Sample records for fuel gas combustion

  1. Gas turbine alternative fuels combustion characteristics

    Microsoft Academic Search

    R. James Rollbuhler

    1989-01-01

    An experimental investigation was conducted to obtain combustion performance and exhaust pollutant concentrations for specific synthetic hydrocarbon fuels. Baseline comparison fuels used were gasoline and diesel fuel number two. Testing was done over a range of fuel to air mass ratios, total mass flow rates, and input combustion air temperatures in a flame-tube-type gas turbine combustor. Test results were obtained

  2. Fuel Interchangeability Considerations for Gas Turbine Combustion

    SciTech Connect

    Ferguson, D.H.

    2007-10-01

    In recent years domestic natural gas has experienced a considerable growth in demand particularly in the power generation industry. However, the desire for energy security, lower fuel costs and a reduction in carbon emissions has produced an increase in demand for alternative fuel sources. Current strategies for reducing the environmental impact of natural gas combustion in gas turbine engines used for power generation experience such hurdles as flashback, lean blow-off and combustion dynamics. These issues will continue as turbines are presented with coal syngas, gasified coal, biomass, LNG and high hydrogen content fuels. As it may be impractical to physically test a given turbine on all of the possible fuel blends it may experience over its life cycle, the need to predict fuel interchangeability becomes imperative. This study considers a number of historical parameters typically used to determine fuel interchangeability. Also addressed is the need for improved reaction mechanisms capable of accurately modeling the combustion of natural gas alternatives.

  3. Combustion characteristics of gas turbine alternative fuels

    Microsoft Academic Search

    Rollbuhler

    1987-01-01

    An experimental investigation, cosponsored by the Department of Energy and NASA, was conducted to obtain combustion performance values for specific heavy-end, synthetic hydrocarbon fuels. A flame tube combustor modified to duplicate an advanced gas turbine engine combustor was used for the tests. Each fuel was tested at steady-state operating conditions over a range of mass flow rates, fuel-to-air mass ratio,

  4. Combustion gas properties. 2: Natural gas fuel and dry air

    NASA Technical Reports Server (NTRS)

    Wear, J. D.; Jones, R. E.; Trout, A. M.; Mcbride, B. J.

    1985-01-01

    A series of computations has been made to produce the equilibrium temperature and gas composition for natural gas fuel and dry air. The computed tables and figures provide combustion gas property data for pressures from 0.5 to 50 atmospheres and equivalence ratios from 0 to 2.0. Only samples tables and figures are provided in this report. The complete set of tables and figures is provided on four microfiche films supplied with this report.

  5. Solid fuel combustion system for gas turbine engine

    DOEpatents

    Wilkes, Colin (Lebanon, IN); Mongia, Hukam C. (Carmel, IN)

    1993-01-01

    A solid fuel, pressurized fluidized bed combustion system for a gas turbine engine includes a carbonizer outside of the engine for gasifying coal to a low Btu fuel gas in a first fraction of compressor discharge, a pressurized fluidized bed outside of the engine for combusting the char residue from the carbonizer in a second fraction of compressor discharge to produce low temperature vitiated air, and a fuel-rich, fuel-lean staged topping combustor inside the engine in a compressed air plenum thereof. Diversion of less than 100% of compressor discharge outside the engine minimizes the expense of fabricating and maintaining conduits for transferring high pressure and high temperature gas and incorporation of the topping combustor in the compressed air plenum of the engine minimizes the expense of modifying otherwise conventional gas turbine engines for solid fuel, pressurized fluidized bed combustion.

  6. Experimental study of gas turbine combustion with elevated fuel temperatures

    NASA Astrophysics Data System (ADS)

    Wiest, Heather K.

    Many thermal management challenges have developed as advancements in gas turbine engine designs are made. As the thermal demands on gas turbine engines continue to increase, the heat sink available in the combustor fuel flow becomes more attractive. Increasing the temperature of fuel by using it as a heat sink can lead to higher combustion efficiency due to the increase in flow enthalpy and improved vaporization of the heated fuel. Emissions levels can also be affected by using heated fuels with the levels of carbon monoxide and unburned hydrocarbons tending to decrease while the amount of the oxides of nitrogen tends to increase. Although there are several benefits associated with using heated fuels in gas turbine engines, some problems can arise from their use including combustion instabilities, flashing within the fuel injector, and fuel coking or deposit formation within the fuel system. Various deoxygenation methods have been created to address the coking problem seen when using heated fuels. In the Gas Turbine Test Cell of the High Pressure Laboratory at Purdue University's Maurice J. Zucrow Laboratories, a 5 MW combustion rig was developed to complete combustion test with heated fuels. The facility's supply systems including heated air, jet fuel, cooling water, and nitrogen were designed and integrated to produce simulated engine conditions within the combustion rig. Heating capabilities produced fuel temperatures ranging up to 600 deg F. Testing was completed with two fuel deoxygenation methods: nitrogen sparging and catalytic deoxygenation. Results from the testing campaign included conventional pressure, temperature, and fuel property measurements; however, the most important measurements were the emissions samples that were analyzed for each test condition. Levels of carbon monoxide, unburned hydrocarbons, and oxides of nitrogen were determined as well as the combustion efficiency calculated from these emissions measurements. The trends in emissions and performance from the increase in fuel temperature will be discussed. In addition, high frequency pressure data were recorded during testing to monitor combustion instabilities. Fuel samples were also taken and analyzed to document the changes in the volatile composition of the fuel from the two deoxygenation methods. The testing campaign was extremely successful. All project objectives were met with the heated fuel testing campaign. The combustion rig was run safely with fuel temperature up to 600 deg F, allowing the effects of elevated fuel temperatures on the performance and emissions of a gas turbine combustor to be evaluated as planned.

  7. Combustion of coal-gas fuels in a staged combustor

    SciTech Connect

    Rosfjord, T J; McVey, J B; Sederquist, R A; Schultz, D F

    1982-01-01

    Gaseous fuels produced from coal resources have been considered for use in industrial gas turbines. Such fuels generally have heating values much lower than the typical gaseous fuel, natural gas; the low heating value could result in unstable or inefficient combustion. Additionally, coal gas fuels may contain ammonia which if oxidized in an uncontrolled manner could result in unacceptable NO/sub x/ exhaust emission levels. Previous investigations have indicated that staged, rich-lean combustion represents a desirable approach to achieve stable, efficient, low NO/sub x/ emission operation for coal-derived liquid fuels containing up to 0.8-wt % nitrogen. An experimental program has been conducted to determine whether this fuel tolerance can be extended to include coal-derived gaseous fuels. The results of tests with three nitrogen-free fuels having heating values of 100, 250, and 350 Btu/scf and a 250 Btu/scf heating value doped to contain 0.7% ammonia are presented. The test results permit the following conclusions to be drawn: (1) Staged, rich-lean combustion represents the desirable approach to achieve ultra-low NO/sub x/ and CO emissions for coal gas fuels with heating values of 210 kJ/mol (238 Btu/scf) or higher. (2) Lean combustion represents the desirable approach to achieve ultra-low NO/sub x/ and CO emissions for coal gas fuels with low heating values (84 kJ/mol (95 Btu/scf)). (3) Staged combustion has the ability to limit NH/sub 3/ to NO/sub x/ conversion rates to less than 5%. NO/sub x/ emissions below the EPA limit can readily be achieved.

  8. Toward the Impact of Fuel Evaporation-Combustion Interaction on Spray Combustion in Gas Turbine Combustion Chambers. Part I: Effect of Partial Fuel Vaporization on Spray Combustion

    Microsoft Academic Search

    Amsini Sadiki; W. Ahmadi; Mouldi Chrigui; J. Janicka

    \\u000a This work aims at investigating the impact of the interaction between evaporation process and combustion on spray combustion\\u000a characteristics in gas turbine combustion chambers. It is subdivided into two parts. The first part studies how the evaporation\\u000a process affects the behavior of partially pre-vaporized spray combustion. The second part attempts to answer the question\\u000a how the fuel evaporation process behaves

  9. Combustion of coal gas fuels in a staged combustor

    NASA Technical Reports Server (NTRS)

    Rosfjord, T. J.; Mcvey, J. B.; Sederquist, R. A.; Schultz, D. F.

    1982-01-01

    Gaseous fuels produced from coal resources generally have heating values much lower than natural gas; the low heating value could result in unstable or inefficient combustion. Coal gas fuels may contain ammonia which if oxidized in an uncontrolled manner could result in unacceptable nitrogen oxide exhaust emission levels. Previous investigations indicate that staged, rich-lean combustion represents a desirable approach to achieve stable, efficient, low nitrogen oxide emission operation for coal-derived liquid fuels contaning up to 0.8-wt pct nitrogen. An experimental program was conducted to determine whether this fuel tolerance can be extended to include coal-derived gaseous fuels. The results of tests with three nitrogen-free fuels having heating values of 100, 250, and 350 Btu/scf and a 250 Btu/scf heating value doped to contain 0.7 pct ammonia are presented.

  10. Compounded turbocharged rotary internal combustion engine fueled with natural gas

    SciTech Connect

    Jenkins, P.E.

    1992-10-15

    This patent describes a compounded engine. It comprises: a first Wankel engine having a housing with a trochoidal inner surface containing a generally triangular shaped rotor, the engine containing a fuel supply system suitable for operating the engine with natural gas as a fuel; a turbocharge compressing air for combustion by the engine, the turbocharger being driven by the exhaust gases which exit from the engine; a combustion chamber in fluid communication with the exhaust from the engine after that exhaust has passed through the turbocharger, the chamber having an ignition device suitable for igniting hydrocarbons in the engine exhaust, whereby the engine timing, and the air and fuel mixture of the engine are controlled so that when the engine exhaust reaches the combustion chamber the exhaust contains a sufficient amount of oxygen and hydrocarbons to enable ignition and combustion of the engine exhaust in the combustion chamber without the addition of fuel or air, and whereby the engine operating conditions are controlled to vary the performance of the secondary combustor; and a controllable ignition device to ignite the exhaust gases in the combustion chamber at predetermined times.

  11. Fuel NOx pollution production during the combustion of a low caloric value fuel gas

    E-print Network

    Caraway, John Phillip

    1995-01-01

    FUEL NO, POLLUTION PRODUCTION DURING THE COMBUSTION OF A LOW CALORIC VALUE FUEL GAS A Thesis by JOHN PHILLIP CARAWAY Submitted to the Otftce of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree... of MASTER OF SCIENCE May 1995 Major Subject: Mechanical Engineering FUEL NO, POLLUTION PRODUCTION DURING THE COMBUSTION OF A LOW CALORIC VALUE FUEL GAS A Thesis by JOHN PHILLIP CARAWAY Submitted to Texas ARM University in partial fulfillment...

  12. 40 CFR 60.107a - Monitoring of emissions and operations for fuel gas combustion devices.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...Monitoring of emissions and operations for fuel gas combustion devices. 60.107a Section 60.107a...Monitoring of emissions and operations for fuel gas combustion devices. (a) Fuel gas combustion devices subject to SO 2 or H 2...

  13. 40 CFR 60.107a - Monitoring of emissions and operations for fuel gas combustion devices.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...Monitoring of emissions and operations for fuel gas combustion devices. 60.107a Section 60.107a...Monitoring of emissions and operations for fuel gas combustion devices. (a) Fuel gas combustion devices subject to SO 2 or H 2...

  14. 40 CFR 60.107a - Monitoring of emissions and operations for fuel gas combustion devices.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...Monitoring of emissions and operations for fuel gas combustion devices. 60.107a Section 60.107a...Monitoring of emissions and operations for fuel gas combustion devices. (a) Fuel gas combustion devices subject to SO 2 or H 2...

  15. Fuel Flexible Combustion Systems for High-Efficiency Utilization of Opportunity Fuels in Gas Turbines

    SciTech Connect

    Venkatesan, Krishna

    2011-11-30

    The purpose of this program was to develop low-emissions, efficient fuel-flexible combustion technology which enables operation of a given gas turbine on a wider range of opportunity fuels that lie outside of current natural gas-centered fuel specifications. The program encompasses a selection of important, representative fuels of opportunity for gas turbines with widely varying fundamental properties of combustion. The research program covers conceptual and detailed combustor design, fabrication, and testing of retrofitable and/or novel fuel-flexible gas turbine combustor hardware, specifically advanced fuel nozzle technology, at full-scale gas turbine combustor conditions. This project was performed over the period of October 2008 through September 2011 under Cooperative Agreement DE-FC26-08NT05868 for the U.S. Department of Energy/National Energy Technology Laboratory (USDOE/NETL) entitled "Fuel Flexible Combustion Systems for High-Efficiency Utilization of Opportunity Fuels in Gas Turbines". The overall objective of this program was met with great success. GE was able to successfully demonstrate the operability of two fuel-flexible combustion nozzles over a wide range of opportunity fuels at heavy-duty gas turbine conditions while meeting emissions goals. The GE MS6000B ("6B") gas turbine engine was chosen as the target platform for new fuel-flexible premixer development. Comprehensive conceptual design and analysis of new fuel-flexible premixing nozzles were undertaken. Gas turbine cycle models and detailed flow network models of the combustor provide the premixer conditions (temperature, pressure, pressure drops, velocities, and air flow splits) and illustrate the impact of widely varying fuel flow rates on the combustor. Detailed chemical kinetic mechanisms were employed to compare some fundamental combustion characteristics of the target fuels, including flame speeds and lean blow-out behavior. Perfectly premixed combustion experiments were conducted to provide experimental combustion data of our target fuels at gas turbine conditions. Based on an initial assessment of premixer design requirements and challenges, the most promising sub-scale premixer concepts were evaluated both experimentally and computationally. After comprehensive screening tests, two best performing concepts were scaled up for further development. High pressure single nozzle tests were performed with the scaled premixer concepts at target gas turbine conditions with opportunity fuels. Single-digit NOx emissions were demonstrated for syngas fuels. Plasma-assisted pilot technology was demonstrated to enhance ignition capability and provide additional flame stability margin to a standard premixing fuel nozzle. However, the impact of plasma on NOx emissions was observed to be unacceptable given the goals of this program and difficult to avoid.

  16. A novel gas turbine cycle with hydrogen-fueled chemical-looping combustion

    Microsoft Academic Search

    Hongguang Jin; Masaru Ishida

    2000-01-01

    In this paper we have proposed a novel gas turbine cycle with hydrogen-fueled chemical-looping combustion, and the system study on two hydrogen-fueled power plants, the new gas turbine cycle and an advanced gas turbine cycle with H2\\/O2 combustion, has been investigated with the aid of exergy principle (EUD methodology). The hydrogen fueled chemical-looping combustion in the new gas turbine cycle

  17. 40 CFR 60.107a - Monitoring of emissions and operations for fuel gas combustion devices and flares.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...calibration drift tests. (vi) Fuel gas combustion devices having...an affected facility subject to...calibration drift tests. (6...equipped with combustion modification-based...for fuel gas combustion devices...performance test....

  18. 40 CFR 60.107a - Monitoring of emissions and operations for fuel gas combustion devices and flares.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...calibration drift tests. (vi) Fuel gas combustion devices having...an affected facility subject to...calibration drift tests. (6...equipped with combustion modification-based...for fuel gas combustion devices...performance test....

  19. Chemical kinetic modeling of oxy-fuel combustion of sour gas for enhanced oil recovery

    E-print Network

    Bongartz, Dominik

    2014-01-01

    Oxy-fuel combustion of sour gas, a mixture of natural gas (primarily methane (CH 4 )), carbon dioxide (CO 2 ), and hydrogen sulfide (H 2 S), could enable the utilization of large natural gas resources, especially when ...

  20. Internal combustion engines fueled by natural gashydrogen mixtures

    Microsoft Academic Search

    S. Orhan Akansu; Zafer Dulger; Nafiz Kahraman; T. Nejat Veziro?lu

    2004-01-01

    In this study, a survey of research papers on utilization of natural gashydrogen mixtures in internal combustion engines is carried out. In general, HC, CO2, and CO emissions decrease with increasing H2, but NOx emissions generally increase. If a catalytic converter is used, NOx emission values can be decreased to extremely low levels. Consequently, equivalence zero emission vehicles (EZEV) standards

  1. Electronic fuel supply control system for internal combustion engines, having exhaust gas recirculation control

    Microsoft Academic Search

    A. Yamato; S. Umesaki

    1984-01-01

    In an electronic fuel supply control system for an internal combustion engines, the fuel quantity being supplied to the engine is set to different values in accordance with the operating condition of the engine, between when the exhaust gas recirculation is operated and when it is not operated, for achieving proper air\\/fuel ratios. Further, immediately after a valve lift command

  2. Combustion Gas Properties I-ASTM Jet a Fuel and Dry Air

    NASA Technical Reports Server (NTRS)

    Jones, R. E.; Trout, A. M.; Wear, J. D.; Mcbride, B. J.

    1984-01-01

    A series of computations was made to produce the equilibrium temperature and gas composition for ASTM jet A fuel and dry air. The computed tables and figures provide combustion gas property data for pressures from 0.5 to 50 atmospheres and equivalence ratios from 0 to 2.0.

  3. Combined catalysts for the combustion of fuel in gas turbines

    DOEpatents

    Anoshkina, Elvira V.; Laster, Walter R.

    2012-11-13

    A catalytic oxidation module for a catalytic combustor of a gas turbine engine is provided. The catalytic oxidation module comprises a plurality of spaced apart catalytic elements for receiving a fuel-air mixture over a surface of the catalytic elements. The plurality of catalytic elements includes at least one primary catalytic element comprising a monometallic catalyst and secondary catalytic elements adjacent the primary catalytic element comprising a multi-component catalyst. Ignition of the monometallic catalyst of the primary catalytic element is effective to rapidly increase a temperature within the catalytic oxidation module to a degree sufficient to ignite the multi-component catalyst.

  4. Cyclic Combustion Variations in Dual Fuel Partially Premixed Pilot-Ignited Natural Gas Engines

    SciTech Connect

    Srinivasan, K. K.; Krishnan, S. R.

    2012-05-09

    Dual fuel pilot ignited natural gas engines are identified as an efficient and viable alternative to conventional diesel engines. This paper examines cyclic combustion fluctuations in conventional dual fuel and in dual fuel partially premixed low temperature combustion (LTC). Conventional dual fueling with 95% (energy basis) natural gas (NG) substitution reduces NOx emissions by almost 90%t relative to straight diesel operation; however, this is accompanied by 98% increase in HC emissions, 10 percentage points reduction in fuel conversion efficiency (FCE) and 12 percentage points increase in COVimep. Dual fuel LTC is achieved by injection of a small amount of diesel fuel (2-3 percent on an energy basis) to ignite a premixed natural gas???????¢????????????????air mixture to attain very low NOx emissions (less than 0.2 g/kWh). Cyclic variations in both combustion modes were analyzed by observing the cyclic fluctuations in start of combustion (SOC), peak cylinder pressures (Pmax), combustion phasing (Ca50), and the separation between the diesel injection event and Ca50 (termed ???????¢????????????????relative combustion phasing???????¢???????????????). For conventional dual fueling, as % NG increases, Pmax decreases, SOC and Ca50 are delayed, and cyclic variations increase. For dual fuel LTC, as diesel injection timing is advanced from 20???????????????° to 60???????????????°BTDC, the relative combustion phasing is identified as an important combustion parameter along with SoC, Pmax, and CaPmax. For both combustion modes, cyclic variations were characterized by alternating slow and fast burn cycles, especially at high %NG and advanced injection timings. Finally, heat release return maps were analyzed to demonstrate thermal management strategies as an effective tool to mitigate cyclic combustion variations, especially in dual fuel LTC.

  5. Mild Combustion of Methane-Derived Fuel Mixtures: Natural Gas and Biogas

    Microsoft Academic Search

    Alessandro Effuggi; Davino Gelosa; Marco Derudi; Renato Rota

    2008-01-01

    Mild combustion (also called diluted or flameless combustion) is an innovative combustion process able to strongly reduce pollutant emissions with respect to traditional combustion processes; it is characterized by high preheating of the combustion air and massive recycle of burned gases. While it is well known that mild combustion leads to lowering NOx emissions when pure fuels (such as methane)

  6. Premixed mixture ignition in the end-gas region (PREMIER) combustion in a natural gas dual-fuel engine: operating range and exhaust emissions

    Microsoft Academic Search

    U Azimov; E Tomita; N Kawahara; Y Harada

    2011-01-01

    This paper is concerned with engine experiments and spectroscopic analysis of premixed mixture ignition in the end-gas region (PREMIER) combustion in a pilot fuel ignited, natural gas dual-fuel engine. The results reveal the characteristics and operating parameters that induce and affect this combustion mode. The PREMIER combustion is followed by natural gas flame propagation. Pilot-injected diesel fuel ignites the natural

  7. Combustion performance test of a new fuel DME to adapt to a gas turbine for power generation

    Microsoft Academic Search

    Min Chul Lee; Seok Bin Seo; Jae Hwa Chung; Yong Jin Joo; Dal Hong Ahn

    2008-01-01

    Recently, DME (dimethyl ether, CH3OCH3) has attracted a great deal of attention as an alternative fuel owing to its easy transportation and cleanliness. This study was conducted to verify the combustion performance and to identify potential problems when DME is fueled to a gas turbine. Combustion tests were conducted by comparing DME with methane, which is a major component of

  8. Performance, Efficiency, and Emissions Characterization of Reciprocating Internal Combustion Engines Fueled with Hydrogen\\/Natural Gas Blends

    Microsoft Academic Search

    Kirby S. Chapman; Amar Patil

    2007-01-01

    Hydrogen is an attractive fuel source not only because it is abundant and renewable but also because it produces almost zero regulated emissions. Internal combustion engines fueled by compressed natural gas (CNG) are operated throughout a variety of industries in a number of mobile and stationary applications. While CNG engines offer many advantages over conventional gasoline and diesel combustion engines,

  9. Application of neural network in the study of combustion rate of natural gas/diesel dual fuel engine.

    PubMed

    Yan, Zhao-Da; Zhou, Chong-Guang; Su, Shi-Chuan; Liu, Zhen-Tao; Wang, Xi-Zhen

    2003-01-01

    In order to predict and improve the performance of natural gas/diesel dual fuel engine (DFE), a combustion rate model based on forward neural network was built to study the combustion process of the DFE. The effect of the operating parameters on combustion rate was also studied by means of this model. The study showed that the predicted results were good agreement with the experimental data. It was proved that the developed combustion rate model could be used to successfully predict and optimize the combustion process of dual fuel engine. PMID:12659230

  10. Graphite fuels combustion off-gas treatment options

    SciTech Connect

    Kirkham, R.J.; Lords, R.E.

    1993-03-01

    Scenarios for burning bulk graphite and for burning crushed fuel particles from graphite spent nuclear fuels have been considered. Particulates can be removed with sintered metal filters. Subsequent cooling would then condense semi-volatile fission products into or onto a particulate. These particulates would be trapped by a second sintered metal filter or downstream packed bed. A packed bed scrub column can be used to eliminate most of the iodine-129 and tritium. A molecular sieve bed is proposed to collect the residual {sup 129}I and other tramp radionuclides downstream (Ruthenium, etc.). Krypton-85 can be recovered, if need be, either by cryogenics or by the KALC process (Krypton Adsorption in Liquid Carbon dioxide). Likewise carbon-14 in the form of carbon dioxide could be collected with a caustic or lime scrub solution and incorporated into a grout. Sulfur dioxide present will be well below regulatory concern level of 4.0 tons per year and most of it would be removed by the scrubber. Carbon monoxide emissions will depend on the choice of burner and start-up conditions. Should the system exceed the regulatory concern level, a catalytic converter in the final packed bed will be provided. Radon and its daughters have sufficiently short half-lives (less than two minutes). If necessary, an additional holdup bed can be added before the final HEPA filters or additional volume can be added to the molecular sieve bed to limit radon emissions. The calculated total effective dose equivalent at the Idaho National Engineering Laboratory boundary from a single release of all the {sup 3}, {sup 14}C, {sup 85}Kr, and {sup 129}I in the total fuel mass if 0.43 mrem/year.

  11. INTEGRAL CATALYTIC COMBUSTION/FUEL REFORMING

    E-print Network

    INTEGRAL CATALYTIC COMBUSTION/FUEL REFORMING FOR GAS TURBINE Prepared For: California Energy REPORT (FAR) INTEGRAL CATALYTIC COMBUSTION/FUEL REFORMING FOR GAS TURBINE CYCLES EISG AWARDEE University://www.energy.ca.gov/research/index.html. #12;Page 1 Integral Catalytic Combustion/Fuel Reforming for Gas Turbine Cycles EISG Grant # 99

  12. Combustion Products of Petroleum Jet Fuel, a FischerTropsch Synthetic Fuel, and a Biomass Fatty Acid Methyl Ester Fuel for a Gas Turbine Engine

    Microsoft Academic Search

    Michael T. Timko; Scott C. Herndon; Elena de la Rosa Blanco; Ezra C. Wood; Zhenhong Yu; Richard C. Miake-Lye; W. Berk Knighton; Linda Shafer; Matthew J. DeWitt; Edwin Corporan

    2011-01-01

    We report combustion emissions data for several alternatives to petroleum based Jet A jet fuel, including a natural gasderived FischerTropsch (FT) synthetic fuel; a 50\\/50 blend of the FT synthetic fuel with Jet A-1; a 20\\/80 blend of a fatty acid methyl ester (FAME) with jet fuel; and a 40\\/60 blend of FAME with jet fuel. The chief distinguishing features

  13. Polycyclic aromatic hydrocarbon emissions from the combustion of alternative fuels in a gas turbine engine.

    PubMed

    Christie, Simon; Raper, David; Lee, David S; Williams, Paul I; Rye, Lucas; Blakey, Simon; Wilson, Chris W; Lobo, Prem; Hagen, Donald; Whitefield, Philip D

    2012-06-01

    We report on the particulate-bound polycyclic aromatic hydrocarbons (PAH) in the exhaust of a test-bed gas turbine engine when powered by Jet A-1 aviation fuel and a number of alternative fuels: Sasol fully synthetic jet fuel (FSJF), Shell gas-to-liquid (GTL) kerosene, and Jet A-1/GTL 50:50 blended kerosene. The concentration of PAH compounds in the exhaust emissions vary greatly between fuels. Combustion of FSJF produces the greatest total concentration of PAH compounds while combustion of GTL produces the least. However, when PAHs in the exhaust sample are measured in terms of the regulatory marker compound benzo[a]pyrene, then all of the alternative fuels emit a lower concentration of PAH in comparison to Jet A-1. Emissions from the combustion of Jet A-1/GTL blended kerosene were found to have a disproportionately low concentration of PAHs and appear to inherit a greater proportion of the GTL emission characteristics than would be expected from volume fraction alone. The data imply the presence of a nonlinear relation between fuel blend composition and the emission of PAH compounds. For each of the fuels, the speciation of PAH compounds present in the exhaust emissions were found to be remarkably similar (R(2) = 0.94-0.62), and the results do provide evidence to support the premise that PAH speciation is to some extent indicative of the emission source. In contrast, no correlation was found between the PAH species present in the fuel with those subsequently emitted in the exhaust. The results strongly suggests that local air quality measured in terms of the particulate-bound PAH burden could be significantly improved by the use of GTL kerosene either blended with or in place of Jet A-1 kerosene. PMID:22534092

  14. and Uncertainty in Stationary Natural Gas-fueled Internal Combustion Engine NOx and Total Organic Compounds Emission Factors

    Microsoft Academic Search

    H. Christopher Frey

    Quantitative methods for characterizing both variability and uncertainty are applied to case studies of emission factors for stationary natural gas-fueled internal combustion engines. NOx and Total Organic Carbon (TOC) emission data sets for lean burn engines were analyzed. Data were available for uncontrolled engines and for engines with pre-combustion chamber (PCC) and \\

  15. Low NO sub x heavy fuel combustor concept program. Phase 1A: Combustion technology generation coal gas fuels

    NASA Technical Reports Server (NTRS)

    Sherlock, T. P.

    1982-01-01

    Combustion tests of two scaled burners using actual coal gas from a 25 ton/day fluidized bed coal gasifier are described. The two combustor configurations studied were a ceramic lined, staged rich/lean burner and an integral, all metal multiannual swirl burner (MASB). The tests were conducted over a range of temperature and pressures representative of current industrial combustion turbine inlet conditions. Tests on the rich lean burner were conducted at three levels of product gas heating values: 104, 197 and 254 btu/scf. Corresponding levels of NOx emissions were 5, 20 and 70 ppmv. Nitrogen was added to the fuel in the form of ammonia, and conversion efficiencies of fuel nitrogen to NOx were on the order of 4 percent to 12 percent, which is somewhat lower than the 14 percent to 18 percent conversion efficiency when src-2 liquid fuel was used. The MASB was tested only on medium btu gas (220 to 270 btu/scf), and produced approximately 80 ppmv NOx at rated engine conditions. Both burners operated similarly on actual coal gas and erbs fuel, and all heating values tested can be successfully burned in current machines.

  16. Separation of particulate from flue gas of fossil fuel combustion and gasification

    DOEpatents

    Yang, W.C.; Newby, R.A.; Lippert, T.E.

    1997-08-05

    The gas from combustion or gasification of fossil fuel contains fly ash and other particulates. The fly ash is separated from the gas in a plurality of standleg moving granular-bed filter modules. Each module includes a dipleg through which the bed media flows into the standleg. The bed media forms a first filter bed having an upper mass having a first frusto-conical surface in a frusto-conical member at the entrance to the standleg and a lower mass having a second frusto-conical surface of substantially greater area than the first surface after it passes through the standleg. A second filter media bed may be formed above the first filter media bed. The gas is fed tangentially into the module above the first surface. The fly ash is captured on the first frusto-conical surface and within the bed mass. The processed gas flows out through the second frusto-conical surface and then through the second filter bed, if present. The bed media is cleaned of the captured fly ash and recirculated to the moving granular bed filter. Alternatively, the bed media may be composed of the ash from the combustion which is pelletized to form agglomerates. The ash flows through the bed only once; it is not recycled. 11 figs.

  17. Separation of particulate from flue gas of fossil fuel combustion and gasification

    DOEpatents

    Yang, Wen-Ching (Murrysville, PA); Newby, Richard A. (Pittsburgh, PA); Lippert, Thomas E. (Murrysville, PA)

    1997-01-01

    The gas from combustion or gasification of fossil fuel contains flyash and other particulate. The flyash is separated from the gas in a plurality of standleg moving granular-bed filter modules. Each module includes a dipleg through which the bed media flows into the standleg. The bed media forms a first filter bed having an upper mass having a first frusto-conical surface in a frusto-conical member at the entrance to the standleg and a lower mass having a second frusto-conical surface of substantially greater area than the first surface after it passes through the standleg. A second filter media bed may be formed above the first filter media bed. The gas is fed tangentially into the module above the first surface. The flyash is captured on the first frusto-conical surface and within the bed mass. The processed gas flows out through the second frusto-conical surface and then through the second filter bed, if present. The bed media is cleaned of the captured flyash and recirculated to the moving granular bed filter. Alternatively, the bed media may be composed of the ash from the combustion which is pelletized to form agglomerates. The ash flows through the bed only once; it is not recycled.

  18. Gas turbine slagging combustion system

    Microsoft Academic Search

    A. Solbes; H. Iwata

    1990-01-01

    This paper in an apparatus for combustion of carbonaceous fuel wherein preheated oxidizer gas and particulate fuel are introduced into a substantially cylindrical primary combustor. It comprises: a head end and an exit end, and wherein the flow velocities, mass flow rates, and combustion temperatures are regulated in minimize the concentration of volatized and liquid slag in the output gaseous

  19. Gas turbine slagging combustion system

    SciTech Connect

    Solbes, A.; Iwata, H.

    1990-05-01

    This paper in an apparatus for combustion of carbonaceous fuel wherein preheated oxidizer gas and particulate fuel are introduced into a substantially cylindrical primary combustor. It comprises: a head end and an exit end, and wherein the flow velocities, mass flow rates, and combustion temperatures are regulated in minimize the concentration of volatized and liquid slag in the output gaseous products of combustion, and wherein the walls of the combustion chamber are maintained within a temperature range such that a layer of solidified slay is retained on the inside surfaces of the wall.

  20. NO x emission and performance data for a hydrogen fueled internal combustion engine at 1500 rpm using exhaust gas recirculation

    Microsoft Academic Search

    James W Heffel

    2003-01-01

    This paper describes six experiments conducted on a 2-liter, 4-cylinder Ford ZETEC internal combustion engine developed to operate on hydrogen fuel. The experiments were conducted to ascertain the effect exhaust gas recirculation (EGR) and a standard 3-way catalytic converter had on NOx emissions and engine performance. All the experiments were conducted at a constant engine speed of 1500rpm and each

  1. NO x emission reduction in a hydrogen fueled internal combustion engine at 3000 rpm using exhaust gas recirculation

    Microsoft Academic Search

    James W Heffel

    2003-01-01

    This paper describes five experiments conducted on a 2-l, 4-cylinder Ford ZETEC internal combustion engine (ICE) developed to operate on hydrogen fuel. The experiments were conducted to ascertain the effect exhaust gas recirculation (EGR) and a standard 3-way catalytic converter had on NOx emissions and engine performance. All the experiments were conducted at a constant engine speed of 3000 rpm

  2. Design and development test of a heavy-duty industrial gas turbine combustion system for low-Btu coal gas fuel

    Microsoft Academic Search

    K. W. Beebe; J. C. Blanton

    1985-01-01

    A heavy-duty industrial gas turbine combustion system has been designed and developed for low-Btu coal gas fuel with heating value in the 100 to 150 Btu\\/scf range (4.22 to 6.33 MJ\\/ncm). The new design uses a unique high-swirl fuel injector to provide rapid fuel\\/air mixing and a stable flame front. A full-scale, full-pressure laboratory development test program has been conducted

  3. Modeling the effects of auxiliary gas injection and fuel injection rate shape on diesel engine combustion and emissions

    NASA Astrophysics Data System (ADS)

    Mather, Daniel Kelly

    1998-11-01

    The effect of auxiliary gas injection and fuel injection rate-shaping on diesel engine combustion and emissions was studied using KIVA a multidimensional computational fluid dynamics code. Auxiliary gas injection (AGI) is the injection of a gas, in addition to the fuel injection, directly into the combustion chamber of a diesel engine. The objective of AGI is to influence the diesel combustion via mixing to reduce emissions of pollutants (soot and NO x). In this study, the accuracy of modeling high speed gas jets on very coarse computational grids was addressed. KIVA was found to inaccurately resolve the jet flows near walls. The cause of this inaccuracy was traced to the RNG k - ? turbulence model with the law-of-the-wall boundary condition used by KIVA. By prescribing the lengthscale near the nozzle exit, excellent agreement between computed and theoretical jet penetration was attained for a transient gas jet into a quiescent chamber at various operating conditions. The effect of AGI on diesel engine combustion and emissions was studied by incorporating the coarse grid gas jet model into a detailed multidimensional simulation of a Caterpillar 3401 heavy-duty diesel engine. The effects of AGI timing, composition, amount, orientation, and location were investigated. The effects of AGI and split fuel injection were also investigated. AGI was found to be effective at reducing soot emissions by increasing mixing within the combustion chamber. AGI of inert gas was found to be effective at reducing emissions of NOx by depressing the peak combustion temperatures. Finally, comparison of AGI simulations with experiments were conducted for a TACOM-LABECO engine. The results showed that AGI improved soot oxidation throughout the engine cycle. Simulation of fuel injection rate-shaping investigated the effects of three injection velocity profiles typical of unit-injector type, high-pressure common-rail type, and accumulator-type fuel injectors in the Caterpillar 3401 heavy-duty diesel engine. Pollutant emissions for the engine operating with different injection velocity profiles reflected the sensitivity of diesel engines to the location of pollutants within the combustion chamber, as influenced by the fuel injection.

  4. COMBUSTION OF A SOLID FUEL TUBE WITH CONTAINED LIQUID OXIDIZER IN A HOT GAS ATMOSPHERE

    Microsoft Academic Search

    A. D. PELOSI; A. GANY

    2007-01-01

    This work investigates the combustion behavior of a miniature configuration, which combines a solid fuel and a liquid oxidizer. A small diameter (about 1mm) solid fuel tube is filled with a liquid oxidizer and embedded in a solid propellant strand. Two specific cases are studied experimentally: an aluminum tube filled with hydrogen peroxide and a polyethylene tube filled with nitric

  5. Study of electrostatic modulation of fuel sprays to enhance combustion performance in an aviation gas turbine. Master's thesis

    SciTech Connect

    Manning, W.W.

    1987-06-01

    The influence of electrostatic and electrohydrodynamic charging on hydrocarbon fuel-spray patterns and droplet atomization was investigated. Research was performed in a combustion environment with an Allison T-56 combustor liner and an unmodified pressure-jet atomizer fuel nozzle. High-voltage probes and a variable-geometry probe-insertion device were developed to assess the effectiveness of probe type and location on fuel-spray modification and modulation. Exhaust-gas temperatures and temperature profiles were measured to determine changes in the combustor's thermal profile and combustion efficiency. JP-4, JET-A and Number-2 Diesel fuels were tested to analyze electrically-assisted atomization effectiveness relative to off-design fuel performance.

  6. Fuel gas conditioning process

    DOEpatents

    Lokhandwala, Kaaeid A. (Union City, CA)

    2000-01-01

    A process for conditioning natural gas containing C.sub.3+ hydrocarbons and/or acid gas, so that it can be used as combustion fuel to run gas-powered equipment, including compressors, in the gas field or the gas processing plant. Compared with prior art processes, the invention creates lesser quantities of low-pressure gas per unit volume of fuel gas produced. Optionally, the process can also produce an NGL product.

  7. LM2500 gas turbine fuel nozzle design and combustion test evaluation and emission results with simulated gasified wood product fuels

    Microsoft Academic Search

    C. E. Neilson; D. G. Shafer; E. Carpentieri

    1999-01-01

    The Brazilian Wood Biomass Demonstration Project (WBP) Phase 2 was contracted to develop the gas turbine equipment necessary to utilize fuel produced by the gasification of wood products. The program included performance studies, control specification requirements, bleed and fuel valve specifications, a modified dual gas fuel nozzle for fuel delivery to the combustor and results of two combustor components tests

  8. Coal combustion with simulated gas turbine exhaust gas and catalytic oxidation of the unburnt fuel

    Microsoft Academic Search

    Emmanuel Kakaras; Panagiotis Vourliotis

    1998-01-01

    One method of improving the overall efficiency of a power plant or increasing the power output is to re-power the existing boilers, using gas turbines in a combined cycle system. For the case of coal-fired plants, this option known as gas turbine topping is limited by the difficulties in coal burnout due to the low oxygen content (12 vol%) in

  9. Effect of heavy fuel oil\\/natural gas co-combustion on pollutant generation in retrofitted power plant

    Microsoft Academic Search

    Daniel R. Schneider; eljko Bogdan

    2007-01-01

    The purpose of this paper is to examine effect of co-combustion of heavy fuel oil and natural gas on the pollutant formation: CO2, SO2, SO3, NOX and soot. The analysis was carried out by means of numerical simulation on the case of retrofitted steam generator furnace of Thermal Power Plant Sisak (Croatia). Comprehensive mathematical model of the furnace with detailed

  10. Analysis of combustion in diesel engines fueled by directly injected natural gas

    Microsoft Academic Search

    P. G. Hill; B. Douville

    2000-01-01

    A single-cylinder two-stroke (DDC 1-71) diesel engine has been fueled with natural gas directly injected at high pressure into the engine cylinder. Prior to injection of the natural gas, a quantity of diesel fuel is injected into the cylinder (from the same injector) to provide for gas ignition. Tests have been conducted at medium load and speed over a wide

  11. CONCEPTUAL STUDIES OF A FUEL-FLEXIBLE LOW-SWIRL COMBUSTION SYSTEM FOR THE GAS TURBINE IN CLEAN COAL POWER PLANTS

    SciTech Connect

    Smith, K.O.; Littlejohn, David; Therkelsen, Peter; Cheng, Robert K.; Ali, S.

    2009-11-30

    This paper reports the results of preliminary analyses that show the feasibility of developing a fuel flexible (natural gas, syngas and high-hydrogen fuel) combustion system for IGCC gas turbines. Of particular interest is the use of Lawrence Berkeley National Laboratory's DLN low swirl combustion technology as the basis for the IGCC turbine combustor. Conceptual designs of the combustion system and the requirements for the fuel handling and delivery circuits are discussed. The analyses show the feasibility of a multi-fuel, utility-sized, LSI-based, gas turbine engine. A conceptual design of the fuel injection system shows that dual parallel fuel circuits can provide range of gas turbine operation in a configuration consistent with low pollutant emissions. Additionally, several issues and challenges associated with the development of such a system, such as flashback and auto-ignition of the high-hydrogen fuels, are outlined.

  12. Effects of Combustion-Induced Vortex Breakdown on Flashback Limits of Syngas-Fueled Gas Turbine Combustors

    SciTech Connect

    Ahsan Choudhuri

    2011-03-31

    Turbine combustors of advanced power systems have goals to achieve very low pollutants emissions, fuel variability, and fuel flexibility. Future generation gas turbine combustors should tolerate fuel compositions ranging from natural gas to a broad range of syngas without sacrificing operational advantages and low emission characteristics. Additionally, current designs of advanced turbine combustors use various degrees of swirl and lean premixing for stabilizing flames and controlling high temperature NOx formation zones. However, issues of fuel variability and NOx control through premixing also bring a number of concerns, especially combustor flashback and flame blowout. Flashback is a combustion condition at which the flame propagates upstream against the gas stream into the burner tube. Flashback is a critical issue for premixed combustor designs, because it not only causes serious hardware damages but also increases pollutant emissions. In swirl stabilized lean premixed turbine combustors onset of flashback may occur due to (i) boundary layer flame propagation (critical velocity gradient), (ii) turbulent flame propagation in core flow, (iii) combustion instabilities, and (iv) upstream flame propagation induced by combustion induced vortex breakdown (CIVB). Flashback due to first two foregoing mechanisms is a topic of classical interest and has been studied extensively. Generally, analytical theories and experimental determinations of laminar and turbulent burning velocities model these mechanisms with sufficient precision for design usages. However, the swirling flow complicates the flashback processes in premixed combustions and the first two mechanisms inadequately describe the flashback propensity of most practical combustor designs. The presence of hydrogen in syngas significantly increases the potential for flashback. Due to high laminar burning velocity and low lean flammability limit, hydrogen tends to shift the combustor operating conditions towards flashback regime. Even a small amount of hydrogen in a fuel blend triggers the onset of flashback by altering the kinetics and thermophysical characteristics of the mixture. Additionally, the presence of hydrogen in the fuel mixture modifies the response of the flame to the global effects of stretch and preferential diffusion. Despite its immense importance in fuel flexible combustor design, little is known about the magnitude of fuel effects on CIVB induced flashback mechanism. Hence, this project investigates the effects of syngas compositions on flashback resulting from combustion induced vortex breakdown. The project uses controlled experiments and parametric modeling to understand the velocity field and flame interaction leading to CIVB driven flashback.

  13. A parametric study on natural gas fueled HCCI combustion engine using a multi-zone combustion model

    Microsoft Academic Search

    Ali Yousefzadi Nobakht; R. Khoshbakhi Saray; Arash Rahimi

    2011-01-01

    Homogenous Charge Combustion Ignition (HCCI) is a good method for higher efficiency and to reduce NOx and particulate matter simultaneously in comparison to conventional internal combustion engines. In HCCI engines, there is no direct control method for auto ignition time. A common way to indirectly control the ignition timing in HCCI combustion engines is varying engines parameters which can affect

  14. A study on low NO combustion in LBG-fueled 1500 C-class gas turbine

    Microsoft Academic Search

    T. Nakata; M. Sato; T. Ninomiya; T. Hasegawa

    1996-01-01

    Developing integrated coal gasification combined-cycle systems ensures cost-effective and environmentally sound options for supplying future power generation needs. The reduction of NO emissions and increasing the inlet temperature of gas turbines are the most significant issues in gas turbine development in Integrated Coal Gasification Combined Cycle (IGCC) power generation systems. The coal gasified fuel, which is produced in a coal

  15. Recent advances in combustion flow-field imaging measurements in high-pressure liquid-fueled gas turbine combustor concepts

    NASA Astrophysics Data System (ADS)

    Locke, Randy J.; Hicks, Yolanda R.; Zaller, Michelle M.; Anderson, Robert C.

    1999-12-01

    Future gas turbine combustor designs for aerospace applications will be required to meet severe restrictions on environmentally harmful emissions. To meet the target emission reduction goals, these combustors will operate at temperatures and pressures greatly exceeding those of present day aero-powerplants. New diagnostic methods are required to provide insight into understanding the complex physical and chemical processes extant at these conditions because traditional diagnostic methods are either insufficient or incapable of providing this knowledge. At NASA Glenn Research Center (GRC), several optically accessible combustor rigs have been built which allow the implementation of a suite of optical diagnostic techniques that are capable of providing just this type of crucial information. The techniques employed in the GRC combustion research laboratory include planar laser-induced fluorescence and planar Mie scattering. Research efforts have been quite successful probing both non-reacting and reacting flowfields of many kerosene-fueled combustor and combustor subcomponent design at pressures approaching 2.0 MPa, and temperatures near 2100 K. Images that map out combustion intermediate species such as OH distribution, fuel spray patternation, and fuel to air ratio contour mapping have been obtained for many different fuel injector designs and configurations. A novel combination of multiple planar images and computational analysis allows a 3D capability that greatly enhances the evaluation of the combustion processes and flowfields examined in this study.

  16. Combustible gas sensor

    SciTech Connect

    Vaughn, E.D.; Creason, S.C.

    1993-07-06

    In a combustible gas sensor having a housing defining an interior containing an electrically conductive reference element and an electrically conducting measurement element coated with a catalyst for the catalytic combustion of a combustible gas and circuitry for measuring the difference in resistance between said measurement element and said reference element as they are heated by combustion of said combustible gas and means for measuring the difference in resistance between said measurement element and said reference element thereby to determine the quantity of combustible gas in a sample, the improvement is described comprising: maintaining said reference element and said measurement element in a common confined space for direct fluid communication therebetween wherein said reference element and said measurement element are disposed in one end of a housing member, a disk having an upper and a lower surface and a slot opening in said lower surface is disposed in said one end of said housing with said reference element and said measurement element being received in said slot and said disk having means for introducing gaseous sample to be tested into said slot whereby said gaseous sample freely communicates with both the said reference element and said measurement element.

  17. Ideal combustion of solid fuels

    SciTech Connect

    Ling, S.C.; Pao, H.P.

    1988-01-01

    Unlike the unstable, runaway, combustion of micro-fuel particles, solid fuel in the reconstituted form of a specifically shaped charge was found to have stable and ideal combustion characteristics suitable for the automatic control of combustion rate and temperature. Consequently, most environmental and operational problems associated with the atomized-combustion process can be eliminated. The shaped-charge fuel is applicable for both large power generation as well as for small home heating. 1 ref., 3 figs.

  18. Gas turbine combustion system utilizing renewable and non-critical solid fuels with residue removar to minimize environmental pollution

    SciTech Connect

    Marchand, W. C.

    1985-11-05

    Pressurized comminuted solid fuel particles are mechanically reground in a fuel injector prior to being radially injected in a swirling motion into a combustor where the fuel is mixed with oxidizing fluid in a swirling motion that is opposite to the swirling motion imparted to the solid fuel particles and burned to form both solid and gaseous products of combustion. The products of combustion are passed through an inertia separator where the solid products of combustion are removed by inertia. Means are also provided for injecting liquid or gaseous fuels into the combustor to assist in the combustion process and in meeting varying load demands on the engine.

  19. Oscillating combustion from a premix fuel nozzle

    SciTech Connect

    Richards, G.A.; Yip, M.J.

    1995-08-01

    Stringent emissions requirements for stationary gas turbines have produced new challenges in combustor design. In the past, very low NOx pollutant emissions have been achieved through various combustion modifications, such as steam or water injection, or post-combustion cleanup methods such as selective catalytic reduction (SCR). An emerging approach to NOx abatement is lean premix combustion. Lean premix combustion avoids the cost and operational problems associated with other NOx control methods. By premixing fuel and air at very low equivalence ratios, the high temperatures which produce NOx are avoided. The challenges of premix combustion include avoiding flashback, and ensuring adequate fuel/air premixing. In addition, the combustion must be stable. The combustor should not operate so close to extinction that a momentary upset will extinguish the flame (static stability), and the flame should not oscillate (dynamic stability). Oscillations are undesirable because the associated pressure fluctuations can shorten component lifetime. Unfortunately, experience has shown that premix fuel nozzles burning natural gas are susceptible to oscillations. Eliminating these oscillations can be a costly and time consuming part of new engine development. As part of the U.S. Department of Energy`s Advanced Turbine Systems Program, the Morgantown Energy Technology Center (METC) is investigating the issue of combustion oscillations produced by lean premix fuel nozzles. METC is evaluating various techniques to stabilize oscillating combustion in gas turbines. Tests results from a premix fuel nozzle using swirl stabilization and a pilot flame are reported here.

  20. Emission characterization and evaluation of natural gas-fueled cogeneration microturbines and internal combustion engines

    Microsoft Academic Search

    Aldo Canova; Gianfranco Chicco; Giuseppe Genon; Pierluigi Mancarella

    2008-01-01

    The increasing diffusion of small-scale energy systems within the distributed generation (DG) paradigm is raising the need for studying the environmental impact due to the different DG solutions in order to assess their sustainability. Addressing the environmental impact calls for building specific models for studying both local and global emissions. In this framework, the adoption of natural gas-fueled DG cogeneration

  1. Greenhouse gas emissions from laboratory-scale fires in wildland fuels depend on fire spread mode and phase of combustion

    NASA Astrophysics Data System (ADS)

    Surawski, N. C.; Sullivan, A. L.; Meyer, C. P.; Roxburgh, S. H.; Polglase, P. J.

    2014-09-01

    Experimental fires were conducted in a combustion wind tunnel facility to explore the role of fire spread mode on the resulting emissions profile from combustion of fine (< 6 mm) Eucalyptus litter fuels. Fires were burnt spreading with the wind (heading fire), perpendicular to the wind (flanking fire) and against the wind (backing fire). Greenhouse gas compounds (i.e. CO2, CH4 and N2O) and CO were quantified using off-axis integrated-cavity-output spectroscopy (off-axis ICOS). A dilution system was employed with the off-axis ICOS technique to prevent spectral broadening of the CO emissions peak and to enable simultaneous quantification of N2O and CO. The forward rate of spread was 20 times faster and the Byram fireline intensity was 20 times higher for heading fires compared to flanking and backing fires. Emissions factors calculated using a carbon mass balance technique (along with statistical testing) showed that most of the carbon was emitted as CO2, with heading fires emitting 17% more CO2 than flanking and 9.5% more CO2 than backing fires, and about twice as much CO. Heading fires had less than half as much carbon remaining in combustion residues. Statistically significant differences in CH4 and N2O emissions factors were not found with respect to fire spread mode. Emissions factors calculated per unit of dry fuel consumed showed that combustion phase (i.e. flaming or smouldering) had a statistically significant impact, with CO and N2O emissions increasing during smouldering combustion and CO2 emissions factors decreasing. Findings on the equivalence of different emissions factor reporting methods are discussed along with the impact of our results for emissions accounting. The primary implication of this study is that prescribed fire practices might be modified to mitigate greenhouse gas emissions from forested landscapes by the preferential application of flanking and backing fires over heading fires. Future research could involve wind tunnel testing with more realistic fuel architectures and could also quantify particulate emissions with different fire spread modes.

  2. Gas turbine combustion system utilizing renewable and non-critical solid fuels with residue remover to minimize environmental pollution

    SciTech Connect

    Marchand, W.C.

