Science.gov

Sample records for fuel design concept

  1. Fuel system design concepts for broad property fuels

    NASA Technical Reports Server (NTRS)

    Versaw, E. F.

    1984-01-01

    The results of a study assessing the impact of using jet fuel with relaxed specification properties on an aircraft fuel system are given. The study objectives were to identify credible values for specific fuel properties which might be relaxed, to evolve advanced fuel system designs for airframe and engines which would permit use of the specified relaxed properties fuels, and to evaluate performance of the candidate advanced fuel systems and the relaxed property fuels in a typical transport aircraft. The study used, as a baseline, the fuel system incorporated in the Lockheed Tristar. This aircraft is powered by three RB.211-524 Rolls-Royce engines and incorporates a Pratt and Whitney ST6C-421 auxiliary power unit for engine starting and inflight emergency electrical power. The fuel property limits examined are compared with commercial Jet A kerosene and the NASA RFP fuel properties. A screening of these properties established that a higher freezing point and a lower thermal stability would impact fuel system design more significantly than any of the other property changes. Three candidate fuel systems which combine the ability to operate with fuels having both a high freeze point and a low thermal stability are described. All candidates employ bleed air to melt fuel freeze-out prior to starting the APU or an inoperable engine. The effects of incorporating these systems on aircraft weight and engine specific fuel consumption are given.

  2. Low-Enriched Fuel Design Concept for the Prismatic Very High Temperature Reactor Core

    SciTech Connect

    Sterbentz, James W

    2007-05-01

    A new non-TRISO fuel and clad design concept is proposed for the prismatic, heliumcooled Very High Temperature Reactor core. The new concept could substantially reduce the current 10-20 wt% TRISO uranium enrichments down to 4-6 wt% for both initial and reload cores. The proposed fuel form would be a high-temperature, high-density uranium ceramic, for example UO2, configured into very small diameter cylindrical rods. The small diameter fuel rods significantly increase core reactivity through improved neutron moderation and fuel lumping. Although a high-temperature clad system for the concept remains to be developed, recent success in tube fabrication and preliminary irradiation testing of silicon carbide (SiC) cladding for light water reactor applications offers good potential for this application, and for future development of other carbide clad designs. A high-temperature ceramic fuel, together with a high-temperature clad material, could also lead to higher thermal safety margins during both normal and transient reactor conditions relative to TRISO fuel. The calculated neutronic results show that the lowenrichment, small diameter fuel rods and low thermal neutron absorbing clad retain the strong negative Doppler fuel temperature coefficient of reactivity that ensures inherent safe operation of the VHTR, and depletion studies demonstrate that an 18-month power cycle can be achieved with the lower enrichment fuel.

  3. The influence of design concept and liquid properties on fuel injector performance

    NASA Astrophysics Data System (ADS)

    Custer, J. R.; Rizk, N. K.

    1986-01-01

    An experimental investigation of the influence of design concept and liquid properties on fuel injector performances of airblast atomizers is carried out. Three injectors with distinctly different fuel filming concepts were employed in this program. The first nozzle is a dual-circuit atomizer with pressure swirl tip in the primary and a short prefilming secondary circuit. The second nozzle design is based on a single circuit prefilming concept. The last atomizer tested was a spray-prefilming concept in which the spray from a large pressure atomizer is directed onto an outer shroud. In the three designs the liquid sheet is exposed to high velocity airstreams on both sides once it leaves the filming surface. In the experiments designed in the present study the nozzle operating conditions, namely air/liquid ratio and nondimensional air pressure drop, and liquid properties were varied. Mean drop size and drop size distributions were measured with a laser-diffraction instrument and a photographic technique was employed for cone angle measurement. The results indicate that the method of spreading the liquid into a film has a significant effect on atomization quality. Also, for the practical range of properties of gas turbine fuels, surface tension has the most dominant effect on mean drop size for the three nozzle designs. The measurements indicate that the spray cone angle is governed by air velocity and liquid properties. The drop size distribution data followed the modified Rosin-Rammler type of distribution closely under almost all conditions. Equations to correlate mean drop sizes to the distribution parameters were derived to facilitate the prediction of the range of droplets in the spray.

  4. New concept of designing Pu and MA containing fuel for fast reactors

    NASA Astrophysics Data System (ADS)

    Savchenko, A. M.; Konovalov, I. I.; Vatulin, A. V.; Glagovsky, E. M.

    2009-03-01

    New type of metal base fuel element is suggested for fast reactors. Basic approach to fuel element development - separated operations of fabricating uranium meat fuel element and introducing into it Pu or MA dioxides powder, that results in minimizing dust forming operations in fuel element fabrication. According to new fuel element design a framework fuel element having a porous uranium alloy meat is filled with standard PuO 2 powder of <50 μm fractions prepared by pyrochemical or other methods. In this way a high uranium content fuel meat metallurgically bonded to cladding forms a heat conducting framework, pores of which contain PuO 2 powder. Framework fuel element having porous meat is fabricated by capillary impregnation method with the use of Zr eutectic matrix alloys, which provides metallurgical bond between fuel and cladding and protects it from interaction. As compared to MOX fuel the new one features high thermal conductivity, higher uranium content, hence, high conversion ratio does not interact with fuel cladding and is more environmentally clean. Its principle advantage is a simple production process that is easily realized remotely, feasibility of involving high background Pu and MA isotopes into closed nuclear fuel cycle at the minimal influence on environment.

  5. Design Concepts for Co-Production of Power, Fuels & Chemicals Via Coal/Biomass Mixtures

    SciTech Connect

    Rao, A. D.; Chen, Q.; Samuelsen, G. S.

    2012-09-30

    The overall goal of the program is to develop design concepts, incorporating advanced technologies in areas such as oxygen production, feed systems, gas cleanup, component separations and gas turbines, for integrated and economically viable coal and biomass fed gasification facilities equipped with carbon capture and storage for the following scenarios: (i) coproduction of power along with hydrogen, (ii) coproduction of power along with fuels, (iii) coproduction of power along with petrochemicals, and (iv) coproduction of power along with agricultural chemicals. To achieve this goal, specifically the following objectives are met in this proposed project: (i) identify advanced technology options and innovative preliminary design concepts that synergistically integrate plant subsections, (ii) develop steady state system simulations to predict plant efficiency and environmental signature, (iii) develop plant cost estimates by capacity factoring major subsystems or by major equipment items where required, and then capital, operating and maintenance cost estimates, and (iv) perform techno- economic analyses for the above described coproduction facilities. Thermal efficiencies for the electricity only cases with 90% carbon capture are 38.26% and 36.76% (HHV basis) with the bituminous and the lignite feedstocks respectively. For the coproduction cases (where 50% of the energy exported is in the form of electricity), the electrical efficiency, as expected, is highest for the hydrogen coproduction cases while lowest for the higher alcohols (ethanol) coproduction cases. The electrical efficiencies for Fischer-Tropsch coproduction cases are slightly higher than those for the methanol coproduction cases but it should be noted that the methanol (as well as the higher alcohol) coproduction cases produce the finished coproduct while the Fischer-Tropsch coproduction cases produce a coproduct that requires further processing in a refinery. The cross comparison of the thermal

  6. Accelerator breeder nuclear fuel production: concept evaluation of a modified design for ORNL's proposed TME-ENFP

    SciTech Connect

    Johnson, J.O.; Gabriel, T.A.; Bartine, D.E.

    1985-01-01

    Recent advances in accelerator beam technology have made it possible to improve the target/blanket design of the Ternary Metal Fueled Electronuclear Fuel Producer (TMF-ENFP), an accelerator-breeder design concept proposed by Burnss et al. for subcritical breeding of the fissile isotope /sup 233/U. In the original TMF-ENFP the 300-mA, 1100-MeV proton beam was limited to a small diameter whose power density was so high that a solid metal target could not be used for producing the spallation neutrons needed to drive the breeding process. Instead the target was a central column of circulating liquid sodium, which was surrounded by an inner multiplying region of ternary fuel rods (/sup 239/Pu, /sup 232/Th, and /sup 238/U) and an outer blanket region of /sup 232/Th rods, with the entire system cooled by circulating sodium. In the modified design proposed here, the proton beam is sufficiently spread out to allow the ternary fuel to reside directly in the beam and to be preceded by a thin (nonstructural) V-Ti steel firThe spread beam mandated a change in the design configuration (from a cylindrical shape to an Erlenmeyer flask shape), which, in turn, required that the fuel rods (and blanket rods) be replaced by fuel pebbles. The fuel residence time in both systems was assumed to be 90 full power days. A series of parameter optimization calculations for the modified TMF-ENFP led to a semioptimized system in which the initial /sup 239/Pu inventory of the ternary fuel was 6% and the fuel pebble diameter was 0.5 cm. With this system the /sup 233/Pu production rate of 5.8 kg/day reported for the original TMF-ENFP was increased to 9.3 kg/day, and the thermal power production at beginning of cycle was increased from 3300 MW(t) to 5240 MW(t). 31 refs., 32 figs., 6 tabs.

  7. Low NOx Heavy Fuel Combustor Concept Program

    NASA Technical Reports Server (NTRS)

    Novick, A. S.; Troth, D. L.

    1981-01-01

    The development of the technology required to operate an industrial gas turbine combustion system on minimally processed, heavy petroleum or residual fuels having high levels of fuel-bound nitrogen (FBN) while producing acceptable levels of exhaust emissions is discussed. Three combustor concepts were designed and fabricated. Three fuels were supplied for the combustor test demonstrations: a typical middle distillate fuel, a heavy residual fuel, and a synthetic coal-derived fuel. The primary concept was an air staged, variable-geometry combustor designed to produce low emissions from fuels having high levels of FBN. This combustor used a long residence time, fuel-rich primary combustion zone followed by a quick-quench air mixer to rapidly dilute the fuel rich products for the fuel-lean final burnout of the fuel. This combustor, called the rich quench lean (RQL) combustor, was extensively tested using each fuel over the entire power range of the model 570 K engine. Also, a series of parameteric tests was conducted to determine the combustor's sensitivity to rich-zone equivalence ratio, lean-zone equivalence ratio, rich-zone residence time, and overall system pressure drop. Minimum nitrogen oxide emissions were measured at 50 to 55 ppmv at maximum continuous power for all three fuels. Smoke was less than a 10 SAE smoke number.

  8. Integrated international safeguards concepts for fuel reprocessing

    SciTech Connect

    Hakkila, E.A.; Gutmacher, R.G.; Markin, J.T.; Shipley, J.P.; Whitty, W.J.; Camp, A.L.; Cameron, C.P.; Bleck, M.E.; Ellwein, L.B.

    1981-12-01

    This report is the fourth in a series of efforts by the Los Alamos National Laboratory and Sandia National Laboratories, Albuquerque, to identify problems and propose solutions for international safeguarding of light-water reactor spent-fuel reprocessing plants. Problem areas for international safeguards were identified in a previous Problem Statement (LA-7551-MS/SAND79-0108). Accounting concepts that could be verified internationally were presented in a subsequent study (LA-8042). Concepts for containment/surveillance were presented, conceptual designs were developed, and the effectiveness of these designs was evaluated in a companion study (SAND80-0160). The report discusses the coordination of nuclear materials accounting and containment/surveillance concepts in an effort to define an effective integrated safeguards system. The Allied-General Nuclear Services fuels reprocessing plant at Barnwell, South Carolina, was used as the reference facility.

  9. Off-design temperature effects on nuclear fuel pins for an advanced space-power-reactor concept

    NASA Technical Reports Server (NTRS)

    Bowles, K. J.

    1974-01-01

    An exploratory out-of-reactor investigation was made of the effects of short-time temperature excursions above the nominal operating temperature of 990 C on the compatibility of advanced nuclear space-power reactor fuel pin materials. This information is required for formulating a reliable reactor safety analysis and designing an emergency core cooling system. Simulated uranium mononitride (UN) fuel pins, clad with tungsten-lined T-111 (Ta-8W-2Hf) showed no compatibility problems after heating for 8 hours at 2400 C. At 2520 C and above, reactions occurred in 1 hour or less. Under these conditions free uranium formed, redistributed, and attacked the cladding.

  10. Bioreactor design concepts

    NASA Technical Reports Server (NTRS)

    Bowie, William

    1987-01-01

    Two parallel lines of work are underway in the bioreactor laboratory. One of the efforts is devoted to the continued development and utilization of a laboratory research system. That system's design is intended to be fluid and dynamic. The sole purpose of such a device is to allow testing and development of equipment concepts and procedures. Some of the results of those processes are discussed. A second effort is designed to produce a flight-like bioreactor contained in a double middeck locker. The result of that effort has been to freeze a particular bioreactor design in order to allow fabrication of the custom parts. The system is expected to be ready for flight in early 1988. However, continued use of the laboratory system will lead to improvements in the space bioreactor. Those improvements can only be integrated after the initial flight series.

  11. Fuel element concept for long life high power nuclear reactors

    NASA Technical Reports Server (NTRS)

    Mcdonald, G. E.; Rom, F. E.

    1969-01-01

    Nuclear reactor fuel elements have burnups that are an order of magnitude higher than can currently be achieved by conventional design practice. Elements have greater time integrated power producing capacity per unit volume. Element design concept capitalizes on known design principles and observed behavior of nuclear fuel.

  12. AXTAR: Mission Design Concept

    NASA Technical Reports Server (NTRS)

    Ray, Paul S.; Chakrabarty, Deepto; Wilson-Hodge, Colleen A.; Philips, Bernard F.; Remillard, Ronald A.; Levine, Alan M.; Wood, Kent S.; Wolff, Michael T.; Gwon, Chul S.; Strohmayer, Tod E.; Briggs, Michael S.; Capizzo, Peter; Fabisinski, Leo; Hopkins, Randall C.; Hornsby, Linda S.; Johnson, Les; Maples, C. Dauphne; Miernik, Janie H.; Thomas, Dan; DeGeronimo, Gianluigi

    2010-01-01

    The Advanced X-ray Timing Array (AXTAR) is a mission concept for X-ray timing of compact objects that combines very large collecting area, broadband spectral coverage, high time resolution, highly flexible scheduling, and an ability to respond promptly to time-critical targets of opportunity. It is optimized for sub-millisecond timing of bright Galactic X-ray sources in order to study phenomena at the natural time scales of neutron star surfaces and black hole event horizons, thus probing the physics of ultra-dense matter, strongly curved spacetimes, and intense magnetic fields. AXTAR s main instrument, the Large Area Timing Array (LATA) is a collimated instrument with 2 50 keV coverage and over 3 square meters effective area. The LATA is made up of an array of super-modules that house 2-mm thick silicon pixel detectors. AXTAR will provide a significant improvement in effective area (a factor of 7 at 4 keV and a factor of 36 at 30 keV) over the RXTE PCA. AXTAR will also carry a sensitive Sky Monitor (SM) that acts as a trigger for pointed observations of X-ray transients in addition to providing high duty cycle monitoring of the X-ray sky. We review the science goals and technical concept for AXTAR and present results from a preliminary mission design study

  13. Solar fuels: vision and concepts.

    PubMed

    Styring, Stenbjörn

    2012-01-01

    The world needs new, environmentally friendly and renewable fuels to allow an exchange from fossil fuels. The fuel must be made from cheap and 'endless' resources that are available everywhere. The new research area on solar fuels, which are made from solar energy and water, aims to meet this demand. The paper discusses why we need a solar fuel and why electricity is not enough; it proposes solar energy as the major renewable energy source to feed from. The present research strategies, involving direct, semi-direct and indirect approaches to produce solar fuels, are overviewed. PMID:22434445

  14. The Concept of Curriculum Design.

    ERIC Educational Resources Information Center

    Barrow, Robin

    This paper approaches the concept of curriculum design from a philosophical perspective, arguing that the concept of "design" in curriculum is fundamentally misleading. The paper begins with a series of comments questioning the assumption that curriculum design involves a set of discrete skills or procedures in which one may attain expertise, like…

  15. Low NOx heavy fuel combustor concept program, phase 1

    NASA Technical Reports Server (NTRS)

    Cutrone, M. B.

    1981-01-01

    Combustion tests were completed with seven concepts, including three rich/lean concepts, three lean/lean concepts, and one catalytic combustor concept. Testing was conducted with ERBS petroleum distillate, petroleum residual, and SRC-II coal-derived liquid fuels over a range of operating conditions for the 12:1 pressure ratio General Electric MS7001E heavy-duty turbine. Blends of ERBS and SRC-II fuels were used to vary fuel properties over a wide range. In addition, pyridine was added to the ERBS and residual fuels to vary nitrogen level while holding other fuel properties constant. Test results indicate that low levels of NOx and fuel-bound nitrogen conversion can be achieved with the rich/lean combustor concepts for fuels with nitrogen contents up to 1.0% by weight. Multinozzle rich/lean Concept 2 demonstrated dry low Nox emissions within 10-15% of the EPA New Source Performance Standards goals for SRC-II fuel, with yields of approximately 15%, while meeting program goals for combustion efficiency, pressure drop, and exhaust gas temperature profile. Similar, if not superior, potential was demonstrated by Concept 3, which is a promising rich/lean combustor design.

  16. Equipment concepts for dry intercask transfer of spent fuel

    SciTech Connect

    Schneider, K.J.

    1983-07-01

    This report documents the results of a study of preconceptual design and analysis of four intercask transfer concepts. The four concepts are: a large shielded cylindrical turntable that contains an integral fuel handling machine (turntable concept); a shielded fuel handling machine under which shipping and storage casks are moved horizontally (shuttle concept); a small hot cell containing equipment for transferring fuel between shipping and storage casks (that enter and leave the cell on carts) in a bifurcated trench (trench concept); and a large hot cell, shielded by an earthen berm, that houses equipment for handling fuel between casks that enter and leave the cell on a single cart (igloo concept). The casks considered in this study are most of the transport casks currently operable in the USA, and the storage casks designated REA-2023 and GNS Castor-V. Exclusive of basic services assumed to be provided at the host site, the design and capital costs are estimated to range from $9 to $13 million. The portion of capital costs for portable equipment (for potential later use at another site) was estimated to range from 70% to 98%, depending on the concept. Increasing portability from a range of 70 to 90% to 98% adds $2 to 4 million to the capital costs. Operating costs are estimated at about $2 million/year for all concepts. Implementation times range from about 18 months for the more conventional systems to 40 months for the more unique systems. Times and costs for relocation to another site are 10 to 14 months and about $1 million, plus shipping costs and costs of new construction at the new site. All concepts have estimated capacities for fuel transfer at least equal to the criterion set for this study. Only the hot cell concepts have capability for recanning or repair of canisters. Some development is believed to be required for the turntable and shuttle concepts, but none for the other two concepts.

  17. A new airfoil design concept

    NASA Technical Reports Server (NTRS)

    Henne, P. A.; Gregg, R. D.

    1989-01-01

    The present airfoil design concept is based on utilizing unconventional geometry characteristics near the airfoil trailing edge which include a finite trailing edge thickness, strongly divergent trailing edge upper and lower surfaces, and high surface curvature on the lower surface at or near the lower surface trailing edge. This paper presents computational analyses of airfoils and a wing utilizing the concept, airfoil validation wind tunnel test results of several configurations, and wing-validation wind tunnel test results for a complete wing design. In addition to validating the concept, the airfoil and wing testing provided additional detailed data to better understand the aerodynamic advantage of such an unconventional trailing edge configuration. It is demonstrated that the concept represents a significant step in airfoil technology beyond that achieved with the Supercritical Airfoil. This concept provides the aerodynamicist an additional degree of design freedom and flexibility previously unrecognized.

  18. Engineering Design Concepts

    ERIC Educational Resources Information Center

    Fitzgerald, Mike

    2004-01-01

    In the author's opinion, the separation of content between science, math, engineering, and technology education should not exist. Working with the relationship between these content areas enhances students' efforts to learn about the physical world. In teaching students about design, technology, and engineering, attention should be given to the…

  19. Fuel consolidation demonstration: Consolidation concept development

    SciTech Connect

    Not Available

    1990-02-01

    EPRI, Northeast utilities Service Company (NUSCO), DOE, Baltimore Gas Electric Company, and Combustion Engineering, Inc. (C-E) are engaged in a program to develop a system for consolidating spent fuel, in which the consolidated fuel will be licensable by NRC for storage in the spent-fuel storage pool. Fuel consolidation offers a means of substantially increasing the capacity of spent-fuel storage pools. Consolidation equipment design, development, construction, and testing are being performed by C-E in Windsor, Connecticut. Seismic and structural evaluation of the capability of the Millstone Unit 2 spent-fuel pool and building to accommodate the increased fuel capacity is being conducted by NUSCO. NUSCO plans to obtain a license to store consolidated fuel in the Millstone-2 spent-fuel storage pool. NUSCO also plans to perform a hot demonstration of the integrated consolidation system with spent fuel at Millstone-2. This report describes the consolidation system design that forms the basis for the detailed design of the equipment comprising the system, including information on the fabrication and testing of the equipment. Appendix B describes an evaluation of the ability of the system under development to consolidate LWR spent-fuel assemblies other than the 14 {times} 14 fuel of C-E design stored at Millstone-2. A comparison was made of fuel-assembly designs on the basis of information available in open literature. It was concluded that with appropriate dimensional modifications the spent-fuel consolidation system equipment design is applicable to almost all PWR fuel-assembly configurations. 8 refs., 20 figs.

  20. Advanced supersonic technology concept study: Hydrogen fueled configuration

    NASA Technical Reports Server (NTRS)

    Brewer, G. D.

    1974-01-01

    Conceptual designs of hydrogen fueled supersonic transport configurations for the 1990 time period were developed and compared with equivalent technology Jet A-1 fueled vehicles to determine the economic and performance potential of liquid hydrogen as an alternate fuel. Parametric evaluations of supersonic cruise vehicles with varying design and transport mission characteristics established the basis for selecting a preferred configuration which was then studied in greater detail. An assessment was made of the general viability of the selected concept including an evaluation of costs and environmental considerations, i.e., exhaust emissions and sonic boom characteristics. Technology development requirements and suggested implementation schedules are presented.

  1. Innovative concepts for fuel plate fabrication

    SciTech Connect

    Domagala, R.F.; Wiencek, T.C.; Thresh, H.R.

    1987-10-01

    A number of fabrication concepts have been and are being explored at ANL. Although specific processes were addressed with silicide fuels in mind, most are applicable to fabrication with any fuel type. Processes include improved comminution procedures for converting U-Si alloy ingots to powder using a roll crusher and an impact mill. Aluminizing of core compacts by ion vapor deposition techniques in vacuum offers prospects for improved plate quality. Other items examined include the possible use of coatings on fuel particles, matrices different from pure Al, and ductile fuel alloys which might be used to produce fuel plates with uranium loadings higher than possible with conventional dispersed-phase powder metallurgy technology.

  2. PEM Fuel Cells Redesign Using Biomimetic and TRIZ Design Methodologies

    NASA Astrophysics Data System (ADS)

    Fung, Keith Kin Kei

    Two formal design methodologies, biomimetic design and the Theory of Inventive Problem Solving, TRIZ, were applied to the redesign of a Proton Exchange Membrane (PEM) fuel cell. Proof of concept prototyping was performed on two of the concepts for water management. The liquid water collection with strategically placed wicks concept demonstrated the potential benefits for a fuel cell. Conversely, the periodic flow direction reversal concepts might cause a potential reduction water removal from a fuel cell. The causes of this water removal reduction remain unclear. In additional, three of the concepts generated with biomimetic design were further studied and demonstrated to stimulate more creative ideas in the thermal and water management of fuel cells. The biomimetic design and the TRIZ methodologies were successfully applied to fuel cells and provided different perspectives to the redesign of fuel cells. The methodologies should continue to be used to improve fuel cells.

  3. Long life valve design concepts

    NASA Technical Reports Server (NTRS)

    Jones, J. R.; Hall, A. H., Jr.

    1975-01-01

    Valve concept evaluation, final candidate selection, design, manufacture, and demonstration testing of a pneumatically actuated 10-inch hybrid poppet butterfly shutoff valve are presented. Conclusions and recommendations regarding those valve characteristics and features which would serve to guide in the formulation of future valve procurements are discussed. The pertinent design goals were temperature range of plus 200 to minus 423 F, valve inlet pressure 35 psia, actuation pressure 750 psia, main seal leakage 3 x 0.00001 sccs at 35 psia valve inlet pressure, and a storage and operating life of 10 years. The valve was designed to be compatible with RP-1, propane, LH2, LO2, He, and N2.

  4. Low NO sub x heavy fuel combustor concept program

    NASA Technical Reports Server (NTRS)

    Russell, P.; Beal, G.; Hinton, B.

    1981-01-01

    A gas turbine technology program to improve and optimize the staged rich lean low NOx combustor concept is described. Subscale combustor tests to develop the design information for optimization of the fuel preparation, rich burn, quick air quench, and lean burn steps of the combustion process were run. The program provides information for the design of high pressure full scale gas turbine combustors capable of providing environmentally clean combustion of minimally of minimally processed and synthetic fuels. It is concluded that liquid fuel atomization and mixing, rich zone stoichiometry, rich zone liner cooling, rich zone residence time, and quench zone stoichiometry are important considerations in the design and scale up of the rich lean combustor.

  5. Fuel cell design and assembly

    NASA Technical Reports Server (NTRS)

    Myerhoff, Alfred (Inventor)

    1984-01-01

    The present invention is directed to a novel bipolar cooling plate, fuel cell design and method of assembly of fuel cells. The bipolar cooling plate used in the fuel cell design and method of assembly has discrete opposite edge and means carried by the plate defining a plurality of channels extending along the surface of the plate toward the opposite edges. At least one edge of the channels terminates short of the edge of the plate defining a recess for receiving a fastener.

  6. Low NOx heavy fuel combustor concept program

    NASA Technical Reports Server (NTRS)

    White, D. J.; Lecren, R. T.; Batakis, A. P.

    1981-01-01

    A total of twelve low NOx combustor configurations, embodying three different combustion concepts, were designed and fabricated as modular units. These configurations were evaluated experimentally for exhaust emission levels and for mechanical integrity. Emissions data were obtained in depth on two of the configurations.

  7. Systems analysis and futuristic designs of advanced biofuel factory concepts.

    SciTech Connect

    Chianelli, Russ; Leathers, James; Thoma, Steven George; Celina, Mathias Christopher; Gupta, Vipin P.

    2007-10-01

    The U.S. is addicted to petroleum--a dependency that periodically shocks the economy, compromises national security, and adversely affects the environment. If liquid fuels remain the main energy source for U.S. transportation for the foreseeable future, the system solution is the production of new liquid fuels that can directly displace diesel and gasoline. This study focuses on advanced concepts for biofuel factory production, describing three design concepts: biopetroleum, biodiesel, and higher alcohols. A general schematic is illustrated for each concept with technical description and analysis for each factory design. Looking beyond current biofuel pursuits by industry, this study explores unconventional feedstocks (e.g., extremophiles), out-of-favor reaction processes (e.g., radiation-induced catalytic cracking), and production of new fuel sources traditionally deemed undesirable (e.g., fusel oils). These concepts lay the foundation and path for future basic science and applied engineering to displace petroleum as a transportation energy source for good.

  8. Options Study Documenting the Fast Reactor Fuels Innovative Design Activity

    SciTech Connect

    Jon Carmack; Kemal Pasamehmetoglu

    2010-07-01

    This document provides presentation and general analysis of innovative design concepts submitted to the FCRD Advanced Fuels Campaign by nine national laboratory teams as part of the Innovative Transmutation Fuels Concepts Call for Proposals issued on October 15, 2009 (Appendix A). Twenty one whitepapers were received and evaluated by an independent technical review committee.

  9. MOLTEN CARBONATE FUEL CELL PRODUCT DESIGN IMPROVEMENT

    SciTech Connect

    H.C. Maru; M. Farooque

    2004-08-01

    The ongoing program is designed to advance the carbonate fuel cell technology from full-size proof-of-concept field test to the commercial design. DOE has been funding Direct FuelCell{reg_sign} (DFC{reg_sign}) development at FuelCell Energy, Inc. (FCE) for stationary power plant applications. The program efforts are focused on technology and system optimization for cost reduction, leading to commercial design development and prototype system field trials. FCE, Danbury, CT, is a world-recognized leader for the development and commercialization of high efficiency fuel cells that can generate clean electricity at power stations, or at distributed locations near the customers such as hospitals, schools, universities, hotels and other commercial and industrial applications. FCE has designed three different fuel cell power plant models (DFC300A, DFC1500 and DFC3000). FCE's power plants are based on its patented DFC{reg_sign} technology, where the fuel is directly fed to the fuel cell and hydrogen is generated internally. These power plants offer significant advantages compared to the existing power generation technologies--higher fuel efficiency, significantly lower emissions, quieter operation, flexible siting and permitting requirements, scalability and potentially lower operating costs. Also, the exhaust heat by-product can be used for cogeneration applications such as high-pressure steam, district heating and air conditioning. Several FCE sub-megawatt power plants are currently operating in Europe, Japan and the US. Because hydrogen is generated directly within the fuel cell module from readily available fuels such as natural gas and waste water treatment gas, DFC power plants are ready today and do not require the creation of a hydrogen infrastructure. Product improvement progress made during the reporting period in the areas of technology, manufacturing processes, cost reduction and balance of plant equipment designs is discussed in this report.

  10. A metallic fuel cycle concept from spent oxide fuel to metallic fuel

    SciTech Connect

    Fujita, Reiko; Kawashima, Masatoshi; Yamaoka, Mitsuaki; Arie, Kazuo; Koyama, Tadafumi

    2007-07-01

    A Metallic fuel cycle concept for Self-Consistent Nuclear Energy System (SCNES) has been proposed in a companion papers. The ultimate goal of the SCNES is to realize sustainable energy supply without endangering the environment and humans. For future transition period from LWR era to SCNES era, a new metallic fuel recycle concept from LWR spent fuel has been proposed in this paper. Combining the technology for electro-reduction of oxide fuels and zirconium recovery by electrorefining in molten salts in the nuclear recycling schemes, the amount of radioactive waste reduced in a proposed metallic fuel cycle concept. If the recovery ratio of zirconium metal from the spent zirconium waste is 95%, the cost estimation in zirconium recycle to the metallic fuel materials has been estimated to be less than 1/25. (authors)

  11. Europa Small Lander Design Concepts

    NASA Astrophysics Data System (ADS)

    Zimmerman, W. F.

    2005-12-01

    Title: Europa Small Lander Design Concepts Authors: Wayne F. Zimmerman, James Shirley, Robert Carlson, Tom Rivellini, Mike Evans One of the primary goals of NASA's Outer Planets Program is to revisit the Jovian system. A new Europa Geophysical Explorer (EGE) Mission has been proposed and is under evaluation. There is in addition strong community interest in a surface science mission to Europa. A Europa Lander might be delivered to the Jovian system with the EGE orbiter. A Europa Astrobiology Lander (EAL) Mission has also been proposed; this would launch sometime after 2020. The primary science objectives for either of these would most likely include: Surface imaging (both microscopic and near-field), characterization of surface mechanical properties (temperature, hardness), assessment of surface and near-surface organic and inorganic chemistry (volatiles, mineralogy, and compounds), characterization of the radiation environment (total dose and particles), characterization of the planetary seismicity, and the measurement of Europa's magnetic field. The biggest challenges associated with getting to the surface and surviving to perform science investigations revolve around the difficulty of landing on an airless body, the ubiquitous extreme topography, the harsh radiation environment, and the extreme cold. This presentation reviews some the recent design work on drop-off probes, also called "hard landers". Hard lander designs have been developed for a range of science payload delivery systems spanning small impactors to multiple science pods tethered to a central hub. In addition to developing designs for these various payload delivery systems, significant work has been done in weighing the relative merits of standard power systems (i.e., batteries) against radioisotope power systems. A summary of the power option accommodation benefits and issues will be presented. This work was performed at the Jet Propulsion Laboratory, California Institute of Technology, under a

  12. FINITE ELEMENT ANALYSIS OF THE BONDED COMPLIANT SEAL DESIGN – A NEW SEALING CONCEPT FOR USE IN PLANAR SOLID OXIDE FUEL CELLS

    SciTech Connect

    Koeppel, Brian J.; Weil, K. Scott

    2005-08-01

    A key issue in developing commercially viable planar solid oxide fuel cell stacks is appropriate seal design. We are currently developing an alternative approach to rigid and compressive seal designs that conceptually combines advantages of both techiques, including hermeticity, mechanical integrity, and minimization of interfacial stresses in either of the joint substrate materials, particulary the ceramic. The new seal relies on a plastically deformable metal seal; one that offers a quasi-dynamic mechanical response in that it is adherent to both sealing surfaces, i.e. non-sliding, but readily yields or deforms under thermally generated stresses, thereby mitigating the development of stresses in the adjacent ceramic and metal components even when a significant difference in thermal expansion exists between the two materials. Here we employ finite element modeling to assess the potential thermal cycling performance of this design, specifically as it pertains to sealing components with vastly different thermal expansion properties.

