Science.gov

Sample records for fuel element behavior

  1. FUEL ELEMENT

    DOEpatents

    Bean, R.W.

    1963-11-19

    A ceramic fuel element for a nuclear reactor that has improved structural stability as well as improved cooling and fission product retention characteristics is presented. The fuel element includes a plurality of stacked hollow ceramic moderator blocks arranged along a tubular raetallic shroud that encloses a series of axially apertured moderator cylinders spaced inwardly of the shroud. A plurality of ceramic nuclear fuel rods are arranged in the annular space between the shroud and cylinders of moderator and appropriate support means and means for directing gas coolant through the annular space are also provided. (AEC)

  2. FUEL ELEMENT

    DOEpatents

    Fortescue, P.; Zumwalt, L.R.

    1961-11-28

    A fuel element was developed for a gas cooled nuclear reactor. The element is constructed in the form of a compacted fuel slug including carbides of fissionable material in some cases with a breeder material carbide and a moderator which slug is disposed in a canning jacket of relatively impermeable moderator material. Such canned fuel slugs are disposed in an elongated shell of moderator having greater gas permeability than the canning material wherefore application of reduced pressure to the space therebetween causes gas diffusing through the exterior shell to sweep fission products from the system. Integral fission product traps and/or exterior traps as well as a fission product monitoring system may be employed therewith. (AEC)

  3. FUEL ELEMENT

    DOEpatents

    Howard, R.C.; Bokros, J.C.

    1962-03-01

    A fueled matrlx eontnwinlng uncomblned carbon is deslgned for use in graphlte-moderated gas-cooled reactors designed for operatlon at temperatures (about 1500 deg F) at which conventional metallic cladding would ordlnarily undergo undesired carburization or physical degeneratlon. - The invention comprlses, broadly a fuel body containlng uncombined earbon, clad with a nickel alloy contalning over about 28 percent by' weight copper in the preferred embodlment. Thls element ls supporirted in the passageways in close tolerance with the walls of unclad graphite moderator materlal. (AEC)

  4. FUEL ELEMENT SUPPORT

    DOEpatents

    Wyman, W.L.

    1961-06-27

    The described cylindrical fuel element has longitudinally spaced sets of short longitudinal ribs circumferentially spaced from one another. The ribs support the fuel element in a coolant tube so that there is an annular space for coolant flow between the fuel element and the interior of the coolant tube. If the fuel element grows as a result of reactor operation, the circumferential distribution of the ribs maintains the uniformity of the annular space between the coolant tube and the fuel element, and the collapsibility of the ribs prevents the fuel element from becoming jammed in the coolant tube.

  5. NUCLEAR REACTOR FUEL ELEMENT

    DOEpatents

    Wheelock, C.W.; Baumeister, E.B.

    1961-09-01

    A reactor fuel element utilizing fissionable fuel materials in plate form is described. This fuel element consists of bundles of fuel-bearing plates. The bundles are stacked inside of a tube which forms the shell of the fuel element. The plates each have longitudinal fins running parallel to the direction of coolant flow, and interspersed among and parallel to the fins are ribs which position the plates relative to each other and to the fuel element shell. The plate bundles are held together by thin bands or wires. The ex tended surface increases the heat transfer capabilities of a fuel element by a factor of 3 or more over those of a simple flat plate.

  6. Neutronic fuel element fabrication

    DOEpatents

    Korton, George

    2004-02-24

    This disclosure describes a method for metallurgically bonding a complete leak-tight enclosure to a matrix-type fuel element penetrated longitudinally by a multiplicity of coolant channels. Coolant tubes containing solid filler pins are disposed in the coolant channels. A leak-tight metal enclosure is then formed about the entire assembly of fuel matrix, coolant tubes and pins. The completely enclosed and sealed assembly is exposed to a high temperature and pressure gas environment to effect a metallurgical bond between all contacting surfaces therein. The ends of the assembly are then machined away to expose the pin ends which are chemically leached from the coolant tubes to leave the coolant tubes with internal coolant passageways. The invention described herein was made in the course of, or under, a contract with the U.S. Atomic Energy Commission. It relates generally to fuel elements for neutronic reactors and more particularly to a method for providing a leak-tight metal enclosure for a high-performance matrix-type fuel element penetrated longitudinally by a multiplicity of coolant tubes. The planned utilization of nuclear energy in high-performance, compact-propulsion and mobile power-generation systems has necessitated the development of fuel elements capable of operating at high power densities. High power densities in turn require fuel elements having high thermal conductivities and good fuel retention capabilities at high temperatures. A metal clad fuel element containing a ceramic phase of fuel intimately mixed with and bonded to a continuous refractory metal matrix has been found to satisfy the above requirements. Metal coolant tubes penetrate the matrix to afford internal cooling to the fuel element while providing positive fuel retention and containment of fission products generated within the fuel matrix. Metal header plates are bonded to the coolant tubes at each end of the fuel element and a metal cladding or can completes the fuel-matrix enclosure

  7. COMPOSITE FUEL ELEMENT

    DOEpatents

    Hurford, W.J.; Gordon, R.B.; Johnson, W.A.

    1962-12-25

    A sandwich-type fuel element for a reactor is described. This fuel element has the shape of an elongated flat plate and includes a filler plate having a plurality of compartments therein in which the fuel material is located. The filler plate is clad on both sides with a thin cladding material which is secured to the filler plate only to completely enclose the fuel material in each compartment. (AEC)

  8. Nuclear fuel element

    DOEpatents

    Zocher, Roy W.

    1991-01-01

    A nuclear fuel element and a method of manufacturing the element. The fuel element is comprised of a metal primary container and a fuel pellet which is located inside it and which is often fragmented. The primary container is subjected to elevated pressure and temperature to deform the container such that the container conforms to the fuel pellet, that is, such that the container is in substantial contact with the surface of the pellet. This conformance eliminates clearances which permit rubbing together of fuel pellet fragments and rubbing of fuel pellet fragments against the container, thus reducing the amount of dust inside the fuel container and the amount of dust which may escape in the event of container breach. Also, as a result of the inventive method, fuel pellet fragments tend to adhere to one another to form a coherent non-fragmented mass; this reduces the tendency of a fragment to pierce the container in the event of impact.

  9. NUCLEAR REACTOR FUEL ELEMENT

    DOEpatents

    Anderson, W.F.; Tellefson, D.R.; Shimazaki, T.T.

    1962-04-10

    A plate type fuel element which is particularly useful for organic cooled reactors is described. Generally, the fuel element comprises a plurality of fissionable fuel bearing plates held in spaced relationship by a frame in which the plates are slidably mounted in grooves. Clearance is provided in the grooves to allow the plates to expand laterally. The plates may be rigidly interconnected but are floatingly supported at their ends within the frame to allow for longi-tudinal expansion. Thus, this fuel element is able to withstand large temperature differentials without great structural stresses. (AEC)

  10. NEUTRONIC REACTOR FUEL ELEMENT

    DOEpatents

    Shackleford, M.H.

    1958-12-16

    A fuel element possessing good stability and heat conducting properties is described. The fuel element comprises an outer tube formed of material selected from the group consisting of stainhess steel, V, Ti. Mo. or Zr, a fuel tube concentrically fitting within the outer tube and containing an oxide of an isotope selected from the group consisting of U/sup 235/, U/sup 233/, and Pu/sup 239/, and a hollow, porous core concentrically fitting within the fuel tube and formed of an oxide of an element selected from the group consisting of Mg, Be, and Zr.

  11. JACKETED FUEL ELEMENT

    DOEpatents

    Wigner, E.P.; Szilard, L.; Creutz, E.C.

    1959-02-01

    These fuel elements are comprised of a homogeneous metallic uranium body completely enclosed and sealed in an aluminum cover. The uranium body and aluminum cover are bonded together by a layer of zinc located between them. The bonding layer serves to improve transfer of heat, provides an additional protection against corrosion of the uranium by the coolant, and also localizes any possible corrosion by preventing travel of corrosive material along the surface of the fuel element.

  12. NEUTRONIC REACTOR FUEL ELEMENT

    DOEpatents

    Gurinsky, D.H.; Powell, R.W.; Fox, M.

    1959-11-24

    A nuclear fuel element comprising a plurality of nuclear fuel bearing strips is presented. The strips are folded along their longitudinal axes to an angle of about 60 deg and are secured at each end by ferrule to form an elongated assembly suitable for occupying a cylindrical coolant channel.

  13. NEUTRONIC REACTOR FUEL ELEMENT

    DOEpatents

    Kesselring, K.A.; Seybolt, A.U.

    1958-12-01

    A reactor fuel element of the capillary tube type is described. The element consists of a thin walled tube, sealed at both ends, and having an interior coatlng of a fissionable material, such as uranium enriched in U-235. The tube wall is gas tight and is constructed of titanium, zirconium, or molybdenum.

  14. CONSTRUCTION OF NUCLEAR FUEL ELEMENTS

    DOEpatents

    Weems, S.J.

    1963-09-24

    >A rib arrangement and an end construction for nuclearfuel elements laid end to end in a coolant tube are described. The rib arrangement is such that each fuel element, when separated from other fuel elements, fits loosely in the coolant tube and so can easily be inserted or withdrawn from the tube. The end construction of the fuel elements is such that the fuel elements when assembled end to end are keyed against relative rotation, and the ribs of each fuel element cooperate with the ribs of the adjacent fuel elements to give the assembled fuel elements a tight fit with the coolant tube. (AEC)

  15. Nuclear fuel element

    DOEpatents

    Meadowcroft, Ronald Ross; Bain, Alastair Stewart

    1977-01-01

    A nuclear fuel element wherein a tubular cladding of zirconium or a zirconium alloy has a fission gas plenum chamber which is held against collapse by the loops of a spacer in the form of a tube which has been deformed inwardly at three equally spaced, circumferential positions to provide three loops. A heat resistant disc of, say, graphite separates nuclear fuel pellets within the cladding from the plenum chamber. The spacer is of zirconium or a zirconium alloy.

  16. FUEL ELEMENT CONSTRUCTION

    DOEpatents

    Simnad, M.T.

    1961-08-15

    A method of preventing diffusible and volatile fission products from diffusing through a fuel element container and contaminating reactor coolant is described. More specifically, relatively volatile and diffusible fission products either are adsorbed by or react with magnesium fluoride or difluoride to form stable, less volatile, less diffusible forms. The magnesium fluoride or difluoride is disposed anywhere inwardly from the outer surface of the fuel element container in order to be contacted by the fission products before they reach and contaminate the reactor coolant. (AEC)

  17. FUEL ELEMENT CONSTRUCTION

    DOEpatents

    Zumwalt, L.R.

    1961-08-01

    Fuel elements having a solid core of fissionable material encased in a cladding material are described. A conversion material is provided within the cladding to react with the fission products to form stable, relatively non- volatile compounds thereby minimizing the migration of the fission products into the coolant. The conversion material is preferably a metallic fluoride, such as lead difluoride, and may be in the form of a coating on the fuel core or interior of the cladding, or dispersed within the fuel core. (AEC)

  18. NEUTRONIC REACTOR FUEL ELEMENT

    DOEpatents

    Stacy, J.T.

    1958-12-01

    A reactor fuel element having a core of molybdenum-uranium alloy jacketed in stainless steel is described. A barrier layer of tungsten, tantalum, molybdenum, columbium, or silver is interposed between the core and jacket to prevent formation of a low melting eutectic between uranium and the varlous alloy constituents of the stainless steel.

  19. JACKETED REACTOR FUEL ELEMENT

    DOEpatents

    Smith, K.F.; Van Thyne, R.J.

    1958-12-01

    A fuel element is described for fast reactors comprised of a core of uranium metal containing material and a jacket around the core, the jacket consisting of from 2.5 to 15 percent of titanium, from 1 to 5 percent of niobium, and from 80 to 96.5 percent of vanadium.

  20. Nuclear reactor fuel element

    DOEpatents

    Johnson, Carl E.; Crouthamel, Carl E.

    1980-01-01

    A nuclear reactor fuel element is described which has an outer cladding, a central core of fissionable or mixed fissionable and fertile fuel material and a layer of oxygen gettering material on the inner surface of the cladding. The gettering material reacts with oxygen released by the fissionable material during irradiation of the core thereby preventing the oxygen from reacting with and corroding the cladding. Also described is an improved method for coating the inner surface of the cladding with a layer of gettering material.

  1. FUEL ELEMENT FABRICATION METHOD

    DOEpatents

    Hix, J.N.; Cooley, G.E.; Cunningham, J.E.

    1960-05-31

    A method is given for assembling and fabricating a fuel element comprising a plurality of spaced parallel fuel plates of a bowed configuration supported by and between a pair of transperse aluminum side plates. In this method, a brasing alloy is preplated on one surface of the aluminum side plates in the form of a cladding or layer-of uniform thickness. Grooves are then cut into the side plates through the alloy layer and into the base aluminum which results in the utilization of thinner aluminum side plates since a portion of the necessary groove depth is supplied by the brazing alloy.

  2. NUCLEAR REACTOR FUEL-BREEDER FUEL ELEMENT

    DOEpatents

    Currier, E.L. Jr.; Nicklas, J.H.

    1962-08-14

    A fuel-breeder fuel element was developed for a nuclear reactor wherein discrete particles of fissionable material are dispersed in a matrix of fertile breeder material. The fuel element combines the advantages of a dispersion type and a breeder-type. (AEC)

  3. COMPARTMENTED REACTOR FUEL ELEMENT

    DOEpatents

    Cain, F.M. Jr.

    1962-09-11

    A method of making a nuclear reactor fuel element of the elongated red type is given wherein the fissionable fuel material is enclosed within a tubular metal cladding. The method comprises coating the metal cladding tube on its inside wall with a brazing alloy, inserting groups of cylindrical pellets of fissionable fuel material into the tube with spacing members between adjacent groups of pellets, sealing the ends of the tubes to leave a void space therewithin, heating the tube and its contents to an elevated temperature to melt the brazing alloy and to expand the pellets to their maximum dimensions under predetermined operating conditions thereby automatically positioning the spacing members along the tube, and finally cooling the tube to room temperature whereby the spacing disks become permanently fixed at their edges in the brazing alloy and define a hermetically sealed compartment for each fl group of fuel pellets. Upon cooling, the pellets contract thus leaving a space to accommodate thermal expansion of the pellets when in use in a reactor. The spacing members also provide lateral support for the tubular cladding to prevent collapse thereof when subjected to a reactor environment. (AEC)

  4. Nuclear fuel element

    DOEpatents

    Armijo, Joseph S.; Coffin, Jr., Louis F.

    1980-04-29

    A nuclear fuel element for use in the core of a nuclear reactor is disclosed and has an improved composite cladding comprised of a moderate purity metal barrier of zirconium metallurgically bonded on the inside surface of a zirconium alloy tube. The metal barrier forms a shield between the alloy tube and a core of nuclear fuel material enclosed in the composite cladding. There is a gap between the cladding and the core. The metal barrier forms about 1 to about 30 percent of the thickness of the composite cladding and has low neutron absorption characteristics. The metal barrier serves as a preferential reaction site for gaseous impurities and fission products and protects the alloy tube from contact and reaction with such impurities and fission products. Methods of manufacturing the composite cladding are also disclosed.

  5. Nuclear fuel element

    DOEpatents

    Armijo, Joseph S.; Coffin, Jr., Louis F.

    1983-01-01

    A nuclear fuel element for use in the core of a nuclear reactor is disclosed and has a composite cladding having a substrate and a metal barrier metallurgically bonded on the inside surface of the substrate so that the metal barrier forms a shield between the substrate and the nuclear fuel material held within the cladding. The metal barrier forms about 1 to about 30 percent of the thickness of the cladding and is comprised of a low neutron absorption metal of substantially pure zirconium. The metal barrier serves as a preferential reaction site for gaseous impurities and fission products and protects the substrate from contact and reaction with such impurities and fission products. The substrate of the composite cladding is selected from conventional cladding materials and preferably is a zirconium alloy. Methods of manufacturing the composite cladding are also disclosed.

  6. RECONDITIONING FUEL ELEMENTS

    DOEpatents

    Brandt, H.L.

    1962-02-20

    A process is given for decanning fuel elements that consist of a uranium core, an intermediate section either of bronze, silicon, Al-Si, and uranium silicide layers or of lead, Al-Si, and uranium silicide layers around said core, and an aluminum can bonded to said intermediate section. The aluminum can is dissolved in a solution of sodium hydroxide (9 to 20 wt%) and sodium nitrate (35 to 12 wt %), and the layers of the intermediate section are dissolved in a boiling sodium hydroxide solution of a minimum concentration of 50 wt%. (AEC) A method of selectively reducing plutonium oxides and the rare earth oxides but not uranium oxides is described which comprises placing the oxides in a molten solvent of zinc or cadmium and then adding metallic uranium as a reducing agent. (AEC)

  7. FUEL ELEMENT FOR NUCLEAR REACTORS

    DOEpatents

    Bassett, C.H.

    1961-05-16

    A fuel element particularly adapted for use in nuclear reactors of high power density is offered. It has fissionable fuel pellet segments mounted in a tubular housing and defining a central passage in the fuel element. A burnable poison element extends through the central passage, which is designed to contain more poison material at the median portion than at the end portions thereby providing a more uniform hurnup and longer reactivity life.

  8. FUEL ELEMENTS FOR NUCLEAR REACTORS

    DOEpatents

    Blainey, A.; Lloyd, H.

    1961-07-11

    A method of sheathing a tubular fuel element for a nuclear reactor is described. A low melting metal core member is centered in a die, a layer of a powdered sheathing substance is placed on the bottom of the die, the tubular fuel element is inserted in the die, the space between the tubular fuel element and the die walls and core member is filled with the same powdered sheathing substance, a layer of the same substance is placed over the fissile material, and the charge within the die is subjected to pressure in the direction of the axis of the fuel element at the sintering temperature of the protective substance.

  9. Fuel elements of thermionic converters

    SciTech Connect

    Hunter, R.L.; Gontar, A.S.; Nelidov, M.V.; Nikolaev, Yu.V.; Schulepov, L.N.

    1997-01-01

    Work on thermionic nuclear power systems has been performed in Russia within the framework of the TOPAZ reactor program since the early 1960s. In the TOPAZ in-core thermionic convertor reactor design, the fuel element`s cladding is also the thermionic convertor`s emitter. Deformation of the emitter can lead to short-circuiting and is the primary cause of premature TRC failure. Such deformation can be the result of fuel swelling, thermocycling, or increased unilateral pressure on the emitter due to the release of gaseous fission products. Much of the work on TRCs has concentrated on preventing or mitigating emitter deformation by improving the following materials and structures: nuclear fuel; emitter materials; electrical insulators; moderator and reflector materials; and gas-exhaust device. In addition, considerable effort has been directed toward the development of experimental techniques that accurately mimic operational conditions and toward the creation of analytical and numerical models that allow operational conditions and behavior to be predicted without the expense and time demands of in-pile tests. New and modified materials and structures for the cores of thermionic NPSs and new fabrication processes for the materials have ensured the possibility of creating thermionic NPSs for a wide range of powers, from tens to several hundreds of kilowatts, with life spans of 5 to 10 years.

  10. 15. VIEW OF DUMMY FUEL ELEMENT ON FUEL ELEMENT HOLDER. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. VIEW OF DUMMY FUEL ELEMENT ON FUEL ELEMENT HOLDER. SHOWS AIR FORCE MAN AT EDGE OF TANK. INEL PHOTO NUMBER 65-6176, TAKEN NOVEMBER 10, 1965. - Idaho National Engineering Laboratory, Advanced Reentry Vehicle Fusing System, Scoville, Butte County, ID

  11. FUEL ELEMENT FOR NUCLEAR REACTORS

    DOEpatents

    Dickson, J.J.

    1963-09-24

    A method is described whereby fuel tubes or pins are cut, loaded with fuel pellets and a heat transfer medium, sealed at each end with slotted fittings, and assembled into a rectangular tube bundle to form a fuel element. The tubes comprising the fuel element are laterally connected between their ends by clips and tabs to form a linear group of spaced parallel tubes, which receive their vertical support by resting on a grid. The advantages of this method are that it permits elimination of structural material (e.g., fuel-element cans) within the reactor core, and removal of at least one fuel pin from an element and replacement thereof so that a burnable poison may be utilized during the core lifetime. (AEC)

  12. Vented nuclear fuel element

    DOEpatents

    Grossman, Leonard N.; Kaznoff, Alexis I.

    1979-01-01

    A nuclear fuel cell for use in a thermionic nuclear reactor in which a small conduit extends from the outside surface of the emitter to the center of the fuel mass of the emitter body to permit escape of volatile and gaseous fission products collected in the center thereof by virtue of molecular migration of the gases to the hotter region of the fuel.

  13. FUEL ELEMENT FOR NUCLEAR REACTORS

    DOEpatents

    Bassett, C.H.

    1961-11-21

    A fuel element is designed which is particularly adapted for reactors of high power density used to generate steam for the production of electricity. The fuel element consists of inner and outer concentric tubes forming an annular chamber within which is contained fissionable fuel pellet segments, wedge members interposed between the fuel segments, and a spring which, acting with wedge members, urges said fuel pellets radially into contact against the inner surface of the outer tube. The wedge members may be a fertile material convertible into fissionable fuel material by absorbing neutrons emitted from the fissionable fuel pellet segments. The costly grinding of cylindrical fuel pellets to close tolerances for snug engagement is reduced because the need to finish the exact size is eliminated. (AEC)

  14. NUCLEAR REACTOR FUEL ELEMENT ASSEMBLY

    DOEpatents

    Stengel, F.G.

    1963-12-24

    A method of fabricating nuclear reactor fuel element assemblies having a plurality of longitudinally extending flat fuel elements in spaced parallel relation to each other to form channels is presented. One side of a flat side plate is held contiguous to the ends of the elements and a welding means is passed along the other side of the platertransverse to the direction of the longitudinal extension of the elements. The setting and speed of travel of the welding means is set to cause penetration of the side plate with welds at bridge the gap in each channel between adjacent fuel elements with a weld-through bubble of predetermined size. The fabrication of a high strength, dependable fuel element is provided, and the reduction of distortion and high production costs are facilitated by this method. (AEC)

  15. REACTOR FUEL ELEMENTS TESTING CONTAINER

    DOEpatents

    Whitham, G.K.; Smith, R.R.

    1963-01-15

    This patent shows a method for detecting leaks in jacketed fuel elements. The element is placed in a sealed tank within a nuclear reactor, and, while the reactor operates, the element is sparged with gas. The gas is then led outside the reactor and monitored for radioactive Xe or Kr. (AEC)

  16. Spent graphite fuel element processing

    SciTech Connect

    Holder, N.D.; Olsen, C.W.

    1981-07-01

    The Department of Energy currently sponsors two programs to demonstrate the processing of spent graphite fuel elements. General Atomic in San Diego operates a cold pilot plant to demonstrate the processing of both US and German high-temperature reactor fuel. Exxon Nuclear Idaho Company is demonstrating the processing of spent graphite fuel elements from Rover reactors operated for the Nuclear Rocket Propulsion Program. This work is done at Idaho National Engineering Laboratory, where a hot facility is being constructed to complete processing of the Rover fuel. This paper focuses on the graphite combustion process common to both programs.

  17. NEUTRONIC REACTOR FUEL ELEMENT

    DOEpatents

    Horning, W.A.; Lanning, D.D.; Donahue, D.J.

    1959-10-01

    A fuel slug for a reactor which acts as a safety device is described. The fuel slug is an aluminum tube with a foil lining the inside surface of the tube, the foil being fabricated of uranium in a lead matrix.

  18. NUCLEAR REACTOR FUEL ELEMENT

    DOEpatents

    Currier, E.L. Jr.; Nicklas, J.H.

    1963-06-11

    A fuel plate is designed for incorporation into control rods of the type utilized in high-flux test reactors. The fuel plate is designed so that the portion nearest the poison section of the control rod contains about one-half as much fissionable material as in the rest of the plate, thereby eliminating dangerous flux peaking in that portion. (AEC)

  19. FUEL ELEMENT FOR NEUTRONIC REACTORS

    DOEpatents

    Evans, T.C.; Beasley, E.G.

    1961-01-17

    A fuel element for neutronic reactors, particularly the gas-cooled type of reactor, is described. The element comprises a fuel-bearing plate rolled to form a cylinder having a spiral passageway passing from its periphery to its center. In operation a coolant is admitted to the passageway at the periphery of the element, is passed through the spiral passageway, and emerges into a central channel defined by the inner turn of the rolled plate. The advantage of the element is that the fully heated coolant (i.e., coolant emerging into the central channel) is separated and thus insulated from the periphery of the element, which may be in contact with a low-temperature moderator, by the intermediate turns of the spiral fuel element.

  20. FUEL ELEMENTS FOR NEUTRONIC REACTORS

    DOEpatents

    Foote, F.G.; Jette, E.R.

    1963-05-01

    A fuel element for a nuclear reactor is described that consists of a jacket containing a unitary core of fissionable material and a filling of a metal of the group consisting of sodium and sodium-potassium alloys. (AEC)

  1. FUEL ELEMENT FOR NUCLEAR REACTORS

    DOEpatents

    Bassett, C.H.

    1961-05-01

    A nuclear reactor fuel element comprising high density ceramic fissionable material enclosed in a tubular cladding of corrosion-resistant material is described. The fissionable material is in the form of segments of a tube which have cooperating tapered interfaces which produce outward radial displacement when the segments are urged axially together. A resilient means is provided within the tubular housing to constantly urge the fuel segments axially. This design maintains the fuel material in tight contacting engagement against the inner surface of the outer cladding tube to eliminate any gap therebetween which may be caused by differential thermal expansion between the fuel material and the material of the tube.

  2. Protected Nuclear Fuel Element

    DOEpatents

    Kittel, J. H.; Schumar, J. F.

    1962-12-01

    A stainless steel-clad actinide metal fuel rod for use in fast reactors is reported. In order to prevert cladding failures due to alloy formation between the actinide metal and the stainless steel, a mesh-like sleeve of expanded metal is interposed between them, the sleeve metal being of niobium, tantalum, molybdenum, tungsten, zirconium, or vanadium. Liquid alkali metal is added as a heat transfer agent. (AEC)

  3. Fuel element concept for long life high power nuclear reactors

    NASA Technical Reports Server (NTRS)

    Mcdonald, G. E.; Rom, F. E.

    1969-01-01

    Nuclear reactor fuel elements have burnups that are an order of magnitude higher than can currently be achieved by conventional design practice. Elements have greater time integrated power producing capacity per unit volume. Element design concept capitalizes on known design principles and observed behavior of nuclear fuel.

  4. Compact Fuel Element Environment Test

    NASA Technical Reports Server (NTRS)

    Bradley, D. E.; Mireles, O. R.; Hickman, R. R.; Broadway, J. W.

    2012-01-01

    Deep space missions with large payloads require high specific impulse (I(sub sp)) and relatively high thrust to achieve mission goals in reasonable time frames. Conventional, storable propellants produce average I(sub sp). Nuclear thermal rockets (NTRs) capable of high I(sub sp) thrust have been proposed. NTR employs heat produced by fission reaction to heat and therefore accelerate hydrogen, which is then forced through a rocket nozzle providing thrust. Fuel element temperatures are very high (up to 3,000 K) and hydrogen is highly reactive with most materials at high temperatures. Data covering the effects of high-temperature hydrogen exposure on fuel elements are limited. The primary concern is the mechanical failure of fuel elements that employ high melting point metals, ceramics, or a combination (cermet) as a structural matrix into which the nuclear fuel is distributed. It is not necessary to include fissile material in test samples intended to explore high-temperature hydrogen exposure of the structural support matrices. A small-scale test bed designed to heat fuel element samples via noncontact radio frequency heating and expose samples to hydrogen for typical mission durations has been developed to assist in optimal material and manufacturing process selection without employing fissile material. This Technical Memorandum details the test bed design and results of testing conducted to date.

  5. Discrete Element Model for Simulations of Early-Life Thermal Fracturing Behaviors in Ceramic Nuclear Fuel Pellets

    SciTech Connect

    Hai Huang; Ben Spencer; Jason Hales

    2014-10-01

    A discrete element Model (DEM) representation of coupled solid mechanics/fracturing and heat conduction processes has been developed and applied to explicitly simulate the random initiations and subsequent propagations of interacting thermal cracks in a ceramic nuclear fuel pellet during initial rise to power and during power cycles. The DEM model clearly predicts realistic early-life crack patterns including both radial cracks and circumferential cracks. Simulation results clearly demonstrate the formation of radial cracks during the initial power rise, and formation of circumferential cracks as the power is ramped down. In these simulations, additional early-life power cycles do not lead to the formation of new thermal cracks. They do, however clearly indicate changes in the apertures of thermal cracks during later power cycles due to thermal expansion and shrinkage. The number of radial cracks increases with increasing power, which is consistent with the experimental observations.

  6. Monitoring arrangement for vented nuclear fuel elements

    DOEpatents

    Campana, Robert J.

    1981-01-01

    In a nuclear fuel reactor core, fuel elements are arranged in a closely packed hexagonal configuration, each fuel element having diametrically opposed vents permitting 180.degree. rotation of the fuel elements to counteract bowing. A grid plate engages the fuel elements and forms passages for communicating sets of three, four or six individual vents with respective monitor lines in order to communicate vented radioactive gases from the fuel elements to suitable monitor means in a manner readily permitting detection of leakage in individual fuel elements.

  7. Low cost, lightweight fuel cell elements

    NASA Technical Reports Server (NTRS)

    Kindler, Andrew (Inventor)

    2001-01-01

    New fuel cell elements for use in liquid feed fuel cells are provided. The elements including biplates and endplates are low in cost, light in weight, and allow high efficiency operation. Electrically conductive elements are also a part of the fuel cell elements.

  8. IN-CELL visual examinations of K east fuel elements

    SciTech Connect

    Pitner, A.L.; Pyecha, T.D., Fluor Daniel Hanford

    1997-03-06

    Nine outer fuel elements were recovered from the K East Basin and transferred to a hot cell for examination. Extensive testing planned for these elements will support the process design for the Integrated Process Strategy (IPS), with emphasis on drying and conditioning behavior. Visual examinations of the fuel elements confirmed that they are appropriate to meet testing objectives to provide design guidance for IPS processing parameters.

  9. METHOD OF MAKING FUEL ELEMENTS

    DOEpatents

    Bean, C.H.; Macherey, R.E.

    1959-12-01

    A method is described for fabricating fuel elements, particularly for enclosing a plate of metal with a second metal by inserting the plate into an aperture of a frame of a second plate, placing a sheet of the second metal on each of opposite faces of the assembled plate and frame, purging with an inert gas the air from the space within the frame and the sheets while sealing the seams between the frame and the sheets, exhausting the space, purging the space with air, re-exhausting the spaces, sealing the second aperture, and applying heat and pressure to bond the sheets, the plate, and the frame to one another.

  10. FUEL-BREEDER FUEL ELEMENT FOR NUCLEAR REACTOR

    DOEpatents

    Abbott, W.E.; Balent, R.

    1958-09-16

    A fuel element design to facilitate breeding reactor fuel is described. The fuel element is comprised of a coatainer, a central core of fertile material in the container, a first bonding material surrounding the core, a sheet of fissionable material immediately surrounding the first bonding material, and a second bonding material surrounding the fissionable material and being in coniact with said container.

  11. Rack for storing spent nuclear fuel elements

    DOEpatents

    Rubinstein, Herbert J.; Clark, Philip M.; Gilcrest, James D.

    1978-06-20

    A rack for storing spent nuclear fuel elements in which a plurality of aligned rows of upright enclosures of generally square cross-sectional areas contain vertically disposed fuel elements. The enclosures are fixed at the lower ends thereof to a base. Pockets are formed between confronting walls of adjacent enclosures for receiving high absorption neutron absorbers, such as Boral, cadmium, borated stainless steel and the like for the closer spacing of spent fuel elements.

  12. Visual examinations of K east fuel elements

    SciTech Connect

    Pitner, A.L., Fluor Daniel Hanford

    1997-02-03

    Selected fuel elements stored in both ``good fuel`` and ``bad fuel`` canisters in K East Basin were extracted and visually examined full length for damage. Lower end damage in the ``bad fuel`` canisters was found to be more severe than expected based on top end appearances. Lower end damage for the ``good fuel`` canisters, however, was less than expected based on top end observations. Since about half of the fuel in K East Basin is contained in ``good fuel`` canisters based on top end assessments, the fraction of fuel projected to be intact with respect to IPS processing considerations remains at 50% based on these examination results.

  13. DISSOLUTION OF ZIRCONIUM-CONTAINING FUEL ELEMENTS

    DOEpatents

    Horn, F.L.

    1961-12-12

    Uranium is recovered from spent uranium fuel elements containing or clad with zirconium. These fuel elements are placed in an anhydrous solution of hydrogen fluoride and nitrogen dioxide. Within this system uranium forms a soluble complex and zirconium forms an insoluble complex. The uranium can then be separated, treated, and removed from solution as uranium hexafluoride. (AEC)

  14. 35. DETAILS AND SECTIONS OF FUEL ELEMENT SUPPORT PLATFORM, FUEL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    35. DETAILS AND SECTIONS OF FUEL ELEMENT SUPPORT PLATFORM, FUEL ELEMENT HOLDER, TRIP MECHANISM COVER, AND OTHER DETAILS. F.C. TORKELSON DRAWING NUMBER 842-ARVFS-701-S-3. INEL INDEX CODE NUMBER: 075 0701 60 851 151977. - Idaho National Engineering Laboratory, Advanced Reentry Vehicle Fusing System, Scoville, Butte County, ID

  15. NEUTRONIC REACTOR AND FUEL ELEMENT THEREFOR

    DOEpatents

    Szilard, L.; Young, G.J.

    1958-03-01

    This patent relates to a reactor design of the type which employs solid fuel elements disposed in channels within the moderator through which channels and around the fuel elements is conveyed a coolant fiuid. The coolant channels are comprised of aluminum tubes extending through a solid moderator such as graphite and the fuel elements are comprised of an elongated solid body of natural uranium jacketed in an aluminum jacket with the ends thereof closed by aluminum caps of substantially greater thickness than the jacket was and in good thermal contact with the fuel material to facilitate the conduction of heat from the central portion of said ends to the coolant surrounding the fuel element to prevent overheating of said central portion.

  16. MRT fuel element inspection at Dounreay

    SciTech Connect

    Gibson, J.

    1997-08-01

    To ensure that their production and inspection processes are performed in an acceptable manner, ie. auditable and traceable, the MTR Fuel Element Fabrication Plant at Dounreay operates to a documented quality system. This quality system, together with the fuel element manufacturing and inspection operations, has been independently certified to ISO9002-1987, EN29002-1987 and BS5750:Pt2:1987 by Lloyd`s Register Quality Assurance Limited (LRQA). This certification also provides dual accreditation to the relevant German, Dutch and Australian certification bodies. This paper briefly describes the quality system, together with the various inspection stages involved in the manufacture of MTR fuel elements at Dounreay.

  17. Identification of failed fuel element

    DOEpatents

    Fryer, Richard M.; Matlock, Robert G.

    1976-06-22

    A passive fission product gas trap is provided in the upper portion of each fuel subassembly in a nuclear reactor. The gas trap consists of an inverted funnel of less diameter than the subassembly having a valve at the apex thereof. An actuating rod extends upwardly from the valve through the subassembly to a point where it can be contacted by the fuel handling mechanism for the reactor. Interrogation of the subassembly for the presence of fission products is accomplished by lowering the fuel handling machine onto the subassembly to press down on the actuating rod and open the valve.

  18. Apparatus for inspecting fuel elements

    DOEpatents

    Oakley, David J.; Groves, Oliver J.; Kaiser, Bruce J.

    1986-01-01

    Disclosed is an alpha monitor usable in an automated nuclear fuel pin loading and processing unit. Fuel pins or other elongated pins are fed laterally into the alpha monitor in a singular fashion and are translated by a first roller assembly into a weld flare machining and decontamination substation not forming a part of the invention. Pins return and are lifted upwardly and transferred across to a combined pin lifting and electrode operating means which lifts the pins upwardly into a clamshell electrode assembly which is spread open by a combined pin lifting and electrode operating means. Once inserted the clamshell type electrode arrangement closes around the fuel pins so that inspection can occur. Fuel pins are inspected by charging electrodes to a negative potential and measuring the change in charge occurring when positively charged alpha particles strike the negatively charged electrodes. After inspection, the fuel pins are lowered by the pin lifting and electrode operating means into a second roller assembly which longitudinally conveys approved pins from the airtight enclosure in which the alpha monitor is mounted. If the fuel pins are rejected then they are moved laterally by a second transfer means and onto another system for further processing.

  19. Apparatus for inspecting fuel elements

    DOEpatents

    Kaiser, B.J.; Oakley, D.J.; Groves, O.J.

    1984-12-21

    This disclosure describes an alpha monitor usable in an automated nuclear fuel pin loading and processing unit. Fuel pins or other elongated pins are fed laterally into the alpha monitor in a singular fashion and are translated by a first roller assembly into a weld flare machining and decontamination substation not forming a part of the invention. Pins return and are lifted upwardly and transferred across to a combined pin lifting and electrode operating means which lifts the pins upwardly into a clamshell electrode assembly which is spread open by a combined pin lifting and electrode operating means. Once inserted the clamshell type electrode arrangement closes around the fuel pins so that inspection can occur. Fuel pins are inspected by charging electrodes to a negative potential and measuring the change in charge occurring when positively charged alpha particles strike the negatively charged electrodes. After inspection, the fuel pins are lowered by the pin lifting and electrode operating means into a second roller assembly which longitudinally conveys approved pins from the airtight enclosure in which the alpha monitor is mounted. If the fuel pins are rejected then they are moved laterally by a second transfer means and onto another system for further processing.

  20. Volume reduction of spent fuel elements for direct disposal

    SciTech Connect

    Wasserfuhr, I.C.

    1995-12-31

    The method of direct disposal of spent fuel elements provides the placing of fuel and non-fuel elements into the POLLUX final disposal casks. It is, however, necessary to disassemble the fuel elements into fuel rods and structural parts. While the fuel rods are condensed, the remaining structure is treated further with a 500-t skeleton press to minimize the volume.

  1. Fuel elements of research reactor CM

    SciTech Connect

    Kozlov, A.V.; Morozov, A.V.; Vatulin, A.V.; Ershov, S.A.

    2013-07-01

    In 1961 the CM research reactor was commissioned at the Research Institute of Atomic Reactors (Dimitrovgrad, Russia), it was intended to carry on investigations and the production of transuranium nuclides. The reactor is of a tank type. Original fuel assembly contained plate fuels that were spaced with vanes and corrugated bands. Nickel was used as a cladding material, fuel meat was produced from UO{sub 2} + electrolytic nickel composition. Fuel plates have been replaced by self-spacing cross-shaped dispersion fuels clad in stainless steel. In 2005 the reactor was updated. The purpose of this updating was to increase the quantity of irradiation channels in the reactor core and to improve the neutron balance. The updating was implemented at the expense of 20 % reduction in the quantity of fuel elements in the core which released a space for extra channels and decreased the mass of structural materials in the core. The updated reactor is loaded with modified standard fuel elements with 20 % higher uranium masses. At the same time stainless steel in fuel assembly shrouds was substituted by zirconium alloy. Today in progress are investigations and work to promote the second stage of reactor updating that involve developments of cross-shaped fuel elements having low neutron absorption matrix materials. This article gives an historical account of the design and main technical changes that occurred for the CM reactor since its commissioning.

  2. NEUTRONIC REACTOR FUEL ELEMENT AND CORE SYSTEM

    DOEpatents

    Moore, W.T.

    1958-09-01

    This patent relates to neutronic reactors and in particular to an improved fuel element and a novel reactor core system for facilitating removal of contaminating fission products, as they are fermed, from association with the flssionable fuel, so as to mitigate the interferent effects of such fission products during reactor operation. The fuel elements are comprised of tubular members impervious to fluid and contatning on their interior surfaces a thin layer of fissionable material providing a central void. The core structure is comprised of a plurality of the tubular fuel elements arranged in parallel and a closed manifold connected to their ends. In the reactor the core structure is dispersed in a water moderator and coolant within a pressure vessel, and a means connected to said manifuld is provided for withdrawing and disposing of mobile fission product contamination from the interior of the feel tubes and manifold.

  3. Identification of leaking TRIGA fuel elements

    SciTech Connect

    Bennion, John S.; Crawford, Kevan C.; Gansauge, Todd C.; Sandquist, Gary M.

    1990-07-01

    The 100 kW TRIGA Mark I Nuclear Reactor at the University of Utah achieved initial criticality in October, 1975. Previously irradiated fuel consisting of stainless-steel- and aluminum-clad elements was acquired from the University of Arizona and the U.S. Army's Harry Diamond Laboratories in Adelphi, Maryland. Past core configurations have been comprised of both types of fuel with the aluminum-clad elements normally restricted to outer hexagonal rings of the core to provide a large safety margin between actual fuel temperature and limits set forth in the facility Technical Specifications. On October 20, 1987, trace cesium-137 contamination was discovered during routine analysis of the ion-exchange resin in the demineralizer circuit. The presence of Cs-137 indicated a possible clad defect resulting in the leakage of fission products. Reactor operations were allowed only to assist in identifying the source of the leakage. Pool water samples obtained following a two-hour operation at full power were spectroscopically analyzed and found to contain very small amounts of short-lived noble gases (e.g., Kr-85m, Kr-87, Kr-88, Xe-138) and their decay daughter products (e.g., Rb-88, Cs-138). Samples of the gaseous effluent from the facility collected in activated charcoal canisters showed no indication of fission product contamination. The small amount of activity released to the pool water suggested that a single defective element was responsible for the leakage. The instrumented fuel element and the aluminum-clad fuel were initially suspected as sources of the leakage. A simple scheme was devised to identify the defective element by exchanging four or five elements from the core with fuel in storage and then operating the reactor at 90 kW power for two hours. A pool water sample was then taken and analyzed to determine if the damaged element had been removed from the core. This process was repeated several times until all of the aluminum-clad fuel and several stainless

  4. IMPROVED TYPE OF FUEL ELEMENT

    DOEpatents

    Monson, H.O.

    1961-01-24

    A radiator-type fuel block assembly is described. It has a hexagonal body of neutron fissionable material having a plurality of longitudinal equal- spaced coolant channels therein aligned in rows parallel to each face of the hexagonal body. Each of these coolant channels is hexagonally shaped with the corners rounded and enlarged and the assembly has a maximum temperature isothermal line around each channel which is approximately straight and equidistant between adjacent channels.

  5. Nuclear fuel elements having a composite cladding

    DOEpatents

    Gordon, Gerald M.; Cowan, II, Robert L.; Davies, John H.

    1983-09-20

    An improved nuclear fuel element is disclosed for use in the core of nuclear reactors. The improved nuclear fuel element has a composite cladding of an outer portion forming a substrate having on the inside surface a metal layer selected from the group consisting of copper, nickel, iron and alloys of the foregoing with a gap between the composite cladding and the core of nuclear fuel. The nuclear fuel element comprises a container of the elongated composite cladding, a central core of a body of nuclear fuel material disposed in and partially filling the container and forming an internal cavity in the container, an enclosure integrally secured and sealed at each end of said container and a nuclear fuel material retaining means positioned in the cavity. The metal layer of the composite cladding prevents perforations or failures in the cladding substrate from stress corrosion cracking or from fuel pellet-cladding interaction or both. The substrate of the composite cladding is selected from conventional cladding materials and preferably is a zirconium alloy.

  6. Upgraded HFIR Fuel Element Welding System

    SciTech Connect

    Sease, John D

    2010-02-01

    The welding of aluminum-clad fuel plates into aluminum alloy 6061 side plate tubing is a unique design feature of the High Flux Isotope Reactor (HFIR) fuel assemblies as 101 full-penetration circumferential gas metal arc welds (GMAW) are required in the fabrication of each assembly. In a HFIR fuel assembly, 540 aluminum-clad fuel plates are assembled into two nested annular fuel elements 610 mm (24-inches) long. The welding process for the HFIR fuel elements was developed in the early 1960 s and about 450 HFIR fuel assemblies have been successfully welded using the GMAW process qualified in the 1960 s. In recent years because of the degradation of the electronic and mechanical components in the old HFIR welding system, reportable defects in plate attachment or adapter welds have been present in almost all completed fuel assemblies. In October 2008, a contract was awarded to AMET, Inc., of Rexburg, Idaho, to replace the old welding equipment with standard commercially available welding components to the maximum extent possible while maintaining the qualified HFIR welding process. The upgraded HFIR welding system represents a major improvement in the welding system used in welding HFIR fuel elements for the previous 40 years. In this upgrade, the new inner GMAW torch is a significant advancement over the original inner GMAW torch previously used. The innovative breakthrough in the new inner welding torch design is the way the direction of the cast in the 0.762 mm (0.030-inch) diameter aluminum weld wire is changed so that the weld wire emerging from the contact tip is straight in the plane perpendicular to the welding direction without creating any significant drag resistance in the feeding of the weld wire.

  7. Nuclear fuel elements made from nanophase materials

    SciTech Connect

    Heubeck, Norman B.

    1997-12-01

    A nuclear reactor core fuel element is composed of nanophase high temperature materials. An array of the fuel elements in rod form are joined in an open geometry fuel cell that preferably also uses such nanophase materials for the cell structures. The particular high temperature nanophase fuel element material must have the appropriate mechanical characteristics to avoid strain-related failure even at high temperatures, in the order of about 3,000 F. Preferably, the reactor type is a pressurized or boiling water reactor and the nanophase material is a high temperature ceramic or ceramic composite. Nanophase metals, or nanophase metals with nanophase ceramics in a composite mixture, also have desirable characteristics, although their temperature capability is not as great as with all ceramic nanophase material. Combinations of conventional or nanophase metals and conventional or nanophase ceramics can be employed as long as there is at least one nanophase material in the composite. The nuclear reactor so constructed has a number of high strength fuel particles, a nanophase structural material for supporting a fuel rod at high temperature, a configuration to allow passive cooling in the event of a primary cooling system failure, an ability to retain a coolable geometry even at high temperatures, an ability to resist generation of hydrogen gas, and a configuration having good nuclear, corrosion and mechanical characteristics.

  8. Nuclear fuel elements made from nanophase materials

    DOEpatents

    Heubeck, Norman B.

    1998-01-01

    A nuclear reactor core fuel element is composed of nanophase high temperature materials. An array of the fuel elements in rod form are joined in an open geometry fuel cell that preferably also uses such nanophase materials for the cell structures. The particular high temperature nanophase fuel element material must have the appropriate mechanical characteristics to avoid strain related failure even at high temperatures, in the order of about 3000.degree. F. Preferably, the reactor type is a pressurized or boiling water reactor and the nanophase material is a high temperature ceramic or ceramic composite. Nanophase metals, or nanophase metals with nanophase ceramics in a composite mixture, also have desirable characteristics, although their temperature capability is not as great as with all-ceramic nanophase material. Combinations of conventional or nanophase metals and conventional or nanophase ceramics can be employed as long as there is at least one nanophase material in the composite. The nuclear reactor so constructed has a number of high strength fuel particles, a nanophase structural material for supporting a fuel rod at high temperature, a configuration to allow passive cooling in the event of a primary cooling system failure, an ability to retain a coolable geometry even at high temperatures, an ability to resist generation of hydrogen gas, and a configuration having good nuclear, corrosion, and mechanical characteristics.

  9. Nuclear fuel elements made from nanophase materials

    DOEpatents

    Heubeck, N.B.

    1998-09-08

    A nuclear reactor core fuel element is composed of nanophase high temperature materials. An array of the fuel elements in rod form are joined in an open geometry fuel cell that preferably also uses such nanophase materials for the cell structures. The particular high temperature nanophase fuel element material must have the appropriate mechanical characteristics to avoid strain related failure even at high temperatures, in the order of about 3000 F. Preferably, the reactor type is a pressurized or boiling water reactor and the nanophase material is a high temperature ceramic or ceramic composite. Nanophase metals, or nanophase metals with nanophase ceramics in a composite mixture, also have desirable characteristics, although their temperature capability is not as great as with all-ceramic nanophase material. Combinations of conventional or nanophase metals and conventional or nanophase ceramics can be employed as long as there is at least one nanophase material in the composite. The nuclear reactor so constructed has a number of high strength fuel particles, a nanophase structural material for supporting a fuel rod at high temperature, a configuration to allow passive cooling in the event of a primary cooling system failure, an ability to retain a coolable geometry even at high temperatures, an ability to resist generation of hydrogen gas, and a configuration having good nuclear, corrosion, and mechanical characteristics. 5 figs.

  10. JACKETED FUEL ELEMENTS FOR GRAPHITE MODERATED REACTORS

    DOEpatents

    Szilard, L.; Wigner, E.P.; Creutz, E.C.

    1959-05-12

    Fuel elements for a heterogeneous, fluid cooled, graphite moderated reactor are described. The fuel elements are comprised of a body of natural uranium hermetically sealed in a jacket of corrosion resistant material. The jacket, which may be aluminum or some other material which is non-fissionable and of a type having a low neutron capture cross-section, acts as a barrier between the fissioning isotope and the coolant or moderator or both. The jacket minimizes the tendency of the moderator and coolant to become radioactive and/or contaminated by fission fragments from the fissioning isotope.

  11. FUEL ELEMENT AND METHOD OF PREPARATION

    DOEpatents

    Kingston, W.E.

    1961-04-25

    A nuclear fuel element in the form of a wire is reported. A bar of uranium is enclosed in a thin layer of aluminum and the composite is sheathed in beryllium, zirconium, or stainnless steel. The sheathed article is then drawn to wire form, heated to alloy the aluminum with both uranium and sheath, and finally cold worked.

  12. High Burnup Fuel Behavior Modeling

    SciTech Connect

    Jahingir, M.; Rand, R.; Stachowski, R.; Miles, B.; Kusagaya, K.

    2007-07-01

    This paper discusses the development and qualification of the PRIME03 code to address high burnup mechanisms and to improve uranium utilization in current and new reactor designs. Materials properties and behavioral models have been updated from previous thermal-mechanical codes to reflect the effects of burnup on fuel pellet thermal conductivity, Zircaloy creep, fuel pellet relocation, and fission gas release. These new models are based on results of in-pool and post irradiation examination (PIE) of commercial boiling water reactor (BWR) fuel rods at high burnup and results from international experimental programs. The new models incorporated into PRIME03 also address specific high burnup effects associated with formation of pellet rim porosity at high exposure. The PRIME03 code is qualified by comparison of predicted and measured fuel performance parameters for a large number of high, low, and moderate burnup test and commercial reactor rod. The extensive experimental qualification of the PRIME03 prediction capabilities confirms that it is a reliable best-estimate predictor of fuel rod thermal-mechanical performance over a wide range of design and operating conditions. (authors)

  13. Liquid fuel injection elements for rocket engines

    NASA Technical Reports Server (NTRS)

    Cox, George B., Jr. (Inventor)

    1993-01-01

    Thrust chambers for liquid propellant rocket engines include three principal components. One of these components is an injector which contains a plurality of injection elements to meter the flow of propellants at a predetermined rate, and fuel to oxidizer mixture ratio, to introduce the mixture into the combustion chamber, and to cause them to be atomized within the combustion chamber so that even combustion takes place. Evolving from these injectors are tube injectors. These tube injectors have injection elements for injecting the oxidizer into the combustion chamber. The oxidizer and fuel must be metered at predetermined rates and mixture ratios in order to mix them within the combustion chamber so that combustion takes place smoothly and completely. Hence tube injectors are subject to improvement. An injection element for a liquid propellant rocket engine of the bipropellant type is provided which includes tangential fuel metering orifices, and a plurality of oxidizer tube injection elements whose injection tubes are also provided with tangential oxidizer entry slots and internal reed valves.

  14. Automatic inspection for remotely manufactured fuel elements

    SciTech Connect

    Reifman, J.; Vitela, J.E.; Gibbs, K.S.; Benedict, R.W.

    1995-06-01

    Two classification techniques, standard control charts and artificial neural networks, are studied as a means for automating the visual inspection of the welding of end plugs onto the top of remotely manufactured reprocessed nuclear fuel element jackets. Classificatory data are obtained through measurements performed on pre- and post-weld images captured with a remote camera and processed by an off-the-shelf vision system. The two classification methods are applied in the classification of 167 dummy stainless steel (HT9) fuel jackets yielding comparable results.

  15. Thermionic Fuel Element Verification Program - Overview

    NASA Astrophysics Data System (ADS)

    Bohl, Richard J.; Dahlberg, Richard C.; Dutt, Dale S.; Wood, John T.

    The Thermionic Fuel Element (TFE) Verification program was established in 1986 to resolve the technology concerns raised in Phase 1 of the SP-100 program, namely, the performance and lifetime of thermionic fuel elements in a fast spectrum reactor. The program builds directly on an extensive database developed in the 1960s and early 1970s in an AEC/NASA-sponsored program, when TFEs were developed and tested at design conditions for over 10,000 h. The current effort has reestablished that technology and is extending the lifetime up to 7 to 10 yr. A TFE lifetime of more than 2 yr has been demonstrated in the TRIGA reactor. Component lifetimes of more than 10 yr have been demonstrated in accelerated tests in the FFTF (Richland) and EBR-II (Idaho) test reactors. Program completion is scheduled for FY-95.

  16. METHOD OF MAKING WIRE FUEL ELEMENTS

    DOEpatents

    Zambrow, J.L.

    1960-08-01

    A method is given for making a nuclear reactor fuel element in the form of a uranium-bearing wire clad with zirconium. A uranium bar is enclosed in a zirconium sheath which is coated with an oxide of magnesium, beryllium, or zirconium. The sheathed bar is then placed in a steel tube and reduced to the desired diameter by swaging at 800 to 900 deg C, after which the steel and oxide are removed.

  17. NUCLEAR REACTOR AND THERMIONIC FUEL ELEMENT THEREFOR

    DOEpatents

    Rasor, N.S.; Hirsch, R.L.

    1963-12-01

    The patent relates to the direct conversion of fission heat to electricity by use of thermionic plasma diodes having fissionable material cathodes, said diodes arranged to form a critical mass in a nuclear reactor. The patent describes a fuel element comprising a plurality of diodes each having a fissionable material cathode, an anode around said cathode, and an ionizable gas therebetween. Provision is made for flowing the gas and current serially through the diodes. (AEC)

  18. CONCENTRIC TUBE FUEL ELEMENT SPRING ALIGNMENT SPACER DEVICE

    DOEpatents

    Weems, S.J.

    1963-09-24

    A rib construction for a nuclear-fuel element is described, in which one of three peripherally spaced ribs adjacent to each end of the fuel element is mounted on a radially yielding spring that embraces the fuel element. This spring enables the fuel element to have a good fit with a coolant tube and yet to be easily inserted in and withdrawn from the tube. (AEC)

  19. METHOD OF PREPARING A CERAMIC FUEL ELEMENT

    DOEpatents

    Ross, W.T.; Bloomster, C.H.; Bardsley, R.E.

    1963-09-01

    A method is described for preparing a fuel element from -325 mesh PuO/ sub 2/ and -20 mesh UO/sub 2/, and the steps of screening --325 mesh UO/sub 2/ from the -20 mesh UO/sub 2/, mixing PuO/sub 2/ with the --325 mesh UO/sub 2/, blending this mixture with sufficient --20 mesh UO/sub 2/ to obtain the desired composition, introducing the blend into a metal tube, repeating the procedure until the tube is full, and vibrating the tube to compact the powder are included. (AEC)

  20. Thermionic fuel element Verification Program - Overview

    NASA Astrophysics Data System (ADS)

    Bohl, Richard J.; Dahlberg, Richard C.; Dutt, Dale S.; Wood, John T.

    The TFE Verification Program is in the sixth year of a program to demonstrate the performance and lifetime of thermionic fuel elements for high power space applications. Data from accelerated tests in FETF and EBR-II show component lifetimes longer than 7 yr. Alumina insulators have shown good performance at high fast fluence. Graphite-cesium reservoirs based on isotropic graphite also meet requirements. Three TFEs are currently operating in the TRIGA reactor, the oldest having accumulated 15,000 hr of irradiation as of 1 October 1990.

  1. Thermionic fuel element verification program—overview

    NASA Astrophysics Data System (ADS)

    Bohl, Richard J.; Dutt, Dale S.; Dahlberg, Richard C.; Wood, John T.

    1991-01-01

    TFE Verification Program is in the sixth year of a program to demonstrate the performance and lifetime of thermionic fuel elements for high power space applications. It is jointly funded by SIDO and DOE. Data from accelerated tests in FFTF and EBR-II show component lifetimes longer than 7 years. Alumina insulators have shown good performance at high fast fluence. Graphite-cesium reservoirs based on isotropic graphite also meet requirements. Three TFEs are current operating in the TRIGA reactor, the oldest having accumulated 15,000 hours of irradiation as of 1 October 1990.

  2. Fuel behavior comparison for a research reactor

    NASA Astrophysics Data System (ADS)

    Negut, Gh.; Mladin, M.; Prisecaru, I.; Danila, N.

    2006-06-01

    The paper presents the behavior and properties analysis of the low enriched uranium fuel, which will be loaded in the Romanian TRIGA 14 MW steady state research reactor compared with the original high enriched uranium fuel. The high and low enriched uranium fuels have similar thermal properties, but different nuclear properties. The research reactor core was modeled with both fuel materials and the reactor behavior was studied during a reactivity insertion accident. The thermal hydraulic analysis results are compared with that obtained from the safety analysis report for high enriched uranium fuel core. The low enriched uranium fuel shows a good behavior during reactivity insertion accident and a revised safety analysis report will be made for the low enriched uranium fuel core.

  3. Preparation of high temperature gas-cooled reactor fuel element

    DOEpatents

    Bradley, Ronnie A.; Sease, John D.

    1976-01-01

    This invention relates to a method for the preparation of high temperature gas-cooled reactor (HTGR) fuel elements wherein uncarbonized fuel rods are inserted in appropriate channels of an HTGR fuel element block and the entire block is inserted in an autoclave for in situ carbonization under high pressure. The method is particularly applicable to remote handling techniques.

  4. METHOD OF PREPARING A FUEL ELEMENT FOR A NUCLEAR REACTOR

    DOEpatents

    Roake, W.E.; Evans, E.A.; Brite, D.W.

    1960-06-21

    A method of preparing a fuel element for a nuclear reactor is given in which an internally and externally cooled fuel element consisting of two coaxial tubes having a plurality of integral radial ribs extending between the tubes and containing a powdered fuel material is isostatically pressed to form external coolant channels and compact the powder simultaneously.

  5. Nuclear fuel element with axially aligned fuel pellets and fuel microspheres therein

    DOEpatents

    Sease, J.D.; Harrington, F.E.

    1973-12-11

    Elongated single- and multi-region fuel elements are prepared by replacing within a cladding container a coarse fraction of fuel material which includes plutonium and uranium in the appropriate regions of the fuel element and then infiltrating with vibration a fine-sized fraction of uranium-containing microspheres throughout all interstices in the coarse material in a single loading. The fine, rigid material defines a thin annular layer between the coarse fraction and the cladding to reduce adverse mechanical and chemical interactions. (Official Gazette)

  6. High performance fuel element with end seal

    DOEpatents

    Lee, Gary E.; Zogg, Gordon J.

    1987-01-01

    A nuclear fuel element comprising an elongate block of refractory material having a generally regular polygonal cross section. The block includes parallel, spaced, first and second end surfaces. The first end surface has a peripheral sealing flange formed thereon while the second end surface has a peripheral sealing recess sized to receive the flange. A plurality of longitudinal first coolant passages are positioned inwardly of the flange and recess. Elongate fuel holes are separate from the coolant passages and disposed inwardly of the flange and the recess. The block is further provided with a plurality of peripheral second coolant passages in general alignment with the flange and the recess for flowing coolant. The block also includes two bypasses for each second passage. One bypass intersects the second passage adjacent to but spaced from the first end surface and intersects a first passage, while the other bypass intersects the second passage adjacent to but spaced from the second end surface and intersects a first passage so that coolant flowing through the second passages enters and exits the block through the associated first passages.

  7. Fuel Element Transfer Cask Modelling Using MCNP Technique

    NASA Astrophysics Data System (ADS)

    Darmawan, Rosli; Topah, Budiman Naim

    2010-01-01

    After operating for more than 25 years, some of the Reaktor TRIGA Puspati (RTP) fuel elements would have been depleted. A few addition and fuel reconfiguration exercises have to be conducted in order to maintain RTP capacity. Presently, RTP spent fuels are stored at the storage area inside RTP tank. The need to transfer the fuel element outside of RTP tank may be prevalence in the near future. The preparation shall be started from now. A fuel element transfer cask has been designed according to the recommendation by the fuel manufacturer and experience of other countries. A modelling using MCNP code has been conducted to analyse the design. The result shows that the design of transfer cask fuel element is safe for handling outside the RTP tank according to recent regulatory requirement.

  8. Fuel Element Transfer Cask Modelling Using MCNP Technique

    SciTech Connect

    Darmawan, Rosli; Topah, Budiman Naim

    2010-01-05

    After operating for more than 25 years, some of the Reaktor TRIGA Puspati (RTP) fuel elements would have been depleted. A few addition and fuel reconfiguration exercises have to be conducted in order to maintain RTP capacity. Presently, RTP spent fuels are stored at the storage area inside RTP tank. The need to transfer the fuel element outside of RTP tank may be prevalence in the near future. The preparation shall be started from now. A fuel element transfer cask has been designed according to the recommendation by the fuel manufacturer and experience of other countries. A modelling using MCNP code has been conducted to analyse the design. The result shows that the design of transfer cask fuel element is safe for handling outside the RTP tank according to recent regulatory requirement.

  9. Means for supporting fuel elements in a nuclear reactor

    DOEpatents

    Andrews, Harry N.; Keller, Herbert W.

    1980-01-01

    A grid structure for a nuclear reactor fuel assembly comprising a plurality of connecting members forming at least one longitudinally extending opening peripheral and inner fuel element openings through each of which openings at least one nuclear fuel element extends, said connecting members forming wall means surrounding said each peripheral and inner fuel element opening, a pair of rigid projections longitudinally spaced from one another extending from a portion of said wall means into said each peripheral and inner opening for rigidly engaging said each fuel element, respectively, yet permit individual longitudinal slippage thereof, and resilient means formed integrally on and from said wall means and positioned in said each peripheral and inner opening in opposed relationship with said projections and located to engage said fuel element to bias the latter into engagement with said rigid projections, respectively

  10. NEUTRON REACTOR FUEL ELEMENT UTILIZING ZIRCONIUM-BASE ALLOYS

    DOEpatents

    Saller, H.A.; Keeler, J.R.; Szumachowski, E.R.

    1957-11-12

    This patent relates to clad fuel elements for use in neutronic reactors and is drawn to such a fuel element which consists of a core of fissionable material, comprised of an alloy of zirconium and U/sup 235/ enriched uranium, encased in a jacket of a binary zirconium-tin alloy in which the tin content ranges between 1 and 15% by weight.

  11. Fuel cell elements with improved water handling capacity

    NASA Technical Reports Server (NTRS)

    Kindler, Andrew (Inventor); Lee, Albany (Inventor)

    2001-01-01

    New fuel cell components for use in liquid feed fuel cell systems are provided. The components include biplates and endplates, having a hydrophilic surface and allow high efficiency operation. Conductive elements and a wicking device also form a part of the fuel cell components of the invention.

  12. Nuclear reactor fuel element having improved heat transfer

    DOEpatents

    Garnier, J.E.; Begej, S.; Williford, R.E.; Christensen, J.A.

    1982-03-03

    A nuclear reactor fuel element having improved heat transfer between fuel material and cladding is described. The element consists of an outer cladding tube divided into an upper fuel section containing a central core of fissionable or mixed fissionable and fertile fuel material, slightly smaller in diameter than the inner surface of the cladding tube and a small lower accumulator section, the cladding tube being which is filled with a low molecular weight gas to transfer heat from fuel material to cladding during irradiation. A plurality of essentially vertical grooves in the fuel section extend downward and communicate with the accumulator section. The radial depth of the grooves is sufficient to provide a thermal gradient between the hot fuel surface and the relatively cooler cladding surface to allow thermal segregation to take place between the low molecular weight heat transfer gas and high molecular weight fission product gases produced by the fuel material during irradiation.

  13. Environmental mineralogy - Understanding element behavior in ecosystems

    NASA Astrophysics Data System (ADS)

    Brown, Gordon E., Jr.; Calas, Georges

    2011-02-01

    Environmental Mineralogy has developed over the past decade in response to the recognition that minerals are linked in many important ways with the global ecosystem. Minerals are the main repositories of the chemical elements in Earth's crust and thus are the main sources of elements needed for the development of civilization, contaminant and pollutant elements that impact global and local ecosystems, and elements that are essential plant nutrients. These elements are released from minerals through natural processes, such as chemical weathering, and anthropogenic activities, such as mining and energy production, agriculture and industrial activities, and careless waste disposal. Minerals also play key roles in the biogeochemical cycling of the elements, sequestering elements and releasing them as the primary minerals in crustal rocks undergo various structural and compositional transformations in response to physical, chemical, and biological processes that produce secondary minerals and soils. These processes have resulted in the release of toxic elements such as arsenic in groundwater aquifers, which is having a major impact on the health of millions of people in South and Southeast Asia. The interfaces between mineral surfaces and aqueous solutions are the locations of most chemical reactions that control the composition of the natural environment, including the composition of natural waters. The nuclear fuel cycle, from uranium mining to the disposition of high-level nuclear waste, is also intimately related to minerals. A fundamental understanding of these processes requires molecular-scale information about minerals, their bulk structures and properties such as solubility, their surfaces, and their interactions with aqueous solutions, atmospheric and soil gases, natural organic matter, and biological organisms. Gaining this understanding is further complicated by the presence of natural, incidental, and manufactured nanoparticles in the environment, which are

  14. Faulty behavior of asynchronous storage elements

    NASA Technical Reports Server (NTRS)

    Al-Assadi, Waleed K.; Lu, Ding; Jayasumana, Anura P.; Malaiya, Yashwant K.; Tong, Carol Q.