    1982-07-13

    Pressurized communited solid fuel particles are mechanically reground in a fuel injector prior to being radially injected in a swirling motion into a combustor where the fuel is mixed with oxidizing fluid in a swirling motion that is opposite to the swirling motion imported to the solid fuel particles and burned to form both solid and gaseous products of combustion. The products of combustion are passed through separator where the solid products of combustor are removed by inertia. Means are also provided for injecting liquid or gaseous fuels into the combustor to assist in the combustion process and meeting varying load demands on the engine.

  3. Performance, Efficiency, and Emissions Characterization of Reciprocating Internal Combustion Engines Fueled with Hydrogen/Natural Gas Blends

    SciTech Connect

    Kirby S. Chapman; Amar Patil

    2007-06-30

    Hydrogen is an attractive fuel source not only because it is abundant and renewable but also because it produces almost zero regulated emissions. Internal combustion engines fueled by compressed natural gas (CNG) are operated throughout a variety of industries in a number of mobile and stationary applications. While CNG engines offer many advantages over conventional gasoline and diesel combustion engines, CNG engine performance can be substantially improved in the lean operating region. Lean operation has a number of benefits, the most notable of which is reduced emissions. However, the extremely low flame propagation velocities of CNG greatly restrict the lean operating limits of CNG engines. Hydrogen, however, has a high flame speed and a wide operating limit that extends into the lean region. The addition of hydrogen to a CNG engine makes it a viable and economical method to significantly extend the lean operating limit and thereby improve performance and reduce emissions. Drawbacks of hydrogen as a fuel source, however, include lower power density due to a lower heating value per unit volume as compared to CNG, and susceptibility to pre-ignition and engine knock due to wide flammability limits and low minimum ignition energy. Combining hydrogen with CNG, however, overcomes the drawbacks inherent in each fuel type. Objectives of the current study were to evaluate the feasibility of using blends of hydrogen and natural gas as a fuel for conventional natural gas engines. The experiment and data analysis included evaluation of engine performance, efficiency, and emissions along with detailed in-cylinder measurements of key physical parameters. This provided a detailed knowledge base of the impact of using hydrogen/natural gas blends. A four-stroke, 4.2 L, V-6 naturally aspirated natural gas engine coupled to an eddy current dynamometer was used to measure the impact of hydrogen/natural gas blends on performance, thermodynamic efficiency and exhaust gas emissions in a reciprocating four stroke cycle engine. The test matrix varied engine load and air-to-fuel ratio at throttle openings of 50% and 100% at equivalence ratios of 1.00 and 0.90 for hydrogen percentages of 10%, 20% and 30% by volume. In addition, tests were performed at 100% throttle opening, with an equivalence ratio of 0.98 and a hydrogen blend of 20% to further investigate CO emission variations. Data analysis indicated that the use of hydrogen/natural gas fuel blend penalizes the engine operation with a 1.5 to 2.0% decrease in torque, but provided up to a 36% reduction in CO, a 30% reduction in NOX, and a 5% increase in brake thermal efficiency. These results concur with previous results published in the open literature. Further reduction in emissions can be obtained by retarding the ignition timing.

  4. Hazardous air pollutant emissions from gas-fired combustion sources: emissions and the effects of design and fuel type

    Microsoft Academic Search

    Glenn C England; Thomas P McGrath; Lee Gilmer; James G Seebold; Miriam Lev-On; Timothy Hunt

    2001-01-01

    Air emissions from gas-fired combustion devices such as boilers, process heaters, gas turbines and stationary reciprocating engines contain hazardous air pollutants (HAPs) subjected to consideration under the federal clean air act (CAA). This work presents a recently completed major research project to develop an understanding of HAP emissions from gas-fired boilers and process heaters and new HAP emission factors based

  5. Hazardous air pollutant emissions from gas-fired combustion sources: emissions and the effects of design and fuel type.

    PubMed

    England, G C; McGrath, T P; Gilmer, L; Seebold, J G; Lev-On, M; Hunt, T

    2001-01-01

    Air emissions from gas-fired combustion devices such as boilers, process heaters, gas turbines and stationary reciprocating engines contain hazardous air pollutants (HAPs) subjected to consideration under the federal clean air act (CAA). This work presents a recently completed major research project to develop an understanding of HAP emissions from gas-fired boilers and process heaters and new HAP emission factors based on field emission tests of gas-fired external combustion devices used in the petroleum industry. The effect of combustion system design and operating parameters on HAP emissions determined by both field and research tests are discussed. Data from field tests of gas-fired petroleum industry boilers and heaters generally show very low emission levels of organic HAPs. A comparison of the emission data for boilers and process heaters, including units with and without various forms of NOx emission controls, showed no significant difference in organic HAP emission characteristics due to process or burner design. This conclusion is also supported by the results of research tests with different burner designs. Based on field tests of units fired with natural gas and various petroleum industry process gases and research tests in which gas composition was intentionally varied, organic HAP emissions were not determined to be significantly affected by the gas composition. Research data indicate that elevated organic HAP emission levels are found only under extreme operating conditions (starved air or high excess air combustion) associated with poor combustion. PMID:11219701

  6. Catalytically supported thermal combustion of coal-derived low-Btu gas. Part I. Performance with low-Btu gas fuels. Final report

    Microsoft Academic Search

    Osgerby

    1979-01-01

    A laboratory scale experimental program was conducted to determine design criteria for specification of catalyst configurations for catalytically supported thermal combustion of low Btu gas. The range of experimental parameters was chosen to simulate gas turbine combustion operation. Flashback-free operation was demonstrated for premixed combustor feed to a CATCOM catalyst over the entire range of an anticipated commercial cycle. The

  7. BURNER DESIGN CRITERIA FOR NOX CONTROL FROM LOW-BTU GAS COMBUSTION: VOLUME II. ELEVATED FUEL TEMPERATURE

    EPA Science Inventory

    The report gives results of a program to provide quantitative data on combustion emissions from high-temperature low-Btu gas. It complements a recently completed EPA project that evaluated emissions resulting from the burning of ambient-temperature low-Btu gas. The experimental r...

  8. A Study of Pollutant Formation from the Lean Premixed Combustion of Gaseous Fuel Alternatives to Natural Gas

    NASA Astrophysics Data System (ADS)

    Fackler, Keith Boyd, Jr.

    The goal of this research is to identify how nitrogen oxide (NO x) emissions and flame stability (blowout) are impacted by the use of fuels that are alternatives to typical pipeline natural gas. The research focuses on lean, premixed combustors that are typically used in state-of-the-art natural gas fueled systems. An idealized laboratory lean premixed combustor, specifically the jet-stirred reactor, is used for experimental data. A series of models, including those featuring detailed fluid dynamics and those focusing on detailed chemistry, are used to interpret the data and understand the underlying chemical kinetic reasons for differences in emissions between the various fuel blends. An ultimate goal is to use these data and interpretive tools to develop a way to predict the emission and stability impacts of changing fuels within practical combustors. All experimental results are obtained from a high intensity, single-jet stirred reactor (JSR). Five fuel categories are studied: (1) pure H 2, (2) process and refinery gas, including combinations of H2, CH4, C2H6, and C3H8, (3) oxygen blown gasified coal/petcoke composed of H2, CO, and CO2, (4) landfill and digester gas composed of CH4, CO2, and N2, and (5) liquified natural gas (LNG)/shale/associated gases composed of CH4, C2H6, and C3 H8. NOx measurements are taken at a nominal combustion temperature of 1800 K, atmospheric pressure, and a reactor residence time of 3 ms. This is done to focus the results on differences caused by fuel chemistry by comparing all fuels at a common temperature, pressure, and residence time. This is one of the few studies in the literature that attempts to remove these effects when studying fuels varying in composition. Additionally, the effects of changing temperature and residence time are investigated for selected fuels. At the nominal temperature and residence time, the experimental and modeling results show the following trends for NOx emissions as a function of fuel type: 1.) NOx emissions decrease with increasing H2 fuel fraction for combustion of CH4/H2 blends. This appears to be caused by a reduction in the amount of NO made by the prompt pathway involving the reaction of N2 with hydrocarbon radicals as the CH4 is replaced by H2. 2.) For category 2 (the process and refinery blend) and category 5 (the LNG, shale, and associated gases), NOx emissions increase with the addition of C2 and C3 hydrocarbons. This could be due to an increased production of free radicals resulting from increasing CO production when higher molecular weight hydrocarbons are broken down. 3.) For category 3 (the O2 blown gasified coal/petcoke), NOx emissions increase with increasing CO fuel fraction. The reason for this is attributed to CO producing more radicals per unit heat release than H2. When CO replaces H2, an increase in NOx emissions is seen due to an increase in the productivity of the N2O, NNH, and Zeldovich pathways. 4.) For category 4 (the landfill gas) the addition of diluents such as CO2 and N2 at constant air flow produces more NOx per kg of CH4 consumed, and N2 is more effective than CO 2 in increasing the NOx emission index. The increase in emission index appears to be due to an enhancement of the prompt NOx pathway as the diluents are added and the mixture moves towards stoichiometric. In addition, the presence of CO2 as a diluent catalyzes the loss of flame radicals, leading to less NOx formation than when an equivalent amount of N2 is used as a diluent. For a selected set of fuels, detailed spacial reactor probing is carried out. At the nominal temperature and residence time, the experimental results show the following trends for flame structure as a function of fuel type: 1.) Pure H2 is far more reactive in comparison to CH4 and all other pure alkane fuels. This results in relatively flat NO x and temperature profiles; whereas, the alkane fuels drop in both temperature and NOx production in the jet, where more fresh reactor feed gases are present. 2.) For category 2 (the Process and Refinery blends), H 2 addition increases reactivity in the

  9. Low NO\\/sub x\\/ heavy fuel combustor concept program. Phase 1A: combustion technology generation coal gas fuels. Final report

    Microsoft Academic Search

    Sherlock

    1982-01-01

    Combustion tests of two scaled burners using actual coal gas from a 25 ton\\/day fluidized bed coal gasifier are described. The two combustor configurations studied were a ceramic lined, staged rich\\/lean burner and an integral, all metal multiannual swirl burner (MASB). The tests were conducted over a range of temperature and pressures representative of current industrial combustion turbine inlet conditions.

  10. Combustion engine for solid and liquid fuels

    NASA Technical Reports Server (NTRS)

    Pabst, W.

    1986-01-01

    A combustion engine having no piston, a single cylinder, and a dual-action, that is applicable for solid and liquid fuels and propellants, and that functions according to the principle of annealing point ignition is presented. The invention uses environmentally benign amounts of fuel and propellants to produce gas and steam pressure, and to use a simple assembly with the lowest possible consumption and constant readiness for mixing and burning. The advantage over conventional combustion engines lies in lower consumption of high quality igniting fluid in the most cost effective manner.

  11. Effect of degree of fuel vaporization upon emissions for a premixed partially vaporized combustion system. [for gas turbine engines

    NASA Technical Reports Server (NTRS)

    Cooper, L. P.

    1980-01-01

    An experimental and analytical study of the combustion of partially vaporized fuel-air mixtures was performed to assess the impact of the degree of fuel vaporization upon emissions for a premixing-prevaporizing flametube combustor. Data collected in this study showed near linear increases in nitric oxide emissions with decreasing vaporization at equivalence ratios of 0.6. For equivalence ratios of 0.72, the degree of vaporization had very little impact on nitric oxide emissions. A simple mechanism which accounts for the combustion of liquid droplets in partially vaporized mixtures was found to agree with the measured results with fair accuracy with respect to both trends and magnitudes.

  12. Life cycle assessment of fuels for district heating: A comparison of waste incineration, biomass- and natural gas combustion

    Microsoft Academic Search

    Ola Eriksson; Gran Finnveden; Tomas Ekvall; Anna Bjrklund

    2007-01-01

    The aim of this consequential life cycle assessment (LCA) is to compare district heating based on waste incineration with combustion of biomass or natural gas. The study comprises two options for energy recovery (combined heat and power (CHP) or heat only), two alternatives for external, marginal electricity generation (fossil lean or intense), and two alternatives for the alternative waste management

  13. High-temperature corrosion of metals in combustion of distillate gas-turbine fuels

    Microsoft Academic Search

    V. G. Nikolaeva; B. I. Komarov; E. V. Volotushkina; S. P. Medvedev; M. S. Ostroushchenko

    1966-01-01

    1.Laboratory test-stand studies have been made on the high-temperature corrosion of various alloys when burning fuels with sulfur contents from 0.3 to 2.4% and vanadium contents up to 0.0001%2.It has been shown that, for the nickel-base alloys I-598 and I-607 and for the high-chrome steel I-417, increasing the sulfur content of the fuel gives only a slight change in the

  14. DISCRIMINATION OF COMBUSTION FUEL SOURCES USING GAS CHROMATOGRAPY-PLANAR FIELD ASYMETRIC WAVEFORM ION MOBILITY SPECTROMETRY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Smoke plumes from cotton, paper, grass and cigarettes and emissions from a gasoline engine were sampled using solid-phase microextraction (SPME) and samples were analyzed for volatile organic compounds(VOC) using gas chromatography-mass spectrometry (GC-MS). Chemical compositions were sufficiently ...

  15. Combustion modeling in advanced gas turbine systems

    SciTech Connect

    Smoot, L.D.; Hedman, P.O.; Fletcher, T.H.; Brewster, B.S.; Kramer, S.K. [Brigham Young Univ., Provo, UT (United States). Advanced Combustion Engineering Research Center

    1995-12-31

    Goal of DOE`s Advanced Turbine Systems program is to develop and commercialize ultra-high efficiency, environmentally superior, cost competitive gas turbine systems for base-load applications in utility, independent power producer, and industrial markets. Primary objective of the program here is to develop a comprehensive combustion model for advanced gas turbine combustion systems using natural gas (coal gasification or biomass fuels). The efforts included code evaluation (PCGC-3), coherent anti-Stokes Raman spectroscopy, laser Doppler anemometry, and laser-induced fluorescence.

  16. Combustion-gas recirculation system

    DOEpatents

    Baldwin, Darryl Dean (Lacon, IL)

    2007-10-09

    A combustion-gas recirculation system has a mixing chamber with a mixing-chamber inlet and a mixing-chamber outlet. The combustion-gas recirculation system may further include a duct connected to the mixing-chamber inlet. Additionally, the combustion-gas recirculation system may include an open inlet channel with a solid outer wall. The open inlet channel may extend into the mixing chamber such that an end of the open inlet channel is disposed between the mixing-chamber inlet and the mixing-chamber outlet. Furthermore, air within the open inlet channel may be at a pressure near or below atmospheric pressure.

  17. Fuel and Combustion Calculations

    Microsoft Academic Search

    Prabir Basu; Cen Kefa; Louis Jestin

    \\u000a Fuel is the single most important contributor to the cost of steam generation. It also governs the design, operation, and\\u000a performance of the boiler. Even the most fuel-flexible boilers, e.g., fluidized bed boilers, are fuel dependent, albeit to\\u000a a lesser degree. For this reason any design or even design planning, must start from a consideration of the fuel to be

  18. Combustion engineering issues for solid fuel systems

    SciTech Connect

    Bruce Miller; David Tillman [Pennsylvania State University, University Park, PA (United States). Energy Institute

    2008-05-15

    The book combines modeling, policy/regulation and fuel properties with cutting edge breakthroughs in solid fuel combustion for electricity generation and industrial applications. This book provides real-life experiences and tips for addressing the various technical, operational and regulatory issues that are associated with the use of fuels. Contents are: Introduction; Coal Characteristics; Characteristics of Alternative Fuels; Characteristics and Behavior of Inorganic Constituents; Fuel Blending for Combustion Management; Fuel Preparation; Conventional Firing Systems; Fluidized-Bed Firing Systems; Post-Combustion Emissions Control; Some Computer Applications for Combustion Engineering with Solid Fuels; Gasification; Policy Considerations for Combustion Engineering.

  19. Life cycle assessment of greenhouse gas emissions and non-CO? combustion effects from alternative jet fuels

    E-print Network

    Stratton, Russell William

    2010-01-01

    The long-term viability and success of a transportation fuel depends on both economic and environmental sustainability. This thesis focuses specifically on assessing the life cycle greenhouse gas (GHG) emissions and non-CO ...

  20. Industrial gas turbine combustion performance test of DME to use as an alternative fuel for power generation

    Microsoft Academic Search

    Min Chul Lee; Seok Bin Seo; Jae Hwa Chung; Yong Jin Joo; Dal Hong Ahn

    2009-01-01

    DME (dimethyl ether, CH3OCH3) is both a good alternative fuel for transportation and power generation and an LPG substitute owing to its cleanliness, multi-source productivity and the ease with which it is transported. This study was conducted to verify whether DME is a good fuel for gas turbines and to identify potential problems in fuelling a commercial gas turbine with

  1. Effect of pressure on combustion characteristics in LBG-fueled 1,300 C-class gas turbine

    Microsoft Academic Search

    T. Nakata; M. Sato; T. Ninomiya; T. Yoshine; M. Yamada

    1994-01-01

    Developing integrated coal gasification combined cycle systems ensures that Japan will have cost-effective and environmentally sound options for supplying future power generation needs. Reduction of NO[sub x] emissions and increasing the inlet temperature of gas turbines are the most significant issues in gas turbine development in IGCC. The coal gasified fuel, which is produced in a coal gasifier of air

  2. Variability in natural gas fuel composition and its effects on the performance of catalytic combustion systems. Final report for period September 18, 1998 - September 17, 2000

    SciTech Connect

    Ginter, David; Simchick, Chuck; Schlatter, Jim

    2002-03-01

    Natural gas is composed primarily of methane with small amounts of higher hydrocarbons and diluents, which vary by region and over time. Compositions of natural gas from domestic and worldwide sources were surveyed with respect to content of higher hydrocarbons and diluents. The survey showed slight compositional variability between most of the gases, with a small fraction of them containing significantly larger contents of higher hydrocarbons than the mean. As gas-fired turbines will be used for power generation all over the world, they will need to tolerate operation with fuels with a wide variety of compositions, particularly with respect to the concentration of higher hydrocarbons and diluents. Subscale catalytic combustion modules typical of those used in gas turbine power generation with ultra low emissions of pollutants were tested in a subscale test system with natural gas alone and with added known levels of hydrocarbon compounds and diluents. The range of compositions tested contained the range observed in the survey. Test results were used to calculate the effect of composition on catalyst performance. The compositional variability is of little consequence to the catalyst for most of the gases in the survey, including nearly all of the gases delivered in the U.S. To accommodate the remaining gases, the catalyst inlet temperature must be lowered to maintain combustor durability. These results support commercial acceptance of catalytic combustion systems for use in natural gas fired turbines in distributed power generation with ultra low NO{sub x} emissions.

  3. Combustion oscillation control by cyclic fuel injection

    SciTech Connect

    Richards, G.A.; Yip, M.J. [USDOE Morgantown Energy Technology Center, WV (United States); Robey, E. [EG& G Technical Services of West Virginia, Morgantown Energy Technology Center, WV (United States); Cowell, L.; Rawlins, D. [Solar Turbines, Inc., San Diedgo, CA (United States)

    1995-04-01

    A number of recent articles have demonstrated the use of active control to mitigate the effects of combustion instability in afterburner and dump combustor applications. In these applications, cyclic injection of small quantities of control fuel has been proposed to counteract the periodic heat release that contributes to undesired pressure oscillations. This same technique may also be useful to mitigate oscillations in gas turbine combustors, especially in test rig combustors characterized by acoustic modes that do not exist in the final engine configuration. To address this issue, the present paper reports on active control of a subscale, atmospheric pressure nozzle/combustor arrangement. The fuel is natural gas. Cyclic injection of 14% control fuel in a premix fuel nozzle is shown to reduce oscillating pressure amplitude by a factor of 0.30 (i.e., {approximately}10 dB) at 300 Hz. Measurement of the oscillating heat release is also reported.

  4. Method of combustion for dual fuel engine

    DOEpatents

    Hsu, Bertrand D. (Erie, PA); Confer, Gregory L. (Erie, PA); Shen, Zujing (Erie, PA); Hapeman, Martin J. (Edinboro, PA); Flynn, Paul L. (Fairview, PA)

    1993-12-21

    Apparatus and a method of introducing a primary fuel, which may be a coal water slutty, and a high combustion auxiliary fuel, which may be a conventional diesel oil, into an internal combustion diesel engine comprises detecting the load conditions of the engine, determining the amount of time prior to the top dead center position of the piston to inject the main fuel into the combustion chamber, and determining the relationship of the timing of the injection of the auxiliary fuel into the combustion chamber to achieve a predetermined specific fuel consumption, a predetermined combustion efficiency, and a predetermined peak cylinder firing pressure.

  5. Properties of air and combustion products of fuel with air

    NASA Technical Reports Server (NTRS)

    Poferl, D. J.; Svehla, R. A.

    1975-01-01

    Thermodynamic and transport properties have been calculated for air, the combustion products of natural gas and air, and combustion products of ASTM-A-1 jet fuel and air. Properties calculated include: ratio of specific heats, molecular weight, viscosity, specific heat, thermal conductivity, Prandtl number, and enthalpy.

  6. Fuel system for internal combustion engines

    Microsoft Academic Search

    1984-01-01

    A fuel system for an internal combustion engine of the piston type vaporizes liquid fuel such as gasoline and delivers the same through inter-communicating control valves, one of which is responsive in operation to inlet manifold pressure in the internal combustion engine and the other responsive in operation to accelerator linkage controlling the internal combustion engine's operation. The system's principal

  7. FUEL RICH SULFUR CAPTURE IN A COMBUSTION ENVIRONMENT

    EPA Science Inventory

    A refractory-lined, natural gas furnace was used to study fuel rich sulfur capture reactions of calcium sorbents under typical combustion conditions. The fuel rich sulfur species H2S and COS were monitored in a near-continuous fashion using a gas chromatograph equipped with a fl...

  8. Catalytic combustion of residual fuels

    NASA Astrophysics Data System (ADS)

    Bulzan, D. L.; Tacina, R. R.

    A noble metal catalytic reactor was tested using two grades of petroleum derived residual fuels at specified inlet air temperatures, pressures, and reference velocities. Combustion efficiencies greater than 99.5 percent were obtained. Steady state operation of the catalytic reactor required inlet air temperatures of at least 800 K. At lower inlet air temperatures, upstream burning in the premixing zone occurred which was probably caused by fuel deposition and accumulation on the premixing zone walls. Increasing the inlet air temperature prevented this occurrence. Both residual fuels contained about 0.5 percent nitrogen by weight. NO sub x emissions ranged from 50 to 110 ppm by volume at 15 percent excess O2. Conversion of fuel-bound nitrogen to NO sub x ranged from 25 to 50 percent.

  9. The effects of spark ignition parameters on the lean burn limit of natural gas combustion in an internal combustion engine

    E-print Network

    Chlubiski, Vincent Daniel

    1997-01-01

    A full factorial experiment was conducted to determine the effects of internal combustion engine ignition parameters on the air-fuel ratio (A/F) lean limit of combustion with compressed natural gas (CNG). Spark electrical characteristics (voltage...

  10. Hot Gas Cleanup Test Facility for Gasification and Pressurized Combustion

    Microsoft Academic Search

    R. E. Sears; G. H. Griswold; M. O. Fankhanel; C. E. Kastner; D. H. Pontium

    1992-01-01

    Efficiencies in advanced power generation systems such as integrated gasification combined cycle, pressurized fluidized bed combustion and integrated gasification fuel cells can be maximized by feeding hot fuel gas or flue gas to the power block. However, advanced gas turbines have strict particulate requirements to minimize wear on the blades due to the close tolerances used to maximize the efficiency

  11. Lean-burn internal combustion gas engine

    SciTech Connect

    Lambert, J.E.; Procknow, D.W.; Trayser, D.A.

    1993-07-27

    An internal combustion engine is described with a four-stroke cycle adapted for use with gaseous fuel and air mixtures comprising a cylinder casting with a cylinder and coolant jacket surrounding the cylinder; a piston in the cylinder having a generally flat piston head surface and defining a combustion chamber, a crankshaft mounted in the casting, a piston rod drivably connected to the crankshaft, the piston in its top dead center position having its head surface substantially in alignment with the end of the cylinder; a cylinder head, the cylinder head and the cylinder casting having matching surfaces at a cylinder casting and cylinder head interface; the clearance between the piston head surface and the surface of the cylinder head being at least 0.73 percent of the piston diameter but less than 2 percent of the piston diameter and defining a gas charge squish portion of the combustion chamber; a high ratio combustion chamber in the cylinder head having a depth greater than the clearance between the piston and the cylinder head surface and an area less than 40 percent of the cylinder area and more than 15 percent of the cylinder area; a gas charge inlet valve in the combustion chamber at a location that is isolated from the high ratio combustion chamber portion for admitting a gas charge to the combustion chamber; and an exhaust valve in the high ratio combustion chamber portion; the high ratio combustion chamber portion having contiguous gas turbulence regions defined by a kidney-shaped wall in the cylinder head, the wall having a convex curvature portion at one side thereof with a radius of curvature approximately equal to the radius of the cylinder and having a concave curvature portion at the opposite side thereof with a smaller radius of curvature, the exhaust valve being located at one of the gas turbulence regions, and a spark plug in the cylinder head at another of the gas turbulence regions, the concave curvature portion encircling the inlet valve.

  12. Atmospheric fluidized bed combustion gas erosion solution

    SciTech Connect

    Seitzinger, D.L. [CRSS Capital, Inc., Houston, TX (United States)

    1995-12-31

    The Westwood Generating Station is a 30 MW, anthracite culm-fired plant located near Joliet, Pennsylvania. The culm firing technology is based on the Combustion Engineering-Lurgi circulating fluidized bed combustion (CFBC) technology first introduced in this country in boiler applications in the mid-80`s. This unit went into commercial operation In July 1988 and is the second of its type in service in this country. It is located on the original site of the Westwood Colliery that was in operation from 1920 to 1950 preparing anthracite coal for the commercial market and leaving behind a 15 year fuel supply of anthracite culm, a coal screening waste, that is now the fuel for this station. This paper documents the investigations and corrective actions taken to stop severe tube erosion encountered in the combustor and heat recovery surfaces of the unit. This erosion is attributed to high gas velocities due to changing operation requirements and gas flow distribution.

  13. Combustor nozzle for a fuel-flexible combustion system

    DOEpatents

    Haynes, Joel Meier (Niskayuna, NY); Mosbacher, David Matthew (Cohoes, NY); Janssen, Jonathan Sebastian (Troy, NY); Iyer, Venkatraman Ananthakrishnan (Mason, OH)

    2011-03-22

    A combustor nozzle is provided. The combustor nozzle includes a first fuel system configured to introduce a syngas fuel into a combustion chamber to enable lean premixed combustion within the combustion chamber and a second fuel system configured to introduce the syngas fuel, or a hydrocarbon fuel, or diluents, or combinations thereof into the combustion chamber to enable diffusion combustion within the combustion chamber.

  14. Experience with biomass fuel blends in combustion systems

    SciTech Connect

    Miles, T.R.; Miles, T.R. Jr. [Consulting Design Engineer, Portland, OR (United States)

    1996-12-31

    Biomass fuels often present economic opportunities and technical challenges for gasification and combustion. Supply and logistics of these fuels sometimes require them to be blended or cofired with other biomass fuels, coal or natural gas. Experience with blends of wood residues, grasses, straws, refuse, coal and tires fired in research and industrial gasifiers and combustion systems is presented. Effects on fuel quality, stoker or grate and handling systems, gasifier and burner design are described. Beneficial combinations are suggested for environmental and economical power generation. Impacts of fuel blending on ash disposal, air quality, corrosion, alkali deposits, and materials handling are delineated. Research and practical demonstrations are recommended for new fuel combinations or technologies.

  15. Modelin combustion of multicomponent fuel droplets: formulation and application to transportation fuels

    E-print Network

    Vittilapuram Subramanian, Kannan

    2006-04-12

    The quasi-steady, spherically symmetric combustion of multicomponent isolated fuel droplets has been modeled using modified Shvab-Zeldovich variable mechanism. Newly developed modified Shvab-Zeldovich equations have been used to describe the gas...

  16. Exhaust gas cleaning device for internal combustion engines

    Microsoft Academic Search

    Y. Sakurai; S. Irimajiri

    1976-01-01

    An internal-combustion spark-ignition V-8 piston engine has an exhaust gas reaction chamber body positioned between its two banks of cylinders. Each cylinder has a main combustion chamber communicating with an auxiliary combustion chamber by means of a torch opening. A main intake manifold with branching portion over the reaction chamber communicates with main intake passages to supply a lean air-fuel

  17. Combustion System Development for Medium-Sized Industrial Gas Turbines: Meeting Tight Emission Regulations while Using

    E-print Network

    Ponce, V. Miguel

    Combustion System Development for Medium-Sized Industrial Gas Turbines: Meeting Tight Emission and the oil & gas industries. The combustion system used in Solar's products are discussed along- bility for the introduction of new combustion systems for gas turbine products to enhance fuel

  18. Effect of air distribution on solid fuel bed combustion

    SciTech Connect

    Kuo, J.T.; Hsu, W.S.; Yo, T.C. [National Taiwan Univ., Taipei (Taiwan, Province of China). Dept. of Mechanical Engineering

    1996-09-01

    One important aspect of refuse mass-burn combination control is the manipulation of combustion air. Proper air manipulation is key to the achievement of good combustion efficiency and reduction of pollutant emissions. Experiments, using a small fix-grate laboratory furnace with cylindrical combustion chamber, were performed to investigate the influence of undergrate/sidewall air distribution on the combustion of beds of wood cubes. Wood cubes were used as a convenient laboratory surrogate of solid refuse. Specifically, for different bed configurations (e.g. bed height, bed voidage and bed fuel size, etc.), burning rates and combustion temperatures at different bed locations were measured under various air supply and distribution conditions. One of the significant results of the experimental investigation is that combustion, with air injected from side walls and no undergrate air, provide the most efficient combustion. On the other hand, combustion with undergrate air achieves higher combustion rates but with higher CO emissions. A simple one-dimensional model was constructed to derive correlations of combustion rate as functions of flue gas temperature and oxygen concentration. Despite the fact that the model is one dimensional and many detailed chemical and physical processes of combustion are not considered, comparisons of the model predictions and the experimental results indicate that the model is appropriate for quantitative evaluation of bed burning rates.

  19. Control-relevant Modelling and Linear Analysis of Instabilities in Oxy-fuel Combustion

    E-print Network

    Foss, Bjarne A.

    Control-relevant Modelling and Linear Analysis of Instabilities in Oxy-fuel Combustion Dagfinn combustion have been proposed as an alternative to conventional gas turbine cycles for achieving CO2-capture for CO2 sequestration purposes. While combustion instabilities is a problem in modern conventional gas

  20. Mechanism of combustion of disperse fuel systems

    Microsoft Academic Search

    V. M. Ivanov; I. V. Radovitskii; V. A. Tsenev

    1986-01-01

    This paper discusses the phenomenon known as ''microexplosion''-the breakup of drops in the combustion of emulsified fuels. This can also be termed intrachamber fragmentation, which is characteristic for all fuel emulsions containing a polar liquid (water, methanol, ethanol, etc), including emulsified gasolines and also threecomponent disperse fuel systems consisting of boiler fuel, coal, and water, i e., coal-boiler fuel slurries.

  1. Method and system for low-NO.sub.x dual-fuel combustion of liquid and/or gaseous fuels

    DOEpatents

    Gard, Vincent; Chojnacki, Dennis A; Rabovitser, Ioseph K

    2014-12-02

    A method and apparatus for combustion in which a pressurized preheated liquid fuel is atomized and a portion thereof flash vaporized, creating a mixture of fuel vapor and liquid droplets. The mixture is mixed with primary combustion oxidant, producing a fuel/primary oxidant mixture which is then injected into a primary combustion chamber in which the fuel/primary oxidant mixture is partially combusted, producing a secondary gaseous fuel containing hydrogen and carbon oxides. The secondary gaseous fuel is mixed with a secondary combustion oxidant and injected into the second combustion chamber wherein complete combustion of the secondary gaseous fuel is carried out. The resulting second stage flue gas containing very low amounts of NO.sub.x is then vented from the second combustion chamber.

  2. Active Combustion Control for Aircraft Gas Turbine Engines

    NASA Technical Reports Server (NTRS)

    DeLaat, John C.; Breisacher, Kevin J.; Saus, Joseph R.; Paxson, Daniel E.

    2000-01-01

    Lean-burning combustors are susceptible to combustion instabilities. Additionally, due to non-uniformities in the fuel-air mixing and in the combustion process, there typically exist hot areas in the combustor exit plane. These hot areas limit the operating temperature at the turbine inlet and thus constrain performance and efficiency. Finally, it is necessary to optimize the fuel-air ratio and flame temperature throughout the combustor to minimize the production of pollutants. In recent years, there has been considerable activity addressing Active Combustion Control. NASA Glenn Research Center's Active Combustion Control Technology effort aims to demonstrate active control in a realistic environment relevant to aircraft engines. Analysis and experiments are tied to aircraft gas turbine combustors. Considerable progress has been shown in demonstrating technologies for Combustion Instability Control, Pattern Factor Control, and Emissions Minimizing Control. Future plans are to advance the maturity of active combustion control technology to eventual demonstration in an engine environment.

  3. Radiation exposures due to fossil fuel combustion

    NASA Astrophysics Data System (ADS)

    Beck, Harold L.

    The current consensus regarding the potential radiation exposures resulting from the combustion of fossil fuels is examined. Sources, releases and potential doses to humans are discussed, both for power plants and waste materials. It is concluded that the radiation exposure to most individuals from any pathway is probably insignificant, i.e. only a tiny fraction of the dose received from natural sources in soil and building materials. Any small dose that may result from power-plant emissions will most likely be from inhalation of the small insoluble ash particles from the more poorly controlled plants burning higher than average activity fuel, rather than from direct or indirect ingestion of food grown on contaminated soil. One potentially significant pathway for exposure to humans that requires further evaluation is the effect on indoor external ?-radiation levels resulting from the use of flyash in building materials. The combustion of natural gas in private dwellings is also discussed, and the radiological consequences are concluded to be generally insignificant, except under certain extraordinary circumstances.

  4. Combustion Sensors: Gas Turbine Applications

    NASA Technical Reports Server (NTRS)

    Human, Mel

    2002-01-01

    This report documents efforts to survey the current research directions in sensor technology for gas turbine systems. The work is driven by the current and future requirements on system performance and optimization. Accurate real time measurements of velocities, pressure, temperatures, and species concentrations will be required for objectives such as combustion instability attenuation, pollutant reduction, engine health management, exhaust profile control via active control, etc. Changing combustor conditions - engine aging, flow path slagging, or rapid maneuvering - will require adaptive responses; the effectiveness of such will be only as good as the dynamic information available for processing. All of these issues point toward the importance of continued sensor development. For adequate control of the combustion process, sensor data must include information about the above mentioned quantities along with equivalence ratios and radical concentrations, and also include both temporal and spatial velocity resolution. Ultimately these devices must transfer from the laboratory to field installations, and thus must become low weight and cost, reliable and maintainable. A primary conclusion from this study is that the optics-based sensor science will be the primary diagnostic in future gas turbine technologies.

  5. Stratified charge and homogeneous charge flowfields in natural gas fueled rotary engines. Interim report on task 2. 1. 7 combustion/stratification studies'

    SciTech Connect

    Abraham, J.

    1988-12-09

    Natural gas stratification and combustion in a rotary engine are studied with a three-dimensional model. The validated model could be employed as a useful tool in selection of optimum spark plug locations, number of spark plugs, spark timings, pocket geometry, and optimization studies of natural gas fired rotary engines.

  6. Low-Btu coal-gasification-process design report for Combustion Engineering/Gulf States Utilities coal-gasification demonstration plant. [Natural gas or No. 2 fuel oil to natural gas or No. 2 fuel oil or low Btu gas

    SciTech Connect

    Andrus, H E; Rebula, E; Thibeault, P R; Koucky, R W

    1982-06-01

    This report describes a coal gasification demonstration plant that was designed to retrofit an existing steam boiler. The design uses Combustion Engineering's air blown, atmospheric pressure, entrained flow coal gasification process to produce low-Btu gas and steam for Gulf States Utilities Nelson No. 3 boiler which is rated at a nominal 150 MW of electrical power. Following the retrofit, the boiler, originally designed to fire natural gas or No. 2 oil, will be able to achieve full load power output on natural gas, No. 2 oil, or low-Btu gas. The gasifier and the boiler are integrated, in that the steam generated in the gasifier is combined with steam from the boiler to produce full load. The original contract called for a complete process and mechanical design of the gasification plant. However, the contract was curtailed after the process design was completed, but before the mechanical design was started. Based on the well defined process, but limited mechanical design, a preliminary cost estimate for the installation was completed.

  7. Fuel control apparatus in internal combustion engine

    SciTech Connect

    Morita, K.; Miyake, J.; Hatanaka, K.; Sakuma, K.

    1988-05-17

    A fuel control apparatus is an internal combustion engine arranged to increase a quantity of fuel supply uniquely determined on the basis of an engine speed and a quantity of suction air by a predetermined quantity upon detection of acceleration of the internal combustion engine is described comprising: a detection means for detecting acceleration and deceleration of the internal combustion engine; an engine speed operation means for calculating the number of engine resolutions; a calculation means for calculating a continuous acceleration correcting factor representing a quantity to be subtracted from the predetermined quantity in accordance with the value of integration of the number of engine revolutions calculated by the engine speed operation means; and a fuel supply means for supplying fuel to the internal combustion engine in accordance with an output of the calculation means.

  8. Engine combustion control via fuel reactivity stratification

    DOEpatents

    Reitz, Rolf Deneys; Hanson, Reed M; Splitter, Derek A; Kokjohn, Sage L

    2013-12-31

    A compression ignition engine uses two or more fuel charges having two or more reactivities to control the timing and duration of combustion. In a preferred implementation, a lower-reactivity fuel charge is injected or otherwise introduced into the combustion chamber, preferably sufficiently early that it becomes at least substantially homogeneously dispersed within the chamber before a subsequent injection is made. One or more subsequent injections of higher-reactivity fuel charges are then made, and these preferably distribute the higher-reactivity matter within the lower-reactivity chamber space such that combustion begins in the higher-reactivity regions, and with the lower-reactivity regions following thereafter. By appropriately choose the reactivities of the charges, their relative amounts, and their timing, combustion can be tailored to achieve optimal power output (and thus fuel efficiency), at controlled temperatures (and thus controlled NOx), and with controlled equivalence ratios (and thus controlled soot).

  9. On-Line Measurement of Heat of Combustion of Gaseous Hydrocarbon Fuel Mixtures

    NASA Technical Reports Server (NTRS)

    Sprinkle, Danny R.; Chaturvedi, Sushil K.; Kheireddine, Ali

    1996-01-01

    A method for the on-line measurement of the heat of combustion of gaseous hydrocarbon fuel mixtures has been developed and tested. The method involves combustion of a test gas with a measured quantity of air to achieve a preset concentration of oxygen in the combustion products. This method involves using a controller which maintains the fuel (gas) volumetric flow rate at a level consistent with the desired oxygen concentration in the combustion products. The heat of combustion is determined form a known correlation with the fuel flow rate. An on-line computer accesses the fuel flow data and displays the heat of combustion measurement at desired time intervals. This technique appears to be especially applicable for measuring heats of combustion of hydrocarbon mixtures of unknown composition such as natural gas.

  10. Combustion Science for Cleaner Fuels

    SciTech Connect

    Ahmed, Musahid

    2014-10-17

    Musahid Ahmed discusses how he and his team use the Advanced Light Source (ALS) to study combustion chemistry at our '8 Big Ideas' Science at the Theater event on October 8th, 2014, in Oakland, California.

  11. Premixed combustion of coke oven gas in a metallic fibre mat

    Microsoft Academic Search

    Kil Won Cho; Kunwoo Han; Yong Kuk Lee; Dong-Soon Noh; Hack Mo Yoon; Kap-Jong Riu; Kun-Hong Lee

    2001-01-01

    Combustion characteristics of liquefied petroleum gas (LPG) and coke oven gas (COG) in a metallic fibre mat were investigated experimentally to examine the effect of fuel change on surface combustion performance. It was found that the upper limit of surface loads representing the radiant mode is increased in the case of COG combustion. Mat temperatures were slightly lowered for COG

  12. A test device for premixed gas turbine combustion oscillations

    Microsoft Academic Search

    G. A. Richards; R. S. Gemmen; M. J. Yip

    1996-01-01

    This report discusses design and operation of a single-nozzle test combustor for studying lean, premixed combustion oscillations from gas turbine fuel nozzles. It was used to study oscillations from a prototype fuel nozzle that produced oscillations during testing in a commercial engine. Similar, but not identical, oscillations were recorded in the test device. Basic requirements of the device design were

  13. 30 CFR 57.4103 - Fueling internal combustion engines.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 2012-07-01 false Fueling internal combustion engines. 57.4103 Section 57.4103...housekeeping 57.4103 Fueling internal combustion engines. Internal combustion engines shall be switched off before...

  14. 30 CFR 77.1105 - Internal combustion engines; fueling.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...2010-07-01 2010-07-01 false Internal combustion engines; fueling. 77.1105 Section...Fire Protection 77.1105 Internal combustion engines; fueling. Internal combustion engines, except diesels, shall be...

  15. 30 CFR 57.4103 - Fueling internal combustion engines.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 2011-07-01 false Fueling internal combustion engines. 57.4103 Section 57.4103...housekeeping 57.4103 Fueling internal combustion engines. Internal combustion engines shall be switched off before...

  16. 30 CFR 56.4103 - Fueling internal combustion engines.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 2012-07-01 false Fueling internal combustion engines. 56.4103 Section 56.4103...housekeeping 56.4103 Fueling internal combustion engines. Internal combustion engines shall be switched off before...

  17. 30 CFR 57.4103 - Fueling internal combustion engines.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 2013-07-01 false Fueling internal combustion engines. 57.4103 Section 57.4103...housekeeping 57.4103 Fueling internal combustion engines. Internal combustion engines shall be switched off before...

  18. 30 CFR 56.4103 - Fueling internal combustion engines.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 2013-07-01 false Fueling internal combustion engines. 56.4103 Section 56.4103...housekeeping 56.4103 Fueling internal combustion engines. Internal combustion engines shall be switched off before...

  19. 30 CFR 56.4103 - Fueling internal combustion engines.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 2014-07-01 false Fueling internal combustion engines. 56.4103 Section 56.4103...housekeeping 56.4103 Fueling internal combustion engines. Internal combustion engines shall be switched off before...

  20. 30 CFR 57.4103 - Fueling internal combustion engines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 2010-07-01 false Fueling internal combustion engines. 57.4103 Section 57.4103...housekeeping 57.4103 Fueling internal combustion engines. Internal combustion engines shall be switched off before...

  1. 30 CFR 56.4103 - Fueling internal combustion engines.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 2011-07-01 false Fueling internal combustion engines. 56.4103 Section 56.4103...housekeeping 56.4103 Fueling internal combustion engines. Internal combustion engines shall be switched off before...

  2. 30 CFR 77.1105 - Internal combustion engines; fueling.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...2013-07-01 2013-07-01 false Internal combustion engines; fueling. 77.1105 Section... Fire Protection 77.1105 Internal combustion engines; fueling. Internal combustion engines, except diesels, shall be shut...

  3. 30 CFR 77.1105 - Internal combustion engines; fueling.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...2012-07-01 2012-07-01 false Internal combustion engines; fueling. 77.1105 Section... Fire Protection 77.1105 Internal combustion engines; fueling. Internal combustion engines, except diesels, shall be shut...

  4. 30 CFR 57.4103 - Fueling internal combustion engines.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...2014-07-01 2014-07-01 false Fueling internal combustion engines. 57.4103 Section 57.4103 ...housekeeping 57.4103 Fueling internal combustion engines. Internal combustion engines shall be switched off before...

  5. 30 CFR 77.1105 - Internal combustion engines; fueling.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...2014-07-01 2014-07-01 false Internal combustion engines; fueling. 77.1105 Section... Fire Protection 77.1105 Internal combustion engines; fueling. Internal combustion engines, except diesels, shall be shut...

  6. Method and device for forming mixture gas in direct injection type internal combustion engine

    Microsoft Academic Search

    A. Saito; M. Yamada; K. Imai; K. Kawamura; M. Kimura

    1987-01-01

    A mixture gas formation method is described for a direct fuel injection type internal combustion engine having a piston with a recess forming a combustion space, air intake means with swirling means for swirling intake air to be supplied to the combustion space, and an intermittent type swirl injection nozzle having at least one tangential passage for swirling fuel, for

  7. Enhanced efficiency of internal combustion engines by employing spinning gas.

    PubMed

    Geyko, V I; Fisch, N J

    2014-08-01

    The efficiency of the internal combustion engine might be enhanced by employing spinning gas. A gas spinning at near sonic velocities has an effectively higher heat capacity, which allows practical fuel cycles, which are far from the Carnot efficiency, to approach more closely the Carnot efficiency. A remarkable gain in fuel efficiency is shown to be theoretically possible for the Otto and Diesel cycles. The use of a flywheel, in principle, could produce even greater increases in efficiency. PMID:25215720

  8. Enhanced efficiency of internal combustion engines by employing spinning gas

    NASA Astrophysics Data System (ADS)

    Geyko, V. I.; Fisch, N. J.

    2014-08-01

    The efficiency of the internal combustion engine might be enhanced by employing spinning gas. A gas spinning at near sonic velocities has an effectively higher heat capacity, which allows practical fuel cycles, which are far from the Carnot efficiency, to approach more closely the Carnot efficiency. A remarkable gain in fuel efficiency is shown to be theoretically possible for the Otto and Diesel cycles. The use of a flywheel, in principle, could produce even greater increases in efficiency.

  9. Apparatus and method for combusting low quality fuel

    DOEpatents

    Brushwood, John Samuel; Pillsbury, Paul; Foote, John; Heilos, Andreas

    2003-11-04

    A gas turbine (12) capable of combusting a low quality gaseous fuel having a ratio of flammability limits less than 2, or a heat value below 100 BTU/SCF. A high quality fuel is burned simultaneously with the low quality fuel to eliminate instability in the combustion flame. A sensor (46) is used to monitor at least one parameter of the flame indicative of instability. A controller (50) having the sensor signal (48) as input is programmed to control the relative flow rates of the low quality and high quality fuels. When instability is detected, the flow rate of high quality fuel is automatically increased in relation to the flow rate of low quality fuel to restore stability.

  10. Dual fuel system for internal combustion engine

    SciTech Connect

    Haman, D.F.; Needham, D.M.

    1989-06-06

    An internal combustion engine is described comprising a crankcase, a cylinder extending from the crankcase and defining a combustion chamber having an inlet port, a transfer passage communicating between the crankcase and the inlet port, a carburetor having an air induction passage communicating with the crankcase and including a venturi and a float bowl adapted to contain fuel for normal operation, a throttle valve intermediate the venturi and the crankcase.

  11. Instabilities in Lean Gas-Phase Combustion

    NASA Astrophysics Data System (ADS)

    Schneider, K.; Bockhorn, H.; Eigenbrod, Ch.; Emerson, D.; Haldenwang, P.; Hoffmann, F.; Roekaerts, D.; Ronney, P.; Triebel, W.; Tummers, M.

    2005-06-01

    Lean burning is the burning of fuel-air mixtures with less than the chemically- balanced (stoichiometric) mixture. It produces a significant increase in fuel efficiency and reduction in pollution. However, the limits and control of lean burning are still not well understood.This is the motivation behind the study of instabilities in lean gas-phase combustion under microgravity conditions via direct numerical simulations and comparison of the results with experimental data.The goal is to gain fundamental insights in order to identify and understand the intrinsic chemical and fluid dynamical mechanisms responsible for these instabilities.The potential of this microgravity combustion research includes the development of technology that would reduce pollution and fire and explosion hazards, improve hazardous waste incineration and increase efficiency of the conversion of chemical energy to electric power or motive force.The results from this fundamental research will thus benefit chemical engineering and power generation. Its wide range of applications in industry includes lean-burning car engines.

  12. Recent advances in combustion flow-field imaging measurements in high-pressure liquid-fueled gas turbine combustor concepts

    Microsoft Academic Search

    Randy J. Locke; Yolanda R. Hicks; Michelle M. Zaller; Robert C. Anderson

    1999-01-01

    Future gas turbine combustor designs for aerospace applications will be required to meet severe restrictions on environmentally harmful emissions. To meet the target emission reduction goals, these combustors will operate at temperatures and pressures greatly exceeding those of present day aero-powerplants. New diagnostic methods are required to provide insight into understanding the complex physical and chemical processes extant at these

  13. Fuel gas from biodigestion

    NASA Technical Reports Server (NTRS)

    Mcdonald, R. C.; Wolverton, B. C.

    1979-01-01

    Biodigestion apparatus produces fuel gas (primarily methane) for domestic consumption, by anaerobic bacterial digestion of organic matter such as aquatic vegetation. System includes 3,786-1 cylindrical container, mechanical agitator, and simple safe gas collector for short term storage.

  14. Ignition and combustion characteristics of the gas turbine slinger combustor

    Microsoft Academic Search

    Seongman Choi; Donghun Lee

    2008-01-01

    This paper describes the ignition and combustion characteristics of a gas turbine slinger combustor with rotating fuel injection\\u000a system. An ignition test was performed under various airflow, temperature and pressure conditions with fuel nozzle rotational\\u000a speed. From the test, there are two major factors influencing the ignition limits: the rotational speed of the fuel nozzle,\\u000a and the mass flow parameter.

  15. Hybrid combustion with metallized fuels

    NASA Technical Reports Server (NTRS)

    Yi, Jianwen; Wygle, Brian S.; Bates, Ronald W.; Jones, Michael D.; Ramohalli, Kumar

    1993-01-01

    A chemical method of adding certain catalysts to improve the degradation process of a solid fuel is discussed. Thermogravimetric (TGA) analysis used to study the fundamental degradation behavior of a typical hybrid fuel (HTPB) shows that high surface temperatures increase the degradation rate. Fuels were tested in a laboratory-scale experimental hybrid rocket and their behavior was compared to a baseline behavior of HTPB fuel regression rates. It was found that a small amount of metal powder added to the fuel can significantly increase the regression rates.

  16. Fuel reforming for scramjet thermal management and combustion optimization

    E-print Network

    Paris-Sud XI, Universit de

    Fuel reforming for scramjet thermal management and combustion optimization E. DANIAU* , M. BOUCHEZ in a Scramjet combustion chamber. Another critical point is that mixing and combustion should be sufficiently

  17. A test device for premixed gas turbine combustion oscillations

    Microsoft Academic Search

    G. A. Richards; R. S. Gemmen; M. J. Yip

    1997-01-01

    This paper reports the design and operation of a test device suitable for studying combustion oscillations produced by commercial-scale gas turbine fuel nozzles. Unlike conventional test stands, this test combustor uses a Helmholtz acoustic geometry to replicate the acoustic response that would otherwise be observed only during complete engine testing. The authors suggest that successful simulation of engine oscillations requires

  18. Design of combustion sensory based controller for natural gas engines

    NASA Astrophysics Data System (ADS)

    Nwagboso, C. O.; Pendlebury, M. A.; Mukarram, S. K.

    2004-02-01

    Concern over the ever-increasing stringent emission requirements and rising fuel costs has resulted in closer examination of the control of combustion in internal combustion engines. Natural gas is becoming a viable alternative fuel source, diversifying the transport fuel base, and a fuel potentially offering efficiency and environmental pollution benefits, compared with conventional fuels. Although the potential benefits of the fuel are acknowledged, there are clearly identifiable shortcomings in the control technology applied to the fuel and ignition management system. This paper presents the design of a novel sensing scheme with a fibre optic sensory system capable of monitoring the combustion event in a natural gas engine with minimal invasiveness. The optical sensory system is compared with a pressure sensory signal and used to analyse mass fraction burn and heat release. An integrated ignition controller is presented that enables the ignition angle to be modified, based on the measured optical combustion signal, with a control technique to provide an optimal management of the engine performance.