  13. Advances in fuel cell vehicle design

    NASA Astrophysics Data System (ADS)

    Bauman, Jennifer

    Factors such as global warming, dwindling fossil fuel reserves, and energy security concerns combine to indicate that a replacement for the internal combustion engine (ICE) vehicle is needed. Fuel cell vehicles have the potential to address the problems surrounding the ICE vehicle without imposing any significant restrictions on vehicle performance, driving range, or refuelling time. Though there are currently some obstacles to overcome before attaining the widespread commercialization of fuel cell vehicles, such as improvements in fuel cell and battery durability, development of a hydrogen infrastructure, and reduction of high costs, the fundamental concept of the fuel cell vehicle is strong: it is efficient, emits zero harmful emissions, and the hydrogen fuel can be produced from various renewable sources. Therefore, research on fuel cell vehicle design is imperative in order to improve vehicle performance and durability, increase efficiency, and reduce costs. This thesis makes a number of key contributions to the advancement of fuel cell vehicle design within two main research areas: powertrain design and DC/DC converters. With regards to powertrain design, this research first analyzes various powertrain topologies and energy storage system types. Then, a novel fuel cell-battery-ultracapacitor topology is presented which shows reduced mass and cost, and increased efficiency, over other promising topologies found in the literature. A detailed vehicle simulator is created in MATLAB/Simulink in order to simulate and compare the novel topology with other fuel cell vehicle powertrain options. A parametric study is performed to optimize each powertrain and general conclusions for optimal topologies, as well as component types and sizes, for fuel cell vehicles are presented. Next, an analytical method to optimize the novel battery-ultracapacitor energy storage system based on maximizing efficiency, and minimizing cost and mass, is developed. This method can be applied

  14. FFTF fuel systems design criteria

    SciTech Connect

    Dutt, D.S.; Baars, R.E.; Jackson, R.J.; Weber, J.W.

    1980-01-01

    The purpose of this paper is to first enumerate the design considerations that were given to the fuel system, then secondly, show how these design allowances, methods, and criteria compare to the subsequent irradiation data. This comparison will show that decisions made by the design team were generally correct and, if in error, tended to be conservative. The FFTF driver fuel assemblies addressed by this paper are composed of the duct, a spacer system, and 217 fuel pins. Each of these subcomponents is described as the criteria are discussed and important parameters noted.

  15. Fuel characteristics pertinent to the design of aircraft fuel systems

    NASA Technical Reports Server (NTRS)

    Barnett, Henry C; Hibbard, R R

    1953-01-01

    Because of the importance of fuel properties in design of aircraft fuel systems the present report has been prepared to provide information on the characteristics of current jet fuels. In addition to information on fuel properties, discussions are presented on fuel specifications, the variations among fuels supplied under a given specification, fuel composition, and the pertinence of fuel composition and physical properties to fuel system design. In some instances the influence of variables such as pressure and temperature on physical properties is indicated. References are cited to provide fuel system designers with sources of information containing more detail than is practicable in the present report.

  16. Concept for a small, colocated fuel cycle facility for oxide breeder fuels

    SciTech Connect

    Burch, W.D.; Lerch, R.E.; Stradley, J.G.

    1987-01-01

    As part of a United States Department of Energy (USDOE) program to examine innovative liquid-metal reactor (LMR) system designs over the past three years, the Oak Ridge National Laboratory (ORNL) and the Westinghouse Hanford Company (WHC) collaborated on studies of mixed oxide fuel cycle options. A principal effort was an advanced concept for a small integrated fuel cycle colocated with a 1300-MW(e) reactor station. The study provided a scoping design, capital and operating cost estimates, and a basis on which to proceed with implementation of such a facility if future plans so dictate. The facility integrated reprocessing, waste management, and refabrication functions in a single facility of nominal 35-t/year capacity utilizing the latest technology developed in fabrication programs at WHC and in reprocessing at ORNL. The concept was based on many years of work at both sites and extensive design studies of prior years.

  17. Concept for a small, colocated fuel cycle facility for oxide breeder fuels

    SciTech Connect

    Burch, W.D.; Stradley, J.G.; Lerch, R.E.

    1987-01-01

    As part of a United States Department of Energy (USDOE) program to examine innovative liquid-metal reactor (LMR) system designs over the past three years, the Oak Ridge National Laboratory (ORNL) and the Westinghouse Hanford Company (WHC) collaborated on studies of mixed oxide fuel cycle options. A principal effort was an advanced concept for a small integrated fuel cycle colocated with a 1300-MW(e) reactor station. The study provided a scoping design and a basis on which to proceed with implementation of such a facility if future plans so dictate. The facility integrated reprocessing, waste management, and refabrication functions in a single facility of nominal 35-t/year capacity utilizing the latest technology developed in fabrication programs at WHC and in reprocessing at ORNL. The concept was based on many years of work at both sites and extensive design studies of prior years.

  18. Concept Car Design and Ability Training

    NASA Astrophysics Data System (ADS)

    Lv, Jiefeng; Lu, Hairong

    The concept design as a symbol of creative design thinking, reflecting on the future design of exploratory and prospective, as a vehicle to explore the notion of future car design, design inspiration and creativity is not only a bold display, more through demonstrate the concept, reflects the company's technological strength and technological progress, and thus enhance their brand image. Present Chinese automobile design also has a very big disparity with world level, through cultivating students' concept design ability, to establish native design features and self-reliant brand image is practical and effective ways, also be necessary and pressing.

  19. Multi-pack Disposal Concepts for Spent Fuel (Rev. 0)

    SciTech Connect

    Hadgu, Teklu; Hardin, Ernest; Matteo, Edward N.

    2015-12-01

    At the initiation of the Used Fuel Disposition (UFD) R&D campaign, international geologic disposal programs and past work in the U.S. were surveyed to identify viable disposal concepts for crystalline, clay/shale, and salt host media (Hardin et al., 2012). Concepts for disposal of commercial spent nuclear fuel (SNF) and high-level waste (HLW) from reprocessing are relatively advanced in countries such as Finland, France, and Sweden. The UFD work quickly showed that these international concepts are all “enclosed,” whereby waste packages are emplaced in direct or close contact with natural or engineered materials . Alternative “open” modes (emplacement tunnels are kept open after emplacement for extended ventilation) have been limited to the Yucca Mountain License Application Design (CRWMS M&O, 1999). Thermal analysis showed that, if “enclosed” concepts are constrained by peak package/buffer temperature, waste package capacity is limited to 4 PWR assemblies (or 9-BWR) in all media except salt. This information motivated separate studies: 1) extend the peak temperature tolerance of backfill materials, which is ongoing; and 2) develop small canisters (up to 4-PWR size) that can be grouped in larger multi-pack units for convenience of storage, transportation, and possibly disposal (should the disposal concept permit larger packages). A recent result from the second line of investigation is the Task Order 18 report: Generic Design for Small Standardized Transportation, Aging and Disposal Canister Systems (EnergySolution, 2015). This report identifies disposal concepts for the small canisters (4-PWR size) drawing heavily on previous work, and for the multi-pack (16-PWR or 36-BWR).

  20. Multi-Pack Disposal Concepts for Spent Fuel (Revision 1)

    SciTech Connect

    Hardin, Ernest; Matteo, Edward N.; Hadgu, Teklu

    2016-01-01

    At the initiation of the Used Fuel Disposition (UFD) R&D campaign, international geologic disposal programs and past work in the U.S. were surveyed to identify viable disposal concepts for crystalline, clay/shale, and salt host media. Concepts for disposal of commercial spent nuclear fuel (SNF) and high-level waste (HLW) from reprocessing are relatively advanced in countries such as Finland, France, and Sweden. The UFD work quickly showed that these international concepts are all “enclosed,” whereby waste packages are emplaced in direct or close contact with natural or engineered materials . Alternative “open” modes (emplacement tunnels are kept open after emplacement for extended ventilation) have been limited to the Yucca Mountain License Application Design. Thermal analysis showed that if “enclosed” concepts are constrained by peak package/buffer temperature, that waste package capacity is limited to 4 PWR assemblies (or 9 BWR) in all media except salt. This information motivated separate studies: 1) extend the peak temperature tolerance of backfill materials, which is ongoing; and 2) develop small canisters (up to 4-PWR size) that can be grouped in larger multi-pack units for convenience of storage, transportation, and possibly disposal (should the disposal concept permit larger packages). A recent result from the second line of investigation is the Task Order 18 report: Generic Design for Small Standardized Transportation, Aging and Disposal Canister Systems. This report identifies disposal concepts for the small canisters (4-PWR size) drawing heavily on previous work, and for the multi-pack (16-PWR or 36-BWR).

  1. Solid Fuel Ramjet Combustor Design

    NASA Astrophysics Data System (ADS)

    Krishnan, S.; George, Philmon

    1998-03-01

    Combustion aspects of solid fuel ramjet (SFRJ) are reviewed. On the point of view of the ability of an SFRJ to operate satisfactorily at all off-design conditions the areas of concern to propulsion system designer are (1) selection of a fuel type, (2) flame holding requirements that limit maximum fuel loading, (3) understanding the fuel regression rate behaviour as a function of flight speed and altitude, (4) diffusion-controlled combustion process and its efficiency enhancement, and (5) inlet/combustor matching. Considering these areas, the following aspects are reviewed from the information available in open literature: (1) different experimental set-up conditions adopted in combustor research, (2) various suitable fuel types, (3) flammability limits, (4) fuel regression rate behaviour, (5) methods of achieving high efficiency in metallized fuel, and (6) various modelling efforts. Detailed discussion is presented on two different types of regression rate mechanism in SFRJ: one that is controlled by the heat transfer processes downstream of the reattachment region and the other by that in the region itself. With a view to demonstrate the use of the information collected through this review, a preliminary design procedure is presented for an SFRJ-assisted gun launched projectile of pseudo-vacuum trajectory.

  2. MOLTEN CARBONATE FUEL CELL PRODUCT DESIGN IMPROVEMENT

    SciTech Connect

    H.C. Maru; M. Farooque

    2002-02-01

    generation, industrial cogeneration, marine applications and uninterrupted power for military bases. FuelCell Energy operated a 1.8 MW plant at a utility site in 1996-97, the largest fuel cell power plant ever operated in North America. This proof-of-concept power plant demonstrated high efficiency, low emissions, reactive power control, and unattended operation capabilities. Drawing on the manufacture, field test, and post-test experience of the full-size power plant; FuelCell Energy launched the Product Design Improvement (PDI) program sponsored by government and the private-sector cost-share. The PDI efforts are focused on technology and system optimization for cost reduction, commercial design development, and prototype system field trials. The program was initiated in December 1994. Year 2000 program accomplishments are discussed in this report.

  3. MOLTEN CARBONATE FUEL CELL PRODUCT DESIGN IMPROVEMENT

    SciTech Connect

    H. C. Maru; M. Farooque

    2003-12-19

    The ongoing program is designed to advance the carbonate fuel cell technology from full-size proof-of-concept field test to the commercial design. DOE has been funding Direct FuelCell{reg_sign} (DFC{reg_sign}) development at FuelCell Energy, Inc. (FCE) for stationary power plant applications. The program efforts are focused on technology and system optimization for cost reduction leading to commercial design development and prototype system field trials. FCE, Danbury, CT, is a world-recognized leader for the development and commercialization of high efficiency fuel cells that can generate clean electricity at power stations or in distributed locations near the customer, including hospitals, schools, universities, hotels and other commercial and industrial applications. FuelCell Energy has designed three different fuel cell power plant models (DFC300, DFC1500 and DFC3000). FCE's power plants are based on its patented Direct FuelCell technology, where the fuel is directly fed to fuel cell and hydrogen is generated internally. These power plants offer significant advantages compared to existing power generation technologies--higher fuel efficiency, significantly lower emissions, quieter operation, flexible siting and permitting requirements, scalability and potentially lower operating costs. Also, the exhaust heat by-product can be used for cogeneration applications such as high-pressure steam, district heating, and air conditioning. Several FCE sub-megawatt power plants are currently operating in Europe, Japan and the US. Because hydrogen is generated directly within the fuel cell module from readily available fuels such as natural gas and waste water treatment gas, DFC power plants are ready today and do not require the creation of a hydrogen infrastructure. Product improvement progress made during the reporting period in the areas of technology, manufacturing processes, cost reduction and balance of plant equipment designs is discussed in this report. FCE's DFC

  4. Premixer Design for High Hydrogen Fuels

    SciTech Connect

    Benjamin P. Lacy; Keith R. McManus; Balachandar Varatharajan; Biswadip Shome

    2005-12-16

    This 21-month project translated DLN technology to the unique properties of high hydrogen content IGCC fuels, and yielded designs in preparation for a future testing and validation phase. Fundamental flame characterization, mixing, and flame property measurement experiments were conducted to tailor computational design tools and criteria to create a framework for predicting nozzle operability (e.g., flame stabilization, emissions, resistance to flashback/flame-holding and auto-ignition). This framework was then used to establish, rank, and evaluate potential solutions to the operability challenges of IGCC combustion. The leading contenders were studied and developed with the most promising concepts evaluated via computational fluid dynamics (CFD) modeling and using the design rules generated by the fundamental experiments, as well as using GE's combustion design tools and practices. Finally, the project scoped the necessary steps required to carry the design through mechanical and durability review, testing, and validation, towards full demonstration of this revolutionary technology. This project was carried out in three linked tasks with the following results. (1) Develop conceptual designs of premixer and down-select the promising options. This task defined the ''gap'' between existing design capabilities and the targeted range of IGCC fuel compositions and evaluated the current capability of DLN pre-mixer designs when operated at similar conditions. Two concepts (1) swirl based and (2) multiple point lean direct injection based premixers were selected via a QFD from 13 potential design concepts. (2) Carry out CFD on chosen options (1 or 2) to evaluate operability risks. This task developed the leading options down-selected in Task 1. Both a GE15 swozzle based premixer and a lean direct injection concept were examined by performing a detailed CFD study wherein the aerodynamics of the design, together with the chemical kinetics of the combustion process, were

  5. MOLTEN CARBONATE FUEL CELL PRODUCT DESIGN IMPROVEMENT

    SciTech Connect

    H.C. Maru; M. Farooque

    2005-03-01

    The program was designed to advance the carbonate fuel cell technology from full-size proof-of-concept field test to the commercial design. DOE has been funding Direct FuelCell{reg_sign} (DFC{reg_sign}) development at FuelCell Energy, Inc. (FCE, formerly Energy Research Corporation) from an early state of development for stationary power plant applications. The current program efforts were focused on technology and system development, and cost reduction, leading to commercial design development and prototype system field trials. FCE, in Danbury, CT, is a world-recognized leader for the development and commercialization of high efficiency fuel cells that can generate clean electricity at power stations, or at distributed locations near the customers such as hospitals, schools, universities, hotels and other commercial and industrial applications. FCE has designed three different fuel cell power plant models (DFC300A, DFC1500 and DFC3000). FCE's power plants are based on its patented DFC{reg_sign} technology, where a hydrocarbon fuel is directly fed to the fuel cell and hydrogen is generated internally. These power plants offer significant advantages compared to the existing power generation technologies--higher fuel efficiency, significantly lower emissions, quieter operation, flexible siting and permitting requirements, scalability and potentially lower operating costs. Also, the exhaust heat by-product can be used for cogeneration applications such as high-pressure steam, district heating and air conditioning. Several sub-MW power plants based on the DFC design are currently operating in Europe, Japan and the US. Several one-megawatt power plant design was verified by operation on natural gas at FCE. This plant is currently installed at a customer site in King County, WA under another US government program and is currently in operation. Because hydrogen is generated directly within the fuel cell module from readily available fuels such as natural gas and waste

  6. Energy, Environmental, and Economic Analyses of Design Concepts for the Co-Production of Fuels and Chemicals with Electricity via Co-Gasification of Coal and Biomass

    SciTech Connect

    Eric Larson; Robert Williams; Thomas Kreutz; Ilkka Hannula; Andrea Lanzini; Guangjian Liu

    2012-03-11

    The overall objective of this project was to quantify the energy, environmental, and economic performance of industrial facilities that would coproduce electricity and transportation fuels or chemicals from a mixture of coal and biomass via co-gasification in a single pressurized, oxygen-blown, entrained-flow gasifier, with capture and storage of CO{sub 2} (CCS). The work sought to identify plant designs with promising (Nth plant) economics, superior environmental footprints, and the potential to be deployed at scale as a means for simultaneously achieving enhanced energy security and deep reductions in U.S. GHG emissions in the coming decades. Designs included systems using primarily already-commercialized component technologies, which may have the potential for near-term deployment at scale, as well as systems incorporating some advanced technologies at various stages of R&D. All of the coproduction designs have the common attribute of producing some electricity and also of capturing CO{sub 2} for storage. For each of the co-product pairs detailed process mass and energy simulations (using Aspen Plus software) were developed for a set of alternative process configurations, on the basis of which lifecycle greenhouse gas emissions, Nth plant economic performance, and other characteristics were evaluated for each configuration. In developing each set of process configurations, focused attention was given to understanding the influence of biomass input fraction and electricity output fraction. Self-consistent evaluations were also carried out for gasification-based reference systems producing only electricity from coal, including integrated gasification combined cycle (IGCC) and integrated gasification solid-oxide fuel cell (IGFC) systems. The reason biomass is considered as a co-feed with coal in cases when gasoline or olefins are co-produced with electricity is to help reduce lifecycle greenhouse gas (GHG) emissions for these systems. Storing biomass-derived CO

  7. MPACT Fast Neutron Multiplicity System Design Concepts

    SciTech Connect

    D. L. Chichester; S. A. Pozzi; J. L. Dolan; M. T. Kinlaw; A. C. Kaplan; M. Flaska; A. Enqvist; J. T. Johnsom; S. M. Watson

    2012-10-01

    This report documents work performed by Idaho National Laboratory and the University of Michigan in fiscal year (FY) 2012 to examine design parameters related to the use of fast-neutron multiplicity counting for assaying plutonium for materials protection, accountancy, and control purposes. This project seeks to develop a new type of neutron-measurement-based plutonium assay instrument suited for assaying advanced fuel cycle materials. Some current-concept advanced fuels contain high concentrations of plutonium; some of these concept fuels also contain other fissionable actinides besides plutonium. Because of these attributes the neutron emission rates of these new fuels may be much higher, and more difficult to interpret, than measurements made of plutonium-only materials. Fast neutron multiplicity analysis is one approach for assaying these advanced nuclear fuels. Studies have been performed to assess the conceptual performance capabilities of a fast-neutron multiplicity counter for assaying plutonium. Comparisons have been made to evaluate the potential improvements and benefits of fast-neutron multiplicity analyses versus traditional thermal-neutron counting systems. Fast-neutron instrumentation, using for example an array of liquid scintillators such as EJ-309, have the potential to either a) significantly reduce assay measurement times versus traditional approaches, for comparable measurement precision values, b) significantly improve assay precision values, for measurement durations comparable to current-generation technology, or c) moderating improve both measurement precision and measurement durations versus current-generation technology. Using the MCNPX-PoliMi Monte Carlo simulation code, studies have been performed to assess the doubles-detection efficiency for a variety of counter layouts of cylindrical liquid scintillator detector cells over one, two, and three rows. Ignoring other considerations, the best detector design is the one with the most

  8. On the Design Concept in Engineering Ethics

    NASA Astrophysics Data System (ADS)

    Ohishi, Toshihiro

    The purpose of this study is to clarify the meaning of the trendy concept in engineering ethics education that ethical problems should be comprehended from the viewpoint of design. First, I present two objections against the concept and the content of it. Second, I examine the concept and show that the essence of it is pragmatic methods. That is, we should understand ethical problems and design problems pragmatically. Finally, I point out that the objections are not true of this pragmatic understanding.

  9. Design Package for Fuel Retrieval System Fuel Handling Tool Modification

    SciTech Connect

    TEDESCHI, D.J.

    2000-03-27

    This is a design package that contains the details for a modification to a tool used for moving fuel elements during loading of MCO Fuel Baskets for the Fuel Retrieval System. The tool is called the fuel handling tool (or stinger). This document contains requirements, development design information, tests, and test reports.

  10. Design package for fuel retrieval system fuel handling tool modification

    SciTech Connect

    TEDESCHI, D.J.

    1999-03-17

    This is a design package that contains the details for a modification to a tool used for moving fuel elements during loading of MCO Fuel Baskets for the Fuel Retrieval System. The tool is called the fuel handling tool (or stinger). This document contains requirements, development design information, tests, and test reports.

  11. Silver-chlorine fuel cell: A concept

    NASA Technical Reports Server (NTRS)

    Lieberman, M.

    1972-01-01

    Fuel cell regenerated by photochemical reduction enables novel slurry system to transport particles of reduced silver between regenerator section and anode. Fundamental reactions which provide electrical power from the fuel cell are given.

  12. Study of advanced fuel system concepts for commercial aircraft and engines

    NASA Technical Reports Server (NTRS)

    Versaw, E. F.; Brewer, G. D.; Byers, W. D.; Fogg, H. W.; Hanks, D. E.; Chirivella, J.

    1983-01-01

    The impact on a commercial transport aircraft of using fuels which have relaxed property limits relative to current commercial jet fuel was assessed. The methodology of the study is outlined, fuel properties are discussed, and the effect of the relaxation of fuel properties analyzed. Advanced fuel system component designs that permit the satisfactory use of fuel with the candidate relaxed properties in the subject aircraft are described. The two fuel properties considered in detail are freezing point and thermal stability. Three candidate fuel system concepts were selected and evaluated in terms of performance, cost, weight, safety, and maintainability. A fuel system that incorporates insulation and electrical heating elements on fuel tank lower surfaces was found to be most cost effective for the long term.

  13. A high converter concept for fuel management with blanket fuel assemblies in boiling water reactors

    SciTech Connect

    Martinez-Frances, N.; Timm, W.; Rossbach, D.

    2012-07-01

    Studies on the natural Uranium saving and waste reduction potential of a multiple-plant BWR system were performed. The BWR High Converter system should enable a multiple recycling of MOX fuel in current BWR plants by introducing blanket fuel assemblies and burning Uranium and MOX fuel separately. The feasibility of Uranium cores with blankets and full-MOX cores with Plutonium qualities as low as 40% were studied. The power concentration due to blanket insertion is manageable with modern fuel and acceptable values for the thermal limits and reactivity coefficients were obtained. While challenges remain, full-MOX cores also complied with the main design criteria. The combination of Uranium and Plutonium burners in appropriate proportions could enable obtaining as much as 40% more energy out of Uranium ore. Moreover, a proper adjustment of blanket average stay and Plutonium qualities could lead to a system with nearly no Plutonium left for final disposal. The achievement of such goals with current light water technology makes the BWR HC concept an attractive option to improve the fuel cycle until Gen-IV designs are mature. (authors)

  14. Experimental evaluation of combustor concepts for burning broad property fuels

    NASA Technical Reports Server (NTRS)

    Kasper, J. M.; Ekstedt, E. E.; Dodds, W. J.; Shayeson, M. W.

    1980-01-01

    A baseline CF6-50 combustor and three advanced combustor designs were evaluated to determine the effects of combustor design on operational characteristics using broad property fuels. Three fuels were used in each test: Jet A, a broad property 13% hydrogen fuel, and a 12% hydrogen fuel blend. Testing was performed in a sector rig at true cruise and simulated takeoff conditions for the CF6-50 engine cycle. The advanced combustors (all double annular, lean dome designs) generally exhibited lower metal temperatures, exhaust emissions, and carbon buildup than the baseline CF6-50 combustor. The sensitivities of emissions and metal temperatures to fuel hydrogen content were also generally lower for the advanced designs. The most promising advanced design used premixing tubes in the main stage. This design was chosen for additional testing in which fuel/air ratio, reference velocity, and fuel flow split were varied.

  15. Concept of DT fuel cycle for a fusion neutron source

    SciTech Connect

    Anan'ev, S.; Spitsyn, A.V.; Kuteev, B.V.; Cherkez, D.I.; Shirnin, P.N.; Kazakovsky, N.T.

    2015-03-15

    A concept of DT-fusion neutron source (FNS) with the neutron yield higher than 10{sup 18} neutrons per second is under design in Russia. Such a FNS is of interest for many applications: 1) basic and applied research (neutron scattering, etc); 2) testing the structural materials for fusion reactors; 3) control of sub-critical nuclear systems and 4) nuclear waste processing (including transmutation of minor actinides). This paper describes the fuel cycle concept of a compact fusion neutron source based on a small spherical tokamak (FNS-ST) with a MW range of DT fusion power and considers the key physics issues of this device. The major and minor radii are ∼0.5 and ∼0.3 m, magnetic field ∼1.5 T, heating power less than 15 MW and plasma current 1-2 MA. The system provides the fuel mixture with equal fractions of D and T (D:T = 1:1) for all FNS technology systems. (authors)

  16. Evaluation of Metal-Fueled Surface Reactor Concepts

    SciTech Connect

    Poston, David I.; Marcille, Thomas F.; Kapernick, Richard J.; Hiatt, Matthew T.; Amiri, Benjamin W.

    2007-01-30

    Surface fission power systems for use on the Moon and Mars may provide the first use of near-term reactor technology in space. Most near-term surface reactor concepts specify reactor temperatures <1000 K to allow the use of established material and power conversion technology and minimize the impact of the in-situ environment. Metal alloy fuels (e.g. U-10Zr and U-10Mo) have not traditionally been considered for space reactors because of high-temperature requirements, but they might be an attractive option for these lower temperature surface power missions. In addition to temperature limitations, metal fuels are also known to swell significantly at rather low fuel burnups ({approx}1 a/o), but near-term surface missions can mitigate this concern as well, because power and lifetime requirements generally keep fuel burnups <1 a/o. If temperature and swelling issues are not a concern, then a surface reactor concept may be able to benefit from the high uranium density and relative ease of manufacture of metal fuels. This paper investigates two reactor concepts that utilize metal fuels. It is found that these concepts compare very well to concepts that utilize other fuels (UN, UO2, UZrH) on a mass basis, while also providing the potential to simplify material safeguards issues.

  17. Advanced fuel cell concepts for future NASA missions

    NASA Astrophysics Data System (ADS)

    Stedman, J. K.

    1987-09-01

    Studies of primary fuel cells for advanced all electric shuttle type vehicles show an all fuel cell power system with peak power capability of 100's of kW to be potentially lighter and have lower life cycle costs than a hybrid system using advanced H2O2 APU's for peak power and fuel cells for low power on orbit. Fuel cell specific weights of 1 to 3 lb/kW, a factor of 10 improvement over the orbiter power plant, are projected for the early 1990's. For satellite applications, a study to identify high performance regenerative hydrogen oxygen fuel cell concepts for geosynchronous orbit was completed. Emphasis was placed on concepts with the potential for high energy density (Wh/lb) and passive means for water and heat management to maximize system reliability. Both alkaline electrolyte and polymer membrane fuel cells were considered.

  18. Advanced fuel cell concepts for future NASA missions

    NASA Technical Reports Server (NTRS)

    Stedman, J. K.

    1987-01-01

    Studies of primary fuel cells for advanced all electric shuttle type vehicles show an all fuel cell power system with peak power capability of 100's of kW to be potentially lighter and have lower life cycle costs than a hybrid system using advanced H2O2 APU's for peak power and fuel cells for low power on orbit. Fuel cell specific weights of 1 to 3 lb/kW, a factor of 10 improvement over the orbiter power plant, are projected for the early 1990's. For satellite applications, a study to identify high performance regenerative hydrogen oxygen fuel cell concepts for geosynchronous orbit was completed. Emphasis was placed on concepts with the potential for high energy density (Wh/lb) and passive means for water and heat management to maximize system reliability. Both alkaline electrolyte and polymer membrane fuel cells were considered.

  19. "Universal Design" Concept Pushed for Education

    ERIC Educational Resources Information Center

    Samuels, Christina A.

    2007-01-01

    This article reports on a "universal design" concept that is being pushed by a coalition of education groups for education. Called "universal design for learning," the philosophy advocates creating lessons and classroom materials that are flexible enough to accommodate different learning styles. The coalition has drafted language it wants to have…

  20. Design Concepts. Teacher Edition. Marketing Education LAPs.

    ERIC Educational Resources Information Center

    Hawley, Jana

    This learning activity packet is designed to help prepare students to acquire a competency: how to use design concepts in preparation for a career in the fashion industry. The unit consists of the competency, four objectives, suggested learning activities, transparency masters, and a pretest/posttest with answer keys. Activities include a…

  1. Project Design: An Emerging Curriculum Concept

    ERIC Educational Resources Information Center

    Loney, D. E.

    1976-01-01

    Describes Project Design, a curriculum concept being implemented in Ontario schools, in which groups of students are given the opportunity to contribute to the selection and design of a material object or system which they subsequently construct, test, and evaluate. Project focus in on basic learning experiences which involve multidisciplinary…

  2. Design concepts for the EST mount

    NASA Astrophysics Data System (ADS)

    Kärcher, Hans J.; Süss, Martin; Fischer, David

    2012-09-01

    The EST has unique an optical layout, with an on-axis Gregorian tube system and the altitude axis behind the M1 mirror unit - a great challenge for the mount designer in regard of balancing. Three different structural design concepts and various alternatives for the bearing and drive systems were investigated. Hydrostatic bearings with direct drives are compared with roller bearings and geared drives. The influence of available bearing and drive technology were investigated by FE calculations, dynamic analysis and end-to-end simulations. The finally recommended design concept is based on large-diameter segmented roller bearings and so-called pinion motors in both axes.

  3. Low NOx heavy fuel combustor concept program

    NASA Technical Reports Server (NTRS)

    White, D. J.; Kubasco, A. J.

    1982-01-01

    Three simulated coal gas fuels based on hydrogen and carbon monoxide were tested during an experimental evaluation with a rich lean can combustor: these were a simulated Winkler gas, Lurgi gas and Blue Water gas. All three were simulated by mixing together the necessary pure component species, to levels typical of fuel gases produced from coal. The Lurgi gas was also evaluated with ammonia addition. Fuel burning in a rich lean mode was emphasized. Only the Blue Water gas, however, could be operated in such fashion. This showed that the expected NOx signature form could be obtained, although the absolute values of NOx were above the 75 ppm goals for most operating conditions. Lean combustion produced very low NOx well below 75 ppm with the Winkler and Lurgi gases. In addition, these low levels were not significantly impacted by changes in operating conditions.

  4. Bionic Concept Applied to Flow Slab Design of PEMFC

    NASA Astrophysics Data System (ADS)

    Wang, C. T.; Chang, C. P.