    1993-01-01

    It is often assumed that the faults in storage elements (SE's) can be modeled as output/input stuck-at-faults of the element. They are implicitly considered equivalent to the stuck-at faults in the combinational logic surrounding the SE cells. A more accurate higher level fault model for elementary SE's used in asynchronous circuits is presented. This model offers better representation of the physical failures. It is shown that the stuck-at model may be adequate if only modest fault coverage is desired. The enhanced model includes some common fault behaviors of SE's that are not covered by the stuck-at model. These include data-feed-through behaviors that cause the SE to be combinational. Fault models for complex SE cells can be obtained without a significant loss of information about the structure of the circuit.

  15. VENTED FUEL ELEMENT FOR GAS-COOLED NEUTRONIC REACTORS

    DOEpatents

    Furgerson, W.T.

    1963-12-17

    A hollow, porous-walled fuel element filled with fissionable fuel and provided with an outlet port through its wall is described. In operation in a gas-cooled reactor, the element is connected, through its outlet port, to the vacuum side of a pump that causes a portion of the coolant gas flowing over the exterior surface of the element to be drawn through the porous walls thereof and out through the outlet port. This continuous purging gas flow sweeps away gaseous fission products as they are released by the fissioning fuel. (AEC) A fuel element for a nuclear reactor incorporating a body of metal of melting point lower than the temperature of operation of the reactor and a nuclear fuel in finely divided form dispersed in the body of metal as a settled slurry is presented. (AEC)

  16. Analytical Solution of Fick's Law of the TRISO-Coated Fuel Particles and Fuel Elements in Pebble-Bed High Temperature Gas-Cooled Reactors

    NASA Astrophysics Data System (ADS)

    Cao, Jian-Zhu; Fang, Chao; Sun, Li-Feng

    2011-05-01

    Two kinds of approaches are built to solve the fission products diffusion models (Fick's equation) based on sphere fuel particles and sphere fuel elements exactly. Two models for homogenous TRISO-coated fuel particles and fuel elements used in pebble-bed high temperature gas-cooled reactors are presented, respectively. The analytical solution of Fick's equation for fission products diffusion in fuel particles is derived by variables separation. In the fuel element system, a modification of the diffusion coefficient from D to D/r is made to characterize the difference of diffusion rates in distinct areas and it is shown that the Laplace and Hankel transformations are effective as the diffusion coefficient in Fick's equation is dependant on the radius of the fuel element. Both the solutions are useful for the prediction of the fission product behaviors and could be programmed in the corresponding engineering calculations.

  17. Nuclear fuel elements and method of making same

    DOEpatents

    Schweitzer, Donald G.

    1992-01-01

    A nuclear fuel element for a high temperature gas nuclear reactor that has an average operating temperature in excess of 2000.degree. C., and a method of making such a fuel element. The fuel element is characterized by having fissionable fuel material localized and stabilized within pores of a carbon or graphite member by melting the fissionable material to cause it to chemically react with the carbon walls of the pores. The fissionable fuel material is further stabilized and localized within the pores of the graphite member by providing one or more coatings of pyrolytic carbon or diamond surrounding the porous graphite member so that each layer defines a successive barrier against migration of the fissionable fuel from the pores, and so that the outermost layer of pyrolytic carbon or diamond forms a barrier between the fissionable material and the moderating gases used in an associated high temperature gas reactor. The method of the invention provides for making such new elements either as generally spherically elements, or as flexible filaments, or as other relatively small-sized fuel elements that are particularly suited for use in high temperature gas reactors.

  18. Fuel behavior during a LOCA: LOFT experiments

    SciTech Connect

    Russell, M.L.

    1980-11-01

    The LOFT experiments have provided the following fuel behavior information which appears to be valuable for improving the safety of PWR operation and resolving PWR licensing issues: (1) A generic unassisted core cooling event occurs during large-break LOCAs that dominates the cooling of the core before ECC reflood commences and potentially eliminates the possibility of flow channel blockage from prepressurized fuel rod swelling. (2) The large-break LOCA decompression forces do not disturb the normal control rod gravity drop and may not structually damage the fuel assemblies. (3) Large-break LOCA core cooling may also be enhanced by spacer grid and core counter flow delay of liquid escape from the core boundaries and liquid fallback from the upper plenum into the core region. (4) Lower fuel rod prepressurization may be possible in PWR fuel rods which would reduce flow channel blockage complications during LOCA's. (5) Uniform fuel rod cladding temperature indications during the large break LOCA's do not confirm expectations for the fuel rod cladding temperature variations that would inhibit development of flow channel blockages by ballooning of prepressurized fuel rods.

  19. NUCLEAR REACTOR FUEL ELEMENT AND METHOD OF MANUFACTURE

    DOEpatents

    Brooks, H.

    1960-04-26

    A description is given for a fuel element comprising a body of uranium metal or an uranium compound dispersed in a matrix material made from magnesium, calcium, or barium and a stainless steel jacket enclosing the body.

  20. Design and Testing of Prototypic Elements Containing Monolithic Fuel

    SciTech Connect

    N.E. Woolstenhulme; M.K. Meyer; D.M. Wachs

    2011-10-01

    The US fuel development team has performed numerous irradiation tests on small to medium sized specimens containing low enriched uranium fuel designs. The team is now focused on qualification and demonstration of the uranium-molybdenum Base Monolithic Design and has entered the next generation of testing with the design and irradiation of prototypic elements which contain this fuel. The designs of fuel elements containing monolithic fuel, such as AFIP-7 (which is currently under irradiation) and RERTR-FE (which is currently under fabrication), are appropriate progressions relative to the technology life cycle. The culmination of this testing program will occur with the design, fabrication, and irradiation of demonstration products to include the base fuel demonstration and design demonstration experiments. Future plans show that design, fabrication, and testing activities will apply the rigor needed for a demonstration campaign.

  1. FUEL ELEMENTS FOR THERMAL-FISSION NUCLEAR REACTORS

    DOEpatents

    Flint, O.

    1961-01-10

    Fuel elements for thermal-fission nuclear reactors are described. The fuel element is comprised of a core of alumina, a film of a metal of the class consisting of copper, silver, and nickel on the outer face of the core, and a coating of an oxide of a metal isotope of the class consisting of Un/sup 235/, U/ sup 233/, and Pu/sup 239/ on the metal f ilm.

  2. Multiphysics Modeling of a Single Channel in a Nuclear Thermal Propulsion Grooved Ring Fuel Element

    NASA Technical Reports Server (NTRS)

    Kim, Tony; Emrich, William J., Jr.; Barkett, Laura A.; Mathias, Adam D.; Cassibry, Jason T.

    2013-01-01

    In the past, fuel rods have been used in nuclear propulsion applications. A new fuel element concept that reduces weight and increases efficiency uses a stack of grooved discs. Each fuel element is a flat disc with a hole on the interior and grooves across the top. Many grooved ring fuel elements for use in nuclear thermal propulsion systems have been modeled, and a single flow channel for each design has been analyzed. For increased efficiency, a fuel element with a higher surface-area-to-volume ratio is ideal. When grooves are shallower, i.e., they have a lower surface area, the results show that the exit temperature is higher. By coupling the physics of turbulence with those of heat transfer, the effects on the cooler gas flowing through the grooves of the thermally excited solid can be predicted. Parametric studies were done to show how a pressure drop across the axial length of the channels will affect the exit temperatures of the gas. Geometric optimization was done to show the behaviors that result from the manipulation of various parameters. Temperature profiles of the solid and gas showed that more structural optimization is needed to produce the desired results. Keywords: Nuclear Thermal Propulsion, Fuel Element, Heat Transfer, Computational Fluid Dynamics, Coupled Physics Computations, Finite Element Analysis

  3. Design and experimental investigation into fuel element melting during pulsed heating in the IGRIK

    SciTech Connect

    Levakov, B.G.; Andreev, V.V.; Vasilyev, A.P.

    1995-12-31

    Research has been performed on reactor fuel melting with pulsed input of energy in fuel elements up to 1.3 kj/g. The following were determined: energy input in fuel elements and energy input tempo; fission number distribution by the radius of the fuel element; the temperature of fuel and ampoule walls; and displacement of fuel boundaries.

  4. The quantification of mixture stoichiometry when fuel molecules contain oxidizer elements or oxidizer molecules contain fuel elements.

    SciTech Connect

    Mueller, Charles J.

    2005-05-01

    The accurate quantification and control of mixture stoichiometry is critical in many applications using new combustion strategies and fuels (e.g., homogeneous charge compression ignition, gasoline direct injection, and oxygenated fuels). The parameter typically used to quantify mixture stoichiometry (i.e., the proximity of a reactant mixture to its stoichiometric condition) is the equivalence ratio, /gf. The traditional definition of /gf is based on the relative amounts of fuel and oxidizer molecules in a mixture. This definition provides an accurate measure of mixture stoichiometry when the fuel molecule does not contain oxidizer elements and when the oxidizer molecule does not contain fuel elements. However, the traditional definition of /gf leads to problems when the fuel molecule contains an oxidizer element, as is the case when an oxygenated fuel is used, or once reactions have started and the fuel has begun to oxidize. The problems arise because an oxidizer element in a fuel molecule is counted as part of the fuel, even though it acts as an oxidizer. Similarly, if an oxidizer molecule contains fuel elements, the fuel elements in the oxidizer molecule are misleadingly lumped in with the oxidizer in the traditional definition of /gf. In either case, use of the traditional definition of /gf to quantify the mixture stoichiometry can lead to significant errors. This paper introduces the oxygen equivalence ratio, /gf/gV, a parameter that properly characterizes the instantaneous mixture stoichiometry for a broader class of reactant mixtures than does /gf. Because it is an instantaneous measure of mixture stoichiometry,/gf/gV can be used to track the time-evolution of stoichiometry as a reaction progresses. The relationship between /gf/gV and /gf is shown. Errors are involved when the traditional definition of /gf is used as a measure of mixture stoichiometry with fuels that contain oxidizer elements or oxidizers that contain fuel elements; /gf/gV is used to quantify

  5. Finite element analysis of monolithic solid oxide fuel cells

    SciTech Connect

    Saigal, A. . Dept. of Mechanical Engineering); Majumdar, S. )

    1992-01-01

    This paper investigates the stress and fracture behavior of a monolithic solid oxide fuel cell (MSOFC) currently under joint development by Allied Signal Corporation and Argonne National Laboratory. The MSOFC is an all-ceramic fuel cell capable of high power density and tolerant of a variety of hydrocarbon fuels, making it potentially attractive for stationary utility and mobile transportation systems. The monolithic design eliminates inactive structural supports, increases active surface area, and lowers voltage losses caused by internal resistance.

  6. Finite element analysis of monolithic solid oxide fuel cells

    SciTech Connect

    Saigal, A.; Majumdar, S.

    1992-04-01

    This paper investigates the stress and fracture behavior of a monolithic solid oxide fuel cell (MSOFC) currently under joint development by Allied Signal Corporation and Argonne National Laboratory. The MSOFC is an all-ceramic fuel cell capable of high power density and tolerant of a variety of hydrocarbon fuels, making it potentially attractive for stationary utility and mobile transportation systems. The monolithic design eliminates inactive structural supports, increases active surface area, and lowers voltage losses caused by internal resistance.

  7. Nuclear breeder reactor fuel element with silicon carbide getter

    DOEpatents

    Christiansen, David W.; Karnesky, Richard A.

    1987-01-01

    An improved cesium getter 28 is provided in a breeder reactor fuel element or pin in the form of an extended surface area, low density element formed in one embodiment as a helically wound foil 30 located with silicon carbide, and located at the upper end of the fertile material upper blanket 20.

  8. PROCESS OF DISSOLVING FUEL ELEMENTS OF NUCLEAR REACTORS

    DOEpatents

    Wall, E.M.V.; Bauer, D.T.; Hahn, H.T.

    1963-09-01

    A process is described for dissolving stainless-steelor zirconium-clad uranium dioxide fuel elements by immersing the elements in molten lead chloride, adding copper, cuprous chloride, or cupric chloride as a catalyst and passing chlorine through the salt mixture. (AEC)

  9. Space reactor fuel element testing in upgraded TREAT

    SciTech Connect

    Todosow, M.; Bezler, P.; Ludewig, H.; Kato, W.Y.

    1993-01-14

    The testing of candidate fuel elements at prototypic operating conditions with respect to temperature, power density, hydrogen coolant flow rate, etc., a crucial component in the development and qualification of nuclear rocket engines based on the Particle Bed Reactor (PBR), NERVA-derivative, and other concepts. Such testing may be performed at existing reactors, or at new facilities. A scoping study has been performed to assess the feasibility of testing PBR based fuel elements at the TREAT reactor. initial results suggest that full-scale PBR, elements could be tested at an average energy deposition of {approximately}60--80 MW-s/L in the current TREAT reactor. If the TREAT reactor was upgraded to include fuel elements with a higher temperature limit, average energy deposition of {approximately}100 MW/L may be achievable.

  10. Space reactor fuel element testing in upgraded TREAT

    SciTech Connect

    Todosow, M.; Bezler, P.; Ludewig, H.; Kato, W.Y. )

    1993-01-15

    The testing of candidate fuel elements at prototypic operating conditions with respect to temperature, power density, hydrogen coolant flow rate, etc., is a crucial component in the development and qualification of nuclear rocket engines based on the Particle Bed Reactor (PBR), NERVA-derivative, and other concepts. Such testing may be performed at existing reactors, or at new facilities. A scoping study has been performed to assess the feasibility of testing PBR based fuel elements at the TREAT reactor. Initial results suggests that full-scale PBR elements could be tested at an average energy deposition of [similar to]60--80 MW-s/L in the current TREAT reactor. If the TREAT reactor was upgraded to include fuel elements with a higher temperture limit, average energy deposition of [similar to]100 MW/L may be achievable.

  11. Space reactor fuel element testing in upgraded TREAT

    SciTech Connect

    Todosow, M.; Bezler, P.; Ludewig, H.; Kato, W.Y.

    1993-05-01

    The testing of candidate fuel elements at prototypic operating conditions with respect to temperature, power density, hydrogen coolant flow rate, etc., a crucial component in the development and qualification of nuclear rocket engines based on the Particle Bed Reactor (PBR), NERVA-derivative, and other concepts. Such testing may be performed at existing reactors, or at new facilities. A scoping study has been performed to assess the feasibility of testing PBR based fuel elements at the TREAT reactor. initial results suggest that full-scale PBR, elements could be tested at an average energy deposition of {approximately}60--80 MW-s/L in the current TREAT reactor. If the TREAT reactor was upgraded to include fuel elements with a higher temperature limit, average energy deposition of {approximately}100 MW/L may be achievable.

  12. Simulation on reactor TRIGA Puspati core kinetics fueled with thorium (Th) based fuel element

    NASA Astrophysics Data System (ADS)

    Mohammed, Abdul Aziz; Pauzi, Anas Muhamad; Rahman, Shaik Mohmmed Haikhal Abdul; Zin, Muhamad Rawi Muhammad; Jamro, Rafhayudi; Idris, Faridah Mohamad

    2016-01-01

    In confronting global energy requirement and the search for better technologies, there is a real case for widening the range of potential variations in the design of nuclear power plants. Smaller and simpler reactors are attractive, provided they can meet safety and security standards and non-proliferation issues. On fuel cycle aspect, thorium fuel cycles produce much less plutonium and other radioactive transuranic elements than uranium fuel cycles. Although not fissile itself, Th-232 will absorb slow neutrons to produce uranium-233 (233U), which is fissile. By introducing Thorium, the numbers of highly enriched uranium fuel element can be reduced while maintaining the core neutronic performance. This paper describes the core kinetic of a small research reactor core like TRIGA fueled with a Th filled fuel element matrix using a general purpose Monte Carlo N-Particle (MCNP) code.

  13. Local Burn-Up Effects in the NBSR Fuel Element

    SciTech Connect

    Brown N. R.; Hanson A.; Diamond, D.

    2013-01-31

    This study addresses the over-prediction of local power when the burn-up distribution in each half-element of the NBSR is assumed to be uniform. A single-element model was utilized to quantify the impact of axial and plate-wise burn-up on the power distribution within the NBSR fuel elements for both high-enriched uranium (HEU) and low-enriched uranium (LEU) fuel. To validate this approach, key parameters in the single-element model were compared to parameters from an equilibrium core model, including neutron energy spectrum, power distribution, and integral U-235 vector. The power distribution changes significantly when incorporating local burn-up effects and has lower power peaking relative to the uniform burn-up case. In the uniform burn-up case, the axial relative power peaking is over-predicted by as much as 59% in the HEU single-element and 46% in the LEU single-element with uniform burn-up. In the uniform burn-up case, the plate-wise power peaking is over-predicted by as much as 23% in the HEU single-element and 18% in the LEU single-element. The degree of over-prediction increases as a function of burn-up cycle, with the greatest over-prediction at the end of Cycle 8. The thermal flux peak is always in the mid-plane gap; this causes the local cumulative burn-up near the mid-plane gap to be significantly higher than the fuel element average. Uniform burn-up distribution throughout a half-element also causes a bias in fuel element reactivity worth, due primarily to the neutronic importance of the fissile inventory in the mid-plane gap region.

  14. LWR fuel rod bundle behavior under severe fuel damage conditions

    SciTech Connect

    Kuczera, B. Hagen, S.; Hofmann, P.

    1988-01-01

    Light water reactor (LWR) safety research and development activities conducted at Kernforschungszentrum Karlsruhe have recently been reorganized with a concentrated mission under the LWR safety project group. The topics treated relate mainly to severe-accident analysis research and source term assessment as well as to source term mitigation measures. A major part of the investigations concerns the early phase of a severe core meltdown accident, specifically LWR rod assembly behavior under sever fuel damage (SFD) conditions. To determine the extent of fuel rod damage, including the relocation behavior of molten reaction products, damage propagation, time-dependent H{sub 2} generation from clad oxidation, and fragmentation of oxygen-embrittled materials during cooldown and quenching, extensive out-of-pile rod bundle experiments have been initiated in the new CORA test facility. The bundle parameters, such as rod dimensions, rod pitch, and grid spacer, can be adjusted to both pressurized water reactor (PWR) and boiling water reactor (BWR) conditions. Currently, the test program consists of 15 experiments in which the influence of Inconel grid spacer, (Ag,In,Cd)-absorber rods (PWR) and of B{sub 4}C control blades (BWR) on fuel damage initiation and damage propagation are being investigated for different boundary conditions. As of June 1988, four bundle tests had been successfully carried out for PWR accident conditions.

  15. Modeling of the repository behavior of TRISO fuel.

    SciTech Connect

    Morris, E. E.; Bauer, T. H.

    2006-01-31

    This report satisfies Milestone 4295 for Work Package A0403K11. The long-term behavior of TRISO nuclear reactor fuel in a geologic repository is examined in terms of its durability and thermal impact. The TRISO fuel concept, under development at General Atomics[1] involves embedding fissile uranium and/or actinides in a carbonaceous material as shown in Fig. 1. In the concept, fuel kernels containing fissile material are surrounded with a porous carbon buffer and coated with inner and outer pyrocarbon layers separated with a SiC layer. The fuel particles are then imbedded in a graphite compact and the compacts placed in fuel channels drilled in fuel assembly blocks as shown in the lower right-hand corner of the figure. Dimensions are listed in Table 1. Available data on the degradation of the carbonaceous materials in an aqueous environment is reviewed. A model accounting for waste package failure and the resulting degradation of the waste forms is used to evaluate the potential for the long-term sequestration of radionuclides from spent TRISO fuel in the Yucca Mountain Repository. Finally, thermal analyses of decay heat assess the potential benefits in repository space utilization from recycling actinides from PWR spent fuel as very high burnup TRISO fuel. Experimental data on the aqueous dissolution of carbonaceous materials is relatively sparse and in some cases is based on measurements carried out at temperatures much higher than would be expected in the repository. In addition, the degree to which the aqueous solutions used in the measurements are representative of Yucca Mountain groundwater is uncertain. However, the available dissolution rate data are generally two or more orders of magnitude lower than the Yucca Mountain Project's dissolution model for borosilicate glass. Model calculations show that if the observed rates are applicable to the Yucca Mountain environment, directly disposed TRISO fuel has the potential to prevent significant release of

  16. Fuel Element for a Nuclear Reactor

    DOEpatents

    Duffy, Jr., J. G.

    1961-05-30

    A lattice-type fissionable fuel structure for a nuclear reactor is offered. The fissionable material is formed into a plurality of rod-like bodies each encased in a fluid-tight jacket. A plurality of spaced longitudinal fins are mounted on the exterior of and extend radially from each jacket, and a portion of the fins extends radially beyond the remainder of the fins. A collar of short lengih for each body is mounted on the extended fins for spacing the bodies, and adjacent bodies abut each other through these collars. Should distortion of the bodies take place, collapse of the outer fins is limited by the shorter fins thereby insuring some coolant flow therethrough at all times.

  17. FUEL ELEMENT FOR A NUCLEAR REACTOR

    DOEpatents

    Duffy, J.G. Jr.

    1961-05-30

    A lattice type fissionable fuel structure for a nuclear reactor is described. The fissionable material is formed into a plurality of rod-llke bodies with each encased in a fluid-tight jacket. A plurality of spaced longitudinal fins are mounted on the exterior and extend radially from each jacket, with a portion of the fins extending radially beyond the remainder of the fins. A collar of short length for each body is mounted on the extended fins for spacing the bodies, and adjacent bodies abut each other through these collars. Should distortion of the bodies take place, coilapse of the outer fins is limited by the shorter flns, thereby insuring some coolant flow at all times. (AEC)

  18. Analysis of the ATR fuel element swaging process

    SciTech Connect

    Richins, W.D.; Miller, G.K.

    1995-12-01

    This report documents a detailed evaluation of the swaging process used to connect fuel plates to side plates in Advanced Test Reactor (ATR) fuel elements. The swaging is a mechanical process that begins with fitting a fuel plate into grooves in the side plates. Once a fuel plate is positioned, a lip on each of two side plate grooves is pressed into the fuel plate using swaging wheels to form the joints. Each connection must have a specified strength (measured in terms, of a pullout force capacity) to assure that these joints do not fail during reactor operation. The purpose of this study is to analyze the swaging process and associated procedural controls, and to provide recommendations to assure that the manufacturing process produces swaged connections that meet the minimum strength requirement. The current fuel element manufacturer, Babcock and Wilcox (B&W) of Lynchburg, Virginia, follows established procedures that include quality inspections and process controls in swaging these connections. The procedures have been approved by Lockheed Martin Idaho Technologies and are designed to assure repeatability of the process and structural integrity of each joint. Prior to July 1994, ATR fuel elements were placed in the Hydraulic Test Facility (HTF) at the Idaho National Engineering Laboratory (AGNAIL), Test Reactor Area (TRA) for application of Boehmite (an aluminum oxide) film and for checking structural integrity before placement of the elements into the ATR. The results presented in this report demonstrate that the pullout strength of the swaged connections is assured by the current manufacturing process (with several recommended enhancements) without the need for- testing each element in the HTF.

  19. The manufacture of LEU fuel elements at Dounreay

    SciTech Connect

    Gibson, J.

    1997-08-01

    Two LEU test elements are being manufactured at Dounreay for test irradiation in the HFR at Petten, The Netherlands. This paper describes the installation of equipment and the development of the fabrication and inspection techniques necessary for the manufacture of LEU fuel plates. The author`s experience in overcoming the technical problems of stray fuel particles, dog-boning, uranium homogeneity and the measurement of uranium distribution is also described.

  20. Low Cost Nuclear Thermal Rocket Cermet Fuel Element Environment Testing

    NASA Technical Reports Server (NTRS)

    Bradley, David E.; Mireles, Omar R.; Hickman, Robert R.

    2011-01-01

    Deep space missions with large payloads require high specific impulse (Isp) and relatively high thrust in order to achieve mission goals in reasonable time frames. Conventional, storable propellants produce average Isp. Nuclear thermal rockets (NTR) capable of high Isp thrust have been proposed. NTR employs heat produced by fission reaction to heat and therefore accelerate hydrogen which is then forced through a rocket nozzle providing thrust. Fuel element temperatures are very high (up to 3000K) and hydrogen is highly reactive with most materials at high temperatures. Data covering the effects of high temperature hydrogen exposure on fuel elements is limited. The primary concern is the mechanical failure of fuel elements which employ high-melting-point metals, ceramics or a combination (cermet) as a structural matrix into which the nuclear fuel is distributed. It is not necessary to include fissile material in test samples intended to explore high temperature hydrogen exposure of the structural support matrices. A small-scale test bed designed to heat fuel element samples via non-contact RF heating and expose samples to hydrogen is being developed to assist in optimal material and manufacturing process selection without employing fissile material. This paper details the test bed design and results of testing conducted to date.

  1. Drying damaged K West fuel elements (Summary of whole element furnace runs 1 through 8)

    SciTech Connect

    LAWRENCE, L.A.

    1998-10-13

    N Reactor fuel elements stored in the Hanford K Basins were subjected to high temperatures and vacuum conditions to remove water. Results of the first series of whole element furnace tests i.e., Runs 1 through 8 were collected in this summary report. The report focuses on the six tests with breached fuel from the K West Basin which ranged from a simple fracture at the approximate mid-point to severe damage with cladding breaches at the top and bottom ends with axial breaches and fuel loss. Results of the tests are summarized and compared for moisture released during cold vacuum drying, moisture remaining after drying, effects of drying on the fuel element condition, and hydrogen and fission product release.

  2. FABRICATION OF TUBE TYPE FUEL ELEMENT FOR NUCLEAR REACTORS

    DOEpatents

    Loeb, E.; Nicklas, J.H.

    1959-02-01

    A method of fabricating a nuclear reactor fuel element is given. It consists essentially of fixing two tubes in concentric relationship with respect to one another to provide an annulus therebetween, filling the annulus with a fissionablematerial-containing powder, compacting the powder material within the annulus and closing the ends thereof. The powder material is further compacted by swaging the inner surface of the inner tube to increase its diameter while maintaining the original size of the outer tube. This process results in reduced fabrication costs of powdered fissionable material type fuel elements and a substantial reduction in the peak core temperatures while materially enhancing the heat removal characteristics.

  3. Cryogenic Thermal Expansion of Y-12 Graphite Fuel Elements

    SciTech Connect

    Eash, D. T.

    2013-07-08

    Thermal expansion measurements betwccn 20°K and 300°K were made on segments of three uranium-loaded Y-12 uncoated graphite fuel elements. The thermal expansion of these fuel elements over this temperature range is represented by the equation: {Delta}L/L = -39.42 x 10{sup -5} + 1.10 x 10{sup -7} T + 6.47 x 10{sup -9} T{sup 2} - 8.30 x 10{sup -12} T{sup 3}.

  4. Method and apparatus for diagnosing breached fuel elements

    DOEpatents

    Gross, K.C.; Lambert, J.D.B.; Nomura, S.

    1987-03-02

    The invention provides an apparatus and method for diagnosing breached fuel elements in a nuclear reactor. A detection system measures the activity of isotopes from the cover gas in the reactor. A data acquisition and processing system monitors the detection system and corrects for the effects of the cover-gas clean up system on the measured activity and further calculates the derivative curve of the corrected activity as a function of time. A plotting system graphs the derivative curve, which represents the instantaneous release rate of fission gas from a breached fuel element. 8 figs.

  5. Expert system for surveillance and diagnosis of breach fuel elements

    DOEpatents

    Gross, K.C.

    1988-01-21

    An apparatus and method are disclosed for surveillance and diagnosis of breached fuel elements in a nuclear reactor. A delayed neutron monitoring system provides output signals indicating the delayed neutron activity and age and the equivalent recoil area of a breached fuel element. Sensors are used to provide outputs indicating the status of each component of the delayed neutron monitoring system. Detectors also generate output signals indicating the reactor power level and the primary coolant flow rate of the reactor. The outputs from the detectors and sensors are interfaced with an artificial intelligence-based knowledge system which implements predetermined logic and generates output signals indicating the operability of the reactor. 2 figs.

  6. Expert system for surveillance and diagnosis of breach fuel elements

    DOEpatents

    Gross, Kenny C.

    1989-01-01

    An apparatus and method are disclosed for surveillance and diagnosis of breached fuel elements in a nuclear reactor. A delayed neutron monitoring system provides output signals indicating the delayed neutron activity and age and the equivalent recoil areas of a breached fuel element. Sensors are used to provide outputs indicating the status of each component of the delayed neutron monitoring system. Detectors also generate output signals indicating the reactor power level and the primary coolant flow rate of the reactor. The outputs from the detectors and sensors are interfaced with an artificial intelligence-based knowledge system which implements predetermined logic and generates output signals indicating the operability of the reactor.

  7. Method and apparatus for diagnosing breached fuel elements

    DOEpatents

    Gross, Kenny C.; Lambert, John D. B.; Nomura, Shigeo

    1988-01-01

    The invention provides an apparatus and method for diagnosing breached fuel elements in a nuclear reactor. A detection system measures the activity of isotopes from the cover-gas in the reactor. A data acquisition and processing system monitors the detection system and corrects for the effects of the cover-gas clean up system on the measured activity and further calculates the derivative cure of the corrected activity as a function of time. A plotting system graphs the derivative curve, which represents the instantaneous release rate of fission gas from a breached fuel element.

  8. PWR fuel behavior: lessons learned from LOFT. [PWR

    SciTech Connect

    Russell, M.L.

    1981-01-01

    A summary of the experience with the Loss-of-Fluid Test (LOFT) fuel during loss-of-coolant experiments (LOCEs), operational and overpower transient tests and steady-state operation is presented. LOFT provides unique capabilities for obtaining pressurized water reactor (PWR) fuel behavior information because it features the representative thermal-hydraulic conditions which control fuel behavior during transient conditions and an elaborate measurement system to record the history of the fuel behavior.

  9. Finite element analysis of advanced neutron source fuel plates

    SciTech Connect

    Luttrell, C.R.

    1995-08-01

    The proposed design for the Advanced Neutron Source reactor core consists of closely spaced involute fuel plates. Coolant flows between the plates at high velocities. It is vital that adjacent plates do not come in contact and that the coolant channels between the plates remain open. Several scenarios that could result in problems with the fuel plates are studied. Finite element analyses are performed on fuel plates under pressure from the coolant flowing between the plates at a high velocity, under pressure because of a partial flow blockage in one of the channels, and with different temperature profiles.

  10. Methods for making a porous nuclear fuel element

    DOEpatents

    Youchison, Dennis L; Williams, Brian E; Benander, Robert E

    2014-12-30

    Porous nuclear fuel elements for use in advanced high temperature gas-cooled nuclear reactors (HTGR's), and to processes for fabricating them. Advanced uranium bi-carbide, uranium tri-carbide and uranium carbonitride nuclear fuels can be used. These fuels have high melting temperatures, high thermal conductivity, and high resistance to erosion by hot hydrogen gas. Tri-carbide fuels, such as (U,Zr,Nb)C, can be fabricated using chemical vapor infiltration (CVI) to simultaneously deposit each of the three separate carbides, e.g., UC, ZrC, and NbC in a single CVI step. By using CVI, the nuclear fuel may be deposited inside of a highly porous skeletal structure made of, for example, reticulated vitreous carbon foam.

  11. NUCLEAR REACTOR FUEL ELEMENTS AND METHOD OF PREPARATION

    DOEpatents

    Kingston, W.E.; Kopelman, B.; Hausner, H.H.

    1963-07-01

    A fuel element consisting of uranium nitride and uranium carbide in the form of discrete particles in a solid coherent matrix of a metal such as steel, beryllium, uranium, or zirconium and clad with a metal such as steel, aluminum, zirconium, or beryllium is described. The element is made by mixing powdered uranium nitride and uranium carbide with powdered matrix metal, then compacting and sintering the mixture. (AEC)

  12. Induction Heating Model of Cermet Fuel Element Environmental Test (CFEET)

    NASA Technical Reports Server (NTRS)

    Gomez, Carlos F.; Bradley, D. E.; Cavender, D. P.; Mireles, O. R.; Hickman, R. R.; Trent, D.; Stewart, E.

    2013-01-01

    Deep space missions with large payloads require high specific impulse and relatively high thrust to achieve mission goals in reasonable time frames. Nuclear Thermal Rockets (NTR) are capable of producing a high specific impulse by employing heat produced by a fission reactor to heat and therefore accelerate hydrogen through a rocket nozzle providing thrust. Fuel element temperatures are very high (up to 3000 K) and hydrogen is highly reactive with most materials at high temperatures. Data covering the effects of high-temperature hydrogen exposure on fuel elements are limited. The primary concern is the mechanical failure of fuel elements due to large thermal gradients; therefore, high-melting-point ceramics-metallic matrix composites (cermets) are one of the fuels under consideration as part of the Nuclear Cryogenic Propulsion Stage (NCPS) Advance Exploration System (AES) technology project at the Marshall Space Flight Center. The purpose of testing and analytical modeling is to determine their ability to survive and maintain thermal performance in a prototypical NTR reactor environment of exposure to hydrogen at very high temperatures and obtain data to assess the properties of the non-nuclear support materials. The fission process and the resulting heating performance are well known and do not require that active fissile material to be integrated in this testing. A small-scale test bed; Compact Fuel Element Environmental Tester (CFEET), designed to heat fuel element samples via induction heating and expose samples to hydrogen is being developed at MSFC to assist in optimal material and manufacturing process selection without utilizing fissile material. This paper details the analytical approach to help design and optimize the test bed using COMSOL Multiphysics for predicting thermal gradients induced by electromagnetic heating (Induction heating) and Thermal Desktop for radiation calculations.

  13. The Behavior of Chemical Elements in Stars

    NASA Astrophysics Data System (ADS)

    Jaschek, Carlos; Jaschek, Mercedes

    1995-06-01

    Part I. Quantitative Description of Each of 80 Chemical Elements; Part II: 1. Behaviour of molecules in stars; 2. Groups of elements; 3. Chromospheres and coronas; Part III: 1. Terminology of spectral lines; 2. Selection of stars; 3. Line identification; 4. Equivalent widths; 5. Abundances; 6. Afterthoughts; Part IV: 1. Periodic Table; 2. Elements in alphabetical order of names; 3. Elements in alphabetical order of formula; 4. Elements ordered by atomic number; 5. Abundances of chemical elements; 6. Spectral type and surface gravity as a function of luminosity class. 7. Effective temperature; References; Index.

  14. The Behavior of Chemical Elements in Stars

    NASA Astrophysics Data System (ADS)

    Jaschek, Carlos; Jaschek, Mercedes

    2009-03-01

    Part I. Quantitative Description of Each of 80 Chemical Elements; Part II: 1. Behaviour of molecules in stars; 2. Groups of elements; 3. Chromospheres and coronas; Part III: 1. Terminology of spectral lines; 2. Selection of stars; 3. Line identification; 4. Equivalent widths; 5. Abundances; 6. Afterthoughts; Part IV: 1. Periodic Table; 2. Elements in alphabetical order of names; 3. Elements in alphabetical order of formula; 4. Elements ordered by atomic number; 5. Abundances of chemical elements; 6. Spectral type and surface gravity as a function of luminosity class. 7. Effective temperature; References; Index.

  15. METHOD OF PREPARING A FUEL ELEMENT FOR A NUCLEAR REACTOR

    DOEpatents

    Hauth, J.J.; Anicetti, R.J.

    1962-12-01

    A method is described for preparing a fuel element for a nuclear reactor. According to the patent uranium dioxide is compacted in a metal tabe by directlng intense sound waves at the tabe prior to tamp packing or vibration compaction of the powder. (AEC)

  16. METHOD OF FORMING A FUEL ELEMENT FOR A NUCLEAR REACTOR

    DOEpatents

    Layer, E.H. Jr.; Peet, C.S.

    1962-01-23

    A method is given for preparing a fuel element for a nuclear reactor. The method includes the steps of sandblasting a body of uranium dioxide to roughen the surface thereof, depositing a thin layer of carbon thereon by thermal decomposition of methane, and cladding the uranium dioxide body with zirconium by gas pressure bonding. (AEC)

  17. 34. DETAILS AND SECTIONS OF SHIELDING TANK FUEL ELEMENT SUPPORT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    34. DETAILS AND SECTIONS OF SHIELDING TANK FUEL ELEMENT SUPPORT FRAME. F.C. TORKELSON DRAWING NUMBER 842-ARVFS-701-S-4. INEL INDEX CODE NUMBER: 075 0701 60 851 151978. - Idaho National Engineering Laboratory, Advanced Reentry Vehicle Fusing System, Scoville, Butte County, ID

  18. 36. DETAILS AND SECTIONS OF SHIELDING TANK, FUEL ELEMENT SUPPORT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    36. DETAILS AND SECTIONS OF SHIELDING TANK, FUEL ELEMENT SUPPORT FRAME AND SUPPORT PLATFORM, AND SAFETY MECHANISM ASSEMBLY (SPRING-LOADED HINGE). F.C. TORKELSON DRAWING NUMBER 842-ARVFS-701-S-1. INEL INDEX CODE NUMBER: 075 0701 60 851 151975. - Idaho National Engineering Laboratory, Advanced Reentry Vehicle Fusing System, Scoville, Butte County, ID

  19. Modeling and Simulation of a Nuclear Fuel Element Test Section

    NASA Technical Reports Server (NTRS)

    Moran, Robert P.; Emrich, William

    2011-01-01

    "The Nuclear Thermal Rocket Element Environmental Simulator" test section closely simulates the internal operating conditions of a thermal nuclear rocket. The purpose of testing is to determine the ideal fuel rod characteristics for optimum thermal heat transfer to their hydrogen cooling/working fluid while still maintaining fuel rod structural integrity. Working fluid exhaust temperatures of up to 5,000 degrees Fahrenheit can be encountered. The exhaust gas is rendered inert and massively reduced in temperature for analysis using a combination of water cooling channels and cool N2 gas injectors in the H2-N2 mixer portion of the test section. An extensive thermal fluid analysis was performed in support of the engineering design of the H2-N2 mixer in order to determine the maximum "mass flow rate"-"operating temperature" curve of the fuel elements hydrogen exhaust gas based on the test facilities available cooling N2 mass flow rate as the limiting factor.

  20. Some parametric flow analyses of a particle bed fuel element

    SciTech Connect

    Dobranich, D.

    1993-05-01

    Parametric calculations are performed, using the SAFSIM computer program, to investigate the fluid mechanics and heat transfer performance of a particle bed fuel element. Both steady-state and transient calculations are included, addressing such issues as flow stability, reduced thrust operation, transpiration drag, coolant conductivity enhancement, flow maldistributions, decay heat removal, flow perturbations, and pulse cooling. The calculations demonstrate the dependence of the predicted results on the modeling assumptions and thus provide guidance as to where further experimental and computational investigations are needed. The calculations also demonstrate that both flow instability and flow maldistribution in the fuel element are important phenomena. Furthermore, results are encouraging that geometric design changes to the element can significantly reduce problems related to these phenomena, allowing improved performance over a wide range of element power densities and flow rates. Such design changes will help to maximize the operational efficiency of space propulsion reactors employing particle bed fuel element technology. Finally, the results demonstrate that SAFSIM is a valuable engineering tool for performing quick and inexpensive parametric simulations addressing complex flow problems.

  1. The OSU Hydro-Mechanical Fuel Test Facility: Standard Fuel Element Testing

    SciTech Connect

    Wade R. Marcum; Brian G. Woods; Ann Marie Phillips; Richard G. Ambrosek; James D. Wiest; Daniel M. Wachs

    2001-10-01

    Oregon State University (OSU) and the Idaho National Laboratory (INL) are currently collaborating on a test program which entails hydro-mechanical testing of a generic plate type fuel element, or standard fuel element (SFE), for the purpose of qualitatively demonstrating mechanical integrity of uranium-molybdenum monolithic plates as compared to that of uranium aluminum dispersion, and aluminum fuel plates due to hydraulic forces. This test program supports ongoing work conducted for/by the fuel development program and will take place at OSU in the Hydro-Mechanical Fuel Test Facility (HMFTF). Discussion of a preliminary test matrix, SFE design, measurement and instrumentation techniques, and facility description are detailed in this paper.

  2. Fuel cladding behavior under rapid loading conditions

    NASA Astrophysics Data System (ADS)

    Yueh, K.; Karlsson, J.; Stjärnsäter, J.; Schrire, D.; Ledergerber, G.; Munoz-Reja, C.; Hallstadius, L.

    2016-02-01

    A modified burst test (MBT) was used in an extensive test program to characterize fuel cladding failure behavior under rapid loading conditions. The MBT differs from a normal burst test with the use of a driver tube to simulate the expansion of a fuel pellet, thereby producing a partial strain driven deformation condition similar to that of a fuel pellet expansion in a reactivity insertion accident (RIA). A piston/cylinder assembly was used to pressurize the driver tube. By controlling the speed and distance the piston travels the loading rate and degree of sample deformation could be controlled. The use of a driver tube with a machined gauge section localizes deformation and allows for continuous monitoring of the test sample diameter change at the location of maximum hoop strain, during each test. Cladding samples from five irradiated fuel rods were tested between 296 and 553 K and loading rates from 1.5 to 3.5/s. The test rods included variations of Zircaloy-2 with different liners and ZIRLO, ranging in burn-up from 41 to 74 GWd/MTU. The test results show cladding ductility is strongly temperature and loading rate dependent. Zircaloy-2 cladding ductility degradation due to operational hydrogen pickup started to recover at approximately 358 K for test condition used in the study. This recovery temperature is strongly loading rate dependent. At 373 K, ductility recovery was small for loading rates less than 8 ms equivalent RIA pulse width, but longer than 8 ms the ductility recovery increased exponentially with increasing pulse width, consistent with literature observations of loading rate dependent brittle-to-ductile (BTD) transition temperature. The cladding ductility was also observed to be strongly loading rate/pulse width dependent for BWR cladding below the BTD temperature and Pressurized Water Reactor (PWR) cladding at both 296 and 553 K.

  3. Low Cost Nuclear Thermal Rocket Cermet Fuel Element Environment Testing

    NASA Technical Reports Server (NTRS)

    Bradley, D. E.; Mireles, O. R.; Hickman, R. R.

    2011-01-01

    Deep space missions with large payloads require high specific impulse and relatively high thrust to achieve mission goals in reasonable time frames.1,2 Conventional storable propellants produce average specific impulse. Nuclear thermal rockets capable of producing high specific impulse are proposed. Nuclear thermal rockets employ heat produced by fission reaction to heat and therefore accelerate hydrogen, which is then forced through a rocket nozzle providing thrust. Fuel element temperatures are very high (up to 3000 K), and hydrogen is highly reactive with most materials at high temperatures. Data covering the effects of high-temperature hydrogen exposure on fuel elements are limited.3 The primary concern is the mechanical failure of fuel elements that employ high-melting-point metals, ceramics, or a combination (cermet) as a structural matrix into which the nuclear fuel is distributed. The purpose of the testing is to obtain data to assess the properties of the non-nuclear support materials, as-fabricated, and determine their ability to survive and maintain thermal performance in a prototypical NTR reactor environment of exposure to hydrogen at very high temperatures. The fission process of the planned fissile material and the resulting heating performance is well known and does not therefore require that active fissile material be integrated in this testing. A small-scale test bed designed to heat fuel element samples via non-contact radio frequency heating and expose samples to hydrogen is being developed to assist in optimal material and manufacturing process selection without employing fissile material. This paper details the test bed design and results of testing conducted to date.

  4. Method of locating a leaking fuel element in a fast breeder power reactor

    DOEpatents

    Honekamp, John R.; Fryer, Richard M.

    1978-01-01

    Leaking fuel elements in a fast reactor are identified by measuring the ratio of .sup.134 Xe to .sup.133 Xe in the reactor cover gas following detection of a fuel element leak, this ratio being indicative of the power and burnup of the failed fuel element. This procedure can be used to identify leaking fuel elements in a power breeder reactor while continuing operation of the reactor since the ratio measured is that of the gases stored in the plenum of the failed fuel element. Thus, use of a cleanup system for the cover gas makes it possible to identify sequentially a multiplicity of leaking fuel elements without shutting the reactor down.

  5. FISSILE MATERIAL AND FUEL ELEMENTS FOR NEUTRONIC REACTORS

    DOEpatents

    Shaner, B.E.

    1961-08-15

    The fissile material consists of about 64 to 70% (weight) zirconium dioxide, 15 to 19% uranium dioxide, and 8 to 17% calcium oxide. The fissile material is formed into sintered composites which are disposed in a compartmented fuel element, comprising essentially a flat filler plate having a plurality of compartments therein, enclosed in cladding plates of the same material as the filler plate. The resultant fuel has good resistance to corrosion in high temperature pressurized water, good dimensional stability to elevated temperatures, and good resistance to thermal shock. (AEC)

  6. Nuclear reactor fuel element with vanadium getter on cladding

    DOEpatents

    Johnson, Carl E.; Carroll, Kenneth G.

    1977-01-01

    A nuclear reactor fuel element is described which has an outer cladding, a central core of fissionable or mixed fissionable and fertile fuel material and a layer of vanadium as an oxygen getter on the inner surface of the cladding. The vanadium reacts with oxygen released by the fissionable material during irradiation of the core to prevent the oxygen from reacting with and corroding the cladding. Also described is a method for coating the inner surface of small diameter tubes of cladding with a layer of vanadium.

  7. Application of Thermochemical Modeling to Assessment/Evaluation of Nuclear Fuel Behavior

    SciTech Connect

    Besmann, Theodore M; McMurray, Jake W; Simunovic, Srdjan

    2016-01-01

    The combination of new fuel compositions and higher burn-ups envisioned for the future means that representing fuel properties will be much more important, and yet more complex. Behavior within the oxide fuel rods will be difficult to model owing to the high temperatures, and the large number of elements generated and their significant concentrations that are a result of fuels taken to high burn-up. This unprecedented complexity offers an enormous challenge to the thermochemical understanding of these systems and opportunities to advance solid solution models to describe these materials. This paper attempts to model and simulate that behavior using an oxide fuels thermochemical description to compute the equilibrium phase state and oxygen potential of LWR fuel under irradiation.

  8. Method for measuring recovery of catalytic elements from fuel cells

    DOEpatents

    Shore, Lawrence; Matlin, Ramail

    2011-03-08

    A method is provided for measuring the concentration of a catalytic clement in a fuel cell powder. The method includes depositing on a porous substrate at least one layer of a powder mixture comprising the fuel cell powder and an internal standard material, ablating a sample of the powder mixture using a laser, and vaporizing the sample using an inductively coupled plasma. A normalized concentration of catalytic element in the sample is determined by quantifying the intensity of a first signal correlated to the amount of catalytic element in the sample, quantifying the intensity of a second signal correlated to the amount of internal standard material in the sample, and using a ratio of the first signal intensity to the second signal intensity to cancel out the effects of sample size.

  9. METHOD AND APPARATUS FOR EXAMINING FUEL ELEMENTS FOR LEAKAGE

    DOEpatents

    Smith, R.R.; Echo, M.W.; Doe, C.B.

    1963-12-31

    A process and a device for the continuous monitoring of fuel elements while in use in a liquid-metal-cooled, argonblanketed nuclear reactor are presented. A fraction of the argon gas is withdrawn, contacted with a negative electrical charge for attraction of any alkali metal formed from argon by neutron reaction, and recycled into the reactor. The electrical charge is introduced into water, and the water is examined for radioactive alkali metals. (AEC)

  10. FUEL ELEMENTS FOR NUCLEAR REACTORS AND PROCESS OF MAKING

    DOEpatents

    Roake, W.E.

    1958-08-19

    A process is described for producing uranium metal granules for use in reactor fuel elements. The granules are made by suspending powdered uramiunn metal or uranium hydride in a viscous, non-reactive liquid, such as paraffin oil, aad pouring the resulting suspension in droplet, on to a bed of powdered absorbent. In this manner the liquid vehicle is taken up by the sorbent and spherical pellets of uranium metal are obtained. The

  11. Selection of Isotopes and Elements for Fuel Cycle Analysis

    SciTech Connect

    Steven J. Piet

    2009-04-01

    Fuel cycle system analysis simulations examine how the selection among fuel cycle options for reactors, fuel, separation, and waste management impact uranium ore utilization, waste masses and volumes, radiotoxicity, heat to geologic repositories, isotope-dependent proliferation resistance measures, and so forth. Previously, such simulations have tended to track only a few actinide and fission product isotopes, those that have been identified as important to a few criteria from the standpoint of recycled material or waste, taken as a whole. After accounting for such isotopes, the residual mass is often characterized as “fission product other” or “actinide other”. However, detailed assessment of separation and waste management options now require identification of key isotopes and residual mass for Group 1A/2A elements (Rb, Cs, Sr, Ba), inert gases (Kr, Xe), halogens (Br, I), lanthanides, transition metals, transuranic (TRU), uranium, actinide decay products. The paper explains the rationale for a list of 81 isotopes and chemical elements to better support separation and waste management assessment in dynamic system analysis models such as Verifiable Fuel Cycle Simulation (VISION)

  12. Fabrication procedures for manufacturing High Flux Isotope Reactor fuel elements - 2

    SciTech Connect

    Knight, R.W.; Morin, R.A.

    1999-12-01

    The original fabrication procedures written in 1968 delineated the manufacturing procedures at that time. Since 1968, there have been a number of procedural changes. This rewrite of the fabrication procedures incorporates these changes. The entire fuel core of this reactor is made up of two fuel elements. Each element consists of one annular array of fuel plates. These annuli are identified as the inner and outer fuel elements, since one fits inside the other. The inner element consists of 171 identical fuel plates, and the outer element contains 369 identical fuel plates differing slightly from those in the inner element. Both sets of fuel plates contain U{sub 3}O{sub 8} powder as the fuel, dispersed in an aluminum powder matrix and clad with aluminum. Procedures for manufacturing and inspection of the fuel elements are described and illustrated.

  13. Examination of the surface coating removed from K-East Basin fuel elements

    SciTech Connect

    Abrefah, J.; Marschman, S.C.; Jenson, E.D.

    1998-05-01

    This report provides the results of studies conducted on coatings discovered on the surfaces of some N-Reactor spent nuclear fuel (SNF) elements stored at the Hanford K-East Basin. These elements had been removed from the canisters and visually examined in-basin during FY 1996 as part of a series of characterization tests. The characterization tests are being performed to support the Integrated Process Strategy developed to package, dry, transport, and store the SNF in an interim storage facility on the Hanford site. Samples of coating materials were removed from K-East canister elements 2350E and 2540E, which had been sent, along with nine other elements, to the Postirradiation Testing Laboratory (327 Building) for further characterization following the in-basin examinations. These coating samples were evaluated by Pacific Northwest National Laboratory using various analytical methods. This report is part of the overall studies to determine the drying behavior of corrosion products associated with the K-Basin fuel elements. Altogether, five samples of coating materials were analyzed. These analyses suggest that hydration of the coating materials could be an additional source of moisture in the Multi-Canister Overpacks being used to contain the fuel for storage.

  14. Drying results of K-Basin fuel element 3128W (run 2)

    SciTech Connect

    Abrefah, J.; Klinger, G.S.; Oliver, B.M.; Marshman, S.C.; MacFarlan, P.J.; Ritter, G.A.; Flament, T.A.

    1998-07-01

    An N-Reactor outer fuel element that had been stored underwater in the Hanford 100 Area K-East Basin was subjected to a combination of low- and high-temperature vacuum drying treatments. These studies are part of a series of tests being conducted by Pacific Northwest National Laboratory on the drying behavior of N-Reactor spent nuclear fuel elements removed from both the K-West and K-East Basins. The drying test series was designed to test fuel elements that ranged from intact to severely damaged. The fuel element discussed in this report was removed from an open K-East canister (3128W) during the first fuel selection campaign conducted in 1995, and has remained in wet storage in the Postirradiation Testing Laboratory (PTL, 327 Building) since that time. Although it was judged to be breached during in-basin (i.e., K-Basin) examinations, visual inspection of this fuel element in the hot cell indicated that it was likely intact. Some scratches on the coating covering the cladding were identified before the furnace test. The drying test was conducted in the Whole Element Furnace Testing System located in G-Cell within the PTL. This test system is composed of three basic systems: the in-cell furnace equipment, the system gas loop, and the analytical instrument package. Element 3128W was subjected to the drying processes based on those proposed under the Integrated Process Strategy, which included a hot drying step. Results of the Pressure Rise and Gas Evolution Tests suggest that most of the free water in the system was released during the extended CVD cycle (68 hr versus 8 hr for the first run). An additional {approximately}0.34 g of water was released during the subsequent HVD phase, characterized by multiple water release peaks, with a principle peak at {approximately}180 C. This additional water is attributed to decomposition of a uranium hydrate (UO{sub 4}{center_dot}4H{sub 2}O/UO{sub 4}{center_dot}2H{sub 2}O) coating that was observed to be covering the surface

  15. Writing Comprehensive Behavioral Consultation Reports: Critical Elements

    ERIC Educational Resources Information Center

    Brinkman, Tara M.; Segool, Natasha K.; Pham, Andy V.; Carlson, John S.

    2007-01-01

    The accountability movement in psychology has resulted in practitioners increasingly using evidence-based interventions and treatment modalities to treat client problems. Behavioral consultation is one framework that practitioners can utilize in providing empirically supported services. In order to demonstrate the use of effective, evidence-based…

  16. Coupled thermionic and thermalhydraulic analyses of thermionic fuel elements

    NASA Astrophysics Data System (ADS)

    Pawlowski, Ronald A.; Klein, Andrew C.; McVey, John B.

    The authors discuss a heat transfer analysis of a 'single cell' TFE (thermionic fuel element), that is, within the TFE a single emitter and collector cover the entire length of the UO2 fuel (approximately 25 cm). The electrical conversion performance of the TFE is investigated for a range of operating conditions. The dependence of maximum fuel temperature on the TFE operating parameters, such as total thermal power, current output, and coolant inlet temperature, is also discussed. A computer code (TFEHX) to model the thermal and electrical performance of the TFE has been developed. The results from the TFEHX code consist of a wide range of TFE operational parameters, including the temperature distributions within the TFE, the overall electrical power output, the conversion efficiency, the voltage difference between the electrode leads, the electrical losses and the ohmic heating in the electrodes, and the coolant temperature profile. Results from this code indicate that a single-celled TFE is more efficient and is less likely to experience melting of its fuel if a uniform amount of heat is generated along its length.

  17. Atomistic modeling of the interaction of cladding elements (Fe, Ni, Cr) with U-Zr fuel

    NASA Astrophysics Data System (ADS)

    Bozzolo, G.; Mosca, H. O.; Yacout, A. M.; Hofman, G. L.

    2011-07-01

    Atomistic simulations of U-Zr fuel and its interaction with Fe, Ni, and Cr using the BFS method for alloys are presented. Results for the γU-βZr solid solution are discussed, including the behavior of the lattice parameter and coefficient of thermal expansion as a function of concentration and temperature. Output from these calculations is used to study the surface structure of γU-βZr for different crystallographic orientations, determining the concentration profiles, surface energy, and segregation behavior. The analysis is completed with simulations of the deposition of Fe, Ni and Cr on U-Zr substrates with varying Zr concentration. All results are discussed and interpreted by means of the concepts of strain and chemical energy underlying the BFS method, thus obtaining a simple explanation for the observed Zr segregation and its influence in allowing for cladding elements diffusion into the U-Zr fuel.

  18. Modeling Thermal and Stress Behavior of the Fuel-clad Interface in Monolithic Fuel Mini-plates

    SciTech Connect

    Gregory K. Miller; Pavel G. Medvedev; Douglas E. Burkes; Daniel M. Wachs

    2010-08-01

    As part of the Global Threat Reduction Initiative, a fuel development and qualification program is in process with the objective of qualifying very high density low enriched uranium fuel that will enable the conversion of high performance research reactors with operational requirements beyond those supported with currently available low enriched uranium fuels. The high density of the fuel is achieved by replacing the fuel meat with a single monolithic low enriched uranium-molybdenum fuel foil. Doing so creates differences in the mechanical and structural characteristics of the fuel plate because of the planar interface created by the fuel foil and cladding. Furthermore, the monolithic fuel meat will dominate the structural properties of the fuel plate rather than the aluminum matrix, which is characteristic of dispersion fuel types. Understanding the integrity and behavior of the fuel-clad interface during irradiation is of great importance for qualification of the new fuel, but can be somewhat challenging to determine with a single technique. Efforts aimed at addressing this problem are underway within the fuel development and qualification program, comprised of modeling, as-fabricated plate characterization, and post-irradiation examination. An initial finite element analysis model has been developed to investigate worst-case scenarios for the basic monolithic fuel plate structure, using typical mini-plate irradiation conditions in the Advanced Test Reactor. Initial analysis shows that the stress normal to the fuel-clad interface dominates during irradiation, and that the presence of small, rounded delaminations at the interface is not of great concern. However, larger and/or fuel-clad delaminations with sharp corners can create areas of concern, as maximum principal cladding stress, strain, displacement, and peak fuel temperature are all significantly increased. Furthermore, stresses resulting from temperature gradients that cause the plate to bow or buckle in

  19. Combustion behavior of solid fuel ramjets

    NASA Technical Reports Server (NTRS)

    Netzer, D. W.; Binn, B. A.; Scott, W. E.; Metochianakis, M.

    1980-01-01

    Nonreacting flowfield characteristics and fundamental fuel properties are considered with respect to their use in estimating the obtainable combustion efficiency for fuels and/or combustor geometries. It is shown that near wall turbulence intensity in nonreacting flow appears to correlate reasonably well with the fuel regression pattern in identical geometries. The HTPB based fuels exhibit solid phase exothermic reactions in contrast to purely endothermic reactions for plexiglas. It is further shown that combustion pressure oscillations appear to be related to physically induced disturbances to the fluctuating shear layers at the fuel grain and aft mixing chamber inlets.

  20. Triaxial Swirl Injector Element for Liquid-Fueled Engines

    NASA Technical Reports Server (NTRS)

    Muss, Jeff

    2010-01-01

    A triaxial injector is a single bi-propellant injection element located at the center of the injector body. The injector element consists of three nested, hydraulic swirl injectors. A small portion of the total fuel is injected through the central hydraulic injector, all of the oxidizer is injected through the middle concentric hydraulic swirl injector, and the balance of the fuel is injected through an outer concentric injection system. The configuration has been shown to provide good flame stabilization and the desired fuel-rich wall boundary condition. The injector design is well suited for preburner applications. Preburner injectors operate at extreme oxygen-to-fuel mass ratios, either very rich or very lean. The goal of a preburner is to create a uniform drive gas for the turbomachinery, while carefully controlling the temperature so as not to stress or damage turbine blades. The triaxial injector concept permits the lean propellant to be sandwiched between two layers of the rich propellant, while the hydraulic atomization characteristics of the swirl injectors promote interpropellant mixing and, ultimately, good combustion efficiency. This innovation is suited to a wide range of liquid oxidizer and liquid fuels, including hydrogen, methane, and kerosene. Prototype testing with the triaxial swirl injector demonstrated excellent injector and combustion chamber thermal compatibility and good combustion performance, both at levels far superior to a pintle injector. Initial testing with the prototype injector demonstrated over 96-percent combustion efficiency. The design showed excellent high -frequency combustion stability characteristics with oxygen and kerosene propellants. Unlike the more conventional pintle injector, there is not a large bluff body that must be cooled. The absence of a protruding center body enhances the thermal durability of the triaxial swirl injector. The hydraulic atomization characteristics of the innovation allow the design to be

  1. Corrosion studies in fuel element reprocessing environments containing nitric acid

    SciTech Connect

    Beavers, J A; White, R R; Berry, W E; Griess, J C

    1982-04-01

    Nitric acid is universally used in aqueous fuel element reprocessing plants; however, in the processing scheme being developed by the Consolidated Fuel Reprocessing Program, some of the equipment will be exposed to nitric acid under conditions not previously encountered in fuel element reprocessing plants. A previous report presented corrosion data obtained in hyperazeotropic nitric acid and in concentrated magnesium nitrate solutions used in its preparation. The results presented in this report are concerned with the following: (1) corrosion of titanium in nitric acid; (2) corrosion of nickel-base alloys in a nitric acid-hydrofluoric acid solution; (3) the formation of Cr(VI), which enhances corrosion, in nitric acid solutions; and (4) corrosion of mechanical pipe connectors in nitric acid. The results show that the corrosion rate of titanium increased with the refreshment rate of boiling nitric acid, but the effect diminished rapidly as the temperature decreased. The addition of iodic acid inhibited attack. Also, up to 200 ppM of fluoride in 70% HNO/sub 3/ had no major effect on the corrosion of either titanium or tantalum. In boiling 8 M HNO/sub 3/-0.05 M HF, Inconel 671 was more resistant than Inconel 690, but both alloys experienced end-grain attack. In the case of Inconel 671, heat treatment was very important; annealed and quenched material was much more resistant than furnace-cooled material.The rate of oxidation of Cr(III) to Cr(VI) increased significantly as the nitric acid concentration increased, and certain forms of ruthenium in the solution seemed to accelerate the rate of formation. Mechanical connectors of T-304L stainless steel experienced end-grain attack on the exposed pipe ends, and seal rings of both stainless steel and a titanium alloy (6% Al-4% V) underwent heavy attack in boiling 8 M HNO/sub 3/.

  2. A mechanistic code for intact and defective nuclear fuel element performance

    NASA Astrophysics Data System (ADS)

    Shaheen, Khaled

    During reactor operation, nuclear fuel elements experience an environment featuring high radiation, temperature, and pressure. Predicting in-reactor performance of nuclear fuel elements constitutes a complex multi-physics problem, one that requires numerical codes to be solved. Fuel element performance codes have been developed for different reactor and fuel designs. Most of these codes simulate fuel elements using one-or quasi-two-dimensional geometries, and some codes are only applicable to steady state but not transient behaviour and vice versa. Moreover, while many conceptual and empirical separate-effects models exist for defective fuel behaviour, wherein the sheath is breached allowing coolant ingress and fission gas escape, there have been few attempts to predict defective fuel behaviour in the context of a mechanistic fuel performance code. Therefore, a mechanistic fuel performance code, called FORCE (Fuel Operational peRformance Computations in an Element) is proposed for the time-dependent behaviour of intact and defective CANDU nuclear fuel elements. The code, which is implemented in the COMSOL Multiphysics commercial software package, simulates the fuel, sheath, and fuel-to-sheath gap in a radial-axial geometry. For intact fuel performance, the code couples models for heat transport, fission gas production and diffusion, and structural deformation of the fuel and sheath. The code is extended to defective fuel performance by integrating an adapted version of a previously developed fuel oxidation model, and a model for the release of radioactive fission product gases from the fuel to the coolant. The FORCE code has been verified against the ELESTRES-IST and ELESIM industrial code for its predictions of intact fuel performance. For defective fuel behaviour, the code has been validated against coulometric titration data for oxygen-to-metal ratio in defective fuel elements from commercial reactors, while also being compared to a conceptual oxidation model

  3. Fabrication of ORNL Fuel Irradiated in the Peach Bottom Reactor and Postirradiation Examination of Recycle Test Elements 7 and 4

    SciTech Connect

    Long, Jr. E.L.

    2001-10-25

    Seven full-sized Peach Bottom Reactor. fuel elements were fabricated in a cooperative effort by Oak Ridge National Laboratory (ORNL) and Gulf General Atomic (GGA) as part of the National HTGR Fuel Recycle Development Program. These elements contain bonded fuel rods and loose beds of particles made from several combinations of fertile and fissile particles of interest for present and future use in the High-Temperature Gas-Cooled Reactor (HTGR). The portion of the fuel prepared for these elements by ORNL is described in detail in this report, and it is in conjunction with the GGA report (GA-10109) a complete fabrication description of the test. In addition, this report describes the results obtained to date from postirradiation examination of the first two elements removed from the Peach Bottom Reactor, RTE-7 and -4. The fuel examined had relatively low exposure, up to about 1.5 x 10{sup 21} neutrons/cm* fast (>0.18 MeV) fluence, compared with the peak anticipated HTGR fluence of 8.0 x 10{sup 21}, but it has performed well at this exposure. Dimensional data indicate greater irradiation shrinkage than expected from accelerated test data to higher exposures. This suggests that either the method of extrapolation of the higher exposure data back to low exposure is faulty, or the behavior of the coated particles in the neutron spectrum characteristic of the accelerated tests does not adequately represent the behavior in an HTGR spectrum.

