electrodes is similar to that of the bare NiO cathode. Dissolution of nickel into the molten carbonate melt was less in case of cobalt encapsulated nickel cathodes. Co coated on the surface prevents the dissolution of Ni in the melt and thereby stabilizes the cathode. Finally, cobalt coated nickel shows similar polarization characteristics as nickel oxide. A similar surface modification technique has been used to improve the performance of the SS 304 current collectors used in MCFC cells. SS 304 was encapsulated with nanostructured layers of NiCo and NiMo by electroless deposition. The corrosion behavior of bare and surface modified SS 304 in molten carbonate under cathode gas atmosphere was

  19. Nanoionics and Nanocatalysts: Conformal Mesoporous Surface Scaffold for Cathode of Solid Oxide Fuel Cells

    PubMed Central

    Chen, Yun; Gerdes, Kirk; Song, Xueyan

    2016-01-01

    Nanoionics has become increasingly important in devices and systems related to energy conversion and storage. Nevertheless, nanoionics and nanostructured electrodes development has been challenging for solid oxide fuel cells (SOFCs) owing to many reasons including poor stability of the nanocrystals during fabrication of SOFCs at elevated temperatures. In this study, a conformal mesoporous ZrO2 nanoionic network was formed on the surface of La1−xSrxMnO3/yttria-stabilized zirconia (LSM/YSZ) cathode backbone using Atomic Layer Deposition (ALD) and thermal treatment. The surface layer nanoionic network possesses open mesopores for gas penetration, and features a high density of grain boundaries for enhanced ion-transport. The mesoporous nanoionic network is remarkably stable and retains the same morphology after electrochemical operation at high temperatures of 650–800 °C for 400 hours. The stable mesoporous ZrO2 nanoionic network is further utilized to anchor catalytic Pt nanocrystals and create a nanocomposite that is stable at elevated temperatures. The power density of the ALD modified and inherently functional commercial cells exhibited enhancement by a factor of 1.5–1.7 operated at 0.8 V at 750 °C. PMID:27605121

  20. Nanoionics and Nanocatalysts: Conformal Mesoporous Surface Scaffold for Cathode of Solid Oxide Fuel Cells.

    PubMed

    Chen, Yun; Gerdes, Kirk; Song, Xueyan

    2016-01-01

    Nanoionics has become increasingly important in devices and systems related to energy conversion and storage. Nevertheless, nanoionics and nanostructured electrodes development has been challenging for solid oxide fuel cells (SOFCs) owing to many reasons including poor stability of the nanocrystals during fabrication of SOFCs at elevated temperatures. In this study, a conformal mesoporous ZrO2 nanoionic network was formed on the surface of La1-xSrxMnO3/yttria-stabilized zirconia (LSM/YSZ) cathode backbone using Atomic Layer Deposition (ALD) and thermal treatment. The surface layer nanoionic network possesses open mesopores for gas penetration, and features a high density of grain boundaries for enhanced ion-transport. The mesoporous nanoionic network is remarkably stable and retains the same morphology after electrochemical operation at high temperatures of 650-800 °C for 400 hours. The stable mesoporous ZrO2 nanoionic network is further utilized to anchor catalytic Pt nanocrystals and create a nanocomposite that is stable at elevated temperatures. The power density of the ALD modified and inherently functional commercial cells exhibited enhancement by a factor of 1.5-1.7 operated at 0.8 V at 750 °C. PMID:27605121

  1. Immobilization of a Metal-Nitrogen-Carbon Catalyst on Activated Carbon with Enhanced Cathode Performance in Microbial Fuel Cells.

    PubMed

    Yang, Wulin; Logan, Bruce E

    2016-08-23

    Applications of microbial fuel cells (MFCs) are limited in part by low power densities mainly due to cathode performance. Successful immobilization of an Fe-N-C co-catalyst on activated carbon (Fe-N-C/AC) improved the oxygen reduction reaction to nearly a four-electron transfer, compared to a twoelectron transfer achieved using AC. With acetate as the fuel, the maximum power density was 4.7±0.2 W m(-2) , which is higher than any previous report for an air-cathode MFC. With domestic wastewater as a fuel, MFCs with the Fe-N-C/AC cathode produced up to 0.8±0.03 W m(-2) , which was twice that obtained with a Pt-catalyzed cathode. The use of this Fe-N-C/AC catalyst can therefore substantially increase power production, and enable broader applications of MFCs for renewable electricity generation using waste materials. PMID:27416965

  2. Nanoporous silver cathode surface treated by atomic layer deposition of CeO(x) for low-temperature solid oxide fuel cells.

    PubMed

    Neoh, Ke Chean; Han, Gwon Deok; Kim, Manjin; Kim, Jun Woo; Choi, Hyung Jong; Park, Suk Won; Shim, Joon Hyung

    2016-05-01

    We evaluated the performance of solid oxide fuel cells (SOFCs) with a 50 nm thin silver (Ag) cathode surface treated with cerium oxide (CeO(x)) by atomic layer deposition (ALD). The performances of bare and ALD-treated Ag cathodes were evaluated on gadolinia-doped ceria (GDC) electrolyte supporting cells with a platinum (Pt) anode over 300 °C-450 °C. Our work confirms that ALD CeO(x) treatment enhances cathodic performance and thermal stability of the Ag cathode. The performance difference between cells using a Ag cathode optimally treated with an ALD CeO(x) surface and a reference Pt cathode is about 50% at 450 °C in terms of fuel cell power output in our experiment. The bare Ag cathode completely agglomerated into islands during fuel cell operation at 450 °C, while the ALD CeO(x) treatment effectively protects the porosity of the cathode. We also discuss the long-term stability of ALD CeO(x)-treated Ag cathodes related to the microstructure of the layers. PMID:27008979

  3. Nanoporous silver cathode surface treated by atomic layer deposition of CeO x for low-temperature solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Chean Neoh, Ke; Han, Gwon Deok; Kim, Manjin; Kim, Jun Woo; Jong Choi, Hyung; Park, Suk Won; Shim, Joon Hyung

    2016-05-01

    We evaluated the performance of solid oxide fuel cells (SOFCs) with a 50 nm thin silver (Ag) cathode surface treated with cerium oxide (CeO x ) by atomic layer deposition (ALD). The performances of bare and ALD-treated Ag cathodes were evaluated on gadolinia-doped ceria (GDC) electrolyte supporting cells with a platinum (Pt) anode over 300 °C-450 °C. Our work confirms that ALD CeO x treatment enhances cathodic performance and thermal stability of the Ag cathode. The performance difference between cells using a Ag cathode optimally treated with an ALD CeO x surface and a reference Pt cathode is about 50% at 450 °C in terms of fuel cell power output in our experiment. The bare Ag cathode completely agglomerated into islands during fuel cell operation at 450 °C, while the ALD CeO x treatment effectively protects the porosity of the cathode. We also discuss the long-term stability of ALD CeO x -treated Ag cathodes related to the microstructure of the layers.

  4. OPTIMIZATION OF THE CATHODE LONG-TERM STABILITY IN MOLTEN CARBONATE FUEL CELLS: EXPERIMENTAL STUDY AND MATHEMATICAL MODELING

    SciTech Connect

    Dr. Ralph E. White; Dr. Branko N. Popov

    2001-10-01

    The dissolution of NiO cathodes during cell operation is a limiting factor to the successful commercialization of molten carbonate fuel cells (MCFCs). Lithium cobalt oxide coating onto the porous nickel electrode has been adopted to modify the conventional MCFC cathode which is believed to increase the stability of the cathodes in the carbonate melt. The material used for surface modification should possess thermodynamic stability in the molten carbonate and also should be electro catalytically active for MCFC reactions. Lithium Cobalt oxide was coated on Ni cathode by a sol-gel coating. The morphology and the LiCoO{sub 2} formation of LiCoO{sub 2} coated NiO was studied using scanning electron microscopy and X-Ray diffraction studies respectively. The electrochemical performance lithium cobalt oxide coated NiO cathodes were investigated with open circuit potential measurement and current-potential polarization studies. These results were compared to that of bare NiO. Dissolution of nickel into the molten carbonate melt was less in case of lithium cobalt oxide coated nickel cathodes. LiCoO{sub 2} coated on the surface prevents the dissolution of Ni in the melt and thereby stabilizes the cathode. Finally, lithium cobalt oxide coated nickel shows similar polarization characteristics as nickel oxide. Conventional theoretical models for the molten carbonate fuel cell cathode are based on the thin film agglomerate model. The principal deficiency of the agglomerate model, apart from the simplified pore structure assumed, is the lack of measured values for film thickness and agglomerate radius. Both these parameters cannot be estimated appropriately. Attempts to estimate the thickness of the film vary by two orders of magnitude. To avoid these problems a new three phase homogeneous model has been developed using the volume averaging technique. The model considers the potential and current variation in both liquid and solid phases. Using this approach, volume averaged

  5. An Aurivillius Oxide Based Cathode with Excellent CO2 Tolerance for Intermediate-Temperature Solid Oxide Fuel Cells.

    PubMed

    Zhu, Yinlong; Zhou, Wei; Chen, Yubo; Shao, Zongping

    2016-07-25

    The Aurivillius oxide Bi2 Sr2 Nb2 MnO12-δ (BSNM) was used as a cobalt-free cathode for intermediate-temperature solid oxide fuel cells (IT-SOFCs). To the best of our knowledge, the BSNM oxide is the only alkaline-earth-containing cathode material with complete CO2 tolerance that has been reported thus far. BSNM not only shows favorable activity in the oxygen reduction reaction (ORR) at intermediate temperatures but also exhibits a low thermal expansion coefficient, excellent structural stability, and good chemical compatibility with the electrolyte. These features highlight the potential of the new BSNM material as a highly promising cathode material for IT-SOFCs. PMID:27294808

  6. Oxygen vacancy diffusion across cathode/electrolyte interface in solid oxide fuel cells: An electrochemical phase-field model

    NASA Astrophysics Data System (ADS)

    Hong, Liang; Hu, Jia-Mian; Gerdes, Kirk; Chen, Long-Qing

    2015-08-01

    An electrochemical phase-field model is developed to study electronic and ionic transport across the cathode/electrolyte interface in solid oxide fuel cells. The influences of local current density and interfacial electrochemical reactions on the transport behaviors are incorporated. This model reproduces two electrochemical features. Nernst equation is satisfied through the thermodynamic equilibriums of the electron and oxygen vacancy. The distributions of charged species around the interface induce charge double layer. Moreover, we verify the nonlinear current/overpotential relationship. This model facilitates the exploration of problems in solid oxide fuel cells, which are associated with transport of species and electrochemical reactions at high operating temperature.

  7. Simultaneous selection of soil electroactive bacterial communities associated to anode and cathode in a two-chamber Microbial Fuel Cell

    NASA Astrophysics Data System (ADS)

    Chiellini, Carolina; Bacci, Giovanni; Fani, Renato; Mocali, Stefano

    2016-04-01

    Different bacteria have evolved strategies to transfer electrons over their cell surface to (or from) their extracellular environment. This electron transfer enables the use of these bacteria in bioelectrochemical systems (BES) such as Microbial Fuel Cells (MFCs). In MFC research the biological reactions at the cathode have long been a secondary point of interest. However, bacterial biocathodes in MFCs represent a potential advantage compared to traditional cathodes, for both their low costs and their low impact on the environment. The main challenge in biocathode set-up is represented by the selection of a bacterial community able to efficiently accept electrons from the electrode, starting from an environmental matrix. In this work, a constant voltage was supplied on a two-chamber MFC filled up with soil over three weeks in order to simultaneously select an electron donor bacterial biomass on the anode and an electron acceptor biomass on the cathode, starting from the same soil. Next Generation Sequencing (NGS) analysis was performed to characterize the bacterial community of the initial soil, in the anode, in the cathode and in the control chamber not supplied with any voltage. Results highlighted that both the MFC conditions and the voltage supply affected the soil bacterial communities, providing a selection of different bacterial groups preferentially associated to the anode (Betaproteobacteria, Bacilli and Clostridia) and to the cathode (Actinobacteria and Alphaproteobacteria). These results confirmed that several electroactive bacteria are naturally present within a top soil and, moreover, different soil bacterial genera could provide different electrical properties.

  8. Enhanced performance of an air-cathode microbial fuel cell with oxygen supply from an externally connected algal bioreactor.

    PubMed

    Kakarla, Ramesh; Kim, Jung Rae; Jeon, Byong-Hun; Min, Booki

    2015-11-01

    An algae bioreactor (ABR) was externally connected to air-cathode microbial fuel cells (MFCs) to increase power generation by supplying a high amount of oxygen to cathode electrode. The MFC with oxygen fed from ABR produced maximum cell voltage and cathode potential at a fixed loading of 459 mV and 10 mV, respectively. During polarization analysis, the MFC displayed a maximum power density of 0.63 W/m(2) (at 2.06 A/m(2)) using 39.2% O2 from ABR, which was approximately 30% higher compared with use of atmospheric air (0.44 W/m(2), 20.8% O2,). The cyclic voltammogram analysis exhibited a higher reduction current of -137 mA with 46.5% O2 compared to atmospheric air (-115 mA). Oxygen supply by algae bioreactor to air-cathode MFC could also maintain better MFC performance in long term operation by minimizing cathode potential drop over time. PMID:26188984

  9. Anolyte recirculation effects in buffered and unbuffered single-chamber air-cathode microbial fuel cells.

    PubMed

    Zhang, Liang; Zhu, Xun; Kashima, Hiroyuki; Li, Jun; Ye, Ding-ding; Liao, Qiang; Regan, John M

    2015-03-01

    Two identical microbial fuel cells (MFCs) with a floating air-cathode were operated under either buffered (MFC-B) or bufferless (MFC-BL) conditions to investigate anolyte recirculation effects on enhancing proton transfer. With an external resistance of 50 Ω and recirculation rate of 1.0 ml/min, MFC-BL had a 27% lower voltage (9.7% lower maximal power density) but a 64% higher Coulombic efficiency (CE) than MFC-B. MFC-B had a decreased voltage output, batch time, and CE with increasing recirculation rate resulting from more oxygen transfer into the anode. However, increasing the recirculation rate within a low range significantly enhanced proton transfer in MFC-BL, resulting in a higher voltage output, a longer batch time, and a higher CE. A further increase in recirculation rate decreased the batch time and CE of MFC-BL due to excess oxygen transfer into anode outweighing the proton-transfer benefits. The unbuffered MFC had an optimal recirculation rate of 0.35 ml/min. PMID:25514399

  10. Corrosion behavior and interfacial resistivity of bipolar plate materials under molten carbonate fuel cell cathode conditions

    SciTech Connect

    Schoeler, A.C.; Kaun, T.D.; Bloom, I.; Lanagan, M.; Krumpelt, M.

    2000-03-01

    A material is needed for bipolar plate materials in molten carbonate fuel cells (MCFCs) that combines the low oxide resistivity of 316L stainless steel (SS) with the low corrosion rate of the type 310 SS. The authors tested a group of materials that included Nitronic 50 SS and a newly developed high-temperature nickel-rich alloy, having chromium contents ranging from 16 to 31 wt %. Their results indicate that chromium content is the primary determinant of oxide scale composition and resistivity. In the MCFC cathode compartment, all tested alloys formed a duplex structure with an inner Cr-rich layer and an outer Fe-rich one. The composition of the inner Cr-rich layer was determined by the chromium content of the base alloy and has a controlling effect on scale resistivity. Oxide scale resistivity was measured for three electrolyte compositions: Li/K, Li/Na, and newly developed (Li, Na, Ca, Ba) carbonates. Changes in the physical/mechanical properties (spallation/cracking) in the oxide scale of 316L SS provided an understanding of its resistivity fluctuations over time.

  11. Resistivity of bipolar plate materials at the cathode interface in molten carbonate fuel cells.

    SciTech Connect

    Kaun, T. D.

    1998-11-18

    Measurements of oxide scale resistivity for prospective bipolar plate materials in the molten carbonate fuel cell (MCFC) are coupled with observations of microstructural/compositional change over time. This work searches for a compromise to the high corrosion rate of Type 316L and the high oxide scale resistance of Type 310S. We tested a group of materials having chromium content ranging from 16 to 31 wt%, including Nitronic 50 and NKK, a Ni-Cr-Fe alloy. Chromium content was found to be the primary determinant of oxide scale composition. In the MCFC cathode compartment, stainless steels generally formed a duplex structure with an inner Cr-rich layer and an outer, Fe-rich layer. The composition of the inner Cr-rich layer was related to the base alloy and had a controlling effect on scale resistivity. Oxide scale resistivity was measured for two electrolyte compositions: Li/K and Li/Na carbonates. Changes in the physical/mechanical properties (spallation/cracking) in the oxide scale of Type 316L provided an understanding of its resistivity fluctuations over time.

  12. Membrane fuel cell cathode catalysts based on titanium oxide supported platinum nanoparticles.

    PubMed

    Gebauer, Christian; Jusys, Zenonas; Wassner, Maximilian; Hüsing, Nicola; Behm, R Jürgen

    2014-07-21

    The potential of platinum catalysts supported on pure, nitrogen-, or carbon-doped titania for application in the oxygen reduction reaction (ORR), as a cathode catalyst in polymer electrolyte membrane fuel cells, is investigated. The oxide supports are synthesized by using a sol-gel route. Modification with nitrogen and carbon doping is achieved by thermal decomposition of urea and the structure-directing agent P123. Platinum nanoparticles are prepared by reduction of a Pt(IV) salt in ethylene glycol and subsequently immobilized on different support materials. Structural and electronic properties of the support materials and the resulting catalysts are characterized by various methods, including X-ray diffraction, transmission electron microscopy, and X-ray photoelectron spectroscopy. These results and electrochemical characterization of the support materials and platinum nanoparticle catalysts indicate distinct support effects in the catalysts. The electrocatalytic performance of these catalysts in the ORR, as determined in rotating ring disc electrode measurements, is promising. Also here, distinct support effects can be identified. Correlations with the structural/electronic and the electrochemical properties are discussed, as well as the role of metal-support interactions. PMID:24850442

  13. Graphitic biochar as a cathode electrocatalyst support for microbial fuel cells.

    PubMed

    Huggins, Tyler M; Pietron, Jeremy J; Wang, Heming; Ren, Zhiyong Jason; Biffinger, Justin C

    2015-11-01

    Graphitic biochar (BC) was generated using high temperature gasification and alkaline post-treatment (BCw) of wood-based biomass. The BCw was evaluated as a manganese oxide electrocatalytic support (MnO/BCw) and microbial fuel cell (MFC) air cathode. Nano-structured MnO2 crystals were successfully immobilized on biomass-based graphitic sheets and characterized using physical, chemical, and electrochemical analyses. Cyclic voltammetry of MnO/BCw/Nafion inks showed electrochemical features typical of β-MnO2 with a current density of 0.9 mA cm(-2). BC showed satisfactory maximum power densities of 146.7 mW m(-2) (BCw) and 187.8 W m(-2) (MnO/BCw), compared with Vulcan Carbon (VC) (156.8 mW m(-2)) and manganese oxide VC composites (MnO/VC) (606.1 mW m(-2)). These materials were also tested as oxygen reduction reaction (ORR) catalysts for single chamber MFCs inoculated with anaerobic sludge. Our results demonstrate that BC can serve as an effective, low cost, and scalable material for MFC application. PMID:26141670

  14. Double-chamber microbial fuel cell with a non-platinum-group metal Fe-N-C cathode catalyst.

    PubMed

    Santoro, Carlo; Serov, Alexey; Narvaez Villarrubia, Claudia W; Stariha, Sarah; Babanova, Sofia; Schuler, Andrew J; Artyushkova, Kateryna; Atanassov, Plamen

    2015-03-01

    Non-Pt-group metal (non-PGM) materials based on transition metal-nitrogen-carbon (M-N-C) and derived from iron salt and aminoantipyrine (Fe-AAPyr) of mebendazole (Fe-MBZ) were studied for the first time as cathode catalysts in double-chamber microbial fuel cells (DCMFCs). The pH value of the cathode chamber was varied from 6 to 11 to elucidate the activity of those catalysts in acidic to basic conditions. The Fe-AAPyr- and Fe-MBZ-based cathodes were compared to a Pt-based cathode used as a baseline. Pt cathodes performed better at pH 6-7.5 and had similar performances at pH 9 and a substantially lower performance at pH 11 at which Fe-AAPyr and Fe-MBZ demonstrated their best electrocatalytic activity. The power density achieved with Pt constantly decreased from 94-99 μW cm(-2) at pH 6 to 55-57 μW cm(-2) at pH 11. In contrast, the power densities of DCMFs using Fe-AAPyr and Fe-MBZ were 61-68 μW cm(-2) at pH 6, decreased to 51-58 μW cm(-2) at pH 7.5, increased to 65-75 μW cm(-2) at pH 9, and the highest power density was achieved at pH 11 (68-80 μW cm(-2) ). Non-PGM cathode catalysts can be manufactured at the fraction of the cost of the Pt-based ones. The higher performance and lower cost indicates that non-PGM catalysts may be a viable materials choice in large-scale microbial fuel cells. PMID:25606716

  15. Catalysts for ultrahigh current density oxygen cathodes for space fuel cell applications

    NASA Technical Reports Server (NTRS)

    Tryk, Donald A.; Yeager, E.

    1992-01-01

    The objective was to identify promising electrocatalyst/support systems for oxygen cathodes capable of operating at ultrahigh current densities in alkaline fuel cells. Such cells will require operation at relatively high temperatures and O2 pressures. A number of materials were prepared, including Pb-Ru and Pb-Ir pyrochlores, RuO2 and Pt-doped RuO2, lithiated NiO and La-Ni perovskites. Several of these materials were prepared using techniques that had not been previously used to prepare them. Particularly interesting was the use of the alkaline solution technique to prepare Pt-doped and Pb-Ru pyrochlores in high area form. Also interesting was the use of the fusion (melt) method for preparing the Pb-Ru pyrochlore. Several of the materials were also deposited with platinum. Well-crystallized Pb2Ru2O(7-y) was used to fabricate very high performance O2 cathodes with good stability in room temperature KOH. This material was also found to be stable over a useful potential range at approx. 140 C in concentrated KOH. For some of the samples, fabrication of the gas-fed electrodes could not be fully optimized during this project period. Future work may be directed at this problem. Pyrochlores that were not well-crystallized were found to be unstable in alkaline solution. Very good O2 reduction performance and stability were observed with Pb2RuO(7-y) in a carbon-based gas-fed electrode with an anion-conducting membrane placed on the electrolyte side of the electrode. The performance came within a factor of about two of that observed without carbon. High area platinum and gold supported on several conductive metal oxide supports were examined. Only small improvements in O2 reduction performance at room temperature were observed for Pb2Ru2O(7-y) as a support because of the high intrinsic activity of the pyrochlore. In contrast, a large improvement was observed for Li-doped NiO as a support for Pt. Very poor performance was observed for Au deposited on Li-NiO at approx. 150 C

  16. OPTIMIZATION OF THE CATHODE LONG TERM STABILITY IN MOLTEN CARBONATE FUEL CELLS: EXPERIMENTAL STUDY AND MATHEMATICAL MODELING

    SciTech Connect

    Anand Durairajan; Bala Haran; Branko N. Popov; Ralph E. White

    2000-05-01

    The cathode materials for molten carbonate fuel cells (MCFCs) must have low dissolution rate, high structural strength and good electrical conductivity. Currently available cathodes are made of lithiated NiO which have acceptable structural strength and conductivity. However a study carried out by Orfeld et al. and Shores et al. indicated that the nickel cathodes dissolved, then precipitated and reformed as dendrites across the electrolyte matrix. This results in a decrease in cell utilization and eventually leads to shorting of the cell. The solubility of NiO was found to depend upon the acidity/basicity of the melt (basicity is directly proportional to log P{sub CO2}), carbonate composition, H{sub 2}O partial pressure and temperature. Urushibata et al. found that the dissolution of the cathode is a primary life limiting constraint of MCFCs, particularly in pressurized operation. With currently available NiO cathodes, the goal of 40,000 hours for the lifetime of MCFC appears achievable with cell operation at atmospheric pressure. However, the cell life at 10 atm and higher cell pressures is in the range between 5,000 to 10,000 hours. The overall objective of this research is to develop a superior cathode for MCFC's with improved catalytic ability, enhanced corrosion resistance with low ohmic losses, improved electronic conductivity. We also plan to understand the corrosion processes occurring at the cathode/molten carbonate interface. The following cathode materials will be subjected to detailed electrochemical, performance, structural and corrosion studies. (i) Passivated NiO alloys using chemical treatment with yttrium ion implantation and anodic yttrium molybdate treatment; (ii) Novel composite materials based on NiO and nanosized Ce, Yt, Mo; (iii) Co doped LiNiO{sub 2} LiNiO{sub 2} doped with 10 to 20% Co (LiCo{sub 0.2}NiO{sub 2}) and NiO cathodes; and (iv) CoO as a replacement for NiO. Passivation treatments will inhibit corrosion and increase the stability

  17. Green fabrication of composite cathode with attractive performance for solid oxide fuel cells through facile inkjet printing

    NASA Astrophysics Data System (ADS)

    Li, Chao; Chen, Huili; Shi, Huangang; Tade, Moses O.; Shao, Zongping

    2015-01-01

    The inkjet printing technique has numerous advantages and is attractive in solid oxide fuel cell (SOFC) fabrication, especially for the dense thin electrolyte layer because of its ultrafine powder size. In this study, we exploited the technique for the fabrication of a porous SDC/SSC composite cathode layer using environmentally friendly water-based ink. An optimized powder synthesis method was applied to the preparation of the well-dispersed suspension. In view of the easy sintering of the thin film layer prepared by inkjet printing, 10 wt.% pore former was introduced to the ink. The results indicate that the cell with the inkjet printing cathode layer exhibits a fantastic electrochemical performance, with a PPD as high as 940 mW cm-2 at 750 °C, which is comparable to that of a cell prepared using the conventional wet powder spraying method, suggesting a promising application of inkjet printing on electrode layer fabrication.

  18. Iron-nitrogen-activated carbon as cathode catalyst to improve the power generation of single-chamber air-cathode microbial fuel cells.

    PubMed

    Pan, Yajun; Mo, Xiaoping; Li, Kexun; Pu, Liangtao; Liu, Di; Yang, Tingting

    2016-04-01

    In order to improve the performance of microbial fuel cell (MFC), iron-nitrogen-activated carbon (Fe-N-C) as an excellent oxygen reduction reaction (ORR) catalyst was prepared here using commercial activated carbon (AC) as matrix and employed in single chamber MFC. In MFC, the maximum power density increased to 2437±55mWm(-2), which was 2 times of that with AC. The open circuit potential (OCP) of Fe-N-C cathode (0.47) was much higher than that of AC cathode (0.21V). The R0 of Fe-N-C decreased by 47% from 14.36Ω (AC) to 7.6Ω (Fe-N-C). From X-ray photoelectron spectroscopy (XPS), pyridinic nitrogen, quaternary nitrogen and iron species were present, which played an important role in the ORR performance of Fe-N-C. These results demonstrated that the as-prepared Fe-N-C material provided a potential alternative to Pt in AC air cathode MFC for relatively desirable energy generation and wastewater treatment. PMID:26898678

  19. Generalized flooded agglomerate model for the cathode catalyst layer of a polymer electrolyte membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Kamarajugadda, Sai; Mazumder, Sandip

    2012-06-01

    The flooded agglomerate model has found prolific usage in modeling the oxygen reduction reaction within the cathode catalyst layer of a polymer electrolyte membrane fuel cell (PEMFC). The assumption made in this model is that the ionomer-coated carbon-platinum agglomerate is spherical in shape and that the spheres are non-overlapping. This assumption is convenient because the governing equations lend themselves to closed-form analytical solution when a spherical shape is assumed. In reality, micrographs of the catalyst layer show that the agglomerates are best represented by sets of overlapping spheres of unequal radii. In this article, the flooded agglomerate is generalized by considering overlapping spheres of unequal radii. As a first cut, only two overlapping spheres are considered. The governing reaction-diffusion equations are solved numerically using the unstructured finite-volume method. The volumetric current density is extracted for various parametric variations, and tabulated. This sub-grid-scale generalized flooded agglomerate model is first validated and finally coupled to a computational fluid dynamics (CFD) code for predicting the performance of the PEMFC. Results show that when the agglomerates are small (<200 nm equivalent radius), the effect of agglomerate shape on the overall PEMFC performance is insignificant. For large agglomerates, on the other hand, the effect of agglomerate shape was found to be critical, especially for high current densities for which the mass transport resistance within the agglomerate is strongly dependent on the shape of the agglomerate, and was found to correlate well with the surface-to-volume ratio of the agglomerate.

  20. Power generation using spinel manganese-cobalt oxide as a cathode catalyst for microbial fuel cell applications.

    PubMed

    Mahmoud, Mohamed; Gad-Allah, Tarek A; El-Khatib, K M; El-Gohary, Fatma

    2011-11-01

    This study focused on the use of spinel manganese-cobalt (Mn-Co) oxide, prepared by a solid state reaction, as a cathode catalyst to replace platinum in microbial fuel cells (MFCs) applications. Spinel Mn-Co oxides, with an Mn/Co atomic ratios of 0.5, 1, and 2, were prepared and examined in an air cathode MFCs which was fed with a molasses-laden synthetic wastewater and operated in batch mode. Among the three Mn-Co oxide cathodes and after 300 h of operation, the Mn-Co oxide catalyst with Mn/Co atomic ratio of 2 (MnCo-2) exhibited the highest power generation 113 mW/m2 at cell potential of 279 mV, which were lower than those for the Pt catalyst (148 mW/m2 and 325 mV, respectively). This study indicated that using spinel Mn-Co oxide to replace platinum as a cathodic catalyst enhances power generation, increases contaminant removal, and substantially reduces the cost of MFCs. PMID:21944282

  1. Influence of nano-sized LSCF cathode and its firing temperature on electrochemical performance in oxygen-excess-type solid electrolyte (OESE)-based fuel cells

    NASA Astrophysics Data System (ADS)

    Mieda, Hiroyuki; Mineshige, Atsushi; Saito, Atsushi; Yazawa, Tetsuo; Yoshioka, Hideki; Mori, Ryohei

    2014-12-01

    Dense films of an oxygen-excess-type solid electrolyte (OESE) based on Mg-doped lanthanum silicate (MDLS) were fabricated and applied to electrolyte materials for intermediate temperature solid oxide fuel cells (IT-SOFCs). To obtain dense MDLS films on NiO-MDLS porous substrates, a conventional spin-coating technique using the MDLS printable paste, obtained by mixing nano-sized MDLS particles and a dispersant, was employed. The Ni-MDLS anode supported single cells were then fabricated by printing porous cathode layer onto the electrolyte film surface. By optimizing fabrication conditions of an MDLS film and cathode, the highly active cathode/OESE interface (ASR = 0.23 Ω cm2 at 873 K) were successfully obtained, which resulted in high power density of 0.166 W cm-2 at 873 K in the fuel cell test when operated with argon-diluted hydrogen and pure oxygen as the fuel and the cathode gas, respectively.

  2. Strontium-doped samarium manganite as cathode materials for oxygen reduction reaction in solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Li, W.; Xiong, C. Y.; Jia, L. C.; Pu, J.; Chi, B.; Chen, X.; Schwank, J. W.; Li, J.

    2015-06-01

    SmxSr1-xMnO3 with x = 0.3, 0.5 and 0.8, denoted as SSM37, SSM55 and SSM82, respectively, have been prepared via a sol-gel route as materials for cathodes in solid oxide fuel cells. Their activities in the oxygen reduction reaction (ORR) have been evaluated in comparison with the state-of-the-art cathode material La0.8Sr0.2MnO3 (LSM82) by electrochemical impedance spectroscopy (EIS), X-ray photoelectron spectroscopy (XPS) and thermogravimetry (TG). Among all the prepared cathodes, the SSM55 exhibits the lowest values, while the LSM82 exhibits the highest polarization resistance, at open circuit voltage (OCV) and temperatures from 650 to 800 °C. This result indicates that the prepared SmxSr1-xMnO3 is a promising replacement for LSM82 as cathode material for SOFCs, and the SSM55 represents the optimal concentration in SmxSr1-xMnO3 series. The remarkably high ORR activity of the SSM55 is ascribed to its high surface Mn4+/Mn3+ and Oad/Olattice ratios and fast surface oxygen exchange kinetics.

  3. Characterization of Cr poisoning in a solid oxide fuel cell cathode using a high-energy x-ray microbeam.

    SciTech Connect

    Liu, D. J.; Almer, J.; Cruse, T.

    2010-01-01

    A key feature of planar solid oxide fuel cells (SOFCs) is the feasibility of using metallic interconnects made of high temperature ferritic stainless steels, which reduce system cost while providing excellent electric conductivity. Such interconnects, however, contain high levels of chromium, which has been found to be associated with SOFC cathode performance degradation at SOFC operating temperatures; a phenomenon known as Cr poisoning. Here, we demonstrate an accurate measurement of the phase and concentration distributions of Cr species in a degraded SOFC, as well as related properties including deviatoric strain, integrated porosity, and lattice parameter variation, using high energy microbeam X-ray diffraction and radiography. We unambiguously identify (MnCr){sub 3}O{sub 4} and Cr{sub 2}O{sub 3} as the two main contaminant phases and find that their concentrations correlate strongly with the cathode layer composition. Cr{sub 2}O{sub 3} deposition within the active cathode region reduces porosity and produces compressive residual strains, which hinders the reactant gas percolation and can cause structural breakdown of the SOFC cathode. The information obtained through this study can be used to better understand the Cr-poisoning mechanism and improve SOFC design.

  4. Using ammonium bicarbonate as pore former in activated carbon catalyst layer to enhance performance of air cathode microbial fuel cell

    NASA Astrophysics Data System (ADS)

    Li, Da; Qu, Youpeng; Liu, Jia; He, Weihua; Wang, Haiman; Feng, Yujie

    2014-12-01

    The rolling catalyst layers in air cathode microbial fuel cells (MFCs) are prepared by introducing NH4HCO3 as pore former (PF) with four PF/activated carbon mass ratios of 0.1, 0.2, 0.3 and 1.0. The maximum power density of 892 ± 8 mW m-2 is obtained by cathodes with the mass ratio of 0.2, which is 33% higher than that of the control reactor (without PF, 671 ± 22 mW m-2). Pore analysis indicates the porosity increases by 38% and the major pore range concentrates between 0.5 μm-0.8 μm which likely facilitates to enrich the active reaction sites compared to 0.8 μm-3.0 μm in the control and other PF-cathodes. In addition, pore structure endows the cathode improved exchange current density by 2.4 times and decreased charge transfer resistance by 44%, which are the essential reasons to enhance the oxygen reduction. These results show that addition of NH4HCO3 proves an effective way to change the porosity and pore distribution of catalyst layers and then enhance the MFC performance.

  5. Effect of ionic conductivity of zirconia electrolytes on the polarization behavior of various cathodes in solid oxide fuel cells

    SciTech Connect

    Uchida, Hiroyuki; Yoshida, Manabu; Watanabe, Masahiro

    1999-01-01

    The polarization behaviors of porous platinum and La(Sr)MnO{sub 3} (LSM) cathodes coupled with zirconia electrolytes with various ionic conductivities ({sigma}{sub ion}) were investigated. The exchange current density, j{sub 0}, on Pt cathode was not influenced by the {sigma}{sub ion} at 900 and 1,000 C, whereas j{sub 0} increased proportionally to {sigma}{sub ion} at a lower temperature of 800 C. However, the j{sub 0} on LSM cathodes increased in proportion to the {sigma}{sub ion} in the temperature region between 800 and 1,000 C. The dispersion of nanometer-sized Pt catalysts on LSM particles greatly enhanced the performance, the magnitude of which depended on the temperature, the {sigma}{sub ion}, and the microstructure of LSM. The observations are well explained kinetically, i.e., the cathode performance is controlled by the transport rate of O{sup 2{minus}} at the interface when the surface reaction rate is sufficiently high. Consequently, the use of high-performance electrodes in combination with the solid electrolyte having high {sigma}{sub ion} is very important for achieving the high performance of solid oxide fuel cells.

  6. Accelerated OH(-) transport in activated carbon air cathode by modification of quaternary ammonium for microbial fuel cells.

    PubMed

    Wang, Xin; Feng, Cuijuan; Ding, Ning; Zhang, Qingrui; Li, Nan; Li, Xiaojing; Zhang, Yueyong; Zhou, Qixing

    2014-04-01

    Activated carbon (AC) is a promising catalyst for the air cathode of microbial fuel cells (MFCs) because of its high performance and low cost. To increase the performance of AC air cathodes, the acceleration of OH(-) transport is one of the most important methods, but it has not been widely investigated. Here we added quaternary ammonium to ACs by in situ anchoring of a quaternary ammonium/epoxide-reacting compound (QAE) or ex situ mixing with anion exchange resins in order to modify ACs from not only the external surface but also inside the pores. In 50 mM phosphate buffer solution (PBS), the in situ anchoring of QAE was a more effective way to increase the power. The highest power density of 2781 ± 36 mW/m(2), which is 10% higher than that of the control, was obtained using QAE-anchored AC cathodes. When the medium was switched to an unbuffered NaCl solution, the increase in maximum power density (885 ± 25 mW/m(2)) was in accordance with the anion exchange capacity (0.219 mmol/g). The highest power density of the anion exchange resin-mixed air cathode was 51% higher than that of the control, indicating that anion exchange is urgently needed in real wastewaters. Excess anchoring of QAE blocked both the mesopores and micropores, causing the power output to be inhibited. PMID:24597673

  7. Evaluation of Ca3Co2O6 as cathode material for high-performance solid-oxide fuel cell

    PubMed Central

    Wei, Tao; Huang, Yun-Hui; Zeng, Rui; Yuan, Li-Xia; Hu, Xian-Luo; Zhang, Wu-Xing; Jiang, Long; Yang, Jun-You; Zhang, Zhao-Liang

    2013-01-01

    A cobalt-based thermoelectric compound Ca3Co2O6 (CCO) has been developed as new cathode material with superior performance for intermediate-temperature (IT) solid-oxide fuel cell (SOFC). Systematic evaluation has been carried out. Measurement of thermal expansion coefficient (TEC), thermal-stress (σ) and interfacial shearing stress (τ) with the electrolyte show that CCO matches well with several commonly-used IT electrolytes. Maximum power density as high as 1.47 W cm−2 is attained at 800°C, and an additional thermoelectric voltage of 11.7 mV is detected. The superior electrochemical performance, thermoelectric effect, and comparable thermal and mechanical behaviors with the electrolytes make CCO to be a promising cathode material for SOFC. PMID:23350032

  8. Evaluation of Ca3Co2O6 as cathode material for high-performance solid-oxide fuel cell.

    PubMed

    Wei, Tao; Huang, Yun-Hui; Zeng, Rui; Yuan, Li-Xia; Hu, Xian-Luo; Zhang, Wu-Xing; Jiang, Long; Yang, Jun-You; Zhang, Zhao-Liang

    2013-01-01

    A cobalt-based thermoelectric compound Ca(3)Co(2)O(6) (CCO) has been developed as new cathode material with superior performance for intermediate-temperature (IT) solid-oxide fuel cell (SOFC). Systematic evaluation has been carried out. Measurement of thermal expansion coefficient (TEC), thermal-stress (σ) and interfacial shearing stress (τ) with the electrolyte show that CCO matches well with several commonly-used IT electrolytes. Maximum power density as high as 1.47 W cm(-2) is attained at 800°C, and an additional thermoelectric voltage of 11.7 mV is detected. The superior electrochemical performance, thermoelectric effect, and comparable thermal and mechanical behaviors with the electrolytes make CCO to be a promising cathode material for SOFC. PMID:23350032

  9. Rational design of lower-temperature solid oxide fuel cell cathodes via nanotailoring of co-assembled composite structures.

    PubMed

    Lee, Kang Taek; Lidie, Ashley A; Yoon, Hee Sung; Wachsman, Eric D

    2014-12-01

    A novel in situ co-assembled nanocomposite LSM-Bi1.6 Er0.4 O3 (ESB) (icn-LSMESB) was obtained by conjugated wet-chemical synthesis. It showed an enhancement of the cathode polarization at 600 °C by >140 times relative to conventional LSM-Y0.08 Zr0.84 O1.92 (YSZ) cathodes and exceptional solid oxide fuel cell (SOFC) performance of >2 W cm(-2) below 750 °C. This demonstrates that this novel cost-effective and broadly applicable process provides new opportunities for performance enhancement of energy storage and conversion devices by nanotailoring of composite electrodes. PMID:25287642

  10. Long-term assessment of best cathode position to maximise microbial fuel cell performance in horizontal subsurface flow constructed wetlands.

    PubMed

    Corbella, Clara; Garfí, Marianna; Puigagut, Jaume

    2016-09-01

    The cathode of microbial fuel cells (MFCs) implemented in constructed wetlands (CWs) is generally set in close contact with water surface to provide a rich oxygen environment. However, water level variations caused by plants evapotranspiration in CWs might decrease MFC performance by limiting oxygen transfer to the cathode. Main objective of this work was to quantify the effect of water level variation on MFC performance implemented in HSSF CW. For the purpose of this work two MFCs were implemented within a HSSF CW pilot plant fed with primary treated domestic wastewater. Cell voltage (Ecell) and the relative distance between the cathode and the water level were recorded for one year. Results showed that Ecell was greatly influenced by the relative distance between the cathode and the water level, giving an optimal cathode position of about 1 to 2cm above water level. Both water level variation and Ecell were daily and seasonal dependent, showing a pronounced day/night variation during warm periods and showing almost no daily variation during cold periods. Energy production under pronounced daily water level variation was 40% lower (80±56mWh/m(2)·day) than under low water level variation (131±61mWh/m(2)·day). Main conclusion of the present work is that of the performance of MFC implemented in HSSF CW is highly dependent on plants evapotranspiration. Therefore, MFC that are to be implemented in CWs shall be designed to be able to cope with pronounced water level variations. PMID:27151501

  11. Electrochemical Performance and Stability of the Cathode for Solid Oxide Fuel Cells. I. Cross Validation of Polarization Measurements by Impedance Spectroscopy and Current-Potential Sweep

    SciTech Connect

    Zhou, Xiao Dong; Pederson, Larry R.; Templeton, Jared W.; Stevenson, Jeffry W.

    2009-12-09

    The aim of this paper is to address three issues in solid oxide fuel cells: (1) cross-validation of the polarization of a single cell measured using both dc and ac approaches, (2) the precise determination of the total areal specific resistance (ASR), and (3) understanding cathode polarization with LSCF cathodes. The ASR of a solid oxide fuel cell is a dynamic property, meaning that it changes with current density. The ASR measured using ac impedance spectroscopy (low frequency interception with real Z´ axis of ac impedance spectrum) matches with that measured from a dc IV sweep (the tangent of dc i-V curve). Due to the dynamic nature of ASR, we found that an ac impedance spectrum measured under open circuit voltage or on a half cell may not represent cathode performance under real operating conditions, particularly at high current density. In this work, the electrode polarization was governed by the cathode activation polarization; the anode contribution was negligible.

  12. Prediction and inhibition of molten carbonate fuel cell shorting by NiO cathode dissolution

    SciTech Connect

    Ogawa, Takashi; Nirasawa, Hitoshi; Murata, Kenji

    1995-12-31

    A model of time until shorting begins due to NiO dissolution/precipitation in MCFC was developed on the assumption that electronic conduction in the cell would happen when the concentration of dispersed nickel particles exceeded a critical value at the anode/electrolyte interface. The equation for the estimation of time-to-short-beginning (TTS) was derived as: TTS{sup 0.5}/t = A + B/K{sub Ni} pCO{sub 2} (t: matrix thickness, K{sub Ni}: NiO solubility at pCO{sub 2} = 1 atm., and A, B: constant). Life tests under different conditions on several single cells proved the usability of this equation. For the purpose of retarding MCFC shorting, a cell with a low rate of NiO dissolution, with a LiFeO{sub 2} layer, an out-of-cell oxidized NiO cathode, and a Li{sub 2}CO{sub 3}-Na{sub 2}CO{sub 3} eutectic electrolyte was made. The life test results showed that the nickel dissolution rate in the cell was less than 1/5 slower than that in the ordinary cells with an in situ oxidized NiO cathode and high Li{sub 2}CO{sub 3}-K{sub 2}CO{sub 3} eutectic electrolyte.

  13. Simultaneous processes of electricity generation and ceftriaxone sodium degradation in an air-cathode single chamber microbial fuel cell

    NASA Astrophysics Data System (ADS)

    Wen, Qing; Kong, Fanying; Zheng, Hongtao; Yin, Jinling; Cao, Dianxue; Ren, Yueming; Wang, Guiling

    2011-03-01

    A single chamber microbial fuel cell (MFC) with an air-cathode is successfully demonstrated using glucose-ceftriaxone sodium mixtures or ceftriaxone sodium as fuel. Results show that the ceftriaxone sodium can be biodegraded and produce electricity simultaneously. Interestingly, these ceftriaxone sodium-glucose mixtures play an active role in production of electricity. The maximum power density is increased in comparison to 1000 mg L-1 glucose (19 W m-3) by 495% for 50 mg L-1 ceftriaxone sodium + 1000 mg L-1 glucose (113 W m-3), while the maximum power density is 11 W m-3 using 50 mg L-1 ceftriaxone sodium as the sole fuel. Moreover, ceftriaxone sodium biodegradation rate reaches 91% within 24 h using the MFC in comparison with 51% using the traditional anaerobic reactor. These results indicate that some toxic and bio-refractory organics such as antibiotic wastewater might be suitable resources for electricity generation using the MFC technology.

  14. Glass-containing composite cathode contact materials for solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Tucker, Michael C.; Cheng, Lei; DeJonghe, Lutgard C.

    2011-10-01

    The feasibility of adding glass to conventional SOFC cathode contact materials in order to improve bonding to adjacent materials in the cell stack is assessed. A variety of candidate glass compositions are added to LSM and SSC. The important properties of the resulting composites, including conductivity, sintering behavior, coefficient of thermal expansion, and adhesion to LSCF and Mn1.5Co1.5O4-coated 441 stainless steel are used as screening parameters. Adhesion of LSM to LSCF improved from 3.9 to 5.3 MPa upon addition of SCZ-8 glass. Adhesion of LSM to coated stainless steel improved from 1.8 to 3.9 MPa upon addition of Schott GM31107 glass. The most promising cathode contact material/glass composites are coated onto Mn1.5Co1.5O4-coated 441 stainless steel substrates and subjected to area-specific resistance testing at 800 °C. In all cases, area-specific resistance is found to be in the range 2.5-7.5 mOhm cm2 and therefore acceptable. Indeed, addition of glass is found to improve bonding of the cathode contact material layer without sacrificing acceptable conductivity.

  15. CO 2 adsorption on porous NiO as a cathode material for molten carbonate fuel cells

    NASA Astrophysics Data System (ADS)

    Özkan, Göksel; Özçelik, Emre

    Molten carbonate fuel cells (MCFC) are the systems suitable for large-scale energy production. The cathode material used in these cells is NiO. In this study the NiO cathode was synthesized by tape-casting method and the adsorption of CO 2, one of the cathode feeding gases, was investigated on it. The adsorption studies were carried out by the use of packed column and the adsorption analysis were performed using pulse response technique. There were two 1/4 in. diameter and 5 and 10 cm length columns prepared for the experiments and they were packed with 3 mm average particle sized NiO. The experiments were carried out with gas chromatography using He as a carrier gas. The response curves were taken after pulsing the columns with CO 2. The equilibrium constants and heat of adsorption of CO 2 on NiO were determined by the use of the first absolute moment equations corresponding to retention times. It was observed that the adsorption was physical in nature. From the adsorption constants determined at different temperatures and the heat of adsorption, Δ H0, was found as -1299 cal mol -1.

  16. Impregnated Nd2NiO4+δ- scandia stabilized zirconia composite cathode for intermediate-temperature solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Chen, Ting; Zhou, Yucun; Yuan, Chun; Liu, Minquan; Meng, Xie; Zhan, Zhongliang; Xia, Changrong; Wang, Shaorong

    2014-12-01

    Here we developed a novel Nd2NiO4+δ (NNO) impregnated SSZ composite cathode for intermediate temperature solid oxide fuel cells (IT-SOFCs). The area specific polarization resistance of the composite cathode for oxygen reduction can be as low as 0.04 Ω cm2 at 800 °C. The anode supported SOFC with the structure of Ni-YSZ anode, SSZ electrolyte and impregnated NNO-SSZ composite cathode was prepared by the tape casting, co-firing and impregnation method. The resulting fuel cell exhibits maximum power densities of 1.26 and 0.73 W cm-2 at 800 and 700 °C, respectively when operated in hydrogen and air. Additionally, the electrical conductivity of the NNO cathode and the chemical compatibility with the electrolyte material were also studied.

  17. Facile electrochemical polymerization of polypyrrole film applied as cathode material in dual rotating disk photo fuel cell

    NASA Astrophysics Data System (ADS)

    Li, Kan; Zhang, Hongbo; Tang, Tiantian; Tang, Yanping; Wang, Yalin; Jia, Jinping

    2016-08-01

    Polypyrrole (PPy) film is synthesized on Ti substrate through electrochemical polymerization method and is applied as cathode material in a TiO2 NTs-PPy dual rotating disk photo fuel cell (PFC). The optimized PPy electrochemical polymerization is carried out using linear sweep voltammetry from 0 V to 1.2 V (vs. SCE) with scan rate of 0.1 V s-1, 100 circles. Sixty milliliter real textile wastewater with the initial COD and conductivity of 408 ± 6 mgO2 L-1 and 20180 μS cm-1 is treated in this PFC under UV irradiation. About 0.46 V open-circuit voltage (VOC) and 1.8-2.2 mA short-circuit current (JSC) are obtained. Due to the effective electron-hole separation effect, the COD removal rate is as high as 0.0055 min-1. Stable current and COD removal can be obtained at different output voltage. Two influence factors including rotating speed and pH are investigated. Better electricity generation performance and COD removal activity are achieved at high rotating speed and in acidic condition. In comparison with platinized cathode, though VOC is lower, similar JSC is measured. Considering the high cost of Pt, PPy is a promising alternative cathode material in PFC that can also generate electricity efficiently and stably.