    A character of fuel cell with high potency and low pollution was known well and considered as a new generation of power technology. In this study a novel design of flow slab addressed and originated from bionic concept will be applied to improve the performance of PEMFC. Simulation results executed at Re = 100 show that the bionic flow type will possess a better uniformity of velocity and lower pressure drop. Besides, the integral performance concerned at SDR and PDR will also show the bionic flow type to be an outstanding design. Hence, this novel flow design addressed will be useful to promotion of PEMFC.

  5. Californium interrogation prompt neutron (CIPN) instrument for non-destructive assay of spent nuclear fuel-Design concept and experimental demonstration

    NASA Astrophysics Data System (ADS)

    Henzlova, D.; Menlove, H. O.; Rael, C. D.; Trellue, H. R.; Tobin, S. J.; Park, Se-Hwan; Oh, Jong-Myeong; Lee, Seung-Kyu; Ahn, Seong-Kyu; Kwon, In-Chan; Kim, Ho-Dong

    2016-01-01

    This paper presents results of the first experimental demonstration of the Californium Interrogation Prompt Neutron (CIPN) instrument developed within a multi-year effort launched by the Next Generation Safeguards Initiative Spent Fuel Project of the United States Department of Energy. The goals of this project focused on developing viable non-destructive assay techniques with capabilities to improve an independent verification of spent fuel assembly characteristics. For this purpose, the CIPN instrument combines active and passive neutron interrogation, along with passive gamma-ray measurements, to provide three independent observables. This paper describes the initial feasibility demonstration of the CIPN instrument, which involved measurements of four pressurized-water-reactor spent fuel assemblies with different levels of burnup and two initial enrichments. The measurements were performed at the Post-Irradiation Examination Facility at the Korea Atomic Energy Institute in the Republic of Korea. The key aim of the demonstration was to evaluate CIPN instrument performance under realistic deployment conditions, with the focus on a detailed assessment of systematic uncertainties that are best evaluated experimentally. The measurements revealed good positioning reproducibility, as well as a high degree of insensitivity of the CIPN instrument's response to irregularities in a radial burnup profile. Systematic uncertainty of individual CIPN instrument signals due to assembly rotation was found to be <4.5%, even for assemblies with fairly extreme gradients in the radial burnup profile. These features suggest that the CIPN instrument is capable of providing a good representation of assembly average characteristics, independent of assembly orientation in the instrument.

  6. Cermet sphere-pac concept for inert matrix fuel

    NASA Astrophysics Data System (ADS)

    Pouchon, M. A.; Nakamura, M.; Hellwig, Ch.; Ingold, F.; Degueldre, C.

    2003-06-01

    In the inert matrix fuel concept, plutonium reprocessed from spent fuel is burned in an inert matrix, e.g. yttria-stabilized zirconia. Coming from wet reprocessing, the internal gelation can perform an easy micro-spheres production. Utilization of these particles in a sphere-pac realizes a direct fuel production. Besides being economical, this direct usage offers an almost dustless fabrication. One disadvantage of yttria-stabilized zirconia as matrix is its low thermal conductivity. A further reduction by the macroscopic structure of a sphere bed seems unacceptable. This can be eluded by the insertion of a highly conducting phase. Similar to the cermet concept with the embedment of ceramic fuel into metal, the infiltration of a fine metal fraction into a coarse ceramic fuel fraction is studied here. The initial thermal conductivity shows much higher calculated values and the sintering behaviour is also clearly enhanced compared to the pure ceramic bed.

  7. Flight management concepts development for fuel conservation

    NASA Technical Reports Server (NTRS)

    Sorensen, J. A.; Morello, S. A.

    1983-01-01

    It is pointed out that increased airspace congestion will produce increased flight delay unless advanced flight management concepts are developed to compensate. It has been estimated that a 5 percent reduction in delay is approximately equivalent, in terms of direct operating costs, to a 5 percent reduction in drag. The present investigation regarding the development of the required flight management concepts is organized into three sections, related to background, current research, and future effort. In the background section, a summary is provided of past technical effort concerning flight management. The second section is concerned with on-going efforts to integrate flight management with ground-based flight planning, and with an advanced concepts simulator to test the new developments. In the third section, attention is given to research concerning airborne flight management integration with other flight functions.

  8. Low NO/sub x/ Heavy Fuel Combustor Concept Program. Phase I. Final report

    SciTech Connect

    Cutrone, M B

    1981-10-01

    Six combustor concepts were designed, fabricated, and underwent a series of combustion tests with the objective of evaluating and developing a combustor capable of meeting US New Source Performance Standards (NSPS), dry, for high-nitrogen liquid fuels. Three rich/lean and three lean/lean two-stage combustors were tested with ERBS distillate, petroleum residual, and SRC-II coal derived liquid (CDL) fuels with fuel-bound nitrogen contents of 0.0054, 0.23, and 0.87 weight percent, respectively. A lean/lean concept was demonstrated with ultralow NO/sub x/ emissions, dry, of 5 gm NO/sub x/kg fuel on ERBS, and NO/sub x/ emissions meeting the NSPS NO/sub x/ standard on residual fuel. This combustor concept met operational goals for pressure drop, smoke, exhaust pattern factor, and combustion efficiency. A rich/lean concept was identified and developed which demonstrated NO/sub x/ emissions approaching the NSPS standards, dry, for all liquid fuels including the 0.87 weight percent nitrogen SRC-II coal-derived liquid. Exhaust pattern factor and pressure drop met or approached goals. Smoke emissions were higher than the program goal. However, a significant improvement was made with only a minor modification of the fuel injector/air swirler system, and further development should result in meeting smoke goals for all fuels. Liner metal temperatures were higher than allowable for commercial application. Conceptual designs for further development of these two rich/lean and lean/lean concepts have been completed which address smoke and metal temperature concerns, and are available for the next phase of this NASA-sponsored, DOE-funded program. Tests of a rich/lean concept, and a catalytic combustor concept using low- and intermediate-Btu simulated coal-derived gases will be completed during the ongoing Phase IA extension of this program.

  9. Bioethanol Fuel Production Concept Study: Topline Report

    SciTech Connect

    Marketing Horizons, Inc.

    2001-11-19

    The DOE is in the process of developing technologies for converting plant matter other than feed stock, e.g., corn stover, into biofuels. The goal of this research project was to determine what the farming community thinks of ethanol as a fuel source, and specifically what they think of bioethanol produced from corn stover. This project also assessed the image of the DOE and the biofuels program and determined the perceived barriers to ethanol-from-stover production.

  10. Crashworthy airframe design concepts: Fabrication and testing

    NASA Technical Reports Server (NTRS)

    Cronkhite, J. D.; Berry, V. L.

    1982-01-01

    Crashworthy floor concepts applicable to general aviation aircraft metal airframe structures were investigated. Initially several energy absorbing lower fuselage structure concepts were evaluated. Full scale floor sections representative of a twin engine, general aviation airplane lower fuselage structure were designed and fabricated. The floors featured an upper high strength platform with an energy absorbing, crushable structure underneath. Eighteen floors were fabricated that incorporated five different crushable subfloor concepts. The floors were then evaluated through static and dynamic testing. Computer programs NASTRAN and KRASH were used for the static and dynamic analysis of the floor section designs. Two twin engine airplane fuselages were modified to incorporate the most promising crashworthy floor sections for test evaluation.

  11. Generic repository design concepts and thermal analysis (FY11).

    SciTech Connect

    Howard, Robert; Dupont, Mark; Blink, James A.; Fratoni, Massimiliano; Greenberg, Harris; Carter, Joe; Hardin, Ernest L.; Sutton, Mark A.

    2011-08-01

    Reference concepts for geologic disposal of used nuclear fuel and high-level radioactive waste in the U.S. are developed, including geologic settings and engineered barriers. Repository thermal analysis is demonstrated for a range of waste types from projected future, advanced nuclear fuel cycles. The results show significant differences among geologic media considered (clay/shale, crystalline rock, salt), and also that waste package size and waste loading must be limited to meet targeted maximum temperature values. In this study, the UFD R&D Campaign has developed a set of reference geologic disposal concepts for a range of waste types that could potentially be generated in advanced nuclear FCs. A disposal concept consists of three components: waste inventory, geologic setting, and concept of operations. Mature repository concepts have been developed in other countries for disposal of spent LWR fuel and HLW from reprocessing UNF, and these serve as starting points for developing this set. Additional design details and EBS concepts will be considered as the reference disposal concepts evolve. The waste inventory considered in this study includes: (1) direct disposal of SNF from the LWR fleet, including Gen III+ advanced LWRs being developed through the Nuclear Power 2010 Program, operating in a once-through cycle; (2) waste generated from reprocessing of LWR UOX UNF to recover U and Pu, and subsequent direct disposal of used Pu-MOX fuel (also used in LWRs) in a modified-open cycle; and (3) waste generated by continuous recycling of metal fuel from fast reactors operating in a TRU burner configuration, with additional TRU material input supplied from reprocessing of LWR UOX fuel. The geologic setting provides the natural barriers, and establishes the boundary conditions for performance of engineered barriers. The composition and physical properties of the host medium dictate design and construction approaches, and determine hydrologic and thermal responses of the

  12. Nuclear Cryogenic Propulsion Stage Fuel Design and Fabrication

    NASA Technical Reports Server (NTRS)

    Hickman, Robert; Broadway, Jeramie; Mireles, Omar; Webb, Jon; Qualls, Lou

    2012-01-01

    Nuclear Cryogenic Propulsion Stage (NCPS) is a game changing technology for space exploration. Goal of assessing the affordability and viability of an NCPS includes these overall tasks: (1) Pre-conceptual design of the NCPS and architecture integration (2) NCPS Fuel Design and Testing (3) Nuclear Thermal Rocket Element Environmental Simulator (NTREES) (4) Affordable NCPS Development and Qualification Strategy (5) Second Generation NCPS Concepts. There is a critical need for fuels development. Fuel task objectives are to demonstrate capabilities and critical technologies using full scale element fabrication and testing.

  13. Nuclear Cryogenic Propulsion Stage Fuel Design and Fabrication

    NASA Technical Reports Server (NTRS)

    Hickman, Robert; Broadway, Jeramie; Mireles, Omar; Webb, Jon; Qualls, Lou

    2012-01-01

    Nuclear Cryogenic Propulsion Stage (NCPS) is a game changing technology for space exploration. Goal of assessing the affordability and viability of an NCPS includes thses overall tasks: (1) Pre-conceptual design of the NCPS and architecture integration (2) NCPS Fuel Design and Testing (3) Nuclear Thermal Rocket Element Environmental Simulator (NTREES) (4) Affordable NCPS Development and Qualification Strategy (5) Second Generation NCPS Concepts. There is a critical need for fuels development. Fuel task objectives are to demonstrate capabilities and critical technologies using full scale element fabrication and testing.

  14. Technologies and Concepts for Reducing the Fuel Burn of Subsonic Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Nickol, Craig L.

    2012-01-01

    There are many technologies under development that have the potential to enable large fuel burn reductions in the 2025 timeframe for subsonic transport aircraft relative to the current fleet. This paper identifies a potential technology suite and analyzes the fuel burn reduction potential of these technologies when integrated into advanced subsonic transport concepts. Advanced tube-and-wing concepts are developed in the single aisle and large twin aisle class, and a hybrid-wing-body concept is developed for the large twin aisle class. The resulting fuel burn reductions for the advanced tube-and-wing concepts range from a 42% reduction relative to the 777-200 to a 44% reduction relative to the 737-800. In addition, the hybrid-wingbody design resulted in a 47% fuel burn reduction relative to the 777-200. Of course, to achieve these fuel burn reduction levels, a significant amount of technology and concept maturation is required between now and 2025. A methodology for capturing and tracking concept maturity is also developed and presented in this paper.

  15. Mechanical Properties of Fuel Cladding Candidate Alloys for Canadian SCWR Concept

    NASA Astrophysics Data System (ADS)

    Xu, Su; Amirkhiz, Babak Shalchi

    2016-02-01

    An assessment of tensile and creep of five representative candidate fuel cladding alloys for a Canadian Gen IV super-critical water reactor concept was performed based on database development work and complementary experiments including a transmission electron microscopy study of creep in stainless steels. The limiting property would be creep strength of candidate alloys for the "free-standing" fuel cladding design with a hot-spot peak temperature range of 1073-1123 K (800-850°C).

  16. Hybrid propulsion technology program. Volume 1: Conceptional design package

    NASA Technical Reports Server (NTRS)

    Jensen, Gordon E.; Holzman, Allen L.; Leisch, Steven O.; Keilbach, Joseph; Parsley, Randy; Humphrey, John

    1989-01-01

    A concept design study was performed to configure two sizes of hybrid boosters; one which duplicates the advanced shuttle rocket motor vacuum thrust time curve and a smaller, quarter thrust level booster. Two sizes of hybrid boosters were configured for either pump-fed or pressure-fed oxygen feed systems. Performance analyses show improved payload capability relative to a solid propellant booster. Size optimization and fuel safety considerations resulted in a 4.57 m (180 inch) diameter large booster with an inert hydrocarbon fuel. The preferred diameter for the quarter thrust level booster is 2.53 m (96 inches). As part of the design study critical technology issues were identified and a technology acquisition and demonstration plan was formulated.

  17. Educational Videogames: Concept, Design And Evaluation

    NASA Astrophysics Data System (ADS)

    Rohrlick, D.; Yang, A.; Kilb, D. L.; Ma, L.; Ruzic, R.; Peach, C. L.; Layman, C. C.

    2013-12-01

    Videogames have historically gained popularity thanks to their entertainment rather than their educational value. This may be due, in part, to the fact that many educational videogames present academic concepts in dry, quiz-like ways, without the visual experiences, interactivity, and excitement of non-educational games. The increasing availability of tools that allow designers to easily create rich experiences for players now makes it simpler than ever for educational game designers to generate the visual experiences, interactivity, and excitement that gamers have grown to expect. Based on data from our work, when designed effectively, educational games can engage players, teach concepts, and tear down the stereotype of the stuffy, boring educational game. Our team has been experimenting with different ways to present scientific and mathematical concepts to middle and high school students through engaging, interactive games. When designing a gameplay concept, we focus on what we want the player to learn and experience as well as how to maintain a learning environment that is fun and engaging. Techniques that we have found successful include the use of a series of fast-paced 'minigames,' and the use of a 'simulator' learning method that allows a player to learn by completing objectives similar to those completed by today's scientists. Formative evaluations of our games over the past year have revealed both design strengths and weaknesses. Based on findings from a systematic evaluation of game play with diverse groups, with data collected through in-person observations of game play, knowledge assessments, focus groups, interviews with players, and computer tracking of students' game play behavior, we have found that players are uniformly enthusiastic about the educational tools. At the same time, we find there is more work to be done to make our tools fully intuitive, and to effectively present complex mathematical and scientific concepts to learners from a wide

  18. Design of short haul aircraft for fuel conservation

    NASA Technical Reports Server (NTRS)

    Bowden, M. K.; Sweet, H. S.; Waters, M. H.

    1975-01-01

    Current jet fuel prices of twice the 1972 level have significantly changed the characteristics of airplane design for best economy. The results of a contract with the NASA Ames Advanced Concepts and Missions Division confirmed the economic desirability of lower design cruise speeds and higher aspect-ratio wings compared to designs developed in the by-gone era of low fuel price. Evaluation of potential fuel conservation for short-haul aircraft showed that an interaction of airfoil technology and desirable engine characteristics is important: the supercritical airfoil permits higher aspect ratio wings with lower sweep; these, in turn, lower the cruise thrust requirements so that engines with higher bypass ratios are better matched in terms of lapse rate; lower cruise speeds (which are also better for fuel and operating cost economy) push the desired bypass ratio up further. Thus, if fuel prices remain high, or rise further, striking reductions in community noise level can be achieved as a fallout in development of a 1980s airplane and engine. Analyses are presented of developmental trends in the design of short-haul aircraft with lower cruise speeds and higher aspect-ratio wings, and the effects on fuel consumption of design field length, powered lift concepts, and turboprop as well as turbofan propulsion are discussed.

  19. Design and analysis of advanced flight planning concepts

    NASA Technical Reports Server (NTRS)

    Sorensen, John A.

    1987-01-01

    The objectives of this continuing effort are to develop and evaluate new algorithms and advanced concepts for flight management and flight planning. This includes the minimization of fuel or direct operating costs, the integration of the airborne flight management and ground-based flight planning processes, and the enhancement of future traffic management systems design. Flight management (FMS) concepts are for on-board profile computation and steering of transport aircraft in the vertical plane between a city pair and along a given horizontal path. Flight planning (FPS) concepts are for the pre-flight ground based computation of the three-dimensional reference trajectory that connects the city pair and specifies the horizontal path, fuel load, and weather profiles for initializing the FMS. As part of these objectives, a new computer program called EFPLAN has been developed and utilized to study advanced flight planning concepts. EFPLAN represents an experimental version of an FPS. It has been developed to generate reference flight plans compatible as input to an FMS and to provide various options for flight planning research. This report describes EFPLAN and the associated research conducted in its development.

  20. Evaluation of Design Concepts for Collapsible Cryogenic Storage Vessels

    NASA Technical Reports Server (NTRS)

    Fleming, David C.

    2001-01-01

    Future long-duration missions to Mars using in situ resource production to obtain oxygen from the Martian atmosphere for use as a propellant or for life support will require long term oxygen storage facilities. This report describes preliminary analysis of design concepts for lightweight, collapsible liquid oxygen storage tanks to be used on the surface of Mars. With storage at relatively low pressures, an inflatable tank concept in which the cryogen is stored within a fiber-reinforced Teflon FEP bladder is an efficient approach. The technology required for such a tank is well-developed through similar previous applications in positive expulsion bladders for zero-g liquid fuel rocket tanks and inflatable space habitat technology, though the liquid oxygen environment presents unique challenges. The weight of the proposed structure is largely dominated by the support structure needed to hold the tank off the ground and permit a vacuum insulation space to be maintained around the tank. In addition to the inflatable tank concept, telescoping tank concepts are studied. For a telescoping tank, the greatest difficulty is in making effective joints and seals. The use of shape memory alloy to produce a passive clamping ring is evaluated. Although the telescoping tank concepts are a viable option, it appears that inflatable tank concepts will be more efficient and are recommended.

  1. Blend Concepts for Fuel Cell Membranes

    NASA Astrophysics Data System (ADS)

    Kerres, Jochen

    Differently cross-linked blend membranes were prepared from commercial arylene main-chain polymers from the classes of poly(ether-ketones) and poly(ethersulfones) modified with sulfonate groups, sulfinate cross-linking groups and basic N-groups. The following membrane types have been prepared: (a) van-der Waals/dipole-dipole blends by mixing a polysulfonate with unmodified PSU. This membrane type showed a heterogeneous morphology, leading to extreme swelling and even dissolution of the sulfonated component at elevated temperatures. (b) Hydrogen bridge blends by mixing a polysulfonate with a polyamide or polyetherimide. This membrane type showed a partially heterogeneous morphology, also leading to extreme swelling/dissolution of the sulfonated blend component at elevated temperatures. (c) Acid-base blends by mixing a polysulfonate with a polymeric N-base (self-developed/commercial). With this membrane type, we could reach a wide variability of properties by variation of different parameters. Membranes showing excellent stability and good fuel cell performance up to 100°C (PEFC) and 130°C (DMFC) were obtained. (d) Covalently cross-linked (blend) membranes by either mixing of a polysulfonate with a polysulfinate or by preparation of a polysulfinatesulfonate, followed by reaction of the sulfinate groups in solution with a dihalogeno compound under S-alkylation. Membranes were prepared that showed effective suppression of swelling without H+-conductivity loss. The membranes showed good PEFC (up to 100°C) and DMFC (up to 130°C) performance. (e) Covalent-ionically cross-linked blend membranes by mixing polysulfonates with polysulfinates and polybases or by mixing a polysulfonate with a polymer carrying both sulfinate and basic N-groups. The covalent-ionically cross-linked membranes were tested in DMFC up to 110°C and showed a good performance. (f) Differently cross-linked organic-inorganic blend composite membranes via different procedures. The best results were

  2. The natural flow wing-design concept

    NASA Technical Reports Server (NTRS)

    Wood, Richard M.; Bauer, Steven X. S.

    1992-01-01

    A wing-design study was conducted on a 65 degree swept leading-edge delta wing in which the wing geometry was modified to take advantage of the naturally occurring flow that forms over a slender wing in a supersonic flow field. Three-dimensional nonlinear analysis methods were used in the study which was divided into three parts: preliminary design, initial design, and final design. In the preliminary design, the wing planform, the design conditions, and the near-conical wing-design concept were derived, and a baseline standard wing (conventional airfoil distribution) and a baseline near-conical wing were chosen. During the initial analysis, a full-potential flow solver was employed to determine the aerodynamic characteristics of the baseline standard delta wing and to investigate modifications to the airfoil thickness, leading-edge radius, airfoil maximum-thickness position, and wing upper to lower surface asymmetry on the baseline near-conical wing. The final design employed an Euler solver to analyze the best wing configurations found in the initial design and to extend the study of wing asymmetry to develop a more refined wing. Benefits resulting from each modification are discussed, and a final 'natural flow' wing geometry was designed that provides an improvement in aerodynamic performance compared with that of a baseline conventional uncambered wing, linear-theory cambered wing, and near-conical wing.

  3. Gallium Electromagnetic (GEM) Thrustor Concept and Design

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A.; Markusic, Thomas E.

    2006-01-01

    We describe the design of a new type of two-stage pulsed electromagnetic accelerator, the gallium electromagnetic (GEM) thruster. A schematic illustration of the GEM thruster concept is given in Fig. 1. In this concept, liquid gallium propellant is pumped into the first stage through a porous metal electrode using an electromagneticpump[l]. At a designated time, a pulsed discharge (approx.10-50 J) is initiated in the first stage, ablating the liquid gallium from the porous electrode surface and ejecting a dense thermal gallium plasma into the second state. The presence of the gallium plasma in the second stage serves to trigger the high-energy (approx.500 I), send-stage puke which provides the primary electromagnetic (j x B) acceleration.

  4. Galium Electromagnetic (GEM) Thruster Concept and Design

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A.; Markusic, Thomas E.

    2005-01-01

    We describe the design of a new type of two-stage pulsed electromagnetic accelerator, the gallium electromagnetic (GEM) thruster. A schematic illustration of the GEM thruster concept is given. In this concept, liquid gallium propellant is pumped into the first stage through a porous metal electrode using an electromagnetic pump. At a designated time, a pulsed discharge (approx. 10-50 J) is initiated in the first stage, ablating the liquid gallium from the porous electrode surface and ejecting a dense thermal gallium plasma into the second state. The presence of the gallium plasma in the second stage serves to trigger the high-energy (approx. 500 J), second-stage pulse which provides the primary electromagnetic (j x B) acceleration.

  5. Design concepts for bioreactors in space

    NASA Technical Reports Server (NTRS)

    Seshan, P. K.; Peterson, G. R.; Beard, B.; Boshe, C.; Dunlop, E. H.

    1987-01-01

    Microbial food sources are becoming viable and more efficient alternatives to conventional food sources, especially in the context of closed ecological life support systems (CELSS) in space habitats. Two bioreactor design concepts presented represent two dissimilar approaches to grappling with the absence of gravity in space habitats and deserve to be tested for adoption as important components of the life support function aboard spacecraft, space stations and other extra-terrestrial habitats.

  6. Investigation of low-cost LNG vehicle fuel tank concepts. Final report

    SciTech Connect

    O`Brien, J.E.; Siahpush, A.

    1998-02-01

    The objective of this study was to investigate development of a low-cost liquid natural gas (LNG) vehicle fuel storage tank with low fuel boil-off, low tank pressure, and high safety margin. One of the largest contributors to the cost of converting a vehicle to LNG is the cost of the LNG fuel tank. To minimize heat leak from the surroundings into the low-temperature fuel, these tanks are designed as cryogenic dewars with double walls separated by an evacuated insulation space containing multi-layer insulation. The cost of these fuel tanks is driven by this double-walled construction, both in terms of materials and labor. The primary focus of the analysis was to try to devise a fuel tank concept that would allow for the elimination of the double-wall requirement. Results of this study have validated the benefit of vacuum/MLI insulation for LNG fuel tanks and the difficulty in identifying viable alternatives. The thickness of a non-vacuum insulation layer would have to be unreasonably large to achieve an acceptable non-venting hold time. Reasonable hold times could be achieved by using an auxiliary tank to accept boil-off vapor from a non-vacuum insulated primary tank, if the vapor in the auxiliary tank can be stored at high pressure. The primary focus of the analysis was to try to devise a fuel tank concept that allowed for the elimination of the double-wall requirement. Thermodynamic relations were developed for analyzing the fuel tank transient response to heat transfer, venting of vapor, and out-flow of either vapor or liquid. One of the major costs associated with conversion of a vehicle to LNG fuel is the cost of the LNG fuel tank. The cost of these tanks is driven by the cryogenic nature of the fuel and by the fundamental design requirements of long non-venting hold times and low storage pressure.

  7. Evaluation of advanced lift concepts and fuel conservative short-haul aircraft, volume 1

    NASA Technical Reports Server (NTRS)

    Renshaw, J. H.; Bowden, M. K.; Narucki, C. W.; Bennett, J. A.; Smith, P. R.; Ferrill, R. S.; Randall, C. C.; Tibbetts, J. G.; Patterson, R. W.; Meyer, R. T.

    1974-01-01

    The performance and economics of a twin-engine augmentor wing airplane were evaluated in two phases. Design aspects of the over-the-wing/internally blown flap hybrid, augmentor wing, and mechanical flap aircraft were investigated for 910 m. field length with parametric extension to other field lengths. Fuel savings achievable by application of advanced lift concepts to short-haul aircraft were evaluated and the effect of different field lengths, cruise requirements, and noise levels on fuel consumption and airplane economics at higher fuel prices were determined. Conclusions and recommendations are presented.

  8. A Study of Fast Reactor Fuel Transmutation in a Candidate Dispersion Fuel Design

    SciTech Connect

    Mark DeHart; Hongbin Zhang; Eric Shaber; Matthew Jesse

    2010-11-01

    Dispersion fuels represent a significant departure from typical ceramic fuels to address swelling and radiation damage in high burnup fuel. Such fuels use a manufacturing process in which fuel particles are encapsulated within a non-fuel matrix. Dispersion fuels have been studied since 1997 as part of an international effort to develop and test very high density fuel types for the Reduced Enrichment for Research and Test Reactors (RERTR) program.[1] The Idaho National Laboratory is performing research in the development of an innovative dispersion fuel concept that will meet the challenges of transuranic (TRU) transmutation by providing an integral fission gas plenum within the fuel itself, to eliminate the swelling that accompanies the irradiation of TRU. In this process, a metal TRU vector produced in a separations process is atomized into solid microspheres. The dispersion fuel process overcoats the microspheres with a mixture of resin and hollow carbon microspheres to create a TRUC. The foam may then be heated and mixed with a metal power (e.g., Zr, Ti, or Si) and resin to form a matrix metal carbide, that may be compacted and extruded into fuel elements. In this paper, we perform reactor physics calculations for a core loaded with the conceptual fuel design. We will assume a “typical” TRU vector and a reference matrix density. We will employ a fuel and core design based on the Advanced Burner Test Reactor (ABTR) design.[2] Using the CSAS6 and TRITON modules of the SCALE system [3] for preliminary scoping studies, we will demonstrate the feasibility of reactor operations. This paper will describe the results of these analyses.

  9. Fuel bundle design for enhanced usage of plutonium fuel

    DOEpatents

    Reese, Anthony P.; Stachowski, Russell E.

    1995-01-01

    A nuclear fuel bundle includes a square array of fuel rods each having a concentration of enriched uranium and plutonium. Each rod of an interior array of the rods also has a concentration of gadolinium. The interior array of rods is surrounded by an exterior array of rods void of gadolinium. By this design, usage of plutonium in the nuclear reactor is enhanced.

  10. GEN IV: Carbide Fuel Elaboration for the 'Futurix Concepts' experiment

    SciTech Connect

    Vaudez, Stephane; Riglet-Martial, Chantal; Paret, Laurent; Abonneau, Eric

    2007-07-01

    In order to collect information on the behaviour of the future GFR (Gas Fast Reactor) fuel under fast neutron irradiation, an experimental irradiation program, called 'Futurix-concepts' has been launched at the CEA. The considered concept is a composite material made of a fissile fuel embedded in an inert matrix. Fissile fuel pellets are made of UPuN or UPuC while matrices are SiC for the carbide fuel and TiN for the nitride fuel. This paper focuses on the description of the carbide composite fabrication. The UPuC pellets are manufactured using a metallurgical powder process. Fabrication and handling of the fuels are carried out in gloveboxes under a nitrogen atmosphere. Carbide fuel is synthesized by carbothermic reduction under vacuum of a mixture of actinide oxide and graphite carbon up to 1550 deg. C. After ball milling, the powder is pressed to create hexagonal or spherical compacts. They are then sintered up to 1750 deg. C in order to obtain a density of 85 % of the theoretical one. The sintered pellets are inserted into an inert and tight capsule of SiC. In order to control the gap between the fuel and the matrix precisely, the pellets are abraded. The inert matrix is then filled with the pellets and the whole system is sealed by a BRASiC{sup R} process at high temperature under a helium atmosphere. Fabrication of the sample to be irradiated was done in 2006 and the irradiation began in May 2007 in the PHENIX reactor. This presentation will detail and discuss the results obtained during this fabrication phase. (authors)

  11. Corrosion report for the U-Mo fuel concept

    SciTech Connect

    Henager, Jr., Charles H.; Bennett, Wendy D.; Doherty, Ann L.; Fuller, E. S.; Hardy, John S.; Omberg, Ronald P.

    2014-08-28

    The Fuel Cycle Research and Development (FCRD) program of the Office of Nuclear Energy (NE) has implemented a program to develop a Uranium-Molybdenum (U-Mo) metal fuel for Light Water Reactors (LWR)s. Uranium-Molybdenum fuel has the potential to provide superior performance based on its thermo-physical properties, which includes high thermal conductivity for less stored heat energy. With sufficient development, it may be able to provide the Light Water industry with a melt-resistant accident tolerant fuel with improved safety response. However, the corrosion of this fuel in reactor water environments needs to be further explored and optimized by additional alloying. The Pacific Northwest National Laboratory has been tasked with performing ex-reactor corrosion testing to characterize the performance of U-Mo fuel. This report documents the results of the effort to characterize and develop the U-Mo metal fuel concept for LWRs with regard to corrosion testing. The results of a simple screening test in buffered water at 30°C using surface alloyed U-10Mo is documented and discussed. The screening test was used to guide the selection of several potential alloy improvements that were found and are recommended for further testing in autoclaves to simulate PWR water conditions more closely.

  12. Design concepts for bioreactors in space

    NASA Technical Reports Server (NTRS)

    Seshan, P. K.; Peterson, G. R.; Beard, B.; Dunlop, E. H.

    1986-01-01

    Microbial food sources are becoming viable and more efficient alternatives to conventional food sources especially in the context of Closed Ecological Life Support Systems (CELSS) in space habitats. Since bioreactor designs for terrestrial operation will not readily apply to conditions of microgravity, there is an urgent need to learn about the differences. These differences cannot be easily estimated due to the complex nature of the mass transport and mixing mechanisms in fermenters. Therefore, a systematic and expeditious experimental program must be undertaken to obtain the engineering data necessary to lay down the foundations of designing bioreactors for microgravity. Two bioreactor design concepts presented represent two dissimilar approaches to grappling with the absence of gravity in space habitats and deserve to be tested for adoption as important components of the life support function aboard spacecrafts, space stations and other extra-terrestrial habitats.

  13. Heavy ion driven LMF design concept

    SciTech Connect

    Lee, E.P.