  4. The effect of coprecipitation in some key spent fuel elements

    NASA Astrophysics Data System (ADS)

    Quiñones, J.; Serrano, J.; Diaz Arocas, P.

    2001-09-01

    Performance assessment (PA) of high-level waste (HLW) repositories needs to know real aqueous concentrations of key radionuclides under repository conditions for assuring the safety of the emplacement. The scarcity of these values under repository conditions leads to the use, in the PA studies, of the solubility of pure phases, which is a conservative assumption. Coprecipitation experiments are a very useful tool for giving realistic solubilities of key radionuclides. In this work, experimental data obtained from spent fuel (SF) and SIMFUEL coprecipitation tests under granite and saline conditions are presented. The experimental concentrations measured for several elements when equilibrium was achieved were much lower than expected considering only the solubility of pure phases. To explain this discrepancy, a tentative approach for modelling these experimental leaching and precipitation results of uranium, plutonium, americium, and strontium taking into account solid solution formations was made.

  5. Analysis of Ya-21u thermionic fuel elements

    SciTech Connect

    Paramonov, D.V.; El-Genk, M.S.

    1996-12-01

    The Ya-21u unit of the Soviet-made TOPAZ-II power system has recently been tested at the Thermionic Evaluation Facility in Albuquerque, New Mexico. A change in the unit performance was measured during these tests. In an attempt to identify the causes of this change performance, data were examined and used to estimate surface properties of electrodes of thermionic fuel elements (TFEs) of the power system. The effective emissivity was estimated at {approximately}0.03 to 0.035 higher than for as-fabricated TFE and cesiated work functions of the electrodes, which were higher than for as-fabricated TFEs. These changes in the effective emissivity and cesiated work functions, caused by gaseous impurities and air incursion in the TFEs interelectrode gap, lowered both the emitter temperature and the output load voltage thus contributing to the measured decrease in output power.

  6. Thermionic Fuel Element performance: TFE Verification Program. Final test report

    SciTech Connect

    Not Available

    1994-06-01

    The program objective is to demonstrate the technology readiness of a Thermionic Fuel Element (TFE) suitable for use as the basic element in a thermionic reactor with electric power output in the 0.5 to 5.0 MW(e) range, and a full power life of 7 years. A TFE was designed that met the reliability and lifetime requirements for a 2 MW(e) conceptual reactor design. Analysis showed that this TFE could be used over the range of 0.5 to 5 megawatts. This was used as the basis for designing components for test and evaluation. The demonstration of a 7-year component lifetime capability was through the combined use of analytical models and accelerated, confirmatory tests in a fast test reactor. Iterative testing was performed in which the results of one test series led to evolutionary improvements in the next test specimens. The TFE components underwent screening and initial development testing in ex-reactor tests. Several design and materials options were considered for each component. As screening tests permitted, down selection occurred to very specific designs and materials. In parallel with ex-reactor testing, and fast reactor component testing, components were integrated into a TFE and tested in the TRIGA test reactor at GA. Realtime testing of partial length TFEs was used to test support, alignment and interconnective TFE components, and to verify TFE performance in-reactor with integral cesium reservoirs. Realtime testing was also used to verify the relation between TFE performance and fueled emitter swelling, to test the durability of intercell insulation, to check temperature distributions, and to verify the adequacy over time of the fission gas venting channels. Predictions of TFE lifetime rested primarily on the accelerated component testing results, as correlated and extended to realtime by the use of analytical models.

  7. Fabrication and electrochemical behavior of nitride fuel for future applications

    NASA Astrophysics Data System (ADS)

    Arai, Yasuo; Minato, Kazuo

    2005-09-01

    Mononitride is the first candidate of fuel material in the accelerator driven system (ADS) for minor actinide (MA) transmutation designed by JAERI, being coupled with pyrochemical process for treatment of spent fuel. This paper summarizes recent R&D on the fabrication and electrochemical behavior of nitride fuel carried out in JAERI. Mononitride of U, Np, Pu, Am, Cm and their solid solutions have been prepared by carbothermic reduction from their dioxides. Mononitride containing diluent material such as ZrN also has been prepared and characterized. Electrode behavior of nitride fuel in the LiCl-KCl eutectic melt has been investigated by electrochemical measurements in order to apply pyrochemical process to nitride fuel cycle for MA transmutation.

  8. Behavioral Health and Performance Element: Tools and Technologies

    NASA Technical Reports Server (NTRS)

    Leveton, Lauren B.

    2009-01-01

    This slide presentation reviews the research into the Behavioral Health and Performance (BHP) of the Human Research Program. The program element goal is to identify, characterize and prevent or reduce behavioral health and performance risks associated with space travel, exploration, and return to terrestrial life. To accomplish this goal the program focuses on applied research that is designed to yield deliverables that reduce risk. There are several different elements that are of particular interest: Behavioral Medicine, Sleep, and team composition, and team work. In order to assure success for NASA missions the Human Research Program develops and validate the standards for each of the areas of interest. There is discussion of the impact on BHP while astronauts are on Long Duration Missions. The effort in this research is to create tools to meet the BHP concerns, these prospective tools are reviewed.

  9. Multiphysics Simulations of the Complex 3D Geometry of the High Flux Isotope Reactor Fuel Elements Using COMSOL

    SciTech Connect

    Freels, James D; Jain, Prashant K

    2011-01-01

    A research and development project is ongoing to convert the currently operating High Flux Isotope Reactor (HFIR) of Oak Ridge National Laboratory (ORNL) from highly-enriched Uranium (HEU U3O8) fuel to low-enriched Uranium (LEU U-10Mo) fuel. Because LEU HFIR-specific testing and experiments will be limited, COMSOL is chosen to provide the needed multiphysics simulation capability to validate against the HEU design data and calculations, and predict the performance of the LEU fuel for design and safety analyses. The focus of this paper is on the unique issues associated with COMSOL modeling of the 3D geometry, meshing, and solution of the HFIR fuel plate and assembled fuel elements. Two parallel paths of 3D model development are underway. The first path follows the traditional route through examination of all flow and heat transfer details using the Low-Reynolds number k-e turbulence model provided by COMSOL v4.2. The second path simplifies the fluid channel modeling by taking advantage of the wealth of knowledge provided by decades of design and safety analyses, data from experiments and tests, and HFIR operation. By simplifying the fluid channel, a significant level of complexity and computer resource requirements are reduced, while also expanding the level and type of analysis that can be performed with COMSOL. Comparison and confirmation of validity of the first (detailed) and second (simplified) 3D modeling paths with each other, and with available data, will enable an expanded level of analysis. The detailed model will be used to analyze hot-spots and other micro fuel behavior events. The simplified model will be used to analyze events such as routine heat-up and expansion of the entire fuel element, and flow blockage. Preliminary, coarse-mesh model results of the detailed individual fuel plate are presented. Examples of the solution for an entire fuel element consisting of multiple individual fuel plates produced by the simplified model are also presented.

  10. Composition and Behavior of Fuel Ethanol

    EPA Science Inventory

    Ethanol usage in the United States has increased due in part to the elimination of methyl tert-butyl ether from the fuel supply and to the mandates of Congress. Two samples, one each from a wet mill and a dry mill ethanol plant, were obtained before denaturing. Each of these ...

  11. Structural Behavior of Monolithic Fuel Plates During Hot Isostatic Pressing and Annealing

    SciTech Connect

    Pavel G. Medvedev; Hakan Ozaltun

    2010-03-01

    This paper presents results of the stress analysis in the monolithic fuel plates during thermal transients performed using COMSOL finite element analysis software. Large difference in the thermal expansion between the U-Mo foil and Al cladding is the main load origin during heating and cooling of the fuel plates. In addition, the mechanical behavior of the plate is affected by the difference in yield points between the foil and the cladding. This is manifested by the plastic deformation and permanent strains in the cladding, and elastic deformation of the foil. The results show existence of the critical temperature points at which the stresses change from compressive to tensile. The paper highlights principal differences in mechanical behavior between monolithic and dispersion fuel plates, underlines the need for mechanical property data, especially for the U-Mo alloys, and discusses the methodology for mechanical analysis of the monolithic plates.

  12. Subcritical Noise Analysis Measurements with Fresh and Spent Research Reactor Fuels Elements

    SciTech Connect

    Valentine, T.E.; Mihalczo, J.T.; Kryter, R.C.; Miller, V.C.

    1999-02-01

    The verification of the subcriticality is of utmost importance for the safe transportation and storage of nuclear reactor fuels. Transportation containers and storage facilities are designed such that nuclear fuels remain in a subcritical state. Such designs often involve excess conservatism because of the lack of relevant experimental data to verify the accuracy of Monte Carlo codes used in nuclear criticality safety analyses. A joint experimental research program between Oak Ridge National Laboratory, Westinghouse Safety Management Solutions, Inc., and the University of Missouri was initiated to obtain measured quantities that could be directly related to the subcriticality of simple arrays of Missouri University Research Reactor (MURR) fuel elements. A series of measurement were performed to assess the reactivity of materials such as BORAL, stainless steel, aluminum, and lead that are typically used in the construction of shipping casks. These materials were positioned between the fuel elements. In addition, a limited number of measurements were performed with configurations of fresh and spent (irradiated) fuel elements to ascertain the reactivity of the spent fuel elements. In these experiments, fresh fuel elements were replaced by spent fuel elements such that the subcritical reactivity change could be measured. The results of these measurements were used by Westinghouse Safety Management Solutions to determine the subcriticality of MURR fuel elements isolated by absorbing materials. The measurements were interpreted using the MCNP-DSP Monte Carlo code to obtain the subcritical neutron multiplication factor k(sub eff), and the bias in K(sub eff) that are used in criticality safety analyses.

  13. Cyclic Behavior of the Sun's Small-scale Magnetic Elements

    NASA Astrophysics Data System (ADS)

    Wang, Jingxiu; Jin, C.

    2011-05-01

    With the unique database from the Michelson Doppler Imager on board the Solar and Heliospheric Observatory in an interval embodying solar cycle 23, the cyclic behavior of solar small-scale magnetic elements is studied. More than 13 million small-scale magnetic elements are selected, and their cyclic behavior is analyzed in comparison with the changes of sunspot numbers and active region magnetic flux. From the small to large end of the flux spectrum, the variations of numbers and total flux of the network elements show no correlation, anti-correlation, and correlation with sunspots, respectively. The anti-correlated elements, covering the flux of (2.9-32.0)×1018 Mx, occupy 77.2% of the total element number and 37.4% of the quiet-Sun flux. Unlike the correlated elements, which follow the sunspot butterfly diagram, the anti-correlated elements cover very broad range of latitude and do not show clear latitude migration during the cycle. These results provide insight for understanding the anti-correlations of small-scale magnetic activity during the solar cycle. The quiet regions dominate the Sun's magnetic flux for about 8 years in the 12.25 year duration of cycle 23, their monthly average magnetic flux is 1.12 times that of the active regions in the cycle. For the 28 continuous months from July 2007 to October 2009, the six-month running average ratio of quiet region flux to that of the total Sun is larger than 90.0%, which characterizes the gram minima in cycles 23 and 24 very well.

  14. Deposition behavior of UO2 and noble-metal elements in oxide-electrowinning reprocessing

    NASA Astrophysics Data System (ADS)

    Kosugi, K.; Fukushima, M.; Myochin, M.; Mizuguchi, K.; Oomori, T.

    2005-02-01

    As a candidate process for future reprocessing technology of nuclear spent fuel, oxide-electrowinning method has been studied. In this method, the uranium is collected on the cathode in the form of UO2 by electrolysis in the molten chloride. Thereby, the noble metal (NM) elements accompany the uranium deposition, because of very close redox potential between NM elements and UO2. To clarify the electrolysis behavior of the uranium and NM elements in the low-current-density electrolysis, the laboratory scale experiments were performed under various conditions of cathode current density and solutes concentration in the chloride melt, and the separation efficiency and the morphology of the deposition were investigated. It was found that the separation of Pd from uranium was more difficult than that of Rh. The presence of U4+ greatly influenced current efficiency of the electrolysis process.

  15. Description of fuel element brush assembly`s fabrication for 105-K west

    SciTech Connect

    Maassen, D. P.

    1997-10-15

    This report is a description of the process to redesign and fabricate, as well as, describe the features of the Fuel Element Brush Assembly used in the 105-K West Basin. This narrative description will identify problems that occurred during the redesigning and fabrication of the 105-K West Basin Fuel Element Brush Assembly and specifically address their solutions.

  16. Ground test facilities for evaluating nuclear thermal propulsion engines and fuel elements

    SciTech Connect

    Allen, G.C.; Beck, D.F.; Harmon, C.D.; Shipers, L.R.

    1992-08-01

    Interagency panels evaluating nuclear thermal propulsion development options have consistently recognized the need for constructing a major new ground test facility to support fuel element and engine testing. This paper summarizes the requirements, configuration, and design issues of a proposed ground test complex for evaluating nuclear thermal propulsion engines and fuel elements being developed for the Space Nuclear Thermal Propulsion (SNTP) program. 2 refs.

  17. Electrolyser and fuel cells, key elements for energy and life support

    NASA Astrophysics Data System (ADS)

    Bockstahler, Klaus; Funke, Helmut; Lucas, Joachim

    Both, Electrolyser and Fuel Cells are key elements for regenerative energy and life support systems. Electrolyser technology is originally intended for oxygen production in manned space habitats and in submarines, through splitting water into hydrogen and oxygen. Fuel cells serve for energy production through the reaction, triggered in the presence of an electrolyte, between a fuel and an oxidant. Now combining both technologies i.e. electrolyser and fuel cell makes it a Regenerative Fuel Cell System (RFCS). In charge mode, i.e. with energy supplied e.g. by solar cells, the electrolyser splits water into hydrogen and oxygen being stored in tanks. In discharge mode, when power is needed but no energy is available, the stored gases are converted in the fuel cell to generate electricity under the formation of water that is stored in tanks. Rerouting the water to the electrolyser makes it a closed-loop i.e. regenerative process. Different electrolyser and fuel cell technologies are being evolved. At Astrium emphasis is put on the development of an RFCS comprised of Fixed Alkaline Electrolyser (FAE) and Fuel Cell (AFC) as such technology offers a high electrical efficiency and thus reduced system weight, which is important in space applications. With increasing power demand and increasing discharge time an RFCS proves to be superior to batteries. Since the early technology development multiple design refinements were done at Astrium, funded by the European Space Agency ESA and the German National Agency DLR as well as based on company internal R and T funding. Today a complete RFCS energy system breadboard is established and the operational behavior of the system is being tested. In parallel the electrolyser itself is subject to design refinement and testing in terms of oxygen production in manned space habitats. In addition essential features and components for process monitoring and control are being developed. The present results and achievements and the dedicated

  18. Nuclear breeder reactor fuel element with axial tandem stacking and getter

    DOEpatents

    Gibby, Ronald L.; Lawrence, Leo A.; Woodley, Robert E.; Wilson, Charles N.; Weber, Edward T.; Johnson, Carl E.

    1981-01-01

    A breeder reactor fuel element having a tandem arrangement of fissile and fertile fuel with a getter for fission product cesium disposed between the fissile and fertile sections. The getter is effective at reactor operating temperatures to isolate the cesium generated by the fissile material from reacting with the fertile fuel section.

  19. Multidisciplinary Simulation of Graphite-Composite and Cermet Fuel Elements for NTP Point of Departure Designs

    NASA Technical Reports Server (NTRS)

    Stewart, Mark E.; Schnitzler, Bruce G.

    2015-01-01

    This paper compares the expected performance of two Nuclear Thermal Propulsion fuel types. High fidelity, fluid/thermal/structural + neutronic simulations help predict the performance of graphite-composite and cermet fuel types from point of departure engine designs from the Nuclear Thermal Propulsion project. Materials and nuclear reactivity issues are reviewed for each fuel type. Thermal/structural simulations predict thermal stresses in the fuel and thermal expansion mis-match stresses in the coatings. Fluid/thermal/structural/neutronic simulations provide predictions for full fuel elements. Although NTP engines will utilize many existing chemical engine components and technologies, nuclear fuel elements are a less developed engine component and introduce design uncertainty. Consequently, these fuel element simulations provide important insights into NTP engine performance.

  20. Biogeochemistry of Hot Spring Biofilms: Major and Trace Element Behavior

    NASA Astrophysics Data System (ADS)

    Havig, J. R.; Prapaipong, P.; Zolotova, N.; Moore, G.; Shock, E. L.

    2008-12-01

    Hot spring biofilms are of obvious biological origin, but of surprising composition. Organic carbon makes up a minor percentage of the total mass of chemotrophic and phototrophic biofilms. We have found that the majority of biofilm mass is inorganic material, largely silica, with measurable quantities of dozens of other elements, and that the distribution of major elements mimics that of surrounding rock and soil far more closely than the hot spring fluids. Comparisons of biofilms with the compositions of their geochemical surroundings help identify trace elements that are anomalously enriched or depleted. These anomalies provide insight into the processes of active or passive elemental accumulation by biofilms, which could be used to understand microbial processes of element uptake or to identify evidence for life in hydrothermal deposits in the rock record. Five separate hydrothermal systems in Yellowstone National Park were incorporated into this study: 'Bison Pool' and its outflow (siliceous-sinter depositing, temp. = 93.2 to 56.2 C, pH = 7.4 to 8.3), Flatcone Geyser and its outflow (siliceous-sinter depositing, temp. = 94.3 to 44.3 C, pH = 7.9 to 8.8, Boulder Spring and its outflow (siliceous-sinter depositing, temp. = 92.1 to 64.9 C, pH = 8.2 to 8.7), Octopus Spring and its outflow (siliceous-sinter depositing, temp. = 91.4 to 62.8 C, pH = 7.7 to 8.2), and two unnamed locations in the Obsidian Pool area we have dubbed 'Green Cheese' (temp. = 64.5 to 54.9 C, pH = 5.9 to 6.2) and 'Happy Harfer Pool' (temp. = 59.9 to 48.3 C, pH = 5.5 to 6.3). Analysis of water, biofilm, and contextual samples collected from and around these hot springs offer intriguing patterns of elemental behavior, both similar and dissimilar, among the varying systems. Examples of these patterns include elements that behave the same across all hot spring systems (B, C, Ni, Cu, Ge, Sb, and W), elements with behavior that was consistent throughout most (four of five) of the hot spring systems

  1. Elemental Solubility Tendency for the Phases of Uranium by Classical Models Used to Predict Alloy Behavior

    SciTech Connect

    Van Blackwood; Travis Koenig; Saleem Drera; Brajenda Mishra; Davis Olson; Doug Porter; Robert Mariani

    2012-03-01

    Traditional alloy theory models, specifically Darken-Gurry and Miedema’s analyses, that characterize solutes in solid solvents relative to physical properties of the elements have been used to assist in predicting alloy behavior. These models will be applied relative to the three solid phases of uranium: alpha (orthorhombic), beta (tetragonal), and gamma (bcc). These phases have different solubilities for specific alloy additions as a function of temperature. The Darken-Gurry and Miedema models, with modifications based on concepts of Waber, Gschneider, and Brewer will be used to predict the behavior of four types of solutes: 1) Transition metals that are used for various purposes associated with the containment as alloy additions in the uranium fuel 2) Transuranic elements in the uranium 3) Rare earth fission products (lanthanides) 4) Transition metals and other fission products Using these solute map criteria, elemental behavior will be predicted as highly soluble, marginally soluble, or immiscible (compound formers) and will be used to compare solute effects during uranium phase transformations. The overlapping of these solute maps are convenient first approximation tools for predicting alloy behavior.

  2. Conversion and evaluation of the THOR reactor core to TRIGA fuel elements

    SciTech Connect

    Li, S.-H.; Shiau, L.-C.

    1990-07-01

    The THOR reactor is a pool type 1 MW research reactor and has been operated since 1961. The original MTR fuel elements have been gradually replaced by TRIGA fuel elements since 1977 and the conversion completed in 1987. The calculations were performed for various core configurations by using computer codes, WIMS/CITATION. The computing results have been evaluated and compared with the core measurements after the fuel conversion. The analysis results are in good correspondence with the measurements. (author)

  3. Asymptotic behavior of curvature of surface elements in isotropic turbulence

    NASA Technical Reports Server (NTRS)

    Girimaji, S. S.

    1991-01-01

    The asymptotic behavior of the curvature of material elements in turbulence is investigated using Lagrangian velocity-gradient time series obtained from direct numerical simulations of isotropic turbulence. Several material-element ensembles of different initial curvatures and shapes are studied. It is found that, at long times, the (first five) moments of the logarithm of characteristic curvature and shape factor asymptote to values that are independent of the initial curvature or shape. This evidence strongly suggests that the asymptotic pdf's of the curvature and shape of material elements are stationary and independent of initial conditions. Irrespective of initial curvature or shape, the asymptotic shape of a material surface is cylindrical with a high probability.

  4. A computational study of nodal-based tetrahedral element behavior.

    SciTech Connect

    Gullerud, Arne S.

    2010-09-01

    This report explores the behavior of nodal-based tetrahedral elements on six sample problems, and compares their solution to that of a corresponding hexahedral mesh. The problems demonstrate that while certain aspects of the solution field for the nodal-based tetrahedrons provide good quality results, the pressure field tends to be of poor quality. Results appear to be strongly affected by the connectivity of the tetrahedral elements. Simulations that rely on the pressure field, such as those which use material models that are dependent on the pressure (e.g. equation-of-state models), can generate erroneous results. Remeshing can also be strongly affected by these issues. The nodal-based test elements as they currently stand need to be used with caution to ensure that their numerical deficiencies do not adversely affect critical values of interest.

  5. Mechanistic modeling of Zircaloy deformation and fracture in fuel element analysis

    SciTech Connect

    Nichols, F.A.

    1985-06-01

    A review is given of the comprehensive model developed in the 1960's at the Bettis Atomic Power Laboratory to explain the creep of Zircaloy during neutron irradiation and applied to fuel element analysis and design. The in-pile softening observed at low stresses was hypothesized to be due to a combination of the growth-directed Roberts-Cottrell yielding creep originally proposed for ..cap alpha..-uranium and the formation of point defect loops preferentially on certain planes in response to the applied stress, with the second process being of relatively greater importance. The in-pile hardening observed at high stresses (or strain-rates) was proposed to be due to the cutting by dislocations of radiation-produced obstacles. In this stress (strain-rate) region, in-pile behavior was proposed to be identical to post-irradiation behavior. At intermediate stresses (strain-rates) a mechanism of radiation-enhanced climb around obstacles was suggested as being rate controlling. As the stress is decreased, the climb process becomes easier and the rate was then predicted to be controlled by glide at a flow stress characteristic of unirradiated, annealed material, where radiation-enhanced diffusion enabled climbing around the normal strain-hardening obstacles. At still lower stresses, this glide process became negligibly slow compared with the growth-connected creep mechanism which was presumed to operate independently. The overall scheme was shown to be good agreement with all the in-pile data then available and implemented into the computer analysis of fuel element behavior. 48 refs., 1 fig.

  6. Drying Results of K-Basin Fuel Element 2660M (Run 7)

    SciTech Connect

    B.M. Oliver; G.S. Klinger; J. Abrefah; S.C. Marschman; P.J. MacFarlan; G.A. Ritter

    1999-07-26

    The water-filled K-Basins in the Hanford 100 Area have been used to store N-Reactor spent nuclear fuel (SNF) since the 1970s. Because some leaks in the basin have been detected and some of the fuel is breached due to handling damage and corrosion, efforts are underway to remove the fuel elements from wet storage. An Integrated Process Strategy (IPS) has been developed to package, dry, transport, and store these metallic uranium fuel elements in an interim storage facility on the Hanford Site (WHC 1995). Information required to support the development of the drying processes, and the required safety analyses, is being obtained from characterization tests conducted on fuel elements removed from the K-Basins. A series of whole element drying tests (reported in separate documents, see Section 8.0) have been conducted by Pacific Northwest National Laboratory (PNNL) on several intact and damaged fuel elements recovered from both the K-East and K-West Basins. This report documents the results of the seventh of those tests, which was conducted on an N-Reactor outer fuel element removed from K-West canister 2660M. This element (referred to as Element 2660M) was stored underwater in the K-West Basin from 1983 until 1996. Element 2660M was subjected to a combination of low- and high-temperature vacuum drying treatments that were intended to mimic, wherever possible, the fuel treatment strategies of the IPS. The system used for the drying test was the Whole Element Furnace Testing System, described in Section 2.0, located in the Postirradiation Testing Laboratory (PTL, 327 Building). The test conditions and methodologies are given in Section 3.0. Inspections of the fuel element before and after the test are provided in Section 4.0. The experimental results are provided in Section 5.0, and discussed in Section 6.0.

  7. ZPPR FUEL ELEMENT THERMAL STRESS-STRAIN ANALYSIS

    SciTech Connect

    Charles W. Solbrig; Jason Andrus; Chad Pope

    2014-04-01

    The design temperature of high plutonium concentration ZPPR fuel assemblies is 600 degrees C. Cladding integrity of the 304L stainless steel cladding is a significant concern with this fuel since even small holes can lead to substantial fuel degradation. Since the fuel has a higher coefficient of thermal expansion than the cladding, an investigation of the stress induced in the cladding due to the differential thermal expansion of fuel and cladding up to the design temperature was conducted. Small holes in the cladding envelope would be expected to lead to the fuel hydriding and oxidizing into a powder over a long period of time. This is the same type of chemical reaction chain that exists in the degradion of the high uranium concentration ZPPR fuel. Unfortunately, the uranium fuel was designed with vents which allowed this degradation to occur. The Pu cladding is sealed so only fuel with damaged cladding would be subject to this damage. The thermal stresses that can be developed in the fuel cladding have been calculated in in this paper and compared to the ultimate tensile stress of the cladding. The conclusion is drawn that thermal stresses cannot induce holes in the cladding even for the highest storage temperatures predicted in calculations (292°C). In fact, thermal stress can not cause cladding failure as long as the fuel temperatures are below the design limit of 600 degrees C (1,112 degrees F).

  8. EVALUATION OF U10MO FUEL PLATE IRRADIATION BEHAVIOR VIA NUMERICAL AND EXPERIMENTAL BENCHMARKING

    SciTech Connect

    Samuel J. Miller; Hakan Ozaltun

    2012-11-01

    This article analyzes dimensional changes due to irradiation of monolithic plate-type nuclear fuel and compares results with finite element analysis of the plates during fabrication and irradiation. Monolithic fuel plates tested in the Advanced Test Reactor (ATR) at Idaho National Lab (INL) are being used to benchmark proposed fuel performance for several high power research reactors. Post-irradiation metallographic images of plates sectioned at the midpoint were analyzed to determine dimensional changes of the fuel and the cladding response. A constitutive model of the fabrication process and irradiation behavior of the tested plates was developed using the general purpose commercial finite element analysis package, Abaqus. Using calculated burn-up profiles of irradiated plates to model the power distribution and including irradiation behaviors such as swelling and irradiation enhanced creep, model simulations allow analysis of plate parameters that are either impossible or infeasible in an experimental setting. The development and progression of fabrication induced stress concentrations at the plate edges was of primary interest, as these locations have a unique stress profile during irradiation. Additionally, comparison between 2D and 3D models was performed to optimize analysis methodology. In particular, the ability of 2D and 3D models account for out of plane stresses which result in 3-dimensional creep behavior that is a product of these components. Results show that assumptions made in 2D models for the out-of-plane stresses and strains cannot capture the 3-dimensional physics accurately and thus 2D approximations are not computationally accurate. Stress-strain fields are dependent on plate geometry and irradiation conditions, thus, if stress based criteria is used to predict plate behavior (as opposed to material impurities, fine micro-structural defects, or sharp power gradients), unique 3D finite element formulation for each plate is required.

  9. Trace element partitioning behavior of coal gangue-fired CFB plant: experimental and equilibrium calculation.

    PubMed

    Zhang, Yingyi; Nakano, Jinichiro; Liu, Lili; Wang, Xidong; Zhang, Zuotai

    2015-10-01

    Energy recovery is a promising method for coal gangue utilization, during which the prevention of secondary pollution, especially toxic metal emission, is a significant issue in the development of coal gangue utilization. In the present study, investigation into trace element partitioning behavior from a coal gangue-fired power plant in Shanxi province, China, has been conducted. Besides the experimental analysis, thermodynamic equilibrium calculation was also conducted to help the further understanding on the effect of different parameters. Results showed that Hg, As, Be, and Cd were highly volatile elements in the combustion of coal gangue, which were notably enriched in fly ash and may be emitted into the environment via the gas phase. Cr and Mn were mostly non-volatile and were enriched in the bottom ash. Pb, Co, Zn, Cu, and Ni were semi-volatile elements and were enriched in the fly ash to varying degrees. Equilibrium calculations show that the air/fuel ratio and the presence of Cl highly affect the element volatility. The presence of mineral phases, such as aluminosilicates, depresses the volatility of elements by chemical immobilization and competition in Cl. The coal gangue, fly ash, and bottom ash all passed the toxicity characteristic leaching procedure (TCLP), and their alkalinity buffers the acidity of the solution and contributes to the low solubility of the trace elements. PMID:26006077

  10. Measurement of dynamic interaction between a vibrating fuel element and its support

    SciTech Connect

    Fisher, N.J.; Tromp, J.H.; Smith, B.A.W.

    1996-12-01

    Flow-induced vibration of CANDU{reg_sign} fuel can result in fretting damage of the fuel and its support. A WOrk-Rate Measuring Station (WORMS) was developed to measure the relative motion and contact forces between a vibrating fuel element and its support. The fixture consists of a small piece of support structure mounted on a micrometer stage. This arrangement permits position of the support relative to the fuel element to be controlled to within {+-} {micro}m. A piezoelectric triaxial load washer is positioned between the support and micrometer stage to measure contact forces, and a pair of miniature eddy-current displacement probes are mounted on the stage to measure fuel element-to-support relative motion. WORMS has been utilized to measure dynamic contact forces, relative displacements and work-rates between a vibrating fuel element and its support. For these tests, the fuel element was excited with broadband random force excitation to simulate flow-induced vibration due to axial flow. The relationship between fuel element-to-support gap or preload (i.e., interference or negative gap) and dynamic interaction (i.e., relative motion, contact forces and work-rates) was derived. These measurements confirmed numerical simulations of in-reactor interaction predicted earlier using the VIBIC code.

  11. Support grid for fuel elements in a nuclear reactor

    DOEpatents

    Finch, Lester M.

    1977-01-01

    A support grid is provided for holding nuclear fuel rods in a rectangular array. Intersecting sheet metal strips are interconnected using opposing slots in the strips to form a rectangular cellular grid structure for engaging the sides of a multiplicity of fuel rods. Spring and dimple supports for engaging fuel and guide rods extending through each cell in the support grid are formed in the metal strips with the springs thus formed being characterized by nonlinear spring rates.

  12. Quantifying Square Membrane Wrinkle Behavior Using MITC Shell Elements

    NASA Technical Reports Server (NTRS)

    Jacobson, Mindy B.; Iwasa, Takashi; Natori, M. C.

    2004-01-01

    For future membrane based structures, quantified predictions of membrane wrinkling behavior in terms of amplitude, angle and wavelength are needed to optimize the efficiency and integrity of such structures, as well as their associated control systems. For numerical analyses performed in the past, limitations on the accuracy of membrane distortion simulations have often been related to the assumptions made while using finite elements. Specifically, this work demonstrates that critical assumptions include: effects of gravity. supposed initial or boundary conditions, and the type of element used to model the membrane. In this work, a 0.2 square meter membrane is treated as a structural material with non-negligible bending stiffness. Mixed Interpolation of Tensorial Components (MTTC) shell elements are used to simulate wrinkling behavior due to a constant applied in-plane shear load. Membrane thickness, gravity effects, and initial imperfections with respect to flatness were varied in numerous nonlinear analysis cases. Significant findings include notable variations in wrinkle modes for thickness in the range of 50 microns to 1000 microns, which also depend on the presence of an applied gravity field. However, it is revealed that relationships between overall strain energy density for cases with differing initial conditions are independent of assumed initial con&tions. In addition, analysis results indicate that the relationship between amplitude scale (W/t) and structural scale (L/t) is linear in the presence of a gravity field.

  13. Neutron and gamma radiography of UO{sub 2} and TRIGA fuel elements

    SciTech Connect

    Robinson, A.H.; Gao, Y.C.; Johnson, A.G.; Ringle, J.C.

    1982-07-01

    The Oregon State TRIGA Reactor neutron radiography facility has been used to produce both neutron and gamma radiographs of reactor fuel. In this paper a comparison of the applicability of neutron and gamma radiography to both UO{sub 2} fuel pins and TRIGA fuel elements is made. In the case of UO{sub 2} fuel, conventional thermal neutron radiography produces excellent quality radiographs. These radiographs may be used to detect various defects in the fuel such as enrichment differences, cracks, end-capping, inclusions, etc. For TRIGA fuel elements, conventional thermal neutron radiography will not show the internal structure. This is due to the high hydrogen content of the fuel. These elements are typically 8.5 w/o uranium in Zr-H{sub 1.7}; the density of hydrogen in the fuel being about 80 percent that of water. Further, while epithermal radiography significantly improves the radiographs, defects may go undetected. As an alternative to neutron radiography, high energy gamma radiographs of TRIGA fuel elements have been taken using the same facility. The gamma spectrum emitted by the reactor core is sufficiently high in energy that very good radiographs may be obtained with this technique. These radiographs show excellent detail for the internal structure of the TRIGA fuel. (author)

  14. Method for disposing of radioactive graphite and silicon carbide in graphite fuel elements

    SciTech Connect

    Gay, R.L.

    1995-09-12

    Method is described for destroying radioactive graphite and silicon carbide in fuel elements containing small spheres of uranium oxide coated with silicon carbide in a graphite matrix, by treating the graphite fuel elements in a molten salt bath in the presence of air, the salt bath comprising molten sodium-based salts such as sodium carbonate and a small amount of sodium sulfate as catalyst, or calcium-based salts such as calcium chloride and a small amount of calcium sulfate as catalyst, while maintaining the salt bath in a temperature range of about 950 to about 1,100 C. As a further feature of the invention, large radioactive graphite fuel elements, e.g. of the above composition, can be processed to oxidize the graphite and silicon carbide, by introducing the fuel element into a reaction vessel having downwardly and inwardly sloping sides, the fuel element being of a size such that it is supported in the vessel at a point above the molten salt bath therein. Air is bubbled through the bath, causing it to expand and wash the bottom of the fuel element to cause reaction and destruction of the fuel element as it gradually disintegrates and falls into the molten bath. 4 figs.

  15. Spent fuel behavior under abnormal thermal transients during dry storage

    SciTech Connect

    Stahl, D.; Landow, M.P.; Burian, R.J.; Pasupathi, V.

    1986-01-01

    This study was performed to determine the effects of abnormally high temperatures on spent fuel behavior. Prior to testing, calculations using the CIRFI3 code were used to determine the steady-state fuel and cask component temperatures. The TRUMP code was used to determine transient heating rates under postulated abnormal events during which convection cooling of the cask surfaces was obstructed by a debris bed covering the cask. The peak rate of temperature rise during the first 6 h was calculated to be about 15/sup 0/C/h, followed by a rate of about 1/sup 0/C/h. A Turkey Point spent fuel rod segment was heated to approx. 800/sup 0/C. The segment deformed uniformly with an average strain of 17% at failure and a local strain of 60%. Pretest characterization of the spent fuel consisted of visual examination, profilometry, eddy-current examination, gamma scanning, fission gas collection, void volume measurement, fission gas analysis, hydrogen analysis of the cladding, burnup analysis, cladding metallography, and fuel ceramography. Post-test characterization showed that the failure was a pinhole cladding breach. The results of the tests showed that spent fuel temperatures in excess of 700/sup 0/C are required to produce a cladding breach in fuel rods pressurized to 500 psing (3.45 MPa) under postulated abnormal thermal transient cask conditions. The pinhole cladding breach that developed would be too small to compromise the confinement of spent fuel particles during an abnormal event or after normal cooling conditions are restored. This behavior is similar to that found in other slow ramp tests with irradiated and nonirradiated rod sections and nonirradiated whole rods under conditions that bracketed postulated abnormal heating rates. This similarity is attributed to annealing of the irradiation-strengthened Zircaloy cladding during heating. In both cases, the failure was a benign, ductile pinhole rupture.

  16. A MULTIDIMENSIONAL AND MULTIPHYSICS APPROACH TO NUCLEAR FUEL BEHAVIOR SIMULATION

    SciTech Connect

    R. L. Williamson; J. D. Hales; S. R. Novascone; M. R. Tonks; D. R. Gaston; C. J. Permann; D. Andrs; R. C. Martineau

    2012-04-01

    Important aspects of fuel rod behavior, for example pellet-clad mechanical interaction (PCMI), fuel fracture, oxide formation, non-axisymmetric cooling, and response to fuel manufacturing defects, are inherently multidimensional in addition to being complicated multiphysics problems. Many current modeling tools are strictly 2D axisymmetric or even 1.5D. This paper outlines the capabilities of a new fuel modeling tool able to analyze either 2D axisymmetric or fully 3D models. These capabilities include temperature-dependent thermal conductivity of fuel; swelling and densification; fuel creep; pellet fracture; fission gas release; cladding creep; irradiation growth; and gap mechanics (contact and gap heat transfer). The need for multiphysics, multidimensional modeling is then demonstrated through a discussion of results for a set of example problems. The first, a 10-pellet rodlet, demonstrates the viability of the solution method employed. This example highlights the effect of our smeared cracking model and also shows the multidimensional nature of discrete fuel pellet modeling. The second example relies on our the multidimensional, multiphysics approach to analyze a missing pellet surface problem. As a final example, we show a lower-length-scale simulation coupled to a continuum-scale simulation.

  17. Radioactive Fission Product Release from Defective Light Water Reactor Fuel Elements

    SciTech Connect

    Konyashov, Vadim V.; Krasnov, Alexander M.

    2002-04-15

    Results are provided of the experimental investigation of radioactive fission product (RFP) release, i.e., krypton, xenon, and iodine radionuclides from fuel elements with initial defects during long-term (3 to 5 yr) irradiation under low linear power (5 to 12 kW/m) and during special experiments in the VK-50 vessel-type boiling water reactor.The calculation model for the RFP release from the fuel-to-cladding gap of the defective fuel element into coolant was developed. It takes into account the convective transport in the fuel-to-cladding gap and RFP sorption on the internal cladding surface and is in good agreement with the available experimental data. An approximate analytical solution of the transport equation is given. The calculation dependencies of the RFP release coefficients on the main parameters such as defect size, fuel-to-cladding gap, temperature of the internal cladding surface, and radioactive decay constant were analyzed.It is shown that the change of the RFP release from the fuel elements with the initial defects during long-term irradiation is, mainly, caused by fuel swelling followed by reduction of the fuel-to-cladding gap and the fuel temperature. The calculation model for the RFP release from defective fuel elements applicable to light water reactors (LWRs) was developed. It takes into account the change of the defective fuel element parameters during long-term irradiation. The calculation error according to the program does not exceed 30% over all the linear power change range of the LWR fuel elements (from 5 to 26 kW/m)

  18. Internal flow measurements of the SSME fuel preburner injector element using real time neutron radiography

    NASA Technical Reports Server (NTRS)

    Lindsay, John T.; Elam, Sandy; Koblish, Ted; Lee, Phil; Mcauliffe, Dave

    1990-01-01

    Due to observations of unsteady flow in the Space Shuttle Main Engine fuel preburner injector element, several flow studies have been performed. Real time neutron radiography tests were recently completed. This technique provided real time images of MiL-c-7024 and Freon-22 flow through an aluminum liquid oxygen post model at three back pressures (0, 150, and 545 psig) and pressure drops up to 1000 psid. Separated flow appeared only while operating at back pressures of 0 and 150 psig. The behavior of separated flow was similar to that observed for water in a 3x acrylic model of the LOX post. On the average, separated flow appeared to reattach near the exit of the post when the ratio of pressure drop to supply pressure was about 0.75.

  19. Analysis of cocked fuel elements in the AFRRI TRIGA Mark-F reactor

    SciTech Connect

    Sholtis, Joseph A. Jr.

    1982-07-01

    The Armed Forces Radiobiology Research Institute (AFRRI) TRIGA Mark-F pulsing reactor has experienced eight cocked fuel elements during the period 5 November 1974 through 17 February 1982. Although there are no adverse health and safety consequences associated with their occurrence and there is no credible potential for system damage, cocked TRIGA fuel elements do cause inconvenience to the reactor staff and a temporary delay in operations. This paper presents the history of cocked TRIGA fuel elements at AFRRI, discusses possible mechanisms for their occurrence, and outlines a plan to isolate and ultimately determine their actual cause.

  20. Inhalation of U aerosols from UO2 fuel element fabrication.

    PubMed

    Schieferdecker, H; Dilger, H; Doerfel, H; Rudolph, W; Anton, R

    1985-01-01

    Publication No. 30 of the International Commission on Radiological Protection (ICRP) assigns the uranium oxides UO2 and U3O8 to transportability class Y, i.e. the half-life of these compounds in the lungs is about 500 days. This assignment seemed not to be in accordance with our experience resulting from incorporation surveillance during UO2 fuel element fabrication. Persons who worked in atmospheres containing UO2 aerosols with activity concentrations significantly above the derived air concentrations (DAC) for class Y U showed much lower activity in the lungs than would be expected according to the ICRP. To understand this discrepancy, aerosol concentrations and aerosol particle-size distributions at work places with the possibility of UO2 incorporation, the activity of urine and feces and the lung activity of persons working at these places were measured in an investigation program. The results are only consistent with the ICRP lung model if one uses a measured biological half-life in the lungs of 109 days and a measured AMAD of 8.2 micron instead of the ICRP standard assumptions of 500 days and 1.0 micron, respectively. ICRP Publication No. 30 recommends application of specific parameters for health physics instead of standard model values. For the special conditions in our UO2 fuel fabrication plant we therefore derive limits of air concentrations, lung activities and fecal and urinary activity concentrations by applying our measured particle-size and lung-retention parameters to the ICRP model. Our special derived limits in comparison to class Y limits for U after ICRP Publication No. 30 for a 1-micron AMAD and 500-day half-life (in brackets) are: (a) annual limit of intake: 6 X 10(4) Bq/y (1 X 10(3) Bq/y); (b) derived air concentration: 20 Bq/m3 (0.6 Bq/m3); (c) derived lung activity: 1.6 X 10(3) Bq; (d) derived fecal activity: 14 Bq/day; and (e) derived urine activity: 8.9 Bq/day. The committed dose equivalents calculated from our measured data and from our

  1. Integrating Health Behavior Theory and Design Elements in Serious Games

    PubMed Central

    Fleming, Theresa; Lucassen, Mathijs FG; Bridgman, Heather; Stasiak, Karolina; Shepherd, Matthew; Orpin, Peter

    2015-01-01

    Background Internet interventions for improving health and well-being have the potential to reach many people and fill gaps in service provision. Serious gaming interfaces provide opportunities to optimize user adherence and impact. Health interventions based in theory and evidence and tailored to psychological constructs have been found to be more effective to promote behavior change. Defining the design elements which engage users and help them to meet their goals can contribute to better informed serious games. Objective To elucidate design elements important in SPARX, a serious game for adolescents with depression, from a user-centered perspective. Methods We proposed a model based on an established theory of health behavior change and practical features of serious game design to organize ideas and rationale. We analyzed data from 5 studies comprising a total of 22 focus groups and 66 semistructured interviews conducted with youth and families in New Zealand and Australia who had viewed or used SPARX. User perceptions of the game were applied to this framework. Results A coherent framework was established using the three constructs of self-determination theory (SDT), autonomy, competence, and relatedness, to organize user perceptions and design elements within four areas important in design: computer game, accessibility, working alliance, and learning in immersion. User perceptions mapped well to the framework, which may assist developers in understanding the context of user needs. By mapping these elements against the constructs of SDT, we were able to propose a sound theoretical base for the model. Conclusions This study’s method allowed for the articulation of design elements in a serious game from a user-centered perspective within a coherent overarching framework. The framework can be used to deliberately incorporate serious game design elements that support a user’s sense of autonomy, competence, and relatedness, key constructs which have been found

  2. Accelerator-driven transmutation of spent fuel elements

    DOEpatents

    Venneri, Francesco; Williamson, Mark A.; Li, Ning

    2002-01-01

    An apparatus and method is described for transmuting higher actinides, plutonium and selected fission products in a liquid-fuel subcritical assembly. Uranium may also be enriched, thereby providing new fuel for use in conventional nuclear power plants. An accelerator provides the additional neutrons required to perform the processes. The size of the accelerator needed to complete fuel cycle closure depends on the neutron efficiency of the supported reactors and on the neutron spectrum of the actinide transmutation apparatus. Treatment of spent fuel from light water reactors (LWRs) using uranium-based fuel will require the largest accelerator power, whereas neutron-efficient high temperature gas reactors (HTGRs) or CANDU reactors will require the smallest accelerator power, especially if thorium is introduced into the newly generated fuel according to the teachings of the present invention. Fast spectrum actinide transmutation apparatus (based on liquid-metal fuel) will take full advantage of the accelerator-produced source neutrons and provide maximum utilization of the actinide-generated fission neutrons. However, near-thermal transmutation apparatus will require lower standing

  3. Performance and fuel-cycle cost analysis of one JANUS 30 conceptual design for several fuel-element-design options

    SciTech Connect

    Nurdin, M.; Matos, J.E.; Freese, K.E.

    1982-01-01

    The performance and fuel cycle costs for a 25 MW, JANUS 30 reactor conceptual design by INTERATOM, Federal Republic of Germany, for BATAN, Republic of Indonesia have been studied using 19.75% enriched uranium in four fuel element design options. All of these fuel element designs have either been proposed by INTERATOM for various reactors or are currently in use with 93% enriched uranium in reactors in the Federal Republic of Germany. Aluminide, oxide, and silicide fuels were studied for selected designs using the range of uranium densities that are either currently qualified or are being developed and demonstrated internationally. To assess the long-term fuel adaptation strategy as well as the present fuel acceptance, reactor performance and annual fuel cycle costs were computed for seventeen cases based on a representative end-of-cycle excess reactivity and duty factor. In addition, a study was made to provide data for evaluating the trade-off between the increased safety associated with thicker cladding and the economic penalty due to increased fuel consumption.

  4. Distribution and leaching characteristics of trace elements in ashes as a function of different waste fuels and incineration technologies.

    PubMed

    Saqib, Naeem; Bäckström, Mattias

    2015-10-01

    Impact of waste fuels (virgin/waste wood, mixed biofuel (peat, bark, wood chips) industrial, household, mixed waste fuel) and incineration technologies on partitioning and leaching behavior of trace elements has been investigated. Study included 4 grate fired and 9 fluidized boilers. Results showed that mixed waste incineration mostly caused increased transfer of trace elements to fly ash; particularly Pb/Zn. Waste wood incineration showed higher transfer of Cr, As and Zn to fly ash as compared to virgin wood. The possible reasons could be high input of trace element in waste fuel/change in volatilization behavior due to addition of certain waste fractions. The concentration of Cd and Zn increased in fly ash with incineration temperature. Total concentration in ashes decreased in order of Zn>Cu>Pb>Cr>Sb>As>Mo. The concentration levels of trace elements were mostly higher in fluidized boilers fly ashes as compared to grate boilers (especially for biofuel incineration). It might be attributed to high combustion efficiency due to pre-treatment of waste in fluidized boilers. Leaching results indicated that water soluble forms of elements in ashes were low with few exceptions. Concentration levels in ash and ash matrix properties (association of elements on ash particles) are crucial parameters affecting leaching. Leached amounts of Pb, Zn and Cr in >50% of fly ashes exceeded regulatory limit for disposal. 87% of chlorine in fly ashes washed out with water at the liquid to solid ratio 10 indicating excessive presence of alkali metal chlorides/alkaline earths. PMID:26456601

  5. Experimental investigation of fuel evaporation in the vaporizing elements of combustion chambers

    NASA Technical Reports Server (NTRS)

    Vezhba, I.

    1979-01-01

    A description is given of the experimental apparatus and the methods used in the investigation of the degree of fuel (kerosene) evaporation in two types of vaporizing elements in combustion chambers. The results are presented as dependences of the degree of fuel evaporation on the factors which characterize the functioning of the vaporizing elements: the air surplus coefficient, the velocity of flow and temperature of the air at the entrance to the vaporizing element and the temperature of the wall of the vaporizing element.

  6. Pumped lithium loop test to evaluate advanced refractory metal alloys and simulated nuclear fuel elements

    NASA Technical Reports Server (NTRS)

    Brandenburf, G. P.; Hoffman, E. E.; Smith, J. P.

    1974-01-01

    The performance was determined of refractory metal alloys and uranium nitride fuel element specimens in flowing 1900F (1083C) lithium. The results demonstrate the suitability of the selected materials to perform satisfactorily from a chemical compatibility standpoint.

  7. Current status of U{sub 3}Si{sub 2} fuel element fabrication in Brazil

    SciTech Connect

    Durazzo, M.; Carvalho, E.F. Urano de; Saliba-Silva, A.M.; Souza, J.A.B

    2008-07-15

    IPEN has been working for increasing radioisotope production in order to supply the expanding demand for radiopharmaceutical medicines requested by the Brazilian welfare. To reach this objective, the IEA-R1 research reactor power capacity was recently increased from 2 MW to 4 MW. Since 1988 IPEN has been manufacturing its own fuel element, initially based on U{sub 3}O{sub 8}-Al dispersion fuel plates with 2.3 gU/cm{sup 3}. To support the reactor power increase, higher uranium density in the fuel plate meat had to be achieved for better irradiation flux and also to minimize the irradiated fuel elements to be stored. Uranium silicide was the chosen option and the fuel fabrication development started with the support of the IAEA BRA/4/047 Technical Cooperation Project. This paper describes the results of this program and the current status of silicide fuel fabrication and its qualification. (author)

  8. Predicting the behavior of microfluidic circuits made from discrete elements

    PubMed Central

    Bhargava, Krisna C.; Thompson, Bryant; Iqbal, Danish; Malmstadt, Noah

    2015-01-01

    Microfluidic devices can be used to execute a variety of continuous flow analytical and synthetic chemistry protocols with a great degree of precision. The growing availability of additive manufacturing has enabled the design of microfluidic devices with new functionality and complexity. However, these devices are prone to larger manufacturing variation than is typical of those made with micromachining or soft lithography. In this report, we demonstrate a design-for-manufacturing workflow that addresses performance variation at the microfluidic element and circuit level, in context of mass-manufacturing and additive manufacturing. Our approach relies on discrete microfluidic elements that are characterized by their terminal hydraulic resistance and associated tolerance. Network analysis is employed to construct simple analytical design rules for model microfluidic circuits. Monte Carlo analysis is employed at both the individual element and circuit level to establish expected performance metrics for several specific circuit configurations. A protocol based on osmometry is used to experimentally probe mixing behavior in circuits in order to validate these approaches. The overall workflow is applied to two application circuits with immediate use at on the bench-top: series and parallel mixing circuits that are modularly programmable, virtually predictable, highly precise, and operable by hand. PMID:26516059

  9. Predicting the behavior of microfluidic circuits made from discrete elements

    NASA Astrophysics Data System (ADS)

    Bhargava, Krisna C.; Thompson, Bryant; Iqbal, Danish; Malmstadt, Noah

    2015-10-01

    Microfluidic devices can be used to execute a variety of continuous flow analytical and synthetic chemistry protocols with a great degree of precision. The growing availability of additive manufacturing has enabled the design of microfluidic devices with new functionality and complexity. However, these devices are prone to larger manufacturing variation than is typical of those made with micromachining or soft lithography. In this report, we demonstrate a design-for-manufacturing workflow that addresses performance variation at the microfluidic element and circuit level, in context of mass-manufacturing and additive manufacturing. Our approach relies on discrete microfluidic elements that are characterized by their terminal hydraulic resistance and associated tolerance. Network analysis is employed to construct simple analytical design rules for model microfluidic circuits. Monte Carlo analysis is employed at both the individual element and circuit level to establish expected performance metrics for several specific circuit configurations. A protocol based on osmometry is used to experimentally probe mixing behavior in circuits in order to validate these approaches. The overall workflow is applied to two application circuits with immediate use at on the bench-top: series and parallel mixing circuits that are modularly programmable, virtually predictable, highly precise, and operable by hand.

  10. Predicting the behavior of microfluidic circuits made from discrete elements.

    PubMed

    Bhargava, Krisna C; Thompson, Bryant; Iqbal, Danish; Malmstadt, Noah

    2015-01-01

    Microfluidic devices can be used to execute a variety of continuous flow analytical and synthetic chemistry protocols with a great degree of precision. The growing availability of additive manufacturing has enabled the design of microfluidic devices with new functionality and complexity. However, these devices are prone to larger manufacturing variation than is typical of those made with micromachining or soft lithography. In this report, we demonstrate a design-for-manufacturing workflow that addresses performance variation at the microfluidic element and circuit level, in context of mass-manufacturing and additive manufacturing. Our approach relies on discrete microfluidic elements that are characterized by their terminal hydraulic resistance and associated tolerance. Network analysis is employed to construct simple analytical design rules for model microfluidic circuits. Monte Carlo analysis is employed at both the individual element and circuit level to establish expected performance metrics for several specific circuit configurations. A protocol based on osmometry is used to experimentally probe mixing behavior in circuits in order to validate these approaches. The overall workflow is applied to two application circuits with immediate use at on the bench-top: series and parallel mixing circuits that are modularly programmable, virtually predictable, highly precise, and operable by hand. PMID:26516059

  11. A combined wet/dry sipping cell for investigating failed TRIGA fuel elements

    SciTech Connect

    Hammer, J.; Gallhammer, H.; Bock, H.

    1988-07-01

    Investigation for a failed TRIGA fuel element is performed with the help of a combined wet/dry sipping cell, which has been designed and fabricated at the Atominstitut Vienna. In this sipping cell a TRIGA fuel element can be studied for fission product release, both at normal and at elevated temperatures. This report describes the design features of the sipping cell and the fission product identification procedure with the help of a high purity Germanium detector and a multichannel analyzer.

  12. Behavioral economic analysis of demand for fuel in North America.

    PubMed

    Reed, Derek D; Partington, Scott W; Kaplan, Brent A; Roma, Peter G; Hursh, Steven R

    2013-01-01

    Emerging research clearly indicates that human behavior is contributing to climate change, notably, the use of fossil fuels as a form of energy for everyday behaviors. This dependence on oil in North America has led to assertions that the current level of demand is the social equivalent to an "addiction." The purpose of this study was to apply behavioral economic demand curves-a broadly applicable method of evaluating relative reinforcer efficacy in behavioral models of addiction-to North American oil consumption to examine whether such claims of oil addiction are warranted. Toward this end, we examined government data from the United States and Canada on per capita energy consumption for transportation and oil prices between 1995 and 2008. Our findings indicate that consumption either persisted or simultaneously increased despite sharp increases in oil price per barrel over the past decade. PMID:24114227

  13. MECHANICALLY-JOINED PLATE-TYPE ALUMINUM-CLAD FUEL ELEMENT

    DOEpatents

    Erwin, J.H.

    1962-12-11

    A method of fabricating MTR-type fuel elements is described wherein dove- tailed joints are used to fasten fuel plates to supporting side members. The method comprises the steps of dove-tailing the lateral edges of the fuel plates, inserting the dove-tailed edges into corresponding recesses which are provided in a pair of supporting side members, and compressing the supporting side members in a direction so as to close the recesses onto the dove-tailed edges. (AEC)

  14. Aluminum hydroxide coating thickness measurements and brushing tests on K West Basin fuel elements

    SciTech Connect

    Pitner, A.L.

    1998-09-11

    Aluminum hydroxide coating thicknesses were measured on fuel elements stored in aluminum canisters in K West Basin using specially developed eddy current probes . The results were used to estimate coating inventories for MCO fuel,loading. Brushing tests successfully demonstrated the ability to remove the coating if deemed necessary prior to MCO loading.

  15. Tensile Hoop Behavior of Irradiated Zircaloy-4 Nuclear Fuel Cladding

    SciTech Connect

    Jaramillo, Roger A; Hendrich, WILLIAM R; Packan, Nicolas H

    2007-03-01

    A method for evaluating the room temperature ductility behavior of irradiated Zircaloy-4 nuclear fuel cladding has been developed and applied to evaluate tensile hoop strength of material irradiated to different levels. The test utilizes a polyurethane plug fitted within a tubular cladding specimen. A cylindrical punch is used to compress the plug axially, which generates a radial displacement that acts upon the inner diameter of the specimen. Position sensors track the radial displacement of the specimen outer diameter as the compression proceeds. These measurements coupled with ram force data provide a load-displacement characterization of the cladding response to internal pressurization. The development of this simple, cost-effective, highly reproducible test for evaluating tensile hoop strain as a function of internal pressure for irradiated specimens represents a significant advance in the mechanical characterization of irradiated cladding. In this project, nuclear fuel rod assemblies using Zircaloy-4 cladding and two types of mixed uranium-plutonium oxide (MOX) fuel pellets were irradiated to varying levels of burnup. Fuel pellets were manufactured with and without thermally induced gallium removal (TIGR) processing. Fuel pellets manufactured by both methods were contained in fuel rod assemblies and irradiated to burnup levels of 9, 21, 30, 40, and 50 GWd/MT. These levels of fuel burnup correspond to fast (E > 1 MeV) fluences of 0.27, 0.68, 0.98, 1.4 and 1.7 1021 neutrons/cm2, respectively. Following irradiation, fuel rod assemblies were disassembled; fuel pellets were removed from the cladding; and the inner diameter of cladding was cleaned to remove residue materials. Tensile hoop strength of this cladding material was tested using the newly developed method. Unirradiated Zircaloy-4 cladding was also tested. With the goal of determining the effect of the two fuel types and different neutron fluences on clad ductility, tensile hoop strength tests were

  16. Geochemical behavior of rare earth elements and other trace elements in the Amazon River

    NASA Astrophysics Data System (ADS)

    Merschel, Gila; Bau, Michael; Dantas, Elton Luiz

    2014-05-01

    Rivers transport large amounts of dissolved and suspended particulate material from the catchment area to the oceans and are a major source of trace metals to seawater. The Amazon River is the world's largest river and supplies approximately 20% of the oceans' freshwater (Molinier et al., 1997). However, the behavior of trace elements, especially particle-reactive elements such as the rare earth elements (REE), within the river as well as in the estuary is not well constrained and rather little is known about their transport mechanisms. This study aims at understanding the transport properties of particle-reactive elements in the Amazon River and some of its major tributaries, including the Rio Solimões, Rio Negro, Tapajos, Xingu and Jari Rivers. Samples were taken at 12 stations, seven of which were located in the Amazon mainstream, while the other five stations sampled its tributaries. To account for the effects of variable discharge, the samples were collected during periods of high and low discharge. We present data for major and trace elements, including REE, of the dissolved and suspended load of these samples. First results indicate that the shale-normalized REE pattern of the dissolved load (filtered through 0.2 µm membranes) of the Amazon mainstream and the Rio Solimões confirm earlier studies (Elderfield et al., 1990; Gerard et al., 2003) and show an enrichment of the middle REE relative to the light and heavy REE (LaSN/GdSN: 0.25 - 0.32; GdSN/YbSN: 1.54 - 1.78). In contrast to the Amazon mainstream and the Rio Solimões, which are considered to be whitewater rivers, blackwater rivers, such as the Rio Negro, have a flat REE pattern with higher REE concentrations than whitewater rivers. The third water-type found in the Amazon Basin is clearwater, e.g. Rio Tapajos, with REE patterns in between those of the other two types, i.e. LaSN/GdSN: 0.55 - 0.70; GdSN/YbSN: 1.26 - 1.55. A similar behavior can be identified for other major and trace elements. While

  17. Problems in developing bimodal space power and propulsion system fuel element

    SciTech Connect

    Nikolaev, Yu. V.; Gontar, A. S.; Zaznoba, V. A.; Parshin, N. Ya.; Ponomarev-Stepnoi, N. N.; Usov, V. A.

    1997-01-10

    The paper discusses design of a space nuclear power and propulsion system fuel element (PPFE) developed on the basis of an enhanced single-cell thermionic fuel element (TFE) of the 'TOPAZ-2' thermionic converter-reactor (TCR), and presents the PPFE performance for propulsion and power modes of operation. The choice of UC-TaC fuel composition is substantiated. Data on hydrogen effect on the PPFE output voltage are presented, design solutions are considered that allow to restrict hydrogen supply to an interelectrode gap (IEG). Long-term geometric stability of an emitter assembly is supported by calculated data.

  18. Modeling bistable behaviors in morphing structures through finite element simulations.

    PubMed

    Guo, Qiaohang; Zheng, Huang; Chen, Wenzhe; Chen, Zi

    2014-01-01

    Bistable structures, exemplified by the Venus flytrap and slap bracelets, can transit between different configurations upon certain external stimulation. Here we study, through three-dimensional finite element simulations, the bistable behaviors in elastic plates in the absence of terminate loads, but with pre-strains in one (or both) of the two composite layers. Both the scenarios with and without a given geometric mis-orientation angle are investigated, the results of which are consistent with recent theoretical and experimental studies. This work can open ample venues for programmable designs of plant/shell structures with large deformations, with applications in designing bio-inspired robotics for biomedical research and morphing/deployable structures in aerospace engineering. PMID:24211939

  19. Apparatus for and method of monitoring for breached fuel elements

    DOEpatents

    Gross, Kenny C.; Strain, Robert V.

    1983-01-01

    This invention teaches improved apparatus for the method of detecting a breach in cladded fuel used in a nuclear reactor. The detector apparatus uses a separate bypass loop for conveying part of the reactor coolant away from the core, and at least three separate delayed-neutron detectors mounted proximate this detector loop. The detectors are spaced apart so that the coolant flow time from the core to each detector is different, and these differences are known. The delayed-neutron activity at the detectors is a function of the dealy time after the reaction in the fuel until the coolant carrying the delayed-neutron emitter passes the respective detector. This time delay is broken down into separate components including an isotopic holdup time required for the emitter to move through the fuel from the reaction to the coolant at the breach, and two transit times required for the emitter now in the coolant to flow from the breach to the detector loop and then via the loop to the detector. At least two of these time components are determined during calibrated operation of the reactor. Thereafter during normal reactor operation, repeated comparisons are made by the method of regression approximation of the third time component for the best-fit line correlating measured delayed-neutron activity against activity that is approximated according to specific equations. The equations use these time-delay components and known parameter values of the fuel and of the part and emitting daughter isotopes.

  20. Enhanced Low-Enriched Uranium Fuel Element for the Advanced Test Reactor

    SciTech Connect

    Pope, M. A.; DeHart, M. D.; Morrell, S. R.; Jamison, R. K.; Nef, E. C.; Nigg, D. W.

    2015-03-01

    Under the current US Department of Energy (DOE) policy and planning scenario, the Advanced Test Reactor (ATR) and its associated critical facility (ATRC) will be reconfigured to operate on low-enriched uranium (LEU) fuel. This effort has produced a conceptual design for an Enhanced LEU Fuel (ELF) element. This fuel features monolithic U-10Mo fuel foils and aluminum cladding separated by a thin zirconium barrier. As with previous iterations of the ELF design, radial power peaking is managed using different U-10Mo foil thicknesses in different plates of the element. The lead fuel element design, ELF Mk1A, features only three fuel meat thicknesses, a reduction from the previous iterations meant to simplify manufacturing. Evaluation of the ELF Mk1A fuel design against reactor performance requirements is ongoing, as are investigations of the impact of manufacturing uncertainty on safety margins. The element design has been evaluated in what are expected to be the most demanding design basis accident scenarios and has met all initial thermal-hydraulic criteria.

  1. Testing of sludge coating adhesiveness on fuel elements in 105-K west basin

    SciTech Connect

    Maassen, D.P., Fluor Daniel Hanford

    1997-03-11

    This report summarizes the results from the first sludge adherence tests performed in the 105-K West Basin on N Reactor fuel. The outside surface of the outer fuel elements were brushed, using stainless steel wire brushes, to test the adhesiveness of various types of sludge coatings to the cladding`s surface. The majority of the sludge was removed by the wire brushes in this test but different types of sludge were more adhesive than others. Particularly, an orange rust-like sludge coating that was just slightly more adherent to the fuel`s cladding than the majority of the sludge coatings and a thick white vertical strip sludge coating that was much more difficult to remove. The test demonstrated that all of the sludge could be removed from the outer fuel elements` surfaces if the need arises.

  2. Drying Results of K-Basin Fuel Element 6603M (Rune 5)

    SciTech Connect

    B.M. Oliver; G.A. Ritter; G.S. Klinger; J. Abrefah; L.R. Greenwood; P.J. MacFarlan; S.C. Marschman

    1999-09-24

    The water-filled K-Basins in the Hanford 100 Area have been used to store N-Reactor spent nuclear fuel (SNF) since the 1970s. An Integrated Process Strategy (IPS) has been developed to package, dry, transport, and store these metallic uranium spent nuclear fuels in an interim storage facility on the Hanford Site (WHC 1995). Information required to support the development of the drying processes, and the required safety analyses, is being obtained from characterization tests conducted on fuel elements removed from the K-Basins. A series of drying tests (reported in separate documents, see Section 8.0) have been conducted by Pacific Northwest National Laboratory (PNNL) on several intact and damaged fuel elements recovered from both the K-East and K-West Basins. This report documents the results of the fifth of those tests conducted on an N-Reactor outer fuel element (6603M) which had been stored underwater in the Hanford 100 Area K-West basin from 1983 until 1996. This fuel element was subjected to a combination of low- and high-temperature vacuum drying treatments which were intended to mimic, wherever possible, the fuel treatment strategies of the IPS. The system used for the drying test was the Whole Element Furnace Testing System, described in Section 2.0. The test conditions and methodologies are given in Section 3.0. Inspections on the fuel element before and after the test are provided in Section 4.0. The experimental results are provided in Section 5.0. Discussion of the results is given in Section 6.0.