  18. Facile electrochemical polymerization of polypyrrole film applied as cathode material in dual rotating disk photo fuel cell

    NASA Astrophysics Data System (ADS)

    Li, Kan; Zhang, Hongbo; Tang, Tiantian; Tang, Yanping; Wang, Yalin; Jia, Jinping

    2016-08-01

    Polypyrrole (PPy) film is synthesized on Ti substrate through electrochemical polymerization method and is applied as cathode material in a TiO2 NTs-PPy dual rotating disk photo fuel cell (PFC). The optimized PPy electrochemical polymerization is carried out using linear sweep voltammetry from 0 V to 1.2 V (vs. SCE) with scan rate of 0.1 V s-1, 100 circles. Sixty milliliter real textile wastewater with the initial COD and conductivity of 408 ± 6 mgO2 L-1 and 20180 μS cm-1 is treated in this PFC under UV irradiation. About 0.46 V open-circuit voltage (VOC) and 1.8-2.2 mA short-circuit current (JSC) are obtained. Due to the effective electron-hole separation effect, the COD removal rate is as high as 0.0055 min-1. Stable current and COD removal can be obtained at different output voltage. Two influence factors including rotating speed and pH are investigated. Better electricity generation performance and COD removal activity are achieved at high rotating speed and in acidic condition. In comparison with platinized cathode, though VOC is lower, similar JSC is measured. Considering the high cost of Pt, PPy is a promising alternative cathode material in PFC that can also generate electricity efficiently and stably.

  19. H2O2 detection analysis of oxygen reduction reaction on cathode and anode catalysts for polymer electrolyte fuel cells

    NASA Astrophysics Data System (ADS)

    Kishi, Akira; Shironita, Sayoko; Umeda, Minoru

    2012-01-01

    The generation percentage of H2O2 during oxygen reduction reaction (ORR) at practical powder electrocatalysts was evaluated using a scanning electrochemical microscope (SECM). We employed a porous microelectrode that contains electrocatalysts, namely, Pt/C, Pt-Co/C, and Pt-Ru/C as the oxygen reduction electrode of the SECM, and the Pt microelectrode was used as the H2O2 detector. First, the H2O2 generation amount at Pt/Cs was measured by changing the Pt loading amount. A Pt/C with a higher Pt loading has a higher ORR activity and generates a larger amount of H2O2. However, the percentage of H2O2 generated with respect to the ORR is the same regardless of the Pt loading amount. Next, H2O2 generation is markedly suppressed at the Pt-Co/C and Pt-Ru/C in the potential ranges of practical fuel cell cathode and anode, respectively. This explains that the Pt-Co/C is effective when used as a cathode, and the anode Pt-Ru/C enables the reduction of the H2O2 generation even if O2 crossleak occurs in the practical polymer electrolyte fuel cell.

  20. Exploratory fuel-cell research: I. Direct-hydrocarbon polymer-electrolyte fuel cell. II. Mathematical modeling of fuel-cell cathodes

    SciTech Connect

    Perry, M.L.; McLarnon, F.R.; Newman, J.S.; Cairns, E.J.

    1996-12-01

    A strong need exists today for more efficient energy-conversion systems. Our reliance on limited fuel resources, such as petroleum for the majority of our energy needs makes it imperative that we utilize these resources as efficiently as possible. Higher-efficiency energy conversion also means less pollution, since less fuel is consumed and less exhaust created for the same energy output. Additionally, for many industrialized nations, such as the United States which must rely on petroleum imports, it is also imperative from a national-security standpoint to reduce the consumption of these precious resources. A substantial reduction of U.S. oil imports would result in a significant reduction of our trade deficit, as well as costly military spending to protect overseas petroleum resources. Therefore, energy-conversion devices which may utilize alternative fuels are also in strong demand. This paper describes research on fuel cells for transportation.

  1. Active water management at the cathode of a planar air-breathing polymer electrolyte membrane fuel cell using an electroosmotic pump

    NASA Astrophysics Data System (ADS)

    Fabian, T.; O'Hayre, R.; Litster, S.; Prinz, F. B.; Santiago, J. G.

    In a typical air-breathing fuel cell design, ambient air is supplied to the cathode by natural convection and dry hydrogen is supplied to a dead-ended anode. While this design is simple and attractive for portable low-power applications, the difficulty in implementing effective and robust water management presents disadvantages. In particular, excessive flooding of the open-cathode during long-term operation can lead to a dramatic reduction of fuel cell power. To overcome this limitation, we report here on a novel air-breathing fuel cell water management design based on a hydrophilic and electrically conductive wick in conjunction with an electroosmotic (EO) pump that actively pumps water out of the wick. Transient experiments demonstrate the ability of the EO-pump to "resuscitate" the fuel cell from catastrophic flooding events, while longer term galvanostatic measurements suggest that the design can completely eliminate cathode flooding using less than 2% of fuel cell power, and lead to stable operation with higher net power performance than a control design without EO-pump. This demonstrates that active EO-pump water management, which has previously only been demonstrated in forced-convection fuel cell systems, can also be applied effectively to miniaturized (<5 W) air-breathing fuel cell systems.

  2. Electricity generation and nutrients removal from high-strength liquid manure by air-cathode microbial fuel cells.

    PubMed

    Lin, Hongjian; Wu, Xiao; Nelson, Chad; Miller, Curtis; Zhu, Jun

    2016-01-01

    Air-cathode microbial fuel cells (MFCs) are widely tested to recover electrical energy from waste streams containing organic matter. When high-strength wastewater, such as liquid animal manure, is used as a medium, inhibition on anode and cathode catalysts potentially impairs the effectiveness of MFC performance in power generation and pollutant removal. This study evaluated possible inhibitive effects of liquid swine manure components on MFC power generation, improved liquid manure-fed MFCs performance by pretreatment (dilution and selective adsorption), and modeled the kinetics of organic matter and nutrients removal kinetics. Parameters monitored included pH, conductivity, chemical oxygen demand (COD), volatile fatty acids (VFAs), total ammoniacal nitrogen (TAN), nitrite, nitrate, and phosphate concentrations. The removals of VFA and TAN were efficient, indicated by the short half-life times of 4.99 and 7.84 d, respectively. The mechanism for phosphate decrease was principally the salt precipitation on cathode, but the removal was incomplete after 42-d operation. MFC with an external resistor of 2.2 kΩ and fed with swine wastewater generated relatively small power (28.2 μW), energy efficiency (0.37%) and Coulombic efficiency (1.5%). Dilution of swine wastewater dramatically improved the power generation as the inhibitory effect was decreased. Zeolite and granular activated carbon were effective in the selective adsorption of ammonia or organic matter in swine wastewater, and so substantially improved the power generation, energy efficiency, and Coulombic efficiency. A smaller external resistor in the circuit was also observed to promote the organic matter degradation and thus to shorten the treatment time. Overall, air-cathode MFCs are promising for generating electrical power from livestock wastewater and meanwhile reducing the level of organic matter and nutrients. PMID:26654000

  3. Fuel cell with internal flow control

    DOEpatents

    Haltiner, Jr., Karl J.; Venkiteswaran, Arun

    2012-06-12

    A fuel cell stack is provided with a plurality of fuel cell cassettes where each fuel cell cassette has a fuel cell with an anode and cathode. The fuel cell stack includes an anode supply chimney for supplying fuel to the anode of each fuel cell cassette, an anode return chimney for removing anode exhaust from the anode of each fuel cell cassette, a cathode supply chimney for supplying oxidant to the cathode of each fuel cell cassette, and a cathode return chimney for removing cathode exhaust from the cathode of each fuel cell cassette. A first fuel cell cassette includes a flow control member disposed between the anode supply chimney and the anode return chimney or between the cathode supply chimney and the cathode return chimney such that the flow control member provides a flow restriction different from at least one other fuel cell cassettes.

  4. Mechanical and electrochemical performance of composite cathode contact materials for solid oxide fuel cells

    SciTech Connect

    Tucker, Michael C.; Dejonghe, Lutgard C.; Garcia-Negron, Valerie; Trejo, Rosa M; Lara-Curzio, Edgar

    2013-01-01

    The feasibility of adding glass or inorganic binder to conventional SOFC cathode contact materials (CCM) in order to improve bonding to adjacent materials in the cell stack is assessed. Two glasses (SEM-COM SCZ-8 and Schott GM31107) and one inorganic binder (Aremco 644A) are mixed with LSM particles to produce composite CCM pastes. These are used to bond Mn1.5Co1.5O4-coated stainless steel mesh current collectors to anode-supported button cells. The cells are operated at 800 C for about 1000 h. The cell with SCZ-8 addition to the CCM displays quite stable operation (3.9%/1000 h degradation), whereas the other additives lead to somewhat higher degradation rate. Bonding of the CCM to coated stainless steel coupons is also assessed. Interfacial fracture toughness is determined using a four-point bend test. The fracture toughness for LSM Schott glass (12.3 N mm 1), LSM SCZ-8 glass (6.8 N mm 1) and LSM 644A binder (5.4 N mm 1) are significantly improved relative to pure LSM (1.7 N mm 1). Indeed, addition of binder or glass is found to improve bonding of the CCM layer without sacrificing cell performance.

  5. Nb doped TiO2 as a Cathode Catalyst Support Material for Polymer Electrolyte Membrane Fuel Cells

    NASA Astrophysics Data System (ADS)

    O'Toole, Alexander W.

    In order to reduce the emissions of greenhouse gases and reduce dependence on the use of fossil fuels, it is necessary to pursue alternative sources of energy. Transportation is a major contributor to the emission of greenhouse gases due to the use of fossil fuels in the internal combustion engine. To reduce emission of these pollutants into the atmosphere, research is needed to produce alternative solutions for vehicle transportation. Low temperature polymer electrolyte membrane fuel cells are energy conversion devices that provide an alternative to the internal combustion engine, however, they still have obstacles to overcome to achieve large scale implementation. T he following work presents original research with regards to the development of Nb doped TiO2 as a cathode catalyst support material for low temperature polymer electrolyte membrane fuel cells. The development of a new process to synthesize nanoparticles of Nb doped TiO2 with controlled compositions is presented as well as methods to scale up the process and optimize the synthesis for the aforementioned application. In addition to this, comparison of both electrochemical activity and durability with current state of the art Pt on high surface area carbon black (Vulcan XC-72) is investigated. Effects of the strong metal-support interaction on the electrochemical behavior of these materials is also observed and discussed.

  6. Polymer Electrolyte Fuel Cells Employing Heteropolyacids as Redox Mediators for Oxygen Reduction Reactions: Pt-Free Cathode Systems.

    PubMed

    Matsui, Toshiaki; Morikawa, Eri; Nakada, Shintaro; Okanishi, Takeou; Muroyama, Hiroki; Hirao, Yoshifumi; Takahashi, Tsuyoshi; Eguchi, Koichi

    2016-07-20

    In this study, the heteropolyacids of H3+xPVxMO12-xO40 (x = 0, 2, and 3) were applied as redox mediators for the oxygen reduction reaction in polymer electrolyte fuel cells, of which the cathode is free from the usage of noble metals such as Pt/C. In this system, the electrochemical reduction of heteropolyacid over the carbon cathode and the subsequent reoxidation of the partially reduced heteropolyacid by exposure to the dissolved oxygen in the regenerator are important processes for continuous power generation. Thus, the redox properties of catholytes containing these heteropolyacids were investigated in detail. The substitution quantity of V in the heteropolyacid affected the onset reduction potential as well as the reduction current density, resulting in a difference in cell performance. The chemical composition of heteropolyacid also had a significant impact on the reoxidation property. Among the three compounds, H6PV3Mo9O40 was the most suitable redox mediator. Furthermore, the pH of the catholyte was found to be the crucial factor in determining the reoxidation rate of partially reduced heteropolyacid as well as cell performance. PMID:27348019

  7. Electricity generation of microbial fuel cell with waterproof breathable membrane cathode

    NASA Astrophysics Data System (ADS)

    Xing, Defeng; Tang, Yu; Mei, Xiaoxue; Liu, Bingfeng

    2015-12-01

    Simplification of fabrication and reduction of capital cost are important for scale-up and application of microbial electrochemical systems (MES). A fast and inexpensive method of making cathode was developed via assembling stainless steel mesh (SSM) with waterproof breathable membrane (WBM). Three assemble types of cathodes were fabricated; Pt@SSM/WBM (SSM as cathode skeleton, WBM as diffusion layer, platinum (Pt) catalyst applied on SSM), SSM/Pt@WBM and Pt@WBM. SSM/Pt@WBM cathode showed relatively preferable with long-term stability and favorable power output (24.7 W/m3). Compared to conventional cathode fabrication, air-cathode was made for 0.5 h. The results indicated that the novel fabrication method could remarkably reduce capital cost and simplify fabrication procedures with a comparable power output, making MFC more prospective for future application.

  8. Core-Protected Platinum Monolayer Shell High-Stability Electrocatalysts for Fuel-Cell Cathodes

    SciTech Connect

    K Sasaki; H Naohara; Y Cai; Y Choi; P Liu; M Vukmirovic; J Wang; R Adzic

    2011-12-31

    Platinum monolayers can act as shells for palladium nanoparticles to lead to electrocatalysts with high activities and an ultralow platinum content, but high platinum utilization. The stability derives from the core protecting the shell from dissolution. In fuel-cell tests, no loss of platinum was observed in 200,000 potential cycles, whereas loss of palladium was significant.

  9. Core-Protected Platinum Monolayer Shell High-Stability Electrocatalysts for Fuel-Cell Cathodes

    SciTech Connect

    Adzic, R.R.; Sasaki, K.; Naohara, H.; Cai, Y.; Choi, Y.M.; Liu, P.; Vukmirovic, M.B.; Wang, J.X.

    2010-11-08

    More than skin deep: Platinum monolayers can act as shells for palladium nanoparticles to lead to electrocatalysts with high activities and an ultralow platinum content, but high platinum utilization. The stability derives from the core protecting the shell from dissolution. In fuel-cell tests, no loss of platinum was observed in 200?000 potential cycles, whereas loss of palladium was significant.

  10. Solid Oxide Fuel Cell Cathodes. Unraveling the Relationship Between Structure, Surface Chemistry and Oxygen Reduction

    SciTech Connect

    Gopalan, Srikanth

    2013-03-31

    In this work we have considered oxygen reduction reaction on LSM and LSCF cathode materials. In particular we have used various spectroscopic techniques to explore the surface composition, transition metal oxidation state, and the bonding environment of oxygen to understand the changes that occur to the surface during the oxygen reduction process. In a parallel study we have employed patterned cathodes of both LSM and LSCF cathodes to extract transport and kinetic parameters associated with the oxygen reduction process.

  11. Kinetics of oxygen reduction in perovskite cathodes for solid oxide fuel cells: A combined modeling and experimental approach

    NASA Astrophysics Data System (ADS)

    Miara, Lincoln James

    Solid oxide fuel cells (SOFCs) have the potential to replace conventional stationary power generation technologies; however, there are major obstacles to commercialization, the most problematic of which is poor cathode performance. Commercialization of SOFCs will follow when the mechanisms occurring at the cathode are more thoroughly understood and adapted for market use. The catalytic reduction of oxygen occurring in SOFC cathodes consists of many elementary steps such as gas phase diffusion, chemical and/or electrochemical reactions which lead to the adsorption and dissociation of molecular oxygen onto the cathode surface, mass transport of oxygen species along the surface and/or through the bulk of the cathode, and full reduction and incorporation of the oxygen at the cathode/electrolyte two or three phase boundary. Electrochemical impedance spectroscopy (EIS) is the main technique used to identify the occurrence of these different processes, but when this technique is used without an explicit model describing the kinetics it is difficult to unravel the interdependence of each of these processes. The purpose of this dissertation is to identify the heterogeneous reactions occurring at the cathode of an SOFC by combining experimental EIS results with mathematical models describing the time dependent behavior of the system. This analysis is performed on two different systems. In the first case, experimental EIS results from patterned half cells composed of Ca-doped lanthanum manganite (LCM)| yttria-doped ZrO2 (YSZ) are modeled to investigate the temperature and partial pressure of oxygen, pO2, dependence of oxygen adsorption/dissociation onto the LCM surface, surface diffusion of atomic oxygen, and electrochemical reduction and incorporation of the oxygen into the electrolyte in the vicinity of the triple phase boundary (TPB). This model determines the time-independent state-space equations from which the Faradaic admittance transfer function is obtained. The

  12. Iron-rich nanoparticle encapsulated, nitrogen doped porous carbon materials as efficient cathode electrocatalyst for microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Lu, Guolong; Zhu, Youlong; Lu, Lu; Xu, Kongliang; Wang, Heming; Jin, Yinghua; Jason Ren, Zhiyong; Liu, Zhenning; Zhang, Wei

    2016-05-01

    Developing efficient, readily available, and sustainable electrocatalysts for oxygen reduction reaction (ORR) in neutral medium is of great importance to practical applications of microbial fuel cells (MFCs). Herein, a porous nitrogen-doped carbon material with encapsulated Fe-based nanoparticles (Fe-Nx/C) has been developed and utilized as an efficient ORR catalyst in MFCs. The material was obtained through pyrolysis of a highly porous organic polymer containing iron(II) porphyrins. The characterizations of morphology, crystalline structure and elemental composition reveal that Fe-Nx/C consists of well-dispersed Fe-based nanoparticles coated by N-doped graphitic carbon layer. ORR catalytic performance of Fe-Nx/C has been evaluated through cyclic voltammetry and rotating ring-disk electrode measurements, and its application as a cathode electrocatalyst in an air-cathode single-chamber MFC has been investigated. Fe-Nx/C exhibits comparable or better performance in MFCs than 20% Pt/C, displaying higher cell voltage (601 mV vs. 591 mV), maximum power density (1227 mW m-2 vs. 1031 mW m-2) and Coulombic efficiency (50% vs. 31%). These findings indicate that Fe-Nx/C is more tolerant and durable than Pt/C in a system with bacteria metabolism and thus holds great potential for practical MFC applications.

  13. Electrochemical Performance and Stability of the Cathode for Solid Oxide Fuel Cells II. Role of Ni diffusion on LSM performance

    SciTech Connect

    Zhou, Xiao Dong; Simner, Steven P; Templeton, Jared W; Nie, Zimin; Stevenson, Jeffry W; Gorman, B P

    2010-03-26

    The sintering of a standard (La0.8Sr0.2)0.98MnO3 (LSM-20) solid oxide fuel cell cathode composition (in the temperature range of 1050-1200ºC) on anode-supported cells utilizing a Ni-YSZ anode and thin YSZ electrolyte (<10 μm thickness) has revealed the need for a protective ceria interlayer to prevent a detrimental interaction between the YSZ and the LSM. The interaction, however, is not the typically assumed formation of insulating La- and/or Sr-zirconate, but rather the result of Ni diffusion from the anode through the YSZ electrolyte and into the LSM resulting in coarsening and increased densification of the LSM microstructure. As an alternative to the use of a protective ceria interlayer, the presence of YSZ in the cathode material was able to suppress coarsening of LSM, thereby significantly improving the electrochemical performance.

  14. LaNi1-xCoxO3-δ (x=0.4 to 0.7) cathodes for solid oxide fuel cells by infiltration

    NASA Astrophysics Data System (ADS)

    Chrzan, Aleksander; Ovtar, Simona; Chen, Ming

    2016-01-01

    Performance of LaNi1-xCoxO3-δ (LNC) (x=0.4 to 0.7) as a cathode in solid oxide fuel cell (SOFC) is evaluated. Symmetrical cathode/electrolyte/cathode cells for electrochemical testing are prepared by infiltration of yttria stabilized zirconia (YSZ) backbone with LNC solutions. It is showed that the cathode infiltrated with LaNi0.5Co0.5O3-δ (LNC155) has the lowest polarization resistance and activation energy, 197 mΩ cm2 at 600 °C and 0.91 eV, respectively. Therefore it is the most promising material of the LNC group for electrochemical applications. X-ray diffraction analysis revealed that none of the materials is single-phased after heat treatment at 800 °C as they contain residues of La2O3 and La2NiO4-δ

  15. Three-dimensional X-ray microcomputed tomography of carbonates and biofilm on operated cathode in single chamber microbial fuel cell.

    PubMed

    Santini, Maurizio; Guilizzoni, Manfredo; Lorenzi, Massimo; Atanassov, Plamen; Marsili, Enrico; Fest-Santini, Stephanie; Cristiani, Pierangela; Santoro, Carlo

    2015-01-01

    Power output limitation is one of the main concerns that need to be addressed for full-scale applications of the microbial fuel cell technology. Fouling and biofilm growth on the cathode of single chamber microbial fuel cells (SCMFC) affects their performance in long-term operation with wastewater. In this study, the authors report the power output and cathode polarization curves of a membraneless SCMFC, fed with raw primary wastewater and sodium acetate for over 6 months. At the end of the experiment, the whole cathode surface is analyzed through X-ray microcomputed tomography (microCT), scanning electron microscopy, and energy-dispersive X-ray spectroscopy (EDX) to characterize the fouling layer and the biofilm. EDX shows the distribution of Ca, Na, K, P, S, and other elements on the two faces of the cathode. Na-carbonates and Ca-carbonates are predominant on the air (outer) side and the water (inner) side, respectively. The three-dimensional reconstruction by X-ray microCT shows biofilm spots unevenly distributed above the Ca-carbonate layer on the inner (water) side of the cathode. These results indicate that carbonates layer, rather than biofilm, might lower the oxygen reduction reaction rate at the cathode during long-term SCMFC operation. PMID:26357848

  16. ELECTRICAL CONTACTS BETWEEN CATHODES AND METALLIC INTERCONNECTS IN SOLID OXIDE FUEL CELLS

    SciTech Connect

    Yang, Zhenguo; Xia, Guanguang; Stevenson, Jeffry W.

    2005-11-28

    To minimize electrical resistance and maximize power output, contact layers are often applied between interconnects and electrodes during construction of a SOFC stack. In this work, simulated cathode/interconnect structures were used to investigate the effects of different contact materials on the contact resistance between a LSF cathode and a Crofer22 APU interconnect. The results from the resistance measurements are reported and correlated to interfacial interactions occurring between the metallic interconnect and the contact materials, particularly perovskites. The materials requirements for the contact layers between cathodes and metallic interconnects in intermediate temperature SOFCs are also discussed.

  17. TiO2 nanotubes as alternative cathode in microbial fuel cells: Effect of annealing treatment on its performance

    NASA Astrophysics Data System (ADS)

    Yahia, S. Ait Ali; Hamadou, L.; Salar-García, M. J.; Kadri, A.; Ortiz-Martínez, V. M.; Hernández-Fernández, F. J.; de los Rios, A. Pérez; Benbrahim, N.

    2016-11-01

    In the present work, amorphous and crystalline TiO2 nanotubes (TiNT) were fabricated via anodization and characterized as an alternative cathode for Microbial Fuel Cells (MFCs). The morphology of TiNT is characterized by scanning electron microscopy (SEM). The crystalline structure and chemical composition are examined by X-ray diffraction (XRD) and Energy dispersive X-ray spectroscopy (EDX). The electrical conductivity characteristics were examined by electrochemical impedance spectroscopy (EIS). MFCs based on the alternative cathodes were evaluated in terms of energy generation and wastewater treatment. The performances of the as-anodized nanotubes and TiNT annealed at 450 °C and at 550 °C were investigated in double-chamber MFCs with carbon rod and graphite granules as anode and polymer inclusion membrane based on ionic liquid as separator. Industrial wastewater was the source of carbon and inoculum for the experiments. The as grown amorphous nanotubes exhibited the best output power density of 15.16 mWm-2. The results reported here indicate that the specific surface area and the oxygen vacancies of the TiNT cathode can influence the MFCs performance together, because both factors play crucial role in the oxygen reduction reaction (ORR). As-anodized TiNT, due to its higher specific surface provide more active sites for electrode reactions. The final oxygen demand (COD) for all systems achieved a COD removal within the interval 54-71% after 10 days. This approved the suitability of MFCs for wastewater treatment.

  18. Prediction of O2 Dissociation Kinetics on LaMnO3-Based Cathode Materials for Solid Oxide Fuel Cells

    SciTech Connect

    Choi, Yongman; Lynch, Matthew E.; Lin, M. C.; Liu, Meilin

    2009-04-30

    First-principles and statistical-theory calculations were applied to examine the interactions between oxygen molecules and the (100) surfaces of LaMnO3 and La0.5Sr0.5MnO2.75, one of the most-used cathode materials in solid oxide fuel cells (SOFCs). To predict the rate constants for the interactions between O2 and LaMnO3 or La0.5Sr0.5MnO2.75, potential energy profiles were constructed using the nudged elastic band (NEB) method. Predicted rate constants for the dissociation of adsorbed oxygen species on LaMnO3 (lm) and La0.5Sr0.5MnO2.75 (lsm) can be expressed as kdiss,lm ) 2.35 × 1012 exp(-0.50 eV/RT) s-1 and kdiss,lsm ) 2.15 × 1012 exp(-0.23 eV/RT) s-1, respectively, in the temperature range of 873-1273 K at 1 atm. Because the activation energy for oxygen dissociation on La0.5Sr0.5MnO2.75 (0.23 eV) is much smaller than that on LaMnO3 (0.50 eV), oxygen vacancies greatly enhance O2 dissociation kinetics. The kinetic and mechanistic studies for the interactions at the molecular level are imperative to gaining a fundamental understanding of oxygen reduction kinetics on cathode materials and to providing important insight into the rational design of more catalytically active cathode materials for SOFCs.

  19. Bio-inspired Construction of Advanced Fuel Cell Cathode with Pt Anchored in Ordered Hybrid Polymer Matrix.

    PubMed

    Xia, Zhangxun; Wang, Suli; Jiang, Luhua; Sun, Hai; Liu, Shuang; Fu, Xudong; Zhang, Bingsen; Sheng Su, Dang; Wang, Jianqiang; Sun, Gongquan

    2015-01-01

    The significant use of platinum for catalyzing the cathodic oxygen reduction reactions (ORRs) has hampered the widespread use of polymer electrolyte membrane fuel cells (PEMFCs). The construction of well-defined electrode architecture in nanoscale with enhanced utilization and catalytic performance of Pt might be a promising approach to address such barrier. Inspired by the highly efficient catalytic processes in enzymes with active centers embedded in charge transport pathways, here we demonstrate for the first time a design that allocates platinum nanoparticles (Pt NPs) at the boundaries with dual-functions of conducting both electrons by aid of polypyrrole and protons via Nafion(®) ionomer within hierarchical nanoarrays. By mimicking enzymes functionally, an impressive ORR activity and stability is achieved. Using this brand new electrode architecture as the cathode and the anode of a PEMFC, a high mass specific power density of 5.23 W mg(-1)Pt is achieved, with remarkable durability. These improvements are ascribed to not only the electron decoration and the anchoring effects from the Nafion(®) ionomer decorated PPy substrate to the supported Pt NPs, but also the fast charge and mass transport facilitated by the electron and proton pathways within the electrode architecture. PMID:26537781

  20. Load cycle durability of a graphitized carbon black-supported platinum catalyst in polymer electrolyte fuel cell cathodes

    NASA Astrophysics Data System (ADS)

    Takei, Chikara; Kakinuma, Katsuyoshi; Kawashima, Kazuhito; Tashiro, Keisuke; Watanabe, Masahiro; Uchida, Makoto

    2016-08-01

    We focus on Pt degradation occurring during fuel cell vehicle (FCV) combined drive cycles involving load and open circuit voltage (OCV) just after startup and during idling. Load cycle durability is evaluated as a function of OCV/load holding time, load rate and relative humidity (RH) with a graphitized carbon black-supported platinum catalyst (Pt/GCB) in the cathode. The degradation of Pt/GCB is suppressed for shorter OCV holding times, lower load rates and lower RH. Scanning ion microscopy (SIM) images of membrane cross-sections indicate that the amount of Pt deposited in the membrane decreases during drive cycles involving load with short OCV holding times. Investigations of the Pt distribution in the cathode catalyst layer (CL) by using scanning TEM-EDX show that the dissolution of Pt is suppressed on the membrane side in the CL. The Pt dissolution is accelerated by the high Pt oxidation due to the long OCV holding time. A load cycle with both long OCV holding time and low load inhibits the Pt2+ migration into the membrane but accelerates the Pt particle growth due to electrochemical Ostwald ripening; meanwhile, a load cycle with long OCV holding time at lower RH prevents both the Pt dissolution and particle growth.

  1. Carbon supported cobalt oxide nanoparticles-iron phthalocyanine as alternative cathode catalyst for oxygen reduction in microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Ahmed, Jalal; Yuan, Yong; Zhou, Lihua; Kim, Sunghyun

    2012-06-01

    The high cost and limited resources of precious metals as oxygen reduction catalysts (ORR) hindered the widespread use of microbial fuel cells (MFCs) in practice. Here, the feasibility of metal oxide assisted metal macrocyclic complex was investigated as a catalyst for ORR in an air-cathode MFC. Electrochemical results revealed that cobalt oxide (CoOx) incorporation increased the ORR activity of iron phthalocyanine (FePc). In MFCs, the maximum power density of 654 ± 32 mW m-2 was achieved from the C-CoOx-FePc cathode, which was 37% higher than the power density of carbon supported FePc (C-FePc). The voltage output of the MFC only decreased to 85% of its initial voltage after 50 cycles, suggesting that the synthesized catalyst showed acceptable long-term stability. The voltage drop partially resulted from the covering of biofilm on the catalyst layer. This work provided a potential alternative to Pt in MFCs for sustainable energy generation.

  2. Cobalt based layered perovskites as cathode material for intermediate temperature Solid Oxide Fuel Cells: A brief review

    NASA Astrophysics Data System (ADS)

    Pelosato, Renato; Cordaro, Giulio; Stucchi, Davide; Cristiani, Cinzia; Dotelli, Giovanni

    2015-12-01

    Nowadays, the cathode is the most studied component in Intermediate Temperature-Solid Oxide Fuel Cells (IT-SOFCs). Decreasing SOFCs operating temperature implies slow oxygen reduction kinetics and large polarization losses. Double perovskites with general formula REBaCo2O5+δ are promising mixed ionic-electronic conductors, offering a remarkable enhancement of the oxygen diffusivity and surface exchange respect to disordered perovskites. In this review, more than 250 compositions investigated in the literature were analyzed. The evaluation was performed in terms of electrical conductivity, Area Specific Resistance (ASR), chemical compatibility with electrolytes and Thermal Expansion Coefficient (TEC). The most promising materials have been identified as those bearing the mid-sized rare earths (Pr, Nd, Sm, Gd). Doping strategies have been analyzed: Sr doping on A site promotes higher electrical conductivity, but worsen ASR and TECs; B-site doping (Fe, Ni, Mn) helps lowering TECs, but is detrimental for the electrochemical properties. A promising boost of the electrochemical activity is obtained by simply introducing a slight Ba under-stoichiometry. Still, the high sensitivity of the electrochemical properties against slight changes in the stoichiometry hamper a conclusive comparison of all the investigated compounds. Opportunities for an improvement of double perovskite cathodes performance is tentatively foreseen in combining together the diverse effective doping strategies.

  3. Bio-inspired Construction of Advanced Fuel Cell Cathode with Pt Anchored in Ordered Hybrid Polymer Matrix

    NASA Astrophysics Data System (ADS)

    Xia, Zhangxun; Wang, Suli; Jiang, Luhua; Sun, Hai; Liu, Shuang; Fu, Xudong; Zhang, Bingsen; Sheng Su, Dang; Wang, Jianqiang; Sun, Gongquan

    2015-11-01

    The significant use of platinum for catalyzing the cathodic oxygen reduction reactions (ORRs) has hampered the widespread use of polymer electrolyte membrane fuel cells (PEMFCs). The construction of well-defined electrode architecture in nanoscale with enhanced utilization and catalytic performance of Pt might be a promising approach to address such barrier. Inspired by the highly efficient catalytic processes in enzymes with active centers embedded in charge transport pathways, here we demonstrate for the first time a design that allocates platinum nanoparticles (Pt NPs) at the boundaries with dual-functions of conducting both electrons by aid of polypyrrole and protons via Nafion® ionomer within hierarchical nanoarrays. By mimicking enzymes functionally, an impressive ORR activity and stability is achieved. Using this brand new electrode architecture as the cathode and the anode of a PEMFC, a high mass specific power density of 5.23 W mg-1Pt is achieved, with remarkable durability. These improvements are ascribed to not only the electron decoration and the anchoring effects from the Nafion® ionomer decorated PPy substrate to the supported Pt NPs, but also the fast charge and mass transport facilitated by the electron and proton pathways within the electrode architecture.

  4. Optimization of a microbial fuel cell for wastewater treatment using recycled scrap metals as a cost-effective cathode material.

    PubMed

    Lefebvre, Olivier; Tan, Zi; Shen, Yujia; Ng, How Y

    2013-01-01

    Microbial fuel cell (MFC) for wastewater treatment is still hindered by the prohibitive cost of cathode material, especially when platinum is used to catalyze oxygen reduction. In this study, recycled scrap metals could be used efficiently as cathode material in a specially-designed MFC. In terms of raw power, the scrap metals ranked as follows: W/Co > Cu/Ni > Inconel 718 > carpenter alloy; however, in terms of cost and long term stability, Inconel 718 was the preferred choice. Treatment performance--assessed on real and synthetic wastewater--was considerably improved either by filling the anode compartment with carbon granules or by operating the MFC in full-loop mode. The latter option allowed reaching 99.7% acetate removal while generating a maximum power of 36 W m(-3) at an acetate concentration of 2535 mg L(-1). Under these conditions, the energy produced by the system averaged 0.1 kWh m(-3) of wastewater treated. PMID:23138054

  5. High catalytic activity and pollutants resistivity using Fe-AAPyr cathode catalyst for microbial fuel cell application

    NASA Astrophysics Data System (ADS)

    Santoro, Carlo; Serov, Alexey; Villarrubia, Claudia W. Narvaez; Stariha, Sarah; Babanova, Sofia; Artyushkova, Kateryna; Schuler, Andrew J.; Atanassov, Plamen

    2015-11-01

    For the first time, a new generation of innovative non-platinum group metal catalysts based on iron and aminoantipyrine as precursor (Fe-AAPyr) has been utilized in a membraneless single-chamber microbial fuel cell (SCMFC) running on wastewater. Fe-AAPyr was used as an oxygen reduction catalyst in a passive gas-diffusion cathode and implemented in SCMFC design. This catalyst demonstrated better performance than platinum (Pt) during screening in “clean” conditions (PBS), and no degradation in performance during the operation in wastewater. The maximum power density generated by the SCMFC with Fe-AAPyr was 167 ± 6 μW cm-2 and remained stable over 16 days, while SCMFC with Pt decreased to 113 ± 4 μW cm-2 by day 13, achieving similar values of an activated carbon based cathode. The presence of S2- and showed insignificant decrease of ORR activity for the Fe-AAPyr. The reported results clearly demonstrate that Fe-AAPyr can be utilized in MFCs under the harsh conditions of wastewater.

  6. Bio-electrochemical characterization of air-cathode microbial fuel cells with microporous polyethylene/silica membrane as separator.

    PubMed

    Kircheva, Nina; Outin, Jonathan; Perrier, Gérard; Ramousse, Julien; Merlin, Gérard; Lyautey, Emilie

    2015-12-01

    The aim of this work was to study the behavior over time of a separator made of a low-cost and non-selective microporous polyethylene membrane (RhinoHide®) in an air-cathode microbial fuel cell with a reticulated vitreous carbon foam bioanode. Performances of the microporous polyethylene membrane (RhinoHide®) were compared with Nafion®-117 as a cationic exchange membrane. A non-parametric test (Mann-Whitney) done on the different sets of coulombic or energy efficiency data showed no significant difference between the two types of tested membrane (p<0.05). Volumetric power densities were ranging from 30 to 90 W·m(-3) of RVC foam for both membranes. Similar amounts of biomass were observed on both sides of the polyethylene membrane illustrating bacterial permeability of this type of separator. A monospecific denitrifying population on cathodic side of RhinoHide® membrane has been identified. Electrochemical impedance spectroscopy (EIS) was used at OCV conditions to characterize electrochemical behavior of MFCs by equivalent electrical circuit fitted on both Nyquist and Bode plots. Resistances and pseudo-capacitances from EIS analyses do not differ in such a way that the nature of the membrane could be considered as responsible. PMID:26073676

  7. Sustainable energy recovery in wastewater treatment by microbial fuel cells: stable power generation with nitrogen-doped graphene cathode.

    PubMed

    Liu, Yuan; Liu, Hong; Wang, Chuan; Hou, Shuang-Xia; Yang, Nuan

    2013-12-01

    Microbial fuel cells (MFCs) recover energy sustainably in wastewater treatment. Performance of non-noble cathode catalysts with low cost in neutral medium is vital for stable power generation. Nitrogen-doped graphene (NG) as cathode catalyst was observed to exhibit high and durable activity at buffered pH 7.0 during electrochemical measurements and in MFCs with respect to Pt/C counterpart. Electrochemical measurements showed that the oxygen reduction reaction (ORR) on NG possessed sustained activity close to the state-of-art Pt/C in terms of onset potential and electron transfer number. NG-MFCs displayed maximum voltage output of 650 mV and maximum power density of 776 ± 12 mW m(-2), larger than 610 mV and 750 ± 19 mW m(-2) of Pt/C-MFCs, respectively. Furthermore, long-time test lasted over 90 days, during which the maximum power density of NG-MFCs declined by 7.6%, with stability comparable to Pt/C-MFCs. Structure characterization of NG implied that the relatively concentrated acidic oxygen-containing groups improved such long-time stability by repelling the protons due to the same electrostatic force, and thus the C-N active centers for ORR were left undestroyed. These findings demonstrated the competitive advantage of NG to advance the application of MFCs for recovering biomass energy in treatment of wastewater with neutral pH. PMID:24219223

  8. High catalytic activity and pollutants resistivity using Fe-AAPyr cathode catalyst for microbial fuel cell application

    PubMed Central

    Santoro, Carlo; Serov, Alexey; Villarrubia, Claudia W. Narvaez; Stariha, Sarah; Babanova, Sofia; Artyushkova, Kateryna; Schuler, Andrew J.; Atanassov, Plamen

    2015-01-01

    For the first time, a new generation of innovative non-platinum group metal catalysts based on iron and aminoantipyrine as precursor (Fe-AAPyr) has been utilized in a membraneless single-chamber microbial fuel cell (SCMFC) running on wastewater. Fe-AAPyr was used as an oxygen reduction catalyst in a passive gas-diffusion cathode and implemented in SCMFC design. This catalyst demonstrated better performance than platinum (Pt) during screening in “clean” conditions (PBS), and no degradation in performance during the operation in wastewater. The maximum power density generated by the SCMFC with Fe-AAPyr was 167 ± 6 μW cm−2 and remained stable over 16 days, while SCMFC with Pt decreased to 113 ± 4 μW cm−2 by day 13, achieving similar values of an activated carbon based cathode. The presence of S2− and showed insignificant decrease of ORR activity for the Fe-AAPyr. The reported results clearly demonstrate that Fe-AAPyr can be utilized in MFCs under the harsh conditions of wastewater. PMID:26563922

  9. Bio-inspired Construction of Advanced Fuel Cell Cathode with Pt Anchored in Ordered Hybrid Polymer Matrix

    PubMed Central

    Xia, Zhangxun; Wang, Suli; Jiang, Luhua; Sun, Hai; Liu, Shuang; Fu, Xudong; Zhang, Bingsen; Sheng Su, Dang; Wang, Jianqiang; Sun, Gongquan

    2015-01-01

    The significant use of platinum for catalyzing the cathodic oxygen reduction reactions (ORRs) has hampered the widespread use of polymer electrolyte membrane fuel cells (PEMFCs). The construction of well-defined electrode architecture in nanoscale with enhanced utilization and catalytic performance of Pt might be a promising approach to address such barrier. Inspired by the highly efficient catalytic processes in enzymes with active centers embedded in charge transport pathways, here we demonstrate for the first time a design that allocates platinum nanoparticles (Pt NPs) at the boundaries with dual-functions of conducting both electrons by aid of polypyrrole and protons via Nafion® ionomer within hierarchical nanoarrays. By mimicking enzymes functionally, an impressive ORR activity and stability is achieved. Using this brand new electrode architecture as the cathode and the anode of a PEMFC, a high mass specific power density of 5.23 W mg−1Pt is achieved, with remarkable durability. These improvements are ascribed to not only the electron decoration and the anchoring effects from the Nafion® ionomer decorated PPy substrate to the supported Pt NPs, but also the fast charge and mass transport facilitated by the electron and proton pathways within the electrode architecture. PMID:26537781

  10. A comparison of glucose oxidase and aldose dehydrogenase as mediated anodes in printed glucose/oxygen enzymatic fuel cells using ABTS/laccase cathodes.

    PubMed

    Jenkins, Peter; Tuurala, Saara; Vaari, Anu; Valkiainen, Matti; Smolander, Maria; Leech, Dónal

    2012-10-01

    Current generation by mediated enzyme electron transfer at electrode surfaces can be harnessed to provide biosensors and redox reactions in enzymatic fuel cells. A glucose/oxygen enzymatic fuel cell can provide power for portable and implantable electronic devices. High volume production of enzymatic fuel cell prototypes will likely require printing of electrode and catalytic materials. Here we report on preparation and performance of, completely enzymatic, printed glucose/oxygen biofuel cells. The cells are based on filter paper coated with conducting carbon inks, enzyme and mediator. A comparison of cell performance using a range of mediators for either glucose oxidase (GOx) or aldose dehydrogenase (ALDH) oxidation of glucose at the anode and ABTS and a fungal laccase, for reduction of oxygen at the cathode, is reported. Highest power output, although of limited stability, is observed for ALDH anodes mediated by an osmium complex, providing a maximum power density of 3.5 μW cm(-2) at 0.34 V, when coupled to a laccase/ABTS cathode. The stability of cell voltage in a biobattery format, above a threshold of 200 mV under a moderate 75 kΩ load, is used to benchmark printed fuel cell performance. Highest stability is obtained for printed fuel cells using ALDH, providing cell voltages over the threshold for up to 74 h, compared to only 2 h for cells with anodes using GOx. These results provide promising directions for further development of mass-producible, completely enzymatic, printed biofuel cells. PMID:22200380

  11. Determination of Microbial Growth by Protein Assay in an Air-Cathode Single Chamber Microbial Fuel Cell.

    PubMed

    Li, Na; Kakarla, Ramesh; Moon, Jung Mi; Min, Booki

    2015-07-01

    Microbial fuel cells (MFCs) have gathered attention as a novel bioenergy technology to simultaneously treat wastewater with less sludge production than the conventional activated sludge system. In two different operations of the MFC and aerobic process, microbial growth was determined by the protein assay method and their biomass yields using real wastewater were compared. The biomass yield on the anode electrode of the MFC was 0.02 g-COD-cell/g- COD-substrate and the anolyte planktonic biomass was 0.14 g-COD-cell/g-COD-substrate. An MFC without anode electrode resulted in the biomass yield of 0.07 ± 0.03 g-COD-cell/g-COD-substrate, suggesting that oxygen diffusion from the cathode possibly supported the microbial growth. In a comparative test, the biomass yield under aerobic environment was 0.46 ± 0.07 g-COD-cell/g-COD-substrate, which was about 3 times higher than the total biomass value in the MFC operation. PMID:25674807

  12. Catalyzed double layer cathodes for high performance and long life molten carbonate fuel cells

    SciTech Connect

    Bischoff, M.; Jantsch, U.; Rohland, B.

    1996-12-31

    NiO/LiCoO{sub 2} double layer cathodes (DLCs) were prepared with a thin highly active LiCoO{sub 2}-layer by a new double layer tape casting/sintering procedure. The resulting metallic porous precursor plates were mounted into the MCFC and heated up by a special procedure to form LiCoO{sub 2} from air, Co and Li{sub 2}CO{sub 3} in a solid/gas reaction. MCFCs with highly active NiO/LiCoO{sub 2}-DLCs can operate over prolonged periods of time with a Ni-precipitation which is 10% lower than one finds with state of the art NiO cathodes. According to LiCoO{sub 2}-cathodes have theoretical life times of more than 100 000 hours at nonpressurized conditions. MCFCs with new NiO/LiCoO{sub 2} double layer cathodes (DLC) were investigated with regard to variable parameters of their microstructure. From the agglomerate model of the porous MCFC cathode, the dependence of the polarization resistance from the radius of the agglomerates and the inner agglomerate surface area was calculated.

  13. Perovskite Sr₁-xCexCoO₃-δ (0.05 ≤ x ≤ 0.15) as superior cathodes for intermediate temperature solid oxide fuel cells.

    PubMed

    Yang, Wei; Hong, Tao; Li, Shuai; Ma, Zhaohui; Sun, Chunwen; Xia, Changrong; Chen, Liquan

    2013-02-01

    Perovskite Sr(1-x)Ce(x)CoO(3-δ) (0.05 ≤ x ≤ 0.15) have been prepared by a sol-gel method and studied as cathodes for intermediate temperature solid oxide fuel cells. As SOFC cathodes, Sr(1-x)Ce(x)CoO(3-δ) materials have sufficiently high electronic conductivities and excellent chemical compatibility with SDC electrolyte. The peak power density of cells with Sr(0.95)Ce(0.05)CoO(3-δ) is 0.625 W cm(-2) at 700 °C. By forming a composite cathode with an oxygen ion conductor SDC, the peak power density of the cell with Sr(0.95)Ce(0.05)CoO(3-δ)-30 wt %SDC composite cathode, reaches 1.01 W cm(-2) at 700 °C, better than that of Sm(0.5)Sr(0.5)CoO(3)-based cathode. All these results demonstrates that Sr(1-x)Ce(x)CoO(3-δ) (0.05 ≤ x ≤ 0.15)-based materials are promising cathodes for an IT-SOFC. PMID:23336216

  14. Oxygen reduction reaction on Cu-doped Ag cluster for fuel-cell cathode.

    PubMed

    Ma, Wenqiang; Chen, Fuyi; Zhang, Nan; Wu, Xiaoqiang

    2014-10-01

    The development of fuel cells as clean-energy technologies is largely limited by the prohibitive cost of the noble-metal catalysts needed for catalyzing the oxygen reduction reaction (ORR) in fuel cells. A fundamental understanding of catalyst design principle that links material structures to the catalytic activity can accelerate the search for highly active and abundant bimetallic catalysts to replace platinum. Here, we present a first-principles study of ORR on Ag12Cu cluster in alkaline environment. The adsorptions of O2, OOH, and OH on Cu-doped Ag13 are stronger than on Ag13. The d-band centers of adsorption sites show the Cu-doping makes d-electrons transferred to higher energy state, and improves O2 dissociation. ORR processes on Ag12Cu and Ag13 indicate Cu-doping can strongly promote ORR, and ORR process can be better preformed on Ag12Cu than on Ag13. For four-electron transfer, the effective reversible potential is 0.401 V/RHE on Ag12Cu in alkaline medium. PMID:25227449

  15. ACTIVE CATHODES FOR SUPER-HIGH POWER DENSITY SOLID OXIDE FUEL CELLS THROUGH SPACE CHARGE EFFECTS

    SciTech Connect

    Anil V. Virkar

    2004-05-17

    This report summarizes the work done during the sixth quarter of the project. Effort was directed in three areas: (1) Further development of the model on the role of connectivity on ionic conductivity of porous bodies, including the role of grain boundaries and space charge region. (2) Calculation of the effect of space charge and morphology of porous bodies on the effective charge transfer resistance of porous composite cathodes. (3) The investigation of the three electrode system for the measurement of cathodic polarization using amperometric sensors.

  16. Micro fuel cell

    SciTech Connect

    Zook, L.A.; Vanderborgh, N.E.; Hockaday, R.

    1998-12-31

    An ambient temperature, liquid feed, direct methanol fuel cell device is under development. A metal barrier layer was used to block methanol crossover from the anode to the cathode side while still allowing for the transport of protons from the anode to the cathode. A direct methanol fuel cell (DMFC) is an electrochemical engine that converts chemical energy into clean electrical power by the direct oxidation of methanol at the fuel cell anode. This direct use of a liquid fuel eliminates the need for a reformer to convert the fuel to hydrogen before it is fed into the fuel cell.

  17. Electrochemical Performance and Stability of the Cathode for Solid Oxide Fuel Cells: III. Role of volatile boron species on LSM/YSZ and LSCF

    SciTech Connect

    Zhou, Xiao Dong; Templeton, Jared W.; Zhu, Zihua; Chou, Y. S.; Maupin, Gary D.; Lu, Zigui; Brow, R. K.; Stevenson, Jeffry W.

    2010-09-02

    Boron oxide is a key component to tailor the softening temperature and viscosity of the sealing glass for solid oxide fuel cells. The primary concern regarding the use of boron containing sealing glasses is the volatility of boron species, which possibly results in cathode degradation. In this paper, we report the role of volatile boron species on the electrochemical performance of LSM/YSZ and LSCF cathodes at various SOFC operation temperatures. The transport rate of boron, ~ 3.24×10-12 g/cm2•sec was measured at 750°C with air saturated with 2.8% moisture. A reduction in power density was observed in cells with LSM/YSZ cathodes after introduction of the boron source to the cathode air stream. Partial recovery of the power density was observed after the boron source was removed. Results from post-test secondary ion mass spectroscopy (SIMS) analysis the partial recovery in power density correlated with partil removal of the deposited boron by the clean air stream. The presence of boron was also observed in LSCF cathodes by SIMS analysis, however the effect of boron on the electrochemical performance of LSCF cathode was negligible. Coverage of triple phase boundaries in LSM/YSZ was postulated as the cause for the observed reduction in electrochemical performance.

  18. Simulation and characterization of cathode reactions in solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Williams, Robert E., Jr.