    1991-08-01

    The USA Department of Energy has conducted a multi-year study of the requirements, designs and costs for a Laboratory Microfusion Facility (LMF). The primary purpose of the LMF would be testing of weapons physics and effects simulation using the output from microexplosions of inertial fusion pellets. It does not need a high repetition rate, efficient driver system as required by an electrical generating plant. However there would be so many features in common that the design, construction and operation of an LMF would considerably advance the application of inertial confinement fusion to energy production. The DOE study has concentrated particularly on the LMF driver, with design and component development undertaken at several national laboratories. Principally, these are LLNL (Solid State Laser), LANL (Gas Laser), and SNLA (Light Ions). Heavy Ions, although considered a possible LMF driver did not receive attention until the final stages of this study since its program management was through the Office of Energy Research rather than Defense Programs. During preparation of a summary report for the study it was decided that some account of heavy ions was needed for a complete survey of the driver candidates. A conceptual heavy ion LMF driver design was created for the DOE report which is titled LMC Phase II Design Concepts. The heavy ion driver did not receive the level of scrutiny of the other concepts and, unlike the others, no costs analysis by an independent contractor was performed. Since much of heavy ion driver design lore was brought together in this exercise it is worthwhile to make it available as an independent report. This is reproduced here as it appears in the DOE report.

  14. Heavy ion driven LMF design concept

    NASA Astrophysics Data System (ADS)

    Lee, E. P.

    1991-08-01

    The US Department of Energy has conducted a multi-year study of the requirements, designs and costs for a Laboratory Microfusion Facility (LMF). The primary purpose of the LMF would be testing of weapons physics and effects simulation using the output from microexplosions of inertial fusion pellets. It does not need a high repetition rate, efficient driver system as required by an electrical generating plant. However there would be so many features in common that the design, construction and operation of an LMF would considerably advance the application of inertial confinement fusion to energy production. The DOE study has concentrated particularly on the LMF driver, with design and component development undertaken at several national laboratories. Principally, these are LLNL (Solid State Laser), LANL (Gas Laser), and SNLA (Light Ions). Heavy Ions, although considered a possible LMF driver did not receive attention until the final stages of this study since its program management was through the Office of Energy Research rather than Defense Programs. During preparation of a summary report for the study it was decided that some account of heavy ions was needed for a complete survey of the driver candidates. A conceptual heavy ion LMF driver design was created for the DOE report which is titled LMC Phase II Design Concepts. The heavy ion driver did not receive the level of scrutiny of the other concepts and, unlike the others, no costs analysis by an independent contractor was performed. Since much of heavy ion driver design lore was brought together in this exercise it is worthwhile to make it available as an independent report. This is reproduced here as it appears in the DOE report.

  15. Fuel conservative propulsion concepts for future air transports

    NASA Technical Reports Server (NTRS)

    Gray, D. E.; Witherspoon, J. W.

    1976-01-01

    The results of a feasibility study of proposed fuel conservative propulsion concepts for air transports with an assumed Mach 0.8 cruise capability are summarized. All engines considered are based on projected 1985 technology. Operating fuel requirements, propulsion operating costs, and noise characteristics are compared with those of a present technology turbofan engine. The study indicates that an advanced Brayton cycle gas generator in a turbofan engine or geared to an advanced multibladed, small diameter propeller with a projected efficiency of 80% at Mach 0.8 offers the greatest potential for energy conservation.

  16. International Design Concepts for the SKA

    NASA Astrophysics Data System (ADS)

    Tarter, J.

    2001-12-01

    In August of 2000, representatives of eleven countries signed a Memorandum of Understanding to Establish the International Square Kilometre Array Steering Committee (ISSC). Arguably, the SKA could be built today, but without question it would be unaffordable. Increasing collecting area by a factor of 100 beyond today's largest array cannot be done cost effectively by simple extensions of what has been done before. New concepts, new designs, and new technologies will be required, as well as a paradigm shift. It will be necessary to heavily exploit emerging communications and consumer market technologies; to "hammer" them into shapes required to solve the SKA challenges, rather than inventing our own solutions from scratch. Or if we do invent ab initio solutions, we should look at creating consumer markets to embrace them, so that the full benefits of mass production and manufacturing can be realized. The strawman science goals of the SKA are extremely ambitious. Today there are six primary design concepts being studied that attempt to meet some or all of these goals; phased arrays of active elements embedded into flat tiles, "super Arecibo" antennas constructed in individual limestone karst sinkholes and arrayed together, large arrays of small, spherical (or hemispherical) Luneberg lenses, large deformable apertures with long focal ratios and aerostat-borne focal plane array receivers, arrays of large parabolic antennas constructed from steel "ropes," and large arrays of small parabolic dishes derived from the TVRO industry. This talk summarizes the strengths and weaknesses of these various designs in their current, incomplete state. In the US, the US SKA Consortium of 10 academic and research organizations has generated a roadmap to guide and assess the technology development that will be required to produce a successful SKA design, with well understood costs, performance, and minimal risk. The design and construction efforts for the ATA, LOFAR and the EVLA will

  17. Identifying and Overcoming Threshold Concepts and Conceptions: Introducing a Conception-Focused Curriculum to Course Design

    ERIC Educational Resources Information Center

    Burch, Gerald F.; Burch, Jana J.; Bradley, Thomas P.; Heller, Nathan A.

    2015-01-01

    Educators have been challenged to identify threshold concepts and develop transformed students. This stands in stark contrast to many curriculum design and delivery models that currently view students as repositories of knowledge. In this article, we argue that educators can reach both goals, identify stumbling blocks and transforming students,…

  18. Project Design Concept Primary Ventilation System

    SciTech Connect

    MCGREW, D.L.

    2000-10-02

    Tank Farm Restoration and Safe Operation (TFRSO), Project W-3 14 was established to provide upgrades that would improve the reliability and extend the system life of portions of the waste transfer, electrical, ventilation, instrumentation and control systems for the Hanford Site Tank Farms. An assessment of the tank farm system was conducted and the results are documented in system assessment reports. Based on the deficiencies identified in the tank farm system assessment reports, and additional requirements analysis performed in support of the River Protection Project (RPP), an approved scope for the TFRSO effort was developed and documented in the Upgrade Scope Summary Report (USSR), WHC-SD-W314-RPT-003, Rev. 4. The USSR establishes the need for the upgrades and identifies the specific equipment to be addressed by this project. This Project Design Concept (PDC) is in support of the Phase 2 upgrades and provides an overall description of the operations concept for the W-314 Primary Ventilation Systems. Actual specifications, test requirements, and procedures are not included in this PDC. The PDC is a ''living'' document, which will be updated throughout the design development process to provide a progressively more detailed description of the W-314 Primary Ventilation Systems design. The Phase 2 upgrades to the Primary Ventilation Systems shall ensure that the applicable current requirements are met for: Regulatory Compliance; Safety; Mission Requirements; Reliability; and Operational Requirements.

  19. Transmutation Fuel Performance Code Conceptual Design

    SciTech Connect

    Gregory K. Miller; Pavel G. Medvedev

    2007-03-01

    One of the objectives of the Global Nuclear Energy Partnership (GNEP) is to facilitate the licensing and operation of Advanced Recycle Reactors (ARRs) for transmutation of the transuranic elements (TRU) present in spent fuel. A fuel performance code will be an essential element in the licensing process ensuring that behavior of the transmutation fuel elements in the reactor is understood and predictable. Even more important in the near term, a fuel performance code will assist substantially in the fuels research and development, design, irradiation testing and interpretation of the post-irradiation examination results.

  20. Study of advanced fuel system concepts for commercial aircraft

    NASA Technical Reports Server (NTRS)

    Coffinberry, G. A.

    1985-01-01

    An analytical study was performed in order to assess relative performance and economic factors involved with alternative advanced fuel systems for future commercial aircraft operating with broadened property fuels. The DC-10-30 wide-body tri-jet aircraft and the CF6-8OX engine were used as a baseline design for the study. Three advanced systems were considered and were specifically aimed at addressing freezing point, thermal stability and lubricity fuel properties. Actual DC-10-30 routes and flight profiles were simulated by computer modeling and resulted in prediction of aircraft and engine fuel system temperatures during a nominal flight and during statistical one-day-per-year cold and hot flights. Emergency conditions were also evaluated. Fuel consumption and weight and power extraction results were obtained. An economic analysis was performed for new aircraft and systems. Advanced system means for fuel tank heating included fuel recirculation loops using engine lube heat and generator heat. Environmental control system bleed air heat was used for tank heating in a water recirculation loop. The results showed that fundamentally all of the three advanced systems are feasible but vary in their degree of compatibility with broadened-property fuel.

  1. Space interferometer mission (SIM) instrument design concepts.

    NASA Astrophysics Data System (ADS)

    Duncan, A. L.

    SIM is a 12 meter baseline interferometer to be built as part of the NASA Origins program, designed to fly in space and provide high precision astrometry measurements of astronomical objects. SIM will provide angular measurements three orders of magnitude more precise than current space or ground based sensors, allowing the indirect detection of Earth-like planets around neighboring stars. The SIM mission will also include the ability to synthesize images by varying the interferometer baseline lengths and will demonstrate a nulling beam combiner as a technology pathfinder for future missions. A team at Lockheed Martin Missiles and Space (LMMS) in Sunnyvale, CA has been chosen by JPL to enter a partnership to design and build the SIM instrument. This paper describes the overall LMMS SIM instrument concept and its unique features, including the full aperture laser metrology approach for high precision metrology.

  2. Multiscale Multiphysics Developments for Accident Tolerant Fuel Concepts

    SciTech Connect

    Gamble, K. A.; Hales, J. D.; Yu, J.; Zhang, Y.; Bai, X.; Andersson, D.; Patra, A.; Wen, W.; Tome, C.; Baskes, M.; Martinez, E.; Stanek, C. R.; Miao, Y.; Ye, B.; Hofman, G. L.; Yacout, A. M.; Liu, W.

    2015-09-01

    U3Si2 and iron-chromium-aluminum (Fe-Cr-Al) alloys are two of many proposed accident-tolerant fuel concepts for the fuel and cladding, respectively. The behavior of these materials under normal operating and accident reactor conditions is not well known. As part of the Department of Energy’s Accident Tolerant Fuel High Impact Problem program significant work has been conducted to investigate the U3Si2 and FeCrAl behavior under reactor conditions. This report presents the multiscale and multiphysics effort completed in fiscal year 2015. The report is split into four major categories including Density Functional Theory Developments, Molecular Dynamics Developments, Mesoscale Developments, and Engineering Scale Developments. The work shown here is a compilation of a collaborative effort between Idaho National Laboratory, Los Alamos National Laboratory, Argonne National Laboratory and Anatech Corp.

  3. Design Concepts for Muon-Based Accelerators

    SciTech Connect

    Ryne, R. D.; Berg, J. S.; Kirk, H. G.; Palmer, R. B.; Stratkis, D.; Alexahin, Y.; Bross, A.; Gollwitzer, K.; Mokhov, N. V.; Neuffer, D.; Palmer, M. A.; Yonehara, K.; Snopok, P.; Bogacz, A.; Roberts, T. J.; Delahaye, J. -P.

    2015-05-01

    Muon-based accelerators have the potential to enable facilities at both the Intensity and the Energy Frontiers. Muon storage rings can serve as high precision neutrino sources, and a muon collider is an ideal technology for a TeV or multi-TeV collider. Progress in muon accelerator designs has advanced steadily in recent years. In regard to 6D muon cooling, detailed and realistic designs now exist that provide more than 5 order-of-magnitude emittance reduction. Furthermore, detector performance studies indicate that with suitable pixelation and timing resolution, backgrounds in the collider detectors can be significantly reduced, thus enabling high-quality physics results. Thanks to these and other advances in design & simulation of muon systems, technology development, and systems demonstrations, muon storage-ring-based neutrino sources and a muon collider appear more feasible than ever before. A muon collider is now arguably among the most compelling approaches to a multi-TeV lepton collider. This paper summarizes the current status of design concepts for muon-based accelerators for neutrino factories and a muon collider.

  4. Generic Repository Concepts and Thermal Analysis for Advanced Fuel Cycles

    SciTech Connect

    Hardin, Ernest; Blink, James; Carter, Joe; Massimiliano, Fratoni; Greenberg, Harris; Howard, Rob L

    2011-01-01

    The current posture of the used nuclear fuel management program in the U.S. following termination of the Yucca Mountain Project, is to pursue research and development (R&D) of generic (i.e., non-site specific) technologies for storage, transportation and disposal. Disposal R&D is directed toward understanding and demonstrating the performance of reference geologic disposal concepts selected to represent the current state-of-the-art in geologic disposal. One of the principal constraints on waste packaging and emplacement in a geologic repository is management of the waste-generated heat. This paper describes the selection of reference disposal concepts, and thermal management strategies for waste from advanced fuel cycles. A geologic disposal concept for spent nuclear fuel (SNF) or high-level waste (HLW) consists of three components: waste inventory, geologic setting, and concept of operations. A set of reference geologic disposal concepts has been developed by the U.S. Department of Energy (DOE) Used Fuel Disposition Campaign, for crystalline rock, clay/shale, bedded salt, and deep borehole (crystalline basement) geologic settings. We performed thermal analysis of these concepts using waste inventory cases representing a range of advanced fuel cycles. Concepts of operation consisting of emplacement mode, repository layout, and engineered barrier descriptions, were selected based on international progress and previous experience in the U.S. repository program. All of the disposal concepts selected for this study use enclosed emplacement modes, whereby waste packages are in direct contact with encapsulating engineered or natural materials. The encapsulating materials (typically clay-based or rock salt) have low intrinsic permeability and plastic rheology that closes voids so that low permeability is maintained. Uniformly low permeability also contributes to chemically reducing conditions common in soft clay, shale, and salt formations. Enclosed modes are associated

  5. The Triton: Design concepts and methods

    NASA Technical Reports Server (NTRS)

    Meholic, Greg; Singer, Michael; Vanryn, Percy; Brown, Rhonda; Tella, Gustavo; Harvey, Bob

    1992-01-01

    During the design of the C & P Aerospace Triton, a few problems were encountered that necessitated changes in the configuration. After the initial concept phase, the aspect ratio was increased from 7 to 7.6 to produce a greater lift to drag ratio (L/D = 13) which satisfied the horsepower requirements (118 hp using the Lycoming O-235 engine). The initial concept had a wing planform area of 134 sq. ft. Detailed wing sizing analysis enlarged the planform area to 150 sq. ft., without changing its layout or location. The most significant changes, however, were made just prior to inboard profile design. The fuselage external diameter was reduced from 54 to 50 inches to reduce drag to meet the desired cruise speed of 120 knots. Also, the nose was extended 6 inches to accommodate landing gear placement. Without the extension, the nosewheel received an unacceptable percentage (25 percent) of the landing weight. The final change in the configuration was made in accordance with the stability and control analysis. In order to reduce the static margin from 20 to 13 percent, the horizontal tail area was reduced from 32.02 to 25.0 sq. ft. The Triton meets all the specifications set forth in the design criteria. If time permitted another iteration of the calculations, two significant changes would be made. The vertical stabilizer area would be reduced to decrease the aircraft lateral stability slope since the current value was too high in relation to the directional stability slope. Also, the aileron size would be decreased to reduce the roll rate below the current 106 deg/second. Doing so would allow greater flap area (increasing CL(sub max)) and thus reduce the overall wing area. C & P would also recalculate the horsepower and drag values to further validate the 120 knot cruising speed.

  6. Fuel bundle design for enhanced usage of plutonium fuel

    DOEpatents

    Reese, A.P.; Stachowski, R.E.

    1995-08-08

    A nuclear fuel bundle includes a square array of fuel rods each having a concentration of enriched uranium and plutonium. Each rod of an interior array of the rods also has a concentration of gadolinium. The interior array of rods is surrounded by an exterior array of rods void of gadolinium. By this design, usage of plutonium in the nuclear reactor is enhanced. 10 figs.

  7. Evaluation of an Aircraft Concept With Over-Wing, Hydrogen-Fueled Engines for Reduced Noise and Emissions

    NASA Technical Reports Server (NTRS)

    Guynn, Mark D.; Olson, Erik D.

    2002-01-01

    This report describes the analytical modeling and evaluation of an unconventional commercial transport aircraft concept designed to address aircraft noise and emission issues. A strut-braced wing configuration with overwing, ultra-high bypass ratio, hydrogen fueled turbofan engines is considered. Estimated noise and emission characteristics are compared to a conventional configuration designed for the same mission and significant benefits are identified. The design challenges and technology issues which would have to be addressed to make the concept a viable alternative to current aircraft designs are discussed. This concept is one of the "Quiet Green Transport" aircraft concepts studied as part of NASA's Revolutionary Aerospace Systems Concepts (RASC) Program. The RASC Program seeks to develop revolutionary concepts that address strategic objectives of the NASA Enterprises, such as reducing aircraft noise and emissions, and to identify enabling advanced technology requirements for the concepts.

  8. Deep Space Habitat ECLSS Design Concept

    NASA Technical Reports Server (NTRS)

    Curley, Su; Stambaugh, Imelda; Swickrath, Michael; Anderson, Molly S.; Rotter, Henry

    2012-01-01

    Life support is vital to human spaceflight, and most current life support systems employ single-use hardware or regenerable technologies that throw away the waste products, relying on resupply to make up the consumables lost in the process. Because the long-term goal of the National Aeronautics and Space Administration is to expand human presence beyond low-earth orbit, life support systems must become self-sustaining for missions where resupply is not practical. From May through October 2011, the life support team at the Johnson Space Center was challenged to define requirements, develop a system concept, and create a preliminary life support system design for a non-planetary Deep Space Habitat that could sustain a crew of four in near earth orbit for a duration of 388 days. Some of the preferred technology choices to support this architecture were passed over because the mission definition has an unmanned portion lasting 825 days. The main portion of the architecture was derived from technologies currently integrated on the International Space Station as well as upcoming technologies with moderate Technology Readiness Levels. The final architecture concept contains only partially-closed air and water systems, as the breakeven point for some of the closure technologies was not achieved with the mission duration.

  9. Deep Space Habitat ECLS Design Concept

    NASA Technical Reports Server (NTRS)

    Curley, Su; Stambaugh, Imelda; Swickrath, Mike; Anderson, Molly; Rotter, Hank

    2011-01-01

    Life support is vital to human spaceflight, and most current life support systems employ single-use hardware or regenerable technologies that throw away the waste products, relying on resupply to make up the consumables lost in the process. Because the long-term goal of the National Aeronautics and Space Administration is to expand human presence beyond low-earth orbit, life support systems must become self-sustaining for missions where resupply is not practical. From May through October 2011, the life support team at the Johnson Space Center was challenged to define requirements, develop a system concept, and create a preliminary life support system design for a non-planetary Deep Space Habitat that could sustain a crew of four in near earth orbit for a duration of 388 days. Some of the preferred technology choices to support this architecture were passed over as the mission definition also has an unmanned portion lasting 825 days. The main portion of the architecture was derived from technologies currently integrated on the International Space Station as well as upcoming technologies with moderate Technology Readiness Levels. The final architecture concept contains only partially-closed air and water systems, as the breakeven point for some of the closure technologies was not achieved with the mission duration.

  10. Reference repository design concept for bedded salt

    SciTech Connect

    Carpenter, D.W.; Martin, R.W.

    1980-10-08

    A reference design concept is presented for the subsurface portions of a nuclear waste repository in bedded salt. General geologic, geotechnical, hydrologic and geochemical data as well as descriptions of the physical systems are provided for use on generic analyses of the pre- and post-sealing performance of repositories in this geologic medium. The geology of bedded salt deposits and the regional and repository horizon stratigraphy are discussed. Structural features of salt beds including discontinuities and dissolution features are presented and their effect on repository performance is discussed. Seismic hazards and the potential effects of earthquakes on underground repositories are presented. The effect on structural stability and worker safety during construction from hydrocarbon and inorganic gases is described. Geohydrologic considerations including regional hydrology, repository scale hydrology and several hydrological failure modes are presented in detail as well as the hydrological considerations that effect repository design. Operational phase performance is discussed with respect to operations, ventilation system, shaft conveyances, waste handling and retrieval systems and receival rates of nuclear waste. Performance analysis of the post sealing period of a nuclear repository is discussed, and parameters to be used in such an analysis are presented along with regulatory constraints. Some judgements are made regarding hydrologic failure scenarios. Finally, the design and licensing process, consistent with the current licensing procedure is described in a format that can be easily understood.

  11. Fuel Retrieval System (FRS) Design Verification

    SciTech Connect

    YANOCHKO, R.M.

    2000-01-27

    This document was prepared as part of an independent review to explain design verification activities already completed, and to define the remaining design verification actions for the Fuel Retrieval System. The Fuel Retrieval Subproject was established as part of the Spent Nuclear Fuel Project (SNF Project) to retrieve and repackage the SNF located in the K Basins. The Fuel Retrieval System (FRS) construction work is complete in the KW Basin, and start-up testing is underway Design modifications and construction planning are also underway for the KE Basin. An independent review of the design verification process as applied to the K Basin projects was initiated in support of preparation for the SNF Project operational readiness review (ORR).

  12. Design study of prestressed rotor spar concept

    NASA Technical Reports Server (NTRS)

    Gleich, D.

    1980-01-01

    Studies on the Bell Helicopter 540 Rotor System of the AH-1G helicopter were performed. The stiffness, mass and geometric configurations of the Bell blade were matched to give a dynamically similar prestressed composite blade. A multi-tube, prestressed composite spar blade configuration was designed for superior ballistic survivability at low life cycle cost. The composite spar prestresses, imparted during fabrication, are chosen to maintain compression in the high strength cryogenically stretchformed 304-L stainless steel liner and tension in the overwrapped HTS graphite fibers under operating loads. This prestressing results in greatly improved crack propagation and fatigue resistance as well as enhanced fiber stiffness properties. Advantages projected for the prestressed composite rotor spar concept include increased operational life and improved ballistic survivability at low life cycle cost.

  13. MOLTEN CARBONATE FUEL CELL PRODUCT DESIGN IMPROVEMENT

    SciTech Connect

    H.C. Maru; M. Farooque

    2003-03-01

    The program efforts are focused on technology and system optimization for cost reduction, commercial design development, and prototype system field trials. The program is designed to advance the carbonate fuel cell technology from full-size field test to the commercial design. FuelCell Energy, Inc. (FCE) is in the later stage of the multiyear program for development and verification of carbonate fuel cell based power plants supported by DOE/NETL with additional funding from DOD/DARPA and the FuelCell Energy team. FCE has scaled up the technology to full-size and developed DFC{reg_sign} stack and balance-of-plant (BOP) equipment technology to meet product requirements, and acquired high rate manufacturing capabilities to reduce cost. FCE has designed submegawatt (DFC300A) and megawatt (DFC1500 and DFC3000) class fuel cell products for commercialization of its DFC{reg_sign} technology. A significant progress was made during the reporting period. The reforming unit design was optimized using a three-dimensional stack simulation model. Thermal and flow uniformities of the oxidant-In flow in the stack module were improved using computational fluid dynamics based flow simulation model. The manufacturing capacity was increased. The submegawatt stack module overall cost was reduced by {approx}30% on a per kW basis. An integrated deoxidizer-prereformer design was tested successfully at submegawatt scale using fuels simulating digester gas, coal bed methane gas and peak shave (natural) gas.

  14. Evolution of design concepts for remotely maintainable equipment racks

    SciTech Connect

    Peishel, F.L.; Mouring, R.W.; Schrock, S.L.

    1986-01-01

    Equipment racks have been used to support process equipment in radioactive facilities for many years. Improvements in the design of these racks have evolved relatively slowly primarily as a result of limitations in the capabilities of maintenance equipment; that is, tasks could only be approached from above using bridge cranes with viewing primarily through periscopes. In recent years, however, technological advances have been made by the Consolidated Fuel Reprocessing Program (CFRP) at Oak Ridge National Laboratory (ORNL) in bridge-mounted servomanipulators with onboard auxiliary hoists and television viewing systems. These advances permit full cell coverage by the manipulator arms which, in turn, allow maintenance tasks to be approached horizontally as well as from above. Maintainable equipment items can be stacked vertically on a rack because total overhead access is less important and maintenance tasks that would not have been attempted in the past can now be performed. These advances permit greater flexibility in the design and cell layout of the racks and lead to concepts that could significantly increase the availability of a facility. The evolution of rack design and a description of the alternative concepts based on present maintenance systems capabilities are presented in this paper. 13 refs., 11 figs.

  15. A novel concept of QUADRISO particles Part III : applications to the plutonium-thorium fuel cycle.

    SciTech Connect

    Talamo, A.

    2009-03-01

    In the present study, a plutonium-thorium fuel cycle is investigated including the {sup 233}U production and utilization. A prismatic thermal High Temperature Gas Reactor (HTGR) and the novel concept of quadruple isotropic (QUADRISO) coated particles, designed at the Argonne National Laboratory, have been used for the study. In absorbing QUADRISO particles, a burnable poison layer surrounds the central fuel kernel to flatten the reactivity curve as a function of time. At the beginning of life, the fuel in the QUADRISO particles is hidden from neutrons, since they get absorbed in the burnable poison before they reach the fuel kernel. Only when the burnable poison depletes, neutrons start streaming into the fuel kernel inducing fission reactions and compensating the fuel depletion of ordinary TRISO particles. In fertile QUADRISO particles, the absorber layer is replaced by natural thorium with the purpose of flattening the excess of reactivity by the thorium resonances and producing {sup 233}U. The above configuration has been compared with a configuration where fissile (neptunium-plutonium oxide from Light Water Reactors irradiated fuel) and fertile (natural thorium oxide) fuels are homogeneously mixed in the kernel of ordinary TRISO particles. For the {sup 233}U utilization, the core has been equipped with europium oxide absorbing QUADRISO particles.

  16. Design considerations for miniaturized PEM fuel cells

    NASA Astrophysics Data System (ADS)

    Meyers, Jeremy P.; Maynard, Helen L.

    In this paper, we consider the design of a miniaturized proton-exchange membrane (PEM) fuel cell for powering 0.5-20 W portable telecommunication and computing devices. Our design is implemented on a silicon substrate to take advantage of advanced silicon processing technology in order to minimize production costs. The reduced length scales afforded by silicon processing allow us to consider designs that would be prohibited by excessive Ohmic losses in larger systems. We employ a mathematical model to quantify the effects of the secondary current distribution on two competing cell designs. In addition to the design of the cell itself, we discuss key integration issues and engineering trade-offs relevant to all miniaturized fuel cell systems: air movement, fuel delivery and water balance, thermal management and load handling.

  17. Evaluation of a Hydrogen Fuel Cell Powered Blended-Wing-Body Aircraft Concept for Reduced Noise and Emissions

    NASA Technical Reports Server (NTRS)

    Guynn, Mark D.; Freh, Joshua E.; Olson, Erik D.

    2004-01-01

    This report describes the analytical modeling and evaluation of an unconventional commercial transport aircraft concept designed to address aircraft noise and emission issues. A blended-wing-body configuration with advanced technology hydrogen fuel cell electric propulsion is considered. Predicted noise and emission characteristics are compared to a current technology conventional configuration designed for the same mission. The significant technology issues which have to be addressed to make this concept a viable alternative to current aircraft designs are discussed. This concept is one of the "Quiet Green Transport" aircraft concepts studied as part of NASA's Revolutionary Aerospace Systems Concepts (RASC) Program. The RASC Program was initiated to develop revolutionary concepts that address strategic objectives of the NASA Enterprises, such as reducing aircraft noise and emissions, and to identify advanced technology requirements for the concepts.

  18. A Concept Transformation Learning Model for Architectural Design Learning Process

    ERIC Educational Resources Information Center

    Wu, Yun-Wu; Weng, Kuo-Hua; Young, Li-Ming

    2016-01-01

    Generally, in the foundation course of architectural design, much emphasis is placed on teaching of the basic design skills without focusing on teaching students to apply the basic design concepts in their architectural designs or promoting students' own creativity. Therefore, this study aims to propose a concept transformation learning model to…

  19. ITER fuel storage system conceptual design description

    SciTech Connect

    Nasise, J.E.; Anderson, J.L.; Bartlit, J.R.; Muller, M.E.

    1990-01-01

    Fuel, in the form of hydrogen isotopes Q{sub 2} (where Q is H, D, or T), is required to be stored and assayed in a safe manner at the proposed International Thermonuclear Experimental Reactor (ITER). Two subsystems are proposed for this task: Fuel Storage (FS) and Fuel Management (FM). The combined system, Fuel Storage and Management System (FSMS), will provide fuel storage, tritium inventory, gas analysis, transfer pumping, and flow measurements. Presented is a Conceptual Design Description (CDD) of only the FS portion of the FSMS. The proposed FS system permits tritium and its associated isotopes to be stored within ZrCo storage beds, as a solid metal-hydride, or as a gas stored in tanks. 10 refs., 4 figs., 3 tabs.

  20. Design concepts in lumbar total disc arthroplasty

    PubMed Central

    Bellini, Chiara M.; Zweig, Thomas; Ferguson, Stephen; Raimondi, Manuela T.; Lamartina, Claudio; Brayda-Bruno, Marco; Fornari, Maurizio

    2008-01-01

    The implantation of lumbar disc prostheses based on different design concepts is widely accepted. This paper reviews currently available literature studies on the biomechanics of TDA in the lumbar spine, and is targeted at the evaluation of possible relationships between the aims of TDA and the geometrical, mechanical and material properties of the various available disc prostheses. Both theoretical and experimental studies were analyzed, by a PUBMED search (performed in February 2007, revised in January 2008), focusing on single level TDA. Both semi-constrained and unconstrained lumbar discs seem to be able to restore nearly physiological IAR locations and ROM values. However, both increased and decreased ROM was stated in some papers, unrelated to the clinical outcome. Segmental lordosis alterations after TDA were reported in most cases, for both constrained and unconstrained disc prostheses. An increase in the load through the facet joints was documented, for both semi-constrained and unconstrained artificial discs, but with some contrasting results. Semi-constrained devices may be able to share a greater part of the load, thus protecting the surrounding biological structure from overloading and possible early degeneration, but may be more susceptible to wear. The next level of development will be the biomechanical integration of compression across the motion segment. All these findings need to be supported by long-term clinical outcome studies. PMID:18946684

  1. Advanced Technology Display House. Volume 2: Energy system design concepts

    NASA Technical Reports Server (NTRS)

    Maund, D. H.

    1981-01-01

    The preliminary design concept for the energy systems in the Advanced Technology Display House is analyzed. Residential energy demand, energy conservation, and energy concepts are included. Photovoltaic arrays and REDOX (reduction oxidation) sizes are discussed.

  2. Advanced composites structural concepts and materials technologies for primary aircraft structures: Design/manufacturing concept assessment

    NASA Technical Reports Server (NTRS)

    Chu, Robert L.; Bayha, Tom D.; Davis, HU; Ingram, J. ED; Shukla, Jay G.

    1992-01-01

    Composite Wing and Fuselage Structural Design/Manufacturing Concepts have been developed and evaluated. Trade studies were performed to determine how well the concepts satisfy the program goals of 25 percent cost savings, 40 percent weight savings with aircraft resizing, and 50 percent part count reduction as compared to the aluminum Lockheed L-1011 baseline. The concepts developed using emerging technologies such as large scale resin transfer molding (RTM), automatic tow placed (ATP), braiding, out-of-autoclave and automated manufacturing processes for both thermoset and thermoplastic materials were evaluated for possible application in the design concepts. Trade studies were used to determine which concepts carry into the detailed design development subtask.

  3. Direct fuel cell product design improvement

    SciTech Connect

    Maru, H.C.; Farooque, M.