  3. Method for recovering catalytic elements from fuel cell membrane electrode assemblies

    DOEpatents

    Shore, Lawrence; Matlin, Ramail; Heinz, Robert

    2012-06-26

    A method for recovering catalytic elements from a fuel cell membrane electrode assembly is provided. The method includes converting the membrane electrode assembly into a particulate material, wetting the particulate material, forming a slurry comprising the wetted particulate material and an acid leachate adapted to dissolve at least one of the catalytic elements into a soluble catalytic element salt, separating the slurry into a depleted particulate material and a supernatant containing the catalytic element salt, and washing the depleted particulate material to remove any catalytic element salt retained within pores in the depleted particulate material.

  4. Nonlinear finite element modeling of dental composite polymerization behavior

    NASA Astrophysics Data System (ADS)

    Laughlin, Gayle A.

    2003-07-01

    Polymerization shrinkage has been one of the primary shortcomings preventing the use of resin composites as a universal dental restorative material. This shrinkage of the bonded restoration causes residual stresses in the composite which in turn are transferred to the adhesive interface. The deleterious effects of this stress environment include compromise of the interface itself and the decrease in the mechanical properties of the cured composite. Novel materials which claim to produce less shrinkage have been presented as a new class of restorative materials that could reduce the effects of this problem. One difficulty in assessing the actual in vivo benefits of these new materials is the fact that there is currently no direct way to measure the stress environment at the composite/tooth clinical interface. Computer modeling using finite element analysis (FEA) could provide helpful information regarding the clinical stress performance of dental composites. The purpose of this study was to develop a model that accurately simulates the nonlinear polymerization behavior of light-cured dental composites using a commercial FEA program, which could be accessible for future research. Two phases were needed to accomplish this purpose. First, a data collection phase included volumetric shrinkage, shrinkage stress, tooth analog strain, and dynamic mechanical analysis experiments. Three composites, a standard methacrylate(Z250) and two experimental low stress epoxy-based composites (oxirane and silorane), were tested. The experimental results revealed an intriguing range of polymerization behavior exhibited by the three composites, indicating that the development of a low stress composite is possible. The information gathered from this phase supplied the necessary material input for the computer modeling, and provided empirical validation data for the model solutions. In the second modeling phase, an FEA approach based on a elastic/viscoplastic material model was used to

  5. Management of the spent fuel elements of the thorium high temperature reactor THTR-300

    SciTech Connect

    Quaassdorff, P.; Mielisch, M.; Dietrich, G.; Heske, M.; Jacobsen, W.

    1995-12-31

    In a world-wide unique campaign ca. 620,000 spent fuel elements of the thorium high temperature reactor THTR 300 which is being decommissioned, were being transferred within a short period of time to the Ahaus fuel element interim store (BZA) for interim storage. In order to optimize the technical and logistic procedures as part of the pre-decommissioning operation in 1992 and 1993, 42,000 fuel elements which had already been removed from the reactor core were transferred to Ahaus in transport and storage casks of the CASTOR THTR/AVR type that have been specially designed for this purpose. The experiences gained with loading, processing and transport of 20 transport and storage casks during this optimization and testing period led the team to expect a smooth management of the remaining fuel elements. In January 1994, the routine operation of the outward transfer commenced. Until mid-November 1994, 554,400 spent fuel elements were transferred outward into altogether 264 transport and storage casks of the CASTOR THTR/AVR type and transported to Ahaus for interim storage. This was followed by processing of another 21 transport and storage casks until April 1995, accommodating damaged fuel elements and special elements. The work mentioned above was performed by SFEAG Kernenergie GmbH, Essen, on behalf of the reactor operator Hochtemperatur-Kernkraftwerk GmbH, Hamm. The removal of the nuclear fuel from the thorium high temperature reactor THTR-300 marks the completion of the first part of the necessary actions for the decommissioning of the reactor (safe enclosure).

  6. Nondestructive examination of 51 fuel and reflector elements from Fort St. Vrain Core Segment 1

    SciTech Connect

    Miller, C.M.; Saurwein, J.J.

    1980-12-01

    Fifty-one fuel and reflector elements irradiated in core segment 1 of the Fort St. Vrain High-Temperature Gas-Cooled Reactor (HTGR) were inspected dimensionally and visually in the Hot Service Facility at Fort St. Vrain in July 1979. Time- and volume-averaged graphite temperatures for the examined fuel elements ranged from approx. 400/sup 0/ to 750/sup 0/C. Fast neutron fluences varied from approx. 0.3 x 10/sup 25/ n/m/sup 2/ to 1.0 x 10/sup 25/ n/m/sup 2/ (E > 29 fJ)/sub HTGR/. Nearly all of the examined elements shrank in both axial and radial dimensions. The measured data were compared with strain and bow predictions obtained from SURVEY/STRESS, a computer code that employs viscoelastic beam theory to calculate stresses and deformations in HTGR fuel elements.

  7. Molten tin reprocessing of spent nuclear fuel elements

    DOEpatents

    Heckman, Richard A.

    1983-01-01

    A method and apparatus for reprocessing spent nuclear fuel is described. Within a containment vessel, a solid plug of tin and nitride precipitates supports a circulating bath of liquid tin therein. Spent nuclear fuel is immersed in the liquid tin under an atmosphere of nitrogen, resulting in the formation of nitride precipitates. The layer of liquid tin and nitride precipitates which interfaces the plug is solidified and integrated with the plug. Part of the plug is melted, removing nitride precipitates from the containment vessel, while a portion of the plug remains solidified to support the liquid tin and nitride precipitates remaining in the containment vessel. The process is practiced numerous times until substantially all of the precipitated nitrides are removed from the containment vessel.

  8. Irradiation behavior of the CNEA's experimental uranium silicide dispersion fuel plates

    SciTech Connect

    Hofman, G.L.; Marajofsky, A.; Kohut, C.; Comision Nacional de Energia Atomica, Buenos Aires )

    1988-01-01

    Since 1978 the CNEA ECBE project has been involved in the development of dispersion fuel plates with four types of fuel materials -- UAl{sub x}, U{sub 3}O{sub 8}, U{sub 3}Si, and U{sub 3}Si{sub 2} -- to be used in low enriched (LEU < 20% {sup 235}U) fuel elements for research reactors. Miniplates with these fuel materials were manufactured at CNEA and were irradiated in the ORR in three series of irradiations as part of the RERTR miniplate irradiation program. The first irradiation contained U{sub 3}O{sub 8} and UAl{sub x} fuel, the second U{sub 3}O{sub 8}, UAl{sub x} and U{sub 3}Si, while the third irradiation test consisted of six U{sub 3}Si{sub 2} miniplates and one U{sub 3}Si miniplate. This third test is the subject of this paper. The present results compare favorably with other irradiations performed in the RERTR program{sup 1,2} showing in particular the excellent behavior of the U{sub 3}Si{sub 2}. The overall data accumulated support the qualification of the CNEA fabrication techniques. 5 refs., 13 figs., 3 tabs.

  9. Uranium chloride extraction of transuranium elements from LWR fuel

    DOEpatents

    Miller, W.E.; Ackerman, J.P.; Battles, J.E.; Johnson, T.R.; Pierce, R.D.

    1992-08-25

    A process of separating transuranium actinide values from uranium values present in spent nuclear oxide fuels containing rare earth and noble metal fission products as well as other fission products is disclosed. The oxide fuel is reduced with Ca metal in the presence of Ca chloride and a U-Fe alloy which is liquid at about 800 C to dissolve uranium metal and the noble metal fission product metals and transuranium actinide metals and rare earth fission product metals leaving Ca chloride having CaO and fission products of alkali metals and the alkali earth metals and iodine dissolved therein. The Ca chloride and CaO and the fission products contained therein are separated from the U-Fe alloy and the metal values dissolved therein. The U-Fe alloy having dissolved therein reduced metals from the spent nuclear fuel is contacted with a mixture of one or more alkali metal or alkaline earth metal halides selected from the class consisting of alkali metal or alkaline earth metal and Fe or U halide or a combination thereof to transfer transuranium actinide metals and rare earth metals to the halide salt leaving the uranium and some noble metal fission products in the U-Fe alloy and thereafter separating the halide salt and the transuranium metals dissolved therein from the U-Fe alloy and the metals dissolved therein. 1 figure.

  10. Uranium chloride extraction of transuranium elements from LWR fuel

    DOEpatents

    Miller, William E.; Ackerman, John P.; Battles, James E.; Johnson, Terry R.; Pierce, R. Dean

    1992-01-01

    A process of separating transuranium actinide values from uranium values present in spent nuclear oxide fuels containing rare earth and noble metal fission products as well as other fission products is disclosed. The oxide fuel is reduced with Ca metal in the presence of Ca chloride and a U-Fe alloy which is liquid at about 800.degree. C. to dissolve uranium metal and the noble metal fission product metals and transuranium actinide metals and rare earth fission product metals leaving Ca chloride having CaO and fission products of alkali metals and the alkali earth metals and iodine dissolved therein. The Ca chloride and CaO and the fission products contained therein are separated from the U-Fe alloy and the metal values dissolved therein. The U-Fe alloy having dissolved therein reduced metals from the spent nuclear fuel is contacted with a mixture of one or more alkali metal or alkaline earth metal halides selected from the class consisting of alkali metal or alkaline earth metal and Fe or U halide or a combination thereof to transfer transuranium actinide metals and rare earth metals to the halide salt leaving the uranium and some noble metal fission products in the U-Fe alloy and thereafter separating the halide salt and the transuranium metals dissolved therein from the U-Fe alloy and the metals dissolved therein.

  11. Magnesium transport extraction of transuranium elements from LWR fuel

    DOEpatents

    Ackerman, John P.; Battles, James E.; Johnson, Terry R.; Miller, William E.; Pierce, R. Dean

    1992-01-01

    A process of separating transuranium actinide values from uranium values present in spent nuclear oxide fuels which contain rare earth and noble metal fission products. The oxide fuel is reduced with Ca metal in the presence of CaCl.sub.2 and a U-Fe alloy containing not less than about 84% by weight uranium at a temperature in the range of from about 800.degree. C. to about 850.degree. C. to produce additional uranium metal which dissolves in the U-Fe alloy raising the uranium concentration and having transuranium actinide metals and rare earth fission product metals and the noble metal fission products dissolved therein. The CaCl.sub.2 having CaO and fission products of alkali metals and the alkali earth metals and iodine dissolved therein is separated and electrolytically treated with a carbon electrode to reduce the CaO to Ca metal while converting the carbon electrode to CO and CO.sub.2. The Ca metal and CaCl.sub.2 is recycled to reduce additional oxide fuel. The U-Fe alloy having transuranium actinide metals and rare earth fission product metals and the noble metal fission products dissolved therein is contacted with Mg metal which takes up the actinide and rare earth fission product metals. The U-Fe alloy retains the noble metal fission products and is stored while the Mg is distilled and recycled leaving the transuranium actinide and rare earth fission products isolated.

  12. Apparatus for and method of monitoring for breached fuel elements

    DOEpatents

    Gross, K.C.; Strain, R.V.

    1981-04-28

    This invention teaches improved apparatus for the method of detecting a breach in cladded fuel used in a nuclear reactor. The detector apparatus uses a separate bypass loop for conveying part of the reactor coolant away from the core, and at least three separate delayed-neutron detectors mounted proximate this detector loop. The detectors are spaced apart so that the coolant flow time from the core to each detector is different, and these differences are known. The delayed-neutron activity at the detectors is a function of the delay time after the reaction in the fuel until the coolant carrying the delayed-neutron emitter passes the respective detector. This time delay is broken down into separate components including an isotopic holdup time required for the emitter to move through the fuel from the reaction to the coolant at the breach, and two transit times required for the emitter now in the coolant to flow from the breach to the detector loop and then via the loop to the detector.

  13. AN EVALUATION OF POTENTIAL LINER MATERIALS FOR ELIMINATING FCCI IN IRRADIATED METALLIC NUCLEAR FUEL ELEMENTS

    SciTech Connect

    D. D. Keiser; J. I. Cole

    2007-09-01

    Metallic nuclear fuels are being looked at as part of the Global Nuclear Energy Program for transmuting longlive transuranic actinide isotopes contained in spent nuclear fuel into shorter-lived fission products. In order to optimize the performance of these fuels, the concept of using liners to eliminate the fuel/cladding chemical interactions that can occur during irradiation of a fuel element has been investigated. The potential liner materials Zr and V have been tested using solid-solid diffusion couples, consisting of liner materials butted against fuel alloys and against cladding materials. The couples were annealed at the relatively high temperature of 700°C. This temperature would be the absolute maximum temperature present at the fuel/cladding interface for a fuel element in-reactor. Analysis was performed using a scanning electron microscope equipped with energy-dispersive and wavelengthdispersive spectrometers (SEM/EDS/WDS) to evaluate any developed diffusion structures. At 700°C, minimal interaction was observed between the metallic fuels and either Zr or V. Similarly, limited interaction was observed between the Zr and V and the cladding materials. The best performing liner material appeared to be the V, based on amounts of interaction.

  14. Salt transport extraction of transuranium elements from lwr fuel

    DOEpatents

    Pierce, R. Dean; Ackerman, John P.; Battles, James E.; Johnson, Terry R.; Miller, William E.

    1992-01-01

    A process of separating transuranium actinide values from uranium values present in spent nuclear oxide fuels which contain rare earth and noble metal fission products. The oxide fuel is reduced with Ca metal in the presence of CaCl.sub.2 and a Cu--Mg alloy containing not less than about 25% by weight Mg at a temperature in the range of from about 750.degree. C. to about 850.degree. C. to precipitate uranium metal and some of the noble metal fission products leaving the Cu--Mg alloy having transuranium actinide metals and rare earth fission product metals and some of the noble metal fission products dissolved therein. The CaCl.sub.2 having CaO and fission products of alkali metals and the alkali earth metals and iodine dissolved therein is separated and electrolytically treated with a carbon electrode to reduce the CaO to Ca metal while converting the carbon electrode to CO and CO.sub.2. The Ca metal and CaCl.sub.2 is recycled to reduce additional oxide fuel. The Cu--Mg alloy having transuranium metals and rare earth fission product metals and the noble metal fission products dissolved therein is contacted with a transport salt including Mg Cl.sub.2 to transfer Mg values from the transport salt to the Cu--Mg alloy while transuranium actinide and rare earth fission product metals transfer from the Cu--Mg alloy to the transport salt. Then the transport salt is mixed with a Mg--Zn alloy to transfer Mg values from the alloy to the transport salt while the transuranium actinide and rare earth fission product values dissolved in the salt are reduced and transferred to the Mg--Zn alloy.

  15. Salt transport extraction of transuranium elements from LWR fuel

    DOEpatents

    Pierce, R.D.; Ackerman, J.P.; Battles, J.E.; Johnson, T.R.; Miller, W.E.

    1992-11-03

    A process is described for separating transuranium actinide values from uranium values present in spent nuclear oxide fuels which contain rare earth and noble metal fission products. The oxide fuel is reduced with Ca metal in the presence of CaCl[sub 2] and a Cu--Mg alloy containing not less than about 25% by weight Mg at a temperature in the range of from about 750 C to about 850 C to precipitate uranium metal and some of the noble metal fission products leaving the Cu--Mg alloy having transuranium actinide metals and rare earth fission product metals and some of the noble metal fission products dissolved therein. The CaCl[sub 2] having CaO and fission products of alkali metals and the alkali earth metals and iodine dissolved therein is separated and electrolytically treated with a carbon electrode to reduce the CaO to Ca metal while converting the carbon electrode to CO and CO[sub 2]. The Ca metal and CaCl[sub 2] is recycled to reduce additional oxide fuel. The Cu--Mg alloy having transuranium metals and rare earth fission product metals and the noble metal fission products dissolved therein is contacted with a transport salt including MgCl[sub 2] to transfer Mg values from the transport salt to the Cu--Mg alloy while transuranium actinide and rare earth fission product metals transfer from the Cu--Mg alloy to the transport salt. Then the transport salt is mixed with a Mg--Zn alloy to transfer Mg values from the alloy to the transport salt while the transuranium actinide and rare earth fission product values dissolved in the salt are reduced and transferred to the Mg--Zn alloy. 2 figs.

  16. Accuracy of trace element determinations in alternate fuels

    NASA Technical Reports Server (NTRS)

    Greenbauer-Seng, L. A.

    1980-01-01

    A review of the techniques used at Lewis Research Center (LeRC) in trace metals analysis is presented, including the results of Atomic Absorption Spectrometry and DC Arc Emission Spectrometry of blank levels and recovery experiments for several metals. The design of an Interlaboratory Study conducted by LeRC is presented. Several factors were investigated, including: laboratory, analytical technique, fuel type, concentration, and ashing additive. Conclusions drawn from the statistical analysis will help direct research efforts toward those areas most responsible for the poor interlaboratory analytical results.

  17. PROCESS OF MAKING A NEUTRONIC REACTOR FUEL ELEMENT COMPOSITION

    DOEpatents

    Alter, H.W.; Davidson, J.K.; Miller, R.S.; Mewherter, J.L.

    1959-01-13

    A process is presented for making a ceramic-like material suitable for use as a nuclear fuel. The material consists of a solid solution of plutonium dioxide in uranium dioxide and is produced from a uranyl nitrate -plutonium nitrate solution containing uraniunm and plutonium in the desired ratio. The uranium and plutonium are first precipitated from the solution by addition of NH/ sub 4/OH and the dried precipitate is then calcined at 600 C in a hydrogen atmosphere to yield the desired solid solution of PuO/sub 2/ in UO/sub 2/.

  18. Advanced Ceramics for Use as Fuel Element Materials in Nuclear Thermal Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Valentine, Peter G.; Allen, Lee R.; Shapiro, Alan P.

    2012-01-01

    With the recent start (October 2011) of the joint National Aeronautics and Space Administration (NASA) and Department of Energy (DOE) Advanced Exploration Systems (AES) Nuclear Cryogenic Propulsion Stage (NCPS) Program, there is renewed interest in developing advanced ceramics for use as fuel element materials in nuclear thermal propulsion (NTP) systems. Three classes of fuel element materials are being considered under the NCPS Program: (a) graphite composites - consisting of coated graphite elements containing uranium carbide (or mixed carbide), (b) cermets (ceramic/metallic composites) - consisting of refractory metal elements containing uranium oxide, and (c) advanced carbides consisting of ceramic elements fabricated from uranium carbide and one or more refractory metal carbides [1]. The current development effort aims to advance the technology originally developed and demonstrated under Project Rover (1955-1973) for the NERVA (Nuclear Engine for Rocket Vehicle Application) [2].

  19. Full-length fuel rod behavior under severe accident conditions

    SciTech Connect

    Lombardo, N J; Lanning, D D; Panisko, F E

    1992-12-01

    This document presents an assessment of the severe accident phenomena observed from four Full-Length High-Temperature (FLHT) tests that were performed by the Pacific Northwest Laboratory (PNL) in the National Research Universal (NRU) reactor at Chalk River, Ontario, Canada. These tests were conducted for the US Nuclear Regulatory Commission (NRC) as part of the Severe Accident Research Program. The objectives of the test were to simulate conditions and provide information on the behavior of full-length fuel rods during hypothetical, small-break, loss-of-coolant severe accidents, in commercial light water reactors.

  20. Behavior of actinides in the Integral Fast Reactor fuel cycle

    SciTech Connect

    Courtney, J.C.; Lineberry, M.J.

    1994-06-01

    The Integral Fast Reactor (IFR) under development by Argonne National Laboratory uses metallic fuels instead of ceramics. This allows electrorefining of spent fuels and presents opportunities for recycling minor actinide elements. Four minor actinides ({sup 237}Np, {sup 240}Pu, {sup 241}Am, and {sup 243}Am) determine the waste storage requirements of spent fuel from all types of fission reactors. These nuclides behave the same as uranium and other plutonium isotopes in electrorefining, so they can be recycled back to the reactor without elaborate chemical processing. An experiment has been designed to demonstrate the effectiveness of the high-energy neutron spectra of the IFR in consuming these four nuclides and plutonium. Eighteen sets of seven actinide and five light metal targets have been selected for ten day exposure in the Experimental Breeder Reactor-2 which serves as a prototype of the IFR. Post-irradiation analyses of the exposed targets by gamma, alpha, and mass spectroscopy are used to determine nuclear reaction-rates and neutron spectra. These experimental data increase the authors` confidence in their ability to predict reaction rates in candidate IFR designs using a variety of neutron transport and diffusion programs.

  1. Behavior of iodine in the dissolution of spent nuclear fuels

    SciTech Connect

    Sakurai, Tsutomu; Komatsu, Kazunori; Takahashi, A.

    1997-08-01

    The results of laboratory-scale experiments concerning the behavior of iodine in the dissolution of spent nuclear fuels, which were carried out at the Japan Atomic Energy Research Institute, are summarized. Based on previous and new experimental results, the difference in quantity of residual iodine in the fuel solution between laboratory-scale experiments and reprocessing plants is discussed, Iodine in spent fuels is converted to the following four states: (1) oxidation into I{sub 2} by nitric acid, (2) oxidation into I{sub 2} by nitrous acid generated in the dissolution, (3) formation of a colloid of insoluble iodides such as AgI and PdI{sub 2}, and (4) deposition on insoluble residue. Nitrous acid controls the amount of colloid formed. As a result, up to 10% of iodine in spent fuels is retained in the fuel solution, up to 3% is deposited on insoluble residue, and the balance volatilizes to the off-gas, Contrary to earlier belief, when the dissolution is carried out in 3 to 4 M HNO{sub 3} at 100{degrees}C, the main iodine species in a fuel solution is a colloid, not iodate, Immediately after its formation, the colloid is unstable and decomposes partially in the hot nitric acid solution through the following reaction: AgI(s) + 2HNO{sub 3}(aq) = {1/2}I{sub 2}(aq) + AgNO{sub 3}(aq) + NO{sub 2}(g) + H{sub 2}O(1). For high concentrations of gaseous iodine, I{sub 2}(g), and NO{sub 2}, this reaction is reversed towards formation of the colloid (AgI). Since these concentrations are high near the liquid surface of a plant-scale dissolver, there is a possibility that the colloid is formed there through this reversal, Simulations performed in laboratory-scale experiments demonstrated this reversal, This phenomenon can be one reason the quantity of residual iodine in spent fuels is higher in reprocessing plants than in laboratory-scale experiments. 17 refs., 5 figs., 3 tabs.

  2. Operational experience of ultrasonic sealing bolts for safeguard containment of multi-element bottles in British Nuclear Fuel`s THORP spent fuel storage ponds

    SciTech Connect

    Hatt, C.D.; Reynolds, A.F.; Jeffrey, A.; DeTourbet, P.; D`Agraives, B.; Toornvliet, J.; Wilt, B.

    1995-12-31

    Following verification of the presence of Light Water Reactor fuel stored in multi-element bottles (MEBs), in British Nuclear Fuel`s (BNFL), Thermal Oxide Reprocessing Plant (THORP) fuel storage pond by Euratom and the IAEA, one lid bolt is replaced by an Ultrasonic Sealing Bolt. This safeguards seal, developed by Euratom`s Joint Research Centre at Ispra, Italy, has been field tested at Sellafield over several years and applied.in volume since 1994. The use of sealing bolts and video surveillance provides dual containment/surveillance on the THORP storage ponds, and brings significant savings in time and hence cost to the operator at the annual inventory verification. Time savings of up to 80% are achievable compared to fuel verification using a collimated gamma detector.

  3. Behavior of 12 wt% TRIGA fuel after many years of operation

    SciTech Connect

    Levine, S.H.; Boyle, P.

    1997-12-01

    In July 1972, six 12 wt% Uzr-H TRIGA fuel elements were loaded into the B-ring, the innermost ring, of the Penn State Breazeale Research Reactor (PSBR) to increase its k{sub eff}. Of these initial six fuel elements, three remain in the core, and the other three fuel elements had to be removed from the core. The purpose of this summary is to present operational-type data on the 12 wt% Uzr-H TRIGA fuel elements that have been in the PSBR during the past 25 yr and to postulate reasons for the structural change of those removed from the core.

  4. URANIUM OXIDE-CONTAINING FUEL ELEMENT COMPOSITION AND METHOD OF MAKING SAME

    DOEpatents

    Handwerk, J.H.; Noland, R.A.; Walker, D.E.

    1957-09-10

    In the past, bodies formed of a mixture of uranium dioxide and aluminum powder have been used in fuel elements; however, these mixtures were found not to be suitable when exposed to temperatures of about 600 deg C, because at such high temperatures the fuel elements were distorted. If uranosic oxide, U/sub 3/O/sub 8/, is substituted for UO/sub 2/, the mechanical properties are not impaired when these materials are used at about 600 deg C and no distortion takes place. The uranosic oxide and aluminum, both in powder form, are first mixed, and after a homogeneous mixture has been obtained, are shaped into fuel elements by extrusion at elevated temperature. Magnesium powder may be used in place of the aluminum.

  5. Metallographic examination of damaged N reactor spent nuclear fuel element SFEC5,4378

    SciTech Connect

    Marschman, S.C.; Pyecha, T.D.; Abrefah, J.

    1997-08-01

    N-Reactor spent nuclear fuel (SNF) is currently residing underwater in the K Basins at the Hanford site, in Richland, Washington. This report presents results of the metallographic examination of specimens cut from an SNF element (Mark IV-E) with breached cladding. The element had resided in the K-West (KW) Storage Basin for at least 10 years after it was discharged from the N-Reactor. The storage containers in the KW Basin were nominally closed, isolating the SNF elements from the open pool environment. Seven specimens from this Mark IV-E outer fuel element were examined using an optical metallograph. Included were two specimens that had been subjected to a conditioning process recommended by the Independent Technical Assessment Team, two specimens that had been subjected to a conditioning process recommended in the Integrated Process Strategy Report, and three that were in the as-received, as-cut condition. One of the as-received specimens had been cut from the damaged (or breached) end of the element. All other specimens were cut from the undamaged mid-region of the fuel element. The specimens were visually examined to (1) identify uranium hydride inclusions present in the uranium metal fuel, (2) measure the thickness of the oxide layer formed on the uranium edges and assess the apparent integrity and adhesion of the oxide layer, and (3) look for features in the microstructure that might provide an insight into the various corrosion processes that occurred during underwater storage in the KW Basin. These features included, but were not limited to, the integrity of the cladding and the fuel-to-cladding bond, obvious anomalies in the microstructure, excessive pitting or friability of the fuel matrix, and obvious anomalies in the distribution of uranium hydride or uranium carbide inclusions. Also, the observed metallographic features of the conditioned specimens were compared with those of the as-received (unconditioned) specimens. 11 refs., 93 figs., 2 tabs.

  6. An analysis of heating fuel market behavior, 1989--1990

    SciTech Connect

    Not Available

    1990-06-01

    The purpose of this report is to fully assess the heating fuel crisis from a broader and longer-term perspective. Using EIA final, monthly data, in conjunction with credible information from non-government sources, the pricing phenomena exhibited by heating fuels in late December 1989 and early January 1990 are described and evaluated in more detail and more accurately than in the interim report. Additionally, data through February 1990 (and, in some cases, preliminary figures for March) make it possible to assess the market impact of movements in prices and supplies over the heating season as a whole. Finally, the longer time frame and the availability of quarterly reports filed with the Securities and Exchange Commission make it possible to weigh the impact of revenue gains in December and January on overall profits over the two winter quarters. Some of the major, related issues raised during the House and Senate hearings in January concerned the structure of heating fuel markets and the degree to which changes in this structure over the last decade may have influenced the behavior and financial performance of market participants. Have these markets become more concentrated Was collusion or market manipulation behind December's rising prices Did these, or other, factors permit suppliers to realize excessive profits What additional costs were incurred by consumers as a result of such forces These questions, and others, are addressed in the course of this report.

  7. Experimental evaluation of cobalt behavior on BWR fuel rod surface

    SciTech Connect

    Karasawa, H.; Asakura, Y.; Sakagami, M.; Uchida, S. )

    1988-06-01

    Cobalt behavior on the boiling water reactor (BWR) fuel rod surface was experimentally evaluated at 285 C and with various pH values. Adsorption of cobalt ions on hematite particles proceeded via the exchange reaction of cobalt ion with the surface hydroxyl of the hematite. The equilibrium constant for the adsorption at 285 C was found to be -- 570 times as large as that at 20 C. The adsorbate formed cobalt ferrite at the rate of 3.4 x 10/sup -2/ g-Co/g-Co adsorbed/h. The dissolution rates of cobalt ferrite and cobalt oxide particles were found to depend on (H/sup -/)/sup 1.1/ and (H/sup -/)/sup 1.2/, respectively, where (H/sup -/) means the H/sup -/ concentration. Cobalt ions were released from these oxides when O/sup 2-/ ions in them combined with two aqueous protons to form water at the oxide-water interface. Cobalt behavior on the fuel rod surface under BWR conditions was discussed using the experimental results.

  8. Irradiation testing of full-sized, reduced-enrichment fuel elements

    SciTech Connect

    Snelgrove, J.L.; Copeland, G.L.

    1983-01-01

    The current status of the irradiation testing of full-sized, reduced-enrichment fuel elements and fuel rods under the US Reduced Enrichment Research and Test Reactor Program is reported. Being tested are UAl/sub x/-Al, U/sub 3/O/sub 8/-Al, U/sub 3/Si/sub 2/-Al, and U/sub 3/Si-Al dispersion fuels and UZrH/sub x/ (TRIGA) fuel at uranium densities in the fuel meat ranging from 1.7 to 6.0 Mg/m/sup 3/. Generally good performance has been experienced to date. Some preliminary results of postirradiation examinations are also included. A whole-core demonstration in the Oak Ridge Research Reactor is planned. Some details of this demonstration are provided.

  9. Porous nuclear fuel element for high-temperature gas-cooled nuclear reactors

    DOEpatents

    Youchison, Dennis L.; Williams, Brian E.; Benander, Robert E.

    2011-03-01

    Porous nuclear fuel elements for use in advanced high temperature gas-cooled nuclear reactors (HTGR's), and to processes for fabricating them. Advanced uranium bi-carbide, uranium tri-carbide and uranium carbonitride nuclear fuels can be used. These fuels have high melting temperatures, high thermal conductivity, and high resistance to erosion by hot hydrogen gas. Tri-carbide fuels, such as (U,Zr,Nb)C, can be fabricated using chemical vapor infiltration (CVI) to simultaneously deposit each of the three separate carbides, e.g., UC, ZrC, and NbC in a single CVI step. By using CVI, the nuclear fuel may be deposited inside of a highly porous skeletal structure made of, for example, reticulated vitreous carbon foam.

  10. Porous nuclear fuel element with internal skeleton for high-temperature gas-cooled nuclear reactors

    SciTech Connect

    Youchison, Dennis L.; Williams, Brian E.; Benander, Robert E.

    2013-09-03

    Porous nuclear fuel elements for use in advanced high temperature gas-cooled nuclear reactors (HTGR's), and to processes for fabricating them. Advanced uranium bi-carbide, uranium tri-carbide and uranium carbonitride nuclear fuels can be used. These fuels have high melting temperatures, high thermal conductivity, and high resistance to erosion by hot hydrogen gas. Tri-carbide fuels, such as (U,Zr,Nb)C, can be fabricated using chemical vapor infiltration (CVI) to simultaneously deposit each of the three separate carbides, e.g., UC, ZrC, and NbC in a single CVI step. By using CVI, the nuclear fuel may be deposited inside of a highly porous skeletal structure made of, for example, reticulated vitreous carbon foam.

  11. Methods for manufacturing porous nuclear fuel elements for high-temperature gas-cooled nuclear reactors

    DOEpatents

    Youchison, Dennis L.; Williams, Brian E.; Benander, Robert E.

    2010-02-23

    Methods for manufacturing porous nuclear fuel elements for use in advanced high temperature gas-cooled nuclear reactors (HTGR's). Advanced uranium bi-carbide, uranium tri-carbide and uranium carbonitride nuclear fuels can be used. These fuels have high melting temperatures, high thermal conductivity, and high resistance to erosion by hot hydrogen gas. Tri-carbide fuels, such as (U,Zr,Nb)C, can be fabricated using chemical vapor infiltration (CVI) to simultaneously deposit each of the three separate carbides, e.g., UC, ZrC, and NbC in a single CVI step. By using CVI, a thin coating of nuclear fuel may be deposited inside of a highly porous skeletal structure made, for example, of reticulated vitreous carbon foam.

  12. Determination of trace elements in automotive fuels by filter furnace atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Anselmi, Anna; Tittarelli, Paolo; Katskov, Dmitri A.

    2002-03-01

    The determination of Cd, Cr, Cu, Pb and Ni was performed in gasoline and diesel fuel samples by electrothermal atomic absorption spectrometry using the Transverse Heated Filter Atomizer (THFA). Thermal conditions were experimentally defined for the investigated elements. The elements were analyzed without addition of chemical modifiers, using organometallic standards for the calibration. Forty-microliter samples were injected into the THFA. Gasoline samples were analyzed directly, while diesel fuel samples were diluted 1:4 with n-heptane. The following characteristic masses were obtained: 0.8 pg Cd, 6.4 pg Cr, 12 pg Cu, 17 pg Pb and 27 pg Ni. The limits of determination for gasoline samples were 0.13 μg/kg Cd, 0.4 μg/kg Cr, 0.9 μg/kg Cu, 1.5 μg/kg Pb and 2.5 μg/kg Ni. The corresponding limit of determination for diesel fuel samples was approximately four times higher for all elements. The element recovery was performed using the addition of organometallic compounds to gasoline and diesel fuel samples and was between 85 and 105% for all elements investigated.

  13. Theoretical studies of transient criticality of irradiated fuel elements

    SciTech Connect

    Barbry, F.; Bonhomme, C.; Hague, P.; Mather, D.J.; Shaw, P.M.

    1987-01-01

    The use of transport flasks containing irradiated fuel is a common event, and their movements are strictly regulated by the national competent authority in order that an acceptable level of control of radiation hazards be maintained. Nonetheless it has been considered prudent to quantify the consequences of a particular hypothetical accident involving a transport package. The particular accident examined assumed that recriticality occurs during the refilling of a flask, and for the Commissariat a l'Energie Atomique (CEA) scenario, for which flasks are transported dry, the hypothetical accident occurs as the flask is slowly lowered into a storage pond. An alternative UK scenario assumes that the flask is being refilled, following breach, by a high-pressure hose. Thus, the consequences of such an accident were estimated by developing computer codes, Chateau by the CEA and Sartemp by the UK Atomic Energy Authority (UKAEA). This and other results show that the hypothetical accident in which a transport flask is brought to critical by the reentry of water gives at most a relatively mild event. In view of the considerably unlikely circumstances and conservative aspects introduced, this result shows that such an accident can be safely contained.

  14. Which Elements Should be Recycled for a Comprehensive Fuel Cycle?

    SciTech Connect

    Steven Piet; Trond Bjornard; Brent Dixon; Dirk Gombert; Robert Hill; Chris Laws; Gretchen Matthern; David Shropshire; Roald Wigeland

    2007-09-01

    Uranium recovery can reduce the mass of waste and possibly the number of waste packages that require geologic disposal. Separated uranium can be managed with the same method (near-surface burial) as used for the larger quantities of depleted uranium or recycled into new fuel. Recycle of all transuranics reduces long-term environmental burden, reduces heat load to repositories, extracts more energy from the original uranium ore, and may have significant proliferation resistance and physical security advantages. Recovery of short-lived fission products cesium and strontium can allow them to decay to low-level waste in facilities tailored to that need, rather than geologic disposal. This could also reduce the number and cost of waste packages requiring geologic disposal. These savings are offset by costs for separation, recycle, and storage systems. Recovery of technetium-99 and iodine-129 can allow them to be sent to geologic disposal in improved waste forms. Such separation avoids contamination of the other products (uranium) and waste (cesium-strontium) streams with long-lived radioisotopes so the material might be disposed as low-level waste. Transmutation of technetium and iodine is a possible future alternative.

  15. Device for the disengagement of a nuclear reactor fuel element from an articulated finger grapnel and method of using same

    SciTech Connect

    Chollet, F.

    1984-01-17

    Device for the underwater disengagement of a nuclear reactor fuel element from a grapnel with at least two articulated fingers. The device is designed to be placed on the end of a duct for positioning fuel elements and includes jacks for adjusting the relative positions of the device and the grapnel-fuel element unit and for maintaining these positions, further jacks for unfastening the fingers of the grapnel from the body of the grapnel and still further, jacks for tilting the fingers of the grapnel so as to enable the fingers to release their hold on the fuel element.

  16. COMBINING NEUTRAL AND ACIDIC EXTRACTANTS FOR RECOVERING TRANSURANIC ELEMENTS FROM NUCLEAR FUEL

    SciTech Connect

    Lumetta, Gregg J.; Neiner, Doinita; Sinkov, Sergey I.; Carter, Jennifer C.; Braley, Jenifer C.; Latesky, Stanley; Gelis, Artem V.; Tkac, Peter; Vandegrift, George F.

    2011-10-03

    We have been investigating a solvent extraction system that combines a neutral extractant--octyl(phenyl)-N,N-diisobutyl-carbamoylmethylphosphine oxide (CMPO)--with an acidic extractant--bis(2-ethylhexyl)phosphoric acid (HDEHP)--to form a single process solvent for separating Am and Cm from the other components of irradiated nuclear fuel. It was originally hypothesized that the extraction chemistry of CMPO would dominate under conditions of high acidity (> 1 M HNO3), resulting in co-extraction of the transuranic and lanthanide elements into the organic phase. Contacting the loaded solvent with a solution of diethylenetriaminepentaacetate (DTPA) buffered with lactic or citric acid at pH {approx}3 to 4 would result in a condition in which the HDEHP chemistry dominates. Although the data somewhat support this hypothesis, it is clear that there are interactions between the two extractants such that they do not act independently in the extraction and stripping regimes. We report here studies directed at determining the nature and extent of interaction between CMPO and HDEHP, the synergistic behavior of CMPO and HDEHP in the extraction of americium and neodymium, and progress towards determining the thermodynamics of this extraction system. Neodymium and americium behave similarly in the combined solvent system, with a significant synergy between CMPO and HDEHP in the extraction of both of these trivalent elements from lactate-buffered DTPA solutions. In contrast, a much weaker synergistic behaviour is observed for europium. Thus, investigations into the fundamental chemistry involved in this system have focused on the neodymium extraction. The extraction of neodymium has been systematically investigated, individually varying the HDEHP concentration, the CMPO concentration, or the aqueous phase composition. Thermodynamic modeling of the neodymium extraction system has been initiated. Interactions between CMPO and HDEHP in the organic phase must be taken into account in

  17. CERAMIC FUEL ELEMENT MATERIAL FOR A NEUTRONIC REACTOR AND METHOD OF FABRICATING SAME

    DOEpatents

    Duckworth, W.H.

    1957-12-01

    This patent relates to ceramic composition, and to neutronic reactor fuel elements formed therefrom. These ceramic elements have high density and excellent strength characteristics and are formed by conventional ceramic casting and sintering at a temperature of about 2700 deg F in a nitrogen atmosphere. The composition consists of silicon carbide, silicon, uranium oxide and a very small percentage of molybdenum. Compositions containing molybdenum are markedly stronger than those lacking this ingredient.

  18. Proposed modification of an instrumented TRIGA fuel element so that it may be handled with a standard TRIGA fuel handling tool

    SciTech Connect

    Doane, Harry J.

    1992-07-01

    Instrumented fuel elements whose thermocouples are no longer functional are still a useful source of reactor fuel. Their usefulness is hampered somewhat by the extension tubing that must extend above water level to keep the thermocouple extension leads dry and to keep pool water from interacting with the gas tight lead seal which is made below the lower coupling in the extension tubing. This facility proposes to modify an instrumented TRIGA fuel element by removing the extension tubing at the lower coupling and attaching to it a top end fixture that is normally supplied with a standard TRIGA fuel element. This would then allow movement of the modified fuel element with a standard TRIGA fuel handling tool. This paper will present the considerations involved in performing this modification and the presenter will solicit any useful information that might be contributed by attendees of the TRIGA Owners' Conference. (author)

  19. Development of customized fire behavior fuel models for boreal forests of northeastern China.

    PubMed

    Wu, Zhi Wei; He, Hong Shi; Chang, Yu; Liu, Zhi Hua; Chen, Hong Wei

    2011-12-01

    Knowledge of forest fuels and their potential fire behavior across a landscape is essential in fire management. Four customized fire behavior fuel models that differed significantly in fuels characteristics and environmental conditions were identified using hierarchical cluster analysis based on fuels data collected across a boreal forest landscape in northeastern China. Fuel model I represented the dense and heavily branched Pinus pumila shrubland which has significant fine live woody fuels. These forests occur mainly at higher mountain elevations. Fuel model II is applicable to forests dominated by Betula platyphylla and Populus davidiana occurring in native forests on hill slopes or at low mountain elevations. This fuel model was differentiated from other fuel models by higher herbaceous cover and lower fine live woody loading. The primary coniferous forests dominated by Larix gmelini and Pinus sylvestris L. var. mongolica were classified as fuel model III and fuel model IV. Those fuel models differed from one another in average cover and height of understory shrub and herbaceous layers as well as in aspect. The potential fire behavior for each fuel model was simulated with the BehavePlus5.0 fire behavior prediction system. The simulation results indicated that the Pinus pumila shrubland fuels had the most severe fire behavior for the 97th percentile weather condition, and had the least severe fire behavior under 90th percentile weather condition. Fuel model II presented the least severe fire potential across weather conditions. Fuel model IV resulted in greater fire severity than Fuel model III across the two weather scenarios that were examined. PMID:21691875

  20. Acceptance of spent nuclear fuel in multiple element sealed canisters by the Federal Waste Management System

    SciTech Connect

    Not Available

    1990-03-01

    This report is one of a series of eight prepared by E.R. Johnson Associates, Inc. (JAI) under ORNL's contract with DOE's OCRWM Systems Integration Program and in support of the Annual Capacity Report (ACR) Issue Resolution Process. The report topics relate specifically to the list of high priority technical waste acceptance issues developed jointly by DOE and a utility-working group. JAI performed various analyses and studies on each topic to serve as starting points for further discussion and analysis leading eventually to finalizing the process by which DOE will accept spent fuel and waste into its waste management system. The eight reports are concerned with the conditions under which spent fuel and high level waste will be accepted in the following categories: (1) failed fuel; (2) consolidated fuel and associated structural parts; (3) non-fuel-assembly hardware; (4) fuel in metal storage casks; (5) fuel in multi-element sealed canisters; (6) inspection and testing requirements for wastes; (7) canister criteria; (8) spent fuel selection for delivery; and (9) defense and commercial high-level waste packages. 14 refs., 27 figs.

  1. Conceptual design report for the mechanical disassembly of Fort St. Vrain fuel elements

    SciTech Connect

    Lord, D.L.; Wadsworth, D.C.; Sekot, J.P.; Skinner, K.L.

    1993-04-01

    A conceptual design study was prepared that: (1) reviewed the operations necessary to perform the mechanical disassembly of Fort St. Vrain fuel elements; (2) contained a description and survey of equipment capable of performing the necessary functions; and (3) performed a tradeoff study for determining the preferred concepts and equipment specifications. A preferred system was recommended and engineering specifications for this system were developed.

  2. Fuel-element failures in Hanford single-pass reactors 1944--1971

    SciTech Connect

    Gydesen, S.P.

    1993-07-01

    The primary objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation dose that individuals could have received as a result of emissions since 1944 from the US Department of Energy`s (DOE) Hanford Site near Richland, Washington. To estimate the doses, the staff of the Source Terms Task use operating information from historical documents to approximate the radioactive emissions. One source of radioactive emissions to the Columbia River came from leaks in the aluminum cladding of the uranium metal fuel elements in single-pass reactors. The purpose of this letter report is to provide photocopies of the documents that recorded these failures. The data from these documents will be used by the Source Terms Task to determine the contribution of single-pass reactor fuel-element failures to the radioactivity of the reactor effluent from 1944 through 1971. Each referenced fuel-element failure occurring in the Hanford single-pass reactors is addressed. The first recorded failure was in 1948, the last in 1970. No records of fuel-element failures were found in documents prior to 1948. Data on the approximately 2000 failures which occurred during the 28 years (1944--1971) of Hanford single-pass reactor operations are provided in this report.

  3. Review of Rover fuel element protective coating development at Los Alamos

    NASA Technical Reports Server (NTRS)

    Wallace, Terry C.

    1991-01-01

    The Los Alamos Scientific Laboratory (LASL) entered the nuclear propulsion field in 1955 and began work on all aspects of a nuclear propulsion program with a target exhaust temperature of about 2750 K. A very extensive chemical vapor deposition coating technology for preventing catastrophic corrosion of reactor core components by the high temperature, high pressure hydrogen propellant gas was developed. Over the 17-year term of the program, more than 50,000 fuel elements were coated and evaluated. Advances in performance were achieved only through closely coupled interaction between the developing fuel element fabrication and protective coating technologies. The endurance of fuel elements in high temperature, high pressure hydrogen environment increased from several minutes at 2000 K exit gas temperature to 2 hours at 2440 K exit gas temperature in a reactor test and 10 hours at 2350 K exit gas temperature in a hot gas test. The purpose of this paper is to highlight the rationale for selection of coating materials used (NbC and ZrC), identify critical fuel element-coat interactions that had to be modified to increase system performance, and review the evolution of protective coating technology.

  4. An Expert System to Analyze Homogeneity in Fuel Element Plates for Research Reactors

    SciTech Connect

    Tolosa, S.C.; Marajofsky, A.

    2004-10-06

    In the manufacturing control of Fuel Element Plates for Research Reactors, one of the problems to be addressed is how to determine the U-density homogeneity in a fuel plate and how to obtain qualitative and quantitative information in order to establish acceptance or rejection criteria for such, as well as carrying out the quality follow-up. This paper is aimed at developing computing software which implements an Unsupervised Competitive Learning Neural Network for the acknowledgment of regions belonging to a digitalized gray scale image. This program is applied to x-ray images. These images are generated when the x-ray beams go through a fuel plate of approximately 60 cm x 8 cm x 0.1 cm thick. A Nuclear Fuel Element for Research Reactors usually consists of 18 to 22 of these plates, positioned in parallel, in an arrangement of 8 x 7 cm. Carrying out the inspection of the digitalized x-ray image, the neural network detects regions with different luminous densities corresponding to U-densities in the fuel plate. This is used in quality control to detect failures and verify acceptance criteria depending on the homogeneity of the plate. This modality of inspection is important as it allows the performance of non-destructive measurements and the automatic generation of the map of U-relative densities of the fuel plate.

  5. 2-D Time-Dependent Fuel Element, Thermal Analysis Code System.

    Energy Science and Technology Software Center (ESTSC)

    2001-09-24

    Version 00 WREM-TOODEE2 is a two dimensional, time-dependent, fuel-element thermal analysis program. Its primary purpose is to evaluate fuel-element thermal response during post-LOCA refill and reflood in a pressurized water reactor (PWR). TOODEE2 calculations are carried out in a two-dimensional mesh region defined in slab or cylindrical geometry by orthogonal grid lines. Coordinates which form order pairs are labeled x-y in slab geometry, and those in cylindrical geometry are labeled r-z for the axisymmetric casemore » and r-theta for the polar case. Conduction and radiation are the only heat transfer mechanisms assumed within the boundaries of the mesh region. Convective and boiling heat transfer mechanisms are assumed at the boundaries. The program numerically solves the two-dimensional, time-dependent, heat conduction equation within the mesh region. KEYWORDS: FUEL MANAGEMENT; HEAT TRANSFER; LOCA; PWR« less

  6. Chemical aspects of pellet-cladding interaction in light water reactor fuel elements

    SciTech Connect

    Olander, D.R.

    1982-01-01

    In contrast to the extensive literature on the mechanical aspects of pellet-cladding interaction (PCI) in light water reactor fuel elements, the chemical features of this phenomenon are so poorly understood that there is still disagreement concerning the chemical agent responsible. Since the earliest work by Rosenbaum, Davies and Pon, laboratory and in-reactor experiments designed to elucidate the mechanism of PCI fuel rod failures have concentrated almost exclusively on iodine. The assumption that this is the reponsible chemical agent is contained in models of PCI which have been constructed for incorporation into fuel performance codes. The evidence implicating iodine is circumstantial, being based primarily upon the volatility and significant fission yield of this element and on the microstructural similarity of the failed Zircaloy specimens exposed to iodine in laboratory stress corrosion cracking (SCC) tests to cladding failures by PCI.

  7. Dynamic behavior of PEM fuel cell and microturbine power plants

    NASA Astrophysics Data System (ADS)

    El-Sharkh, M. Y.; Sisworahardjo, N. S.; Uzunoglu, M.; Onar, O.; Alam, M. S.

    This paper presents a comparison between the dynamic behavior of a 250 kW stand-alone proton exchange membrane fuel cell power plant (PEM FCPP) and a 250 kW stand-alone microturbine (MT). Dynamic models for the two are introduced. To control the voltage and the power output of the PEM FCPP, voltage and power control loops are added to the model. For the MT, voltage, speed, and power control are used. Dynamic models are used to determine the response of the PEM FCPP and MT to a load step change. Simulation results indicate that the response of the MT to reach a steady state is about twice as fast as the PEM FCPP. For stand-alone operation of a PEM FCPP, a set of batteries or ultracapacitors is needed in order to satisfy the power mismatch during transient periods. Software simulation results are obtained by using MATLAB ®, Simulink ®, and SimPowerSystems ®.

  8. Conceptual design report for handling Fort St. Vrain fuel element components

    SciTech Connect

    Gavalya, R.A.

    1993-09-01

    This report presents conceptual designs for containment of high-level wastes (HLW) and low-level wastes (LLW) that will result from disassembly of fuel elements from the High Temperature Gas-Cooled Reactor at the Fort St. Vrain nuclear power plant in Platteville, Colorado. Hexagonal fuel elements will enter the disassembly area as a HLW and exit as either as HLW or LLW. The HLW will consist of spent fuel compacts that have been removed from the hexagonal graphite block. Graphite dust and graphite particles produced during the disassembly process will also be routed to the container that will hold the HLW spent fuel compacts. The LLW will consist of the emptied graphite block. Three alternatives have been introduced for interim storage of the HLW containers after the spent fuel has been loaded. The three alternatives are: (a) store containers where fuel elements are currently being stored, (b) construct a new dry storage facility, and (c) employ Multi-Purpose Canisters (currently in conceptual design stage). Containment of the LLW graphite block will depend on several factors: (a) LLW classification, (b) radiation levels, and (c) volume-reducing technique (if used). Packaging may range from cardboard boxes for incinerable wastes to 55-ton cask inserts for remote-handled wastes. Before final designs for the containment of the HLW and LLW can be developed, several issues need to be addressed: (a) packing factor for fuel compacts in HLW container, (b) storage/disposal of loaded HLW containers, (c) characterization of the emptied graphite blocks, and (d) which technique for volume-reduction purposes (if any) will be used.

  9. Time-resolved and time-integrated radiography of fast reactor fuel elements

    SciTech Connect

    De Volpi, A.

    1981-01-01

    The fast-reactor safety program has some unusual requirements in radiography. Applications may be divided into two areas: time-resolved or time-integrated radiography. The fast-neutron hodoscope has supplied all recent time-resolved cineradiographic in-pile fuel-motion data, and various x-ray and photographic techniques have been used for out-of-pile experiments. Thick containers and the large number of radioactive fuel pins involved in safety research have been responsible for some nonconventional applications of time-integrated radiography of stationary objects. Hodoscopes record fuel-motion during transient experiments at the TREAT reactor in the United States and CABRI in France. Other special techniques have been under development for out-of-pile nondestructive radiography of fuel element subassemblies, including fast-neutron and gamma-ray tomographic methods.

  10. Discrete element method study of fuel relocation and dispersal during loss-of-coolant accidents

    NASA Astrophysics Data System (ADS)

    Govers, K.; Verwerft, M.

    2016-09-01

    The fuel fragmentation, relocation and dispersal (FFRD) during LOCA transients today retain the attention of the nuclear safety community. The fine fragmentation observed at high burnup may, indeed, affect the Emergency Core Cooling System performance: accumulation of fuel debris in the cladding ballooned zone leads to a redistribution of the temperature profile, while dispersal of debris might lead to coolant blockage or to debris circulation through the primary circuit. This work presents a contribution, by discrete element method, towards a mechanistic description of the various stages of FFRD. The fuel fragments are described as a set of interacting particles, behaving as a granular medium. The model shows qualitative and quantitative agreement with experimental observations, such as the packing efficiency in the balloon, which is shown to stabilize at about 55%. The model is then applied to study fuel dispersal, for which experimental parametric studies are both difficult and expensive.

  11. Development of custom fire behavior fuel models from FCCS fuelbeds for the Savannah River fuel assessment project.

    SciTech Connect

    Scott, Joe, H.

    2009-07-23

    The purpose of this project is to create fire behavior fuel models that replicate the fire behavior characteristics (spread rate and fireline intensity) produced by 23 candidate FCCS fuelbeds developed for the Savannah River National Wildlife Refuge. These 23 fuelbeds were created by FERA staff in consultation with local fuel managers. The FCCS produces simulations of surface fire spread rate and flame length (and therefore fireline intensity) for each of these fuelbeds, but it does not produce maps of those fire behavior characteristics or simulate fire growth—those tasks currently require the use of the FARSITE and/or FlamMap software systems. FARSITE and FlamMap do not directly use FCCS fuelbeds, but instead use standard or custom fire behavior fuel models to describe surface fuel characteristics for fire modeling. Therefore, replicating fire growth and fire behavior potential calculations using FCCS-simulated fire characteristics requires the development of custom fuel models that mimic, as closely as possible, the fire behavior characteristics produced by the FCCS for each fuelbed, over a range of fuel moisture and wind speeds.

  12. TRISO-Fuel Element Performance Modeling for the Hybrid LIFE Engine with Pu Fuel Blanket

    SciTech Connect

    DeMange, P; Marian, J; Caro, M; Caro, A

    2010-02-18

    A TRISO-coated fuel thermo-mechanical performance study is performed for the hybrid LIFE engine to test the viability of TRISO particles to achieve ultra-high burnup of a weapons-grade Pu blanket. Our methodology includes full elastic anisotropy, time and temperature varying material properties for all TRISO layers, and a procedure to remap the elastic solutions in order to achieve fast fluences up to 30 x 10{sup 25} n {center_dot} m{sup -2} (E > 0.18 MeV). In order to model fast fluences in the range of {approx} 7 {approx} 30 x 10{sup 25} n {center_dot} m{sup -2}, for which no data exist, careful scalings and extrapolations of the known TRISO material properties are carried out under a number of potential scenarios. A number of findings can be extracted from our study. First, failure of the internal pyrolytic carbon (PyC) layer occurs within the first two months of operation. Then, the particles behave as BISO-coated particles, with the internal pressure being withstood directly by the SiC layer. Later, after 1.6 years, the remaining PyC crumbles due to void swelling and the fuel particle becomes a single-SiC-layer particle. Unrestrained by the PyC layers, and at the temperatures and fluences in the LIFE engine, the SiC layer maintains reasonably-low tensile stresses until the end-of-life. Second, the PyC creep constant, K, has a striking influence on the fuel performance of TRISO-coated particles, whose stresses scale almost inversely proportional to K. Obtaining more reliable measurements, especially at higher fluences, is an imperative for the fidelity of our models. Finally, varying the geometry of the TRISO-coated fuel particles results in little differences in the scope of fuel performance. The mechanical integrity of 2-cm graphite pebbles that act as fuel matrix has also been studied and it is concluded that they can reliable serve the entire LIFE burnup cycle without failure.

  13. Choices of canisters and elements for the first fuel and canister sludge shipment from K East Basin

    SciTech Connect

    Makenas, B.J.

    1996-03-22

    The K East Basin contains open-top canisters with up to fourteen N Reactor fuel assemblies distributed between the two barrels of each canister. Each fuel assembly generally consists of inner and outer concentric elements fabricated from uranium metal with zirconium alloy cladding. The canisters also contain varying amounts of accumulated sludge. Retrieval of sample fuel elements and associated sludge for examination is scheduled to occur in the near future. The purpose of this document is to specify particular canisters and elements of interest as candidate sources of fuel and sludge to be shipped to laboratories.

  14. Comparison of HEU and LEU Fuel Neutron Spectrum for ATR Fuel Element and ATR Flux-Trap Positions

    SciTech Connect

    G. S. Chang

    2008-10-01

    The Advanced Test Reactor (ATR) is a high power and high neutron flux research reactor operating in the United States. Powered with highly enriched uranium (HEU), the ATR has a maximum thermal power rating of 250 MWth. Because of the high total core power and high neutron flux, the ATR is an ideal candidate for assessing the feasibility of converting an HEU driven reactor to a low-enriched core. An optimized low-enriched uranium (LEU) (U-10Mo) core conversion case, which can meet the project requirements, has been selected. However, LEU contains a significant quantity of high density U-238 (80.3 wt.%), which will harden the neutron spectrum in the core region. Based on the reference ATR HEU and the optimized LEU full core plate-by-plate (PBP) models, the present work investigates and compares the neutron spectra differences in the fuel element (FE), Northeast flux trap (NEFT), Southeast flux trap (SEFT), and East flux trap (EFT) positions. A detailed PBP MCNP ATR core model was developed and validated for fuel cycle burnup comparison analysis. The current ATR core with HEU U 235 enrichment of 93.0wt.% was used as the reference model. Each HEU fuel element contains 19 fuel plates with a fuel meat thickness of 0.508 mm (20 mil). In this work, an optimized LEU (U-10Mo) core conversion case with a nominal fuel meat thickness of 0.330 mm (13 mil) and the U-235 enrichment of 19.7 wt.% was used to calculate the impact of the neutron spectrum in FE and FT positions. MCNP-calculated results show that the neutron spectrum in the LEU FE is slightly harder than in the HEU FE, as expected. However, when neutrons transport through water coolant and beryllium (Be), the neutrons are thermalized to an equilibrium neutron spectrum as a function of water volume fraction in the investigated FT positions. As a result, the neutron spectrum differences of the HEU and LEU in the NEFT, SEFT, and EFT are negligible. To demonstrate that the LEU core fuel cycle performance can meet the

  15. Release Fractions from Multi-Element Spent Fuel Casks Resulting from HEDD Attack

    SciTech Connect

    Luna, R. E.

    2006-07-01

    This paper provides a simple model for estimating the release of respirable aerosols resulting from an attack on a spent fuel cask using a high energy density device (HEDD). Two primary experiments have provided data on potential releases from spent fuel casks under HEDD attack. Sandia National Laboratories (SNL) conducted the first in the early 1980's and the second was sponsored by Gessellshaft fur Anlagen- and Reaktorsicherheit (GRS) in Germany and conducted in France in 1994. Both used surrogate spent fuel assemblies in real casks. The SNL experiments used un-pressurized fuel pin assemblies in a single element cask while the GRS tests used pressurized fuel pin assemblies in a 9-element cask. Data from the two test programs is reasonably consistent, given the differences in the experiments, but the use of the test data for prediction of releases resulting from HEDD attack requires a method for accounting for the effects of pin pressurization release and the ratio of pin plenum gas release to cask free volume (VR). To account for the effects of VR and to link the two data sources, a simple model has been developed that uses both the SNL data and the GRS data as well as recent test data on aerosols produced in experiments with single pellets subjected to HEDD effects conducted under the aegis of the International Consortium's Working Group on Sabotage of Transport and Storage Casks (WGSTSC). (authors)

  16. NASA Human Research Program: Behavioral Health and Performance Program Element

    NASA Technical Reports Server (NTRS)

    Leveton, Lauren B.

    2009-01-01

    This viewgraph presentation reviews the performance errors associated with sleep loss, fatigue and psychomotor factors during manned space flight. Short and long term behavioral health factors are also addressed

  17. The development of fuel performance models at the European institute for transuranium elements

    NASA Astrophysics Data System (ADS)

    Lassmann, K.; Ronchi, C.; Small, G. J.

    1989-07-01

    The design and operational performance of fuel rods for nuclear power stations has been the subject of detailed experimental research for over thirty years. In the last two decades the continuous demands for greater economy in conjunction with more stringent safety criteria have led to an increasing reliance on computer simulations. Conditions within a fuel rod must be calculated both for normal operation and for proposed reactor faults. It has thus been necessary to build up a reliable, theoretical understanding of the intricate physical, mechanical and chemical processes occurring under a wide range of conditions to obtain a quantitative insight into the behaviour of the fuel. A prime requirement, which has also proved to be the most taxing, is to predict the conditions under which failure of the cladding might occur, particularly in fuel nearing the end of its useful life. In this paper the general requirements of a fuel performance code are discussed briefly and an account is given of the basic concepts of code construction. An overview is then given of recent progress at the European Institute for Transuranium Elements in the development of a fuel rod performance code for general application and of more detailed mechanistic models for fission product behaviour.

  18. Reduced Toxicity Fuel Satellite Propulsion System Including Catalytic Decomposing Element with Hydrogen Peroxide

    NASA Technical Reports Server (NTRS)

    Schneider, Steven J. (Inventor)

    2002-01-01

    A reduced toxicity fuel satellite propulsion system including a reduced toxicity propellant supply for consumption in an axial class thruster and an ACS class thruster. The system includes suitable valves and conduits for supplying the reduced toxicity propellant to the ACS decomposing element of an ACS thruster. The ACS decomposing element is operative to decompose the reduced toxicity propellant into hot propulsive gases. In addition the system includes suitable valves and conduits for supplying the reduced toxicity propellant to an axial decomposing element of the axial thruster. The axial decomposing element is operative to decompose the reduced toxicity propellant into hot gases. The system further includes suitable valves and conduits for supplying a second propellant to a combustion chamber of the axial thruster, whereby the hot gases and the second propellant auto-ignite and begin the combustion process for producing thrust.

  19. Radiotoxicity and Risk Reduction of TRU Elements from Spent Fuel by Transmutation in the Light Water Reactor

    SciTech Connect

    Necas, Vladimir; Sebian, Vladimir; Kociskova, Karolina; Darilek, Petr

    2005-05-24

    A conventional PWR of type VVER-440 operating in a sustainable advanced fuel cycle mode with complete recycling of TRU elements in an Inert Matrix Combined Fuel Assembly (IMC-FA) in the same reactor was investigated. A preliminary assessment with the differences between various nuclear fuel cycles in terms of the risk analysis and its indicators has been conducted. The results indicate that the sustainable advanced fuel cycle option can, for the same amount of energy generation, significantly reduces both the amounts and radiotoxicity of the spent nuclear fuel in comparison with the conventional once-through UO2 or MOX fuel cycles.

  20. Fusion option to dispose of spent nuclear fuel and transuranic elements

    SciTech Connect

    Gohar, Y.

    2000-02-10

    The fusion option is examined to solve the disposition problems of the spent nuclear fuel and the transuranic elements. The analysis of this report shows that the top rated solution, the elimination of the transuranic elements and the long-lived fission products, can be achieved in a fusion reactor. A 167 MW of fusion power from a D-T plasma for sixty years with an availability factor of 0.75 can transmute all the transuranic elements and the long-lived fission products of the 70,000 tons of the US inventory of spent nuclear fuel generated up to the year 2015. The operating time can be reduced to thirty years with use of 334 MW of fusion power, a system study is needed to define the optimum time. In addition, the fusion solution eliminates the need for a geological repository site, which is a major advantage. Meanwhile, such utilization of the fusion power will provide an excellent opportunity to develop fusion energy for the future. Fusion blankets with a liquid carrier for the transuranic elements can achieve a transmutation rate for the transuranic elements up to 80 kg/MW.y of fusion power with k{sub eff} of 0.98. In addition, the liquid blankets have several advantages relative to the other blanket options. The energy from this transmutation is utilized to produce revenue for the system. Molten salt (Flibe) and lithium-lead eutectic are identified as the most promising liquids for this application, both materials are under development for future fusion blanket concepts. The Flibe molten salt with transuranic elements was developed and used successfully as nuclear fuel for the molten salt breeder reactor in the 1960's.

  1. Computer modeling of single-cell and multicell thermionic fuel elements

    SciTech Connect

    Dickinson, J.W.; Klein, A.C.

    1996-05-01

    Modeling efforts are undertaken to perform coupled thermal-hydraulic and thermionic analysis for both single-cell and multicell thermionic fuel elements (TFE). The analysis--and the resulting MCTFE computer code (multicell thermionic fuel element)--is a steady-state finite volume model specifically designed to analyze cylindrical TFEs. It employs an interactive successive overrelaxation solution technique to solve for the temperatures throughout the TFE and a coupled thermionic routine to determine the total TFE performance. The calculated results include temperature distributions in all regions of the TFE, axial interelectrode voltages and current densities, and total TFE electrical output parameters including power, current, and voltage. MCTFE-generated results compare experimental data from the single-cell Topaz-II-type TFE and multicell data from the General Atomics 3H5 TFE to benchmark the accuracy of the code methods.