  19. Twenty-Seventh Symposium (International) on Combustion/The Combustion Institute, 1998/pp. 28152820 FINGERING INSTABILITY IN SOLID FUEL COMBUSTION

    E-print Network

    Moses, Elisha

    2815 Twenty-Seventh Symposium (International) on Combustion/The Combustion Institute, 1998/pp. 28152820 FINGERING INSTABILITY IN SOLID FUEL COMBUSTION: THE CHARACTERISTIC SCALES OF THE DEVELOPED STATE ORY ZIK, Israel We present new results on the fingering instability in solid fuel combustion. The instability

  20. Reactivity study on a novel hydrogen fueled chemical-looping combustion

    Microsoft Academic Search

    Hongguang Jin; Masaru Ishida

    2001-01-01

    In this paper the reactivity study on hydrogen fueled chemical-looping combustion, which is capable of making breakthrough in simultaneous contribution to the efficient use of energy and being environmentally benign, has been carried out by a thermogravimetric analyzer (TGA) and a fixed bed reactor. The hydrogen fueled chemical-looping combustion in the new gas turbine cycle consists of two successive reactions:

  1. Combustion tests of a turbine simulator burning low Btu fuel from a fixed bed gasifier

    Microsoft Academic Search

    C. S. Cook; N. Abuaf; A. S. Feitelberg; S. L. Hung; D. J. Najewicz; M. S. Samuels

    1993-01-01

    One of the most efficient and environmentally compatible coal fueled power generation technologies is the integrated gasification combined cycle (IGCC) concept. Commercialization of the IGCC\\/HGCU concept requires successful development of combustion systems for high temperature low Btu fuel in gas turbines. Toward this goal, a turbine combustion system simulator has been designed, constructed, and fired with high temperature low Btu

  2. Thick-film zinc-oxide gas sensor for the control of lean air-to-fuel ratio in domestic combustion systems

    Microsoft Academic Search

    Chul Han Kwon; Hyung-Ki Hong; Dong Hyun Yun; Kyuchung Lee; Sung-Tae Kim; Young-Hoon Roh; Byung-Hoon Lee

    1995-01-01

    We have investigated the sensing properties of Al2O3-doped ZnO for combustion control in lean-burn conditions. Planar-type sensing elements made of heater, electrode and sensing layer were formed on an alumina substrate using a screen-printing technique. Our exhaust-gas sensor exhibits significant resistance changes even under lean conditions, apparently due to the simultaneous functioning of bulk and surface conduction mechanisms. Utilizing the

  3. Fuel control system for internal combustion engine

    SciTech Connect

    Koshizawa, T.; Yoshimura, H.; Sugimura, T.

    1988-09-27

    This patent describes a fuel control system for an internal combustion engine having fuel supply means for metering fuel to be supplied to the engine in response to an electric command given by fuel supply command means. The fuel control system consists of: a step motor for driving a fuel metering member of the fuel supply means; learning means for learning the number of steps required for energizing the step motor to move the fuel metering member from an idle position to a full-load position; computing means for computing the number of steps required for the step motor to reach a target load position by dividing in proportion the learned number of steps by a ratio between a target load value of an electric command from the fuel supply command means and a maximum value of the electric command; and drive means for energizing the step motor to achieve the number of steps computed by the computing means.

  4. Fuel supplying device for internal combustion engine

    SciTech Connect

    Ishida, T.; Miki, T.; Nakamura, H.; Takamiya, B.

    1982-07-13

    A fuel supplying device for an internal combustion engine is disclosed which has a fuel supply passage for introducing fuel fed from a fuel pump at a substantially constant pressure to a fuel injector operative at a predetermined constant pressure. The fuel injector is installed at a congregated portion of engine intake manifolds. A metering valve includes a motor so that the pressure drop is maintained substantially constant by a differential regulator. The metering valve is disposed in an intermediate portion of the fuel supply passage. Calculating means including a servo signal generator calculates an injection flow amount causing a predetermined air/fuel ratio on the basis of signals of various engine running factors. An operational signal output from the servo signal generating circuit of the calculating means is applied to the drive motor means for driving said metering valve to thereby inject fuel into the intake manifolds.

  5. CONTROLLING EMISSIONS FROM FUEL AND WASTE COMBUSTION

    EPA Science Inventory

    Control of emissions from combustion of fuels and wastes has been a traditional focus of air pollution regulations. Significant technology developments of the '50s and '60s have been refined into reliable chemical and physical process unit operations. In the U.S., acid rain legis...

  6. Catalytic combustion of heavy partially-vaporized fuels

    NASA Technical Reports Server (NTRS)

    Rosfjord, T. J.

    1980-01-01

    An experimental program to demonstrate efficient catalytic combustion of fuel-lean and fuel-rich mixtures of residual fuel and air, and to assess the influence of incomplete fuel vaporization on the performance of a catalytic reactor is being conducted. A 7.5-cm diameter catalytic reactor was designed and will be tested over a matrix of conditions representative of a gas turbine combustor inlet. For each of three test phases, two series of tests with a uniform but poorly vaporized (less than 50 percent) mixture of No. 6 fuel oil and air will be performed. In the first series, the non-vaporized fuel will be contained in a spray of droplets with a Sauter Mean Diameter (SMD) less than 30 microns. In the second series, the non-vaporized fuel will be characterized by a spray SMD approximately equal to 100 microns. The designs of the fuel injection system and the catalytic reactor are described in this paper.

  7. Catalytic combustion with incompletely vaporized residual fuel

    NASA Technical Reports Server (NTRS)

    Rosfjord, T. J.

    1981-01-01

    Catalytic combustion of fuel lean mixtures of incompletely vaporized residual fuel and air was investigated. The 7.6 cm diameter, graded cell reactor was constructed from zirconia spinel substrate and catalyzed with a noble metal catalyst. Streams of luminous particles exited the rector as a result of fuel deposition and carbonization on the substrate. Similar results were obtained with blends of No. 6 and No. 2 oil. Blends of shale residual oil and No. 2 oil resulted in stable operation. In shale oil blends the combustor performance degraded with a reduced degree of fuel vaporization. In tests performed with No. 2 oil a similar effect was observed.

  8. Exhaust gas purifying method and apparatus for internal combustion engines

    SciTech Connect

    Fujitani, Y.; Muraki, H.; Yokota, K.; Sobukawa, H.; Matsunaga, S.

    1986-10-21

    An exhaust gas purifying method is described for an internal combustion engine comprising: detecting the temperature of an exhaust gas purifying catalyst disposed in an exhaust system of the internal combustion engine by a temperature sensor; converting a signal from the temperature sensor to a first electric signal by a signal converter; oscillating a second electric having a frequency and an amplitude and a predetermined frequency and amplitude range. The predetermined frequency and amplitude range are predetermined based upon the kind of the catalyst used. The frequency and amplitude of the second signal are adjusted within the predetermined range by an oscillator in accordance with the first electric signal from the signal converter; and varying an actual air-fuel ratio toward the higher air-fuel ratio side and the lower air-fuel ratio side with respect to the theoretical air-fuel ratio, based on the second electric signal from the oscillator.

  9. Future Fuels for Internal Combustion Engines

    Microsoft Academic Search

    A. Demirbas

    2010-01-01

    Today the world is facing three critical problems: (1) high fuel prices, (2) climatic changes, and (3) air pollution. Experts suggest that current oil and gas reserves would suffice to last only a few more decades. Biorenewable liquids are the main substitutes to petroleum-based gasoline and diesel fuel. These fuels are important because they replace petroleum fuels; however, some still

  10. Apparatus and method for gas turbine active combustion control system

    NASA Technical Reports Server (NTRS)

    Umeh, Chukwueloka (Inventor); Kammer, Leonardo C. (Inventor); Shah, Minesh (Inventor); Fortin, Jeffrey B. (Inventor); Knobloch, Aaron (Inventor); Myers, William J. (Inventor); Mancini, Alfred Albert (Inventor)

    2011-01-01

    An Active Combustion Control System and method provides for monitoring combustor pressure and modulating fuel to a gas turbine combustor to prevent combustion dynamics and/or flame extinguishments. The system includes an actuator, wherein the actuator periodically injects pulsed fuel into the combustor. The apparatus also includes a sensor connected to the combustion chamber down stream from an inlet, where the sensor generates a signal detecting the pressure oscillations in the combustor. The apparatus controls the actuator in response to the sensor. The apparatus prompts the actuator to periodically inject pulsed fuel into the combustor at a predetermined sympathetic frequency and magnitude, thereby controlling the amplitude of the pressure oscillations in the combustor by modulating the natural oscillations.

  11. Oxygen carriers for chemical looping combustion of solid fuels

    Microsoft Academic Search

    Aurora Rubel; Kunlei Liu; Jim Neathery; Darrell Taulbee

    2009-01-01

    A thermal analyzerdifferential scanning calorimetermass spectrometer (TGDSCMS) was used to study oxygen carriers (OC) for their potential use for the application of chemical looping combustion (CLC) to solid fuels. Reaction rates, changes in reaction rates with repeated oxidationreductions, exothermic heats during oxidation, and the effect of changing reduction gas compositions were studied. Oxidation rates were greater than reduction rates and

  12. Analysis of fuel vaporization, fuel/air mixing, and combustion in lean premixed/prevaporized combustors

    SciTech Connect

    Deur, J.M. [NYMA, Inc., Brook Park, OH (United States); Penko, P.F. [National Aeronautics and Space Administration, Cleveland, OH (United States). Lewis Research Center; Cline, M.C. [Los Alamos National Lab., NM (United States)

    1995-07-01

    Requirements to reduce pollutant emissions from gas turbines used in aircraft propulsion and ground-based power generation have led to consideration of lean premixed/prevaporized (LPP) combustion concepts. This paper describes a series of the LPP combustor analyses performed with KIVA-II, a multi-dimensional CFD code for problems involving sprays, turbulence, and combustion. Modifications to KIVA-II`s boundary condition and chemistry treatments have been made to meet the needs of the present study. The study examines the relationships between fuel vaporization, fuel/air mixing, and combustion in a generic LPP combustor. Parameters considered include: mixer tube diameter, mixer tube length, mixer tube configuration (straight versus converging/diverging tubes), air inlet velocity, air inlet swirl angle, secondary air injection (dilution holes), fuel injection velocity, fuel injection angle, number of fuel injection ports, fuel spray cone angle, and fuel droplet size. Cases have been run with and without combustion to examine the variations in fuel/air mixing and potential for flashback due to the above parameters. The degree of fuel/air mixing is judged by comparing average, minimum, and maximum fuel/air ratios at the exit of the mixer tube, while flame stability is monitored by following the location of the flame front as the solution progresses from ignition to steady state.

  13. Biomass fuel combustion and health*

    PubMed Central

    de Koning, H. W.; Smith, K. R.; Last, J. M.

    1985-01-01

    Biomass fuels (wood, agricultural waste, and dung) are used by about half the world's population as a major, often the only, source of domestic energy for cooking and heating. The smoke emissions from these fuels are an important source of indoor air pollution, especially in rural communities in developing countries. These emissions contain important pollutants that adversely affect healthsuch as suspended particulate matter and polycyclic organic matter which includes a number of known carcinogens, such as benzo[a]pyrene, as well as gaseous pollutants like carbon monoxide and formaldehyde. Exposure to large amounts of smoke may present a health risk that is of a similar order of magnitude to the risk from tobacco smoke. The effects on health arising from exposure to air pollution are reviewed, based on what has been reported in the literature so far. Further and more detailed information on exposures and on the epidemiological aspects is urgently required. The persons most frequently affected are women who do the cooking for households in rural villages; they suffer from impaired health due to prolonged and repeated contact with these harmful pollutants. When they are pregnant, the developing fetus may also be exposed and this leads to the risk of excess deaths. In the developing countries, exposure to biomass fuel emissions is probably one of the most important occupational health hazards for women. A conservatively estimated 300-400 million people worldwide, mostly in the rural areas of developing countries, are affected by these problems. PMID:3872729

  14. A Dual-Line Detection Rayleigh Scattering Diagnostic Technique for the Combustion of Hydrocarbon Fuels and Filtered UV Rayleigh Scattering for Gas Velocity Measurements

    NASA Technical Reports Server (NTRS)

    Otugen, M. Volkan

    1997-01-01

    Non-intrusive techniques for the dynamic measurement of gas flow properties such as density, temperature and velocity, are needed in the research leading to the development of new generation high-speed aircraft. Accurate velocity, temperature and density data obtained in ground testing and in-flight measurements can help understand the flow physics leading to transition and turbulence in supersonic, high-altitude flight. Such non-intrusive measurement techniques can also be used to study combustion processes of hydrocarbon fuels in aircraft engines. Reliable, time and space resolved temperature measurements in various combustor configurations can lead to a better understanding of high temperature chemical reaction dynamics thus leading to improved modeling and better prediction of such flows. In view of this, a research program was initiated at Polytechnic University's Aerodynamics Laboratory with support from NASA Lewis Research Center through grants NAG3-1301 and NAG3-1690. The overall objective of this program has been to develop laser-based, non-contact, space- and time-resolved temperature and velocity measurement techniques. In the initial phase of the program a ND:YAG laser-based dual-line Rayleigh scattering technique was developed and tested for the accurate measurement of gas temperature in the presence of background laser glare. Effort was next directed towards the development of a filtered, spectrally-resolved Rayleigh/Mie scattering technique with the objective of developing an interferometric method for time-frozen velocity measurements in high-speed flows utilizing the uv line of an ND:YAG laser and an appropriate molecular absorption filter. This effort included both a search for an appropriate filter material for the 266 nm laser line and the development and testing of several image processing techniques for the fast processing of Fabry-Perot images for velocity and temperature information. Finally, work was also carried out for the development of a new laser-based strain-rate and vorticity technique for the time-resolved measurement of vorticity and strain-rates in turbulent flows.

  15. Fuel-cycle greenhouse gas emissions from alternative fuels in Australian heavy vehicles

    Microsoft Academic Search

    Tom Beer; Tim Grant; David Williams; Harry Watson

    2002-01-01

    This paper quantifies the expected pre-combustion and combustion emissions of greenhouse gases from Australian heavy vehicles using alternative fuels. We use the term exbodied emissions for these full fuel-cycle emissions. The fuels examined are low sulfur diesel (LSD), ultra-low sulfur diesel (ULS), compressed natural gas (CNG), liquefied natural gas (LNG), liquefied petroleum gas (LPG), ethanol (from lignocellulose), biodiesel and waste

  16. Techno-economic analysis of pressurized oxy-fuel combustion power cycle for CO? capture

    E-print Network

    Hong, Jongsup

    2009-01-01

    Growing concerns over greenhouse gas emissions have driven extensive research into new power generation cycles that enable carbon dioxide capture and sequestration. In this regard, oxy-fuel combustion is a promising new ...

  17. Plasma-aided solid fuel combustion

    SciTech Connect

    E.I. Karpenko; V.E. Messerle; A.B. Ustimenko ['United Power System of Russia', Gusinoozersk (Russian Federation). Branch Centre of Plasma-Power Technologies of Russian J.S.Co.

    2007-07-01

    Plasma supported solid fuel combustion is promising technology for use in thermal power plants (TPP). The realisation of this technology comprises two main steps. The first is the execution of a numerical simulation and the second involves full-scale trials of plasma supported coal combustion through plasma-fuel systems (PFS) mounted on a TPP boiler. For both the numerical simulation and the full-scale trials, the boiler of 200 MW power of Gusinoozersk TPP (Russia) was selected. The optimization of the combustion of low-rank coals using plasma technology is described, together with the potential of this technology for the general optimization of the coal burning process. Numerical simulation and full-scale trials have enabled technological recommendations for improvement of existing conventional TPP to be made. PFS have been tested for boilers plasma start-up and flame stabilization in different countries at 27 power boilers steam productivity of 75-670 tons per hour (TPH) equipped with different type of pulverised coal burners. At PFS testing power coals of all ranks (brown, bituminous, anthracite and their mixtures) were used. Volatile content of them varied from 4 to 50%, ash from 15 to 48% and calorific values from 6700 to 25,100 KJ/kg. In summary, it is concluded that the developed and industrially tested PFS improve coal combustion efficiency and decrease harmful emission from pulverised coal-fired TPP. 9 refs., 14 figs., 2 tabs.

  18. Risk factors of jet fuel combustion products.

    PubMed

    Tesseraux, Irene

    2004-04-01

    Air travel is increasing and airports are being newly built or enlarged. Concern is rising about the exposure to toxic combustion products in the population living in the vicinity of large airports. Jet fuels are well characterized regarding their physical and chemical properties. Health effects of fuel vapors and liquid fuel are described after occupational exposure and in animal studies. Rather less is known about combustion products of jet fuels and exposure to those. Aircraft emissions vary with the engine type, the engine load and the fuel. Among jet aircrafts there are differences between civil and military jet engines and their fuels. Combustion of jet fuel results in CO2, H2O, CO, C, NOx, particles and a great number of organic compounds. Among the emitted hydrocarbons (HCs), no compound (indicator) characteristic for jet engines could be detected so far. Jet engines do not seem to be a source of halogenated compounds or heavy metals. They contain, however, various toxicologically relevant compounds including carcinogenic substances. A comparison between organic compounds in the emissions of jet engines and diesel vehicle engines revealed no major differences in the composition. Risk factors of jet engine fuel exhaust can only be named in context of exposure data. Using available monitoring data, the possibilities and limitations for a risk assessment approach for the population living around large airports are presented. The analysis of such data shows that there is an impact on the air quality of the adjacent communities, but this impact does not result in levels higher than those in a typical urban environment. PMID:15093276

  19. Combustion system for dual fuel engine

    Microsoft Academic Search

    F. S. Schaub; J. G. Smith

    1990-01-01

    This patent describes in an dual gas-liquid fuel four cycle engine having cylinders and wherein each cylinder is operatively connected thereto and each cylinder has a piston, two inlet valves, two exhaust valves and a first liquid fuel injector. It comprises: at least one fuel torch cell operatively connected to at least one cylinder, the torch cell having a torch

  20. The potential for clean energy production using oxy-fuel combustion and integrated pollutant removal

    SciTech Connect

    Ochs, Thomas L.; Oryshchyn, Danylo B.; Weber, Thomas (Jupiter Oxygen Corporation, Schiller Park, IL 60176).; Summers, Cathy A.

    2005-05-01

    Effective remediation of flue gas produced by an oxy-fuel coal combustion process has been proven at bench scale in the course of cooperative research between USDOEs Albany Research Center (ARC) and Jupiter Oxygen Corporation. All combustion gas pollutants were captured, including CO2 which was compressed to a liquefied state suitable for sequestration. Current laboratory-scale research and the future of combined oxy-fuel/IPR systems are discussed.

  1. The origin of organic pollutants from the combustion of alternative fuels: Phase IV report

    Microsoft Academic Search

    P. H. Taylor; B. Dellinger; S. K. Sidhu

    1997-01-01

    As part of the US-DOE`s on-going interest in the use of alternative automotive fuels, the University of Dayton Research Institute has been conducting research on pollutant emissions resulting from the combustion of candidate fuels. This research, under the direction and sponsorship of the NREL, has been concerned primarily with the combustion of compressed natural gas, liquefied petroleum gas (LPG), methanol,

  2. ON-LINE MEASUREMENT OF NITROUS OXIDE FROM COMBUSTION SOURCES BY AUTOMATED GAS CHROMATOGRAPHY

    EPA Science Inventory

    The paper discusses on-line measurement of nitrous oxide (N2O) from combustion sources by automated gas chromatography. ossil fuel combustion is suspected of contributing to measured increases in the ambient concentrations of N2O. haracterization of N2O emissions from fossil fuel...

  3. Combustion instabilities in sudden expansion oxy-fuel flames

    SciTech Connect

    Ditaranto, Mario; Hals, Joergen [Department of Energy Processes, SINTEF Energy Research, 7465 Trondheim (Norway)

    2006-08-15

    An experimental study on combustion instability is presented with focus on oxy-fuel type combustion. Oxidants composed of CO{sub 2}/O{sub 2} and methane are the reactants flowing through a premixer-combustor system. The reaction starts downstream a symmetric sudden expansion and is at the origin of different instability patterns depending on oxygen concentration and Reynolds number. The analysis has been conducted through measurement of pressure, CH* chemiluminescence, and velocity. As far as stability is concerned, oxy-fuel combustion with oxygen concentration similar to that found in air combustion cannot be sustained, but requires at least 30% oxygen to perform in a comparable manner. Under these conditions and for the sudden expansion configuration used in this study, the instability is at low frequency and low amplitude, controlled by the flame length inside the combustion chamber. Above a threshold concentration in oxygen dependent on equivalence ratio, the flame becomes organized and concentrated in the near field. Strong thermoacoustic instability is then triggered at characteristic acoustic modes of the system. Different modes can be triggered depending on the ratio of flame speed to inlet velocity, but for all types of instability encountered, the heat release and pressure fluctuations are linked by a variation in mass-flow rate. An acoustic model of the system coupled with a time-lag-based flame model made it possible to elucidate the acoustic mode selection in the system as a function of laminar flame speed and Reynolds number. The overall work brings elements of reflection concerning the potential risk of strong pressure oscillations in future gas turbine combustors for oxy-fuel gas cycles. (author)

  4. High pressure combustion of liquid fuels. [alcohol and n-paraffin fuels

    NASA Technical Reports Server (NTRS)

    Canada, G. S.

    1974-01-01

    Measurements were made of the burning rates and liquid surface temperatures for a number of alcohol and n-paraffin fuels under natural and forced convection conditions. Porous spheres ranging in size from 0.64-1.9 cm O.D. were emloyed to simulate the fuel droplets. The natural convection cold gas tests considered the combustion in air of methanol, ethanol, propanol-1, n-pentane, n-heptane, and n-decane droplets at pressures up to 78 atmospheres. The pressure levels of the natural convection tests were high enough so that near critical combustion was observed for methanol and ethanol vaporization rates and liquid surface temperature measurements were made of droplets burning in a simulated combustion chamber environment. Ambient oxygen molar concentrations included 13%, 9.5% and pure evaporation. Fuels used in the forced convection atmospheric tests included those listed above for the natural convection tests. The ambient gas temperature ranged from 600 to 1500 K and the Reynolds number varied from 30 to 300. The high pressure forced convection tests employed ethanol and n-heptane as fuels over a pressure range of one to 40 atmospheres. The ambient gas temperature was 1145 K for the two combustion cases and 1255 K for the evaporation case.

  5. Investigation of trapped vortex combustion using hydrogen-rich fuels

    NASA Astrophysics Data System (ADS)

    Zbeeb, Khaled

    The combustion process of a fuel is a challenging subject when it comes to analyze its performance and resultant emissions. The main task of this study is to optimize the selection of a hydrogen-rich fuel based on its performance and emissions. Computational Fluid Dynamics analysis is performed to test the combustion performance and emissions from the vortex trapped combustor when natural gas fuel (methane) is replaced with renewable and alternative fuels such as hydrogen and synthesis gas. Correlation graphs for the trapped vortex combustor performance and NOx, CO, and CO2 emissions for various types of fuels with different compositions and heat of combustion values were established. Methane, Hydrogen and 10 different syngas fuels were analyzed in this study using computational fluid dynamics numerical method. The trapped vortex combustor that represents an efficient and compact combustor for flame stability was investigated. The TVC consists of a fore body and two after body disks. These components are all encircled with a Pyrex tube. The purpose of the after body disks is to create the vortex wakes that will enhance the combustion process and minimize the NOx emissions. The TVC CFD model was validated by comparing the CFD model results using propane fuel with existing experimental results that were established in Rome, Italy. The static temperature distribution and NOx, CO emissions, combustor efficiency and total pressure drop results of the three dimensional CFD model were similar to the experimental data. Effects of H2/CO and H2/CH4 ratios and the mass fraction of each constituent of syngas fuels and Hydrogen-Methane fuel mixture on the TVC performance and emissions were investigated. Moreover, the fuel injector Reynolds number and Lower heating values for Methane, Hydrogen and 10 syngas fuels on the TVC performance and emissions were also investigated. Correlation plots for the NOx, CO and CO2 emissions versus the fuel injector Reynolds number and lower heating value were established. These correlation curves can be used as a fair design diagram to optimize the fuel selection process for aerospace and electrical power plant applications.

  6. Combustion of liquid-fuel droplets in supercritical conditions

    NASA Technical Reports Server (NTRS)

    Shuen, J. S.; Yang, Vigor; Hsaio, C. C.

    1992-01-01

    A comprehensive analysis of liquid-fuel droplet combustion in both subcritical and supercritical environments has been conducted. The formulation is based on the complete conservation equations for both gas and liquid phases, and accommodates variable thermophysical properties, finite-rate chemical kinetics, and a full treatment of liquid-vapor phase equilibrium at the drop surface. The governing equations and associated interfacial boundary conditions are solved numerically using a fully coupled, implicit scheme with the dual time-stepping integration technique. The model is capable of treating the entire droplet history, including the transition from the subcritical to supercritical state. As a specific example, the combustion of n-pentane fuel droplets in air is studied for pressures in the range of 5-140 atm. Results indicate that the ambient gas pressure exerts significant control of droplet gasification and burning processes through its influence on fluid transport, gas-liquid interfacial thermodynamics, and chemical reactions. The droplet gasification rate increases progressively with pressure. However, the data for the overall burnout time exhibit a considerable change in the combustion mechanism at the critical pressure, mainly as a result of reduced mass diffusivity and latent heat of vaporization with increased pressure.

  7. Fireside Corrosion in Oxy-fuel Combustion of Coal

    SciTech Connect

    G. R. Holcomb; J. Tylczak; G. H. Meier; B. Lutz; K. Jung; N. Mu; N. M. Yanar; F. S. Pettit; J. Zhu; A. Wise; D. Laughlin; S. Sridhar

    2012-05-20

    Oxy-fuel combustion is burning a fuel in oxygen rather than air. The low nitrogen flue gas that results is relatively easy to capture CO{sub 2} from for reuse or sequestration. Corrosion issues associated with the environment change (replacement of much of the N{sub 2} with CO{sub 2} and higher sulfur levels) from air- to oxy-firing were examined. Alloys studied included model Fe-Cr alloys and commercial ferritic steels, austenitic steels, and nickel base superalloys. The corrosion behavior is described in terms of corrosion rates, scale morphologies, and scale/ash interactions for the different environmental conditions.

  8. Heavy duty gas turbine combustion tests with simulated low BTU coal gas

    SciTech Connect

    Ekstrom, T.E.; Battista, R.A.; Belisle, F.H.; Maxwell, G.P.

    1993-11-01

    This program has the objectives to: A. Parametrically determine the effects of moisture, nitrogen and carbon dioxide as diluents so that the combustion characteristics of many varieties of gasification product gases can be reasonably predicted without physically testing each specific gas composition. B. Determine emissions characteristics including NO, NO{sub x}, CO, levels etc. associated with each of the diluents, and C. Operate with at least two syngas compositions; DOE chosen air-blown and integrated oxygen-blown, to confirm that the combustion characteristics are in line with predictions. As a result of this program: 1. GE Engineering is now confident that the syngas fuels produced by all currently--viable coal gasifiers can be accommodated by the GE advanced (``F`` Technology) combustion system, and 2. For proposed syngas fuels with varying amounts of steam, nitrogen or CO{sub 2} diluent, the combustion and emissions characteristics can be reasonably estimated without undertaking expensive new screening tests for each different fuel.

  9. Process and apparatus for the instantaneous combustion of diafanous liquid petroleum, diesel or similar fuels

    Microsoft Academic Search

    1980-01-01

    A process and apparatus for the production of heat, equivalent in clarity and cleanliness to that of propane, butane or natural gas, but at a lower cost and without the problems or dangers of storage nor risks of fire or explosion during handling, by means of the instantaneous combustion of diafanous liquid petroleum, diesel or other similar combustible fuels mixed

  10. Gas turbine combustion of a minimally cleaned, coal-derived low-BTU gas

    Microsoft Academic Search

    J. C. Blanton; D. P. Smith

    1985-01-01

    As part of the joint GE\\/DoE Water-Cooled Components Test Program,¹ a series of tests were performed involving the combustion of a minimally cleaned low-Btu coal gas in a pressurized gas turbine simulator. The fuel gas was produced in a 1-ton\\/hr advanced fixed-bed gasifier using Illinois number6 coal, and filtered of particulate in a full-pressure, full-temperature cyclone separator. The resulting product

  11. Integral gas compressor and internal combustion engine

    Microsoft Academic Search

    Waldrop

    1990-01-01

    This patent describes an integral gas compressor and internal combustion engine apparatus. A cylinder block defining a cylinder bores in first and second banks; a crankshaft rotatably disposed in the cylinder block; an engine piston disposed in each of the cylinder bores in the first bank; a compressor piston disposed in each of the cylinder bores in the second bank;

  12. A Liquid Fueled, Lean Burn, Gas Turbine Combustor Injector

    Microsoft Academic Search

    S. W. SHAFFAR; G. S. SAMUELSEN

    1998-01-01

    A need exists to develop and demonstrate a low pollutant emission gas turbine combustor design that uses liquid fuel for propulsion applications. The present work addresses this need by developing and demonstrating design guidelines for a liquid fueled, lean burn, gas turbine combustor injector. This injector is designed to accommodate all the combustion air, and includes a fuel and air

  13. Vaporization and combustion of fuel droplets at supercritical conditions

    NASA Technical Reports Server (NTRS)

    Yang, Vigor

    1991-01-01

    Vaporization and combustion liquid-fuel droplets in both sub- and super-critical environments have been examined. The formulation is based on the complete conservation equations for both gas and liquid phases, and accommodates finite-rate chemical kinetics and a full treatment of liquid-vapor phase equilibrium at the droplet surface. The governing equations and the associated interface boundary conditions are solved numerically using a fully coupled, implicit scheme with the dual time-stepping integration technique. The model is capable of treating the entire droplet history, including the transition from the subcritical to the supercritical state. As a specific example, the combustion of n-pentane fuel droplets in air is studied for pressures of 5-140 atm. In addition, the dynamic responses of droplet vaporization and combustion to ambient-pressure oscillations are investigated. Results indicate that the droplet gasification and burning mechanisms depend greatly on the ambient pressure. In particular, a rapid enlargement of the vaporization and combustion responses occurs when the droplet surface reaches its critical point, mainly due to the strong variations of latent heat of vaporization and thermophysical properties at the critical state.

  14. Demonstration of catalytic combustion with residual fuel

    NASA Astrophysics Data System (ADS)

    Dodds, W. J.; Ekstedt, E. E.

    1981-08-01

    An experimental program was conducted to demonstrate catalytic combustion of a residual fuel oil. Three catalytic reactors, including a baseline configuration and two backup configurations based on baseline test results, were operated on No. 6 fuel oil. All reactors were multielement configurations consisting of ceramic honeycomb catalyzed with palladium on stabilized alumina. Stable operation on residual oil was demonstrated with the baseline configuration at a reactor inlet temperature of about 825 K (1025 F). At low inlet temperature, operation was precluded by apparent plugging of the catalytic reactor with residual oil. Reduced plugging tendency was demonstrated in the backup reactors by increasing the size of the catalyst channels at the reactor inlet, but plugging still occurred at inlet temperature below 725 K (845 F). Operation at the original design inlet temperature of 589 K (600 F) could not be demonstrated. Combustion efficiency above 99.5% was obtained with less than 5% reactor pressure drop. Thermally formed NO sub x levels were very low (less than 0.5 g NO2/kg fuel) but nearly 100% conversion of fuel-bound nitrogen to NO sub x was observed.

  15. Gasification Evaluation of Gas Turbine Combustion

    SciTech Connect

    Battelle

    2003-12-30

    This report provides a preliminary assessment of the potential for use in gas turbines and reciprocating gas engines of gases derived from biomass by pyrolysis or partial oxidation with air. Consideration was given to the use of mixtures of these gases with natural gas as a means of improving heating value and ensuring a steady gas supply. Gas from biomass, and mixtures with natural gas, were compared with natural gas reformates from low temperature partial oxidation or steam reforming. The properties of such reformates were based on computations of gas properties using the ChemCAD computational tools and energy inputs derived from known engine parameters. In general, the biomass derived fuels compare well with reformates, so far as can be judged without engine testing. Mild reforming has potential to produce a more uniform quality of fuel gas from very variable qualities of natural gas, and could possibly be applied to gas from biomass to eliminate organic gases and condensibles other than methane.

  16. Delivery of fuel in internal combustion engines

    SciTech Connect

    Brown, S.E.

    1989-08-01

    This patent describes an improvement in an engine having a cylinder, an intake port for admitting an air-fuel mixture to the cylinder, and an intake manifold coupled with the cylinder to provide a flow passage to the intake port for the air-fuel mixture. The improvement comprising: means for presenting a reservoir in the intake manifold for collecting liquid fuel that liquifies from the air-fuel mixture; a venturi having a restricted throat and low and high pressure sides on opposite sides of the throat; means for mounting the venturi in the flow passage with the low pressure side located downstream from the high pressure side; and means for providing a passage having an inlet end communicating with the reservoir to receive the liquid fuel therefrom and an outlet end opening into the low pressure side of the venturi to deliver the liquid fuel into the air-fuel mixture following through the venturi, thereby effecting atomization of at least some of the liquid fuel to achieve more complete combustion thereof in the cylinder.

  17. Development of a catalytic combustion system for the MIT Micro Gas Turbine Engine

    E-print Network

    Peck, Jhongwoo, 1976-

    2003-01-01

    As part of the MIT micro-gas turbine engine project, the development of a hydrocarbon-fueled catalytic micro-combustion system is presented. A conventionally-machined catalytic flow reactor was built to simulate the ...

  18. Dry low NOx combustion system with pre-mixed direct-injection secondary fuel nozzle

    DOEpatents

    Zuo, Baifang; Johnson, Thomas; Ziminsky, Willy; Khan, Abdul

    2013-12-17

    A combustion system includes a first combustion chamber and a second combustion chamber. The second combustion chamber is positioned downstream of the first combustion chamber. The combustion system also includes a pre-mixed, direct-injection secondary fuel nozzle. The pre-mixed, direct-injection secondary fuel nozzle extends through the first combustion chamber into the second combustion chamber.

  19. Fuel NOx production during the combustion of low caloric value fuel

    SciTech Connect

    Colaluca, M.A.; Caraway, J.P. [Texas A and M Univ., College Station, TX (United States). Mechanical Engineering Dept.

    1997-07-01

    The objective of this investigation is to identify and qualify physical mechanisms and parameters that affect the combustion of low caloric value gases (LCVG) and the formation of NOx pollutants produced form fuel bound nitrogen. Average physical properties of a low caloric value gas were determined from the products of several industrial coal gasifiers. A computer model was developed, utilizing the PHOENICS computational fluid dynamics software to model the combustion of LCVG. The model incorporates a 3-dimensional physical design and is based on typical industrial combustors. Feed stock to the gasifier can be wood, feed stock manure, cotton gin trash, coal, lignite and numerous forms of organic industrial wastes.

  20. FUEL FORMULATION EFFECTS ON DIESEL FUEL INJECTION, COMBUSTION, EMISSIONS AND EMISSION CONTROL

    SciTech Connect

    Boehman, A; Alam, M; Song, J; Acharya, R; Szybist, J; Zello, V; Miller, K

    2003-08-24

    This paper describes work under a U.S. DOE sponsored Ultra Clean Fuels project entitled ''Ultra Clean Fuels from Natural Gas,'' Cooperative Agreement No. DE-FC26-01NT41098. In this study we have examined the incremental benefits of moving from low sulfur diesel fuel and ultra low sulfur diesel fuel to an ultra clean fuel, Fischer-Tropsch diesel fuel produced from natural gas. Blending with biodiesel, B100, was also considered. The impact of fuel formulation on fuel injection timing, bulk modulus of compressibility, in-cylinder combustion processes, gaseous and particulate emissions, DPF regeneration temperature and urea-SCR NOx control has been examined. The primary test engine is a 5.9L Cummins ISB, which has been instrumented for in-cylinder combustion analysis and in-cylinder visualization with an engine videoscope. A single-cylinder engine has also been used to examine in detail the impacts of fuel formulation on injection timing in a pump-line-nozzle fueling system, to assist in the interpretation of results from the ISB engine.

  1. Hydrogen-fueled internal combustion engines.

    SciTech Connect

    Verhelst, S.; Wallner, T.; Energy Systems; Ghent Univ.

    2009-12-01

    The threat posed by climate change and the striving for security of energy supply are issues high on the political agenda these days. Governments are putting strategic plans in motion to decrease primary energy use, take carbon out of fuels and facilitate modal shifts. Taking a prominent place in these strategic plans is hydrogen as a future energy carrier. A number of manufacturers are now leasing demonstration vehicles to consumers using hydrogen-fueled internal combustion engines (H{sub 2}ICEs) as well as fuel cell vehicles. Developing countries in particular are pushing for H{sub 2}ICEs (powering two- and three-wheelers as well as passenger cars and buses) to decrease local pollution at an affordable cost. This article offers a comprehensive overview of H{sub 2}ICEs. Topics that are discussed include fundamentals of the combustion of hydrogen, details on the different mixture formation strategies and their emissions characteristics, measures to convert existing vehicles, dedicated hydrogen engine features, a state of the art on increasing power output and efficiency while controlling emissions and modeling.

  2. Reduction of 137Cs Emission into the Atmosphere on Combustion of a Radionuclide-Contaminated Solid Fuel Under Conditions Involving Excitation of Thermoacoustic Self-Oscillations and Gas-Dynamical Pulsations

    NASA Astrophysics Data System (ADS)

    Polezhaev, Yu. V.; Geshele, V. D.; Stonik, O. G.; Raskatov, I. P.; Solovv, V. N.; Pleshchankov, I. G.; Bida, L. A.; Levchuk, A. S.; Fokina, G. I.

    2015-03-01

    The emission of radioactive 137Cs with fl ue gases in various regimes of combustion of radionuclide-contaminated solid fuels in a wide temperature interval has been investigated. The fl ame temperature decreased on the onset of vibrating combustion. A lowering in the 137Cs emission under conditions of vibrating and intermittent combustion in comparison with the emission under conditions of diffusion combustion has been obtained.

  3. Combustion of liquid fuel droplets in supercritical conditions

    NASA Technical Reports Server (NTRS)

    Shuen, J. S.; Yang, Vigor

    1991-01-01

    A comprehensive analysis of liquid-fuel droplet combustion in both sub- and super-critical environments has been conducted. The formulation is based on the complete conservation equations for both gas and liquid phases, and accommodates finite-rate chemical kinetics and a full treatment of liquid-vapor phase equilibrium at the droplet surface. The governing equations and the associated interface boundary conditions are solved numerically using a fully coupled, implicit scheme with the dual time-stepping integration technique. The model is capable of treating the entire droplet history, including the transition from the subcritical to the supercritical state. As a specific example, the combustion of n-pentane fuel droplets in air is studied for pressures of 5-140 atm. Results indicate that the ambient gas pressure exerts significant control of droplet gasification and burning processes through its influences on the fluid transport, gas/liquid interface thermodynamics, and chemical reactions. The droplet gasification rate increases progressively with pressure. However, the data for the overall burnout time exhibits a significant variation near the critical burning pressure, mainly as a result of reduced mass-diffusion rate and latent heat of vaporization with increased pressure. The influence of droplet size on the burning characteristics is also noted.

  4. Experimental investigation of gas combustion regularities in narrow tubes

    Microsoft Academic Search

    V. V. Zamashchikov

    1996-01-01

    Combustion wave propagation in flowing combustible gas has been studied experimentally in tubes with inner diameters larger and smaller than the critical diameters. Combustion wave velocity has been shown to depend on the material of the tube walls, the tube inner diameter, the mixture composition, and the gas flow rate. In a tube which has an inner diameter larger than

  5. Internal combustion engine with an exhaust gas turbocharger

    SciTech Connect

    Hiereth, H.; Withalm, G.

    1981-06-09

    An internal combustion engine with an exhaust-gas turbocharger, particularly a mixture-compressing internal combustion engine, is disclosed in which a bleeder valve is provided which during the operation of the internal combustion engine in the partial load range conducts the exhaust gases in bypassing relationship to the turbine of the exhaust gas turbocharger.

  6. Recent advances in the combustion of water fuel emulsion

    Microsoft Academic Search

    T. Kadota; H. Yamasaki

    2002-01-01

    Recent advances in the combustion of water fuel emulsion which consists of base fuel and water doped with or without a trace content of surfactant are reviewed. The focus is on the fundamental mechanism relevant to the micro-explosion phenomena leading to the secondary atomization which is not common to the combustion of pure fuel. Described at first are the kinetic

  7. CONTROLLED COMBUSTION OF LOW-QUALITY GAS MIXTURES

    Microsoft Academic Search

    Malinen Kaisu; Jrvinen Mika; Saari Kari; Lampinen Markku; Fogelholm Carl-Johan; Riikonen Arto

    The objective of this work was to experimentally de termine the lowest levels of methane content in gas mixtures that would still en able controlled combustion using a commercial standard gas burner. A gas mixture is of low quality when it is uncertai n whether the mixture will ignite or maintain stable combustion. Such low-quality gas mixtures can typically include

  8. Internal combustion engine. [piston-type engine combined with gas turbine

    Microsoft Academic Search

    Spath

    1975-01-01

    The design is given of an internal combustion engine (usual piston type) combined with a gas turbine which helps power the output drive shaft. The exhaust gases and the crankcase vapors of the piston engine, which contain combustible unburned hydrocarbons, are collected, compressed, and supplied to the turbine as fuel. The proportion of the available energy extracted from the basic

  9. [Combustion gas toxicity of textiles (author's transl)].

    PubMed

    Iwasaki, K

    1979-01-01

    Textiles are used so widely as interior materials of many buildings, houses, and transportation facilities, that the combustion gas has a chance of intoxication of a fire accident. Therefore this investigation was undertaken to clarify the toxicity of the gas and to obtain an index for safety standards in such cases. The combustion gases of cotton, polypropylene, acrylic, flame retardant (F.R.) cotton and F.R. acrylic fabrics were analyzed by a gas chromatograph and a GC-Mass spectorograph, and also tested with experimental animals to determine the lethal factors including blood gas analyzing technique. The gas exposuring test based on gas analysis data showed that the toxicity of these combustion products increased in the following orders: cotton, polypropylene, F.R. cotton, F.R. acrylic and acrylic. Comparative indices of the toxicity showed that acrylic increased 7.26-fold as compared with that of cotton. It was recognized that the lethal factors in the mice was due to carbon monoxide and/or hydrogen cyanide during the exposure one hour, and that sequelae due to acrolein during the seven day observation period after the exposure. Flame retardant treatment increased twice the toxicity of cotton. On the contrary, that of acrylic was reduced by 0.8 time compared with the original fabric, so that the treatment could be recommended only in case of acrylic from the safety standpoint. From the above results, it can be stressed that vigorous smoke exhaust procedure should be executed in the case of fire accidents for saving human lives. PMID:470212

  10. Investigation of thermal and environmental characteristics of combustion of gaseous fuels

    NASA Astrophysics Data System (ADS)

    Vetkin, A. V.; Suris, A. L.

    2015-03-01

    Numerical investigations are fulfilled for some thermal and environmental characteristics of combustion of gaseous fuels used at present in tube furnaces of petroleum refineries. The effect of the fuel composition on these characteristics is shown and probable consequences of the substitution of natural gas to other types of fuels. Methane, ethane, propane, butane, propylene, and hydrogen are considered for comparison, which in most cases are constituents of the composition of the fuel burnt in furnaces. The effect of the fuel type, its associated combustion temperature, combustion product emissivity, temperature of combustion chamber walls, mean beam length, and heat release on the variation in the radiant heat flux within the radiant chamber of furnaces is investigated. The effect of flame characteristics, which are determined by the presence of diffusion combustion zones formed by burners used at present in furnaces for reducing nitrogen oxides emission, is analyzed. The effect of the fuel type on the equilibrium NO concentration is also investigated. The investigations were carried out both at arbitrary given gas temperatures and at effective temperatures dependent on the adiabatic combustion temperature and the temperature at the chamber output and determined based on solving a set of equations at various heat-release rates of the combustion chamber.

  11. System and method for cooling a combustion gas charge

    DOEpatents

    Massey, Mary Cecelia; Boberg, Thomas Earl

    2010-05-25

    The present invention relates to a system and method for cooling a combustion gas charge prior. The combustion gas charge may include compressed intake air, exhaust gas, or a mixture thereof. An evaporator is provided that may then receive a relatively high temperature combustion gas charge and discharge at a relatively lower temperature. The evaporator may be configured to operate with refrigeration cycle components and/or to receive a fluid below atmospheric pressure as the phase-change cooling medium.

  12. Effects of fuel nozzle design on performance of an experimental annular combustor using natural gas fuel

    NASA Technical Reports Server (NTRS)

    Wear, J. D.; Schultz, D. F.

    1972-01-01

    Tests of various fuel nozzles were conducted with natural gas fuel in a full-annulus combustor. The nozzles were designed to provide either axial, angled, or radial fuel injection. Each fuel nozzle was evaluated by measuring combustion efficiency at relatively severe combustor operating conditions. Combustor blowout and altitude ignition tests were also used to evaluate nozzle designs. Results indicate that angled injection gave higher combustion efficiency, less tendency toward combustion instability, and altitude relight characteristics equal to or superior to those of the other fuel nozzles that were tested.

  13. Exhaust gas reaction chambers for internal combustion engine

    Microsoft Academic Search

    Y. Sakurai; T. Okura; M. Tanaka

    1979-01-01

    An internal-combustion spark-ignition V-8 piston engine has a main exhaust gas reaction chamber positioned between the two banks of cylinders. Each cylinder has a main combustion chamber and an auxiliary combustion chamber connected by a torch nozzle restriction. Valved intake passages supply lean mixture to the main combustion chambers and rich mixture to the auxiliary combustion chamber. Valved exhaust passages

  14. Combustion process with waste gas purification

    SciTech Connect

    Almlof, G.; Hagqvist, P.

    1983-07-12

    The invention relates to a combustion process with cleansing of the waste gases by compressing, cooling and expanding said gases. The invention provides a continuous process in which highly contaminated low-grade fuels having a high water content can be effectively burned and the waste gases efficiently cleansed, by subjecting the cooled waste gases, together with residual non-desired substances, to a rapid drop in pressure in one or more stages by means of an expansion means, whereat the input drive power of the compressor, required for compressing said gases, is so high that the temperature downstream of the expansion means is sufficiently low for the condensation and precipitation of frozen contaminants in the waste gases, together with ice crystals. The invention can be applied to all forms of combustion plants, primarily combined power and heating plants fired with fuel having a high sulphur and water content.

  15. Heavy duty gas turbine combustion tests with simulated low BTU coal gas

    NASA Astrophysics Data System (ADS)

    Ekstrom, T. E.; Battista, R. A.; Maxwell, G. P.

    There is an increasing industry interest in integrated gas turbine combined cycle plants in which coal gasifiers provide the fuel for the gas turbines. Some gasifier plant designs, including the air-blown processes, some integrated oxygen blown processes and some oxygen-blown processes followed by heavy moisturization, produce fuel gases which have lower heating values ranging from 130 to below 100 BTU/scf for which there is little gas turbine combustion experience. This program has the objectives to: Parametrically determine the effects of moisture, nitrogen and carbon dioxide as diluents so that the combustion characteristics of many varieties of gasification product gases can be reasonably predicted without physically testing each specific gas composition; determine emissions characteristics including NO(x), CO, levels etc. associated with each of the diluents; operate with two syngas compositions; DOE chosen air-blown and integrated oxygen-blown, to confirm that the combustion characteristics are in line with predictions; determine if 'logical' refinements to the fuel nozzle will yield improved performance for LBTU fuels; determine the conversion rate of ammonia to NO(x); determine the effects of methane inclusion in the fuel.

  16. Hydrogen enrichment effects on the second law analysis of natural and landfill gas combustion in engine cylinders

    Microsoft Academic Search

    C. D. Rakopoulos; D. C. Kyritsis

    2006-01-01

    The availability (exergy) balance during combustion of hydrogen-enriched natural and landfill gas, which are used as fuels in combustion engine cylinders, is studied computationally using a zero-dimensional model of the closed part of the cycle. The main focus is on the demonstration of a fundamental difference in the generation of irreversibility during combustion between hydrogen and hydrocarbons. This difference relates

  17. Ignition and combustion of liquid fuel droplet in a convective medium

    Microsoft Academic Search

    S. K. Dash; S. K. Som

    1991-01-01

    This paper reports that an mathematical model of droplet combustion in surroundings of hot gas with a uniform free stream motion is made from the numerical solution of the conservation equations of heat, mass and momentum in both the carrier and droplet phases. The gas phase chemical reaction between fuel vapor and oxidizer is assumed to be a single-step irreversible

  18. Trace gas emissions from combustion of peat, crop residue, biofuels, grasses, and other fuels: configuration and FTIR component of the fourth Fire Lab at Missoula Experiment (FLAME-4)

    NASA Astrophysics Data System (ADS)

    Stockwell, C. E.; Yokelson, R. J.; Kreidenweis, S. M.; Robinson, A. L.; DeMott, P. J.; Sullivan, R. C.; Reardon, J.; Ryan, K. C.; Griffith, D. W. T.; Stevens, L.

    2014-04-01

    During the fourth Fire Lab at Missoula Experiment (FLAME-4, October-November~2012) a~large variety of regionally and globally significant biomass fuels was burned at the US Forest Service Fire Sciences Laboratory in Missoula, Montana. The particle emissions were characterized by an extensive suite of instrumentation that measured aerosol chemistry, size distribution, optical properties, and cloud-nucleating properties. The trace gas measurements included high resolution mass spectrometry, one- and two-dimensional gas chromatography, and open-path Fourier transform infrared (OP-FTIR) spectroscopy. This paper summarizes the overall experimental design for FLAME-4 including the fuel properties, the nature of the burn simulations, the instrumentation employed, and then focuses on the OP-FTIR results. The OP-FTIR was used to measure the initial emissions of 20 trace gases: CO2, CO, CH4, C2H2, C2H4, C3H6, HCHO, HCOOH, CH3OH, CH3COOH, glycolaldehyde, furan, H2O, NO, NO2, HONO, NH3, HCN, HCl, and SO2. These species include most of the major trace gases emitted by biomass burning and for several of these compounds it is the first time their emissions are reported for important fuel types. The main fuel types included: African grasses, Asian rice straw, cooking fires (open (3-stone), rocket, and gasifier stoves), Indonesian and extratropical peat, temperate and boreal coniferous canopy fuels, US crop residue, shredded tires, and trash. Comparisons of the OP-FTIR emission factors (EF) and emission ratios (ER) to field measurements of biomass burning verify that the large body of FLAME-4 results can be used to enhance the understanding of global biomass burning and its representation in atmospheric chemistry models.

  19. Compression ignition engine having fuel system for non-sooting combustion and method

    SciTech Connect

    Bazyn, Timothy; Gehrke, Christopher

    2014-10-28

    A direct injection compression ignition internal combustion engine includes a fuel system having a nozzle extending into a cylinder of the engine and a plurality of spray orifices formed in the nozzle. Each of the spray orifices has an inner diameter dimension of about 0.09 mm or less, and define inter-orifice angles between adjacent spray orifice center axes of about 36.degree. or greater such that spray plumes of injected fuel from each of the spray orifices combust within the cylinder according to a non-sooting lifted flame and gas entrainment combustion pattern. Related methodology is also disclosed.

  20. Analysis of Fuel Vaporization, Fuel-Air Mixing, and Combustion in Integrated Mixer-Flame Holders

    NASA Technical Reports Server (NTRS)

    Deur, J. M.; Cline, M. C.