    1996-12-31

    Significant milestones have been attained towards the technology development field testing and commercialization of direct fuel cell power plant since the 1994 Fuel Cell Seminar. Under a 5-year cooperative agreement with the Department of Energy signed in December 1994, Energy Research Corporation (ERC) has been developing the design for a MW-scale direct fuel cell power plant with input from previous technology efforts and the Santa Clara Demonstration Project. The effort encompasses product definition in consultation with the Fuel Cell Commercialization Group, potential customers, as well as extensive system design and packaging. Manufacturing process improvements, test facility construction, cell component scale up, performance and endurance improvements, stack engineering, and critical balance-of-plant development are also addressed. Major emphasis of this product design improvement project is on increased efficiency, compactness and cost reduction to establish a competitive place in the market. A 2.85 MW power plant with an efficiency of 58% and a footprint of 420 m{sup 2} has been designed. Component and subsystem testing is being conducted at various levels. Planning and preparation for verification of a full size prototype unit are in progress. This paper presents the results obtained since the last fuel cell seminar.

  4. Severe Accident Scoping Simulations of Accident Tolerant Fuel Concepts for BWRs

    SciTech Connect

    Robb, Kevin R.

    2015-08-01

    Accident-tolerant fuels (ATFs) are fuels and/or cladding that, in comparison with the standard uranium dioxide Zircaloy system, can tolerate loss of active cooling in the core for a considerably longer time period while maintaining or improving the fuel performance during normal operations [1]. It is important to note that the currently used uranium dioxide Zircaloy fuel system tolerates design basis accidents (and anticipated operational occurrences and normal operation) as prescribed by the US Nuclear Regulatory Commission. Previously, preliminary simulations of the plant response have been performed under a range of accident scenarios using various ATF cladding concepts and fully ceramic microencapsulated fuel. Design basis loss of coolant accidents (LOCAs) and station blackout (SBO) severe accidents were analyzed at Oak Ridge National Laboratory (ORNL) for boiling water reactors (BWRs) [2]. Researchers have investigated the effects of thermal conductivity on design basis accidents [3], investigated silicon carbide (SiC) cladding [4], as well as the effects of ATF concepts on the late stage accident progression [5]. These preliminary analyses were performed to provide initial insight into the possible improvements that ATF concepts could provide and to identify issues with respect to modeling ATF concepts. More recently, preliminary analyses for a range of ATF concepts have been evaluated internationally for LOCA and severe accident scenarios for the Chinese CPR1000 [6] and the South Korean OPR-1000 [7] pressurized water reactors (PWRs). In addition to these scoping studies, a common methodology and set of performance metrics were developed to compare and support prioritizing ATF concepts [8]. A proposed ATF concept is based on iron-chromium-aluminum alloys (FeCrAl) [9]. With respect to enhancing accident tolerance, FeCrAl alloys have substantially slower oxidation kinetics compared to the zirconium alloys typically employed. During a severe accident, Fe

  5. Exploratory Design of a Reactor/Fuel Cycle Using Spent Nuclear Fuel Without Conventional Reprocessing - 13579

    SciTech Connect

    Bertch, Timothy C.; Schleicher, Robert W.; Rawls, John D.

    2013-07-01

    General Atomics has started design of a waste to energy nuclear reactor (EM2) that can use light water reactor (LWR) spent nuclear fuel (SNF). This effort addresses two problems: using an advanced small reactor with long core life to reduce nuclear energy overnight cost and providing a disposal path for LWR SNF. LWR SNF is re-fabricated into new EM2 fuel using a dry voloxidation process modeled on AIROX/ OREOX processes which remove some of the fission products but no heavy metals. By not removing all of the fission products the fuel remains self-protecting. By not separating heavy metals, the process remains proliferation resistant. Implementation of Energy Multiplier Module (EM2) fuel cycle will provide low cost nuclear energy while providing a long term LWR SNF disposition path which is important for LWR waste confidence. With LWR waste confidence recent impacts on reactor licensing, an alternate disposition path is highly relevant. Centered on a reactor operating at 250 MWe, the compact electricity generating system design maximizes site flexibility with truck transport of all system components and available dry cooling features that removes the need to be located near a body of water. A high temperature system using helium coolant, electricity is efficiently produced using an asynchronous high-speed gas turbine while the LWR SNF is converted to fission products. Reactor design features such as vented fuel and silicon carbide cladding support reactor operation for decades between refueling, with improved fuel utilization. Beyond the reactor, the fuel cycle is designed so that subsequent generations of EM2 reactor fuel will use the previous EM2 discharge, providing its own waste confidence plus eliminating the need for enrichment after the first generation. Additional LWR SNF is added at each re-fabrication to replace the removed fission products. The fuel cycle uses a dry voloxidation process for both the initial LWR SNF re-fabrication and later for EM2

  6. Molten Carbonate Fuel Cell Product Design Improvement

    SciTech Connect

    1996-03-01

    This annual report provides results of Energy Research Corporation`s technical approach to performing the program `Molten Carbonate Fuel Cell (MCFC) Product Design Improvement` covered under the DOE-ERC Cooperative Agreement DE-FC21-95MC31184. This work is supported by DOE/METC and DOD/DARPA as well as ERC Team funds. The objective of the DOE-sponsored program is to advance the direct carbonate fuel cell technology to a level suitable for commercial entry for civilian applications. The overall objective of the DOD/DARPA initiative is to adapt the civilian 2 MW-Class fuel cell power plant for dual fuel DOD applications. This program is designed to advance the carbonate fuel cell technology from the power plant demonstration status to the commercial entry early production unit design stage. The specific objectives which will allow attainment of these overall program goals are: (1) Provide environmental information to support DOE evaluation with respect to the National Environmental Policy Act (NEPA), (2) Define market-responsive power plant requirements and specifications, (3) Establish design for multifuel, low-cost, modular, market-responsive power plant, (4) Resolve power plant manufacturing issues and define the design for the commercial manufacturing facility, (5) Acquire capabilities to support developmental testing of 0370 stacks and BOP equipment as required to prepare for commercial design, and (6) Resolve stack and BOP equipment technology issues and design, build, and field test a modular commercial prototype power plant to demonstrate readiness of the power plant for commercial entry.

  7. Issues and design concepts for high-activity liquid packaging

    SciTech Connect

    Meinert, N.M.; Riley, D.; Wells, A.H.

    1994-02-01

    The tank waste pretreatment process involves the separation of low-level and high-level constituents. The liquid high-level defense production waste will be vitrified into thousands of glass logs at the US DOE sites and then transported to a high-level repository for final disposal. Pretreatment and vitrification technology will need to be developed and tested to assess cost-effectiveness. The appropriate pretreatment strategy for complex high-activity liquid will depend on proving a competent process. As technology development matures, actual liquid will be substituted for simulants, and pilot scale plants will replace laboratory scale process demonstrations. Development of this strategy depends on tank waste sample analyses and a high-activity liquid supply for process testing. However, high-activity liquid transportation beyond DOE site boundaries is limited to Type B quantities in volumes less than 50 mL; no licensed packaging exists for greater than 50 mL quantities. The following paper summarizes the need for a high-activity liquid packaging, and identifies the agencies effecting packaging design and transportation. The high-activity liquid packaging concept retrofits licensed spent fuel casks by replacing the spent fuel basket with a sturdy containment vessel appropriate for the chemical nature of the liquid. A Nuclear Packaging (Pacific Nuclear`s NuPat{trademark} 125-B) spent fuel cask was hypothetically retrofitted with a containment vessel filled with liquid source term, the radionuclide inventory contained in the liquid. The structural, thermal, dose rate, and criticality consequences of retrofitting the cask body were evaluated based on data in the 125-B Cask Safety Analysis Report for Packaging. In addition, future packaging development work is discussed.

  8. LH2 fuel tank design for SSTO

    NASA Astrophysics Data System (ADS)

    Wright, Geoff

    This report will discuss the design of a liquid hydrogen fuel tank constructed from composite materials. The focus of this report is to recommend a design for a fuel tank which will be able to withstand all static and dynamic forces during manned flight. Areas of study for the design include material selection, material structural analysis, heat transfer, thermal expansion, and liquid hydrogen diffusion. A structural analysis FORTRAN program was developed for analyzing the buckling and yield characteristics of the tank. A thermal analysis Excel spreadsheet was created to determine a specific material thickness which will minimize heat transfer through the wall of the tank. The total mass of the tank was determined by the combination of both structural and thermal analyses. The report concludes with the recommendation of a layered material tank construction. The designed system will include exterior insulation, combination of metal and organize composite matrices and honeycomb.

  9. LH2 fuel tank design for SSTO

    NASA Technical Reports Server (NTRS)

    Wright, Geoff

    1994-01-01

    This report will discuss the design of a liquid hydrogen fuel tank constructed from composite materials. The focus of this report is to recommend a design for a fuel tank which will be able to withstand all static and dynamic forces during manned flight. Areas of study for the design include material selection, material structural analysis, heat transfer, thermal expansion, and liquid hydrogen diffusion. A structural analysis FORTRAN program was developed for analyzing the buckling and yield characteristics of the tank. A thermal analysis Excel spreadsheet was created to determine a specific material thickness which will minimize heat transfer through the wall of the tank. The total mass of the tank was determined by the combination of both structural and thermal analyses. The report concludes with the recommendation of a layered material tank construction. The designed system will include exterior insulation, combination of metal and organize composite matrices and honeycomb.

  10. Phase 1A Final Report for the AREVA Team Enhanced Accident Tolerant Fuels Concepts

    SciTech Connect

    Morrell, Mike E.

    2015-03-19

    In response to the Department of Energy (DOE) funded initiative to develop and deploy lead fuel assemblies (LFAs) of Enhanced Accident Tolerant Fuel (EATF) into a US reactor within 10 years, AREVA put together a team to develop promising technologies for improved fuel performance during off normal operations. This team consisted of the University of Florida (UF) and the University of Wisconsin (UW), Savannah River National Laboratory (SRNL), Duke Energy and Tennessee Valley Authority (TVA). This team brought broad experience and expertise to bear on EATF development. AREVA has been designing; manufacturing and testing nuclear fuel for over 50 years and is one of the 3 large international companies supplying fuel to the nuclear industry. The university and National Laboratory team members brought expertise in nuclear fuel concepts and materials development. Duke and TVA brought practical utility operating experience. This report documents the results from the initial “discovery phase” where the team explored options for EATF concepts that provide enhanced accident tolerance for both Design Basis (DB) and Beyond Design Basis Events (BDB). The main driver for the concepts under development were that they could be implemented in a 10 year time frame and be economically viable and acceptable to the nuclear fuel marketplace. The economics of fuel design make this DOE funded project very important to the nuclear industry. Even incremental changes to an existing fuel design can cost in the range of $100M to implement through to LFAs. If this money is invested evenly over 10 years then it can take the fuel vendor several decades after the start of the project to recover their initial investment and reach a breakeven point on the initial investment. Step or radical changes to a fuel assembly design can cost upwards of $500M and will take even longer for the fuel vendor to recover their investment. With the projected lifetimes of the current generation of nuclear power

  11. Project Design Concept for Monitoring and Control System

    SciTech Connect

    MCGREW, D.L.

    2000-10-02

    This Project Design Concept represents operational requirements established for use in design the tank farm Monitoring and Control System. These upgrades are included within the scope of Project W-314, Tank Farm Restoration and Safe Operations.

  12. Advanced design concepts in nuclear electric propulsion. [and spacecraft configurations

    NASA Technical Reports Server (NTRS)

    Peelgren, M. L.; Mondt, J. F.

    1974-01-01

    Conceptual designs of the nuclear propulsion programs are reported. Major areas of investigation were (1) design efforts on spacecraft configuration and heat rejection subsystem, (2) high-voltage thermionic reactor concepts, and (3) dual-mode spacecraft configuration study.

  13. MOLTEN CARBONATE FUEL CELL PRODUCT DESIGN IMPROVEMENT

    SciTech Connect

    Unknown

    2000-01-01

    The FCE PDI program is designed to advance the carbonate fuel cell technology from the current full-size field test to the commercial design. The specific objectives selected to attain the overall program goal are: Define power plant requirements and specifications; Establish the design for a multifuel, low-cost, modular, market-responsive power plant; Resolve power plant manufacturing issues and define the design for the commercial-scale manufacturing facility; Define the stack and balance-of-plant (BOP) equipment packaging arrangement, and module designs; Acquire capability to support developmental testing of stacks and critical BOP equipment to prepare for commercial design; and Resolve stack and BOP equipment technology issues, and design, build and field test a modular prototype power plant to demonstrate readiness for commercial entry.

  14. New Worlds Observer Telescope and Instrument Optical Design Concepts

    NASA Technical Reports Server (NTRS)

    Howard, Joseph M.; Noecker, Charlie; Kendrick, Steve; Woodgate, Bruce; Kilstron, Steve; Cash, Webster

    2008-01-01

    Optical design concepts for the telescope and instrumentation for NASA s New Worlds Observer program are presented. A four-meter multiple channel telescope is discussed, as well as a suite of science instrument concepts. Wide field instrumentation (imager and spectrograph) would be accommodated by a three-mirror-anastigmat telescope design. Planet finding and characterization, and a UV instrument would use a separate channel that is picked off after the first two mirrors (primary and secondary). Guiding concepts are also discussed.

  15. Design concept for pressure switch calibrator

    NASA Technical Reports Server (NTRS)

    Slingerland, M. G.

    1966-01-01

    Calibrator and switch design enables pressure switches to operate under 150 g shock loads. The design employs a saturated liquid-to-vapor phase transition at constant pressure to produce a known force independent of displacement over a usable range.

  16. Novel design for transparent high-pressure fuel injector nozzles.

    PubMed

    Falgout, Z; Linne, M

    2016-08-01

    The efficiency and emissions of internal combustion (IC) engines are closely tied to the formation of the combustible air-fuel mixture. Direct-injection engines have become more common due to their increased practical flexibility and efficiency, and sprays dominate mixture formation in these engines. Spray formation, or rather the transition from a cylindrical liquid jet to a field of isolated droplets, is not completely understood. However, it is known that nozzle orifice flow and cavitation have an important effect on the formation of fuel injector sprays, even if the exact details of this effect remain unknown. A number of studies in recent years have used injectors with optically transparent nozzles (OTN) to allow observation of the nozzle orifice flow. Our goal in this work is to design various OTN concepts that mimic the flow inside commercial injector nozzles, at realistic fuel pressures, and yet still allow access to the very near nozzle region of the spray so that interior flow structure can be correlated with primary breakup dynamics. This goal has not been achieved until now because interior structures can be very complex, and the most appropriate optical materials are brittle and easily fractured by realistic fuel pressures. An OTN design that achieves realistic injection pressures and grants visual access to the interior flow and spray formation will be explained in detail. The design uses an acrylic nozzle, which is ideal for imaging the interior flow. This nozzle is supported from the outside with sapphire clamps, which reduces tensile stresses in the nozzle and increases the nozzle's injection pressure capacity. An ensemble of nozzles were mechanically tested to prove this design concept. PMID:27587161

  17. Novel design for transparent high-pressure fuel injector nozzles

    NASA Astrophysics Data System (ADS)

    Falgout, Z.; Linne, M.

    2016-08-01

    The efficiency and emissions of internal combustion (IC) engines are closely tied to the formation of the combustible air-fuel mixture. Direct-injection engines have become more common due to their increased practical flexibility and efficiency, and sprays dominate mixture formation in these engines. Spray formation, or rather the transition from a cylindrical liquid jet to a field of isolated droplets, is not completely understood. However, it is known that nozzle orifice flow and cavitation have an important effect on the formation of fuel injector sprays, even if the exact details of this effect remain unknown. A number of studies in recent years have used injectors with optically transparent nozzles (OTN) to allow observation of the nozzle orifice flow. Our goal in this work is to design various OTN concepts that mimic the flow inside commercial injector nozzles, at realistic fuel pressures, and yet still allow access to the very near nozzle region of the spray so that interior flow structure can be correlated with primary breakup dynamics. This goal has not been achieved until now because interior structures can be very complex, and the most appropriate optical materials are brittle and easily fractured by realistic fuel pressures. An OTN design that achieves realistic injection pressures and grants visual access to the interior flow and spray formation will be explained in detail. The design uses an acrylic nozzle, which is ideal for imaging the interior flow. This nozzle is supported from the outside with sapphire clamps, which reduces tensile stresses in the nozzle and increases the nozzle's injection pressure capacity. An ensemble of nozzles were mechanically tested to prove this design concept.

  18. Advanced Technology Subsonic Transport Study: N+3 Technologies and Design Concepts

    NASA Technical Reports Server (NTRS)

    Raymer, Daniel P.; Wilson, Jack; Perkins, H. Douglas; Rizzi, Arthur; Zhang, Mengmeng; RamirezPuentes, Alfredo

    2011-01-01

    Conceptual Research Corporation, the Science of the Possible, has completed a two-year study of concepts and technologies for future airliners in the 180-passenger class. This NASA-funded contract was primarily focused on the ambitious goal of a 70 percent reduction in fuel consumption versus the market-dominating Boeing 737-800. The study is related to the N+3 contracts awarded in 2008 by NASA s Aeronautics Research Mission Directorate to teams led by Boeing, GE Aviation, MIT, and Northrop Grumman, but with more modest goals and funding. CRC s contract featured a predominant emphasis on propulsion and fuel consumption, but since fuel consumption depends upon air vehicle design as much as on propulsion technology, the study included notional vehicle design, analysis, and parametric studies. Other NASA goals including NOx and noise reduction are of long-standing interest but were not highlighted in this study, other than their inclusion in the propulsion system provided to CRC by NASA. The B-737-800 was used as a benchmark, parametric tool, and design point of departure. It was modeled in the RDS-Professional aircraft design software then subjected to extensive parametric variations of parasitic drag, drag-due-to-lift, specific fuel consumption, and unsized empty weight. These studies indicated that the goal of a 70 percent reduction in fuel consumption could be attained with roughly a 30 percent improvement in all four parameters. The results were then fit to a Response Surface and coded for ease of use in subsequent trade studies. Potential technologies to obtain such savings were identified and discussed. More than 16 advanced concept designs were then prepared, attempting to investigate almost every possible emerging concept for application to this class airliner. A preliminary assessment of these concepts was done based on their total wetted area after design normalization of trimmed maximum lift. This assessment points towards a Tailless Airliner concept which

  19. Aerodynamic design lowers truck fuel consumption

    NASA Technical Reports Server (NTRS)

    Steers, L.

    1978-01-01

    Energy-saving concepts in truck design are emerging from developing new shapes with improved aerodynamic flow properties that can reduce air-drag coefficient of conventional tractor-trailers without requiring severe design changes or compromising load-carrying capability. Improvements are expected to decrease somewhat with increased wind velocities and would be affected by factors such as terrain, driving techniques, and mechanical condition.

  20. Single stage rocket concept selection and design

    NASA Astrophysics Data System (ADS)

    Copper, J. A.

    1992-03-01

    The paper compares three concepts of a single-stage rocket for use as a reusable safe and reliable launch system: (1) horizontal takeoff and landing; (2) vertical takeoff and landing (VTOL), and vertical takeoff and horizontal landing. These concepts were evaluated during Phase I using the following ground rules: the 1992 technology availability; 7 d turnaround between flights with 350 man-days servicing; a 400-km polar orbit, 600 fps maneuver capability on orbit; 10,000 lb payload; 1170 nmi crossrange; two-man crew, 4-day duration, 14.7 psi cabin pressure, 1000 cu ft crew volume, 3 g maximum acceleration; winds amounting to 200 fps ascent, 73 fps landing; and return payload to base after single engine failure. On the basis of the comparison (done on the basis of the lowest cost to acquire and operate, the least sensitivity to uncertainties in predicted weight and performance, and the operational flexibility) the VTOL concept with nose-first reentry was chosen.

  1. Design considerations for an integrated safeguards system for fuel-reprocessng plants

    SciTech Connect

    Cartan, F O

    1982-05-01

    This report presents design ideas for safeguards systems in nuclear fuels reprocessing plants. The report summarizes general safeguards requirements and describes a safeguards system concept being developed and tested at the Idaho Chemical Processing Plant. The report gives some general concepts intended for design consideration and a checklist of specific problems that should be considered. The report is intended as an aid for the safeguards system designer and as a source of useful information.

  2. Space Shuttle food galley design concept

    NASA Technical Reports Server (NTRS)

    Heidelbaugh, N. D.; Smith, M. C.; Fischer, R.; Cooper, B.

    1974-01-01

    A food galley has been designed for the crew compartment of the NASA Space Shuttle Orbiter. The rationale for the definition of this design was based upon assignment of priorities to each functional element of the total food system. Principle priority categories were assigned in the following order: food quality, nutrition, food packaging, menu acceptance, meal preparation efficiency, total system weight, total system volume, and total power requirements. Hence, the galley was designed using an 'inside-out' approach which first considered the food and related biological functions and subsequently proceeded 'outward' from the food to encompass supporting hardware. The resulting galley is an optimal design incorporating appropriate priorities for trade-offs between biological and engineering constraints. This design approach is offered as a model for the design of life support systems.

  3. DOE small scale fuel alcohol plant design

    SciTech Connect

    LaRue, D.M.; Richardson, J.G.

    1980-01-01

    The Department of Energy, in an effort to facilitate the deployment of rural-based ethanol production capability, has undertaken this effort to develop a basic small-scale plant design capable of producing anhydrous ethanol. The design, when completed, will contain all necessary specifications and diagrams sufficient for the construction of a plant. The design concept is modular; that is, sections of the plant can stand alone or be integrated into other designs with comparable throughput rates. The plant design will be easily scaled up or down from the designed flow rate of 25 gallons of ethanol per hour. Conversion factors will be provided with the final design package to explain scale-up and scale-down procedures. The intent of this program is to provide potential small-scale producers with sound information about the size, engineering requirements, costs and level of effort in building such a system.

  4. NGST NIRCam Scientific Program and Design Concept

    NASA Astrophysics Data System (ADS)

    Rieke, Marcia J.; Baum, Stefi A.; Beichman, Charles A.; Crampton, David; Doyon, Rene; Eisenstein, Daniel; Greene, Thomas P.; Hodapp, Klaus-Werner; Horner, Scott D.; Johnstone, Doug; Lesyna, Lawrence; Lilly, Simon; Meyer, Michael; Martin, Peter; McCarthy, Donald W., Jr.; Rieke, George H.; Roellig, Thomas L.; Stauffer, John; Trauger, John T.; Young, Erick T.

    2003-03-01

    The science program for the Next Generation Space Telescope (NGST) relies heavily on a high performance nearinfrared imager. A design which supports the observations outlined in the Design Reference Mission (DRM) and which also supports enhanced searches for "first light" objects and planets has been developed. Key features of the design include use of refractive optics to minimize the volume and mass required, tunable filters for spectroscopic imaging, and redundant imagers for fail-safe wavefront sensing.

  5. RLIN Product Batch: Fundamental Design Concepts.

    ERIC Educational Resources Information Center

    Crawford, Walt

    1984-01-01

    Considers fundamental decisions that shaped the output products of Research Libraries Information Network. Product Batch was designed using single data definition (RMARC) combined with standard PL/I, modular programing techniques, program documentation. Choice of software and programing languages, other design aspects (accountability, count…

  6. Viper cabin-fuselage structural design concept with engine installation and wing structural design

    NASA Technical Reports Server (NTRS)

    Marchesseault, B.; Carr, D.; Mccorkle, T.; Stevens, C.; Turner, D.

    1993-01-01

    This report describes the process and considerations in designing the cabin, nose, drive shaft, and wing assemblies for the 'Viper' concept aircraft. Interfaces of these assemblies, as well as interfaces with the sections of the aircraft aft of the cabin, are also discussed. The results of the design process are included. The goal of this project is to provide a structural design which complies with FAR 23 requirements regarding occupant safety, emergency landing loads, and maneuvering loads. The design must also address the interfaces of the various systems in the cabin, nose, and wing, including the drive shaft, venting, vacuum, electrical, fuel, and control systems. Interfaces between the cabin assembly and the wing carrythrough and empennage assemblies were required, as well. In the design of the wing assemblies, consistency with the existing cabin design was required. The major areas considered in this report are materials and construction, loading, maintenance, environmental considerations, wing assembly fatigue, and weight. The first three areas are developed separately for the nose, cabin, drive shaft, and wing assemblies, while the last three are discussed for the entire design. For each assembly, loading calculations were performed to determine the proper sizing of major load carrying components. Table 1.0 lists the resulting margins of safety for these key components, along with the types of the loads involved, and the page number upon which they are discussed.

  7. Design Concept for a Nuclear Reactor-Powered Mars Rover

    NASA Technical Reports Server (NTRS)

    Elliott, John; Poston, Dave; Lipinski, Ron

    2007-01-01

    A report presents a design concept for an instrumented robotic vehicle (rover) to be used on a future mission of exploration of the planet Mars. The design incorporates a nuclear fission power system to provide long range, long life, and high power capabilities unachievable through the use of alternative solar or radioisotope power systems. The concept described in the report draws on previous rover designs developed for the 2009 Mars Science laboratory (MSL) mission to minimize the need for new technology developments.

  8. Engineering study for ISSTRS design concept

    SciTech Connect

    Hertzel, J.S.

    1997-01-31

    Los Alamos Technical Associates, Inc., is pleased to transmit the attached Conceptual Design Package for the Initial Single Shell Tank Retrieval System (ISSTRS), 90% Conceptual Design Review. The package includes the following: (1) ISSTRS Trade Studies: (a) Retrieval Facility Cooling Requirements; (b) Equipment Re-usability between Project W-320 and Tanks 241-C-103 and 241-C-1 05; (c) Sluice Line Options; and (d) Options for the Location of Tanks AX-103 and A-1 02 HVAC Equipment; (2) Drawings; (3) Risk Management Plan; (4) 0850 Interface Control Document; (5) Requirements Traceability Report; and (6) Project Design Specification.

  9. Ergonomic approach for pillow concept design.

    PubMed

    Cai, Dengchuan; Chen, Hsiao-Lin

    2016-01-01

    Sleep quality is an essential factor to human beings for health. The current paper conducted four studies to provide a suitable pillow for promoting sleep quality. Study 1 investigated the natural positions of 40 subjects during sleep to derive key-points for a pillow design. The results suggested that the supine and lateral positions were alternatively 24 times a night, and the current pillows were too high for the supine position and too low for lateral positions. Study 2 measured body dimensions related to pillow design of 40 subjects to determine pillow sizes. The results suggested that the pillow height were quite different in supine position and lateral position and needed to take into consideration for a pillow design. Study 3 created a pillow design based on the results of above studies. The pillow was a U-form in the front of view in which the pillow height in the middle area was lower for the supine position, and both sides were higher for the lateral positions. Study 4 assessed sleep quality of 6 subjects by using the proposed pillows and the current pillows. The results showed that the newly designed pillow led to significantly higher sleep quality, and the new design received an innovation patent. PMID:26360205

  10. Design and Testing of a Low Noise Flight Guidance Concept

    NASA Technical Reports Server (NTRS)

    Williams, David H.; Oseguera-Lohr, Rosa M.; Lewis, Elliot T.

    2004-01-01

    A flight guidance concept was developed to assist in flying continuous descent approach (CDA) procedures designed to lower the noise under the flight path of jet transport aircraft during arrival operations at an airport. The guidance consists of a trajectory prediction algorithm that was tuned to produce a high-efficiency, low noise flight profile with accompanying autopilot and flight display elements needed by the flight control system and pilot to fly the approach. A key component of the flight guidance was a real-time display of energy error relative to the predicted flight path. The guidance was integrated with the conventional Flight Management System (FMS) guidance of a modern jet transport airplane and tested in a high fidelity flight simulation. A charted arrival procedure, which allowed flying conventional arrivals, CDA arrivals with standard guidance, and CDA arrivals with the new low noise guidance, was developed to assist in the testing and evaluation of the low noise guidance concept. Results of the simulation testing showed the low noise guidance was easy to use by airline pilot test subjects and effective in achieving the desired noise reduction. Noise under the flight path was reduced by at least 2 decibels in Sound Exposure Level (SEL) at distances from about 3 nautical miles out to about 17.5 nautical miles from the runway, with a peak reduction of 8.5 decibels at about 10.5 nautical miles. Fuel consumption was also reduced by about 17% for the LNG conditions compared to baseline runs for the same flight distance. Pilot acceptance and understanding of the guidance was quite high with favorable comments and ratings received from all test subjects.

  11. Evaluation of concepts for controlling exhaust emissions from minimally processed petroleum and synthetic fuels

    NASA Technical Reports Server (NTRS)

    Russell, P. L.; Beal, G. W.; Sederquist, R. A.; Shultz, D.

    1981-01-01

    Rich-lean combustor concepts designed to enhance rich combustion chemistry and increase combustor flexibility for NO(x) reduction with minimally processed fuels are examined. Processes such as rich product recirculation in the rich chamber, rich-lean annihilation, and graduated air addition or staged rich combustion to release bound nitrogen in steps of reduced equivalence ratio are discussed. Variations to the baseline rapid quench section are considered, and the effect of residence time in the rich zone is investigated. The feasibility of using uncooled non-metallic materials for the rich zone combustion construction is also addressed. The preliminary results indicate that rich primary zone staged combustion provides environmentally acceptable operation with residual and/or synthetic coal-derived liquid fuels

  12. Design concepts for the ASTROMAG cryogenic system

    NASA Technical Reports Server (NTRS)

    Green, M. A.; Castles, S.

    1987-01-01

    Described is a proposed cryogenic system used to cool the superconducting magnet for the Space Station based ASTROMAG Particle Astrophysics Facility. This 2-meter diameter superconducting magnet will be cooled using stored helium II. The paper presents a liquid helium storage concept which would permit cryogenic lifetimes of up to 3 years between refills. It is proposed that the superconducting coil be cooled using superfluid helium pumped by the thermomechanical effect. It is also proposed that the storage tank be resupplied with helium in orbit. A method for charging and discharging the magnet with minimum helium loss using split gas-cooled leads is discussed. A proposal to use a Stirling cycle cryocooler to extend the storage life of the cryostat will also be presented.

  13. Molten carbonate fuel cell stack design options

    SciTech Connect

    Benjamin, T.G.; Petri, R.J.

    1986-01-01

    Significant strides in molten carbonate fuel cell (MCFC) life and performance have been made during the last 20 years. Results include single cell performance improvement from 10 watts/ft/sup 2/ to 120 watts/ft/sup 2/, testing of several sub-scale stacks, and significant reductions in cost. In the 1980s, attention has turned toward stack-related issues including component dimensional and structural stability, cathode dissolution, sulfur poisoning, hardware design, electrolyte management, carbon dioxide conservation, internal reforming, and systems considerations. This paper discusses MCFC stack hardware design options and present a brief introduction to MCFC technology. 4 refs., 8 figs.

  14. Molten carbonate fuel cell stack design options

    SciTech Connect

    Benjamin, T.G.; Petri, R.J.

    1986-03-01

    Significant strides in molten carbonate fuel cell (MCFC) life and performance have been made during the last 20 years. Results include single cell performance improvement from 10 watts/ft/sup 2/ to 120 watts/ft/sup 2/, testing of several sub-scale stacks, and significant reductions in cost. In the 1980's, attention has turned toward stack-related issues including component dimensional and structural stability, cathode dissolution, sulfur poisoning, hardware design, electrolyte management, carbon dioxide conservation, internal reforming, and systems considerations. This paper discusses MCFC stack hardware design options and present a brief introduction to MCFC technology. 4 references, 8 figures.

  15. 4MOST fiber feed concept design

    NASA Astrophysics Data System (ADS)

    Haynes, D. M.; Winkler, R.; Saviauk, Allar; Haynes, R.; Barden, S.; Bellido-Tirado, O.; Bauer, S.; de Jong, Roelof S.; Depagne, E.; Dionies, F.; Ehrlich, K.; Kelz, Andreas; Saunders, W.; Woche, M.