  2. Graphite corrosion and hydrogen release from HTR fuel elements in Q-brine

    SciTech Connect

    Fachinger, J.; Zhang, Z.X.; Brodda, B.G.

    1995-12-31

    Industrial reprocessing for High Temperature Reactors (HTR) fuel elements has never been installed in Germany. The spent fuel elements are being considered for final disposal in a rock salt repository in the deep geologic underground. Safety analysis requires the assumption of an accidental water ingress into the repository, resulting in the formation of a concentrated salt solution with the typical composition of a quinary brine. After corrosive penetration of the container walls, the brine may finally contact the fuel elements directly and mobilize radionuclides. Duve et al. investigated the leaching of the fission products and actinides from HTR fuel elements in Q-brine. The mobilization of {sup 14}C by graphite corrosion is one of the last data bases required as a source term for the release estimation of radionuclides in the final safety analysis. The evaluation of the hydrogen release was prescribed by the licensing board, because an excessive gas pressure may affect the overall integrity of the geological barrier. {sup 14}C occurs as dissolved organic and inorganic compounds in the brine. The leaching rate or organic {sup 14}C decreases from about 80 Bq to 1 Bq. The amount of organic {sup 14}C decreases from about 80 Bq to 1 Bq during leaching. The release of inorganic {sup 14}C ceases within 4 months. About 100 ppm of the total {sup 14}C inventory was released during leaching. Gaseous {sup 14}C has never been detected. The gas formation is based on the radiolytic degradation of water, with a formation rate of 0.04 to 0.11 ml/d. Gas chromatographic analysis of the gas proved that hydrogen is the main component of the released gas. Tritium and {sup 85}Kr were detected as traces with radio gas chromatography.

  3. Aerothermal modeling program, phase 2. Element C: Fuel injector-air swirl characterization

    NASA Technical Reports Server (NTRS)

    Mostafa, A. A.; Mongia, H. C.; Mcdonnell, V. G.; Samuelsen, G. S.

    1986-01-01

    The main objectives of the NASA-sponsored Aerothermal Modeling Program, Phase 2--Element C, are experimental evaluation of the air swirler interaction with a fuel injector in a simulated combustor chamber, assessment of the current two-phase models, and verification of the improved spray evaporation/dispersion models. This experimental and numerical program consists of five major tasks. Brief descriptions of the five tasks are given.

  4. Selection of representative volume elements for pore-scale analysis of transport in fuel cell materials

    NASA Astrophysics Data System (ADS)

    Wargo, E. A.; Hanna, A. C.; Çeçen, A.; Kalidindi, S. R.; Kumbur, E. C.

    2012-01-01

    Pore-scale modeling has become a quite popular tool for evaluating the impact of material structure on fuel cell performance. However, the computational complexity of these models often limits simulations to analyze only a small volume of material, which is typically selected randomly from a much larger microstructure dataset. When considering the heterogeneous internal structure of fuel cell materials, it is highly unlikely that such a randomly selected volume (i.e., model domain) would adequately reflect the salient features of the material structure. The objective of this work is to utilize the recent advances in microstructure quantification to select small representative volume elements (RVEs) that accurately reflect the overall microstructure and transport properties of fuel cell materials. The micro-porous layer (MPL) in polymer electrolyte fuel cells is chosen for initial demonstration of the approach. Dual-beam focused ion beam scanning electron microscopy is utilized to obtain a 3-D structural dataset of the selected MPL sample. The RVEs are selected using the new approach of weighted sets of optimally selected statistical volume elements, and the key structure and transport metrics are evaluated using advanced microstructure algorithms developed in-house. Metric comparisons between the RVEs and the full dataset indicate that the RVEs selected by this approach offer a very good representation of the full dataset, albeit in a volume that is significantly smaller in spatial extent, therefore providing a computationally efficient and reliable model domain for pore-scale analyses.

  5. Developing Custom Fire Behavior Fuel Models for Mediterranean Wildland-Urban Interfaces in Southern Italy.

    PubMed

    Elia, Mario; Lafortezza, Raffaele; Lovreglio, Raffaella; Sanesi, Giovanni

    2015-09-01

    The dramatic increase of fire hazard in wildland-urban interfaces (WUIs) has required more detailed fuel management programs to preserve ecosystem functions and human settlements. Designing effective fuel treatment strategies allows to achieve goals such as resilient landscapes, fire-adapted communities, and ecosystem response. Therefore, obtaining background information on forest fuel parameters and fuel accumulation patterns has become an important first step in planning fuel management interventions. Site-specific fuel inventory data enhance the accuracy of fuel management planning and help forest managers in fuel management decision-making. We have customized four fuel models for WUIs in southern Italy, starting from forest classes of land-cover use and adopting a hierarchical clustering approach. Furthermore, we provide a prediction of the potential fire behavior of our customized fuel models using FlamMap 5 under different weather conditions. The results suggest that fuel model IIIP (Mediterranean maquis) has the most severe fire potential for the 95th percentile weather conditions and the least severe potential fire behavior for the 85th percentile weather conditions. This study shows that it is possible to create customized fuel models directly from fuel inventory data. This achievement has broad implications for land managers, particularly forest managers of the Mediterranean landscape, an ecosystem that is susceptible not only to wildfires but also to the increasing human population and man-made infrastructures. PMID:25962800

  6. Developing Custom Fire Behavior Fuel Models for Mediterranean Wildland-Urban Interfaces in Southern Italy

    NASA Astrophysics Data System (ADS)

    Elia, Mario; Lafortezza, Raffaele; Lovreglio, Raffaella; Sanesi, Giovanni

    2015-09-01

    The dramatic increase of fire hazard in wildland-urban interfaces (WUIs) has required more detailed fuel management programs to preserve ecosystem functions and human settlements. Designing effective fuel treatment strategies allows to achieve goals such as resilient landscapes, fire-adapted communities, and ecosystem response. Therefore, obtaining background information on forest fuel parameters and fuel accumulation patterns has become an important first step in planning fuel management interventions. Site-specific fuel inventory data enhance the accuracy of fuel management planning and help forest managers in fuel management decision-making. We have customized four fuel models for WUIs in southern Italy, starting from forest classes of land-cover use and adopting a hierarchical clustering approach. Furthermore, we provide a prediction of the potential fire behavior of our customized fuel models using FlamMap 5 under different weather conditions. The results suggest that fuel model IIIP (Mediterranean maquis) has the most severe fire potential for the 95th percentile weather conditions and the least severe potential fire behavior for the 85th percentile weather conditions. This study shows that it is possible to create customized fuel models directly from fuel inventory data. This achievement has broad implications for land managers, particularly forest managers of the Mediterranean landscape, an ecosystem that is susceptible not only to wildfires but also to the increasing human population and man-made infrastructures.

  7. Dynamic behavior of gasoline fuel cell electric vehicles

    NASA Astrophysics Data System (ADS)

    Mitchell, William; Bowers, Brian J.; Garnier, Christophe; Boudjemaa, Fabien

    As we begin the 21st century, society is continuing efforts towards finding clean power sources and alternative forms of energy. In the automotive sector, reduction of pollutants and greenhouse gas emissions from the power plant is one of the main objectives of car manufacturers and innovative technologies are under active consideration to achieve this goal. One technology that has been proposed and vigorously pursued in the past decade is the proton exchange membrane (PEM) fuel cell, an electrochemical device that reacts hydrogen with oxygen to produce water, electricity and heat. Since today there is no existing extensive hydrogen infrastructure and no commercially viable hydrogen storage technology for vehicles, there is a continuing debate as to how the hydrogen for these advanced vehicles will be supplied. In order to circumvent the above issues, power systems based on PEM fuel cells can employ an on-board fuel processor that has the ability to convert conventional fuels such as gasoline into hydrogen for the fuel cell. This option could thereby remove the fuel infrastructure and storage issues. However, for these fuel processor/fuel cell vehicles to be commercially successful, issues such as start time and transient response must be addressed. This paper discusses the role of transient response of the fuel processor power plant and how it relates to the battery sizing for a gasoline fuel cell vehicle. In addition, results of fuel processor testing from a current Renault/Nuvera Fuel Cells project are presented to show the progress in transient performance.

  8. Behavior of Zr1%Nb Fuel Cladding under Accident Conditions

    SciTech Connect

    Perez-Fero, E.; Hozer, Z.; Windberg, P.; Nagy, I.; Vimi, A.; Ver, N.; Matus, L.; Kunstar, M.; Novotny, T.; Horvath, M.; Gyori, Cs.

    2007-07-01

    The behavior of the VVER fuel (E110) cladding under accident conditions has been investigated at the AEKI in order to study the role of oxidation and hydrogen uptake on the cladding embrittlement and to understand the phenomena that took place during the Paks-2 cleaning tank incident (2003). The test programme covered small scale tests and large scale tests with electrically heated 7-rod bundles in the CODEX (Core Degradation Experiment) facility. Since a hydrogen rich atmosphere could have been formed in the closed tank, the experiments were carried out in hydrogen-steam mixture. According to the results of the small scale tests, a former correlation for the ductile-brittle transitions of E110 in pure steam remained valid in hydrogen rich steam atmosphere as well. During the large scale tests the main conditions of the incident were reconstructed. The test characterized the high temperature oxidation and embrittlement of zirconium in hydrogen rich steam. The observed cladding failure phenomena and the extent of the damage of the test bundle in the quenching phase were very similar to those of the VVER assemblies in the incident. The simulation of the cleaning tank incident provided detailed information on the most probable scenario of the incident. (authors)

  9. Combustion behaviors of a compression-ignition engine fueled with diesel/methanol blends under various fuel delivery advance angles.

    PubMed

    Huang, Zuohua; Lu, Hongbing; Jiang, Deming; Zeng, Ke; Liu, Bing; Zhang, Junqiang; Wang, Xibin

    2004-12-01

    A stabilized diesel/methanol blend was described and the basic combustion behaviors based on the cylinder pressure analysis was conducted in a compression-ignition engine. The study showed that increasing methanol mass fraction of the diesel/methanol blends would increase the heat release rate in the premixed burning phase and shorten the combustion duration of the diffusive burning phase. The ignition delay increased with the advancing of the fuel delivery advance angle for both the diesel fuel and the diesel/methanol blends. For a specific fuel delivery advance angle, the ignition delay increased with the increase of the methanol mass fraction (oxygen mass fraction) in the fuel blends and the behaviors were more obvious at low engine load and/or high engine speed. The rapid burn duration and the total combustion duration increased with the advancing of the fuel delivery advance angle. The centre of the heat release curve was close to the top-dead-centre with the advancing of the fuel delivery advance angle. Maximum cylinder gas pressure increased with the advancing of the fuel delivery advance angle, and the maximum cylinder gas pressure of the diesel/methanol blends gave a higher value than that of the diesel fuel. The maximum mean gas temperature remained almost unchanged or had a slight increase with the advancing of the fuel delivery advance angle, and it only slightly increased for the diesel/methanol blends compared to that of the diesel fuel. The maximum rate of pressure rise and the maximum rate of heat release increased with the advancing of the fuel delivery advance angle of the diesel/methanol blends and the value was highest for the diesel/methanol blends. PMID:15288277

  10. Space shuttle orbit maneuvering engine, reusable thrust chamber program. Task 6: Data dump hot fuel element investigation

    NASA Technical Reports Server (NTRS)

    Nurick, W. H.

    1974-01-01

    An evaluation of reusable thrust chambers for the space shuttle orbit maneuvering engine was conducted. Tests were conducted using subscale injector hot-fire procedures for the injector configurations designed for a regenerative cooled engine. The effect of operating conditions and fuel temperature on combustion chamber performance was determined. Specific objectives of the evaluation were to examine the optimum like-doublet element geometry for operation at conditions consistent with a fuel regeneratively cooled engine (hot fuel, 200 to 250 F) and the sensitivity of the triplet injector element to hot fuels.

  11. Fabrication of zero power reactor fuel elements containing /sup 233/U/sub 3/O/sub 8/ powder

    SciTech Connect

    Nicol, R G; Parrott, J R; Krichinsky, A M; Box, W D; Martin, C W; Whitson, W R

    1982-05-01

    Oak Ridge National Laboratory, under contract with Argonne National Laboratory, completed the fabrication of 1743 fuel elements for use in their Zero Power Reactor. The contract also included recovery of 20 kg of /sup 233/U from rejected elements. This report describes the steps associated with conversion of purified uranyl nitrate (as solution) to U/sub 3/O/sub 8/ powder (suitable for fuel) and subsequent charging, sealing, decontamination, and testing of the fuel elements (packets) preparatory to shipment. The nuclear safety, radiation exposures, and quality assurance aspects of the program are discussed.

  12. Analysis of Topaz-II thermionic fuel element performance using TFEHX

    SciTech Connect

    Klein, A.C. ); Pawlowski, R.A. )

    1993-01-20

    Data reported by Russian Scientists and engineers for the TOPAZ-II single cell thermionic fuel elments (TFE) is compared with analytical results calculated using the TFEHX computer program in order to benchmark the code. The results of this comparison show good agreement with the TOPAZ-II results over a wide range of power inputs, cesium vapor pressures, and other design variables. Future refinements of the TFEHX methodology should enhance the performance of the code to better predict single cell TFE behavior.

  13. NASA Human Research Program Behavioral Health and Performance Element (BHP)

    NASA Technical Reports Server (NTRS)

    Whitmire, Sandra; Faulk, Jeremy; Leveton, Lauren

    2010-01-01

    The goal of NASA BHP is to identify, characterize, and prevent or reduce behavioral health and performance risks associated with space travel, exploration, and return to terrestrial life. The NASA Behavioral Health and Performance Operations Group (BHP Ops) supports astronauts and their families before, during, and after a long-duration mission (LDM) on the ISS. BHP Ops provides ISS crews with services such as preflight training (e.g., psychological factors of LDM, psychological support, cross-cultural); preflight, in-flight, and postflight support services, including counseling for astronauts and their families; and psychological support such as regular care packages and a voice-over IP phone system between crew members and their families to facilitate real-time one-on-one communication.

  14. Common Elements for the Psychotherapeutic Management of Patients with Self Injurious Behavior

    ERIC Educational Resources Information Center

    Schiavone, Francesca L.; Links, Paul S.

    2013-01-01

    Objectives: Current research suggests that effective psychotherapies for Self Injurious Behavior (SIB) in the context of Borderline Personality Disorder (BPD) contain generic common elements which are responsible for their success. Because of the links between BPD, SIB, and child abuse, it is likely that these common elements can also be applied…

  15. Information on the evolution of severe LWR fuel element damage obtained in the CORA program

    NASA Astrophysics Data System (ADS)

    Schanz, G.; Hagen, S.; Hofmann, P.; Schumacher, G.; Sepold, L.

    1992-06-01

    In the CORA program a series of out-of-pile experiments on LWR severe accidental situations is being performed, in which test bundles of LWR typical components and arrangements (PWR, BWR) are exposed to temperature transients up to about 2400°C under flowing steam. The individual features of the facility, the test conduct, and the evaluation will be presented. In the frame of the international cooperation in severe fuel damage (SFD) programs the CORA tests are contributing confirmatory and complementary informations to the results from the limited number of in-pile tests. The identification of basic phenomena of the fuel element destruction, observed as a function of temperature, is supported by separate-effects test results. Most important mechanisms are the steam oxidation of the Zircaloy cladding, which determines the temperature escalation, the chemical interaction between UO 2 fuel and cladding, which dominates fuel liquefaction, relocation and resulting blockage formation, as well as chemical interactions with Inconel spacer grids and absorber units ((Ag, In, Cd) alloy or B 4C), which are leading to extensive low-temperature melt formation around 1200°C. Interrelations between those basic phenomena, resulting for example in cladding deformation ("flowering") and the dramatic hydrogen formation in response to the fast cooling of a hot bundle by cold water ("quenching") are determining the evolution paths of fuel element destruction, which are to be identified. A further important task is the abstraction from mechanistic and microstructural details in order to get a rough classification of damage regimes (temperature and extent), a practicable analytical treatment of the materials behaviour, and a basis for decisions in accident mitigation and management procedures.

  16. Discrete Element study of granular material - Bumpy wall interface behavior

    NASA Astrophysics Data System (ADS)

    El Cheikh, Khadija; Rémond, Sébastien; Pizette, Patrick; Vanhove, Yannick; Djelal, Chafika

    2016-09-01

    This paper presents a DEM study of a confined granular material sheared between two parallel bumpy walls. The granular material consists of packed dry spherical particles. The bumpiness is modeled by spheres of a given diameter glued on horizontal planes. Different bumpy surfaces are modeled by varying diameter or concentration of glued spheres. The material is sheared by moving the two bumpy walls at fixed velocity. During shear, the confining pressure applied on each bumpy wall is controlled. The effect of wall bumpiness on the effective friction coefficient and on the granular material behavior at the bumpy walls is reported for various shearing conditions. For given bumpiness and confining pressure that we have studied, it is found that the shear velocity does not affect the shear stress. However, the effective friction coefficient and the behavior of the granular material depend on the bumpiness. When the diameter of the glued spheres is larger than about the average grains diameter of the medium, the latter is uniformly sheared and the effective friction coefficient remains constant. For smaller diameters of the glued spheres, the effective friction coefficient increases with the diameter of glued spheres. The influence of glued spheres concentration is significant only for small glued spheres diameters, typically half of average particle diameter of the granular material. In this case, increasing the concentration of glued spheres leads to a decrease in effective friction coefficient and to shear localization at the interface. For different diameters and concentrations of glued spheres, we show that the effect of bumpiness on the effective friction coefficient can be characterized by the depth of interlocking.

  17. Fuel Regression Rate Behavior of CAMUI Hybrid Rocket

    NASA Astrophysics Data System (ADS)

    Kaneko, Yudai; Itoh, Mitsunori; Kakikura, Akihito; Mori, Kazuhiro; Uejima, Kenta; Nakashima, Takuji; Wakita, Masashi; Totani, Tsuyoshi; Oshima, Nobuyuki; Nagata, Harunori

    A series of static firing tests was conducted to investigate the fuel regression characteristics of a Cascaded Multistage Impinging-jet (CAMUI) type hybrid rocket motor. A CAMUI type hybrid rocket uses the combination of liquid oxygen and a fuel grain made of polyethylene as a propellant. The collision distance divided by the port diameter, H/D, was varied to investigate the effect of the grain geometry on the fuel regression rate. As a result, the H/D geometry has little effect on the regression rate near the stagnation point, where the heat transfer coefficient is high. On the contrary, the fuel regression rate decreases near the circumference of the forward-end face and the backward-end face of fuel blocks. Besides the experimental approaches, a method of computational fluid dynamics clarified the heat transfer distribution on the grain surface with various H/D geometries. The calculation shows the decrease of the flow velocity due to the increase of H/D on the area where the fuel regression rate decreases with the increase of H/D. To estimate the exact fuel consumption, which is necessary to design a fuel grain, real-time measurement by an ultrasonic pulse-echo method was performed.

  18. Radionuclide Compositions and Total Activity of Spent MTR-HEU Fuel Elements of the IAN-R1 Research Reactor

    NASA Astrophysics Data System (ADS)

    Sarta, Josè A.; Castiblanco, Luis A.

    2005-05-01

    With cooperation of the International Atomic Energy Agency (IAEA) and the Department of Energy (DOE) of the United States, several calculations and tasks related to the waste disposal of spent MTR fuel enriched nominally to 93% were carried out for the conversion of the IAN-R1 Research Reactor from MTR-HEU fuel to TRIGA-LEU fuel. In order to remove the spent MTR-HEU fuel of the core and store it safely a program was established at the Instituto de Ciencias Nucleares y Energìas Alternativas (INEA). This program included training, acquisition of hardware and software, design and construction of a decay pool, transfer of the spent HEU fuel elements into the decay pool and his final transport to Savannah River in United States. In this paper are presented data of activities calculated for each relevant radionuclide present in spent MTR-HEU fuel elements of the IAN-R1 Research Reactor and the total activity. The total activity calculated takes in consideration contributions of fission, activation and actinides products. The data obtained were the base for shielding calculations for the decay pool concerning the storage of spent MTR-HEU fuel elements and the respective dosimetric evaluations in the transferring operations of fuel elements into the decay pool.

  19. Radionuclide Compositions and Total Activity of Spent MTR-HEU Fuel Elements of the IAN-R1 Research Reactor

    SciTech Connect

    Sarta, Jose A.; Castiblanco, Luis A

    2005-05-24

    With cooperation of the International Atomic Energy Agency (IAEA) and the Department of Energy (DOE) of the United States, several calculations and tasks related to the waste disposal of spent MTR fuel enriched nominally to 93% were carried out for the conversion of the IAN-R1 Research Reactor from MTR-HEU fuel to TRIGA-LEU fuel. In order to remove the spent MTR-HEU fuel of the core and store it safely a program was established at the Instituto de Ciencias Nucleares y Energias Alternativas (INEA). This program included training, acquisition of hardware and software, design and construction of a decay pool, transfer of the spent HEU fuel elements into the decay pool and his final transport to Savannah River in United States. In this paper are presented data of activities calculated for each relevant radionuclide present in spent MTR-HEU fuel elements of the IAN-R1 Research Reactor and the total activity. The total activity calculated takes in consideration contributions of fission, activation and actinides products. The data obtained were the base for shielding calculations for the decay pool concerning the storage of spent MTR-HEU fuel elements and the respective dosimetric evaluations in the transferring operations of fuel elements into the decay pool.

  20. 10 CFR Appendix O to Part 110 - Illustrative List of Fuel Element Fabrication Plant Equipment and Components Under NRC's Export...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Illustrative List of Fuel Element Fabrication Plant Equipment and Components Under NRC's Export Licensing Authority O Appendix O to Part 110 Energy NUCLEAR... the integrity of completed fuel pins (or rods). This item typically includes equipment for: (i)...

  1. 10 CFR Appendix O to Part 110 - Illustrative List of Fuel Element Fabrication Plant Equipment and Components Under NRC's Export...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Illustrative List of Fuel Element Fabrication Plant Equipment and Components Under NRC's Export Licensing Authority O Appendix O to Part 110 Energy NUCLEAR... the integrity of completed fuel pins (or rods). This item typically includes equipment for: (i)...

  2. 10 CFR Appendix O to Part 110 - Illustrative List of Fuel Element Fabrication Plant Equipment and Components Under NRC's Export...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Illustrative List of Fuel Element Fabrication Plant Equipment and Components Under NRC's Export Licensing Authority O Appendix O to Part 110 Energy NUCLEAR... the integrity of completed fuel pins (or rods). This item typically includes equipment for: (i)...

  3. 10 CFR Appendix O to Part 110 - Illustrative List of Fuel Element Fabrication Plant Equipment and Components Under NRC's Export...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Illustrative List of Fuel Element Fabrication Plant Equipment and Components Under NRC's Export Licensing Authority O Appendix O to Part 110 Energy NUCLEAR... the integrity of completed fuel pins (or rods). This item typically includes equipment for: (i)...

  4. 10 CFR Appendix O to Part 110 - Illustrative List of Fuel Element Fabrication Plant Equipment and Components Under NRC's Export...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Illustrative List of Fuel Element Fabrication Plant Equipment and Components Under NRC's Export Licensing Authority O Appendix O to Part 110 Energy NUCLEAR... the integrity of completed fuel pins (or rods). This item typically includes equipment for: (i)...

  5. Dimensional Behavior of Fuel Channels - Recent Experience and Consequences

    SciTech Connect

    Blavius, Dirk; Muench, Claus-Juergen; Garner, Norman L.

    2007-07-01

    Fuel channels in boiling-water reactors (BWR) undergo distortions like bow, bulge, and twist due to their operating conditions. These distortions may adversely impact planned operating strategy, and therefore need to be adequately addressed during various stages of fuel channel design and manufacturing, core design and operation monitoring. Fuel channel distortion may lead to interference between the fuel channel and adjacent control blade. If severe, such interference can impair both positioning of control blades during normal operations and rapid control blade insertion during a reactor scram. During the last five years, unexpectedly high fuel channel distortions leading to problems in control blade operations have been observed in some C- and S-lattice BWR plants in the U.S. operating on 18 - 24 month cycles. As a result, U.S. operators have implemented costly surveillance programs to detect the onset of high distortions and have declared control blades inoperable when unacceptable control blade operation occurs. This unusual fuel channel distortion has not been observed with AREVA NP fuel supplied in Europe in this scale. Nevertheless fuel channel distortion-related problems were recently observed in reactors outside the U.S. with early control blade operation. The mechanisms causing this unexpected fuel-channel distortion and the influencing factors are not completely understood worldwide for the time being. Therefore, a prediction of channels which will exhibit high bow is very challenging. A status is given from the AREVA NP perspective on: - The existing fuel channel distortion database, - The understanding of the phenomenon, - Measures to gather further information and improve existing tools, materials, and designs, and - Customer actions to reduce potential high channel bow and associated control blade issues. (authors)

  6. Selective Catalytic Oxidation of Hydrogen Sulfide to Elemental Sulfur from Coal-Derived Fuel Gases

    SciTech Connect

    Gardner, Todd H.; Berry, David A.; Lyons, K. David; Beer, Stephen K.; Monahan, Michael J.

    2001-11-06

    The development of low cost, highly efficient, desulfurization technology with integrated sulfur recovery remains a principle barrier issue for Vision 21 integrated gasification combined cycle (IGCC) power generation plants. In this plan, the U. S. Department of Energy will construct ultra-clean, modular, co-production IGCC power plants each with chemical products tailored to meet the demands of specific regional markets. The catalysts employed in these co-production modules, for example water-gas-shift and Fischer-Tropsch catalysts, are readily poisoned by hydrogen sulfide (H{sub 2}S), a sulfur contaminant, present in the coal-derived fuel gases. To prevent poisoning of these catalysts, the removal of H{sub 2}S down to the parts-per-billion level is necessary. Historically, research into the purification of coal-derived fuel gases has focused on dry technologies that offer the prospect of higher combined cycle efficiencies as well as improved thermal integration with co-production modules. Primarily, these concepts rely on a highly selective process separation step to remove low concentrations of H{sub 2}S present in the fuel gases and produce a concentrated stream of sulfur bearing effluent. This effluent must then undergo further processing to be converted to its final form, usually elemental sulfur. Ultimately, desulfurization of coal-derived fuel gases may cost as much as 15% of the total fixed capital investment (Chen et al., 1992). It is, therefore, desirable to develop new technology that can accomplish H{sub 2}S separation and direct conversion to elemental sulfur more efficiently and with a lower initial fixed capital investment.

  7. Fuel type characterization and potential fire behavior estimation in Sardinia and Corsica islands

    NASA Astrophysics Data System (ADS)

    Bacciu, V.; Pellizzaro, G.; Santoni, P.; Arca, B.; Ventura, A.; Salis, M.; Barboni, T.; Leroy, V.; Cancellieri, D.; Leoni, E.; Ferrat, L.; Perez, Y.; Duce, P.; Spano, D.

    2012-04-01

    Wildland fires represent a serious threat to forests and wooded areas of the Mediterranean Basin. As recorded by the European Commission (2009), during the last decade Southern Countries have experienced an annual average of about 50,000 forest fires and about 470,000 burned hectares. The factor that can be directly manipulated in order to minimize fire intensity and reduce other fire impacts, such as three mortality, smoke emission, and soil erosion, is wildland fuel. Fuel characteristics, such as vegetation cover, type, humidity status, and biomass and necromass loading are critical variables in affecting wildland fire occurrence, contributing to the spread, intensity, and severity of fires. Therefore, the availability of accurate fuel data at different spatial and temporal scales is needed for fire management applications, including fire behavior and danger prediction, fire fighting, fire effects simulation, and ecosystem simulation modeling. In this context, the main aims of our work are to describe the vegetation parameters involved in combustion processes and develop fire behavior fuel maps. The overall work plan is based firstly on the identification and description of the different fuel types mainly affected by fire occurrence in Sardinia (Italy) and Corsica (France) Islands, and secondly on the clusterization of the selected fuel types in relation to their potential fire behavior. In the first part of the work, the available time series of fire event perimeters and the land use map data were analyzed with the purpose of identifying the main land use types affected by fires. Thus, field sampling sites were randomly identified on the selected vegetation types and several fuel variables were collected (live and dead fuel load partitioned following Deeming et al., (1977), depth of fuel layer, plant cover, surface area-to-volume ratio, heat content). In the second part of the work, the potential fire behavior for every experimental site was simulated using

  8. Developing custom fire behavior fuel models from ecologically complex fuel structures for upper Atlantic Coastal Plain forests.

    SciTech Connect

    Parresol, Bernard, R.; Scott, Joe, H.; Andreu, Anne; Prichard, Susan; Kurth, Laurie

    2012-01-01

    Currently geospatial fire behavior analyses are performed with an array of fire behavior modeling systems such as FARSITE, FlamMap, and the Large Fire Simulation System. These systems currently require standard or customized surface fire behavior fuel models as inputs that are often assigned through remote sensing information. The ability to handle hundreds or thousands of measured surface fuelbeds representing the fine scale variation in fire behavior on the landscape is constrained in terms of creating compatible custom fire behavior fuel models. In this study, we demonstrate an objective method for taking ecologically complex fuelbeds from inventory observations and converting those into a set of custom fuel models that can be mapped to the original landscape. We use an original set of 629 fuel inventory plots measured on an 80,000 ha contiguous landscape in the upper Atlantic Coastal Plain of the southeastern United States. From models linking stand conditions to component fuel loads, we impute fuelbeds for over 6000 stands. These imputed fuelbeds were then converted to fire behavior parameters under extreme fuel moisture and wind conditions (97th percentile) using the fuel characteristic classification system (FCCS) to estimate surface fire rate of spread, surface fire flame length, shrub layer reaction intensity (heat load), non-woody layer reaction intensity, woody layer reaction intensity, and litter-lichen-moss layer reaction intensity. We performed hierarchical cluster analysis of the stands based on the values of the fire behavior parameters. The resulting 7 clusters were the basis for the development of 7 custom fire behavior fuel models from the cluster centroids that were calibrated against the FCCS point data for wind and fuel moisture. The latter process resulted in calibration against flame length as it was difficult to obtain a simultaneous calibration against both rate of spread and flame length. The clusters based on FCCS fire behavior

  9. Understanding selected trace elements behavior in a coal-fired power plant in Malaysia for assessment of abatement technologies.

    PubMed

    Mokhtar, Mutahharah M; Taib, Rozainee M; Hassim, Mimi H

    2014-08-01

    The Proposed New Environmental Quality (Clean Air) Regulation 201X (Draft), which replaces the Malaysia Environmental Quality (Clean Air) 1978, specifies limits to additional pollutants from power generation using fossil fuel. The new pollutants include Hg, HCl, and HF with limits of 0.03, 100, and 15 mg/N-m3 at 6% O2, respectively. These pollutants are normally present in very small concentrations (known as trace elements [TEs]), and hence are often neglected in environmental air quality monitoring in Malaysia. Following the enactment of the new regulation, it is now imperative to understand the TEs behavior and to assess the capability of the existing abatement technologies to comply with the new emission limits. This paper presents the comparison of TEs behavior of the most volatile (Hg, Cl, F) and less volatile (As, Be, Cd, Cr, Ni, Se, Pb) elements in subbituminous and bituminous coal and coal combustion products (CCP) (i.e., fly ash and bottom ash) from separate firing of subbituminous and bituminous coal in a coal-fired power plant in Malaysia. The effect of air pollution control devices configuration in removal of TEs was also investigated to evaluate the effectiveness of abatement technologies used in the plant. This study showed that subbituminous and bituminous coals and their CCPs have different TEs behavior. It is speculated that ash content could be a factor for such diverse behavior In addition, the type of coal and the concentrations of TEs in feed coal were to some extent influenced by the emission of TEs in flue gas. The electrostatic precipitator (ESP) and seawater flue gas desulfurization (FGD) used in the studied coal-fired power plant were found effective in removing TEs in particulate and vapor form, respectively, as well as complying with the new specified emission limits. Implications: Coals used by power plants in Peninsular Malaysia come from the same supplier (Tenaga Nasional Berhad Fuel Services), which is a subsidiary of the Malaysia

  10. Two-dimensional steady-state and transient analysis of single-cell thermionic fuel elements

    SciTech Connect

    El-Genk, M.S.; Xue, H. . Inst. for Space Nuclear Power Studies)

    1994-10-01

    A two-dimensional transient model is developed to simulate steady-state and transient operations of single-cell thermionic fuel elements (TFEs). Model predictions are in good agreement with published data to within 4.5 and 5.5% for fission and electrically heated TFEs of the TOPAZ-II type, respectively. In addition, the results of a transient analysis simulating the startup of an electrically heated TFE, following a step function increase in thermal power, are in presented and discussed.

  11. Multi-cell thermionic fuel element for nuclear electric power and propulsion system

    NASA Astrophysics Data System (ADS)

    Nikolaev, Yuri V.; Gontar, Alexander S.; Eremin, Stanislav A.; Lapochkin, Nikolai V.; Andreev, Pavel V.; Zhabotinsky, Evgeny E.

    1999-01-01

    Conceptual problems of development of two-mode multi-cell thermionic fuel element (TFE) for nuclear electric power and propulsion system are considered. The results of analysis of the design and TFE output parameters are presented. It is shown that application of advanced high effective materials and technologies provides operating of the TFE in two modes: a) in nominal mode of power generation for power supply of spacecraft payload at operational orbit and b) in forced mode of power generation for power supply of electric thrusters under spacecraft orbit transfer from intermediate to operational one.

  12. Irradiation and examinations of the second group of thermionic fuel element insulators (UCA-2)

    NASA Astrophysics Data System (ADS)

    Lawrence, Leo A.; Ard, Kevin E.; Veca, Anthony R.; Giraldez, Emilio M.

    1991-01-01

    Thermionic fuel element sheaths, seal and intercell insulators, and end restraints were irradiated in a fast neutron spectrum and examined. Samples were irradiated at temperatures ranging from 1110 K to 1200 K to fast fluences from 3.4×1022 n/cm2 to 6.0×1022 n/cm2. Sample examinations included visual, photographic, dimensional, electrical resistance to temperatures of 1175 K, helium leak rates, and metallography. Examinations of the end restraints and intercell insulators, which were limited to visual and photographic examination, showed no adverse effects from the irradiation. Alumina and yttria have been identified as insulator materials which meet design requirements.

  13. SUB-LEU-METAL-THERM-001 SUBCRITICAL MEASUREMENTS OF LOW ENRICHED TUBULAR URANIUM METAL FUEL ELEMENTS BEFORE & AFTER IRRADIATION

    SciTech Connect

    SCHWINKENDORF, K.N.

    2006-05-12

    With the shutdown of the Hanford PUREX (Plutonium-Uranium Extraction Plant) reprocessing plant in the 1970s, adequate storage capacity for spent Hanford N Reactor fuel elements in the K and N Reactor pools became a concern. To maximize space utilization in the pools, accounting for fuel burnup was considered. Calculations indicated that at typical fuel exposures for N Reactor, the spent-fuel critical mass would be twice the critical mass for green fuel. A decision was reached to test the calculational result with a definitive experiment. If the results proved positive, storage capacity could be increased and N Reactor operation could be prolonged. An experiment to be conducted in the N Reactor spent-fuel storage pool was designed and assembled and the services of the Battelle Northwest Laboratories (BNWL) (now Pacific Northwest National Laboratory [PNNL]) critical mass laboratory were procured for the measurements. The experiments were performed in April 1975 in the Hanford N Reactor fuel storage pool. The fuel elements were MKIA fuel assemblies, comprising two concentric tubes of low-enriched metallic uranium. Two separate sets of measurements were performed: one with ''green'' (fresh) fuel and one with spent fuel. Both the green and spent fuel, were measured in the same geometry. The spent-fuel MKIA assemblies had an average burnup of 2865 MWd (megawatt days)/t. A constraint was imposed restricting the measurements to a subcritical limit of k{sub eff} = 0.97. Subcritical count rate data was obtained with pulsed-neutron and approach-to-critical measurements. Ten (10) configurations with green fuel and nine (9) configurations with spent fuel are described and evaluated. Of these, 3 green fuel and 4 spent fuel loading configurations were considered to serve as benchmark models. However, shortcomings in experimental data failed to meet the high standards for a benchmark problem. Nevertheless, the data provided by these subcritical measurements can supply useful

  14. Physical and chemical behavior of flowing endothermic jet fuels

    NASA Astrophysics Data System (ADS)

    Ward, Thomas Arthur

    Hydrocarbon fuels have been used as cooling media for aircraft jet engines for decades. However, modern aircraft engines are reaching a practical heat transfer limit beyond which the convective heat transfer provided by fuels is no longer adequate. One solution is to use an endothermic fuel that absorbs heat through a series of pyrolytic chemical reactions. However, many of the physical and chemical processes involved in endothermic fuel degradation are not well understood. The purpose of this dissertation is to study different characteristics of endothermic fuels using experiments and computational models. In the first section, data from three flow experiments using heated Jet-A fuel and additives were analyzed (with the aid of CFD calculations) to study the effects of treated surfaces on surface deposition. Surface deposition is the primary impediment in creating an operational endothermic fuel heat exchanger system, because deposits can obstruct fuel pathways causing a catastrophic system failure. As heated fuel flows through a fuel system, trace species within the fuel react with dissolved O2 to form surface deposits. At relatively higher fuel temperatures, the dissolved O2 is depleted, and pyrolytic chemistry becomes dominant (at temperatures greater than ˜500 °C). In the first experiment, the dissolved O2 consumption of heated fuel was measured on different surface types over a range of temperatures. It is found that use of treated tubes significantly delays oxidation of the fuel. In the second experiment, the treated length of tubing was progressively increased, which varied the characteristics of the thermal-oxidative deposits formed. In the third experiment, pyrolytic surface deposition in either fully treated or untreated tubes is studied. It is found that the treated surface significantly reduced the formation of surface deposits for both thermal oxidative and pyrolytic degradation mechanisms. Moreover, it is found that the chemical reactions resulting

  15. Dose Rate Calculations of Spent MTR-HEU Fuel Elements of the IAN-R1 Research Reactor

    NASA Astrophysics Data System (ADS)

    Sarta Fuentes, Jose Antonio

    2005-04-01

    With cooperation of the International Atomic Energy Agency (IAEA) and the Department of Energy (DOE) of the United States, several tasks related to the waste disposal of spent MTR fuel enriched nominally to 93% were carried out for the conversion of the IAN-R1 Research Reactor from MTR-HEU fuel to TRIGA-LEU fuel. In order to remove the spent MTR-HEU fuel of the core and store it safetly, a program was established at the Instituto de Ciencias Nucleares y Energìas Alternativas (INEA). This program included training, acquisition of hardware and sofware, design and construction of a decay pool, transfer of the spent HEU fuel elements into the decay pool and his final transport to Savanah River in United States. In this paper are presented external dose rates which were calculated for a standard spent MTR-HEU fuel element of the IAN-R1 Research Reactor. The calculations take in consideration the activity due to contributions of fission, activation and actinides products for each relevant radionuclide present in a standard spent MTR-HEU fuel. The datas obtained were the base for the respective dosimetric evaluations in the transfering operations of fuel elements into the decay pool and for shielding calculations in designing of the decay pool.

  16. Lanthanides in Metallic Nuclear Fuels: Their Behavior and Methods for Their Control

    SciTech Connect

    Robert D. Mariani; Douglas L. Porter; Thomas P. O'Holleran; Steven L. Hayes; J. Rory Kennedy

    2011-12-01

    The thermodynamic and experimental basis is given for using dopant additives to bind lanthanides as intermetallic compounds in metallic nuclear fuels. Lanthanide fission products are a major factor in limiting the lifetime of the fuel, because they migrate to the fuel slug peripheral surface where they participate in fuel-cladding chemical interactions (FCCI) with the steel cladding. Lanthanide carryover in recycled metal fuels can accelerate FCCI, as recycled lanthanides would likely segregate from the fuel phase, putting the lanthanides in prompt contact with the cladding. In out-of-pile tests we examined the use of Pd for binding the lanthanides, with Pd selected because of its known metallurgical properties in fuel related systems and because of its known behavior in irradiated EBR-II fuels. Initial results confirmed that palladium may be expected to mitigate FCCI arising from lanthanides, and it has been recommended for in-pile tests. We also evaluated transport phenomena responsible for lanthanide migration, and identified liquid-like behaviors as being dominant. Liquid-like behaviors include transport with liquid metals, liquid metal solutions, and rapid surface transport of alloys/metals near their melting temperatures. The analysis led to establishing general criteria for selecting alternate dopant additives, and identifying Sn, Sb, and Te as alternates for further testing.

  17. The chemical behavior of transuranium elements and barrier functions in natural aquifer systems

    SciTech Connect

    Kim, Jae-Il

    1993-12-31

    The chemical behavior of transuranium elements in natural aquifer systems is governed by a variety of geochemical reactions, such as dissolution reaction (solubility), hydrolysis, complexation with inorganics or organics, redox reaction, colloid formation, geochemical interaction with surfaces of various minerals, coprecipitation, mineralization, etc. This paper reviews the present state of knowledge on some of these particular reactions. The emphasis here is on how the individual reactions can be appraised for long-term prediction of the geochemical behavior of transuranium elements in the natural environment. Of the various possible reactions, the primary thermodynamic processes are discussed with notable examples: dissolution of transuranium compounds in aquatic solution; complexation with important anions present in groundwater; and colloid generation. Various laser spectroscopic methods in use for chemical speciation are mentioned briefly for their spectroscopic capability, as well as for their applicability. The present paper attempts to better understand the migration behavior of transuranium elements in natural aquifer systems.

  18. Enhancing the ABAQUS thermomechanics code to simulate multipellet steady and transient LWR fuel rod behavior

    NASA Astrophysics Data System (ADS)

    Williamson, R. L.

    2011-08-01

    A powerful multidimensional fuels performance analysis capability, applicable to both steady and transient fuel behavior, is developed based on enhancements to the commercially available ABAQUS general-purpose thermomechanics code. Enhanced capabilities are described, including: UO 2 temperature and burnup dependent thermal properties, solid and gaseous fission product swelling, fuel densification, fission gas release, cladding thermal and irradiation creep, cladding irradiation growth, gap heat transfer, and gap/plenum gas behavior during irradiation. This new capability is demonstrated using a 2D axisymmetric analysis of the upper section of a simplified multipellet fuel rod, during both steady and transient operation. Comparisons are made between discrete and smeared-pellet simulations. Computational results demonstrate the importance of a multidimensional, multipellet, fully-coupled thermomechanical approach. Interestingly, many of the inherent deficiencies in existing fuel performance codes (e.g., 1D thermomechanics, loose thermomechanical coupling, separate steady and transient analysis, cumbersome pre- and post-processing) are, in fact, ABAQUS strengths.

  19. Enhancing the ABAQUS Thermomechanics Code to Simulate Steady and Transient Fuel Rod Behavior

    SciTech Connect

    R. L. Williamson; D. A. Knoll

    2009-09-01

    A powerful multidimensional fuels performance capability, applicable to both steady and transient fuel behavior, is developed based on enhancements to the commercially available ABAQUS general-purpose thermomechanics code. Enhanced capabilities are described, including: UO2 temperature and burnup dependent thermal properties, solid and gaseous fission product swelling, fuel densification, fission gas release, cladding thermal and irradiation creep, cladding irradiation growth , gap heat transfer, and gap/plenum gas behavior during irradiation. The various modeling capabilities are demonstrated using a 2D axisymmetric analysis of the upper section of a simplified multi-pellet fuel rod, during both steady and transient operation. Computational results demonstrate the importance of a multidimensional fully-coupled thermomechanics treatment. Interestingly, many of the inherent deficiencies in existing fuel performance codes (e.g., 1D thermomechanics, loose thermo-mechanical coupling, separate steady and transient analysis, cumbersome pre- and post-processing) are, in fact, ABAQUS strengths.

  20. Processing of FRG mixed oxide fuel elements at General Atomic under the US/FRG cooperative agreement for spent fuel elements

    SciTech Connect

    Holder, N.D.; Strand, J.B.; Schwarz, F.A.; Tischer, H.E.

    1980-11-01

    The Federal Republic of Germany (FRG) and the United States (US) are cooperating on certain aspects gas-cooled reactor technology under an umbrella agreement. Under the spent fuel treatment section of the agreement, FRG fuel spheres were recently sent for processing in the Department of Energy sponsored cold pilot plant for High-Temperature Gas-Cooled Reactor (HTGR) fuel processing at General Atomic Company in San Diego, California. The FRG fuel spheres were crushed and burned to recover coated fuel particles. These particles were in turn crushed and burned to recover the fuel-bearing kernels for further treatment for uranium recovery. Successful completion of the tests described in this paper demonstrated the applicability of the US HTGR fuel treatment flowsheet to FRG fuel processing. 10 figures.

  1. Processing of FRG high-temperature gas-cooled reactor fuel elements at General Atomic under the US/FRG cooperative agreement for spent fuel elements

    SciTech Connect

    Holder, N.D.; Strand, J.B.; Schwarz, F.A.; Drake, R.N.

    1981-11-01

    The Federal Republic of Germany (FRG) and the United States (US) are cooperating on certain aspects of gas-cooled reactor technology under an umbrella agreement. Under the spent fuel treatment development section of the agreement, both FRG mixed uranium/ thorium and low-enriched uranium fuel spheres have been processed in the Department of Energy-sponsored cold pilot plant for high-temperature gas-cooled reactor (HTGR) fuel processing at General Atomic Company in San Diego, California. The FRG fuel spheres were crushed and burned to recover coated fuel particles suitable for further treatment for uranium recovery. Successful completion of the tests described in this paper demonstrated certain modifications to the US HTGR fuel burining process necessary for FRG fuel treatment. Results of the tests will be used in the design of a US/FRG joint prototype headend facility for HTGR fuel.

  2. Influence of FRAPCON-1 evaluation models on fuel behavior calculations for commercial power reactors. [PWR; BWR

    SciTech Connect

    Chambers, R.; Laats, E.T.

    1981-01-01

    A preliminary set of nine evaluation models (EMs) was added to the FRAPCON-1 computer code, which is used to calculate fuel rod behavior in a nuclear reactor during steady-state operation. The intent was to provide an audit code to be used in the United States Nuclear Regulatory Commission (NRC) licensing activities when calculations of conservative fuel rod temperatures are required. The EMs place conservatisms on the calculation of rod temperature by modifying the calculation of rod power history, fuel and cladding behavior models, and materials properties correlations. Three of the nine EMs provide either input or model specifications, or set the reference temperature for stored energy calculations. The remaining six EMs were intended to add thermal conservatism through model changes. To determine the relative influence of these six EMs upon fuel behavior calculations for commercial power reactors, a sensitivity study was conducted. That study is the subject of this paper.

  3. A physical description of fission product behavior fuels for advanced power reactors.

    SciTech Connect

    Kaganas, G.; Rest, J.; Nuclear Engineering Division; Florida International Univ.

    2007-10-18

    The Global Nuclear Energy Partnership (GNEP) is considering a list of reactors and nuclear fuels as part of its chartered initiative. Because many of the candidate materials have not been explored experimentally under the conditions of interest, and in order to economize on program costs, analytical support in the form of combined first principle and mechanistic modeling is highly desirable. The present work is a compilation of mechanistic models developed in order to describe the fission product behavior of irradiated nuclear fuel. The mechanistic nature of the model development allows for the possibility of describing a range of nuclear fuels under varying operating conditions. Key sources include the FASTGRASS code with an application to UO{sub 2} power reactor fuel and the Dispersion Analysis Research Tool (DART ) with an application to uranium-silicide and uranium-molybdenum research reactor fuel. Described behavior mechanisms are divided into subdivisions treating fundamental materials processes under normal operation as well as the effect of transient heating conditions on these processes. Model topics discussed include intra- and intergranular gas-atom and bubble diffusion, bubble nucleation and growth, gas-atom re-solution, fuel swelling and ?scion gas release. In addition, the effect of an evolving microstructure on these processes (e.g., irradiation-induced recrystallization) is considered. The uranium-alloy fuel, U-xPu-Zr, is investigated and behavior mechanisms are proposed for swelling in the {alpha}-, intermediate- and {gamma}-uranium zones of this fuel. The work reviews the FASTGRASS kinetic/mechanistic description of volatile ?scion products and, separately, the basis for the DART calculation of bubble behavior in amorphous fuels. Development areas and applications for physical nuclear fuel models are identified.

  4. Development of Low-Cost Manufacturing Processes for Planar, Multilayer Solid Oxide Fuel Cell Elements

    SciTech Connect

    Scott Swartz; Matthew Seabaugh; William Dawson; Tim Armstrong; Harlan Anderson; John Lannutti

    2001-09-30

    This report summarizes the results of Phase II of this program, 'Low-Cost Manufacturing Of Multilayer Ceramic Fuel Cells'. The objective of the program is to develop advanced ceramic manufacturing technologies for making planar solid oxide fuel cell (SOFC) components that are more economical and reliable for a variety of applications. Phase II development work focused on three distinct manufacturing approaches (or tracks) for planar solid oxide fuel cell elements. Two development tracks, led by NexTech Materials and Oak Ridge National Laboratory, involved co-sintering of planar SOFC elements of cathode-supported and anode-supported variations. A third development track, led by the University of Missouri-Rolla, focused on a revolutionary approach for reducing operating temperature of SOFCs by using spin-coating to deposit ultra-thin, nano-crystalline YSZ electrolyte films. The work in Phase II was supported by characterization work at Ohio State University. The primary technical accomplishments within each of the three development tracks are summarized. Track 1--NexTech's targeted manufacturing process for planar SOFC elements involves tape casting of porous electrode substrates, colloidal-spray deposition of YSZ electrolyte films, co-sintering of bi-layer elements, and screen printing of opposite electrode coatings. The bulk of NexTech's work focused on making cathode-supported elements, although the processes developed at NexTech also were applied to the fabrication of anode-supported cells. Primary accomplishments within this track are summarized below: (1) Scale up of lanthanum strontium manganite (LSM) cathode powder production process; (2) Development and scale-up of tape casting methods for cathode and anode substrates; (3) Development of automated ultrasonic-spray process for depositing YSZ films; (4) Successful co-sintering of flat bi-layer elements (both cathode and anode supported); (5) Development of anode and cathode screen-printing processes; and (6

  5. Modeling of thermo-mechanical and irradiation behavior of mixed oxide fuel for sodium fast reactors

    NASA Astrophysics Data System (ADS)

    Karahan, Aydın; Buongiorno, Jacopo

    2010-01-01

    An engineering code to model the irradiation behavior of UO2-PuO2 mixed oxide fuel pins in sodium-cooled fast reactors was developed. The code was named fuel engineering and structural analysis tool (FEAST-OXIDE). FEAST-OXIDE has several modules working in coupled form with an explicit numerical algorithm. These modules describe: (1) fission gas release and swelling, (2) fuel chemistry and restructuring, (3) temperature distribution, (4) fuel-clad chemical interaction and (5) fuel-clad mechanical analysis. Given the fuel pin geometry, composition and irradiation history, FEAST-OXIDE can analyze fuel and cladding thermo-mechanical behavior at both steady-state and design-basis transient scenarios. The code was written in FORTRAN-90 program language. The mechanical analysis module implements the LIFE algorithm. Fission gas release and swelling behavior is described by the OGRES and NEFIG models. However, the original OGRES model has been extended to include the effects of joint oxide gain (JOG) formation on fission gas release and swelling. A detailed fuel chemistry model has been included to describe the cesium radial migration and JOG formation, oxygen and plutonium radial distribution and the axial migration of cesium. The fuel restructuring model includes the effects of as-fabricated porosity migration, irradiation-induced fuel densification, grain growth, hot pressing and fuel cracking and relocation. Finally, a kinetics model is included to predict the clad wastage formation. FEAST-OXIDE predictions have been compared to the available FFTF, EBR-II and JOYO databases, as well as the LIFE-4 code predictions. The agreement was found to be satisfactory for steady-state and slow-ramp over-power accidents.

  6. Comparison of ash behavior of different fuels in fluidised bed combustion using advanced fuel analysis and global equilibrium calculations

    SciTech Connect

    Zevenhoven-Onderwater, M.; Blomquist, J.P.; Skrifvars, B.J.; Backman, R.; Hupa, M.

    1999-07-01

    The behavior of different ashes is predicted by means of a combination of an advanced fuel analysis and global equilibrium calculations. In order to cover a broad spectrum of fuels a coal, a peat, a forest residue and Salix (i.e. willow) are studied. The latter was taken with and without soil contamination, i.e. with a high and low content of silica , respectively. It is shown that mineral matter in fossil and biomass fuels can be present in the matrix of the fuel itself or as included minerals. Using an advanced fuel analysis, i.e. a fractionation method, this mineral content can be divided into four fractions. The first fraction mainly contains those metal ions, that can be leached out of the fuel by water and mainly contains alkali sulfates, carbonates and chlorides. The second fraction mainly consists of those ions leached out by ammonium acetate and covers those ions, that are connected to the organic matrix. The third fraction contains the metals leached out by hydrochloric acid and contains earth alkali carbonates and sulfates as well as pyrites. The rest fraction contains those minerals, that are not leached out by any of the above mentioned solvents, such as silicates. A global equilibrium analysis is used to predict the thermal and chemical behavior of the combined first and second fractions and of the combined third and rest fractions under pressurized and/or atmospheric combustion conditions. Results of both the fuel analysis and the global equilibrium analysis are discussed and practical implications for combustion processes are pointed out.

  7. DEVELOPMENT OF LOW-COST MANUFACTURING PROCESSES FOR PLANAR, MULTILAYER SOLID OXIDE FUEL CELL ELEMENTS

    SciTech Connect

    Scott Swartz; Matthew Seabaugh; William Dawson; Harlan Anderson; Tim Armstrong; Michael Cobb; Kirby Meacham; James Stephan; Russell Bennett; Bob Remick; Chuck Sishtla; Scott Barnett; John Lannutti

    2004-06-12

    This report summarizes the results of a four-year project, entitled, ''Low-Cost Manufacturing Of Multilayer Ceramic Fuel Cells'', jointly funded by the U.S. Department of Energy, the State of Ohio, and by project participants. The project was led by NexTech Materials, Ltd., with subcontracting support provided by University of Missouri-Rolla, Michael A. Cobb & Co., Advanced Materials Technologies, Inc., Edison Materials Technology Center, Gas Technology Institute, Northwestern University, and The Ohio State University. Oak Ridge National Laboratory, though not formally a subcontractor on the program, supported the effort with separate DOE funding. The objective of the program was to develop advanced manufacturing technologies for making solid oxide fuel cell components that are more economical and reliable for a variety of applications. The program was carried out in three phases. In the Phase I effort, several manufacturing approaches were considered and subjected to detailed assessments of manufacturability and development risk. Estimated manufacturing costs for 5-kW stacks were in the range of $139/kW to $179/kW. The risk assessment identified a number of technical issues that would need to be considered during development. Phase II development work focused on development of planar solid oxide fuel cell elements, using a number of ceramic manufacturing methods, including tape casting, colloidal-spray deposition, screen printing, spin-coating, and sintering. Several processes were successfully established for fabrication of anode-supported, thin-film electrolyte cells, with performance levels at or near the state-of-the-art. The work in Phase III involved scale-up of cell manufacturing methods, development of non-destructive evaluation methods, and comprehensive electrical and electrochemical testing of solid oxide fuel cell materials and components.

  8. Consideration of the effects on fuel particle behavior from shrinkage cracks in the inner pyrocarbon layer

    NASA Astrophysics Data System (ADS)

    Miller, Gregory K.; Petti, David A.; Varacalle, Dominic J.; Maki, John T.

    2001-06-01

    The fundamental design for a gas-cooled pebble bed reactor relies on an understanding of the behavior of coated particle fuel. The coating layers surrounding the fuel kernels in these spherical particles consist of pyrolytic carbon layers and a silicon carbide (SiC) layer. These coating layers act as a pressure vessel that retains fission product gases. A small percentage of fuel particles may fail during irradiation in the mode of a traditional pressure vessel failure. Fuel performance models used to predict particle behavior have traditionally been one-dimensional models that focus on this failure mechanism. Results of irradiation experiments, however, show that many more fuel particles fail than would be predicted by this mechanism alone. Post-irradiation examinations indicate that multi-dimensional effects, such as the presence of shrinkage cracks in the inner pyrolytic carbon layer (IPyC), contribute to these unexplained failures. Results of a study performed to evaluate the significance of cracking in the IPyC layer on behavior of a fuel particle are presented herein, which indicate that shrinkage cracks could contribute significantly to fuel particle failures.

  9. UO 2 fuel behavior under RIA type tests

    NASA Astrophysics Data System (ADS)

    Negut, Gheorghe; Popov, Mircea

    1992-06-01

    This paper describes the test conducted to investigate the failure threshold of the fuel when subjected to RIA, accomplished in the TRIGA ACPR Nuclear Research Institute, Pitesti. The reactor facility, the capsule used in experiments and the experimental results are presented. The failure threshold was determined at 200 cal/g for an atmospheric gap pressure comparable with similar tests.

  10. Elemental balance of SRF production process: solid recovered fuel produced from municipal solid waste.

    PubMed

    Nasrullah, Muhammad; Vainikka, Pasi; Hannula, Janne; Hurme, Markku; Oinas, Pekka

    2016-01-01

    In the production of solid recovered fuel (SRF), certain waste components have excessive influence on the quality of product. The proportion of rubber, plastic (hard) and certain textiles was found to be critical as to the elemental quality of SRF. The mass flow of rubber, plastic (hard) and textiles (to certain extent, especially synthetic textile) components from input waste stream into the output streams of SRF production was found to play the decisive role in defining the elemental quality of SRF. This paper presents the mass flow of polluting and potentially toxic elements (PTEs) in SRF production. The SRF was produced from municipal solid waste (MSW) through mechanical treatment (MT). The results showed that of the total input chlorine content to process, 55% was found in the SRF and 30% in reject material. Of the total input arsenic content, 30% was found in the SRF and 45% in fine fraction. In case of cadmium, lead and mercury, of their total input content to the process, 62%, 38% and 30%, respectively, was found in the SRF. Among the components of MSW, rubber material was identified as potential source of chlorine, containing 8.0 wt.% of chlorine. Plastic (hard) and textile components contained 1.6 and 1.1. wt.% of chlorine, respectively. Plastic (hard) contained higher lead and cadmium content compared with other waste components, i.e. 500 mg kg(-1) and 9.0 mg kg(-1), respectively. PMID:26608898

  11. Failure Behavior Characterization of Mo-Modified Ti Surface by Impact Test and Finite Element Analysis

    NASA Astrophysics Data System (ADS)

    Ma, Yong; Qin, Jianfeng; Zhang, Xiangyu; Lin, Naiming; Huang, Xiaobo; Tang, Bin

    2015-07-01

    Using the impact test and finite element simulation, the failure behavior of the Mo-modified layer on pure Ti was investigated. In the impact test, four loads of 100, 300, 500, and 700 N and 104 impacts were adopted. The three-dimensional residual impact dents were examined using an optical microscope (Olympus-DSX500i), indicating that the impact resistance of the Ti surface was improved. Two failure modes cohesive and wearing were elucidated by electron backscatter diffraction and energy-dispersive spectrometer performed in a field-emission scanning electron microscope. Through finite element forward analysis performed at a typical impact load of 300 N, stress-strain distributions in the Mo-modified Ti were quantitatively determined. In addition, the failure behavior of the Mo-modified layer was determined and an ideal failure model was proposed for high-load impact, based on the experimental and finite element forward analysis results.

  12. Development and implementation of a finite element solution of the coupled neutron transport and thermoelastic equations governing the behavior of small nuclear assemblies

    NASA Astrophysics Data System (ADS)

    Wilson, Stephen Christian

    Small, highly enriched reactors designed for weapons effects simulations undergo extreme thermal transients during pulsed operations. The primary shutdown mechanism of these reactors---thermal expansion of fuel material---experiences an inertial delay resulting in a different value for the fuel temperature coefficient of reactivity during pulse operation as compared to the value appropriate for steady-state operation. The value appropriate for pulsed operation may further vary as a function of initial reactivity addition. Here we design and implement a finite element numerical method to predict the pulse operation behavior of Sandia Pulsed Reactor (SPR) II, SPR III, and a hypothetical spherical assembly with identical fuel properties without using operationally observed data in our model. These numerical results are compared to available SPR II and SPR III operational data. The numerical methods employed herein may be modified and expanded in functionality to provide both accurate characterization of the behavior of fast burst reactors of any common geometry or isotropic fuel material in the design phase, as well as a computational tool for general coupled thermomechanical-neutronics behavior in the solid state for any reactor type.

  13. The analysis of chlorine with other elements of interest in waste oil/fuels by ICP-AES

    SciTech Connect

    Tsourides, D.

    1998-12-31

    It has been said that there are more chemical analysis performed on oil/fuels than any other material. The sensitivity, linearity, multi-element capability, and relative freedom from matrix effects of ICP-AES makes it particularly suitable for elemental analysis of these samples. However, until recently the routine analysis of Chlorine had not been possible by ICP-AES. The addition of the Halogen elements, particularly Chlorine, to ICP-AES analysis is of importance to several industries that burn waste oil as fuel. The recycling and disposal of waste oil is closely regulated by metal and halogen content in all developed countries. In some countries, waste oil containing more than 1,000 ppm of Chlorine is considered hazardous waste. However, used oil may be burned as a fuel if it meets certain allowable limits. The paper describes the procedures for chlorine analysis by Inductively Coupled Plasma Atomic Emission Spectroscopy.

  14. Approach to Analysis of Mechanical Behavior of Textile Composites by Inclusion Element Method

    NASA Astrophysics Data System (ADS)

    Tsujikami, Tetsuya; Horikawa, Takeshi; Hirosawa, Satoru; Zako, Masaru

    The inclusion element method with a simple grid model has been proposed as one of the analytical techniques of the mechanical behavior of textile composites, and the effectiveness of this method has been verified. The inclusion element method is applicable to the analysis of all types of textile composites because the element stiffness obtained by the inclusion method through cooperation with a fabric structure simulator is used. From the result of the analysis by the inclusion element method, it has been confirmed that the peculiar crimp-interchange of woven composites occurs and high tensile stress arises at the elements with fiber bundles oriented in the load direction. A comparison between the analyses using a real model and the inclusion element model has shown relatively good agreement. Although the analytical result is greatly dependent on the grid pattern, the inclusion element method can provide a sufficient accuracy of results even when the number of elements in the model is lower than that in the real model.

  15. SUB-LEU-METAL-THERM-001 SUBCRITICAL MEASUREMENTS OF LOW ENRICHED TUBULAR URANIUM METAL FUEL ELEMENTS BEFORE & AFTER IRRADIATION

    SciTech Connect

    TOFFER, H.

    2006-07-18

    With the shutdown of the Hanford PUREX (Plutonium-Uranium Extraction Plant) reprocessing plant in the 1970s, adequate storage capacity for spent Hanford N Reactor fuel elements in the K and N Reactor pools became a concern. To maximize space utilization in the pools, accounting for fuel burnup was considered. Fuel that had experienced a neutron environment in a reactor is known as spent, exposed, or irradiated fuel. In contrast fuel that has not yet been placed in a reactor is known as green, unexposed, or unirradiated fuel. Calculations indicated that at typical fuel exposures for N Reactor, the spent-fuel critical mass would be twice the critical mass for green fuel. A decision was reached to test the calculational result with a definitive experiment. If the results proved positive, storage capacity could be increased and N Reactor operation could be prolonged. An experiment to be conducted in the N Reactor spent-fuel storage pool was designed and assembled (References 1 and 2) and the services of the Battelle Northwest Laboratories (BNWL) (now Pacific Northwest National Laboratory [PNNL]) critical mass laboratory were procured for the measurements (Reference 3). The experiments were performed in April 1975 in the Hanford N Reactor fuel storage pool. The fuel elements were MKIA fuel assemblies, comprised of two concentric tubes of low-enriched metallic uranium. Two separate sets of measurements were performed: one with unirradiated fuel and one with irradiated fuel. Both the unirradiated and irradiated fuel, were measured in the same geometry. The spent-fuel MKIA assemblies had an average burnup of 2865 MWd (megawatt days)/t. A constraint was imposed restricting the measurements to a subcritical limit of k{sub eff} = 0.97. Subcritical count rate data was obtained with pulsed-neutron and approach-to-critical measurements. Ten (10) configurations with green fuel and nine (9) configurations with spent fuel are described and evaluated. Of these, three (3) green fuel

  16. Helium Behavior in Oxide Nuclear Fuels: First Principles Modeling

    SciTech Connect

    Gryaznov, D.; Rashkeev, Sergey N.; Kotomin, E. A.; Heifets, Eugene; Zhukovskii, Yuri F.