    2004-01-01

    Requirements to limit pollutant emissions from the gas turbine engines for the future High-Speed Civil Transport (HSCT) have led to consideration of various low-emission combustor concepts. One such concept is the Integrated Mixer-Flame Holder (IMFH). This report describes a series of IMFH analyses performed with KIVA-II, a multi-dimensional CFD code for problems involving sprays, turbulence, and combustion. To meet the needs of this study, KIVA-II's boundary condition and chemistry treatments are modified. The study itself examines the relationships between fuel vaporization, fuel-air mixing, and combustion. Parameters being considered include: mixer tube diameter, mixer tube length, mixer tube geometry (converging-diverging versus straight walls), air inlet velocity, air inlet swirl angle, secondary air injection (dilution holes), fuel injection velocity, fuel injection angle, number of fuel injection ports, fuel spray cone angle, and fuel droplet size. Cases are run with and without combustion to examine the variations in fuel-air mixing and potential for flashback due to the above parameters. The degree of fuel-air mixing is judged by comparing average, minimum, and maximum fuel/air ratios at the exit of the mixer tube, while flame stability is monitored by following the location of the flame front as the solution progresses from ignition to steady state. Results indicate that fuel-air mixing can be enhanced by a variety of means, the best being a combination of air inlet swirl and a converging-diverging mixer tube geometry. With the IMFH configuration utilized in the present study, flashback becomes more common as the mixer tube diameter is increased and is instigated by disturbances associated with the dilution hole flow.

  1. Solid fuel combustion technology for the Stirling engine

    Microsoft Academic Search

    1977-01-01

    The current status of fluidized bed combustion has been reviewed with emphasis on its potential application to industrial power or heating plants and to alternative fuels. This technology is ready for commercialization and there is strong evidence of its high adaptability to a large variety of fuels, including biomass and industrial wastes. Coal-oil slurry combustion also is being developed and

  2. New mixture formation technology of direct fuel injection stratified combustion SI engine (OSKA)

    SciTech Connect

    Kato, S.; Onishi, S.

    1987-01-01

    A new type of internal combustion engine has been developed. The new idea incorporates an impinging part in the central piston cavity. The fuel spray is injected against the impinging area, spreads and forms a fuel mixture. Since a comparatively rich fuel mixture, always stays around the impinging part and ignition is accomplished at the center of the rich fuel mixture, steady, instantaneous and high-speed combustion is possible. As the fuel mixture is always formed in the cavity, there is little fuel in the squish area. Therefore, it is possible to prevent end-gas knocking, and in spite of the use of spark ignition, to operate the engine at higher compression ratio than a conventional premixed SI engine. Experiments with methanol fuel showed that BMEP was 1.1MPa and the maximum brake thermal efficiency was 42%. The combustion noise was lower than that of diesel engine. Brief tests with gasoline showed a maximum brake thermal efficency of 36%.

  3. Performance of SRC II fuels in gas-turbine combustors. Alternative-fuels-utilization program

    Microsoft Academic Search

    E. H. Tong; A. M. Mellor

    1981-01-01

    Jet A, SRCII-Middle Distillate (SRCII-MD), and a 50\\/50 Jet A\\/SRCII-MD blend were burned in three different laboratory combustion rigs to study fuel property effects on combustion performance. Soot concentration, flame radiation, combustion efficiency and flame stabilization measurements were conducted in test rigs simulating conventional and prechamber geometry gas turbine combustors. A special ignition rig was used to study ignition performance.

  4. Adaptation of Combustion Principles to Aircraft Propulsion. Volume I; Basic Considerations in the Combustion of Hydrocarbon Fuels with Air

    NASA Technical Reports Server (NTRS)

    Barnett, Henry C (Editor); Hibbard, Robert R (Editor)

    1955-01-01

    The report summarizes source material on combustion for flight-propulsion engineers. First, several chapters review fundamental processes such as fuel-air mixture preparation, gas flow and mixing, flammability and ignition, flame propagation in both homogenous and heterogenous media, flame stabilization, combustion oscillations, and smoke and carbon formation. The practical significance and the relation of these processes to theory are presented. A second series of chapters describes the observed performance and design problems of engine combustors of the principal types. An attempt is made to interpret performance in terms of the fundamental processes and theories previously reviewed. Third, the design of high-speed combustion systems is discussed. Combustor design principles that can be established from basic considerations and from experience with actual combustors are described. Finally, future requirements for aircraft engine combustion systems are examined.

  5. Fuel supply system for internal-combustion engine

    Microsoft Academic Search

    M. Fujieda; Y. Oyama

    1988-01-01

    This patent describes a fuel supply system for an internal-combustion engine. The fuel supply system consists of: fuel supply means; an intake-air passage connected through an intake valve to a combustion chamber defined by a cylinder and a piston, the intake-air passage having a volume between the fuel supply means and the intake valve means equal to a volume of

  6. Advanced coal-fueled gas turbine systems

    SciTech Connect

    Wenglarz, R.A.

    1994-08-01

    Several technology advances since the early coal-fueled turbine programs that address technical issues of coal as a turbine fuel have been developed in the early 1980s: Coal-water suspensions as fuel form, improved methods for removing ash and contaminants from coal, staged combustion for reducing NO{sub x} emissions from fuel-bound nitrogen, and greater understanding of deposition/erosion/corrosion and their control. Several Advanced Coal-Fueled Gas Turbine Systems programs were awarded to gas turbine manufacturers for for components development and proof of concept tests; one of these was Allison. Tests were conducted in a subscale coal combustion facility and a full-scale facility operating a coal combustor sized to the Allison Model 501-K industrial turbine. A rich-quench-lean (RQL), low nitrogen oxide combustor design incorporating hot gas cleanup was developed for coal fuels; this should also be applicable to biomass, etc. The combustor tests showed NO{sub x} and CO emissions {le} levels for turbines operating with natural gas. Water washing of vanes from the turbine removed the deposits. Systems and economic evaluations identified two possible applications for RQL turbines: Cogeneration plants based on Allison 501-K turbine (output 3.7 MW(e), 23,000 lbs/hr steam) and combined cycle power plants based on 50 MW or larger gas turbines. Coal-fueled cogeneration plant configurations were defined and evaluated for site specific factors. A coal-fueled turbine combined cycle plant design was identified which is simple, compact, and results in lower capital cost, with comparable efficiency and low emissions relative to other coal technologies (gasification, advanced PFBC).

  7. Apparatus and method for operating internal combustion engines from variable mixtures of gaseous fuels

    DOEpatents

    Heffel, James W.; Scott, Paul B.; Park, Chan Seung

    2011-11-01

    An apparatus and method for utilizing any arbitrary mixture ratio of multiple fuel gases having differing combustion characteristics, such as natural gas and hydrogen gas, within an internal combustion engine. The gaseous fuel composition ratio is first sensed, such as by thermal conductivity, infrared signature, sound propagation speed, or equivalent mixture differentiation mechanisms and combinations thereof which are utilized as input(s) to a "multiple map" engine control module which modulates selected operating parameters of the engine, such as fuel injection and ignition timing, in response to the proportions of fuel gases available so that the engine operates correctly and at high efficiency irrespective of the gas mixture ratio being utilized. As a result, an engine configured according to the teachings of the present invention may be fueled from at least two different fuel sources without admixing constraints.

  8. Apparatus and method for operating internal combustion engines from variable mixtures of gaseous fuels

    DOEpatents

    Heffel, James W.; Scott, Paul B.

    2003-09-02

    An apparatus and method for utilizing any arbitrary mixture ratio of multiple fuel gases having differing combustion characteristics, such as natural gas and hydrogen gas, within an internal combustion engine. The gaseous fuel composition ratio is first sensed, such as by thermal conductivity, infrared signature, sound propagation speed, or equivalent mixture differentiation mechanisms and combinations thereof which are utilized as input(s) to a "multiple map" engine control module which modulates selected operating parameters of the engine, such as fuel injection and ignition timing, in response to the proportions of fuel gases available so that the engine operates correctly and at high efficiency irrespective of the gas mixture ratio being utilized. As a result, an engine configured according to the teachings of the present invention may be fueled from at least two different fuel sources without admixing constraints.

  9. Axially staged combustion system for a gas turbine engine

    DOEpatents

    Bland, Robert J. (Oviedo, FL)

    2009-12-15

    An axially staged combustion system is provided for a gas turbine engine comprising a main body structure having a plurality of first and second injectors. First structure provides fuel to at least one of the first injectors. The fuel provided to the one first injector is adapted to mix with air and ignite to produce a flame such that the flame associated with the one first injector defines a flame front having an average length when measured from a reference surface of the main body structure. Each of the second injectors comprising a section extending from the reference surface of the main body structure through the flame front and having a length greater than the average length of the flame front. Second structure provides fuel to at least one of the second injectors. The fuel passes through the one second injector and exits the one second injector at a location axially spaced from the flame front.

  10. The origin of organic pollutants from the combustion of alternative fuels: Phase 5/6 report

    SciTech Connect

    Sidhu, S.; Graham, J.; Taylor, P.; Dellinger, B. [Univ. of Dayton, OH (United States). Research Inst.

    1998-05-01

    As part of the US Department of Energy National Renewable Energy Laboratory program on alternative automotive fuels, the subcontractor has been conducting studies on the origin and fate of organic pollutants from the combustion of alternative fuels. Laboratory experiments were conducted simulating cold start of four alterative fuels (compressed natural gas, liquefied petroleum gas, methanol-gasoline mix, and ethanol-gasoline mix) using a commercial three-way catalyst under fuel-lean conditions. This report summarizes the results of these experiments. It appears that temperature of the catalyst is a more important parameter for fuel conversion and pollutant formation than oxygen concentration or fuel composition.

  11. Oxy-combustion of high water content fuels

    NASA Astrophysics Data System (ADS)

    Yi, Fei

    As the issues of global warming and the energy crisis arouse extensive concern, more and more research is focused on maximizing energy efficiency and capturing CO2 in power generation. To achieve this, in this research, we propose an unconventional concept of combustion - direct combustion of high water content fuels. Due to the high water content in the fuels, they may not burn under air-fired conditions. Therefore, oxy-combustion is applied. Three applications of this concept in power generation are proposed - direct steam generation for the turbine cycle, staged oxy-combustion with zero flue gas recycle, and oxy-combustion in a low speed diesel-type engine. The proposed processes could provide alternative approaches to directly utilize fuels which intrinsically have high water content. A large amount of energy to remove the water, when the fuels are utilized in a conventional approach, is saved. The properties and difficulty in dewatering high water content fuels (e.g. bioethanol, microalgae and fine coal) are summarized. These fuels include both renewable and fossil fuels. In addition, the technique can also allow for low-cost carbon capture due to oxy-combustion. When renewable fuel is utilized, the whole process can be carbon negative. To validate and evaluate this concept, the research focused on the investigation of the flame stability and characteristics for high water content fuels. My study has demonstrated the feasibility of burning fuels that have been heavily diluted with water in a swirl-stabilized burner. Ethanol and 1-propanol were first tested as the fuels and the flame stability maps were obtained. Flame stability, as characterized by the blow-off limit -- the lowest O2 concentration when a flame could exist under a given oxidizer flow rate, was determined as a function of total oxidizer flow rate, fuel concentration and nozzle type. Furthermore, both the gas temperature contour and the overall ethanol concentration in the droplets along the spray were measured in the chamber for a stable flame. The experimental results indicate significant preferential vaporization of ethanol over water. Modeling results support this observation and indicate that the vaporization process is best described as the distillation limit mode with enhanced mass transfer by convection. Further, the influence of preferential vaporization on flame stability was investigated. A procedure was developed to evaluate the extent of preferential vaporization and subsequent flame stability of a fuel in aqueous solution. Various water soluble fuels were analyzed via this procedure in order to identify a chemical fuel showing strong preferential vaporization. t-Butanol was identified as having excellent physical and chemical properties, indicating stronger preferential vaporization than ethanol. Flame stability tests were run for aqueous solutions of both t-butanol and ethanol under identical flow conditions. Flame stability was characterized by the blow-off limit. In each comparison, the energy contents in the two solutions were kept the same. For the experiments under high swirl flow conditions (100% swirl flow), 12.5 wt% t-butanol has slightly lower blow-off limits than 15 wt% ethanol, and 8.3 wt% t-butanol has much lower blow-off limits than 10 wt% ethanol. For the experiments under a low swirl flow condition (50% swirl/50% axial flow), 12.5 wt% t-butanol has a much lower blow-off limit than 15 wt% ethanol. The time to release the fuel from a droplet was also calculated for both ethanol and t-butanol. For the same size droplet, the time to release t-butanol is much shorter than that of ethanol under the same conditions. Faster release of the fuel from water enhances flame stability, which is consistent with the experimental results. For the oxy-combustion characteristics of low-volatility fuel with high water content, glycerol was chosen as the fuel to study. It is found that self-sustained flame can be obtained for glycerol solution with concentration as high as 60 wt%, when burned in pure O2. However, the flame is lifted far away f

  12. Fuel/oxidizer-rich high-pressure preburners. [staged-combustion rocket engine

    NASA Technical Reports Server (NTRS)

    Schoenman, L.

    1981-01-01

    The analyses, designs, fabrication, and cold-flow acceptance testing of LOX/RP-1 preburner components required for a high-pressure staged-combustion rocket engine are discussed. Separate designs of injectors, combustion chambers, turbine simulators, and hot-gas mixing devices are provided for fuel-rich and oxidizer-rich operation. The fuel-rich design addresses the problem of non-equilibrium LOX/RP-1 combustion. The development and use of a pseudo-kinetic combustion model for predicting operating efficiency, physical properties of the combustion products, and the potential for generating solid carbon is presented. The oxygen-rich design addresses the design criteria for the prevention of metal ignition. This is accomplished by the selection of materials and the generation of well-mixed gases. The combining of unique propellant injector element designs with secondary mixing devices is predicted to be the best approach.

  13. Characteristics and combustion of future hydrocarbon fuels. [aircraft fuels

    NASA Technical Reports Server (NTRS)

    Rudey, R. A.; Grobman, J. S.

    1978-01-01

    As the world supply of petroleum crude oil is being depleted, the supply of high-quality crude oil is also dwindling. This dwindling supply is beginning to manifest itself in the form of crude oils containing higher percentages of aromatic compounds, sulphur, nitrogen, and trace constituents. The result of this trend is described and the change in important crude oil characteristics, as related to aircraft fuels, is discussed. As available petroleum is further depleted, the use of synthetic crude oils (those derived from coal and oil shale) may be required. The principal properties of these syncrudes and the fuels that can be derived from them are described. In addition to the changes in the supply of crude oil, increasing competition for middle-distillate fuels may require that specifications be broadened in future fuels. The impact that the resultant potential changes in fuel properties may have on combustion and thermal stability characteristics is illustrated and discussed in terms of ignition, soot formation, carbon deposition flame radiation, and emissions.

  14. Reduction of NO[sub x] emissions coke oven gas combustion process

    Microsoft Academic Search

    R. R. Terza; U. V. Sardesai

    1993-01-01

    The paper describes by-product processing at Clairton Works which uses a unique cryogenic technology. Modifications to the desulfurization facility, nitrogen oxide formation in combustion processes (both thermal and fuel NO[sub x]), and the boilers plants are described. Boilers were used to study the contribution of fuel NO[sub x] formation during the combustion of coke oven gas. Results are summarized. The

  15. Effects of Hydrogen Addition on High-Pressure Nonpremixed Natural Gas Combustion

    Microsoft Academic Search

    N. Wu; G. P. McTaggart-Cowan; W. K. Bushe; M. H. Davy

    2010-01-01

    The effects of hydrogen addition on the ignition and combustion of a high-pressure methane jet in a quiescent charge of high-temperature, medium-pressure air were investigated numerically and experimentally. Subsequently, the results of these two fundamental studies were applied to the interpretation of combustion and emissions measurements from a pilot-ignited natural gas engine fueled with similar fuels. Whereas, under quiescent conditions,

  16. Mechanisms of coke formation in gas turbine combustion chambers

    SciTech Connect

    Brandauer, M.; Schulz, A.; Wittig, S. [Univ. Karlsruhe (Germany). Lehrstuhl und Inst. fuer Thermische Stroemungsmaschinen

    1996-04-01

    New gas turbine combustor designs are developed to reduce pollutant and NO{sub x} emissions. In these new combustors, the formation of carbonaceous deposits, especially in prevaporizers, affects the reliability and effectiveness of operation. To avoid deposits, a detailed knowledge of the origins and mechanisms of formation is required. To obtain a deeper insight, the phenomena were studied systematically. The deposits under consideration show differing characteristics suggesting more than one formation mechanism in the combustor. Consequently, the primary goal was to identify the formation mechanisms and, subsequently, to simulate the mechanisms under well-defined conditions in bench tests for determining the relevant parameters of deposit build-up. The mechanisms of formation were identified based on the properties of the deposits in the combustion chamber. In order to characterize the deposits, physical and chemical analysis techniques were utilized. In summary, tests and numerical predictions identified two major paths of formation: a deposit build-up resulting from flame products such as soot or coked droplets and a deposit build-up resulting from liquid fuel impinging the wall accompanied with chemical reactions at the wall. The deposits caused by fuel droplet impingement were intensively studied in bench tests. In analyzing the processes, the influence of wall temperature, fuel composition, and the oxygen content in the environment is shown in detail. In addition, the importance of thermal instabilities of the fuel, previously studied under fuel supply system conditions, is demonstrated for a deposit formation inside a combustion chamber.

  17. Ceramic-coated components for the combustion zone of natural gas engines

    NASA Astrophysics Data System (ADS)

    Holloman, L.; Levy, A. V.

    1992-03-01

    The use of ceramic coatings on the combustion zone surfaces of large,natural gas-fueled,internal com-bustion engines is discussed. Unique handling and quality control systems are required for plasma spray-ing thin (0.25 mm,0.0010) in.coatings on up to 48.25(cm19)-in.diameter piston crowns and cylinder heads weighing up to(1200 lb).The in-service performance characteristics of two types of natural gas-fu-eled combustion engines powering natural gas compressors that had thin zirconia ceramic coatings ap-plied to their combustion zone surfaces are presented. Their performance was measured in the field be-fore and after coating. It was determined that the durability,power output,fuel consumption,exhaust emissions,and other operating characteristics all improved due to ceramic coating of the flame side sur-faces of cylinder heads,power pistons,and valves.

  18. Performance of low-Btu fuel gas turbine combustors

    SciTech Connect

    Bevan, S.; Bowen, J.H.; Feitelberg, A.S.; Hung, S.L.; Lacey, M.A.; Manning, K.S.

    1995-11-01

    This reports on a project to develop low BTU gas fuel nozzle for use in large gas turbine combustors using multiple fuel nozzles. A rich-quench-lean combustor is described here which reduces the amount of NO{sub x} produced by the combustion of the low BTU gas. The combustor incorporates a converging rich stage combustor liner, which separates the rich stage recirculation zones from the quench stage and lean stage air.

  19. Design and implementation of Carbon Monoxide and Oxygen emissions measurement in swirl-stabilized oxy-fuel combustion

    E-print Network

    Sommer, Andrew (Andrew Zhang)

    2013-01-01

    Oxy-fuel combustion in natural gas power generation is a technology of growing interest as it provides the most efficient means of carbon capture. Since all the emissions from these power plants are sequestered, there are ...

  20. New Findings on Combustion Behavior of Oxygenated Synthetic Diesel Fuels

    Microsoft Academic Search

    C. BEATRICE; C. BERTOLI; N. D. GIACOMO

    1998-01-01

    New results were obtained on pollutants evolution during the combustion of four oxygenated fuels, whichwere compared with n-tetradecane and n-octane combustion. Three different techniques were adopted on a single cylinder direct injection diesel engine, equipped with optical accesses: two-colour pyrometry for the measurement of in-cylinder soot loading, high speed cinematography for the visualization and analysis of spray and combustion, fast

  1. Automotive gas turbine fuel control

    NASA Technical Reports Server (NTRS)

    Gold, H. (inventor)

    1978-01-01

    A fuel control system is reported for automotive-type gas turbines and particulary advanced gas turbines utilizing variable geometry components to improve mileage and reduce pollution emission. The fuel control system compensates for fuel density variations, inlet temperature variations, turbine vane actuation, acceleration, and turbine braking. These parameters are utilized to control various orifices, spool valves and pistons.

  2. Characterizing fuels for atmospheric fluidized bed combustion

    SciTech Connect

    Marban, G.; Pis, J.J.; Fuertes, A.B. [CSIC, Oviedo (Spain). Instituto Nacional del Carbon] [CSIC, Oviedo (Spain). Instituto Nacional del Carbon

    1995-10-01

    A complete methodology for characterizing coal combustion in atmospheric fluidized bed reactors is presented. The methodology comprises studies of fragmentation and particle size variations during combustion, necessary to allow an accurate determination of kinetic parameters and attrition rates. Samples of three different carbonaceous materials (a medium-ash lignite, a medium-ash anthracite and a graphite) were pyrolyzed in N{sub 2} and partially burned in air in a bench-scale fluidized bed reactor at different operating conditions. The particle size distribution, apparent density and number of particles were evaluated by Image Analysis. Additionally, the sphericity factors were calculated. Combustion studies were carried out in batch experiments in the laboratory-scale, fluidized bed reactor at the same operating conditions. The reactor outlet concentrations of O{sub 2}, CO{sub 2}, and CO were monitored continuously. The results indicate that only anthracite particles experienced both primary (due to devolatilization) and secondary (during char combustion) fragmentation. Graphite particles underwent secondary fragmentation, whereas lignite particles did not significantly vary in number during combustion. Size and density variations during combustion suggest that graphite particles burn under regime II, interparticle diffusion being the rate controlling step. On the other hand, anthracite and lignite particles developed an ash layer, which may control combustion. The attrition constants of the medium-ash materials (lignite and anthracite) were found to be very low whereas that of graphite was much higher due mainly to peripheral percolation during combustion.

  3. Fuel system modifications to improve boiler combustion

    Microsoft Academic Search

    M. L. Crisler; P. A. Wagner

    1990-01-01

    A coal fired boiler for the Indian River Power Station has proven itself a reliable boiler. However, combustion problems have caused swings in tube metal temperatures, throttle pressure, flame carry over, and has resulted in high levels of unburned carbon in the bottom ash and flyash. A combustion improvement program was implemented to address these problems. Extensive testing and retrofit

  4. Development of colorless distributed combustion for gas turbine application

    NASA Astrophysics Data System (ADS)

    Arghode, Vaibhav Kumar

    Colorless Distributed Combustion (CDC) is investigated for gas turbine engine application due to its benefit for ultra-low pollutant emission, improved pattern factor, low noise emission, stable combustion and low pressure drop, alleviation of combustion instabilities and increased life of turbine blades with less air cooling requirements. The CDC is characterized by discrete and direct injection of fuel and air at high velocity and the reaction zone is stabilized due to controlled aerodynamics inside the combustor and wider (radially) shear layer mixing. Mixing between the injected air and product gases to form hot and diluted oxidant is required followed by rapid mixing with the fuel. This results in distributed reaction zone instead of a concentrated flame front as observed in conventional diffusion flames and hence, to avoid hot spot regions and provide reduced NOx and CO emissions. The focus of this dissertation is to develop and demonstrate CDC for application to stationary gas turbine combustors which generally operate at thermal intensity of 15MW/m3-atm. However, higher thermal intensity is desirable to reduce hardware costs due to smaller weight and volume of the combustors. Design of high thermal intensity CDC combustor requires careful control of critical parameters, such as, gas recirculation, fuel/oxidizer mixing and residence time characteristics via careful selection of different air and fuel injection configurations to achieve desirable combustion characteristics. This dissertation examines sequential development of low emission colorless distributed combustor operating from thermal intensity of 5MW/m3-atm up to 198MW/m3-atm. Initially, various fuel and air injection configurations were investigated at a low thermal intensity of 5MW/m 3-atm. Further investigations were performed for a simpler combustor having single air and fuel injection ports for medium thermal intensity range of 28-57MW/m3-atm. Among the flow configurations investigated, reverse cross-flow configuration was found to give more favorable results possibly due to higher residence time because of reverse flow geometry and faster mixing with the fuel injection in cross-flow. This configuration was investigated in detail by further reducing the combustor volume to give ultra-high thermal intensity of up to 198MW/m3-atm. At thermal intensity of 53MW/m3-atm NO emissions were 4ppm in non-premixed mode and 1ppm in premixed mode and CO emissions were 30ppm in both the modes. The pressure loss was less than 5% and heat loss was less than 15%. The pressure fluctuations were less than 0.025% suggesting very stable combustion. At ultra-high thermal intensity of 170MW/m3-atm NO emissions were 8ppm and 3ppm in non-premixed and premixed modes respectively and CO emissions were about 100ppm in both the modes. Dilution of fuel with nitrogen, carbon dioxide and air resulted in significant reduction in NO emission in non-premixed mode from 8ppm to about 2ppm. Methane was used as fuel for all these investigations. Liquid fuel (ethanol) was also tested and very low NO emission of about 6ppm was obtained in direct injection mode and 2ppm in premixed prevaporized mode. CO emission of about 200ppm was observed in both the modes.

  5. LOW NOX STRATEGY FOR COMBUSTING HIGH NITROGEN CONTENT FUELS

    EPA Science Inventory

    The report gives results of an evaluation of a multistaged combustion urner (designed for in-furnace NOx control and high combustion efficieiicy) for [high nitrogen content fuel and waste incineration application in a 1.0 MW package boiler. simulator. A low NOx precombustion cham...

  6. Combustion of hydrocarbon fuels within porous inert media

    Microsoft Academic Search

    J. R. Howell; M. J. Hall; J. L. Ellzey

    1996-01-01

    There has been a recent surge of interest in the combustion of hydrocarbon fuels within porous inert media. The interest has been directed by the needs of industry to develop high performance radiant heaters while complying with increasingly stringent emissions regulations. This paper reviews the processes associated with non-catalytic combustion within porous media, and describes related experimental and modeling research.

  7. Method and apparatus for economizing fuel consumption in operating a multicylinder internal combustion engine

    Microsoft Academic Search

    Arrieta

    1984-01-01

    A method of economizing fuel consumption in operating an internal combustion engine having a group of combustion chambers of preselected numbers is disclosed. The method comprises the steps of consecutively introducing combustible fuel for ignition into each combustion chamber of the group to provide relatively high power availability for relatively high power demand, and of consecutively introducing combustible fuel for

  8. GAS TURBINE REHEAT USING IN SITU COMBUSTION

    Microsoft Academic Search

    D. M. Bachovchin; R. A. Newby P. G. A. Cizmas

    2004-01-01

    In situ reheat is an alternative to traditional gas turbine reheat design in which fuel is fed through airfoils rather than in a bulky discrete combustor separating HP and LP turbines. The goals are to achieve increased power output and\\/or efficiency without higher emissions. In this program the scientific basis for achieving burnout with low emissions has been explored. In

  9. Biomass Fuel Characterization : Testing and Evaluating the Combustion Characteristics of Selected Biomass Fuels : Final Report May 1, 1988-July, 1989.

    SciTech Connect

    Bushnell, Dwight J.; Haluzok, Charles; Dadkhah-Nikoo, Abbas

    1990-04-01

    Results show that two very important measures of combustion efficiency (gas temperature and carbon dioxide based efficiency) varied by only 5.2 and 5.4 percent respectively. This indicates that all nine different wood fuel pellet types behave very similarly under the prescribed range of operating parameters. The overall mean efficiency for all tests was 82.1 percent and the overall mean temperature was 1420 1{degree}F. Particulate (fly ash) ad combustible (in fly ash) data should the greatest variability. There was evidence of a relationship between maximum values for both particulate and combustible and the percentages of ash and chlorine in the pellet fuel. The greater the percentage of ash and chlorine (salt), the greater was the fly ash problem, also, combustion efficiency was decreased by combustible losses (unburned hydrocarbons) in the fly ash. Carbon monoxide and Oxides of Nitrogen showed the next greatest variability, but neither had data values greater than 215.0 parts per million (215.0 ppm is a very small quantity, i.e. 1 ppm = .001 grams/liter = 6.2E-5 1bm/ft{sup 3}). Visual evidence indicates that pellets fuels produced from salt laden material are corrosive, produce the largest quantities of ash, and form the only slag or clinker formations of all nine fuels. The corrosion is directly attributable to salt content (or more specifically, chloride ions and compounds formed during combustion). 45 refs., 23 figs., 19 tabs.

  10. A procedure for calculating fuel gas blend knock rating for large-bore gas engines and predicting engine operation

    Microsoft Academic Search

    F. S. Schnaub; R. L. Hubbard

    1985-01-01

    This paper describes the procedure developed by Cooper-Bessemer for large-bore gas engines to calculate the knock rating of gas fuel blends and to predict with accuracy the required engine build to use that fuel with optimum detonation margin. Engine prototype test work has included fuel sensitivity tests mapped as a function of compression ratio, fuel air ratio, ignition advance, combustion

  11. The N.A.C.A. Combustion Chamber Gas-sampling Valve and Some Preliminary Test Results

    NASA Technical Reports Server (NTRS)

    Spanogle, J A; Buckley, E C

    1933-01-01

    A gas sampling valve of the inertia-operated type was designed for procuring samples of the gases in the combustion chamber of internal combustion engines at identical points in successive cycles so that the analysis of the gas samples thus procured may aid in the study of the process of combustion. The operation of the valve is described. The valve was used to investigate the CO2 content of gases taken from the quiescent combustion chamber of a high speed compression-ignition engine when operating with two different multiple-orifice fuel injection nozzles. An analysis of the gas samples thus obtained shows that the state of quiescence in the combustion chamber is maintained during the combustion of the fuel.

  12. Fuel supply control method for internal combustion engines after starting

    Microsoft Academic Search

    A. Fujimura; Y. Wazaki

    1988-01-01

    This patent describes a method of controlling the supply of fuel to an internal combustion engine after starting thereof, including the steps of increasing a quantity of fuel to be supplied to the engine by the use of fuel increment after the starting of the engine, counting a period of time which elapses from the time a sensor for sensing

  13. New method for carbon dioxide recovery from the combustion of fossil fuel

    Microsoft Academic Search

    G. F. Berry; C. S. Wang; C. B. Dennis; A. M. Wolsky

    1988-01-01

    The relative size and composition of gas streams concomitant with a new method of carbon dioxide recovery are described and related to each other. This is done for two variations, dry recycle and wet recycle, of the new method. Calculations performed under the differing assumptions of complete combustion and chemical equilibrium are compared. The following fuels are considered: methane, CH;

  14. FUEL GAS ENVIRONMENTAL IMPACT

    EPA Science Inventory

    The report gives results of continued investigation and further definition of the potential environmental and economic benefits of integrated coal gasification/gas cleanup/combined gas and steam cycle power plants. Reported refinements in plant operating characteristics lower hea...

  15. Multiphase CFD-based models for chemical looping combustion process: Fuel reactor modeling

    SciTech Connect

    Jung, Jonghwun (ANL); Gamwo, I.K.

    2008-04-21

    Chemical looping combustion (CLC) is a flameless two-step fuel combustion that produces a pure CO2 stream, ready for compression and sequestration. The process is composed of two interconnected fluidized bed reactors. The air reactor which is a conventional circulating fluidized bed and the fuel reactor which is a bubbling fluidized bed. The basic principle is to avoid the direct contact of air and fuel during the combustion by introducing a highly-reactive metal particle, referred to as oxygen carrier, to transport oxygen from the air to the fuel. In the process, the products from combustion are kept separated from the rest of the flue gases namely nitrogen and excess oxygen. This process eliminates the energy intensive step to separate the CO2 from nitrogen-rich flue gas that reduce the thermal efficiency. Fundamental knowledge of multiphase reactive fluid dynamic behavior of the gassolid flow is essential for the optimization and operation of a chemical looping combustor. Our recent thorough literature review shows that multiphase CFD-based models have not been adapted to chemical looping combustion processes in the open literature. In this study, we have developed the reaction kinetics model of the fuel reactor and implemented the kinetic model into a multiphase hydrodynamic model, MFIX, developed earlier at the National Energy Technology Laboratory. Simulated fuel reactor flows revealed high weight fraction of unburned methane fuel in the flue gas along with CO2 and H2O. This behavior implies high fuel loss at the exit of the reactor and indicates the necessity to increase the residence time, say by decreasing the fuel flow rate, or to recirculate the unburned methane after condensing and removing CO2.

  16. Co-combustion of recycled RDF and PDF fuels

    SciTech Connect

    Manninen, H. [Neste Oy Corporate Technology, Porvoo (Finland); Frankenhaeuser, M. [Borealis Polymers Oy, Porvoo (Finland)

    1996-12-31

    Energy recovery of used materials can be performed as mixed municipal solid waste (MSW) incineration or as fuel recovery for co-combustion. Recovered fuels are refuse derived fuel (RDF), which is mechanically separated and processed from MSW, and packaging derived fuel (PDF), which is the source separated, processed, dry combustible part of MSW. A one year co-combustion of RDF with peat and coal was carried out in a 65 MW CFB power plant at Kauttua, Finland. The efficiency of the combustion process and the corrosion behavior of the boiler were particular focuses of attention in this study. Five different PDFs were also co-combusted in the same power plant. A wide analytical program was carried out including the solid and gaseous emission measurements. Results were encouraging, showing that RDF and PDFs are technically and economically feasible and environmentally friendly fuels for co-combustion. Low CO emissions showed clean and efficient combustion. SO{sub 2} emissions decreased, because part of the coal was replaced by RDF and PDFs. HCl emissions increased when the chlorine content of the fuel mixture increase, because limestone injection was not used. Heavy metals concentrated to the fly ash in unleachable form. PCDD/F (dioxin) emissions were in the normal power plant level and far below the strictest incineration limit. Long-term co-combustion of 10% RDF did not cause any high temperature chlorine corrosion of the superheater materials (500 C). The results showed that it is useful and technically possible to combine resource and waste management in the form of fuel recovery and energy production in the normal power plants.

  17. Fueling up with natural gas

    Microsoft Academic Search

    F. Stodolsky; D. J. Santini

    1993-01-01

    A careful analysis is needed of the energy efficiency of the fuel cycle (the efficiency of the conversion from resource extraction to final use by consumers) and the environmental impact of natural gas fuels. This information can help policy makers decide which fuels could be used to displace imported oil, maintain air quality, and be the basis of a new

  18. Development of catalytic combustion technology for single-digit emissions from industrial gas turbines

    Microsoft Academic Search

    Kenneth W Beebe; Kristina D Cairns; Vinod K Pareek; Sarento G Nickolas; James C Schlatter; Toshiaki Tsuchiya

    2000-01-01

    Catalytic combustion has demonstrated potential for attaining the firing temperatures of current and next generation gas turbines with nitrogen oxides (NOx) production less than 3 parts-per-million by volume (ppmv), using natural gas fuel. The technology necessary to achieve this extremely low emissions performance with typical heavy-duty industrial and utility gas turbine operating cycle conditions, has been under development as a

  19. Experimental Investigation of Fuel-Reactivity Controlled Compression Ignition (RCCI) Combustion Mode in a Multi-Cylinder, Light-Duty Diesel Engine

    SciTech Connect

    Cho, Kukwon [ORNL] [ORNL; Curran, Scott [ORNL] [ORNL; Prikhodko, Vitaly Y [ORNL] [ORNL; Sluder, Scott [ORNL] [ORNL; Parks, II, James E [ORNL; Wagner, Robert M [ORNL] [ORNL

    2011-01-01

    An experimental study was performed to provide the combustion and emission characteristics resulting from fuel-reactivity controlled compression ignition (RCCI) combustion mode utilizing dual-fuel approach in a light-duty, multi-cylinder diesel engine. In-cylinder fuel blending using port fuel injection of gasoline before intake valve opening (IVO) and early-cycle, direct injection of diesel fuel was used as the charge preparation and fuel blending strategy. In order to achieve the desired auto-ignition quality through the stratification of the fuel-air equivalence ratio ( ), blends of commercially available gasoline and diesel fuel were used. Engine experiments were performed at an engine speed of 2300rpm and an engine load of 4.3bar brake mean effective pressure (BMEP). It was found that significant reduction in both nitrogen oxide (NOx) and particulate matter (PM) was realized successfully through the RCCI combustion mode even without applying exhaust gas recirculation (EGR). However, high carbon monoxide (CO) and hydrocarbon (HC) emissions were observed. The low combustion gas temperature during the expansion and exhaust processes seemed to be the dominant source of high CO emissions in the RCCI combustion mode. The high HC emissions during the RCCI combustion mode could be due to the increased combustion quenching layer thickness as well as the -stratification at the periphery of the combustion chamber. The slightly higher brake thermal efficiency (BTE) of the RCCI combustion mode was observed than the other combustion modes, such as the conventional diesel combustion (CDC) mode, and single-fuel, premixed charge compression ignition (PCCI) combustion mode. The parametric study of the RCCI combustion mode revealed that the combustion phasing and/or the peak cylinder pressure rise rate of the RCCI combustion mode could be controlled by several physical parameters premixed ratio (rp), intake swirl intensity, and start of injection (SOI) timing of directly injected fuel unlike other low temperature combustion (LTC) strategies.

  20. Hydrocarbon-fuel/combustion-chamber-liner materials compatibility

    NASA Technical Reports Server (NTRS)

    Gage, Mark L.

    1990-01-01

    Results of material compatibility experiments using hydrocarbon fuels in contact with copper-based combustion chamber liner materials are presented. Mil-Spec RP-1, n- dodecane, propane, and methane fuels were tested in contact with OFHC, NASA-Z, and ZrCu coppers. Two distinct test methods were employed. Static tests, in which copper coupons were exposed to fuel for long durations at constant temperature and pressure, provided compatibility data in a precisely controlled environment. Dynamic tests, using the Aerojet Carbothermal Test Facility, provided fuel and copper compatibility data under realistic booster engine service conditions. Tests were conducted using very pure grades of each fuel and fuels to which a contaminant, e.g., ethylene or methyl mercaptan, was added to define the role played by fuel impurities. Conclusions are reached as to degradation mechanisms and effects, methods for the elimination of these mechanisms, selection of copper alloy combustion chamber liners, and hydrocarbon fuel purchase specifications.

  1. Dynamic instabilities in spark-ignited combustion engines with high exhaust gas recirculation

    SciTech Connect

    Daw, C Stuart [ORNL] [ORNL; FINNEY, Charles E A [ORNL] [ORNL

    2011-01-01

    We propose a cycle-resolved dynamic model for combustion instabilities in spark-ignition engines operating with high levels of exhaust gas recirculation (EGR). High EGR is important for increasing fuel efficiency and implementing advanced low-emission combustion modes such as homogenous charge compression ignition (HCCI). We account for the complex combustion response to cycle-to-cycle feedback by utilizing a global probability distribution that describes the pre-spark state of in-cylinder fuel mixing. The proposed model does a good job of simulating combustion instabilities observed in both lean-fueling engine experiments and in experiments where nitrogen dilution is used to simulate some of the combustion inhibition of EGR. When used to simulate high internal EGR operation, the model exhibits a range of global bifurcations and chaos that appear to be very robust. We use the model to show that it should be possible to reduce high EGR combustion instabilities by switching from internal to external EGR. We also explain why it might be helpful to deliberately stratify the fuel in the pre-spark gas mixture. It might be possible to extend the simple approach used in this model to other chemical reaction systems with spatial inhomogeneity.

  2. Scholarly research program in fuel analysis and combustion research. Final report, September 1987-September 1992

    SciTech Connect

    Striebich, R.C.

    1993-02-01

    A total of 40 individually funded tasks were performed under this effort. These tasks were concerned with many fuel analysis and combustion research, conducted for the Fuels Branch (WL/POSF), Lubrications Branch (WL/POSL) and other Aero Propulsion and Power Directorate Laboratories. This report is a compilation of 1-2 page summaries from each of the tasks. More information on each task is available in the technical reports, journal articles, letter reports or informal information listed for the project. Although the subjects covered under this contract are too varied to list here, the most often addressed areas were research topics in gas chromatography and related instrumentation, thermal stability testing and methods development, lubrications research and combustion studies.... Chemometrics flames, Fuel analysis, Mass spectrometry, Shelf Life, CARS, Thermal stability, P-Hydrogen detector, Gas chromatography, Atomic emission, High density fuel, System for Thermal Diagnostic Studies (STDS).

  3. NASA Broad-Specification Fuels Combustion Technology Program - Status and description

    NASA Technical Reports Server (NTRS)

    Fear, J. S.

    1980-01-01

    The use of 'broad-specification' fuels in aircraft gas turbine engines can be a significant factor in offsetting anticipated shortages of current-specification jet fuel in the latter part of the century. The changes in fuel properties accompanying the use of broad-specification fuels will tend to cause numerous emissions, performance, and durability problems in currently-designed combustion systems. The NASA Broad-Specification Fuels Combustion Technology Program is a contracted effort to evolve and demonstrate the technology required to utilize broad-specification fuels in current and next generation commercial Conventional Takeoff and Landing (CTOL) aircraft engines, and to verify this technology in full-scale engine tests in 1983. The program consists of three phases: Combustor Concept Screening, Combustor Optimization Testing, and Engine Verification Testing.

  4. A combustion model for IC engine combustion simulations with multi-component fuels

    SciTech Connect

    Ra, Youngchul; Reitz, Rolf D. [Engine Research Center, University of Wisconsin-Madison (United States)

    2011-01-15

    Reduced chemical kinetic mechanisms for the oxidation of representative surrogate components of a typical multi-component automotive fuel have been developed and applied to model internal combustion engines. Starting from an existing reduced mechanism for primary reference fuel (PRF) oxidation, further improvement was made by including additional reactions and by optimizing reaction rate constants of selected reactions. Using a similar approach to that used to develop the reduced PRF mechanism, reduced mechanisms for the oxidation of n-tetradecane, toluene, cyclohexane, dimethyl ether (DME), ethanol, and methyl butanoate (MB) were built and combined with the PRF mechanism to form a multi-surrogate fuel chemistry (MultiChem) mechanism. The final version of the MultiChem mechanism consists of 113 species and 487 reactions. Validation of the present MultiChem mechanism was performed with ignition delay time measurements from shock tube tests and predictions by comprehensive mechanisms available in the literature. A combustion model was developed to simulate engine combustion with multi-component fuels using the present MultiChem mechanism, and the model was applied to simulate HCCI and DI engine combustion. The results show that the present multi-component combustion model gives reliable performance for combustion predictions, as well as computational efficiency improvements through the use of reduced mechanism for multi-dimensional CFD simulations. (author)

  5. Sulphur impacts during pulverised coal combustion in oxy-fuel technology for carbon capture and storage

    Microsoft Academic Search

    Rohan Stanger; Terry Wall

    2011-01-01

    The oxy-fuel process is one of three carbon capture technologies which supply CO2 ready for sequestration the others being post-combustion capture and IGCC with carbon capture. As yet no technology has emerged as a clear winner in the race to commercial deployment. The oxy-fuel process relies on recycled flue gas as the main heat carrier through the boiler and

  6. Fuel burner and combustor assembly for a gas turbine engine

    DOEpatents

    Leto, Anthony (Franklin Lakes, NJ)

    1983-01-01

    A fuel burner and combustor assembly for a gas turbine engine has a housing within the casing of the gas turbine engine which housing defines a combustion chamber and at least one fuel burner secured to one end of the housing and extending into the combustion chamber. The other end of the fuel burner is arranged to slidably engage a fuel inlet connector extending radially inwardly from the engine casing so that fuel is supplied, from a source thereof, to the fuel burner. The fuel inlet connector and fuel burner coact to anchor the housing against axial movement relative to the engine casing while allowing relative radial movement between the engine casing and the fuel burner and, at the same time, providing fuel flow to the fuel burner. For dual fuel capability, a fuel injector is provided in said fuel burner with a flexible fuel supply pipe so that the fuel injector and fuel burner form a unitary structure which moves with the fuel burner.

  7. Not adiabatic temperature of combustion gas-air mixture

    NASA Astrophysics Data System (ADS)

    Iovleva, O. V.

    2015-06-01

    In the present work was carried out thermodynamic analysis, the purpose of which was to determine the formula for calculating the temperature of combustion gas-air mixture in non-adiabatic conditions.

  8. Comparison of exhaust emissions and their mutagenicity from the combustion of biodiesel, vegetable oil, gas-to-liquid and petrodiesel fuels

    Microsoft Academic Search

    Jrgen Krahl; Gerhard Knothe; Axel Munack; Yvonne Ruschel; Olaf Schrder; Ernst Hallier; Gtz Westphal; Jrgen Bnger

    2009-01-01

    Efforts are under way to reduce diesel engine emissions (DEE) and their content of carcinogenic and mutagenic polycyclic aromatic hydrocarbons (PAH). Previously, we observed reduced PAH emissions and DEE mutagenicity caused by reformulated or newly developed fuels. The use of rapeseed oil as diesel engine fuel is growing in German transportation businesses and agriculture. We now compared the mutagenic effects

  9. Effect of additives on combustion of residual fuel oils

    SciTech Connect

    Korsakova, I.S.; Shor, G.I.; Shpiro, G.S.; Talisman, E.L.

    1982-11-01

    Uses an accelerated laboratory method to investigate the combustion process with drops of medium-sulfur residual fuel oils, and the effects of asphaltenes and additives on this process. Explains that one of the main goals in the use of medium-sulfur residual fuel oils in stationary and shipboard power plants is an increase in the completeness of combustion of these fuels, as this will result in smaller losses of fuel and lower levels of carbon deposit formation in boiler units and diesels. Finds that when additives are present, the fuel oils burn more intensely, owing to a change in the colloidal state of the asphaltenes; apparently, a reduction of the asphaltene particle size promotes their solubilization in the micellar structure of the fuel oil with the additive and promotes separation of the fuel oil into a ''light'' part and a coke residue. Points out that the more intense combustion also shows up in the greater brightness (higher temperature) of the flame, since when the additives are present, the height of the combustion curve on the recorder chart is greater; this reflects the catalytic effect on fuel hydrocarbon oxidation of the metals that are present in the additive (Fe, Mn, Cu, Al, etc.).

  10. Fuel character effects on the TF41 engine combustion system

    Microsoft Academic Search

    R. E. Vogel; D. L. Troth

    1983-01-01

    The effects of fuel property variations on the performance and exhaust emissions of the Allison TF41 engine combustion system were determined by combustor rig tests and data analysis. Hot section durability characteristics were evaluated through computer simulations. Twelve refined and blended fuels which incorporated variations in hydrogen content, aromatic type and content, distillation range, and viscosity were evaluated. At high-power

  11. Fuels for Advanced Combustion Engines Research Diesel Fuels: Analysis of Physical and Chemical Properties

    Microsoft Academic Search

    Tom Gallant; Jim Franz; Mikhail Alnajjar; John Morse Storey; Samuel Arthur Lewis Sr; Scott Sluder; William C Cannella; Craig Fairbridge; Darcy Hager; Heather Dettman; Jon Luecke; Matthew A. Ratcliff; Brad Zigler

    2009-01-01

    The CRC Fuels for Advanced Combustion Engines working group has worked to identify a matrix of research diesel fuels for use in advanced combustion research applications. Nine fuels were specified and formulated to investigate the effects of cetane number aromatic content and 90% distillation fraction. Standard ASTM analyses were performed on the fuels as well as GC\\/MS and \\/u1H\\/\\/u1\\/u3C NMR

  12. Combustion of dispersing porous monoblock fuels in a semiclosed volume

    Microsoft Academic Search

    A. N. Ishchenko; Yu. P. Khomenko; V. A. Burakov; D. A. Zimin

    2000-01-01

    Combustion of dispersing monoblock charges in a nozzle bomb were studied experimentally. Two mathematical models of different\\u000a complexity are proposed for the description of the processes. From a comparison of calculated and experimental time dependences\\u000a of the pressure in the bomb volume, effective laws of combustion and dispersion of the fuel are established and the dynamics\\u000a of the disperse mixture

  13. The hydrogen-fueled internal combustion engine: a technical review

    Microsoft Academic Search

    C. M. White; R. R. Steeper; A. E. Lutz

    2006-01-01

    A review is given of contemporary research on the hydrogen-fueled internal combustion engine. The emphasis is on light- to medium-duty engine research. We first describe hydrogen-engine fundamentals by examining the engine-specific properties of hydrogen and surveying the existing literature. Here it will be shown that, due to low volumetric efficiencies and frequent preignition combustion events, the power densities of premixed

  14. Generation of hypersonic liquid fuel jets accompanying self-combustion

    Microsoft Academic Search

    Hong-Hui Shi; Kazuyoshi Takayama

    1999-01-01

    . Aerodynamic behavior of pulsed hypersonic light oil jets injected at 2 km\\/s and 3 km\\/s is presented. Auto-ignition and combustion\\u000a of the fuel during the injection process were visualized. The combustion around the disintegrating jet was enhanced by liquid\\u000a atomization created by the very high injection pressure as well as the interfacial instability of the hypersonic jet. The\\u000a jets

  15. Advanced coal-fueled gas turbine systems

    SciTech Connect

    Not Available

    1991-09-01

    The combustion system discussed here incorporates a modular three- stage slagging combustor concept. Fuel-rich conditions inhibit NO{sub x} formation from fuel nitrogen in the first stage; also in the first stage, sulfur is captured with sorbent; coal ash and sulfated sorbent are removed from the combustion gases by inertial means in the second stage by the use of an impact separator and slagging cyclone separator in series. Final oxidation of the fuel-rich gases, and dilution to achieve the desired turbine inlet conditions are accomplished in the third stage, which is maintained sufficiently lean so that here, too, NO{sub x} formation is inhibited. The objective of this contract is to establish the technology required for subsequent commercial development and application by the private sector of utility-size direct coal-fueled gas turbines. Emissions from these units are to meet or be lower than the Environment Protection Agency's (EPA's) New Source Performance Standards (NSPS) for a pulverized coal-=fired steam turbine generator plant.

  16. Fossil Fuels: Natural Gas

    NSDL National Science Digital Library

    John Pratte

    This lesson provides an introduction to the use of natural gas as an energy source. Topics include its advantages (cleanliness, fewer carbon emissions), disadvantages (difficulty in transport and storage), sources, and usage. There is also a discussion of the creation and production of natural gas, the United States' production and reserves, and some potential new sources (coal bed methane, methane hydrates). The lesson includes an activity in which students investigate porosity and permeability in simulated sediments.

  17. Combustion behaviors of a compression-ignition engine fueled with diesel/methanol blends under various fuel delivery advance angles.