    2014-08-01

    4MOST, the 4m Multi-Object Spectroscopic Telescope, features a 2.5 degree diameter field-of-view with ~2400 fibers in the focal plane that are configured by a fiber positioner based on the tilting spine principle (Echidna/FMOS) arranged in a hexagonal pattern. The fibers feed two types of spectrographs; ~1600 fibers go to two spectrographs with resolution R>5000 and ~800 fibers to a spectrograph with R>18,000. Part of the ongoing optimization of the fiber feed subsystem design includes early prototyping and testing of key components such as fiber connectors and fiber cable management. Performance data from this testing will be used in the 4MOST instrument simulator (TOAD) and 4MOST system design optimization. In this paper we give an overview of the current fiber feed subsystem design, simulations and prototyping plans.

  16. An Innovative High Thermal Conductivity Fuel Design

    SciTech Connect

    PI: James S. Tulenko; Co-PI: Ronald H. Baney,

    2007-10-14

    Uranium dioxide (UO2) is the most common fuel material in commercial nuclear power reactors. UO2 has the advantages of a high melting point, good high-temperature stability, good chemical compatibility with cladding and coolant, and resistance to radiation. The main disadvantage of UO2 is its low thermal conductivity. During a reactor’s operation, because the thermal conductivity of UO2 is very low, for example, about 2.8 W/m-K at 1000 oC [1], there is a large temperature gradient in the UO2 fuel pellet, causing a very high centerline temperature, and introducing thermal stresses, which lead to extensive fuel pellet cracking. These cracks will add to the release of fission product gases after high burnup. The high fuel operating temperature also increases the rate of fission gas release and the fuel pellet swelling caused by fission gases bubbles. The amount of fission gas release and fuel swelling limits the life time of UO2 fuel in reactor. In addition, the high centerline temperature and large temperature gradient in the fuel pellet, leading to a large amount of stored heat, increase the Zircaloy cladding temperature in a lost of coolant accident (LOCA). The rate of Zircaloy-water reaction becomes significant at the temperature above 1200 oC [2]. The ZrO2 layer generated on the surface of the Zircaloy cladding will affect the heat conduction, and will cause a Zircaloy cladding rupture. The objective of this research is to increase the thermal conductivity of UO2, while not affecting the neutronic property of UO2 significantly. The concept to accomplish this goal is to incorporate another material with high thermal conductivity into the UO2 pellet. Silicon carbide (SiC) is a good candidate, because the thermal conductivity of single crystal SiC is 60 times higher than that of UO2 at room temperature and 30 times higher at 800 oC [3]. Silicon carbide also has the properties of low thermal neutron absorption cross section, high melting point, good chemical

  17. Remote metrology system (RMS) design concept

    SciTech Connect

    1995-10-19

    A 3D remote metrology system (RMS) is needed to map the interior plasma-facing components of the International Thermonuclear Experimental Reactor (ITER). The performance and survival of these components within the reactor vessel are strongly dependent on their precise alignment and positioning with respect to the plasma edge. Without proper positioning and alignment, plasma-facing surfaces will erode rapidly. A RMS design involving Coleman Research Corporation (CRC) fiber optic coherent laser radar (CLR) technology is examined in this study. The fiber optic CLR approach was selected because its high precision should be able to meet the ITER 0.1 mm accuracy requirement and because the CLR`s fiber optic implementation allows a 3D scanner to operate remotely from the RMS system`s vulnerable components. This design study has largely verified that a fiber optic CLR based RMS can survive the ITER environment and map the ITER interior at the required accuracy at a one measurement/cm{sup 2} density with a total measurement time of less than one hour from each of six or more vertically deployed measurement probes. The design approach employs a sealed and pressurized measurement probe which is attached with an umbilical spiral bellows conduit. This conduit bears fiber optic and electronic links plus a stream of air to lower the temperature in the interior of the probe. Lowering the probe temperature is desirable because probe electromechanical components which could survive the radiation environment often were not rated for the 200 C temperature. The tip of the probe whose outer shell has a flexible bellows joint can swivel in two degrees of freedom to allow mapping operations at each probe deployment level. This design study has concluded that the most successful scanner design will involve a hybrid AO beam deflector and mechanical scanner.

  18. Analysis and Multipoint Design of the TCA Concept

    NASA Technical Reports Server (NTRS)

    Krist, Steven E.; Bauer, Steven X. S.; Buning, Pieter G.

    1999-01-01

    The goal in this effort is to analyze the baseline TCA concept at transonic and supersonic cruise, then apply the natural flow wing design concept to obtain multipoint performance improvements. Analyses are conducted with OVERFLOW, a Navier-Stokes code for overset grids, using PEGSUS to compute the interpolations between the overset grids.

  19. Overview and Current Status of Analyses of Potential LEU Design Concepts for TREAT

    SciTech Connect

    Connaway, H. M.; Kontogeorgakos, D. C.; Papadias, D. D.; Wright, A. E.

    2015-10-01

    Neutronic and thermal-hydraulic analyses have been performed to evaluate the performance of different low-enriched uranium (LEU) fuel design concepts for the conversion of the Transient Reactor Test Facility (TREAT) from its current high-enriched uranium (HEU) fuel. TREAT is an experimental reactor developed to generate high neutron flux transients for the testing of nuclear fuels. The goal of this work was to identify an LEU design which can maintain the performance of the existing HEU core while continuing to operate safely. A wide variety of design options were considered, with a focus on minimizing peak fuel temperatures and optimizing the power coupling between the TREAT core and test samples. Designs were also evaluated to ensure that they provide sufficient reactivity and shutdown margin for each control rod bank. Analyses were performed using the core loading and experiment configuration of historic M8 Power Calibration experiments (M8CAL). The Monte Carlo code MCNP was utilized for steady-state analyses, and transient calculations were performed with the point kinetics code TREKIN. Thermal analyses were performed with the COMSOL multi-physics code. Using the results of this study, a new LEU Baseline design concept is being established, which will be evaluated in detail in a future report.

  20. Deep Throttle Turbopump Technology Design Concepts

    NASA Technical Reports Server (NTRS)

    Guinzburg, Adiel; Williams, Morgan; Ferguson, Tom; Garcia, Roberto (Technical Monitor)

    2002-01-01

    The objective of this project is to increase the throttling range of turbopumps from 30 to 120% of the design value, while maintaining high performance levels. Details are given on wide flow range issues, H-Q characteristics, stall characteristics, energy levels, pressure fluctuations at impeller exit, WFR impeller characteristics, commercial diffuser pumps, slotted or tandem vanes, leading edge characteristics, leading edge models, throat models, diffusion passage models, computational fluid dynamics (CFD) methodologies, and CFD flow cases.

  1. Structural concepts and details for seismic design

    SciTech Connect

    Not Available

    1991-09-01

    This manual discusses building and building component behavior during earthquakes, and provides suggested details for seismic resistance which have shown by experience to provide adequate performance during earthquakes. Special design and construction practices are also described which, although they might be common in some high-seismic regions, may not be common in low and moderate seismic-hazard regions of the United States. Special attention is given to describing the level of detailing appropriate for each seismic region. The UBC seismic criteria for all seismic zones is carefully examined, and many examples of connection details are given. The general scope of discussion is limited to materials and construction types common to Department of Energy (DOE) sites. Although the manual is primarily written for professional engineers engaged in performing seismic-resistant design for DOE facilities, the first two chapters, plus the introductory sections of succeeding chapters, contain descriptions which are also directed toward project engineers who authorize, review, or supervise the design and construction of DOE facilities. 88 refs., 188 figs.

  2. Structural Design and Sizing of a Metallic Cryotank Concept

    NASA Technical Reports Server (NTRS)

    Sleight, David W.; Martin, Robert A.; Johnson, Theodore F.

    2013-01-01

    This paper presents the structural design and sizing details of a 33-foot (10 m) metallic cryotank concept used as the reference design to compare with the composite cryotank concepts developed by industry as part of NASA s Composite Cryotank Technology Development (CCTD) Project. The structural design methodology and analysis results for the metallic cryotank concept are reported in the paper. The paper describes the details of the metallic cryotank sizing assumptions for the baseline and reference tank designs. In particular, the paper discusses the details of the cryotank weld land design and analyses performed to obtain a reduced weight metallic cryotank design using current materials and manufacturing techniques. The paper also discusses advanced manufacturing techniques to spin-form the cryotank domes and compares the potential mass savings to current friction stir-welded technology.

  3. Interactive systems design and synthesis of future spacecraft concepts

    NASA Technical Reports Server (NTRS)

    Wright, R. L.; Deryder, D. D.; Ferebee, M. J., Jr.

    1984-01-01

    An interactive systems design and synthesis is performed on future spacecraft concepts using the Interactive Design and Evaluation of Advanced spacecraft (IDEAS) computer-aided design and analysis system. The capabilities and advantages of the systems-oriented interactive computer-aided design and analysis system are described. The synthesis of both large antenna and space station concepts, and space station evolutionary growth is demonstrated. The IDEAS program provides the user with both an interactive graphics and an interactive computing capability which consists of over 40 multidisciplinary synthesis and analysis modules. Thus, the user can create, analyze and conduct parametric studies and modify Earth-orbiting spacecraft designs (space stations, large antennas or platforms, and technologically advanced spacecraft) at an interactive terminal with relative ease. The IDEAS approach is useful during the conceptual design phase of advanced space missions when a multiplicity of parameters and concepts must be analyzed and evaluated in a cost-effective and timely manner.

  4. Heat sink structural design concepts for a hypersonic research airplane

    NASA Technical Reports Server (NTRS)

    Taylor, A. H.; Jackson, L. R.

    1977-01-01

    Hypersonic research aircraft design requires careful consideration of thermal stresses. This paper relates some of the problems in a heat sink structural design that can be avoided by appropriate selection of design options including material selection, design concepts, and load paths. Data on several thermal loading conditions are presented on various conventional designs including bulkheads, longerons, fittings, and frames. Results indicate that conventional designs are inadequate and that acceptable designs are possible by incorporating innovative design practices. These include nonintegral pressure compartments, ball-jointed links to distribute applied loads without restraining the thermal expansion, and material selections based on thermal compatibility.

  5. Reduced truck fuel consumption through aerodynamic design

    NASA Technical Reports Server (NTRS)

    Steers, L. L.; Saltzman, E. J.

    1977-01-01

    Full-scale fuel consumption and drag tests were performed on a conventional cab-over-engine tractor-trailer combination and a version of the same vehicle with significant forebody modifications. The modified configuration had greatly increased radii on all front corners and edges of the tractor and a smooth fairing of the modified tractor top and sides extending to the trailer. Concurrent highway testing of the two configurations showed that the modified design used 20% to 24% less fuel than the baseline configuration at 88.5 km/hr (55 mph) with near-calm wind conditions. Coastdown test results showed that the modified configuration reduced the drag coefficient by 0.43 from the baseline value of 1.17 at 88.5 km/hr (55 mph) in calm wind conditions.

  6. Assessment of a multi-stage underwater vehicle concept using a fossil-fuel Stirling engine

    SciTech Connect

    Reader, G.T.; Potter, I.J.

    1995-12-31

    The Stirling Engine because of its inherent closed-cycle operation can be readily modified to work in an airless environment even if the primary source of energy is a fossil fuel. Thus, Stirling engines are well suited for use in the underwater environment and have been operated successfully in manned military submarines since the early 1980s. In recent years fossil fueled Stirling systems have been also proposed for use in small unmanned underwater vehicles (UUVs). However, in this case the need to carry an onboard oxygen supply in a very confined space has presented a number of design difficulties. These are identified in the paper. However, if the oxidant supply to the engine is provided by the membrane extraction of dissolved oxygen from seawater and/or disposable fuel/oxidant pods are used then the UUV Stirling system becomes more attractive. If this latter concept is extended to include multi-stage vehicles then it can be shown that fossil fueled Stirlings could also be put to effective use in long range-long endurance underwater vehicular operations.

  7. Accelerator Design Concept for Future Neutrino Facilities

    SciTech Connect

    ISS Accelerator Working Group; Zisman, Michael S; Berg, J. S.; Blondel, A.; Brooks, S.; Campagne, J.-E.; Caspar, D.; Cevata, C.; Chimenti, P.; Cobb, J.; Dracos, M.; Edgecock, R.; Efthymiopoulos, I.; Fabich, A.; Fernow, R.; Filthaut, F.; Gallardo, J.; Garoby, R.; Geer, S.; Gerigk, F.; Hanson, G.; Johnson, R.; Johnstone, C.; Kaplan, D.; Keil, E.; Kirk, H.; Klier, A.; Kurup, A.; Lettry, J.; Long, K.; Machida, S.; McDonald, K.; Meot, F.; Mori, Y.; Neuffer, D.; Palladino, V.; Palmer, R.; Paul, K.; Poklonskiy, A.; Popovic, M.; Prior, C.; Rees, G.; Rossi, C.; Rovelli, T.; Sandstrom, R.; Sevior, R.; Sievers, P.; Simos, N.; Torun, Y.; Vretenar, M.; Yoshimura, K.; Zisman, Michael S

    2008-02-03

    This document summarizes the findings of the Accelerator Working Group (AWG) of the International Scoping Study (ISS) of a Future Neutrino Factory and Superbeam Facility. The work of the group took place at three plenary meetings along with three workshops, and an oral summary report was presented at the NuFact06 workshop held at UC-Irvine in August, 2006. The goal was to reach consensus on a baseline design for a Neutrino Factory complex. One aspect of this endeavor was to examine critically the advantages and disadvantages of the various Neutrino Factory schemes that have been proposed in recent years.

  8. Operational resilience: concepts, design and analysis.

    PubMed

    Ganin, Alexander A; Massaro, Emanuele; Gutfraind, Alexander; Steen, Nicolas; Keisler, Jeffrey M; Kott, Alexander; Mangoubi, Rami; Linkov, Igor

    2016-01-01

    Building resilience into today's complex infrastructures is critical to the daily functioning of society and its ability to withstand and recover from natural disasters, epidemics, and cyber-threats. This study proposes quantitative measures that capture and implement the definition of engineering resilience advanced by the National Academy of Sciences. The approach is applicable across physical, information, and social domains. It evaluates the critical functionality, defined as a performance function of time set by the stakeholders. Critical functionality is a source of valuable information, such as the integrated system resilience over a time interval, and its robustness. The paper demonstrates the formulation on two classes of models: 1) multi-level directed acyclic graphs, and 2) interdependent coupled networks. For both models synthetic case studies are used to explore trends. For the first class, the approach is also applied to the Linux operating system. Results indicate that desired resilience and robustness levels are achievable by trading off different design parameters, such as redundancy, node recovery time, and backup supply available. The nonlinear relationship between network parameters and resilience levels confirms the utility of the proposed approach, which is of benefit to analysts and designers of complex systems and networks. PMID:26782180

  9. Operational resilience: concepts, design and analysis

    NASA Astrophysics Data System (ADS)

    Ganin, Alexander A.; Massaro, Emanuele; Gutfraind, Alexander; Steen, Nicolas; Keisler, Jeffrey M.; Kott, Alexander; Mangoubi, Rami; Linkov, Igor

    2016-01-01

    Building resilience into today’s complex infrastructures is critical to the daily functioning of society and its ability to withstand and recover from natural disasters, epidemics, and cyber-threats. This study proposes quantitative measures that capture and implement the definition of engineering resilience advanced by the National Academy of Sciences. The approach is applicable across physical, information, and social domains. It evaluates the critical functionality, defined as a performance function of time set by the stakeholders. Critical functionality is a source of valuable information, such as the integrated system resilience over a time interval, and its robustness. The paper demonstrates the formulation on two classes of models: 1) multi-level directed acyclic graphs, and 2) interdependent coupled networks. For both models synthetic case studies are used to explore trends. For the first class, the approach is also applied to the Linux operating system. Results indicate that desired resilience and robustness levels are achievable by trading off different design parameters, such as redundancy, node recovery time, and backup supply available. The nonlinear relationship between network parameters and resilience levels confirms the utility of the proposed approach, which is of benefit to analysts and designers of complex systems and networks.

  10. Operational resilience: concepts, design and analysis

    PubMed Central

    Ganin, Alexander A.; Massaro, Emanuele; Gutfraind, Alexander; Steen, Nicolas; Keisler, Jeffrey M.; Kott, Alexander; Mangoubi, Rami; Linkov, Igor

    2016-01-01

    Building resilience into today’s complex infrastructures is critical to the daily functioning of society and its ability to withstand and recover from natural disasters, epidemics, and cyber-threats. This study proposes quantitative measures that capture and implement the definition of engineering resilience advanced by the National Academy of Sciences. The approach is applicable across physical, information, and social domains. It evaluates the critical functionality, defined as a performance function of time set by the stakeholders. Critical functionality is a source of valuable information, such as the integrated system resilience over a time interval, and its robustness. The paper demonstrates the formulation on two classes of models: 1) multi-level directed acyclic graphs, and 2) interdependent coupled networks. For both models synthetic case studies are used to explore trends. For the first class, the approach is also applied to the Linux operating system. Results indicate that desired resilience and robustness levels are achievable by trading off different design parameters, such as redundancy, node recovery time, and backup supply available. The nonlinear relationship between network parameters and resilience levels confirms the utility of the proposed approach, which is of benefit to analysts and designers of complex systems and networks. PMID:26782180

  11. Design concepts for hardened communications structures

    NASA Astrophysics Data System (ADS)

    Flathau, William J.; Smith, William G.

    1990-03-01

    An important component of any hardened command and control structure is the antenna system that provides communication with the outside world. Two types of antennae were considered; i.e., the whip type and the directional. The whip type is for short range communication and the directional is for use primarily with satellites. In the super high frequency range, the use of directional antennae having parabolic dishes greater than 8 feet in diameter are common. In the very extra high frequency range, dishes that are 2 to 3 feet in diameter are used. The whip type antenna should extend up to, say, 60 feet in the air. Based on this background, a family of structures was designed that can protect whip and directional antennae from the blast and shock effects from a 1-MT device for ground surface overpressure ranging from 15,000 to 500 psi. As the antennae, transmitters, receivers, power supplies, and lifting mechanisms will be located within such structures, appropriate shock spectra plots were developed to determine if the fragility level of pertinent equipment will be exceeded and for use in designing shock isolation systems. Button up periods of 1 and 4 weeks were considered.

  12. Feasibility and Safety Assessment for Advanced Reactor Concepts Using Vented Fuel

    SciTech Connect

    Klein, Andrew; Matthews, Topher; Lenhof, Renae; Deason, Wesley; Harter, Jackson

    2015-01-16

    Recent interest in fast reactor technology has led to renewed analysis of past reactor concepts such as Gas Fast Reactors and Sodium Fast Reactors. In an effort to make these reactors more economic, the fuel is required to stay in the reactor for extended periods of time; the longer the fuel stays within the core, the more fertile material is converted into usable fissile material. However, as burnup of the fuel-rod increases, so does the internal pressure buildup due to gaseous fission products. In order to reach the 30 year lifetime requirements of some reactor designs, the fuel pins must have a vented-type design to allow the buildup of fission products to escape. The present work aims to progress the understanding of the feasibility and safety issues related to gas reactors that incorporate vented fuel. The work was separated into three different work-scopes: 1. Quantitatively determine fission gas release from uranium carbide in a representative helium cooled fast reactor; 2. Model the fission gas behavior, transport, and collection in a Fission Product Vent System; and, 3. Perform a safety analysis of the Fission Product Vent System. Each task relied on results from the previous task, culminating in a limited scope Probabilistic Risk Assessment (PRA) of the Fission Product Vent System. Within each task, many key parameters lack the fidelity needed for comprehensive or accurate analysis. In the process of completing each task, the data or methods that were lacking were identified and compiled in a Gap Analysis included at the end of the report.

  13. New Worlds Observer Telescope and Instrument Optical Design Concepts

    NASA Technical Reports Server (NTRS)

    Howard, Joseph; Kilston, Steve; Kendrick, Steve

    2008-01-01

    Optical design concepts for the telescope and instrumentation for NASA's New Worlds Observer program are presented. First order parameters are derived from the science requirements, and estimated performance metrics are shown using optical models. A four meter multiple channel telescope is discussed, as well as a suite of science instrument concepts. Wide field instrumentation (imager and spectrograph) would be accommodated by a three-mirror anastigmat telescope design. Planet finding and characterization would use a separate channel which is picked off after the first two mirrors (primary and secondary). Guiding concepts are also discussed.

  14. Engineering CAR-T Cells: Design Concepts

    PubMed Central

    Srivastava, Shivani; Riddell, Stanley R.

    2016-01-01

    Despite being empirically designed based on a simple understanding of TCR signaling, T cells engineered with chimeric antigen receptors (CARs) have been remarkably successful in treating patients with advanced refractory B cell malignancies. However, many challenges remain in improving the safety and efficacy of this therapy and extending it toward the treatment of epithelial cancers. Other aspects TCR signaling beyond those directly provided by CD3ζ and CD28 phosphorylation strongly influence a T cell’s ability to differentiate and acquire full effector functions. Here, we discuss how the principles of TCR recognition, including spatial constraints, Kon/Koff rates, and synapse formation, along with in-depth analysis of CAR signaling might be applied to develop safer and more effective synthetic tumor targeting receptors. PMID:26169254

  15. Design considerations for advanced battery concepts

    NASA Technical Reports Server (NTRS)

    Leibecki, H. F.; Thaller, L. H.

    1986-01-01

    A mathematical representation for the charge and discharge of a sodium-sulfur cell is developed. These equations are then used as the basis for a computerized model to examine the effects of cell arrangement in the design of a large multi-kilowatt battery from a group of hypothetical individual cells with known variations in their ampere hour capacity and internal resistance. The cycling characteristics of 216 individual cells arranged in six different configurations are evaluated with the view towards minimizing the adverse effects that are introduced due to the stoichastic aspects of groupings of cells, as well as the possibility of cell failures in both the open and shorted mode. Although battery systems based on sodium-sulfur cells are described in this example, any of the newer electrochemical systems can be fitted into this framework by making appropriate modifications to the basic equations.

  16. An autonomous long-term fast reactor system and the principal design limitations of the concept

    NASA Astrophysics Data System (ADS)

    Tsvetkova, Galina Valeryevna

    The objectives of this dissertation were to find a principal domain of promising and technologically feasible reactor physics characteristics for a multi-purpose, modular-sized, lead-cooled, fast neutron spectrum reactor fueled with an advanced uranium-transuranic-nitride fuel and to determine the principal limitations for the design of an autonomous long-term multi-purpose fast reactor (ALM-FR) within the principal reactor physics characteristic domain. The objectives were accomplished by producing a conceptual design for an ALM-FR and by analysis of the potential ALM-FR performance characteristics. The ALM-FR design developed in this dissertation is based on the concept of a secure transportable autonomous reactor for hydrogen production (STAR-H2) and represents further refinement of the STAR-H2 concept towards an economical, proliferation-resistant, sustainable, multi-purpose nuclear energy system. The development of the ALM-FR design has been performed considering this reactor within the frame of the concept of a self-consistent nuclear energy system (SCNES) that satisfies virtually all of the requirements for future nuclear energy systems: efficient energy production, safety, self-feeding, non-proliferation, and radionuclide burning. The analysis takes into consideration a wide range of reactor design aspects including selection of technologically feasible fuels and structural materials, core configuration optimization, dynamics and safety of long-term operation on one fuel loading, and nuclear material non-proliferation. Plutonium and higher actinides are considered as essential components of an advanced fuel that maintains long-term operation. Flexibility of the ALM-FR with respect to fuel compositions is demonstrated acknowledging the principal limitations of the long-term burning of plutonium and higher actinides. To ensure consistency and accuracy, the modeling has been performed using state-of-the-art computer codes developed at Argonne National

  17. Toroidal field coil design concept and structural support system for CTHR

    SciTech Connect

    Chianese, R. B.; Kelly, J. L.; Ruck, G. W.

    1980-09-01

    The CTHR conceptual design consists of a magnetically confined (tokamak) fusion reactor fitted with a fertile uranium blanket. The fusion driver concept was based on an ignited plasma. All concepts and parameters were selected on the basis that technical feasibility would be achieved by 1995 to assure a viable commercial operation in the early to mid-21st century. The reactor was designed to achieve good fissile fuel production, with electricity production being a second order priority. However, the resulting concepts that evolved were all excellent power producers which significantly improved the economic performance. The subsystems discussed in the following paragraphs provide a background of the application for the TF coil design described in this report.

  18. Design concepts for low-cost composite turbofan engine frame

    NASA Technical Reports Server (NTRS)

    Mitchell, S. C.; Stoffer, L. J.

    1980-01-01

    Design concepts for low cost, lightweight composite engine frames were applied to the design requirements for the frame of a commercial, high bypass engine. Four alternative composite frame design concepts identified which consisted of generic type components and subcomponents that could be adapted to use in different locations in the engine and the different engine sizes. A variety of materials and manufacturing methods were projected with a goal for the lowest number of parts at the lowest possible cost. After a preliminary evaluation of all four frame concepts, two designs were selected for an extended design and evaluation which narrowed the final selection down to one frame that was significantly lower in cost and slighty lighter than the other frame. An implementation plan for this lowest cost frame is projected for future development and includes prospects for reducing its weight with proposed unproven, innovative fabrication techniques.

  19. A Hierarchical Biology Concept Framework: A Tool for Course Design

    PubMed Central

    Khodor, Julia; Halme, Dina Gould; Walker, Graham C.

    2004-01-01

    A typical undergraduate biology curriculum covers a very large number of concepts and details. We describe the development of a Biology Concept Framework (BCF) as a possible way to organize this material to enhance teaching and learning. Our BCF is hierarchical, places details in context, nests related concepts, and articulates concepts that are inherently obvious to experts but often difficult for novices to grasp. Our BCF is also cross-referenced, highlighting interconnections between concepts. We have found our BCF to be a versatile tool for design, evaluation, and revision of course goals and materials. There has been a call for creating Biology Concept Inventories, multiple-choice exams that test important biology concepts, analogous to those in physics, astronomy, and chemistry. We argue that the community of researchers and educators must first reach consensus about not only what concepts are important to test, but also how the concepts should be organized and how that organization might influence teaching and learning. We think that our BCF can serve as a catalyst for community-wide discussion on organizing the vast number of concepts in biology, as a model for others to formulate their own BCFs and as a contribution toward the creation of a comprehensive BCF. PMID:15257339

  20. Trapped Ion Magnetic Resonance: Concepts and Designs

    NASA Astrophysics Data System (ADS)

    Pizarro, Pedro Jose

    A novel spectroscopy of trapped ions is proposed which will bring single-ion detection sensitivity to the observation of magnetic resonance spectra and resolve the apparent incompatibility in existing techniques between high information content and high sensitivity. Methods for studying both electron spin resonance (ESR) and nuclear magnetic resonance (NMR) are designed. They assume established techniques for trapping ions in high magnetic field and observing electrically the trapping frequencies with high resolution (<1 Hz) and sensitivity (single -ion). A magnetic bottle field gradient couples the spin and spatial motions together and leads to the small spin -dependent force on the ion exploited by Dehmelt to observe directly the perturbation of the ground-state electron's axial frequency by its spin magnetic moment. A series of fundamental innovations is described to extend magnetic resonance to molecular ions ( cong 100 amu) and nuclear magnetic moments. It is demonstrated how time-domain trapping frequency observations before and after magnetic resonance can be used to make cooling of the particle to its ground state unnecessary. Adiabatic cycling of the magnetic bottle off between detection periods is shown to be practical and to allow high-resolution magnetic resonance to be encoded pointwise as the presence or absence of trapping frequency shifts. Methods of inducing spin -dependent work on the ion orbits with magnetic field gradients and Larmor frequency irradiation are proposed which greatly amplify the attainable shifts in trapping frequency. The first proposal presented builds on Dehmelt's experiment to reveal ESR spectra. A more powerful technique for ESR is then designed where axially synchronized spin transitions perform spin-dependent work in the presence of a magnetic bottle, which also converts axial amplitude changes into cyclotron frequency shifts. The most general approach presented is a continuous Stern-Gerlach effect in which a magnetic field

  1. Task-oriented display design - Concept and example

    NASA Technical Reports Server (NTRS)

    Abbott, Terence S.

    1989-01-01

    The general topic was in the area of display design alternatives for improved man-machine performance. The intent was to define and assess a display design concept oriented toward providing this task-oriented information. The major focus of this concept deals with the processing of data into parameters that are more relevant to the task of the human operator. Closely coupled to this concept of relevant information is the form or manner in which this information is actually presented. Conventional forms of presentation are normally a direct representation of the underlying data. By providing information in a form that is more easily assimilated and understood, a reduction in human error and cognitive workload may be obtained. A description of this proposed concept with a design example is provided. The application for the example was an engine display for a generic, twin-engine civil transport aircraft. The product of this concept was evaluated against a functionally similar, traditional display. The results of this evaluation showed that a task-oriented approach to design is a viable concept with regard to reducing user error and cognitive workload. The goal of this design process, providing task-oriented information to the user, both in content and form, appears to be a feasible mechanism for increasing the overall performance of a man-machine system.

  2. Task-oriented display design: Concept and example

    NASA Technical Reports Server (NTRS)

    Abbott, Terence S.

    1989-01-01

    The general topic was in the area of display design alternatives for improved man-machine performance. The intent was to define and assess a display design concept oriented toward providing this task-oriented information. The major focus of this concept deals with the processing of data into parameters that are more relevant to the task of the human operator. Closely coupled to this concept of relevant information is the form or manner in which this information is actually presented. Conventional forms of presentation are normally a direct representation of the underlying data. By providing information in a form that is more easily assimilated and understood, a reduction in human error and cognitive workload may be obtained. A description of this proposed concept with a design example is provided. The application for the example was an engine display for a generic, twin-engine civil transport aircraft. The product of this concept was evaluated against a functionally similar, traditional display. The results of this evaluation showed that a task-oriented approach to design is a viable concept with regard to reducing user error and cognitive workload. The goal of this design process, providing task-oriented information to the user, both in content and form, appears to be a feasible mechanism for increasing the overall performance of a man-machine system.

  3. Personalized radiotherapy: concepts, biomarkers and trial design.

    PubMed

    Ree, A H; Redalen, K R

    2015-07-01

    In the past decade, and pointing onwards to the immediate future, clinical radiotherapy has undergone considerable developments, essentially including technological advances to sculpt radiation delivery, the demonstration of the benefit of adding concomitant cytotoxic agents to radiotherapy for a range of tumour types and, intriguingly, the increasing integration of targeted therapeutics for biological optimization of radiation effects. Recent molecular and imaging insights into radiobiology will provide a unique opportunity for rational patient treatment, enabling the parallel design of next-generation trials that formally examine the therapeutic outcome of adding targeted drugs to radiation, together with the critically important assessment of radiation volume and dose-limiting treatment toxicities. In considering the use of systemic agents with presumed radiosensitizing activity, this may also include the identification of molecular, metabolic and imaging markers of treatment response and tolerability, and will need particular attention on patient eligibility. In addition to providing an overview of clinical biomarker studies relevant for personalized radiotherapy, this communication will highlight principles in addressing clinical evaluation of combined-modality-targeted therapeutics and radiation. The increasing number of translational studies that bridge large-scale omics sciences with quality-assured phenomics end points-given the imperative development of open-source data repositories to allow investigators the access to the complex data sets-will enable radiation oncology to continue to position itself with the highest level of evidence within existing clinical practice. PMID:25989697

  4. Thermal design trades for SAFIR architecture concepts

    NASA Technical Reports Server (NTRS)

    Yorke, Harold W.; Paine, Christopher; Bradford, Matt; Dragovan, Mark; Nash, Al; Dooley, Jennifer; Lawrence, Charles

    2004-01-01

    SAFIR is a IO-meter, 4 K space telescope optimized for wavelengths between 20 microns and 1 mm. The combination of aperture diameter and telescope temperature will provide a raw sensitivity improvement of more than a factor of 1000 over presently-planned missions. The sensitivity will be comparable to that of the JWST and ALMA, but at the critical far-IR wavelengths where much of the universe's radiative energy has emerged since the origin of stars and galaxies. We examine several of the critical technologies for SAFIR which enable the large cold aperture, and present results of studies examining the telescope optics and the spacecraft thermal architecture. Both the method by which the aperture is filled, and the overall optical design for the telescope can impact the potential scientific return of SAFIR. Thermal architecture that goes far beyond the sunshades developed for the James Webb Space Telescope will be necessary to achieve the desired sensitivity of SAFIR. By combining active and passive cooling at critical points within the observatory, a significant reduction of the required level of active cooling can be obtained.