    2010-10-01

    UO2 and (U, Pu)O2 solid solutions (the so-called MOX) nowadays are used as commercial nuclear fuels in many countries. One of the safety issues during the storage of these fuels is related to their self-irradiation that produces and accumulates point defects and helium therein. We present density functional theory (DFT) calculations for UO2, PuO2 and MOX containing He atoms in octahedral interstitial positions. In particular, we calculated basic MOX properties and He incorporation energies as functions of Pu concentration within the spin-polarized, generalized gradient approximation (GGA) DFT calculations. We also included the on-site electron correlation corrections using the Hubbard model (in the framework of the so-called DFT + U approach). We found that PuO2 remains semiconducting with He in the octahedral position while UO2 requires a specific lattice distortion. Both materials reveal a positive energy for He incorporation, which, therefore, is an exothermic process. The He incorporation energy increases with the Pu concentration in the MOX fuel.

  17. Output power characteristics and performance of TOPAZ II Thermionic Fuel Element No. 24

    SciTech Connect

    Luchau, D.W.; Bruns, D.R.; Izhvanov, O.; Androsov, V.

    1996-03-01

    A final report on the output power characteristics and capabilities of single cell TOPAZ II Thermionic Fuel Element (TFE) No. 24 is presented. Thermal power tests were conducted for over 3000 hours to investigate converter performance under normal and adverse operating conditions. Experiments conducted include low power testing, high power testing, air introduction to the interelectrode gap, collector temperature optimization, thermal modeling, and output power characteristic measurements. During testing, no unexpected degradation in converter performance was observed. The TFE has been removed from the test stand and returned to Scientific Industrial Association {open_quote}{open_quote}LUCH{close_quote}{close_quote} for materials analysis and report. This research was conducted at the Thermionic System Evaluation Test (TSET) Facility at the New Mexico Engineering Research Institute (NMERI) as a part of the Topaz International Program (TIP) by the Air Force Phillips Laboratory (PL). {copyright} {ital 1996 American Institute of Physics.}

  18. Test plan for high-burnup fuel cladding behavior under loss-of- coolant accident conditions

    SciTech Connect

    Chung, H.M.; Neimark, L.A.; Kassner, T.F.

    1996-10-01

    Excessive oxidation, hydriding, and extensive irradiation damage occur in high-burnup fuel cladding, and as result, mechanical properties of high-burnup fuels are degraded significantly. This may influence the current fuel cladding failure limits for loss-of- coolant-accident (LOCA) situations, which are based on fuel cladding behavior for zero burnup. To avoid cladding fragmentation and fuel dispersal during a LOCA, 10 CFR 50.46 requires that peak cladding temperature shall not exceed 1204 degrees C (2200 degrees F) and that total oxidation of the fuel cladding nowhere exceeds 0.17 times total cladding thickness before oxidation. Because of the concern, a new experimental program to investigate high-burnup fuel cladding behavior under LOCA situations has been initiated under the sponsorship of the U.S. Nuclear Regulatory Commission. A hot-cell test plan to investigate single-rod behavior under simulated LOCA conditions is described in this paper. In the meantime, industry fuel design and operating conditions are expected to undergo further changes as more advanced cladding materials are developed. Under these circumstances, mechanical properties of high-burnup fuel cladding require further investigation so that results from studies on LOCA, reactivity- initiated-accident (RIA), operational transient, and power-ramping situations, can be extrapolated to modified or advanced cladding materials and altered irradiation conditions without repeating major integral experiments in test reactors. To provide the applicable data base and mechanistic understanding, tests will be conducted to determine dynamic and static fracture toughness and tensile properties. Background and rationale for selecting the specific mechanical properties tests are also described.

  19. A comparison of geospatially modeled fire behavior and potential application to fire and fuels management for the Savannah River Site.

    SciTech Connect

    Kurth, Laurie; Hollingsworth, LaWen; Shea, Dan

    2011-12-20

    This study evaluates modeled fire behavior for the Savannah River Site in the Atlantic Coastal Plain of the southeastern U.S. using three data sources: FCCS, LANDFIRE, and SWRA. The Fuel Characteristic Classification System (FCCS) was used to build fuelbeds from intensive field sampling of 629 plots. Custom fire behavior fuel models were derived from these fuelbeds. LANDFIRE developed surface fire behavior fuel models and canopy attributes for the U.S. using satellite imagery informed by field data. The Southern Wildfire Risk Assessment (SWRA) developed surface fire behavior fuel models and canopy cover for the southeastern U.S. using satellite imagery.

  20. Utilization of a finite element model to verify spent nuclear fuel storage rack welds

    SciTech Connect

    Nitzel, M.E.

    1998-07-01

    Elastic and plastic finite element analyses were performed for the inner tie block assembly of a 25 port fuel rack designed for installation at the Idaho National Engineering and Environmental Laboratory (INEEL) Idaho Chemical Processing Plant (ICPP). The model was specifically developed to verify the adequacy of certain welds joining components of the fuel storage rack assembly. The work scope for this task was limited to an investigation of the stress levels in the inner tie welds when the rack was subjected to seismic loads. Structural acceptance criteria used for the elastic calculations performed were as defined by the rack`s designer. Structural acceptance criteria used for the plastic calculations performed as part of this effort were as defined in Subsection NF and Appendix F of Section III of the ASME Boiler and Pressure Vessel Code. The results confirm that the welds joining the inner tie block to the surrounding rack structure meet the acceptance criteria. The analysis results verified that the inner tie block welds should be capable of transferring the expected seismic load without structural failure.

  1. Disposition of Unirradiated Sodium Bonded EBR-II Driver Fuel Elements and HEU Scrap: Work Performed for FY 2007

    SciTech Connect

    Karen A Moore

    2007-04-01

    Specific surplus high enriched uranium (HEU) materials at the Idaho National Laboratory (INL) Materials and Fuels Complex (MFC) will be transferred to a designated off-site receiving facility. The DOE High Enriched Uranium Disposition Program Office (HDPO) will determine which materials, if any, will be prepared and transferred to an off-site facility for processing and eventual fabrication of fuel for nuclear reactors. These surplus HEU materials include approximately 7200 kg unirradiated sodium-bonded EBR-II driver fuel elements, and nearly 800 kg of HEU casting scrap from the process which formed various sodium-bonded fuels (including the EBR-II driver elements). Before the driver fuel can be packaged for shipment, the fuel elements will require removal of the sodium bond. The HEU scrap will also require repackaging in preparation for off-site transport. Preliminary work on this task was authorized by BWXT Y-12 on Nov 6, 2006 and performed in three areas: • Facility Modifications • Safety Documentation • Project Management

  2. Fuel Breeding and Core Behavior Analyses on In Core Fuel Management of Water Cooled Thorium Reactors

    SciTech Connect

    Permana, Sidik; Sekimoto, Hiroshi; Waris, Abdul; Subhki, Muhamad Nurul; Ismail,

    2010-12-23

    Thorium fuel cycle with recycled U-233 has been widely recognized having some contributions to improve the water-cooled breeder reactor program which has been shown by a feasible area of breeding and negative void reactivity which confirms that fissile of 233U contributes to better fuel breeding and effective for obtaining negative void reactivity coefficient as the main fissile material. The present study has the objective to estimate the effect of whole core configuration as well as burnup effects to the reactor core profile by adopting two dimensional model of fuel core management. About more than 40 months of cycle period has been employed for one cycle fuel irradiation of three batches fuel system for large water cooled thorium reactors. All position of fuel arrangement contributes to the total core conversion ratio which gives conversion ratio less than unity of at the BOC and it contributes to higher than unity (1.01) at the EOC after some irradiation process. Inner part and central part give the important part of breeding contribution with increasing burnup process, while criticality is reduced with increasing the irradiation time. Feasibility of breeding capability of water-cooled thorium reactors for whole core fuel arrangement has confirmed from the obtained conversion ratio which shows higher than unity. Whole core analysis on evaluating reactivity change which is caused by the change of voided condition has been employed for conservative assumption that 100% coolant and moderator are voided. It obtained always a negative void reactivity coefficient during reactor operation which shows relatively more negative void coefficient at BOC (fresh fuel composition), and it becomes less negative void coefficient with increasing the operation time. Negative value of void reactivity coefficient shows the reactor has good safety properties in relation to the reactivity profile which is the main parameter in term of criticality safety analysis. Therefore, this

  3. Comparison between steady-state and dynamic I-V measurements from a single-cell thermionic fuel element

    SciTech Connect

    Wernsman, B.

    1997-01-01

    A comparison between steady-state and dynamic I-V measurements from a single-cell thermionic fuel element (TFE) is made. The single-cell TFE used in this study is the prototype for the 40kW{sub e} space nuclear power system that is similar to the 6kW{sub e} TOPAZ-II. The steady-state I-V measurements influence the emitter temperature due to electron cooling. Therefore, to eliminate the steady-state I-V measurement influence on the TFE and provide a better understanding of the behavior of the thermionic energy converter and TFE characteristics, dynamic I-V measurements are made. The dynamic I-V measurements are made at various input power levels, cesium pressures, collector temperatures, and steady-state current levels. From these measurements, it is shown that the dynamic I-V{close_quote}s do not change the TFE characteristics at a given operating point. Also, the evaluation of the collector work function from the dynamic I-V measurements shows that the collector optimization is not due to a minimum in the collector work function but due to an emission optimization. Since the dynamic I-V measurements do not influence the TFE characteristics, it is believed that these measurements can be done at a system level to understand the influence of TFE placement in the reactor as a function of the core thermal distribution. {copyright} {ital 1997 American Institute of Physics.}

  4. Comparison between steady-state and dynamic I-V measurements from a single-cell thermionic fuel element

    SciTech Connect

    Wernsman, Bernard

    1997-01-10

    A comparison between steady-state and dynamic I-V measurements from a single-cell thermionic fuel element (TFE) is made. The single-cell TFE used in this study is the prototype for the 40 kW{sub e} space nuclear power system that is similar to the 6 kW{sub e} TOPAZ-II. The steady-state I-V measurements influence the emitter temperature due to electron cooling. Therefore, to eliminate the steady-state I-V measurement influence on the TFE and provide a better understanding of the behavior of the thermionic energy converter and TFE characteristics, dynamic I-V measurements are made. The dynamic I-V measurements are made at various input power levels, cesium pressures, collector temperatures, and steady-state current levels. From these measurements, it is shown that the dynamic I-V's do not change the TFE characteristics at a given operating point. Also, the evaluation of the collector work function from the dynamic I-V measurements shows that the collector optimization is not due to a minimum in the collector work function but due to an emission optimization. Since the dynamic I-V measurements do not influence the TFE characteristics, it is believed that these measurements can be done at a system level to understand the influence of TFE placement in the reactor as a function of the core thermal distribution.

  5. Features of temperature control of fuel element cladding for pressurized water nuclear reactor ``WWER-1000'' while simulating reactor accidents

    NASA Astrophysics Data System (ADS)

    Zaytsev, P. A.; Priymak, S. V.; Usachev, V. B.; Oleynikov, P. P.; Soldatkin, D. M.

    2013-09-01

    During the experiments simulating NPR (nuclear power reactor) accidents with a coolant loss fuel elements behavior in a steam-hydrogen medium was studied at the temperature changed with the rate from 1 to 100K/s within the range of 300÷1500 °C. Indications of the thermocouples fixed on the cladding notably differ from real values of the cladding temperatures in the area of measuring junction due to thermal resistance influence of the transition zones "cladding-junction" and "junction-coolant". The estimating method of a measurement error was considered which can provide adequate accounting of the influence factors. The method is based on thermal probing of a thermocouple by electric current flashing through thermoelements under the coolant presence or absence, a response time registration and processing, calculation of thermal inertia value for a thermocouple junction. A formula was derived for calculation of methodical error under stationary mode and within the stage of linear increase in temperature, which will determine the conditions for the cladding depressurization. Some variants of the formula application were considered, and the values of methodical errors were established which reached ˜5% of maximum value by the final moment of the stage of linear increase in the temperature.

  6. Experimental approach and modelling of the mechanical behaviour of graphite fuel elements subjected to compression pulses

    NASA Astrophysics Data System (ADS)

    Forquin, P.

    2010-06-01

    Among the activities led by the Generation IV International Forum (GIF) relative to the future nuclear systems, the improvement of recycling of fuel elements and their components is a major issue. One of the studied systems by the GIF is the graphite-moderated high-temperature gas cooled reactor (HTGR). The fuel elements are composed of fuel roads half-inch in diameter named compacts. The compacts contain spherical particles made of actinide kernels about 500 m in diameter coated with three layers of carbon and silicon carbide, each about 50 m thick, dispersed in a graphite matrix. Recycling of compacts requires first a separation of triso-particles from the graphite matrix and secondly, the separation of the triso-coating from the kernels. This aim may be achieved by using pulsed currents: the compacts are placed within a cell filled by water and exposed to high voltage between 200 - 500 kV and discharge currents from 10 to 20 kA during short laps of time (about 2 µs) [1-2]. This repeated treatment leads to a progressive fragmentation of the graphite matrix and a disassembly of the compacts. In order to improve understanding of the fragmentation properties of compacts a series of quasi-static and dynamic experiments have been conducted with similar cylindrical samples containing 10% (volume fraction) of SiC particles coated in a graphite matrix. First, quasi-static compression tests have been performed to identify the mechanical behaviour of the material at low strain-rates (Fig.1). The experiments reveal a complex elasto-visco-plastic behaviour before a brittle failure. The mechanical response is characterised by a low yield stress (about 1 MPa), a strong strain-hardening in the loading phase and marked hysteresis-loops during unloading-reloading stages. Brittle failure is observed for axial stress about 13 MPa. In parallel, a series of flexural tests have been performed with the aim to characterise the quasi-static tensile strength of the particulate

  7. 3D laser inspection of fuel assembly grid spacers for nuclear reactors based on diffractive optical elements

    NASA Astrophysics Data System (ADS)

    Finogenov, L. V.; Lemeshko, Yu A.; Zav'yalov, P. S.; Chugui, Yu V.

    2007-06-01

    Ensuring the safety and high operation reliability of nuclear reactors takes 100% inspection of geometrical parameters of fuel assemblies, which include the grid spacers performed as a cellular structure with fuel elements. The required grid spacer geometry of assembly in the transverse and longitudinal cross sections is extremely important for maintaining the necessary heat regime. A universal method for 3D grid spacer inspection using a diffractive optical element (DOE), which generates as the structural illumination a multiple-ring pattern on the inner surface of a grid spacer cell, is investigated. Using some DOEs one can inspect the nomenclature of all produced grids. A special objective has been developed for forming the inner surface cell image. The problems of diffractive elements synthesis, projecting optics calculation, adjusting methods as well as calibration of the experimental measuring system are considered. The algorithms for image processing for different constructive elements of grids (cell, channel hole, outer grid spacer rim) and the experimental results are presented.

  8. Finite element thermal stress analysis of solid oxide fuel cell cathode microstructures

    NASA Astrophysics Data System (ADS)

    Vaidya, Sushrut; Kim, Jeong-Ho

    2013-03-01

    Two-dimensional images of solid oxide fuel cell (SOFC) cathode microstructures (50:50 wt.% LSM:YSZ) are used to generate three-dimensional finite element (FE) models. An approximate, heuristic scheme is developed to derive a microstructure of 30:70 wt.% LSM:YSZ composition from the original, real microstructures. The derived model is validated by calculating three-phase boundary (TPB) and phase surface area densities by comparing with data available in the literature. Construction of such derived microstructures will provide insights on the effects of phase compositions on the mechanics of electrode structures. The heuristic scheme is not proposed as a replacement for rigorous approaches such as the random packing model, but rather as a simplified approach for deriving reasonably realistic microstructures of different compositions within a limited range of validity. The models are analyzed using finite elements to estimate thermal stresses and probability of failure using Weibull analysis. The effects of temperature-dependent material properties and phase volume fractions on probability of failure of the cathode are discussed.

  9. Hydrogen loops in existing reactors for testing fuel elements for nuclear propulsion

    NASA Astrophysics Data System (ADS)

    Olsen, Charles S.; Welland, Henry; Abraschoff, James; Thoms, Kenneth

    1993-01-01

    The Space Exploration Initiative (SEI) has revitalized interest in adapting nuclear energy for power and propulsion. Prior to the selection of a nuclear thermal propulsion (NTP) system, extensive testing of the various proposed concepts will be required. In today's environmental, safety and health culture, full size rocket engine tests as were done under the Rover/NERVA program will be extremely difficult and expensive to perform and meet NASA's schedules. A different test strategy uses a hydrogen loop in an existing reactor to test a wide variety of single elements or clusters of elements for fuel qualification. This approach is expected to reduce operating and capital costs and expedite the testing schedule. This paper examines the potential of performing subscale tests in a hydrogen loop in an existing reactor such as the Advanced Test Reactor (ATR) at the Idaho National Engineering Laboratory or the High Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory. The HFIR is expected to achieve power densities comparable to those achieved in ATR because of the 85 MWt power level and the high thermal and fast flux levels. The available length and diameter of the test region of FHIR are 60 cm and 10 cm whereas the available length and diameter of the test region of ATR are 120 cm and 12 cm respectively.

  10. Hydrogen loops in existing reactors for testing fuel elements for nuclear propulsion

    SciTech Connect

    Olsen, C.S.; Welland, H.; Abraschoff, J. ); Thoms, K. )

    1993-01-15

    The Space Exploration Initiative (SEI) has revitalized interest in adapting nuclear energy for power and propulsion. Prior to the selection of a nuclear thermal propulsion (NTP) system, extensive testing of the various proposed concepts will be required. In today's environmental, safety and health culture, full size rocket engine tests as were done under the Rover/NERVA program will be extremely difficult and expensive to perform and meet NASA's schedules. A different test strategy uses a hydrogen loop in an existing reactor to test a wide variety of single elements or clusters of elements for fuel qualification. This approach is expected to reduce operating and capital costs and expedite the testing schedule. This paper examines the potential of performing subscale tests in a hydrogen loop in an existing reactor such as the Advanced Test Reactor (ATR) at the Idaho National Engineering Laboratory or the High Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory. The HFIR is expected to achieve power densities comparable to those achieved in ATR because of the 85 MWt power level and the high thermal and fast flux levels. The available length and diameter of the test region of FHIR are 60 cm and 10 cm whereas the available length and diameter of the test region of ATR are 120 cm and 12 cm respectively.

  11. Fuel injection and mixing systems having piezoelectric elements and methods of using the same

    DOEpatents

    Mao, Chien-Pei; Short, John; Klemm, Jim; Abbott, Royce; Overman, Nick; Pack, Spencer; Winebrenner, Audra

    2011-12-13

    A fuel injection and mixing system is provided that is suitable for use with various types of fuel reformers. Preferably, the system includes a piezoelectric injector for delivering atomized fuel, a gas swirler, such as a steam swirler and/or an air swirler, a mixing chamber and a flow mixing device. The system utilizes ultrasonic vibrations to achieve fuel atomization. The fuel injection and mixing system can be used with a variety of fuel reformers and fuel cells, such as SOFC fuel cells.

  12. Creep Behavior of Glass/Ceramic Sealant and its Effect on Long-term Performance of Solid Oxide Fuel Cells

    SciTech Connect

    Liu, Wenning N.; Sun, Xin; Koeppel, Brian J.; Stephens, Elizabeth V.; Khaleel, Mohammad A.

    2009-10-14

    The creep behavior of glass or glass-ceramic sealant materials used in solid oxide fuel cells (SOFCs) becomes relevant under SOFC operating temperatures. In this paper, the creep of glass-ceramic sealants was experimentally examined, and a standard linear solid model was applied to capture the creep behavior of glass ceramic sealant materials developed for planar SOFCs at high temperatures. The parameters of this model were determined based on the creep test results. Furthermore, the creep model was incorporated into finite-element software programs SOFC-MP and Mentat-FC developed at Pacific Northwest National Laboratory for multi-physics simulation of SOFCs. The effect of creep of glass ceramic sealant materials on the long-term performance of SOFC stacks was investigated by studying the stability of the flow channels and the stress redistribution in the glass seal and on the various interfaces of the glass seal with other layers. Finite element analyses were performed to quantify the stresses in various parts. The stresses in glass seals were released because of creep behavior during operations.

  13. Morphology-Induced Collective Behaviors: Dynamic Pattern Formation in Water-Floating Elements

    PubMed Central

    Nakajima, Kohei; Ngouabeu, Aubery Marchel Tientcheu; Miyashita, Shuhei; Göldi, Maurice; Füchslin, Rudolf Marcel; Pfeifer, Rolf

    2012-01-01

    Complex systems involving many interacting elements often organize into patterns. Two types of pattern formation can be distinguished, static and dynamic. Static pattern formation means that the resulting structure constitutes a thermodynamic equilibrium whose pattern formation can be understood in terms of the minimization of free energy, while dynamic pattern formation indicates that the system is permanently dissipating energy and not in equilibrium. In this paper, we report experimental results showing that the morphology of elements plays a significant role in dynamic pattern formation. We prepared three different shapes of elements (circles, squares, and triangles) floating in a water-filled container, in which each of the shapes has two types: active elements that were capable of self-agitation with vibration motors, and passive elements that were mere floating tiles. The system was purely decentralized: that is, elements interacted locally, and subsequently elicited global patterns in a process called self-organized segregation. We showed that, according to the morphology of the selected elements, a different type of segregation occurs. Also, we quantitatively characterized both the local interaction regime and the resulting global behavior for each type of segregation by means of information theoretic quantities, and showed the difference for each case in detail, while offering speculation on the mechanism causing this phenomenon. PMID:22715370

  14. Limitation of Finite Element Analysis of Poroelastic Behavior of Biological Tissues Undergoing Rapid Loading

    PubMed Central

    Stokes, Ian A.; Chegini, Salman; Ferguson, Stephen J.; Gardner-Morse, Mack G.; Iatridis, James C.; Laible, Jeffrey P.

    2010-01-01

    The finite element method is used in biomechanics to provide numerical solutions to simulations of structures having complex geometry and spatially differing material properties. Time-varying load deformation behaviors can result from solid viscoelasticity as well as viscous fluid flow through porous materials. Finite element poroelastic analysis of rapidly loaded slow-draining materials may be ill-conditioned, but this problem is not widely known in the biomechanics field. It appears as instabilities in the calculation of interstitial fluid pressures, especially near boundaries and between different materials. Accurate solutions can require impractical compromises between mesh size and time steps. This article investigates the constraints imposed by this problem on tissues representative of the intervertebral disc, subjected to moderate physiological rates of deformation. Two test cylindrical structures were found to require over 104 linear displacement-constant pressure elements to avoid serious oscillations in calculated fluid pressure. Fewer Taylor–Hood (quadratic displacement–linear pressure elements) were required, but with complementary increases in computational costs. The Vermeer–Verruijt criterion for 1D mesh size provided guidelines for 3D mesh sizes for given time steps. Pressure instabilities may impose limitations on the use of the finite element method for simulating fluid transport behaviors of biological soft tissues at moderately rapid physiological loading rates. PMID:20306136

  15. Investigations into the low temperature behavior of jet fuels: Visualization, modeling, and viscosity studies

    NASA Astrophysics Data System (ADS)

    Atkins, Daniel L.

    Aircraft operation in arctic regions or at high altitudes exposes jet fuel to temperatures below freeze point temperature specifications. Fuel constituents may solidify and remain within tanks or block fuel system components. Military and scientific requirements have been met with costly, low freeze point specialty jet fuels. Commercial airline interest in polar routes and the use of high altitude unmanned aerial vehicles (UAVs) has spurred interest in the effects of low temperatures and low-temperature additives on jet fuel. The solidification of jet fuel due to freezing is not well understood and limited visualization of fuel freezing existed prior to the research presented in this dissertation. Consequently, computational fluid dynamics (CFD) modeling that simulates jet fuel freezing and model validation were incomplete prior to the present work. The ability to simulate jet fuel freezing is a necessary tool for fuel system designers. An additional impediment to the understanding and simulation of jet fuel freezing has been the absence of published low-temperature thermo-physical properties, including viscosity, which the present work addresses. The dissertation is subdivided into three major segments covering visualization, modeling and validation, and viscosity studies. In the first segment samples of jet fuel, JPTS, kerosene, Jet A and Jet A containing additives, were cooled below their freeze point temperatures in a rectangular, optical cell. Images and temperature data recorded during the solidification process provided information on crystal habit, crystallization behavior, and the influence of the buoyancy-driven flow on freezing. N-alkane composition of the samples was determined. The Jet A sample contained the least n-alkane mass. The cooling of JPTS resulted in the least wax formation while the cooling of kerosene yielded the greatest wax formation. The JPTS and kerosene samples exhibited similar crystallization behavior and crystal habits during

  16. Surfactant-free alternative fuel: Phase behavior and diffusion properties.

    PubMed

    Kayali, Ibrahim; Jyothi, Chemboli K; Qamhieh, Khawla; Olsson, Ulf

    2016-02-01

    Phase behavior of the three components, 1-propanol, water and oil is studied at 10, 25, and 40°C. Biodiesel, limonene and diesel are used as oil phases. NMR self-diffusion measurements are performed to investigate the microstructure of the one-phase regions. Tie lines in the two-phase regions are determined both by proton NMR analysis and compared with theoretical calculations. NMR self-diffusion results for the different components in these systems do not show any sign of confinement or obstructions, demonstrating these mixtures to be structureless solutions. A good agreement between the experimental and calculated phase behavior is obtained. The determined tie lines in the two-phase regions show higher affinity of 1-propanol to water than to oil. PMID:26520824

  17. Misconceptions concerning the behavior, fate and transport of the fuel oxygenates TBA and MTBE

    NASA Astrophysics Data System (ADS)

    Woodward, R.; Sloan, R.

    2003-04-01

    The release of gasoline from underground storage tanks and the subsequent appearance of dissolved constituents in drinking water has focused attention on the use of MTBE in reformulated fuels. Natural biodegradation of MTBE in soil, photo-oxidation in the atmosphere or chemical oxidation during remediation of gasoline releases can produce the intermediate tertiary butyl alcohol (TBA). TBA is also a fuel oxygenate and can be found as a co-product in MTBE synthesized from methanol and TBA. Because the physical properties of ethers and alcohols differ somewhat from the predominant hydrocarbon compounds in gasoline, misconceptions have developed about the behavior of fuel oxygenates in storage and in the subsurface. Critical review of several misconceptions about MTBE and TBA in gasoline reveals the concepts were conceived to rationalize early field observations and/or incomplete data sets. Closer scrutiny, in light of recent laboratory investigations, field data, case studies and world literature, clarifies these misconceptions and assumptions about the behavior of ether oxygenates and their degradation products in the environment. Commonly held misconceptions focus on four general areas of fuel and fuel oxygenate management: storage/dispensing, hydrology, remediation, and health effects. Storage/dispensing misconceptions address materials stability to ethers and alcohols in fuel and the environmental forensics of fuel systems failure. Groundwater and hydrology misconceptions deal with plume dynamics and the impact of fuel on drinking water resources. Remediation misconceptions focus on the performance of traditional hydrocarbon remediation technologies, recent developments in biodegradation and natural attenuation, drivers of remedial design and remediation costs. Health effects misconceptions address both acute and chronic exposure risk evaluations by national and international health agencies. Generally MTBE and TBA are manageable by the same processes and

  18. Simulation of acoustic wave behavior in ducts and a plenum using finite elements package ANSYS

    NASA Astrophysics Data System (ADS)

    Villalobos-Luna, Jose de Jesus; Lopez-Cruz, Pedro; Ramirez-Valencia, Ricardo; Elizondo-Garza, Fernando J.

    2002-11-01

    This paper shows and discusses the use of the finite element software ANSYS for simulation of the behavior of sound waves in a ducts-plenum system. The modeling is intended for didactic purposes, beginning with simple three-dimensional geometries of ducts and plenum. Two conditions can be included: (1) with and without acoustical absorbent materials on the inside walls of the ducts and (2) including or not labyrinths. The analysis allows students to see the behavior of the waves inside the duct-plenum system and they can manipulate the parameters of the model to improve the attenuation characteristics of the system.

  19. Refueling Behavior of Flexible Fuel Vehicle Drivers in the Federal Fleet

    SciTech Connect

    Daley, R.; Nangle, J.; Boeckman, G.; Miller, M.

    2014-05-01

    Federal fleets are a frequent subject of legislative and executive efforts to lead a national transition to alternative fuels and advanced vehicle technologies. Section 701 of the Energy Policy Act of 2005 requires that all dual-fueled alternative fuel vehicles in the federal fleet be operated on alternative fuel 100% of the time when they have access to it. However, in Fiscal Year (FY) 2012, drivers of federal flex fuel vehicles (FFV) leased through the General Services Administration refueled with E85 24% of the time when it was available--falling well short of the mandate. The U.S. Department of Energy's National Renewable Energy Laboratory completed a 2-year Laboratory Directed Research and Development project to identify the factors that influence the refueling behavior of federal FFV drivers. The project began with two primary hypotheses. First, information scarcity increases the tendency to miss opportunities to purchase E85. Second, even with perfect information, there are limits to how far drivers will go out of their way to purchase E85. This paper discusses the results of the project, which included a June 2012 survey of federal fleet drivers and an empirical analysis of actual refueling behavior from FY 2009 to 2012. This research will aid in the design and implementation of intervention programs aimed at increasing alternative fuel use and reducing petroleum consumption.

  20. Understanding compressive deformation behavior of porous Ti using finite element analysis.

    PubMed

    Roy, Sandipan; Khutia, Niloy; Das, Debdulal; Das, Mitun; Balla, Vamsi Krishna; Bandyopadhyay, Amit; Chowdhury, Amit Roy

    2016-07-01

    In the present study, porous commercially pure (CP) Ti samples with different volume fraction of porosities were fabricated using a commercial additive manufacturing technique namely laser engineered net shaping (LENS™). Mechanical behavior of solid and porous samples was evaluated at room temperature under quasi-static compressive loading. Fracture surfaces of the failed samples were analyzed to determine the failure modes. Finite Element (FE) analysis using representative volume element (RVE) model and micro-computed tomography (CT) based model have been performed to understand the deformation behavior of laser deposited solid and porous CP-Ti samples. In vitro cell culture on laser processed porous CP-Ti surfaces showed normal cell proliferation with time, and confirmed non-toxic nature of these samples. PMID:27127074

  1. Simulation of the Dynamic Behavior of Electric Power Steering Systems Using Dedicated Finite Elements

    NASA Astrophysics Data System (ADS)

    Besson, François; Ferraris, Guy; Guingand, Michèle; Vaujany, Jean-Pierre De

    During the last decade, many new technical solutions dedicated to the comfort of automotive vehicle's drivers have raised, like Electrical Power Steering (EPS). To fulfill the more and more demanding requirements in terms of vibration and acoustics, the dynamic behavior of the whole steering is studied. The system is divided into dedicated finite elements (FE) describing the whole steering. The stress was first put on the gears models (worm gear and rack-and-pinion) and their anti-backlash systems as they have been identified as potential vibration sources. Mechanical non-linearities (clearances, non-linear stiffness) of the mechanical system are taken into account in these models. Then, this model allows simulating the transient response of the system to an input excitation. Each developed element is validated using a fitted experimental test bench. Then, the general model is correlated the same way. Hence models can be used to study the dynamic behavior of EPS systems or sub-systems.

  2. Base materials and technologies to maintain long service life and efficiency of thermionic converters and thermionic fuel elements

    NASA Astrophysics Data System (ADS)

    Nikolaev, Yury V.; Yastrebkov, Anotoly A.; Gontar, Alexander S.; Lapochkin, Nikolay V.; Belousenko, Alexander P.; Tsetskhladze, David L.

    2001-02-01

    It became possible to produce thermionic converters and thermionic fuel elements having a long-term service life and high efficiency only after developing new materials and processes of their production and treatment. This report present the characteristic of the level (achieved at present) of the base materials and technologies used in the State RI of SIA ``Lutch'' when producing TIC and TFE. .

  3. 78 FR 33132 - Quality Verification for Plate-Type Uranium-Aluminum Fuel Elements for Use in Research and Test...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-03

    ...The U.S. Nuclear Regulatory Commission (NRC) is issuing a revision to Regulatory Guide (RG) 2.3, ``Quality Verification for Plate-Type Uranium-Aluminum Fuel Elements for Use in Research and Test Reactors.'' This guide describes a method that the staff of the NRC considers acceptable for complying with the Commission's regulations concerning establishing and executing a quality assurance......

  4. Multifractal behavior of commodity markets: Fuel versus non-fuel products

    NASA Astrophysics Data System (ADS)

    Delbianco, Fernando; Tohmé, Fernando; Stosic, Tatijana; Stosic, Borko

    2016-09-01

    We investigate multifractal properties of commodity time series using multifractal detrended fluctuation analysis (MF-DFA). We find that agricultural and energy-related commodities exhibit very similar behavior, while the multifractal behavior of daily and monthly commodity series is rather different. Daily series demonstrate overall uncorrelated behavior, lower degree of multifractality and the dominance of small fluctuations. On the other hand, monthly commodity series show overall persistent behavior, higher degree of multifractality and the dominance of large fluctuations. After shuffling the series, we find that the multifractality is due to a broad probability density function for daily commodities series, while for monthly commodities series multifractality is caused by both a broad probability density function and long term correlations.

  5. Air oxidation behavior of fuel for the High Temperature Engineering Test Reactor (HTTR)

    NASA Astrophysics Data System (ADS)

    Kikuchi, Hironobu; Hayashi, Kimio; Fukuda, Kousaku

    1992-08-01

    The oxidation behavior of the HTTR fuel was studied with respect to the scenario of an air ingress accident which had been assessed in the HTTR safety analysis. The coated fuel particles were heated under a sufficient air flow in the temperature range of 900-1400 C for maximum duration of 600 h (at 1300 C). Failure fractions of the SiC coating layer after the heat treatments remained within the fraction at the fuel production. And the failure behavior of the SiC layer did not depend on such heating conditions as the temperature and the duration in the present experiment. It was confirmed by scanning electron microscopy (SEM), X-ray diffraction, and laser Raman spectroscopy that a thin oxide film was formed on the SiC layer by the heat treatments.

  6. Combustion and leaching behavior of elements in the argonne premium coal samples

    USGS Publications Warehouse

    Finkelman, R.B.; Palmer, C.A.; Krasnow, M.R.; Aruscavage, P. J.; Sellers, G.A.; Dulong, F.T.

    1990-01-01

    Eight Argonne Premium Coal samples and two other coal samples were used to observe the effects of combustion and leaching on 30 elements. The results were used to infer the modes of occurrence of these elements. Instrumental neutron activation analysis indicates that the effects of combustion and leaching on many elements varied markedly among the samples. As much as 90% of the selenium and bromine is volatilized from the bituminous coal samples, but substantially less is volatilized from the low-rank coals. We interpret the combustion and leaching behavior of these elements to indicate that they are associated with the organic fraction. Sodium, although nonvolatile, is ion-exchangeable in most samples, particularly in the low-rank coal samples where it is likely to be associated with the organic constituents. Potassium is primarily in an ion-exchangeable form in the Wypdak coal but is in HF-soluble phases (probably silicates) in most other samples. Cesium is in an unidentified HNO3-soluble phase in most samples. Virtually all the strontium and barium in the low-rank coal samples is removed by NH4OAc followed by HCl, indicating that these elements probably occur in both organic and inorganic phases. Most tungsten and tantalum are in insoluble phases, perhaps as oxides or in organic association. Hafnium is generally insoluble, but as much as 65% is HF soluble, perhaps due to the presence of very fine grained or metamict zircon. We interpret the leaching behavior of uranium to indicate its occurrence in chelates and its association with silicates and with zircon. Most of the rare-earth elements (REE) and thorium appear to be associated with phosphates. Differences in textural relationships may account for some of the differences in leaching behavior of the REE among samples. Zinc occurs predominantly in sphalerite. Either the remaining elements occur in several different modes of occurrence (scandium, iron), or the leaching data are equivocal (arsenic, antimony

  7. Coupled thermomechanical behavior of graphene using the spring-based finite element approach

    NASA Astrophysics Data System (ADS)

    Georgantzinos, S. K.; Giannopoulos, G. I.; Anifantis, N. K.

    2016-07-01

    The prediction of the thermomechanical behavior of graphene using a new coupled thermomechanical spring-based finite element approach is the aim of this work. Graphene sheets are modeled in nanoscale according to their atomistic structure. Based on molecular theory, the potential energy is defined as a function of temperature, describing the interatomic interactions in different temperature environments. The force field is approached by suitable straight spring finite elements. Springs simulate the interatomic interactions and interconnect nodes located at the atomic positions. Their stiffness matrix is expressed as a function of temperature. By using appropriate boundary conditions, various different graphene configurations are analyzed and their thermo-mechanical response is approached using conventional finite element procedures. A complete parametric study with respect to the geometric characteristics of graphene is performed, and the temperature dependency of the elastic material properties is finally predicted. Comparisons with available published works found in the literature demonstrate the accuracy of the proposed method.

  8. Finite-element procedure for calculating the three-dimensional inelastic bowing of fuel rods (AWBA development program)

    SciTech Connect

    Martin, S E

    1982-05-01

    An incremental finite element procedure is developed for calculating the in-pile lateral bowing of nuclear fuel rods. The fuel rod is modeled as a viscoelastic beam whose material properties are derived as perturbations of the results of an axisymmetric stress analysis of the fuel rod. The effects which are taken into account in calculating the rod's lateral bowing include: (a) lateral, axial, and rotational motions and forces at the rod supports, (b) transverse gradients of temperature, fast-neutron flux, and fissioning rate, and (c) cladding circumferential wall thickness variation. The procedure developed in this report could be used to form the basis for a computer program to calculate the time-dependent bowing as a function of the fuel rod's operational and environmental history.

  9. Experimental and thermodynamic evaluation of the melting behavior of irradiated oxide fuels

    NASA Astrophysics Data System (ADS)

    Adamson, M. G.; Aitken, E. A.; Caputi, R. W.

    1985-02-01

    Onset of melting is an important performance limit for irradiated UO 2 and UO 2-based nuclear reactor fuels. Melting (solidus) temperatures are reasonably well known for starting fuel materials such as UO 2 and (U,Pu)O 2, however the influence of burnup on oxide fuel melting behavior continues to represent an area of considerable uncertainty. In this paper we report the results of a variety of melting temperature measurements on pseudo-binary fuel-fissia mixtures such as UO 2-PuO 2, UO 2-CeO 2, UO 2-BaO, UO 2-SrO, UO 2-BaZrO 3, and UO 2-SrZrO 3. These measurements were performed using the thermal arrest technique on tungsten-encapsulated specimens. Several low melting eutectics, the existence of which had previously been inferred from post-irradiation examinations of high burnup mixed oxide fuels, were characterized in the course of the investigation. Also, an assessment of melting temperature changes in irradiated oxide fuels due to the production and incorporation of soluble oxidic fission products was performed by application of solution theory to the available pseudo-binary phase diagram data. The results of this assessment suggest that depression of oxide fuel solidus temperatures by dissolved fission products is substantially less than that indicated by earlier experimental studies.

  10. Effects of nanoparticle zinc oxide on emotional behavior and trace elements homeostasis in rat brain.

    PubMed

    Amara, Salem; Slama, Imen Ben; Omri, Karim; El Ghoul, Jaber; El Mir, Lassaad; Rhouma, Khemais Ben; Abdelmelek, Hafedh; Sakly, Mohsen

    2015-12-01

    Over recent years, nanotoxicology and the potential effects on human body have grown in significance, the potential influences of nanosized materials on the central nervous system have received more attention. The aim of this study was to determine whether zinc oxide (ZnO) nanoparticles (NPs) exposure cause alterations in emotional behavior and trace elements homeostasis in rat brain. Rats were treated by intraperitoneal injection of ZnO NPs (20-30 nm) at a dose of 25 mg/kg body weight. Sub -: acute ZnO NPs treatment induced no significant increase in the zinc content in the homogenate brain. Statistically significant decreases in iron and calcium concentrations were found in rat brain tissue compared to control. However, sodium and potassium contents remained unchanged. Also, there were no significant changes in the body weight and the coefficient of brain. In the present study, the anxiety-related behavior was evaluated using the plus-maze test. ZnO NPs treatment modulates slightly the exploratory behaviors of rats. However, no significant differences were observed in the anxious index between ZnO NP-treated rats and the control group (p > 0.05). Interestingly, our results demonstrated minimal effects of ZnO NPs on emotional behavior of animals, but there was a possible alteration in trace elements homeostasis in rat brain. PMID:23744884

  11. Two-dimensional steady-state analysis of an electrically heated thermionic fuel element

    SciTech Connect

    Huimin Xue; El-Genk, M.S.; Paramonov, D. )

    1993-01-20

    A two-dimensional transient model of a single cell, long Thermionic Fuel Element (TFE) is developed and its predictions are compared with published calculations and experimental data on steady-state operation of electrically heated, TOPAZ-II type TFEs. The operation parameters of the TFE, such as axial distributions of the emitter temperature, emission current density, and the electrode voltage are calculated and discussed. Results show that despite the excellent agreement between the model predictions of the axial distribution of the emitter temperature, its predictions of the maximum emission current density was lower by about 17%. This difference is attributed primarily to the J-V characteristics in the model, which could be different than those of the TOPAZ-II TFE, hence additional data on the latter is needed. When compared with experimental data, the model predictions of the electric power output are in excellent agreement with the data at thermal power input of 3.5 kW or higher, but within 10% of the data at lower thermal power.

  12. On-line elemental analysis of fossil fuel process streams by inductively coupled plasma spectrometry

    SciTech Connect

    Chisholm, W.P.

    1995-06-01

    METC is continuing development of a real-time, multi-element plasma based spectrometer system for application to high temperature and high pressure fossil fuel process streams. Two versions are under consideration for development. One is an Inductively Coupled Plasma system that has been described previously, and the other is a high power microwave system. The ICP torch operates on a mixture of argon and helium with a conventional annular swirl flow plasma gas, no auxiliary gas, and a conventional sample stream injection through the base of the plasma plume. A new, demountable torch design comprising three ceramic sections allows bolts passing the length of the torch to compress a double O-ring seal. This improves the reliability of the torch. The microwave system will use the same data acquisition and reduction components as the ICP system; only the plasma source itself is different. It will operate with a 750-Watt, 2.45 gigahertz microwave generator. The plasma discharge will be contained within a narrow quartz tube one quarter wavelength from a shorted waveguide termination. The plasma source will be observed via fiber optics and a battery of computer controlled monochromators. To extract more information from the raw spectral data, a neural net computer program is being developed. This program will calculate analyte concentrations from data that includes analyte and interferant spectral emission intensity. Matrix effects and spectral overlaps can be treated more effectively by this method than by conventional spectral analysis.

  13. Finite element analysis of the dynamic behavior of a laminated windscreen with frequency dependent viscoelastic core.

    PubMed

    Bouayed, Kaïss; Hamdi, Mohamed-Ali

    2012-08-01

    This paper presents numerical and experimental validation of results obtained by a shell finite element, which has been developed for modeling of the dynamic behavior of sandwich multilayered structures with a viscoelastic core. The proposed shell finite element is very easy to implement in existing finite element solvers, since it uses only the displacements as degrees of freedom at external faces and at inter-layer interfaces. The displacement field is linearly interpolated in the thickness direction of each layer, and analytical integration is made in the thickness direction in order to avoid meshing of each sandwich layer by solid elements. Only the two dimensional mid-surface of reference is meshed, facilitating the mesh generation task. A simplified modal approach using a real modal basis is also proposed to efficiently calculate the dynamic response of the sandwich structure. The proposed method reduces the memory size and computing time and takes into account the frequency-dependence of the polymer core mechanical properties. Results obtained by the proposed element in conjunction with the simplified modal method have been numerically and experimentally validated by comparison to results obtained by commercial software codes (MSC/NASTRAN and ESI/RAYON-VTM), and to measurements done on automobile windscreens. PMID:22894198

  14. Behavior of Si impurity in Np-Am-MOX fuel irradiated in the experimental fast reactor Joyo

    NASA Astrophysics Data System (ADS)

    Maeda, Koji; Sasaki, Shinji; Kato, Masato; Kihara, Yoshiyuki

    2009-03-01

    The irradiation behavior of uranium-plutonium mixed oxide fuels containing a large amount of silicon impurity was examined by post-irradiation examination. Influences of Si impurity on fuel restructuring and cladding attack were investigated in detail. Si impurity, along with Am, Pu and O were transported by spherical pores and cylindrical tubular pores to the fuel center during fuel restructuring of the Np-Am-MOX fuel, where a eutectic reaction of fuel and Si-rich inclusions occurred. After fuel restructuring of the Np-Am-MOX fuel, Si-rich inclusions without fuel constituents were agglomerated at fuel crack openings where shallow attacks on the inner wall of the cladding were seen. Such shallow attacks on the inner wall of the cladding were likewise observed near the location of fuel cracks in long-term steady-state irradiated MOX fuels. Evidence of these shallow attacks on the inner wall of the cladding remained after fuel restructuring in normal MOX fuel. However, grain boundary corrosion of the cladding inner wall at the opening of the fuel cracks was selective and was marked in MOX fuel at higher oxygen potential by the release of reactive fission products such as Cs and Te in comparison with other regions of cladding wall.

  15. Applying Thermodynamics to Fossil Fuels: Heats of Combustion from Elemental Compositions.

    ERIC Educational Resources Information Center

    Lloyd, William G.; Davenport, Derek A.

    1980-01-01

    Discussed are the calculations of heats of combustions of some selected fossil fuel compounds such as some foreign shale oils and United States coals. Heating values for coal- and petroleum-derived fuel oils are also presented. (HM)

  16. Effect of fuel quality on slagging behavior in a cyclone-fired boiler

    SciTech Connect

    Katrinak, K.; Laumb, J.; Peterson, W.; Schwalbe, R.

    1998-12-31

    Relationships between the occurrence of poor slag flow episodes at a cyclone-fired boiler, coal mineral content, heating value, and other fuel quality parameters have been investigated. In addition, optimization of boiler operating conditions to match coal quality is the major emphasis of current activities. The boiler fires North Dakota lignite, a highly variable fuel, and experiences intermittent cyclone slagging problems related to coal quality. Cyclone slagging episodes were found to occur when the heating value of the fuel was less than 6600 Btu/lb and the T250 was greater than 2250 F. Higher-Btu coals burn hotter and appear to be able to handle higher T250 values without slagging. Other fuel quality parameters related to cyclone slag flow behavior include high silicon and aluminum concentrations and high concentrations of the silicon- and aluminum-rich clay minerals illite and montmorillonite. These minerals are thought to contribute to cyclone slagging episodes by reducing the ability of the slag to incorporate calcium, thus leading to increased slag viscosity. To improve slag flow behavior, operating conditions have been modified to maintain high temperatures in the cyclones. Changes include increasing coal drying temperature and balancing the air/fuel ratio. T250 can be readily calculated from coal ash composition. Clays and other minerals can be identified in individual coal particles using automated scanning electron microscopy with energy-dispersive X-ray spectrometry. Use of these analytical techniques can enable potential cyclone slagging problems to be predicted in advance.

  17. SAFE: A computer code for the steady-state and transient thermal analysis of LMR fuel elements

    SciTech Connect

    Hayes, S.L.

    1993-12-01

    SAFE is a computer code developed for both the steady-state and transient thermal analysis of single LMR fuel elements. The code employs a two-dimensional control-volume based finite difference methodology with fully implicit time marching to calculate the temperatures throughout a fuel element and its associated coolant channel for both the steady-state and transient events. The code makes no structural calculations or predictions whatsoever. It does, however, accept as input structural parameters within the fuel such as the distributions of porosity and fuel composition, as well as heat generation, to allow a thermal analysis to be performed on a user-specified fuel structure. The code was developed with ease of use in mind. An interactive input file generator and material property correlations internal to the code are available to expedite analyses using SAFE. This report serves as a complete design description of the code as well as a user`s manual. A sample calculation made with SAFE is included to highlight some of the code`s features. Complete input and output files for the sample problem are provided.

  18. Fuel moisture content enhances nonadditive effects of plant mixtures on flammability and fire behavior

    PubMed Central

    Blauw, Luke G; Wensink, Niki; Bakker, Lisette; van Logtestijn, Richard S P; Aerts, Rien; Soudzilovskaia, Nadejda A; Cornelissen, J Hans C

    2015-01-01

    Fire behavior of plant mixtures includes a complex set of processes for which the interactive contributions of its drivers, such as plant identity and moisture, have not yet been unraveled fully. Plant flammability parameters of species mixtures can show substantial deviations of fire properties from those expected based on the component species when burnt alone; that is, there are nonadditive mixture effects. Here, we investigated how fuel moisture content affects nonadditive effects in fire behavior. We hypothesized that both the magnitude and variance of nonadditivity in flammability parameters are greater in moist than in dry fuel beds. We conducted a series of experimental burns in monocultures and 2-species mixtures with two ericaceous dwarf shrubs and two bryophyte species from temperate fire-prone heathlands. For a set of fire behavior parameters, we found that magnitude and variability of nonadditive effects are, on average, respectively 5.8 and 1.8 times larger in moist (30% MC) species mixtures compared to dry (10% MC) mixed fuel beds. In general, the moist mixtures caused negative nonadditive effects, but due to the larger variability these mixtures occasionally caused large positive nonadditive effects, while this did not occur in dry mixtures. Thus, at moister conditions, mixtures occasionally pass the moisture threshold for ignition and fire spread, which the monospecific fuel beds are unable to pass. We also show that the magnitude of nonadditivity is highly species dependent. Thus, contrary to common belief, the strong nonadditive effects in mixtures can cause higher fire occurrence at moister conditions. This new integration of surface fuel moisture and species interactions will help us to better understand fire behavior in the complexity of natural ecosystems. PMID:26380709

  19. TRISO-fuel element thermo-mechanical performance modeling for the hybrid LIFE engine with Pu fuel blanket

    NASA Astrophysics Data System (ADS)

    DeMange, P.; Marian, J.; Caro, M.; Caro, A.

    2010-10-01

    A TRISO-coated fuel thermo-mechanical performance study is performed for the fusion-fission hybrid Laser Inertial Fusion Engine (LIFE) to test the viability of TRISO particles to achieve ultra-high burn-up of Pu or transuranic spent nuclear fuel blankets. Our methodology includes full elastic anisotropy, time and temperature varying material properties, and multilayer capabilities. In order to achieve fast fluences up to 30 × 10 25 n m -2 ( E > 0.18 MeV), judicious extrapolations across several orders of magnitude of existing material databases have been carried out. The results of our study indicate that failure of the pyrolytic carbon (PyC) layers occurs within the first 2 years of operation. The particles then behave as a single-SiC-layer particle and the SiC layer maintains reasonably-low tensile stresses until the end-of-life. It is also found that the PyC creep constant, K, has a striking influence on the fuel performance of TRISO-coated particles, whose stresses scale almost inversely proportional to K. Conversely, varying the geometry of the TRISO-coated fuel particles results in little differences in terms of fuel performance.

  20. Overview of past and current activities on fuels for fast reactors at the Institute for Transuranium Elements

    NASA Astrophysics Data System (ADS)

    Fernandez, A.; McGinley, J.; Somers, J.; Walter, M.

    2009-07-01

    Nuclear energy has the potential to provide a secure and sustainable electricity supply at a competitive price and to make a significant contribution to the reduction of greenhouse gas emissions. The renewal of interest in fast neutron spectra reactors to meet more ambitious sustainable development criteria (i.e., resource maximisation and waste minimisation), opens a favourable framework for R&D activities in this area. The Institute for Transuranium Elements has extensive experience in the fabrication, characterization and irradiation testing (Phénix, Dounreay, Rapsodie) of fast reactor fuels, in oxide, nitride and carbide forms. An overview of these past and current activities on fast reactor fuels is presented.

  1. Comparative finite element analysis of the stress-strain states in three different bonded solid oxide fuel cell seal designs

    NASA Astrophysics Data System (ADS)

    Weil, K. S.; Koeppel, B. J.

    One of the critical issues in designing and fabricating a high performance planar solid oxide fuel cell (pSOFC) stack is the development of the appropriate materials and techniques for hermetically sealing the metal and ceramic components. A second critical issue is ensuring that the brittle ceramic cell constituents, i.e. the electrodes and electrolyte, exhibit high mechanical reliability by mitigating potential sources of thermal-mechanically induced stresses that can lead to fracture during operation and/or shutdown. A foil-based sealing approach is currently being developed that appears to offer good hermeticity and mechanical integrity, while minimizing the generation of high stresses in either of the joint's substrate materials. Based on the concept's viability, demonstrated in prior experimental work, numerical analyses were conducted to evaluate the behavior and benefits of the seal in a configuration prototypic of current pSOFC stack designs. This paper presents recent results from finite element (FE) simulations of a planar cell using the foil-based seal, along with companion analyses of the more conventionally employed glass-ceramic and brazed joints. The stresses and deformations of the components were evaluated at isothermal operating and shutdown temperatures. The results indicate that the foil seal is able to accommodate a significant degree of thermal mismatch strain between the metallic support structure and the ceramic cell via elastic deformations of the foil and plasticity in the foil-to-cell braze layer. Consequently the cell stresses in this type of seal are predicted to be much lower than those in the glass-ceramic and brazed designs, which is expected to lead to improved stack reliability. This ability to accommodate large thermal strain mismatches allows the design requirement of thermal expansion matching between ceramic and metal stack components to be relaxed and expands the list of candidate materials that can be considered for the

  2. Analysis of ignition behavior in a turbocharged direct injection dual fuel engine using propane and methane as primary fuels

    SciTech Connect

    Polk, A. C.; Gibson, C. M.; Shoemaker, N. T.; Srinivasan, K. K.; Krishnan, S. R.

    2011-10-05

    This paper presents experimental analyses of the ignition delay (ID) behavior for diesel-ignited propane and diesel-ignited methane dual fuel combustion. Two sets of experiments were performed at a constant speed (1800 rev/min) using a 4-cylinder direct injection diesel engine with the stock ECU and a wastegated turbocharger. First, the effects of fuel-air equivalence ratios (Ω pilot ∼ 0.2-0.6 and Ω overall ∼ 0.2-0.9) on IDs were quantified. Second, the effects of gaseous fuel percent energy substitution (PES) and brake mean effective pressure (BMEP) (from 2.5 to 10 bar) on IDs were investigated. With constant Ω pilot (> 0.5), increasing Ω overall with propane initially decreased ID but eventually led to premature propane autoignition; however, the corresponding effects with methane were relatively minor. Cyclic variations in the start of combustion (SOC) increased with increasing Ω overall (at constant Ω pilot), more significantly for propane than for methane. With increasing PES at constant BMEP, the ID showed a nonlinear (initially increasing and later decreasing) trend at low BMEPs for propane but a linearly decreasing trend at high BMEPs. For methane, increasing PES only increased IDs at all BMEPs. At low BMEPs, increasing PES led to significantly higher cyclic SOC variations and SOC advancement for both propane and methane. Finally, the engine ignition delay (EID) was also shown to be a useful metric to understand the influence of ID on dual fuel combustion.

  3. Finite element modeling of electromechanical behavior of a dielectric electroactive polymer actuator

    NASA Astrophysics Data System (ADS)

    Deodhar, Aseem; York, Alexander; Hodgins, Micah; Seelecke, Stefan

    2011-04-01

    Dielectric Electroactive Polymers (DEAP) will undergo large deformations when subject to an electric field making them an attractive material for use in novel actuator systems. There are many challenges with successful application and design of DEAP actuators resulting from their inherent electromechanical coupling and non-linear material behavior. FE modeling of the material behavior is a useful tool to better understand such systems and aid in the optimal design of prototypes. These modeling efforts must account for the electromechanical coupling in order to accurately predict their response to multiple loading conditions expected during real operating conditions. This paper presents a Finite Element model of a dielectric elastomer undergoing out-of-plane, axisymmetric deformation. The response of the elastomer was investigated while it was subjected to mechanical and electric fields and combined electro-mechanical actuation. The compliant electrodes have a large effect on the mechanical behavior of the EAP which needs to be taken into consideration while modeling the EAP as a system. The model is adapted to include the effect of electrode stiffness on the mechanical response of the actuator. The model was developed using the commercial Finite Element Modeling software, COMSOL. The results from the mechanical simulations are presented in the form of forcedisplacement curves and are validated with comparisons to experimental results. Electromechanical simulations are carried out and the stroke of the actuator for different electrode stiffness values is compared with experimental values when the EAP is biased with a constant force.

  4. Corrosion behavior of dental alloys used for retention elements in prosthodontics.

    PubMed

    Nierlich, Judith; Papageorgiou, Spyridon N; Bourauel, Christoph; Hültenschmidt, Robert; Bayer, Stefan; Stark, Helmut; Keilig, Ludger

    2016-06-01

    The purpose of this study was to investigate the corrosion behavior of 10 different high noble gold-based dental alloys, used for prosthodontic retention elements, according to ISO 10271. Samples of 10 high-noble and noble gold-based dental alloys were subjected to: (i) static immersion tests with subsequent analysis of ion release for eight different elements using mass spectrometry; (ii) electrochemical tests, including open-circuit potential and potentiodynamic scans; and (iii) scanning electron microscopy, followed by energy-dispersive X-ray microscopy. The results were analyzed using one-way ANOVA and Sidak multiple-comparisons post-hoc test at a level of significance of α = 0.05. Significant differences were found among the 10 alloys studied for all ions (P < 0.001). The potentiodynamic analysis showed values from -82.5 to 102.8 mV for the open-circuit potential and from 566.7 to 1367.5 mV for the breakdown potential. Both the open-circuit and the breakdown potential varied considerably among these alloys. Scanning electron microscopy analysis confirmed the existence of typically small-diameter corrosion defects, whilst the energy-dispersive X-ray analysis found no significant alteration in the elemental composition of the alloys. The results of this study reveal the variability in the corrosive resistance among the materials used for retention elements in prosthodontics. PMID:27061513

  5. Simulation of micromechanical behavior of polycrystals: finite elements vs. fast Fourier transforms

    SciTech Connect

    Lebensohn, Ricardo A; Prakash, Arun

    2009-01-01

    In this work, we compare finite element and fast Fourier transform approaches for the prediction of micromechanical behavior of polycrystals. Both approaches are full-field approaches and use the same visco-plastic single crystal constitutive law. We investigate the texture and the heterogeneity of the inter- and intragranular, stress and strain fields obtained from the two models. Additionally, we also look into their computational performance. Two cases - rolling of aluminium and wire drawing of tungsten - are used to evaluate the predictions of the two mode1s. Results from both the models are similar, when large grain distortions do not occur in the polycrystal. The finite element simulations were found to be highly computationally intensive, in comparison to the fast Fourier transform simulations.

  6. Thermal Behavior of Advanced UO{sub 2} Fuel at High Burnup

    SciTech Connect

    Muller, E.; Lambert, T.; Silberstein, K.; Therache, B.

    2007-07-01

    To improve the fuel performance, advanced UO{sub 2} products are developed to reduce significantly Pellet-Cladding Interaction and Fission Gas Release to increase high burnup safety margins on Light Water Reactors. To achieve the expected improvements, doping elements are currently used, to produce large grain viscoplastic UO{sub 2} fuel microstructures. In that scope, AREVA NP is conducting the qualification of a new UO{sub 2} fuel pellet obtained by optimum chromium oxide doping. To assess the fuel thermal performance, especially the fuel conductivity degradation with increasing burnup and also the kinetics of fission gas release under transient operating conditions, an instrumented in-pile experiment, called REMORA, has been developed by the CEA. One segment base irradiated for five cycles in a French EDF commercial PWR ({approx} 62 GWd/tM) was consequently re-instrumented with a fuel centerline thermocouple and an advanced pressure sensor. The design of this specific sensor is based on the counter-pressure principle and avoids any drift phenomenon due to nuclear irradiation. This rodlet was then irradiated in the GRIFFONOS rig of the Osiris experimental reactor at CEA Saclay. This device, located in the periphery of the core, is designed to perform test under conditions close to those prevailing in French PWR reactor. Power variations are carried out by translating the device relatively to the core. Self - powered neutron detectors are positioned in the loop in order to monitor the power the whole time of the irradiation. The re-irradiation of the REMORA experiment consisted of a stepped ramp to power in order to point out a potential degradation of the fuel thermal conductivity with increasing burnup. During the first part of the irradiation, most of the measurements were performed at low power in order to take into account the irradiation effects on UO{sub 2} thermal conductivity at high burnup in low range of temperature. The second part of the irradiation

  7. Best Practices for Finite Element Analysis of Spent Nuclear Fuel Transfer, Storage, and Transportation Systems

    SciTech Connect

    Bajwa, Christopher S.; Piotter, Jason; Cuta, Judith M.; Adkins, Harold E.; Klymyshyn, Nicholas A.; Fort, James A.; Suffield, Sarah R.

    2010-08-11

    Storage casks and transportation packages for spent nuclear fuel (SNF) are designed to confine SNF in sealed canisters or casks, provide structural integrity during accidents, and remove decay through a storage or transportation overpack. The transfer, storage, and transportation of SNF in dry storage casks and transport packages is regulated under 10 CFR Part 72 and 10 CFR Part 71, respectively. Finite Element Analysis (FEA) is used with increasing frequency in Safety Analysis Reports and other regulatory technical evaluations related to SNF casks and packages and their associated systems. Advances in computing power have made increasingly sophisticated FEA models more feasible, and as a result, the need for careful review of such models has also increased. This paper identifies best practice recommendations that stem from recent NRC review experience. The scope covers issues common to all commercially available FEA software, and the recommendations are applicable to any FEA software package. Three specific topics are addressed: general FEA practices, issues specific to thermal analyses, and issues specific to structural analyses. General FEA practices covers appropriate documentation of the model and results, which is important for an efficient review process. The thermal analysis best practices are related to cask analysis for steady state conditions and transient scenarios. The structural analysis best practices are related to the analysis of casks and associated payload during standard handling and drop scenarios. The best practices described in this paper are intended to identify FEA modeling issues and provide insights that can help minimize associated uncertainties and errors, in order to facilitate the NRC licensing review process.

  8. Initial assessment of radiation behavior of very-high-density low-enriched-uranium fuels.

    SciTech Connect

    Hofman, G. L.; Meyer, M. L.; Snelgrove, J. L.; Dietz, M. L.; Strain, R. V.; Kim, K. H.

    1999-10-01

    Results from the postirradiation examinations of microplates irradiated in the RERTR-1 and -2 experiments in the ATR have shown several binary and ternary U-Mo alloys to be promising candidates for use in aluminum-based dispersion fuels with uranium densities up to 8 to 9 g/cm{sup 3}. Ternary alloys of uranium, niobium, and zirconium performed poorly, however, both in terms of fuel/matrix reaction and fission-gas-bubble behavior, and have been dropped from further study. Since irradiation temperatures achieved in the present experiments (approximately 70 C)are considerably lower than might be experienced in a high-performance reactor, a new experiment is being planned with beginning-of-cycle temperatures greater than 200 C in 8-g U/cm{sup 3} fuel.

  9. Finite Element Simulation of Mechanical Behaviors of Coronary Stent in a Vessel with Plaque

    NASA Astrophysics Data System (ADS)

    Imani, M.; Hojjati, M. H.; Eshghi, N.; Goudarzi, A. M.

    2011-12-01

    The paper presents results of the finite element analysis of a coronary stent used in a treatment of blood vessel stenosis. This analysis is an efficient way to modify the design of stent and its performance. The work focuses on the Medtronic AVE Modular stent S7. A nonlinear model that contains balloon, stent, and vessel with plaque was used. A bi-linear elasto-plastic material model for stent and hyper-elastic material models for balloon, artery, and plaque were assumed for material modeling. Stress distribution, outer diameter changes and bending behavior were investigated.

  10. Behavior of transplutonium elements on thin-layer silica gel using di-2-ethylhexylphosphoric acid

    SciTech Connect

    Molochnikova, N.P.; Myasoedov, B.F.

    1995-03-01

    The behavior of transplutonium elements (TPE) on thin-layer silica gel on domestic sorbphil thin-layer chromatography (TLC) plates is investigated using di-2-ethylhexylphosphoric acid (D2EHPA) solutions in HNO{sub 3} of various concentrations. Conditions are found for separating Bk(IV) from other TPE in solutions with [HNO{sub 3}] > 5 M and also for separating Bk(III) and Ce. Solutions of D2EHPA as the mobile phase are recommended for TLC identification of tracer amounts of different oxidation states Am in HNO{sub 3}.

  11. Suspicious Behavior Detection System for an Open Space Parking Based on Recognition of Human Elemental Actions

    NASA Astrophysics Data System (ADS)

    Inomata, Teppei; Kimura, Kouji; Hagiwara, Masafumi

    Studies for video surveillance applications for preventing various crimes such as stealing and violence have become a hot topic. This paper proposes a new video surveillance system that can detect suspicious behaviors such as a car break-in and vandalization in an open space parking, and that is based on image processing. The proposed system has the following features: it 1)deals time series data flow, 2)recognizes “human elemental actions” using statistic features, and 3)detects suspicious behavior using Subspace method and AdaBoost. We conducted the experiments to test the performance of the proposed system using open space parking scenes. As a result, we obtained about 10.0% for false positive rate, and about 4.6% for false negative rate.

  12. Program ELM: A tool for rapid thermal-hydraulic analysis of solid-core nuclear rocket fuel elements

    NASA Technical Reports Server (NTRS)

    Walton, James T.