    2007-12-01

    In this study, we have developed a dense La0.85Sr0.15 MnO3-delta (LSM) - Ce0.9Gd0.1O 1.95 (GDC) composite electrode system for studying the surface modification of cathodes. The LSM and GDC grains in the composite were well defined and distinguished using energy dispersive x-ray (EDX) analysis. The specific three-phase boundary (TPB) length per unit electrode surface area was systematically controlled by adjusting the LSM to GDC volume ratio of the composite from 40% up to 70%. The TPB length for each tested sample was determined through stereological techniques and used to correlate the cell performance and degradation with the specific TPB length per unit surface area. An overlapping spheres percolation model was developed to estimate the activity of the TPB lines on the surface of the dense composite electrodes developed. The model suggested that the majority of the TPB lines would be active and the length of those lines maximized if the volume percent of the electrolyte material was kept in the range of 47--57%. Additionally, other insights into the processing conditions to maximize the amount of active TPB length were garnered from both the stereology calculations and the percolation simulations. Steady-state current voltage measurements as well as electrochemical impedance measurements on numerous samples under various environmental conditions were completed. The apparent activation energy for the reduction reaction was found to lie somewhere between 31 kJ/mol and 41 kJ/mol depending upon the experimental conditions. The exchange current density was found to vary with the partial pressure of oxygen differently over two separate regions. At relatively low partial pressures, i0 had an approximately p0.17O2 dependence and at relatively high partial pressures, i 0 had an approximately p0.35O2 dependence. This led to the conclusion that a change in the rate limiting step occurs over this range. A method for deriving the electrochemical properties from proposed

  19. Sustainable design of high-performance microsized microbial fuel cell with carbon nanotube anode and air cathode.

    PubMed

    Mink, Justine E; Hussain, Muhammad Mustafa

    2013-08-27

    Microbial fuel cells (MFCs) are a promising alternative energy source that both generates electricity and cleans water. Fueled by liquid wastes such as wastewater or industrial wastes, the microbial fuel cell converts waste into energy. Microsized MFCs are essentially miniature energy harvesters that can be used to power on-chip electronics, lab-on-a-chip devices, and/or sensors. As MFCs are a relatively new technology, microsized MFCs are also an important rapid testing platform for the comparison and introduction of new conditions or materials into macroscale MFCs, especially nanoscale materials that have high potential for enhanced power production. Here we report a 75 μL microsized MFC on silicon using CMOS-compatible processes and employ a novel nanomaterial with exceptional electrochemical properties, multiwalled carbon nanotubes (MWCNTs), as the on-chip anode. We used this device to compare the usage of the more commonly used but highly expensive anode material gold, as well as a more inexpensive substitute, nickel. This is the first anode material study done using the most sustainably designed microsized MFC to date, which utilizes ambient oxygen as the electron acceptor with an air cathode instead of the chemical ferricyanide and without a membrane. Ferricyanide is unsustainable, as the chemical must be continuously refilled, while using oxygen, naturally found in air, makes the device mobile and is a key step in commercializing this for portable technology such as lab-on-a-chip for point-of-care diagnostics. At 880 mA/m(2) and 19 mW/m(2) the MWCNT anode outperformed the others in both current and power densities with between 6 and 20 times better performance. All devices were run for over 15 days, indicating a stable and high-endurance energy harvester already capable of producing enough power for ultra-low-power electronics and able to consistently power them over time. PMID:23899322

  20. Influence of (La,Sr)MnO3+δ cathode composition on cathode/electrolyte interfacial structure during long-term operation of solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Matsui, Toshiaki; Mikami, Yuichi; Muroyama, Hiroki; Eguchi, Koichi

    2013-11-01

    Time-dependent events during operation of SOFCs, i.e., performance enhancement and/or deterioration, can be readily observed for the cell composed of strontium-doped lanthanum manganite (LSM) cathode and yttria-stabilized zirconia (YSZ) electrolyte, concomitant with the change in interfacial structure of LSM/YSZ. The influence of LSM composition on the electrochemical properties and microstructure of LSM/YSZ interface during prolonged operation was investigated. Four different LSM cathodes were used and the change in microstructure, especially TPB-length, was evaluated quantitatively by a focused ion beam-scanning electron microscope (FIB-SEM). For LSM cathodes with A-site deficient compositions, the change in TPB-length had a minor contribution to the performance enhancement after 20 h of galvanostatic operation. On the other hand, for 100 h duration an increase in cathode overpotential was confirmed, accompanied with the formation of thin layer of LSM over YSZ electrolyte. A series of phenomena were triggered by the change in oxygen nonstoichiometry of LSM under polarized states. The mechanism for microstructural change was proposed and the long-term stability of LSM/YSZ interface was discussed.

  1. Dependency of simultaneous Cr(VI), Cu(II) and Cd(II) reduction on the cathodes of microbial electrolysis cells self-driven by microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Zhang, Yong; Yu, Lihua; Wu, Dan; Huang, Liping; Zhou, Peng; Quan, Xie; Chen, Guohua

    2015-01-01

    Microbial fuel cells (MFCs) using either Cr(VI) (MFCsCr) or Cu(II) (MFCsCu) as a final electron acceptor, are stacked to self-drive microbial electrolysis cells (MECs) using Cd(II) (MECsCd) as an electron acceptor for simultaneous reduction of Cr(VI) in MFCsCr, Cu(II) in MFCsCu and Cd(II) in MECsCd with no external energy consumption. Titanium sheet (TS) and carbon rod (CR) as the cathodes of MECsCd are assessed for efficient system performance. MFCsCr and MFCsCu in series is superior to the parallel configuration, and higher Cd(II) reduction along with simultaneous Cr(VI) and Cu(II) reduction supports TS function as a good cathode material. Conversely, CR can not entirely proceed Cd(II) reduction in MECsCd despite of more Cr(VI) and Cu(II) reduction in the same serial configuration than either system alone. While a decrease in cathode volume in both MFCsCr and MFCsCu with serial connection benefits to reduction of Cr(VI) in MFCsCr and Cu(II) in MFCsCu, Cd(II) reduction in MECsCd is substantially enhanced under a decrease in cathode volume in individual MFCsCr and serially connected with volume-unchanged MFCsCu. This study demonstrates simultaneous Cr(VI), Cu(II) and Cd(II) recovery from MFCsCr-MFCsCu-MECsCd self-driven system is feasible, and TS as the cathodes of MECsCd is critical for efficient system performance.

  2. Effects of carbon supports on Pt distribution, ionomer coverage and cathode performance for polymer electrolyte fuel cells

    NASA Astrophysics Data System (ADS)

    Park, Young-Chul; Tokiwa, Haruki; Kakinuma, Katsuyoshi; Watanabe, Masahiro; Uchida, Makoto

    2016-05-01

    We investigate the effects of the carbon supports on the Pt distribution, ionomer coverage and cathode performance of carbon-supported Pt catalysts, by using STEM observation, N2 adsorption analysis and electrochemical characterization. According to the STEM observation, the effective Pt surface area (S(e)Pt), which is determined by the location and size of the Pt particles on the supports, increases in the following order: c-Pt/CB < c-Pt/GCB < n-Pt/AB800 < n-Pt/AB250. The N2 adsorption analyses show that the Pt particles observed in the interior of the CB and AB800-supported Pt catalysts during the STEM observation could be ascribed to the hollow structures inside the carbon supports, which decrease their effective Pt surface areas. The S(e)Pt values are in good agreement with the cell performance in the high current density region. In spite of the highest Pt utilization (UPt) value (>90%) and uniform ionomer coverage, the c-Pt/CB catalyst shows the lowest cell performance due to the lower S(e)Pt value. On the other hand, the n-Pt/AB250 catalyst, for which all of the Pt particles exist only on the exterior surface, is found to be the most attractive in order to generate the large current densities required by actual fuel cell operation.

  3. Effects of carbon supports on Pt distribution, ionomer coverage and cathode performance for polymer electrolyte fuel cells

    NASA Astrophysics Data System (ADS)

    Park, Young-Chul; Tokiwa, Haruki; Kakinuma, Katsuyoshi; Watanabe, Masahiro; Uchida, Makoto

    2016-05-01

    We investigate the effects of the carbon supports on the Pt distribution, ionomer coverage and cathode performance of carbon-supported Pt catalysts, by using STEM observation, N2 adsorption analysis and electrochemical characterization. According to the STEM observation, the effective Pt surface area (S(e)Pt), which is determined by the location and size of the Pt particles on the supports, increases in the following order: c-Pt/CB < c-Pt/GCB < n-Pt/AB800 < n-Pt/AB250. The N2 adsorption analyses show that the Pt particles observed in the interior of the CB and AB800-supported Pt catalysts during the STEM observation could be ascribed to the hollow structures inside the carbon supports, which decrease their effective Pt surface areas. The S(e)Pt values are in good agreement with the cell performance in the high current density region. In spite of the highest Pt utilization (UPt) value (>90%) and uniform ionomer coverage, the c-Pt/CB catalyst shows the lowest cell performance due to the lower S(e)Pt value. On the other hand, the n-Pt/AB250 catalyst, for which all of the Pt particles exist only on the exterior surface, is found to be the most attractive in order to generate the large current densities required by actual fuel cell operation.

  4. Metal-supported solid oxide fuel cells with impregnated SrFe0.75Mo0.25O3 cathodes

    NASA Astrophysics Data System (ADS)

    Zhou, Yucun; Meng, Xie; Ye, Xiaofeng; Li, Junliang; Wang, Shaorong; Zhan, Zhongliang

    2014-02-01

    This paper reports on the fabrication in reducing atmospheres of SrFe0.75Mo0.25O3 (SFMO)-8 mol%Y2O3-stabilized ZrO2 (YSZ) composites by impregnating Sr2+-, Fe3+- and Mo7O246--containing solutions into the porous YSZ backbones, which would find important applications as cathodes for co-fired metal-supported solid oxide fuel cells. X-ray diffraction examination shows that as-synthesized infiltrates consist of perovskite SFMO oxides and metallic Fe. In situ oxidation during the fuel cell operation eliminates metallic Fe, and SFMO oxides become the predominant component with some minor SrMoO4 impurities. Impedance measurements on symmetric cathode fuel cells show that such impregnated SFMO-YSZ composites exhibit low polarization resistances in air, e.g., 0.06 Ω cm2 at 800 °C. Metal-supported solid oxide fuel cells, consisting of porous 430L stainless steel substrates, Ni-YSZ active anodes, YSZ electrolytes and impregnated SFMO-YSZ composite cathodes, are fabricated using tape casting, tape lamination, co-sintering and solution impregnation techniques, and show maximum power densities of 438 mW cm-2 at 800 °C and 221 mW cm-2 at 700 °C.

  5. ACTIVE CATHODES FOR SUPER-HIGH POWER DENSITY SOLID OXIDE FUEL CELLS THROUGH SPACE CHARGE EFFECTS

    SciTech Connect

    Anil V. Virkar

    2003-10-11

    This report summarizes the work done during the second quarter of the project. Effort is directed in two areas: (1) The use of a novel method to achieve a given porosity level with high contiguity and thus conductivity. (2) Relate the measured conductivity to porosity and contiguity. The rationale for these experiments was to develop cathodes with high ionic conductivity, so that the effective polarization resistance will be concomitantly lowered.

  6. Development of ternary alloy cathode catalysts for phosphoric acid fuel cells: Final report

    SciTech Connect

    Jalan, V.; Kosek, J.; Giner, J.; Taylor, E. J.; Anderson, E.; Bianchi, V.; Brooks, C.; Cahill, K.; Cropley, C.; Desai, M.; Frost, D.; Morriseau, B.; Paul, B.; Poirier, J.; Rousseau, M.; Swette, L.; Waterhouse, R.

    1988-11-01

    The overall objective of the program was the identification development and incorporation of high activity platinum ternary alloys on corrosion resistant supports, for use in advanced phosphoric acid fuel cells. Two high activity ternary alloys, Pr-Cr-Ce and Pt-Ni-Co, both supported on Vulcan XC-72, were identified during the course of the program. The Pr-Ni-Co system was selected for optimization, including preparation and evaluation on corrosion resistant supports such as 2700/degree/C heat-treated Vulcan XC-72 and 2700/degree/ heat-treated Black Pearls 2000. A series of tests identified optimum metal ratios, heat-treatment temperatures and heat-treatment atmospheres for the Pr-Ni-Co system. During characterization testing, it was discovered that approximately 50% of the nickel and cobalt present in the starting material could be removed, subsequent to alloy formation, without degrading performance. Extremely stable full cell performance was observed for the Pt-Ni-Co system during a 10,000 hour atmosphere pressure life test. Several theories are proposed to explain the enhancement in activity due to alloy formation. Recommendations are made for future research in this area. 62 refs., 23 figs., 27 tabs.

  7. Coupling of anodic and cathodic modification for increased power generation in microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Jin, Tao; Luo, Jianmei; Yang, Jie; Zhou, Lei; Zhao, Yingying; Zhou, Minghua

    2012-12-01

    Carbon mesh (CM) materials are modified by nitric acid or hydrazine hydrate to test whether the performance of MFCs could be improved. The power densities of MFCs using nitric acid-treated anode (CM-NA) and hydrazine hydrate-treated anode (CM-HA) are improved by 24% (811 ± 24 mW m-2) and 19% (777 ± 35 mW m-2) as compared to the unmodified control (655 ± 7 mW m-2). All MFCs using modified cathodes (CM-NC/Pt, CM-HC/Pt) also show higher performance in electrochemical response and power generation. The maximum power densities of reactors using CM-NC and CM-HC are respectively 811 ± 29 mW m-2 and 792 ± 16 mW m-2, which is 24% and 21% higher than the control. XPS and SEM results show that the performance improvement is related to the changes of surface functional groups and surface area. Further, the power densities with both anode and cathode modified by nitric acid (NN) and hydrazine hydrate (HH) are found to be increased by 38% (905 ± 15 mW m-2) and 31% (860 ± 30 mW m-2), respectively. CV measurements indicate that the electricigens have much higher activity. These results demonstrate that the power output of MFCs can be further increased through coupling of anodic and cathodic modification.

  8. Electrical contacts between cathodes and metallic interconnects in solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Yang, Zhenguo; Xia, Guanguang; Singh, Prabhakar; Stevenson, Jeffry W.

    In this work, simulated cathode/interconnect structures were used to investigate the effects of different contact materials on the contact resistance between a strontium doped lanthanum ferrite cathode and a Crofer22 APU interconnect. Among the materials studied, Pt, which has a prohibitive cost for the application, demonstrated the best performance as a contact paste. For the relatively cost-effective perovskites, the contact ASR was found to depend on their electrical conductivity, scale growth on the metallic interconnect, and interactions between the contact material and the metallic interconnect or particularly the scale grown on the interconnect. Manganites appeared to promote manganese-containing spinel interlayer formation that helped minimize the increase of contact ASR. Chromium from the interconnects reacted with strontium in the perovskites to form SrCrO 4. An improved performance was achieved by application of a thermally grown (Mn,Co) 3O 4 spinel protection layer on Crofer22 APU that dramatically minimized the contact resistance between the cathodes and interconnects.

  9. Bifunctional Ag/Fe/N/C Catalysts for Enhancing Oxygen Reduction via Cathodic Biofilm Inhibition in Microbial Fuel Cells.

    PubMed

    Dai, Ying; Chan, Yingzi; Jiang, Baojiang; Wang, Lei; Zou, Jinlong; Pan, Kai; Fu, Honggang

    2016-03-23

    Limitation of the oxygen reduction reaction (ORR) in single-chamber microbial fuel cells (SC-MFCs) is considered an important hurdle in achieving their practical application. The cathodic catalysts faced with a liquid phase are easily primed with the electrolyte, which provides more surface area for bacterial overgrowth, resulting in the difficulty in transporting protons to active sites. Ag/Fe/N/C composites prepared from Ag and Fe-chelated melamine are used as antibacterial ORR catalysts for SC-MFCs. The structure-activity correlations for Ag/Fe/N/C are investigated by tuning the carbonization temperature (600-900 °C) to clarify how the active-constituents of Ag/Fe and N-species influence the antibacterial and ORR activities. A maximum power density of 1791 mW m(-2) is obtained by Ag/Fe/N/C (630 °C), which is far higher than that of Pt/C (1192 mW m(-2)), only having a decline of 16.14% after 90 days of running. The Fe-bonded N and the cooperation of pyridinic N and pyrrolic N in Ag/Fe/N/C contribute equally to the highly catalytic activity toward ORR. The ·OH or O2(-) species originating from the catalysis of O2 can suppress the biofilm growth on Ag/Fe/N/C cathodes. The synergistic effects between the Ag/Fe heterojunction and N-species substantially contribute to the high power output and Coulombic efficiency of Ag/Fe/N/C catalysts. These new antibacterial ORR catalysts show promise for application in MFCs. PMID:26938657

  10. Effects of proton exchange membrane on the performance and microbial community composition of air-cathode microbial fuel cells.

    PubMed

    Lee, Yun-Yeong; Kim, Tae Gwan; Cho, Kyung-Suk

    2015-10-10

    This study investigated the effects of proton exchange membranes (PEMs) on performance and microbial community of air-cathode microbial fuel cells (MFCs). Air-cathode MFCs with reactor volume of 1L were constructed in duplicate with or without PEM (designated as ACM-MFC and AC-MFC, respectively) and fed with a mixture of glucose and acetate (1:1, w:w). The maximum power density and coulombic efficiency did not differ between MFCs in the absence or presence of a PEM. However, PEM use adversely affected maximum voltage production and the rate of organic compound removal (p<0.05). Quantitative droplet digital PCR indicated that AC-MFCs had a greater bacterial population than ACM-MFCs (p<0.05). Likewise, ribosomal tag pyrosequencing revealed that the diversity index of bacterial communities was greater for AC-MFCs (p<0.05). Network analysis revealed that the most abundant genus was Enterococcus, which comprised ≥62% of the community and was positively associated with PEM and negatively associated with the rate of chemical oxygen demand (COD) removal (Pearson correlation>0.9 and p<0.05). Geobacter, which is known as an exoelectrogen, was positively associated with maximum power density and negatively associated with PEM. Thus, these results suggest that the absence of PEM favored the growth of Geobacter, a key player for electricity generation in MFC systems. Taken together, these findings demonstrate that MFC systems without PEM are more efficient with respect to power production and COD removal as well as exoelectrogen growth. PMID:26235818

  11. Poly(vinylidene fluoride-co-hexafluoropropylene) phase inversion coating as a diffusion layer to enhance the cathode performance in microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Yang, Wulin; Zhang, Fang; He, Weihua; Liu, Jia; Hickner, Michael A.; Logan, Bruce E.

    2014-12-01

    A low cost poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) phase inversion coating was developed as a cathode diffusion layer to enhance the performance of microbial fuel cells (MFCs). A maximum power density of 1430 ± 90 mW m-2 was achieved at a PVDF-HFP loading of 4.4 mg cm-2 (4:1 polymer:carbon black), with activated carbon as the oxygen reduction cathode catalyst. This power density was 31% higher than that obtained with a more conventional platinum (Pt) catalyst on carbon cloth (Pt/C) cathode with a poly(tetrafluoroethylene) (PTFE) diffusion layer (1090 ± 30 mW m-2). The improved performance was due in part to a larger oxygen mass transfer coefficient of 3 × 10-3 cm s-1 for the PVDF-HFP coated cathode, compared to 1.7 × 10-3 cm s-1 for the carbon cloth/PTFE-based cathode. The diffusion layer was resistant to electrolyte leakage up to water column heights of 41 ± 0.5 cm (4.4 mg cm-2 loading of 4:1 polymer:carbon black) to 70 ± 5 cm (8.8 mg cm-2 loading of 4:1 polymer:carbon black). This new type of PVDF-HFP/carbon black diffusion layer could reduce the cost of manufacturing cathodes for MFCs.

  12. The performance and mechanism of modified activated carbon air cathode by non-stoichiometric nano Fe3O4 in the microbial fuel cell.

    PubMed

    Fu, Zhou; Yan, Litao; Li, Kexun; Ge, Baochao; Pu, Liangtao; Zhang, Xi

    2015-12-15

    Cathodic catalyst is one of the key materials in microbial fuel cell (MFC). The addition of non-stoichiometric nano Fe3O4 in activated carbon (NSFe3O4/AC) air cathode was beneficial to boosting the charge transfer of the cathode accompanying with the enhancement of power performance in MFC. The air cathode modified by NSFe3O4 (5%, Wt%) increased the maximum power density by 83.3% from 780 mW/m(2) to 1430 mW/m(2) compared with bare air cathode. The modified cathodes showed enhanced electrochemical properties and appeared the maximum exchange current density of 18.71×10(-4) A/cm(2) for oxygen reduction reaction. The mechanism of oxygen reduction for the NSFe3O4/AC catalyst was a 4-electron pathway. The oxygen vacancy of the NSFe3O4 played a crucial role in electrochemical catalytic activity. The great catalytic performance made NSFe3O4 have a promising outlook applied in MFC. PMID:26264265

  13. PRELIMINARY IN-SITU X-RAY ABSORPTION FINE STRUCTURE EXAMINATION OF PT/C AND PTCO/C CATHODE CATALYSTS IN AN OPERATIONAL POLYMER ELECTROLYTE FUEL CELL

    SciTech Connect

    Phelan, B.T.; Myers, D.J.; Smith, M.C.

    2009-01-01

    State-of-the-art polymer electrolyte fuel cells require a conditioning period to reach optimized cell performance. There is insuffi cient understanding about the behavior of catalysts during this period, especially with regard to the changing environment of the cathode electrocatalyst, which is typically Pt nanoparticles supported on high surface area Vulcan XC-72 carbon (Pt/C). The purpose of this research was to record preliminary observations of the changing environment during the conditioning phase using X-Ray Absorption Fine Structure (XAFS) spectroscopy. XAFS was recorded for a Pt/C cathode at the Pt L3-edge and a PtCo/C cathode at both the Pt L3-edge and Co K-edge. Using precision machined graphite cell-blocks, both transmission and fl uorescence data were recorded at Sector 12-BM-B of Argonne National Laboratory’s Advanced Photon Source. The fl uorescence and transmission edge steps allow for a working description of the changing electrocatalyst environment, especially water concentration, at the anode and cathode as functions of operating parameters. These features are discussed in the context of how future analysis may correlate with potential, current and changing apparent thickness of the membrane electrode assembly through loss of catalyst materials (anode, cathode, carbon support). Such direct knowledge of the effect of the conditioning protocol on the electrocatalyst may lead to better catalyst design. In turn, this may lead to minimizing, or even eliminating, the conditioning period.

  14. Electricity generation using white and red wine lees in air cathode microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Pepe Sciarria, Tommy; Merlino, Giuseppe; Scaglia, Barbara; D'Epifanio, Alessandra; Mecheri, Barbara; Borin, Sara; Licoccia, Silvia; Adani, Fabrizio

    2015-01-01

    Microbial fuel cell (MFC) is a useful biotechnology to produce electrical energy from different organic substrates. This work reports for the first time results of the application of single chamber MFCs to generate electrical energy from diluted white wine (WWL) and red wine (RWL) lees. Power obtained was of 8.2 W m-3 (262 mW m-2; 500 Ω) and of 3.1 W m-3 (111 mW m-2; 500Ω) using white and red wine lees, respectively. Biological processes lead to a reduction of chemical oxygen (TCOD) and biological oxygen demand (BOD5) of 27% and 83% for RWL and of 90% and 95% for WWL, respectively. These results depended on the degradability of organic compounds contained, as suggest by BOD5/TCOD of WWL (0.93) vs BOD5/TCOD of RWL (0.33), and to the high presence of polyphenols in RWL that inhibited the process. Coulombic efficiency (CE) of 15 ± 0%, for WWL, was in line with those reported in the literature for other substrates, i.e. CE of 14.9 ± 11.3%. Different substrates led to different microbial consortia, particularly at the anode. Bacterial species responsible for the generation of electricity, were physically connected to the electrode, where the direct electron transfer took place.

  15. ACTIVE CATHODES FOR SUPER-HIGH POWER DENSITY SOLID OXIDE FUEL CELLS THROUGH SPACE CHARGE EFFECTS

    SciTech Connect

    Anil V. Virkar

    2003-12-12

    This report summarizes the work done during the fourth quarter of the project. Effort was directed in two areas, namely, continued further development of the model on the role of connectivity on ionic conductivity of porous bodies, including the role of grain boundaries and space charge, and its relationship to cathode polarization; and fabrication of samaria-doped ceria porous (SDC). The work on the model development involves calculation of the effect of space charge on transport through porous bodies. Three specific cases have been examined: (1) Space charge resistivity greater than the grain resistivity, (2) Space charge resistivity equal to the grain resistivity, and (3) Space charge resistivity lower than the grain resistivity. The model accounts for transport through three regions: the bulk of the grain, the space charge region, and the structural part of the grain boundary. The effect of neck size has been explicitly incorporated. In future work, the effective resistivity will be incorporated into the effective cathode polarization resistance. The results will then be compared with experiments.

  16. Single crystalline La0.5Sr0.5MnO3 microcubes as cathode of solid oxide fuel cell

    SciTech Connect

    Mingjia Zhi; Guangwen Zhou; Zhanglian Hong; Jin Wang; Randall Gemmen; Kirk Gerdes; Ayyakkannu Manivannan; Dongling Mae; Nianqiang Wu

    2010-09-13

    The efficiency of solid oxide fuel cells (SOFCs) is heavily dependent on the electrocatalytic activity of the cathode toward the oxygen reduction reaction (ORR). In order to achieve better cathode performance, single crystalline La0.5Sr0.5MnO3 (LSM) microcubes with the {200} facets have been synthesized by the hydrothermal method. It is found that the LSM microcubes exhibit lower polarization resistance than the conventional polycrystalline La0.8Sr0.2MnO3 powder in air from 700 #2;C to 900 #2;C. The ORR activation energy of the LSM microcubes is lower than that of the conventional powder. The ORR kinetics for the microcubes is limited by the charge transfer step while that for the conventional powder is dominated by the oxygen adsorption and dissociation on the cathode surface.

  17. Fabrication of lanthanum strontium cobalt ferrite (LSCF) cathodes for high performance solid oxide fuel cells using a low price commercial inkjet printer

    NASA Astrophysics Data System (ADS)

    Han, Gwon Deok; Neoh, Ke Chean; Bae, Kiho; Choi, Hyung Jong; Park, Suk Won; Son, Ji-Won; Shim, Joon Hyung

    2016-02-01

    In this study, we investigate a method to fabricate high quality lanthanum strontium cobalt ferrite (LSCF) cathodes for solid oxide fuel cells (SOFCs) using a commercial low price inkjet printer. The ink source is synthesized by dissolving the LSCF nanopowder in a water-based solvent with a proper amount of surfactants. Microstructures of the LSCF layer, including porosity and thickness per printing scan cycle, are adjusted by grayscale in the printing image. It is successfully demonstrated that anode-supported SOFCs with optimally printed LSCF cathodes can produce decent power output, i.e., a maximum peak power density of 377 mW cm-2 at 600 °C, in our experiment. We expect that this approach can support the quick and easy prototyping and evaluating of a variety of cathode materials in SOFC research.

  18. Proton-conducting Micro-solid Oxide Fuel Cells with Improved Cathode Reactions by a Nanoscale Thin Film Gadolinium-doped Ceria Interlayer

    NASA Astrophysics Data System (ADS)

    Li, Yong; Wang, Shijie; Su, Pei-Chen

    2016-02-01

    An 8 nm-thick gadolinium-doped ceria (GDC) layer was inserted as a cathodic interlayer between the nanoscale proton-conducting yttrium-doped barium zirconate (BZY) electrolyte and the porous platinum cathode of a micro-solid oxide fuel cell (μ-SOFC), which has effectively improved the cathode reaction kinetics and rendered high cell power density. The addition of the GDC interlayer significantly reduced the cathodic activation loss and increased the peak power density of the μ-SOFC by 33% at 400 °C. The peak power density reached 445 mW/cm2 at 425 °C, which is the highest among the reported μ-SOFCs using proton-conducting electrolytes. The impressive performance was attributed to the mixed protonic and oxygen ionic conducting properties of the nano-granular GDC, and also to the high densities of grain boundaries and lattice defects in GDC interlayer that favored the oxygen incorporation and transportation during the oxygen reduction reaction (ORR) and the water evolution reaction at cathode.

  19. Proton-conducting Micro-solid Oxide Fuel Cells with Improved Cathode Reactions by a Nanoscale Thin Film Gadolinium-doped Ceria Interlayer

    PubMed Central

    Li, Yong; Wang, Shijie; Su, Pei-Chen

    2016-01-01

    An 8 nm-thick gadolinium-doped ceria (GDC) layer was inserted as a cathodic interlayer between the nanoscale proton-conducting yttrium-doped barium zirconate (BZY) electrolyte and the porous platinum cathode of a micro-solid oxide fuel cell (μ-SOFC), which has effectively improved the cathode reaction kinetics and rendered high cell power density. The addition of the GDC interlayer significantly reduced the cathodic activation loss and increased the peak power density of the μ-SOFC by 33% at 400 °C. The peak power density reached 445 mW/cm2 at 425 °C, which is the highest among the reported μ-SOFCs using proton-conducting electrolytes. The impressive performance was attributed to the mixed protonic and oxygen ionic conducting properties of the nano-granular GDC, and also to the high densities of grain boundaries and lattice defects in GDC interlayer that favored the oxygen incorporation and transportation during the oxygen reduction reaction (ORR) and the water evolution reaction at cathode. PMID:26928192

  20. Highly active nanoporous Pt-based alloy as anode and cathode catalyst for direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Chen, Xiaoting; Jiang, Yingying; Sun, Junzhe; Jin, Chuanhong; Zhang, Zhonghua

    2014-12-01

    In this paper, we explore nanoporous PtPdAlCu (np-PtPdAlCu) quaternary alloy through ball-milling with the subsequent two-step dealloying strategy. The microstructure and catalytic performance of the np-PtPdAlCu catalyst have been characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (SEM), transmission electron microscopy (TEM), and electrochemical measurements. The np-PtPdAlCu catalyst exhibits an open bi-continuous interpenetrating ligament/channel structure with a length scale of 2.3 ± 0.5 nm. The np-PtPdAlCu catalyst shows 2 and 3.5 times enhancement in the mass activity and area specific activity towards methanol oxidation at anode respectively, compared to the Johnson Matthey (JM) Pt/C (40 wt.%) catalyst. Moreover, the CO stripping peak of np-PtPdAlCu is 0.49 V (vs. SCE), indicating a 180 mV negative shift in comparison with the Pt/C catalyst (0.67 V vs. SCE). In addition, the np-PtPdAlCu catalyst also shows an enhanced oxygen reduction reaction (ORR) activity at cathode compared to Pt/C. The present study provides a facile and effective route to design high-performance catalysts for direct methanol fuel cells (DMFCs).

  1. Enhancing the methanol tolerance of platinum nanoparticles for the cathode reaction of direct methanol fuel cells through a geometric design

    PubMed Central

    Feng, Yan; Ye, Feng; Liu, Hui; Yang, Jun

    2015-01-01

    Mastery over the structure of nanoparticles might be an effective way to enhance their performance for a given application. Herein we demonstrate the design of cage-bell nanostructures to enhance the methanol tolerance of platinum (Pt) nanoparticles while remaining their catalytic activity for oxygen reduction reaction. This strategy starts with the synthesis of core-shell-shell nanoparticles with Pt and silver (Ag) residing respectively in the core and inner shell regions, which are then agitated with saturated sodium chloride (NaCl) solution to eliminate the Ag component from the inner shell region, leading to the formation of bimetallic nanoparticles with a cage-bell structure, defined as a movable Pt core enclosed by a metal shell with nano-channels, which exhibit superior methanol-tolerant property in catalyzing oxygen reduction reaction due to the different diffusion behaviour of methanol and oxygen in the porous metal shell of cage-bell structured nanoparticles. In particular, the use of remarkably inexpensive chemical agent (NaCl) to promote the formation of cage-bell structured particles containing a wide spectrum of metal shells highlights its engineering merit to produce highly selective electrocatalysts on a large scale for the cathode reaction of direct methanol fuel cells. PMID:26578100

  2. A small-scale air-cathode microbial fuel cell for on-line monitoring of water quality.

    PubMed

    Di Lorenzo, Mirella; Thomson, Alexander R; Schneider, Kenneth; Cameron, Petra J; Ieropoulos, Ioannis

    2014-12-15

    The heavy use of chemicals for agricultural, industrial and domestic purposes has increased the risk of freshwater contamination worldwide. Consequently, the demand for efficient new analytical tools for on-line and on-site water quality monitoring has become particularly urgent. In this study, a small-scale single chamber air-cathode microbial fuel cell (SCMFC), fabricated by rapid prototyping layer-by-layer 3D printing, was tested as a biosensor for continuous water quality monitoring. When acetate was fed as the rate-limiting substrate, the SCMFC acted as a sensor for chemical oxygen demand (COD) in water. The linear detection range was 3-164 ppm, with a sensitivity of 0.05 μA mM(-1) cm(-2) with respect to the anode total surface area. The response time was as fast as 2.8 min. At saturating acetate concentrations (COD>164 ppm), the miniature SCMFC could rapidly detect the presence of cadmium in water with high sensitivity (0.2 μg l(-1) cm(-2)) and a lower detection limit of only 1 μg l(-1). The biosensor dynamic range was 1-25 μg l(-1). Within this range of concentrations, cadmium affected only temporarily the electroactive biofilm at the anode. When the SCMFCs were again fed with fresh wastewater and no pollutant, the initial steady-state current was recovered within 12 min. PMID:25005554

  3. Enhancing the methanol tolerance of platinum nanoparticles for the cathode reaction of direct methanol fuel cells through a geometric design

    NASA Astrophysics Data System (ADS)

    Feng, Yan; Ye, Feng; Liu, Hui; Yang, Jun

    2015-11-01

    Mastery over the structure of nanoparticles might be an effective way to enhance their performance for a given application. Herein we demonstrate the design of cage-bell nanostructures to enhance the methanol tolerance of platinum (Pt) nanoparticles while remaining their catalytic activity for oxygen reduction reaction. This strategy starts with the synthesis of core-shell-shell nanoparticles with Pt and silver (Ag) residing respectively in the core and inner shell regions, which are then agitated with saturated sodium chloride (NaCl) solution to eliminate the Ag component from the inner shell region, leading to the formation of bimetallic nanoparticles with a cage-bell structure, defined as a movable Pt core enclosed by a metal shell with nano-channels, which exhibit superior methanol-tolerant property in catalyzing oxygen reduction reaction due to the different diffusion behaviour of methanol and oxygen in the porous metal shell of cage-bell structured nanoparticles. In particular, the use of remarkably inexpensive chemical agent (NaCl) to promote the formation of cage-bell structured particles containing a wide spectrum of metal shells highlights its engineering merit to produce highly selective electrocatalysts on a large scale for the cathode reaction of direct methanol fuel cells.

  4. Carbon supported Ag nanoparticles as high performance cathode catalyst for H2/O2 anion exchange membrane fuel cell

    PubMed Central

    Xin, Le; Zhang, Zhiyong; Wang, Zhichao; Qi, Ji; Li, Wenzhen

    2013-01-01

    A solution phase-based nanocapsule method was successfully developed to synthesize non-platinum metal catalyst—carbon supported Ag nanoparticles (Ag/C). XRD patterns and TEM image show Ag nanoparticles with a small average size (5.4 nm) and narrow size distribution (2–9 nm) are uniformly dispersed on the carbon black Vulcan XC-72 support. The intrinsic activity and pathway of oxygen reduction reaction (ORR) on the Ag/C and commercial Pt/C were investigated using rotating ring disk electrode (RRDE) tests at room temperature. The results confirmed that the 4-electron pathway of ORR proceeds on small Ag nanoparticles, and showed comparable ORR activities on the self-prepared Ag/C and a commercial Pt/C. A single H2-O2 anion exchange membrane fuel cell (AEMFC) with the Ag/C cathode catalyst exhibited an open circuit potential of 0.98 V and a peak power density of 190 mW/cm2 at 80°C. PMID:24790944

  5. Enhancing the methanol tolerance of platinum nanoparticles for the cathode reaction of direct methanol fuel cells through a geometric design.

    PubMed

    Feng, Yan; Ye, Feng; Liu, Hui; Yang, Jun

    2015-01-01

    Mastery over the structure of nanoparticles might be an effective way to enhance their performance for a given application. Herein we demonstrate the design of cage-bell nanostructures to enhance the methanol tolerance of platinum (Pt) nanoparticles while remaining their catalytic activity for oxygen reduction reaction. This strategy starts with the synthesis of core-shell-shell nanoparticles with Pt and silver (Ag) residing respectively in the core and inner shell regions, which are then agitated with saturated sodium chloride (NaCl) solution to eliminate the Ag component from the inner shell region, leading to the formation of bimetallic nanoparticles with a cage-bell structure, defined as a movable Pt core enclosed by a metal shell with nano-channels, which exhibit superior methanol-tolerant property in catalyzing oxygen reduction reaction due to the different diffusion behaviour of methanol and oxygen in the porous metal shell of cage-bell structured nanoparticles. In particular, the use of remarkably inexpensive chemical agent (NaCl) to promote the formation of cage-bell structured particles containing a wide spectrum of metal shells highlights its engineering merit to produce highly selective electrocatalysts on a large scale for the cathode reaction of direct methanol fuel cells. PMID:26578100

  6. A Study Of Electrochemical Performance And Degradation Of Solid Oxide Fuel Cell Cathodes Based On Three Dimensional Tomography

    NASA Astrophysics Data System (ADS)

    Yakal-Kremski, Kyle

    Several different solid oxide fuel cell (SOFC) cathodes, produced using varied processing conditions and subsequently subjected to different thermal ageing and current loading conditions, were assessed. The resultant electrode performance was evaluated by electrochemical impedance spectroscopy and the results interpreted through extensive use of focused ion beam---scanning electron microscope (FIB-SEM) 3D tomography. Two, three, and four phase segmentation of tomographic data sets was achieved by use of several segmentation techniques, including thresholding, EM/MPM, and a method developed for this work, called self-similar region isolation segmentation. (La0.8Sr0.2)0.98MnO3-delta-(Y 2O3)0.08(ZrO2)0.92 (LSM-YSZ) symmetrical cells were manufactured and subjected to various firing temperatures, intermediate temperature anneals, and run in a novel mode of switching current to simulate operation in a reversible solid oxide cell. FIB-SEM was used to determine the reason(s) behind the observed minimum in RP at a firing temperature of 1175°C. Annealing of LSM-YSZ cells was used to simulate long times at operating temperature, with FIB-SEM used as a tool to observe changes that occur at high temperature, as compared to temperatures closer to those used in normal fuel cell operation. FIB-SEM data sets were used to map locations of metallic Ag impurity deposits in LSM-YSZ cells with time at current. La0.6Sr0.4Co0.8Fe0.2O 3-lambda (LSCF) electrodes in symmetrical cells were life tested at SOFC operating temperature both with and without constant current. While the LSCF electrodes annealed without current showed a substantial increase in polarization resistance with time, those tested with current were essentially stable. FIB-SEM 3D image analysis before and after the life tests showed that there were no significant microstructural changes. X-ray photoelectron spectroscopy (XPS) analysis was carried out to observe if changes in LSCF surface composition, such as Sr segregation

  7. A fundamental study of chromium deposition on solid oxide fuel cell cathode materials

    NASA Astrophysics Data System (ADS)

    Tucker, Michael C.; Kurokawa, Hideto; Jacobson, Craig P.; De Jonghe, Lutgard C.; Visco, Steven J.

    Chromium contamination of metal oxides and SOFC cathode catalysts is studied in the range 700-1000 °C. Samples are exposed to a moist air atmosphere saturated with volatile Cr species in the presence and absence of direct contact between the sample and ferritic stainless steel powder. Chromium contamination of the samples is observed to occur via two separate pathways: surface diffusion from the stainless steel surface and vapor deposition from the atmosphere. Surface diffusion dominates in all cases. Surface diffusion is found to be a significant source of Cr contamination for LSM and LSCF at 700, 800, and 1000 °C. Vapor deposition of Cr onto LSCF was observed at each of these temperatures, but was not observed for LSM at 700 or 800 °C. Comparison of the behavior for LSM, LSCF, and single metal oxides suggests that Mn and Co, respectively, are responsible for the Cr contamination of these catalysts.

  8. The development of catalytic performance by coating Pt-Ni on CMI7000 membrane as a cathode of a microbial fuel cell.

    PubMed

    Cetinkaya, Afsin Y; Ozdemir, Oguz Kaan; Koroglu, Emre Oguz; Hasimoglu, Aydin; Ozkaya, Bestami

    2015-11-01

    Performance of cathode materials in microbial fuel cell (MFC) from dairy wastewater has been investigated in laboratory tests. Both cyclic voltammogram experiments and MFC tests showed that Pt-Ni cathode much better than pure Pt cathode. MFC with platinum cathode had the maximum power density of 0.180 W m(-2) while MFC with Pt:Ni (1:1) cathode produced the maximum power density of 0.637 W m(-2), even if the mass mixing ratio of Pt is lower in the alloy were used. The highest chemical oxygen demand (COD) removal efficiency was around 82-86% in both systems. The cyclic voltammogram (CV) analyses show that Pt:Ni (1:1) offers higher specific surface area than Pt alone does. X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM) results showed that entire Pt:Ni (1:1) alloys can reduce the oxygen easily than pure platinum, even though less precious metal amount. The main outcome of this study is that Pt-Ni, may serve as a alternative catalyst in MFC applications. PMID:26116447

  9. Fuel Cell Animation

    NASA Video Gallery

    Oxygen (O2) and hydrogen (H2) migrate into the fuel cell. The oxygen molecules migrate to the catalyst where the anode strips some of their electrons. This allows them to move through the cathode a...

  10. Design and processing parameters of La2NiO4+δ-based cathode for anode-supported planar solid oxide fuel cells (SOFCs)

    NASA Astrophysics Data System (ADS)

    Jeong, Changwoo; Lee, Jong-Heun; Park, Mansoo; Hong, Jongsup; Kim, Hyoungchul; Son, Ji-Won; Lee, Jong-Ho; Kim, Byung-Kook; Yoon, Kyung Joong

    2015-11-01

    The Ruddlesden-Popper phase lanthanum nickelate, La2NiO4+δ (LNO), is successfully implemented as a strontium- and cobalt-free cathode in anode-supported planar solid oxide fuel cells (SOFCs) through systematic optimization of materials, processing and structural parameters. Chemical interaction between LNO and gadolinia-doped ceria (GDC), which leads to phase decomposition of composite cathode and significant deterioration of the electrochemical performance, is prevented by lowering the processing temperature below 1000 °C. For low-temperature fabrication process, the thermo-mechanical stability at the interface is secured by modifying the powder characteristics and inserting the adhesive interlayer. The issues associated with the electrical contact and current distribution are resolved by incorporating the perovskite La0.6Sr0.4CoO3-δ (LSC) as a current collecting layer, and the thermal stresses at the interface are relieved by constructing a gradient electrode structure. Consequently, the optimized anode-supported planar cell with an LNO-based cathode exhibits superior performance compared to the reference cell with a conventional cathode in the intermediate-temperature range, which is attributed to the enhanced interfacial process and surface reaction kinetics based on impedance analysis.

  11. Hard X-ray Fluorescence Measurements of Heteroepitaxial Solid Oxide Fuel Cell Cathode Materials

    SciTech Connect

    Davis, Jacob N.; Miara, Lincoln J.; Saraf, Laxmikant V.; Kaspar, Tiffany C.; Gopalan, Srikanth; Pal, Uday B.; Woicik, Joseph C.; Basu, Soumendra N.; Ludwig, Karl F.

    2012-12-01

    Commonly, SOFCs are operated at high temperatures (above 800°C). At these temperatures expensive housing is needed to contain an operating stack as well as coatings to contain the oxidation of the metallic interconnects. Lowering the temperature of an operating device would allow for more conventional materials to be used, thus lowering overall cost. Understanding the surface chemical states of cations in the surface of the SOFC cathode is vital to designing a system that will perform well at lower temperatures. The samples studied were grown by pulsed laser deposition (PLD) at the Environmental Molecular Sciences Laboratory (EMSL) at Pacific Northwest National Laboratory (PNNL). 20% strontium doped lanthanum manganite (LSM-20) was grown on YSZ and NGO (neodymium gallate). The films on YSZ have a fiber texture. LSM-20 on NGO is heteroepitaxial. Lanthanum strontium cobalt ferrite (LSCF-6428) films were grown on LAO and YSZ with a GDC barrier layer. Total X-ray Reflection Fluorescence (TXRF) was used to depth profile the samples. In a typical experiment, the angle of the incident beam is varied though the critical angle. Below the critical angle, the x-ray decays as an evanescent wave and will only penetrate the top few nanometers. TXRF experiments done on LSM films have suggested strontium segregates to the surface and form strontium enriched nanoparticles (1). It should be pointed out that past studies have focused on 30% strontium A-site doping, but this project uses 20% strontium doped lanthanum manganite. XANES and EXAFS data were taken as a function of incoming angle to probe composition as a function of depth. XANES spectra can be difficult to analyze fully. For other materials density functional theory calculations compared to near edge measurements have been a good way to understand the 3d valence electrons (2).

  12. ACTIVE CATHODES FOR SUPER-HIGH POWER DENSITY SOLID OXIDE FUEL CELLS THROUGH SPACE CHARGE EFFECTS

    SciTech Connect

    Anil V. Virkar

    2004-03-08

    This report summarizes the work done during the fifth quarter of the project. Effort was directed in two areas: (1) Further development of the model on the role of connectivity on ionic conductivity of porous bodies, including the role of grain boundaries and space charge region. (2) Fabrication of porous samaria-doped ceria (SDC) and investigation of the effect of thermal treatment on its conductivity. The model developed accounts for transport through three regions: (a) Transport through the bulk of the grain, RI, which includes parallel transport through space charge region. (b) Transport through the space charge region adjacent to the neck (grain boundary), RII. (c) Transport through the structural part of the neck (grain boundary), RIII. The work on the model development involves calculation RI, RII, RIII, and the sum of these three terms, which is the total resistance, as a function of the grain radius ranging between 0.5 and 5 microns and as a function of the relative neck size, described in terms of the angle theta, ranging between 5 and 45{sup o}. Three values of resistivity of the space charge region were chosen; space charge resistivity greater than grain resistivity, equal to grain resistivity, and lower than grain resistivity. Experimental work was conducted on samaria (Sm{sub 2}O{sub 3})-doped ceria (SDC) samples of differing porosity levels, before and after thermal treatment at 1200 C. The conductivity in the annealed samples was lower, consistent with enhanced Debye length. This shows the important role of space charge on ionic transport, and its implications concerning cathode polarization.

  13. Study of acetylene poisoning of Pt cathode on proton exchange membrane fuel cell spatial performance using a segmented cell system

    NASA Astrophysics Data System (ADS)

    Reshetenko, Tatyana V.; St-Pierre, Jean

    2015-08-01

    Acetylene is a welding fuel and precursor for organic synthesis, which requires considering it to be a possible air pollutant. In this work, the spatial performance of a proton exchange membrane fuel cell exposed to 300 ppm C2H2 and different operating currents was studied with a segmented cell system. The injection of C2H2 resulted in a cell performance decrease and redistribution of segments' currents depending on the operating conditions. Performance loss was 20-50 mV at 0.1-0.2 A cm-2 and was accompanied by a rapid redistribution of localized currents. Acetylene exposure at 0.4-1.0 A cm-2 led to a sharp voltage decrease to 0.07-0.13 V and significant changes in current distribution during a transition period, when the cell reached a voltage of 0.55-0.6 V. A recovery of the cell voltage was observed after stopping the C2H2 injection. Spatial electrochemical impedance spectroscopy (EIS) data showed different segments' behavior at low and high currents. It was assumed that acetylene oxidation occurs at high cell voltage, while it reduces at low cell potential. A detailed analysis of the current density distribution, its correlation with EIS data and possible C2H2 oxidation/reduction mechanisms are presented and discussed.

  14. Use of the Simple Infiltrated Microstructure Polarization Loss Estimation (SIMPLE) model to describe the performance of nano-composite solid oxide fuel cell cathodes.

    PubMed

    Nicholas, Jason D; Wang, Lin; Call, Ann V; Barnett, Scott A

    2012-11-28

    Nano-composite Sm(0.5)Sr(0.5)CoO(3-δ) (SSC)-Ce(0.9)Gd(0.1)O(1.95) (GDC) and La(0.6)Sr(0.4)Co(0.8)Fe(0.2)O(3-δ) (LSCF)-GDC Solid Oxide Fuel Cell (SOFC) cathodes with various infiltrate loading levels were prepared through multiple nitrate solution infiltrations into porous GDC ionic conducting (IC) scaffolds. Microstructural analyses indicated that the average SSC and average LSCF hemispherical particle radii remained roughly constant, at 25 nm, across multiple infiltration-gelation-firing sequences. Comparisons between symmetric cell polarization resistance measurements and Simple Infiltrated Microstructure Polarization Loss Estimation (SIMPLE) model predictions showed that the SIMPLE model was able to predict the performance of heavily infiltrated SSC-GDC and LSCF-GDC cathodes with accuracies better than 55% and 70%, respectively (without the use of fitting parameters). Poor electronic conduction between mixed ionic electronic conducting (MIEC) infiltrate particles was found in lightly infiltrated cathodes. Since these electronic conduction losses were not accounted for by the SIMPLE model, larger discrepancies between the SIMPLE-model-predicted and measured polarization resistances were observed for lightly infiltrated cathodes. This work demonstrates that the SIMPLE model can be used to quickly determine the lowest possible polarization resistance of a variety of infiltrated MIEC on IC nano-composite cathodes (NCC's) when the NCC microstructure and an experimentally-applicable set of intrinsic MIEC oxygen surface resistances and IC bulk oxygen conductivities are known. Currently, this model is the only one capable of predicting the polarization resistance of heavily infiltrated MIEC on IC NCC's as a function of temperature, cathode thickness, nano-particle size, porosity, and composition. PMID:23060257

  15. Microbial fuel cells

    SciTech Connect

    Nealson, Kenneth H; Pirbazari, Massoud; Hsu, Lewis

    2013-04-09

    A microbial fuel cell includes an anode compartment with an anode and an anode biocatalyst and a cathode compartment with a cathode and a cathode biocatalyst, with a membrane positioned between the anode compartment and the cathode compartment, and an electrical pathway between the anode and the cathode. The anode biocatalyst is capable of catalyzing oxidation of an organic substance, and the cathode biocatalyst is capable of catalyzing reduction of an inorganic substance. The reduced organic substance can form a precipitate, thereby removing the inorganic substance from solution. In some cases, the anode biocatalyst is capable of catalyzing oxidation of an inorganic substance, and the cathode biocatalyst is capable of catalyzing reduction of an organic or inorganic substance.