    PubMed

    Huang, Zuohua; Lu, Hongbing; Jiang, Deming; Zeng, Ke; Liu, Bing; Zhang, Junqiang; Wang, Xibin

    2004-12-01

    A stabilized diesel/methanol blend was described and the basic combustion behaviors based on the cylinder pressure analysis was conducted in a compression-ignition engine. The study showed that increasing methanol mass fraction of the diesel/methanol blends would increase the heat release rate in the premixed burning phase and shorten the combustion duration of the diffusive burning phase. The ignition delay increased with the advancing of the fuel delivery advance angle for both the diesel fuel and the diesel/methanol blends. For a specific fuel delivery advance angle, the ignition delay increased with the increase of the methanol mass fraction (oxygen mass fraction) in the fuel blends and the behaviors were more obvious at low engine load and/or high engine speed. The rapid burn duration and the total combustion duration increased with the advancing of the fuel delivery advance angle. The centre of the heat release curve was close to the top-dead-centre with the advancing of the fuel delivery advance angle. Maximum cylinder gas pressure increased with the advancing of the fuel delivery advance angle, and the maximum cylinder gas pressure of the diesel/methanol blends gave a higher value than that of the diesel fuel. The maximum mean gas temperature remained almost unchanged or had a slight increase with the advancing of the fuel delivery advance angle, and it only slightly increased for the diesel/methanol blends compared to that of the diesel fuel. The maximum rate of pressure rise and the maximum rate of heat release increased with the advancing of the fuel delivery advance angle of the diesel/methanol blends and the value was highest for the diesel/methanol blends. PMID:15288277

  18. Creep\\/Corrosion of Two Nickel Alloys in Combustion Gas

    Microsoft Academic Search

    J. K. Solberg; H. Thon

    1983-01-01

    Nickel 201 and Inconel 600 have been creep and corrosion tested in combustion gas and in an inert atmosphere consisting of\\u000a argon. At constant temperature, nickel exhibited an improved creep resistance in combustion gas relative to that in argon,\\u000a probably due to a hardening effect caused by the in-diffusion of impurities along creep dislocations. Creep increased the\\u000a corrosion attacks on

  19. Method for controlling air\\/fuel ratio of fuel supply for an internal combustion engine

    Microsoft Academic Search

    A. Yasuoka; T. Kiuchi

    1987-01-01

    A method is described for controlling an air-fuel ratio of mixture to be supplied to an internal combustion engine having a fuel supply system, comprising the steps of: detecting whether or not an amount of the fuel to be supplied to the engine by means of the fuel supply system is greater than a reference amount; correcting the air-fuel ratio

  20. Method for controlling air\\/fuel ratio of fuel supply for an internal combustion engine

    Microsoft Academic Search

    A. Yamato; A. Fujimura

    1988-01-01

    A method is described for controlling an air\\/fuel ratio of mixture to be supplied to an internal combustion engine having a fuel supply system, comprising the steps of: detecting whether or not an amount of the fuel to be supplied to the engine by means of the fuel supply system is greater than a reference amount; correcting the air\\/fuel ratio

  1. Indirect-fired gas turbine dual fuel cell power cycle

    DOEpatents

    Micheli, Paul L. (Sacramento, CA); Williams, Mark C. (Morgantown, WV); Sudhoff, Frederick A. (Morgantown, WV)

    1996-01-01

    A fuel cell and gas turbine combined cycle system which includes dual fuel cell cycles combined with a gas turbine cycle wherein a solid oxide fuel cell cycle operated at a pressure of between 6 to 15 atms tops the turbine cycle and is used to produce CO.sub.2 for a molten carbonate fuel cell cycle which bottoms the turbine and is operated at essentially atmospheric pressure. A high pressure combustor is used to combust the excess fuel from the topping fuel cell cycle to further heat the pressurized gas driving the turbine. A low pressure combustor is used to combust the excess fuel from the bottoming fuel cell to reheat the gas stream passing out of the turbine which is used to preheat the pressurized air stream entering the topping fuel cell before passing into the bottoming fuel cell cathode. The CO.sub.2 generated in the solid oxide fuel cell cycle cascades through the system to the molten carbonate fuel cell cycle cathode.

  2. Piston and process for achieving controlled ignition and combustion of hydrocarbon fuels in internal combustion engines by generation and management

    SciTech Connect

    Failla, C.C.; Pouring, A.A.; Rankin, B.; di Priolo, C.L.; Mc Cowan, W.; Gosewisch, D.

    1990-02-06

    This patent describes an improvement in a piston for a reciprocating piston internal combustion engine in which a combustion cycle is carried out in a variable volume combustion chamber defined by the piston reciprocating in a close ended cylinder into which a fuel and air charge is periodically supplied. The cycle includes intake, compression, combustion, expansion and exhaust portions. The piston crown is recessed and contains the majority of the charge when the combustion chamber is at minimum volume.

  3. Reduction of fuel side costs due to biomass co-combustion.

    PubMed

    Wils, Andrea; Calmano, Wolfgang; Dettmann, Peter; Kaltschmitt, Martin; Ecke, Holger

    2012-03-15

    The feasibility and influence of co-combustion of woody biomass on the fuel side costs is discussed for three hard coal power plants located in Berlin, Germany. Fuel side costs are defined as the costs resulting from flue gas cleaning and by-products. To have reliable data, co-firing tests were conducted in two power plants (i.e., slag tap furnace and circulating fluidising bed combustion). The amount of wood which was co-fired varied at levels below 11% of the fuel heat input. Wood chips originating from landscape management were used. The analyses show that co-combustion of woody biomass can lower the fuel side costs and that the co-combustion at a level below 10% of the thermal capacity is technically feasible without major problems. Furthermore, a flexible spreadsheet tool was developed for the calculation of fuel side costs and suggestions for operational improvements were made. For example, the adaptation of the Ca/S ratio (mass ratio of calcium in limestone to sulphur in the fuel) in one plant could reduce the fuel side costs up to 135 k yr(-1) (0.09 M Wh(-1)). PMID:21514049

  4. Alternate-Fueled Combustion-Sector Emissions

    NASA Technical Reports Server (NTRS)

    Saxena, Nikita T.; Thomas, Anna E.; Shouse, Dale T.; Neuroth, Craig; Hendricks, Robert C.; Lynch, Amy; Frayne, Charles W.; Stutrud, Jeffrey S.; Corporan, Edwin; Hankins, Terry

    2012-01-01

    In order to meet rapidly growing demand for fuel, as well as address environmental concerns, the aviation industry has been testing alternate fuels for performance and technical usability in commercial and military aircraft. Currently, alternate aviation fuels must satisfy MIL-DTL- 83133F(2008) (military) or ASTM D 7566- Annex(2011) (commercial) standards and are termed drop-in fuel replacements. Fuel blends of up to 50% alternative fuel blended with petroleum (JP-8), which have become a practical alternative, are individually certified on the market. In order to make alternate fuels (and blends) a viable option for aviation, the fuel must be able to perform at a similar or higher level than traditional petroleum fuel. They also attempt to curb harmful emissions, and therefore a truly effective alternate fuel would emit at or under the level of currently used fuel. This paper analyzes data from gaseous and particulate emissions of an aircraft combustor sector. The data were evaluated at various inlet conditions, including variation in pressure and temperature, fuel-to-air ratios, and percent composition of alternate fuel. Traditional JP-8+100 data were taken as a baseline, and blends of JP- 8+100 with synthetic-paraffinic-kerosene (SPK) fuel (Fischer-Tropsch (FT)) were used for comparison. Gaseous and particulate emissions, as well as flame luminosity, were assessed for differences between FT composition of 0%, 50%, and 100%. The data showed that SPK fuel (a FT-derived fuel) had slightly lower harmful gaseous emissions, and smoke number information corroborated the hypothesis that SPK-FT fuels are cleaner burning fuels.

  5. Combustion of hydrogen in a two-dimensional duct with step fuel injectors

    NASA Technical Reports Server (NTRS)

    Eggers, J. M.; Reagon, P. G.; Gooderum, P. B.

    1978-01-01

    An investigation of the combustion of hydrogen perpendicularly injected from step fuel injectors into a Mach 2.72, 2100 K vitiated test gas was conducted. The model simulated the flow between the center and side struts of an integrated scramjet module at Mach 7 flight and an altitude of 29 km. Parametric variation included equivalence ratio, fuel dynamic pressure ratio, and area distribution of the model. The overall area ratio of the model was held constant at 2.87. The data analysis indicated that no measurable improvement in mixing or combustion efficiency was obtained by varying the fuel dynamic pressure ratio from 0.79 to 2.45. Computations indicated approximately 80 percent of the fuel was mixed so that it could react; however, only approximately 50 percent of the mixed fuel actually reacted in two test configurations, and 74 percent in later tests where less area expansion of the flow occurred.

  6. Dynamic stability, blowoff, and flame characteristics of oxy-fuel combustion

    E-print Network

    Shroll, Andrew Philip

    2011-01-01

    Oxy-fuel combustion is a promising technology to implement carbon capture and sequestration for energy conversion to electricity in power plants that burn fossil fuels. In oxy-fuel combustion, air separation is used to ...

  7. Optimization of a natural gas SI engine employing EGR strategy using a two-zone combustion model

    Microsoft Academic Search

    Amr Ibrahim; Saiful Bari

    2008-01-01

    Natural gas has been recently used as an alternative to conventional fuels in order to satisfy some environmental and economical concerns. In this study, a natural gas spark-ignition engine employing cooled exhaust gas recirculation (EGR) strategy in a high pressure inlet condition was optimized. Both engine compression ratio and start of combustion timing were optimized in order to obtain the

  8. The effect of HRG gas addition on diesel engine combustion characteristics and exhaust emissions

    Microsoft Academic Search

    Adrian Birtas; Iulian Voicu; Cristian Petcu; Radu Chiriac; Nicolae Apostolescu

    2011-01-01

    Extensive studies have been dedicated in the last decade to the possibility to use hydrogen in the dual-fuel mode to improve combustion characteristics and emissions of a diesel engine. The results of these studies, using pure hydrogen or hydrogen containing gas produced through water electrolysis, are notably different.The present investigation was conducted on a tractor diesel engine running with small

  9. Combustion of a coal-water mixture in a gas turbine combustor

    Microsoft Academic Search

    1985-01-01

    An experimental program is under way to evaluate the atomization, combustion, turbine blading tolerance, and emissions for a coal-water mixture (CWM) fuel. Combustor and turbine components from an MS6001 commercial gas turbine are being utilized with modifications accommodate the CWM characteristics. Raw coal is physically cleaned, or beneficiated, to achieve less than 1% ash; this cleaned coal is then treated

  10. Combustion tests of a turbine simulator burning low Btu fuel from a fixed bed gasifier

    SciTech Connect

    Cook, C.S.; Abuaf, N.; Feitelberg, A.S.; Hung, S.L.; Najewicz, D.J.; Samuels, M.S.

    1993-11-01

    One of the most efficient and environmentally compatible coal fueled power generation technologies is the integrated gasification combined cycle (IGCC) concept. Commercialization of the IGCC/HGCU concept requires successful development of combustion systems for high temperature low Btu fuel in gas turbines. Toward this goal, a turbine combustion system simulator has been designed, constructed, and fired with high temperature low Btu fuel. Fuel is supplied by a pilot scale fixed bed gasifier and hot gas desulfurization system. The primary objectives of this project are: (1) demonstration of long term operability of the turbine simulator with high temperature low Btu fuel; (2) measurement of NO{sub x}, CO, and particulate emissions; and (3) characterization of particulates in the fuel as well as deposits in the fuel nozzle, combustor, and first stage nozzle. In a related project, a reduced scale rich-quench-lean (RQL) gas turbine combustor has been designed, constructed, and fired with simulated low Btu fuel. The overall objective of this project is to develop an RQL combustor with lower conversion of fuel bound nitrogen (FBN) to NO{sub x} than a conventional combustor.

  11. Gas only nozzle fuel tip

    DOEpatents

    Bechtel, William Theodore (Scotia, NY); Fitts, David Orus (Ballston Spa, NY); DeLeonardo, Guy Wayne (Glenville, NY)

    2002-01-01

    A diffusion flame nozzle gas tip is provided to convert a dual fuel nozzle to a gas only nozzle. The nozzle tip diverts compressor discharge air from the passage feeding the diffusion nozzle air swirl vanes to a region vacated by removal of the dual fuel components, so that the diverted compressor discharge air can flow to and through effusion holes in the end cap plate of the nozzle tip. In a preferred embodiment, the nozzle gas tip defines a cavity for receiving the compressor discharge air from a peripheral passage of the nozzle for flow through the effusion openings defined in the end cap plate.

  12. Hybrid lean premixing catalytic combustion system for gas turbines

    DOEpatents

    Critchley, Ian L.

    2003-12-09

    A system and method of combusting a hydrocarbon fuel is disclosed. The system combines the accuracy and controllability of an air staging system with the ultra-low emissions achieved by catalytic combustion systems without the need for a pre-heater. The result is a system and method that is mechanically simple and offers ultra-low emissions over a wide range of power levels, fuel properties and ambient operating conditions.

  13. Mathematical modeling and experimental study of gas\\/solid flows and combustion in the vortexing fluidized-bed combustor (VFBC) freeboard

    Microsoft Academic Search

    1989-01-01

    A new solid fuel combustion technique, known as Vortexing Fluidized Bed Combustion (VFBC), was recently developed to increase the combustion intensity, calcium utilization, and turndown capability, and to reduce the freeboard height, elutriation of fines, and emission of pollutants for small- and medium-scale boiler applications. A modified Algebraic Stress turbulent Model (ASM) was proposed for the non-isotropic turbulent swirling gas

  14. Sulfur emission from Victorian brown coal under pyrolysis, oxy-fuel combustion and gasification conditions.

    PubMed

    Chen, Luguang; Bhattacharya, Sankar

    2013-02-01

    Sulfur emission from a Victorian brown coal was quantitatively determined through controlled experiments in a continuously fed drop-tube furnace under three different atmospheres: pyrolysis, oxy-fuel combustion, and carbon dioxide gasification conditions. The species measured were H(2)S, SO(2), COS, CS(2), and more importantly SO(3). The temperature (873-1273 K) and gas environment effects on the sulfur species emission were investigated. The effect of residence time on the emission of those species was also assessed under oxy-fuel condition. The emission of the sulfur species depended on the reaction environment. H(2)S, SO(2), and CS(2) are the major species during pyrolysis, oxy-fuel, and gasification. Up to 10% of coal sulfur was found to be converted to SO(3) under oxy-fuel combustion, whereas SO(3) was undetectable during pyrolysis and gasification. The trend of the experimental results was qualitatively matched by thermodynamic predictions. The residence time had little effect on the release of those species. The release of sulfur oxides, in particular both SO(2) and SO(3), is considerably high during oxy-fuel combustion even though the sulfur content in Morwell coal is only 0.80%. Therefore, for Morwell coal utilization during oxy-fuel combustion, additional sulfur removal, or polishing systems will be required in order to avoid corrosion in the boiler and in the CO(2) separation units of the CO(2) capture systems. PMID:23301852

  15. Development of high temperature air combustion technology in pulverized fossil fuel fired boilers

    SciTech Connect

    Hai Zhang; Guangxi Yue; Junfu Lu; Zhen Jia; Jiangxiong Mao; Toshiro Fujimori; Toshiyuki Suko; Takashi Kiga [Tsinghua University, Beijing (China). Department of Thermal Engineering

    2007-07-01

    High temperature air combustion (HTAC) is a promising technology for energy saving, flame stability enhancement and NOx emission reduction. In a conventional HTAC system, the combustion air is highly preheated by using the recuperative or regenerative heat exchangers. However, such a preheating process is difficult to implement for pulverized fossil fuel fired boilers. In this paper, an alternative approach is proposed. In the proposed HTAC system, a special burner, named PRP burner is introduced to fulfill the preheating process. The PRP burner has a preheating chamber with one end connected with the primary air and the other end opened to the furnace. Inside the chamber, gas recirculation is effectively established such that hot flue gases in the furnace can be introduced. Combustible mixture instead of combustion air is highly preheated by the PRP burner. A series of experiments have been conducted in an industrial scale test facility, burning low volatile petroleum coke and an anthracite coal. Stable combustion was established for burning pure petroleum coke and anthracite coal, respectively. Inside the preheating chamber, the combustible mixture was rapidly heated up to a high temperature level close to that of the hot secondary air used in the conventional HTAC system. The rapid heating of the combustible mixture in the chamber facilitates pyrolysis, volatile matter release processes for the fuel particles, suppressing ignition delay and enhancing combustion stability. Moreover, compared with the results measured in the same facility but with a conventional low NOx burner, NOx concentration at the furnace exit was at the same level when petroleum coke was burnt and 50% less when anthracite was burnt. Practicability of the HTAC technology using the proposed approach was confirmed for efficiently and cleanly burning fossil fuels. 16 refs., 10 figs., 1 tab.

  16. Two-stage slagging combustor design for a coal-fueled industrial gas turbine

    Microsoft Academic Search

    L. H. Cawell; R. T. LeCren; C. E. Tenbrook

    1992-01-01

    This paper reports on a full-size combustor for a coal-fueled industrial gas turbine engine which has been designed and fabricated. The design is based on extensive work completed through one-tenth scale combustion tests. Testing of the combustion hardware will be completed with a high pressure air supply in a combustion test facility before the components are integrated with the gas

  17. Comparing the greenhouse gas emissions from three alternative waste combustion concepts

    SciTech Connect

    Vainikka, Pasi, E-mail: pasi.vainikka@vtt.fi [VTT, Koivurannantie 1, FIN 40101 Jyvaeskylae (Finland); Tsupari, Eemeli; Sipilae, Kai [VTT, Koivurannantie 1, FIN 40101 Jyvaeskylae (Finland); Hupa, Mikko [Aabo Akademi Process Chemistry Centre, Piispankatu 8, FIN 20500 Turku (Finland)

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer Significant GHG reductions are possible by efficient WtE technologies. Black-Right-Pointing-Pointer CHP and high power-to-heat ratio provide significant GHG savings. Black-Right-Pointing-Pointer N{sub 2}O and coal mine type are important in LCA GHG emissions of FBC co-combustion. Black-Right-Pointing-Pointer Substituting coal and fuel oil by waste is beneficial in electricity and heat production. Black-Right-Pointing-Pointer Substituting natural gas by waste may not be reasonable in CHP generation. - Abstract: Three alternative condensing mode power and combined heat and power (CHP) waste-to-energy concepts were compared in terms of their impacts on the greenhouse gas (GHG) emissions from a heat and power generation system. The concepts included (i) grate, (ii) bubbling fluidised bed (BFB) and (iii) circulating fluidised bed (CFB) combustion of waste. The BFB and CFB take advantage of advanced combustion technology which enabled them to reach electric efficiency up to 35% and 41% in condensing mode, respectively, whereas 28% (based on the lower heating value) was applied for the grate fired unit. A simple energy system model was applied in calculating the GHG emissions in different scenarios where coal or natural gas was substituted in power generation and mix of fuel oil and natural gas in heat generation by waste combustion. Landfilling and waste transportation were not considered in the model. GHG emissions were reduced significantly in all of the considered scenarios where the waste combustion concepts substituted coal based power generation. With the exception of condensing mode grate incinerator the different waste combustion scenarios resulted approximately in 1 Mton of fossil CO{sub 2}-eq. emission reduction per 1 Mton of municipal solid waste (MSW) incinerated. When natural gas based power generation was substituted by electricity from the waste combustion significant GHG emission reductions were not achieved.

  18. Internal combustion engine with an exhaust gas recirculation system

    SciTech Connect

    Saiki, J.

    1980-03-25

    Disclosed is an internal combustion engine with an exhaust gas recirculation system. The engine is provided with a carburetor which includes a primary system and a secondary system. The recirculated exhaust gas is supplied to the intake passage via an exhaust gas supply pipe which is disposed at a position downstream of the carburetor. The top end of the exhaust gas supply pipe is open at a space having a predetermined positional relationship with the wall of the primary system.

  19. Combustion characteristics of alternative liquid fuels

    E-print Network

    Chong, Cheng Tung

    2011-11-08

    -mechanism .. 30 2.2 Comparison of fuel properties .. 37 CHAPTER 3 3.1 Percentage of fatty acids composition of different vegetable oils 60 3.2 Chemical structure of common fatty acids and their methyl esters .. 60 3... (FAME) derived from vegetable oils or animal fats through the transesterification process [7]. The transesterified fuels contain physical properties comparable to those of petroleum-based diesel fuels and are suitable to be used neat or in blends...

  20. Effects of super heating of heavy fuels on combustion and performance in DI diesel engines

    SciTech Connect

    Murayama, T.; Oh, Y.; Kido, A.; Chikahisa, T.; Itow, K.

    1986-01-01

    This paper is concerned with the effects of temperature of heavy fuels on combustion and engine performance in a naturally aspirated DI diesel engine. Engine performance and exhaust gas emissions were measured for rapeseed oil, B-heavy oil, and diesel fuel at fuel temperatures from 40/sup 0/C to 400/sup 0/C. With increased fuel temperature, mainly from improved efficiency of combustion there were significant reductions in the specific energy consumption and smoke emissions. It was found that the improvements were mainly a function of the fuel viscosity, and it was independent of the kind of fuel. The optimum temperature of the fuels with regard to specific energy consumption and smoke emission is about 90/sup 0/C for diesel fuel, 240/sup 0/C for B-heavy oil, and 300/sup 0/C for rapeseed oil. At these temperatures, the viscosities of the fuels show nearly identical value, 0.9 - 3 cSt. The optimum viscosity tends to increase slightly with increases in the swirl ratio in the combustion chamber.

  1. Nitrogen enriched combustion of a natural gas internal combustion engine to reduce NO.sub.x emissions

    DOEpatents

    Biruduganti, Munidhar S. (Naperville, IL); Gupta, Sreenath Borra (Naperville, IL); Sekar, R. Raj (Naperville, IL); McConnell, Steven S. (Shorewood, IL)

    2008-11-25

    A method and system for reducing nitrous oxide emissions from an internal combustion engine. An input gas stream of natural gas includes a nitrogen gas enrichment which reduces nitrous oxide emissions. In addition ignition timing for gas combustion is advanced to improve FCE while maintaining lower nitrous oxide emissions.

  2. Liquid fuel combustion within silicon-carbide coated carbon foam

    SciTech Connect

    Vijaykant, S.; Agrawal, Ajay K. [Department of Mechanical Engineering, University of Alabama, Tuscaloosa, AL 35487 (United States)

    2007-10-15

    Combustion of kerosene inside porous inert medium (PIM) has been investigated with the goal of reducing the emissions of nitric oxides (NO{sub x}), carbon monoxide (CO) and soot. Silicon-carbide (SiC) coated carbon foam is used as PIM to attain high structural strength. The two-zone porous burner design consists of preheat and combustion sections. Different PIM configurations were tested by stacking together square porous pieces of 2.5 cm thickness. Two types of fuel injectors are considered: (i) in the air-assist injector, approximately 5% of the combustion air is used for atomization and the remaining air enters as the primary co-flow around the injector, and (ii) in the swirling-air injector, all of the combustion air enters the injector to create a swirling flow around the fuel jet to enhance atomization and fuel-air premixing. The distance between the injector and PIM inlet is a key operational parameter, which was varied in experiments with both injectors over a range of equivalence ratios and heat release rates. The NO{sub x} and CO emissions were measured to optimize the PIM configuration with minimum emissions. Results show stable combustion over a wide operating range. Three combustor operational regimes are identified depending upon the injector location. (author)

  3. Reduction of NO[sub x] emissions coke oven gas combustion process

    SciTech Connect

    Terza, R.R. (USS Clairton Works, PA (United States)); Sardesai, U.V. (Westfield Engineering and Services, Inc., Houston, TX (United States))

    1993-01-01

    The paper describes by-product processing at Clairton Works which uses a unique cryogenic technology. Modifications to the desulfurization facility, nitrogen oxide formation in combustion processes (both thermal and fuel NO[sub x]), and the boilers plants are described. Boilers were used to study the contribution of fuel NO[sub x] formation during the combustion of coke oven gas. Results are summarized. The modifications made to the desulfurization facility resulted in the overall H[sub 2]S emission being reduced by 2-4 grains/100scf and the NO[sub x] emission being reduced by 21-42% in the boiler stacks.

  4. Pulsed Corona Discharges for Tar Removal from Biomass Derived Fuel Gas

    Microsoft Academic Search

    A. J. M. Pemen; S. A. Nair; K. Yan; E. J. M. van Heesch; K. J. Ptasinski; A. A. H. Drinkenburg

    2003-01-01

    To supply combustion engines or gasturbines with fuel gas obtained from biomass gasification, it is necessary to clean the fuel gas. Also the production of chemicals by processes such as Fisher-Tropsch requires a high gas quality. Especially heavy aromatic hydrocarbons (tars) must be removed. In this work, we give an overview of our investigations on tar removal by pulsed corona

  5. Combustion of liquid fuels in diesel engine

    NASA Technical Reports Server (NTRS)

    Alt, Otto

    1924-01-01

    Hitherto, definite specifications have always been made for fuel oils and they have been classified as more or less good or non-utilizable. The present aim, however, is to build Diesel engines capable of using even the poorest liquid fuels and especially the waste products of the oil industry, without special chemical or physical preparation.

  6. Research test facility for evaporation and combustion of alternative jet fuels at high air temperatures. Annual technical report, 1 February 1983-30 January 1984

    Microsoft Academic Search

    J. E. Peters; H. Krier; K. K. Kim; R. E. Coverdill; J. E. Kirwan

    1984-01-01

    Improved gas turbine combustion performance will require the effective utilization of alternative fuels and advanced combustor concepts. Further understanding of spray combustion processes including fuel evaporation and flame propagation is required. Research underway features a high-pressure and -temperature non-vititated air system to provide air at simulated gas-turbine inlet conditions. A special fuel-injection system was designed to produce monodisperse sprays for

  7. Effect of gasifier-feed-rate variations on coal-gas-combustion characteristics. Final report

    Microsoft Academic Search

    Gilmartin

    1982-01-01

    Combined-cycle industrial gas turbines fired on coal-derived gaseous fuels will play an important role in future electric power generation. Conventional, diffusion-flame type, gas turbine combustors can successfully burn lower heating value (LHV) gases with only minor modifications. However, the peak flame temperatures which result from the combustion of medium heating value (MHV) gases in these combustors are comparable to natural

  8. Nitrogen oxides reduction by staged combustion of LCV gas

    E-print Network

    Cabrera Sixto, Jose Manuel

    1990-01-01

    gin trash gasification. 10 Wendt et al. (1978) reported NO, control in pulverized coal combustion in a one dimensional lhune combustor. They burned different coals in a single stage and in a two-stage combustor. Wendt et al. found that the NO, can... Schaevitz P3061-15 PSIA Gas Sampling points G1 LCV gas G2 Flue gas Not applicable Not applicable FEEDER THERMAL CHAR REMOVAL CONVERSION STAGED COMBUSTION AUXIUARY BURNER VALVE 2 FLUIDIZED BED GASIFIER VALVE I COTTON GIN TRASH PS PB PA LCV...

  9. Movable combustion system for a gas turbine

    SciTech Connect

    Ford, J.E.; Myers, A.

    1992-06-30

    This patent describes a combustor assembly for a gas turbine. It comprises a combustor having an outer liner disposed about an axis and a cover adjacent one end of the outer liner, a centerbody carried by the cover and carrying an inner liner about the axis and inside of and radially spaced from the outer liner; means carried by the assembly for supplying fuel within the combustor; means for supplying air within the combustor; means forming a venturi adjacent an opposite end of the outer liner, and including a portion of the centerbody defining a gap forming part of the venturi; and means external to the combustor and connected to the centerbody for moving the centerbody in an axial direction for adjusting the size of the-venturi gap.

  10. A comprehensive combustion model for biodiesel-fueled engine simulations

    NASA Astrophysics Data System (ADS)

    Brakora, Jessica L.

    Engine models for alternative fuels are available, but few are comprehensive, well-validated models that include accurate physical property data as well as a detailed description of the fuel chemistry. In this work, a comprehensive biodiesel combustion model was created for use in multi-dimensional engine simulations, specifically the KIVA3v R2 code. The model incorporates realistic physical properties in a vaporization model developed for multi-component fuel sprays and applies an improved mechanism for biodiesel combustion chemistry. A reduced mechanism was generated from the methyl decanoate (MD) and methyl-9-decenoate (MD9D) mechanism developed at Lawrence Livermore National Laboratory. It was combined with a multi-component mechanism to include n-heptane in the fuel chemistry. The biodiesel chemistry was represented using a combination of MD, MD9D and n-heptane, which varied for a given fuel source. The reduced mechanism, which contained 63 species, accurately predicted ignition delay times of the detailed mechanism over a range of engine-specific operating conditions. Physical property data for the five methyl ester components of biodiesel were added to the KIVA library. Spray simulations were performed to ensure that the models adequately reproduce liquid penetration observed in biodiesel spray experiments. Fuel composition impacted liquid length as expected, with saturated species vaporizing more and penetrating less. Distillation curves were created to ensure the fuel vaporization process was comparable to available data. Engine validation was performed against a low-speed, high-load, conventional combustion experiments and the model was able to predict the performance and NOx formation seen in the experiment. High-speed, low-load, low-temperature combustion conditions were also modeled, and the emissions (HC, CO, NOx) and fuel consumption were well-predicted for a sweep of injection timings. Finally, comparisons were made between the results of biodiesel composition (palm vs. soy) and fuel blends (neat vs. B20). The model effectively reproduced the trends observed in the experiments.

  11. Effect of Two-Stage Injection on Unburned Hydrocarbon and Carbon Monoxide Emissions in Smokeless Low-Temperature Diesel Combustion with UltraHigh Exhaust Gas Recirculation

    Microsoft Academic Search

    T Li; M Suzuki; H Ogawa

    2010-01-01

    The unburned hydrocarbon (UHC) and carbon monoxide (CO) emissions from smokeless low-temperature diesel combustion (LTC) with ultra-high exhaust gas recirculation (EGR) can be attributed to lowered combustion temperatures as well as to under-mixing of fuel-rich mixture along the combustion chamber walls, overly mixed fuel-lean mixture at the spray tails, and fuel missing the piston bowl and entering the squish zones.

  12. ORIGINAL PAPER Fireside Corrosion in Oxy-fuel Combustion of Coal

    E-print Network

    Laughlin, David E.

    ORIGINAL PAPER Fireside Corrosion in Oxy-fuel Combustion of Coal Gordon R. Holcomb Joseph Tylczak-fuel combustion is burning a fuel in oxygen rather than air for ease of capture of CO2 from for reuse between 10-4 and 10-3 atm of SO3 at 700 C. Keywords Fireside corrosion Oxidation Oxy-fuel combustion

  13. INFERIOR FUELS OIL SIMULATED COMBUSTION TESTING, AS EQUIVALENT NDT

    Microsoft Academic Search

    V. Ghiea

    Especially it is proposed a simulated combustion testing (SCT) for miniaturised inferior fuel oil (IFO) with exemplifications of advantageous validity verification at large boilers, as equivalent nondestructive testing (NDT) for industry. This type of testing can generates a new very profitable direction for the 16-th World Conference on NDT activity. It is detailly presented the industrial symbiotic technologies improvement, as

  14. Method and apparatus for hydrogen fueled internal combustion engines

    Microsoft Academic Search

    Billings

    1976-01-01

    The hydrogen engine described introduces water as vapor with inlet hydrogen and air, as a mixture proportioned for practical internal combustion and efficient power output. Water vapor is a substantial component of the exhaust of hydrogen fueled engines. In one embodiment of the invention, water vapor is condensed from the exhaust, and thereupon arranged to provide the input water as

  15. Introduction Fossil fuel combustion by aviation, shipping and road

    E-print Network

    Haak, Hein

    96 Introduction Fossil fuel combustion by aviation, shipping and road traffic contributes about one. The total climate impact of aviation emissions (excluding the uncertain impact on natural clouds of the aviation sector has already been assessed quite extensively, e.g. in the IPCC special Report on Aviation

  16. Sectoral combustor for burning low-BTU fuel gas

    DOEpatents

    Vogt, Robert L. (Schenectady, NY)

    1980-01-01

    A high-temperature combustor for burning low-BTU coal gas in a gas turbine is disclosed. The combustor includes several separately removable combustion chambers each having an annular sectoral cross section and a double-walled construction permitting separation of stresses due to pressure forces and stresses due to thermal effects. Arrangements are described for air-cooling each combustion chamber using countercurrent convective cooling flow between an outer shell wall and an inner liner wall and using film cooling flow through liner panel grooves and along the inner liner wall surface, and for admitting all coolant flow to the gas path within the inner liner wall. Also described are systems for supplying coal gas, combustion air, and dilution air to the combustion zone, and a liquid fuel nozzle for use during low-load operation. The disclosed combustor is fully air-cooled, requires no transition section to interface with a turbine nozzle, and is operable at firing temperatures of up to 3000.degree. F. or within approximately 300.degree. F. of the adiabatic stoichiometric limit of the coal gas used as fuel.

  17. On-line combustion monitoring on dry low NOx industrial gas turbines

    NASA Astrophysics Data System (ADS)

    Rea, S.; James, S.; Goy, C.; Colechin, M. J. F.

    2003-07-01

    To reduce the NOx emissions levels produced by industrial gas turbines most manufacturers have adopted a lean premixed approach to combustion. Such combustion systems are susceptible to combustion-driven oscillations, and much of the installed modern gas turbines continue to suffer from reduced reliability due to instability-related problems. The market conditions which now exist under the New Electricity Trading Arrangements provide a strong driver for power producers to improve the reliability and availability of their generating units. With respect to low-emission gas turbines, such improvements can best be achieved through a combination of sophisticated monitoring, combustion optimization and, where appropriate, plant modifications to reduce component failure rates. On-line combustion monitoring (OLCM) provides a vital contribution to each of these by providing the operator with increased confidence in the health of the combustion system and also by warning of the onset of combustion component deterioration which could cause significant downstream damage. The OLCM systems installed on Powergen's combined cycle gas turbine plant utilize high-temperature dynamic pressure transducers mounted close to the combustor to enable measurement of the fluctuating pressures experienced within the combustion system. Following overhaul, a reference data set is determined over a range of operating conditions. Real-time averaged frequency spectra are then compared to the reference data set to enable identification of abnormalities. Variations in the signal may occur due to changes in ambient conditions, fuel composition, operating conditions, and the onset of component damage. The systems on Powergen's plant have been used successfully to detect each of the above, examples of which are presented here.

  18. Molecular gas and AGN fueling

    E-print Network

    F. Combes

    2003-08-01

    CO emission, tracing the molecular content and distribution in galaxies, is a privileged tool to trace gas towards the nucleus, since the HI tracer is in general depleted there. A review is done of recent CO line observations, with sufficient spatial resolution to indicate the morphology and kinematics of the gas near the nucleus. The puzzling result that nuclei presently observed in an active phase have little sign of fueling, is discussed.

  19. Exhaust gas recirculation system for an internal combustion engine

    DOEpatents

    Wu, Ko-Jen

    2013-05-21

    An exhaust gas recirculation system for an internal combustion engine comprises an exhaust driven turbocharger having a low pressure turbine outlet in fluid communication with an exhaust gas conduit. The turbocharger also includes a low pressure compressor intake and a high pressure compressor outlet in communication with an intake air conduit. An exhaust gas recirculation conduit fluidly communicates with the exhaust gas conduit to divert a portion of exhaust gas to a low pressure exhaust gas recirculation branch extending between the exhaust gas recirculation conduit and an engine intake system for delivery of exhaust gas thereto. A high pressure exhaust gas recirculation branch extends between the exhaust gas recirculation conduit and the compressor intake and delivers exhaust gas to the compressor for mixing with a compressed intake charge for delivery to the intake system.

  20. Combustion of the Fe-Si alloy in nitrogen gas

    Microsoft Academic Search

    L. N. Chukhlomina; Yu. M. Maksimov

    2007-01-01

    Combustion of the Fe-Si alloy in nitrogen gas was explored. The combustion was found to proceed in an autooscillating mode.\\u000a Upon addition of nitrided ferrosilicon, magnesium fluoride, or ammonium chloride into a green mixture, the process becomes\\u000a steady-state, while the extent of nitriding attains its maximum value. The phase composition and morphology of the product\\u000a were found to depend on

  1. Control of mercury vapor emissions from combustion flue gas

    Microsoft Academic Search

    Rong Yan; David Tee Liang; Joo Hwa Tay

    2003-01-01

    Goal, Scope and BackgroundMercury (Hg) emission from combustion flue gas is a significant environmental concern due to its toxicity and high volatility.\\u000a A number of the research efforts have been carried out in the past decade exploiting mercury emission, monitoring and control\\u000a from combustion flue gases. Most recently, increasing activities are focused on evaluating the behavior of mercury in coal

  2. Corrosion fatigue causes failure of gas turbine combustion chamber

    SciTech Connect

    Elshawesh, F.; Elhoud, A.; Elmendelsi, T. [Petroleum Research Center, Tripoli (Libyan Arab Jamahiriya); Elwaer, A. [General Electricity Co., Tripoli (Libyan Arab Jamahiriya). Planning and Project Dept.

    1997-07-01

    Plates in the combustion chamber case of a gas turbine made of welded alloy 617 (UNS NO6617) and alloy Nimonic 75 (UNS N06075) failed by complete circumferential fracturing at the matrix-welding interface in the UNS N06075 plate. Fatigue cracks were first initiated at the outer subsurface within the intergranularly cracked coarse grains adjacent to the weld and then propagated because of combustion vibration during start-up operation conditions.

  3. Advanced coal-fueled gas turbine systems

    SciTech Connect

    Not Available

    1992-09-01

    Westinghouse's Advanced Coal-Fueled Gas Turbine System Program (DE-AC2l-86MC23167) was originally split into two major phases - a Basic Program and an Option. The Basic Program also contained two phases. The development of a 6 atm, 7 lb/s, 12 MMBtu/hr slagging combustor with an extended period of testing of the subscale combustor, was the first part of the Basic Program. In the second phase of the Basic Program, the combustor was to be operated over a 3-month period with a stationary cascade to study the effect of deposition, erosion and corrosion on combustion turbine components. The testing of the concept, in subscale, has demonstrated its ability to handle high- and low-sulfur bituminous coals, and low-sulfur subbituminous coal. Feeding the fuel in the form of PC has proven to be superior to CWM type feed. The program objectives relative to combustion efficiency, combustor exit temperature, NO[sub x] emissions, carbon burnout, and slag rejection have been met. Objectives for alkali, particulate, and SO[sub x] levels leaving the combustor were not met by the conclusion of testing at Textron. It is planned to continue this testing, to achieve all desired emission levels, as part of the W/NSP program to commercialize the slagging combustor technology.

  4. Combustion characteristics of alternative gaseous fuels

    SciTech Connect

    Park, O.; Veloo, Peter S.; Liu, N.; Egolfopoulos, Fokion N.

    2011-01-01

    Fundamental flame properties of mixtures of air with hydrogen, carbon monoxide, and C{sub 1}C{sub 4} saturated hydrocarbons were studied both experimentally and numerically. The fuel mixtures were chosen in order to simulate alternative gaseous fuels and to gain insight into potential kinetic couplings during the oxidation of fuel mixtures. The studies included the use of the counterflow configuration for the determination of laminar flame speeds, as well as extinction and ignition limits of premixed flames. The experiments were modeled using the USC Mech II kinetic model. It was determined that when hydrocarbons are added to hydrogen flames as additives, flame ignition, propagation, and extinction are affected in a counterintuitive manner. More specifically, it was found that by substituting methane by propane or n-butane in hydrogen flames, the reactivity of the mixture is reduced both under pre-ignition and vigorous burning conditions. This behavior stems from the fact that propane and n-butane produce higher amounts of methyl radicals that can readily recombine with atomic hydrogen and reduce thus the rate of the H + O{sub 2} ? O + OH branching reaction. The kinetic model predicts closely the experimental data for flame propagation and extinction for various fuel mixtures and pressures, and for various amounts of carbon dioxide in the fuel blend. On the other hand, it underpredicts, in general, the ignition temperatures.

  5. DIGESTER GAS - FUEL CELL - PROJECT

    SciTech Connect

    Dr.-Eng. Dirk Adolph; Dipl.-Eng. Thomas Saure

    2002-03-01

    GEW has been operating the first fuel cell in Europe producing heat and electricity from digester gas in an environmentally friendly way. The first 9,000 hours in operation were successfully concluded in August 2001. The fuel cell powered by digester gas was one of the 25 registered ''Worldwide projects'' which NRW presented at the EXPO 2000. In addition to this, it is a key project of the NRW State Initiative on Future Energies. All of the activities planned for the first year of operation were successfully completed: installing and putting the plant into operation, the transition to permanent operation as well as extended monitoring till May 2001.

  6. Combustion of anaerobically digested humus as a fuel

    SciTech Connect

    Kayhanian, M.; Jenkins, B.M. [Univ. of California, Davis, CA (United States); Baxter, L.L. [Sandia National Labs., Livermore, CA (United States)] [and others

    1994-12-31

    Two pilot scale combustion experiments were conducted to explore the application of an anaerobically digested humus as fuel for commercial boilers. The experiments were performed in a fluidized bed combustor (FBC) and a multifuel suspension combustor (MFC). The results obtained indicate that the humus, blended with another conventional fuel (e.g., wood), can be used as a fuel in commercial boilers. Preliminary results of ash deposit analyses from the MFC indicate that the rate of deposition was low compared to high fouling biomass fuels such as straws, and similar to deposits obtained from wood.

  7. Numerical modeling of hydrogen-fueled internal combustion engines

    SciTech Connect

    Johnson, N.L.; Amsden, A.A.; Butler, T.D. [Los Alamos National Lab., NM (United States). Theoretical Div.

    1996-07-01

    Major progress was achieved in the last year in advancing the modeling capabilities of hydrogen-fueled engines, both in support of the multi-laboratory project with SNL and LLNL to develop a high-efficiency, low emission powerplant and to provide the engine design tools to industry and research laboratories for hydrogen-fueled engines and stationary power generators. The culmination of efforts on many fronts was the excellent comparison of the experimental data from the Onan engine, operated by SNL.These efforts include the following. An extensive study of the intake flow culminated in a major understanding of the interdependence of the details of the intake port design and the engine operating condition on the emissions and efficiency. This study also resulted in design suggestions for future engines and general scaling laws for turbulence that enables the KIVA results to be applied to a wide variety of operating conditions. The research on the turbulent combustion of hydrogen brought into perspective the effect of the unique aspects of hydrogen combustion and their influence on possible models of turbulent combustion. The effort culminated in a proposed model for turbulent hydrogen combustion that is in agreement with available literature. Future work will continue the development in order to provide a generally predictive model for hydrogen combustion. The application of the combustion model to the Onan experiments elucidated the observed improvement of the efficiency of the engine with the addition of a shroud on the intake valve. This understanding will give guidance to future engine design for optimal efficiency. Finally, a brief summary is given of the extensions and refinements of the KIVA-3 code, in support of future designers of hydrogen-fueled engines.

  8. Explosively Driven Combustion of Shock-Dispersed Fuels

    NASA Astrophysics Data System (ADS)

    Neuwald, P.

    2006-07-01

    The paper presents small-scale experiments with 1-g charges that explore the topic of post-detonation energy release due to the combustion of explosively dispersed fuels in the ambient air. To this end we have designed a new prototype small-scale charge, called Shock-Dispersed Fuel (SDF) charge. It consists of a lightweight, small paper cylinder filled with about one gram of a combustible powder (e.g., flake aluminum) surrounding a spherical PETN booster of 0.5 g. We have tested the SDF charges in a number of different environments, realized as closed steel vessels of simple geometry (barometric bombs). Three of the bombs vary in volume (6.6 1, 21.2 1 and 40.5 1), while their aspect ratio L/D is kept constant at about 1. Two further bombs are comparable to the smallest bomb in volume (6.3 1), but provide different aspect ratios: L/D = 4.6 and 12.5. In addition, we have also performed tests in a tunnel-model with an L/D = 37.5. Our basic goal is to assess the performance of the charges by means of the combustion-related pressure built-up. Thus we contrast experiments on SDF charges in air with tests in nitrogen, to inhibit combustion, and with tests on conventional charges. Experiments and theoretical estimates on the expected overpressure allow one to formulate various indicators of the combustion effectiveness. For SDF charges these indicate that the combustion effectiveness decreases with increasing volume of the barometric bomb, and also with increasing aspect ratio at constant volume. This bears importance to the performance of SDF charges in tunnel environments. The performance losses reflect at least in part geometry-specific constraints on the mixing between fuel and air.

  9. Hydrogen-fueled internal combustion engines

    Microsoft Academic Search

    Sebastian Verhelst; Thomas Wallner

    2009-01-01

    The threat posed by climate change and the striving for security of energy supply are issues high on the political agenda these days. Governments are putting strategic plans in motion to decrease primary energy use, take carbon out of fuels and facilitate modal shifts.Taking a prominent place in these strategic plans is hydrogen as a future energy carrier. A number

  10. Hetero\\/homogeneous combustion and stability maps in methane-fueled catalytic microreactors

    Microsoft Academic Search

    Symeon Karagiannidis; John Mantzaras; Gregory Jackson; Konstantinos Boulouchos

    2007-01-01

    The hetero-\\/homogeneous steady combustion and the stability limits of methane-fueled catalytic microreactors (Pt-coated) have been investigated numerically in a 1-mm-gap channel at pressures of 1 and 5bar. Computations were carried out with a full-elliptic two-dimensional model for the gas- and solid-phases that included elementary heterogeneous and homogeneous chemical reaction schemes, heat conduction in the solid wall, surface radiation heat transfer,

  11. Fate of fuel-sulfur in backmixed combustion systems. Final report, August 1979January 1980

    Microsoft Academic Search

    P. C. Malte; J. C. Kramlich; W. L. Grosshandler

    1980-01-01

    Comprehensive sulfur species measurements were performed on combustion gases in a premixed, jet-stirred reactor containing 0.23 mole % total sulfur. Species measured were HS, COS, CS, CHS, SO, O, CH, and CH by gas chromatography; relative SH and CS and absolute OH by uv absorption spectroscopy; and SO by controlled condensation. Reactor fuels were CH, CH, CH, H, and a

  12. Dispersion of sound in a combustion duct by fuel droplets and soot particles

    NASA Technical Reports Server (NTRS)

    Miles, J. H.; Raftopoulos, D. D.

    1979-01-01

    Dispersion and attenuation of acoustic plane wave disturbances propagating in a ducted combustion system are studied. The dispersion and attenuation are caused by fuel droplet and soot emissions from a jet engine combustor. The attenuation and dispersion are due to heat transfer and mass transfer and viscous drag forces between the emissions and the ambient gas. Theoretical calculations show sound propagation at speeds below the isentropic speed of sound at low frequencies. Experimental results are in good agreement with the theory.

  13. Combustion test of SRC-oil mixture technical study on SOM fuel for oil-fired power plant. Final report

    Microsoft Academic Search

    H. Mizuochi; M. Sato; T. Sema; K. Endo; Y. Hasegawa; M. Makino; T. Ninomiya; T. Ono; Y. Ishihara

    1982-01-01

    SRC (Solvent Refined Coal) was chosen as one of the efficient substances for coal utilization. Properties, combustion characteristics, and flue gas properties of SOM (SRC-Oil Mixture) fuel have been investigated for applicability to power generation. Results of the investigation are summarized and the conversion of heavy fuel oil to SOM fuel at the existing heavy-fuel oil-fired power plants is discussed.

  14. Fuel injector nozzle for an internal combustion engine

    DOEpatents

    Cavanagh, Mark S. (Bloomington, IL); Urven, Jr., Roger L. (Colona, IL); Lawrence, Keith E. (Peoria, IL)

    2011-03-22

    A direct injection fuel injector includes a nozzle tip having a plurality of passages allowing fluid communication between an inner nozzle tip surface portion and an outer nozzle tip surface portion and directly into a combustion chamber of an internal combustion engine. A first group of the passages have inner surface apertures located substantially in a first common plane. A second group of the passages have inner surface apertures located substantially in at least a second common plane substantially parallel to the first common plane. The second group has more passages than the first group.

  15. Fuel injector nozzle for an internal combustion engine

    DOEpatents

    Cavanagh, Mark S. (Bloomington, IL); Urven, Jr., Roger L. (Colona, IL); Lawrence, Keith E. (Peoria, IL)

    2008-11-04

    A direct injection fuel injector includes a nozzle tip having a plurality of passages allowing fluid communication between an inner nozzle tip surface portion and an outer nozzle tip surface portion and directly into a combustion chamber of an internal combustion engine. A first group of the passages have inner surface apertures located substantially in a first common plane. A second group of the passages have inner surface apertures located substantially in at least a second common plane substantially parallel to the first common plane. The second group has more passages than the first group.

  16. Fuel injector nozzle for an internal combustion engine

    DOEpatents

    Cavanagh, Mark S. (Bloomington, IL); Urven, Jr., Roger L. (Colona, IL); Lawrence, Keith E. (Peoria, IL)

    2007-11-06

    A direct injection fuel injector includes a nozzle tip having a plurality of passages allowing fluid communication between an inner nozzle tip surface portion and an outer nozzle tip surface portion and directly into a combustion chamber of an internal combustion engine. A first group of the passages have inner surface apertures located substantially in a first common plane. A second group of the passages have inner surface apertures located substantially in at least a second common plane substantially parallel to the first common plane. The second group has more passages than the first group.

  17. Fuel Injector Nozzle For An Internal Combustion Engine

    DOEpatents

    Cavanagh, Mark S. (Bloomington, IL); Urven, Jr.; Roger L. (Colona, IL); Lawrence, Keith E. (Peoria, IL)

    2006-04-25

    A direct injection fuel injector includes a nozzle tip having a plurality of passages allowing fluid communication between an inner nozzle tip surface portion and an outer nozzle tip surface portion and directly into a combustion chamber of an internal combustion engine. A first group of the passages have inner surface apertures located substantially in a first common plane. A second group of the passages have inner surface apertures located substantially in at least a second common plane substantially parallel to the first common plane. The second group has more passages than the first group.

  18. Numerical modeling of hydrogen-fueled internal combustion engines

    SciTech Connect

    Johnson, N.L.; Amsden, A.A.

    1996-12-31

    The planned use of hydrogen as the energy carrier of the future introduces new challenges and opportunities, especially to the engine design community. Hydrogen is a bio-friendly fuel that can be produced from renewable resources and has no carbon dioxide combustion products; and in a properly designed ICE, almost zero NO{sub x} and hydrocarbon emissions can be achieved. Because of the unique properties of hydrogen combustion - in particular the highly wrinkled nature of the laminar flame front due to the preferential diffusion instability - modeling approaches for hydrocarbon gaseous fuels are not generally applicable to hydrogen combustion. This paper reports on the current progress to develop a engine design capability based on KIVA family of codes for hydrogen-fueled, spark-ignited engines in support of the National Hydrogen Program. A turbulent combustion model, based on a modified eddy-turnover model in conjunction with an intake flow valve model, is found to describe well the efficiency and NO{sub x} emissions of this engine satisfy the Equivalent Zero Emission Vehicle (EZEV) standard established by the California Resource Board. 26 refs., 10 figs., 1 tab.

  19. Fuel oil evaporation in swirling hot gas streams

    Microsoft Academic Search

    Baifang Zuo; E. Van Den Bulck

    1998-01-01

    As the limit on combustion generated pollutants is becoming more strict, a potentially ecological as well as economical new technology to decrease combustion generated pollutants by liquid fuel combustion is to adopt a fuel pre-vaporized, premixed combustion. This paper presents a study on the liquid fuel vaporizing and mixing processes. An effective method for the calculation of turbulent two phase

  20. Disturbing effect of free hydrogen on fuel combustion in internal combustion engines

    NASA Technical Reports Server (NTRS)

    Riedler, A

    1923-01-01

    Experiments with fuel mixtures of varying composition, have recently been conducted by the Motor Vehicle and Airplane Engine Testing Laboratories of the Royal Technical High School in Berlin and at Fort Hahneberg, as well as at numerous private engine works. The behavior of hydrogen during combustion in engines and its harmful effect under certain conditions, on the combustion in the engine cylinder are of general interest. Some of the results of these experiments are given here, in order to elucidate the main facts and explain much that is already a matter of experience with chauffeurs and pilots.

  1. Hybrid rocket fuel combustion and regression rate study

    NASA Technical Reports Server (NTRS)

    Strand, L. D.; Ray, R. L.; Anderson, F. A.; Cohen, N. S.

    1992-01-01

    The objectives of this study are to develop hybrid fuels (1) with higher regression rates and reduced dependence on fuel grain geometry and (2) that maximize potential specific impulse using low-cost materials. A hybrid slab window motor system was developed to screen candidate fuels - their combustion behavior and regression rate. Combustion behavior diagnostics consisted of video and high speed motion pictures coverage. The mean fuel regression rates were determined by before and after measurements of the fuel slabs. The fuel for this initial investigation consisted of hydroxyl-terminated polybutadiene binder with coal and aluminum fillers. At low oxidizer flux levels (and corresponding fuel regression rates) the filled-binder fuels burn in a layered fashion, forming an aluminum containing binder/coal surface melt that, in turn, forms into filigrees or flakes that are stripped off by the crossflow. This melt process appears to diminish with increasing oxidizer flux level. Heat transfer by radiation is a significant contributor, producing the desired increase in magnitude and reduction in flow dependency (power law exponent) of the fuel regression rate.