    1992-01-01

    This report reviews the state of the art of thermal-hydraulic analysis codes and presents a new code, Program ELM, for analysis of fuel elements. ELM is a concise computational tool for modeling the steady-state thermal-hydraulics of propellant flow through fuel element coolant channels in a nuclear thermal rocket reactor with axial coolant passages. The program was developed as a tool to swiftly evaluate various heat transfer coefficient and friction factor correlations generated for turbulent pipe flow with heat addition which have been used in previous programs. Thus, a consistent comparison of these correlations was performed, as well as a comparison with data from the NRX reactor experiments from the Nuclear Engine for Rocket Vehicle Applications (NERVA) project. This report describes the ELM Program algorithm, input/output, and validation efforts and provides a listing of the code.

  13. Novel, low-cost separator plates and flow-field elements for use in PEM fuel cells

    SciTech Connect

    Edlund, D.J.

    1996-12-31

    PEM fuel cells offer promise for a wide range of applications including vehicular (e.g., automotive) and stationary power generation. The performance and cost targets that must be met for PEM technology to be commercially successful varies to some degree with the application. However, in general the cost of PEM fuel cell stacks must be reduced substantially if they are to see widespread use for electrical power generation. A significant contribution to the manufactured cost of PEM fuel cells is the machined carbon plates that traditionally serve as bipolar separator plates and flow-field elements. In addition, carbon separator plates are inherently brittle and suffer from breakage due to shock, vibration, and improper handling. This report describes a bifurcated separator device with low resistivity, low manufacturing cost, compact size and durability.

  14. Distinct element method analyses of fuel spheres in the PBMR core using PFC{sup 3D}

    SciTech Connect

    Polson, Alexander G.

    2004-07-01

    The Pebble Bed Modular Reactor, or PBMR, is a High Temperature Gas Reactor that contains a large number of graphite fuel spheres that circulate in its core. The dynamics of these spheres, combined with thermal contraction and expansion, causes various loading cases on the reactor structures. A Distinct Element Method, or DEM, as implemented in the Particle Flow Code in 3D, or PFC{sup 3D}, is used at PBMR (Pty) Ltd to model the fuel sphere dynamics in the reactor core. This paper presents a few exploratory studies where PFC{sup 3D} was used to investigate the interaction between fuel spheres and structural components in the PBMR, as well as the packing efficiency of the spheres in the core. (author)

  15. Mechanical Behavior of Free-Standing Fuel Cell Electrodes on Water Surface.

    PubMed

    Kim, Sanwi; Kim, Jae-Han; Oh, Jong-Gil; Jang, Kyung-Lim; Jeong, Byeong-Heon; Hong, Bo Ki; Kim, Taek-Soo

    2016-06-22

    Fundamental understanding of the mechanical behavior of polymer electrolyte fuel cell electrodes as free-standing materials is essential to develop mechanically robust fuel cells. However, this has been a significant challenge due to critical difficulties, such as separating the pristine electrode from the substrate without damage and precisely measuring the mechanical properties of the very fragile and thin electrodes. We report the mechanical behavior of free-standing fuel cell electrodes on the water surface through adopting an innovative ice-assisted separation method to separate the electrode from decal transfer film. It is found that doubling the ionomer content in electrodes increases not only the tensile stress at the break and the Young's modulus (E) of the electrodes by approximately 2.1-3.5 and 1.7-2.4 times, respectively, but also the elongation at the break by approximately 1.5-1.7 times, which indicates that stronger, stiffer, and tougher electrodes are attained with increasing ionomer content, which have been of significant interest in materials research fields. The scaling law relationship between Young's modulus and density (ρ) has been unveiled as E ∼ ρ(1.6), and it is compared with other materials. These findings can be used to develop mechanically robust electrodes for fuel cell applications. PMID:27183314

  16. Radiation dose rates from commercial PWR and BWR spent fuel elements

    SciTech Connect

    Willingham, C.E.

    1981-10-01

    Data on measurements of gamma dose rates from commercial reactor spent fuel were collected, and documented calculated gamma dose rates were reviewed. As part of this study, the gamma dose rate from spent fuel was estimated, using computational techniques similar to previous investigations into this problem. Comparison of the measured and calculated dose rates provided a recommended dose rate in air versus distance curve for PWR spent fuel.

  17. 3D modeling of heat transfer and gas flow in a grooved ring fuel element for nuclear thermal propulsion

    NASA Astrophysics Data System (ADS)

    Barkett, Laura Ashley

    In the past, fuel elements with multiple axial coolant channels have been used in nuclear propulsion applications. A novel fuel element concept that reduces weight and increases efficiency uses a stack of grooved rings. Each fuel ring consists of a hole on the interior and grooves across the top face. Many grooved ring configurations have been modeled, and a single flow channel for each design has been analyzed. For increased efficiency, a fuel ring with a higher surface-area-to-volume ratio is ideal. When grooves are shallower and they have a lower surface area, the results show that the exit temperature is higher. By coupling the physics of fluid flow with those of heat transfer, the effects on the cooler gas flowing through the grooves of the hot, fissioning ring can be predicted. Models also show differences in velocities and temperatures after dense boundary nodes are applied. Parametric studies were done to show how a pressure drop across the length of the channels will affect the exit temperatures of the gas. Geometric optimization was done to show the temperature distributions and pressure drops that result from the manipulation of various parameters, and the effects of model scaling was also investigated. The inverse Graetz numbers are plotted against Nusselt numbers, and the results of these values suggest that the gas quickly becomes fully developed, laminar flow, rather than constant turbulent conditions.

  18. Uncertainty and sensitivity analysis of fission gas behavior in engineering-scale fuel modeling

    NASA Astrophysics Data System (ADS)

    Pastore, Giovanni; Swiler, L. P.; Hales, J. D.; Novascone, S. R.; Perez, D. M.; Spencer, B. W.; Luzzi, L.; Van Uffelen, P.; Williamson, R. L.

    2015-01-01

    The role of uncertainties in fission gas behavior calculations as part of engineering-scale nuclear fuel modeling is investigated using the BISON fuel performance code with a recently implemented physics-based model for fission gas release and swelling. Through the integration of BISON with the DAKOTA software, a sensitivity analysis of the results to selected model parameters is carried out based on UO2 single-pellet simulations covering different power regimes. The parameters are varied within ranges representative of the relative uncertainties and consistent with the information in the open literature. The study leads to an initial quantitative assessment of the uncertainty in fission gas behavior predictions with the parameter characterization presently available. Also, the relative importance of the single parameters is evaluated. Moreover, a sensitivity analysis is carried out based on simulations of a fuel rod irradiation experiment, pointing out a significant impact of the considered uncertainties on the calculated fission gas release and cladding diametral strain. The results of the study indicate that the commonly accepted deviation between calculated and measured fission gas release by a factor of 2 approximately corresponds to the inherent modeling uncertainty at high fission gas release. Nevertheless, significantly higher deviations may be expected for values around 10% and lower. Implications are discussed in terms of directions of research for the improved modeling of fission gas behavior for engineering purposes.

  19. Uncertainty and sensitivity analysis of fission gas behavior in engineering-scale fuel modeling

    SciTech Connect

    Pastore, Giovanni; Swiler, L. P.; Hales, Jason D.; Novascone, Stephen R.; Perez, Danielle M.; Spencer, Benjamin W.; Luzzi, Lelio; Uffelen, Paul Van; Williamson, Richard L.

    2014-10-12

    The role of uncertainties in fission gas behavior calculations as part of engineering-scale nuclear fuel modeling is investigated using the BISON fuel performance code and a recently implemented physics-based model for the coupled fission gas release and swelling. Through the integration of BISON with the DAKOTA software, a sensitivity analysis of the results to selected model parameters is carried out based on UO2 single-pellet simulations covering different power regimes. The parameters are varied within ranges representative of the relative uncertainties and consistent with the information from the open literature. The study leads to an initial quantitative assessment of the uncertainty in fission gas behavior modeling with the parameter characterization presently available. Also, the relative importance of the single parameters is evaluated. Moreover, a sensitivity analysis is carried out based on simulations of a fuel rod irradiation experiment, pointing out a significant impact of the considered uncertainties on the calculated fission gas release and cladding diametral strain. The results of the study indicate that the commonly accepted deviation between calculated and measured fission gas release by a factor of 2 approximately corresponds to the inherent modeling uncertainty at high fission gas release. Nevertheless, higher deviations may be expected for values around 10% and lower. Implications are discussed in terms of directions of research for the improved modeling of fission gas behavior for engineering purposes.

  20. Uncertainty and sensitivity analysis of fission gas behavior in engineering-scale fuel modeling

    DOE PAGESBeta

    Pastore, Giovanni; Swiler, L. P.; Hales, Jason D.; Novascone, Stephen R.; Perez, Danielle M.; Spencer, Benjamin W.; Luzzi, Lelio; Uffelen, Paul Van; Williamson, Richard L.

    2014-10-12

    The role of uncertainties in fission gas behavior calculations as part of engineering-scale nuclear fuel modeling is investigated using the BISON fuel performance code and a recently implemented physics-based model for the coupled fission gas release and swelling. Through the integration of BISON with the DAKOTA software, a sensitivity analysis of the results to selected model parameters is carried out based on UO2 single-pellet simulations covering different power regimes. The parameters are varied within ranges representative of the relative uncertainties and consistent with the information from the open literature. The study leads to an initial quantitative assessment of the uncertaintymore » in fission gas behavior modeling with the parameter characterization presently available. Also, the relative importance of the single parameters is evaluated. Moreover, a sensitivity analysis is carried out based on simulations of a fuel rod irradiation experiment, pointing out a significant impact of the considered uncertainties on the calculated fission gas release and cladding diametral strain. The results of the study indicate that the commonly accepted deviation between calculated and measured fission gas release by a factor of 2 approximately corresponds to the inherent modeling uncertainty at high fission gas release. Nevertheless, higher deviations may be expected for values around 10% and lower. Implications are discussed in terms of directions of research for the improved modeling of fission gas behavior for engineering purposes.« less

  1. Electrolytic reduction of a simulated oxide spent fuel and the fates of representative elements in a Li2O-LiCl molten salt

    NASA Astrophysics Data System (ADS)

    Park, Wooshin; Choi, Eun-Young; Kim, Sung-Wook; Jeon, Sang-Chae; Cho, Young-Hwan; Hur, Jin-Mok

    2016-08-01

    A series of electrolytic reduction experiments were carried out using a simulated oxide spent fuel to investigate the reduction behavior of elements in a mixed oxide condition and the fates of elements in the reduction process with 1.0 wt% Li2O-LiCl. It was found out that 155% of the theoretical charge was enough to reduce the simulated. Te and Eu were expected to possibly exist in the precipitate and on the anode surface, whereas Ba and Sr showed apparent dissolution behaviors. Rare earths showed relatively low metal fractions from 28.2 to 34.0% except for Y. And the solubility of rare earths was observed to be low due to the low concentration of Li2O. The reduction of U was successful as expected showing 99.8% of a metal fraction. Also it was shown that the reduction of ZrO2 would be effective when a relatively small amount was included in a metal oxide mixture.

  2. Taxonomy for Strengthening the Identification of Core Elements for Evidence-Based Behavioral Interventions for HIV/AIDS Prevention

    ERIC Educational Resources Information Center

    Galbraith, Jennifer S.; Herbst, Jeffrey H.; Whittier, David K.; Jones, Patricia L.; Smith, Bryce D.; Uhl, Gary; Fisher, Holly H.

    2011-01-01

    The concept of core elements was developed to denote characteristics of an intervention, such as activities or delivery methods, presumed to be responsible for the efficacy of evidence-based behavioral interventions (EBIs) for HIV/AIDS prevention. This paper describes the development of a taxonomy of core elements based on a literature review of…

  3. Intervertebral disc creep behavior assessment through an open source finite element solver.

    PubMed

    Castro, A P G; Wilson, W; Huyghe, J M; Ito, K; Alves, J L

    2014-01-01

    Degenerative Disc Disease (DDD) is one of the largest health problems faced worldwide, based on lost working time and associated costs. By means of this motivation, this work aims to evaluate a biomimetic Finite Element (FE) model of the Intervertebral Disc (IVD). Recent studies have emphasized the importance of an accurate biomechanical modeling of the IVD, as it is a highly complex multiphasic medium. Poroelastic models of the disc are mostly implemented in commercial finite element packages with limited access to the algorithms. Therefore, a novel poroelastic formulation implemented on a home-developed open source FE solver is briefly addressed throughout this paper. The combination of this formulation with biphasic osmotic swelling behavior is also taken into account. Numerical simulations were devoted to the analysis of the non-degenerated human lumbar IVD time-dependent behavior. The results of the tests performed for creep assessment were inside the scope of the experimental data, with a remarkable improvement of the numerical accuracy when compared with previously published results obtained with ABAQUS(®). In brief, this in-development open-source FE solver was validated with literature experimental data and aims to be a valuable tool to study the IVD biomechanics and DDD mechanisms. PMID:24210477

  4. Mechanical behavior of representative volume elements of lithium-ion battery modules under various loading conditions

    NASA Astrophysics Data System (ADS)

    Lai, Wei-Jen; Ali, Mohammed Yusuf; Pan, Jwo

    2014-02-01

    Mechanical behavior of lithium-ion battery modules is investigated by conducting tensile tests of the module components, constrained compression tests of dry module representative volume element (RVE) specimens, and a constrained punch test of a small-scale dry module specimen. The results of tensile tests of the module components are used to characterize the tensile behavior of module specimens. The results in-plane constrained compression tests of module RVE specimens indicate that the load carrying capacity is characterized by the buckling of the module components and the final densification of the module components, and the nominal stress-strain curves appear to be independent of the specimen height. The results of different compressive nominal stress-strain curves in the in-plane and out-of-plane directions indicate the module RVE specimens are anisotropic. The results of a buckling analysis of the module RVE specimens under in-plane constrained compression are in agreement with the experimental results. The module RVE specimen is dominated by the buckling of the aluminum heat dissipater sheet under in-plane constrained compression. Finally, the results of a constrained punch test of a module specimen are in agreement with those of the corresponding finite element analyses based on a macroscopic homogenized foam material model.

  5. Trace element behavior in hydrothermal experiments: Implications for fluid processes at shallow depths in subduction zones

    NASA Astrophysics Data System (ADS)

    You, C.-F.; Castillo, P. R.; Gieskes, J. M.; Chan, L. H.; Spivack, A. J.

    1996-05-01

    Chemical evaluation of fluids affected during progressive water-sediment interactions provides critical information regarding the role of slab dehydration and/or crustal recycling in subduction zones. To place some constraints on geochemical processes during sediment subduction, reactions between décollement sediments and synthetic NaCl-CaCl 2 solutions at 25-350°C and 800 bar were monitored in laboratory hydrothermal experiments using an autoclave apparatus. This is the first attempt in a single set of experiments to investigate the relative mobilities of many subduction zone volatiles and trace elements but, because of difficulties in conducting hydrothermal experiments on sediments at high P-T conditions, the experiments could only be designed for a shallow (˜ 10 km) depth. The experimental results demonstrate mobilization of volatiles (B and NH 4) and incompatible elements (As, Be, Cs, Li, Pb, Rb) in hydrothermal fluids at relatively low temperatures (˜ 300°C). In addition, a limited fractionation of light from heavy rare earth elements (REEs) occurs under hydrothermal conditions. On the other hand, the high field strength elements (HFSEs) Cr, Hf, Nb, Ta, Ti, and Zr are not mobile in the reacted fluids. The observed behavior of volatiles and trace elements in hydrothermal fluids is similar to the observed enrichment in As, B, Cs, Li, Pb, Rb, and light REEs and depletion in HFSEs in arc magmas relative to magmas derived directly from the upper mantle. Thus, our work suggests a link between relative mobilities of trace elements in hydrothermal fluids and deep arc magma generation in subduction zones. The experimental results are highly consistent with the proposal that the addition of subduction zone hydrous fluids to the subarc mantle, which has been depleted by previous melting events, can produce the unique characteristics of arc magmas. Moreover, the results suggest that deeply subducted sediments may no longer have the composition necessary to generate

  6. A Multi-Dimensional Heat Transfer Model of a Tie-Tube and Hexagonal Fuel Element for Nuclear Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Gomez, C. F.; Mireles, O. R.; Stewart, E.

    2016-01-01

    The Space Capable Cryogenic Thermal Engine (SCCTE) effort considers a nuclear thermal rocket design based around a Low-Enriched Uranium (LEU) design fission reactor. The reactor core is comprised of bundled hexagonal fuel elements that directly heat hydrogen for expansion in a thrust chamber and hexagonal tie-tubes that house zirconium hydride moderator mass for the purpose of thermalizing fast neutrons resulting from fission events. Created 3D steady state Hex fuel rod model with 1D flow channels. Hand Calculation were used to set up initial conditions for fluid flow. The Hex Fuel rod uses 1D flow paths to model the channels using empirical correlations for heat transfer in a pipe. Created a 2-D axisymmetric transient to steady state model using the CFD turbulent flow and Heat Transfer module in COMSOL. This model was developed to find and understand the hydrogen flow that might effect the thermal gradients axially and at the end of the tie tube where the flow turns and enters an annulus. The Hex fuel rod and Tie tube models were made based on requirements given to us by CSNR and the SCCTE team. The models helped simplify and understand the physics and assumptions. Using pipe correlations reduced the complexity of the 3-D fuel rod model and is numerically more stable and computationally more time-efficient compared to the CFD approach. The 2-D axisymmetric tie tube model can be used as a reference "Virtual test model" for comparing and improving 3-D Models.

  7. Acceptance testing of the eddy current probes for measurement of aluminum hydroxide coating thickness on K West Basin fuel elements

    SciTech Connect

    Pitner, A.L.

    1998-08-21

    During a recent visual inspection campaign of fuel elements stored in the K West Basin, it was noted that fuel elements contained in sealed aluminum canisters had a heavy translucent type coating on their surfaces (Pitner 1997a). Subsequent sampling of this coating in a hot cell (Pitner 1997b) and analysis of the material identified it as aluminum hydroxide. Because of the relatively high water content of this material, safety related concerns are raised with respect to long term storage of this fuel in Multi-Canister Overpacks (MCOs). A campaign in the basin is planned to demonstrate whether this coating can be removed by mechanical brushing (Bridges 1998). Part of this campaign involves before-and-after measurements of the coating thickness to determine the effectiveness of coating removal by the brushing machine. Measurements of the as-deposited coating thickness on multiple fuel elements are also expected to provide total coating inventory information needed for MCO safety evaluations. The measurement technique must be capable of measuring coating thicknesses on the order of several mils, with a measurement accuracy of 0.5 mil. Several different methods for quantitatively measuring these thin coatings were considered in selecting the most promising approach. Ultrasonic measurement was investigated, but it was determined that due to the thin coating depth and the high water content of the material, the signal would likely pass directly through to the cladding without ever sensing the coating surface. X-ray fluorescence was also identified as a candidate technique, but would not work because the high gamma background from the irradiated fuel would swamp out the low energy aluminum signal. Laser interferometry could possibly be applied, but considerable development would be required and it was considered to be high risk on a short term basis. The consensus reached was that standard eddy current techniques for coating thickness measurement had the best chance for

  8. Trace elements in the Mississippi River Delta outflow region: Behavior at high discharge

    NASA Astrophysics Data System (ADS)

    Shiller, Alan M.; Boyle, Edward A.

    1991-11-01

    Samples for dissolved trace element analysis were collected in surface waters of the plume of the Mississippi River during a period of high river discharge. These field data are compared with results of laboratory mixing experiments. The studies show that Cu, Ni, and Mo are largely unreactive in the plume. Surprisingly, Fe also appears to show little reactivity; the pronounced flocculation removal of Fe frequently observed in other estuaries is not seen in this system. This difference may be a consequence of the alkaline nature of the Mississippi which results in low dissolved Fe concentrations in the river (<50 nmol/kg). Zinc, another particle-reactive element, also shows little reactivity. This lack of reactivity for Zn, as well as Cu and Ni, is partly a result of the short residence time of plume waters in shallow areas affected by sedimentary interactions. The chromium distribution shows apparent non-conservative behavior indicative of estuarine removal; however, temporal variation in river concentrations is a more likely explanation for this behavior. For some other elements, complex distributions occur as a consequence of the interplay of physical-chemical and/or biological processes with the dynamic mixing regime. For Cd, desorption from the suspended load plays a major role in determining the distribution. However, sedimentary input may also play a role in the spatial variability of Cd. For V, biological uptake in the plume exerts a strong influence on its distribution. At the time of this study, uptake was large enough to consume both the river flux of V as well as a substantial amount of vanadium supplied by the ocean.

  9. Finite Element Modeling of the Behavior of Armor Materials Under High Strain Rates and Large Strains

    NASA Astrophysics Data System (ADS)

    Polyzois, Ioannis

    For years high strength steels and alloys have been widely used by the military for making armor plates. Advances in technology have led to the development of materials with improved resistance to penetration and deformation. Until recently, the behavior of these materials under high strain rates and large strains has been primarily based on laboratory testing using the Split Hopkinson Pressure Bar apparatus. With the advent of sophisticated computer programs, computer modeling and finite element simulations are being developed to predict the deformation behavior of these metals for a variety of conditions similar to those experienced during combat. In the present investigation, a modified direct impact Split Hopkinson Pressure Bar apparatus was modeled using the finite element software ABAQUS 6.8 for the purpose of simulating high strain rate compression of specimens of three armor materials: maraging steel 300, high hardness armor (HHA), and aluminum alloy 5083. These armor materials, provided by the Canadian Department of National Defence, were tested at the University of Manitoba by others. In this study, the empirical Johnson-Cook visco-plastic and damage models were used to simulate the deformation behavior obtained experimentally. A series of stress-time plots at various projectile impact momenta were produced and verified by comparison with experimental data. The impact momentum parameter was chosen rather than projectile velocity to normalize the initial conditions for each simulation. Phenomena such as the formation of adiabatic shear bands caused by deformation at high strains and strain rates were investigated through simulations. It was found that the Johnson-Cook model can accurately simulate the behavior of body-centered cubic (BCC) metals such as steels. The maximum shear stress was calculated for each simulation at various impact momenta. The finite element model showed that shear failure first occurred in the center of the cylindrical specimen and

  10. Using fine-scale fuel measurements to assess wildland fuels, potential fire behavior and hazard mitigation treatments in the southeastern USA.

    SciTech Connect

    Ottmar, Roger, D.; Blake, John, I.; Crolly, William, T.

    2012-01-01

    The inherent spatial and temporal heterogeneity of fuelbeds in forests of the southeastern United States may require fine scale fuel measurements for providing reliable fire hazard and fuel treatment effectiveness estimates. In a series of five papers, an intensive, fine scale fuel inventory from the Savanna River Site in the southeastern United States is used for building fuelbeds and mapping fire behavior potential, evaluating fuel treatment options for effectiveness, and providing a comparative analysis of landscape modeled fire behavior using three different data sources including the Fuel Characteristic Classification System, LANDFIRE, and the Southern Wildfire Risk Assessment. The research demonstrates that fine scale fuel measurements associated with fuel inventories repeated over time can be used to assess broad scale wildland fire potential and hazard mitigation treatment effectiveness in the southeastern USA and similar fire prone regions. Additional investigations will be needed to modify and improve these processes and capture the true potential of these fine scale data sets for fire and fuel management planning.

  11. Transfer of elements relevant to nuclear fuel cycle from soil to boreal plants and animals in experimental meso- and microcosms.

    PubMed

    Tuovinen, Tiina S; Kasurinen, Anne; Häikiö, Elina; Tervahauta, Arja; Makkonen, Sari; Holopainen, Toini; Juutilainen, Jukka

    2016-01-01

    Uranium (U), cobalt (Co), molybdenum (Mo), nickel (Ni), lead (Pb), thorium (Th) and zinc (Zn) occur naturally in soil but their radioactive isotopes can also be released into the environment during the nuclear fuel cycle. The transfer of these elements was studied in three different trophic levels in experimental mesocosms containing downy birch (Betula pubescens), narrow buckler fern (Dryopteris carthusiana) and Scandinavian small-reed (Calamagrostis purpurea ssp. Phragmitoides) as producers, snails (Arianta arbostorum) as herbivores, and earthworms (Lumbricus terrestris) as decomposers. To determine more precisely whether the element uptake of snails is mainly via their food (birch leaves) or both via soil and food, a separate microcosm experiment was also performed. The element uptake of snails did not generally depend on the presence of soil, indicating that the main uptake route was food, except for U, where soil contact was important for uptake when soil U concentration was high. Transfer of elements from soil to plants was not linear, i.e. it was not correctly described by constant concentration ratios (CR) commonly applied in radioecological modeling. Similar nonlinear transfer was found for the invertebrate animals included in this study: elements other than U were taken up more efficiently when element concentration in soil or food was low. PMID:26363398

  12. Transmutation Fuel Performance Code Conceptual Design

    SciTech Connect

    Gregory K. Miller; Pavel G. Medvedev

    2007-03-01

    One of the objectives of the Global Nuclear Energy Partnership (GNEP) is to facilitate the licensing and operation of Advanced Recycle Reactors (ARRs) for transmutation of the transuranic elements (TRU) present in spent fuel. A fuel performance code will be an essential element in the licensing process ensuring that behavior of the transmutation fuel elements in the reactor is understood and predictable. Even more important in the near term, a fuel performance code will assist substantially in the fuels research and development, design, irradiation testing and interpretation of the post-irradiation examination results.

  13. Analysis of the leaching behavior of elements from coal combustion residues for better management.

    PubMed

    Kumar, Ashvani; Samadder, S R

    2015-06-01

    In this study, fly ash, pond ash, bottom ash, slurry ash, raw water, pond water, and slurry samples were collected from Bokaro Thermal Power Plant, Bokaro, Jharkhand, India, and studied for the leachability of different elements by acid digestion and shake test at different liquid to solid (L/S) ratios. The raw water, pond water, slurry water, and leachates of acid digestion and shake tests were analyzed for the elements sodium (Na), potassium (K), calcium (Ca), iron (Fe), copper (Cu), cobalt (Co), manganese (Mn), cadmium (Cd), zinc (Zn), lead (Pb), nickel (Ni), and chromium (Cr). Shake test results confirmed that the water got saturated when the L/S ratio was equal to or above 10, indicating no further increase in concentration of elements at the L/S ratio of 10. Leaching behavior of Na from pond ash was not understood in the present study. In the study, the chemical composition showed that all the four types of ashes contain a small fraction of CaO (about 0.37 to 0.90 % by weight) and very high contents of SiO2 (about 55.14 to 58.34 % by weight) and Al2O3 (about 29.44 to 32.81 % by weight) that are the major composition of Portland cement. The study will help to understand the leachability potential of harmful elements present in fly ash, pond ash, bottom ash, and slurry ash under natural conditions and to take regulatory measures to protect the surface water, groundwater, and soil environment. PMID:26002341

  14. Dual-Fuel Fluidized Bed Combustor Prototype for Residential Heating: Steady-State and Dynamic Behavior

    NASA Astrophysics Data System (ADS)

    Cammarota, Antonio; Chirone, Riccardo; Miccio, Michele; Sollmene, Roberto; Urcluohr, Massimo

    Fluidized bed combustion of biogenic fuels can be recognized as an attractive option for an ecologically sustainable use of biofuels in residential applications. Nevertheless, biomass combustion in fluidized bed reactors presents some drawbacks that are mainly related to mixing/segregation of fuel particles/volatile matter during devolatilization inside the bed and in the freeboard or to bed agglomeration. A prototype of a 30-50 kWth fluidized bed boiler for residential heating has been designed to burn either a gaseous combustible or a solid biomass fuel or both fuels at the same time. The prototype has been equipped with a gas burner located in the wind-box to optimize the start-up stage of the boiler and with a fluidized bed characterized by a conical geometry ("Gulf Stream" circulation) to improve the mixing of the fuel particles during both devolatilization and char burn-out. The operation of the combustor adopting wood pellets as fuel has been investigated to evaluate their use in residential combustion applications. Steady-state thermally stable regimes of operation have been recognized analyzing both boiler temperatures and gaseous emissions. The optimization of the steady-state operation of the boiler in terms of gaseous emissions has been achieved by varying the nominal thermal power and air excess. An ad-hoc experimental campaign has been carried out to analyze the dynamic performance of the prototype as a response to changes of the demanded thermal power. On the basis of the experimental data, an interpretation of the dynamic behavior of the fluidized bed boiler has been proposed.

  15. Postirradiation examination of HTR fuel

    SciTech Connect

    Nabielek, H.; Reitsamer, G.; Kania, M.J.

    1986-01-01

    Fuel for the High Temperature Reactor (HTR) consists of 1 mm diameter coated particles uniformly distributed in a graphite matrix within a cold-molded 60 mm diameter spherical fuel element. Fuel performance demonstrations under simulated normal operation conditions are conducted in accelerated neutron environments available in Material Test Reactors and in real-time environments such as the Arbeitsgemeinschaft Versuchsreaktor (AVR) Juelich. Postirradiation examinations are then used to assess fuel element behavior and the detailed performance of the coated particles. The emphasis in postirradiation examination and accident testing is on assessment of the capability for fuel elements and individual coated particles to retain fission products and actinide fuel materials. To accomplish this task, techniques have been developed which measures fission product and fuel material distributions within or exterior to the particle: Hot Gas Chlorination - provides an accurate method to measure total fuel material concentration outside intact particles; Profile Electrolytic Deconsolidation - permits determination of fission product distribution along fuel element diameter and retrieval of fuel particles from positions within element; Gamma Spectrometry - provides nondestructive method to measure defect particle fractions based on retention of volatile metallic fission products; Particle Cracking - permits a measure of the partitioning of fission products between fuel kernel and particle coatings, and the derivation of diffusion parameters in fuel materials; Micro Gas Analysis - provides gaseous fission product and reactive gas inventory within free volume of single particles; and Mass-spectrometric Burnup Determination - utilizes isotope dilution for the measurement of heavy metal isotope abundances.

  16. Explorative First-Principles Simulation Study of Mineral - Melt Trace Element Partitioning Behavior

    NASA Astrophysics Data System (ADS)

    Wagner, J.; Jahn, S.

    2014-12-01

    Knowledge of trace element partition coefficients is crucial for a range of geoscientific applications. Obtaining the necessary experimental data is still a challenging and time consuming task, as the relevant processes typically take place under extreme P/T conditions. In this study, we explore a molecular scale simulation approach to predict mineral-melt partitioning. We use first principles molecular dynamics to investigate the rare earth element Y in the system garnet - melt, with focus on the influence of the melt. To predict the free energy change of the exchange reaction when Y is distributed between two phases, the method of thermodynamic integration is employed. Here we use an alchemical transmutation by which the identity (here expressed by its pseudopotential parameters) of a major element is gradually changed, in our case from 100% Al to 100% Y. The free energy change in turn enables us to predict the phase Y will partition into, as has been done previously for a CaO-Al2O3-SiO2-Y2O3 model system, employing classical force field simulations1. A major advantage of a molecular dynamics approach is that simulations contain information about the melt structure itself, thus enabling us to link observations to structural changes, e.g. a shift of average Y-O coordination number as a function of network connectivity. We choose a garnet-rich peridotite and a mid-ocean ridge basalt as starting compositions. After both melts are equilibrated at 3000 K and ambient pressure, we perform the thermodynamic integration and compare the free energy of the exchange reaction. The first results suggest that it is possible to at least qualitatively predict the behavior of Y in the two model systems, as compared to experimental findings. We will discuss the potential of the method to make quantitative predictions and how the effect of P and T can be evaluated. Potentially, this new tool may allow us to make predictions for almost any composition and condition available to

  17. Simulation of the irradiation-induced micro-thermo-mechanical behaviors evolution in ADS nuclear fuel pellets

    NASA Astrophysics Data System (ADS)

    Ding, Shurong; Zhao, Yunmei; Wan, Jibo; Gong, Xin; Wang, Canglong; Yang, Lei; Huo, Yongzhong

    2013-11-01

    An Accelerator Driven System (ADS) is dedicated to Minor Actinides (MA) transmutation. The fuels for ADS are highly innovative, which are composite fuel pellets with the fuel particles containing MA phases dispersed in a MgO or Mo matrix. Assuming that the fuel particles are distributed periodically in the MgO matrix, a three-dimensional finite element model is developed. The three-dimensional incremental large-deformation constitutive relations for the fuel particles and matrix are separately built, and a method is accordingly constructed to implement simulation of the micro-thermo-mechanical behaviors evolution. Evolutions of the temperature and mechanical fields are given and discussed. With irradiation creep included in the MgO matrix constitutive relation, the conclusions can be drawn as that (1) irradiation creep has a remarkable effect on the mechanical behaviors evolution in the matrix; (2) irradiation creep plays an important role in the damage mechanism interpretation of ceramic matrix fuel pellets. Thermal conductivity The thermal conductivity model is adopted as KUO2 = K0·FD·FP·FM·FR, which was proposed by Lucuta et al. [10] to adapt to the high burnup conditions with consideration of the effects of temperature, burnup, porosity and fission products. K0 is the thermal conductivity of fully dense un-irradiated UO2, as Eq. (1) in W/m K; FD, FP are the adjust factors reflecting the effects of dissolved and precipitated fission products; FM and FR are factors due to porosity and irradiation effects. The adopted thermal conductivity varies with temperature and burnup, which expresses its degradation with burnup, with the terms as k0={1}/{0.0375+2.165×10-4T}+{4.715×109}/{T2}exp-{16361}/{T} FD={1.09}/{B3.265}+{0.0643}/{√{B}}√{T}artan{1}/{1.09/B3.265}+{0.0643}/{√{B}}√{T} FP=1+0.019B/3-0.019B{1}/{1+exp(1200-T100)} FM={1-P}/{1+(s-1)P} FR=1-{0.2}/{1+expT-90080} Thermal expansion The engineering strain of thermal expansion [11] is given as {ΔL}/{L0

  18. Fuel element design for the enhanced destruction of plutonium in a nuclear reactor

    DOEpatents

    Crawford, Douglas C.; Porter, Douglas L.; Hayes, Steven L.; Hill, Robert N.

    1999-01-01

    A uranium-free fuel for a fast nuclear reactor comprising an alloy of Pu, Zr and Hf, wherein Hf is present in an amount less than about 10% by weight of the alloy. The fuel may be in the form of a Pu alloy surrounded by a Zr--Hf alloy or an alloy of Pu--Zr--Hf or a combination of both.

  19. Fuel element design for the enhanced destruction of plutonium in a nuclear reactor

    DOEpatents

    Crawford, D.C.; Porter, D.L.; Hayes, S.L.; Hill, R.N.

    1999-03-23

    A uranium-free fuel for a fast nuclear reactor comprising an alloy of Pu, Zr and Hf, wherein Hf is present in an amount less than about 10% by weight of the alloy. The fuel may be in the form of a Pu alloy surrounded by a Zr--Hf alloy or an alloy of Pu--Zr--Hf or a combination of both. 7 figs.

  20. Emission estimates of organic and elemental carbon from household biomass fuel used over the Indo-Gangetic Plain (IGP), India

    NASA Astrophysics Data System (ADS)

    Saud, T.; Gautam, R.; Mandal, T. K.; Gadi, Ranu; Singh, D. P.; Sharma, S. K.; Dahiya, Manisha; Saxena, M.

    2012-12-01

    Biomass burning emits large amount of aerosols and trace gases into the atmosphere, which have significant impact on atmospheric chemistry and climate. In the present study, we have selected seven Indian states (Delhi, Punjab, Haryana, Uttar Pradesh, Uttarakhand, Bihar and West Bengal) over the IGP, India. Samples of biomass fuel (Fuel Wood, Crop Residue and Dung Cake) from rural household have been collected (Saud et al., 2011a). The burning process has been simulated using a dilution sampler following the methodology developed by Venkatraman et al. (2005). In the present study, emission factor represents the total period of burning including pyrolysis, flaming and smoldering. We have determined the emission factors of organic carbon (OC) and elemental carbon (EC) from different types of biomass fuels collected over the study area. Average emission factors of OC from dung cake, fuel wood and crop residue over IGP, India are estimated as 3.87 ± 1.09 g kg-1, 0.95 ± 0.27 g kg-1, 1.46 ± 0.73 g kg-1, respectively. Similarly, average emission factors of EC from dung cake, fuel wood and crop residue over IGP, India are found to be 0.49 ± 0.25 g kg-1, 0.35 ± 0.07 g kg-1 and 0.37 ± 0.14 g kg-1, respectively. Dung cake and crop residue are normally not used in Uttarakhand. Annual budget of OC and EC from biomass fuels used as energy in rural households of IGP, India is estimated as 361.96 ± 170.18 Gg and 56.44 ± 29.06 Gg respectively. This study shows the regional emission inventory from Indian scenario with spatial variability.

  1. Homogenized finite element analysis on effective elastoplastic mechanical behaviors of composite with imperfect interfaces.

    PubMed

    Jiang, Wu-Gui; Zhong, Ren-Zhi; Qin, Qing H; Tong, Yong-Gang

    2014-01-01

    A three-dimensional (3D) representative volume element (RVE) model was developed for analyzing effective mechanical behavior of fiber-reinforced ceramic matrix composites with imperfect interfaces. In the model, the fiber is assumed to be perfectly elastic until its tensile strength, and the ceramic material is modeled by an elasto-plastic Drucker-Prager constitutive law. The RVE model is then used to study the elastic properties and the tensile strength of composites with imperfect interfaces and validated through experiments. The imperfect interfaces between the fiber and the matrix are taken into account by introducing some cohesive contact surfaces. The influences of the interface on the elastic constants and the tensile strengths are examined through these interface models. PMID:25522170

  2. Discrete Meso-Element Simulation of Failure Behavior of Short-Fiber Composites under Shock Loading

    NASA Astrophysics Data System (ADS)

    Tang, Z. P.; Liu, Wenyan; Liu, Yunxin

    1999-06-01

    Recent years, it was paid more attention to better understanding the failure behavior and mechanism of heterogeneous materials at meso- scale level. In this paper, the crack initiation and development in epoxy composite reinforced with short steel fibre under dynamic loading were simulated and analyzed with 2D Discrete Meso-Element Dynamic Method. Results show that cracks initiate at the tips of fibres on the Loading side where stress concentrates. The effective strength of the composite sample is related to shape, orientation, weight percentage of the fibres, and particularly, the bonding strength between fibre and matrix. In the case of low bonding strength, the crack will propagate along the fibre and finally penetrate the whole sample. The differences compared with static loading are also discussed.

  3. [Leaching behavior of heavy metal elements in lead-free solders].

    PubMed

    Zhao, Jie; Meng, Xian-ming; Chen, Chen; Zang, Hua-xun; Ma, Hai-Tao

    2008-08-01

    Leaching behavior of heavy metal elements from Sn-3.5 Ag-0.5 Cu, Sn-3.5 Ag, Sn-0.5 Cu lead-free solders and their joints were investigated in typical acid, alkaline and saline corrosion solutions. It is found that for solder alloys, significant leaching of Sn was observed in NaCl saline solution, about two orders of magnitude higher than that in acid and alkaline solution. However, in the case of solder joints, more leaching of Sn was observed in acid solution from Sn-3.5 Ag/Cu and Sn-0.5 Cu/Cu joints, and in NaOH alkaline solution for Sn-3.5 Ag - 0.5 Cu joint. PMID:18839597

  4. Homogenized Finite Element Analysis on Effective Elastoplastic Mechanical Behaviors of Composite with Imperfect Interfaces

    PubMed Central

    Jiang, Wu-Gui; Zhong, Ren-Zhi; Qin, Qing H.; Tong, Yong-Gang

    2014-01-01

    A three-dimensional (3D) representative volume element (RVE) model was developed for analyzing effective mechanical behavior of fiber-reinforced ceramic matrix composites with imperfect interfaces. In the model, the fiber is assumed to be perfectly elastic until its tensile strength, and the ceramic material is modeled by an elasto-plastic Drucker-Prager constitutive law. The RVE model is then used to study the elastic properties and the tensile strength of composites with imperfect interfaces and validated through experiments. The imperfect interfaces between the fiber and the matrix are taken into account by introducing some cohesive contact surfaces. The influences of the interface on the elastic constants and the tensile strengths are examined through these interface models. PMID:25522170

  5. Binary rare earth element-Ni/Co metallic glasses with distinct β-relaxation behaviors

    SciTech Connect

    Zhu, Z. G.; Wang, Z.; Wang, W. H.

    2015-10-21

    We report the formation of a series of rare earth element (RE)-Ni/Co binary metallic glasses (MGs) with unusual distinct β-relaxation peak compared with that of most of the reported MGs which usually exhibit as an excess wing or a shoulder. The β-relaxation behavior of RE-Ni/Co MGs is sensitive to the composition and the atomic radii of the RE and can be tuned through changing the fraction of RE-Ni (or Co) atomic pairs. The novel RE-Ni/Co MGs with distinct β-relaxation can serve as model system to investigate the nature of the β-relaxation as well as its relations with other physical and mechanical properties of MGs.

  6. Investigation on "saw-tooth" behavior of PEM fuel cell performance during shutdown and restart cycles

    NASA Astrophysics Data System (ADS)

    Qi, Zhigang; Tang, Hao; Guo, Qunhui; Du, Bin

    It was sometimes observed that the performance of a proton-exchange membrane fuel cell improved after the cell went through shutdown and restart cycles. Such a performance recovery led to a "saw-tooth" performance pattern when multiple shutdowns and restarts occurred during the endurance test of a fuel cell. The shutdowns included both planned shutdowns and unintended ones due to station trips or emergency stops (E-stops). The length of the shutdown periods ranged from a few minutes to several weeks. Although such a "saw-tooth" behavior could be attributed to multiple reasons such as: (1) catalyst surface oxidation state change; (2) catalyst surface cleansing; or (3) water management, we found that it was mainly related to water management in our cases after a systematic investigation employing both single cells and stacks.

  7. Criticality Safety of Low-Enriched Uranium and High-Enriched Uranium Fuel Elements in Heavy Water Lattices

    SciTech Connect

    Pesic, Milan P

    2003-10-15

    The RB reactor was designed as a natural-uranium, heavy water, nonreflected critical assembly in the Vinca Institute of Nuclear Sciences, Belgrade, Yugoslavia, in 1958. From 1962 until 2002, numerous critical experiments were carried out with low-enriched uranium and high-enriched uranium fuel elements of tubular shape, known as the Russian TVR-S fuel assembly type, placed in various heavy water square lattices within the RB cylindrical aluminum tank. Some of these well-documented experiments were selected, described, evaluated, and accepted for inclusion in the 'International Handbook of Evaluated Criticality Safety Benchmark Experiments', contributing to the preservation of a rather small number of heavy water benchmark critical experiments.

  8. Finite Element Modeling to Simulate the Elasto-Plastic Behavior of Polycrystalline in 718

    NASA Astrophysics Data System (ADS)

    Bonifaz, E. A.

    2013-01-01

    A 3D strain gradient plasticity finite element model was developed to simulate the elasto-plastic behavior of polycrystalline IN 718 alloys. The proposed model constructed in the basis of the so-called Kocks-Mecking model is used to determine the influence of microstructure attributes on the inelastic stress-strain distribution. Representative Volume Elements (RVEs) of different edge size but similar grain morphology and affordable computational meshes were tested to investigate the link between micro and macro variables of deformation and stress. The virtual specimens subjected to continuous monotonic straining loading conditions were constrained with random periodic boundary conditions. The difference in crystallographic orientation (which evolves in the process of straining) and the incompatibility of deformation between neighboring grains were accounted by the introduction of averaged Taylor factors and the evolution of geometrically necessary dislocation density. The effect of plastic deformation gradients imposed by the microstructure is clearly observed. Results demonstrate a strong dependence of flow stress and plastic strain on phase type and grain size. A main strategy for constitutive modeling of individual bulk grains is presented. The influence of the grain size on the aggregate response, in terms of local stress variations and aggregate elastic moduli was analyzed. It was observed that the elastic modulus in the bulk material is not dependent on grain size.

  9. The chemical behavior of the transuranic elements and the barrier function in natural aquifer systems

    SciTech Connect

    Jewett, J.R.

    1997-09-17

    In a geological repository for long-lived radioactive wastes, such as actinides and certain fission products, most of the stored radionuclides remain immobile in the particular geological formation. If any of these could possibly become mobile, only trace concentrations of a few radionuclides would result. Nevertheless, with an inventory in the repository of many tonnes of transuranic elements, the amounts that could disperse cannot be neglected. A critical assessment of the chemical behavior of these nuclides, especially their migration properties in the aquifer system around the repository site, is mandatory for analysis of the long-term safety. The chemistry requited for this includes many geochemical multicomponent reactions that are so far only partially understood and [which] therefore can be quantified only incompletely. A few of these reactions have been discussed in this paper based on present knowledge. If a comprehensive discussion of the subject is impossible because of this [lack of information], then an attempt to emphasize the importance of the predominant geochemical reactions of the transuranic elements in various aquifer systems should be made.

  10. Melting behavior of MgO-based inert matrix fuels containing (Pu,Am)O 2-x

    NASA Astrophysics Data System (ADS)

    Miwa, Shuhei; Sato, Isamu; Tanaka, Kosuke; Hirosawa, Takashi; Osaka, Masahiko

    2010-05-01

    The melting behavior of MgO-based inert matrix fuels containing (Pu,Am)O 2-x ((Pu,Am)O 2-x-MgO fuels) was experimentally investigated. Heat-treatment tests were carried out at 2173 K, 2373 K and 2573 K each. The fuel melted at about 2573 K in the eutectic reaction of the Pu-Am-Mg-O system. The (Pu,Am)O 2-x grains, MgO grains and pores grew with increasing temperature. In addition, Am-rich oxide phases were formed in the (Pu,Am)O 2-x phase by heat-treatment at high temperatures. The melting behavior was compared with behaviors of PuO 2-x-MgO and AmO 2-x-MgO fuels.

  11. Influence of superstructure geometry on the mechanical behavior of zirconia implant abutments: a finite element analysis.

    PubMed

    Geringer, Alexander; Diebels, Stefan; Nothdurft, Frank P

    2014-12-01

    To predict the clinical performance of zirconia abutments, it is crucial to examine the mechanical behavior of different dental implant-abutment connection configurations. The international standard protocol for dynamic fatigue tests of dental implants (ISO 14801) allows comparing these configurations using standardized superstructure geometries. However, from a mechanical point of view, the geometry of clinical crowns causes modified boundary conditions. The purpose of this finite element (FE) study was to evaluate the influence of the superstructure geometry on the maximum stress values of zirconia abutments with a conical implant-abutment connection. Geometry models of the experimental setup described in ISO 14801 were generated using CAD software following the reconstruction of computerized tomography scans from all relevant components. These models served as a basis for an FE simulation. To reduce the numerical complexity of the FE model, the interaction between loading stamp and superstructure geometry was taken into account by defining the boundary conditions with regard to the frictional force. The results of the FE simulations performed on standardized superstructure geometry and anatomically shaped crowns showed a strong influence of the superstructure geometry and related surface orientations on the mechanical behavior of the underlying zirconia abutments. In conclusion, ISO testing of zirconia abutments should be accompanied by load-bearing capacity testing under simulated clinical conditions to predict clinical performance. PMID:25029078

  12. An Investigation into the Effect of Alloying Elements on the Recrystallization Behavior of 70/30 Brass

    NASA Astrophysics Data System (ADS)

    Shafiei M, A.; Roshanghias, A.; Abbaszadeh, H.; Akbari, G. H.

    2010-06-01

    An Artificial Neural Network (ANN) model has been designed for predicting the effects of alloying elements (Fe, Si, Al, Mn) on the recrystallization behavior and microstructural changes of 70/30 brass. The model introduced here considers the content of alloying elements, temperature, and time of recrystallization as inputs while percent of recrystallization is presented as output. It is shown that the designed model is able to predict the effect of alloying elements well. It is also shown that all alloying elements strongly affect the recrytallization kinetics, and all slow down the recrystallization process. The effect of alloying elements on the activation energy for recrystallization has also been investigated. The results show that Si is the element which increases the activation energy.

  13. The study of wear behaviors on abducted hip joint prostheses by an alternate finite element approach.

    PubMed

    Lin, Yi-Tsung; Wu, James Shih-Shyn; Chen, Jian-Horng

    2016-07-01

    An acetabular cup with larger abduction angles is able to affect the normal function of the cup seriously that may cause early failure of the total hip replacement (THR). Complexity of the finite element (FE) simulation in the wear analysis of the THR is usually concerned with the contact status, the computational effort, and the possible divergence of results, which become more difficult on THRs with larger cup abduction angles. In the study, we propose a FE approach with contact transformation that offers less computational effort. Related procedures, such as Lagrangian Multiplier, partitioned matrix inversion, detection of contact forces, continuity of contact surface, nodal area estimation, etc. are explained in this report. Through the transformed methodology, the computer round-off error is tremendously reduced and the embedded repetitive procedure can be processed precisely and quickly. Here, wear behaviors of THR with various abduction angles are investigated. The most commonly used combination, i.e., metal-on-polyethylene, is adopted in the current study where a cobalt-chromium femoral head is paired with an Ultra High Molecular Weight Polyethylene (UHMWPE) cup. In all illustrations, wear coefficients are estimated by self-averaging strategy with available experimental datum reported elsewhere. The results reveal that the THR with larger abduction angles may produce deeper depth of wear but the volume of wear presents an opposite tendency; these results are comparable with clinical and experimental reports. The current approach can be widely applied easily to fields such as the study of the wear behaviors on ante-version, impingement, and time-dependent behaviors of prostheses etc. PMID:27265055

  14. Flow tests of a single fuel element coolant channel for a compact fast reactor for space power

    NASA Technical Reports Server (NTRS)

    Springborn, R. H.

    1971-01-01

    Water flow tests were conducted on a single-fuel-element cooling channel for a nuclear concept to be used for space power. The tests established a method for measuring coolant flow rate which is applicable to water flow testing of a complete mockup of the reference reactor. The inlet plenum-to-outlet plenum pressure drop, which approximates the overall core pressure drop, was measured and correlated with flow rate. This information can be used for reactor coolant flow and heat transfer calculations. An analytical study of the flow characteristics was also conducted.

  15. A new code for predicting the thermo-mechanical and irradiation behavior of metallic fuels in sodium fast reactors

    NASA Astrophysics Data System (ADS)

    Karahan, Aydın; Buongiorno, Jacopo

    2010-01-01

    An engineering code to predict the irradiation behavior of U-Zr and U-Pu-Zr metallic alloy fuel pins and UO2-PuO2 mixed oxide fuel pins in sodium-cooled fast reactors was developed. The code was named Fuel Engineering and Structural analysis Tool (FEAST). FEAST has several modules working in coupled form with an explicit numerical algorithm. These modules describe fission gas release and fuel swelling, fuel chemistry and restructuring, temperature distribution, fuel-clad chemical interaction, and fuel and clad mechanical analysis including transient creep-fracture for the clad. Given the fuel pin geometry, composition and irradiation history, FEAST can analyze fuel and clad thermo-mechanical behavior at both steady-state and design-basis (non-disruptive) transient scenarios. FEAST was written in FORTRAN-90 and has a simple input file similar to that of the LWR fuel code FRAPCON. The metal-fuel version is called FEAST-METAL, and is described in this paper. The oxide-fuel version, FEAST-OXIDE is described in a companion paper. With respect to the old Argonne National Laboratory code LIFE-METAL and other same-generation codes, FEAST-METAL emphasizes more mechanistic, less empirical models, whenever available. Specifically, fission gas release and swelling are modeled with the GRSIS algorithm, which is based on detailed tracking of fission gas bubbles within the metal fuel. Migration of the fuel constituents is modeled by means of thermo-transport theory. Fuel-clad chemical interaction models based on precipitation kinetics were developed for steady-state operation and transients. Finally, a transient intergranular creep-fracture model for the clad, which tracks the nucleation and growth of the cavities at the grain boundaries, was developed for and implemented in the code. Reducing the empiricism in the constitutive models should make it more acceptable to extrapolate FEAST-METAL to new fuel compositions and higher burnup, as envisioned in advanced sodium reactors

  16. Mechanical behavior of aluminum-bearing ferritic alloys for accident-tolerant fuel cladding applications

    NASA Astrophysics Data System (ADS)

    Guria, Ankan

    Nuclear power currently provides about 13% of electrical power worldwide. Nuclear reactors generating this power traditionally use Zirconium (Zr) based alloys as the fuel cladding material. Exothermic reaction of Zr with steam under accident conditions may lead to production of hydrogen with the possibility of catastrophic consequences. Following the Fukushima-Daiichi incident, the exploration of accident-tolerant fuel cladding materials accelerated. Aluminum-rich (around 5 wt. %) ferritic steels such as Fecralloy, APMT(TM) and APM(TM) are considered as potential materials for accident-tolerant fuel cladding applications. These materials create an aluminum-based oxide scale protecting the alloy at elevated temperatures. Tensile deformation behavior of the above alloys was studied at different temperatures (25-500 °C) at a strain rate of 10-3 s-1 and correlated with microstructural characteristics. Higher strength and decent ductility of APMT(TM) led to further investigation of the alloy at various combination of strain rates and temperatures followed by fractography and detailed microscopic analyses. Serrations appeared in the stress-strain curves of APMT(TM) and Fecralloy steel tested in a limited temperature range (250-400 °C). The appearance of serrations is explained on the basis of dynamic strain aging (DSA) effect due to solute-dislocation interactions. The research in this study is being performed using the funds received from the US DOE Office of Nuclear Energy's Nuclear Energy University Programs (NEUP).

  17. Regression rate and pyrolysis behavior of HTPB-based solid fuels in a hybrid rocket motor

    NASA Astrophysics Data System (ADS)

    Chiaverini, Martin John

    An experimental investigation on the regression rate and pyrolysis behavior of hydroxyl-terminated polybutadiene-based solid fuels has been conducted. The overall objective was to obtain a better understanding of the physical processes governing solid-fuel regression and pyrolysis under different operating regimes. Experiments were conducted using a windowed, slab geometry hybrid motor and a conductive-heating induced thermal pyrolysis test rig. Gaseous oxygen was employed as the oxidizer in the 1-m long, lab-scale hybrid motor, which had realistic operating conditions. A real-time X-ray radiography system and an ultrasonic pulse-echo system were both used to obtain the local, instantaneous solid fuel regression rates. A semi-empirical approach was developed to analyze the experimental results and to correlate the regression rates with physically descriptive, dimensionless parameters. For relatively high surface temperatures above 722 K, the activation energy of pure HTPB was 4.91 kcal/mole, indicating that the pyrolysis process was governed by formation and desorption of high molecular weight fragments from the fuel surface. The conductive-heating induced pyrolysis rates of HTPB, conducted at atmospheric pressure, were very similar to those measured in the hybrid motor tests at much higher pressures. This result implies that the regression rate of HTPB was governed primarily by thermal decomposition processes and not influenced by heterogeneous surface reactions. Radiant heat transfer had a significant effect on the overall regression rate behavior of HTPB. Radiation from soot generally accounted for about 80 to 90% of the total radiant heat flux. Two separate expressions, one for the developing flow regime and one for fully-developed flow, were used to correlate the regression rate data. Both correlations show that standard hybrid boundary layer correlations must be modified to account for the effects of variable fluid properties across the boundary layer and

  18. FEM (finite element method) thermal modeling and thermal hydraulic performance of an enhanced thermal conductivity UO2/BeO composite fuel

    SciTech Connect

    Zhou, Wenzhong

    2011-03-24

    An enhanced thermal conductivity UO2-BeO composite nuclear fuel was studied. A methodology to generate ANSYS (an engineering simulation software) FEM (Finite Element Method) thermal models of enhanced thermal conductivity oxide nuclear fuels was developed. The results showed significant increase in the fuel thermal conductivities and have good agreement with the measured ones. The reactor performance analysis showed that the decrease in centerline temperature was 250-350K for the UO2-BeO composite fuel, and thus we can improve nuclear reactors' performance and safety, and high-level radioactive waste generation.

  19. Behavior of nuclear waste elements during hydrothermal alteration of glassy rhyolite in an active geothermal system: Yellowstone National Park, Wyoming

    SciTech Connect

    Sturchio, N.C.; Seitz, M.G.

    1984-12-31

    The behavior of a group of nuclear waste elements (U, Th, Sr, Zr, Sb, Cs, Ba, and Sm) during hydrothermal alteration of glassy rhyolite is investigated through detailed geochemical analyses of whole rocks, glass and mineral separates, and thermal waters. Significant mobility of U, Sr, Sb, Cs, and Ba is found, and the role of sorption processes in their observed behavior is identified. Th, Zr, and Sm are relatively immobile, except on a microscopic scale. 9 references, 2 figures, 2 tables.

  20. FINITE ELEMENT SIMULATION FOR STRUCTURAL RESPONSE OF U7MO DISPERSION FUEL PLATES VIA FLUID-THERMAL-STRUCTURAL INTERACTION

    SciTech Connect

    Hakan Ozaltun; Herman Shen; Pavel Madvedev

    2010-11-01

    This article presents numerical simulation of dispersion fuel mini plates via fluid–thermal–structural interaction performed by commercial finite element solver COMSOL Multiphysics to identify initial mechanical response under actual operating conditions. Since fuel particles are dispersed in Aluminum matrix, and temperatures during the fabrication process reach to the melting temperature of the Aluminum matrix, stress/strain characteristics of the domain cannot be reproduced by using simplified models and assumptions. Therefore, fabrication induced stresses were considered and simulated via image based modeling techniques with the consideration of the high temperature material data. In order to identify the residuals over the U7Mo particles and the Aluminum matrix, a representative SEM image was employed to construct a microstructure based thermo-elasto-plastic FE model. Once residuals and plastic strains were identified in micro-scale, solution was used as initial condition for subsequent multiphysics simulations at the continuum level. Furthermore, since solid, thermal and fluid properties are temperature dependent and temperature field is a function of the velocity field of the coolant, coupled multiphysics simulations were considered. First, velocity and pressure fields of the coolant were computed via fluidstructural interaction. Computed solution for velocity fields were used to identify the temperature distribution on the coolant and on the fuel plate via fluid-thermal interaction. Finally, temperature fields and residual stresses were used to obtain the stress field of the plates via fluid-thermal-structural interaction.

  1. Effects of alloying elements on the mechanical properties and corrosion behaviors of 2205 duplex stainless steels

    NASA Astrophysics Data System (ADS)

    Liou, Horng-Yih; Tsai, Wen-Ta; Pan, Yeong-Tsuen; Hsieh, Rong-Iuan

    2001-04-01

    The effects of alloying elements on the microstructure, mechanical properties, and corrosion behaviors of duplex stainless steels (DSSs) have been investigated in this study. Experimental alloys were prepared by varying the concentrations of the constituent elements in DSSs. Hot ductility test, tensile test, charpy impact test, and corrosion test were performed to evaluate the properties of the experimental alloys. The results showed that the extent of edge cracking of DSSs increased with the increasing value of the crack sensitivity index (CSI). The higher the hot ductility index (HDI) was, the better the hot ductility of DSSs achieved. Austenite ( γ) stabilizer generally caused a decrease in the strength and an increase in the charpy impact absorbed energy of the stainless steel. On the contrary, ferrite ( α) former exerted its beneficial effect on the strength but became detrimental to the toughness of DSSs. The presences of sulfur and boron also caused a decrease in the impact energy, but nitrogen and carbon hardly affected the toughness within the concentration range tested in this study. The value of pitting nucleation potential ( E np ) of different nitrogen contents in 3.5 wt.% NaCl solution at room temperature was almost the same, but the value of pitting protection potential ( E pp ) among these alloys was increased with increasing the content of nitrogen. The susceptibility to stress corrosion cracking (SCC) of DSSs was high when tested in boiling 45 wt.% MgCl2 solution. On the other hand, the time to failure of the experimental steels in 40 wt.% CaCl2 solution at 100 °C was longer than that in MgCl2 solution. Nitrogen could affect the SCC behavior of DSSs in CaCl2 solution through the combinative effects by varying the pitting resistance and the slip step dissolution. An optimum nitrogen (N) content of 0.15 wt.% was found where the highest SCC resistance could be obtained. Although γ phase exhibited better resistance to SCC, cracks were found to

  2. Molten tin reprocessing of spent nuclear fuel elements. [Patent application; continuous process

    DOEpatents

    Heckman, R.A.

    1980-12-19

    A method and apparatus for reprocessing spent nuclear fuel is described. Within a containment vessel, a solid plug of tin and nitride precipitates supports a circulating bath of liquid tin therein. Spent nuclear fuel is immersed in the liquid tin under an atmosphere of nitrogen, resulting in the formation of nitride precipitates. The layer of liquid tin and nitride precipitates which interfaces the plug is solidified and integrated with the plug. Part of the plug is melted, removing nitride precipitates from the containment vessel, while a portion of the plug remains solidified to support te liquid tin and nitride precipitates remaining in the containment vessel. The process is practiced numerous times until substantially all of the precipitated nitrides are removed from the containment vessel.

  3. Computation of Dancoff Factors for Fuel Elements Incorporating Randomly Packed TRISO Particles

    SciTech Connect

    J. L. Kloosterman; Abderrafi M. Ougouag

    2005-01-01

    A new method for estimating the Dancoff factors in pebble beds has been developed and implemented within two computer codes. The first of these codes, INTRAPEB, is used to compute Dancoff factors for individual pebbles taking into account the random packing of TRISO particles within the fuel zone of the pebble and explicitly accounting for the finite geometry of the fuel kernels. The second code, PEBDAN, is used to compute the pebble-to-pebble contribution to the overall Dancoff factor. The latter code also accounts for the finite size of the reactor vessel and for the proximity of reflectors, as well as for fluctuations in the pebble packing density that naturally arises in pebble beds.

  4. The use of U/sub 3/Si/sub 2/ dispersed in aluminum in plate-type fuel elements for research and test reactors

    SciTech Connect

    Snelgrove, J.L.; Domagala, R.F.; Hofman, G.L.; Wiencek, T.C.; Copeland, G.L.; Hobbs, R.W.; Senn, R.L.

    1987-10-01

    A high-density fuel based on U/sub 3/Si/sub 2/ dispersed in aluminum has been developed and tested for use in converting plate-type research and test reactors from the use of highly enriched uranium to the use of low-enriched uranium. Results of preirradiation testing and the irradiation and postirradiation examination of miniature fuel plates and full-sized fuel elements are summarized. Swelling of the U/sub 3/Si/sub 2/ fuel particles is a linear function of the fission density in the particle to well beyond the fission density achievable in low-enriched fuels. U/sub 3/Si/sub 2/ particle swelling rate is approximately the same as that of the commonly used UAl/sub x/ fuel particle. The presence of minor amounts of U/sub 3/Si or uranium solid solution in the fuel result in greater, but still acceptable, fuel swelling. Blister threshold temperatures are at least as high as those of currently used fuels. An exothermic reaction occurs near the aluminum melting temperature, but the measured energy releases were low enough not to substantially worsen the consequences of an accident. U/sub 3/Si/sub 2/-aluminum dispersion fuel with uranium densities up to at least 4.8 Mg/m/sup 3/ is a suitable LEU fuel for typical plate-type research and test reactors. 42 refs., 28 figs., 7 tabs.

  5. The effect of fuel thermal conductivity on the behavior of LWR cores during loss-of-coolant accidents

    SciTech Connect

    Terrani, Kurt A.; Wang, Dean; Ott, Larry J.; Montgomery, Robert O.

    2014-05-01

    The effect of variation in thermal conductivity of light water reactor fuel elements on core response during loss-of-coolant accident scenarios is examined. Initially, a simplified numerical analysis is utilized to determine the time scales associated with dissipation of stored energy from the fuel into the coolant once the fission reaction is stopped. The analysis is then followed by full reactor system thermal-hydraulics analysis of a typical boiling and pressurized water reactor subjected to a large break loss-of-coolant accident scenario using the TRACE code. Accordingly, sensitivity analyses to examine the effect of an increase in fuel thermal conductivity, up to 500%, on fuel temperature evolution during these transients are performed. Given the major differences in thermal-hydraulics design aspects of boiling and pressurized water reactors, different fuel and temperature responses during the simulated loss-of-coolant transients are observed.

  6. Influence of muscle-tendon complex geometrical parameters on modeling passive stretch behavior with the Discrete Element Method.

    PubMed

    Roux, A; Laporte, S; Lecompte, J; Gras, L-L; Iordanoff, I

    2016-01-25

    The muscle-tendon complex (MTC) is a multi-scale, anisotropic, non-homogeneous structure. It is composed of fascicles, gathered together in a conjunctive aponeurosis. Fibers are oriented into the MTC with a pennation angle. Many MTC models use the Finite Element Method (FEM) to simulate the behavior of the MTC as a hyper-viscoelastic material. The Discrete Element Method (DEM) could be adapted to model fibrous materials, such as the MTC. DEM could capture the complex behavior of a material with a simple discretization scheme and help in understanding the influence of the orientation of fibers on the MTC׳s behavior. The aims of this study were to model the MTC in DEM at the macroscopic scale and to obtain the force/displacement curve during a non-destructive passive tensile test. Another aim was to highlight the influence of the geometrical parameters of the MTC on the global mechanical behavior. A geometrical construction of the MTC was done using discrete element linked by springs. Young׳s modulus values of the MTC׳s components were retrieved from the literature to model the microscopic stiffness of each spring. Alignment and re-orientation of all of the muscle׳s fibers with the tensile axis were observed numerically. The hyper-elastic behavior of the MTC was pointed out. The structure׳s effects, added to the geometrical parameters, highlight the MTC׳s mechanical behavior. It is also highlighted by the heterogeneity of the strain of the MTC׳s components. DEM seems to be a promising method to model the hyper-elastic macroscopic behavior of the MTC with simple elastic microscopic elements. PMID:26708963

  7. Geometrical effects of fault bends on fault frictional and mechanical behavior: insights from Distinct Element simulations

    NASA Astrophysics Data System (ADS)

    Guo, Y.; Morgan, J.