  16. Investigation of Sm 0.5Sr 0.5CoO 3- δ/Co 3O 4 composite cathode for intermediate-temperature solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Zhang, Haizhou; Liu, Huanying; Cong, You; Yang, Weishen

    The electrochemical properties of an Sm 0.5Sr 0.5CoO 3- δ/Co 3O 4 (SSC/Co 3O 4) composite cathode were investigated as a function of the cathode-firing temperature, SSC/Co 3O 4 composition, oxygen partial pressure and CO 2 treatment. The results showed that the composite cathodes had an optimal microstructure at a firing temperature of about 1100 °C, while the optimum Co 3O 4 content in the composite cathode was about 40 wt.%. A single cell with this optimized C 40-1100 cathode exhibited a very low polarization resistance of 0.058 Ω cm 2, and yielded a maximum power density of 1092 mW cm -2 with humidified hydrogen fuel and air oxidant at 600 °C. The maximum power density reached 1452 mW cm -2 when pure oxygen was used as the oxidant for a cell with a C 30-1100 cathode operating at 600 °C due to the enhanced open-circuit voltage and accelerated oxygen surface-exchange rate. X-ray diffraction and thermogravimetric analyses, as well as the electrochemical properties of a CO 2-treated cathode, also implied promising applications of such highly efficient SSC/Co 3O 4 composite cathodes in single-chamber fuel cells with direct hydrocarbon fuels operating at temperatures below 500 °C.

  17. REACTIVE FORCE FIELDS FOR Y-DOPED BaZrO3 ELECTROLYTE AND NI-ANODE. POTENTIAL CATHODE MATERIALS FOR APPLICATION IN PROTON CERAMIC FUEL CELLS

    SciTech Connect

    Boris Merinov; Adri van Duin; Sossina Haile; William A. Goddard III

    2004-10-30

    Based on quantum mechanical data obtained for the Y-doped BaZrO{sub 3} electrolyte and Ni-anode Reactive Force Field parameters have been developed for further molecular dynamics simulations of the proton diffusion and electrode/electrolyte interfaces. Electronic and atomic structures of different terminations of the (001) BaZrO{sub 3} surface have been studied using first-principles calculations. Several potential cathode materials for the Y-doped BaZrO{sub 3} system were synthesized via glycine nitrate combustion method. Of the five potential cathode materials examined BaZr{sub 0.40}Pr{sub 0.40}Gd{sub 0.20}O{sub 3} and BaZr{sub 0.60}Y{sub 0.20}Co{sub 0.20}O{sub 3} appear to be the most promising for further applications in proton ceramic fuel cells. Fuel cell test of a Y-doped BaZrO{sub 3} thin film using platinum ink for both electrodes have been performed. The obtained results shows that a robust method for fabricating crack-free thin membranes, as well as methods for sealing anode and cathode chambers, have successfully been developed.

  18. Preparation and electrochemical performance of Pr2Ni0.6Cu0.4O4 cathode materials for intermediate-temperature solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Wang, Yifang; Cheng, Jigui; Jiang, Qiumei; Yang, Junfang; Gao, Jianfeng

    2011-03-01

    Cathode material Pr2Ni0.6Cu0.4O4 (PNCO) for intermediate-temperature solid oxide fuel cells (IT-SOFCs) is synthesized by a glycine-nitrate process using Pr6O11, NiO, and CuO powders as raw materials. X-ray diffraction analysis reveals that nanosized Pr2Ni0.6Cu0.4O4 powders with K2NiF4-type structure can be obtained from calcining the precursors at 1000 °C for 3 h. Scanning electron microscopy shows that the sintered PNCO samples have porous microstructure with a porosity of more than 30% and grain size smaller than 2 μm. A maximum conductivity of 130 S cm-1 is obtained from the PNCO samples sintered at 1050 °C. A single fuel cell based on the PNCO cathode with 30 μm Sm0.2Ce0.8O1.9 (SCO) electrolyte film and a 1 mm NiO-SCO anode support is constructed. The ohmic resistance of the single Ni-SCO/SCO/PNCO cell is 0.08 Ω cm2 and the area specific resistance (ASR) value is 0.19 Ω cm2 at 800 °C. Cell performance was also tested using humidified hydrogen (3% H2O) as fuel and air as oxidant. The single cell shows an open circuit voltage of 0.82 V and 0.75 V at 700 °C and 800 °C, respectively. Maximum power density is 238 mW cm-2 and 308 mW cm-2 at 700 °C and 800 °C, respectively. The preliminary tests have shown that Pr2Ni1-xCuxO4materials can be a good candidate for cathode materials of IT-SOFCs.

  19. Rejuvenation of automotive fuel cells

    DOEpatents

    Kim, Yu Seung; Langlois, David A.

    2016-08-23

    A process for rejuvenating fuel cells has been demonstrated to improve the performance of polymer exchange membrane fuel cells with platinum/ionomer electrodes. The process involves dehydrating a fuel cell and exposing at least the cathode of the fuel cell to dry gas (nitrogen, for example) at a temperature higher than the operating temperature of the fuel cell. The process may be used to prolong the operating lifetime of an automotive fuel cell.

  20. Overcoming phase instability of RBaCo2O5+ (R = Y and Ho) by Sr substitution for application as cathodes in solid oxide fuel cells

    SciTech Connect

    Kim, Jung-Hyun; Young Nam, Kim; Bi, Zhonghe; Manthiram, Arumugam; Paranthaman, Mariappan Parans; Huq, Ashfia

    2013-01-01

    Phase instabilities of the RBaCo2O5+ (R = Y and Ho) layered-perovskites and their decompositions into RCoO3 and BaCoO3-z at 800 oC in air were investigated. This will restrict their high temperature applications such as cathodes in solid oxide fuel cell (SOFC). However, appropriate amount of Sr substitution ( 60 % for R = Y and 70 % for R = Ho) for Ba successfully stabilized the R(Ba1-xSrx)Co2O5+ phase at elevated temperatures. This can be explained by decreasing oxygen vacancies at R-O layer, decreasing R-O bonding length, and consequent improvement of structural integrity. In addition, the Sr substitution (x = 0.6 - 1.0) for Ba provided added benefit with respect to the chemical stability against Ce0.8Gd0.2O1.9 (GDC) electrolyte, which is a critical requirement for the cathodes in SOFC. Among the various compositions investigated, the Y(Ba0.3Sr0.7)Co2O5+ + GDC composite cathode delivered the optimum electrochemical performances with a stable phase demonstrating the potential as a cathode in SOFC.

  1. Effect of calcination temperature on oxidation state of cobalt in calcium cobaltite and relevant performance as intermediate-temperature solid oxide fuel cell cathodes

    NASA Astrophysics Data System (ADS)

    Yu, Shancheng; He, Shoucheng; Chen, Han; Guo, Lucun

    2015-04-01

    Calcium cobaltite materials are synthesized by calcining the mixture of CaCO3 and Co3O4 with the Ca: Co ratio of 3:4. The reactivity of CaCO3 with Co3O4 is evaluated by thermogravimetric analysis (TGA), X-ray powder diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). Thermal expansion coefficient (TEC), electrical conductivity and electrochemical performance as intermediate-temperature solid oxide fuel cells (IT-SOFCs) cathode of as-prepared materials are characterized. The experiment results show that simultaneous decomposition of CaCO3 with calcium cobaltite formation occurs at 650-900 °C. The average valence for Co ions of calcium cobaltite increases with temperature in the range of 750-900 °C, involved in the formation of the compounds Ca3Co4O9 and Ca9Co12O28 at 800 and 900 °C, respectively. The performance of calcium cobaltite cathodes applied in IT-SOFCs is significantly effected by the oxidation state of cobalt ions. As a result, Ca9Co12O28 cathode has a lower area specific resistance (e.g. 41.8% lower at 800 °C) and higher peak power density (e.g. 45.0% higher at 800 °C) than the cathode of Ca3Co4O9.

  2. Effect of chemically modified Vulcan XC-72R on the performance of air-breathing cathode in a single-chamber microbial fuel cell.

    PubMed

    Duteanu, N; Erable, B; Senthil Kumar, S M; Ghangrekar, M M; Scott, K

    2010-07-01

    The catalytic activity of modified carbon powder (Vulcan XC-72R) for oxygen reduction reaction (ORR) in an air-breathing cathode of a microbial fuel cell (MFC) has been investigated. Chemical modification was carried out by using various chemicals, namely 5% nitric acid, 0.2N phosphoric acid, 0.2N potassium hydroxide and 10% hydrogen peroxide. Electrochemical study was performed for ORR of these modified carbon materials in the buffer solution pH range of 6-7.5 in the anodic compartment. Although, these treatments influenced the surface properties of the carbon material, as evident from the SEM-EDX analysis, treatment with H(2)PO(4), KOH, and H(2)O(2) did not show significant activity during the electrochemical test. The HNO(3) treated Vulcan demonstrated significant ORR activity and when used in the single-chamber MFC cathode, current densities (1115mA/m(2), at 5.6mV) greater than those for a Pt-supported un-treated carbon cathode were achieved. However, the power density for the latter was higher. Such chemically modified carbon material can be a cheaper alternative for expensive platinum catalyst used in MFC cathode construction. PMID:20171090

  3. High temperature phase stabilities and electrochemical properties of InBaCo4-xZnxO7 cathodes for intermediate temperature solid oxide fuel cells

    SciTech Connect

    Kim, Jung-Hyun; Young Nam, Kim; Bi, Zhonghe; Manthiram, Arumugam; Paranthaman, Mariappan Parans; Huq, Ashfia

    2011-01-01

    InBaCo4-xZnxO7 oxides have been synthesized and characterized as cathode materials for intermediate temperature solid oxide fuel cells (IT-SOFC). The effect of Zn substitution for Co on the structure, phase stability, thermal expansion, and electrochemical properties of the InBaCo4-xZnxO7 has been investigated. The increase in the Zn content from x = 1 to 1.5 improves the high temperature phase stability at 600 oC and 700 oC for 100 h, and chemical stability against a Gd0.2Ce0.8O1.9 (GDC) electrolyte. Thermal expansion coefficient (TEC) values of the InBaCo4-xZnxO7 (x = 1, 1.5, 2) specimens were determined to be 8.6 10-6 9.6 10-6 /oC in the range of 80 900 oC, which provides good thermal expansion compatibility with the standard SOFC electrolyte materials. The InBaCo4-xZnxO7 + GDC (50:50 wt. %) composite cathodes exhibit improved cathode performances compared to those obtained from the simple InBaCo4-xZnxO7 cathodes due to the extended triple-phase boundary (TPB) and enhanced oxide-ion conductivity through the GDC portion in the composites.

  4. Water vapor exchange system using a hydrophilic microporous layer coated gas diffusion layer to enhance performance of polymer electrolyte fuel cells without cathode humidification

    NASA Astrophysics Data System (ADS)

    Kitahara, Tatsumi; Nakajima, Hironori; Morishita, Masashi

    2012-09-01

    Polymer electrolyte fuel cells (PEFCs) generally have external humidifiers to supply humidified hydrogen and oxidant gases, which prevents dehydration of the membrane. If a PEFC could be operated without humidification, then external humidifiers could be removed, which would result in a simplified PEFC system with increased total efficiency and reduced cost. A water vapor exchange system installed in the PEFC was developed to enhance the performance without cathode humidification. A gas diffusion layer (GDL) coated with a hydrophobic microporous layer (MPL) was used at the active reaction area. A GDL coated with a hydrophilic MPL consisting of polyvinyl alcohol (PVA) and carbon black was used at the cathode water vapor exchange area to promote water transport from the cathode outlet wet gas to the anode inlet dry gas. This is effective for reducing the IR overpotential, which enhances the PEFC performance. Appropriate enhancement of hydrophilicity by increasing the PVA content in the MPL to 20 mass% is effective to increase water transport from the cathode to anode. At the anode water exchange area, a GDL without the hydrophilic MPL is effective to promote water transport from the water exchange area to the active reaction area, which enhances the PEFC performance.

  5. Bifunctional quaternary ammonium compounds to inhibit biofilm growth and enhance performance for activated carbon air-cathode in microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Li, Nan; Liu, Yinan; An, Jingkun; Feng, Cuijuan; Wang, Xin

    2014-12-01

    The slow diffusion of hydroxyl out of the catalyst layer as well as the biofouling on the surface of cathode are two problems affecting power for membrane-less air-cathode microbial fuel cells (MFCs). In order to solve both of them simultaneously, here we simply modify activated carbon air-cathode using a bifunctional quaternary ammonium compound (QAC) by forced evaporation. The maximum power density reaches 1041 ± 12 mW m-2 in an unbuffered medium (0.5 g L-1 NaCl), which is 17% higher than the control, probably due to the accelerated anion transport in the catalyst layer. After 2 months, the protein content reduced by a factor of 26 and the power density increases by 33%, indicating that the QAC modification can effectively inhibit the growth of cathodic biofilm and improve the stability of performance. The addition of NaOH and QAC epoxy have a negative effect on power production due to the clogging of pores in catalyst layer.

  6. The addition of ortho-hexagon nano spinel Co3O4 to improve the performance of activated carbon air cathode microbial fuel cell.

    PubMed

    Ge, Baochao; Li, Kexun; Fu, Zhou; Pu, Liangtao; Zhang, Xi

    2015-11-01

    Commercial Co3O4 and ortho-hexagon spinel nano-Co3O4 (OHSNC) were doped in the AC at a different percentage (5%, 10% and 15%) to enhance the performance of microbial fuel cell (MFC). The maximum power density of MFC with 10% OHSNC doped cathode was 1500±14 mW m(-2), which was 97.36% and 41.24% higher than that with the bare AC air cathode and commercial Co3O4 respectively. The electrocatalytic behavior for their better performance was discussed in detail with the help of various structural and electrochemical techniques. The OHSNC was characterized via X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM). The results showed that the improved performance owed to the enhancement of both kinetics activity and the number of electron transfer in the ORR, and the internal resistance was largely reduced. Therefore, OHSNC was proved to be an excellent cathodic catalyst in AC air cathode MFC. PMID:26112347

  7. An efficient electrocatalyst as cathode material for solid oxide fuel cells: BaFe0·95Sn0·05O3-δ

    NASA Astrophysics Data System (ADS)

    Dong, Feifei; Ni, Meng; He, Wei; Chen, Yubo; Yang, Guangming; Chen, Dengjie; Shao, Zongping

    2016-09-01

    The B-site substitution with the minor amount of tin in BaFeO3-δ parent oxide is expected to stabilize a single perovskite lattice structure. In this study, a composition of BaFe0·95Sn0·05O3-δ (BFS) as a new cathode material for intermediate-temperature solid oxide fuel cells (IT-SOFCs) is synthesized and characterized. Special attention is paid to the exploration of some basic properties including phase structure, oxygen non-stoichiometry, electrical conductivity, oxygen bulk diffusion coefficient, and surface exchange coefficient, which are of significant importance to the electrochemical activity of cathode materials. BFS holds a single cubic perovskite structure over temperature range of cell operation, determined by in-situ X-ray diffraction and scanning transmission electron microscope. A high oxygen vacancy concentration at cell operating temperatures is observed by combining thermo-gravimetric data and iodometric titration result. Furthermore, electrical conductivity relaxation measurement illustrates the fast oxygen bulk diffusion and surface exchange kinetics. Accordingly, testing cells based on BFS cathode material demonstrate the low polarization resistance of 0.033 Ω cm2 and high peak power density of 1033 mW cm-2 at 700 °C, as well as a relatively stable long-term operation for ∼300 h. The results obtained suggest that BFS perovskite oxide holds a great promise as an oxygen reduction electrocatalyst for IT-SOFCs.

  8. Porous nitrogen-doped carbon nanosheet on graphene as metal-free catalyst for oxygen reduction reaction in air-cathode microbial fuel cells.

    PubMed

    Wen, Qing; Wang, Shaoyun; Yan, Jun; Cong, Lijie; Chen, Ye; Xi, Hongyuan

    2014-02-01

    Porous nitrogen-doped carbon nanosheet on graphene (PNCN) was used as an alternative cathode catalyst for oxygen reduction reaction (ORR) in air-cathode microbial fuel cells (MFCs). Here we report a novel, low-cost, scalable, synthetic method for preparation of PNCN via the carbonization of graphite oxide-polyaniline hybrid (GO-PANI), subsequently followed by KOH activation treatment. Due to its high concentration of nitrogen and high specific surface area, PNCN exhibited an excellent catalytic activity for ORR. As a result, the maximum power density of 1159.34mWm(-2) obtained with PNCN catalyst was higher than that of Pt/C catalyst (858.49mWm(-2)) in a MFC. Therefore, porous nitrogen-doped carbon nanosheet could be a good alternative to Pt catalyst in MFCs. PMID:24239870

  9. Bipolar fuel cell

    DOEpatents

    McElroy, James F.

    1989-01-01

    The present invention discloses an improved fuel cell utilizing an ion transporting membrane having a catalytic anode and a catalytic cathode bonded to opposite sides of the membrane, a wet-proofed carbon sheet in contact with the cathode surface opposite that bonded to the membrane and a bipolar separator positioned in electrical contact with the carbon sheet and the anode of the adjacent fuel cell. Said bipolar separator and carbon sheet forming an oxidant flowpath, wherein the improvement comprises an electrically conductive screen between and in contact with the wet-proofed carbon sheet and the bipolar separator improving the product water removal system of the fuel cell.

  10. Significant performance improvement in terms of reduced cathode flooding in polymer electrolyte fuel cell using a stainless-steel microcoil gas flow field

    NASA Astrophysics Data System (ADS)

    Tanaka, Shiro; Shudo, Toshio

    2014-02-01

    Flooding at the cathode is the greatest barrier to increasing the power density of polymer electrolyte fuel cells (PEFCs) and using them at high current densities. Previous studies have shown that flooding is caused by water accumulation in the gas diffusion layer, but only a few researchers have succeeded in overcoming this issue. In the present study, microcoils are used as the gas flow channel as well as the gas diffuser directly on the microporous layer (MPL), without using a conventional carbon-fiber gas diffusion layer (GDL), to enable flood-free performance. The current-voltage curves show flooding-free performance even under low air stoichiometry. However, the high-frequency resistance (HFR) in this case is slightly higher than that in grooved flow channels and GDLs. This is due to the differences in the electron conduction path, and the in-plane electron conductivity in the MPL is the key to enhancing the microcoil fuel cell performance.

  11. Electrorefining cell with parallel electrode/concentric cylinder cathode

    SciTech Connect

    Gay, E.C.; Miller, W.E.; Laidler, J.J.

    1995-12-31

    A cathode-anode arrangement for use in an electrolytic cell is adapted for electrochemically refining spent nuclear fuel from a nuclear reactor and recovering purified uranium and a mixture of uranium and plutonium for use as a fresh blanket and core fuel in a nuclear reactor. The arrangement includes a plurality of inner anodic dissolution baskets that are each attached to a respective support rod, are submerged in a molten lithium halide salt, and are rotationally displaced. An inner hollow cylindrical-shaped cathode is concentrically disposed about the inner anodic dissolution baskets. Concentrically disposed about the inner cathode in a spaced manner are a plurality of outer anodic dissolution baskets, while an outer hollow cylindrical-shaped cathode is disposed about the outer anodic dissolution baskets. Uranium is deposited from the anode baskets in a uniform cylindrical shape on the inner and outer cathode cylinders by rotating the anode baskets within the molten lithium halide salt. Scrapers located on each anode basket abrade and remove the spent fuel deposits on the surfaces of the inner and outer cathode cylinders, with the spent fuel falling to the bottom of the cell for removal. Cell resistance is reduced and uranium collection efficiency enhanced by increasing the electrode area and reducing the anode-cathode spacing for enhanced trapping and recovery of uranium dendrites scraped off of the cylindrical cathodes which may be greater in number than two.

  12. Effects of short-side-chain perfluorosulfonic acid ionomers as binders on the performance of low Pt loading fuel cell cathodes

    NASA Astrophysics Data System (ADS)

    Park, Young-Chul; Kakinuma, Katsuyoshi; Uchida, Hiroyuki; Watanabe, Masahiro; Uchida, Makoto

    2015-02-01

    We investigated the effects of short-side-chain (SSC) perfluorosulfonic acid ionomers on the electrochemical properties, fuel cell performance and ionomer distribution of a highly dispersed Pt/GCB catalyst with a low Pt loading, 0.05 mg cm-2. The SSC ionomers in the cathode catalyst layers (CLs) resulted in an improvement of the Pt utilization (UPt) and Pt effectiveness (EfPt) values compared with those for the conventional long-side-chain (LSC) ionomer. Furthermore, the SSC ionomers with high ion exchange capacity (IEC), e.g., SSC-1.43 and SSC-1.80 ionomers, exhibited significantly enhanced cell performance under low to medium relative humidity (RH) conditions. This result is ascribed to the higher proton conductivity of the SSC ionomers and more effective trapping of water that is produced during the oxygen reduction reaction (ORR) than those of the LSC ionomer. It was also found that the SSC ionomers showed better continuity and uniformity on the Pt and carbon particles than the LSC ionomer, which might have led to improvement of both the mass transport and the proton-conducting network in the CLs. The application of the SSC ionomers as binders demonstrated an increase of the performance at the low Pt loading fuel cell cathode over a wide range of humidity.

  13. Corrosion free phosphoric acid fuel cell

    DOEpatents

    Wright, Maynard K.

    1990-01-01

    A phosphoric acid fuel cell with an electrolyte fuel system which supplies electrolyte via a wick disposed adjacent a cathode to an absorbent matrix which transports the electrolyte to portions of the cathode and an anode which overlaps the cathode on all sides to prevent corrosion within the cell.

  14. Fuel cell gas management system

    DOEpatents

    DuBose, Ronald Arthur

    2000-01-11

    A fuel cell gas management system including a cathode humidification system for transferring latent and sensible heat from an exhaust stream to the cathode inlet stream of the fuel cell; an anode humidity retention system for maintaining the total enthalpy of the anode stream exiting the fuel cell equal to the total enthalpy of the anode inlet stream; and a cooling water management system having segregated deionized water and cooling water loops interconnected by means of a brazed plate heat exchanger.

  15. (Y0.5In0.5)Ba(Co,Zn)4O7 cathodes with superior high-temperature phase stability for solid oxide fuel cells

    SciTech Connect

    Young Nam, Kim; Kim, Jung-Hyun; Paranthaman, Mariappan Parans; Manthiram, Arumugam; Huq, Ashfia

    2012-01-01

    (Y0.5In0.5)BaCo4-xZnxO7 (1.0 x 2.0) oxides crystallizing in a trigonal P31c structure have been synthesized and explored as cathode materials for solid oxide fuel cells (SOFC). At a given Zn content, the (Y0.5In0.5)BaCo4-xZnxO7 sample with 50 % Y and 50 % In exhibits much improved phase stability at intermediate temperatures (600 - 800 oC) compared to the samples with 100 % Y or In. However, the substitution of Zn for Co in (Y0.5In0.5)Ba(Co4-xZnx)O7 (1.0 x 2.0) decreases the amount of oxygen loss on heating, total electrical conductivity, and cathode performance in SOFC while providing good long-term phase stability at high temperatures. Among the various chemical compositions investigated in the (Y0.5In0.5)Ba(Co4-xZnx)O7 system, the (Y0.5In0.5)BaCo3ZnO7 sample offers a combination of good electrochemical performance and low thermal expansion coefficient (TEC) while maintaining superior phase stability at 600 800 oC for 100 h. Fuel cell performances of the (Y0.5In0.5)Ba(Co3Zn)O7 + Ce0.8Gd0.2O1.9 (GDC) (50 : 50 wt. %) composite cathodes collected with anode-supported single cell reveal a maximum power density value of 521 mW cm-2 at 700 oC.

  16. Nanoporous silver cathodes surface-treated by atomic layer deposition of Y:ZrO2 for high-performance low-temperature solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Li, You Kai; Choi, Hyung Jong; Kim, Ho Keun; Chean, Neoh Ke; Kim, Manjin; Koo, Junmo; Jeong, Heon Jae; Jang, Dong Young; Shim, Joon Hyung

    2015-11-01

    We report high-performance solid-oxide fuel cells (SOFCs) with silver cathodes surface-treated using yttria-stabilized zirconia (YSZ) nano-particulates fabricated by atomic layer deposition (ALD). Fuel cell tests are conducted on gadolinia-doped ceria electrolyte pellets with a platinum anode at 250-450 °C. In our tests, the fuel cell performance of the SOFCs with an optimized ALD YSZ surface treatment is close to that of SOFCs with porous Pt, which is known as the best performing catalyst in the low-temperature regime. Electrochemical impedance spectroscopy confirms that the performance enhancement is due to improved electrode kinetics by the increase in charge transfer reaction sites between the surface of supporting silver and the ALD-YSZ particulates. Fuel cell durability tests shows that the ALD YSZ surface treatment improves the long-term stability. X-ray photoelectron spectroscopy also confirms that the ALD YSZ capping prevents reduction of the surface silver oxide and destruction of the mesh morphology.

  17. Characterization and evaluation of double perovskites LnBaCoFeO5+δ (Ln = Pr and Nd) as intermediate-temperature solid oxide fuel cell cathodes

    NASA Astrophysics Data System (ADS)

    Jin, Fangjun; Xu, Huawei; Long, Wen; Shen, Yu; He, Tianmin

    2013-12-01

    Double perovskites LnBaCoFeO5+δ (Ln = Pr and Nd, PBCF and NBCF) are comparatively investigated as potential cathode materials for intermediate-temperature solid oxide fuel cells (IT-SOFCs). LnBaCoFeO5+δ materials are chemically compatible with La0.9Sr0.1Ga0.8Mg0.2O3-δ (LSGM) electrolyte at temperatures below 1000 °C. Fe and Co ions in LnBaCoFeO5+δ exist in two oxidation states, 3+ and 4+. Pr ions are found in PBCF mostly as Pr3+. Thermal expansion coefficients (TECs) of PBCF and NBCF are 21.0 × 10-6 and 19.5 × 10-6 K-1, respectively, between 30 and 1000 °C; these are lower than the TECs of undoped LnBaCo2O5+δ. The best electrical conductivity for both materials is observed near 350 °C: 321 and 172 S cm-1 for PBCF and NBCF, respectively. Polarization resistances of PBCF and NBCF cathodes on LSGM electrolyte are 0.049 and 0.062 Ω cm2 at 800 °C, respectively. Maximum power densities of the single-cell with Ni/SDC as anode on a 0.3 mm-thick LSGM electrolyte reach 749 and 669 mW cm-2 for PBCF and NBCF cathodes at 800 °C, respectively. As cathodes for application in IT-SOFCs, the performance of PBCF and NBCF double perovskites is promising.

  18. Exchange current model for (La0.8Sr0.2)0.95MnO3 (LSM) porous cathode for solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Miyoshi, Kota; Miyamae, Takuma; Iwai, Hiroshi; Saito, Motohiro; Kishimoto, Masashi; Yoshida, Hideo

    2016-05-01

    In this paper, we propose an empirical formula for i0,TPB, the exchange current density per unit triple-phase boundary (TPB) length, for porous lanthanum strontium manganite (LSM) cathodes of solid oxide fuel cells (SOFCs); the evaluation of i0,TPB is of crucial importance in numerical simulations of electrodes based on reconstructed microstructures obtained by a dual beam focused ion beam scanning electron microscopy (FIB-SEM) and tomography techniques. To derive a widely applicable empirical formula for i0,TPB, electrochemical measurements of porous LSM cathodes are conducted under various oxygen partial pressures (0.05-0.25 atm) and temperatures (800-950 °C). By comparing the derived formula with that derived from a thin and dense patterned LSM electrode used in previous studies, it is found that at an air temperature of 800 °C, i0,TPB derived from a porous LSM cathode is approximately 40% smaller than that for the patterned electrode. This can be attributed to the fact that the electrochemical reaction in thin and dense electrodes can occur not only at the TPBs but also at the LSM surface owing to the non-negligible ionic conductivity of LSM. The derived formula is also applied to a three-dimensional numerical simulation to confirm its validity.

  19. Cerium and niobium doped SrCoO3-δ as a potential cathode for intermediate temperature solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Huang, Shouguo; Feng, Shuangjiu; Lu, Qiliang; Li, Yide; Wang, Hong; Wang, Chunchang

    2014-04-01

    Sr0.9Ce0.1Co0.9Nb0.1O3-δ (SCCN) has been synthesized using solid state reaction, and investigated as a new cathode material for intermediate temperature solid oxide fuel cells (ITSOFCs). SCCN material exhibits sufficiently high electronic conductivity and excellent chemical compatibility with SDC electrolyte. Highly charged Ce4+ and Nb5+ successfully stabilize the perovskite structure to avoid order-disorder phase transition. The electrical conductivity reaches a high value of 516 S cm-1 at 300 °C in air. The area specific resistances of the SCCN-50 wt.% Ce0.8Sm0.2O1.9 (SDC) cathode are as low as 0.027, 0.049, and 0.094 Ω cm2 at 700, 650, and 600 °C, respectively, with the corresponding peak power densities of 1074, 905, and 589 mW cm-2. A relatively low thermal expansion coefficient of SCCN-SDC is 14.3 × 10-6 K-1 in air. All these results imply that SCCN holds tremendous promise as a cathode material for ITSOFCs.

  20. Nickel oxide and carbon nanotube composite (NiO/CNT) as a novel cathode non-precious metal catalyst in microbial fuel cells.

    PubMed

    Huang, Jianjian; Zhu, Nengwu; Yang, Tingting; Zhang, Taiping; Wu, Pingxiao; Dang, Zhi

    2015-10-15

    Comparing with the precious metal catalysts, non-precious metal catalysts were preferred to use in microbial fuel cells (MFCs) due to the low cost and high oxygen reduction reaction (ORR) efficiency. In this study, the transmission electron microscope and X-ray diffraction as well as Raman investigation revealed that the prepared nanoscale NiO was attached on the surface of CNT. Cyclic voltammogram and rotating ring-disk electrode tests showed that the NiO/CNT composite catalyst had an apparent oxygen reduction peak and 3.5 electron transfer pathway was acquired under oxygen atmosphere. The catalyst performance was highly dependent on the percentage of NiO in the CNT nanocomposites. When 77% NiO/CNT nano-sized composite was applied as cathode catalyst in membrane free single-chamber air cathode MFC, a maximum power density of 670 mW/m(2) and 0.772 V of OCV was obtained. Moreover, the MFC with pure NiO (control) could not achieve more than 0.1 V. All findings suggested that NiO/CNT could be a potential cathode catalyst for ORR in MFCs. PMID:26002018

  1. N-type Cu2O doped activated carbon as catalyst for improving power generation of air cathode microbial fuel cells.

    PubMed

    Zhang, Xi; Li, Kexun; Yan, Pengyu; Liu, Ziqi; Pu, Liangtao

    2015-01-01

    A novel n-type Cu2O doped activated carbon (AC) air cathode (Cu/AC) was developed as an alternative to Pt electrode for oxygen reduction in microbial fuel cells (MFCs). The maximum power density of MFCs using this novel air cathode was as high as 1390±76mWm(-2), almost 59% higher than the bare AC air cathode. Specifically, the resistance including total resistance and charge transfer resistance significantly decreased comparing to the control. Tafel curve also showed the faster electro-transfer kinetics of Cu/AC with exchange current density of 1.03×10(-3)Acm(-2), which was 69% higher than the control. Ribbon-like Cu2O was deposited on the surface of AC with the mesopore surface area increasing. Cubic Cu2O crystals exclusively expose (111) planes with the interplanar crystal spacing of 2.48Å, which was the dominate active sites for oxygen reduction reaction (ORR). N-type Cu2O with oxygen vacancies played crucial roles in electrochemical catalytic activity. PMID:25863207

  2. Ab initio study of vacancy formation in cubic LaMnO3 and SmCoO3 as cathode materials in solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Olsson, Emilia; Aparicio-Anglès, Xavier; de Leeuw, Nora H.

    2016-07-01

    Doped LaMnO3 and SmCoO3 are important solid oxide fuel cell cathode materials. The main difference between these two perovskites is that SmCoO3 has proven to be a more efficient cathode material than LaMnO3 at lower temperatures. In order to explain the difference in efficiency, we need to gain insight into the materials' properties at the atomic level. However, while LaMnO3 has been widely studied, ab initio studies on SmCoO3 are rare. Hence, in this paper, we perform a comparative DFT + U study of the structural, electronic, and magnetic properties of these two perovskites. To that end, we first determined a suitable Hubbard parameter for the Co d-electrons to obtain a proper description of SmCoO3 that fully agrees with the available experimental data. We next evaluated the impact of oxygen and cation vacancies on the geometry, electronic, and magnetic properties. Oxygen vacancies strongly alter the electronic and magnetic structures of SmCoO3, but barely affect LaMnO3. However, due to their high formation energy, their concentrations in the material are very low and need to be induced by doping. Studying the cation vacancy concentration showed that the formation of cation vacancies is less energetically favorable than oxygen vacancies and would thus not markedly influence the performance of the cathode.

  3. Ab initio study of vacancy formation in cubic LaMnO3 and SmCoO3 as cathode materials in solid oxide fuel cells.

    PubMed

    Olsson, Emilia; Aparicio-Anglès, Xavier; de Leeuw, Nora H

    2016-07-01

    Doped LaMnO3 and SmCoO3 are important solid oxide fuel cell cathode materials. The main difference between these two perovskites is that SmCoO3 has proven to be a more efficient cathode material than LaMnO3 at lower temperatures. In order to explain the difference in efficiency, we need to gain insight into the materials' properties at the atomic level. However, while LaMnO3 has been widely studied, ab initio studies on SmCoO3 are rare. Hence, in this paper, we perform a comparative DFT + U study of the structural, electronic, and magnetic properties of these two perovskites. To that end, we first determined a suitable Hubbard parameter for the Co d-electrons to obtain a proper description of SmCoO3 that fully agrees with the available experimental data. We next evaluated the impact of oxygen and cation vacancies on the geometry, electronic, and magnetic properties. Oxygen vacancies strongly alter the electronic and magnetic structures of SmCoO3, but barely affect LaMnO3. However, due to their high formation energy, their concentrations in the material are very low and need to be induced by doping. Studying the cation vacancy concentration showed that the formation of cation vacancies is less energetically favorable than oxygen vacancies and would thus not markedly influence the performance of the cathode. PMID:27394117

  4. An easy and innovative method based on spray-pyrolysis deposition to obtain high efficiency cathodes for Solid Oxide Fuel Cells

    NASA Astrophysics Data System (ADS)

    dos Santos-Gómez, L.; Porras-Vázquez, J. M.; Martín, F.; Ramos-Barrado, J. R.; Losilla, E. R.; Marrero-López, D.

    2016-07-01

    A novel electrode preparation method based on the spray-pyrolysis deposition of metal nitrate solutions onto a porous electrolyte scaffold is proposed. This method has been proved with different cathode materials, usually used in Solid Oxide Fuel Cells, such as La0.8Sr0.2MnO3-δ and La0.6Sr0.4Co1-xFexO3-δ (x = 0, 0.2, 0.8 and 1). The electrode microstructure is composed by two layers; the inner layer is a porous electrolyte scaffold homogeneously coated by cathode nanoparticles, providing an increased number of triple phase boundary sites for oxygen reduction, whereas, the top layer is formed by only cathode nanoparticles and acts mainly as a current collector. Polarization resistance values as low as 0.07 and 1.0 Ω cm2 at 600 and 450 °C, respectively, are obtained at open circuit voltage. This alternative approach has several advantages with respect to the traditional wet infiltration method for large area electrode fabrication, such as higher reproducibility, shorter preparation time in a single thermal deposition step, and easy implementation at industrial scale as a continuous process.

  5. An innovative architectural design to enhance the electrochemical performance of La2NiO4+δ cathodes for solid oxide fuel cell applications

    NASA Astrophysics Data System (ADS)

    Sharma, Rakesh K.; Burriel, Mónica; Dessemond, Laurent; Martin, Vincent; Bassat, Jean-Marc; Djurado, Elisabeth

    2016-06-01

    An architectural design of the cathode microstructure based on combining electrostatic spray deposition (ESD) and screen-printing (SP) techniques has demonstrated to be an innovative strategy to enhance the electrochemical properties of La2NiO4+δ (LNO) as oxygen electrode on Ce0.9Gd0.1O2-δ (CGO) electrolyte for solid oxide fuel cells. For this purpose, the influence of the ESD process parameters on the microstructure has been systematically investigated. Electrochemical performances of four selected cathode microstructures are investigated: (i) 3-D coral nanocrystalline (average particle size ∼ 100 nm) LNO film grown by ESD; (ii) 3-D coral nanocrystalline film (average particle size ∼ 150 nm) grown by ESD with a continuous nanometric dense interface; (iii) porous screen-printed LNO film (average particle size ∼ 400 nm); and (iv) 3-D coral nanocrystalline film (average particle size ∼ 150 nm) with a continuous nanometric dense interface prepared by ESD topped by a LNO current collector prepared by SP. A significant reduction in the polarization resistance (Rpol) is obtained (0.08 Ω cm2 at 700 °C) for 3-D coral topped by the SP layer. Moreover LNO is found to be stable and compatible with CGO up to 800 °C for only 10 days duration in air, making it potentially suitable for SOFCs cathode application.

  6. Fibrous polyaniline@manganese oxide nanocomposites as supercapacitor electrode materials and cathode catalysts for improved power production in microbial fuel cells.

    PubMed

    Ansari, Sajid Ali; Parveen, Nazish; Han, Thi Hiep; Ansari, Mohammad Omaish; Cho, Moo Hwan

    2016-03-23

    Fibrous Pani-MnO2 nanocomposite were prepared using a one-step and scalable in situ chemical oxidative polymerization method. The formation, structural and morphological properties were investigated using a range of characterization techniques. The electrochemical capacitive behavior of the fibrous Pani-MnO2 nanocomposite was examined by cyclic voltammetry and galvanostatic charge-discharge measurements using a three-electrode experimental setup in an aqueous electrolyte. The fibrous Pani-MnO2 nanocomposite achieved high capacitance (525 F g(-1) at a current density of 2 A g(-1)) and excellent cycling stability of 76.9% after 1000 cycles at 10 A g(-1). Furthermore, the microbial fuel cell constructed with the fibrous Pani-MnO2 cathode catalyst showed an improved power density of 0.0588 W m(-2), which was higher than that of pure Pani and carbon paper, respectively. The improved electrochemical supercapacitive performance and cathode catalyst performance in microbial fuel cells were attributed mainly to the synergistic effect of Pani and MnO2 in fibrous Pani-MnO2, which provides high surface area for the electrode/electrolyte contact as well as electronic conductive channels and exhibits pseudocapacitance behavior. PMID:26967202

  7. Optimization of ink composition based on a non-platinum cathode for single membrane electrode assembly proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Artyushkova, K.; Habel-Rodriguez, D.; Olson, T. S.; Atanassov, P.

    2013-03-01

    Non-Pt based oxygen reduction catalyst H2-air fuel cell performance is reported for various electrode compositions. Ink formulations for pyrolyzed Co porphyrin based cathode electrocatalysts were evaluated in a membrane electrode assembly (MEA) configuration and X-ray photoelectron spectroscopy was performed on the MEA catalyst layers. The effect of cooling time trajectories of the catalysts after pyrolysis as well as Nafion content in the ink formulation were studied. By building statistical structure-to-property relationships between XPS and MEA performance using multivariate analysis we have determined that the higher stability of fast-cooled containing inks is mainly associated with better preserved graphic carbon from the carbon black and C-F moieties of the Nafion, while better MEA performance is a result of the presence of these moieties as well as pyridinic nitrogen and nitrogen associated with metal in the pyropolymer. Optimal Nafion content is determined at 1:1 catalyst:Nafion weight ratio, while higher Nafion concentrations causes oxidation of the Nafion backbone itself as well as leaching of the CoxOy particles from the catalyst and formation of oxidized species of Co, O, C and F. Further, we report 1500 h of continuous fuel cell operation for two different non-platinum cathode catalysts in the optimized MEA.

  8. A simple preparation of very high methanol tolerant cathode electrocatalyst for direct methanol fuel cell based on polymer-coated carbon nanotube/platinum

    PubMed Central

    Yang, Zehui; Nakashima, Naotoshi

    2015-01-01

    The development of a durable and methanol tolerant electrocatalyst with a high oxygen reduction reaction activity is highly important for the cathode side of direct methanol fuel cells. Here, we describe a simple and novel methodology to fabricate a practically applicable electrocatalyst with a high methanol tolerance based on poly[2,2′-(2,6-pyridine)-5,5′-bibenzimidazole]-wrapped multi-walled carbon nanotubes, on which Pt nanoparticles have been deposited, then coated with poly(vinylphosphonic acid) (PVPA). The polymer coated electrocatalyst showed an ~3.3 times higher oxygen reduction reaction activity compared to that of the commercial CB/Pt and methanol tolerance in the presence of methanol to the electrolyte due to a 50% decreased methanol adsorption on the Pt after coating with the PVPA. Meanwhile, the peroxide generation of the PVPA coated electrocatalyst was as low as 0.8% with 2 M methanol added to the electrolyte, which was much lower than those of the non-PVPA-coated electrocatalyst (7.5%) and conventional CB/Pt (20.5%). Such a high methanol tolerance is very important for the design of a direct methanol fuel cell cathode electrocatalyst with a high performance. PMID:26192397

  9. High performance cobalt-free Cu1.4Mn1.6O4 spinel oxide as an intermediate temperature solid oxide fuel cell cathode

    NASA Astrophysics Data System (ADS)

    Zhen, Shuying; Sun, Wang; Li, Peiqian; Tang, Guangze; Rooney, David; Sun, Kening; Ma, Xinxin

    2016-05-01

    In this work Cu1.4Mn1.6O4 (CMO) spinel oxide is prepared and evaluated as a novel cobalt-free cathode for intermediate temperature solid oxide fuel cells (IT-SOFCs). Single phase CMO powder with cubic structure is identified using XRD. XPS results confirm that mixed Cu+/Cu2+ and Mn3+/Mn4+ couples exist in the CMO sample, and a maximum conductivity of 78 S cm-1 is achieved at 800 °C. Meanwhile, CMO oxide shows good thermal and chemical compatibility with a 10 mol% Sc2O3 stabilized ZrO2 (ScSZ) electrolyte material. Impedance spectroscopy measurements reveals that CMO exhibits a low polarization resistance of 0.143 Ω cm2 at 800 °C. Furthermore, a Ni-ScSZ/ScSZ/CMO single cell demonstrates a maximum power density of 1076 mW cm-2 at 800 °C under H2 (3% H2O) as the fuel and ambient air as the oxidant. These results indicate that Cu1.4Mn1.6O4 is a superior and promising cathode material for IT-SOFCs.

  10. High performance cobalt-free Cu1.4Mn1.6O4 spinel oxide as an intermediate temperature solid oxide fuel cell cathode

    NASA Astrophysics Data System (ADS)

    Zhen, Shuying; Sun, Wang; Li, Peiqian; Tang, Guangze; Rooney, David; Sun, Kening; Ma, Xinxin

    2016-05-01

    In this work Cu1.4Mn1.6O4 (CMO) spinel oxide is prepared and evaluated as a novel cobalt-free cathode for intermediate temperature solid oxide fuel cells (IT-SOFCs). Single phase CMO powder with cubic structure is identified using XRD. XPS results confirm that mixed Cu+/Cu2+ and Mn3+/Mn4+ couples exist in the CMO sample, and a maximum conductivity of 78 S cm-1 is achieved at 800 °C. Meanwhile, CMO oxide shows good thermal and chemical compatibility with a 10 mol% Sc2O3 stabilized ZrO2 (ScSZ) electrolyte material. Impedance spectroscopy measurements reveals that CMO exhibits a low polarization resistance of 0.143 Ω cm2 at 800 °C. Furthermore, a Ni-ScSZ/ScSZ/CMO single cell demonstrates a maximum power density of 1076 mW cm-2 at 800 °C under H2 (3% H2O) as the fuel and ambient air as the oxidant. These results indicate that Cu1.4Mn1.6O4 is a superior and promising cathode material for IT-SOFCs.

  11. Layer-structured LiNi0.8Co0.2O2: A new triple (H+/O2-/e-) conducting cathode for low temperature proton conducting solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Fan, Liangdong; Su, Pei-Chen

    2016-02-01

    Solid oxide fuel cells with proton conducting electrolytes (H-SOFCs) show great potential for more efficient energy conversion over their oxygen ionic conducting counterparts at temperatures below 650 °C, providing a comparably high performance cathode material can be available. A brief review of current development of cathode materials shows that materials with triple (oxygen ionic, protonic, and electronic) conducting properties are most promising for H-SOFCs. In this work, a triple-conducting LiNi0.8Co0.2O2 (LNCO) with layered structure, allowing simultaneous conduction of intrinsic oxygen ion and electron as well as the extrinsic proton, is proposed as a cathode material for H-SOFC. The electrochemical impedance spectroscopy analysis of LNCO shows the good oxygen reduction reaction (ORR) activity with a considerably low activation energy of 0.88 eV, and an evident water uptake capability those facilitate the cathode reaction process. Fuel cells using LNCO cathode on a BaZr0.1Ce0.7Y0.2O3 proton-conducting electrolyte render a peak power density of 410 mW cm-2 at 650 °C under H2/air condition, which is higher than most of the typical cathode materials reported with similar cell configurations. This work also demonstrated a new series of simple and low cost cathode materials simultaneously possessing interesting triple-conduction and good ORR activities for low temperature H-SOFCs.

  12. Highly porous PEM fuel cell cathodes based on low density carbon aerogels as Pt-support: Experimental study of the mass-transport losses

    NASA Astrophysics Data System (ADS)

    Marie, Julien; Chenitz, Regis; Chatenet, Marian; Berthon-Fabry, Sandrine; Cornet, Nathalie; Achard, Patrick

    Carbon aerogels exhibiting high porous volumes and high surface areas, differentiated by their pore-size distributions were used as Pt-supports in the cathode catalytic layer of H 2/air-fed PEM fuel cell. The cathodes were tested as 50 cm 2 membrane electrode assemblies (MEAs). The porous structure of the synthesized catalytic layers was impacted by the nanostructure of the Pt-doped carbon aerogels (Pt/CAs). In this paper thus we present an experimental study aiming at establishing links between the porous structure of the cathode catalytic layers and the MEAs performances. For that purpose, the polarization curves of the MEAs were decomposed in 3 contributions: the kinetic loss, the ohmic loss and the mass-transport loss. We showed that the MEAs made with the different carbon aerogels had similar kinetic activities (low current density performance) but very different mass-transport voltage losses. It was found that the higher the pore-size of the initial carbon aerogel, the higher the mass-transport voltage losses. Supported by our porosimetry (N 2-adsorption and Hg-porosimetry) measurement, we interpret this apparent contradiction as the consequence of the more important Nafion penetration into the carbon aeorogel with larger pore-size. Indeed, the catalytic layers made from the larger pore-size carbon aerogel had lower porosities. We thus show in this work that carbon aerogels are materials with tailored nanostructured structure which can be used as model materials for experimentally testing the optimization of the PEM fuel cell catalytic layers.

  13. Chalcogen catalysts for polymer electrolyte fuel cell

    DOEpatents

    Zelenay, Piotr; Choi, Jong-Ho; Alonso-Vante, Nicolas; Wieckowski, Andrzej; Cao, Dianxue

    2010-08-24

    A methanol-tolerant cathode catalyst and a membrane electrode assembly for fuel cells that includes such a cathode catalyst. The cathode catalyst includes a support having at least one transition metal in elemental form and a chalcogen disposed on the support. Methods of making the cathode catalyst and membrane electrode assembly are also described.

  14. Electrorefining cell with parallel electrode/concentric cylinder cathode

    DOEpatents

    Gay, E.C.; Miller, W.E.; Laidler, J.J.

    1997-07-22

    A cathode-anode arrangement for use in an electrolytic cell is adapted for electrochemically refining spent nuclear fuel from a nuclear reactor and recovering purified uranium for further treatment and possible recycling as a fresh blanket or core fuel in a nuclear reactor. The arrangement includes a plurality of inner anodic dissolution baskets that are each attached to a respective support rod, are submerged in a molten lithium halide salt, and are rotationally displaced. An inner hollow cylindrical-shaped cathode is concentrically disposed about the inner anodic dissolution baskets. Concentrically disposed about the inner cathode in a spaced manner are a plurality of outer anodic dissolution baskets, while an outer hollow cylindrical-shaped is disposed about the outer anodic dissolution baskets. Uranium is transported from the anode baskets and deposited in a uniform cylindrical shape on the inner and outer cathode cylinders by rotating the anode baskets within the molten lithium halide salt. Scrapers located on each anode basket abrade and remove the spent fuel deposits on the surfaces of the inner and outer cathode cylinders, with the spent fuel falling to the bottom of the cell for removal. Cell resistance is reduced and uranium deposition rate enhanced by increasing the electrode area and reducing the anode-cathode spacing. Collection efficiency is enhanced by trapping and recovery of uranium dendrites scrapped off of the cylindrical cathodes which may be greater in number than two. 12 figs.

  15. Electrorefining cell with parallel electrode/concentric cylinder cathode

    DOEpatents

    Gay, Eddie C.; Miller, William E.; Laidler, James J.

    1997-01-01

    A cathode-anode arrangement for use in an electrolytic cell is adapted for electrochemically refining spent nuclear fuel from a nuclear reactor and recovering purified uranium for further treatment and possible recycling as a fresh blanket or core fuel in a nuclear reactor. The arrangement includes a plurality of inner anodic dissolution baskets that are each attached to a respective support rod, are submerged in a molten lithium halide salt, and are rotationally displaced. An inner hollow cylindrical-shaped cathode is concentrically disposed about the inner anodic dissolution baskets. Concentrically disposed about the inner cathode in a spaced manner are a plurality of outer anodic dissolution baskets, while an outer hollow cylindrical-shaped is disposed about the outer anodic dissolution baskets. Uranium is transported from the anode baskets and deposited in a uniform cylindrical shape on the inner and outer cathode cylinders by rotating the anode baskets within the molten lithium halide salt. Scrapers located on each anode basket abrade and remove the spent fuel deposits on the surfaces of the inner and outer cathode cylinders, with the spent fuel falling to the bottom of the cell for removal. Cell resistance is reduced and uranium deposition rate enhanced by increasing the electrode area and reducing the anode-cathode spacing. Collection efficiency is enhanced by trapping and recovery of uranium dendrites scrapped off of the cylindrical cathodes which may be greater in number than two.