  2. Kinetic Modeling of Combustion Characteristics of Real Biodiesel Fuels

    SciTech Connect

    Naik, C V; Westbrook, C K

    2009-04-08

    Biodiesel fuels are of much interest today either for replacing or blending with conventional fuels for automotive applications. Predicting engine effects of using biodiesel fuel requires accurate understanding of the combustion characteristics of the fuel, which can be acquired through analysis using reliable detailed reaction mechanisms. Unlike gasoline or diesel that consists of hundreds of chemical compounds, biodiesel fuels contain only a limited number of compounds. Over 90% of the biodiesel fraction is composed of 5 unique long-chain C{sub 18} and C{sub 16} saturated and unsaturated methyl esters. This makes modeling of real biodiesel fuel possible without the need for a fuel surrogate. To this end, a detailed chemical kinetic mechanism has been developed for determining the combustion characteristics of a pure biodiesel (B100) fuel, applicable from low- to high-temperature oxidation regimes. This model has been built based on reaction rate rules established in previous studies at Lawrence Livermore National Laboratory. Computed results are compared with the few fundamental experimental data that exist for biodiesel fuel and its components. In addition, computed results have been compared with experimental data for other long-chain hydrocarbons that are similar in structure to the biodiesel components.

  3. Fuel cell power supply with oxidant and fuel gas switching

    Microsoft Academic Search

    J. F. Mc Elroy; P. J. Chludzinski; P. Dantonwitz

    1987-01-01

    This patent describes a continuously operable fuel cell power system operating with reformate hydrogen as the fuel gas and air as an oxidant gas during normal power intervals and including oxidant and fuel gas switching for operating with pure hydrogen and pure oxygen during peak power intervals. The system comprises: (a) a fuel cell stack, (b) means for providing reformate

  4. Automotive fuels and internal combustion engines: a chemical perspective.

    PubMed

    Wallington, T J; Kaiser, E W; Farrell, J T

    2006-04-01

    Commercial transportation fuels are complex mixtures containing hundreds or thousands of chemical components, whose composition has evolved considerably during the past 100 years. In conjunction with concurrent engine advancements, automotive fuel composition has been fine-tuned to balance efficiency and power demands while minimizing emissions. Pollutant emissions from internal combustion engines (ICE), which arise from non-ideal combustion, have been dramatically reduced in the past four decades. Emissions depend both on the engine operating parameters (e.g. engine temperature, speed, load, A/F ratio, and spark timing) and the fuel. These emissions result from complex processes involving interactions between the fuel and engine parameters. Vehicle emissions are comprised of volatile organic compounds (VOCs), CO, nitrogen oxides (NO(x)), and particulate matter (PM). VOCs and NO(x) form photochemical smog in urban atmospheres, and CO and PM may have adverse health impacts. Engine hardware and operating conditions, after-treatment catalysts, and fuel composition all affect the amount and composition of emissions leaving the vehicle tailpipe. While engine and after-treatment effects are generally larger than fuel effects, engine and after-treatment hardware can require specific fuel properties. Consequently, the best prospects for achieving the highest efficiency and lowest emissions lie with optimizing the entire fuel-engine-after-treatment system. This review provides a chemical perspective on the production, combustion, and environmental aspects of automotive fuels. We hope this review will be of interest to workers in the fields of chemical kinetics, fluid dynamics of reacting flows, atmospheric chemistry, automotive catalysts, fuel science, and governmental regulations. PMID:16565750

  5. Assessment of the contribution of in-situ combustion of coal to greenhouse gas emission; based on a comparison of Chinese mining information to previous remote sensing estimates

    Microsoft Academic Search

    Paul van Dijk; Jianzhong Zhang; Wang Jun; Claudia Kuenzer; Karl-Heinz Wolf

    2011-01-01

    Greenhouse gas (GHG) emission from geological sources such as volcanic activity, seabed gas hydrate release, hydrocarbon seepage as well as uncontrolled combustion of fossil fuels is erratic and difficult to quantify. In this paper we assess the GHG emission due to spontaneous combustion of in-situ coal deposits (coal fires). This problem is aggravated by human intervention (mining activities) which on

  6. Fast-burn combustion chamber design for natural gas engines

    Microsoft Academic Search

    R. L. Evans; J. Blaszczyk

    1998-01-01

    The work presented in this paper compares the performance and emissions of the UBC Squish-Jet fast-burn combustion chamber with a baseline bowl-in-piston (BIP) chamber. It was found that the increased turbulence generated in the fastburn combustion chambers resulted in 5 to 10% faster burning of the air-fuel mixture compared to a conventional BIP chamber. The faster burning was particularly noticeable

  7. Gasoline Ultra Efficient Fuel Vehicle with Advanced Low Temperature Combustion

    SciTech Connect

    Confer, Keith

    2014-09-30

    The objective of this program was to develop, implement and demonstrate fuel consumption reduction technologies which are focused on reduction of friction and parasitic losses and on the improvement of thermal efficiency from in-cylinder combustion. The program was executed in two phases. The conclusion of each phase was marked by an on-vehicle technology demonstration. Phase I concentrated on short term goals to achieve technologies to reduce friction and parasitic losses. The duration of Phase I was approximately two years and the target fuel economy improvement over the baseline was 20% for the Phase I demonstration. Phase II was focused on the development and demonstration of a breakthrough low temperature combustion process called Gasoline Direct- Injection Compression Ignition (GDCI). The duration of Phase II was approximately four years and the targeted fuel economy improvement was 35% over the baseline for the Phase II demonstration vehicle. The targeted tailpipe emissions for this demonstration were Tier 2 Bin 2 emissions standards.

  8. Synthesis of Diopside by Solution Combustion Process Using Glycine Fuel

    NASA Astrophysics Data System (ADS)

    Sherikar, Baburao N.; Umarji, A. M.

    Nano ceramic Diopside (CaMgSi2O6) powders are synthesized by Solution Combustion Process(SCS) using Calcium nitrate, Magnesium nitrate as oxidizer and glycine as fuel, fumed silica as silica source. Ammonium nitrate (AN) is used as extra oxidizer. Effect of AN on Diopside phase formation is investigated. The adiabatic flame temperatures are calculated theoretically for varying amount of AN according to thermodynamic concept and correlated with the observed flame temperatures. A Multi channel thermocouple setup connected to computer interfaced Keithley multi voltmeter 2700 is used to monitor the thermal events during the process. An interpretation based on maximum combustion temperature and the amount of gases produced during reaction for various AN compositions has been proposed for the nature of combustion and its correlation with the characteristics of as synthesized powder. These powders are characterized by XRD, SEM showing that the powders are composed of polycrystalline oxides with crystallite size of 58nm to 74nm.

  9. Speciated Hydrocarbon Emissions from the Combustion of Single Component Fuels. I. Effect of Fuel Structure

    Microsoft Academic Search

    W. O. Siegel; R. W. McCabe; W. Chun; E. W. Kaiser; J. Perry; Y. I. Henig; F. H. Trinker; R. W. Anderson

    1992-01-01

    Speciated hydrocarbon emissions data have been collected for six single-component fuels run in a laboratory pulse flame combustor (PFC). The six fuels include n-heptane, isooctane (2, 2, 4-trimethylpentane), cyclohexane, 1-hexene, toluene, and methyl-t-butyl ether (MTBE: an oxygenated fuel extender). Combustion of non-aromatic fuels in the PFC (at a fuel\\/air equivalence ratio of ? = 1.02) produced low levels of unburned

  10. Large Eddy Simulation of the Fuel Injection in Scramjet Combustion Chambers

    NASA Astrophysics Data System (ADS)

    Rana, Z. A.; Thornber, B. J. R.; Drikakis, D.

    2011-08-01

    Fuel injection in a typical scramjet combustion chamber is a very challenging flow to characterise either in ex- perimental or computational studies. It involves multi- species compressible turbulent features with complex coherent flow structures arising as a result of sonic fuel injection transverse or inclined to the free-stream supersonic flow. In this paper the fuel injection in the HyShot- II combustion chamber is studied using an Implicit LES method employing a modified very high order accurate numerical method. To gain accurate mean inflow boundary conditions, a thermally perfect gas formulation has been employed in preliminary simulations of the inlet ramp and cowl configuration. The results of these simulations are presented and validated against wind tunnel data.

  11. Low NOx heavy fuel combustor concept program. Phase 1: Combustion technology generation

    NASA Technical Reports Server (NTRS)

    Lew, H. G.; Carl, D. R.; Vermes, G.; Dezubay, E. A.; Schwab, J. A.; Prothroe, D.

    1981-01-01

    The viability of low emission nitrogen oxide (NOx) gas turbine combustors for industrial and utility application. Thirteen different concepts were evolved and most were tested. Acceptable performance was demonstrated for four of the combustors using ERBS fuel and ultralow NOx emissions were obtained for lean catalytic combustion. Residual oil and coal derived liquids containing fuel bound nitrogen (FBN) were also used at test fuels, and it was shown that staged rich/lean combustion was effective in minimizing the conversion of FBN to NOx. The rich/lean concept was tested with both modular and integral combustors. While the ceramic lined modular configuration produced the best results, the advantages of the all metal integral burners make them candidates for future development. An example of scaling the laboratory sized combustor to a 100 MW size engine is included in the report as are recommendations for future work.

  12. 77 FR 14225 - Prevention of Significant Deterioration and Title V Greenhouse Gas Tailoring Rule Step 3, GHG...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-08

    ...subcategories of industries with process and combustion GHG emissions); Energy (oil and gas...incinerators); Agriculture (stationary fuel combustion); Commercial (stationary fuel combustion); and Residential (stationary...

  13. Dependence of premixed low-temperature diesel combustion on fuel ignitability and volatility

    Microsoft Academic Search

    T Li; R Moriwaki; H Ogawa; R Kakizaki; M Murase

    2012-01-01

    A comprehensive study of fuel property effects in internal combustion engines is required to enable fuel diversification as well as the development of applications to advanced engines for operation with a variety of combustion modes. The objective of this paper is to investigate the effects of fuel ignitability and volatility over a wide range of premixed low-temperature combustion (LTC) modes

  14. Improving the Carbon Dioxide Emission Estimates from the Combustion of Fossil Fuels in California

    E-print Network

    Improving the Carbon Dioxide Emission Estimates from the Combustion of Fossil Fuels in California Estimates from the Combustion of Fossil Fuels in California" and augmentation to contract number 05 Dioxide Emission Estimates from the Combustion of Fossil Fuels in California" and augmentation to contract

  15. Advanced coal-fueled gas turbine systems

    SciTech Connect

    Not Available

    1990-07-01

    Westinghouse's Advanced Coal-Fueled Gas Turbine System Program is split into two major phases -- a Basic Program and an Option. The Basic Program, contains the development of a 6 atm, 7 lb/s, 12 {times} 10{sup 6} Btu/hr slagging combustor. Included in this phase is an extended period of testing of the subscale combustor developed under this program. In the second phase of the Basic Program, the combustor would be operated over a 3-month period with a stationary cascade to study the effect of deposition, erosion and corrosion on combustion turbine components. The option is primarily devoted towards performing a verification test of a 70 {times} 10{sup 6} Btu/hr combustor. This task requires utilization of a facility which has a capability to deliver a 700{degrees}F air flow of 40 lb/s at a pressure of 14 atm. Critical slagging combustor technology concerns that are being addressed within this program include: slag removal; sorbent stimulated sulfur removal in the slag; suppression of NO{sub x} formation; complete carbon burnout; adequate particulate capture; acceptable pressure loss and availability; slag, particulate and sulfur removal from fuel-rich primary combustion gases in the second stage; and final gas oxidation and dilution in the third stage (operated lean). This report describes the subscale slagging combustor test (apparatus, plan, test results and discussion). The paper briefly discusses two ancillary sulfur studies: spent sorbent stability in molten slag and basic sulfur capture. The status of four other projects is also discussed: slagging cyclone, real-time slag tapping, cascade design and fabrication, and update of reference system definition. 5 refs., 29 figs., 8 tabs.

  16. Flame blowout and pollutant emissions in vitiated combustion of conventional and bio-derived fuels

    NASA Astrophysics Data System (ADS)

    Singh, Bhupinder

    The widening gap between the demand and supply of fossil fuels has catalyzed the exploration of alternative sources of energy. Interest in the power, water extraction and refrigeration (PoWER) cycle, proposed by the University of Florida, as well as the desirability of using biofuels in distributed generation systems, has motivated the exploration of biofuel vitiated combustion. The PoWER cycle is a novel engine cycle concept that utilizes vitiation of the air stream with externally-cooled recirculated exhaust gases at an intermediate pressure in a semi-closed cycle (SCC) loop, lowering the overall temperature of combustion. It has several advantages including fuel flexibility, reduced air flow, lower flame temperature, compactness, high efficiency at full and part load, and low emissions. Since the core engine air stream is vitiated with the externally cooled exhaust gas recirculation (EGR) stream, there is an inherent reduction in the combustion stability for a PoWER engine. The effect of EGR flow and temperature on combustion blowout stability and emissions during vitiated biofuel combustion has been characterized. The vitiated combustion performance of biofuels methyl butanoate, dimethyl ether, and ethanol have been compared with n-heptane, and varying compositions of syngas with methane fuel. In addition, at high levels of EGR a sharp reduction in the flame luminosity has been observed in our experimental tests, indicating the onset of flameless combustion. This drop in luminosity may be a result of inhibition of processes leading to the formation of radiative soot particles. One of the objectives of this study is finding the effect of EGR on soot formation, with the ultimate objective of being able to predict the boundaries of flameless combustion. Detailed chemical kinetic simulations were performed using a constant-pressure continuously stirred tank reactor (CSTR) network model developed using the Cantera combustion code, implemented in C++. Results have been presented showing comparative trends in pollutant emissions generation, flame blowout stability, and combustion efficiency. (Full text of this dissertation may be available via the University of Florida Libraries web site. Please check http://www.uflib.ufl.edu/etd.html)

  17. Experimental investigation of fuel vaporization on combustion efficiency

    SciTech Connect

    Zakkay, V.; Agnone, A.; Clisset, H.

    1980-12-01

    The development of a residential size vaporizing oil burner is presented along with its operational and performance characteristics. The vaporization scheme consists of spraying No. 2 oil onto a regeneratively heated surface at a temperature above the oil vaporization temperature (650/sup 0/F). The vaporized oil mixes with a preheated air (T = 250/sup 0/F) stream to produce a uniform fuel air mixture. The premixed vaporized fuel/air stream produces short blue flamelets anchored to a steel screen flame holder. The operational and performance characteristics of this burner are presented for a range of the air and oil flow parameters around the stoichiometric condition, and for a nominal firing rate of less than or equal to 1.2 gph. Operation with less than 3% excess air is demonstrated with very little soot formation. The combustion quality of the vaporizing oil burner is substantially improved compared to conventional spray combustion and recirculation type blue flame burners. The vaporizing oil burner was adapted to a conventional boiler and the thermal efficiency was determined by a calorimeter technique and compared to the stack method. The thermal efficiency with the vaporized combustion mode is about 4% greater than conventional spray combustion burners. The increase is realized through the reduced excess air requirements. The increased efficiency can result in reduced oil consumption from 12% to 20% depending on the location and usage of the burner unit.

  18. Diagnosis of DI Diesel combustion from in-cylinder pressure signal by estimation of mean thermodynamic properties of the gas

    Microsoft Academic Search

    M. Lapuerta; O. Armas; J. J. Hernndez

    1999-01-01

    Combustion diagnostic methods based on the in-cylinder pressure signal are extensively used for calculating the heat release law or the burned fuel mass as well as the mean gas temperature from combining both the first principle of thermodynamics and the state equation. In both equations the instantaneous gas composition has great influence, even through the internal energy or through the

  19. Combustion chemistry and an evolving transportation fuel environment.

    SciTech Connect

    Taatjes, Craig A. (Org. 8353, Combustion Chemistry Department)

    2010-05-01

    The world currently faces tremendous energy challenges stemming from the need to curb potentially catastrophic anthropogenic climate change. In addition, many nations, including the United States, recognize increasing political and economic risks associated with dependence on uncertain and limited energy sources. For these and other reasons the chemical composition of transportation fuels is changing, both through introduction of nontraditional fossil sources, such as oil sands-derived fuels in the US stream, and through broader exploration of biofuels. At the same time the need for clean and efficient combustion is leading engine research towards advanced low-temperature combustion strategies that are increasingly sensitive to this changing fuel chemistry, particularly in the areas of pollutant formation and autoignition. I will highlight the new demands that advanced engine technologies and evolving fuel composition place on investigations of fundamental reaction chemistry. I will focus on recent progress in measuring product formation in elementary reactions by tunable synchrotron photoionization, on the elucidation of pressure-dependent effects in the reactions of alkyl and substituted alkyl radicals with O{sub 2}, and on new combined efforts in fundamental combustion chemistry and engine performance studies of novel potential biofuels.

  20. 10 CFR 50.44 - Combustible gas control for nuclear power reactors.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...Combustible gas control for nuclear power reactors. 50.44 Section 50...Combustible gas control for nuclear power reactors. (a) Definitions ...boiling or pressurized water nuclear power reactor with an operating...

  1. 10 CFR 50.44 - Combustible gas control for nuclear power reactors.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...Combustible gas control for nuclear power reactors. 50.44 Section 50...Combustible gas control for nuclear power reactors. (a) Definitions ...boiling or pressurized water nuclear power reactor with an operating...

  2. 10 CFR 50.44 - Combustible gas control for nuclear power reactors.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...Combustible gas control for nuclear power reactors. 50.44 Section 50...Combustible gas control for nuclear power reactors. (a) Definitions ...boiling or pressurized water nuclear power reactor with an operating...

  3. 10 CFR 50.44 - Combustible gas control for nuclear power reactors.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...Combustible gas control for nuclear power reactors. 50.44 Section 50...Combustible gas control for nuclear power reactors. (a) Definitions ...boiling or pressurized water nuclear power reactor with an operating...

  4. 10 CFR 50.44 - Combustible gas control for nuclear power reactors.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...Combustible gas control for nuclear power reactors. 50.44 Section 50...Combustible gas control for nuclear power reactors. (a) Definitions ...boiling or pressurized water nuclear power reactor with an operating...

  5. 40 CFR 52.277 - Oxides of nitrogen, combustion gas concentration limitations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...Environment 3 2012-07-01 2012-07-01 false Oxides of nitrogen, combustion gas concentration limitations. 52.277 Section...IMPLEMENTATION PLANS California 52.277 Oxides of nitrogen, combustion gas concentration limitations. (a)...

  6. 40 CFR 52.277 - Oxides of nitrogen, combustion gas concentration limitations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...Environment 3 2013-07-01 2013-07-01 false Oxides of nitrogen, combustion gas concentration limitations. 52.277 Section...IMPLEMENTATION PLANS California 52.277 Oxides of nitrogen, combustion gas concentration limitations. (a)...

  7. 40 CFR 52.277 - Oxides of nitrogen, combustion gas concentration limitations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...Environment 3 2011-07-01 2011-07-01 false Oxides of nitrogen, combustion gas concentration limitations. 52.277 Section...IMPLEMENTATION PLANS California 52.277 Oxides of nitrogen, combustion gas concentration limitations. (a)...

  8. 40 CFR 52.277 - Oxides of nitrogen, combustion gas concentration limitations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...Environment 3 2014-07-01 2014-07-01 false Oxides of nitrogen, combustion gas concentration limitations. 52.277 Section...IMPLEMENTATION PLANS California 52.277 Oxides of nitrogen, combustion gas concentration limitations. (a)...

  9. 40 CFR 52.277 - Oxides of nitrogen, combustion gas concentration limitations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...Environment 3 2010-07-01 2010-07-01 false Oxides of nitrogen, combustion gas concentration limitations. 52.277 Section...IMPLEMENTATION PLANS California 52.277 Oxides of nitrogen, combustion gas concentration limitations. (a)...

  10. Characterization of the combustion of biomass producer gas in a constant volume combustion bomb

    Microsoft Academic Search

    F. V. Tinaut; A. Melgar; B. Gimnez; M. Reyes

    2010-01-01

    In this article a methodology is presented for studying the influence of the biomass moisture content and the biomass\\/air ratio on the producer gas composition and on the chemiluminescent emissions during the combustion process.Firstly, a mathematical model based on the thermo-chemical processes inside the gasifier is used to predict the composition of the producer gas as a mixture of CO,

  11. Nitrogen oxides, sulfur trioxide, and mercury emissions during oxy-fuel fluidized bed combustion of Victorian brown coal.

    PubMed

    Roy, Bithi; Chen, Luguang; Bhattacharya, Sankar

    2014-12-16

    This study investigates, for the first time, the NOx, N2O, SO3, and Hg emissions from combustion of a Victorian brown coal in a 10 kWth fluidized bed unit under oxy-fuel combustion conditions. Compared to air combustion, lower NOx emissions and higher N2O formation were observed in the oxy-fuel atmosphere. These NOx reduction and N2O formations were further enhanced with steam in the combustion environment. The NOx concentration level in the flue gas was within the permissible limit in coal-fired power plants in Victoria. Therefore, an additional NOx removal system will not be required using this coal. In contrast, both SO3 and gaseous mercury concentrations were considerably higher under oxy-fuel combustion compared to that in the air combustion. Around 83% of total gaseous mercury released was Hg(0), with the rest emitted as Hg(2+). Therefore, to control harmful Hg(0), a mercury removal system may need to be considered to avoid corrosion in the boiler and CO2 separation units during the oxy-fuel fluidized-bed combustion using this coal. PMID:25402169

  12. Plasma igniter for internal-combustion engines

    NASA Technical Reports Server (NTRS)

    Breshears, R. R.; Fitzgerald, D. J.

    1978-01-01

    Hot ionized gas (plasma) ignites air/fuel mixture in internal combustion engines more effectively than spark. Electromagnetic forces propel plasma into combustion zone. Combustion rate is not limited by flame-front speed.

  13. Low emissions combustor development for an industrial gas turbine to utilize LCV fuel gas

    Microsoft Academic Search

    G. J. Kelsall; M. A. Smith; M. F. Cannon

    1994-01-01

    Advanced coal-based power generation systems such as the British Coal Topping Cycle offer the potential for high-efficiency electricity generation with minimum environmental impact. An important component of the Topping cycle program is the gas turbine, for which development of a combustion system to burn low calorific value coal derived fuel gas, at a turbine inlet temperature of 1,260 C (2,300

  14. Producer gas fueled irrigation: evaluating the potential of a technology

    SciTech Connect

    Kiker, C.; Bauman, E.

    1984-01-01

    Development and commercialization of technologies which utilize on-farm energy sources are beset by uncertainty. Producer gas, a technology which allows wood to be converted to a gaseous fuel which can power internal combustion engines, is evaluated for irrigation systems using simulation modelling and stochastic efficiency analysis. For many market conditions, producer gas stochastically dominates diesel fuel for powering a centre pivot irrigation system in terms of low cost. Commercial potential exists, but experience with pilot installations is required to further reduce uncertainity.

  15. Modelling of liquefied petroleum gas spray development, evaporation and combustion

    Microsoft Academic Search

    A P F Yoong; A P Watkins

    2004-01-01

    The research reported in this paper is the computational part of a joint experimental\\/computational investigation of the possible utilization of liquefied petroleum gas (LPG) in a direct injection internal combustion engine. Many aspects of spray modelling have been investigated in the research. This paper concentrates on the implementation of three aspects, namely (a) the incorporation of LPG (butane or propane)

  16. Advanced combustion technologies for gas turbine power plants

    Microsoft Academic Search

    U. Vandsburger; L. A. Roe; S. B. Desu

    1995-01-01

    Objectives are to develop actuators for enhancing the mixing between gas streams, increase combustion stability, and develop hgih-temperature materials for actuators and sensors in combustors. Turbulent kinetic energy maps of an excited jet with co-flow in a cavity with a partially closed exhaust end are given with and without a longitudinal or a transverse acoustic field. Dielectric constants and piezoelectric

  17. Experimental and Numerical Research of a Novel Combustion Chamber for Small Gas Turbine Engines

    NASA Astrophysics Data System (ADS)

    Tuma, J.; Kubata, J.; Betak, V.; Hybl, R.

    2013-04-01

    New combustion chamber concept (based on burner JETIS-JET Induced Swirl) for small gas turbine engine (up to 200kW) is presented in this article. The combustion chamber concept is based on the flame stabilization by the generated swirl swirl generated by two opposite tangentially arranged jet tubes in the intermediate zone, this arrangement replaces air swirler, which is very complicated and expensive part in the scope of small gas turbines with annular combustion chamber. The mixing primary jets are oriented partially opposite to the main exhaust gasses flow, this enhances hot product recirculation and fuel-air mixing necessary for low NOx production and flame stability. To evaluate the designed concept a JETIS burner demonstrator (methane fuel) was manufactured and atmospheric experimental measurements of CO, NOx for various fuel nozzles and jet tubes the configuration were done. Results of these experiments and comparison with CFD simulation are presented here. Practical application of the new chamber concept in small gas turbine liquid fuel combustor was evaluated (verified) on 3 nozzles planar combustor sector test rig at atmospheric conditions results of the experiment and numerical simulation are also presented.

  18. A recuperative external combustion open cycle gas turbine

    E-print Network

    Benson, Dan Thomas

    1979-01-01

    A RECUPERATIVE EXTERNAL COMBUSTION OPEN CYCLE GAS TURBINE A Thesis by Dan Thomas Benson Submitted to the Graduate College of Texas A@M University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE May 1979 Major... Subject: Mechanical Engineering A RECUPEPATIVE EXTERNAL OOMBUSZION OPEN CYCLE GAS TURBINE A Thesis by Dan Thomas Benson Approved as to style and content by: (Chairman of Crxxnit ( of De~t) ( er) May 1979 ABSTRACT A Recuperative External...

  19. Plasma-Enhanced Combustion of Hydrocarbon Fuels and Fuel Blends Using Nanosecond Pulsed Discharges

    SciTech Connect

    Cappelli, Mark; Mungal, M Godfrey

    2014-10-28

    This project had as its goals the study of fundamental physical and chemical processes relevant to the sustained premixed and non-premixed jet ignition/combustion of low grade fuels or fuels under adverse flow conditions using non-equilibrium pulsed nanosecond discharges.

  20. 46 CFR 35.30-15 - Combustible gas indicator-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...2010-10-01 false Combustible gas indicator-TB/ALL. 35.30-15 Section...Rules 35.30-15 Combustible gas indicatorTB/ALL. (a) The provisions...shall be provided with a combustible gas indicator suitable for determining the...

  1. DEMONSTRATION OF GAS-PHASE COMBUSTION SYNTHESIS OF NANOSIZED PARTICLES USING

    E-print Network

    Wooldridge, Margaret S.

    DEMONSTRATION OF GAS-PHASE COMBUSTION SYNTHESIS OF NANOSIZED PARTICLES USING A HYBRID BURNER) Abstract--A new approach for gas-phase combustion synthesis of nanosized particles using a novel hybrid. Introduction Gas-phase combustion synthesis is an important methodology for the production of nanosized

  2. Methods and systems to thermally protect fuel nozzles in combustion systems

    DOEpatents

    Helmick, David Andrew; Johnson, Thomas Edward; York, William David; Lacy, Benjamin Paul

    2013-12-17

    A method of assembling a gas turbine engine is provided. The method includes coupling a combustor in flow communication with a compressor such that the combustor receives at least some of the air discharged by the compressor. A fuel nozzle assembly is coupled to the combustor and includes at least one fuel nozzle that includes a plurality of interior surfaces, wherein a thermal barrier coating is applied across at least one of the plurality of interior surfaces to facilitate shielding the interior surfaces from combustion gases.

  3. Combustion Dynamics and Control for Ultra Low Emissions in Aircraft Gas-Turbine Engines

    NASA Technical Reports Server (NTRS)

    DeLaat, John C.

    2011-01-01

    Future aircraft engines must provide ultra-low emissions and high efficiency at low cost while maintaining the reliability and operability of present day engines. The demands for increased performance and decreased emissions have resulted in advanced combustor designs that are critically dependent on efficient fuel/air mixing and lean operation. However, all combustors, but most notably lean-burning low-emissions combustors, are susceptible to combustion instabilities. These instabilities are typically caused by the interaction of the fluctuating heat release of the combustion process with naturally occurring acoustic resonances. These interactions can produce large pressure oscillations within the combustor and can reduce component life and potentially lead to premature mechanical failures. Active Combustion Control which consists of feedback-based control of the fuel-air mixing process can provide an approach to achieving acceptable combustor dynamic behavior while minimizing emissions, and thus can provide flexibility during the combustor design process. The NASA Glenn Active Combustion Control Technology activity aims to demonstrate active control in a realistic environment relevant to aircraft engines by providing experiments tied to aircraft gas turbine combustors. The intent is to allow the technology maturity of active combustion control to advance to eventual demonstration in an engine environment. Work at NASA Glenn has shown that active combustion control, utilizing advanced algorithms working through high frequency fuel actuation, can effectively suppress instabilities in a combustor which emulates the instabilities found in an aircraft gas turbine engine. Current efforts are aimed at extending these active control technologies to advanced ultra-low-emissions combustors such as those employing multi-point lean direct injection.

  4. Fuel flow regulator control for a diesel engine with exhaust gas driven turbocharger

    SciTech Connect

    Ludwig, G.C.

    1984-03-06

    A fuel flow regulator for an internal combustion engine having an exhaust gas turbocharger is disclosed. The fuel flow regulator responds to intake manifold pressure. Thus the fuel flow regulator increases the maximum fuel flow to the internal combustion engine from a first maximum predetermined fuel flow rate when the intake manifold pressure is at a first predetermined intake air pressure level to a second predetermined maximum fuel flow rate when the intake air manifold pressure is at a second predetermined intake air pressure level. Additionally, the fuel flow regulator decreases fuel flow to a third maximum fuel flow rate which is less than the first predetermined maximum fuel flow rate when the intake manifold pressure is greater than the second predetermined intake air pressure level. Therefore, the fuel flow regulator protects the internal combustion engine from overboost of the engine by the turbocharger and for overfueling the engine.

  5. The origin and fate of organic pollutants from the combustion of alternative fuels

    SciTech Connect

    NONE

    1995-06-01

    The overall objective of this project is to determine the impact of alternative fuels on air quality, particularly ozone formation. The objective will be met through three steps: (1) qualitative identification of alternative fuel combustion products, (2) quantitative measurement of specific emission levels of these products, and (3) determination of the fate of the combustion products in the atmosphere. The alternative fuels of interest are methanol, ethanol, natural gas, and LP gas. The role of the University of Dayton Research Institute (UDRI) in this project is two-fold. First, fused silica flow reactor instrumentation is being used to obtain both qualitative identification and quantitative data on the thermal degradation products from the fuel-lean (oxidative), stoichiometric, and fuel-rich (pyrolytic) decomposition of methanol, ethanol, liquefied petroleum gas, and natural gas. Secondly, a laser photolysis/laser-induced fluorescence (LP/LIF) apparatus is being used to determine the rates and mechanisms of reaction of selected degradation products under atmospheric conditions. This draft final report contains the results of the second year of the study. The authors initially discuss the results of their flow reactor studies. This is followed by a discussion of the initial results from their LP/LIF studies of the reaction of hydroxyl (OH) radicals with methanol and ethanol. In the coming year, they plan to obtain quantitative data on the oxidation of methyl-t-butyl-ether and reformulated gasoline under fuel-lean, stoichiometric, and fuel-rich conditions. They also plan to conduct a mechanistic analysis of the reaction of OH with acetaldehyde and formaldehyde over an extended temperature range.

  6. Plasma reforming and partial oxidation of hydrocarbon fuel vapor to produce synthesis gas and/or hydrogen gas

    DOEpatents

    Kong, Peter C.; Detering, Brent A.

    2003-08-19

    Methods and systems for treating vapors from fuels such as gasoline or diesel fuel in an internal combustion engine, to form hydrogen gas or synthesis gas, which can then be burned in the engine to produce more power. Fuel vapor, or a mixture of fuel vapor and exhaust gas and/or air, is contacted with a plasma, to promote reforming reactions between the fuel vapor and exhaust gas to produce carbon monoxide and hydrogen gas, partial oxidation reactions between the fuel vapor and air to produce carbon monoxide and hydrogen gas, or direct hydrogen and carbon particle production from the fuel vapor. The plasma can be a thermal plasma or a non-thermal plasma. The plasma can be produced in a plasma generating device which can be preheated by contact with at least a portion of the hot exhaust gas stream, thereby decreasing the power requirements of the plasma generating device.

  7. Plasma Reforming And Partial Oxidation Of Hydrocarbon Fuel Vapor To Produce Synthesis Gas And/Or Hydrogen Gas

    DOEpatents

    Kong, Peter C. (Idaho Falls, ID); Detering, Brent A. (Idaho Falls, ID)

    2004-10-19

    Methods and systems are disclosed for treating vapors from fuels such as gasoline or diesel fuel in an internal combustion engine, to form hydrogen gas or synthesis gas, which can then be burned in the engine to produce more power. Fuel vapor, or a mixture of fuel vapor and exhaust gas and/or air, is contacted with a plasma, to promote reforming reactions between the fuel vapor and exhaust gas to produce carbon monoxide and hydrogen gas, partial oxidation reactions between the fuel vapor and air to produce carbon monoxide and hydrogen gas, or direct hydrogen and carbon particle production from the fuel vapor. The plasma can be a thermal plasma or a non-thermal plasma. The plasma can be produced in a plasma generating device which can be preheated by contact with at least a portion of the hot exhaust gas stream, thereby decreasing the power requirements of the plasma generating device.

  8. 40 CFR 60.4360 - How do I determine the total sulfur content of the turbine's combustion fuel?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...total sulfur content of the turbine's combustion fuel? 60.4360 Section 60.4360...Standards of Performance for Stationary Combustion Turbines Monitoring 60.4360...total sulfur content of the turbine's combustion fuel? You must monitor the...

  9. 40 CFR 60.4360 - How do I determine the total sulfur content of the turbine's combustion fuel?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...total sulfur content of the turbine's combustion fuel? 60.4360 Section 60.4360...Standards of Performance for Stationary Combustion Turbines Monitoring 60.4360...total sulfur content of the turbine's combustion fuel? You must monitor the...

  10. 40 CFR 60.4360 - How do I determine the total sulfur content of the turbine's combustion fuel?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...total sulfur content of the turbine's combustion fuel? 60.4360 Section 60.4360...Standards of Performance for Stationary Combustion Turbines Monitoring 60.4360...total sulfur content of the turbine's combustion fuel? You must monitor the...

  11. 40 CFR 60.4360 - How do I determine the total sulfur content of the turbine's combustion fuel?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...total sulfur content of the turbine's combustion fuel? 60.4360 Section 60.4360...Standards of Performance for Stationary Combustion Turbines Monitoring 60.4360...total sulfur content of the turbine's combustion fuel? You must monitor the...

  12. 40 CFR 60.4360 - How do I determine the total sulfur content of the turbine's combustion fuel?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...total sulfur content of the turbine's combustion fuel? 60.4360 Section 60.4360...Standards of Performance for Stationary Combustion Turbines Monitoring 60.4360...total sulfur content of the turbine's combustion fuel? You must monitor the...

  13. Combustion of medium heating value coal gas at turbine operating conditions

    Microsoft Academic Search

    J. A. Schwab; D. C. Cicero; R. S. Basel

    1982-01-01

    The work described in this paper is part of the effort performed under Department of Energy (DOE) Contract DE-AC21-80ETI4752. The primary objective of this contract is to demonstrate the viability of the Westinghouse pressurized, fluidized bed gasification process for production of low and medium heating value fuel gas. One of many secondary objectives is to conduct combustion tests with medium

  14. Unburned Gas Temperatures in an Internal Combustion Engine. I:Cars Temperature Measurements

    Microsoft Academic Search

    Robert P. Lucht; Richard E. Teets; Robert M. Green; Richard E. Palmer; Colin R. Ferguson

    1987-01-01

    Broadband,coherent anti-Stokes Raman scattering (CARS) measurements of unburned gas temperatures have been performed in an internal combustion engine.The engine is fueled with n-butane and air and is operated under both knocking and non-knocking conditons.Temperatures are determined by fitting calculated CARS spectra to experimentally obtained,cycle-averaged nitrogen CARS spectra.The accuracy of the fitted temperature depends on a number of factors,including the modeling

  15. Greenhouse impact due to the use of combustible fuels: Life cycle viewpoint and relative radiative forcing commitment

    SciTech Connect

    Kirkinen, J.; Palosuo, T.; Holmgren, K.; Savolainen, I. [VTT Technical Research Center Finland, Espoo (Finland)

    2008-09-15

    Extensive information on the greenhouse impacts of various human actions is important in developing effective climate change mitigation strategies. The greenhouse impacts of combustible fuels consist not only of combustion emissions but also of emissions from the fuel production chain and possible effects on the ecosystem carbon storages. It is important to be able to assess the combined, total effect of these different emissions and to express the results in a comprehensive way. In this study, a new concept called relative radiative forcing commitment (RRFC) is presented and applied to depict the greenhouse impact of some combustible fuels currently used in Finland. RRFC is a ratio that accounts for the energy absorbed in the Earth system due to changes in greenhouse gas concentrations (production and combustion of fuel) compared to the energy released in the combustion of fuel. RRFC can also be expressed as a function of time in order to give a dynamic cumulative picture on the caused effect. Varying time horizons can be studied separately, as is the case when studying the effects of different climate policies on varying time scales. The RRFC for coal for 100 years is about 170, which means that in 100 years 170 times more energy is absorbed in the atmosphere due to the emissions of coal combustion activity than is released in combustion itself. RRFC values of the other studied fuel production chains varied from about 30 (forest residues fuel) to 190 (peat fuel) for the 100-year study period. The length of the studied time horizon had an impact on the RRFC values and, to some extent, on the relative positions of various fuels.

  16. Greenhouse Impact Due to the Use of Combustible Fuels: Life Cycle Viewpoint and Relative Radiative Forcing Commitment

    PubMed Central

    Palosuo, Taru; Holmgren, Kristina; Savolainen, Ilkka

    2008-01-01

    Extensive information on the greenhouse impacts of various human actions is important in developing effective climate change mitigation strategies. The greenhouse impacts of combustible fuels consist not only of combustion emissions but also of emissions from the fuel production chain and possible effects on the ecosystem carbon storages. It is important to be able to assess the combined, total effect of these different emissions and to express the results in a comprehensive way. In this study, a new concept called relative radiative forcing commitment (RRFC) is presented and applied to depict the greenhouse impact of some combustible fuels currently used in Finland. RRFC is a ratio that accounts for the energy absorbed in the Earth system due to changes in greenhouse gas concentrations (production and combustion of fuel) compared to the energy released in the combustion of fuel. RRFC can also be expressed as a function of time in order to give a dynamic cumulative picture on the caused effect. Varying time horizons can be studied separately, as is the case when studying the effects of different climate policies on varying time scales. The RRFC for coal for 100 years is about 170, which means that in 100 years 170 times more energy is absorbed in the atmosphere due to the emissions of coal combustion activity than is released in combustion itself. RRFC values of the other studied fuel production chains varied from about 30 (forest residues fuel) to 190 (peat fuel) for the 100-year study period. The length of the studied time horizon had an impact on the RRFC values and, to some extent, on the relative positions of various fuels. PMID:18521657

  17. Combustion Simulation Databases for Real Transportation Fuels: A New Community Collaboration

    E-print Network

    Magee, Joseph W.

    Combustion Simulation Databases for Real Transportation Fuels: A New Community Collaboration T. C, and health benefits that could be derived from improved combustion processes are enormous and well recognized on Combustion Simulation Databases for Real Transportation Fuels to assess needs and opportunities to translate

  18. Paper Number 15736-PA Title Reaction Kinetics of Fuel Formation for In-Situ Combustion

    E-print Network

    Abu-Khamsin, Sidqi

    Paper Number 15736-PA Title Reaction Kinetics of Fuel Formation for In-Situ Combustion Authors Abu believed to cause fuel formation for in-situ combustion have been studied and modeled. A thin, packed bed the approach of a combustion front. Analysis of gases produced from the reaction cell revealed that pyrolysis

  19. Ignition and Combustion of Fuel Pockets Moving in an Oxidizing Atmosphere

    E-print Network

    Heil, Matthias

    Ignition and Combustion of Fuel Pockets Moving in an Oxidizing Atmosphere JOEL DAOU Dpto, Spain. E-mail: daou@tupi.dmt.upm.es Ignition and combustion of an initially spherical pocket of fuel, the results provide a good appreciation of the dynamics of the combustion process. For example, it is found

  20. System approach to the analysis of an integrated oxy-fuel combustion power plant

    NASA Astrophysics Data System (ADS)

    Zi?bik, Andrzej; G?adysz, Pawe?

    2014-09-01

    Oxy-fuel combustion (OFC) belongs to one of the three commonly known clean coal technologies for power generation sector and other industry sectors responsible for CO2 emissions (e.g., steel or cement production). The OFC capture technology is based on using high-purity oxygen in the combustion process instead of atmospheric air. Therefore flue gases have a high concentration of CO2. Due to the limited adiabatic temperature of combustion some part of CO2 must be recycled to the boiler in order to maintain a proper flame temperature. An integrated oxy-fuel combustion power plant constitutes a system consisting of the following technological modules: boiler, steam cycle, air separation unit, cooling water and water treatment system, flue gas quality control system and CO2 processing unit. Due to the interconnections between technological modules, energy, exergy and ecological analyses require a system approach. The paper present the system approach based on the `input-output' method to the analysis of the: direct energy and material consumption, cumulative energy and exergy consumption, system (local and cumulative) exergy losses, and thermoecological cost. Other measures like cumulative degree of perfection or index of sustainable development are also proposed. The paper presents a complex example of the system analysis (from direct energy consumption to thermoecological cost) of an advanced integrated OFC power plant.

  1. Combustion

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    The process whereby a substance is combined with oxygen with the production of heat. Burning is a familiar example of this process. The energy required to propel chemical rockets is provided by the combustion of fuel with an oxidant at very high temperatures. A common oxidant is liquid oxygen (often denoted by LOX). Others include hydrogen peroxide and nitrogen tetroxide....

  2. Construction of combustion models for rapeseed methyl ester bio-diesel fuel for internal combustion engine applications

    Microsoft Academic Search

    Valeri I. Golovitchev; Junfeng Yang

    2009-01-01

    Bio-diesel fuels are non-petroleum-based diesel fuels consisting of long chain alkyl esters produced by the transesterification of vegetable oils, that are intended for use (neat or blended with conventional fuels) in unmodified diesel engines. There have been few reports of studies proposing theoretical models for bio-diesel combustion simulations. In this study, we developed combustion models based on ones developed previously.

  3. Evaluating Fuel-Air Mixing in a Direct-Injection Hydrogen-Fueled Internal Combustion Engine

    NASA Astrophysics Data System (ADS)

    Ebadi, Alireza; White, Christopher

    2012-11-01

    Proper orthogonal decomposition (POD) is used to decompose in-cylinder particle image velocimetry (PIV) vector fields acquired in a direct injection hydrogen-fueled internal combustion engine (DI-H2ICE) into mean, coherent, and incoherent vector fields, where the coherent vector fields are presumed to capture the cycle-variability of the flow. The POD vector fields are then used to investigate the effects of fuel injection timing on in-cylinder turbulence and fuel-air mixing.

  4. Emission reduction potential from the combustion of soy methyl ester fuel blended with petroleum distillate fuel

    Microsoft Academic Search

    S. Win Lee; T. Herage; B. Young

    2004-01-01

    Combustion performance of a blend containing 20% soybean methyl ester in heating No. 2 fuel was examined using a residential-scale hot water boiler. The blend burned satisfactorily with no modifications to the appliance and fuel delivery system. SO2 emissions were 19.72.5% lower than that of No. 2 fuel while NOx emissions were similar. Particulate emissions, as determined by a source

  5. Design and development test of a gas turbine combustor for air-blow Lurgi coal gas fuel

    Microsoft Academic Search

    K. W. Beebe; L. J. Ye

    1985-01-01

    A heavy-duty industrial gas turbine combustion system has been designed and laboratory tested for use with low heating value coal gas produced by an air-blown Lurgi coal gasifier. The design fuel has a nominal lower heating value of 4.21 MJ\\/Nm³ (107 BTU\\/SCF). The combustor design utilizes high-swirl fuel and air injection to provide rapid fuel\\/air mixing and a stable flame

  6. Impact of aviation non-CO? combustion effects on the environmental feasibility of alternative jet fuels.

    PubMed

    Stratton, Russell W; Wolfe, Philip J; Hileman, James I

    2011-12-15

    Alternative fuels represent a potential option for reducing the climate impacts of the aviation sector. The climate impacts of alternatives fuel are traditionally considered as a ratio of life cycle greenhouse gas (GHG) emissions to those of the displaced petroleum product; however, this ignores the climate impacts of the non-CO(2) combustion effects from aircraft in the upper atmosphere. The results of this study show that including non-CO(2) combustion emissions and effects in the life cycle of a Synthetic Paraffinic Kerosene (SPK) fuel can lead to a decrease in the relative merit of the SPK fuel relative to conventional jet fuel. For example, an SPK fuel option with zero life cycle GHG emissions would offer a 100% reduction in GHG emissions but only a 48% reduction in actual climate impact using a 100-year time window and the nominal climate modeling assumption set outlined herein. Therefore, climate change mitigation policies for aviation that rely exclusively on relative well-to-wake life cycle GHG emissions as a proxy for aviation climate impact may overestimate the benefit of alternative fuel use on the global climate system. PMID:22106939

  7. Evaluation of synthetic fuel character effects on a rich-lean gas turbine combustor

    SciTech Connect

    Angello, L.C.; Rosfjord, T.J.; Rovesti, W.C.; Sederquist, R.A.

    1982-03-01

    Rich-lean combustion systems are a new generic class of stationary gas turbine combustors capable of low NO /SUB x/ emissions performance with fuels containing high concentrations of nitrogen. Several rich-lean combustor designs are currently under development by utility gas turbine manufacturers as part of the ongoing DOE/NASA Low NO /SUB x/ Heavy Fuel Combustor Concepts Program. The rich-lean combustor concept is similar to the fuel-staging technique used in boiler combustion systems for controlling NO /SUB x/ emissions from fuels containing high fuel-nitrogen. Briefly, a small amount of primary air is mixed with the fuel in the head-end of a rich-lean combustor. This creates a fuel-rich combustion zone to release nitrogen from fuels containing nitrogen compounds and maximize the early formation of molecular nitrogen. This richburn step is followed by the rapid introduction of secondary air to achieve complete combustion of unburned hydrocarbons and carbon monoxide under fuel-lean conditions to minimize the formation of thermal NO /SUB x/. The combustion is optimized in the rich stage to minimize the formation of NO /SUB x/ and molecules such as NH/sub 3/ and HCN which would convert readily to NO /SUB x/ in the lean stage. Sufficient residence time in the lean stage assures complete combustion of even poor quality fuels.

  8. Fuels Containing Methane of Natural Gas in Solution

    NASA Technical Reports Server (NTRS)

    Sullivan, Thomas A.

    2004-01-01

    While exploring ways of producing better fuels for propulsion of a spacecraft on the Mars sample return mission, a researcher at Johnson Space Center (JSC) devised a way of blending fuel by combining methane or natural gas with a second fuel to produce a fuel that can be maintained in liquid form at ambient temperature and under moderate pressure. The use of such a blended fuel would be a departure for both spacecraft engines and terrestrial internal combustion engines. For spacecraft, it would enable reduction of weights on long flights. For the automotive industry on Earth, such a fuel could be easily distributed and could be a less expensive, more efficient, and cleaner-burning alternative to conventional fossil fuels. The concept of blending fuels is not new: for example, the production of gasoline includes the addition of liquid octane enhancers. For the future, it has been commonly suggested to substitute methane or compressed natural gas for octane-enhanced gasoline as a fuel for internal-combustion engines. Unfortunately, methane or natural gas must be stored either as a compressed gas (if kept at ambient temperature) or as a cryogenic liquid. The ranges of automobiles would be reduced from their present values because of limitations on the capacities for storage of these fuels. Moreover, technical challenges are posed by the need to develop equipment to handle these fuels and, especially, to fill tanks acceptably rapidly. The JSC alternative to provide a blended fuel that can be maintained in liquid form at moderate pressure at ambient temperature has not been previously tried. A blended automotive fuel according to this approach would be made by dissolving natural gas in gasoline. The autogenous pressure of this fuel would eliminate the need for a vehicle fuel pump, but a pressure and/or flow regulator would be needed to moderate the effects of temperature and to respond to changing engine power demands. Because the fuel would flash as it entered engine cylinders, relative to gasoline, it would disperse more readily and therefore would mix with air more nearly completely. As a consequence, this fuel would burn more nearly completely (and, hence, more cleanly) than gasoline does. The storage density of this fuel would be similar to that of gasoline, but its energy density would be such that the mileage (more precisely, the distance traveled per unit volume of fuel) would be greater than that of either gasoline or compressed natural gas. Because the pressure needed to maintain the fuel in liquid form would be more nearly constant and generally lower than that needed to maintain compressed natural gas in liquid form, the pressure rating of a tank used to hold this fuel could be lower than that of a tank used to hold compressed natural gas. A mixture of natural gas and gasoline could be distributed more easily than could some alternative fuels. A massive investment in new equipment would not be necessary: One could utilize the present fuel-distribution infrastructure and could blend the gasoline and natural gas at almost any place in the production or distribution process - perhaps even at the retail fuel pump. Yet another advantage afforded by use of a blend of gasoline and natural gas would be a reduction in the amount of gasoline consumed. Because natural gas costs less than gasoline does and is in abundant supply in the United States, the cost of automotive fuel and the demand for imported oil could be reduced.

  9. New ceramic processing approaches using combustion synthesis under gas pressure

    SciTech Connect

    Miyamoto, Y. (Processing Reseach Center for High Performance Materials, Institute of Scientific and Industrial Research, Osaka Univ., Ibaraki, Osaka 567 (JP))

    1990-04-01

    Self-propagating high-temperature synthesis (SHS), or combustion synthesis, is a highly exothermic reaction accompanying formation of compounds with high formation energies. The reaction is initiated by ignition and propagated at speeds of 0.1 to 20 cm/s. Usually the reaction temperature reaches above 2100 to 3500 K. Over 300 kinds of compounds, which include many advanced ceramics and alloys are reportedly produced by this process. The authors discuss one new approach which involves the simultaneous synthesis and densification of ceramics, a process they call gas-pressure combustion sintering, and another which is the formation of nitride ceramic powders and components by nitriding combustion in pressurized nitrogen atmosphere.

  10. Efficient combustion of fuels with controlled chemical underburning

    NASA Astrophysics Data System (ADS)

    Roslyakov, P. V.; Ionkin, I. L.; Pleshanov, K. A.

    2009-01-01

    We present results obtained from putting into use a method of firing natural gas and fuel oil with controlled chemical underburning that allows nitrogen oxide emissions to be reduced by 20-40% in boilers that are in operation. The permissible level of fuel underburning from the considerations of ensuring efficient and environmentally safe operating conditions is determined.

  11. Combustion-acoustic stability analysis for premixed gas turbine combustors

    NASA Technical Reports Server (NTRS)

    Darling, Douglas; Radhakrishnan, Krishnan; Oyediran, Ayo; Cowan, Lizabeth

    1995-01-01

    Lean, prevaporized, premixed combustors are susceptible to combustion-acoustic instabilities. A model was developed to predict eigenvalues of axial modes for combustion-acoustic interactions in a premixed combustor. This work extends previous work by including variable area and detailed chemical kinetics mechanisms, using the code LSENS. Thus the acoustic equations could be integrated through the flame zone. Linear perturbations were made of the continuity, momentum, energy, chemical species, and state equations. The qualitative accuracy of our approach was checked by examining its predictions for various unsteady heat release rate models. Perturbations in fuel flow rate are currently being added to the model.