  5. Personalized radiotherapy: concepts, biomarkers and trial design

    PubMed Central

    Redalen, K R

    2015-01-01

    In the past decade, and pointing onwards to the immediate future, clinical radiotherapy has undergone considerable developments, essentially including technological advances to sculpt radiation delivery, the demonstration of the benefit of adding concomitant cytotoxic agents to radiotherapy for a range of tumour types and, intriguingly, the increasing integration of targeted therapeutics for biological optimization of radiation effects. Recent molecular and imaging insights into radiobiology will provide a unique opportunity for rational patient treatment, enabling the parallel design of next-generation trials that formally examine the therapeutic outcome of adding targeted drugs to radiation, together with the critically important assessment of radiation volume and dose-limiting treatment toxicities. In considering the use of systemic agents with presumed radiosensitizing activity, this may also include the identification of molecular, metabolic and imaging markers of treatment response and tolerability, and will need particular attention on patient eligibility. In addition to providing an overview of clinical biomarker studies relevant for personalized radiotherapy, this communication will highlight principles in addressing clinical evaluation of combined-modality-targeted therapeutics and radiation. The increasing number of translational studies that bridge large-scale omics sciences with quality-assured phenomics end points—given the imperative development of open-source data repositories to allow investigators the access to the complex data sets—will enable radiation oncology to continue to position itself with the highest level of evidence within existing clinical practice. PMID:25989697

  6. Concept Design of Cardiovascular Stents Based on Load Identification

    NASA Astrophysics Data System (ADS)

    Liu, Q.

    2015-04-01

    The concept design is an important design phase for the cardiovascular stents. The topology optimization methods can be applied to the concept design of the cardiovascular stents. However, the interaction analysis between the stent and artery involves material nonlinearity, geometrical nonlinearity and boundary nonlinearity. The interaction analysis is not easy to be successful if these three types of nonlinearities are considered simultaneously. Therefore, the topology optimization process may be suspended if the nonlinear interaction analysis fails. The aim of this paper is to develop a design method to obtain the concept design of cardiovascular stents based on the load identification and homogenization method. A displacement control method is proposed to identify the design load of the cardiovascular stents. The identified design load is then applied to the stent and the nonlinear interaction analysis is replaced by the linear analysis. Further, the nonlinear analysis is completely avoided in the topology optimization process. The numerical results show that the proposed design method can obtain the legible concept design of cardiovascular stents.

  7. Nuclear design of Helical Cruciform Fuel rods

    SciTech Connect

    Shirvan, K.; Kazimi, M. S.

    2012-07-01

    In order to increase the power density of current and new light water reactor designs, the Helical Cruciform Fuel (HCF) rods are proposed. The HCF rods are equivalent to a cylindrical rod, with the fuel in a cruciform shaped, twisted axially. The HCF rods increase the surface area to volume ratio and inter-subchannel mixing behavior due to their cruciform and helical shapes, respectively. In a previous study, the HCF rods have shown the potential to up-rate existing PWRs by 50% and BWRs by 25%. However, HCF rods do display different neutronics modeling and performance. The cruciform cross section of HCF rods creates radially asymmetric heat generation and temperature distribution. The nominal HCF rod's beginning of life reactivity is reduced, compared to a cylindrical rod with the same fuel volume, by 500 pcm, due to increase in absorption in cladding. The rotation of these rods accounts for reactivity changes, which depends on the H/HM ratio of the pin cell. The HCF geometry shows large sensitivities to U{sup 235} or gadolinium enrichments compared to a cylindrical geometry. In addition, the gadolinium-containing HCF rods show a stronger effect on neighboring HCF rods than in case of cylindrical rods, depending on the orientation of the HCF rods. The helical geometry of the rods introduces axial shadowing of about 600 pcm, not seen in typical cylindrical rods. (authors)

  8. Status of Canada`s nuclear fuel waste management program: On the threshold of the environmental review of the disposal concept

    SciTech Connect

    Allan, C.J.; Stephens, M.E.

    1994-12-31

    Over the last 15 years under the Canadian Nuclear Fuel Waste Management Program, AECL Research has developed and assessed a concept to dispose of nuclear fuel waste from Canada`s CANDU reactors in a vault excavated in plutonic rock of the Canadian Shield. A robust concept has been developed, with options for the choice of materials and designs for the different components. AECL will submit an Environmental Impact Statement describing the concept in early 1994 for review under the Canadian Environmental Assessment and Review Process. If the review is completed by 1996, as currently expected, and if the concept is approved, disposal would not likely begin before about 2025.

  9. Third Generation of AHSS: Microstructure Design Concepts

    NASA Astrophysics Data System (ADS)

    Matlock, David K.; Speer, John G.

    In recent years there has been an increased emphasis on the development of new advanced high strength sheet steels (AHSS), particularly for automotive applications. Descriptive terminology has evolved to describe the “First Generation” of AHSS, i.e. steels that possess primarily ferrite-based microstructures, and the “Second Generation” of AHSS, i.e. austenitic steels with high manganese contents which include steels that are closely related to austenitic stainless steels. First generation AHSS have been referred to by a variety of names including dual phase (DP), transformation induced plasticity (TRIP), complex-phase (CP), and martensitic (MART). Second generation austenitic AHSS include twinninginduced plasticity (TWIP) steels, Al-added lightweight steels with induced plasticity (L-IP®), and shear band strengthened steels (SIP steels). Recently there has been increased interest in the development of the “Third Generation” of AHSS, i.e. steels with strength-ductility combinations significantly better than exhibited by the first generation AHSS but at a cost significantly less than required for second generation AHSS. Approaches to the development of third generation AHSS will require unique alloy/microstructure combinations to achieve the desired properties. Results from a recent composite modeling analysis have shown that the third generation of AHSS will include materials with complex microstructures consisting of a high strength phase (e.g. ultra-fine grained ferrite, martensite, or bainite) and significant amounts of a constituent with substantial ductility and work hardening (e.g. austenite). In this paper, design methodologies based on considerations of fundamental strengthening mechanisms are presented and evaluated to assess the potential for developing new materials. Several processing routes will be assessed, including the recently identified Quenching & Partitioning (Q&P) process developed in the authors’ own laboratory.

  10. A thermophilic microbial fuel cell design

    NASA Astrophysics Data System (ADS)

    Carver, Sarah M.; Vuoriranta, Pertti; Tuovinen, Olli H.

    Microbial fuel cells (MFCs) are reactors able to generate electricity by capturing electrons from the anaerobic respiratory processes of microorganisms. While the majority of MFCs have been tested at ambient or mesophilic temperatures, thermophilic systems warrant evaluation because of the potential for increased microbial activity rates on the anode. MFC studies at elevated temperatures have been scattered, using designs that are already established, specifically air-cathode single chambers and two-chamber designs. This study was prompted by our previous attempts that showed an increased amount of evaporation in thermophilic MFCs, adding unnecessary technical difficulties and causing excessive maintenance. In this paper, we describe a thermophilic MFC design that prevents evaporation. The design was tested at 57 °C with an anaerobic, thermophilic consortium that respired with glucose to generate a power density of 375 mW m -2 after 590 h. Polarization and voltage data showed that the design works in the batch mode but the design allows for adoption to continuous operation.

  11. HTR fuel design, qualification and analyses at PBMR

    SciTech Connect

    Van Der Merwe, J. J.; Venter, J. H.

    2006-07-01

    This paper presents an overview of the safety and design requirements of PBMR fuel, design and performance analyses performed, analyses models and software being developed, and the current program to qualify PBMR fuel for use in the demonstration power plant. PBMR fuel design is based on the German reference fuel design, and will be utilised inside the operating envelope of the original German fuel qualification program. Fuel design, safety functions of the fuel, phenomena that influence fuel performance and fission product release and the design criteria derived from these functions and phenomena are described. Fuel qualification and validation of analyses methods are achieved by evaluations of previous experimental irradiation data and a fuel qualification programme for PBMR type fuel. The performed and planned validation and qualification efforts are presented with some results and issues discussed. The fuel performance analyses methods and legacy software products inherited from the German fuel program are being further developed at PBMR. New models and software are being developed as new requirements such as Monte Carlo design analyses become necessary. (authors)

  12. Design and Evaluation of Nextgen Aircraft Separation Assurance Concepts

    NASA Technical Reports Server (NTRS)

    Johnson, Walter; Ho, Nhut; Arutyunov, Vladimir; Laue, John-Luke; Wilmoth, Ian

    2012-01-01

    To support the development and evaluation of future function allocation concepts for separation assurance systems for the Next Generation Air Transportation System, this paper presents the design and human-in-the-loop evaluation of three feasible function allocation concepts that allocate primary aircraft separation assurance responsibilities and workload to: 1) pilots; 2) air traffic controllers (ATC); and 3) automation. The design of these concepts also included rules of the road, separation assurance burdens for aircraft of different equipage levels, and utilization of advanced weather displays paired with advanced conflict detection and resolution automation. Results of the human-in-the-loop simulation show that: a) all the concepts are robust with respect to weather perturbation; b) concept 1 (pilots) had highest throughput, closest to assigned spacing, and fewest violations of speed and altitude restrictions; c) the energy of the aircraft during the descent phase was better managed in concepts 1 and 2 (pilots and ATC) than in concept 3 (automation), in which the situation awareness of pilots and controllers was lowest, and workload of pilots was highest. The paper also discusses further development of these concepts and their augmentation and integration with future air traffic management tools and systems that are being considered for NextGen.

  13. Nuclear Safety Functions of ITER Gas Injection System Instrumentation and Control and the Concept Design

    NASA Astrophysics Data System (ADS)

    Yang, Yu; Maruyama, S.; Fossen, A.; Villers, F.; Kiss, G.; Zhang, Bo; Li, Bo; Jiang, Tao; Huang, Xiangmei

    2016-08-01

    The ITER Gas Injection System (GIS) plays an important role on fueling, wall conditioning and distribution for plasma operation. Besides that, to support the safety function of ITER, GIS needs to implement three nuclear safety Instrumentation and Control (I&C) functions. In this paper, these three functions are introduced with the emphasis on their latest safety classifications. The nuclear I&C design concept is briefly discussed at the end.

  14. Assessment of Possible Cycle Lengths for Fully-Ceramic Micro-Encapsulated Fuel-Based Light Water Reactor Concepts

    SciTech Connect

    R. Sonat Sen; Michael A. Pope; Abderrafi M. Ougouag; Kemal O. Pasamehmetoglu

    2012-04-01

    The tri-isotropic (TRISO) fuel developed for High Temperature reactors is known for its extraordinary fission product retention capabilities [1]. Recently, the possibility of extending the use of TRISO particle fuel to Light Water Reactor (LWR) technology, and perhaps other reactor concepts, has received significant attention [2]. The Deep Burn project [3] currently focuses on once-through burning of transuranic fissile and fissionable isotopes (TRU) in LWRs. The fuel form for this purpose is called Fully-Ceramic Micro-encapsulated (FCM) fuel, a concept that borrows the TRISO fuel particle design from high temperature reactor technology, but uses SiC as a matrix material rather than graphite. In addition, FCM fuel may also use a cladding made of a variety of possible material, again including SiC as an admissible choice. The FCM fuel used in the Deep Burn (DB) project showed promising results in terms of fission product retention at high burnup values and during high-temperature transients. In the case of DB applications, the fuel loading within a TRISO particle is constituted entirely of fissile or fissionable isotopes. Consequently, the fuel was shown to be capable of achieving reasonable burnup levels and cycle lengths, especially in the case of mixed cores (with coexisting DB and regular LWR UO2 fuels). In contrast, as shown below, the use of UO2-only FCM fuel in a LWR results in considerably shorter cycle length when compared to current-generation ordinary LWR designs. Indeed, the constraint of limited space availability for heavy metal loading within the TRISO particles of FCM fuel and the constraint of low (i.e., below 20 w/0) 235U enrichment combine to result in shorter cycle lengths compared to ordinary LWRs if typical LWR power densities are also assumed and if typical TRISO particle dimensions and UO2 kernels are specified. The primary focus of this summary is on using TRISO particles with up to 20 w/0 enriched uranium kernels loaded in Pressurized Water

  15. Investigating the Act of Design in Discharge Concept Using PMRI

    ERIC Educational Resources Information Center

    Lestariningsih; Anwar, Muhammad; Setiawan, Agus Mulyanto

    2015-01-01

    The goal of this research is to investigate the act of design in discharge concept using Pendidikan Matematika Realistik Indonesia (PMRI) approach with Lapindo's Mud phenomenon as a context. Design research was chosen as the method used in this research that consists of three phases, namely preparing for the experiment, teaching experiment, and…

  16. High Altitude Venus Operations Concept Trajectory Design, Modeling and Simulation

    NASA Technical Reports Server (NTRS)

    Lugo, Rafael A.; Ozoroski, Thomas A.; Van Norman, John W.; Arney, Dale C.; Dec, John A.; Jones, Christopher A.; Zumwalt, Carlie H.

    2015-01-01

    A trajectory design and analysis that describes aerocapture, entry, descent, and inflation of manned and unmanned High Altitude Venus Operation Concept (HAVOC) lighter-than-air missions is presented. Mission motivation, concept of operations, and notional entry vehicle designs are presented. The initial trajectory design space is analyzed and discussed before investigating specific trajectories that are deemed representative of a feasible Venus mission. Under the project assumptions, while the high-mass crewed mission will require further research into aerodynamic decelerator technology, it was determined that the unmanned robotic mission is feasible using current technology.

  17. LMFBR fuel assembly design for HCDA fuel dispersal

    DOEpatents

    Lacko, Robert E.; Tilbrook, Roger W.

    1984-01-01

    A fuel assembly for a liquid metal fast breeder reactor having an upper axial blanket region disposed in a plurality of zones within the fuel assembly. The characterization of a zone is dependent on the height of the axial blanket region with respect to the active fuel region. The net effect of having a plurality of zones is to establish a dispersal flow path for the molten materials resulting during a core meltdown accident. Upward flowing molten material can escape from the core region and/or fuel assembly without solidifying on the surface of fuel rods due to the heat sink represented by blanket region pellets.

  18. Symmetric Achromatic Low-Beta Collider Interaction Region Design Concept

    SciTech Connect

    Morozov, Vasiliy S.; Derbenev, Yaroslav S.; Lin, Fanglei; Johnson, Rolland P.

    2013-01-01

    We present a new symmetry-based concept for an achromatic low-beta collider interaction region design. A specially-designed symmetric Chromaticity Compensation Block (CCB) induces an angle spread in the passing beam such that it cancels the chromatic kick of the final focusing quadrupoles. Two such CCB?s placed symmetrically around an interaction point allow simultaneous compensation of the 1st-order chromaticities and chromatic beam smear at the IP without inducing significant 2nd-order aberrations. We first develop an analytic description of this approach and explicitly formulate 2nd-order aberration compensation conditions at the interaction point. The concept is next applied to develop an interaction region design for the ion collider ring of an electron-ion collider. We numerically evaluate performance of the design in terms of momentum acceptance and dynamic aperture. The advantages of the new concept are illustrated by comparing it to the conventional distributed-sextupole chromaticity compensation scheme.

  19. Lunar fission surface power system design and implementation concept

    NASA Technical Reports Server (NTRS)

    Elliott, John O.; Reh, Kim; MacPherson, Duncan

    2006-01-01

    The request of NASA's Exploration Systems Mission Directorate (ESMD) in May of 2005, a team was assembled within the Prometheus Project to investigate lunar surface nuclear power architectures and provide design and implementation concept inputs to NASA's Exploration Systems Architecture 60-day Study (ESAS) team. System engineering tasks were undertaken to investigate the design and implementation of a Fission Surface Power System (FSPS) that could be launched as early as 2019 as part of a possible initial Lunar Base architecture. As a result of this activity, the Prometheus team evaluated a number of design and implementation concepts as well as a significant number of trades associated with lunar surface power, all culminating in a recommended approach. This paper presents the results of that study, including a recommended FSPS design and implementation concept.

  20. Lunar Fission Surface Power System Design and Implementation Concept

    SciTech Connect

    Elliott, John O.; Reh, Kim; MacPherson, Duncan

    2006-01-20

    At the request of NASA's Exploration Systems Mission Directorate (ESMD) in May of 2005, a team was assembled within the Prometheus Project to investigate lunar surface nuclear power architectures and provide design and implementation concept inputs to NASA's Exploration Systems Architecture 60-day Study (ESAS) team. System engineering tasks were undertaken to investigate the design and implementation of a Fission Surface Power System (FSPS) that could be launched as early as 2019 as part of a possible initial Lunar Base architecture. As a result of this activity, the Prometheus team evaluated a number of design and implementation concepts as well as a significant number of trades associated with lunar surface power, all culminating in a recommended approach. This paper presents the results of that study, including a recommended FSPS design and implementation concept.

  1. Techniques for Conducting Effective Concept Design and Design-to-Cost Trade Studies

    NASA Technical Reports Server (NTRS)

    Di Pietro, David A.

    2015-01-01

    Concept design plays a central role in project success as its product effectively locks the majority of system life cycle cost. Such extraordinary leverage presents a business case for conducting concept design in a credible fashion, particularly for first-of-a-kind systems that advance the state of the art and that have high design uncertainty. A key challenge, however, is to know when credible design convergence has been achieved in such systems. Using a space system example, this paper characterizes the level of convergence needed for concept design in the context of technical and programmatic resource margins available in preliminary design and highlights the importance of design and cost evaluation learning curves in determining credible convergence. It also provides techniques for selecting trade study cases that promote objective concept evaluation, help reveal unknowns, and expedite convergence within the trade space and conveys general practices for conducting effective concept design-to-cost studies.

  2. Concept of advanced spent fuel reprocessing based on ion exchange

    SciTech Connect

    Suzuki, Tatsuya; Takahashi, Kazuyuki; Nogami, Masanobu; Nomura, Masao; Fujii, Yasuhiko; Ozawa, Masaki |; Koyama, Shinichi; Mimura, Hitosi; Fujita, Reiko

    2007-07-01

    Reprocessing based on ion exchange separation is proposed as a safe, proliferation-resistant technology. Tertiary pyridine resin was developed for ion exchange reprocessing. Working medium of the separation system is not nitric acid but hydrochloric acid aqueous solution. The system does not involve strong oxidizing reagent, such as nitric acid but involve chloride ions which works as the week neutron absorbers. The system can be operated at ambient temperatures and pressure. Thus the HCl-ion-exchange reprocessing is regarded as an inherently safe technology. Another advantage of HCl ion-exchange reprocessing is the proliferation-resistant nature. Both U(VI) and Pu(IV) ions are adsorbed in the pyridine type anion exchange resin at relatively high HCl concentration of 6 M. At this condition, the adsorption distribution coefficient of Pu(IV) is smaller than that of U(VI). When uranium is eluted from the resin in the column, plutonium is simultaneously eluted from the column; Pu is recovered with uranium in the front part of uranium adsorption band. Pu(IV) can not be left in the resin after elution of uranium. The use of HCl in the ion-exchange reprocessing causes the problem of the plant materials. Sophisticated material technology is necessary to realize the ion exchange reprocessing using HCl. The technology is so sophisticated that only highly developed countries can hold the technology, thus the technology holding countries will be limited. The plant, therefore, cannot be built under hidden state. In addition, another merit of the process would be the simplicity in operation. One phase, i.e., ion exchange resin is immobile, and the aqueous solution is the only mobile phase. Plant operation is made by the control of one aqueous solution phase. The plant simplicity would ease the international safeguard inspection efforts to be applicable to this kind of reprocessing plant. The present work shows the basic concept of ion exchange reprocessing using HCl medium

  3. Molten carbonate fuel cell product design improvement

    SciTech Connect

    P. Voyentzie; T. Leo; A. Kush; L. Christner; G. Carlson; C. Yuh

    1998-12-20

    Drawing on the manufacture, field test, and post-test experience of the sixteen Santa Clara Demonstration Project (SCDP) stacks, ERC is finalizing the next generation commercial entry product design. The second generation cells are 50% larger in area, 40% lighter on equal geometric area basis, and 30% thinner than the earlier design. These improvements have resulted in doubling of the full-height stack power. A low-cost and high-strength matrix has also been developed for improving product ruggedness. The low-cost advanced cell design incorporating these improvements has been refined through six short stack tests. Power production per cell of two times the SCDP maximum power operation, over ten thermal cycles, and overall operating flexibility with respect to load and thermal changes have been demonstrated in these short stack tests. An internally insulated stack enclosure has been designed and fabricated to eliminate the need for an inert gas environment during operation. ERC has acquired the capability for testing 400kW full-height direct fuel ceil (DFC) stack and balance-of-plant equipment. With the readiness of the power plant test facility, the cell package design, and the stack module, full-height stack testing has begun. The first full- height stack incorporating the post-SCDP second generation design was completed. The stack reached a power level of 253 kW, setting a world record for the highest power production from the advanced fuel cell system. Excellent performance uniformity at this power level affirmed manufacturing reproducibility of the components at the factory. This unoptimized small size test has achieved pipeline natural gas to DC electricity conversion efficiency of 47% (based on lower heating value - LHV) including the parasitic power consumed by the BOP equipment; that should translate to more than 50% efficiency in commercial operation, before employing cogeneration. The power plant system also operated smoothly. With the success of this

  4. Performance evaluation of a proof-of-concept 70 W internal reforming methanol fuel cell system

    NASA Astrophysics Data System (ADS)

    Avgouropoulos, G.; Schlicker, S.; Schelhaas, K.-P.; Papavasiliou, J.; Papadimitriou, K. D.; Theodorakopoulou, E.; Gourdoupi, N.; Machocki, A.; Ioannides, T.; Kallitsis, J. K.; Kolb, G.; Neophytides, S.

    2016-03-01

    A proof-of-concept 70 W Internal Reforming Methanol Fuel Cell (IRMFC) stack including Balance-of-Plant (BoP) was designed, assembled and tested. Advent TPS® high-temperature, polymer electrolyte membrane electrode assemblies were employed for fuel cell operation at 200 °C. In order to avoid phosphoric acid poisoning of the reformer, the anode electrocatalyst of each cell was indirectly adjoined, via a separation plate, to a highly active CuMnAlOx catalyst coated onto copper foam, which served as methanol reforming layer. The reformer was in-situ converting the methanol/steam feed to the required hydrogen (internal reforming concept) at 200 °C, which was readily oxidized at the anode electrodes. The operation of the IRMFC was supported through a number of BoP components consisting of a start-up subsystem (air blower, evaporator and monolithic burner), a combined afterburner/evaporator device, methanol/water supply and data acquisition units (reactants/products analysis, temperature control, flow control, system load/output control). Depending on the composition of the liquid MeOH/H2O feed streams, current densities up to 0.18 A cm-2 and power output up to 70 W could be obtained with remarkable repeatability. Specific targets for improvement of the efficiency were identified.

  5. A design concept for an MMIC microstrip phased array

    NASA Technical Reports Server (NTRS)

    Lee, R. Q.; Smetana, J.; Acosta, R.

    1986-01-01

    A conceptual design for a microstrip phased array with monolithic microwave integrated circuit (MMIC) amplitude and phase controls is described. The MMIC devices used are 20 GHz variable power amplifiers and variable phase shifters recently developed by NASA contractors for applications in future Ka band advanced satellite communication antenna systems. The proposed design concept is for a general NxN element array of rectangular lattice geometry. Subarray excitation is incorporated in the MMIC phased array design to reduce the complexity of the beam forming network and the number of MMIC components required. The proposed design concept takes into consideration the RF characteristics and actual phyical dimensions of the MMIC devices. Also, solutions to spatial constraints and interconnections associated with currently available packaging designs are discussed. Finally, the design of the microstrip radiating elements and their radiation characteristics are examined.

  6. Interactive design and analysis of future large spacecraft concepts

    NASA Technical Reports Server (NTRS)

    Garrett, L. B.

    1981-01-01

    An interactive computer aided design program used to perform systems level design and analysis of large spacecraft concepts is presented. Emphasis is on rapid design, analysis of integrated spacecraft, and automatic spacecraft modeling for lattice structures. Capabilities and performance of multidiscipline applications modules, the executive and data management software, and graphics display features are reviewed. A single user at an interactive terminal create, design, analyze, and conduct parametric studies of Earth orbiting spacecraft with relative ease. Data generated in the design, analysis, and performance evaluation of an Earth-orbiting large diameter antenna satellite are used to illustrate current capabilities. Computer run time statistics for the individual modules quantify the speed at which modeling, analysis, and design evaluation of integrated spacecraft concepts is accomplished in a user interactive computing environment.

  7. Global cost and weight evaluation of fuselage keel design concepts

    NASA Technical Reports Server (NTRS)

    Flynn, B. W.; Morris, M. R.; Metschan, S. L.; Swanson, G. D.; Smith, P. J.; Griess, K. H.; Schramm, M. R.; Humphrey, R. J.

    1993-01-01

    The Boeing program entitled Advanced Technology Composite Aircraft Structure (ATCAS) is focused on the application of affordable composite technology to pressurized fuselage structure of future aircraft. As part of this effort, a design study was conducted on the keel section of the aft fuselage. A design build team (DBT) approach was used to identify and evaluate several design concepts which incorporated different material systems, fabrication processes, structural configurations, and subassembly details. The design concepts were developed in sufficient detail to accurately assess their potential for cost and weight savings as compared with a metal baseline representing current wide body technology. The cost and weight results, along with an appraisal of performance and producibility risks, are used to identify a globally optimized keel design; one which offers the most promising cost and weight advantages over metal construction. Lastly, an assessment is given of the potential for further cost and weight reductions of the selected keel design during local optimization.

  8. Improved Engine Design Concepts Using the Second Law of Thermodynamics

    SciTech Connect

    2009-09-30

    This project was aimed at developing and using numerical tools which incorporate the second law of thermodynamics to better understand engine operation and particularly the combustion process. A major activity of this project was the continual enhancement and use of an existing engine cycle simulation to investigate a wide range of engine parameters and concepts. The major motivation of these investigations was to improve engine efficiency. These improvements were examined from both the first law and second law perspective. One of the most important aspects of this work was the identification of the combustion irreversibilities as functions of engine design and operating parameters. The combustion irreversibility may be quantified in a number of ways but one especially useful way is by determining the destruction of exergy (availability) during the combustion process. This destruction is the penalty due to converting the fuel exergy to thermal energy for producing work. The engine cycle simulation was used to examine the performance of an automotive (5.7 liter), V-8 spark-ignition engine. A base case was defined for operation at 1400 rpm, stoichiometric, MBT spark timing with a bmep of 325 kPa. For this condition, the destruction of exergy during the combustion process was 21.0%. Variations of many engine parameters (including speed, load, and spark timing) did not alter the level of destruction very much (with these variations, the exergy destruction was within the range of 20.5-21.5%). Also, the use of turbocharging or the use of an over-expanded engine design did not significantly change the exergy destruction. The exergy destruction during combustion was most affected by increased inlet oxygen concentration (which reduced the destruction due to the higher combustion temperatures) and by the use of cooled EGR (which increased the destruction). This work has demonstrated that, in general, the exergy destruction for conventional engines is fairly constant ({approx

  9. Technology Insights and Perspectives for Nuclear Fuel Cycle Concepts

    SciTech Connect

    S. Bays; S. Piet; N. Soelberg; M. Lineberry; B. Dixon

    2010-09-01

    The following report provides a rich resource of information for exploring fuel cycle characteristics. The most noteworthy trends can be traced back to the utilization efficiency of natural uranium resources. By definition, complete uranium utilization occurs only when all of the natural uranium resource can be introduced into the nuclear reactor long enough for all of it to undergo fission. Achieving near complete uranium utilization requires technologies that can achieve full recycle or at least nearly full recycle of the initial natural uranium consumed from the Earth. Greater than 99% of all natural uranium is fertile, and thus is not conducive to fission. This fact requires the fuel cycle to convert large quantities of non-fissile material into fissile transuranics. Step increases in waste benefits are closely related to the step increase in uranium utilization going from non-breeding fuel cycles to breeding fuel cycles. The amount of mass requiring a disposal path is tightly coupled to the quantity of actinides in the waste stream. Complete uranium utilization by definition means that zero (practically, near zero) actinide mass is present in the waste stream. Therefore, fuel cycles with complete (uranium and transuranic) recycle discharge predominately fission products with some actinide process losses. Fuel cycles without complete recycle discharge a much more massive waste stream because only a fraction of the initial actinide mass is burned prior to disposal. In a nuclear growth scenario, the relevant acceptable frequency for core damage events in nuclear reactors is inversely proportional to the number of reactors deployed in a fuel cycle. For ten times the reactors in a fleet, it should be expected that the fleet-average core damage frequency be decreased by a factor of ten. The relevant proliferation resistance of a fuel cycle system is enhanced with: decreasing reliance on domestic fuel cycle services, decreasing adaptability for technology misuse

  10. Enroute flight planning: Evaluating design concepts for the development of cooperative problem-solving concepts

    NASA Technical Reports Server (NTRS)

    Smith, Philip J.; Mccoy, C. Elaine

    1991-01-01

    The goals of this research were to develop design concepts to support the task of enroute flight planning. And within this context, to explore and evaluate general design concepts and principles to guide the development of cooperative problem solving systems. A detailed model is to be developed of the cognitive processes involved in flight planning. Included in this model will be the identification of individual differences of subjects. Of particular interest will be differences between pilots and dispatchers. The effect will be studied of the effect on performance of tools that support planning at different levels of abstraction. In order to conduct this research, the Flight Planning Testbed (FPT) was developed, a fully functional testbed environment for studying advanced design concepts for tools to aid in flight planning.

  11. Design and Testing of Prototypic Elements Containing Monolithic Fuel

    SciTech Connect

    N.E. Woolstenhulme; M.K. Meyer; D.M. Wachs

    2011-10-01

    The US fuel development team has performed numerous irradiation tests on small to medium sized specimens containing low enriched uranium fuel designs. The team is now focused on qualification and demonstration of the uranium-molybdenum Base Monolithic Design and has entered the next generation of testing with the design and irradiation of prototypic elements which contain this fuel. The designs of fuel elements containing monolithic fuel, such as AFIP-7 (which is currently under irradiation) and RERTR-FE (which is currently under fabrication), are appropriate progressions relative to the technology life cycle. The culmination of this testing program will occur with the design, fabrication, and irradiation of demonstration products to include the base fuel demonstration and design demonstration experiments. Future plans show that design, fabrication, and testing activities will apply the rigor needed for a demonstration campaign.

  12. Evaluation of advanced combustion concepts for dry NO sub x suppression with coal-derived, gaseous fuels

    NASA Technical Reports Server (NTRS)

    Beebe, K. W.; Symonds, R. A.; Notardonato, J. J.