  16. Stabilizing platinum in phosphoric acid fuel cells

    NASA Technical Reports Server (NTRS)

    Remick, R. J.

    1982-01-01

    Platinum sintering on phosphoric acid fuel cell cathodes is discussed. The cathode of the phosphoric acid fuel cell uses a high surface area platinum catalyst dispersed on a conductive carbon support to minimize both cathode polarization and fabrication costs. During operation, however, the active surface area of these electrodes decreases, which in turn leads to decreased cell performance. This loss of active surface area is a major factor in the degradation of fuel cell performance over time.

  17. Fuel cell system with interconnect

    SciTech Connect

    Liu, Zhien; Goettler, Richard

    2015-09-29

    The present invention includes a fuel cell system having a plurality of adjacent electrochemical cells formed of an anode layer, a cathode layer spaced apart from the anode layer, and an electrolyte layer disposed between the anode layer and the cathode layer. The fuel cell system also includes at least one interconnect, the interconnect being structured to conduct free electrons between adjacent electrochemical cells. Each interconnect includes a primary conductor embedded within the electrolyte layer and structured to conduct the free electrons.

  18. Fuel cell system with interconnect

    SciTech Connect

    Goettler, Richard; Liu, Zhien

    2015-08-11

    The present invention includes a fuel cell system having a plurality of adjacent electrochemical cells formed of an anode layer, a cathode layer spaced apart from the anode layer, and an electrolyte layer disposed between the anode layer and the cathode layer. The fuel cell system also includes at least one interconnect, the interconnect being structured to conduct free electrons between adjacent electrochemical cells. Each interconnect includes a primary conductor embedded within the electrolyte layer and structured to conduct the free electrons.

  19. Fuel cell system with interconnect

    SciTech Connect

    Goettler, Richard; Liu, Zhien

    2015-03-10

    The present invention includes a fuel cell system having a plurality of adjacent electrochemical cells formed of an anode layer, a cathode layer spaced apart from the anode layer, and an electrolyte layer disposed between the anode layer and the cathode layer. The fuel cell system also includes at least one interconnect, the interconnect being structured to conduct free electrons between adjacent electrochemical cells. Each interconnect includes a primary conductor embedded within the electrolyte layer and structured to conduct the free electrons.

  20. Bismuth and niobium co-doped barium cobalt oxide as a promising cathode material for intermediate temperature solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    He, Shaofei; Le, Shiru; Guan, Lili; Liu, Tao; Sun, Kening

    2015-11-01

    Perovskite oxides BaBi0.05Co0.95-yNbyO3-δ (BBCNy, 0 ≤ y ≤ 0.2) are synthesized and evaluated as potential cathode materials for intermediate temperature solid oxide fuel cells (IT-SOFCs). Highly charged Nb5+ successfully stabilizes the cubic perovskite structure to room temperature with Nb substituting content y ≥ 0.1. The phase structure, thermal expansion behavior, electrical conductivity and electrochemical performance of BBCNy with cubic phase are systematically studied. The samples exhibit excellent chemical compatibility with GDC and have sufficiently high electrical conductivities. However, the thermal expansion coefficients of BBCNy samples are nearly twice those of the most commonly used electrolyte materials YSZ and GDC, which is a major drawback for application in IT-SOFCs. The polarization resistances of BBCNy with y = 0.10, 0.15 and 0.20 on GDC electrolyte are 0.086, 0.079 and 0.107 Ω cm2 at 700 °C, respectively. Even though the YSZ electrolyte membrane and GDC barrier layer are approximately 50 μm and 10 μm in thickness, the highest maximum power density (1.23 W cm-2) of the single cell Ni-YSZ|YSZ|GDC|BBCN0.15 is obtained at 750 °C. Good long-term stability of the single cell with BBCN0.15 cathode is also demonstrated. These results demonstrate that BBCNy perovskite oxides with cubic structure are very promising cathode materials for IT-SOFCs.

  1. Insight into the structure and functional application of the Sr0.95Ce0.05CoO3-δ cathode for solid oxide fuel cells.

    PubMed

    Yang, Wei; Zhang, Huairuo; Sun, Chunwen; Liu, Lilu; Alonso, J A; Fernández-Díaz, M T; Chen, Liquan

    2015-04-01

    A new perovskite cathode, Sr0.95Ce0.05CoO3-δ, performs well for oxygen-reduction reactions in solid oxide fuel cells (SOFCs). We gain insight into the crystal structure of Sr1-xCexCoO3-δ (x = 0.05, 0.1) and temperature-dependent structural evolution of Sr0.95Ce0.05CoO3-δ by X-ray diffraction, neutron powder diffraction, and scanning transmission electron microscopy experiments. Sr0.9Ce0.1CoO3-δ shows a perfectly cubic structure (a = a0), with a large oxygen deficiency in a single oxygen site; however, Sr0.95Ce0.05CoO3-δ exhibits a tetragonal perovskite superstructure with a double c axis, defined in the P4/mmm space group, that contains two crystallographically different cobalt positions, with distinct oxygen environments. The structural evolution of Sr0.95Ce0.05CoO3-δ at high temperatures was further studied by in situ temperature-dependent NPD experiments. At 1100 K, the oxygen atoms in Sr0.95Ce0.05CoO3-δ show large and highly anisotropic displacement factors, suggesting a significant ionic mobility. The test cell with a La0.8Sr0.2Ga0.83Mg0.17O3-δ-electrolyte-supported (∼300 μm thickness) configuration yields peak power densities of 0.25 and 0.48 W cm(-2) at temperatures of 1023 and 1073 K, respectively, with pure H2 as the fuel and ambient air as the oxidant. The electrochemical impedance spectra evolution with time of the symmetric cathode fuel cell measured at 1073 K shows that the Sr0.95Ce0.05CoO3-δ cathode possesses superior ORR catalytic activity and long-term stability. Mixed ionic-electronic conduction properties of Sr0.95Ce0.05CoO3-δ account for its good performance as an oxygen-reduction catalyst. PMID:25756843

  2. Fuel cell generator with fuel electrodes that control on-cell fuel reformation

    DOEpatents

    Ruka, Roswell J.; Basel, Richard A.; Zhang, Gong

    2011-10-25

    A fuel cell for a fuel cell generator including a housing including a gas flow path for receiving a fuel from a fuel source and directing the fuel across the fuel cell. The fuel cell includes an elongate member including opposing first and second ends and defining an interior cathode portion and an exterior anode portion. The interior cathode portion includes an electrode in contact with an oxidant flow path. The exterior anode portion includes an electrode in contact with the fuel in the gas flow path. The anode portion includes a catalyst material for effecting fuel reformation along the fuel cell between the opposing ends. A fuel reformation control layer is applied over the catalyst material for reducing a rate of fuel reformation on the fuel cell. The control layer effects a variable reformation rate along the length of the fuel cell.

  3. Compact fuel cell

    SciTech Connect

    Jacobson, Craig; DeJonghe, Lutgard C.; Lu, Chun

    2010-10-19

    A novel electrochemical cell which may be a solid oxide fuel cell (SOFC) is disclosed where the cathodes (144, 140) may be exposed to the air and open to the ambient atmosphere without further housing. Current collector (145) extends through a first cathode on one side of a unit and over the unit through the cathode on the other side of the unit and is in electrical contact via lead (146) with housing unit (122 and 124). Electrical insulator (170) prevents electrical contact between two units. Fuel inlet manifold (134) allows fuel to communicate with internal space (138) between the anodes (154 and 156). Electrically insulating members (164 and 166) prevent the current collector from being in electrical contact with the anode.

  4. High performance of proton-conducting solid oxide fuel cell with a layered PrBaCo 2O 5+ δ cathode

    NASA Astrophysics Data System (ADS)

    Zhao, Ling; He, Beibei; Lin, Bin; Ding, Hanping; Wang, Songlin; Ling, Yihan; Peng, Ranran; Meng, Guangyao; Liu, Xingqin

    A dense BaZr 0.1Ce 0.7Y 0.2O 3- δ (BZCY) electrolyte is fabricated on a porous anode by in situ drop-coating method which can lead to extremely thin electrolyte membrane (∼10 μm in thickness). The layered perovskite structure oxide PrBaCo 2O 5+ δ (PBCO) is synthesized by auto ignition process and initially examined as a cathode for proton-conducting IT-SOFCs. The electrical conductivity of PrBaCo 2O 5+ δ (PBCO) reaches the general required value for the electrical conductivity of cathode absolutely. The single cell, consisting of PrBaCo 2O 5+ δ (PBCO)/BaZr 0.1Ce 0.7Y 0.2O 3- δ (BZCY)/NiO-BaZr 0.1Ce 0.7Y 0.2O 3- δ (BZCY) structure, is assembled and tested from 600 to 700 °C with humidified hydrogen (∼3% H 2O) as the fuel and air as the oxidant. An open-circuit potential of 1.01 V and a maximum power density of 545 mW cm -2 at 700 °C are obtained for the single cell, and a low polarization resistance of the electrodes of 0.15 Ω cm 2 is achieved at 700 °C.

  5. Synthesis and electrochemical characterization of Sr2Fe1.5Mo0.5O6-Sm0.2Ce0.8O1.9 composite cathode for intermediate-temperature solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Dai, Ningning; Lou, Zhongliang; Wang, Zhenhua; Liu, Xiaoxi; Yan, Yiming; Qiao, Jinshuo; Jiang, Taizhi; Sun, Kening

    2013-12-01

    Nanoporous composite oxides Sr2Fe1.5Mo0.5O6-Sm0.2Ce0.8O1.9 (SFM-SDC) have been prepared by a facile one-step method as cathode for intermediate-temperature solid oxide fuel cells (IT-SOFCs). The SFM-SDC composite materials have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), scanning transmission electron microscopy (STEM) and electrochemical impedance spectroscopy (EIS). The EIS results exhibit that SFM-SDC40 (wt% 60:40) cathode has encouraging electrochemical performance with low polarization resistance (Rp) on YSZ (Y2O3-stabilized ZrO2) electrolyte. Subsequently, bi-layer cathodes SDC/SFM-SDC are fabricated, and excellent electrochemical performance of such composite cathodes are observed. We demonstrate that the SDC interlayer significantly decreases the Rp of cathode and accelerates the charge transfer process. As a result, the Rp of the SDC/SFM-SDC40 bi-layer cathodes is almost 50% less than that of SFM-SDC40 cathode on YSZ electrolyte at 800 °C, and Rp is only 0.11 Ω cm2. Compared with single cells without an interlayer, the anode-supported single cells with SDC interlayer exhibit enhancement in overall power performance.

  6. Progress in understanding and development of Ba 0.5Sr 0.5Co 0.8Fe 0.2O 3- δ-based cathodes for intermediate-temperature solid-oxide fuel cells: A review

    NASA Astrophysics Data System (ADS)

    Zhou, Wei; Ran, Ran; Shao, Zongping

    Solid-oxide fuel cells (SOFCs) convert chemical energy directly into electric power in a highly efficient way. Lowering the operating temperature of SOFCs to around 500-800 °C is one of the main goals in current SOFC research. The associated benefits include reducing the difficulties associated with sealing and thermal degradation, allowing the use of low-cost metallic interconnectors and suppressing reactions between the cell components. However, the electrochemical activity of the cathode deteriorates dramatically with decreasing temperature for the typical La 0.8Sr 0.2MnO 3-based electrodes. The cathode becomes the limiting factor in determining the overall cell performance. Therefore, the development of new electrodes with high electrocatalytic activity for oxygen reduction becomes a critical issue for intermediate-temperature (IT)-SOFCs. Ba 0.5Sr 0.5Co 0.8Fe 0.2O 3- δ (BSCF) perovskite oxide was first reported as a potential IT-SOFC cathode material in 2004 by Shao and Haile. After that, the BSCF cathode has attracted considerable attention. This paper reviews the current research activities on BSCF-based cathodes for IT-SOFCs. Emphasis will be placed on the understanding and optimization of BSCF-based materials. The issues raised by the BSCF cathode are also presented and analyzed to provide some guidelines in the search for the new generation of cathode materials for IT-SOFCs.

  7. Advanced fuel cell development

    NASA Astrophysics Data System (ADS)

    Pierce, R. D.; Baumert, B.; Claar, T. D.; Fousek, R. J.; Huang, H. S.; Kaun, T. D.; Krumpelt, M.; Minh, N.; Mrazek, F. C.; Poeppel, R. B.

    1985-01-01

    Fuel cell research and development activities at Argonne National Laboratory (ANL) during the period January through March 1984 are described. These efforts have been directed principally toward seeking alternative cathode materials to NiO for molten carbonate fuel cells. Based on an investigation of the thermodynamically stable phases formed under cathode conditions, a number of prospective alternative cathode materials have been identified. From the list of candidates, LiFeO2, Li2MnO3, and ZnO were selected for further investigation. During this quarter, they were doped to promote conductivity and tested for solubility and ion migration in the cell environment. An investigation directed to understanding in cell densification of anode materials was initiated. In addition, calculations were made to evaluate the practicality of controlling sulfur accumulation in molten carbonate fuel cells by bleed off of a portion of the anode gas that could be recycled to the cathode. In addition, a model is being developed to predict the performance of solid oxide fuel cells as a function of cell design and operation.

  8. Advanced-fuel-cell development

    NASA Astrophysics Data System (ADS)

    Pierce, R. D.; Arons, R. M.; Dusek, J. T.; Fraioli, A. V.; Kucera, G. H.; Sim, J. W.; Smith, J. L.

    1982-08-01

    Fuel cell research and development activities are described. The efforts are directed toward: (1) understanding of component behavior in molten carbonate fuel cells, and (2) developing alternative concepts for components. The principal focus was on the development of sintered gamma LiAlO2 electrolyte supports, stable NiO cathodes, and hydrogen diffusion barriers. Cell tests were performed to assess diffusion barriers and to study cathode voltage relaxation following current interruption.

  9. Cathode for aluminum producing electrolytic cell

    DOEpatents

    Brown, Craig W.

    2004-04-13

    A method of producing aluminum in an electrolytic cell comprising the steps of providing an anode in a cell, preferably a non-reactive anode, and also providing a cathode in the cell, the cathode comprised of a base material having low electrical conductivity reactive with molten aluminum to provide a highly electrically conductive layer on the base material. Electric current is passed from the anode to the cathode and alumina is reduced and aluminum is deposited at the cathode. The cathode base material is selected from boron carbide, and zirconium oxide.

  10. Properties of graphite-stainless steel composite in bipolar plates in simulated anode and cathode environments of PEM fuel cells

    NASA Astrophysics Data System (ADS)

    Włodarczyk, Renata

    2014-09-01

    The use of a graphite-stainless steel composite as bipolar plates (BP) in polymer electrolyte membrane fuel cells (PEMFCs) has been evaluated. The study covers measurements of mechanical properties, microstructural examination, analysis of surface profile, wettability, porosity and corrosion resistance of the composite. The corrosion properties of the composite were examined in 0.1 mol·dm-3 H2SO4 + 2 ppm F- saturated with H2 or with O2 and in solutions with different pH: in Na2SO4+ 2 ppm F- (pH = 1.00, 3.00, 5.00) at 80 °C. The performed tests indicate that the graphite modified with stainless steel can be a good choice to be used as a bipolar plate in PEM fuel cells.

  11. Co-Pt core-shell nanostructured catalyst prepared by selective chemical vapor pulse deposition of Pt on Co as a cathode in polymer electrolyte fuel cells

    SciTech Connect

    Seo, Sang-Joon; Chung, Ho-Kyoon; Yoo, Ji-Beom; Chae, Heeyeop; Seo, Seung-Woo; Min Cho, Sung

    2014-01-15

    A new type of PtCo/C catalyst for use as a cathode in polymer electrolyte fuel cells was prepared by selective chemical vapor pulse deposition (CVPD) of Pt on the surface of Co. The activity of the prepared catalyst for oxygen reduction was higher than that of a catalyst prepared by sequential impregnation (IMP) with the two metallic components. This catalytic activity difference occurs because the former catalyst has smaller Pt crystallites that produce stronger Pt-Co interactions and have a larger Pt surface area. Consequently, the CVPD catalyst has a great number of Co particles that are in close contact with the added Pt. The Pt surface was also electronically modified by interactions with Co, which were stronger in the CVPD catalyst than in the IMP catalyst, as indicated by X-ray diffraction, X-ray photoemission spectroscopy, and cyclic voltammetry measurements of the catalysts.

  12. Acidic and alkaline pretreatments of activated carbon and their effects on the performance of air-cathodes in microbial fuel cells.

    PubMed

    Wang, Xin; Gao, Ningshengjie; Zhou, Qixing; Dong, Heng; Yu, Hongbing; Feng, Yujie

    2013-09-01

    Activated carbon (AC) is a high performing and cost effective catalyst for oxygen reduction reactions (ORRs) of air-cathodes in microbial fuel cells (MFCs). Acidic (HNO3) and alkaline (KOH) pretreatments on AC at low temperature (85°C) are conducted to enhance the performance of MFCs. The alkaline pretreatment increased the power density by 16% from 804±70 to 957±31 mW m(-2), possibly due to the decrease of ohmic resistance (from 20.58 to 19.20 Ω) and the increase of ORR activities provided by the adsorbed hydroxide ion and extra micropore area/volume after alkaline pretreatment. However, acidic pretreatment decreased the power output to 537±36 mW m(-2), which can be mainly attributed to the corrosion by adsorbed proton at the interface of AC powder and stainless steel mesh and the decreased pore area. PMID:23890977

  13. An innovative architectural design to enhance the electrochemical performance of La2NiO4+δ cathodes for solid oxide fuel cell applications

    NASA Astrophysics Data System (ADS)

    Sharma, Rakesh K.; Burriel, Mónica; Dessemond, Laurent; Martin, Vincent; Bassat, Jean-Marc; Djurado, Elisabeth

    2016-06-01

    An architectural design of the cathode microstructure based on combining electrostatic spray deposition (ESD) and screen-printing (SP) techniques has demonstrated to be an innovative strategy to enhance the electrochemical properties of La2NiO4+δ (LNO) as oxygen electrode on Ce0.9Gd0.1O2-δ (CGO) electrolyte for solid oxide fuel cells. For this purpose, the influence of the ESD process parameters on the microstructure has been systematically investigated. Electrochemical performances of four selected cathode microstructures are investigated: (i) 3-D coral nanocrystalline (average particle size ∼ 100 nm) LNO film grown by ESD; (ii) 3-D coral nanocrystalline film (average particle size ∼ 150 nm) grown by ESD with a continuous nanometric dense interface; (iii) porous screen-printed LNO film (average particle size ∼ 400 nm); and (iv) 3-D coral nanocrystalline film (average particle size ∼ 150 nm) with a continuous nanometric dense interface prepared by ESD topped by a LNO current collector prepared by SP. A significant reduction in the polarization resistance (Rpol) is obtained (0.08 Ω cm2 at 700 °C) for 3-D coral topped by the SP layer. Moreover LNO is found to be stable and compatible with CGO up to 800 °C for only 10 days duration in air, making it potentially suitable for SOFCs cathode application.

  14. A comparative study of NiO(Li), LiFeO[sub 2], and LiCoO[sub 2] porous cathodes for molten carbonate fuel cells

    SciTech Connect

    Makkus, R.C. ); Hemmes, K.; Wit, J.H.W. de . Lab. for Materials Science)

    1994-12-01

    Porous cathodes of NiO(Li), Co-doped LiFeO[sub 2], and LiCoO[sub 2] for the molten carbonate fuel cell (MCFC) were examined in a comparative study using electrochemical impedance spectroscopy at temperature of 923, 973, and 1023 K. Using this technique the contributions of charge transfer and diffusion to the impedance could be separated. The impedance results as a function of gas composition were compared with theoretical predictions using the thin-film model leading to the conclusion that the most predominant diffusing species in porous MCFC electrodes are molecular oxygen and carbon dioxide. The reaction mechanism is probably the same for all three cathodes involving either the reduction of peroxy-carbonate or the reduction of dissociated oxygen. The remaining difference in gas dependencies can then be explained by assuming a low coverage of oxide ions on LiFeO[sub 2] while NiO(Li) and LiCoO[sub 2] have intermediate coverage by oxide ions. From the temperature dependence of the impedance an estimate may be given of the activation energies of the polarization processes.

  15. The performance of nano urchin-like NiCo2O4 modified activated carbon as air cathode for microbial fuel cell

    NASA Astrophysics Data System (ADS)

    Ge, Baochao; Li, Kexun; Fu, Zhou; Pu, Liangtao; Zhang, Xi; Liu, Ziqi; Huang, Kan

    2016-01-01

    A nano urchin-like NiCo2O4 has been successfully synthesized via a facile and scalable hydrothermal method. A NiCo2O4 modified active carbon air cathode was designed, optimized and fabricated. The maximum power density of the microbial fuel cell with newly developed cathode is 2.28 time higher than bare active carbon and is comparable to the commercial available Pt/C, reaching 1730 ± 14 mW m-2. The modified active carbon showed remarkable improvement in activity towards the oxygen reduction reaction, which was due to the lower charger transfer, lower activation barrier, and higher exchange current density. Electrochemical evaluation showed a direct four-electron the oxygen reduction reaction on NiCo2O4 modified active carbon, compared to a two-stage process on bare active carbon. The non-precious NiCo2O4 could be considered as a promising alternative to the costly Pt.

  16. Determination of effects of turbulence flow in a cathode environment on electricity generation using a tidal mud-based cylindrical-type sediment microbial fuel cell.

    PubMed

    An, Junyeong; Lee, Soo-Jin; Ng, How Yong; Chang, In Seop

    2010-12-01

    We examined the possibility of harvesting electricity from the surface of a tidal mud flat using a cylindrical-type sediment microbial fuel cell (SMFC), a marine mud battery (MMB), which can be applied in a sea environment where the ebb and flow occur due to tidal difference. In addition, we indirectly investigated the influence of ebb and flow in a lab, using aeration, argon gassing, and by agitating the cathodic solution. The MMBs consisted of cylindrical acrylic compartments containing a nylon membrane, an anode, and a cathode in a single body. The MMBs were stuck vertically into an artificial tidal mud flat such that the anode electrode was in direct contact with the tidal mud surface. As a result, the maximum current and power density generated were 35 mA/m(2) and 9 mW/m(2), respectively, thus verifying that it is possible to harvest electricity from the surface of a tidal mud flat using an MMB without burying the anode electrode in the tidal mud. Furthermore, the results of tests using an artificial turbulence flow showed the flow induced by the tidal ebb and flow could allow the performance of MMBs to be enhanced. PMID:20688427

  17. Synthesis of iron oxide/partly graphitized carbon composites as a high-efficiency and low-cost cathode catalyst for microbial fuel cells.

    PubMed

    Ma, Ming; Dai, Ying; Zou, Jin-long; Wang, Lei; Pan, Kai; Fu, Hong-gang

    2014-08-27

    Waste cornstalks and pomelo skins are used as carbon resources for preparing nanocomposites of iron oxide and partly graphitized carbon (Fe3O4/PGC-CS and Fe3O4/PGC-PS). The results showed that Fe3O4 with a face-centered cubic structure is uniformly dispersed on the skeleton of Fe3O4/GC, and the highest SBET values of Fe3O4/PGC-CS (476.5 m(2) g(-1)) and Fe3O4/PGC-PS (547.7 m(2) g(-1)) are obtained at 1000 °C. The electrical conductivity and density of catalytic active sites are correspondingly improved by the introduction of Fe species. Microbial fuel cells (MFCs) with a mixed composite (Fe3O4/PGC-CS:Fe3O4/PGC-PS = 1:1) cathode (three-dimensional structures) generate the highest power density of 1502 ± 30 mW m(-2), which is 26.01% higher than that of Pt/C (1192 ± 33 mW m(-2)) and only declines by 7.12% after 18 cycles. The Fe3O4/PGC-CS cathode has the highest Coulombic efficiency (24.3 ± 0.7%). The Fe3O4/PGC composites exhibit high oxygen reduction reactivity, low charge transfer resistances, and long-term stability and can be used as a low-cost and high-efficiency catalyst for MFCs. PMID:25084054

  18. Low platinum loading cathode modified with Cs3H2PMo10V2O40 for polymer electrolyte membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Renzi, M.; D'Angelo, G.; Marassi, R.; Nobili, F.

    2016-09-01

    The catalytic activity of commercial Pt nanoparticles mixed with mesoporous polyoxometalate Cs3H2PMo10V2O40 towards oxygen reduction reaction is evaluated. The polyoxometalate co-catalyst is prepared by titration of an aqueous solution of phosphovanadomolibdic acid. SEM micrography shows reduction particle size to less than 300 nm, while XRD confirms that the resulting salt maintains the Kegging structure. The composite catalyst is prepared by mixing the POM salt with Pt/C by sonication. RRDE studies show better kinetics for ORR with low Pt loading at the electrode surface. A MEA is assembled by using a Pt/POM-based cathode, in order to assess performance in a working fuel cell. Current vs. potential curves reveals comparable or better performances at 100%, 62% and 17% relative humidity for the POM-modified MEA with respect to a commercial MEA with higher Pt loading at the cathode. Electrochemical impedance spectroscopy (EIS) confirms better kinetics at low relative humidity. Finally, an accelerated stress test (AST) with square wave (SW) between 0.4 V and 0.8 V is performed to evaluate MEA stability for at least 100 h and make predictions about lifetime, showing that after initial losses the catalytic system can retain stable performance and good morphological stability.

  19. Experimental investigation on a polymer electrolyte membrane fuel cell (PEMFC) parallel flow field design with external two-valve regulation on cathode channels

    NASA Astrophysics Data System (ADS)

    Tong, Shijie; Bachman, John C.; Santamaria, Anthony; Park, Jae Wan

    2013-11-01

    Parallel/interdigitated/serpentine flow field PEM fuel cells have similar performance under low overvoltage operation. At higher overvoltage, interdigitated/serpentine flow field performance may exceed parallel flow field designs due to better water removal and more uniform reactant distribution by convective reactant flow in the GDL under land area, i.e. cross flow. However, serpentine flow field design suffers from high pumping losses and the risk of local flooding at channel U-bends. Additionally, interdigitated flow field designs may have higher local flooding risk in the inlet channels and relatively large pumping requirement at low current densities. In this study, a novel parallel flow field design with external two-valve regulation on the cathode was presented. Two valves introduced continuous pressure differences to two separate manifolds in the cathode that induce cross flow across the land areas. Moreover, both valves remained partially open to maintain a good water removal from flow channels. Comparative test results showed the proposed design surpasses performance of both parallel and interdigitated flow field design at operation current density of 0.7 A cm-2 or higher. The performance enhancement is 10.9% at peak power density point (0.387 W cm-2 @ 0.99 A cm-2) compared to parallel flow field taking into account pumping losses.

  20. Spray-on polyvinyl alcohol separators and impact on power production in air-cathode microbial fuel cells with different solution conductivities.

    PubMed

    Hoskins, Daniel L; Zhang, Xiaoyuan; Hickner, Michael A; Logan, Bruce E

    2014-11-01

    Separators are used to protect cathodes from biofouling and to avoid electrode short-circuiting, but they can adversely affect microbial fuel cell (MFC) performance. A spray method was used to apply a polyvinyl alcohol (PVA) separator to the cathode. Power densities were unaffected by the PVA separator (339±29mW/m(2)), compared to a control lacking a separator in a low conductivity solution (1mS/cm) similar to wastewater. Power was reduced with separators in solutions typical of laboratory tests (7-13mS/cm), compared to separatorless controls. The PVA separator produced more power in a separator assembly (SEA) configuration (444±8mW/m(2)) in the 1mS/cm solution, but power was reduced if a PVA or wipe separator was used in higher conductivity solutions with either Pt or activated carbon catalysts. Spray and cast PVA separators performed similarly, but the spray method is preferred as it was easier to apply and use. PMID:25260178

  1. Fuel cell development for transportation: Catalyst development

    SciTech Connect

    Doddapaneni, N.

    1996-04-01

    Fuel cells are being considered as alternate power sources for transportation and stationary applications. With proton exchange membrane (PEM) fuel cells the fuel crossover to cathodes causes severe thermal management and cell voltage drop due to oxidation of fuel at the platinized cathodes. The main goal of this project was to design, synthesize, and evaluate stable and inexpensive transition metal macrocyclic catalysts for the reduction of oxygen and be electrochemically inert towards anode fuels such as hydrogen and methanol.

  2. Performance evaluation of low cost microbial fuel cell fabricated using earthen pot with biotic and abiotic cathode.

    PubMed

    Behera, Manaswini; Jana, Partha S; Ghangrekar, M M

    2010-02-01

    An attempt has been made to produce low cost MFC from the commercially available earthen pots in India, without involving any costly membrane. This MFC gave a maximum power output of 16.8 W/m(3) at a Coulombic efficiency (CE) of 31.3% with graphite plate cathode. With stainless steel mesh cathode and KMnO(4) as cathodic electrolyte the power production and CE of 70.48 W/m(3) and 64.5%, respectively, was obtained. The performance of this earthen pot MFC was evaluated with biotic and abiotic cathode. Although, biofilm formation on the cathode is observed to be helpful in enhancing power out put, the thicker biofilm on the cathode showed reduction in power. This MFC demonstrated competitive performance as compared to MFC incorporated with membrane. This low cost MFC, with total production cost of less than 1.0$, as per Indian market, demonstrated its utility as a wastewater treatment and onsite power generation device. PMID:19800223

  3. Segmented cell testing for cathode parameter investigation

    NASA Astrophysics Data System (ADS)

    Tanasini, Pietro; Schuler, J. Andreas; Wuillemin, Zacharie; Ameur, Myriam L. Ben; Comninellis, Christos; Van herle, Jan

    The increasing quality and durability of solid oxide fuel cells (SOFCs) state-of-the-art materials renders the long-term testing of fuel cells difficult since considerably long equipment times are needed to obtain valuable results. Moreover, reproducibility issues are common due to the high sensitivity of the performance and degradation on the testing conditions. An original segmented cell configuration has been adopted in order to carry out four tests in parallel, thus decreasing the total experimental time and ensuring the same operating conditions for the four segments. The investigation has been performed on both anode-supported cells and symmetrical Lanthanum-Strontium Manganite-Yttria-stabilized Zirconia (LSM-YSZ) electrolyte-supported cells. In separate tests, the influence of variables like cathode thickness, current density and cathode composition on performance and degradation have been explored on anode-supported cells. Furthermore, the effect of chromium poisoning has been studied on electrolyte-supported symmetric cells by contacting one segment with a chromium-iron interconnect material. Long-term polarization of the segments is controlled with a multi-channel galvanostatic device designed in-house. Electrochemical characterization has been performed through electrochemical impedance spectroscopy (EIS) at different H 2 partial pressures, temperatures and bias current, effectively demonstrating the direct impact of each studied variable on the cell performance and degradation behavior. Segmented cell testing has been proven to be an effective strategy to achieve better reproducibility for SOFC measurements since it avoids the inevitable fluctuations found in a series of successively run tests. Moreover, simultaneous testing increased n-fold the data output per experiment, implying a considerable economy of time.

  4. Liquid water quantification in the cathode side gas channels of a proton exchange membrane fuel cell through two-phase flow visualization

    NASA Astrophysics Data System (ADS)

    Banerjee, Rupak; Kandlikar, Satish G.

    2014-02-01

    Water management is crucial to the performance of PEM fuel cells. Water is generated as part of the electrochemical reaction, and is removed through the reactant channels. This results in two-phase flow in the reactant channels. Increased understanding of the behavior of the liquid water in the channels allows us to devise better strategies for managing the water content inside the fuel cell. Most previous work has been focused on qualitative information regarding flow pattern maps. The current work presents new algorithms developed in MATLAB® to quantify the liquid water and to identify the flow patterns in the cathode side reactant channels. Parallel channels with dimensions matching those of commercial stacks have been used in this study. The liquid water present in the reactant channels is quantified for different temperature, inlet RH and current density conditions, and the results are presented in terms of area coverage ratio. The dominant flow patterns for the different conditions have been mapped, and trends interpreted on the basis of air flow velocities and saturation conditions within the channels.

  5. Effect of the nanosized TiO2 particles in Pd/C catalysts as cathode materials in direct methanol fuel cells.

    PubMed

    Choi, Mahnsoo; Han, Choonsoo; Kim, In-Tae; Lee, Ji-Jung; Lee, Hong-Ki; Shim, Joongpyo

    2011-07-01

    Pd-TiO2/C catalysts were prepared by impregnating titanium dioxide (TiO2) on carbon-supported Pd (Pd/C) for use as the catalyst for the oxygen reduction reaction (ORR) in direct methanol fuel cells (DMFCs). Transmission electron microscope (TEM), scanning electron microscope (SEM) and X-ray diffraction (XRD) analyses were carried to confirm the distribution, morphology and structure of Pd and TiO2 on the carbon support. In fuel cell test, we confirmed that the addition of TiO2 nanoparticles make the improved catalytic activity of oxygen reduction. The electrochemical characterization of the Pd-TiO2/C catalyst for the ORR was carried out by cyclic voltammetry (CV) in the voltage window of 0.04 V to 1.2 V with scan rate of 25 mV/s. With the increase in the crystallite size of TiO2, the peak potential for OH(ads) desorption on the surface of Pd particle shifted to higher potential. This implies that TiO2 might affect the adsorption and desorption of oxygen molecules on Pd catalyst. The performance of Pd-TiO2/C as a cathode material was found to be similar to or better performance than that of Pt/C. PMID:22121727

  6. A comparative study of Pt/C cathodes in Sn 0.9In 0.1P 2O 7 and H 3PO 4 ionomers for high-temperature proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Jin, Y. C.; Okada, M.; Hibino, T.

    New Pt/C cathodes with many reaction sites for the oxygen reduction reaction as well as high tolerance to Pt corrosion have been designed for high-temperature proton exchange membrane fuel cells (PEMFCs), wherein a composite mixture of Sn 0.9In 0.1P 2O 7 (SIPO) and sulfonated polystyrene-b-poly(ethylene/butylene)-b-polystyrene (sSEBS) functioned as an ionomer. The microstructure of the Pt-SIPO-sSEBS/C cathode was characterized by homogeneous distribution of the ionomer over the catalyst layer and close contact between the ionomer and the Pt/C powder. As a result, the activation and concentration overpotentials of the Pt-SIPO-sSEBS/C cathode between 100 and 200 °C were lower than those of an H 3PO 4-impregnated Pt/C cathode, which suggests that the present ionomer can avoid poisoning of Pt by phosphate anions and the limitation of gas diffusion through the catalyst layer. Moreover, agglomeration of Pt in the Pt-SIPO-sSEBS/C cathode was not observed during a durability test at 150 °C for 6 days, although it was significant in the Pt-H 3PO 4/C cathode. Therefore, it is concluded that the Pt-SIPO-sSEBS/C electrode is a very promising cathode candidate for high-temperature PEMFCs.

  7. Palladium-based electrocatalysts and fuel cells employing such electrocatalysts

    SciTech Connect

    Masel; Richard I. , Zhu; Yimin , Larsen; Robert T.

    2010-08-31

    A direct organic fuel cell includes a fluid fuel comprising formic acid, an anode having an electrocatalyst comprising palladium nanoparticles, a fluid oxidant, a cathode electrically connected to the anode, and an electrolyte interposed between the anode and the cathode.

  8. Cooling channels design analysis with chaotic laminar trajectory for closed cathode air-cooled PEM fuel cells using non-reacting numerical approach

    NASA Astrophysics Data System (ADS)

    N, W. Mohamed W. A.

    2015-09-01

    The thermal management of Polymer Electrolyte Membrane (PEM) fuel cells contributes directly to the overall power output of the system. For a closed cathode PEM fuel cell design, the use of air as a cooling agent is a non-conventional method due to the large heat load involved, but it offers a great advantage for minimizing the system size. Geometrical aspects of the cooling channels have been identified as the basic parameter for improved cooling performance. Numerical investigation using STAR-CCM computational fluid dynamics platform was applied for non-reacting cooling effectiveness study of various channel geometries for fuel cell application. The aspect ratio of channels and the flow trajectory are the parametric variations. A single cooling plate domain was selected with an applied heat flux of 2400 W/m2 while the cooling air are simulated at Reynolds number of 400 that corresponds to normal air flow velocities using standard 6W fans. Three channel designs of similar number of channels (20 channels) are presented here to analyze the effects of having chaotic laminar flow trajectory compared to the usual straight path trajectory. The total heat transfer between the cooling channel walls and coolant were translated into temperature distribution, maximum temperature gradient, average plate temperature and overall cooling effectiveness analyses. The numerical analysis shows that the chaotic flow promotes a 5% to 10% improvement in cooling effectiveness, depending on the single-axis or multi-axis flow paths applied. Plate temperature uniformity is also more realizable using the chaotic flow designs.

  9. Stability of La0.6Sr0.4Co0.2Fe0.8O3/Ce0.9Gd0.1O2 cathodes during sintering and solid oxide fuel cell operation

    NASA Astrophysics Data System (ADS)

    Kiebach, Ragnar; Zhang, Wei-Wei; Zhang, Wei; Chen, Ming; Norrman, Kion; Wang, Hsiang-Jen; Bowen, Jacob R.; Barfod, Rasmus; Hendriksen, Peter Vang

    2015-06-01

    Degradation phenomena of La0.58Sr0.4Co0.2Fe0.8O3/Ce0.9Gd0.1O2 (LSCF/CGO) cathodes were investigated via post-mortem analyses of an experimental solid oxide fuel cell (SOFC) stack tested at 700 °C for 2000 h using advanced electron microscopy (SEM-EDS, HR-TEM-EDS) and time-of-flight secondary ion mass spectrometry (TOF-SIMS). Similar studies were carried out on non-tested reference cells for comparison. The analysis focused on the LSCF/CGO cathode and the CGO barrier layer, as the cathode degradation can be a major contributor to the overall degradation in this type of SOFC. SEM-EDS and TOF-SIMS were used to investigate inter-diffusion across the barrier layer-electrolyte interface and the barrier layer-cathode interface. In addition, TOF-SIMS data were employed to investigate impurity distribution before and after testing. HR-TEM-EDS was used to investigate possible phase segregation in the LSCF and to look for reaction between the phases. The results show that phase separation and inter-diffusion across the cathode-barrier layer interface and the barrier layer-electrolyte interface happened mainly during sintering and cathode firing, and to a very little degree during the test period.

  10. Title: Performances of YBaCo1.4Cu0.6O5+ -Ce0.8Sm0.2O1.9 composite cathodes for intermediatetemperature solid oxide fuel cells

    DOE PAGESBeta

    Wang, Lizhong; Peng, Lu; Hu, Michael Z.; Lyu, Shiquan; Meng, Xiangwei; Yu, Bo; Wei, Maobin; Fan, Hougang; Yang, Lili

    2015-01-01

    The electrochemical properties of YBaCo1.4Cu0.6O5+ xCe0.8Sm0.2O1.9 (YBCC xSDC, x = 20, 30, 40, 50, wt%) have been investigated for the potential application in intermediate-temperature solid oxide fuel cells (IT-SOFCs). No chemical reactions between YBCC cathode and SDC electrolyte, and YBCC and La0.9Sr0.1Ga0.8Mg0.2O3- (LSGM) occur. The thermal expansion coefficient (TEC) of YBCC cathode decreases with SDC addition. The TEC of YBCC 30SDC cathode is 13.60 10-6 K-1 from 30 to 850 oC in air and it exhibits the best electrochemical performance among the YBCC xSDC cathodes. The polarization resistance (Rp) of YBCC 30SDC is 0.027 cm2 at 850 oC, 0.044 cm2more » at 800 oC and 0.075 cm2 at 750 oC. The maximum power density value of electrolyte-based cell with YBCC 30SDC cathode is 662, 483 and 319 mW cm 2 at 850, 800 and 750 oC, respectively. Preliminary results indicate that YBCC 30SDC is especially promising as a cathode for IT-SOFCs.« less

  11. Performances of YBaCo1.4Cu0.6O5+δ–Ce0.8Sm0.2O1.9 composite cathodes for intermediate-temperature solid oxide fuel cells

    DOE PAGESBeta

    Wang, Lizhong; Peng, Lu; Hu, Michael Z.; Lü, Shiquan; Meng, Xiangwei; Yu, Bo; Wei, Maobin; Fan, Hougang; Yang, Lili

    2015-08-20

    In this paper, the electrochemical properties of YBaCo1.4Cu0.6O5+δ–xCe0.8Sm0.2O1.9 (YBCC–xSDC, x=20, 30, 40, 50 wt%) have been investigated for the potential application in intermediate-temperature solid oxide fuel cells (IT-SOFCs). No chemical reactions between YBCC cathode and SDC electrolyte, and YBCC and La0.9Sr0.1Ga0.8Mg0.2O3-δ (LSGM) occur. The thermal expansion coefficient (TEC) of YBCC cathode decreases with SDC addition. The TEC of YBCC–30SDC cathode is 13.60×10–6 K-1 from 30 to 850 °C in air and it exhibits the best electrochemical performance among the YBCC–xSDC cathodes. The polarization resistance (Rp) of YBCC–30SDC is 0.027 Ω cm2 at 850 °C, 0.044 Ω cm2 at 800 °Cmore » and 0.075 Ω cm2 at 750 °C. The maximum power density value of electrolyte-based cell with YBCC–30SDC cathode is 662, 483 and 319 mW cm-2 at 850, 800 and 750 °C, respectively. Finally, preliminary results indicate that YBCC–30SDC is especially promising as a cathode for IT-SOFCs.« less

  12. Density functional theory study on oxygen adsorption in LaSrCoO 4: An extended cathode material for solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Zhou, Jun; Chen, Gang; Wu, Kai; Cheng, Yonghong; Peng, Bo; Guo, Jiaojiao; Jiang, Yizhe

    2012-01-01

    Solid oxide fuel cell (SOFC) is one of the most promising technologies for a clean and secure source of energy in future due to its high energy efficiency and outstanding fuel flexibility. The search for new materials operating at low-temperature in order to make SOFCs economically competitive is a great challenge facing us today. In this report, atomistic computer simulation based on density functional theory (DFT) has been used to predict the formation of oxygen vacancy and the strong oxygen adsorption kinetics mechanisms in LaSrCoO4. The optimal adsorption configurations as well as the adsorption energies for oxygen molecule adsorption on various sites of LaSrCoO4 (0 1 0) surface were derived. Furthermore, a strong hybridization between Co and O and shorter Co-O bond length for molecular adsorption were obtained by analysis of density of states. The calculated results imply that LaSrCoO4 could serve as possible cathode material due to its low formation and migration energies of oxygen vacancies.

  13. The enhancement of ammonium removal from ethanolamine wastewater using air-cathode microbial fuel cells coupled to ferric reduction.

    PubMed

    Shin, Ja-Won; Seo, Seok-Ju; Maitlo, Hubdar Ali; Park, Joo-Yang

    2015-08-01

    A microbial fuel cell (MFC) with biological Fe(III) reduction was implemented for simultaneous ethanolamine (ETA) degradation and electrical energy generation. In the feasibility experiment using acetate as a substrate in a single-chamber MFC with goethite and ammonium at a ratio of 3.0(mol/mol), up to 96.1% of the ammonium was removed through the novel process related to Fe(III). In addition, the highest voltage output (0.53V) and maximum power density (0.49Wm(-2)) were obtained. However, the ammonium removal and electrical performance decreased as acetate was replaced with ETA. In the long-term experiment, the electrical performance markedly decreased where the voltage loss increased due to Fe deposition on the membranes. PMID:25804534

  14. Wetting-in studies on alkaline-fuel-cell cathodes using a potentiostatic-galvanostatic experimental design

    SciTech Connect

    Lundblad, A.; Bjoernbom, P. . Dept. of Chemical Engineering and Technology)

    1994-06-01

    The influence of potential and current on electrolyte intrusion during the initiation phase of poly(tetrafluoroethylene)-(PTFE)-bonded carbon cathodes has been studied. A potentiostatic-galvanostatic experimental design was used. This was attained by varying the oxygen concentration using a computerized control circuit. The intrusion depth was determined by an electron microscope element-mapping method, and the amount of intruded electrolyte was determined by weighing. The wetting-in of the electrode was found to depend strongly on potential and less on applied current density. A combination of electrocapillarity and electro-osmosis is proposed as an explanation of the results. The experiments have also revealed interesting phenomena concerning electrolyte and three-dimensional current-density distribution during the initiation phase. From the results, a mechanism for the sudden failure (flooding) of PTFE-bonded carbon cathodes at the end of their service life is suggested.

  15. Improved Direct Methanol Fuel Cell Stack

    DOEpatents

    Wilson, Mahlon S.; Ramsey, John C.

    2005-03-08

    A stack of direct methanol fuel cells exhibiting a circular footprint. A cathode and anode manifold, tie-bolt penetrations and tie-bolts are located within the circular footprint. Each fuel cell uses two graphite-based plates. One plate includes a cathode active area that is defined by serpentine channels connecting the inlet and outlet cathode manifold. The other plate includes an anode active area defined by serpentine channels connecting the inlet and outlet of the anode manifold, where the serpentine channels of the anode are orthogonal to the serpentine channels of the cathode. Located between the two plates is the fuel cell active region.

  16. Design of an Advanced Membrane Electrode Assembly Employing a Double-Layered Cathode for a PEM Fuel Cell.

    PubMed

    Kim, GyeongHee; Eom, KwangSup; Kim, MinJoong; Yoo, Sung Jong; Jang, Jong Hyun; Kim, Hyoung-Juhn; Cho, EunAe

    2015-12-23

    The membrane electrolyte assembly (MEA) designed in this study utilizes a double-layered cathode: an inner catalyst layer prepared by a conventional decal transfer method and an outer catalyst layer directly coated on a gas diffusion layer. The double-layered structure was used to improve the interfacial contact between the catalyst layer and membrane, to increase catalyst utilization and to modify the removal of product water from the cathode. Based on a series of MEAs with double-layered cathodes with an overall Pt loading fixed at 0.4 mg cm(-2) and different ratios of inner-to-outer Pt loading, the MEA with an inner layer of 0.3 mg Pt cm(-2) and an outer layer of 0.1 mg Pt cm(-2) exhibited the best performance. This performance was better than that of the conventional single-layered electrode by 13.5% at a current density of 1.4 A cm(-2). PMID:26630367

  17. Improving La0.6Sr0.4Co0.8Fe0.2O3-δ infiltrated solid oxide fuel cell cathode performance through precursor solution desiccation

    NASA Astrophysics Data System (ADS)

    Burye, Theodore E.; Nicholas, Jason D.

    2015-02-01

    Here, for the first time, the average size of solid oxide fuel cell (SOFC) electrode nano-particles was reduced through the chemical desiccation of infiltrated precursor nitrate solutions. Specifically, after firing at 700 °C, CaCl2-desiccated La0.6Sr0.4Co0.8Fe0.2O3-δ (LSCF) - Ce0.9Gd0.1O1.95 (GDC) cathodes contained LSCF infiltrate particles with an average size of 22 nm. This is in contrast to comparable, undesiccated LSCF-GDC cathodes which contained LSCF infiltrate particles with an average size of 48 nm. X-ray diffraction, scanning electron microscopy, and controlled atmosphere electrochemical impedance spectroscopy revealed that desiccation reduced the average infiltrate particle size without altering the infiltrate phase purity, the cathode concentration polarization resistance, or the cathode electronic resistance. Compared to undesiccated LSCF-GDC cathodes achieving polarization resistances of 0.10 Ωcm2 at 640 °C, comparable CaCl2-dessicated LSCF-GDC cathodes achieved 0.10 Ωcm2 at 575 °C. Mathematical modeling suggested that these performance improvements resulted solely from average infiltrate particle size reductions.

  18. Fuel cell electrode interconnect contact material encapsulation and method

    DOEpatents

    Derose, Anthony J.; Haltiner, Jr., Karl J.; Gudyka, Russell A.; Bonadies, Joseph V.; Silvis, Thomas W.

    2016-05-31

    A fuel cell stack includes a plurality of fuel cell cassettes each including a fuel cell with an anode and a cathode. Each fuel cell cassette also includes an electrode interconnect adjacent to the anode or the cathode for providing electrical communication between an adjacent fuel cell cassette and the anode or the cathode. The interconnect includes a plurality of electrode interconnect protrusions defining a flow passage along the anode or the cathode for communicating oxidant or fuel to the anode or the cathode. An electrically conductive material is disposed between at least one of the electrode interconnect protrusions and the anode or the cathode in order to provide a stable electrical contact between the electrode interconnect and the anode or cathode. An encapsulating arrangement segregates the electrically conductive material from the flow passage thereby, preventing volatilization of the electrically conductive material in use of the fuel cell stack.

  19. Carbon fuel cells with carbon corrosion suppression

    DOEpatents

    Cooper, John F.

    2012-04-10

    An electrochemical cell apparatus that can operate as either a fuel cell or a battery includes a cathode compartment, an anode compartment operatively connected to the cathode compartment, and a carbon fuel cell section connected to the anode compartment and the cathode compartment. An effusion plate is operatively positioned adjacent the anode compartment or the cathode compartment. The effusion plate allows passage of carbon dioxide. Carbon dioxide exhaust channels are operatively positioned in the electrochemical cell to direct the carbon dioxide from the electrochemical cell.

  20. Synthesis and electrochemical performances of LiNiCuZn oxides as anode and cathode catalyst for low temperature solid oxide fuel cell.