    2006-12-01

    Strike slip and transform faults often consist of nonlinear segments, i.e., restraining bends and releasing bends that have significant impacts on stress pattern, strain accumulation, slip rate, and therefore the variation of seismicity along these faults. In order to study the geometrical effects of nonlinear faults on fault frictional and mechanical behavior during fault loading and slip, we simulate the rupture process of faults with bends using the Distinct Element Method (DEM) in 2-dimensions. Breakable elastic bonds were added between adjacent, closely packed circular particles to generate fault blocks. A nonlinear fault surface with a restraining bend and a releasing bend that are symmetrically distributed was defined in the middle of the fault blocks. Deformation was introduced by pulling a spring attached on one of fault zone boundaries at a constant velocity and keeping another boundary fixed, producing compression and contraction along the restraining bend, and tension and dilation along the releasing bend. Significant strain is accommodated adjacent to the restraining bend by formation of secondary faults and slip along them. The slip rates, fault frictional strengths, and rupture processes are affected by multiple parameters, including bond strength, loading velocity, bend angle and amplitude. Among these parameters, bend geometry plays a more important role in determining spatial and temporal distribution of contact slip and failure of our simulated nonlinear faults.

  8. Behavior of inorganic elements during sludge ozonation and their effects on sludge solubilization.

    PubMed

    Sui, Pengzhe; Nishimura, Fumitake; Nagare, Hideaki; Hidaka, Taira; Nakagawa, Yuko; Tsuno, Hiroshi

    2011-02-01

    The behavior of inorganic elements (including phosphorus, nitrogen, and metals) during sludge ozonation was investigated using batch tests and the effects of metals on sludge solubilization were elucidated. A decrease of ∼ 50% in the ratio of sludge solubilization was found to relate to a high iron content 80-120 mgFe/gSS than that of 4.7-7.4 mgFe/gSS. During sludge ozonation, the pH decreased from 7 to 5, which resulted in the dissolution of chemically precipitated metals and phosphorus. Based on experimental results and thermodynamic calculation, phosphate precipitated by iron and aluminum was more difficult to release while that by calcium released with decrease in pH. The release of barium, manganese, and chrome did not exceed 10% and was much lower than COD solubilization; however, that of nickel, copper, and zinc was similar to COD solubilization. The ratio of nitrogen solubilization was 1.2 times higher than that of COD solubilization (R(2)=0.85). Of the total nitrogen solubilized, 80% was organic nitrogen. Because of their high accumulation potential and negative effect on sludge solubilization, high levels of iron and aluminum in both sewage and sludge should be considered carefully for the application of the advanced sewage treatment process with sludge ozonation and phosphorus crystallization. PMID:21215984

  9. Disposition of fuel elements from the Aberdeen and Sandia pulse reactor (SPR-II) assemblies

    SciTech Connect

    Mckerley, Bill; Bustamante, Jacqueline M; Costa, David A; Drypolcher, Anthony F; Hickey, Joseph

    2010-01-01

    We describe the disposition of fuel from the Aberdeen (APR) and the Sandia Pulse Reactors (SPR-II) which were used to provide intense neutron bursts for radiation effects testing. The enriched Uranium - 10% Molybdenum fuel from these reactors was shipped to the Los Alamos National Laboratory (LANL) for size reduction prior to shipment to the Savannah River Site (SRS) for final disposition in the H Canyon facility. The Shipper/Receiver Agreements (SRA), intra-DOE interfaces, criticality safety evaluations, safety and quality requirements and key materials management issues required for the successful completion of this project will be presented. This work is in support of the DOE Consolidation and Disposition program. Sandia National Laboratories (SNL) has operated pulse nuclear reactor research facilities for the Department of Energy since 1961. The Sandia Pulse Reactor (SPR-II) was a bare metal Godiva-type reactor. The reactor facilities have been used for research and development of nuclear and non-nuclear weapon systems, advanced nuclear reactors, reactor safety, simulation sources and energy related programs. The SPR-II was a fast burst reactor, designed and constructed by SNL that became operational in 1967. The SPR-ll core was a solid-metal fuel enriched to 93% {sup 235}U. The uranium was alloyed with 10 weight percent molybdenum to ensure the phase stabilization of the fuel. The core consisted of six fuel plates divided into two assemblies of three plates each. Figure 1 shows a cutaway diagram of the SPR-II Reactor with its decoupling shroud. NNSA charged Sandia with removing its category 1 and 2 special nuclear material by the end of 2008. The main impetus for this activity was based on NNSA Administrator Tom D'Agostino's six focus areas to reenergize NNSA's nuclear material consolidation and disposition efforts. For example, the removal of SPR-II from SNL to DAF was part of this undertaking. This project was in support of NNSA's efforts to consolidate the

  10. Americium and plutonium release behavior from irradiated mixed oxide fuel during heating

    NASA Astrophysics Data System (ADS)

    Sato, I.; Suto, M.; Miwa, S.; Hirosawa, T.; Koyama, S.

    2013-06-01

    The release behavior of Pu and Am was investigated under the reducing atmosphere expected in sodium cooled fast reactor severe accidents. Irradiated Pu and U mixed oxide fuels were heated at maximum temperatures of 2773 K and 3273 K. EPMA, γ-ray spectrometry and α-ray spectrometry for released and residual materials revealed that Pu and Am can be released more easily than U under the reducing atmosphere. The respective release rate coefficients for Pu and Am were obtained as 3.11 × 10-4 min-1 and 1.60 × 10-4 min-1 at 2773 K under the reducing atmosphere with oxygen partial pressure less than 0.02 Pa. Results of thermochemical calculations indicated that the main released chemical forms would likely be PuO for Pu and Am for Am under quite low oxygen partial pressure.

  11. A New Innovative Spherical Cermet Nuclear Fuel Element to Achieve an Ultra-Long Core Life for use in Grid-Appropriate LWRs

    SciTech Connect

    Senor, David J.; Painter, Chad L.; Geelhood, Ken J.; Wootan, David W.; Meriwether, George H.; Cuta, Judith M.; Adkins, Harold E.; Matson, Dean W.; Abrego, Celestino P.

    2007-12-01

    Spherical cermet fuel elements are proposed for use in the Atoms For Peace Reactor (AFPR-100) concept. AFPR-100 is a small-scale, inherently safe, proliferation-resistant reactor that would be ideal for deployment to nations with emerging economies that decide to select nuclear power for the generation of carbon-free electricity. The basic concept of the AFPR core is a water-cooled fixed particle bed, randomly packed with spherical fuel elements. The flow of coolant within the particle bed is at such a low rate that the bed does not fluidize. This report summarizes an approach to fuel fabrication, results associated with fuel performance modeling, core neutronics and thermal hydraulics analyses demonstrating a ~20 year core life, and a conclusion that the proliferation resistance of the AFPR reactor concept is high.

  12. Adsorption behavior of low concentration carbon monoxide on polymer electrolyte fuel cell anodes for automotive applications

    NASA Astrophysics Data System (ADS)

    Matsuda, Yoshiyuki; Shimizu, Takahiro; Mitsushima, Shigenori

    2016-06-01

    The adsorption behavior of CO on the anode around the concentration of 0.2 ppm allowed by ISO 14687-2 is investigated in polymer electrolyte fuel cells (PEFCs). CO and CO2 concentrations in the anode exhaust are measured during the operation of a JARI standard single cell at 60 °C cell temperature and 1000 mA cm-2 current density. CO coverage is estimated from the gas analysis and CO stripping voltammetry. The cell voltage decrease as a result of 0.2 ppm CO is 29 mV and the CO coverage is 0.6 at the steady state with 0.11 mg cm-2 of anode platinum loading. The CO coverage as a function of CO concentration approximately follows a Temkin-type isotherm. Oxygen permeated to the anode through a membrane is also measured during fuel cell operation. The exhaust velocity of oxygen from the anode was shown to be much higher than the CO supply velocity. Permeated oxygen should play an important role in CO oxidation under low CO concentration conditions.

  13. Evaluating the manufacturability and combustion behaviors of sludge-derived fuel briquettes.

    PubMed

    Chiou, Ing-Jia; Wu, I-Tsung

    2014-10-01

    Based on the physical and chemical properties as well as calorific values of pulp sludge and textile sludge, this study investigates the differences between manufacturability, relationship between extrusion pressure and formability, as well as stability and combustion behaviors of extruded sludge-derived fuel briquettes (ESBB) and cemented sludge-derived fuel blocks (CSBB). The optimum proportion and relevant usage ESBB policies are proposed as well. Experimental results indicate that a large amount of water can be saved during the ESBB manufacturing process. Additionally, energy consumption decreases during the drying process. ESBB also has a more compact structure than that of CSBB, and its mean penetration loading is approximately 18.7 times higher as well. Moreover, the flame temperature of ESBB (624-968°C) is significantly higher than that of CSBB (393-517°C). Also, the dry bulk density and moisture regain of ESBB is significantly related to the penetration loading. Furthermore, the optimum mix proportion of ESBB is co-determined by the formability of pulp sludge and the calorific values of textile sludge. While considering the specific conditions (including formability, stability and calorific values), the recommended mix proportion for ESBB is PS50TS50. PMID:24913348

  14. Preparation, loading and storage of castor THTR/AVR-casks for spent fuel elements-part of the decommissioning of the high temperature reactor AVR

    SciTech Connect

    Theenhaus, R.; Halaszovich, S.; Storch, S.

    1994-12-31

    Shipment of spent fuel elements of the AVR reactor to the interim storage site at the Forschungszentrum Juelich KFA has started in August 1993. The handling procedure involves the preparation of the transport-storage casks, their remote loading with two stainless steel flasks, each of them containing 950 spherical fuel elements, the closing of the casks, the leak testing, the dose rate measurements, smear tests, the transportation and stacking of the casks and finally their connection with the permanent electronical leak control system. The handling strictly follows the manual which is part of the license and it is inspected by a member of the supervising ministry and an independent expert ordered by the ministry. Until the end of 1993 32,300 fuel elements have been transferred to the storage site.

  15. The Behavior of Chalcophile and Siderophile Elements during Magmatic Differentiation as Observed in Kilauea Iki Lava Lake, Hawaii

    NASA Astrophysics Data System (ADS)

    Greaney, A. T.; Rudnick, R. L.; Helz, R. L.; Gaschnig, R. M.; Ash, R. D.; Piccoli, P. M.

    2015-12-01

    In 1959, Kilauea Iki Lava Lake formed as a single pulse of picritic lava ponded in a preexisting crater. The lava cooled and differentiated over the following decades, providing an excellent natural laboratory to study basaltic differentiation. Major element, trace element, and data for numerous isotope systems of both eruption and drill core samples have been previously published. In this study, twelve chalcophile and siderophile elements (V, Ga, Ge, Mo, Ag, Cd, In, Sn, Sb, W, Tl, and Bi) were measured in sixteen whole rock samples using standard addition solution ICP-MS, which provides high precision data for elements that were previously undetectable. Samples ranging from 26.9 to 2.4 wt% MgO show that all of these elements display incompatible behavior throughout the lake as they increase exponentially with decreasing MgO wt%. Olivine and chromite are the only phases varying significantly in abundance in samples from 27 to 7 wt% MgO. Ferro-diabasic segregation veins and other internal differentiates (5.8 to 2.4 wt% MgO) consist of augite, plagioclase, Fe-Ti oxides, and an immiscible Cu-Fe sulfide phase. These veins are significantly more enriched in the listed elements than are the olivine basalts. Several elements (Mo, Ag, Cd, Sn, Sb, Tl) are well correlated with Cu (R2>0.84), which is assumed to be chalcophile in this system. Germanium appears to follow Ti while Ga, In, W, and Bi display incompatible behavior but don't directly correlate with other elements. Vanadium shows overall incompatible behavior but is depleted in extremely differentiated samples, suggesting it is sequestered in a late stage fractionating phase. Molybdenum, Sb, Tl, and Sn are also very well correlated (R2>0.95) with several incompatible lithophile elements (REE, Ba, Hf, Nb, Ta, Th). This suggests their overall behavior in Kilauea Iki Lava Lake isn't controlled by any fractionating phase, including sulfides, and they may behave in a more lithophile manner.

  16. ELM - A SIMPLE TOOL FOR THERMAL-HYDRAULIC ANALYSIS OF SOLID-CORE NUCLEAR ROCKET FUEL ELEMENTS

    NASA Technical Reports Server (NTRS)

    Walton, J. T.

    1994-01-01

    ELM is a simple computational tool for modeling the steady-state thermal-hydraulics of propellant flow through fuel element coolant channels in nuclear thermal rockets. Written for the nuclear propulsion project of the Space Exploration Initiative, ELM evaluates the various heat transfer coefficient and friction factor correlations available for turbulent pipe flow with heat addition. In the past, these correlations were found in different reactor analysis codes, but now comparisons are possible within one program. The logic of ELM is based on the one-dimensional conservation of energy in combination with Newton's Law of Cooling to determine the bulk flow temperature and the wall temperature across a control volume. Since the control volume is an incremental length of tube, the corresponding pressure drop is determined by application of the Law of Conservation of Momentum. The size, speed, and accuracy of ELM make it a simple tool for use in fuel element parametric studies. ELM is a machine independent program written in FORTRAN 77. It has been successfully compiled on an IBM PC compatible running MS-DOS using Lahey FORTRAN 77, a DEC VAX series computer running VMS, and a Sun4 series computer running SunOS UNIX. ELM requires 565K of RAM under SunOS 4.1, 360K of RAM under VMS 5.4, and 406K of RAM under MS-DOS. Because this program is machine independent, no executable is provided on the distribution media. The standard distribution medium for ELM is one 5.25 inch 360K MS-DOS format diskette. ELM was developed in 1991. DEC, VAX, and VMS are trademarks of Digital Equipment Corporation. Sun4 and SunOS are trademarks of Sun Microsystems, Inc. IBM PC is a registered trademark of International Business Machines. MS-DOS is a registered trademark of Microsoft Corporation.

  17. Corrosion of spent Advanced Test Reactor fuel

    SciTech Connect

    Lundberg, L.B.; Croson, M.L.

    1994-11-01

    The results of a study of the condition of spent nuclear fuel elements from the Advanced Test Reactor (ATR) currently being stored underwater at the Idaho National Engineering Laboratory (INEL) are presented. This study was motivated by a need to estimate the corrosion behavior of dried, spent ATR fuel elements during dry storage for periods up to 50 years. The study indicated that the condition of spent ATR fuel elements currently stored underwater at the INEL is not very well known. Based on the limited data and observed corrosion behavior in the reactor and in underwater storage, it was concluded that many of the fuel elements currently stored under water in the facility called ICPP-603 FSF are in a degraded condition, and it is probable that many have breached cladding. The anticipated dehydration behavior of corroded spent ATR fuel elements was also studied, and a list of issues to be addressed by fuel element characterization before and after forced drying of the fuel elements and during dry storage is presented.

  18. Features of temperature control of fuel element cladding for pressurized water nuclear reactor “WWER-1000” while simulating reactor accidents

    SciTech Connect

    Zaytsev, P. A.; Priymak, S. V.; Usachev, V. B.; Oleynikov, P. P.; Soldatkin, D. M.

    2013-09-11

    During the experiments simulating NPR (nuclear power reactor) accidents with a coolant loss fuel elements behavior in a steam-hydrogen medium was studied at the temperature changed with the rate from 1 to 100K/s within the range of 300÷1500 °C. Indications of the thermocouples fixed on the cladding notably differ from real values of the cladding temperatures in the area of measuring junction due to thermal resistance influence of the transition zones “cladding-junction” and “junction-coolant”. The estimating method of a measurement error was considered which can provide adequate accounting of the influence factors. The method is based on thermal probing of a thermocouple by electric current flashing through thermoelements under the coolant presence or absence, a response time registration and processing, calculation of thermal inertia value for a thermocouple junction. A formula was derived for calculation of methodical error under stationary mode and within the stage of linear increase in temperature, which will determine the conditions for the cladding depressurization. Some variants of the formula application were considered, and the values of methodical errors were established which reached ∼5% of maximum value by the final moment of the stage of linear increase in the temperature.

  19. Ab initio studies of atomic properties and experimental behavior of element 119 and its lighter homologs.

    PubMed

    Borschevsky, A; Pershina, V; Eliav, E; Kaldor, U

    2013-03-28

    Static dipole polarizabilities of element 119 and its singly charged cation are calculated, along with those of its lighter homologs, Cs and Fr. Relativity is treated within the 4-component Dirac-Coulomb formalism and electron correlation is included by the single reference coupled cluster approach with single, double, and perturbative triple excitations (CCSD(T)). Very good agreement with available experimental values is obtained for Cs, lending credence to the predictions for Fr and element 119. The atomic properties in group-1 are largely determined by the valence ns orbital, which experiences relativistic stabilization and contraction in the heavier elements. As a result, element 119 is predicted to have a relatively low polarizability (169.7 a.u.), comparable to that of Na. The adsorption enthalpy of element 119 on Teflon, which is important for possible future experimental studies of this element, is estimated as 17.6 kJ/mol, the lowest among the atoms considered here. PMID:23556718

  20. Ab initio studies of atomic properties and experimental behavior of element 119 and its lighter homologs

    NASA Astrophysics Data System (ADS)

    Borschevsky, A.; Pershina, V.; Eliav, E.; Kaldor, U.

    2013-03-01

    Static dipole polarizabilities of element 119 and its singly charged cation are calculated, along with those of its lighter homologs, Cs and Fr. Relativity is treated within the 4-component Dirac-Coulomb formalism and electron correlation is included by the single reference coupled cluster approach with single, double, and perturbative triple excitations (CCSD(T)). Very good agreement with available experimental values is obtained for Cs, lending credence to the predictions for Fr and element 119. The atomic properties in group-1 are largely determined by the valence ns orbital, which experiences relativistic stabilization and contraction in the heavier elements. As a result, element 119 is predicted to have a relatively low polarizability (169.7 a.u.), comparable to that of Na. The adsorption enthalpy of element 119 on Teflon, which is important for possible future experimental studies of this element, is estimated as 17.6 kJ/mol, the lowest among the atoms considered here.

  1. Numerical analysis of a nuclear fuel element for nuclear thermal propulsion

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See; Schutzenhofer, Luke

    1991-01-01

    A computational fluid dynamics model with porosity and permeability formulations in the transport equations has been developed to study the concept of nuclear thermal propulsion through the analysis of a pulsed irradiation of a particle bed element (PIPE). The numerical model is a time-accurate pressure-based formulation. An adaptive upwind scheme is employed for spatial discretization. The upwind scheme is based on second- and fourth-order central differencing with adaptive artificial dissipation. Multiblocked porosity regions have been formulated to model the cold frit, particle bed, and hot frit. Multiblocked permeability regions have been formulated to describe the flow shaping effect from the thickness-varying cold frit. Computational results for several zero-power density PIPEs and an elevated-particle-temperature PIPE are presented. The implications of the computational results are discussed.

  2. Selective Catalytic Oxidation of Hydrogen Sulfide to Elemental Sulfur in the Presence of Coal-Derived Fuel Gas

    SciTech Connect

    Stevens, R.W., Jr.; Gardner, T.H.; Shekhawat, Dushyant; Berry, D.A.; Freed, A.D.

    2005-09-01

    A rotatable central composite design approach was utilized to examine the activity and selectivity of an activated carbon-based catalyst during partial oxidation of H2S to elemental sulfur. Tests were conducted at 400 psig with a 4000 ppmv H2S inlet concentration in the presence of coal-derived fuel gas (i.e., CO, CO2, H2, and H2O). Temperature, space velocity, and O2:H2S ratio were chosen as process variables for the study to generate response surface maps of elemental sulfur yield and longevity. Temperature was varied from 150-300°C; gas hourly space velocity varied from 1000 -15000 h-1 (STP); O2:H2S varied from 0.5-2.0. Evolution of SO2 and/or COS during some of the tests indicated the presence of side reactions. The relationship between the process variables and catalyst performance as well as the results of catalyst characterization is discussed.

  3. Magnetoresistance behavior of elliptical ring nanomagnets in close proximity with magnetic elements

    NASA Astrophysics Data System (ADS)

    Jain, S.; Adeyeye, A. O.

    2009-04-01

    We have investigated the giant magnetoresistance (GMR) responses of the pseudospin valve elliptical rings in close proximity with individual magnetic elements. Significant modifications of the GMR responses were observed due to the effects of magnetostatic coupling between the rings and the magnetic elements. We observed that the vortex state stability is significantly sensitive to the position, orientation of the magnetic elements, and the direction of the applied field. We also investigated the switching field reproducibility of the rings for onion→vortex and vortex→onion transitions and observed that the ring with asymmetrically placed magnetic elements shows the most reproducible switching states.

  4. Sintering behavior of lanthanide-containing glass-ceramic sealants for solid oxide fuel cells

    SciTech Connect

    Goel, Ashutosh; Reddy, Allu Amarnath; Pascual, Maria J.; Gremillard, Laurent; Malchere, Annie; Ferreira, Jose M.

    2012-05-01

    This article reports on the influence of different lanthanides (La, Nd, Gd and Yb) on sintering behavior of alkaline-earth aluminosilicate glass-ceramics sealants for their application in solid oxide fuel cells (SOFC). All the glasses have been prepared by melt-quench technique. The in situ follow up of sintering behavior of glass powders has been done by high temperature - environmental scanning electron microscope (HT-ESEM) and hot-stage microscope (HSM) while the crystalline phase evolution and assemblage has been analyzed by x-ray diffraction (XRD) and scanning electron microscopy (SEM). All the glass compositions exhibit a glass-in-glass phase separation followed by two stage sintering resulting in well sintered glass powder compacts after heat treatment at 850 C for 1 h. Diopside (CaMgSi{sub 2}O{sub 6}) based phases constituted the major crystalline part in glass-ceramics followed by some minor phases. The increase in lanthanide content in glasses suppressed their tendency towards devitrification, thus, resulting in glass-ceramics with high amount of residual glassy phase (50-96 wt.%) which is expected to facilitate their self-healing behavior during SOFC operation. The electrical conductivity of the investigated glass-ceramics varied between (1.19 and 7.33) x 10{sup -7} S cm{sup -1} (750-800 C), and depended on the ionic field strength of lanthanide cations. Further experimentation with respect to the long term thermal and chemical stability of residual glassy phase under SOFC operation conditions along with high temperature viscosity measurements will be required in order to elucidate the potential of these glass-ceramics as self-healing sealants.

  5. Behavior of composite/metal aircraft structural elements and components under crash type loads: What are they telling us

    NASA Technical Reports Server (NTRS)

    Carden, Huey D.; Boitnott, Richard L.; Fasanella, Edwin L.

    1990-01-01

    Failure behavior results are presented from crash dynamics research using concepts of aircraft elements and substructure not necessarily designed or optimized for energy absorption or crash loading considerations. To achieve desired new designs which incorporate improved energy absorption capabilities often requires an understanding of how more conventional designs behave under crash loadings. Experimental and analytical data are presented which indicate some general trends in the failure behavior of a class of composite structures which include individual fuselage frames, skeleton subfloors with stringers and floor beams but without skin covering, and subfloors with skin added to the frame-stringer arrangement. Although the behavior is complex, a strong similarity in the static and dynamic failure behavior among these structures is illustrated through photographs of the experimental results and through analytical data of generic composite structural models. It is believed that the similarity in behavior is giving the designer and dynamists much information about what to expect in the crash behavior of these structures and can guide designs for improving the energy absorption and crash behavior of such structures.

  6. Rheological behavior of FM-9 solutions and correlation with flammability test results and interpretations. [fuel thickening additive

    NASA Technical Reports Server (NTRS)

    Peng, S. T. J.; Landel, R. F.

    1983-01-01

    The rheological behavior of progressively shear thickening FM-9 solutions, a time-dependent shear thickening material with characteristics of threshold behavior, is investigated as part of a study of the rheological properties of antimisting jet fuel. Flammability test results and test configurations from various sources are evaluated. A correlation is obtained between the rheological behavior and the flammability tests such that, for a given system, such as a fixed solvent system and the FM-9 polymer system, the flammability criterion can be applied to a wide range of concentrations and temperatures.

  7. A fundamental study of the oxidation behavior of SI primary reference fuels with propionaldehyde and DTBP as an additive

    NASA Astrophysics Data System (ADS)

    Johnson, Rodney

    In an effort to combine the benefits of SI and CI engines, Homogeneous Charge Compression Ignition (HCCI) engines are being developed. HCCI combustion is achieved by controlling the temperature, pressure, and composition of the fuel and air mixture so that autoignition occurs in proper phasing with the piston motion. This control system is fundamentally more challenging than using a spark plug or fuel injector to determine ignition timing as in SI and CI engines, respectively. As a result, this is a technical barrier that must be overcome to make HCCI engines applicable to a wide range of vehicles and viable for high volume production. One way to tailor the autoignition timing is to use small amounts of ignition enhancing additives. In this study, the effect of the addition of DTBP and propionaldehyde on the autoignition behavior of SI primary reference fuels was investigated. The present work was conducted in a new research facility built around a single cylinder Cooperative Fuels Research (CFR) octane rating engine but modified to run in HCCI mode. It focused on the effect of select oxygenated hydrocarbons on hydrocarbon fuel oxidation, specifically, the primary reference fuels n-heptane and iso-octane. This work was conducted under HCCI operating conditions. Previously, the operating parameters for this engine were validated for stable combustion under a wide range of operating parameters such as engine speeds, equivalence ratios, compression ratios and inlet manifold temperature. The stable operating range under these conditions was recorded and used for the present study. The major focus of this study was to examine the effect of the addition of DTBP or propionaldehyde on the oxidation behavior of SI primary reference fuels. Under every test condition the addition of the additives DTBP and propionaldehyde caused a change in fuel oxidation. DTBP always promoted fuel oxidation while propionaldehyde promoted oxidation for lower octane number fuels and delayed

  8. Discrete meso-element simulation of the failure behavior of short-fiber composites under dynamic loading

    NASA Astrophysics Data System (ADS)

    Liu, Wenyan; Tang, Z. P.; Liu, Yunxin

    2000-04-01

    In recent years, more attention has been paid to a better understanding of the failure behavior and mechanism of heterogeneous materials at the meso-scale level. In this paper, the crack initiation and development in epoxy composites reinforced with short steel fibers under dynamic loading were simulated and analyzed with the 2D Discrete Meso-Element Dynamic Method. Results show that the damage process depends greatly on the binding property between matrix and fibers.

  9. Behavior of spent nuclear fuel and storage system components in dry interim storage. Revision 1

    SciTech Connect

    Johnson, A.B. Jr.; Gilbert, E.R.; Guenther, R.J.

    1983-02-01

    Irradiated nuclear fuel has been handled under dry conditions since the early days of nuclear reactor operation, and use of dry storage facilities for extended management of irradiated fuel began in 1964. Irradiated fuel is currently being stored dry in four types of facilities: dry wells, vaults, silos, and metal casks. Essentially all types of irradiated nuclear fuel are currently stored under dry conditions. Gas-cooled reactor (GCR) and liquid metal fast breeder reactor (LMFBR) fuels are stored in vaults and dry wells. Certain types of fuel are being stored in licensed dry storage facilities: Magnox fuel in vaults in the United Kingdom; organic-cooled reactor (OCR) fuel (clad with a zirconium alloy) in silos in Canada; and boiling water reactor (BWR) fuel (clad with Zircaloy) in a metal storage cask in Germany. Dry storage demonstrations are under way for Zircaloy-clad fuel from BWRs, pressurized heavy-water reactors (PHWRs), and pressurized water reactors (PWRs) in all four types of dry storage facilities. The demonstrations and related hot cell and laboratory tests are directed toward expanding the data base and establishing a licensing basis for dry storage of water reactor fuel. This report reviews the scope of dry interim storage technology, the performance of fuel and facility materials, the status of programs in several countries to license dry storage of water reactor fuel, and the characteristics of water reactor fuel that relate to dry storage conditions. 110 refs., 22 figs., 28 tabs.

  10. On the corrosion behavior of zircaloy-4 in spent fuel pools under accidental conditions

    NASA Astrophysics Data System (ADS)

    Lavigne, O.; Shoji, T.; Sakaguchi, K.

    2012-07-01

    After zircaloy cladding tubes have been subjected to irradiation in the reactor core, they are stored temporarily in spent fuel pools. In case of an accident, the integrity of the pool may be affected and the composition of the coolant may change drastically. This was the case in Fukushima Daiichi in March 2011. Successive incidents have led to an increase in the pH of the coolant and to chloride contamination. Moreover, water radiolysis may occur owing to the remnant radioactivity of the spent fuel. In this study, we propose to evaluate the corrosion behavior of oxidized Zr-4 (in autoclave at 288 °C for 32 days) in function of the pH and the presence of chloride and radical forms. The generation of radicals is achieved by the sonolysis of the solution. It appears that the increase in pH and the presence of radicals lead to an increase in current densities. However, the current densities remain quite low (depending on the conditions, between 1 and 10 μA cm-2). The critical parameter is the presence of chloride ions. The chloride ions widely decrease the passive range of the oxidized samples (the pitting potential is measured around +0.6 V (vs. SCE)). Moreover, if the oxide layer is scratched or damaged (which is likely under accidental conditions), the pitting potential of the oxidized sample reaches the pitting potential of the non-oxidized sample (around +0.16 V (vs. SCE)), leaving a shorter stable passive range for the Zr-4 cladding tubes.

  11. Trace element partitioning in ashes from boilers firing pure wood or mixtures of solid waste with respect to fuel composition, chlorine content and temperature.

    PubMed

    Saqib, Naeem; Bäckström, Mattias

    2014-12-01

    Trace element partitioning in solid waste (household waste, industrial waste, waste wood chips and waste mixtures) incineration residues was investigated. Samples of fly ash and bottom ash were collected from six incineration facilities across Sweden including two grate fired and four fluidized bed incinerators, to have a variation in the input fuel composition (from pure biofuel to mixture of waste) and different temperature boiler conditions. As trace element concentrations in the input waste at the same facilities have already been analyzed, the present study focuses on the concentration of trace elements in the waste fuel, their distribution in the incineration residues with respect to chlorine content of waste and combustion temperature. Results indicate that Zn, Cu and Pb are dominating trace elements in the waste fuel. Highly volatile elements mercury and cadmium are mainly found in fly ash in all cases; 2/3 of lead also end up in fly ash while Zn, As and Sb show a large variation in distribution with most of them residing in the fly ash. Lithophilic elements such as copper and chromium are mainly found in bottom ash from grate fired facilities while partition mostly into fly ash from fluidized bed incinerators, especially for plants fuelled by waste wood or ordinary wood chips. There is no specific correlation between input concentration of an element in the waste fuel and fraction partitioned to fly ash. Temperature and chlorine content have significant effects on partitioning characteristics by increasing the formation and vaporization of highly volatile metal chlorides. Zinc and cadmium concentrations in fly ash increase with the incineration temperature. PMID:25263218

  12. Simulated Verification of Fuel Element Inventory in a Small Reactor Core Using the Nuclear Materials Identification System (NMIS)

    SciTech Connect

    Grogan, Brandon R; Mihalczo, John T

    2009-01-01

    The International Panel on Climate Change projects that by 2050 the world energy demand may double. Although the primary focus for new nuclear power plants in industrialized nations is on large plants in the 1000-1600 MWe range, there is an increasing demand for small and medium reactors (SMRs). About half of the innovative SMR concepts are for small (<300 MWe) reactors with a 5-30 year life without on-site refueling. This type of reactor is also known as a battery-type reactor. These reactors are particularly attractive to countries with small power grids and for non-electrical purposes such as heating, hydrogen production, and seawater desalination. Traditionally, this type of reactor has been used in a nautical propulsion role. This type of reactor is designed as a permanently sealed unit to prevent the diversion of the uranium in the core by the user. However, after initial fabrication it will be necessary to verify that the newly fabricated reactor core contains the quantity of uranium that initially entered the fuel fabrication plant. In most instances, traditional inspection techniques can be used to perform this verification, but in certain situations the core design will be considered sensitive. Non-intrusive verification techniques must be utilized in these situations. The Nuclear Materials Identification System (NMIS) with imaging uses active interrogation and a fast time correlation processor to characterize fissile material. The MCNP-PoliMi computer code was used to simulate NMIS measurements of a small, sealed reactor core. Because most battery-type reactor designs are still in the early design phase, a more traditional design based on a Russian icebreaker core was used in the simulations. These simulations show how the radiography capabilities of the NMIS could be used to detect the diversion of fissile material by detecting void areas in the assembled core where fuel elements have been removed.

  13. Behavior of spent nuclear fuel and storage system components in dry interim storage.

    SciTech Connect

    Johnson, A.B. Jr.; Gilbert, E.R.; Guenther, R.J.

    1982-08-01

    Irradiated nuclear fuel has been handled under dry conditions since the early days of nuclear reactor operation, and use of dry storage facilities for extended management of irradiated fuel began in 1964. Irradiated fuel is currently being stored dry in four types of facilities: dry wells, vaults, silos, and metal casks. Essentially all types of irradiated nuclear fuel are currently stored under dry conditions. Gas-cooled reactor (GCR) and liquid metal fast breeder reactor (LMFBR) fuels are stored in vaults and dry wells. Certain types of fuel are being stored in licensed dry storage facilities: Magnox fuel in vaults in the United Kingdom and organic-cooled reactor (OCR) fuel in silos in Canada. Dry storage demonstrations are under way for Zircaloy-clad fuel from boiling water reactors BWR's, pressurized heavy-water reactors (PHWRs), and pressurized water reactors (PWRs) in all four types of dry storage facilities. The demonstrations and related hot cell and laboratory tests are directed toward expanding the data base and establishing a licensing basis for dry storage of water reactor fuel. This report reviews the scope of dry interim storage technology, the performance of fuel and facility materials, the status of programs in several countries to license dry storage of water reactor fuel, and the characteristics of water reactor fuel that relate to dry storage conditions.

  14. Finite element analysis of the torsional behavior of thin-walled members using a warping superelement

    NASA Astrophysics Data System (ADS)

    Cofie, Emmanuel

    1993-04-01

    A finite element stiffness matrix technique for analyzing thin-walled open isotropic sections subjected to torsional loading is considered in this paper. Such beam sections are widely used for structural components and stiffeners in aerospace and civil engineering applications. The torsional stiffness term in a stiffness matrix for a 12 degree-of-freedom (d.o.f.) beam element called a 'warping superelement' is developed using the differential equation derived by Vlasov. This stiffness matrix term which implicitly includes the effects of warping, is used in the region of the beam where warping is considered critical. The length of this region, which determines the length of the superelement, depends on the geometrical and mechanical properties of the section. Elements outside of this region are considered as conventional Euler-Bernoulli beam elements (with St. Venant torsion). Numerical examples of several thin-walled beams with different torsional restraints are presented. Results obtained using the proposed superelement procedure are compared with theoretical results based on Vlasov, St. Venant, and 2-D finite element analysis. The results indicate good agreement with the Vlasov, and 2-D finite element analysis results, which account for warping.

  15. Tribological behavior of near-frictionless carbon coatings in high- and low-sulfur diesel fuels.

    SciTech Connect

    Alzoubi, M. F.; Ajayi, O. O.; Eryilmaz, O. L.; Ozturk, O.; Erdemir, A.; Fenske, G.

    2000-01-19

    The sulfur content in diesel fuel has a significant effect on diesel engine emissions, which are currently subject to environmental regulations. It has been observed that engine particulate and gaseous emissions are directly proportional to fuel sulfur content. With the introduction of low-sulfur fuels, significant reductions in emissions are expected. The process of sulfur reduction in petroleum-based diesel fuels also reduces the lubricity of the fuel, resulting in premature failure of fuel injectors. Thus, another means of preventing injector failures is needed for engines operating with low-sulfur diesel fuels. In this study, the authors evaluated a near-frictionless carbon (NFC) coating (developed at Argonne National Laboratory) as a possible solution to the problems associated with fuel injector failures in low-lubricity fuels. Tribological tests were conducted with NFC-coated and uncoated H13 and 52100 steels lubricated with high- and low- sulfur diesel fuels in a high-frequency reciprocating test machine. The test results showed that the NFC coatings reduced wear rates by a factor of 10 over those of uncoated steel surfaces. In low-sulfur diesel fuel, the reduction in wear rate was even greater (i.e., by a factor of 12 compared to that of uncoated test pairs), indicating that the NFC coating holds promise as a potential solution to wear problems associated with the use of low-lubricity diesel fuels.

  16. Experimental Investigation of Evaporation Behavior of Polonium and Rare-Earth Elements in Lead-Bismuth Eutectic Pool

    SciTech Connect

    Shuji Ohno; Shinya Miyahara; Yuji Kurata; Ryoei Katsura; Shigeru Yoshida

    2006-07-01

    Equilibrium evaporation behavior was experimentally investigated for polonium ({sup 210}Po) in liquid lead-bismuth eutectic (LBE) and for rare-earth elements gadolinium (Gd) and europium (Eu) in LBE to understand and clarify the transfer behavior of toxic impurities from LBE coolant to a gas phase. The experiments utilized the 'transpiration method' in which saturated vapor in an isothermal evaporation pot was transported by inert carrier gas and collected outside of the pot. While the previous paper ICONE12-49111 has already reported the evaporation behavior of LBE and of tellurium in LBE, this paper summarizes the outlines and the results of experiments for important impurity materials {sup 210}Po and rare-earth elements which are accumulated in liquid LBE as activation products and spallation products. In the experiments for rare-earth elements, non-radioactive isotope was used. The LBE pool is about 330-670 g in weight and has a surface area of 4 cm x 14 cm. {sup 210}Po experiments were carried out with a smaller test apparatus and radioactive {sup 210}Po produced through neutron irradiation of LBE in the Japan Materials Testing Reactor (JMTR). We obtained fundamental and instructive evaporation data such as vapor concentration, partial vapor pressure of {sup 210}Po in the gas phase, and gas-liquid equilibrium partition coefficients of the impurities in LBE under the temperature condition between 450 and 750 deg. C. The {sup 210}Po test revealed that Po had characteristics to be retained in LBE but was still more volatile than LBE solvent. A part of Eu tests implied high volatility of rare-earth elements comparable to that of Po. This tendency is possibly related to the local enrichment of the solute near the pool surface and needs to be investigated more. These results are useful and indispensable for the evaluation of radioactive materials transfer to the gas phase in LBE-cooled nuclear systems. (authors)

  17. Thermal-behavior study of chlorine released from composite refuse derived fuel.

    PubMed

    Song, Zhi-Wei; Lv, Yi-Bo; Tong, Long-Yan

    2009-08-01

    In order to reduce secondary pollution during the incineration of composite refuse derived fuel (CRDF), the combustion features and the emission behavior of chlorine in CRDF containing coal were analyzed. The former was analyzed using thermo-gravimetric and the latter by gas chromatography-mass spectrometry. The release rate of inorganic chlorine during combustion reached 90 mass% at temperature between 773.15 and 873.15K. On the other hand, approximately 84 mass% release rates was resulting from pyrolysis at 723.15K. When temperature reached above 1073.15K, it was noticed that higher concentration of organic chlorine in different organic compounds were produced in the processing of pyrolysis compared with those released from the combustion processing. From the thermo-gravimetric analysis using a self-designed system, three distinct phases were detected in the thermal process of CRDF. The first phase occurred at temperature between 473 and 573K and its mass loss was about 38.50%. The second phase between temperature regions of 673-773K with a mass loss of 20.35%. The third phase was observed at the temperature between 873 and 1073K with 22.25% mass loss. PMID:19342213

  18. Effects of anode fabrication parameters on the performance and redox behavior of solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Timurkutluk, Bora; Mat, Mahmut D.

    2014-07-01

    Anode supported solid oxide fuel cells (SOFCs) having various anode support porosities and electrolyte thicknesses are developed and their effects on the cell performance and redox behavior of the cell are investigated experimentally. An yttria stabilized zirconia based anode supported membrane electrode group (MEG) is developed with the tape casting, co-sintering and screen printing methodologies. For comparison, various anode supported cells with different electrolyte thickness and anode support porosities are also fabricated. An experimental setup is devised for the performance measurement of the cells before and after redox cycling. The mechanical performance of the cell before and after redox cycling is also measured via three point bending tests. Experimental results reveal that the porosity of the anode support and the thickness of the electrolyte should be carefully decided by considering not only the cell performances but also the redox stability. In addition, after single redox cycle the decrease in the mechanical properties of the cell is found to be around 50% while the same cell shows only around 10% electrochemical performance loss.

  19. Particle melting behavior during high-velocity oxygen fuel thermal spraying

    NASA Astrophysics Data System (ADS)

    He, J.; Ice, M.; Lavernia, E.

    2001-03-01

    Particle melting behavior during high-velocity oxygen fuel (HVOF) thermal spraying was investigated using Inconel 625 powders. The powder characteristics and coating properties were investigated using scanning electron microscopy (SEM), x-ray, and microhardness studies. Results indicated that the volume fraction of unmelted particles in the coatings was dependent on the proportion of powder within a specified size range, in these experiments, 30 to 50 µm. This particle size range was primarily determined by the particle temperature, which was measured during spraying. Particle temperature significantly decreased as particle size increased. The microhardness values for the coatings containing unmelted particles were predicted by a simple rule-of-mixtures equation for the case of a low volume fraction of unmelted particles. However, for the condition of high volume fraction of unmelted particles, the measured microhardness values did not compare favorably with the calculated values, probably due to the presence of porosity, which occurred in the form of voids found among unmelted particles. The microstructure and characteristics of the feedstock powder were retained in the corresponding coating under certain spray conditions.

  20. Development and Behavior of Metallic Filter Element and Numerical Simulation of Transport Phenomena during Filter Regeneration Process

    SciTech Connect

    Kuang, C.; Zhang, J.; Wang, F.; Chen, J.

    2002-09-19

    Ceramic filters have revealed to have good thermal resistance and chemical corrosion resistance, but they are brittle and lack of toughness, and liable to rupture under large temperature swings. Metallic filters with their high strength and toughness and good heat conduction ability have showed good thermal shock resistance, 310S and FeAl intermetallic filter elements have exhibited additionally good chemical corrosion resistance in oxidizing and sulfidizing atmosphere( Sawada 1999 and Sunil et al. 1999). The behavior of metallic filter elements at high temperature was investigated and the filtration efficiency of the filter units for hot gas from a coal gasifier unit was tested. Pulse-jet cleaning of filter elements is a key component in the operation of the filtration unit. The pulse-jet is introduced into the filter element cavities from the clean side, and the dust cakes on the outer surfaces of the filter elements are detached and fall into the filter vessel. Sequential on-line cleaning of filter element groups yields a filter operation with no shutdown for filter regeneration. Development of advanced technologies in the design and operation of the pulse cleaning is one of the important tasks in order to increase the system reliability, to improve the filter life and to increase the filtering performance. The regeneration of filter element in gas filtration at high temperature plays a very important role for the operation of the process. Based on experimental observation and field operation, a numerical model is set up to numerically simulate the momentum and heat transport phenomena in the regeneration process, which is essential for understanding of the process, the optimization of process parameters and improvement of the design of the structure of venturi nozzle and the configuration of the apparatus.

  1. Investigation of the behavior of potentially hazardous trace elements in Kentucky coals and combustion byproducts

    SciTech Connect

    Robertson, J.D.; Blanchard, L.J.; Srikantapura, S.; Parekh, B.K.; Lafferty, C.J.

    1996-12-31

    The minor- and trace-element content of coal is of great interest because of the potentially hazardous impact on human health and the environment resulting from their release during coal combustion. Of the one billion tons of coal mined annually in the United States, 85-90% is consumed by coal-fired power plants. Potentially toxic elements present at concentrations as low as a few egg can be released in large quantities from combustion of this magnitude. Of special concern are those trace elements that occur naturally in coal which have been designated as potential hazardous air pollutants (HAPs) in the 1990 Amendments to the Clean Air Act. The principle objective of this work was to investigate a combination of physical and chemical coal cleaning techniques to remove 90 percent of HAP trace elements at 90 percent combustibles recovery from Kentucky No. 9 coal. Samples of this coal were first subjected to physical separation by flotation in a Denver cell. The float fraction from the Denver cell was then used as feed material for hydrothermal leaching tests in which the efficacy of dilute alkali (NaOH) and acid (HNO{sub 3}) solutions at various temperatures and pressures was investigated. The combined column flotation and mild chemical cleaning strategy removed 60-80% of trace elements with greater than 85, recovery of combustibles from very finely ground (-325 mesh) coal. The elemental composition of the samples generated at each stage was determined using particle induced X-ray emission (PIXE) analysis. PIXE is a rapid, instrumental technique that, in principle, is capable of analyzing all elements from sodium through uranium with sensitivities as low as 1 {mu}g/g.

  2. Analysis of the geometrical dependence of auxetic behavior in reentrant structures by finite elements

    NASA Astrophysics Data System (ADS)

    Carneiro, V. H.; Puga, H.; Meireles, J.

    2015-11-01

    Materials with a negative Poisson's ratio (PR) are called auxetics; they are characterized by expansion/contraction when tensioned/compressed. Given this counterintuitive behavior, they present very particular characteristics and mechanical behavior. Geometrical models have been developed to justify and artificially reproduce such materials' auxetic behavior. The focus of this study is the exploration of a reentrant model by analyzing the variation in the PR of reentrant structures as a function of geometrical and base material parameters. It is shown that, even in the presence of protruding ribs, there may not be auxetic behavior, and this depends on the geometry of each reentrant structure. Values determined for these parameters can be helpful as approximate reference data in the design and fabrication of auxetic lattices using reentrant geometries.

  3. Analysis of the geometrical dependence of auxetic behavior in reentrant structures by finite elements

    NASA Astrophysics Data System (ADS)

    Carneiro, V. H.; Puga, H.; Meireles, J.

    2016-04-01

    Materials with a negative Poisson's ratio (PR) are called auxetics; they are characterized by expansion/contraction when tensioned/compressed. Given this counterintuitive behavior, they present very particular characteristics and mechanical behavior. Geometrical models have been developed to justify and artificially reproduce such materials' auxetic behavior. The focus of this study is the exploration of a reentrant model by analyzing the variation in the PR of reentrant structures as a function of geometrical and base material parameters. It is shown that, even in the presence of protruding ribs, there may not be auxetic behavior, and this depends on the geometry of each reentrant structure. Values determined for these parameters can be helpful as approximate reference data in the design and fabrication of auxetic lattices using reentrant geometries.

  4. Integrated study of the behavior of transuranic elements in the marine environment

    SciTech Connect

    Choppin, G. R.; Morse, J. W.

    1981-01-01

    In order to construct a model of radionuclide kinetics in an aquatic ecosystem, americium ions were chosen for study. Results will be applied to thorium, plutonium, neptunium and uranium for comparison of environmental behavior. (PSB)

  5. Metallic elements in fossil fuel combustion products: amounts and form of emissions and evaluation of carcinogenicity and mutagenicity.

    PubMed Central

    Vouk, V B; Piver, W T

    1983-01-01

    Metallic elements contained in coal, oil and gasoline are mobilized by combustion processes and may be emitted into the atmosphere, mainly as components of submicron particles. The information about the amounts, composition and form of metal compounds is reviewed for some fuels and combustion processes. Since metal compounds are always contained in urban air pollutants, they have to be considered whenever an evaluation of biological impact of air pollutants is made. The value of currently used bioassays for the evaluation of the role of trace metal compounds, either as major biologically active components or as modifiers of biological effects of organic compounds is assessed. The whole animal bioassays for carcinogenicity do not seem to be an appropriate approach. They are costly, time-consuming and not easily amenable to the testing of complex mixtures. Some problems related to the application and interpretation of short-term bioassays are considered, and the usefulness of such bioassays for the evaluation of trace metal components contained in complex air pollution mixtures is examined. PMID:6337825

  6. A combined Cyanex-923/HEH[EHP]/Dodecane solvent for recovery of transuranic elements from used nuclear fuel

    SciTech Connect

    Johnson, A.; Nash, K.L.

    2013-07-01

    The separation of minor actinides from fission product lanthanides remains a primary challenge for enabling the recycle of used nuclear fuel. To minimize the complexity of materials handling, combining extractant processes has become an increasingly attractive option. Unfortunately, combined processes sometimes suffer reduced utility due to strong dipole-dipole interactions between the extractants. The results reported here describe a system based on a combination of commercially available extractants Cyanex-923 and HEH[EHP]. In contrast to other combined extractant systems, these extractant molecules exhibit comparatively weak interactions, reducing the impact of secondary interactions. In this process, mixtures containing equal ratios of Cyanex-923 and HEH[EHP] were seen to co-extract americium and the lanthanides from nitric acid solutions. Stripping of An(III) was effectively achieved through contact with an aqueous phase comprised of glycine (for pH control) and a polyamino-poly-carboxylate stripping reagent that selectively removes An(III) from the extractant phase. The lanthanides can then be stripped from the loaded organic phase contacting with high nitric acid concentrations. Extraction of fission products zirconium and molybdenum was also investigated and potential strategies for their management have been identified. The work presented demonstrates the feasibility of combining Cyanex-923 and HEH[EHP] for separating and recovering the transuranic elements from the Ln(III). (authors)

  7. Determination of uranium in urine samples of fuel element fabrication workers by beta-delayed neutron counting

    NASA Astrophysics Data System (ADS)

    Gabelmann, H.; Lerch, M.; Kratz, K.-L.; Rudolph, W.

    1984-06-01

    Within the health physics examination of fuel element fabrication workers, the control of uranium incorporation is of importance. This is commonly performed by the determination of the alpha activity concentration of uranium excreted in the urine. However, since the chemical separation procedure and the preparation of alpha-counting samples are complicated and time-consuming, this method may imply restrictions on the routine control of large numbers of persons. Therefore, we have investigated the applicability of measuring the beta-delayed neutrons from thermal neutron induced fission of the 235U in the urine samples. The uranium was separated by coprecipitation with Fe(OH) 3 from the urine samples and irradiated in a rabbit system of the Mainz TRIGA reactor. The neutrons were counted with a 3He long counter. The detection limit of 0.3 to 0.9 pCi 1 -1 is comparable to that of alpha spectrometry, but the time required for one sample, from preparation to data evaluation is less than 25 min.

  8. Adhesion and friction behavior of group 4 elements germanium, silicon, tin, and lead

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1975-01-01

    Adhesion and friction studies were conducted with thin films of the group IV elements silicon, germanium, tin, and lead ion plated on the nickel (011) substrate. The mating surface was gold (111). Contacts were made for the elements in the clean state and with oxygen present. Adhesion and friction experiments were conducted at very light loads of 1 to 10 g. Sliding was at a speed of 0.7 mm/min. Friction results indicate that the more covalently bonded elements silicon and germanium exhibit lower adhesion and friction than the more metallic bonded tin and lead. The adhesion of gold to germanium was observed, and recrystallization of the transferred gold occurred. Plastic flow of germanium was seen with sliding. Oxygen reduced, but did not eliminate, the adhesion observed with germanium and silicon.

  9. Finite element analysis of notch behavior using a state variable constitutive equation

    NASA Technical Reports Server (NTRS)

    Dame, L. T.; Stouffer, D. C.; Abuelfoutouh, N.

    1985-01-01

    The state variable constitutive equation of Bodner and Partom was used to calculate the load-strain response of Inconel 718 at 649 C in the root of a notch. The constitutive equation was used with the Bodner-Partom evolution equation and with a second evolution equation that was derived from a potential function of the stress and state variable. Data used in determining constants for the constitutive models was from one-dimensional smooth bar tests. The response was calculated for a plane stress condition at the root of the notch with a finite element code using constant strain triangular elements. Results from both evolution equations compared favorably with the observed experimental response. The accuracy and efficiency of the finite element calculations also compared favorably to existing methods.

  10. Criticality Safety Evaluation for the Advanced Test Reactor U-Mo Demonstration Elements

    SciTech Connect

    Leland M. Montierth

    2010-12-01

    The Reduced Enrichment Research Test Reactors (RERTR) fuel development program is developing a high uranium density fuel based on a (LEU) uranium-molybdenum alloy. Testing of prototypic RERTR fuel elements is necessary to demonstrate integrated fuel performance behavior and scale-up of fabrication techniques. Two RERTR-Full Size Demonstration fuel elements based on the ATR-Reduced YA elements (all but one plate fueled) are to be fabricated for testing in the Advanced Test Reactor (ATR). The two fuel elements will be irradiated in alternating cycles such that only one element is loaded in the reactor at a time. Existing criticality analyses have analyzed Standard (HEU) ATR elements (all plates fueled) from which controls have been derived. This criticality safety evaluation (CSE) documents analysis that determines the reactivity of the Demonstration fuel elements relative to HEU ATR elements and shows that the Demonstration elements are bound by the Standard HEU ATR elements and existing HEU ATR element controls are applicable to the Demonstration elements.

  11. Multidimensional Fuel Performance Code: BISON

    Energy Science and Technology Software Center (ESTSC)

    2014-09-03

    BISON is a finite element based nuclear fuel performance code applicable to a variety of fuel forms including light water reactor fuel rods, TRISO fuel particles, and metallic rod and plate fuel (Refs. [a, b, c]). It solves the fully-coupled equations of thermomechanics and species diffusion and includes important fuel physics such as fission gas release and material property degradation with burnup. BISON is based on the MOOSE framework (Ref. [d]) and can therefore efficientlymore » solve problems on 1-, 2- or 3-D meshes using standard workstations or large high performance computers. BISON is also coupled to a MOOSE-based mesoscale phase field material property simulation capability (Refs. [e, f]). As described here, BISON includes the code library named FOX, which was developed concurrent with BISON. FOX contains material and behavioral models that are specific to oxide fuels.« less

  12. Multidimensional Fuel Performance Code: BISON

    SciTech Connect

    2014-09-03

    BISON is a finite element based nuclear fuel performance code applicable to a variety of fuel forms including light water reactor fuel rods, TRISO fuel particles, and metallic rod and plate fuel (Refs. [a, b, c]). It solves the fully-coupled equations of thermomechanics and species diffusion and includes important fuel physics such as fission gas release and material property degradation with burnup. BISON is based on the MOOSE framework (Ref. [d]) and can therefore efficiently solve problems on 1-, 2- or 3-D meshes using standard workstations or large high performance computers. BISON is also coupled to a MOOSE-based mesoscale phase field material property simulation capability (Refs. [e, f]). As described here, BISON includes the code library named FOX, which was developed concurrent with BISON. FOX contains material and behavioral models that are specific to oxide fuels.

  13. A Micromechanics Finite Element Model for Studying the Mechanical Behavior of Spray-On Foam Insulation (SOFI)

    NASA Technical Reports Server (NTRS)

    Ghosn, Louis J.; Sullivan, Roy M.; Lerch, Bradley A.

    2006-01-01

    A micromechanics model has been constructed to study the mechanical behavior of spray-on foam insulation (SOFI) for the external tank. The model was constructed using finite elements representing the fundamental repeating unit of the SOFI microstructure. The details of the micromechanics model were based on cell observations and measured average cell dimensions discerned from photomicrographs. The unit cell model is an elongated Kelvin model (fourteen-sided polyhedron with 8 hexagonal and six quadrilateral faces), which will pack to a 100% density. The cell faces and cell edges are modeled using three-dimensional 20-node brick elements. Only one-eighth of the cell is modeled due to symmetry. By exercising the model and correlating the results with the macro-mechanical foam behavior obtained through material characterization testing, the intrinsic stiffness and Poisson s Ratio of the polymeric cell walls and edges are determined as a function of temperature. The model is then exercised to study the unique and complex temperature-dependent mechanical behavior as well as the fracture initiation and propagation at the microscopic unit cell level.

  14. Liquid Fuels: Pyrolytic Degradation and Fire Spread Behavior as Influenced by Buoyancy

    NASA Technical Reports Server (NTRS)

    Yeboah, Yaw D.; Malbrue, Courtney; Savage, Melane; Liao, Bo; Ross, Howard D. (Technical Monitor)

    2001-01-01

    This work is being conducted by the Combustion and Emission Control Lab in the Engineering Department at Clark Atlanta University under NASA Grant No. NCC3-707. The work aims at providing data to supplement the ongoing NASA research activities on fire spread across liquid pools by providing flow visualization and velocity measurements especially in the gas phase and gas-liquid interface. The fabrication, installation, and testing were completed during this reporting period. The system shakedown and detailed quantitative measurements with High Speed Video and Particle Image Velocimetry (PIV) systems using butanol as fuel were performed. New and interesting results, not previously reported in the literature, were obtained from the experiments using a modified NASA tray and butanol as fuel. Three distinct flame spread regimes, as previously reported, were observed. These were the pseudo-uniform regime below 20 C, the pulsating regime between 22 and 30 C and the uniform regime above about 31 C. In the pulsating regime the jump velocity appeared to be independent of the pool temperature. However, the retreat velocity between jumps appeared to depend on the initial pool temperature. The flame retreated before surging forwards with increasing brightness. Previous literature reported this phenomenon only under microgravity conditions. However, we observed such behavior in our normal gravity experiments. Mini-pulsations behind the flame front were also observed. Two or three of these pulsations were observed within a single flame front pulsating time period. The velocity vector maps of the gas and liquid phases ahead, during, and behind the flame front were characterized. At least one recirculation cell was observed right below the flame front.The size of the liquid phase vortex (recirculation cell) below the flame front appeared to decrease with increasing initial pool temperature. The experiments also showed how multiple vortices developed in the liquid phase. A large

  15. Mobility behavior and environmental implications of trace elements associated with coal gangue: a case study at the Huainan Coalfield in China.

    PubMed

    Chuncai, Zhou; Guijian, Liu; Dun, Wu; Ting, Fang; Ruwei, Wang; Xiang, Fan

    2014-01-01

    The potential environmental hazards posed by trace elements have assumed serious proportions due to their toxicity, bioavailability and geochemical behavior. The toxicity and mobility of trace elements in coal gangue is dependent on the elements' chemical properties, therefore, the quantification of the different forms of trace elements is more significant than the estimation of their total concentrations. In this study, the mobility behavior of trace elements in coal gangue from the Huainan Coalfield was studied to evaluate the potential eco-toxicity of the trace elements. Sequential extraction was employed to analyze the fractionation behavior of trace elements in coal gangue. The selected trace elements (As, Co, Cr, Cu, Mn, Ni, Se, Sn, V and Zn) are predominantly found in silicate-bound, sulfide-bound and carbonate-bound fractions. The correlation of the element concentration with ash yield, aluminum, calcium and iron-sulfur indicates that As, Co, Cu, Ni, Se and Zn in coal gangue are mainly associated with sulfide minerals, which could release from coal gangue easily and can disperse into the environment as a result of long-term natural weathering. The Risk Assessment Code reveals that the trace elements (Mn, Cr, Se, Ni, Zn, As and Cu) can pose serious environmental risks to the ecosystem. The fractionation profiles of other elements (Co, Sn and V) indicate no risk or low risk to the environment. PMID:24050719

  16. The Impact of Non-Passive Monitor Behavior on Developing Tree Ring Elemental Concentration Based Chronologies of Environmental Change

    NASA Astrophysics Data System (ADS)

    Bukata, A. R.; Kyser, K.

    2008-12-01

    Most temperate tree species contain visibly distinct annual growth rings. These individual rings contain distinct isotopic and elemental compositions from pith to bark. As these individual rings can be dated to specific growth years, it is tempting to interpret these variations as directly reflecting temporal changes in the geochemical environment. However, tree physiology, in addition to changes in elemental bioavailability can effect the elemental composition of the growth ring. The viability of variations in tree ring elemental concentration as a proxy for changing environmental conditions is dependent on whether they are passive monitors of element bioavailability or their active incorporation can be characterized and properly considered during interpretation. We measured elemental concentrations in tree rings from red and white oak trees at sites across Southern Ontario, Canada, to determine whether they passively record changes in geochemical cycling in the presence of environmental stress. Periods of stress were defined as sustained intervals with elevated δ13C values in tree rings relative to contemporaneous atmospheric carbon dioxide. In some trees, nutrient concentrations (Ca, Mg, Mn) were highly variable during periods of stress while chemically similar non-nutrients (Ba, Sr) and the anthropogenic pollutant Pb were not. The concentration of Ca and Sr in the tree rings were related to bedrock type and leachable concentration in the soil, while Mn, Ba and Pb were not, but were inversely related to soil pH. The erratic behavior of nutrients during periods of stress suggests that although they are not always passive monitors of bioavailability, their variation may have environmental significance. The application of analytical techniques such as laser ablation ICP-MS to micro- sample across individual rings and around the bole will likely lead to the application of dendrochemistry to study environmental questions of a spatial or sub-annual nature. Although

  17. The behavior of fuel-lean premixed flames in a standard flammability limit tube under controlled gravity conditions

    NASA Technical Reports Server (NTRS)

    Wherley, B. L.; Strehlow, R. A.

    1986-01-01

    Fuel-lean flames in methane-air mixtures from 4.90 to 6.20 volume percent fuel and propane-air mixtures from 1.90 to 3.00 volume percent fuel were studied in the vicinity of the limit for a variety of gravity conditions. The limits were determined and the behavior of the flames studied for one g upward, one g downward, and zero g propagation. Photographic records of all flammability tube firings were obtained. The structure and behavior of these flames were detailed including the variations of the curvature of the flame front, the skirt length, and the occurrence of cellular instabilities with varying gravity conditions. The effect of ignition was also discussed. A survey of flame speeds as a function of mixture strength was made over a range of lean mixture compositions for each of the fuels studied. The results were presented graphically with those obtained by other researchers. The flame speed for constant fractional gravity loadings were plotted as a function of gravity loadings from 0.0 up to 2.0 g's against flame speeds extracted from the transient gravity flame histories for corresponding gravity loadings. The effects of varying gravity conditions on the extinguishment process for upward and downward propagating flames were investigated.

  18. Behavior of transplutonium elements on ion-exchange materials in mixed aqueous-organic solutions of mineral acids

    SciTech Connect

    Guseva, L.I.; Tikhomirov, G.S.; Stepushkina, V.V.

    1987-03-01

    Systematic studies are reported on the behavior of transplutonium elements (TPE) on cation-exchange and anion-exchange materials in mixed aqueous-organic solutions of mineral acids (HClO/sub 4/, HCl, HNO/sub 3/, H/sub 2/SO/sub 4/, H/sub 3/PO/sub 4/) as affected by solution composition, nature of acid, and nature of organic solvent. With all these acids, replacing most of the water by alcohol increases the TPE uptake on the ion exchangers, and the effect occurs for the cation exchangers at lower contents of the organic component. Optimum conditions have been identified for concentrating and separating TPE from numerous elements. The most effective system consists of anion exchanger with HNO/sub 3/ and alcohol.

  19. Fundamental Processes of Coupled Radiation Damage and Mechanical Behavior in Nuclear Fuel Materials for High Temperature Reactors

    SciTech Connect

    Phillpot, Simon; Tulenko, James

    2011-09-08

    The objective of this work has been to elucidate the relationship among microstructure, radiation damage and mechanical properties for nuclear fuel materials. As representative nuclear materials, we have taken an hcp metal (Mg as a generic metal, and Ti alloys for fast reactors) and UO2 (representing fuel). The degradation of the thermo-mechanical behavior of nuclear fuels under irradiation, both the fissionable material itself and its cladding, is a longstanding issue of critical importance to the nuclear industry. There are experimental indications that nanocrystalline metals and ceramics may be more resistant to radiation damage than their coarse-grained counterparts. The objective of this project look at the effect of microstructure on radiation damage and mechanical behavior in these materials. The approach to be taken was state-of-the-art, large-scale atomic-level simulation. This systematic simulation program of the effects of irradiation on the structure and mechanical properties of polycrystalline Ti and UO2 identified radiation damage mechanisms. Moreover, it will provided important insights into behavior that can be expected in nanocrystalline microstructures and, by extension, nanocomposites. The fundamental insights from this work can be expected to help in the design microstructures that are less susceptible to radiation damage and thermomechanical degradation.

  20. Behavior of nuclear waste elements during hydrothermal alteration of glassy rhyolite in an active geothermal system: Yellowstone National Park, Wyoming

    SciTech Connect

    Sturchio, N.C.; Seitz, M.G.

    1984-12-31

    The behavior of a group of nuclear waste elements (U, Th, Sr, Zr, Sb, Cs, Ba, and Sm) during hydrothermal alteration of glassy rhyolite is investigated through geochemical analyses of whole rocks, glass and mineral separates, and thermal waters. Significant enrichments of U, Sr, Sb, Cs, and Ba are found in altered rock relative to unaltered rock. Excess Sr, Cs, and Ba are concentrated in zeolites in altered rock. Excess U is associated with titanomagnetite surfaces. Th, Zr, and Sm are relatively immobile during alteration, and are strongly concentrated in celadonite. 19 refs., 2 figs., 2 tabs.