  12. Fast-burn combustion chamber design for natural gas engines

    SciTech Connect

    Evans, R.L.; Blaszczyk, J. [Univ. of British Columbia, Vancouver, British Columbia (Canada). Dept. of Mechanical Engineering

    1998-01-01

    The work presented in this paper compares the performance and emissions of the UBC Squish-Jet fast-burn combustion chamber with a baseline bowl-in-piston (BIP) chamber. It was found that the increased turbulence generated in the fastburn combustion chambers resulted in 5 to 10% faster burning of the air-fuel mixture compared to a conventional BIP chamber. The faster burning was particularly noticeable when operating with lean air-fuel mixtures. The study was conducted at a 1.7 mm clearance height and 10.2:1 compression ratio. Measurements were made over a range of air-fuel ratios from stoichiometric to the lean limit. At each operating point all engine performance parameters, and emissions of nitrogen oxides, unburned hydrocarbons, and carbon monoxide were recorded. At selected operating points a record of cylinder pressure was obtained and analyzed off-line to determine mass-burn rate in the combustion chamber. Two piston designs were tested at wide-open throttle conditions and 2000 rpm to determine the influence of piston geometry on the performance and emissions parameters. The UBC squish-jet combustion chamber design demonstrates significantly better performance parameters and lower emission levels than the conventional BIP design. Mass-burn fraction calculations showed a significant reduction in the time to burn the first 10% of the charge, which takes approximately half of the time to burn from 10 to 90% of the charge.

  13. Performance of a Flameless combustion furnace using biogas and natural gas

    Microsoft Academic Search

    A. F. Colorado; B. A. Herrera; A. A. Amell

    2010-01-01

    Flameless combustion technology has proved to be flexible regarding the utilization of conventional fuels. This flexibility is associated with the main characteristic of the combustion regime, which is the mixing of the reactants above the autoignition temperature of the fuel. Flameless combustion advantages when using conventional fuels are a proven fact. However, it is necessary to assess thermal equipments performance

  14. Combustion Stability Analyses for J-2X Gas Generator Development

    NASA Technical Reports Server (NTRS)

    Hulka, J. R.; Protz, C. S.; Casiano, M. J.; Kenny, R. J.

    2010-01-01

    The National Aeronautics and Space Administration (NASA) is developing a liquid oxygen/liquid hydrogen rocket engine for upper stage and trans-lunar applications of the Ares vehicles for the Constellation program. This engine, designated the J-2X, is a higher pressure, higher thrust variant of the Apollo-era J-2 engine. Development was contracted to Pratt & Whitney Rocketdyne in 2006. Over the past several years, development of the gas generator for the J-2X engine has progressed through a variety of workhorse injector, chamber, and feed system configurations. Several of these configurations have resulted in injection-coupled combustion instability of the gas generator assembly at the first longitudinal mode of the combustion chamber. In this paper, the longitudinal mode combustion instabilities observed on the workhorse test stand are discussed in detail. Aspects of this combustion instability have been modeled at the NASA Marshall Space Flight Center with several codes, including the Rocket Combustor Interaction Design and Analysis (ROCCID) code and a new lumped-parameter MatLab model. To accurately predict the instability characteristics of all the chamber and injector geometries and test conditions, several features of the submodels in the ROCCID suite of calculations required modification. Finite-element analyses were conducted of several complicated combustion chamber geometries to determine how to model and anchor the chamber response in ROCCID. A large suite of sensitivity calculations were conducted to determine how to model and anchor the injector response in ROCCID. These modifications and their ramification for future stability analyses of this type are discussed in detail. The lumped-parameter MatLab model of the gas generator assembly was created as an alternative calculation to the ROCCID methodology. This paper also describes this model and the stability calculations.

  15. Fuel property effects on engine combustion processes. Final report

    SciTech Connect

    Cernansky, N.P.; Miller, D.L.

    1995-04-27

    A major obstacle to improving spark ignition engine efficiency is the limitations on compression ratio imposed by tendency of hydrocarbon fuels to knock (autoignite). A research program investigated the knock problem in spark ignition engines. Objective was to understand low and intermediate temperature chemistry of combustion processes relevant to autoignition and knock and to determine fuel property effects. Experiments were conducted in an optically and physically accessible research engine, static reactor, and an atmospheric pressure flow reactor (APFR). Chemical kinetic models were developed for prediction of species evolution and autoignition behavior. The work provided insight into low and intermediate temperature chemistry prior to autoignition of n-butane, iso-butane, n-pentane, 1-pentene, n-heptane, iso-octane and some binary blends. Study of effects of ethers (MTBE, ETBE, TAME and DIPE ) and alcohols (methanol and ethanol) on the oxidation and autoignition of primary reference fuel (PRF) blends.

  16. Combustion of waste trap grease oil in gas turbine generator

    Microsoft Academic Search

    M. A. Al-Shudeifat; A. B. Donaldson

    2010-01-01

    The possibility of using waste trap grease in electric power generation is explored in this study. The performance and emissions of both diesel and waste trap grease oils were tested in a gas turbine generator at comparable operating conditions. The fuel system of the gas turbine was modified for dual fuel capability with a diversion valve and a heat exchanger

  17. Combustion

    NASA Technical Reports Server (NTRS)

    Bulzan, Dan

    2007-01-01

    An overview of the emissions related research being conducted as part of the Fundamental Aeronautics Subsonics Fixed Wing Project is presented. The overview includes project metrics, milestones, and descriptions of major research areas. The overview also includes information on some of the emissions research being conducted under NASA Research Announcements. Objective: Development of comprehensive detailed and reduced kinetic mechanisms of jet fuels for chemically-reacting flow modeling. Scientific Challenges: 1) Developing experimental facilities capable of handling higher hydrocarbons and providing benchmark combustion data. 2) Determining and understanding ignition and combustion characteristics, such as laminar flame speeds, extinction stretch rates, and autoignition delays, of jet fuels and hydrocarbons relevant to jet surrogates. 3) Developing comprehensive kinetic models for jet fuels.

  18. Experimental results with hydrogen fueled internal combustion engines

    NASA Technical Reports Server (NTRS)

    De Boer, P. C. T.; Mclean, W. J.; Homan, H. S.

    1975-01-01

    The paper focuses on the most important experimental findings for hydrogen-fueled internal combustion engines, with particular reference to the application of these findings to the assessment of the potential of hydrogen engines. Emphasis is on the various tradeoffs that can be made, such as between maximum efficiency, maximum power, and minimum NO emissions. The various possibilities for induction and ignition are described. Some projections are made about areas in which hydrogen engines may find their initial application and about optimum ways to design such engines. It is shown that hydrogen-fueled reciprocal internal combustion engines offer important advantages with respect to thermal efficiency and exhaust emissions. Problems arising from preignition can suitably be avoided by restricting the fuel-air equivalence ratio to values below about 0.5. The direct cylinder injection appears to be a very attractive way to operate the engine, because it combines a wide range of possible power outputs with a high thermal efficiency and very low NO emissions at part loads.

  19. Broad Specification Fuels Combustion Technology Program, Phase 2

    NASA Technical Reports Server (NTRS)

    Lohmann, R. P.; Jeroszko, R. A.; Kennedy, J. B.

    1990-01-01

    An experimental evaluation of two advanced technology combustor concepts was conducted to evolve and assess their capability for operation on broadened properties fuels. The concepts were based on the results of Phase 1 of the Broad Specification Fuel Combustor Technology Program which indicated that combustors with variable geometry or staged combustion zones had a flexibility of operation that could facilitate operation on these fuels. Emphasis in defining these concepts included the use of single pipe as opposed to duplex or staged fuels systems to avoid the risk of coking associated with the reduction in thermal stability expected in broadened properties fuels. The first concept was a variable geometry combustor in which the airflow into the primary zone could be altered through valves on the front while the second was an outgrowth of the staged Vorbix combustor, evolved under the NASA/P&W ECCP and EEE programs incorporating simplified fuel and air introduction. The results of the investigation, which involved the use of Experimental Referee Broad Specification (ERBS) fuel, indicated that in the form initially conceived, both of these combustor concepts were deficient in performance relative to many of the program goals for performance emissions. However, variations of both combustors were evaluated that incorporated features to simulate conceptual enhancement to demonstrate the long range potential of the combustor. In both cases, significant improvements relative to the program goals were observed.

  20. Interaction of counterpropagating hot spots in solid fuel combustion

    NASA Astrophysics Data System (ADS)

    Bayliss, A.; Matkowsky, B. J.

    1999-04-01

    We consider a model of gasless solid fuel combustion of a cylindrical sample, which describes the SHS (self-propagating high temperature synthesis) process for the synthesis of advanced materials. In this process a compacted powder sample of reactants is ignited at one end and a combustion wave then propagates along the cylindrical axis of the sample converting the unreacted powder to the desired product material. To simplify the presentation we assume that combustion occurs only on the surface of the cylinder, and thus consider the resulting two-dimensional problem. It is known, both experimentally and theoretically, that there exist spinning modes of propagation, i.e., nonaxisymmetric solutions characterized by the formation of hot spots (localized high temperature pulses) which rotate around the sample as they propagate, thus following a helical path on the cylinder. We compute solutions involving counterpropagating hot spots. When the spots collide, we show that they undergo one of three possible interactions: (i) a strong (hot) spot collides with a weak (cooler) spot with both the strong and weak spots continuing to rotate in the same direction as before the interaction, (ii) two strong spots collide to produce two weak spots, and (iii) two weak spots collide to produce two strong spots. The latter two interactions describe the phenomena of apparent annihilation and creation of hot spots, respectively, which have been recently observed in experiments.

  1. Combustion characteristics in the transition region of liquid fuel sprays

    NASA Technical Reports Server (NTRS)

    Cernansky, N. P.; Namer, I.; Tidona, R. J.

    1986-01-01

    A number of important effects have been observed in the droplet size transition region in spray combustion systems. In this region, where the mechanism of flame propagation is transformed from diffusive to premixed dominated combustion, the following effects have been observed: (1) maxima in burning velocity; (2) extension of flammability limits; (3) minima in ignition energy; and (4) minima in NOx formation. A monodisperse aerosol generator has been used to form and deliver a well controlled liquid fuel spray to the combustion test section where measurements of ignition energy have been made. The ignition studies were performed on monodisperse n-heptane sprays at atmospheric pressure over a range of equivalence ratios and droplet diameters. A capacitive discharge spark ignition system was used as the ignition source, providing independent control of spark energy and duration. Preliminary measurements were made to optimize spark duration and spark gap, optimum conditions being those at which the maximum frequency or probability of ignition was observed. Using the optimum electrode spacing and spark duration, the frequency of ignition was determined as a function of spark energy for three overall equivalence ratios (0.6, 0.8, and 1.0) and for initial droplet diameters of 25, 40, 50, 60, and 70 micro m.

  2. Emissions in combustion of lean methane-air and biomass-air mixtures supported by primary hot burned gas in a multi-stage gas turbine combustor

    Microsoft Academic Search

    Sadamasa Adachi; Atushi Iwamoto; Shigeru Hayashi; Hideshi Yamada; Shigehiko Kaneko

    2007-01-01

    Thermal reaction of lean to ultra-lean premixed mixtures supported by the hot burned gas from the up-stream stage can be used for obtaining a better trade-off between ultra-low-NOx and high combustion efficiency over a wide range of operations of a gas turbine. A three-stage model combustor designed based on this concept is being developed for a biomass gas-fueled regenerative cycle

  3. Fission gas retention in irradiated metallic fuel

    Microsoft Academic Search

    G. R. Fenske; E. E. Gruber; J. M. Kramer

    1987-01-01

    Theoretical calculations and experimental measurements of the quantity of retained fission gas in irradiated metallic fuel (U-5Fs) are presented. The calculations utilize the Booth method to model the steady-state release of gases from fuel grains and a simplified grain-boundary gas model to predict the gas release from intergranular regions. The quantity of gas retained in as-irradiated fuel was determined by

  4. and reduce emissions in gas turbines by helping to reduce creep in combustion liners

    Microsoft Academic Search

    Hany Rizkalla

    A low-emissions combustion liner is a critical system component for gas turbines. The combustion air in a gas turbine enters through holes in the combustion chamber liner and flows along the liner to keep it cool. Liners are designed to improve durability and cooling while minimizing the flow variation from liner to liner within the same engine. Reducing variation can

  5. Optimisation of the Gas-Exchange System of Combustion Engines by Genetic Algorithm

    E-print Network

    Marsland, Stephen

    Optimisation of the Gas-Exchange System of Combustion Engines by Genetic Algorithm C. D. Rose, S. R of combustion engine gas-exchange systems still predominantly use trial and error. This paper proposes a new. Keywords - genetic algorithm; variable-length input encoding; combustion engine; optimisation I

  6. Feasibility of pulse combustion in micro gas turbines

    NASA Astrophysics Data System (ADS)

    Honkatukia, Juha; Saari, Esa; Knuuttila, Timo; Larjola, Jaakko; Backman, Jari

    2012-10-01

    In gas turbines, a fast decrease of efficiency appears when the output decreases; the efficiency of a large gas turbine (20...30 MW) is in the order of 40 %, the efficiency of a 30 kW gas turbine with a recuperator is in the order of 25 %, but the efficiency of a very small gas turbine (2...6 kW) in the order of 4...6 % (or 8...12 % with an optimal recuperator). This is mainly a result of the efficiency decrease in kinetic compressors, due to the Reynolds number effect. Losses in decelerating flow in a flow passage are sensitive to the Reynolds number effects. In contrary to the compression, the efficiency of expansion in turbines is not so sensitive to the Reynolds number; very small turbines are made with rather good efficiency because the flow acceleration stabilizes the boundary layer. This study presents a system where the kinetic compressor of a gas turbine is replaced with a pulse combustor. The combustor is filled with a combustible gas mixture, ignited, and the generated high pressure gas is expanded in the turbine. The process is repeated frequently, thus producing a pulsating flow to the turbine; or almost a uniform flow, if several parallel combustors are used and triggered alternately in a proper way. Almost all the compression work is made by the temperature increase from the combustion. This gas turbine type is investigated theoretically and its combustor also experimentally with the conclusion that in a 2 kW power size, the pulse flow gas turbine is not as attractive as expected due to the big size and weight of parallel combustors and due to the efficiency being in the order of 8 % to 10 %. However, in special applications having a very low power demand, below 1000 W, this solution has better properties when compared to the conventional gas turbine and it could be worth of a more detailed investigation.

  7. Advanced Materials for Mercury 50 Gas Turbine Combustion System

    Microsoft Academic Search

    Jeffrey Price

    2008-01-01

    Solar Turbines Incorporated (Solar), under cooperative agreement number DE-FC26-0CH11049, has conducted development activities to improve the durability of the Mercury 50 combustion system to 30,000 hours life and reduced life cycle costs. This project is part of Advanced Materials in the Advanced Industrial Gas Turbines program in DOE's Office of Distributed Energy. The targeted development engine was the Mercury{trademark} 50

  8. Fuel supply control method for internal combustion engines at fuel cut operation

    Microsoft Academic Search

    Hasegawa

    1986-01-01

    A method is described for electronically controlling the quantity of fuel being supplied through injection to an internal combustion engine in synchronism with generation of pulses of a predetermined control signal, in response to operating conditions of the engine. The engine has an exhaust passage and a catalyst device arranged in the exhaust passage for purifying exhaust gases. The method

  9. Gas turbine materials evaluation program utilizing coal derived gaseous fuel

    NASA Astrophysics Data System (ADS)

    Williams, M. L.; Yates, C. C.; Manning, G. B.; Peterson, R. R.

    1981-03-01

    A gas turbine materials evaluation test facility under the sponsorship of the U.S. Department of Energy is described. The objective of the mobile test facility is to obtain dynamic and static test data on the erosion/corrosion characteristics of materials exposed to the hot products of the combustion of coal-derived fuels. The engine being utilized for the tests is the WR 24-7 aircraft turbojet unit reconfigurated to burn coke oven gas. Approximately 100 hours of engine operating time have been logged to date.

  10. Analysis of exhaust waste heat recovery from a dual fuel low temperature combustion engine using an Organic Rankine Cycle

    Microsoft Academic Search

    Kalyan K. Srinivasan; Pedro J. Mago; Sundar R. Krishnan

    2010-01-01

    This paper examines the exhaust waste heat recovery potential of a high-efficiency, low-emissions dual fuel low temperature combustion engine using an Organic Rankine Cycle (ORC). Potential improvements in fuel conversion efficiency (FCE) and specific emissions (NOx and CO2) with hot exhaust gas recirculation (EGR) and ORC turbocompounding were quantified over a range of injection timings and engine loads. With hot

  11. Spiking of Hydrocarbon Fuels with Silanes-based Combustion Enhancers

    NASA Astrophysics Data System (ADS)

    Hidding, Bernhard; Fikri, Mustapha; Bozkurt, Metehan; Schulz, Christof; Soltner, Theresa; Kornath, Andreas; Pfitzner, Michael; Lang, Martin; Adamczyk, Andrew J.; Broadbelt, Linda; Ellerbrock, Hartwig; Simone, Domenico; Bruno, Claudio

    The concept of spiking hydrocarbon fuels such as kerosenes with liquid silicon hydrides in order to render the fuel combination hypergolic and to improve the combustion efficiency is presented and preliminarily analyzed. In view of scarcity of available data, various approaches are used, among them quantum-mechanical ab initio calculations for the thermodynamics and shock-tube measurements for the kinetics of higher, liquid silanes. Based on these results and other data, performance predictions indicate that miscible hydrocarbon/silicon hydride fuels (HC/SH) have the potential to be stored in a single tank, to be hypergolic with many oxidizers, and to yield similar, partly better specific impulses (and volume-specific impulses) than hydrocarbon fuels without silane additives. A variety of hybrid HC/SH fuel combinations seems to be accessible, which might offer the possibility to design a fuel combination with characteristics adjustable in a wide range. The current and future availability of larger amounts of liquid silanes is discussed.

  12. Gas improves hog-fuel boiler performance

    SciTech Connect

    Not Available

    1994-03-01

    One of the boilers at the Harmac Pulp Division of MacMillan Bloedel (MMB) in Nanaimo, British Columbia had a history of somewhat unstable combustion. It was subject to secondary combustion puffs caused by the delayed ignition of combustible gases generated at the grate level. The gases wouldn't ignite until they flowed upward about 15 to 20 feet in the furnace and reached the vicinity of the oil burner. Once they ignited, they produced a large, heavy furnace pressurization or puff. What MMB needed to eliminate the puffs and stabilize operations was an ignition source closer to the grate. That way, the gases would ignite sooner and at a point at which the air supply was adequate. With the help of Inproheat, the Coen Company of Burlingame, CA, the Coen Company of Canada (CBC), and natural gas, MMB was able to achieve its goal. The paper describes the boiler conversion and its performance with natural gas cofiring.

  13. Ignition and combustion of liquid fuel droplet in a convective medium

    SciTech Connect

    Dash, S.K.; Som, S.K. (Dept. of Mechanical Engineering, Indian Inst. of Technology, Kharagpur (IN))

    1991-09-01

    This paper reports that an mathematical model of droplet combustion in surroundings of hot gas with a uniform free stream motion is made from the numerical solution of the conservation equations of heat, mass and momentum in both the carrier and droplet phases. The gas phase chemical reaction between fuel vapor and oxidizer is assumed to be a single-step irreversible one. The phenomena of ignition is recognized by the sudden rise of temperature in the temperature-time histories at different locations in the carrier phase. The relative influences of pertinent input parameters, namely initial Reynolds number Re{sub i}, ratio of free stream to initial drop temperature T{sub infinity}, and the ambient pressure on: the ignition time lad, extinction characteristics, and life histories of burning fuel drops have been established.

  14. New Developments in Closed Loop Combustion Control Using Flue Gas Analysis

    E-print Network

    Nelson, R. L.

    1981-01-01

    New developments in closed loop combustion control are causing radical changes in the way combustion control systems are implemented. The recent availability of in line flue gas analyzers and microprocessor technology are teaming up to produce...

  15. Combustion characteristics of hydrogenhydrocarbon hybrid fuels

    Microsoft Academic Search

    Ahsan R Choudhuri; S. R Gollahalli

    2000-01-01

    A comparative study of the flame structure and characteristics of diffusion flames of the mixture of hydrogenhydrocarbon (natural gas and propane) hybrid fuel in a slow co-flowing stream of air is presented. The volumetric content of natural gas and propane in the mixture was varied from 035%. The burner exit Reynolds number was varied from 1503000. Measurements include flame length,

  16. Comparative bio-fuel performance in internal combustion engines

    Microsoft Academic Search

    R. J. Crookes

    2006-01-01

    An experimental programme examining performance and emissions from spark- and compression-ignition engines, running on a variety of bio-fuels, including simulated bio-gas and commercial seed oil is presented. Both engines were single-cylinder laboratory-type engines of comparable power output having variable speed and load capability, the spark-ignition engine additionally having variable compression ratio. For bio-gas, containing carbon dioxide, emissions of oxides of

  17. Mach 2 combustion characteristics of hydrogen/hydrocarbon fuel mixtures

    SciTech Connect

    Diskin, G.S.; Jachimowski, C.J.; Northam, G.B.; Bell, R.A.

    1987-01-01

    The combustion of H/sub 2//CH/sub 4/ and H/sub 2//C/sub 2/H/sub 4/ mixtures containing 10 to 70 vol pct hydrocarbon at combustor inlet Mach number 2 and temperatures 2000 to 4000 R is investigated experimentally, applying direct-connect test hardware and techniques similar to those described by Diskin and Northam (1987) in the facilities of the NASA Langley Hypersonic Propulsion Branch. The experimental setup, procedures, and data-reduction methods are described; and the results are presented in extensive tables and graphs and characterized in detail. Fuel type and mixture are found to have little effect on the wall heating rate measured near the combustor exit, but H/sub 2//C/sub 2/H/sub 4/ is shown to burn much more efficiently than H/sub 2//CH/sub 4/, with no pilot-off blowout equivalence ratios greater than 0.5. It is suggested that H/sub 2//hydrocarbon mixtures are feasible fuels (at least in terms of combustion efficiency) for scramjet SSTO vehicles operating at freestream Mach numbers above 4.

  18. Device at combustion plants for automatic feeding of fuels within the furnace of the plant

    Microsoft Academic Search

    Lovgren

    1986-01-01

    A method is described for feeding solid fuel through a furnace of a combustion plant, comprising the steps of: positioning solid fuel on a fuel-receiving end of movable grate means, advancing the movable grate means through the furnace from the fuel-receiving end to a fuel-discharging end of the grate means, while combusting the fuel disposed thereon. The grate means is

  19. Fireside Corrosion in Oxy-fuel Combustion of Coal

    SciTech Connect

    Holcomb, Gordon R [National Energy Technology Laboratory; Tylczak, Joseph [National Energy Technology Laboratory; Meier, Gerald H [University of Pittsburgh; Lutz, Bradley [University of Pittsburgh; Jung, Keeyoung [Institute of Industrial Science and Technology, Korea; Mu, Nan; Yanar, Nazik M [University of Pittsburgh; Pettit, Frederick S [University of Pittsburgh; Zhu, Jingxi [Carnegie Mellon University; Wise, Adam [Carnegie Mellon University; Laughlin, David E. [Carnegie Mellon University; Sridhar, Seetharaman [Carnegie Mellon University

    2013-11-25

    Oxy-fuel combustion is burning a fuel in oxygen rather than air for ease of capture of CO2 from for reuse or sequestration. Corrosion issues associated with the environment change (replacement of much of the N2 with CO2 and higher sulfur levels) from air- to oxy-firing were examined. Alloys studied included model FeCr alloys and commercial ferritic steels, austenitic steels, and nickel base superalloys. The corrosion behavior is described in terms of corrosion rates, scale morphologies, and scale/ash interactions for the different environmental conditions. Evidence was found for a hreshold for severe attack between 10-4 and 10-3 atm of SO3 at 700C.

  20. Optimization of burning process of hydrocarbon fuels with varying specific heat of combustion

    NASA Astrophysics Data System (ADS)

    Saifullin, E. R.; Vankov, Yu V.

    2015-06-01

    This article explores the combustion of gaseous fuel in the case of an abrupt change of the specific heat of combustion. Analyzes the changes in the rate of heat when the fuel and air flows are constant. Defines the conditions for which retained the initial rate of heat release and optimal fuel-air ratio.

  1. DOE Project 18546, AOP Task 1.1, Fuel Effects on Advanced Combustion Engines

    Microsoft Academic Search

    Bruce G Bunting; Michael Bunce

    2012-01-01

    Research in 2011 was focused on diesel range fuels and diesel combustion and fuels evaluated in 2011 included a series of oxygenated biofuels fuels from University of Maine, oxygenated fuel compounds representing materials which could be made from sewage, oxygenated marine diesel fuels for low emissions, and a new series of FACE fuel surrogates and FACE fuels with detailed exhaust

  2. The history of mercury emissions from fuel combustion in Maritime Canada

    E-print Network

    Sunderland, Elsie M.

    The history of mercury emissions from fuel combustion in Maritime Canada E.M. Sunderlanda, *, G ``Capsule'': An inventory of historical emissions of mercury from combustion in maritime Canada is presented combustion of wood, coal and rened petroleum products in Maritime Canada. The pattern of emissions

  3. Fine Particle Emissions from Heavy Fuel Oil Combustion in a Firetube Package Boiler

    Microsoft Academic Search

    C. A. Miller; W. P. Linak; C. King; J. O. L. Wendt

    1998-01-01

    Combustion is a significant source of fine particulate matter (PM) emissions, and heavy oil combustion is suspected of producing particulate emissions with potentially significant toxicity. This paper is concerned with the characterization of particulate emissions from a practical boiler burning heavy fuel oils, The purpose of the study was to identify possible mechanisms that might relate both the combustion process

  4. Premixed Gas Combustion: An Excitable System

    NASA Technical Reports Server (NTRS)

    Pearlman, Howard

    1997-01-01

    Rotating spiral and target patterns have been observed experimentally on freely-propagating premixed gas flames in large diameter tubes at normal gravity (1-g). These modes of propagation occur in near-limit mixtures which have a Lewis number (Le, defined as the ratio of the thermal diffusivity of the cold mixture to the mass diffusivity of the scarce component into the mixture) sufficiently greater than one. However, at 1-g, buoyant flows strongly distort the flame curvature, hydrodynamics (thus stretch) and convective transport of species and heat. In turn, these alter the critical Le required for onset of instability. To isolate and better understand the mechanisms which drive the observed patterns and their dynamics, 1-g and microgravity (micro-g) experiments are being conducted to determine: (1) the structure and dynamics of the patterns, (2) a map of the critical Le and heat loss for their occurrence, (3) the relative significance of the chemical kinetics, and (4) the effect of curvature (local wave and global flame front) on wave propagation. With this in hand, we will be better prepared to discuss an additional mode, a state of 'chemical turbulence,' which seems to be the ultimate fate of many of these near-limit flames prior to extinction.

  5. Explosively Driven Combustion of Shock-Dispersed Fuels

    NASA Astrophysics Data System (ADS)

    Neuwald, Peter

    2005-07-01

    Since the eighties our working group has been studying classical blast effects in small-scale experiments using custom-made miniature charges of 0.2 g to 1.5 g PETN. However, in the recent years the interest has shifted towards the performance of non-ideal explosives and the importance of secondary reactions such as after-burning. Thus we have designed an additional charge type, called Shock-Dispersed Fuel (SDF) charge. It consists of a lightweight, small paper cylinder filled with about one gram of a flammable powder (e.g., flake aluminum) surrounding a spherical PETN booster of 0.5 g. We have tested the SDF charges in a number of different environments, realized as closed steel vessels of simple geometry (barometric bombs). Three of the bombs vary in volume (6.6 l, 21.2 l and 40.5 l), while their aspect ratio L/D is kept constant at about 1. Two further bombs are comparable to the smallest bomb in volume (6.3 l), but provide different aspect ratios: L/D = 4.6 and 12.5. In addition, we have also performed tests in a tunnel-model with an L/D = 37.5. Our basic goal is to assess the performance of the charges by means of the combustion-related pressure built-up. Thus we contrast experiments on SDF charges in air with tests in nitrogen, to inhibit combustion, and with tests on conventional charges. Experiments and theoretical estimates on the expected overpressure allow one to formulate various indicators for the observed combustion performance. For SDF charges these indicate that the combustion efficiency decreases not only with increasing volume of the barometric bomb, but also with increasing aspect ratio at constant volume. This bears importance to the performance of SDF charges in tunnel environments. The performance losses reflect -- at least in part -- geometry-specific constraints on the mixing between fuel and air.

  6. Impact of Fuel Interchangeability on dynamic Instabilities in Gas Turbine Engines

    SciTech Connect

    Ferguson, D.H.; Straub, D.L.; Richards, G.A.; Robey, E.H.

    2007-03-01

    Modern, low NOx emitting gas turbines typically utilize lean pre-mixed (LPM) combustion as a means of achieving target emissions goals. As stable combustion in LPM systems is somewhat intolerant to changes in operating conditions, precise engine tuning on a prescribed range of fuel properties is commonly performed to avoid dynamic instabilities. This has raised concerns regarding the use of imported liquefied natural gas (LNG) and natural gas liquids (NGLs) to offset a reduction in the domestic natural gas supply, which when introduced into the pipeline could alter the fuel BTU content and subsequently exacerbate problems such as combustion instabilities. The intent of this study is to investigate the sensitivity of dynamically unstable test rigs to changes in fuel composition and heat content. Fuel Wobbe number was controlled by blending methane and natural gas with various amounts of ethane, propane and nitrogen. Changes in combustion instabilities were observed, in both atmospheric and pressurized test rigs, for fuels containing high concentrations of propane (> 62% by vol). However, pressure oscillations measured while operating on typical LNG like fuels did not appear to deviate significantly from natural gas and methane flame responses. Mechanisms thought to produce changes in the dynamic response are discussed.

  7. On the thermodynamics of waste heat recovery from internal combustion engine exhaust gas

    NASA Astrophysics Data System (ADS)

    Meisner, G. P.

    2013-03-01

    The ideal internal combustion (IC) engine (Otto Cycle) efficiency ?IC = 1-(1/r)(? - 1) is only a function of engine compression ratio r =Vmax/Vmin and exhaust gas specific heat ratio ? = cP/cV. Typically r = 8, ? = 1.4, and ?IC = 56%. Unlike the Carnot Cycle where ?Carnot = 1-(TC/TH) for a heat engine operating between hot and cold heat reservoirs at TH and TC, respectively, ?IC is not a function of the exhaust gas temperature. Instead, the exhaust gas temperature depends only on the intake gas temperature (ambient), r, ?, cV, and the combustion energy. The ejected exhaust gas heat is thermally decoupled from the IC engine and conveyed via the exhaust system (manifold, pipe, muffler, etc.) to ambient, and the exhaust system is simply a heat engine that does no useful work. The maximum fraction of fuel energy that can be extracted from the exhaust gas stream as useful work is (1-?IC) ?Carnot = 32% for TH = 850 K (exhaust) and TC = 370 K (coolant). This waste heat can be recovered using a heat engine such as a thermoelectric generator (TEG) with ?TEG> 0 in the exhaust system. A combined IC engine and TEG system can generate net useful work from the exhaust gas waste heat with efficiency ?WH = (1-?IC) ?Carnot ?TEG , and this will increase the overall fuel efficiency of the total system. Recent improvements in TEGs yield ?TEG values approaching 15% giving a potential total waste heat conversion efficiency of ?WH = 4.6%, which translates into a fuel economy improvement approaching 5%. The ideal internal combustion (IC) engine (Otto Cycle) efficiency ?IC = 1-(1/r)(? - 1) is only a function of engine compression ratio r =Vmax/Vmin and exhaust gas specific heat ratio ? = cP/cV. Typically r = 8, ? = 1.4, and ?IC = 56%. Unlike the Carnot Cycle where ?Carnot = 1-(TC/TH) for a heat engine operating between hot and cold heat reservoirs at TH and TC, respectively, ?IC is not a function of the exhaust gas temperature. Instead, the exhaust gas temperature depends only on the intake gas temperature (ambient), r, ?, cV, and the combustion energy. The ejected exhaust gas heat is thermally decoupled from the IC engine and conveyed via the exhaust system (manifold, pipe, muffler, etc.) to ambient, and the exhaust system is simply a heat engine that does no useful work. The maximum fraction of fuel energy that can be extracted from the exhaust gas stream as useful work is (1-?IC) ?Carnot = 32% for TH = 850 K (exhaust) and TC = 370 K (coolant). This waste heat can be recovered using a heat engine such as a thermoelectric generator (TEG) with ?TEG> 0 in the exhaust system. A combined IC engine and TEG system can generate net useful work from the exhaust gas waste heat with efficiency ?WH = (1-?IC) ?Carnot ?TEG , and this will increase the overall fuel efficiency of the total system. Recent improvements in TEGs yield ?TEG values approaching 15% giving a potential total waste heat conversion efficiency of ?WH = 4.6%, which translates into a fuel economy improvement approaching 5%. This work is supported by the US DOE under DE-EE0005432.

  8. Computations of spray, fuel-air mixing, and combustion in a lean-premixed-prevaporized combustor

    NASA Technical Reports Server (NTRS)

    Dasgupta, A.; Li, Z.; Shih, T. I.-P.; Kundu, K.; Deur, J. M.

    1993-01-01

    A code was developed for computing the multidimensional flow, spray, combustion, and pollutant formation inside gas turbine combustors. The code developed is based on a Lagrangian-Eulerian formulation and utilizes an implicit finite-volume method. The focus of this paper is on the spray part of the code (both formulation and algorithm), and a number of issues related to the computation of sprays and fuel-air mixing in a lean-premixed-prevaporized combustor. The issues addressed include: (1) how grid spacings affect the diffusion of evaporated fuel, and (2) how spurious modes can arise through modelling of the spray in the Lagrangian computations. An upwind interpolation scheme is proposed to account for some effects of grid spacing on the artificial diffusion of the evaporated fuel. Also, some guidelines are presented to minimize errors associated with the spurious modes.

  9. Materials performance of ferritic steel in combustion gases for heat exchanger applications in solid oxide fuel cell systems

    SciTech Connect

    Ziomek-Moroz, M.; Adler, T.A.; King, P.E.

    2008-03-16

    Ferritic steels have been recognized as candidates for their applications in heat exchangers used in Solid Oxide Fuel Cells balance of plant. Combustion gases flowing through those heat exchangers can be very corrosive. Therefore, the National Energy Technology Laboratory determined materials performance of commercial S43000 stainless steel exposed to a simulated combustion gas at 800 C. The exposure experiments were conducted on flat samples in the simulated combustion gas: 19vol% O2+6vol% H2O + 4vol% CO2 +71vol% N2 under isothermal conditions. After the experiment, the surface of a corroded sample was characterized by X-ray diffraction (XRD) to identify possible phases present in the scale, scanning electron microscopy (SEM) to determine microstructure of the oxide scales, and energy dispersive X-ray (EDX) or wavelength dispersive energy X-ray (WDX) spectroscopy to determine chemical composition in the scale and the metal substrate.

  10. Sulfur removal by sorbent injection in secondary combustion zones

    Microsoft Academic Search

    A. L. F. Egense; J. D. Kuenzly

    1989-01-01

    This patent describes an improvement in an apparatus for combustion of sulfur-containing particulate carbonaceous fuel. Oxidizer gas and particulate fuel are introduced into a substantially cylindrical primary combustion chamber. The input velocities, mass-flow rates and combustion temperatures are regulated to minimize the concentration of volatilized and liquid slag in the output gaseous products of combustion. The walls of the combustion

  11. Effect of Operating Conditions on SO2 and NOx Emissions in Oxy-Fuel Mini-CFB Combustion Tests

    NASA Astrophysics Data System (ADS)

    Jia, L.; Tan, Y.; Anthony, E. J.

    Anthropogenic CO2 production is caused primarily by fossil fuel combustion. In consequence, it is increasingly necessary to find ways to reduce these emissions when fossil fuel is used. CO2 capture and storage (CCS) appears to be among the most promising. All of the CCS technologies involve producing a pure stream of CO2 either by concentrating it from the flue gases, or by using pure oxygen as the combustion gas. The latter option, oxy-fuel combustion, has now been well studied for pulverized coal combustion, but hasreceived relatively little attention to date in the case of oxy-fuel circulating fluidized bed combustion. Recently, oxy-fuel CFBC hasbeen examined ina 100 kW pilot plant operating with flue gas recycle at CanmetEnergy. The results strongly support the view that this technology offers all of the advantages of air-fired FBC, with one possible exception. Emissions such as CO or NOx are lower or comparable to air firing. It is possible to switch from air-firing to oxy-firing mode easily, with oxygen concentrations as high as 60-70%, and flue gas recycle levels of 50-60%. Only sulphur capture is poorer. However, this result is not in good agreement with other studies, and the reasons for this discrepancy need further exploration. Here, longer tests have confirmed previous findings from CanmetEnergy with two coals and a petroleum coke. It also appears that changing from direct to indirect sulphation with the petroleum coke improves sulphur capture efficiency, although a similar effect could not be confirmed with coal from these results.

  12. The development of an electrochemical technique for in situ calibrating of combustible gas detectors

    NASA Technical Reports Server (NTRS)

    Shumar, J. W.; Lantz, J. B.; Schubert, F. H.

    1976-01-01

    A program to determine the feasibility of performing in situ calibration of combustible gas detectors was successfully completed. Several possible techniques for performing the in situ calibration were proposed. The approach that showed the most promise involved the use of a miniature water vapor electrolysis cell for the generation of hydrogen within the flame arrestor of a combustible gas detector to be used for the purpose of calibrating the combustible gas detectors. A preliminary breadboard of the in situ calibration hardware was designed, fabricated and assembled. The breadboard equipment consisted of a commercially available combustible gas detector, modified to incorporate a water vapor electrolysis cell, and the instrumentation required for controlling the water vapor electrolysis and controlling and calibrating the combustible gas detector. The results showed that operation of the water vapor electrolysis at a given current density for a specific time period resulted in the attainment of a hydrogen concentration plateau within the flame arrestor of the combustible gas detector.

  13. Metal oxide gas sensor array for the detection of diesel fuel in engine oil

    Microsoft Academic Search

    Simonetta Capone; Marzia Zuppa; Dominique S. Presicce; Luca Francioso; Flavio Casino; Pietro Siciliano

    2008-01-01

    We developed a novel method to detect the presence of unburned diesel fuel in lubricating oil for internal combustion engine. The method is based on the use of an array of different gas microsensors based on metal oxide thin films deposited by solgel technique on Si substrates. The sensor array, exposed to the volatile chemical species of different diesel fuel

  14. Molten carbonate fuel cells for coal and natural gas fuels

    SciTech Connect

    Krumplet, M.; Ackerman, J.P.; Cook, G.M.; Pierce, R.D.

    1984-02-01

    System designs of molten carbonate fuel cell power plants are described for central stations using coal and on-site generators operating on natural gas. Fuel-to-busbar efficiencies are near 50% in coal based systems with turbine bottoming and in simple gas based systems. Coal based systems with more advanced but not fully developed components, and more complex gas based systems approach 60% efficiency.

  15. Molten carbonate fuel cells for coal and natural gas fuels

    SciTech Connect

    Krumpelt, M.; Cook, G.M.; Pierce, R.D.; Ackerman, J.P.

    1984-01-01

    System designs of molten carbonate fuel cell power plants are described for central stations using coal and on-site generators operating on natural gas. Fuel-to-busbar efficiencies are near 50% in coal based systems with turbine bottoming and in simple gas based systems. Coal based systems with more advanced but not fully developed components, and more complex gas based systems approach 60% efficiency.

  16. Effect of fuel zinc content on toxicological responses of particulate matter from pellet combustion in vitro.

    PubMed

    Uski, O; Jalava, P I; Happo, M S; Torvela, T; Leskinen, J; Mki-Paakkanen, J; Tissari, J; Sippula, O; Lamberg, H; Jokiniemi, J; Hirvonen, M-R

    2015-04-01

    Significant amounts of transition metals such as zinc, cadmium and copper can become enriched in the fine particle fraction during biomass combustion with Zn being one of the most abundant transition metals in wood combustion. These metals may have an important role in the toxicological properties of particulate matter (PM). Indeed, many epidemiological studies have found associations between mortality and PM Zn content. The role of Zn toxicity on combustion PM was investigated. Pellets enriched with 170, 480 and 2300 mg Zn/kg of fuel were manufactured. Emission samples were generated using a pellet boiler and the four types of PM samples; native, Zn-low, Zn-medium and Zn-high were collected with an impactor from diluted flue gas. The RAW 264.7 macrophage cell line was exposed for 24h to different doses (15, 50,150 and 300 ?g ml(-1)) of the emission samples to investigate their ability to cause cytotoxicity, to generate reactive oxygen species (ROS), to altering the cell cycle and to trigger genotoxicity as well as to promote inflammation. Zn enriched pellets combusted in a pellet boiler produced emission PM containing ZnO. Even the Zn-low sample caused extensive cell cycle arrest and there was massive cell death of RAW 264.7 macrophages at the two highest PM doses. Moreover, only the Zn-enriched emission samples induced a dose dependent ROS response in the exposed cells. Inflammatory responses were at a low level but macrophage inflammatory protein 2 reached a statistically significant level after exposure of RAW 264.7 macrophages to ZnO containing emission particles. ZnO content of the samples was associated with significant toxicity in almost all measured endpoints. Thus, ZnO may be a key component producing toxicological responses in the PM emissions from efficient wood combustion. Zn as well as the other transition metals, may contribute a significant amount to the ROS responses evoked by ambient PM. PMID:25553547

  17. Exhaust gas recirculation method for internal combustion engines

    SciTech Connect

    Kawanabe, T.; Kimura, K.; Asakura, M.; Shiina, T.

    1988-07-19

    This patent describes a method of controlling exhaust gas recirculation in an internal combustion engine having an exhaust passage, an intake passage, an exhaust gas recirculating passage communicating the exhaust passage with the intake passage, and exhaust gas recirculating valve; and a transmission having a shift lever. The valve opening of the exhaust gas recirculating valve is controlled in response to operating conditions of the engine so as to regulate the amount of exhaust gas recirculation to values appropriate to the operating conditions of the engine. The method comprising the steps of (1) determining whether or not the engine is in at least one of a predetermined accelerating condition and a predetermined decelerating condition; (2) varying the valve opening of the exhaust gas recirculating valve by a predetermined value when the engine is determined to be in at least one of the predetermined accelerating condition and the predetermined decelerating condition; (3) detecting a position of the shift lever of the transmission; and (4) correcting the predetermined value in accordance with the detected position of the shift lever so as to increase the valve opening of the exhaust gas recirculating valve as the shift lever of the transmission is set to a higher speed position.

  18. Experimental and numerical investigation of self-excited combustion oscillations in a scaled gas turbine combustor

    Microsoft Academic Search

    G Lartigue; U Meier; C Brat

    2004-01-01

    The Prediction and Control of Combustion Instabilities in Industrial Gas Turbines (PRECCINSTA) project, financed by the European Commission Fifth Framework, concerns prediction and control of combustion instabilities in tubular and annular gas turbine combustors. One work package within the PRECCINSTA project joins DLR, CERFACS, and Turbomeca to study turbulence chemistry interaction fundamentals as follows.Turbomeca has a low emissions industrial gas

  19. Middle East fuel supply & gas exports for power generation

    SciTech Connect

    Mitchell, G.K. [Merrimack Energy Co., LTD, Lowell, MA (United States); Newendorp, T. [Taylor-DeJongh, Inc., Washington, DC (United States)

    1995-12-31

    The Middle East countries that border on, or are near, the Persian Gulf hold over 65% of the world`s estimated proven crude oil reserves and 32% of the world`s estimated proven natural gas reserves. In fact, approximately 5% of the world`s total proven gas reserves are located in Qatar`s offshore North Field. This large natural gas/condensate field is currently under development to supply three LNG export projects, as well as a sub-sea pipeline proposal to export gas to Pakistan. The Middle East will continue to be a major source of crude oil and oil products to world petroleum markets, including fuel for existing and future base load, intermediate cycling and peaking electric generation plants. In addition, as the Persian Gulf countries turn their attention to exploiting their natural gas resources, the fast-growing need for electricity in the Asia-Pacific and east Africa areas offers a potential market for both pipeline and LNG export opportunities to fuel high efficiency, gas-fired combustion turbine power plants. Mr. Mitchell`s portion of this paper will discuss the background, status and timing of several Middle Eastern gas export projects that have been proposed. These large gas export projects are difficult and costly to develop and finance. Consequently, any IPP developers that are considering gas-fired projects which require Mid-East LNG as a fuel source, should understand the numerous sources and timing to securing project debt, loan terms and conditions, and, restrictions/credit rating issues associated with securing financing for these gas export projects. Mr. Newendorp`s section of the paper will cover the financing aspects of these projects, providing IPP developers with additional considerations in selecting the primary fuel supply for an Asian-Pacific or east African electric generation project.

  20. MSW oxy-enriched incineration technology applied in China: combustion temperature, flue gas loss and economic considerations.

    PubMed

    Fu, Zhe; Zhang, Shihong; Li, Xiangpeng; Shao, Jingai; Wang, Ke; Chen, Hanping

    2015-04-01

    To investigate the application prospect of MSW oxy-enriched incineration technology in China, the technical and economical analyses of a municipal solid waste (MSW) grate furnace with oxy-fuel incineration technology in comparison to co-incineration with coal are performed. The rated capacity of the grate furnace is 350 tonnes MSW per day. When raw MSW is burned, the amount of pure oxygen injected should be about 14.5 wt.% under 25% O2 oxy-fuel combustion conditions with the mode of oxygen supply determined by the actual situation. According to the isothermal combustion temperature (Ta), the combustion effect of 25% O2 oxy-enriched incineration (? = 1.43) is identical with that of MSW co-incineration with 20% mass ratio of coal (? = 1.91). However, the former is better than the latter in terms of plant cost, flue gas loss, and environmental impact. Despite the lower costs of MSW co-incineration with mass ratio of 5% and 10% coal (? = 1.91), 25% O2 oxy-enriched incineration (? = 1.43) is far more advantageous in combustion and pollutant control. Conventional combustion flue gas loss (q2) for co-incineration with 0% coal, 20% coal, 10% coal, 5% coal are around 17%, 13%, 14% and 15%, respectively, while that under the condition of 25% O2 oxy-enriched combustion is approximately 12% (? = 1.43). Clearly, q2 of oxy-enriched incineration is less than other methods under the same combustion conditions. High moisture content presents challenges for MSW incineration, therefore it is necessary to dry MSW prior to incineration, and making oxy-enriched incineration technology achieves higher combustion temperature and lower flue gas loss. In conclusion, based on technical and economical analysis, MSW oxy-enriched incineration retains obvious advantages and demonstrates great future prospects for MSW incineration in China. PMID:25680237

  1. Effects of alternate fuels refractory test facility test 3. Part 1. Analysis of alumina and aluminosilicate fibrous insulations exposed to the combustion products of No. 6 residual oil

    Microsoft Academic Search

    J. I. Federer; V. J. Tennery

    1980-01-01

    Residual oil is being used as an alternate fuel to natural gas and distillate oil in many industrial process heat applications. A consequence of this action is more rapid deterioration of refractories and refractory insulations due to impurities in the oil that are not present in gas and distillates. In this test alumina-based fibrous insulations were exposed to the combustion

  2. Cycle-to-Cycle Fluctuations of Burned Fuel Mass in Spark Ignition Combustion Engines

    E-print Network

    M. Wendeker; G. Litak; M. Krupa

    2003-12-28

    We examine a simple, fuel-air, model of combustion in spark ignition (si) engine with indirect injection. In our two fluid model, variations of fuel mass burned in cycle sequences appear due to stochastic fluctuations of a fuel feed amount. We have shown that a small amplitude of these fluctuations affects considerably the stability of a combustion process strongly depending on the quality of air-fulel mixture. The largest influence was found in the limit of a lean combustion. The possible effect of nonlinearities in the combustion process were also discussed.

  3. Hot Gas Cleanup Test Facility for gasification and pressurized combustion. Quarterly report, October--December 1994

    SciTech Connect

    NONE

    1995-02-01

    The objective of this project is to evaluate hot gas particle control technologies using coal-derived gas streams. This will entail the design, construction, installation, and use of a flexible test facility which can operate under realistic gasification and combustion conditions. The major particulate control device issues to be addressed include the integration of the particulate control devices into coal utilization systems, on-line cleaning techniques, chemical and thermal degradation of components, fatigue or structural failures, blinding, collection efficiency as a function of particle size, and scale-up of particulate control systems to commercial size. The conceptual design of the facility was extended to include a within scope, phased expansion of the existing Hot Gas Cleanup Test Facility Cooperative Agreement to also address systems integration issues of hot particulate removal in advanced coal-based power generation systems. This expansion included the consideration of the following modules at the test facility in addition to the original Transport Reactor gas source and Hot Gas Cleanup Units: carbonizer/pressurized circulating fluidized bed gas source; hot gas cleanup units to mate to all gas streams; combustion gas turbine; and fuel cell and associated gas treatment. The major emphasis during this reporting period was continuing the detailed design of the facility and integrating the particulate control devices (PCDs) into structural and process designs. Substantial progress in underground construction activities was achieved during the quarter. Delivery and construction of coal handling and process structural steel began during the quarter. Delivery and construction of coal handling and process structural steel began during the quarter. MWK equipment at the grade level and the first tier are being set in the structure.

  4. Functionalized graphene sheet colloids for enhanced fuel/propellant combustion.

    PubMed

    Sabourin, Justin L; Dabbs, Daniel M; Yetter, Richard A; Dryer, Frederick L; Aksay, Ilhan A

    2009-12-22

    We have compared the combustion of the monopropellant nitromethane with that of nitromethane containing colloidal particles of functionalized graphene sheets or metal hydroxides. The linear steady-state burning rates of the monopropellant and colloidal suspensions were determined at room temperature, under a range of pressures (3.35-14.4 MPa) using argon as a pressurizing fluid. The ignition temperatures were lowered and burning rates increased for the colloidal suspensions compared to those of the liquid monopropellant alone, with the graphene sheet suspension having significantly greater burning rates (i.e., greater than 175%). The relative change in burning rate from neat nitromethane increased with increasing concentrations of fuel additives and decreased with increasing pressure until at high pressures no enhancement was found. PMID:19925013

  5. Determination of alternative fuels combustion products: Phase 2 final report

    SciTech Connect

    Whitney, K.A.

    1997-06-01

    This report describes the laboratory efforts to accomplish four independent tasks: (1) speciation of hydrocarbon exhaust emissions from a light-duty vehicle operated over the chassis dynamometer portion of the light-duty FTP after modifications for operation on butane and butane blends; (2) evaluation of NREL`s Variable Conductance Vacuum Insulated Catalytic Converter Test Article 4 for the reduction of cold-start FTP exhaust emissions after extended soak periods for a Ford FFV Taurus operating on E85; (3) support of UDRI in an attempt to define correlations between engine-out combustion products identified by SwRI during chassis dynamometer testing, and those found during flow tube reactor experiments conducted by UDRI; and (4) characterization of small-diameter particulate matter from a Ford Taurus FFV operating in a simulated fuel-rich failure mode on CNG, LPG, M85, E85, and reformulated gasoline. 22 refs., 18 figs., 17 tabs.

  6. Corrosion of experimental superheater alloys in waste fuel combustion

    SciTech Connect

    Nyloef, L. [AB Sandvik Steel, Sandviken (Sweden); Haeggblom, E. [Studsvik Material AB, Nykoeping (Sweden)

    1997-08-01

    A number of experimental nickel base alloys have been evaluated regarding their resistance against high temperature corrosion in waste fuel combustion. Specimens were produced by hot extrusion of 50 kg ingots and exposed at 450 C and 490 C on cooled testing probes in the superheater section of a municipal solid waste (MSW) incineration plant. The effect on corrosion by different chromium, molybdenum and niobium concentrations were studied in terms of wall thickness reduction during test periods of up to 2,160 hours. Comparison was made with reference materials such as low alloyed pressure vessel steel (ASME SA213 T12), Alloy 28 (UNS N08028) and Alloy 625 (UNS N06625). The results indicated a positive effect in nickel base alloys on corrosion resistance especially of molybdenum but to some extent also of chromium. Nickel, niobium and iron showed no significant effect on corrosion resistance.