    PubMed

    Jing, Y; Qin, H; Liu, Q; Singh, M; Zhu, B

    2012-06-01

    Low temperature solid oxide fuel cell (LTSOFC, 300-600 degrees C) is developed with advantages compared to conventional SOFC (800-1000 degrees C). The electrodes with good catalytic activity, high electronic and ionic conductivity are required to achieve high power output. In this work, a LiNiCuZn oxides as anode and cathode catalyst is prepared by slurry method. The structure and morphology of the prepared LiNiCuZn oxides are characterized by X-ray diffraction and field emission scanning electron microscopy. The LiNiCuZn oxides prepared by slurry method are nano Li0.28Ni0.72O, ZnO and CuO compound. The nano-crystallites are congregated to form ball-shape particles with diameter of 800-1000 nm. The LiNiCuZn oxides electrodes exhibits high ion conductivity and low polarization resistance to hydrogen oxidation reaction and oxygen reduction reaction at low temperature. The LTSOFC using the LiNiCuZn oxides electrodes demonstrates good cell performance of 1000 mW cm(-2) when it operates at 470 degrees C. It is considered that nano-composite would be an effective way to develop catalyst for LTSOFC. PMID:22905585

  1. Highly efficient and robust cathode materials for low-temperature solid oxide fuel cells: PrBa0.5Sr0.5Co2-xFexO5+δ

    NASA Astrophysics Data System (ADS)

    Choi, Sihyuk; Yoo, Seonyoung; Kim, Jiyoun; Park, Seonhye; Jun, Areum; Sengodan, Sivaprakash; Kim, Junyoung; Shin, Jeeyoung; Jeong, Hu Young; Choi, Yongman; Kim, Guntae; Liu, Meilin

    2013-08-01

    Solid oxide fuel cells (SOFC) are the cleanest, most efficient, and cost-effective option for direct conversion to electricity of a wide variety of fuels. While significant progress has been made in anode materials with enhanced tolerance to coking and contaminant poisoning, cathodic polarization still contributes considerably to energy loss, more so at lower operating temperatures. Here we report a synergistic effect of co-doping in a cation-ordered double-perovskite material, PrBa0.5Sr0.5Co2-xFexO5+δ, which has created pore channels that dramatically enhance oxygen ion diffusion and surface oxygen exchange while maintaining excellent compatibility and stability under operating conditions. Test cells based on these cathode materials demonstrate peak power densities ~2.2 W cm-2 at 600°C, representing an important step toward commercially viable SOFC technologies.

  2. Highly efficient and robust cathode materials for low-temperature solid oxide fuel cells: PrBa0.5Sr0.5Co2−xFexO5+δ

    PubMed Central

    Choi, Sihyuk; Yoo, Seonyoung; Kim, Jiyoun; Park, Seonhye; Jun, Areum; Sengodan, Sivaprakash; Kim, Junyoung; Shin, Jeeyoung; Jeong, Hu Young; Choi, YongMan; Kim, Guntae; Liu, Meilin

    2013-01-01

    Solid oxide fuel cells (SOFC) are the cleanest, most efficient, and cost-effective option for direct conversion to electricity of a wide variety of fuels. While significant progress has been made in anode materials with enhanced tolerance to coking and contaminant poisoning, cathodic polarization still contributes considerably to energy loss, more so at lower operating temperatures. Here we report a synergistic effect of co-doping in a cation-ordered double-perovskite material, PrBa0.5Sr0.5Co2−xFexO5+δ, which has created pore channels that dramatically enhance oxygen ion diffusion and surface oxygen exchange while maintaining excellent compatibility and stability under operating conditions. Test cells based on these cathode materials demonstrate peak power densities ~2.2 W cm−2 at 600°C, representing an important step toward commercially viable SOFC technologies. PMID:23945630

  3. Characterization of SrCo0.7Fe0.2Nb0.1O3-δ cathode materials for intermediate-temperature solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Lü, Shiquan; Yu, Bo; Meng, Xiangwei; Zhao, Xiaoyu; Ji, Yuan; Fu, Chengwei; Zhang, Yongjun; Yang, Lili; Fan, Hougang; Yang, Jinghai

    2015-01-01

    A new cubic perovskite oxide, SrCo0.7Fe0.2Nb0.1O3-δ (SCFN), is investigated as a cathode for intermediate-temperature solid oxide fuel cells (IT-SOFCs). XRD results show that there are no serious reactions between SCFN and Sm0.2Ce0.8O1.9 (SDC) except a slight peak shift. XPS analysis shows that the transition-metal cations in the SCFN exist in two different valence states, i.e., [Sr2+][Co3+/Co4+]0.7[Fe3+/Fe4+]0.2[Nb4+/Nb5+]0.1O3-δ. The electrical conductivity of the SCFN sample reaches a maximum 304 S cm-1 at 350 °C in air. In order to optimize thermal expansion coefficients (TECs) and electrochemical performance of the SCFN cathode, we fabricate SCFN-xSDC (x = 0, 20, 30, 40, 50, 60, wt%) composite cathodes. The thermal expansion behavior shows that the TECs value of SCFN cathode decreases greatly with SDC addition. The SDC addition reduces the polarization resistance, and the lowest polarization resistance 0.0255 Ω cm2 is achieved at 800 °C for SCFN-50SDC composite cathode. For SCFN-xSDC (x = 0, 40, 50, 60) composites, the maximum power densities of single-cells with SCFN-xSDC cathodes on 300 μm thick SDC electrolyte achieve 417, 557, 630 and 517 mW cm-2 at 800 °C, respectively. These results indicate that SCFN-50SDC composite is a potential cathode material for application in IT-SOFCs.

  4. Enhancement of electricity production in a mediatorless air-cathode microbial fuel cell using Klebsiella sp. IR21.

    PubMed

    Lee, Yun-Yeong; Kim, Tae Gwan; Cho, Kyung-Suk

    2016-06-01

    A novel dissimilatory iron-reducing bacteria, Klebsiella sp. IR21, was isolated from the anode biofilm of an MFC reactor. Klebsiella sp. IR21 reduced 27.8 % of ferric iron to ferrous iron demonstrating that Klebsiella sp. IR21 has electron transfer ability. Additionally, Klebsiella sp. IR21 generated electricity forming a biofilm on the anode surface. When a pure culture of Klebsiella sp. IR21 was supplied into a single chamber, air-cathode MFC fed with a mixture of glucose and acetate (500 mg L(-1) COD), 40-60 mV of voltage (17-26 mA m(-2) of current density) was produced. Klebsiella sp. IR21 was also utilized as a biocatalyst to improve the electrical performance of a conventional MFC reactor. A single chamber, air-cathode MFC was fed with reject wastewater (10,000 mg L(-1) COD) from a H2 fermentation reactor. The average voltage, current density, and power density were 142.9 ± 25.74 mV, 60.5 ± 11.61 mA m(-2), and 8.9 ± 3.65 mW m(-2), respectively, in the MFC without inoculation of Klebsiella sp. IR21. However, these electrical performances of the MFC were significantly increased to 204.7 ± 40.24 mV, 87.5 ± 17.20 mA m(-2), and 18.6 ± 7.23 mW m(-2), respectively, with inoculation of Klebsiella sp. IR21. The results indicate that Klebsiella sp. IR21 can be utilized as a biocatalyst for enhancement of electrical performance in MFC systems. PMID:26956141

  5. Fuel cells 101

    SciTech Connect

    Hirschenhofer, J.H.

    1999-07-01

    This paper discusses the various types of fuel cells, the importance of cell voltage, fuel processing for natural gas, cell stacking, fuel cell plant description, advantages and disadvantages of the types of fuel cells, and applications. The types covered include: polymer electrolyte fuel cell, alkaline fuel cell, phosphoric acid fuel cell; molten carbonate fuel cell, and solid oxide fuel cell.

  6. Multi scale and physics models for intermediate and low temperatures H+-solid oxide fuel cells with H+/e-/O2- mixed conducting properties: Part A, generalized percolation theory for LSCF-SDC-BZCY 3-component cathodes

    NASA Astrophysics Data System (ADS)

    Chen, Daifen; Zhang, Qiang; Lu, Liu; Periasamy, Vijay; Tade, Moses O.; Shao, Zongping

    2016-01-01

    H+ based solid oxide fuel cell (SOFC) composite cathodes are generally agreed to be of quite different relationships among the microstructure parameters, electrode properties and detailed working processes from the conventional O2--SOFC composite cathodes. In this paper, the percolation theory is significantly generalized and developed to suit most of the typical H+-SOFC composite cathodes with e-/H+, e-/O2- or e-/H+/O2- mixed conducting characteristics; not just limited to the BCZY, SDC and LSCF materials. It provides an easy way to investigate the effect of microstructure parameters on the H+-SOFC electrode characteristics in quantity. The studied electrode properties include: i) the potential coexisting sites of O2, e-, and O2- transport paths for the oxygen reduction; ii) the potential coexisting sites of O2-, H+ and H2O transport paths for the vapor formation; iii) the effective e-, O2-, and H+ conducting and gas diffusing capabilities of the composite cathodes, and so on. It will be helpful for the H+-SOFC composite cathode manufacture to achieve the expected properties. Furthermore, it is also an important step for the developing of the multiphysics-model in manuscript part B to study the effect of the microstructure parameters on the H+-SOFC working details.

  7. Cells having cathodes containing polycarbon disulfide materials

    DOEpatents

    Okamoto, Yoshi; Skotheim, Terje A.; Lee, Hung S.

    1995-08-15

    The present invention relates to an electric current producing cell which contains an anode, a cathode having as a cathode-active material one or more carbon-sulfur compounds of the formula (CS.sub.x).sub.n, in which x takes values from 1.2 to 2.3 and n is greater or equal to 2, and where the redox process does not involve polymerization and de-polymerization by forming and breaking S--S bonds in the polymer backbone. The cell also contains an electrolyte which is chemically inert with respect to the anode and the cathode.

  8. Cells having cathodes containing polycarbon disulfide materials

    DOEpatents

    Okamoto, Y.; Skotheim, T.A.; Lee, H.S.

    1995-08-15

    The present invention relates to an electric current producing cell which contains an anode, a cathode having as a cathode-active material one or more carbon-sulfur compounds of the formula (CS{sub x}){sub n}, in which x takes values from 1.2 to 2.3 and n is greater or equal to 2, and where the redox process does not involve polymerization and de-polymerization by forming and breaking S--S bonds in the polymer backbone. The cell also contains an electrolyte which is chemically inert with respect to the anode and the cathode. 5 figs.

  9. Inorganic salt mixtures as electrolyte media in fuel cells

    NASA Technical Reports Server (NTRS)

    Angell, Charles Austen (Inventor); Belieres, Jean-Philippe (Inventor); Francis-Gervasio, Dominic (Inventor)

    2012-01-01

    Fuel cell designs and techniques for converting chemical energy into electrical energy uses a fuel cell are disclosed. The designs and techniques include an anode to receive fuel, a cathode to receive oxygen, and an electrolyte chamber in the fuel cell, including an electrolyte medium, where the electrolyte medium includes an inorganic salt mixture in the fuel cell. The salt mixture includes pre-determined quantities of at least two salts chosen from a group consisting of ammonium trifluoromethanesulfonate, ammonium trifluoroacetate, and ammonium nitrate, to conduct charge from the anode to the cathode. The fuel cell includes an electrical circuit operatively coupled to the fuel cell to transport electrons from the cathode.

  10. Enrichment of anodic biofilm inoculated with anaerobic or aerobic sludge in single chambered air-cathode microbial fuel cells.

    PubMed

    Gao, Chongyang; Wang, Aijie; Wu, Wei-Min; Yin, Yalin; Zhao, Yang-Guo

    2014-09-01

    Aerobic sludge after anaerobic pretreatment and anaerobic sludge were separately used as inoculum to start up air-cathode single-chamber MFCs. Aerobic sludge-inoculated MFCs arrived at 0.27 V with a maximum power density of 5.79 W m(-3), while anaerobic sludge-inoculated MFCs reached 0.21 V with 3.66 W m(-3). Microbial analysis with DGGE profiling and high-throughput sequencing indicated that aerobic sludge contained more diverse bacterial populations than anaerobic sludge. Nitrospira species dominated in aerobic sludge, while anaerobic sludge was dominated by Desulfurella and Acidithiobacillus species. Microbial community structure and composition in anodic biofilms enriched, respectively from aerobic and anaerobic sludges tended gradually to be similar. Potentially exoelectrogenic Geobacter and Anaeromusa species, biofilm-forming Zoogloea and Acinetobacter species were abundant in both anodic biofilms. This study indicated that aerobic sludge performed better for MFCs startup, and the enrichment of anodic microbial consortium with different inocula but same substrate resulted in uniformity of functional microbial communities. PMID:24973773

  11. OPTIMIZATION OF THE CATHODE LONG-TERM STABILITY IN MOLTEN CARBONATE FUEL CELLS: EXPERIMENTAL STUDY AND MATHEMATICAL MODELING

    SciTech Connect

    Dr. Ralph E. White

    2001-03-31

    SS 304 was encapsulated with thin layers of Co-Ni by an electroless deposition process. The corrosion behavior of SS304 and Co-Ni-SS304 was investigated in molten carbonate under cathode gas atmosphere with electrochemical and surface characterization tools. Surface modification of SS304 reduced the dissolution of chromium and nickel into the molten carbonate melt. Composition of the corrosion scale formed in case of Co-Ni-SS304 is different from SS304 and shows the presence of Co and Ni oxides while the latter shows the presence of lithium ferrite. Polarization resistance for oxygen reduction reaction and conductivity of corrosion values for the corrosion scales were obtained using impedance analysis and current-potential plots. The results indicated lower polarization resistance for oxygen reduction reaction in the case of Co-Ni-SS304 when compared to SS304. Also, the conductivity of the corrosion scales was considerably higher in case of Co-Ni-SS304 than the SS304. This study shows that modifying the current collector surface with Co-Ni coatings leads to the formation of oxide scales with improved barrier properties and electronic conductivity.

  12. Oxygen reduction kinetics on graphite cathodes in sediment microbial fuel cells†

    PubMed Central

    Renslow, Ryan; Donovan, Conrad; Shim, Matthew; Babauta, Jerome; Nannapaneni, Srilekha; Schenk, James

    2012-01-01

    Sediment microbial fuel cells (SMFCs) have been used as renewable power sources for sensors in fresh and ocean waters. Organic compounds at the anode drive anodic reactions, while oxygen drives cathodic reactions. An understanding of oxygen reduction kinetics and the factors that determine graphite cathode performance is needed to predict cathodic current and potential losses, and eventually to estimate the power production of SMFCs. Our goals were to (1) experimentally quantify the dependence of oxygen reduction kinetics on temperature, electrode potential, and dissolved oxygen concentration for the graphite cathodes of SMFCs and (2) develop a mechanistic model. To accomplish this, we monitored current on polarized cathodes in river and ocean SMFCs. We found that (1) after oxygen reduction is initiated, the current density is linearly dependent on polarization potential for both SMFC types; (2) current density magnitude increases linearly with temperature in river SMFCs but remains constant with temperature in ocean SMFCs; (3) the standard heterogeneous rate constant controls the current density temperature dependence; (4) river and ocean SMFC graphite cathodes have large potential losses, estimated by the model to be 470 mV and 614 mV, respectively; and (5) the electrochemical potential available at the cathode is the primary factor controlling reduction kinetic rates. The mechanistic model based on thermodynamic and electrochemical principles successfully fit and predicted the data. The data, experimental system, and model can be used in future studies to guide SMFC design and deployment, assess SMFC current production, test cathode material performance, and predict cathode contamination. PMID:22052235

  13. Alkaline fuel cell performance investigation

    NASA Technical Reports Server (NTRS)

    Martin, R. E.; Manzo, M. A.

    1988-01-01

    An exploratory experimental fuel cell test program was conducted to investigate the performance characteristics of alkaline laboratory research electrodes. The objective of this work was to establish the effect of temperature, pressure, and concentration upon performance and evaluate candidate cathode configurations having the potential for improved performance. The performance characterization tests provided data to empirically establish the effect of temperature, pressure, and concentration upon performance for cell temperatures up to 300 F and reactant pressures up to 200 psia. Evaluation of five gold alloy cathode catalysts revealed that three doped gold alloys had more than two times the surface areas of reference cathodes and therefore offered the best potential for improved performance.

  14. Alkaline fuel cell performance investigation

    NASA Technical Reports Server (NTRS)

    Martin, R. E.; Manzo, M. A.

    1988-01-01

    An exploratory experimental fuel cell test program was conducted to investigate the performance characteristics of alkaline laboratory research electrodes. The objective of this work was to establish the effect of temperature, pressure, and concentration upon performance and evaluate candidate cathode configurations having the potential for improved performance. The performance characterization tests provided data to empirically establish the effect of temperature, pressure, and concentration upon performance for cell temperatures up to 300 F and reactant pressures up to 200 psia. Evaluation of five gold alloy cathode catalysts revealed that three doped gold alloys had more that two times the surface areas of reference cathodes and therefore offered the best potential for improved performance.

  15. Degradation of (La0.6Sr0.4)0.95(Co0.2Fe0.8)O3-δ Solid Oxide Fuel Cell Cathodes at the Nanometer Scale and below.

    PubMed

    Ni, Na; Cooper, Samuel J; Williams, Robert; Kemen, Nils; McComb, David W; Skinner, Stephen J

    2016-07-13

    The degradation of intermediate temperature solid oxide fuel cell (ITSOFC) cathodes has been identified as a major issue limiting the development of ITSOFCs as high efficiency energy conversion devices. In this work, the effect of Cr poisoning on (La0.6Sr0.4)0.95(Co0.2Fe0.8)O3-δ (LSCF6428), a particularly promising ITSOFC cathode material, was investigated on symmetrical cells using electrochemical impedance spectroscopy and multiscale structural/chemical analysis by advanced electron and ion microscopy. The systematic combination of bulk and high-resolution analysis on the same cells allows, for the first time, direct correlation of Cr induced performance degradation with subtle and localized structural/chemical changes of the cathode down to the atomic scale. Up to 2 orders of magnitude reduction in conductivity, oxygen surface exchange rate, and diffusivity were observed in Cr poisoned LSCF6428 samples. These effects are associated with the formation of nanometer size SrCrO4; grain boundary segregation of Cr; enhanced B-site element exsolution (both Fe and Co); and reduction in the Fe valence, the latter two being related to Cr substitution in LSCF. The finding that significant degradation of the cathode happens before obvious microscale change points to new critical SOFC degradation mechanisms effective at the nanometer scale and below. PMID:27336290

  16. Molten carbonate fuel cell matrices

    DOEpatents

    Vogel, Wolfgang M.; Smith, Stanley W.

    1985-04-16

    A molten carbonate fuel cell including a cathode electrode of electrically conducting or semiconducting lanthanum containing material and an electrolyte containing matrix of an electrically insulating lanthanum perovskite. In addition, in an embodiment where the cathode electrode is LaMnO.sub.3, the matrix may include LaAlO.sub.3 or a lithium containing material such as LiAlO.sub.2 or Li.sub.2 TiO.sub.3.

  17. Hydrothermal synthesis of highly crystalline RuS{sub 2} nanoparticles as cathodic catalysts in the methanol fuel cell and hydrochloric acid electrolysis

    SciTech Connect

    Li, Yanjuan; Li, Nan; Yanagisawa, Kazumichi; Li, Xiaotian; Yan, Xiao

    2015-05-15

    Highlights: • Highly crystalline RuS{sub 2} nanoparticles have been first synthesized by a “one-step” hydrothermal method. • The product presents a pure cubic phase of stoichiometric ratio RuS{sub 2} with average particle size of 14.8 nm. • RuS{sub 2} nanoparticles were used as cathodic catalysts in methanol fuel cell and hydrochloric acid electrolysis. • The catalyst outperforms commercial Pt/C in methanol tolerance and stability towards Cl{sup −}. - Abstract: Highly crystalline ruthenium sulfide (RuS{sub 2}) nanoparticles have been first synthesized by a “one-step” hydrothermal method at 400 °C, using ruthenium chloride and thiourea as reactants. The products were characterized by powder X-ray diffraction (XRD), scanning electron microscopy/energy disperse spectroscopy (SEM/EDS), thermo gravimetric-differential thermal analyze (TG-DTA), transmission electron microscopy equipped with selected area electron diffraction (TEM/SAED). Fourier transform infrared spectra (IR), and X-ray photoelectron spectroscopy (XPS). XRD result illustrates that the highly crystalline product presents a pure cubic phase of stoichiometric ratio RuS{sub 2} and the average particle size is 14.8 nm. SEM and TEM images display the products have irregular shape of 6–25 nm. XPS analyst indicates that the sulfur exists in the form of S{sub 2}{sup 2−}. Cyclic voltammetry (CV), rotating disk electrode (RDE), chronoamperometry (CA) and electrochemical impedance spectroscopy (EIS) measurements are conducted to evaluate the electrocatalytic activity and stability of the highly crystalline RuS{sub 2} nanoparticles in oxygen reduction reaction (ORR) for methanol fuel cell and hydrochloric acid electrolysis. The results illustrate that RuS{sub 2} is active towards oxygen reduction reaction. Although the activity of RuS{sub 2} is lower than that of Pt/C, the RuS{sub 2} catalyst outperforms commercial Pt/C in methanol tolerance and stability towards Cl{sup −}.

  18. Separator plate for a fuel cell

    DOEpatents

    Petri, R.J.; Meek, J.; Bachta, R.P.; Marianowski, L.G.

    1996-04-02

    A separator plate is described for a fuel cell comprising an anode current collector, a cathode current collector and a main plate, the main plate disposed between the anode current collector and the cathode current collector. The anode current collector forms a flattened peripheral wet seal structure and manifold wet seal structure on the anode side of the separator plate and the cathode current collector forms a flattened peripheral wet seal structure and manifold wet seal structure on the cathode side of the separator plate. In this manner, the number of components required to manufacture and assemble a fuel cell stack is reduced. 9 figs.

  19. Separator plate for a fuel cell

    DOEpatents

    Petri, Randy J.; Meek, John; Bachta, Robert P.; Marianowski, Leonard G.

    1996-01-01

    A separator plate for a fuel cell comprising an anode current collector, a cathode current collector and a main plate, the main plate disposed between the anode current collector and the cathode current collector. The anode current collector forms a flattened peripheral wet seal structure and manifold wet seal structure on the anode side of the separator plate and the cathode current collector forms a flattened peripheral wet seal structure and manifold wet seal structure on the cathode side of the separator plate. In this manner, the number of components required to manufacture and assemble a fuel cell stack is reduced.

  20. Nitrogen-doped graphene/CoNi alloy encased within bamboo-like carbon nanotube hybrids as cathode catalysts in microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Hou, Yang; Yuan, Heyang; Wen, Zhenhai; Cui, Shumao; Guo, Xiaoru; He, Zhen; Chen, Junhong

    2016-03-01

    Cost-effective catalysts are of key importance to the successful deployment of microbial fuel cells (MFCs) for electricity generation from organic wastes. Herein, a novel catalyst prepared by one-step synthesis strategy is reported. The catalyst features N-doped bamboo-like carbon nanotube (BCNT) in which CoNi-alloy is encapsulated at the end and/or the middle section of the tube with many graphene layers inside inner cavities of BCNT (N-G@CoNi/BCNT). The prepared N-G@CoNi/BCNT exhibits a high oxygen reduction reaction (ORR) activity with an early onset potential of 0.06 V vs. Ag/AgCl and a comparable exchange current density to that of commercial Pt/C. The excellent catalytic activity is further evidenced by a high electron transfer number of 3.63. When being applied in MFCs, the N-G@CoNi/BCNT yields an average current density of 6.7 A m-2, slightly lower than that of Pt/C but with a less mass transfer potential loss. The cost of the N-G@CoNi/BCNT for constructing a 1-m2 cathode electrode is 200 times lower than that of Pt/C. With such a competitive price and excellent electrocatalytic-activity resulting from its unique morphology, CoNi-alloy/nitrogen dopants, considerable specific surface area, and carbon-coated alloy/graphene hybridization, the present catalyst is a promising candidate for ORR catalysts in MFCs for energy recovery from wastes.

  1. Easy-to-operate and low-temperature synthesis of gram-scale nitrogen-doped graphene and its application as cathode catalyst in microbial fuel cells.

    PubMed

    Feng, Leiyu; Chen, Yinguang; Chen, Lang

    2011-12-27

    Nitrogen-doped graphene (NG), with unique electronic properties, is showing great promise for a wide range of practical applications. However, the reported approaches for NG synthesis are usually complex, require high temperatures, produce lower atomic ratios of nitrogen to carbon (N/C), and do not deliver products in a reasonably large quantity. Here we report an easy-to-operate and low-temperature method to synthesize NG in gram-scale quantities with a denotation process. High-resolution transmission electron microscopy, Raman spectroscopy, and X-ray diffraction characterization suggested that the synthesized NG films were uniformly multilayered and had a high crystalline quality. In the graphene sheets the existence of nitrogen substitution with an atomic ratio of N/C 12.5%, which was greater than those reported in the literature, was confirmed by X-ray photoelectron spectroscopic analysis. In the neutral phosphate buffer solution, the synthesized NG was demonstrated to act as a metal-free electrode with excellent electrocatalytic activity and long-term operation stability for oxygen reduction via a combination of two-electron and four-electron pathways. When the NG was applied as the cathode catalyst of microbial fuel cells (MFCs), the obtained maximum power density was comparable to that of conventional platinum catalyst. More importantly, MFCs with NG produced power more stably and less expensively than those with Pt catalyst, indicating that the synthesized NG might be used as a good alternative to Pt catalyst in MFCs with a long run. PMID:22029637

  2. Surface-Regulated Nano-SnO2/Pt3Co/C Cathode Catalysts for Polymer Electrolyte Fuel Cells Fabricated by a Selective Electrochemical Sn Deposition Method.

    PubMed

    Nagasawa, Kensaku; Takao, Shinobu; Nagamatsu, Shin-ichi; Samjeské, Gabor; Sekizawa, Oki; Kaneko, Takuma; Higashi, Kotaro; Yamamoto, Takashi; Uruga, Tomoya; Iwasawa, Yasuhiro

    2015-10-14

    We have achieved significant improvements for the oxygen reduction reaction activity and durability with new SnO2-nanoislands/Pt3Co/C catalysts in 0.1 M HClO4, which were regulated by a strategic fabrication using a new selective electrochemical Sn deposition method. The nano-SnO2/Pt3Co/C catalysts with Pt/Sn = 4/1, 9/1, 11/1, and 15/1 were characterized by STEM-EDS, XRD, XRF, XPS, in situ XAFS, and electrochemical measurements to have a Pt3Co core/Pt skeleton-skin structure decorated with SnO2 nanoislands at the compressive Pt surface with the defects and dislocations. The high performances of nano-SnO2/Pt3Co/C originate from efficient electronic modification of the Pt skin surface (site 1) by both the Co of the Pt3Co core and surface nano-SnO2 and more from the unique property of the periphery sites of the SnO2 nanoislands at the compressive Pt skeleton-skin surface (more active site 2), which were much more active than expected from the d-band center values. The white line peak intensity of the nano-SnO2/Pt3Co/C revealed no hysteresis in the potential up-down operations between 0.4 and 1.0 V versus RHE, unlike the cases of Pt/C and Pt3Co/C, resulting in the high ORR performance. Here we report development of a new class of cathode catalysts with two different active sites for next-generation polymer electrolyte fuel cells. PMID:26412503

  3. Ca and In co-doped BaFeO3-δ as a cobalt-free cathode material for intermediate-temperature solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Wang, Jian; Lam, Kwun Yu; Saccoccio, Mattia; Gao, Yang; Chen, Dengjie; Ciucci, Francesco

    2016-08-01

    We report Ba0·95Ca0·05Fe0·95In0·05O3-δ (BCFI), a novel cobalt-free perovskite, as a promising cathode material for intermediate-temperature solid oxide fuel cells (IT-SOFCs). We synthesize this new material, and systematically characterize its lattice structure, thermal stability, chemical composition, electrical conductivity, and oxygen reduction reaction (ORR) activity. The cubic phase of BaFeO3-δ is stabilized by light isovalent and lower-valence substitution, i.e., 5% Ca2+ in the Ba2+ site and 5% In3+ in the Fe3+/Fe4+ site, in contrast with the typical approach of substituting elements of higher valence. Without resorting to co-doping strategy, the phase of BaFe0·95In0·05O3-δ (BFI) is rhombohedral, while Ba0·95Ca0·05FeO3-δ (BCF) is a mixture of the cubic phase together with BaFe2O4 impurities. The structure of BCFI is cubic from room temperature up to 900 °C with a moderate thermal expansion coefficient of 23.2 × 10-6 K-1. Thanks to the large oxygen vacancy concentration and fast oxygen mobility, BCFI exhibits a favorable ORR activity, i.e., we observe a polarization resistance as small as 0.038 Ω cm2 at 700 °C. The significantly enhanced performance, compared with BFI and BCF, is attributed to the presence of the cubic phase and the large oxygen vacancies brought by the isovalent substitution in the A-site and lower-valence doping in the B-site.

  4. Ca and In co-doped BaFeO3-δ as a cobalt-free cathode material for intermediate-temperature solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Wang, Jian; Lam, Kwun Yu; Saccoccio, Mattia; Gao, Yang; Chen, Dengjie; Ciucci, Francesco

    2016-08-01

    We report Ba0·95Ca0·05Fe0·95In0·05O3-δ (BCFI), a novel cobalt-free perovskite, as a promising cathode material for intermediate-temperature solid oxide fuel cells (IT-SOFCs). We synthesize this new material, and systematically characterize its lattice structure, thermal stability, chemical composition, electrical conductivity, and oxygen reduction reaction (ORR) activity. The cubic phase of BaFeO3-δ is stabilized by light isovalent and lower-valence substitution, i.e., 5% Ca2+ in the Ba2+ site and 5% In3+ in the Fe3+/Fe4+ site, in contrast with the typical approach of substituting elements of higher valence. Without resorting to co-doping strategy, the phase of BaFe0·95In0·05O3-δ (BFI) is rhombohedral, while Ba0·95Ca0·05FeO3-δ (BCF) is a mixture of the cubic phase together with BaFe2O4 impurities. The structure of BCFI is cubic from room temperature up to 900 °C with a moderate thermal expansion coefficient of 23.2 × 10-6 K-1. Thanks to the large oxygen vacancy concentration and fast oxygen mobility, BCFI exhibits a favorable ORR activity, i.e., we observe a polarization resistance as small as 0.038 Ω cm2 at 700 °C. The significantly enhanced performance, compared with BFI and BCF, is attributed to the presence of the cubic phase and the large oxygen vacancies brought by the isovalent substitution in the A-site and lower-valence doping in the B-site.

  5. Ambient pressure fuel cell system

    DOEpatents

    Wilson, Mahlon S.

    2000-01-01

    An ambient pressure fuel cell system is provided with a fuel cell stack formed from a plurality of fuel cells having membrane/electrode assemblies (MEAs) that are hydrated with liquid water and bipolar plates with anode and cathode sides for distributing hydrogen fuel gas and water to a first side of each one of the MEAs and air with reactant oxygen gas to a second side of each one of the MEAs. A pump supplies liquid water to the fuel cells. A recirculating system may be used to return unused hydrogen fuel gas to the stack. A near-ambient pressure blower blows air through the fuel cell stack in excess of reaction stoichiometric amounts to react with the hydrogen fuel gas.

  6. A high-performance, cobalt-free cathode for intermediate-temperature solid oxide fuel cells with excellent CO2 tolerance

    NASA Astrophysics Data System (ADS)

    Bu, Yun-fei; Zhong, Qin; Chen, Dong-Chang; Chen, Yu; Lai, Samson Yuxiu; Wei, Tao; Sun, Hai-bin; Ding, Dong; Liu, Meilin

    2016-07-01

    Compared with some cobalt-rich cathodes which have been proven to yield high performance in SOFCs, interest in cobalt-free cathodes has increased due to their reduced thermal expansion coefficients (TECs), high structural stability, and CO2 tolerance. In this report, a new robust Co-free complex perovskite oxide PrLa0.4Ba0.6Fe0.8Zn0.2O5+δ (PLBFZ) has been synthesized and evaluated. The TEC is 14.4 × 10-6 K-1. With the introduction of Sm0.2Ce0.8O2 (SDC), the composite cathode PLBFZ-SDC with a mass ratio of 7:3 (PLBFZ-SDC 73) exhibited the best electrocatalytic activity for oxygen reduction under OCV conditions, with polarization values of 0.044, 0.079, 0.124, 0.251, 0.572, and 1.297 Ω cm-2 at 800, 750, 700, 650, 600, and 550 °C, respectively. The power densities of the cell were 1309, 1079, 788 and 586 mW cm-2 at 750, 700, 650, and 600 °C, respectively. Moreover, it appears to have good stability in air containing 1% CO2 (volume ratio) for 150 h based on Raman and polarization resistance (Rp) analysis. These results suggest that PLBFZ and its SDC composite are promising cathodes for IT-SOFCs.

  7. Nanocrystalline cerium oxide materials for solid fuel cell systems

    DOEpatents

    Brinkman, Kyle S

    2015-05-05

    Disclosed are solid fuel cells, including solid oxide fuel cells and PEM fuel cells that include nanocrystalline cerium oxide materials as a component of the fuel cells. A solid oxide fuel cell can include nanocrystalline cerium oxide as a cathode component and microcrystalline cerium oxide as an electrolyte component, which can prevent mechanical failure and interdiffusion common in other fuel cells. A solid oxide fuel cell can also include nanocrystalline cerium oxide in the anode. A PEM fuel cell can include cerium oxide as a catalyst support in the cathode and optionally also in the anode.

  8. Annular feed air breathing fuel cell stack

    DOEpatents

    Wilson, Mahlon S.

    1996-01-01

    A stack of polymer electrolyte fuel cells is formed from a plurality of unit cells where each unit cell includes fuel cell components defining a periphery and distributed along a common axis, where the fuel cell components include a polymer electrolyte membrane, an anode and a cathode contacting opposite sides of the membrane, and fuel and oxygen flow fields contacting the anode and the cathode, respectively, wherein the components define an annular region therethrough along the axis. A fuel distribution manifold within the annular region is connected to deliver fuel to the fuel flow field in each of the unit cells. In a particular embodiment, a single bolt through the annular region clamps the unit cells together. In another embodiment, separator plates between individual unit cells have an extended radial dimension to function as cooling fins for maintaining the operating temperature of the fuel cell stack.

  9. Praseodymium-deficiency Pr0.94BaCo2O6-δ double perovskite: A promising high performance cathode material for intermediate-temperature solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Meng, Fuchang; Xia, Tian; Wang, Jingping; Shi, Zhan; Zhao, Hui

    2015-10-01

    Praseodymium-deficiency Pr0.94BaCo2O6-δ (P0.94BCO) double perovskite has been evaluated as a cathode material for intermediate-temperature solid oxide fuel cells. X-ray diffraction pattern shows the orthorhombic structure with double lattice parameters from the primitive perovskite cell in Pmmm space group. P0.94BCO has a good chemical compatibility with Ce0.9Gd0.1O1.95 (CGO) electrolyte even at 1000 °C for 24 h. It is observed that the Pr-deficiency can introduce the extra oxygen vacancies in P0.94BCO, further enhancing its electrocatalytic activity for oxygen reduction reaction. P0.94BCO demonstrates the promising cathode performance as evidenced by low polarization are-specific resistance (ASR), e. g. 0.11 Ω cm2 and low cathodic overpotential e. g. -56 mV at a current density of -78 mA cm-2 at 600 °C in air. These features are comparable to those of the benchmark cathode Ba0.5Sr0.5Co0.8Fe0.2O3-δ. The fuel cell CGO-Ni|CGO|P0.94BCO presents the attractive peak power density of 1.05 W cm-2 at 600 °C. Furthermore, the oxygen reduction kinetics of P0.94BCO material is also investigated, and the rate-limiting steps for oxygen reduction reaction are determined.

  10. Performance of LaBaCo 2O 5+ δ-Ag with B 2O 3-Bi 2O 3-PbO frit composite cathodes for intermediate-temperature solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Li, Ruifeng; Gao, Lei; Ge, Lin; Zheng, Yifeng; Zhou, Ming; Chen, Han; Guo, Lucun

    The composite cathodes LaBaCo 2O 5+ δ- x wt.% Ag (LBCO- xAg, x = 20, 30, 40, 50) were prepared by mechanical mixing method for intermediate-temperature solid oxide fuel cells (IT-SOFCs). The experiment results indicated that the addition of a small amount of B 2O 3-Bi 2O 3-PbO (BBP) frit to LBCO- xAg can effectively improve the adhesion and strength of cathode membrane without damaging its porous structure. The BBP frit was proved effective for lowering the sintering temperature of LBCO- xAg to 900 °C. According to the electrochemical impedance spectroscopy and cathodic polarization analysis, the LBCO-30Ag exhibited the best performance and the optimal BBP frit content was 2.5 wt.%. For LBCO-30Ag with 2.5 wt.% BBP frit, the area-specific resistance based on Sm 0.2Ce 0.8O 1.9 (SDC) electrolyte decreased by about 57.6% at 700 °C, 60.5% at 750 °C and 75.9% at 800 °C compared to LBCO, and its cathodic overpotential was 10.7 mV at a current density of 0.2 A cm -2 at 700 °C, while the corresponding value for LBCO was 51.0 mV. The addition of Ag and BBP frit to LBCO had no significant effect on the thermal expansion.

  11. Enhanced surface exchange activity and electrode performance of (La2-2xSr2x)(Ni1-xMnx)O4+δ cathode for intermediate temperature solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Li, Wenyuan; Guan, Bo; Yan, Jianhua; Zhang, Nan; Zhang, Xinxin; Liu, Xingbo

    2016-06-01

    Surface exchange kinetics of Ruddlesden-Popper (R-P) phase lanthanum nickelates upon Mn doping as an intermediate temperature solid oxide fuel cells (IT-SOFCs) cathode is investigated for the first time in this communication. To promote the exchange rate in oxygen reduction reaction (ORR) on nickelates, Mn is partially substituted for Ni. The oxygen exchange resistance is accurately measured by electrochemical impedance spectroscopy (EIS) with dense thin layer cathode. It is found that Mn substantially promotes the surface kinetics; a surface exchange coefficient (k) of 1.57 × 10-6 cm/s is obtained at 700 °C for La1.8Sr0.2Ni0.9Mn0.1O4+δ (Sr20Mn10), ∼80% higher than that of the undoped La2NiO4+δ (LNO). To our best knowledge, such coefficient is the highest values among the currently available R-P phase IT-SOFC cathodes. The corresponding polarization resistances (Rp) are evaluated on porous electrodes. Rp for LNO is 0.74 Ωcm2 at 750 °C, but decreases significantly to 0.42 Ωcm2 for Sr20Mn10 which is remarkably improved compared to the reported values in the literature for La2MO4+δ materials (M = transition metal). Those promising results demonstrate that Mn-doped LNO is a new excellent cathode material for IT-SOFC.

  12. Electrochemical investigation of lithium/potassium carbonate eutectic for application in modeling the molten carbonate fuel cell cathode

    NASA Astrophysics Data System (ADS)

    McCoy, L.; Schuman, M.

    1986-04-01

    A program involving the design, construction, and operation of a high-temperature cell equipped with a rotating gold disk electrode has been carried out with the objective of identifying and quantifying the principal oxide species present in molten LiKCO3 electrolytes using electrochemical measurements. The dependence of the current on electrode rotational speed at 750 to 800 C indicates that the data are typical of the convective/diffusive transport of an electroactive species from the bulk electrolyte. The reverse is true at 650 C, where the current increases with an increasing voltage sweep rate but is little affected by the speed of electrode rotation. In the latter case, a current by chemical reaction occurring within the electrode boundary layer is indicated. The linear current-voltage increase observed at the lower temperature in the presence of about 20 mol % 02 has not been accounted for. Graphical analysis of the data taken with air and CO2 sparged electrolyte at 750 and 800C indicates the electroactive species to be the superoxide ion. Computer studies of the same data usi ng regression analysis methodology indicate that the current may instead arise from the reduction of the peroxide ion concurrently with other electroactive material derived from secondary catalytic reactions or electrolyte impurities. Additional data will be required to support either conclusion with certainty. Detailed studies of the electrochemistry of the LiKCO3 electrolyte over a broader range of temperatures and sparge gas compositions are recommended as a means of providing a second basis for identifying the electrode reactions.

  13. Fuel-cell engine stream conditioning system

    DOEpatents

    DuBose, Ronald Arthur

    2002-01-01

    A stream conditioning system for a fuel cell gas management system or fuel cell engine. The stream conditioning system manages species potential in at least one fuel cell reactant stream. A species transfer device is located in the path of at least one reactant stream of a fuel cell's inlet or outlet, which transfer device conditions that stream to improve the efficiency of the fuel cell. The species transfer device incorporates an exchange media and a sorbent. The fuel cell gas management system can include a cathode loop with the stream conditioning system transferring latent and sensible heat from an exhaust stream to the cathode inlet stream of the fuel cell; an anode humidity retention system for maintaining the total enthalpy of the anode stream exiting the fuel cell related to the total enthalpy of the anode inlet stream; and a cooling water management system having segregated deionized water and cooling water loops interconnected by means of a brazed plate heat exchanger.

  14. Interconnection of bundled solid oxide fuel cells

    SciTech Connect

    Brown, Michael; Bessette, II, Norman F; Litka, Anthony F; Schmidt, Douglas S

    2014-01-14

    A system and method for electrically interconnecting a plurality of fuel cells to provide dense packing of the fuel cells. Each one of the plurality of fuel cells has a plurality of discrete electrical connection points along an outer surface. Electrical connections are made directly between the discrete electrical connection points of adjacent fuel cells so that the fuel cells can be packed more densely. Fuel cells have at least one outer electrode and at least one discrete interconnection to an inner electrode, wherein the outer electrode is one of a cathode and and anode and wherein the inner electrode is the other of the cathode and the anode. In tubular solid oxide fuel cells the discrete electrical connection points are spaced along the length of the fuel cell.

  15. Unbiased characterization of three-phase microstructure of porous lanthanum doped strontium manganite/yttria-stabilized zirconia composite cathodes for solid oxide fuel cells using atomic force microscopy and stereology

    NASA Astrophysics Data System (ADS)

    Zhang, S.; Lynch, M.; Gokhale, A. M.; Liu, M.

    Microstructural characteristics of porous LSM/YSZ composite cathodes greatly influence the performance of solid oxide fuel cells. The triple phase boundaries, for example, account for a significant portion of the electrochemically active sites in these porous composite cathodes. Nonetheless, experimental characterization of the relevant microstructural attributes has been problematic due to lack of suitable microscopy techniques for simultaneous observations of all three phases (i.e., LSM, YSZ, and porosity) needed for identification and unbiased characterization of the triple phase boundaries. In this contribution it is shown that a combination of chemical etching and atomic force microscopy clearly reveals all three phases and the triple phase junctions in the microstructural sections. Further, stereological techniques based on the geometric probabilities of stochastic geometry enable unbiased statistical estimation of total triple phase boundary length per unit volume and other microstructural attributes from simple counting measurements performed on representative microstructural sections.

  16. Fuel Cells

    ERIC Educational Resources Information Center

    Hawkins, M. D.

    1973-01-01

    Discusses the theories, construction, operation, types, and advantages of fuel cells developed by the American space programs. Indicates that the cell is an ideal small-scale power source characterized by its compactness, high efficiency, reliability, and freedom from polluting fumes. (CC)

  17. The characteristic of strontium-site deficient perovskites SrxFe1.5Mo0.5O6-δ (x = 1.9-2.0) as intermediate-temperature solid oxide fuel cell cathodes

    NASA Astrophysics Data System (ADS)

    Yang, Guoquan; Feng, Jie; Sun, Wang; Dai, Ningning; Hou, Mingyue; Hao, Xiaoming; Qiao, Jinshuo; Sun, Kening

    2014-12-01

    As the cathodes for intermediate-temperature solid oxide fuel cells (IT-SOFCs), A-site deficient SrxFe1.5Mo0.5O6-δ (x = 1.9-2.0) (SxFM) materials have been successfully synthesized using the sol-gel combustion method. In the perovskite structure of these oxides, the unit cell varies from pseudocubic to cubic with increasing deficiency. Thermal expansion coefficient of SxFM has also been measured and compared with that of Scandium-stabilized zirconium (ScSZ) electrolyte. X-ray photoelectron spectroscopy (XPS) results indicate that the Sr-deficiency has changed the proportion of Fe2+/Fe3+ and Mo6+/Mo5+ ratios, which directly influences the conductivity of SxFM materials. S1.950FM possesses the largest electrical conductivity and the lowest polarization resistance (Rp) among all the samples. The maximum power densities of a single cell with the S1.950FM cathode reaches 1083 mW cm-2, and the area specific resistance value is 0.17 Ω cm2 at 800 °C. These results indicate that the A-site deficiency could promote the electrochemical performance of SFM materials as cathodes for IT-SOFCs.

  18. Fuel cell system

    DOEpatents

    Early, Jack; Kaufman, Arthur; Stawsky, Alfred

    1982-01-01

    A fuel cell system is comprised of a fuel cell module including sub-stacks of series-connected fuel cells, the sub-stacks being held together in a stacked arrangement with cold plates of a cooling means located between the sub-stacks to function as electrical terminals. The anode and cathode terminals of the sub-stacks are connected in parallel by means of the coolant manifolds which electrically connect selected cold plates. The system may comprise a plurality of the fuel cell modules connected in series. The sub-stacks are designed to provide a voltage output equivalent to the desired voltage demand of a low voltage, high current DC load such as an electrolytic cell to be driven by the fuel cell system. This arrangement in conjunction with switching means can be used to drive a DC electrical load with a total voltage output selected to match that of the load being driven. This arrangement eliminates the need for expensive voltage regulation equipment.

  19. Long-term evaluation of solid oxide fuel cell candidate materials in a 3-cell generic stack test fixture, part III: Stability and microstructure of Ce-(Mn,Co)-spinel coating, AISI441 interconnect, alumina coating, cathode and anode

    NASA Astrophysics Data System (ADS)

    Chou, Yeong-Shyung; Stevenson, Jeffry W.; Choi, Jung-Pyung

    2014-07-01

    A generic solid oxide fuel cell stack test fixture was developed to evaluate candidate materials and processing under realistic conditions. Part III of the work investigated the stability of Ce-(Mn,Co) spinel coating, AISI441 metallic interconnect, alumina coating, and cell's degradation. After 6000 h test, the spinel coating showed densification with some diffusion of Cr. At the metal interface, segregation of Si and Ti was observed, however, no continuous layer formed. The alumina coating for perimeter sealing areas appeared more dense and thick at the air side than the fuel side. Both the spinel and alumina coatings remained bonded. EDS analysis of Cr within the metal showed small decrease in concentration near the coating interface and would expect to cause no issue of Cr depletion. Inter-diffusion of Ni, Fe, and Cr between spot-welded Ni wire and AISI441 interconnect was observed and Cr-oxide scale formed along the circumference of the weld. The microstructure of the anode and cathode was discussed relating to degradation of the top and middle cells. Overall, the Ce-(Mn,Co) spinel coating, alumina coating, and AISI441 steel showed the desired long-term stability and the developed generic stack fixture proved to be a useful tool to validate candidate materials for SOFC.

  20. Study of the acetonitrile poisoning of platinum cathodes on proton exchange membrane fuel cell spatial performance using a segmented cell system

    NASA Astrophysics Data System (ADS)

    Reshetenko, Tatyana V.; St-Pierre, Jean

    2015-10-01

    Due to the wide applications of acetonitrile as a solvent in the chemical industry, acetonitrile can be present in the air and should be considered a possible pollutant. In this work, the spatial proton exchange membrane fuel cell performance exposed to air with 20 ppm CH3CN was studied using a segmented cell system. The injection of CH3CN led to performance losses of 380 mV at 0.2 A cm-2 and 290 mV at 1.0 A cm-2 accompanied by a significant change in the current density distribution. The observed local currents behavior is likely attributed to acetonitrile chemisorption and the subsequent two consecutive reduction/oxidation reactions. The hydrolysis of CH3CN and its intermediate imine species resulted in NH4+ formation, which increased the high-frequency resistance of the cell and affected oxygen reduction and performance. Other products of hydrolysis can be oxidized to CO2 under the operating conditions. The reintroduction of pure air completely recovered cell performance within 4 h at 1.0 A cm-2, while at 0.2 A cm-2 the cell recovery was only partial. A detailed analysis of the current density distribution, its correlation with spatial electrochemical impedance spectroscopy data, possible CH3CN oxidation/reduction mechanisms and mitigation strategies are presented and discussed.

  1. Effect of the symmetric cell preparation temperature on the activity of Ba0.5Sr0.5Fe0.8Cu0.2O3-δ as cathode for intermediate temperature Solid Oxide Fuel Cells

    NASA Astrophysics Data System (ADS)

    Vázquez, Santiago; Basbus, Juan; Soldati, Analía L.; Napolitano, Federico; Serquis, Adriana; Suescun, Leopoldo

    2015-01-01

    In this work we studied the electrochemical performance of Ba0.5Sr0.5Fe0.8Cu0.2O3-δ (BSFCu) as cathode for Intermediate Temperature Solid Oxide Fuel Cells (IT-SOFC) with Ce0.9Gd0.1O1.95 (CGO) electrolyte and the effect of the symmetric cell preparation temperature on the oxygen reduction reaction (ORR) activity. Symmetrical cells with the configuration BSFCu/CGO/BSFCu were prepared at 900 °C, 950 °C and 1000 °C to perform the electrochemical characterization in the 500-700 °C temperature range. The resultant area specific resistance (ASR) of the cells with different preparation temperatures followed the tendency: ASR900°C < ASR950°C < ASR1000°C. The symmetric cell constructed at 900 °C showed ASR values of 0.18, 0.078 and 0.035 Ω cm2 at 600, 650 and 700 °C respectively, which demonstrated superior electrochemical activities than previous reports. Additional, X-ray diffraction (XRD), scanning and transmission electron microscopies (SEM and TEM) techniques were used to characterize the microstructure of the original and fired BSFCu materials and correlate it with the cell preparation temperature.

  2. Fuel cell-fuel cell hybrid system

    DOEpatents

    Geisbrecht, Rodney A.; Williams, Mark C.

    2003-09-23

    A device for converting chemical energy to electricity is provided, the device comprising a high temperature fuel cell with the ability for partially oxidizing and completely reforming fuel, and a low temperature fuel cell juxtaposed to said high temperature fuel cell so as to utilize remaining reformed fuel from the high temperature fuel cell. Also provided is a method for producing electricity comprising directing fuel to a first fuel cell, completely oxidizing a first portion of the fuel and partially oxidizing a second portion of the fuel, directing the second fuel portion to a second fuel cell, allowing the first fuel cell to utilize the first portion of the fuel to produce electricity; and allowing the second fuel cell to utilize the second portion of the fuel to produce electricity.