    1982-01-01

    The emissions performance of a rich lean combustor (developed for liquid fuels) was determined for combustion of simulated coal gases ranging in heating value from 167 to 244 Btu/scf (7.0 to 10.3 MJ/NCM). The 244 Btu/scf gas is typical of the product gas from an oxygen blown gasifier, while the 167 Btu/scf gas is similar to that from an air blown gasifier. NOx performance of the rich lean combustor did not meet program goals with the 244 Btu/scf gas because of high thermal NOx, similar to levels expected from conventional lean burning combustors. The NOx emissions are attributed to inadequate fuel air mixing in the rich stage resulting from the design of the large central fuel nozzle delivering 71% of the total gas flow. NOx yield from ammonia injected into the fuel gas decreased rapidly with increasing ammonia level, and is projected to be less than 10% at NH3 levels of 0.5% or higher. NOx generation from NH3 is significant at ammonia concentrations significantly less than 0.5%. These levels may occur depending on fuel gas cleanup system design. CO emissions, combustion efficiency, smoke and other operational performance parameters were satisfactory. A test was completed with a catalytic combustor concept with petroleum distillate fuel. Reactor stage NOx emissions were low (1.4g NOx/kg fuel). CO emissions and combustion efficiency were satisfactory. Airflow split instabilities occurred which eventually led to test termination.

  13. Design concepts for low cost composite engine frames

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.

    1983-01-01

    Design concepts for low-cost, lightweight composite engine frames were applied to the design requirements for the frame of commercial, high-bypass turbine engines. The concepts consist of generic-type components and subcomponents that could be adapted for use in different locations in the engine and to different engine sizes. A variety of materials and manufacturing methods were assessed with a goal of having the lowest number of parts possible at the lowest possible cost. The evaluation of the design concepts resulted in the identification of a hybrid composite frame which would weigh about 70 percent of the state-of-the-art metal frame and cost would be about 60 percent.

  14. Design concepts for low-cost composite engine frames

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.

    1983-01-01

    Design concepts for low-cost, lightweight composite engine frames were applied to the design requirements for the frame of commercial, high-bypass turbine engines. The concepts consist of generic-type components and subcomponents that could be adapted for use in different locations in the engine and to different engine sizes. A variety of materials and manufacturing methods were assessed with a goal of having the lowest number of parts possible at the lowest possible cost. The evaluation of the design concepts resulted in the identification of a hybrid composite frame which would weigh about 70 percent of the state-of-the-art metal frame and cost would be about 60 percent.

  15. Thermal design concept for a high resolution UV spectrometer

    NASA Technical Reports Server (NTRS)

    Caruso, P.; Stipandic, E.

    1979-01-01

    The thermal design concept described has been developed for the High Resolution UV Spectrometer/Polarimeter to be flown on the Solar Maximum Mission. Based on experience gained from a similar Orbiting Solar Observatory mission payload, it has been recognized that initial protection of the optical elements, contamination control, reduction of scattered light, tight bulk temperature, and gradient constraints are key elements that must be accommodated in any thermal control concept for this class of instrument. Salient features of the design include: (1) a telescope door providing contamination protection of an aplanatic Gregorian telescope; (2) a rastering system for the secondary mirror; (3) a unique solar heat absorbing device; (4) heat pipes and special radiators; (5) heaters for active temperature control and optics contamination protection; and (6) high precision platinum resistance thermometers. Viability of the design concept has been established by extensive thermal analysis and some subsystem testing. A summary of analytical and test results is included.

  16. Preliminary design concept of a subcritical reactor using available resources

    SciTech Connect

    Churnetski, E.L.; Hoyny, V.; Chaudhuri, B.R.; Taprantzis, A.; Yavas, A.

    1993-12-31

    During the Fall 1993 semester, a project was initiated within the Nuclear Engineering Department of the University of Tennessee with the objective of developing a design for a subcritical reactor with maximized multiplication factor using materials currently available. Such a device, if constructed, would serve as a teaching tool for the Department of Nuclear Engineering. Design work was conducted as a large number of computer calculations, with trial pile configurations based on fundamental nuclear engineering principles, in an effort to maximize multiplication factor through fuel element geometry, moderator type, fissile/moderator ratio, and reflector character. The principal objective of the design group for the early phase of this project was to present several possible ``baseline`` reactor designs and identify directions for improvements. For the sake of calculational ease, the cores analyzes to date have been of nearly cubic shape. The SCALE CSAS25 software which runs KENO.Va, a Monte Carlo code, was used for all neutronics calculations. The baseline reactors resulting from work to date are cuboidal in shape and graphite reflected. Two types of fuel element geometries are proposed, a typical triangular pitch rod lattice and an arrangement of discrete fuel slugs placed in a lattice corresponding to body centered cubic packing. The latter arrangement provides slightly higher multiplication factors than the former. Calculations were performed for both graphite and heavy water moderation with heavy water moderation producing considerably higher multiplication factors, as expected. In general, the maximum k{sub eff} for the reactors are in the range of 0.5 to 0.9, well subcritical, except in the cases of the extreme possible values of fuel assay where critical configurations are possible. In these cases, designs with reduced fuel loading are recommended to assure a subcritical multiplication factor.

  17. MODELING AND DESIGN FOR A DIRECT CARBON FUEL CELL WITH ENTRAINED FUEL AND OXIDIZER

    SciTech Connect

    Alan A. Kornhauser; Ritesh Agarwal

    2005-04-01

    membrane electrode fuel cells. Effective bed depths are on the order of 1-5 centimeter, giving power/volume lower than for membrane electrode cells. The porous bed design, however, uses less expensive materials and is more resistant to fouling by coal impurities. The model will be used in the second phase of the project to design a laboratory-scale prototype cell. The prototype cell will demonstrate the concept and provide experimental data for improving the model.

  18. Parametric Design Studies on a Direct Liquid Feed Fuel Cell

    NASA Technical Reports Server (NTRS)

    Frank, H. A.; Narayanan, S. R.; Nakamura, B.; Surampudi, S.; Halpert, G.

    1995-01-01

    Parametric design studies were carried out on a direct methanol liquid feed fuel cell employing 1 M MeOH fuel, air and oxygen as oxidant in a 2 inch x 2 inch cell employing polymeric electrolyte membranes. Measurements include voltage-current output parameters, methanol crossover rate, and impedance as a function of several design and operational variables. Design variables are described.

  19. Operational Concept Evaluation of Solid Oxide Fuel Cells for Space Vehicle Applications

    NASA Technical Reports Server (NTRS)

    Poast, Kenneth I.

    2011-01-01

    With the end of the Space Shuttle Program, NASA is evaluating many different technologies to support future missions. Green propellants, like liquid methane and liquid oxygen, have potential advantages for some applications. A Lander propelled with LOX/methane engines is one such application. When the total vehicle design and infrastructure are considered, the advantages of the integration of propulsion, heat rejection, life support and power generation become attractive for further evaluation. Scavenged residual propellants from the propulsion tanks could be used to generate needed electric power, heat and water with a Solid Oxide Fuel Cell(SOFC). In-Situ Resource Utilization(ISRU) technologies may also generate quantities of green propellants to refill these tanks and/or supply these fuel cells. Technology demonstration projects such as the Morpheus Lander are currently underway to evaluate the practicality of such designs and operational concepts. Tethered tests are currently in progress on this vertical test bed to evaluate the propulsion and avionics systems. Evaluation of the SOFC seeks to determine the feasibility of using these green propellants to supply power and identify the limits to the integration of this technology into a space vehicle prototype.

  20. Concept designs for NASA's Solar Electric Propulsion Technology Demonstration Mission

    NASA Technical Reports Server (NTRS)

    Mcguire, Melissa L.; Hack, Kurt J.; Manzella, David H.; Herman, Daniel A.

    2014-01-01

    Multiple Solar Electric Propulsion Technology Demonstration Mission were developed to assess vehicle performance and estimated mission cost. Concepts ranged from a 10,000 kilogram spacecraft capable of delivering 4000 kilogram of payload to one of the Earth Moon Lagrange points in support of future human-crewed outposts to a 180 kilogram spacecraft capable of performing an asteroid rendezvous mission after launched to a geostationary transfer orbit as a secondary payload. Low-cost and maximum Delta-V capability variants of a spacecraft concept based on utilizing a secondary payload adapter as the primary bus structure were developed as were concepts designed to be co-manifested with another spacecraft on a single launch vehicle. Each of the Solar Electric Propulsion Technology Demonstration Mission concepts developed included an estimated spacecraft cost. These data suggest estimated spacecraft costs of $200 million - $300 million if 30 kilowatt-class solar arrays and the corresponding electric propulsion system currently under development are used as the basis for sizing the mission concept regardless of launch vehicle costs. The most affordable mission concept developed based on subscale variants of the advanced solar arrays and electric propulsion technology currently under development by the NASA Space Technology Mission Directorate has an estimated cost of $50M and could provide a Delta-V capability comparable to much larger spacecraft concepts.

  1. Fuel Systems Architecture (FSA) evaluation criteria and concept evaluation methodology

    NASA Technical Reports Server (NTRS)

    Hendershot, J. E.; Corban, R. R.; Stevenson, S. M.

    1991-01-01

    Consideration is given to two methods developed for the evaluation, screening, and ranking of concepts for Space Exploration Initiative vehicle propellant management systems. The methods selected for handling this multicriteria decision problem are based on the utility theory which transforms both qualitative and quantitative criteria into a nondimensional utility scale for comparison of dissimilar figures of merit. The development of the resultant FSA evaluation criteria and concept evaluation methodology is summarized.

  2. Design for All in Scandinavia - a strong concept.

    PubMed

    Bendixen, Karin; Benktzon, Maria

    2015-01-01

    Design for All is more than an appealing point of view. It is a concept that offers a set of challenges capable of generating innovation and giving design added value and weight. In the Scandinavian tradition, the concept has developed from a purely social dimension to a design topic that is discussed both in terms of its business potential and in relation to Corporate Social Responsibility, CSR. This article gives a State of the Art of the development of Design for All in the Scandinavian countries: Denmark, Norway, Sweden and Finland during the past 15 years, beginning with a common review and joint Scandinavian projects, followed by an overall review country by country which include selected case studies over the past 15 years. PMID:23755993

  3. NASA LaRC Strain Gage Balance Design Concepts

    NASA Technical Reports Server (NTRS)

    Rhew, Ray D.

    1999-01-01

    The NASA Langley Research Center (LaRC) has been designing strain-gage balances for more than fifty years. These balances have been utilized in Langley's wind tunnels, which span over a wide variety of aerodynamic test regimes, as well as other ground based test facilities and in space flight applications. As a result, the designs encompass a large array of sizes, loads, and environmental effects. Currently Langley has more than 300 balances available for its researchers. This paper will focus on the design concepts for internal sting mounted strain-gage balances. However, these techniques can be applied to all force measurement design applications. Strain-gage balance concepts that have been developed over the years including material selection, sting, model interfaces, measuring, sections, fabrication, strain-gaging and calibration will be discussed.

  4. Design Concept for Garbage Bin with Situation Awareness Feature

    NASA Astrophysics Data System (ADS)

    Supattatham, Montri; Papasratorn, Borworn

    Many measures to prevent wide-spread of communicable diseases depends on embedded IT into objects found in public places. This makes it possible to have objects with awareness on surrounding environment, or having situation awareness. This paper presents design concept to add situation awareness features to automatic garbage bin. There are three design levels for including situation awareness features with garbage bin. From awareness goals, required features are identified. Perception, comprehension, and projection are then aligned with the required features, in order to have desired awareness. Automatic garbage bin is implemented using design specification from the proposed design concept. Result from convenience sampling survey reveals that users are satisfied with the implemented garbage bin.

  5. Design, fabrication, and testing of an external fuel (UO2), full-length thermionic converter

    NASA Technical Reports Server (NTRS)

    Schock, A.; Raab, B.

    1971-01-01

    The development of a full-length external-fuel thermionic converter for in-pile testing is described. The development program includes out-of-pile performance testing of the fully fueled-converter, using RF-induction heating, before its installation in the in-pile test capsule. The external-fuel converter is cylindrical in shape, and consists of an inner, centrally cooled collector, and an outer emitter surrounded by nuclear fuel. The term full-length denotes that the converter is long enough to extend over the full height of the reactor core. Thus, the converter is not a scaled-down test device, but a full-scale fuel element of the thermionic reactor. The external-fuel converter concept permits a number of different design options, particularly with respect to the fuel composition and shape, and the collector cooling arrangement. The converter described was developed for the Jet Propulsion Laboratory, and is based on their concept for a thermionic reactor with uninsulated collector cooling as previously described. The converter is double-ended, with through-flow cooling, and with ceramic seals and emitter and collector power take-offs at both ends. The design uses a revolver-shaped tungsten emitter body, with the central emitter hole surrounded by six peripheral fuel holes loaded with cylindrical UO2 pellets.

  6. Aerodynamic characteristics of missile configurations based on Soviet design concepts

    NASA Technical Reports Server (NTRS)

    Spearman, M. L.

    1979-01-01

    The aerodynamic characteristics of several missile concepts are examined. The configurations, which are based on some typical Soviet design concepts, include fixed-wing missiles with either forward- or aft-tail controls, and wing-control missiles with fixed aft stabilizing surfaces. The conceptual missions include air-to-air, surface-to-air, air-to-surface, and surface-to-surface. Analytical and experimental results indicate that through the proper shaping and location of components, and through the exploitation of local flow fields, the concepts provide generally good stability characteristics, high control effectiveness, and low control hinge moments. In addition, in the case of some cruise-type missions, there are indications of the application of area ruling as a means of improving the aerodynamic efficiency. In general, a point-design philosophy is indicated whereby a particular configuration is developed for performing a particular mission.

  7. High-burnup core design using minor actinide-containing metal fuel

    SciTech Connect

    Ohta, Hirokazu; Ogata, Takanari; Obara, T.

    2013-07-01

    A neutronic design study of metal fuel fast reactor (FR) cores is conducted on the basis of an innovative fuel design concept to achieve an extremely high burnup and realize an efficient fuel cycle system. Since it is expected that the burnup reactivity swing will become extremely large in an unprecedented high burnup core, minor actinides (MAs) from light water reactors (LWRs) are added to fresh fuel to improve the core internal conversion. Core neutronic analysis revealed that high burnups of about 200 MWd/kg for a small-scale core and about 300 MWd/kg for a large-scale core can be attained while suppressing the burnup reactivity swing to almost the same level as that of conventional cores with normal burnup. An actinide burnup analysis has shown that the MA consumption ratio is improved to about 60% and that the accumulated MAs originating from LWRs can be efficiently consumed by the high-burnup metal fuel FR. (authors)

  8. Full scale technology demonstration of a modern counterrotating unducted fan engine concept. Design report

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The Unducted Fan engine (UDF trademark) concept is based on an ungeared, counterrotating, unducted, ultra-high-bypass turbofan configuration. This engine is being developed to provide a high thrust-to-weight ratio power plant with exceptional fuel efficiency for subsonic aircraft application. This report covers the design methodology and details for the major components of this engine. The design intent of the engine is to efficiently produce 25,000 pounds of static thrust while meeting life and stress requirements. The engine is required to operate at Mach numbers of 0.8 or above.

  9. Conceptual design report for the mechanical disassembly of Fort St. Vrain fuel elements

    SciTech Connect

    Lord, D.L.; Wadsworth, D.C.; Sekot, J.P.; Skinner, K.L.

    1993-04-01

    A conceptual design study was prepared that: (1) reviewed the operations necessary to perform the mechanical disassembly of Fort St. Vrain fuel elements; (2) contained a description and survey of equipment capable of performing the necessary functions; and (3) performed a tradeoff study for determining the preferred concepts and equipment specifications. A preferred system was recommended and engineering specifications for this system were developed.

  10. Concepts and software for a rational design of polynucleotide probes.

    PubMed

    Moraru, Cristina; Moraru, Gabriel; Fuchs, Bernhard M; Amann, Rudolf

    2011-02-01

    Fluorescence in situ hybridization (FISH) of genes and mRNA is most often based on polynucleotide probes. However, so far there was no published framework for the rational design of polynucleotide probes. The well-established concepts for oligonucleotide probe design cannot be transferred to polynucleotides. Due to the high allele diversity of genes, a single probe is not sufficient to detect all alleles of a gene. Therefore, the main objective of this study was to develop a concept and software (PolyPro) for rational design of polynucleotide probe mixes to target particular genes. PolyPro consists of three modules: a GenBank Taxonomy Extractor (GTE), a Polynucleotide Probe Designer (PPD) and a Hybridization Parameters Calculator (HPC). The new concept proposes the construction of defined polynucleotide mixes to target the habitat specific sequence diversity of a particular gene. The concept and the software are intended as a first step towards a more frequent application of polynucleotides for in situ identification of mRNA and genes in environmental microbiology. PMID:23761233

  11. A study of spaceraft technology and design concepts, volume 1

    NASA Technical Reports Server (NTRS)

    Zylius, F. A.

    1985-01-01

    Concepts for advancing the state of the art in the design of unmanned spacecraft, the requirements that gave rise to its configuration, and the programs of technology that are suggested as leading to its eventual development are examined. Particular technology issues discussed include: structures and materials; thermal control; propulsion; electrical power; communications; data management; and guidance, navigation, and control.

  12. Designing Multimedia Games for Young Children's Taxonomic Concept Development

    ERIC Educational Resources Information Center

    Sung, Yao-Ting; Chang, Kuo-En; Lee, Meng-Da

    2008-01-01

    This study aimed to design and evaluate multimedia games which were based on the theories of children's development of taxonomic concepts. Factors that might affect children's classification skills, such as use of single physical characteristics of objects, competition between thematic and taxonomic relationships, difficulty in forming…

  13. Mars Surveyor '98 MVACS Robotic Arm Control System Design Concepts

    NASA Technical Reports Server (NTRS)

    Bonitz, Robert G.

    1997-01-01

    This paper describes the control system design concepts for the Mars Volatiles and Climate Surveyor (MVACS) Robotic Arm which supports the scientific investigations to be conducted as part of the Mars Surveyor '98 Lander project. Novel solutions are presented to some of the unique problems encountered in this demanding space application with its tight constraints on mass, power, volume, and computing power.

  14. Closed-pore Insulation Thermal Protection System Design Concept Development

    NASA Technical Reports Server (NTRS)

    Varisco, A.; Harris, H. G.

    1973-01-01

    The development of a unique closed-pore ceramic foam insulation (CPI) produced from low cost fly ash cenospheres is reported for space shuttle external thermal protection. Two basic design approaches were developed: bonded and mechanically fastened. A description of the concepts is presented in addition to fabrication and test results.

  15. Low NOx heavy fuel combustor concept program addendum: Low/mid heating value gaseous fuel evaluation

    NASA Technical Reports Server (NTRS)

    Novick, A. S.; Troth, D. L.

    1982-01-01

    The combustion performance of a rich/quench/lean (RQL) combustor was evaluated when operated on low and mid heating value gaseous fuels. Two synthesized fuels were prepared having lower heating values of 10.2 MJ/cu m. (274 Btu/scf) and 6.6 MJ/cu m (176 Btu/scf). These fuels were configured to be representative of actual fuels, being composed primarily of nitrogen, hydrogen, carbon monoxide, and carbon dioxide. A liquid fuel air assist fuel nozzle was modified to inject both of the gaseous fuels. The RQL combustor liner was not changed from the configuration used when the liquid fuels were tested. Both gaseous fuels were tested over a range of power levels from 50 percent load to maximum rated power of the DDN Model 570-K industrial gas turbine engine. Exhaust emissions were recorded for four power level at several rich zone equivalence ratios to determine NOx sensitivity to the rich zone operating point. For the mid Btu heating value gas, ammonia was added to the fuel to simulate a fuel bound nitrogen type gaseous fuel. Results at the testing showed that for the low heating value fuel NOx emissions were all below 20 ppmc and smoke was below a 10 smoke number. For the mid heating value fuel, NOx emissions were in the 50 to 70 ppmc range with the smoke below a 10 smoke number.

  16. Supply Chain Based Solution to Prevent Fuel Tax Evasion: Proof of Concept Final Report

    SciTech Connect

    Capps, Gary J; Lascurain, Mary Beth; Franzese, Oscar; Earl, Dennis Duncan; West, David L; McIntyre, Timothy J; Chin, Shih-Miao; Hwang, Ho-Ling; Connatser, Raynella M; Lewis Sr, Samuel Arthur; Moore, Sheila A

    2011-12-01

    The goal of this research was to provide a proof-of-concept (POC) system for preventing non-taxable (non-highway diesel use) or low-taxable (jet fuel) petrochemical products from being blended with taxable fuel products and preventing taxable fuel products from cross-jurisdiction evasion. The research worked to fill the need to validate the legitimacy of individual loads, offloads, and movements by integrating and validating, on a near-real-time basis, information from global positioning system (GPS), valve sensors, level sensors, and fuel-marker sensors.

  17. Concept and design of a multiple-function laser (MFL)

    NASA Astrophysics Data System (ADS)

    Karning, Heinrich; Ruger, James F.; Weispfenning, Martin

    1998-10-01

    The multifunctional properties of modern Laser sources for future military sensor applications will be studied. The goal of this study is the design of a modular laser source which covers various functions like: Laser rangefinding. Target designation (1.06 micrometer), Eyesafe target designation (1.5 micrometer), Laser radar for Automatic target recognition, Identification friend or foe using Laser interrogation with D- band response as well as allowance for Covert communication and Missile jamming with a laser in the 3 to 5 micrometer range. It is obvious that these applications require a wide range of power levels, wavelength agility and pulse repetition rates. The concept for a compact Laser source to cover these requirements will be presented. In addition a concept for the integrated sensor to provide the above mentioned functions will also be presented.

  18. Equipment designs for the spent LWR fuel dry storage demonstration

    SciTech Connect

    Steffen, R.J.; Kurasch, D.H.; Hardin, R.T.; Schmitten, P.F.

    1980-01-01

    In conjunction with the Spent Fuel Handling and Packaging Program (SFHPP) equipment has been designed, fabricated and successfully utilized to demonstrate the packaging and interim dry storage of spent LWR fuel. Surface and near surface storage configurations containing PWR fuel assemblies are currently on test and generating baseline data. Specific areas of hardware design focused upon include storage cell components and the support related equipment associated with encapsulation, leak testing, lag storage, and emplacement operations.

  19. Fuel Cells for Portable Power: 1. Introduction to DMFCs; 2. Advanced Materials and Concepts for Portable Power Fuel Cells

    SciTech Connect

    Zelenay, Piotr

    2012-07-16

    Thanks to generally less stringent cost constraints, portable power fuel cells, the direct methanol fuel cell (DMFC) in particular, promise earlier market penetration than higher power polymer electrolyte fuel cells (PEFCs) for the automotive and stationary applications. However, a large-scale commercialization of DMFC-based power systems beyond niche applications already targeted by developers will depend on improvements to fuel cell performance and performance durability as well as on the reduction in cost, especially of the portable systems on the higher end of the power spectrum (100-250 W). In this part of the webinar, we will focus on the development of advanced materials (catalysts, membranes, electrode structures, and membrane electrode assemblies) and fuel cell operating concepts capable of fulfilling two key targets for portable power systems: the system cost of $5/W and overall fuel conversion efficiency of 2.0-2.5 kWh/L. Presented research will concentrate on the development of new methanol oxidation catalysts, hydrocarbon membranes with reduced methanol crossover, and improvements to component durability. Time permitted, we will also present a few highlights from the development of electrocatalysts for the oxidation of two alternative fuels for the direct-feed fuel cells: ethanol and dimethyl ether.

  20. Design Package for Fuel Retrieval System Fuel Handling Tool Modification

    SciTech Connect

    TEDESCHI, D.J.

    2000-06-13

    This design package documents design, fabrication, and testing of new stinger tool design. Future revisions will document further development of the stinger tool and incorporate various developmental stages, and final test results.

  1. Checkerboard seed-blanket thorium fuel core concepts for heavy water moderated reactors

    SciTech Connect

    Bromley, B.P.; Hyland, B.

    2013-07-01

    New reactor concepts to implement thorium-based fuel cycles have been explored to achieve maximum resource utilization. Pressure tube heavy water reactors (PT-HWR) are highly advantageous for implementing the use of thorium-based fuels because of their high neutron economy and on-line re-fuelling capability. The use of heterogeneous seed-blanket core concepts in a PT-HWR where higher-fissile-content seed fuel bundles are physically separate from lower-fissile-content blanket bundles allows more flexibility and control in fuel management to maximize the fissile utilization and conversion of fertile fuel. The lattice concept chosen was a 35-element bundle made with a homogeneous mixture of reactor grade Pu (about 67 wt% fissile) and Th, and with a central zirconia rod to help reduce coolant void reactivity. Several checkerboard heterogeneous seed-blanket core concepts with plutonium-thorium-based fuels in a 700-MWe-class PT-HWR were analyzed, using a once-through thorium (OTT) cycle. Different combinations of seed and blanket fuel were tested to determine the impact on core-average burnup, fissile utilization, power distributions, and other performance parameters. It was found that various checkerboard core concepts can achieve a fissile utilization that is up to 26% higher than that achieved in a PT-HWR using more conventional natural uranium fuel bundles. Up to 60% of the Pu is consumed; up to 43% of the energy is produced from thorium, and up to 303 kg/year of Pa-233/U-233/U-235 are produced. Checkerboard cores with about 50% of low-power blanket bundles may require power de-rating (65% to 74%) to avoid exceeding maximum limits for channel and bundle powers and linear element ratings. (authors)

  2. Annular seed-blanket thorium fuel core concepts for heavy water moderated reactors

    SciTech Connect

    Bromley, B.P.; Hyland, B.

    2013-07-01

    New reactor concepts to implement thorium-based fuel cycles have been explored to achieve maximum resource utilization. Pressure tube heavy water reactors (PT-HWR) are highly advantageous for implementing the use of thorium-based fuels because of their high neutron economy and on-line re-fuelling capability. The use of heterogeneous seed-blanket core concepts in a PT-HWR where higher-fissile-content seed fuel bundles are physically separate from lower-fissile-content blanket bundles allows more flexibility and control in fuel management to maximize the fissile utilization and conversion of fertile fuel. The lattice concept chosen is a 35-element bundle made with a homogeneous mixture of reactor grade Pu and Th, and with a central zirconia rod to help reduce coolant void reactivity. Several annular heterogeneous seed-blanket core concepts with plutonium-thorium-based fuels in a 700-MWe-class PT-HWR were analyzed, using a once-through thorium (OTT) cycle. Different combinations of seed and blanket fuel were tested to determine the impact on core-average burnup, fissile utilization, power distributions, and other performance parameters. It was found that the various core concepts can achieve a fissile utilization that is up to 30% higher than is currently achieved in a PT-HWR using conventional natural uranium fuel bundles. Up to 67% of the Pu is consumed; up to 43% of the energy is produced from thorium, and up to 363 kg/year of U-233 is produced. Seed-blanket cores with ∼50% content of low-power blanket bundles may require power de-rating (∼58% to 65%) to avoid exceeding maximum limits for peak channel power, bundle power and linear element ratings. (authors)

  3. 14 CFR 25.343 - Design fuel and oil loads.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Design fuel and oil loads. 25.343 Section 25.343 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Flight Maneuver and Gust Conditions § 25.343 Design fuel and oil loads. (a)...

  4. 14 CFR 23.343 - Design fuel loads.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Design fuel loads. 23.343 Section 23.343 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Structure Flight Loads § 23.343 Design fuel loads. (a) The disposable...

  5. Shippingport Spent Fuel Canister (SSFC) Design Report Project W-518

    SciTech Connect

    JOHNSON, D.M.

    2000-01-27

    The SSFC Design Report Describes A spent fuel canister for Shippingport Core 2 blanket fuel assemblies. The design of the SSFC is a minor modification of the MCO. The modification is limited to the Shield Plug which remains unchanged with regard to interfaces with the canister shell. The performance characteristics remain those for the MCO, which bounds the payload of the SSFC.

  6. Effects of fuel nozzle design on performance of an experimental annular combustor using natural gas fuel

    NASA Technical Reports Server (NTRS)

    Wear, J. D.; Schultz, D. F.

    1972-01-01

    Tests of various fuel nozzles were conducted with natural gas fuel in a full-annulus combustor. The nozzles were designed to provide either axial, angled, or radial fuel injection. Each fuel nozzle was evaluated by measuring combustion efficiency at relatively severe combustor operating conditions. Combustor blowout and altitude ignition tests were also used to evaluate nozzle designs. Results indicate that angled injection gave higher combustion efficiency, less tendency toward combustion instability, and altitude relight characteristics equal to or superior to those of the other fuel nozzles that were tested.

  7. Designing health care environments: Part I. Basic concepts, principles, and issues related to evidence-based design.

    PubMed

    Cesario, Sandra K

    2009-06-01

    A 2001 Institute of Medicine report captured the nation's attention regarding the dangers that can result from the health care environment. This report, fueled by the need for new facilities to be constructed, led to an explosion of research that now links the physical structure and design of health care facilities to the health and well-being of patients, nurses, other health care workers, and visitors. Continuing nursing education that highlights the importance of evidence-based design has been associated with measurable improvement in health care facilities' clinical outcomes, economic performance, employee productivity, customer satisfaction, and cultural congruency. Three major categories of outcomes can be impacted by evidence-based design: stress reduction, safety, and overall health care quality and ecology. In this article, Part I of a two-part series, the basic concepts, principles, and issues related to evidence-based design are introduced. Part II will describe continuing education programs available for nurses. PMID:19639918

  8. Development of environmentally advanced hydropower turbine system design concepts

    SciTech Connect

    Franke, G.F.; Webb, D.R.; Fisher, R.K. Jr.

    1997-08-01

    A team worked together on the development of environmentally advanced hydro turbine design concepts to reduce hydropower`s impact on the environment, and to improve the understanding of the technical and environmental issues involved, in particular, with fish survival as a result of their passage through hydro power sites. This approach brought together a turbine design and manufacturing company, biologists, a utility, a consulting engineering firm and a university research facility, in order to benefit from the synergy of diverse disciplines. Through a combination of advanced technology and engineering analyses, innovative design concepts adaptable to both new and existing hydro facilities were developed and are presented. The project was divided into 4 tasks. Task 1 investigated a broad range of environmental issues and how the issues differed throughout the country. Task 2 addressed fish physiology and turbine physics. Task 3 investigated individual design elements needed for the refinement of the three concept families defined in Task 1. Advanced numerical tools for flow simulation in turbines are used to quantify characteristics of flow and pressure fields within turbine water passageways. The issues associated with dissolved oxygen enhancement using turbine aeration are presented. The state of the art and recent advancements of this technology are reviewed. Key elements for applying turbine aeration to improve aquatic habitat are discussed and a review of the procedures for testing of aerating turbines is presented. In Task 4, the results of the Tasks were assembled into three families of design concepts to address the most significant issues defined in Task 1. The results of the work conclude that significant improvements in fish passage survival are achievable.

  9. Nuclear criticality safety studies applicable to spent fuel shipping cask designs and spent fuel storage

    SciTech Connect

    Tang, J.S.

    1980-11-01

    Criticality analyses of water-moderated and reflected arrays of LWR fresh and spent fuel assemblies were carried out in this study. The calculated results indicate that using the assumption of fresh fuel loading in spent fuel shipping cask design leads to assembly spacings which are about twice the spacings of spent fuel loadings. Some shipping cask walls of composite lead and water are more effective neutron reflectors than water of 30.48 cm (12 in).

  10. A survey of aerobraking orbital transfer vehicle design concepts

    NASA Technical Reports Server (NTRS)

    Park, Chul

    1987-01-01

    The five existing design concepts of the aerobraking orbital transfer vehicle (namely, the raked sphere-cone designs, conical lifting-brake, raked elliptic-cone, lifting-body, and ballute) are reviewed and critiqued. Historical backgrounds, and the geometrical, aerothermal, and operational features of these designs are reviewed first. Then, the technological requirements for the vehicle (namely, navigation, aerodynamic stability and control, afterbody flow impingement, nonequilibrium radiation, convective heat-transfer rates, mission abort and multiple atmospheric passes, transportation and construction, and the payload-to-vehicle weight requirements) are delineated by summarizing the recent advancements made on these issues. Each of the five designs are critiqued and rated on these issues. The highest and the lowest ratings are given to the raked sphere-cone and the ballute design, respectively.