  7. Study of multi-component fuel premixed combustion using direct numerical simulation

    E-print Network

    Nikolaou, Zacharias M.

    2014-04-29

    the above demands. Examples of such fuels are synthetic gas, blast furnace gas and coke oven gas. A common characteristic of these fuels is that they are multi-component fuels, whose composition varies greatly depending on their production process...

  8. Effects of alternate fuels refractory test facility test 3. Part 2. Analysis of magnesia- and alumina-based dense refractories exposed to the combustion products of No. 6 residual oil

    Microsoft Academic Search

    J. I. Federer; V. J. Tennery

    1980-01-01

    Industrial conversion from natural gas to residual oil or coal for process heating generally accelerates deterioration of refractories because of reactions with fuel impurities. This investigation was the third experiment to determine the nature and extent of degradation reactions between fuel impurities (in combustion products) and constituents of the refractories under controlled combustion conditions. The dense refractories included three magnesia-based

  9. Development of the utilization of combustible gas produced in existing sanitary landfills: investigation of effects of air inclusion

    SciTech Connect

    Not Available

    1983-01-01

    A combustible gas mixture composed of methane and carbon dioxide is generated in municipal solid waste landfills. A practical consequence of the collection of this fuel gas is the inclusion of some air in the collected product. The effects of such included nitrogen and oxygen on landfill gas operations are discussed. The effects include increased collection and purification costs, reduction in the quality of the fuel gas produced, corrosion, explosion hazards, and interference with odorant systems. The scope of such effects was determined using data and experience from the Mountain View, California, landfill gas recovery site as a basis. Useful supplemental fuel gas may be recovered despite the inclusion of air. Recommendations are given for establishing limits for nitrogen and oxygen content and minimizing the costs associated with their presence.

  10. Particle emissions from laboratory combustion of wildland fuels: In situ optical and mass measurements

    Microsoft Academic Search

    L.-W. Antony Chen; Hans Moosmller; W. Patrick Arnott; Judith C. Chow; John G. Watson; Ronald A. Susott; Ronald E. Babbitt; Cyle E. Wold; Emily N. Lincoln; Wei Min Hao

    2006-01-01

    Time-resolved optical properties of smoke particles from the controlled laboratory combustion of mid-latitude wildland fuels were determined for the first time using advanced techniques, including cavity ring-down\\/cavity enhanced detection (CRD\\/CED) for light extinction and two-wavelength photoacoustic detection for light absorption. This experiment clearly resolves the dependence of smoke properties on fuel and combustion phase. Intensive flaming combustion during ponderosa pine

  11. Combustion and emissions of the diesel engine using bio-diesel fuel

    Microsoft Academic Search

    Yinnan Yuan; Deqing Mei; Zhong Wang; Tian Zhang

    2008-01-01

    The combustion and heat release of engines using diesel fuel and bio-diesel fuel have been investigated. The results illustrate\\u000a that the combustion happens in advance and the ignition delay period is shortened. The initial heat release peak declines\\u000a a little, the corresponding crankshaft angle changes in advance, and the combustion duration is prolonged. The economic performance\\u000a and emission features of

  12. The influence of oxygen concentration on the combustion of a fuel/oxidizer mixture

    SciTech Connect

    Biteau, H. [School of Engineering and Electronics, BRE Centre for Fire Safety Engineering, The University of Edinburgh, Edinburgh EH9 3JL (United Kingdom); Institut National de l'Environnement Industriel et des Risques, Parc Technologique Alata, Verneuil en Halatte (France); Fuentes, A. [Institut Universitaire des Systemes Thermiques Industriels (CNRS UMR 6595), Universite de Provence, 13453 Marseille Cedex 13 (France); Marlair, G. [Institut National de l'Environnement Industriel et des Risques, Parc Technologique Alata, Verneuil en Halatte (France); Torero, J.L. [School of Engineering and Electronics, BRE Centre for Fire Safety Engineering, The University of Edinburgh, Edinburgh EH9 3JL (United Kingdom)

    2010-04-15

    The aim of the present study is to investigate the influence of the O{sub 2} concentration on the combustion behaviour of a fuel/oxidizer mixture. The material tested is a ternary mixture of lactose, starch, and potassium nitrate, which has already been used in an attempt to estimate heat release rate using the FM-Global Fire Propagation Apparatus. It provides a well-controlled combustion chamber to study the evolution of the combustion products when varying the O{sub 2} concentration, between air and low oxidizer conditions. Different chemical behaviours have been exhibited. When the O{sub 2} concentration was reduced beyond 18%, large variations were observed in the CO{sub 2} and CO concentrations. This critical O{sub 2} concentration seems to be the limit before which the material only uses its own oxidizer to react. On the other hand, mass loss did not highlight this change in chemical reactions and remained similar whatever the test conditions. This presumes that the oxidation of CO into CO{sub 2} are due to reactions occurring in the gas phase especially for large O{sub 2} concentrations. This actual behaviour can be verified using a simplified flammability limit model adapted for the current work. Finally, a sensitivity analysis has been carried out to underline the influence of CO concentration in the evaluation of heat release rate using typical calorimetric methods. The results of this study provide a critical basis for the investigation of the combustion of a fuel/oxidizer mixture and for the validation of future numerical models. (author)

  13. Potential hazards associated with combustion of bio-derived versus petroleum-derived diesel fuel

    PubMed Central

    Bnger, Jrgen; Krahl, Jrgen; Schrder, Olaf; Schmidt, Lasse; Westphal, Gtz A.

    2012-01-01

    Fuels from renewable resources have gained worldwide interest due to limited fossil oil sources and the possible reduction of atmospheric greenhouse gas. One of these fuels is so called biodiesel produced from vegetable oil by transesterification into fatty acid methyl esters (FAME). To get a first insight into changes of health hazards from diesel engine emissions (DEE) by use of biodiesel scientific studies were reviewed which compared the combustion of FAME with common diesel fuel (DF) for legally regulated and non-regulated emissions as well as for toxic effects. A total number of 62 publications on chemical analyses of DEE and 18 toxicological in vitro studies were identified meeting the criteria. In addition, a very small number of human studies and animal experiments were available. In most studies, combustion of biodiesel reduces legally regulated emissions of carbon monoxide, hydrocarbons, and particulate matter. Nitrogen oxides are regularly increased. Among the non-regulated emissions aldehydes are increased, while polycyclic aromatic hydrocarbons are lowered. Most biological in vitro assays show a stronger cytotoxicity of biodiesel exhaust and the animal experiments reveal stronger irritant effects. Both findings are possibly caused by the higher content of nitrogen oxides and aldehydes in biodiesel exhaust. The lower content of PAH is reflected by a weaker mutagenicity compared to DF exhaust. However, recent studies show a very low mutagenicity of DF exhaust as well, probably caused by elimination of sulfur in present DF qualities and the use of new technology diesel engines. Combustion of vegetable oil (VO) in common diesel engines causes a strongly enhanced mutagenicity of the exhaust despite nearly unchanged regulated emissions. The newly developed fuel hydrotreated vegetable oil (HVO) seems to be promising. HVO has physical and chemical advantages compared to FAME. Preliminary results show lower regulated and non-regulated emissions and a decreased mutagenicity. PMID:22871157

  14. Nitrogen oxides reduction by staged combustion of LCV gas

    E-print Network

    Cabrera Sixto, Jose Manuel

    1990-01-01

    of nitrogen that can be present in the ambient air: nitric oxide (NO), nitrogen dioxide (NO z), nitrous oxide (NzO), unsymmetrical nitrogen trioxide (OONO), symmetrical nitrogen trioxide (ON(D P ), dinitrogen trioxide (N zO s), dinitrogen tetroxide (NzO4... NITROGEN OXIDES REDUCTION BY STAGED COMBUSTION OF LCV GAS by JOSE MANUEL CABRERA SIXTO Submitted to the Of6ce of Graduate Studies of Texas A dt M University. in partial ful6llment of the requirements for the degree of MASTER OF SCIENCE...

  15. Low NO/x/ combustion systems for burning heavy residual fuels and high-fuel-bound nitrogen fuels

    NASA Technical Reports Server (NTRS)

    White, D. J.; Batakis, A.; Lecren, R. T.; Yacobucci, H. G.

    1981-01-01

    Design concepts are presented for lean-lean and staged rich-lean combustors. The combustors are designed for the dry reduction of thermal NO(x), control of NO(x) from fuels containing high levels of organic nitrogen, and control of smoke from low hydrogen content fuels. The combustor concepts are tested with a wide variety of fuels including a middle distillate, a petroleum based heavy residual, a coal derived synthetic, and ratios of blends of these fuels. The configurations of the lean-lean and rich-lean combustion systems are provided along with a description of the test rig and test procedure.

  16. CHARACTERIZATION OF EMISSIONS FROM THE COMBUSTION OF WOOD AND ALTERNATIVE FUELS IN A RESIDENTIAL WOODSTOVE

    EPA Science Inventory

    The report gives results of a comparison of emissions from the combustion of alternative fuels to those from wood in a residential woodstove, and of a study of the effects of woodstove operating parameters on combustion emissions. Overall, oak wood is the best fuel tested, consid...

  17. THE INFLUENCE OF CARBON BURNOUT ON SUBMICRON PARTICLE FORMATION FROM EMULSIFIED FUEL OIL COMBUSTION

    EPA Science Inventory

    The paper gives results of an examination of particle behavior and particle size distributions from the combustion of different fuel oils and emulsified fuels in three experimental combusators. Results indicate that improved carbon (C) burnout from fule oil combustion, either by...

  18. Fuel combustion exhibiting low NO{sub x} and CO levels

    DOEpatents

    Keller, J.O.; Bramlette, T.T.; Barr, P.K.

    1996-07-30

    Method and apparatus are disclosed for safely combusting a fuel in such a manner that very low levels of NO{sub x} and CO are produced. The apparatus comprises an inlet line containing a fuel and an inlet line containing an oxidant. Coupled to the fuel line and to the oxidant line is a mixing means for thoroughly mixing the fuel and the oxidant without combusting them. Coupled to the mixing means is a means for injecting the mixed fuel and oxidant, in the form of a large-scale fluid dynamic structure, into a combustion region. Coupled to the combustion region is a means for producing a periodic flow field within the combustion region to mix the fuel and the oxidant with ambient gases in order to lower the temperature of combustion. The means for producing a periodic flow field can be a pulse combustor, a rotating band, or a rotating cylinder within an acoustic chamber positioned upstream or downstream of the region of combustion. The mixing means can be a one-way flapper valve; a rotating cylinder; a rotating band having slots that expose open ends of said fuel inlet line and said oxidant inlet line simultaneously; or a set of coaxial fuel annuli and oxidizer annuli. The means for producing a periodic flow field may or may not be in communication with an acoustic resonance. When employed, the acoustic resonance may be upstream or downstream of the region of combustion. 14 figs.

  19. THEORETICAL INVESTIGATION OF THE PERFORMANCE OF ALTERNATIVE AVIATION FUELS IN AN AERO-ENGINE COMBUSTION CHAMBER

    Microsoft Academic Search

    I. Uryga; M. Pourkashanian; D. Borman; E. Catalanotti; C. W. Wilson

    2009-01-01

    When considering alternative fuels for aviation, factors such as the overall efficiency of the combustion process and the levels of emissions emitted to the atmosphere, need to be critically evaluated. The physical and chemical properties of a fuel influence the combustion efficiency and emissions and therefore need to be considered. The energy content of a biofuel, which is influenced negatively

  20. Measurement of ultrafine particle size distributions from coal-, oil-, and gas-fired stationary combustion sources.

    PubMed

    Chang, M C Oliver; Chow, Judith C; Watson, John G; Hopke, Philip K; Yi, Seung-Muk; England, Glenn C

    2004-12-01

    Currently, we have limited knowledge of the physical and chemical properties of emitted primary combustion aerosols and the changes in those properties caused by nucleation, condensation growth of volatile species, and particle coagulations under dilution and cooling in the ambient air. A dilution chamber was deployed to sample exhaust from a pilot-scale furnace burning various fuels at a nominal heat input rate of 160 kW/h(-1) and 3% excess oxygen. The formation mechanisms of particles smaller than 420 nm in electrical mobility diameter were experimentally investigated by measurement with a Scanning Mobility Particle Sizer (SMPS) as a function of aging times, dilution air ratios, combustion exhaust temperatures, and fuel types. Particle formation in the dilution process is a complex mixture of nucleation, coagulation, and condensational growth, depending on the concentrations of available condensable species and solid or liquid particles (such as soot, ash) in combustion exhausts. The measured particle size distributions in number concentrations measured show peaks of particle number concentrations for medium sulfur bituminous coal, No. 6 fuel oil, and natural gas at 40-50 nm, 70-100 nm, and 15-25 nm, respectively. For No. 6 fuel oil and coal, the particle number concentration is constant in the range of a dilution air ratio of 50, but the number decreases as the dilution air ratio decreases to 10. However, for natural gas, the particle number concentration is higher at a dilution air ratio of 10 and decreases at dilution air ratios of 20-50. At a dilution air ratio of 10, severe particle coagulation occurs in a relatively short time. Samples taken at different combustion exhaust temperatures for these fuel types show higher particle number concentrations at 645 K than at 450 K. As the aging time of particles increases, the particles increase in size and the number concentrations decrease. The largest gradient of particle number distribution occurs within the first 10 sec after dilution but shows only minor differences between 10 and 80 sec. The lifetimes of the ultrafine particles are relatively short, with a scale on the order of a few seconds. Results from this study suggest that an aging time of 10 sec and a dilution air ratio of 20 are sufficient to obtain representative primary particle emission samples from stationary combustion sources. PMID:15648387

  1. The use of petroleum coke as fuel in chemical-looping combustion

    Microsoft Academic Search

    Henrik Leion; Tobias Mattisson; Anders Lyngfelt

    2007-01-01

    Chemical-looping combustion is a novel technique used for CO2 separation that previously has been demonstrated for gaseous fuel. This work demonstrates the feasibility of using solid fuel (petroleum coke) in chemical-looping combustion (CLC). Here, the reaction between the oxygen carrier and solid fuel occurs via the gasification intermediates, primarily CO and H2. A laboratory fluidized-bed reactor system for solid fuel,

  2. Heavy duty gas turbine combustion tests with simulated low BTU coal gas

    Microsoft Academic Search

    T. E. Ekstrom; R. A. Battista; F. H. Belisle; G. P. Maxwell

    1993-01-01

    This program has the objectives to: parametrically determine the effects of moisture, nitrogen and carbon dioxide as diluents so that the combustion characteristics of many varieties of gasification product gases can be reasonably predicted without physically testing each specific gas composition; determine emissions characteristics including NO, NO(x), CO, levels etc. associated with each of the diluents; and operate with at

  3. Nitrogen chemistry during burnout in fuel-staged combustion

    SciTech Connect

    Kristensen, P.G.; Glarborg, P.; Dam-Johansen, K. [Technical Univ. of Denmark, Lyngby (Denmark). Dept. of Chemical Engineering] [Technical Univ. of Denmark, Lyngby (Denmark). Dept. of Chemical Engineering

    1996-11-01

    A parametric study of the chemistry of the burnout zone in reburning has been performed in laboratory plug flow reactors in the temperature range 800--1,350 K. Inlet mole fractions of NO, NH{sub 3}, HCN, CO, and O{sub 2} were varied, together with different temperatures and residence times to simulate reaction conditions in practical systems. Under lean conditions, a minimum in NO emission exists as a function of temperature. Both HCN and NH{sub 3} can act as either NO reductants or as sources for NO by oxidation. Reactions and selectivities for HCN and NH{sub 3} are controlled by the radical pool produced by fuel (CO) oxidation. As increasing amounts of CO were added, temperatures for both ignition and the minimum in NO became lower. At 2% CO, 4% O{sub 2}, and 100 ms residence time, the minimum in NO was found at approximately 1,000 K. At low temperatures, significant amounts of N{sub 2}O were measured in the reactor outlet. This is attributed to N{sub 2}O formation by HCN/NO reactions and to the slow decomposition of N{sub 2}O at these temperatures. Large reductions in NO were seen under fuel-rich conditions and at high temperatures. The observed NO reduction was very much dependent on the inlet mole fraction of O{sub 2}. Detailed chemical kinetic modeling of the experiments showed reasonable predictions for overall fuel-lean conditions, but the model failed to predict experimental results under fuel-rich conditions. The present results provide guidelines for optimizing the conditions for the burnout process of reburning, as well as other processes for NO{sub x} reduction by staged combustion. The results also provide a test basis for verifying kinetic models for nitrogen chemistry at low temperatures (800--1,350 K).

  4. Combustion rates of chars from high-volatile fuels for FBC application

    SciTech Connect

    Masi, S.; Salatino, P.; Senneca, O. [Univ. degli Studi di Napoli Federico II, Napoli (Italy)

    1997-12-31

    The fluidized bed combustion of high volatile fuels is often associated with huge occurrence of comminution phenomena. These result into in-bed generation of substantial amounts of carbon fines which further undergo competitive processes of combustion and elutriation. The small size of carbon fines generated by comminution is such that their further combustion is largely controlled by the intrinsic kinetics of carbon oxidation, alone or in combination with intraparticle diffusion. The competition between fine combustion and elutriation strongly affects the efficiency of fixed carbon conversion and calls for thorough characterization of the combustion kinetics and of residence times of fines in a fluidized bed of coarse solids. In this paper a collection of intrinsic combustion kinetic and porosimetric data for chars from three high-volatile fuels suitable for FBC application is presented. Chars from a Refuse Derived Fuel (RDF), a Tyre Derived Fuel (TDF) and a biomass (Robinia Pseudoacacia) are obtained from devolatilization, in fluidized bed, of fuel samples. Thermogravimetric analysis, mercury porosimetry and helium pycnometry are used to characterize the reactivity and the pore structure of the chars. Combustion rates are characterized over a wide range of temperatures (320--850 C) and oxygen partial pressures, covering the entire range of interest in fluidized bed combustion. Analysis of thermogravimetric and porosimetric data is directed to obtaining the parameters (pre-exponential factors, reaction orders, activation energies, intraparticle diffusivities) of combustion kinetic submodels for application in fluidized bed combustor modeling.

  5. ALTERNATIVE FUELS AND CHEMICALS FROM SYNTHESIS GAS

    SciTech Connect

    Unknown

    1998-01-01

    The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts.

  6. Combustion generated noise in gas turbine combustors. [engine noise/noise reduction

    NASA Technical Reports Server (NTRS)

    Strahle, W. C.; Shivashankara, B. N.

    1974-01-01

    Experiments were conducted to determine the noise power and spectra emitted from a gas turbine combustor can exhausting to the atmosphere. Limited hot wire measurements were made of the cold flow turbulence level and spectra within the can. The fuels used were JP-4, acetone and methyl alcohol burning with air at atmospheric pressure. The experimental results show that for a fixed fuel the noise output is dominated by the airflow rate and not the fuel/air ratio. The spectra are dominated by the spectra of the cold flow turbulence spectra which were invariant with airflow rate in the experiments. The effect of fuel type on the noise power output was primarily through the heat of combustion and not the reactivity. A theory of combustion noise based upon the flame radiating to open surroundings is able to reasonably explain the observed results. A thermoacoustic efficiency for noise radiation as high as .00003 was observed in this program for JP-4 fuel. Scaling rules are presented for installed configurations.

  7. Gas turbine systems development to meet the requirements of a dual fuel biomass/diesel oil application

    SciTech Connect

    Mina, T.I.; Robinson, G.S.; Seamer, A. [European Gas Turbines, Lincoln (United Kingdom)

    1994-12-31

    The present work describes the necessary development and modifications undertaken to supply an EGT TYPHOON gas turbine to operate on a gas fuel, produced by the gasification of wood waste (biomass gas fuel), with a lower calorific value, (LCV), in the range of 4.6 to 5 MJ/Nm{sup 3}. The systems involved are air bleed, fuel, combustion and control. All systems have been developed to production standards and meet the requirements for a dual fuel biomass/diesel commercial application. The gasification process utilises an air blown pressurised bed type gasifier. The air is supplied to the gasifier from the gas turbine compressor via a booster compressor. The air bleed system is designed to supply up to 15% of total compressor air to the gasification process with minimum disturbance to the combustion system and minimum pressure loss. The biomass fuel is supplied to the gas turbine at a temperature in the range of 300{degrees}C to 400{degrees}C and a working pressure up to 22 bara. The gas fuel system is designed to supply and control the biomass fuel flow at the above conditions and to compensate for variation in the LCV of the gas. The biomass fuel will not be available until the gasifier has reached steady state operating conditions, therefore, the gas turbine must run for a considerable length of time on an alternative fuel, in this case diesel oil. The gas turbine combustion system is designed to operate on the biomass fuel and diesel oil. The system has been developed to be capable of starting on the auxiliary fuel and operating around the required engine cycle, including on-load fuel change over. An imposed restriction on the combustion system design has been to maintain physical interchangeability with the standard conventional TYPHOON combustion system. The gas turbine control system has been modified to allow satisfactory interaction with the integrated plant.

  8. Combustion of large volumes of dispersed fuels and the evolution of their products in the free atmosphere

    Microsoft Academic Search

    N. Kh. Kopyt; A. I. Struchaev; Yu. I. Krasnoshchekov; N. K. Rogov; K. N. Shamshev

    1989-01-01

    The results of the experiments show the significant effect of the dimensions of the gasdrop system on the character of its combustion: in the range of clouds with a volume greater than 500 m3, it is possible to attain apparent flame velocities greater than 100 m\\/sec. Here, it was established that in large aerosol clouds of atomized hydrocarbon fuels with

  9. Low NOx emissions from fuel-bound nitrogen in gas turbine combustors

    Microsoft Academic Search

    B. Adouane

    2006-01-01

    Biomass-derived LCV (Low Calorific Value) gas represents one of the best alternatives for fossil fuels. It is very attractive, because it is CO2 neutral as biomass consumes an\\u000aamount of CO2 when growing and releases almost the same amount when combusted. However, the raw gasifier producer gas contains a high content of fuel-bound nitrogen\\u000a(FBN), which results in high NOx

  10. Evaluation of synthetic fuel character effects on a rich-lean gas turbine combustor

    Microsoft Academic Search

    L. C. Angello; T. J. Rosfjord; W. C. Rovesti; R. A. Sederquist

    1982-01-01

    Rich-lean combustion systems are a new generic class of stationary gas turbine combustors capable of low NO \\/SUB x\\/ emissions performance with fuels containing high concentrations of nitrogen. Several rich-lean combustor designs are currently under development by utility gas turbine manufacturers as part of the ongoing DOE\\/NASA Low NO \\/SUB x\\/ Heavy Fuel Combustor Concepts Program. The rich-lean combustor concept

  11. PHYSICAL REVIEW E 90, 022139 (2014) Enhanced efficiency of internal combustion engines by employing spinning gas

    E-print Network

    2014-01-01

    PHYSICAL REVIEW E 90, 022139 (2014) Enhanced efficiency of internal combustion engines by employing; published 28 August 2014) The efficiency of the internal combustion engine might be enhanced by employing Optimizing the internal combustion engine to achieve the highest possible fuel efficiency can be approached

  12. FUEL CELL ENERGY RECOVERY FROM LANDFILL GAS

    EPA Science Inventory

    International Fuel Cells Corporation is conducting a US Environmental Protection Agency (EPA) sponsored program to demonstrate energy recovery from landfill gas using a commercial phosphoric acid fuel cell power plant. The US EPA is interested in fuel cells for this application b...

  13. Numerical Investigation Into Effect of Fuel Injection Timing on CAI/HCCI Combustion in a Four-Stroke GDI Engine

    NASA Astrophysics Data System (ADS)

    Cao, Li; Zhao, Hua; Jiang, Xi; Kalian, Navin

    2006-02-01

    The Controlled Auto-Ignition (CAI) combustion, also known as Homogeneous Charge Compression Ignition (HCCI), was achieved by trapping residuals with early exhaust valve closure in conjunction with direct injection. Multi-cycle 3D engine simulations have been carried out for parametric study on four different injection timings in order to better understand the effects of injection timings on in-cylinder mixing and CAI combustion. The full engine cycle simulation including complete gas exchange and combustion processes was carried out over several cycles in order to obtain the stable cycle for analysis. The combustion models used in the present study are the Shell auto-ignition model and the characteristic-time combustion model, which were modified to take the high level of EGR into consideration. A liquid sheet breakup spray model was used for the droplet breakup processes. The analyses show that the injection timing plays an important role in affecting the in-cylinder air/fuel mixing and mixture temperature, which in turn affects the CAI combustion and engine performance.

  14. Effect of secondary fuels and combustor temperature on mercury speciation in pulverized fuel co-combustion: part 1

    SciTech Connect

    Shishir P. Sable; Wiebren de Jong; Ruud Meij; Hartmut Spliethoff [Delft University Technology, Delft (Netherlands). Section Energy Technology, Department of Process and Energy

    2007-08-15

    The present work mainly involves bench scale studies to investigate partitioning of mercury in pulverized fuel co-combustion at 1000 and 1300{sup o}C. High volatile bituminous coal is used as a reference case and chicken manure, olive residue, and B quality (demolition) wood are used as secondary fuels with 10 and 20% thermal shares. The combustion experiments are carried out in an entrained flow reactor with a fuel input of 7-8 kWth. Elemental and total gaseous mercury concentrations in the flue gas of the reactor are measured on-line, and ash is analyzed for particulate mercury along with other elemental and surface properties. Animal waste like chicken manure behaves very differently from plant waste. The higher chlorine contents of chicken manure cause higher ionic mercury concentrations whereas even with high unburnt carbon, particulate mercury reduces with increase in the chicken manure share. This might be a problem due to coarse fuel particles, low surface area, and iron contents. B-wood and olive residue cofiring reduces the emission of total gaseous mercury and increases particulate mercury capture due to unburnt carbon formed, fine particles, and iron contents of the ash. Calcium in chicken manure does not show any effect on particulate or gaseous mercury. It is probably due to a higher calcium sulfation rate in the presence of high sulfur and chlorine contents. However, in plant waste cofiring, calcium may have reacted with chlorine to reduce ionic mercury to its elemental form. According to thermodynamic predictions, almost 50% of the total ash is melted to form slag at 1300{sup o}C in cofiring because of high calcium, iron, and potassium and hence mercury and other remaining metals are concentrated in small amounts of ash and show an increase at higher temperatures. No slag formation was predicted at 1000{sup o}C. 24 refs., 8 figs., 4 tabs.

  15. Investigation of two-fluid methods for Large Eddy Simulation of spray combustion in Gas Turbines

    E-print Network

    Investigation of two-fluid methods for Large Eddy Simulation of spray combustion in Gas Turbines the EL method well suited for gas turbine computations, but RANS with the EE approach may also be found

  16. Fuel composition and secondary organic aerosol formation: gas-turbine exhaust and alternative aviation fuels.

    PubMed

    Miracolo, Marissa A; Drozd, Greg T; Jathar, Shantanu H; Presto, Albert A; Lipsky, Eric M; Corporan, Edwin; Robinson, Allen L

    2012-08-01

    A series of smog chamber experiments were performed to investigate the effects of fuel composition on secondary particulate matter (PM) formation from dilute exhaust from a T63 gas-turbine engine. Tests were performed at idle and cruise loads with the engine fueled on conventional military jet fuel (JP-8), Fischer-Tropsch synthetic jet fuel (FT), and a 50/50 blend of the two fuels. Emissions were sampled into a portable smog chamber and exposed to sunlight or artificial UV light to initiate photo-oxidation. Similar to previous studies, neat FT fuel and a 50/50 FT/JP-8 blend reduced the primary particulate matter emissions compared to neat JP-8. After only one hour of photo-oxidation at typical atmospheric OH levels, the secondary PM production in dilute exhaust exceeded primary PM emissions, except when operating the engine at high load on FT fuel. Therefore, accounting for secondary PM production should be considered when assessing the contribution of gas-turbine engine emissions to ambient PM levels. FT fuel substantially reduced secondary PM formation in dilute exhaust compared to neat JP-8 at both idle and cruise loads. At idle load, the secondary PM formation was reduced by a factor of 20 with the use of neat FT fuel, and a factor of 2 with the use of the blend fuel. At cruise load, the use of FT fuel resulted in no measured formation of secondary PM. In every experiment, the secondary PM was dominated by organics with minor contributions from sulfate when the engine was operated on JP-8 fuel. At both loads, FT fuel produces less secondary organic aerosol than JP-8 because of differences in the composition of the fuels and the resultant emissions. This work indicates that fuel reformulation may be a viable strategy to reduce the contribution of emissions from combustion systems to secondary organic aerosol production and ultimately ambient PM levels. PMID:22732009

  17. Investigation on Flame Characteristics and Burner Operability Issues of Oxy-Fuel Combustion

    SciTech Connect

    Choudhuri, Ahsan

    2013-05-30

    Oxy-fuel combustion has been used previously in a wide range of industrial applications. Oxy- combustion is carried out by burning a hydrocarbon fuel with oxygen instead of air. Flames burning in this configuration achieve higher flame temperatures which present opportunities for significant efficiency improvements and direct capture of CO{sub 2} from the exhaust stream. In an effort to better understand and characterize the fundamental flame characteristics of oxy-fuel combustion this research presents the experimental measurements of flame stability of various oxyfuel flames. Effects of H{sub 2} concentration, fuel composition, exhaust gas recirculation ratio, firing inputs, and burner diameters on the flame stability of these fuels are discussed. Effects of exhaust gas recirculation i.e. CO{sub 2} and H{sub 2}O (steam) acting as diluents on burner operability are also presented. The roles of firing input on flame stability are then analyzed. For this study it was observed that many oxy-flames did not stabilize without exhaust gas recirculation due to their higher burning velocities. In addition, the stability regime of all compositions was observed to decrease as the burner diameter increased. A flashback model is also presented, using the critical velocity gradient g{sub F}) values for CH{sub 4}-O{sub 2}-CO{sub 2} flames. The scaling relation (𝐠{sub F} = 𝐜 𝐒{sub 𝐋}{sup 2}/𝛂) for different burner diameters was obtained for various diameter burners. The report shows that results correlated linearly with a scaling value of c =0.0174. The second part of the study focuses on the experimental measurements of the flow field characteristics of premixed CH{sub 4}/21%O{sub 2}/79%N{sub 2} and CH{sub 4}/38%O{sub 2}/72%CO{sub 2} mixtures at constant firing input of 7.5 kW, constant, equivalence ratio of 0.8, constant swirl number of 0.92 and constant Reynolds Numbers. These measurements were taken in a swirl stabilized combustor at atmospheric pressure. The flow field visualization using Particle Imaging Velocimetry (PIV) technique is implemented to make a better understanding of the turbulence characteristics of CH{sub 4}/air and CH{sub 4}/38%O{sub 2}/72%CO{sub 2} combustion. The velocity fluctuations, turbulence intensities and local propagation velocities along the combustion chamber have been determined. The turbulent intensities increase as we move away from the combustor axis. CH{sub 4}-38%O{sub 2}-72%CO{sub 2} flames have low radial velocity and turbulent intensity distributions at different axial distances when compared with CH{sub 4}-Air flames.

  18. Optimization of combustion by fuel testing in a NO x reduction test facility

    Microsoft Academic Search

    Gerry J. Hesselmann

    1997-01-01

    Combustion data for a wide range of coals were obtained in a 160 kWth NOx reduction test facility (NRTF). Parametric testing was undertaken under conditions of single-stage combustion, furnace air staging and natural gas reburning. From these tests, detailed information directly applicable to large utility furnaces on the effects of coal characteristics, excess air, stoichiometry and residence time on NOx,

  19. Oxy-fuel combustion technology for coal-fired power generation

    Microsoft Academic Search

    B. J. P. Buhre; L. K. Elliott; C. D. Sheng; R. P. Gupta; T. F. Wall

    2005-01-01

    The awareness of the increase in greenhouse gas emissions has resulted in the development of new technologies with lower emissions and technologies that can accommodate capture and sequestration of carbon dioxide. For existing coal-fired combustion plants there are two main options for CO2 capture: removal of nitrogen from flue gases or removal of nitrogen from air before combustion to obtain

  20. Construction of combustion models for rapeseed methyl ester bio-diesel fuel for internal combustion engine applications.

    PubMed

    Golovitchev, Valeri I; Yang, Junfeng

    2009-01-01

    Bio-diesel fuels are non-petroleum-based diesel fuels consisting of long chain alkyl esters produced by the transesterification of vegetable oils, that are intended for use (neat or blended with conventional fuels) in unmodified diesel engines. There have been few reports of studies proposing theoretical models for bio-diesel combustion simulations. In this study, we developed combustion models based on ones developed previously. We compiled the liquid fuel properties, and the existing detailed mechanism of methyl butanoate ester (MB, C(5)H(10)O(2)) oxidation was supplemented by sub-mechanisms for two proposed fuel constituent components, C(7)H(16) and C(7)H(8)O (and then, by mp2d, C(4)H(6)O(2) and propyne, C(3)H(4)) to represent the combustion model for rapeseed methyl ester described by the chemical formula, C(19)H(34)O(2) (or C(19)H(36)O(2)). The main fuel vapor thermal properties were taken as those of methyl palmitate C(19)H(36)O(2) in the NASA polynomial form of the Burcat database. The special global reaction was introduced to "crack" the main fuel into its constituent components. This general reaction included 309 species and 1472 reactions, including soot and NO(x) formation processes. The detailed combustion mechanism was validated using shock-tube ignition-delay data under diesel engine conditions. For constant volume and diesel engine (Volvo D12C) combustion modeling, this mechanism could be reduced to 88 species participating in 363 reactions. PMID:19409477

  1. Catalytic combustion for the automotive gas turbine engine

    NASA Technical Reports Server (NTRS)

    Anderson, D. N.

    1978-01-01

    Fuel-air premixing-prevaporizing systems and commercial catalysts were studied as part of a demonstration of a low emissions combustor for an automotive gas turbine engine. A fuel preparation system which would supply a fuel-air mixture which was uniform to within + or - 10 percent of the mean fuel-air ratio, with 90 percent fuel vaporization and with no autoignition is described. The catalytic reactor was required to produce emissions which were low enough to meet the most stringent proposed U.S. automotive standards. The overall pressure drop for both systems was to be less than 3 percent, with 1 percent allowed in the fuel-air preparation system and the remainder in the catalytic reactor.

  2. Effect of air-staging on mercury speciation in pulverized fuel co-combustion: part 2

    SciTech Connect

    Shishir P. Sable; Wiebren de Jong; Ruud Meij; Hartmut Spliethoff [Delft University Technology, Delft (Netherlands). Section Energy Technology, Department of Process and Energy

    2007-08-15

    The concerns regarding global warming and need for new energy resources brought the concept of biomass and waste as secondary fuels to the power industry. Mercury emissions in cases of cofiring of chicken manure, olive residue, and B-wood with a high volatile bituminous coal blend are studied in the first part of this paper. The use of secondary fuels significantly affects NOx emissions due to different types of nitrogen present in the fuel matrix. Air-staging is a proven in-furnace NOx reduction technology. The present work mainly involves bench scale studies to investigate the effect of air-staging on partitioning of mercury in pulverized fuel co-combustion. The combustion experiments are carried out in an entrained flow reactor at 1300{sup o}C with a 20%th share of secondary fuels. Elemental and total gaseous mercury from the reactor is measured on-line, and ash is analyzed for particulate mercury along with elemental and surface properties. Reducing the air stoichiometry in the primary zone of the combustor increases unburnt carbon which in turn reduces mercury emissions in the gas phase. Ash analysis shows the effect of surface area, particle size, and unburnt carbon on mercury capture. Calcium variation in the ash was observed due to formation of different slag in reducing and oxidizing conditions and might have affected the mercury capture in combination with the above parameters. A low iron concentration of ash does not seem to affect the capture of mercury. The results will help in predicting different forms of mercury emitted from the furnace at desired operating conditions which will eventually form the basis for the design of the control strategies for mercury emissions. 22 refs., 3 figs., 1 tab.

  3. Experimental study of combustion of hydrogensyngas\\/methane fuel mixtures in a porous burner

    Microsoft Academic Search

    S. K. Alavandi; A. K. Agrawal

    2008-01-01

    Lean premixed combustion of hydrogensyngas\\/methane fuel mixtures was investigated experimentally to demonstrate fuel flexibility of a two-section porous burner. The un-insulated burner was operated at atmospheric pressure. Combustion was stabilized at the interface of silicon-carbide coated carbon foam of 26 pores per centimeter (ppcm) and 4ppcm. Methane (CH4) content in the fuel was decreased from 100% to 0% (by volume),

  4. Investigation of Bio-Diesel Fueled Engines under Low-Temperature Combustion Strategies

    SciTech Connect

    Chia-fon F. Lee; Alan C. Hansen

    2010-09-30

    In accordance with meeting DOE technical targets this research was aimed at developing and optimizing new fuel injection technologies and strategies for the combustion of clean burning renewable fuels in diesel engines. In addition a simultaneous minimum 20% improvement in fuel economy was targeted with the aid of this novel advanced combustion system. Biodiesel and other renewable fuels have unique properties that can be leveraged to reduce emissions and increase engine efficiency. This research is an investigation into the combustion characteristics of biodiesel and its impacts on the performance of a Low Temperature Combustion (LTC) engine, which is a novel engine configuration that incorporates technologies and strategies for simultaneously reducing NOx and particulate emissions while increasing engine efficiency. Generating fundamental knowledge about the properties of biodiesel and blends with petroleum-derived diesel and their impact on in-cylinder fuel atomization and combustion processes was an important initial step to being able to optimize fuel injection strategies as well as introduce new technologies. With the benefit of this knowledge experiments were performed on both optical and metal LTC engines in which combustion and emissions could be observed and measured under realistic conditions. With the aid these experiments and detailed combustion models strategies were identified and applied in order to improve fuel economy and simultaneously reduce emissions.

  5. Internal combustion engine cylinder-to-cylinder balancing with balanced air-fuel ratios

    DOEpatents

    Harris, Ralph E.; Bourn, Gary D.; Smalley, Anthony J.

    2006-01-03

    A method of balancing combustion among cylinders of an internal combustion engine. For each cylinder, a normalized peak firing pressure is calculated as the ratio of its peak firing pressure to its combustion pressure. Each cylinder's normalized peak firing pressure is compared to a target value for normalized peak firing pressure. The fuel flow is adjusted to any cylinder whose normalized peak firing pressure is not substantially equal to the target value.

  6. Combustion characterization of beneficiated coal-based fuels. Quarterly report No. 7, October 1990--December 1990

    SciTech Connect

    Hargrove, M.J.; Chow, O.K.; Nsakala, N.Y.

    1991-02-01

    During the fourth quarter of 1990, the following technical progress was made: (1) Calculated the kinetic characteristics of chars from the combustion of microbubble flotation beneficiated products; (2) continued drop tube combustion tests of the spherical oil agglomeration beneficiated products; (3) analyzed the data from three (MIT) pilot-scale combustion tests of the Upper Freeport feed coal; and (4) continued analyses of the data from the CE pilot-scale tests of nine fuels.

  7. Combustion of liquid bio-fuels in an internal circulating fluidized bed

    Microsoft Academic Search

    Francesco Miccio; Sylwester Kalisz; David Baxter; Karel Svoboda

    2008-01-01

    The paper presents novel experimental results for the combustion of liquid bio-fuels in an internal circulating fluidized bed (ICFB). A 20kW experimental facility equipped with an air-assisted injector has been used. Reliable operation, high combustion efficiency and limited temperature increase along the combustion riser tube have been attained at different operating conditions. However, CO emission has been rather higher than

  8. Hot gas cleanup test facility for gasification and pressurized combustion project. Quarterly report, October--December 1995

    SciTech Connect

    NONE

    1996-02-01

    The objective of this project is to evaluate hot gas particle control technologies using coal-derived gas streams. This will entail the design, construction, installation, and use of a flexible test facility which can operate under realistic gasification and combustion conditions. The conceptual design of the facility was extended to include a within scope, phased expansion of the existing Hot Gas Cleanup Test Facility Cooperative Agreement to also address systems integration issues of hot particulate removal in advanced coal-based power generation systems. This expansion included the consideration of the following modules at the test facility in addition to the original Transport Reactor gas source and Hot Gas Cleanup Units: Carbonizer/pressurized circulating fluidized bed gas source; hot gas cleanup units to mate to all gas streams; combustion gas turbine; and fuel cell and associated gas treatment. This expansion to the Hot Gas Cleanup Test Facility is herein referred to as the Power Systems Development Facility (PSDF). The major emphasis during this reporting period was continuing the detailed design of the facility towards completion and integrating the balance-of-plant processes and particulate control devices (PCDs) into the structural and process designs. Substantial progress in construction activities was achieved during this quarter.

  9. Hot gas cleanup test facility for gasification and pressurized combustion. Quarterly technical progress report, October 1--December 31, 1992

    SciTech Connect

    Not Available

    1992-12-31

    The objective of this project is to evaluate hot gas particle control technologies using coal-derived gas streams. This will entail the design, construction, installation, and use of a flexible test facility which can operate under realistic gasification and combustion conditions. The major particulate control device issues to be addressed include the integration of the particulate control devices into coal utilization systems, on-line cleaning techniques, chemical and thermal degradation of components, fatigue or structural failures, blinding, collection efficiency as a function of particle size, and scale-up of particulate control systems to commercial size. The conceptual design of the facility was extended to include a within scope, phased expansion of the existing Hot Gas Cleanup Test Facility Cooperative Agreement to also address systems integration issues of hot particulate removal in advanced coal-based power generation systems. This expansion included the consideration of the following modules at the test facility in addition to the existing Transport Reactor gas source and Hot Gas Cleanup Units: Carbonizer/Pressurized Circulating Fluidized Bed Gas Source; Hot Gas Cleanup Units to mate to all gas streams; Combustion Gas Turbine; and Fuel Cell and associated gas treatment. This expansion to the Hot Gas Cleanup Test Facility is herein referred to as the Power Systems Development Facility (PSDF). The major emphasis during this reporting period was continuing the detailed design of the facility.

  10. Evaluation of Ultra Clean Fuels from Natural Gas

    SciTech Connect

    Robert Abbott; Edward Casey; Etop Esen; Douglas Smith; Bruce Burke; Binh Nguyen; Samuel Tam; Paul Worhach; Mahabubul Alam; Juhun Song; James Szybist; Ragini Acharya; Vince Zello; David Morris; Patrick Flynn; Stephen Kirby; Krishan Bhatia; Jeff Gonder; Yun Wang; Wenpeng Liu; Hua Meng; Subramani Velu; Jian-Ping Shen, Weidong Gu; Elise Bickford; Chunshan Song; Chao-Yang Wang; Andre' Boehman

    2006-02-28

    ConocoPhillips, in conjunction with Nexant Inc., Penn State University, and Cummins Engine Co., joined with the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) in a cooperative agreement to perform a comprehensive study of new ultra clean fuels (UCFs) produced from remote sources of natural gas. The project study consists of three primary tasks: an environmental Life Cycle Assessment (LCA), a Market Study, and a series of Engine Tests to evaluate the potential markets for Ultra Clean Fuels. The overall objective of DOE's Ultra Clean Transportation Fuels Initiative is to develop and deploy technologies that will produce ultra-clean burning transportation fuels for the 21st century from both petroleum and non-petroleum resources. These fuels will: (1) Enable vehicles to comply with future emission requirements; (2) Be compatible with the existing liquid fuels infrastructure; (3) Enable vehicle efficiencies to be significantly increased, with concomitantly reduced CO{sub 2} emissions; (4) Be obtainable from a fossil resource, alone or in combination with other hydrocarbon materials such as refinery wastes, municipal wastes, biomass, and coal; and (5) Be competitive with current petroleum fuels. The objectives of the ConocoPhillips Ultra Clean Fuels Project are to perform a comprehensive life cycle analysis and to conduct a market study on ultra clean fuels of commercial interest produced from natural gas, and, in addition, perform engine tests for Fisher-Tropsch diesel and methanol in neat, blended or special formulations to obtain data on emissions. This resulting data will be used to optimize fuel compositions and engine operation in order to minimize the release of atmospheric pollutants resulting from the fuel combustion. Development and testing of both direct and indirect methanol fuel cells was to be conducted and the optimum properties of a suitable fuel-grade methanol was to be defined. The results of the study are also applicable to coal-derived FT liquid fuels. After different gas clean up processes steps, the coal-derived syngas will produce FT liquid fuels that have similar properties to natural gas derived FT liquids.

  11. Combustion quasi-two zone predictive model for dual fuel engines

    Microsoft Academic Search

    G. H. Abd Alla; H. A. Soliman; O. A. Badr; M. F. Abd Rabbo

    2001-01-01

    A quasi-two zone predictive model is developed in the present work for prediction of the combustion processes in dual fuel engines and some of their performance features. Methane is used as the main fuel while employing a small quantity of liquid fuel (pilot) injected through the conventional Diesel fuel system. This model emphasizes the effects of chemical kinetics activity of

  12. Public perception related to a hydrogen hybrid internal combustion engine transit bus demonstration and hydrogen fuel

    Microsoft Academic Search

    Allister Hickson; Al Phillips; Gene Morales

    2007-01-01

    Hydrogen has been widely considered as a potentially viable alternative to fossil fuels for use in transportation. In addition to price competitiveness with fossil fuels, a key to its adoption will be public perceptions of hydrogen technologies and hydrogen fuel. This paper examines public perceptions of riders of a hydrogen hybrid internal combustion engine bus and hydrogen as a fuel

  13. Theoretical and experimental studies on the combustion of synthetic fuels in spark ignition engines

    Microsoft Academic Search

    A. A. Desoky; S. M. El-Eman

    1983-01-01

    The incentives for studying the combustion of alternative fuels in engines are, some fuel as fuel additive may solve the problem of emissions, knock, derivability and efficiency. Also an alternative fuel may help conserve the world's petroleum supplies as well as being available when those supplies are exhausted. Transportation is unique among the energy consuming sectors of the economy of

  14. Development and test of combustion chamber for Stirling engine heated by natural gas

    NASA Astrophysics Data System (ADS)

    Li, Tie; Song, Xiange; Gui, Xiaohong; Tang, Dawei; Li, Zhigang; Cao, Wenyu

    2014-04-01

    The combustion chamber is an important component for the Stirling engine heated by natural gas. In the paper, we develop a combustion chamber for the Stirling engine which aims to generate 35 kWe electric power. The combustion chamber includes three main components: combustion module, heat exchange cavity and thermal head. Its feature is that the structure can divide "combustion" process and "heat transfer" process into two apparent individual steps and make them happen one by one. Since natural gas can mix with air fully before burning, the combustion process can be easily completed without the second wind. The flame can avoid contacting the thermal head of Stirling engine, and the temperature fields can be easily controlled. The designed combustion chamber is manufactured and its performance is tested by an experiment which includes two steps. The experimental result of the first step proves that the mixture of air and natural gas can be easily ignited and the flame burns stably. In the second step of experiment, the combustion heat flux can reach 20 kW, and the energy utilization efficiency of thermal head has exceeded 0.5. These test results show that the thermal performance of combustion chamber has reached the design goal. The designed combustion chamber can be applied to a real Stirling engine heated by natural gas which is to generate 35 kWe electric power.

  15. Trapped Vortex Combustion Chamber: Design and Experimental Investigations Using Hydrogen as Fuel

    NASA Astrophysics Data System (ADS)

    Kulshreshtha, D. B.; Channiwala, S. A.

    2014-01-01

    The design of trapped vortex combustion chamber was undertaken as a part of ongoing research on micro combustion chamber using hydrogen as fuel. The reacting experimental studies were then carried out on the designed chamber. The fuel was injected directly into the cavity. The combustion was first initiated in the cavity with 3 % of the main flow air supplied in reverse direction to the fuel flow. The combustion in cavity was of rich type. Temperature levels in the range of 900 K were encountered in the cavity. Thereafter, diffusion combustion was initiated using the flame generated in the cavity. The temperature levels in this stage were in the range of 1,800 K. The overall pressure drop for a trapped vortex combustor was less than 5 % at all operating parameters.

  16. Using exhaust gas recirculation in internal combustion engines: a review

    Microsoft Academic Search

    G. H. Abd-Alla

    2002-01-01

    The aim of this work is to review the potential of exhaust gas recirculation (EGR) to reduce the exhaust emissions, particularly NOX emissions, and to delimit the application range of this technique. A detailed analysis of previous and current results of EGR effects on the emissions and performance of Diesel engines, spark ignition engines and duel fuel engines is introduced.

  17. BIOMASS COMBUSTION IN GAS-TURBINE-BASED SYSTEMS

    EPA Science Inventory

    The paper gives results of a comparative evaluation of a range of biomass power generation systems. he objective was to identify systems most suitable for unique properties of biomass. he characteristics of biomass fuels were reviewed, and the performance of several gas-turbine-b...

  18. Effects of Fuel Physical Properties on Diesel Engine Combustion Using Diesel and Bio-Diesel Fuels

    SciTech Connect

    Ra, Youngchul [ORNL; Reitz, Rolf [University of Wisconsin; McFarlane, Joanna [ORNL; Daw, C Stuart [ORNL

    2007-01-01

    A computational study is performed to investigate the effects of physical property on diesel engine combustion characteristics using bio-diesel fuels. Properties of typical bio-diesel fuels that were either calculated or measured are used in the study and the simulation results are compared with those of conventional diesel fuels. Sensitivity of the computational results to individual physical properties is also investigated, and the results can provide information for desirable characteristics of the blended fuels. The properties considered in this study include liquid density, vapor pressure, surface tension, liquid viscosity, liquid thermal conductivity, liquid specific heat, latent heat, vapor specific heat, vapor diffusion coefficient, vapor viscosity and vapor thermal conductivity. The results show significant effects of the fuel physical properties on ignition delay and burning rates at various engine operating conditions. It is seen that there is no single physical property that dominates differences of ignition delay between diesel and bio-diesel fuels. However, among the 11 properties considered in the study, the simulation results were found to be most sensitive to the liquid fuel density, vapor pressure and surface tension through their effects on the mixture preparation processes.

  19. Transportation fuels from synthetic gas

    SciTech Connect

    Baker, E.G.; Cuello, R.

    1981-08-01

    Twenty-five experimental Fischer-Tropsch synthesis runs were made with 14 different catalysts or combinations of catalysts using a Berty reactor system. Two catalysts showed increased selectivity to transportation fuels compared to typical Fischer-Tropsch catalysts. With a catalyst consisting of 5 wt % ruthenium impregnated on a Y zeolite (run number 24), 63 to 70 wt % of the hydrocarbon product was in the gasoline boiling range. Using a 0.5 wt % ruthenium on alumina catalyst (run number 22), 64 to 78 wt % of the hydrocarbon product was in the diesel fuel boiling range. Not enough sample was produced to determine the octane number of the gasoline from run number 24, but it is probably somewhat better than typical Fischer-Tropsch gasoline (approx. 50) and less than unleaded gasoline (approx. 88). The diesel fuel produced in run number 22 consisted of mostly straight chained paraffins and should be an excellent transportation fuel without further refining. The yield of transportation fuels from biomass via gasification and the Fischer-Tropsch synthesis with the ruthenium catalysts identified in the previous paragraph is somewhat less, on a Btu basis, than methanol (via gasification) and wood oil (PERC and LBL processes) yields from biomass. However, the products of the F-T synthesis are higher quality transportation fuels. The yield of transportation fuels via the F-T synthesis is similar to the yield of gasoline via methanol synthesis and the Mobil MTG process.

  20. Effect of a homogeneous combustion catalyst on the combustion characteristics and fuel efficiency in a diesel engine

    Microsoft Academic Search

    Mingming Zhu; Yu Ma; Dongke Zhang

    2012-01-01

    ► A ferrous-picrate catalyst has been shown to improve diesel engine efficiency. ► The fuel consumption is reduced by up to 4.2% with the use of the catalyst. ► The catalyst shortens ignition delay and combustion duration.