  3. Cathode for an electrochemical cell

    DOEpatents

    Bates, John B.; Dudney, Nancy J.; Gruzalski, Greg R.; Luck, Christopher F.

    2001-01-01

    Described is a thin-film battery, especially a thin-film microbattery, and a method for making same having application as a backup or primary integrated power source for electronic devices. The battery includes a novel electrolyte which is electrochemically stable and does not react with the lithium anode and a novel vanadium oxide cathode. Configured as a microbattery, the battery can be fabricated directly onto a semiconductor chip, onto the semiconductor die or onto any portion of the chip carrier. The battery can be fabricated to any specified size or shape to meet the requirements of a particular application. The battery is fabricated of solid state materials and is capable of operation between -15.degree. C. and 150.degree. C.

  4. Fuel cell membrane humidification

    DOEpatents

    Wilson, Mahlon S.

    1999-01-01

    A polymer electrolyte membrane fuel cell assembly has an anode side and a cathode side separated by the membrane and generating electrical current by electrochemical reactions between a fuel gas and an oxidant. The anode side comprises a hydrophobic gas diffusion backing contacting one side of the membrane and having hydrophilic areas therein for providing liquid water directly to the one side of the membrane through the hydrophilic areas of the gas diffusion backing. In a preferred embodiment, the hydrophilic areas of the gas diffusion backing are formed by sewing a hydrophilic thread through the backing. Liquid water is distributed over the gas diffusion backing in distribution channels that are separate from the fuel distribution channels.

  5. Low temperature aluminum reduction cell using hollow cathode

    DOEpatents

    Brown, Craig W.; Frizzle, Patrick B.

    2002-08-20

    A method of producing aluminum in an electrolytic cell containing alumina dissolved in an electrolyte. A plurality of non-consumable anodes are disposed substantially vertically in the electrolyte along with a plurality of monolithic hollow cathodes. Each cathode has a top and bottom and the cathodes are disposed vertically in the electrolyte and the anodes and the cathodes are arranged in alternating relationship. Each of the cathodes is comprised of a first side facing a first opposing anode and a second side facing a second opposing anode. The first and second sides are joined by ends to form a reservoir in the hollow cathode for collecting aluminum therein deposited at the cathode.

  6. Rapidly refuelable fuel cell

    DOEpatents

    Joy, R.W.

    1982-09-20

    A rapidly refuelable dual cell of an electrochemical type is described wherein a single anode cooperates with two cathodes and wherein the anode has a fixed position and the cathodes are urged toward opposite faces of the anodes at constant and uniform force. The associated cathodes are automatically retractable to permit the consumed anode remains to be removed from the housing and a new anode inserted between the two cathodes.

  7. A-site calcium-doped Pr1-xCaxBaCo2O5+δ double perovskites as cathodes for intermediate-temperature solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Fu, Dawei; Jin, Fangjun; He, Tianmin

    2016-05-01

    The LnBaCo2O5+δ (Ln = rare earth) double perovskite cathodes possess superior electrochemical performance in intermediate-temperature solid oxide fuel cells (IT-SOFCs). However, high thermal expansion coefficients (TECs) and material costs are major challenges to their widespread applications. In this paper, a novel A-site Ca doping strategy that can suppress the spin-state transition of Co3+ is proposed to reduce the TECs and material costs of Pr1-xCaxBaCo2O5+δ (x = 0.1-0.4; PCBCO). Substitution of Ca for Pr effectively reduces the TEC from 22.2 × 10-6 K-1 at x = 0.1 to 19.1 × 10-6 K-1 at x = 0.3 between 100 and 800 °C. PCBCO exhibits good chemical compatibility with the Sm0.2Ce0.8O1.9 (SDC) electrolyte. The area-specific resistances of PCBCO cathodes with x = 0.1, 0.2, and 0.3 are 0.081, 0.082, and 0.089 Ω cm2, respectively, at 700 °C on the SDC electrolyte. The maximum power densities of a single cell on a 0.3 mm-thick SDC electrolyte reach 646.5, 636.8, and 620.6 mW cm-2 at 800 °C for cathodes with x = 0.1, 0.2, and 0.3, respectively. The PCBCO double perovskites exhibit excellent chemical compatibility and electrochemical performance while reducing the TECs and material costs; thus, these double perovskites are promising cathode materials for applications in IT-SOFCs.

  8. Operando and in situ X-ray spectroscopies of degradation in La0.6Sr0.4Co0.2Fe0.8O(3-δ) thin film cathodes in fuel cells.

    PubMed

    Lai, Samson Y; Ding, Dong; Liu, Mingfei; Liu, Meilin; Alamgir, Faisal M

    2014-11-01

    Information from ex situ characterization can fall short in describing complex materials systems simultaneously exposed to multiple external stimuli. Operando X-ray absorption spectroscopy (XAS) was used to probe the local atomistic and electronic structure of specific elements in a La0.6Sr0.4Co0.2Fe0.8O(3-δ) (LSCF) thin film cathode exposed to air contaminated with H2O and CO2 under operating conditions. While impedance spectroscopy showed that the polarization resistance of the LSCF cathode increased upon exposure to both contaminants at 750 °C, XAS near-edge and extended fine structure showed that the degree of oxidation for Fe and Co decreases with increasing temperature. Synchrotron-based X-ray photoelectron spectroscopy tracked the formation and removal of a carbonate species, a Co phase, and different oxygen moieties as functions of temperature and gas. The combined information provides insight into the fundamental mechanism by which H2O and CO2 cause degradation in the cathode of solid oxide fuel cells. PMID:25205041

  9. Recent developments at the cathode processor for spent fuel treatment.

    SciTech Connect

    Westphal, B. R.; Vaden, D.; Hua, T. Q.; Willit, J. L.; Laug, D. V.

    2002-07-29

    As part of the spent fuel treatment program at Argonne National Laboratory, a vacuum distillation process is being employed for the recovery of uranium following an electrorefining process. Distillation of a molten salt electrolyte, primarily consisting of a eutectic mixture of lithium and potassium chlorides with minor amounts of fission product chlorides, from uranium is achieved by a batch operation called cathode processing. Described in this paper are recent developments, both equipment and process-related, at the cathode processor during the treatment of blanket-type spent fuel. For the equipment developments, the installation of a new induction heating coil has produced significant improvements in equipment performance. The process developments include the elimination of a process step and the study of plutonium in the uranium product.

  10. Layered charge transfer complex cathodes or solid electrolyte cells

    SciTech Connect

    Louzos, D.V.

    1981-05-12

    Layered charge transfer complex cathodes for use in solid electrolyte cells are described wherein one layer of the cathode contains an electronic conductor which is isolated from the cell's solid electrolyte by a second layer of the cathode that does not contain an electronic conductor.

  11. Fuel cells: A handbook

    NASA Astrophysics Data System (ADS)

    Kinoshita, K.; McLarnon, F. R.; Cairns, E. J.

    1988-05-01

    The purpose of this handbook is to present information describing fuel cells that is helpful to scientists, engineers, and technical managers who are not experienced in this technology, as well as to provide an update on the current technical status of the various types of fuel cells. Following the introduction, contents of this handbook are: fuel cell performance variables; phosphoric acid fuel cell; molten carbonate fuel cell; solid oxide fuel cell; alternative fuel cell technologies; fuel cell systems; and concluding remarks.

  12. Investigation of GdBaCo2-xFexO6-δ (x = 0, 0.2) - Ce0.8Sm0.2O2 composite cathodes for intermediate temperature solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Tsvetkova, N. S.; Zuev, A. Yu.; Tsvetkov, D. S.

    2013-12-01

    The double perovskites GdBaCo2-xFexO6-δ (x = 0, 0.2) and composites (100 - y) GdBaCo2-xFexO6-δ (x = 0, 0.2) - y Ce0.8Sm0.2O2 (y = 10-50 wt.%) were investigated as cathode materials for intermediate temperature solid oxide fuel cells (IT-SOFCs). Chemical compatibility of GdBaCo2-xFexO6-δ (x = 0, 0.2) with solid electrolyte Ce0.8Sm0.2O2, thermal expansion, DC conductivity and electrochemical performance of (100 - y) GdBaCo2-xFexO6-δ (x = 0, 0.2) - y Ce0.8Sm0.2O2 (y = 10-50 wt.%) were studied. Partial substitution of Fe for Co was shown to lead to decrease of double perovskite GdBaCo2-xFexO6-δ reactivity with the solid electrolyte Ce0.8Sm0.2O2. Polarization resistance of cathodes studied was found to depend significantly on firing temperature. Variation of solid electrolyte content in (100 - y) GdBaCo2-xFexO6-δ (x = 0, 0.2) - y Ce0.8Sm0.2O2 (y = 10-50 wt.%) composites was shown to allow to optimize their electrochemical performance. Cathode materials of 80 wt.% GdBaCo2O6-δ - 20 wt.% Ce0.8Sm0.2O2 and 65 wt.% GdBaCo1.8Fe0.2O6-δ - 35 wt.% Ce0.8Sm0.2O2 were found to have the lowest polarization resistances and reasonable values of thermal expansion coefficient (TEC) and, therefore, can be considered as promising cathode materials for IT-SOFCs.

  13. Enhanced surface exchange activity and electrode performance of (La2−2xSr2x)(Ni1−xMnx)O4+δ cathode for intermediate temperature solid oxide fuel cells

    DOE PAGESBeta

    Li, Wenyuan; Guan, Bo; Yan, Jianhua; Zhang, Nan; Zhang, Xinxin; Liu, Xingbo

    2016-06-01

    Surface exchange kinetics of Ruddlesden-Popper (R-P) phase lanthanum nickelates upon Mn doping as an intermediate temperature solid oxide fuel cells (IT-SOFCs) cathode is investigated for the first time in this communication. To promote the exchange rate in oxygen reduction reaction (ORR) on nickelates, Mn is partially substituted for Ni. The oxygen exchange resistance is accurately measured by electrochemical impedance spectroscopy (EIS) with dense thin layer cathode. It is found that Mn substantially promotes the surface kinetics; a surface exchange coefficient (k) of 1.57 106 cm/s is obtained at 700 C for La1.8Sr0.2Ni0.9Mn0.1O4þd (Sr20Mn10), ~80% higher than that of the undopedmore » La2NiO4þd (LNO). To our best knowledge, such coefficient is the highest values among the currently available R-P phase IT-SOFC cathodes. The corresponding polarization resistances (Rp) are evaluated on porous electrodes. Rp for LNO is 0.74 Ucm2 at 750 C, but decreases significantly to 0.42 Ucm2 for Sr20Mn10 which is remarkably improved compared to the reported values in the literature for La2MO4þd materials (M ¼ transition metal). Those promising results demonstrate that Mn-doped LNO is a new excellent cathode material for IT-SOFC.« less

  14. La 2NiO 4+ δ potential cathode material on La 0.9Sr 0.1Ga 0.8Mg 0.2O 2.85 electrolyte for intermediate temperature solid oxide fuel cell

    NASA Astrophysics Data System (ADS)

    Escudero, María José; Fuerte, Araceli; Daza, Loreto

    La 2NiO 4+ δ, a mixed ionic-electronic conducting oxide with K 2NiF 4 type structure, has been studied as cathode material with La 0.9Sr 0.1Ga 0.8Mg 0.2O 2.85 (LSGM) electrolyte for intermediate solid oxide fuel cells (IT-SOFCs). XRD results reveal excellent chemical compatibility between the La 2NiO 4+ δ sample and LSGM electrolyte. A single cell (0.22 cm 2 active area) was fabricated with La 2NiO 4+ δ as cathode, Ni-Sm 0.2Ce 0.8O 1.9 (2:1; w/w) as anode and LSGM as electrolyte. A thin buffer layer of Sm 0.2Ce 0.8O 1.9 (SDC) between anode and electrolyte was used to avoid possible interfacial reactions. The cell was tested under humidified H 2 and stationary air as fuel and oxidant, respectively. The electrochemical behaviour was evaluated by means of current-voltage curves and impedance spectroscopy. Microstructure and morphology of the cell components were analysed by SEM-EDX after testing. The maximum power densities were 160, 226, and 322 mW cm -2 at 750, 800 and 850 °C, respectively with total polarisation resistances of 0.77, 0.48 and 0.31 Ω cm 2 at these temperatures. Cell performance remained stable when a current density of 448 mA cm -2 was demanded for 144 h at 800 °C, causing no apparent degradation in the cell. The performance of this material may be further improved by reducing the electrolyte thickness and optimisation of the electrode microstructure.

  15. Visualization by neutron diffraction of 2D oxygen diffusion in the Sr(0.7)Ho(0.3)CoO(3-δ) cathode for solid-oxide fuel cells.

    PubMed

    Cascos, V; Martínez-Coronado, R; Alonso, J A; Fernández-Díaz, M T

    2014-06-25

    Sr0.7Ho0.3CoO3-δ oxide has been recently described as an excellent cathode material (1274 mW cm(-2) at 850 °C with pure H2 as fuel1) for solid oxide fuel cells (SOFCs) with LSGM as electrolyte. In this work, we describe a detailed study of its crystal structure conducted to find out the correlation between the excellent performance as a cathode and the structural features. The tetragonal crystal structure (e.g., I4/mmm) basically contains layers of octahedrally coordinated Co2O6 units alternated with layers of Co1O4 tetrahedra sharing corners. An "in situ" neutron power diffraction (NPD) experiment, between 25 and 800 °C, reveals the presence of a high oxygen deficiency affecting O4 oxygen atoms, with large displacement factors that suggest a large lability and mobility. Difference Fourier maps allow the visualization at high temperatures of the 2D diffusion pathways within the tetrahedral layers, where O3 and O4 oxygens participate. The measured thermal expansion coefficient is 16.61 × 10(-6) K(-1) between 300 and 850 °C, exhibiting an excellent chemical compatibility with the electrolyte. PMID:24873238

  16. Synthesis and characterization of La0.6Sr0.4Fe0.8Cu0.2O3-δ oxide as cathode for Intermediate Temperature Solid Oxide Fuel Cells

    NASA Astrophysics Data System (ADS)

    Vázquez, Santiago; Davyt, Sebastián; Basbus, Juan F.; Soldati, Analía L.; Amaya, Alejandro; Serquis, Adriana; Faccio, Ricardo; Suescun, Leopoldo

    2015-08-01

    Nanocrystalline La0.6Sr0.4Fe0.8Cu0.2O3-δ (LSFCu) material was synthetized by combustion method using EDTA as fuel/chelating agent and NH4NO3 as combustion promoter. Structural characterization using thermodiffraction data allowed to determine a reversible phase transition at 425 °C from a low temperature R-3c phase to a high temperature Pm-3m phase and to calculate the thermal expansion coefficient (TEC) of both phases. Important characteristics for cathode application as electronic conductivity and chemical compatibility with Ce0.9Gd0.1O2-δ (CGO) electrolyte were evaluated. LSFCu presented a p-type conductor behavior with maximum conductivity of 135 S cm-1 at 275 °C and showed a good stability with CGO electrolyte at high temperatures. This work confirmed that as prepared LSFCu has excellent microstructural characteristics and an electrical conductivity between 100 and 60 S cm-1 in the 500-700 °C range which is sufficiently high to work as intermediate temperature Solid Oxide Fuel Cells (IT-SOFCs) cathode. However a change in the thermal expansion coefficient consistent with a small oxygen loss process may affect the electrode-electrolyte interface during fabrication and operation of a SOFC.

  17. High performance La2NiO4+δ-infiltrated (La0.6Sr0.4)0.995Co0.2Fe0.8O3−δ cathode for solid oxide fuel cells

    DOE PAGESBeta

    Zhang, Xinxin; Zhang, Hui; Liu, Xingbo

    2014-12-01

    In this paper, we reported our effort on improving electrochemical performance of (La0.6Sr0.4)0.995Co0.2Fe0.8O3d (LSCF) cathode in solid oxide fuel cell (SOFC) by infiltration of La2NiO4þd (LNO). It is found that a porous LSCF backbone coated with LNO nanoparticles is an attractive way to acquire a noticeable decrease in the polarization resistance and activation energy of LSCF cathode, thereby showing high surface activity and enhanced oxygen transport capability. The key contributions of the LNO nanoparticles also lead to a 67% increase in peak power density and operation stability at a constant current density of 250 mA cm2 with a low degradationmore » rate of 0.39% for about 500 h at 750 C. Although extended durability of LNO-infiltrated LSCF might be concerned, based on coarsening of the LNO nanoparticles, a greatly increased power density and voltage output after a cell operation of 500 h engenders substantial confidence in the beneficial effect of LNO-infiltrated LSCF materials on cell properties. The enhancement of ORR kinetics could be ascribed to the increase of active surface area and active reaction regions from the heterostructured LSCF/LNO interface architecture, and/or favorable cation diffusion from LSCF to LNO.« less

  18. Annular feed air breathing fuel cell stack

    DOEpatents

    Wilson, Mahlon S.; Neutzler, Jay K.

    1997-01-01

    A stack of polymer electrolyte fuel cells is formed from a plurality of unit cells where each unit cell includes fuel cell components defining a periphery and distributed along a common axis, where the fuel cell components include a polymer electrolyte membrane, an anode and a cathode contacting opposite sides of the membrane, and fuel and oxygen flow fields contacting the anode and the cathode, respectively, wherein the components define an annular region therethrough along the axis. A fuel distribution manifold within the annular region is connected to deliver fuel to the fuel flow field in each of the unit cells. The fuel distribution manifold is formed from a hydrophilic-like material to redistribute water produced by fuel and oxygen reacting at the cathode. In a particular embodiment, a single bolt through the annular region clamps the unit cells together. In another embodiment, separator plates between individual unit cells have an extended radial dimension to function as cooling fins for maintaining the operating temperature of the fuel cell stack.

  19. PEM fuel cell monitoring system

    DOEpatents

    Meltser, Mark Alexander; Grot, Stephen Andreas

    1998-01-01

    Method and apparatus for monitoring the performance of H.sub.2 --O.sub.2 PEM fuel cells. Outputs from a cell/stack voltage monitor and a cathode exhaust gas H.sub.2 sensor are corrected for stack operating conditions, and then compared to predetermined levels of acceptability. If certain unacceptable conditions coexist, an operator is alerted and/or corrective measures are automatically undertaken.

  20. PEM fuel cell monitoring system

    DOEpatents

    Meltser, M.A.; Grot, S.A.

    1998-06-09

    Method and apparatus are disclosed for monitoring the performance of H{sub 2}--O{sub 2} PEM fuel cells. Outputs from a cell/stack voltage monitor and a cathode exhaust gas H{sub 2} sensor are corrected for stack operating conditions, and then compared to predetermined levels of acceptability. If certain unacceptable conditions coexist, an operator is alerted and/or corrective measures are automatically undertaken. 2 figs.

  1. PrBa0.5Sr0.5Co2O5+δ layered perovskite cathode for intermediate temperature solid oxide fuel cells

    SciTech Connect

    Ding, Hanping; Xue, Xingjian

    2010-02-06

    Layered perovskite oxides have ordered A-cations localizing oxygen vacancies, and may potentially improve oxygen ion diffusivity and surface exchange coefficient. The A-site-ordered layered perovskite PrBa0.5Sr0.5Co2O5+δ (PBSC) was evaluated as new cathode material for intermediate temperature solid oxide fuel cells (IT-SOFCs). The material was characterized using electrochemical impedance spectroscopy in a symmetrical cell system (PBSC/Ce0.9Sm0.1O1.9 (SDC)/PBSC), exhibiting excellent performance in the intermediate temperature range of 500–700 °C. An area-specific-resistance (ASR) of 0.23 Ω cm2 was achieved at 650 °C for cathode polarization. The low activation energy (Ea) 124 kJ mol-1 is comparable to that of La0.8Sr0.2CoO3-δ. A laboratory-scaled SDC-based tri-layer cell of Ni-SDC/SDC/PBSC was tested in intermediate temperature conditions of 550 to 700 °C. A maximum power density of 1045 mW cm-2 was achieved at 700 °C. The interfacial polarization resistance is as low as 0.285, 0.145, 0.09 and 0.05 Ω cm2 at 550, 600, 650 and 700 °C, respectively. Layered perovskite PBSC shows promising performance as cathode material for IT-SOFCs.

  2. Advanced-fuel-cell development

    NASA Astrophysics Data System (ADS)

    Pierce, R. D.; Arons, R. M.; Dusek, J. T.; Fraioli, A. V.; Kucera, G. H.; Sim, J. W.; Smith, J. L.

    1982-06-01

    The fuel cell research and development activities at Argonne National Laboratory (ANL) for the period October through December 1980. These efforts have been directed toward (1) developing alternative concepts for components of molten carbonate fuel cells, and (2) improving understanding of component behavior. The principal focus has been on development of gamma-LiAlO2 sinters as electrolyte structures. Green bodies were prepared by tape casting and then sintering beta-LiAlO2; this has produced gamma-LiAlO2 sinters of 69% porosity. In addition, a cathode prepared by sintering lithiated nickel oxide was tested in a 10-cm square cell.

  3. Chip integrated fuel cell accumulator

    NASA Astrophysics Data System (ADS)

    Frank, M.; Erdler, G.; Frerichs, H.-P.; Müller, C.; Reinecke, H.

    A unique new design of a chip integrated fuel cell accumulator is presented. The system combines an electrolyser and a self-breathing polymer electrolyte membrane (PEM) fuel cell with integrated palladium hydrogen storage on a silicon substrate. Outstanding advantages of this assembly are the fuel cell with integrated hydrogen storage, the possibility of refuelling it by electrolysis and the opportunity of simply refilling the electrolyte by adding water. By applying an electrical current, wiring the palladium hydrogen storage as cathode and the counter-electrode as anode, the electrolyser produces hydrogen at the palladium surface and oxygen at the electrolyser cell anode. The generated hydrogen is absorbed by the palladium electrode and the hydrogen storage is refilled consequently enabling the fuel cell to function.

  4. La0.6Sr0.4Co0.2Fe0.8O3 cathodes incorporated with Sm0.2Ce0.8O2 by three different methods for solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Shen, Fengyu; Lu, Kathy

    2015-11-01

    The incorporation of Sm0.2Ce0.8O2 (SDC) into La0.6Sr0.4Co0.2Fe0.8O3 (LSCF) is carried out by three methods: mechanical mixing, infiltration, and dip coating. The effects of SDC on the electrochemical performance of the LSCF cathodes are studied by electrochemical impedance spectroscopy (EIS) at 800 °C for 100 h. LSCF mechanically mixed with SDC as the cathode decreases the electrochemical performance of the half-cell; the LSCF cathode infiltrated with SDC offers faster activation and decreased resistance with thermal treatment time; and the LSCF cathode dip coated with SDC has the smallest polarization resistance. These cathodes also show clear microstructure differences at the cathode/interconnect interface after 100 h of thermal treatment. SrCrO4 phase forms on all the cathodes near the interconnect. Reactions between the mechanically mixed cathode and the YSZ electrolyte destroy the electrolyte. The influence of SDC catalyst on oxygen adsorption, dissociation, and incorporation is explained for each type of cathodes. Overall, dip coating method is recommended for incorporation of SDC into the LSCF cathode.

  5. Carbon Dioxide Addition to Microbial Fuel Cell Cathodes Maintains Sustainable Catholyte pH and Improves Anolyte pH, Alkalinity, and Conductivity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bioelectrochemical system (BES) pH imbalances develop due to anodic proton-generating oxidation reactions and cathodic hydroxide-ion-generating reduction reactions. Until now, workers added unsustainable buffers to reduce the pH difference between the anode and cathode because the pH imbalance cont...

  6. Air breathing direct methanol fuel cell

    DOEpatents

    Ren, Xiaoming; Gottesfeld, Shimshon

    2002-01-01

    An air breathing direct methanol fuel cell is provided with a membrane electrode assembly, a conductive anode assembly that is permeable to air and directly open to atmospheric air, and a conductive cathode assembly that is permeable to methanol and directly contacting a liquid methanol source. Water loss from the cell is minimized by making the conductive cathode assembly hydrophobic and the conductive anode assembly hydrophilic.

  7. Method for improving fuel cell performance

    DOEpatents

    Uribe, Francisco A.; Zawodzinski, Thomas

    2003-10-21

    A method is provided for operating a fuel cell at high voltage for sustained periods of time. The cathode is switched to an output load effective to reduce the cell voltage at a pulse width effective to reverse performance degradation from OH adsorption onto cathode catalyst surfaces. The voltage is stepped to a value of less than about 0.6 V to obtain the improved and sustained performance.

  8. Formic acid fuel cells and catalysts

    SciTech Connect

    Masel, Richard I.; Larsen, Robert; Ha, Su Yun

    2010-06-22

    An exemplary fuel cell of the invention includes a formic acid fuel solution in communication with an anode (12, 134), an oxidizer in communication with a cathode (16, 135) electrically linked to the anode, and an anode catalyst that includes Pd. An exemplary formic acid fuel cell membrane electrode assembly (130) includes a proton-conducting membrane (131) having opposing first (132) and second surfaces (133), a cathode catalyst on the second membrane surface, and an anode catalyst including Pd on the first surface.

  9. Combined current and temperature mapping in an air-cooled, open-cathode polymer electrolyte fuel cell under steady-state and dynamic conditions

    NASA Astrophysics Data System (ADS)

    Meyer, Q.; Ronaszegi, K.; Robinson, J. B.; Noorkami, M.; Curnick, O.; Ashton, S.; Danelyan, A.; Reisch, T.; Adcock, P.; Kraume, R.; Shearing, P. R.; Brett, D. J. L.

    2015-11-01

    In situ diagnostic techniques provide a means of understanding the internal workings of fuel cells so that improved designs and operating regimes can be identified. Here, for the first time, a combined current density and temperature distributed measurement system is used to generate an electro-thermal performance map of an air-cooled, air-breathing polymer electrolyte fuel cell stack operating in an air/hydrogen cross-flow configuration. Analysis is performed in low- and high-current regimes and a complex relationship between localised current density, temperature and reactant supply is identified that describes the way in which the system enters limiting performance conditions. Spatiotemporal analysis was carried out to characterise transient operations in dead-ended anode/purge mode which revealed extensive current density and temperature gradients.

  10. Intermediate Temperature Solid Oxide Fuel Cell Development

    SciTech Connect

    S. Elangovan; Scott Barnett; Sossina Haile

    2008-06-30

    Solid oxide fuel cells (SOFCs) are high efficiency energy conversion devices. Present materials set, using yttria stabilized zirconia (YSZ) electrolyte, limit the cell operating temperatures to 800 C or higher. It has become increasingly evident however that lowering the operating temperature would provide a more expeditious route to commercialization. The advantages of intermediate temperature (600 to 800 C) operation are related to both economic and materials issues. Lower operating temperature allows the use of low cost materials for the balance of plant and limits degradation arising from materials interactions. When the SOFC operating temperature is in the range of 600 to 700 C, it is also possible to partially reform hydrocarbon fuels within the stack providing additional system cost savings by reducing the air preheat heat-exchanger and blower size. The promise of Sr and Mg doped lanthanum gallate (LSGM) electrolyte materials, based on their high ionic conductivity and oxygen transference number at the intermediate temperature is well recognized. The focus of the present project was two-fold: (a) Identify a cell fabrication technique to achieve the benefits of lanthanum gallate material, and (b) Investigate alternative cathode materials that demonstrate low cathode polarization losses at the intermediate temperature. A porous matrix supported, thin film cell configuration was fabricated. The electrode material precursor was infiltrated into the porous matrix and the counter electrode was screen printed. Both anode and cathode infiltration produced high performance cells. Comparison of the two approaches showed that an infiltrated cathode cells may have advantages in high fuel utilization operations. Two new cathode materials were evaluated. Northwestern University investigated LSGM-ceria composite cathode while Caltech evaluated Ba-Sr-Co-Fe (BSCF) based pervoskite cathode. Both cathode materials showed lower polarization losses at temperatures as low as 600

  11. Precursor solution additives improve desiccated La0.6Sr0.4Co0.8Fe0.2O3-x infiltrated solid oxide fuel cell cathode performance

    NASA Astrophysics Data System (ADS)

    Burye, Theodore E.; Nicholas, Jason D.

    2016-01-01

    Here, the addition of the surfactant Triton X-100 or the chelating agent citric acid to Solid Oxide Fuel Cell (SOFC) La0.6Sr0.4Co0.8Fe0.2O3-x (LSCF) precursor nitrate solutions is shown via scanning electron microscopy (SEM) and X-ray diffraction (XRD) to reduce average infiltrate nano-particle size and improve infiltrate phase purity. In addition, the desiccation of LSCF precursor solutions containing the aforementioned organic solution additives further reduces the average LSCF infiltrate nano-particle size and improves the low-temperature infiltrate phase purity. In particular, CaCl2-desiccation reduces the average size of Triton X-100 derived (TXD) LSCF particles fired at 700 °C from 48 to 22 nm, and reduces the average size of citric acid derived LSCF particles fired at 700 °C from 50 to 41 nm. Modeling and electrochemical impedance spectroscopy (EIS) tests indicate that particle size reductions alone are responsible for desiccation-induced cathode performance improvements such as CaCl2-desiccated TXD La0.6Sr0.4Co0.8Fe0.2O3-x - Ce0.9Gd0.1O1.95 (LSCF-GDC) cathodes reaching a polarization resistance of 0.17 Ωcm2 at 540 °C, compared to 600 °C for undesiccated TXD LSCF-GDC cathodes. This excellent low-temperature performance, combined with a low open-circuit 540 °C degradation rate, suggests that the desiccation of organic-additive-containing infiltrate precursor solutions may be useful for the development of durable, high-power, low-temperature SOFCs.

  12. Using a glass fiber separator in a single-chamber air-cathode microbial fuel cell shortens start-up time and improves anode performance at ambient and mesophilic temperatures.

    PubMed

    Zhang, Xiaoyuan; Liang, Peng; Shi, Juan; Wei, Jincheng; Huang, Xia

    2013-02-01

    A shorter start-up time and highly negative anode potentials are needed to improve single-chamber air-cathode microbial fuel cells (MFCs). Using a glass fiber separator reduced the start-up time from 10d to 8d at 20°C, and from 4d to 2d at 30°C, and enhanced coulombic efficiency (CE) from <60% to 89% (20°C) and 87% (30°C). Separators also reduced anode potentials by 20-190mV, charge transfer resistances by 76% (20°C) and 19% (30°C), and increased CV peak currents by 24% (20°C) and 8% (30°C) and the potential range for redox activity (-0.55 to 0.10mV vs. -0.49 to -0.24mV at 20°C). Using a glass fiber separator in an air-cathode MFC, combined with inoculation at a mesophilic temperature, are excellent strategies to shorten start-up time and to enhance anode performance and CE. PMID:23334007

  13. Characterization of Sr-doped LaMnO{sub 3} and LaCoO{sub 3} as cathode materials for a doped LaGaO{sub 3} ceramic fuel cell

    SciTech Connect

    Huang, K.; Feng, M.; Goodenough, J.B.; Schmerling, M.

    1996-11-01

    Energy dispersive spectrometry line scan and ac impedance spectroscopy were used in this study to investigate the chemical reactions between two cathode materials, La{sub 0.84}Sr{sub 0.16} MnO{sub 3} (LSM), La{sub 0.5}Sr{sub 0.5}CoO{sub 3{minus}{delta}} (LSC), and the electrolyte La{sub 0.9}Sr{sub 0.1}Ga{sub 0.8}Mg{sub 0.2}O{sub 2.85} (LSGM). Significant interdiffusions of Co into LSGM and Ga into LSC were found at an LSC/LSGM interface even at relatively low fabrication temperatures. In contrast, only small interdiffusion of Mn into LSGM and Ga into LSM were detected at the LSM/LSGM interface even though it was fired at 1,470 C. The ac impedance spectra of the electrolyte LSGM with LSM, LSC, and Pt electrodes indicate a grain-boundary contribution to the total conductivity in the intermediate frequency range and a diffusion-controlled impedance in the low-frequency range. Irrespective of chemical reactions and a larger thermal expansion coefficient, LSC has the lowest dc resistance of all three electrodes investigated. Considering both the small interdiffusion reactions between LSM and LSGM and their similar thermal expansion coefficients, LSM could be an appropriate cathode material for LSGM-based fuel cells.

  14. Chemically stable perovskites as cathode materials for solid oxide fuel cells: La-doped Ba0.5Sr0.5Co0.8Fe0.2O(3-δ).

    PubMed

    Kim, Junyoung; Choi, Sihyuk; Jun, Areum; Jeong, Hu Young; Shin, Jeeyoung; Kim, Guntae

    2014-06-01

    Ba0.5Sr0.5Co0.8Fe0.2O(3-δ) (BSCF) has won tremendous attention as a cathode material for intermediate-temperature solid-oxide fuel cells (IT-SOFC) on the basis of its fast oxygen-ion transport properties. Nevertheless, wide application of BSCF is impeded by its phase instabilities at intermediate temperature. Here we report on a chemically stable SOFC cathode material, La0.5Ba0.25Sr0.25Co0.8Fe0.2O(3-δ) (LBSCF), prepared by strategic approaches using the Goldschmidt tolerance factor. The tolerance factors of LBSCF and BSCF indicate that the structure of the former has a smaller deformation of cubic symmetry than that of the latter. The electrical property and electrochemical performance of LBSCF are improved compared with those of BSCF. LBSCF also shows excellent chemical stability under air, a CO2-containg atmosphere, and low oxygen partial pressure while BSCF decomposed under the same conditions. Together with this excellent stability, LBSCF shows a power density of 0.81 W cm(-2) after 100 h, whereas 25 % degradation for BSCF is observed after 100 h. PMID:24737665

  15. La2NiO4+δ infiltrated into gadolinium doped ceria as novel solid oxide fuel cell cathodes: Electrochemical performance and impedance modelling

    NASA Astrophysics Data System (ADS)

    Nicollet, C.; Flura, A.; Vibhu, V.; Rougier, A.; Bassat, J. M.; Grenier, J. C.

    2015-10-01

    This paper is devoted to the study of composite cathodes of La2NiO4+δ infiltrated into a Gd-doped ceria backbone. Porous Gd-doped ceria backbones are screen printed onto yttria-stabilized zirconia or Gd-doped ceria dense electrolytes, and infiltrated with a La and Ni nitrate solution (2:1 stoichiometry ratio). The influence of the preparation parameters on the polarization resistance, such as the concentration of the infiltration solution, the amount of infiltrated phase, the annealing temperature, the thickness of the electrode, and the nature of the electrolyte, is characterized by impedance spectroscopy performed on symmetrical cells. The optimization of these parameters results in a decrease of the polarization resistance down to 0.15 Ω cm2 at 600 °C. Using the Adler-Lane-Steele model, the modelling of the impedance diagrams leads to the determination of the ionic conductivity as well as the surface exchange rate of the infiltrated electrode.

  16. Fuel cell system with combustor-heated reformer

    DOEpatents

    Pettit, William Henry

    2000-01-01

    A fuel cell system including a fuel reformer heated by a catalytic combustor fired by anode effluent and/or fuel from a liquid fuel supply providing fuel for the fuel cell. The combustor includes a vaporizer section heated by the combustor exhaust gases for vaporizing the fuel before feeding it into the combustor. Cathode effluent is used as the principle oxidant for the combustor.

  17. Fuel cell with ionization membrane

    NASA Technical Reports Server (NTRS)

    Hartley, Frank T. (Inventor)

    2007-01-01

    A fuel cell is disclosed comprising an ionization membrane having at least one area through which gas is passed, and which ionizes the gas passing therethrough, and a cathode for receiving the ions generated by the ionization membrane. The ionization membrane may include one or more openings in the membrane with electrodes that are located closer than a mean free path of molecules within the gas to be ionized. Methods of manufacture are also provided.

  18. Influence of different morphology of three-dimensional Cu(x)O with mixed facets modified air-cathodes on microbial fuel cell.

    PubMed

    Liu, Ziqi; Li, Kexun; Zhang, Xi; Ge, Baochao; Pu, Liangtao

    2015-11-01

    Three kinds of three-dimensional (3D) CuxO catalysts were prepared to modify activated carbon air-cathode using a facile electrochemical method with addition of surfactants. The maximum power density of MFC using SC-Cu air cathode (added sodium citrate into the electrolyte solution in electrodeposition process) was 1550±47 mW m(-2), almost 77% higher than AC cathode. Specifically, the charge transfer resistance significantly decreased by 89% from 9.3980 Ω to 1.0640 Ω compared to the control. Lumphy and mutually embedded filmy sheet structure were observed in SEM, which provided sufficient active sites for oxygen adsorption and diffusion. In XRD and TEM result, CuxO with mixed facets showed special structure which had a better performance. Crystallization condition of electrodeposited materials played a significant role in their nature electrochemical properties, morphology controlled by surfactant of CuxO exhibited high properties on the air-cathode MFC. PMID:26122090

  19. Fuel cells: A survey

    NASA Technical Reports Server (NTRS)

    Crowe, B. J.

    1973-01-01

    A survey of fuel cell technology and applications is presented. The operating principles, performance capabilities, and limitations of fuel cells are discussed. Diagrams of fuel cell construction and operating characteristics are provided. Photographs of typical installations are included.

  20. High performance, high durability non-precious metal fuel cell catalysts

    DOEpatents

    Wood, Thomas E.; Atanasoski, Radoslav; Schmoeckel, Alison K.

    2016-03-15

    This invention relates to non-precious metal fuel cell cathode catalysts, fuel cells that contain these catalysts, and methods of making the same. The fuel cell cathode catalysts are highly nitrogenated carbon materials that can contain a transition metal. The highly nitrogenated carbon materials can be supported on a nanoparticle substrate.

  1. Microbial fuel cell treatment of fuel process wastewater

    DOEpatents

    Borole, Abhijeet P; Tsouris, Constantino

    2013-12-03

    The present invention is directed to a method for cleansing fuel processing effluent containing carbonaceous compounds and inorganic salts, the method comprising contacting the fuel processing effluent with an anode of a microbial fuel ell, the anode containing microbes thereon which oxidatively degrade one or more of the carbonaceous compounds while producing electrical energy from the oxidative degradation, and directing the produced electrical energy to drive an electrosorption mechanism that operates to reduce the concentration of one or more inorganic salts in the fuel processing effluent, wherein the anode is in electrical communication with a cathode of the microbial fuel cell. The invention is also directed to an apparatus for practicing the method.

  2. LaCoO3: Promising cathode material for protonic ceramic fuel cells based on a BaCe0.2Zr0.7Y0.1O3-δ electrolyte

    NASA Astrophysics Data System (ADS)

    Ricote, Sandrine; Bonanos, Nikolaos; Lenrick, Filip; Wallenberg, Reine

    2012-11-01

    Symmetric cells (cathode/electrolyte/cathode) were prepared using BaCe0.2Zr0.7Y0.1O3-δ (BCZY27) as proton conducting electrolyte and LaCoO3 (LC) infiltrated into a porous BCZY27 backbone as cathode. Single phased LC was formed after annealing in air at 600 °C for 2 h. Scanning electron micrographs showed the presence of the infiltrated LC in the full cathode depth. Transmission electron micrographs revealed LC grains (60-80 nm) covering partly the BCZY27 grains (200 nm-1 μm). Impedance spectra were recorded at 500 °C and 600 °C, varying the oxygen partial pressure and the water vapour pressure. Two arcs correspond to the cathode contribution: a middle range frequency one (charge transfer) and a low frequency one (oxygen dissociation/adsorption). The area specific resistances (ASRs) of both contributions increase when decreasing the oxygen partial pressure. The low frequency arc is independent on the water vapour pressure while the charge transfer ASR values increase with higher pH2O. The cathode ASRs of 0.39 and 0.11 Ω cm2 at 500 and 600 °C respectively, in air (pH2O = 0.01 atm) are the lowest reported to the authors' knowledge for PCFC cathodes. Furthermore, this work shows that the presence of oxide ion conduction in the cathode material is not necessary for good performance.

  3. Solid oxide fuel cell power plant having a fixed contact oxidation catalyzed section of a multi-section cathode air heat exchanger

    DOEpatents

    Saito, Kazuo; Lin, Yao

    2015-02-17

    The multi-section cathode air heat exchanger (102) includes at least a first heat exchanger section (104), and a fixed contact oxidation catalyzed section (126) secured adjacent each other in a stack association. Cool cathode inlet air flows through cool air channels (110) of the at least first (104) and oxidation catalyzed sections (126). Hot anode exhaust flows through hot air channels (124) of the oxidation catalyzed section (126) and is combusted therein. The combusted anode exhaust then flows through hot air channels (112) of the first section (104) of the cathode air heat exchanger (102). The cool and hot air channels (110, 112) are secured in direct heat exchange relationship with each other so that temperatures of the heat exchanger (102) do not exceed 800.degree. C. to minimize requirements for using expensive, high-temperature alloys.

  4. Ex situ testing method to characterize cathode catalysts degradation under simulated start-up/shut-down conditions - A contribution to polymer electrolyte membrane fuel cell benchmarking

    NASA Astrophysics Data System (ADS)

    Marcu, A.; Toth, G.; Kundu, S.; Colmenares, L. C.; Behm, R. J.

    2012-10-01

    The paper introduces a novel ex situ test procedure that was developed to quantify the ageing of catalyst layers under critical automotive fuel cell conditions during start-up/shut-down phases. It is based on liquid electrolyte measurements, using a thin film catalyst electrode. The overall degradation under start-up/shut-down conditions is assessed by the decay in electrochemically active surface area. Furthermore, contributions from different processes leading to catalyst degradation such as Pt dissolution and Pt particle growth/agglomeration can be separated. Finally, using a differential electrochemical mass spectrometry (DEMS) set-up, also the extent and role of carbon corrosion under these conditions is accessible. The potential of this, compared to in situ fuel cell stack tests, rather fast and less costly ex situ test procedure is demonstrated in measurements using a commercial, graphitized carbon-supported Pt catalyst. The results of the degradation test and in particular the contributions from different degradation processes such as Pt dissolution, Pt particle growth/agglomeration and carbon corrosion during different stages of catalyst ageing are discussed.

  5. High performance catalyzed-reaction layer for medium temperature operating solid oxide fuel cells. 3: Effects of composition and morphology on performance of anode and cathode layers

    SciTech Connect

    Watanabe, Masahiro; Uchida, Hiroyuki; Suzuki, Hiroaki; Tsuno, A.

    1995-12-31

    Polarization properties of catalyzed-reaction layers, which the authors developed for medium temperature operating SOFC, were greatly improved by controlling their compositions and microstructures. The amount of Pt catalysts loaded on Sr-doped LaMnO{sub 3} (LSM) cathode was reduced down to 1/5 by decreasing size of Pt particles. A large depolarizing effect was observed on the Pt-catalyzed LSM cathode, especially at high current densities. The anodic overpotential for the samaria-doped ceria (SDC) layer was appreciably lowered by applying both highly dispersed Ru microcrystals and 0.1{micro}m-sized SDC particles onto the SDC layer.

  6. Properties of cathode materials in alkaline cells

    NASA Astrophysics Data System (ADS)

    Salkind, A. J.; McBreen, J.; Freeman, R.; Parkhurst, W. A.

    1984-04-01

    Conventional and new cathode materials in primary and secondary alkaline cells were investigated for stability, structure, electrochemical reversibility and efficiency. Included were various forms of AgO for reserve type silver zinc batteries, a new material - AgNiO2 and several nickel electrodes for nickel cadmium and nickel hydrogen cells for aerospace applications. A comparative study was made of the stability of electroformed and chemically prepared AgO. Stability was correlated with impurities. After the first discharge AgNiO2 can be recharged to the monovalent level. The discharge product is predominantly silver. Plastic bonded nickel electrodes display a second plateau on discharge. Additions of Co(OH)2 largely eliminate this.

  7. Cobalt-free polycrystalline Ba0.95La0.05FeO3-δ thin films as cathodes for intermediate-temperature solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Chen, Dengjie; Chen, Chi; Dong, Feifei; Shao, Zongping; Ciucci, Francesco

    2014-03-01

    Ba0.95La0.05FeO3-δ (BLF) thin films as electrodes for intermediate-temperature solid oxide fuel cells are prepared on single-crystal yttria-stabilized zirconia (YSZ) substrates by pulsed laser deposition. The phase structure, surface morphology and roughness of the BLF thin films are characterized by X-ray diffraction, scanning electron microscopy and atomic force microscopy. X-ray photoelectron spectroscopy is used to analyze the compositions of the deposited thin film and the chemical state of transition metal. The dense thin film exhibits a polycrystalline perovskite structure with a low surface roughness and a high oxygen vacancy concentration on the surface. Ag (paste or strip) and Au (strip) are applied on both surfaces of the symmetric cells as current collectors to evaluate electrochemical performance of the thin films. The electrode polarization resistances of the symmetric cells are found to be lower than those of most cobalt-free thin-film electrodes, e.g., 0.437 Ω cm2 at 700 °C and 0.21 atm. The oxygen reduction reaction mechanism of the BLF cathode in symmetric cells is studied by electrochemical impedance spectroscopy thanks to the equivalent fitting analysis. Both the oxygen surface exchange reaction and charge transfer are shown to determine the overall oxygen reduction reaction.

  8. Improved Fabrication Of Cathodes For Solid-State Li Cells

    NASA Technical Reports Server (NTRS)

    Nagasubramanian, Ganesan

    1995-01-01

    Utilization of cathode material increased. Improved composite-cathode/polymer-electrolyte units for solid-state lithium secondary electrochemical cells fabricated in modified version of original method of fabrication. Further development of units may lead to increases in energy and power densities and in cycle lives of rechargeable lithium cells.

  9. Reduced size fuel cell for portable applications

    NASA Technical Reports Server (NTRS)

    Narayanan, Sekharipuram R. (Inventor); Valdez, Thomas I. (Inventor); Clara, Filiberto (Inventor); Frank, Harvey A. (Inventor)

    2004-01-01

    A flat pack type fuel cell includes a plurality of membrane electrode assemblies. Each membrane electrode assembly is formed of an anode, an electrolyte, and an cathode with appropriate catalysts thereon. The anode is directly into contact with fuel via a wicking element. The fuel reservoir may extend along the same axis as the membrane electrode assemblies, so that fuel can be applied to each of the anodes. Each of the fuel cell elements is interconnected together to provide the voltage outputs in series.

  10. Evaluation of low-cost cathode catalysts for high yield biohydrogen production in microbial electrolysis cell.

    PubMed

    Wang, L; Chen, Y; Ye, Y; Lu, B; Zhu, S; Shen, S

    2011-01-01

    As an ideal fuel due to the advantages of no pollution, high combustion heat and abundant sources, hydrogen gas can be produced from organic matter through the electrohydrogenesis process in microbial electrolysis cells. But in many MECs, platinum is often used as catalyst, which limits the practical applications of MECs. To reduce the cost of the MECs, Ni-based alloy cathodes were developed by electrodepositing. In this paper hydrogen production using Ni-W-P cathode was studied for the first time in a single-chamber membrane-free MEC. At an applied voltage of 0.9 V, MECs with Ni-W-P cathodes obtained a hydrogen production rate of 1.09 m3/m3/day with an cathodic hydrogen recovery of 74%, a Coulombic efficiency of 56% and an electrical energy efficiency relative to electrical input of 139%, which was the best result of reports in this study. The Ni-W-P cathode demonstrated a better electrocatalytic activity than the Ni-Ce-P cathode and achieved a comparable performance to the Pt cathode in terms of hydrogen production rate, Coulombic efficiency, cathodic hydrogen recovery and electrical energy efficiency at 0.9 V. PMID:21278465

  11. Combustion Synthesis of Sm0.5Sr0.5CoO3-x and La0.6Sr0.4CoO3-x Nanopowders for Solid Oxide Fuel Cell Cathodes

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Zhong, zhimin

    2005-01-01

    Nanopowders of Sm0.5Sr0.5CoO(3-x) (SSC) and La0.6Sr0.4CoO(3-x) (LSC) compositions, which are being investigated as cathode materials for intermediate temperature solid oxide fuel cells, were synthesized by a solution-combustion method using metal nitrates and glycine as fuel. Development of crystalline phases in the as-synthesized powders after heat treatments at various temperatures was monitored by x-ray diffraction. Perovskite phase in LSC formed more readily than in SSC. Single phase perovskites were obtained after heat treatment of the combustion synthesized LSC and SSC powders at 1000 and 1200 C, respectively. The as-synthesized powders had an average particle size of 12 nm as determined from x-ray line broadening analysis using the Scherrer equation. Average grain size of the powders increased with increase in calcination temperature. Morphological analysis of the powders calcined at various temperatures was done by scanning electron microscopy.

  12. Electrode Design for Low Temperature Direct-Hydrocarbon Solid Oxide Fuel Cells

    NASA Technical Reports Server (NTRS)

    Chen, Fanglin (Inventor); Zhao, Fei (Inventor); Liu, Qiang (Inventor)

    2015-01-01

    In certain embodiments of the present disclosure, a solid oxide fuel cell is described. The solid oxide fuel cell includes a hierarchically porous cathode support having an impregnated cobaltite cathode deposited thereon, an electrolyte, and an anode support. The anode support includes hydrocarbon oxidation catalyst deposited thereon, wherein the cathode support, electrolyte, and anode support are joined together and wherein the solid oxide fuel cell operates a temperature of 600.degree. C. or less.

  13. Electrode design for low temperature direct-hydrocarbon solid oxide fuel cells

    SciTech Connect

    Chen, Fanglin; Zhao, Fei; Liu, Qiang

    2015-10-06

    In certain embodiments of the present disclosure, a solid oxide fuel cell is described. The solid oxide fuel cell includes a hierarchically porous cathode support having an impregnated cobaltite cathode deposited thereon, an electrolyte, and an anode support. The anode support includes hydrocarbon oxidation catalyst deposited thereon, wherein the cathode support, electrolyte, and anode support are joined together and wherein the solid oxide fuel cell operates a temperature of 600.degree. C. or less.

  14. Methods of conditioning direct methanol fuel cells

    DOEpatents

    Rice, Cynthia; Ren, Xiaoming; Gottesfeld, Shimshon

    2005-11-08

    Methods for conditioning the membrane electrode assembly of a direct methanol fuel cell ("DMFC") are disclosed. In a first method, an electrical current of polarity opposite to that used in a functioning direct methanol fuel cell is passed through the anode surface of the membrane electrode assembly. In a second method, methanol is supplied to an anode surface of the membrane electrode assembly, allowed to cross over the polymer electrolyte membrane of the membrane electrode assembly to a cathode surface of the membrane electrode assembly, and an electrical current of polarity opposite to that in a functioning direct methanol fuel cell is drawn through the membrane electrode assembly, wherein methanol is oxidized at the cathode surface of the membrane electrode assembly while the catalyst on the anode surface is reduced. Surface oxides on the direct methanol fuel cell anode catalyst of the membrane electrode assembly are thereby reduced.

  15. Design and development of a cathode processor for electrometallurgical treatment of spent nuclear fuel

    SciTech Connect

    Brunsvold, A. R.; Roach, P. D.; Westphal, B. R.

    1999-11-24

    The electrometallurgical processing of spent fuel developed at Argonne National Laboratory produces a cathode which contains dendrites of heavy metal (principally U), salts, and residual cadmium. The cathode requires further treatment which is accomplished by loading it into a cathode processor to first purify and then consolidate the heavy metal. The principal steps in cathode processing are: the cathode is loaded into a crucible and both loaded into the cathode processor; the crucible is heated under vacuum to an intermediate temperature to distill the salt and cadmium from the crucible; the crucible is heated further to melt and consolidate the heavy metal; the crucible and charge are then cooled forming a heavy metal ingot in the crucible mold. The cathode processor development program has progressed through the design, fabrication, qualification, and demonstration phases. Two identical units were built. One (a prototype unit) has been installed at Argonne's site in Illinois and the other (the production unit) has been installed in the Fuel Conditioning Facility (FCF) at Argonne's Idaho site. Both units are presently in operation. The most recent activities completed in the FCF fuel processing project were the EBR-II driver fuel and blanket fuel demonstration phases. All of the cathode processor success criteria were met during these demonstration phases. These included finalizing the operation conditions applicable to irradiated fuel and process throughput criteria.

  16. Regenerative fuel cell engineering - FY99

    SciTech Connect

    Michael A. Inbody; Rodney L. Borup; James C. Hedstrom; Jose Tafoya; Byron Morton; Lois Zook; Nicholas E. Vanderborgh

    2000-01-01

    The authors report the work conducted by the ESA-EPE Fuel Cell Engineering Team at Los Alamos National Laboratory during FY99 on regenerative fuel cell system engineering. The work was focused on the evaluation of regenerative fuel cell system components obtained through the RAFCO program. These components included a 5 kW PEM electrolyzer, a two-cell regenerative fuel cell stack, and samples of the electrolyzer membrane, anode, and cathode. The samples of the electrolyzer membrane, anode, and cathode were analyzed to determine their structure and operating characteristics. Tests were conducted on the two-cell regenerative fuel cell stack to characterize its operation as an electrolyzer and as a fuel cell. The 5 kW PEM electrolyzer was tested in the Regenerative Fuel Cell System Test Facility. These tests served to characterize the operation of the electrolyzer and, also, to verify the operation of the newly completed test facility. Future directions for this work in regenerative fuel cell systems are discussed.

  17. Inactive end cell assembly for fuel cells for improved electrolyte management and electrical contact

    DOEpatents

    Yuh, Chao-Yi; Farooque, Mohammad; Johnsen, Richard

    2007-04-10

    An assembly for storing electrolyte in a carbonate fuel cell is provided. The combination of a soft, compliant and resilient cathode current collector and an inactive anode part including a foam anode in each assembly mitigates electrical contact loss during operation of the fuel cell stack. In addition, an electrode reservoir in the positive end assembly and an electrode sink in the negative end assembly are provided, by which ribbed and flat cathode members inhibit electrolyte migration in the fuel cell stack.

  18. Fuel cells seminar

    SciTech Connect

    1996-12-01

    This year`s meeting highlights the fact that fuel cells for both stationary and transportation applications have reached the dawn of commercialization. Sales of stationary fuel cells have grown steadily over the past 2 years. Phosphoric acid fuel cell buses have been demonstrated in urban areas. Proton-exchange membrane fuel cells are on the verge of revolutionizing the transportation industry. These activities and many more are discussed during this seminar, which provides a forum for people from the international fuel cell community engaged in a wide spectrum of fuel cell activities. Discussions addressing R&D of fuel cell technologies, manufacturing and marketing of fuel cells, and experiences of fuel cell users took place through oral and poster presentations. For the first time, the seminar included commercial exhibits, further evidence that commercial fuel cell technology has arrived. A total of 205 papers is included in this volume.

  19. Lan+1NinO3n+1 (n = 2 and 3) phases and composites for solid oxide fuel cell cathodes: Facile synthesis and electrochemical properties

    NASA Astrophysics Data System (ADS)

    Sharma, Rakesh K.; Burriel, Mónica; Dessemond, Laurent; Bassat, Jean-Marc; Djurado, Elisabeth

    2016-09-01

    In this work we present a modified citrate-nitrate route using citric acid as a chelating agent as an effective and facile strategy to obtain nanocrystalline La3Ni2O7+δ (L3N2) and La4Ni3O10-δ (L4N3) powders for the preparation of solid oxide fuel cell cathodes. Both samples crystallize in a Fmmm orthorhombic layered Lan+1NinO3n+1 Ruddlesden-Popper structure, with n = 2 and 3, respectively. The oxygen non-stoichiometry, determined by TGA is equal to 0.05 and 0.06 for L3N2 and L4N3, respectively. The thermal expansion coefficient values of L3N2 and L4N3 are 11.0 × 10-6 K-1 and 11.5 × 10-6 K-1, respectively. This study focused on L3N2, L4N3 and on novel composite electrodes with CGO (Ce0.9Gd0.1O2-δ): L3N2-CGO and L4N3-CGO with a view to taking advantage of their complimentary properties, i.e. high ionic conductivity of CGO and high electronic conductivity of Lan+1NinO3n+1 (n = 2 and 3). A significant improvement of the polarization resistance, from 1.0 to 0.03 Ω cm2 and from 1.5 to 0.52 Ω cm2 at 700 °C, is obtained when 50 wt% CGO is added to L3N2 and L4N3, respectively. In addition, the L3N2-CGO composite shows good long-term stability at 900 °C for 2 weeks in air, confirming its suitability as a SOFC cathode.

  20. Clean energy from a carbon fuel cell

    NASA Astrophysics Data System (ADS)

    Kacprzak, Andrzej; Kobyłecki, Rafał; Bis, Zbigniew

    2011-12-01

    The direct carbon fuel cell technology provides excellent conditions for conversion of chemical energy of carbon-containing solid fuels directly into electricity. The technology is very promising since it is relatively simple compared to other fuel cell technologies and accepts all carbon-reach substances as possible fuels. Furthermore, it makes possible to use atmospheric oxygen as the oxidizer. In this paper the results of authors' recent investigations focused on analysis of the performance of a direct carbon fuel cell supplied with graphite, granulated carbonized biomass (biocarbon), and granulated hard coal are presented. The comparison of the voltage-current characteristics indicated that the results obtained for the case when the cell was operated with carbonized biomass and hard coal were much more promising than those obtained for graphite. The effects of fuel type and the surface area of the cathode on operation performance of the fuel cell were also discussed.

  1. Water injected fuel cell system compressor

    DOEpatents

    Siepierski, James S.; Moore, Barbara S.; Hoch, Martin Monroe

    2001-01-01

    A fuel cell system including a dry compressor for pressurizing air supplied to the cathode side of the fuel cell. An injector sprays a controlled amount of water on to the compressor's rotor(s) to improve the energy efficiency of the compressor. The amount of water sprayed out the rotor(s) is controlled relative to the mass flow rate of air inputted to the compressor.

  2. Phthalocyanine cathode materials for secondary lithium cells

    SciTech Connect

    Tamaki, J.; Yamaji, A.

    1982-01-01

    Discharge and charge characteristics of various phthalocyanine cathodes coupled with lithium metal are studied. The best capacity based only on cathode active material weight is 1440 A-hr/kg in the lithium/iron phthalocyanine system, and the cycle life of the lithium/Cu phthalocyanine system is more than 100 times at the discharge depth of 157 A-hr/kg. The cathode reaction mechanism is supposed to be lithium intercalation between phthalocyanine molecules. The results indicate that these phthalocyanines are promising cathode active materials for lithium secondary batteries.

  3. Liquid plasma sprayed nano-network La0.4Sr0.6Co0.2Fe0.8O3/Ce0.8Gd0.2O2 composite as a high-performance cathode for intermediate-temperature solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Zhang, Shan-Lin; Li, Chang-Jiu; Li, Cheng-Xin; Yang, Guan-Jun; Huang, Kevin; Liu, Meilin

    2016-09-01

    Here, we investigate the feasibility of using a liquid plasma spray process as a novel method for the cost-effective fabrication of a nanonetwork of La0.4Sr0.6Co0.2Fe0.8O3-δ (LSCF) and Ce0.8Gd0.2O2-δ (GDC) composite as a high-performance cathode for intermediate-temperature solid oxide fuel cells. A suspension containing well-dispersed nanosized GDC particles in an LSCF precursor solution is designed as the feedstock. The effects of GDC concentration in the suspension on the phase composition, microstructure, and electrochemical performance of the resulting cathode are studied. When the GDC concentration increases to 15 g L-1, the nanosized GDC particles distribute uniformly and continuously on the LSCF backbone to form a porous network structure. The electrochemical studies further indicate that the cathode polarization decreased with the increase in GDC concentration from 0 g L-1 to 15 g L-1, whereas a further increase in the GDC concentration increases the cathode polarization instead. At 600 and 750 °C, the cathode prepared using 15 g L-1 GDC concentration exhibits an impressive area-specific polarization resistance (Rp) of 0.1 Ω cm2 and 0.009 Ω cm2, respectively. Finally, the Rp of the optimal cathode almost does not change after the isothermal dwelling at 650 °C for 350 h.

  4. Electrolytic Reduction of Spent Nuclear Oxide Fuel -- Effects of Fuel Form and Cathode Containment Materials on Bench-Scale Operations

    SciTech Connect

    S. D. Herrmann

    2007-09-01

    A collaborative effort between the Idaho National Laboratory (INL) and Korea Atomic Energy Research Institute (KAERI) is underway per an International Nuclear Energy Research Initiative to advance the development of a pyrochemical process for the treatment of spent nuclear oxide fuel. To assess the effects of specific process parameters that differ between oxide reduction operations at INL and KAERI, a series of 4 electrolytic reduction runs will be performed with a single salt loading of LiCl-Li2O at 650 °C using a test apparatus located inside of a hot cell at INL. The spent oxide fuel for the tests will be irradiated UO2 that has been subjected to a voloxidation process to form U3O8. The primary variables in the 4 electrolytic reduction runs will be fuel basket containment material and Li2O concentration in the LiCl salt. All 4 runs will be performed with comparable fuel loadings (approximately 50 g) and fuel compositions and will utilize a platinum anode and a Ni/NiO reference electrode. The first 2 runs will elucidate the effect of fuel form on the electrolytic reduction process by comparison of the above test results with U3O8 versus results from previous tests with UO2. The first 3 runs will investigate the impact that the cathode containment material has on the electrolytic reduction of spent oxide fuel. The 3rd and 4th runs will investigate the effect of Li2O concentration on the reduction process with a porous MgO cathode containment.

  5. Micro-electro-mechanical systems phosphoric acid fuel cell

    DOEpatents

    Sopchak, David A.; Morse, Jeffrey D.; Upadhye, Ravindra S.; Kotovsky, Jack; Graff, Robert T.

    2010-08-17

    A phosphoric acid fuel cell system comprising a porous electrolyte support, a phosphoric acid electrolyte in the porous electrolyte support, a cathode electrode contacting the phosphoric acid electrolyte, and an anode electrode contacting the phosphoric acid electrolyte.

  6. Micro-electro-mechanical systems phosphoric acid fuel cell

    DOEpatents

    Sopchak, David A.; Morse, Jeffrey D.; Upadhye, Ravindra S.; Kotovsky, Jack; Graff, Robert T.

    2010-12-21

    A phosphoric acid fuel cell system comprising a porous electrolyte support, a phosphoric acid electrolyte in the porous electrolyte support, a cathode electrode contacting the phosphoric acid electrolyte, and an anode electrode contacting the phosphoric acid electrolyte.

  7. Cell separator plate used in fuel cell stacks

    SciTech Connect

    Reznikov, G.L.

    1993-08-03

    In a fuel cell stack comprising a plurality of fuel cell units, each said fuel cell unit is described comprising an anode, a cathode, an electrolyte in contact on one side with the electrolyte facing face of said anode and in contact on the opposite side with the electrolyte facing face of said cathode, and a separator plate forming an anode chamber between the anode facing face of said separator plate and said separator plate facing face of said anode and said separator plate forming a cathode chamber between the opposite cathode facing face of said separator plate and the separator plate facing face of the cathode of an adjacent said fuel cell unit, said anode chamber in gas communication with fuel gas supply and outlet and said cathode chamber in gas communication with oxidant supply and outlet, the improvement comprising; said electrolyte terminating inwardly from the periphery of said separator plate, said separator plate having a electrolyte seal structure extending outwardly from each face, said electrolyte seal structure contacting the periphery of said electrolyte completely around the periphery of said electrolyte forming a separator plate/electrolyte seal under cell operating conditions, said separator plate extending beyond the periphery of said electrolyte and having a separator plate peripheral seal structure spaced beyond the periphery of said electrolyte and extending outwardly from each face of said separator plate, and sealing means at said separator plate peripheral seal structure to form with adjacent separator plates when in said fuel cell stack a peripheral separator plate seal completely around the periphery of said separator plate thereby forming a peripheral compartment between said separator plate/electrolyte seal and said peripheral separator plate seal.

  8. High specific power, direct methanol fuel cell stack

    DOEpatents

    Ramsey, John C.; Wilson, Mahlon S.

    2007-05-08

    The present invention is a fuel cell stack including at least one direct methanol fuel cell. A cathode manifold is used to convey ambient air to each fuel cell, and an anode manifold is used to convey liquid methanol fuel to each fuel cell. Tie-bolt penetrations and tie-bolts are spaced evenly around the perimeter to hold the fuel cell stack together. Each fuel cell uses two graphite-based plates. One plate includes a cathode active area that is defined by serpentine channels connecting the inlet manifold with an integral flow restrictor to the outlet manifold. The other plate includes an anode active area defined by serpentine channels connecting the inlet and outlet of the anode manifold. Located between the two plates is the fuel cell active region.

  9. Evaluating focused ion beam and ultramicrotome sample preparation for analytical microscopies of the cathode layer of a polymer electrolyte membrane fuel cell

    NASA Astrophysics Data System (ADS)

    de A. Melo, Lis G.; Hitchcock, Adam P.; Berejnov, Viatcheslav; Susac, Darija; Stumper, Juergen; Botton, Gianluigi A.

    2016-04-01

    Optimizing the structure of the porous electrodes of polymer electrolyte membrane fuel cells (PEM-FC) can improve device power and durability. Analytical microscopy techniques are important tools for measuring the electrode structure, thereby providing guidance for structural optimization. Transmission Electron Microscopy (TEM), with either Energy Dispersive X-Ray (EDX) or Electron Energy Loss Spectroscopy (EELS) analysis, and Scanning Transmission X-Ray Microscopy (STXM) are complementary methods which, together, provide a powerful approach for PEM-FC electrode analysis. Both TEM and STXM require thin (50-200 nm) samples, which can be prepared either by Focused Ion Beam (FIB) milling or by embedding and ultramicrotomy. Here we compare TEM and STXM spectromicroscopy analysis of FIB and ultramicrotomy sample preparations of the same PEM-FC sample, with focus on how sample preparation affects the derived chemical composition and spatial distributions of carbon support and ionomer. The FIB lamella method, while avoiding pore-filling by embedding media, had significant problems. In particular, in the FIB sample the carbon support was extensively amorphized and the ionomer component suffered mass loss and structural damage. Although each sample preparation technique has a role to play in PEM-FC optimization studies, it is important to be aware of the limitations of each method.

  10. 15N solid-state nuclear magnetic resonance study of pyrolyzed metal-polyaniline cathode catalysts for oxygen reduction in fuel cells

    NASA Astrophysics Data System (ADS)

    Kuroki, Shigeki; Hosaka, Yo; Yamauchi, Chiharu; Nagata, Shinsuke; Sonoda, Mayu

    2015-09-01

    The oxygen reduction reaction (ORR) activity of pyrolyzed metal-free and metal (Mn, Fe, Co, Ni and Cu)-containing polyaniline (PANI) in polymer electrolyte fuel cell (PEFC) was studied. The metal-free PANI800 shows quite poor ORR catalytic activity, whilst the metal-containing PANIMe800 display a better ORR activity. The 15N CP/MAS NMR spectra of PANINi800 and PANICu800 show one weak peak at 118 ppm and there is no peak observed in PANIFe800, against that of PANI800, PANIMn800, PANICo800 and PANINi800 show two peaks at 273 and 118 ppm assigned to the pyridinic and pyridinium nitrogens. It is because of the paramagnetic effect of metal ions. The 15N spin-echo NMR spectra of PANIMe800 with fast recycle delay show the peaks at 140 and 270 ppm assigned to the graphitic and pyridinic nitrogens, against that of PANI800 shows no peak. The spectra of PANIMn800, PANICo800, PANINi800 and PANICu600 also contain a very broaden peak at 430 ppm assigned to the nitrogen with Fermi-contact effect from metal ions. The spectra of PANIFe800 show some spinning side bands and the average Fe3+-15N distance can be calculated. The some amount of iron ion are relieved and average Fe3+-15N distance increase after acid washing and the ORR activity decreases.

  11. Electrochemical machining analysis on grid cathode composed of square cells

    NASA Astrophysics Data System (ADS)

    Lu, Yonghua; Liu, Kai; Zhao, Dongbiao

    2013-07-01

    During the electrochemical machining (ECM), the cathodes designed by the existing methods are mainly unitary cathodes, which can be only used to produce the workpieces with the same shapes. However, there are few researches on designing cathodes for machining the different workpieces with the different surfaces. This paper presents the grid cathode composed of the square cells to produce the workpieces with different shapes. Three types of the square cells, 2.5 mm×2.5 mm, 3 mm×3 mm, and 4 mm×4 mm, are utilized to construct the plane, the slant, and the blade cathode. The material of the cathode and the anode is CrNi18Ti9, and the ingredient of electrolyte is 15% NaCl and 15% NaNO3. The machining equilibrium machining current and time are acquired and analyzed, the machining process and the workpiece quality are compared between using the grid cathode and the unitary cathode. Moreover, the machining errors on the workpiece surface are measured and analyzed, and the error reasons are traced and discussed to obtain the better surface quality of the workpiece. The experiment and analysis results show that the grid cathode can be used to manufacture the workpieces with complex shapes in certain range of the error. The workpiece quality improves with the size of the square cell being reduced, and if the square element is small enough, the workpiece quality is almost equal to the one machined by the unitary cathode. The proposed research realizes a single cathode machining the different workpieces with the different surfaces.

  12. A novel composite cathode Er0.4Bi1.6O3-Pr0.5Ba0.5MnO3-δ for ceria-bismuth bilayer electrolyte high performance low temperature solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Hou, Jie; Bi, Lei; Qian, Jing; Gong, Zheng; Zhu, Zhiwen; Liu, Wei

    2016-01-01

    A novel composite cathode consisting of A-site disordered Pr0.5Ba0.5MnO3-δ (PBM) and Er0.4Bi1.6O3 (ESB) is developed for solid oxide fuel cells (SOFCs) with ceria-bismuth bilayer electrolyte. Based on Sm0.075Nd0.075Ce0.85O2-δ|ESB (SNDC|ESB) bilayer structured film, the single cell NiO-SNDC|SNDC|ESB|ESB-PBM achieves an encouraging performance with the maximum power density (MPD) of 994 mW cm-2 and an interfacial polarization resistance (Rp) of 0.027 Ω cm2 at 650 °C. Although a possible reaction between ESB and PBM has been identified in the cathode, the ascendant electrochemical performance including the very high fuel cell performance and Rp obtained here can demonstrate that the novel cobalt-free composite cathode ESB-PBM is a preferable alternative for ceria-bismuth bilayer electrolyte high performance low temperature SOFCs (HPLT-SOFCs) and the interfacial reaction in the cathode seems not to be detrimental to the electrochemical performance.

  13. Fuel cell stack with passive air supply

    DOEpatents

    Ren, Xiaoming; Gottesfeld, Shimshon

    2006-01-17

    A fuel cell stack has a plurality of polymer electrolyte fuel cells (PEFCs) where each PEFC includes a rectangular membrane electrode assembly (MEA) having a fuel flow field along a first axis and an air flow field along a second axis perpendicular to the first axis, where the fuel flow field is long relative to the air flow field. A cathode air flow field in each PEFC has air flow channels for air flow parallel to the second axis and that directly open to atmospheric air for air diffusion within the channels into contact with the MEA.

  14. Testing Metal Chlorides For Use In Sodium-Cell Cathodes

    NASA Technical Reports Server (NTRS)

    Bugga, Ratnakumar V.; Attia, Alan I.; Halpert, Gerald

    1992-01-01

    Cyclic voltammetric curves of transition-metal wires in molten NaAlCl4 electrolyte used to eliminate suitability of transition metals as cathodes in sodium cells. Cyclic voltammetry used in conjunction with measurement of galvanostatic polarization curves determines whether given metal chloride suitable as cathode material in such cell. Cells useful in such high-energy-density and high-power-density applications as leveling loads on electric-power plants, supplying power to electric ground vehicles, and aerospace applications.

  15. Integral edge seals for phosphoric acid fuel cells

    NASA Technical Reports Server (NTRS)

    Granata, Jr., Samuel J. (Inventor); Woodle, Boyd M. (Inventor); Dunyak, Thomas J. (Inventor)

    1992-01-01

    A phosphoric acid fuel cell having integral edge seals formed by an elastomer permeating an outer peripheral band contiguous with the outer peripheral edges of the cathode and anode assemblies and the matrix to form an integral edge seal which is reliable, easy to manufacture and has creep characteristics similar to the anode, cathode and matrix assemblies inboard of the seals to assure good electrical contact throughout the life of the fuel cell.

  16. Promoting the bio-cathode formation of a constructed wetland-microbial fuel cell by using powder activated carbon modified alum sludge in anode chamber

    NASA Astrophysics Data System (ADS)

    Xu, Lei; Zhao, Yaqian; Doherty, Liam; Hu, Yuansheng; Hao, Xiaodi

    2016-05-01

    MFC centered hybrid technologies have attracted attention during the last few years due to their compatibility and dual advantages of energy recovery and wastewater treatment. In this study, a MFC was integrated into a dewatered alum sludge (DAS)- based vertical upflow constructed wetland (CW). Powder activate carbon (PAC) was used in the anode area in varied percentage with DAS to explore its influences on the performance of the CW-MFC system. The trial has demonstrated that the inclusion of PAC improved the removal efficiencies of COD, TN and RP. More significantly, increasing the proportion of PAC from 2% to 10% can significantly enhance the maximum power densities from 36.58 mW/m2 to 87.79 mW/m2. The induced favorable environment for bio-cathode formation might be the main reason for this improvement since the content of total extracellular polymeric substances (TEPS) of the substrate in the cathode area almost doubled (from 44.59 μg/g wet sludge to 87.70 μg/g wet sludge) as the percentage of PAC increased to 10%. This work provides another potential usage of PAC in CW-MFCs with a higher wastewater treatment efficiency and energy recovery.

  17. Promoting the bio-cathode formation of a constructed wetland-microbial fuel cell by using powder activated carbon modified alum sludge in anode chamber

    PubMed Central

    Xu, Lei; Zhao, Yaqian; Doherty, Liam; Hu, Yuansheng; Hao, Xiaodi

    2016-01-01

    MFC centered hybrid technologies have attracted attention during the last few years due to their compatibility and dual advantages of energy recovery and wastewater treatment. In this study, a MFC was integrated into a dewatered alum sludge (DAS)- based vertical upflow constructed wetland (CW). Powder activate carbon (PAC) was used in the anode area in varied percentage with DAS to explore its influences on the performance of the CW-MFC system. The trial has demonstrated that the inclusion of PAC improved the removal efficiencies of COD, TN and RP. More significantly, increasing the proportion of PAC from 2% to 10% can significantly enhance the maximum power densities from 36.58 mW/m2 to 87.79 mW/m2. The induced favorable environment for bio-cathode formation might be the main reason for this improvement since the content of total extracellular polymeric substances (TEPS) of the substrate in the cathode area almost doubled (from 44.59 μg/g wet sludge to 87.70 μg/g wet sludge) as the percentage of PAC increased to 10%. This work provides another potential usage of PAC in CW-MFCs with a higher wastewater treatment efficiency and energy recovery. PMID:27197845

  18. Promoting the bio-cathode formation of a constructed wetland-microbial fuel cell by using powder activated carbon modified alum sludge in anode chamber.

    PubMed

    Xu, Lei; Zhao, Yaqian; Doherty, Liam; Hu, Yuansheng; Hao, Xiaodi

    2016-01-01

    MFC centered hybrid technologies have attracted attention during the last few years due to their compatibility and dual advantages of energy recovery and wastewater treatment. In this study, a MFC was integrated into a dewatered alum sludge (DAS)- based vertical upflow constructed wetland (CW). Powder activate carbon (PAC) was used in the anode area in varied percentage with DAS to explore its influences on the performance of the CW-MFC system. The trial has demonstrated that the inclusion of PAC improved the removal efficiencies of COD, TN and RP. More significantly, increasing the proportion of PAC from 2% to 10% can significantly enhance the maximum power densities from 36.58 mW/m(2) to 87.79 mW/m(2). The induced favorable environment for bio-cathode formation might be the main reason for this improvement since the content of total extracellular polymeric substances (TEPS) of the substrate in the cathode area almost doubled (from 44.59 μg/g wet sludge to 87.70 μg/g wet sludge) as the percentage of PAC increased to 10%. This work provides another potential usage of PAC in CW-MFCs with a higher wastewater treatment efficiency and energy recovery. PMID:27197845

  19. Model of infiltrated La1-xSrxCo1-yFeyO3-δ cathodes for intermediate temperature solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Enrico, Anna; Costamagna, Paola

    2014-12-01

    We consider an LSCF (La1-xSrxCo1-yFeyO3-δ) cathode formed of straight fibers. Being LSCF a mixed ionic electronic conductor (MIEC), we consider that it features two separate charge conduction paths, one for electrons and one for oxygen-ions. Infiltrated dopant particles, adherent to the LSCF fibers, create contact points between the ionic and the electronic conductive paths, among which, otherwise, the charge transfer reaction would be negligible. Based on this picture of the doped LSCF electrode, a model is developed. The model includes the evaluation of (i) electron and oxygen-ion conduction along the LSCF fiber, and (ii) charge transfer reaction occurring at the doping particles and, possibly, at the electrode/electrolyte interface. The model is applied to infiltrated cathodes based on different LSCF scaffolds, and the results are compared to literature experimental data, demonstrating good agreement. In particular, the model captures well the improvement of performance of the doped electrodes over the undoped ones, which can be five to tenfold or even more, and can bring the 1/Rp values to the order of magnitude of 105 S m-2 at 1000 K. Deviations between model results and literature experimental data at high doping levels are discussed in terms of percolation and partial pore obstruction.

  20. Air breathing direct methanol fuel cell

    DOEpatents

    Ren, Xiaoming

    2002-01-01

    An air breathing direct methanol fuel cell is provided with a membrane electrode assembly, a conductive anode assembly that is permeable to air and directly open to atmospheric air, and a conductive cathode assembly that is permeable to methanol and directly contacting a liquid methanol source.

  1. The TMI regenerable solid oxide fuel cell

    NASA Technical Reports Server (NTRS)

    Cable, Thomas L.

    1995-01-01

    Energy storage and production in space requires rugged, reliable hardware which minimizes weight, volume, and maintenance while maximizing power output and usable energy storage. These systems generally consist of photovoltaic solar arrays which operate during sunlight cycles to provide system power and regenerate fuel (hydrogen) via water electrolysis; during dark cycles, hydrogen is converted by the fuel cell into system. The currently preferred configuration uses two separate systems (fuel cell and electrolyzer) in conjunction with photovoltaic cells. Fuel cell/electrolyzer system simplicity, reliability, and power-to-weight and power-to-volume ratios could be greatly improved if both power production (fuel cell) and power storage (electrolysis) functions can be integrated into a single unit. The Technology Management, Inc. (TMI), solid oxide fuel cell-based system offers the opportunity to both integrate fuel cell and electrolyzer functions into one unit and potentially simplify system requirements. Based an the TMI solid oxide fuel cell (SOPC) technology, the TMI integrated fuel cell/electrolyzer utilizes innovative gas storage and operational concepts and operates like a rechargeable 'hydrogen-oxygen battery'. Preliminary research has been completed on improved H2/H2O electrode (SOFC anode/electrolyzer cathode) materials for solid oxide, regenerative fuel cells. Improved H2/H2O electrode materials showed improved cell performance in both fuel cell and electrolysis modes in reversible cell tests. ln reversible fuel cell/electrolyzer mode, regenerative fuel cell efficiencies (ratio of power out (fuel cell mode) to power in (electrolyzer model)) improved from 50 percent (using conventional electrode materials) to over 80 percent. The new materials will allow the TMI SOFC system to operate as both the electrolyzer and fuel cell in a single unit. Preliminary system designs have also been developed which indicate the technical feasibility of using the TMI SOFC

  2. Solid oxide fuel cell with single material for electrodes and interconnect

    DOEpatents

    McPheeters, C.C.; Nelson, P.A.; Dees, D.W.

    1994-07-19

    A solid oxide fuel cell is described having a plurality of individual cells. A solid oxide fuel cell has an anode and a cathode with electrolyte disposed there between, and the anode, cathode and interconnect elements are comprised of substantially one material. 9 figs.

  3. Performance of (La,Sr)(Co,Fe)O 3- x double-layer cathode films for intermediate temperature solid oxide fuel cell

    NASA Astrophysics Data System (ADS)

    Marinha, D.; Hayd, J.; Dessemond, L.; Ivers-Tiffée, E.; Djurado, E.

    In this study the performance evaluation of (La,Sr)(Co,Fe)O 3- x (LSCF) double-layer films characterized by impedance spectroscopy between 403 and 603 °C to be used for intermediate temperature solid oxide fuel cells (IT-SOFCs) is presented. Two LSCF layers with different microstructures were sequentially deposited onto Ce 0.9Gd 0.1O 1.95 (CGO) substrates in a symmetrical fashion. A first layer of La 0.6Sr 0.4Co 0.2Fe 0.8O 3- x with a thickness of 7 μm and a nano-scaled particle size was deposited by electrostatic spray deposition (ESD) technique. Different deposition conditions were used in preparing the ESD films to evaluate the influence of film morphology on the electrochemical performance. After annealing, a current collector layer of La 0.58Sr 0.4Co 0.2Fe 0.8O 3- x with ∼45 μm in thickness and a larger particle size was deposited by screen printing. Area specific resistances (ASRs) were determined from impedance spectroscopy measurements performed in air between 403 and 603 °C, at 25 °C steps. A dependence of electrochemical performance on the morphology of the LSCF layer deposited by ESD was observed. The lowest ASR, measured during 130 h of isothermal dwelling at 603 °C, averaged 0.13 Ω cm 2 with negligible variation and is the lowest reported value for this composition, to the best of our knowledge. Reported results assure an excellent suitability of this type of assembly for IT-SOFCs.

  4. Synthesis and Characterization of La0.8Sr0.2Co0.8Fe0.2O3 Nanoparticles for Intermediate-low Temperature Solid Oxide Fuel Cell Cathodes

    NASA Astrophysics Data System (ADS)

    Ding, C.; Lin, H.; Sato, K.; Hashida, T.

    2008-02-01

    Nanoparticles of La0.8Sr0.2Co0.8Fe0.2O3, which are being investigated as cathode materials for intermediate-low temperature solid oxide fuel cells, were successfully synthesized by a novel sol-gel process. The thermal decomposition behavior of gel precursor was examined using TG/DTA analysis. Development of crystalline phases in the powders calcined at various temperatures was monitored by x-ray diffraction. Single phase La0.8Sr0.2Co0.8Fe0.2O3 could be obtained after calcining at 800 °C. A small amount of impurity phase existed in the powders calcined at the temperature below 700 °C. Morphological analysis of the powders calcined at various temperatures was done by scanning electron microscopy. The synthesized powders had an average particle size of 30˜90 nm at 600-1100 °C. The average particle size of the powders increased with increase in calcination temperature. Noticeable changes occurred at temperature above 800 °C, and the coarse particles existed in the powders calcined at high temperatures.

  5. Sol-Gel Synthesis of La(0.6)Sr(0.4)CoO(3-x) and Sm(0.5)Sr(0.5)CoO(3-x) Cathode Nanopowders for Solid Oxide Fuel Cells

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Wise, Brent

    2011-01-01

    Nanopowders of La(0.6)Sr(0.4)CoO(3-x) (LSC) and Sm(0.5)Sr(0.5)CoO(3-x) (SSC) compositions, which are being investigated as cathode materials for intermediate temperature solid oxide fuel cells (IT-SOFC) with La(Sr)Ga(Mg)O(3-x) (LSGM) as the electrolyte, were synthesized by low-temperature sol-gel method using metal nitrates and citric acid. Thermal decomposition of the citrate gels was followed by simultaneous DSC/TGA methods. Development of phases in the gels, on heat treatments at various temperatures, was monitored by x-ray diffraction. Solgel powders calcined at 550 to 1000 C consisted of a number of phases. Single perovskite phase La(0.6)Sr(0.4)CoO(3-x) or Sm(0.5)Sr(0.5)CoO(3-x) powders were obtained at 1200 and 1300 C, respectively. Morphological analysis of the powders calcined at various temperatures was done by scanning electron microscopy. The average particle size of the powders was approx.15 nm after 700 C calcinations and slowly increased to 70 to 100 nm after heat treatments at 1300 to 1400 C.

  6. Cationic Intermixing and Reactivity at the La2 Mo2 O9 /La0.8 Sr0.2 MnO3-δ Solid Oxide Fuel Cell Electrolyte-Cathode Interface.

    PubMed

    Ravella, Uday K; Liu, Jingjing; Corbel, Gwenaël; Skinner, Stephen J; Lacorre, Philippe

    2016-08-23

    Among standard high-temperature cathode materials for solid oxide fuel cells, La0.8 Sr0.2 MnO3-δ (LSM) displays the least reactivity with the oxide-ion conductor La2 Mo2 O9 (LMO), yet a reaction is observed at high processing temperatures, identified by using XRD and focused ion beam secondary-ion mass spectrometry (FIB-SIMS) after annealing at 1050 and 1150 °C. Additionally, Sr and Mn solutions were deposited and annealed on LMO pellets, as well as a Mo solution on a LSM pellet. From these studies several reaction products were identified by using XRD and located by using FIB-SIMS on the surface of pelletised samples. We used depth profiling to show that the reactivity extended up to ∼10 μm from the surface region. If Sr was present, a SrMoO4 -type scheelite phase was always observed as a reaction product, and if Mn was present, LaMnO3+δ single crystals were observed on the surface of the LMO pellets. Additional phases such as La2 MoO6 and La6 MoO12 were also detected depending on the configuration and annealing temperature. Reaction mechanisms and detailed reaction formulae are proposed to explain these observations. The strongest driving force for cationic diffusion appears to originate from Mo(6+) and Mn(3+) cations, rather than from Sr(2+) . PMID:27478975

  7. XPS study of surface state of novel perovskite system Dy0.5Sr0.5Co0.8Fe0.2O3-δ as cathode for solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Kautkar, Pranay R.; Acharya, Smita A.; Tumram, Priya V.; Deshpande, U. P.

    2016-05-01

    In the present attempt,novel perovskite oxide Dy0.5Sr0.5Co0.8Fe0.2O3-δ (DSCF) as cathode material has been synthesized by an Ethylene glycol-citrate combined sol-gel combustion route. Orthorhombic symmetry structure is confirmed by X-ray diffraction (XRD) and data is well fitted using Rietveld refinement by Full-Prof software suite. Chemical natureof surface of DSCF has been analyzed by using X-ray photoelectron spectroscopy (XPS). XPS result shows that Dy ions are in +3 oxidation state and Sr in +2 states. However Co2p and Fe2p spectra indicates partial change in oxidation state from Co3+/Fe3+ to Co4+/Fe4+. These attribute to develop active sites on the surface for oxygen ions. O1s XPS spectra shows two oxygen peaks relatedto lattice oxygen in perovskite and absorbed oxygen in oxygen vacancy are detected. O1s spectra demonstrate the existence of adsorbed oxygen species on the surface of DSCF oxide which is quite beneficial for intermediate temperature of Solid Oxide Fuel Cell.

  8. Fuel cell membranes and crossover prevention

    DOEpatents

    Masel, Richard I.; York, Cynthia A.; Waszczuk, Piotr; Wieckowski, Andrzej

    2009-08-04

    A membrane electrode assembly for use with a direct organic fuel cell containing a formic acid fuel includes a solid polymer electrolyte having first and second surfaces, an anode on the first surface and a cathode on the second surface and electrically linked to the anode. The solid polymer electrolyte has a thickness t:.gtoreq..times..times..times..times. ##EQU00001## where C.sub.f is the formic acid fuel concentration over the anode, D.sub.f is the effective diffusivity of the fuel in the solid polymer electrolyte, K.sub.f is the equilibrium constant for partition coefficient for the fuel into the solid polymer electrolyte membrane, I is Faraday's constant n.sub.f is the number of electrons released when 1 molecule of the fuel is oxidized, and j.sub.f.sup.c is an empirically determined crossover rate of fuel above which the fuel cell does not operate.

  9. In situ synchrotron x-ray studies of dense thin-film strontium-doped lanthanum manganite solid oxide fuel cell cathodes.

    SciTech Connect

    Chang, K. C.; Ingram, B.; Kavaipatti, B.; Yildiz, B.; Hennessy, D.; Salvador, P.; Leyarovski, N.; You, H.; Carnegie Mellon Univ.; Massachusetts Inst. of Tech.

    2009-01-01

    Using a model cathode-electrolyte system composed of epitaxial thin-films of La{sub 1-x}Sr{sub x}MnO{sub 3-{delta}} (LSM) on single crystal yttria-stabilized zirconia (YSZ), we investigated changes in the cation concentration profile in the LSM during heating and under applied potential using grazing incidence x-rays. Pulsed laser deposition (PLD) was used to grow epitaxial LSM(011) on YSZ(111). At room temperature, we find that Sr segregates to form Sr enriched nanoparticles and upon heating the sample to 700 C, Sr is slowly reincorporated into the film. We also find different amounts of Sr segregation as the X-ray beam is moved across the sample. The variation in the amount of Sr segregation is greater on the sample that has been subject to 72 hours of applied potential, suggesting that the electrochemistry plays a role in the Sr segregation.

  10. Solid polymer MEMS-based fuel cells

    DOEpatents

    Jankowski, Alan F.; Morse, Jeffrey D.

    2008-04-22

    A micro-electro-mechanical systems (MEMS) based thin-film fuel cells for electrical power applications. The MEMS-based fuel cell may be of a solid oxide type (SOFC), a solid polymer type (SPFC), or a proton exchange membrane type (PEMFC), and each fuel cell basically consists of an anode and a cathode separated by an electrolyte layer. The electrolyte layer can consist of either a solid oxide or solid polymer material, or proton exchange membrane electrolyte materials may be used. Additionally catalyst layers can also separate the electrodes (cathode and anode) from the electrolyte. Gas manifolds are utilized to transport the fuel and oxidant to each cell and provide a path for exhaust gases. The electrical current generated from each cell is drawn away with an interconnect and support structure integrated with the gas manifold. The fuel cells utilize integrated resistive heaters for efficient heating of the materials. By combining MEMS technology with thin-film deposition technology, thin-film fuel cells having microflow channels and full-integrated circuitry can be produced that will lower the operating temperature an will yield an order of magnitude greater power density than the currently known fuel cells.

  11. Solid oxide MEMS-based fuel cells

    DOEpatents

    Jankowksi, Alan F.; Morse, Jeffrey D.

    2007-03-13

    A micro-electro-mechanical systems (MEMS) based thin-film fuel cells for electrical power applications. The MEMS-based fuel cell may be of a solid oxide type (SOFC), a solid polymer type (SPFC), or a proton exchange membrane type (PEMFC), and each fuel cell basically consists of an anode and a cathode separated by an electrolyte layer. The electrolyte layer can consist of either a solid oxide or solid polymer material, or proton exchange membrane electrolyte materials may be used. Additionally catalyst layers can also separate the electrodes (cathode and anode) from the electrolyte. Gas manifolds are utilized to transport the fuel and oxidant to each cell and provide a path for exhaust gases. The electrical current generated from each cell is drawn away with an interconnect and support structure integrated with the gas manifold. The fuel cells utilize integrated resistive heaters for efficient heating of the materials. By combining MEMS technology with thin-film deposition technology, thin-film fuel cells having microflow channels and full-integrated circuitry can be produced that will lower the operating temperature an will yield an order of magnitude greater power density than the currently known fuel cells.

  12. New mechanistic insight into the oxygen reduction reaction on Ruddlesden–Popper cathodes for intermediate-temperature solid oxide fuel cells

    DOE PAGESBeta

    Li, Wenyuan; Guan, Bo; Zhang, Xinxin; Yan, Jianhua; Zhou, Yue; Liu, Xingbo

    2016-01-01

    Ruddlesden–Popper (R–P) phase materials have been investigated widely as cathode candidates for IT-SOFCs. However, widespread application of R–P phase cathodes demands further improvement in electrode activity whose progress is hindered by the limited information in the oxygen reduction reaction (ORR). The ORR mechanism for the R–P phase is therefore investigated in this paper using (LaSr)2NiO4d as an example. Accurate characterization of the surface oxygen exchange process is realized by developing thin and dense polycrystalline LSNO layers via a versatile spray-modified pressing method we invented before to avoid perceptible bulk diffusion contribution, surface enrichment and geometry complication. The governing factors ofmore » the ORR are identified as oxygen adsorption and incorporation based on the findings in reaction orders from electrochemical impedance spectroscopy (EIS), stoichiometryrelated chemical capacitance and intrinsic anisotropic properties. The incorporation rate is proven to drastically depend on the amount of interstitial oxygen O00 i . Since the unfilled interstitial sites V i in the R–P phase serve to accommodate the adsorbed oxygen during incorporation, like vacancies in the perovskite structure V O , moreO00 i would seem to suppress the kinetics of this process. In regards to this, for the first time, a physical model is proposed to reconcile the discrepancy between the experimental results and intuitive reasoning. Based on supporting evidence, this model illustrates a possibility of how O00 i works to regulate the exchange rate, and how the contradiction between V O and O00 i is harmonized so that the latter in the R–P structure also positively promotes the incorporation rate in the ORR« less

  13. New mechanistic insight into the oxygen reduction reaction on Ruddlesden–Popper cathodes for intermediate-temperature solid oxide fuel cells

    SciTech Connect

    Li, Wenyuan; Guan, Bo; Zhang, Xinxin; Yan, Jianhua; Zhou, Yue; Liu, Xingbo

    2016-01-01

    Ruddlesden–Popper (R–P) phase materials have been investigated widely as cathode candidates for IT-SOFCs. However, widespread application of R–P phase cathodes demands further improvement in electrode activity whose progress is hindered by the limited information in the oxygen reduction reaction (ORR). The ORR mechanism for the R–P phase is therefore investigated in this paper using (LaSr)2NiO4#2;d as an example. Accurate characterization of the surface oxygen exchange process is realized by developing thin and dense polycrystalline LSNO layers via a versatile spray-modified pressing method we invented before to avoid perceptible bulk diffusion contribution, surface enrichment and geometry complication. The governing factors of the ORR are identified as oxygen adsorption and incorporation based on the findings in reaction orders from electrochemical impedance spectroscopy (EIS), stoichiometryrelated chemical capacitance and intrinsic anisotropic properties. The incorporation rate is proven to drastically depend on the amount of interstitial oxygen O00 i #2;#3;. Since the unfilled interstitial sites V#3; i #2;#3; in the R–P phase serve to accommodate the adsorbed oxygen during incorporation, like vacancies in the perovskite structure V#4;#4; O #2;#3;, moreO00 i would seem to suppress the kinetics of this process. In regards to this, for the first time, a physical model is proposed to reconcile the discrepancy between the experimental results and intuitive reasoning. Based on supporting evidence, this model illustrates a possibility of how O00 i works to regulate the exchange rate, and how the contradiction between V#4;#4; O and O00 i is harmonized so that the latter in the R–P structure also positively promotes the incorporation rate in the ORR

  14. Copper Chloride Cathode For Liquid-Sodium Cell

    NASA Technical Reports Server (NTRS)

    Bugga, Ratnakumar V.; Distefano, Salvador; Nagasubramanian, Ganesan; Bankston, Clyde P.

    1990-01-01

    Rechargeable liquid-sodium cell with copper chloride cathode offers substantial increase in energy density over cells made with other cathode materials. Unit has theoretical maximum energy density of 1135 W.h/kg. Generates electricity by electrochemical reaction of molten sodium and solid copper chloride immersed in molten electrolyte, sodium tetrachloroaluminate at temperature of equal to or greater than 200 degrees C. Wall of alumina tube separates molten electrolyte from molten sodium anode. Copper chloride cathode embedded in pores of sintered nickel cylinder or directly sintered.

  15. Solid oxide fuel cell having monolithic core

    DOEpatents

    Ackerman, John P.; Young, John E.

    1984-01-01

    A solid oxide fuel cell for electrochemically combining fuel and oxidant for generating galvanic output, wherein the cell core has an array of electrolyte and interconnect walls that are substantially devoid of any composite inert materials for support. Instead, the core is monolithic, where each electrolyte wall consists of thin layers of cathode and anode materials sandwiching a thin layer of electrolyte material therebetween, and each interconnect wall consists of thin layers of the cathode and anode materials sandwiching a thin layer of interconnect material therebetween. The electrolyte walls are arranged and backfolded between adjacent interconnect walls operable to define a plurality of core passageways alternately arranged where the inside faces thereof have only the anode material or only the cathode material exposed. Means direct the fuel to the anode-exposed core passageways and means direct the oxidant to the cathode-exposed core passageway; and means also direct the galvanic output to an exterior circuit. Each layer of the electrolyte and interconnect materials is of the order of 0.002-0.01 cm thick; and each layer of the cathode and anode materials is of the order of 0.002-0.05 cm thick.

  16. Microscale Fuel Cells

    SciTech Connect

    Holladay, Jamie D.; Viswanathan, Vish V.

    2005-11-03

    Perhaprs some of the most innovative work on fuel cells has been the research dedicated to applying silicon fabrication techniques to fuel cells technology creating low power microscale fuel cells applicable to microelectro mechanical systems (MEMS), microsensors, cell phones, PDA’s, and other low power (0.001 to 5 We) applications. In this small power range, fuel cells offer the decoupling of the energy converter from the energy storage which may enable longer operating times and instant or near instant charging. To date, most of the microscale fuel cells being developed have been based on proton exchange membrane fuel cell technology (PEMFC) or direct methanol fuel cell (DMFC) technology. This section will discuss requirements and considerations that need to be addressed in the development of microscale fuel cells, as well as some proposed designs and fabrication strategies.

  17. Fuel cell power supply with oxidant and fuel gas switching

    DOEpatents

    McElroy, J.F.; Chludzinski, P.J.; Dantowitz, P.

    1987-04-14

    This invention relates to a fuel cell vehicular power plant. Fuel for the fuel stack is supplied by a hydrocarbon (methanol) catalytic cracking reactor and CO shift reactor. A water electrolysis subsystem is associated with the stack. During low power operation part of the fuel cell power is used to electrolyze water with hydrogen and oxygen electrolysis products being stored in pressure vessels. During peak power intervals, viz, during acceleration or start-up, pure oxygen and pure hydrogen from the pressure vessel are supplied as the reaction gases to the cathodes and anodes in place of air and methanol reformate. This allows the fuel cell stack to be sized for normal low power/air operation but with a peak power capacity several times greater than that for normal operation. 2 figs.

  18. Fuel cell power supply with oxidant and fuel gas switching

    DOEpatents

    McElroy, James F.; Chludzinski, Paul J.; Dantowitz, Philip

    1987-01-01

    This invention relates to a fuel cell vehicular power plant. Fuel for the fuel stack is supplied by a hydrocarbon (methanol) catalytic cracking reactor and CO shift reactor. A water electrolysis subsystem is associated with the stack. During low power operation part of the fuel cell power is used to electrolyze water with hydrogen and oxygen electrolysis products being stored in pressure vessels. During peak power intervals, viz, during acceleration or start-up, pure oxygen and pure hydrogen from the pressure vessel are supplied as the reaction gases to the cathodes and anodes in place of air and methanol reformate. This allows the fuel cell stack to be sized for normal low power/air operation but with a peak power capacity several times greater than that for normal operation.

  19. Recent Studies on Methanol Crossover in Liquid-Feed Direct Methanol Fuel Cells

    NASA Technical Reports Server (NTRS)

    Valdez, T. I.; Narayanan, S. R.

    2000-01-01

    In this work, the effects of methanol crossover and airflow rates on the cathode potential of an operating direct methanol fuel cell are explored. Techniques for quantifying methanol crossover in a fuel cell and for separating the electrical performance of each electrode in a fuel cell are discussed. The effect of methanol concentration on cathode potential has been determined to be significant. The cathode is found to be mass transfer limited when operating on low flow rate air and high concentrations of methanol. Improvements in cathode structure and operation at low methanol concentration have been shown to result in improved cell performance.

  20. Development of advanced fuel cell system

    NASA Technical Reports Server (NTRS)

    Grevstad, P. E.

    1972-01-01

    Weight, life and performance characteristics optimization of hydrogen-oxygen fuel cell power systems were considered. A promising gold alloy cathode catalyst was identified and tested in a cell for 5,000 hours. The compatibility characteristics of candidate polymer structural materials were measured after exposure to electrolyte and water vapor for 8,000 hours. Lightweight cell designs were prepared and fabrication techniques to produce them were developed. Testing demonstrated that predicted performance was achieved. Lightweight components for passive product water removal and evaporative cooling of cells were demonstrated. Systems studies identified fuel cell powerplant concepts for meeting the requirements of advanced spacecraft.